WorldWideScience

Sample records for coordinated excitatory synaptic

  1. Irregular persistent activity induced by synaptic excitatory feedback

    Directory of Open Access Journals (Sweden)

    Francesca Barbieri

    2007-11-01

    Full Text Available Neurophysiological experiments on monkeys have reported highly irregular persistent activity during the performance of an oculomotor delayed-response task. These experiments show that during the delay period the coefficient of variation (CV of interspike intervals (ISI of prefrontal neurons is above 1, on average, and larger than during the fixation period. In the present paper, we show that this feature can be reproduced in a network in which persistent activity is induced by excitatory feedback, provided that (i the post-spike reset is close enough to threshold , (ii synaptic efficacies are a non-linear function of the pre-synaptic firing rate. Non-linearity between presynaptic rate and effective synaptic strength is implemented by a standard short-term depression mechanism (STD. First, we consider the simplest possible network with excitatory feedback: a fully connected homogeneous network of excitatory leaky integrate-and-fire neurons, using both numerical simulations and analytical techniques. The results are then confirmed in a network with selective excitatory neurons and inhibition. In both the cases there is a large range of values of the synaptic efficacies for which the statistics of firing of single cells is similar to experimental data.

  2. Location-dependent excitatory synaptic interactions in pyramidal neuron dendrites.

    Directory of Open Access Journals (Sweden)

    Bardia F Behabadi

    Full Text Available Neocortical pyramidal neurons (PNs receive thousands of excitatory synaptic contacts on their basal dendrites. Some act as classical driver inputs while others are thought to modulate PN responses based on sensory or behavioral context, but the biophysical mechanisms that mediate classical-contextual interactions in these dendrites remain poorly understood. We hypothesized that if two excitatory pathways bias their synaptic projections towards proximal vs. distal ends of the basal branches, the very different local spike thresholds and attenuation factors for inputs near and far from the soma might provide the basis for a classical-contextual functional asymmetry. Supporting this possibility, we found both in compartmental models and electrophysiological recordings in brain slices that the responses of basal dendrites to spatially separated inputs are indeed strongly asymmetric. Distal excitation lowers the local spike threshold for more proximal inputs, while having little effect on peak responses at the soma. In contrast, proximal excitation lowers the threshold, but also substantially increases the gain of distally-driven responses. Our findings support the view that PN basal dendrites possess significant analog computing capabilities, and suggest that the diverse forms of nonlinear response modulation seen in the neocortex, including uni-modal, cross-modal, and attentional effects, could depend in part on pathway-specific biases in the spatial distribution of excitatory synaptic contacts onto PN basal dendritic arbors.

  3. Amyloid-β depresses excitatory cholinergic synaptic transmission in Drosophila

    Institute of Scientific and Technical Information of China (English)

    Liqun Fang; Jingjing Duan; Dongzhi Ran; Zihao Fan; Ying Yan; Naya Huang; Huaiyu Gu; Yulan Zhu

    2012-01-01

    Objective Decline,disruption,or alterations of nicotinic cholinergic mechanisms contribute to cognitive dysfunctions like Alzheimer's disease (AD).Although amyloid-β (Aβ) aggregation is a pathological hallmark of AD,the mechanisms by which Aβ peptides modulate cholinergic synaptic transmission and memory loss remain obscure.This study was aimed to investigate the potential synaptic modulation by Aβ of the cholinergic synapses between olfactory receptor neurons and projection neurons (PNs) in the olfactory lobe of the fruit fly.Methods Cholinergic spontaneous and miniature excitatory postsynaptic current (mEPSC) were recorded with whole-cell patch clamp from PNs in Drosophila AD models expressing Aβ40,Aβ42,or Aβ42Arc peptides in neural tissue.Results In fly pupae (2 days before eclosion),overexpression of Aβ42 or Aβ42Arc,but not Aβ40,led to a significant decrease of mEPSC frequency,while overexpression of Aβ40,Aβ42,or Aβ42Arc had no significant effect on mEPSC amplitude.In contrast,Pavlovian olfactory associative learning and lifespan assays showed that both short-term memory and lifespan were decreased in the Drosophila models expressing Aβ40,Aβ42,or Aβ42Arc.Conclusion Both electrophysiological and behavioral results showed an effect of Aβ peptide on cholinergic synaptic transmission and suggest a possible mechanism by which Aβ peptides cause cholinergic neuron degeneration and the consequent memory loss.

  4. Multiple mechanisms of fast excitatory synaptic transmission in the enteric nervous system.

    Science.gov (United States)

    Galligan, J J; LePard, K J; Schneider, D A; Zhou, X

    2000-07-01

    The enteric nervous system (ENS) can control gastrointestinal function independent of direct connections with the central nervous system. Enteric nerves perform this important function using multiple mechanisms of excitatory neurotransmission in enteric ganglia. Fast excitatory synaptic transmission in the autonomic nervous system (ANS) is largely mediated by acetylcholine (ACh) acting at nicotinic cholinergic receptors but in the ENS there are noncholinergic fast excitatory neurotransmitters. There are two broad types of neurons in the ENS: S neurons and AH neurons. S neurons are interneurons and motoneurons while AH neurons are sensory neurons. Three subsets of S neurons in the myenteric plexus can be distinguished on the basis of the neurotransmitters producing fast excitatory postsynaptic potentials (fEPSPs) in each subset. In one subset, fEPSPs are mediated solely by ACh acting at nicotinic cholinergic receptors. In a second subset of S neurons, ATP acting at P2X purine receptors and ACh contribute to the fEPSP while in a third subset, fEPSPs are mediated by 5-hydroxytryptamine (5-HT) acting at 5-HT(3) receptors and ACh. Some AH neurons also receive fast excitatory synaptic input. The fEPSPs recorded from AH neurons are mediated ACh and also by glutamate acting at alpha-amino-3-hydroxy-5-methyl-4-isoxazolepropionate (AMPA) receptors. Multiple mechanisms of fast excitatory synaptic transmission in the ENS are likely to contribute to its capacity to regulate complex gastrointestinal functions.

  5. Valproic acid mediates the synaptic excitatory/inhibitory balance through astrocytes--a preliminary study.

    Science.gov (United States)

    Wang, Chao-Chuan; Chen, Po See; Hsu, Chien-Wen; Wu, Shou-Jung; Lin, Chieh-Ting; Gean, Po Wu

    2012-04-27

    Valproic acid (VPA) is one of the most widely used anticonvulsant and mood-stabilizing agents for the treatment of epilepsy and bipolar disorder. However, the underlying therapeutic mechanisms of the treatment of each disease remain unclear. Recently, the anti-epileptic effect of VPA has been found to lead to modulation of the synaptic excitatory/inhibitory balance. In addition, the therapeutic action of VPA has been linked to its effect on astrocytes by regulating gene expression at the molecular level, perhaps through an epigenetic mechanism as a histone deacetylase (HDAC) inhibitor. To provide insight into the mechanisms underlying the actions of VPA, this study investigated whether the synaptic excitatory/inhibitory (E/I) balance could be mediated by VPA through astrocytes. First, using the primary rat neuronal, astroglial, and neuro-glial mixed culture systems, we demonstrated that VPA treatment could regulate the mRNA levels of two post-synaptic cell adhesion molecules(neuroligin-1 and neuregulin-1) and two extracellular matrices (neuronal pentraxin-1and thrombospondin-3) in primary rat astrocyte cultures in a time- and concentration-dependent manner. Moreover, the up-regulation effect of VPA was noted in astrocytes, but not in neurons. In addition, these regulatory effects could be mimicked by sodium butyrate, a HDAC inhibitor, but not by lithium or two other glycogen synthase kinase-3 beta inhibitors. With the known role of these four proteins in regulating the synaptic E/I balance, we further demonstrated that VPA increased excitatory post-synaptic protein (postsynaptic density 95) and inhibitory post-synaptic protein (Gephyrin) in cortical neuro-glial mixed cultures. Our results suggested that VPA might affect the synaptic excitatory/inhibitory balance through its effect on astrocytes. This work provides the basis for future evaluation of the role of astroglial cell adhesion molecules and the extracellular matrix on the control of excitatory and

  6. On how correlations between excitatory and inhibitory synaptic inputs maximize the information rate of neuronal firing

    Directory of Open Access Journals (Sweden)

    Pavel Anatolyevich Puzerey

    2014-06-01

    Full Text Available Cortical neurons receive barrages of excitatory and inhibitory inputs which are not independent, as network structure and synaptic kinetics impose statistical correlations. Experiments in vitro and in vivo have demonstrated correlations between inhibitory and excitatory synaptic inputs in which inhibition lags behind excitation in cortical neurons. This delay arises in feed-forward inhibition circuits and ensures that coincident excitation and inhibition do not preclude neuronal firing. Conversely, inhibition that is too delayed broadens neuronal integration times, thereby diminishing spike-time precision and increasing the firing frequency. This led us to hypothesize that the correlation between excitatory and inhibitory synaptic inputs modulates the encoding of information of neural spike trains. We tested this hypothesis by investigating the effect of such correlations on the information rate (IR of spike trains using the Hodgkin-Huxley model in which both synaptic and membrane conductances are stochastic. We investigated two different synaptic input regimes: balanced synaptic conductances and balanced currents. Our results show that correlations arising from the synaptic kinetics, tau, and millisecond lags, delta, of inhibition relative to excitation strongly affect the IR of spike trains. In the regime of balanced synaptic currents, for short time lags (delta ~ 1 ms there is an optimal tau that maximizes the IR of the postsynaptic spike train. Given the short time scales for monosynaptic inhibitory lags and synaptic decay kinetics reported in cortical neurons under physiological contexts, we propose that feed-forward inhibition in cortical circuits is poised to maximize the rate of information transfer between cortical neurons. Our results also provide a possible explanation for how certain drugs and genetic mutations affecting the synaptic kinetics can deteriorate information processing in the brain.

  7. Shank1 regulates excitatory synaptic transmission in mouse hippocampal parvalbumin-expressing inhibitory interneurons.

    Science.gov (United States)

    Mao, Wenjie; Watanabe, Takuya; Cho, Sukhee; Frost, Jeffrey L; Truong, Tina; Zhao, Xiaohu; Futai, Kensuke

    2015-04-01

    The Shank genes (SHANK1, 2, 3) encode scaffold proteins highly enriched in postsynaptic densities where they regulate synaptic structure in spiny neurons. Mutations in human Shank genes are linked to autism spectrum disorder and schizophrenia. Shank1 mutant mice exhibit intriguing cognitive phenotypes reminiscent of individuals with autism spectrum disorder. However, the molecular mechanisms leading to the human pathophysiological phenotypes and mouse behaviors have not been elucidated. In this study it is shown that Shank1 protein is highly localized in parvalbumin-expressing (PV+) fast-spiking inhibitory interneurons in the hippocampus. Importantly, a lack of Shank1 in hippocampal CA1 PV+ neurons reduced excitatory synaptic inputs and inhibitory synaptic outputs to pyramidal neurons. Furthermore, it is demonstrated that hippocampal CA1 pyramidal neurons in Shank1 mutant mice exhibit a shift in the excitatory and inhibitory balance (E-I balance), a pathophysiological hallmark of autism spectrum disorder. The mutant mice also exhibit lower expression of gephyrin (a scaffold component of inhibitory synapses), supporting the dysregulation of E-I balance in the hippocampus. These results suggest that Shank1 scaffold in PV+ interneurons regulates excitatory synaptic strength and participates in the maintenance of E-I balance in excitatory neurons.

  8. Rhythmic Oscillations of Excitatory Bursting Hodkin-Huxley Neuronal Network with Synaptic Learning.

    Science.gov (United States)

    Shi, Qi; Han, Fang; Wang, Zhijie; Li, Caiyun

    2016-01-01

    Rhythmic oscillations of neuronal network are actually kind of synchronous behaviors, which play an important role in neural systems. In this paper, the properties of excitement degree and oscillation frequency of excitatory bursting Hodkin-Huxley neuronal network which incorporates a synaptic learning rule are studied. The effects of coupling strength, synaptic learning rate, and other parameters of chemical synapses, such as synaptic delay and decay time constant, are explored, respectively. It is found that the increase of the coupling strength can weaken the extent of excitement, whereas increasing the synaptic learning rate makes the network more excited in a certain range; along with the increasing of the delay time and the decay time constant, the excitement degree increases at the beginning, then decreases, and keeps stable. It is also found that, along with the increase of the synaptic learning rate, the coupling strength, the delay time, and the decay time constant, the oscillation frequency of the network decreases monotonically.

  9. Imperfect space clamp permits electrotonic interactions between inhibitory and excitatory synaptic conductances, distorting voltage clamp recordings.

    Directory of Open Access Journals (Sweden)

    Alon Poleg-Polsky

    Full Text Available The voltage clamp technique is frequently used to examine the strength and composition of synaptic input to neurons. Even accounting for imperfect voltage control of the entire cell membrane ("space clamp", it is often assumed that currents measured at the soma are a proportional indicator of the postsynaptic conductance. Here, using NEURON simulation software to model somatic recordings from morphologically realistic neurons, we show that excitatory conductances recorded in voltage clamp mode are distorted significantly by neighboring inhibitory conductances, even when the postsynaptic membrane potential starts at the reversal potential of the inhibitory conductance. Analogous effects are observed when inhibitory postsynaptic currents are recorded at the reversal potential of the excitatory conductance. Escape potentials in poorly clamped dendrites reduce the amplitude of excitatory or inhibitory postsynaptic currents recorded at the reversal potential of the other conductance. In addition, unclamped postsynaptic inhibitory conductances linearize the recorded current-voltage relationship of excitatory inputs comprising AMPAR and NMDAR-mediated components, leading to significant underestimation of the relative contribution by NMDARs, which are particularly sensitive to small perturbations in membrane potential. Voltage clamp accuracy varies substantially between neurons and dendritic arbors of different morphology; as expected, more reliable recordings are obtained from dendrites near the soma, but up to 80% of the synaptic signal on thin, distant dendrites may be lost when postsynaptic interactions are present. These limitations of the voltage clamp technique may explain how postsynaptic effects on synaptic transmission could, in some cases, be attributed incorrectly to presynaptic mechanisms.

  10. Neuronal pentraxin 1 negatively regulates excitatory synapse density and synaptic plasticity.

    Science.gov (United States)

    Figueiro-Silva, Joana; Gruart, Agnès; Clayton, Kevin Bernard; Podlesniy, Petar; Abad, Maria Alba; Gasull, Xavier; Delgado-García, José María; Trullas, Ramon

    2015-04-08

    In mature neurons, the number of synapses is determined by a neuronal activity-dependent dynamic equilibrium between positive and negative regulatory factors. We hypothesized that neuronal pentraxin (NP1), a proapoptotic protein induced by low neuronal activity, could be a negative regulator of synapse density because it is found in dystrophic neurites in Alzheimer's disease-affected brains. Here, we report that knockdown of NP1 increases the number of excitatory synapses and neuronal excitability in cultured rat cortical neurons and enhances excitatory drive and long-term potentiation in the hippocampus of behaving mice. Moreover, we found that NP1 regulates the surface expression of the Kv7.2 subunit of the Kv7 family of potassium channels that control neuronal excitability. Furthermore, pharmacological activation of Kv7 channels prevents, whereas inhibition mimics, the increase in synaptic proteins evoked by the knockdown of NP1. These results indicate that NP1 negatively regulates excitatory synapse number by modulating neuronal excitability and show that NP1 restricts excitatory synaptic plasticity. Copyright © 2015 the authors 0270-6474/15/355504-18$15.00/0.

  11. The cell-autonomous role of excitatory synaptic transmission in the regulation of neuronal structure and function.

    Science.gov (United States)

    Lu, Wei; Bushong, Eric A; Shih, Tiffany P; Ellisman, Mark H; Nicoll, Roger A

    2013-05-08

    The cell-autonomous role of synaptic transmission in the regulation of neuronal structural and electrical properties is unclear. We have now employed a genetic approach to eliminate glutamatergic synaptic transmission onto individual CA1 pyramidal neurons in a mosaic fashion in vivo. Surprisingly, while electrical properties are profoundly affected in these neurons, as well as inhibitory synaptic transmission, we found little perturbation of neuronal morphology, demonstrating a functional segregation of excitatory synaptic transmission from neuronal morphological development.

  12. Inhibitory effects of propofol on excitatory synaptic transmission in supraoptic nucleus neurons in vitro.

    Science.gov (United States)

    Zhang, Huan-Huan; Zheng, Chao; Wang, Bang-An; Wang, Meng-Ya

    2015-12-25

    The present study was designed to investigate the inhibitory effects of intravenous general anesthetic propofol (0.1-3.0 mmol/L) on excitatory synaptic transmission in supraoptic nucleus (SON) neurons of rats, and to explore the underlying mechanisms by using intracellular recording technique and hypothalamic slice preparation. It was observed that stimulation of the dorsolateral region of SON could elicit the postsynaptic potentials (PSPs) in SON neurons. Of the 8 tested SON neurons, the PSPs of 7 (88%, 7/8) neurons were decreased by propofol in a concentration-dependent manner, in terms of the PSPs' amplitude (P EPSPs) of 7 cells increased in the condition of picrotoxin (30 µmol/L, a GABA(A) receptor antagonist) pretreatment. On this basis, the inhibitory effects of propofol on EPSPs were decreased. These data indicate that the presynaptic and postsynaptic mechanisms may be both involved in the inhibitory effects of propofol on excitatory synaptic transmission in SON neurons. The inhibitory effects of propofol on excitatory synaptic transmission of SON neurons may be related to the activation of GABA(A) receptors, but at a high concentration, propofol may also act directly on glutamate receptors.

  13. Cancer metastasis-suppressing peptide metastin upregulates excitatory synaptic transmission in hippocampal dentate granule cells.

    Science.gov (United States)

    Arai, Amy C; Xia, Yan-Fang; Suzuki, Erika; Kessler, Markus; Civelli, Olivier; Nothacker, Hans-Peter

    2005-11-01

    Metastin is an antimetastatic peptide encoded by the KiSS-1 gene in cancer cells. Recent studies found that metastin is a ligand for the orphan G-protein-coupled receptor GPR54, which is highly expressed in specific brain regions such as the hypothalamus and parts of the hippocampus. This study shows that activation of GPR54 by submicromolar concentrations of metastin reversibly enhances excitatory synaptic transmission in hippocampal dentate granule cells in a mitogen-activated protein (MAP) kinase-dependent manner. Synaptic enhancement by metastin was suppressed by intracellular application of the G-protein inhibitor GDP-beta-S and the calcium chelator BAPTA. Analysis of miniature excitatory postsynaptic currents (mEPSCs) revealed an increase in the mean amplitude but no change in event frequency. This indicates that GPR54 and the mechanism responsible for the increase in EPSCs are postsynaptic. Metastin-induced synaptic potentiation was abolished by 50 microM PD98059 and 20 microM U0126, two inhibitors of the MAP kinases ERK1 and ERK2. The effect was also blocked by inhibitors of calcium/calmodulin-dependent kinases and tyrosine kinases. RT-PCR experiments showed that both KiSS-1 and GPR54 are expressed in the hippocampal dentate gyrus. Metastin is thus a novel endogenous factor that modulates synaptic excitability in the dentate gyrus through mechanisms involving MAP kinases, which in turn may be controlled upstream by calcium-activated kinases and tyrosine kinases.

  14. Plasticity of Hippocampal Excitatory-Inhibitory Balance: Missing the Synaptic Control in the Epileptic Brain

    Directory of Open Access Journals (Sweden)

    Christian Bonansco

    2016-01-01

    Full Text Available Synaptic plasticity is the capacity generated by experience to modify the neural function and, thereby, adapt our behaviour. Long-term plasticity of glutamatergic and GABAergic transmission occurs in a concerted manner, finely adjusting the excitatory-inhibitory (E/I balance. Imbalances of E/I function are related to several neurological diseases including epilepsy. Several evidences have demonstrated that astrocytes are able to control the synaptic plasticity, with astrocytes being active partners in synaptic physiology and E/I balance. Here, we revise molecular evidences showing the epileptic stage as an abnormal form of long-term brain plasticity and propose the possible participation of astrocytes to the abnormal increase of glutamatergic and decrease of GABAergic neurotransmission in epileptic networks.

  15. Excitatory Post-Synaptic Potential Mimicked in Indium-Zinc-Oxide Synaptic Transistors Gated by Methyl Cellulose Solid Electrolyte

    Science.gov (United States)

    Guo, Liqiang; Wen, Juan; Ding, Jianning; Wan, Changjin; Cheng, Guanggui

    2016-12-01

    The excitatory postsynaptic potential (EPSP) of biological synapses is mimicked in indium-zinc-oxide synaptic transistors gated by methyl cellulose solid electrolyte. These synaptic transistors show excellent electrical performance at an operating voltage of 0.8 V, Ion/off ratio of 2.5 × 106, and mobility of 38.4 cm2/Vs. After this device is connected to a resistance of 4 MΩ in series, it exhibits excellent characteristics as an inverter. A threshold potential of 0.3 V is achieved by changing the gate pulse amplitude, width, or number, which is analogous to biological EPSP.

  16. Synaptic Variability Introduces State-Dependent Modulation of Excitatory Spinal Cord Synapses

    Directory of Open Access Journals (Sweden)

    David Parker

    2015-01-01

    Full Text Available The relevance of neuronal and synaptic variability remains unclear. Cellular and synaptic plasticity and neuromodulation are also variable. This could reflect state-dependent effects caused by the variable initial cellular or synaptic properties or direct variability in plasticity-inducing mechanisms. This study has examined state-dependent influences on synaptic plasticity at connections between excitatory interneurons (EIN and motor neurons in the lamprey spinal cord. State-dependent effects were examined by correlating initial synaptic properties with the substance P-mediated plasticity of low frequency-evoked EPSPs and the reduction of the EPSP depression over spike trains (metaplasticity. The low frequency EPSP potentiation reflected an interaction between the potentiation of NMDA responses and the release probability. The release probability introduced a variable state-dependent subtractive influence on the postsynaptic NMDA-dependent potentiation. The metaplasticity was also state-dependent: it was greater at connections with smaller available vesicle pools and high initial release probabilities. This was supported by the significant reduction in the number of connections showing metaplasticity when the release probability was reduced by high Mg2+ Ringer. Initial synaptic properties thus introduce state-dependent influences that affect the potential for plasticity. Understanding these conditions will be as important as understanding the subsequent changes.

  17. Synaptic Variability Introduces State-Dependent Modulation of Excitatory Spinal Cord Synapses.

    Science.gov (United States)

    Parker, David

    2015-01-01

    The relevance of neuronal and synaptic variability remains unclear. Cellular and synaptic plasticity and neuromodulation are also variable. This could reflect state-dependent effects caused by the variable initial cellular or synaptic properties or direct variability in plasticity-inducing mechanisms. This study has examined state-dependent influences on synaptic plasticity at connections between excitatory interneurons (EIN) and motor neurons in the lamprey spinal cord. State-dependent effects were examined by correlating initial synaptic properties with the substance P-mediated plasticity of low frequency-evoked EPSPs and the reduction of the EPSP depression over spike trains (metaplasticity). The low frequency EPSP potentiation reflected an interaction between the potentiation of NMDA responses and the release probability. The release probability introduced a variable state-dependent subtractive influence on the postsynaptic NMDA-dependent potentiation. The metaplasticity was also state-dependent: it was greater at connections with smaller available vesicle pools and high initial release probabilities. This was supported by the significant reduction in the number of connections showing metaplasticity when the release probability was reduced by high Mg(2+) Ringer. Initial synaptic properties thus introduce state-dependent influences that affect the potential for plasticity. Understanding these conditions will be as important as understanding the subsequent changes.

  18. The Balance of Excitatory and Inhibitory Synaptic Inputs for Coding Sound Location

    Science.gov (United States)

    Ono, Munenori

    2014-01-01

    The localization of high-frequency sounds in the horizontal plane uses an interaural-level difference (ILD) cue, yet little is known about the synaptic mechanisms that underlie processing this cue in the inferior colliculus (IC) of mouse. Here, we study the synaptic currents that process ILD in vivo and use stimuli in which ILD varies around a constant average binaural level (ABL) to approximate sounds on the horizontal plane. Monaural stimulation in either ear produced EPSCs and IPSCs in most neurons. The temporal properties of monaural responses were well matched, suggesting connected functional zones with matched inputs. The EPSCs had three patterns in response to ABL stimuli, preference for the sound field with the highest level stimulus: (1) contralateral; (2) bilateral highly lateralized; or (3) at the center near 0 ILD. EPSCs and IPSCs were well correlated except in center-preferred neurons. Summation of the monaural EPSCs predicted the binaural excitatory response but less well than the summation of monaural IPSCs. Binaural EPSCs often showed a nonlinearity that strengthened the response to specific ILDs. Extracellular spike and intracellular current recordings from the same neuron showed that the ILD tuning of the spikes was sharper than that of the EPSCs. Thus, in the IC, balanced excitatory and inhibitory inputs may be a general feature of synaptic coding for many types of sound processing. PMID:24599475

  19. Multiple effects of β-amyloid on single excitatory synaptic connections in the PFC

    Directory of Open Access Journals (Sweden)

    Yun eWang

    2013-09-01

    Full Text Available Prefrontal cortex (PFC is recognized as an AD-vulnerable region responsible for defects in cognitive functioning. Pyramidal cell (PC connections are typically facilitating (F or depressing (D in PFC. Excitatory post-synaptic potentials (EPSPs were recorded using patch-clamp from single connections in PFC slices of rats and ferrets in the presence of Aβ. Synaptic transmission was significantly enhanced or reduced depending on their intrinsic type (facilitating or depressing, A species (A40 or A42 and concentration (1-200 nM vs. 0.3 - 1M. Nanomolar Aβ40 and Aβ42 had opposite effects on F-connections, resulting in fewer or increased EPSP failure rates, strengthening or weakening EPSPs and enhancing or inhibiting short-term potentiation (STP: SA and PTP, respectively. High Aβ40 concentrations induced inhibition regardless of synaptic type. D-connections were inhibited regardless of Aβ species or concentration. The inhibition induced with bath application was hard to recover by washout, but a complete recovery was obtained with brief local application and prompt washout. Our data suggests that Aβ40 modulates facilitation and depression of synaptic activity. At higher levels, Aβ40 and Aβ42 may induce inhibition only, further irreversible toxicity once diffusely accumulated in the synaptic environment.

  20. Domestication of the dog from the wolf was promoted by enhanced excitatory synaptic plasticity: a hypothesis.

    Science.gov (United States)

    Li, Yan; Wang, Guo-Dong; Wang, Ming-Shan; Irwin, David M; Wu, Dong-Dong; Zhang, Ya-Ping

    2014-11-05

    Dogs shared a much closer relationship with humans than any other domesticated animals, probably due to their unique social cognitive capabilities, which were hypothesized to be a by-product of selection for tameness toward humans. Here, we demonstrate that genes involved in glutamate metabolism, which account partially for fear response, indeed show the greatest population differentiation by whole-genome comparison of dogs and wolves. However, the changing direction of their expression supports a role in increasing excitatory synaptic plasticity in dogs rather than reducing fear response. Because synaptic plasticity are widely believed to be cellular correlates of learning and memory, this change may alter the learning and memory abilities of ancient scavenging wolves, weaken the fear reaction toward humans, and prompt the initial interspecific contact.

  1. Purines released from astrocytes inhibit excitatory synaptic transmission in the ventral horn of the spinal cord

    Directory of Open Access Journals (Sweden)

    Eva Meier Carlsen

    2014-06-01

    Full Text Available Spinal neuronal networks are essential for motor function. They are involved in the integration of sensory inputs and the generation of rhythmic motor outputs. They continuously adapt their activity to the internal state of the organism and to the environment. This plasticity can be provided by different neuromodulators. These substances are usually thought of being released by dedicated neurons. However, in other networks from the central nervous system synaptic transmission is also modulated by transmitters released from astrocytes. The star-shaped glial cell responds to neurotransmitters by releasing gliotransmitters, which in turn modulate synaptic transmission. Here we investigated if astrocytes present in the ventral horn of the spinal cord modulate synaptic transmission. We evoked synaptic inputs in ventral horn neurons recorded in a slice preparation from the spinal cord of neonatal mice. Neurons responded to electrical stimulation by monosynaptic EPSCs. We used mice expressing the enhanced green fluorescent protein under the promoter of the glial fibrillary acidic protein to identify astrocytes. Chelating calcium with BAPTA in a single neighboring astrocyte increased the amplitude of synaptic currents. In contrast, when we selectively stimulated astrocytes by activating PAR-1 receptors with the peptide TFLLR, the amplitude of EPSCs evoked by a paired stimulation protocol was reduced. The paired-pulse ratio was increased, suggesting an inhibition occurring at the presynaptic side of synapses. In the presence of blockers for extracellular ectonucleotidases, TFLLR did not induce presynaptic inhibition. Puffing adenosine reproduced the effect of TFLLR and blocking adenosine A1 receptors with DPCPX prevented it. Altogether our results show that ventral horn astrocytes are responsible for a tonic and a phasic inhibition of excitatory synaptic transmission by releasing ATP, which gets converted into adenosine that binds to inhibitory

  2. Asymmetric excitatory synaptic dynamics underlie interaural time difference processing in the auditory system.

    Directory of Open Access Journals (Sweden)

    Pablo E Jercog

    Full Text Available Low-frequency sound localization depends on the neural computation of interaural time differences (ITD and relies on neurons in the auditory brain stem that integrate synaptic inputs delivered by the ipsi- and contralateral auditory pathways that start at the two ears. The first auditory neurons that respond selectively to ITD are found in the medial superior olivary nucleus (MSO. We identified a new mechanism for ITD coding using a brain slice preparation that preserves the binaural inputs to the MSO. There was an internal latency difference for the two excitatory pathways that would, if left uncompensated, position the ITD response function too far outside the physiological range to be useful for estimating ITD. We demonstrate, and support using a biophysically based computational model, that a bilateral asymmetry in excitatory post-synaptic potential (EPSP slopes provides a robust compensatory delay mechanism due to differential activation of low threshold potassium conductance on these inputs and permits MSO neurons to encode physiological ITDs. We suggest, more generally, that the dependence of spike probability on rate of depolarization, as in these auditory neurons, provides a mechanism for temporal order discrimination between EPSPs.

  3. Cannabinoid CB1 receptor signaling dichotomously modulates inhibitory and excitatory synaptic transmission in rat inner retina.

    Science.gov (United States)

    Wang, Xiao-Han; Wu, Yi; Yang, Xiao-Fang; Miao, Yanying; Zhang, Chuan-Qiang; Dong, Ling-Dan; Yang, Xiong-Li; Wang, Zhongfeng

    2016-01-01

    In the inner retina, ganglion cells (RGCs) integrate and process excitatory signal from bipolar cells (BCs) and inhibitory signal from amacrine cells (ACs). Using multiple labeling immunohistochemistry, we first revealed the expression of the cannabinoid CB1 receptor (CB1R) at the terminals of ACs and BCs in rat retina. By patch-clamp techniques, we then showed how the activation of this receptor dichotomously regulated miniature inhibitory postsynaptic currents (mIPSCs), mediated by GABAA receptors and glycine receptors, and miniature excitatory postsynaptic currents (mEPSCs), mediated by AMPA receptors, of RGCs in rat retinal slices. WIN55212-2 (WIN), a CB1R agonist, reduced the mIPSC frequency due to an inhibition of L-type Ca(2+) channels no matter whether AMPA receptors were blocked. In contrast, WIN reduced the mEPSC frequency by suppressing T-type Ca(2+) channels only when inhibitory inputs to RGCs were present, which could be in part due to less T-type Ca(2+) channels of cone BCs, presynaptic to RGCs, being in an inactivation state under such condition. This unique feature of CB1R-mediated retrograde regulation provides a novel mechanism for modulating excitatory synaptic transmission in the inner retina. Moreover, depolarization of RGCs suppressed mIPSCs of these cells, an effect that was eliminated by the CB1R antagonist SR141716, suggesting that endocannabinoid is indeed released from RGCs.

  4. Dynamics of excitatory synaptic components in sustained firing at low rates.

    Science.gov (United States)

    Wyart, Claire; Cocco, Simona; Bourdieu, Laurent; Léger, Jean-Francois; Herr, Catherine; Chatenay, Didier

    2005-06-01

    Sustained firing is necessary for the persistent activity associated with working memory. The relative contributions of the reverberation of excitation and of the temporal dynamics of the excitatory postsynaptic potential (EPSP) to the maintenance of activity are difficult to evaluate in classical preparations. We used simplified models of synchronous excitatory networks, hippocampal autapses and pairs, to study the synaptic mechanisms underlying firing at low rates. Calcium imaging and cell attached recordings showed that these neurons spontaneously fired bursts of action potentials that lasted for seconds over a wide range of frequencies. In 2-wk-old cells, the median firing frequency was low (11 +/- 8.8 Hz), whereas in 3- to 4-wk-old cells, it decreased to a very low value (2 +/- 1.3 Hz). In both cases, we have shown that the slowest synaptic component supported firing. In 2-wk-old autapses, antagonists of N-methyl-d-aspartate receptors (NMDARs) induced rare isolated spikes showing that the NMDA component of the EPSP was essential for bursts at low frequency. In 3- to 4-wk-old neurons, the very low frequency firing was maintained without the NMDAR activation. However EGTA-AM or alpha-methyl-4-carboxyphenylglycine (MCPG) removed the very slow depolarizing component of the EPSP and prevented the sustained firing at very low rate. A metabotropic glutamate receptor (mGluR)-activated calcium sensitive conductance is therefore responsible for a very slow synaptic component associated with firing at very low rate. In addition, our observations suggested that the asynchronous release of glutamate might participate also in the recurring bursting.

  5. Corticotropin releasing factor dose-dependently modulates excitatory synaptic transmission in the noradrenergic nucleus locus coeruleus.

    Science.gov (United States)

    Prouty, Eric W; Waterhouse, Barry D; Chandler, Daniel J

    2017-03-01

    The noradrenergic nucleus locus coeruleus (LC) is critically involved in the stress response and receives afferent input from a number of corticotropin releasing factor (CRF) containing structures. Several in vivo and in vitro studies in rat have shown that CRF robustly increases the firing rate of LC neurons in a dose-dependent manner. While it is known that these increases are dependent on CRF receptor subtype 1 and mediated by effects of cAMP intracellular signaling cascades on potassium conductance, the impact of CRF on synaptic transmission within LC has not been clarified. In the present study, we used whole-cell patch clamp electrophysiology to assess how varying concentrations of bath-applied CRF affect AMPA-receptor dependent spontaneous excitatory post-synaptic currents (sEPSCs). Compared to vehicle, 10, 25, and 100 nm CRF had no significant effects on any sEPSC parameters. Fifty nanomolar CRF, however, significantly increased sEPSC amplitude, half-width, and charge transfer, while these measures were significantly decreased by 200 nm CRF. These observations suggest that stress may differentially affect ongoing excitatory synaptic transmission in LC depending on how much CRF is released from presynaptic terminals. Combined with the well-documented effects of CRF on membrane properties and spontaneous LC discharge, these observations may help explain how stress and CRF release are able to modulate the signal to noise ratio of LC neurons. These findings have implications for how stress affects the fidelity of signal transmission and information flow through LC and how it might impact norepinephrine release in the CNS.

  6. Hyperactivity of Newborn Pten Knock-out Neurons Results from Increased Excitatory Synaptic Drive

    Science.gov (United States)

    Williams, Michael R.; DeSpenza, Tyrone; Li, Meijie; Gulledge, Allan T.

    2015-01-01

    Developing neurons must regulate morphology, intrinsic excitability, and synaptogenesis to form neural circuits. When these processes go awry, disorders, including autism spectrum disorder (ASD) or epilepsy, may result. The phosphatase Pten is mutated in some patients having ASD and seizures, suggesting that its mutation disrupts neurological function in part through increasing neuronal activity. Supporting this idea, neuronal knock-out of Pten in mice can cause macrocephaly, behavioral changes similar to ASD, and seizures. However, the mechanisms through which excitability is enhanced following Pten depletion are unclear. Previous studies have separately shown that Pten-depleted neurons can drive seizures, receive elevated excitatory synaptic input, and have abnormal dendrites. We therefore tested the hypothesis that developing Pten-depleted neurons are hyperactive due to increased excitatory synaptogenesis using electrophysiology, calcium imaging, morphological analyses, and modeling. This was accomplished by coinjecting retroviruses to either “birthdate” or birthdate and knock-out Pten in granule neurons of the murine neonatal dentate gyrus. We found that Pten knock-out neurons, despite a rapid onset of hypertrophy, were more active in vivo. Pten knock-out neurons fired at more hyperpolarized membrane potentials, displayed greater peak spike rates, and were more sensitive to depolarizing synaptic input. The increased sensitivity of Pten knock-out neurons was due, in part, to a higher density of synapses located more proximal to the soma. We determined that increased synaptic drive was sufficient to drive hypertrophic Pten knock-out neurons beyond their altered action potential threshold. Thus, our work contributes a developmental mechanism for the increased activity of Pten-depleted neurons. PMID:25609613

  7. Prenatal Ethanol Exposure Persistently Alters Endocannabinoid Signaling and Endocannabinoid-Mediated Excitatory Synaptic Plasticity in Ventral Tegmental Area Dopamine Neurons.

    Science.gov (United States)

    Hausknecht, Kathryn; Shen, Ying-Ling; Wang, Rui-Xiang; Haj-Dahmane, Samir; Shen, Roh-Yu

    2017-06-14

    Prenatal ethanol exposure (PE) leads to increased addiction risk which could be mediated by enhanced excitatory synaptic strength in ventral tegmental area (VTA) dopamine (DA) neurons. Previous studies have shown that PE enhances excitatory synaptic strength by facilitating an anti-Hebbian form of long-term potentiation (LTP). In this study, we investigated the effect of PE on endocannabinoid-mediated long-term depression (eCB-LTD) in VTA DA neurons. Rats were exposed to moderate (3 g/kg/d) or high (6 g/kg/d) levels of ethanol during gestation. Whole-cell recordings were conducted in male offspring between 4 and 10 weeks old.We found that PE led to increased amphetamine self-administration. Both moderate and high levels of PE persistently reduced low-frequency stimulation-induced eCB-LTD. Furthermore, action potential-independent glutamate release was regulated by tonic eCB signaling in PE animals. Mechanistic studies for impaired eCB-LTD revealed that PE downregulated CB1 receptor function. Interestingly, eCB-LTD in PE animals was rescued by metabotropic glutamate receptor I activation, suggesting that PE did not impair the synthesis/release of eCBs. In contrast, eCB-LTD in PE animals was not rescued by increasing presynaptic activity, which actually led to LTP in PE animals, whereas LTD was still observed in controls. This result shows that the regulation of excitatory synaptic plasticity is fundamentally altered in PE animals. Together, PE leads to impaired eCB-LTD at the excitatory synapses of VTA DA neurons primarily due to CB1 receptor downregulation. This effect could contribute to enhanced LTP and the maintenance of augmented excitatory synaptic strength in VTA DA neurons and increased addiction risk after PE.SIGNIFICANCE STATEMENT Prenatal ethanol exposure (PE) is among many adverse developmental factors known to increase drug addiction risk. Increased excitatory synaptic strength in VTA DA neurons is a critical cellular mechanism for addiction risk. Our

  8. Firing clamp: A novel method for single-trial estimation of excitatory and inhibitory synaptic neuronal conductances

    Directory of Open Access Journals (Sweden)

    Anton eChizhov

    2014-03-01

    Full Text Available Understanding non-stationary neuronal activity as seen in vivo requires estimation of both excitatory and inhibitory synaptic conductances from a single trial of recording. We propose a new intracellular recording method for this purpose called firing clamp. Synaptic conductances are estimated from the characteristics of artificially evoked probe spikes, namely the spike amplitude and the mean subthreshold potential, which are sensitive to both excitatory and inhibitory synaptic input signals. The probe spikes, timed at a fixed rate, are evoked in the dynamic-clamp mode by injected meander-like current steps, with the step duration depending on neuronal membrane voltage. We test the method with perforated-patch recordings from isolated cells stimulated by external application or synaptic release of transmitter, and validate the method with simulations of a biophysically-detailed neuron model. The results are compared with the conductance estimates based on conventional current-clamp recordings.

  9. Chaos and Correlated Avalanches in Excitatory Neural Networks with Synaptic Plasticity

    Science.gov (United States)

    Pittorino, Fabrizio; Ibáñez-Berganza, Miguel; di Volo, Matteo; Vezzani, Alessandro; Burioni, Raffaella

    2017-03-01

    A collective chaotic phase with power law scaling of activity events is observed in a disordered mean field network of purely excitatory leaky integrate-and-fire neurons with short-term synaptic plasticity. The dynamical phase diagram exhibits two transitions from quasisynchronous and asynchronous regimes to the nontrivial, collective, bursty regime with avalanches. In the homogeneous case without disorder, the system synchronizes and the bursty behavior is reflected into a period doubling transition to chaos for a two dimensional discrete map. Numerical simulations show that the bursty chaotic phase with avalanches exhibits a spontaneous emergence of persistent time correlations and enhanced Kolmogorov complexity. Our analysis reveals a mechanism for the generation of irregular avalanches that emerges from the combination of disorder and deterministic underlying chaotic dynamics.

  10. Two classes of excitatory synaptic responses in rat thalamic reticular neurons.

    Science.gov (United States)

    Deleuze, Charlotte; Huguenard, John R

    2016-09-01

    The thalamic reticular nucleus (nRt), composed of GABAergic cells providing inhibition of relay neurons in the dorsal thalamus, receives excitation from the neocortex and thalamus. The two excitatory pathways promoting feedback or feedforward inhibition of thalamocortical neurons contribute to sensory processing and rhythm generation. While synaptic inhibition within the nRt has been carefully characterized, little is known regarding the biophysics of synaptic excitation. To characterize the functional properties of thalamocortical and corticothalamic connections to the nRt, we recorded minimal electrically evoked excitatory postsynaptic currents from nRt cells in vitro. A hierarchical clustering algorithm distinguished two types of events. Type 1 events had larger amplitudes and faster kinetics, largely mediated by α-amino-3-hydroxy-5-methyl-4-isoxazolepropionic acid (AMPA) receptors, whereas type 2 responses had more prominent N-methyl-d-aspartate (NMDA) receptor contribution. Type 1 responses showed subnormal axonal propagation and paired pulse depression, consistent with thalamocortical inputs. Furthermore, responses kinetically similar to type 1 events were evoked by glutamate-mediated activation of thalamic neurons. Type 2 responses, in contrast, likely arise from corticothalamic inputs, with larger NMDA conductance and weak Mg(2+)-dependent block, suggesting that NMDA receptors are critical for the cortical excitation of reticular neurons. The long-lasting action of NMDA receptors would promote reticular cell burst firing and produce powerful inhibitory output to relay neurons proposed to be important in triggering epilepsy. This work provides the first complete voltage-clamp analysis of the kinetics and voltage dependence of AMPA and NMDA responses of thalamocortical and corticothalamic synapses in the nRt and will be critical in optimizing biologically realistic neural network models of thalamocortical circuits relevant to sensory processing and

  11. The Susd2 protein regulates neurite growth and excitatory synaptic density in hippocampal cultures.

    Science.gov (United States)

    Nadjar, Yann; Triller, Antoine; Bessereau, Jean-Louis; Dumoulin, Andrea

    2015-03-01

    Complement control protein (CCP) domains have adhesion properties and are commonly found in proteins that control the complement immune system. However, an increasing number of proteins containing CCP domains have been reported to display neuronal functions. Susd2 is a transmembrane protein containing one CCP domain. It was previously identified as a tumor-reversing protein, but has no characterized function in the CNS. The present study investigates the expression and function of Susd2 in the rat hippocampus. Characterization of Susd2 during development showed a peak in mRNA expression two weeks after birth. In hippocampal neuronal cultures, the same expression profile was observed at 15days in vitro for both mRNA and protein, a time consistent with synaptogenesis in our model. At the subcellular level, Susd2 was located on the soma, axons and dendrites, and appeared to associate preferentially with excitatory synapses. Inhibition of Susd2 by shRNAs led to decreased numbers of excitatory synaptic profiles, exclusively. Also, morphological parameters were studied on young (5DIV) developing neurons. After Susd2 inhibition, an increase in dendritic tree length but a decrease in axon elongation were observed, suggesting changes in adhesion properties. Our results demonstrate a dual role for Susd2 at different developmental stages, and raise the question whether Susd2 and other CCP-containing proteins expressed in the CNS could be function-related.

  12. Orexin-A modulates excitatory synaptic transmission and neuronal excitability in the spinal cord substantia gelatinosa.

    Science.gov (United States)

    Jeon, Younghoon; Park, Ki Bum; Pervin, Rokeya; Kim, Tae Wan; Youn, Dong-ho

    2015-09-14

    Although intrathecal orexin-A has been known to be antinociceptive in various pain models, the role of orexin-A in antinociception is not well characterized. In the present study, we examined whether orexin-A modulates primary afferent fiber-mediated or spontaneous excitatory synaptic transmission using transverse spinal cord slices with attached dorsal root. Bath-application of orexin-A (100nM) reduced the amplitude of excitatory postsynaptic currents (EPSCs) evoked by electrical stimulation of Aδ- or C-primary afferent fibers. The magnitude of reduction was much larger for EPSCs evoked by polysynaptic C-fibers than polysynaptic Aδ-fibers, whereas it was similar in EPSCs evoked by monosynaptic Aδ- or C-fibers. SB674042, an orexin-1 receptor antagonist, but not EMPA, an orexin-2 receptor antagonist, significantly inhibited the orexin-A-induced reduction in EPSC amplitude from mono- or polysynaptic Aδ-fibers, as well as from mono- or polysynaptic C-fibers. Furthermore, orexin-A significantly increased the frequency of spontaneous EPSCs but not the amplitude. This increase was almost completely blocked by both SB674042 and EMPA. On the other hand, orexin-A produced membrane oscillations and inward currents in the SG neurons that were partially or completely inhibited by SB674042 or EMPA, respectively. Thus, this study suggests that the spinal actions of orexin-A underlie orexin-A-induced antinociceptive effects via different subtypes of orexin receptors.

  13. Excitatory synaptic inputs on myenteric Dogiel type II neurones of the pig ileum.

    Science.gov (United States)

    Cornelissen, W; de Laet, A; Kroese, A B; van Bogaert, P P; Scheuermann, D W; Timmermans, J P

    2001-04-01

    The synaptic input on myenteric Dogiel type II neurones (n = 63) obtained from the ileum of 17 pigs was studied by intracellular recording. In 77% of the neurones, electrical stimulation of a fibre tract evoked fast excitatory postsynaptic potentials (fEPSPs) with an amplitude of 6 +/- 5 mV (mean +/- S.D.) and lasting 49 +/- 29 ms. The nicotinic nature of the fEPSPs was demonstrated by superfusing hexamethonium (20 microM). High-frequency stimulation (up to 20 Hz, 3 seconds) did not result in a rundown of the fEPSPs, and did not evoke slow excitatory or inhibitory postsynaptic potentials. The effects of neurotransmitters, possibly involved in these excitatory responses, were investigated. Pressure microejection of acetylcholine (10 mM in pipette) resulted in a fast nicotinic depolarisation in 67%(18/27) of the neurones (13 +/- 9 mV, duration 7.0 +/- 7.2 seconds) as did 1,1-dimethyl-4-phenylpiperazinium iodide (DMPP) application (10 mM; 14 +/- 10 mV, duration 4.1 +/- 2.8 seconds) in 76% of the cells. The fast nicotinic response to acetylcholine was sometimes (6/27) followed by a slow muscarinic depolarisation (8 +/- 4 mV; duration 38.7 +/- 10.8 seconds). Immunostaining revealed 5-hydroxytryptamine hydrochloride (5-HT)- and calcitonin gene-related peptide (CGRP)-positive neuronal baskets distributed around and in close vicinity to Dogiel type II neuronal cell bodies. Microejection of 5-HT (10 mM) resulted in a fast nicotinic-like depolarisation (12 +/- 6 mV, duration 3.0 +/- 1.3 seconds) in 4 of 8 neurones tested, whereas microejection of CGRP (20 mM) gave rise to a slow muscarinic-like depolarisation (6 +/- 2 mV, duration 56.0 +/- 27.5 seconds) in 8 of 12 neurones tested. In conclusion, myenteric Dogiel type II neurones in the porcine ileum receive diverse synaptic input. Mainly with regard to the prominent presence of nicotinic responses, these neurones behave contrary to their guinea pig counterparts.

  14. Synaptic activity slows vesicular replenishment at excitatory synapses of rat hippocampus.

    Science.gov (United States)

    Bui, Loc; Glavinović, Mladen I

    2013-04-01

    Short-term synaptic depression mainly reflects the depletion of the readily releasable pool (RRP) of quanta. Its dynamics, and especially the replenishment rate of the RRP, are still not well characterized in spite of decades of investigation. Main reason is that the vesicular storage and release system is treated as time-independent. If it is time-dependent all parameters thus estimated become problematic. Indeed the reports about how prolonged stimulation affects the dynamics are contradictory. To study this, we used patterned stimulation on the Schaeffer collateral fiber pathway and model-fitting of the excitatory post-synaptic currents (EPSC) recorded from CA1 neurons in rat hippocampal slices. The parameters of a vesicular storage and release model with two pools were estimated by minimizing the squared difference between the ESPC amplitudes and simulated model output. This yields the 'basic' parameters (release coupling, replenishment coupling and RRP size) that underlie the 'derived' and commonly used parameters (fractional release and replenishment rate). The fractional release increases when [Ca(++)]o is raised, whereas the replenishment rate is [Ca(++)]o independent. Fractional release rises because release coupling increases, and the RRP becomes less able to contain quanta. During prolonged stimulation, the fractional release remains generally unaltered, whereas the replenishment rate decreases down to ~10 % of its initial value with a decay time of ~15 s, and this decrease in the replenishment rate significantly contributes to synaptic depression. In conclusion, the fractional release is [Ca(++)]o-dependent and stimulation-independent, whereas the replenishment rate is [Ca(++)]o-independent and stimulation-dependent.

  15. Action potential broadening induced by lithium may cause a presynaptic enhancement of excitatory synaptic transmission in neonatal rat hippocampus.

    Science.gov (United States)

    Colino, A; García-Seoane, J J; Valentín, A

    1998-07-01

    Lithium enhances excitatory synaptic transmission in CA1 pyramidal cells, but the mechanisms remain unclear. The present study demonstrates that lithium enhances the N-methyl-D-aspartate (NMDA) and alpha-amino-3-hydroxy-5-methyl-isoxazole propionic acid (AMPA) receptor-mediated components of the excitatory postsynaptic current (EPSC). Lithium decreased the magnitude of paired-pulse facilitation and presented an inverse correlation between the lithium-induced enhancement of synaptic transmission and initial paired-pulse facilitation, which is consistent with a presynaptic mode of action. The enhancement of synaptic strength is likely to act, at least in part, by increasing the amplitude of the presynaptic Ca2+ transient. One mechanism which could account for this change of the presynaptic Ca2+ transient is an increase in the duration of the action potential. We investigated action potential in hippocampal pyramidal neurons and found that lithium (0.5-6 mM) increased the half-amplitude duration and reduced the rate of repolarization, whereas the rate of depolarization remained similar. To find out whether the lithium synaptic effects might be explained by spike broadening, we investigated the field recording of the excitatory postsynaptic potential (EPSP) in hippocampal slices and found three lines of evidence. First, the prolongation of the presynaptic action potential with 4-aminopyridine and tetraethylammonium blocked or reduced the synaptic effects of lithium. Second, the lithium-induced synaptic enhancement was modulated when presynaptic Ca2+ influx was varied by changing the external Ca2+ concentration. Finally, both effects, the synaptic transmission increment and the action potential broadening, were independent of inositol depletion. These results suggest that lithium enhances synaptic transmission in the hippocampus via a presynaptic site of action: the mechanism underlying the potentiating effect may be attributable to an increased Ca2+ influx consequent

  16. Inferring Trial-to-Trial Excitatory and Inhibitory Synaptic Inputs from Membrane Potential using Gaussian Mixture Kalman Filtering

    Directory of Open Access Journals (Sweden)

    Milad eLankarany

    2013-09-01

    Full Text Available Time-varying excitatory and inhibitory synaptic inputs govern activity of neurons and process information in the brain. The importance of trial-to-trial fluctuations of synaptic inputs has recently been investigated in neuroscience. Such fluctuations are ignored in the most conventional techniques because they are removed when trials are averaged during linear regression techniques. Here, we propose a novel recursive algorithm based on Gaussian mixture Kalman filtering for estimating time-varying excitatory and inhibitory synaptic inputs from single trials of noisy membrane potential in current clamp recordings. The Kalman filtering is followed by an expectation maximization algorithm to infer the statistical parameters (time-varying mean and variance of the synaptic inputs in a non-parametric manner. As our proposed algorithm is repeated recursively, the inferred parameters of the mixtures are used to initiate the next iteration. Unlike other recent algorithms, our algorithm does not assume an a priori distribution from which the synaptic inputs are generated. Instead, the algorithm recursively estimates such a distribution by fitting a Gaussian mixture model. The performance of the proposed algorithms is compared to a previously proposed PF-based algorithm (Paninski et al., 2012 with several illustrative examples, assuming that the distribution of synaptic input is unknown. If noise is small, the performance of our algorithms is similar to that of the previous one. However, if noise is large, they can significantly outperform the previous proposal. These promising results suggest that our algorithm is a robust and efficient technique for estimating time varying excitatory and inhibitory synaptic conductances from single trials of membrane potential recordings.

  17. Inferring trial-to-trial excitatory and inhibitory synaptic inputs from membrane potential using Gaussian mixture Kalman filtering.

    Science.gov (United States)

    Lankarany, M; Zhu, W-P; Swamy, M N S; Toyoizumi, Taro

    2013-01-01

    Time-varying excitatory and inhibitory synaptic inputs govern activity of neurons and process information in the brain. The importance of trial-to-trial fluctuations of synaptic inputs has recently been investigated in neuroscience. Such fluctuations are ignored in the most conventional techniques because they are removed when trials are averaged during linear regression techniques. Here, we propose a novel recursive algorithm based on Gaussian mixture Kalman filtering (GMKF) for estimating time-varying excitatory and inhibitory synaptic inputs from single trials of noisy membrane potential in current clamp recordings. The KF is followed by an expectation maximization (EM) algorithm to infer the statistical parameters (time-varying mean and variance) of the synaptic inputs in a non-parametric manner. As our proposed algorithm is repeated recursively, the inferred parameters of the mixtures are used to initiate the next iteration. Unlike other recent algorithms, our algorithm does not assume an a priori distribution from which the synaptic inputs are generated. Instead, the algorithm recursively estimates such a distribution by fitting a Gaussian mixture model (GMM). The performance of the proposed algorithms is compared to a previously proposed PF-based algorithm (Paninski et al., 2012) with several illustrative examples, assuming that the distribution of synaptic input is unknown. If noise is small, the performance of our algorithms is similar to that of the previous one. However, if noise is large, they can significantly outperform the previous proposal. These promising results suggest that our algorithm is a robust and efficient technique for estimating time varying excitatory and inhibitory synaptic conductances from single trials of membrane potential recordings.

  18. Spatially structured oscillations in a two-dimensional excitatory neuronal network with synaptic depression

    KAUST Repository

    Kilpatrick, Zachary P.

    2009-10-29

    We study the spatiotemporal dynamics of a two-dimensional excitatory neuronal network with synaptic depression. Coupling between populations of neurons is taken to be nonlocal, while depression is taken to be local and presynaptic. We show that the network supports a wide range of spatially structured oscillations, which are suggestive of phenomena seen in cortical slice experiments and in vivo. The particular form of the oscillations depends on initial conditions and the level of background noise. Given an initial, spatially localized stimulus, activity evolves to a spatially localized oscillating core that periodically emits target waves. Low levels of noise can spontaneously generate several pockets of oscillatory activity that interact via their target patterns. Periodic activity in space can also organize into spiral waves, provided that there is some source of rotational symmetry breaking due to external stimuli or noise. In the high gain limit, no oscillatory behavior exists, but a transient stimulus can lead to a single, outward propagating target wave. © Springer Science + Business Media, LLC 2009.

  19. Excitatory synaptic activity is associated with a rapid structural plasticity of inhibitory synapses on hippocampal CA1 pyramidal cells

    OpenAIRE

    Lushnikova, Irina; Skibo, Galina; Muller, Dominique; Nikonenko, Iryna

    2011-01-01

    Synaptic activity, such as long-term potentiation (LTP), has been shown to induce morphological plasticity of excitatory synapses on dendritic spines through the spine head and postsynaptic density (PSD) enlargement and reorganization. Much less, however, is known about activity-induced morphological modifications of inhibitory synapses. Using an in vitro model of rat organotypic hippocampal slice cultures and electron microscopy, we studied activity-related morphological changes of somatic i...

  20. TGF-β Signaling in Dopaminergic Neurons Regulates Dendritic Growth, Excitatory-Inhibitory Synaptic Balance, and Reversal Learning

    Directory of Open Access Journals (Sweden)

    Sarah X. Luo

    2016-12-01

    Full Text Available Neural circuits involving midbrain dopaminergic (DA neurons regulate reward and goal-directed behaviors. Although local GABAergic input is known to modulate DA circuits, the mechanism that controls excitatory/inhibitory synaptic balance in DA neurons remains unclear. Here, we show that DA neurons use autocrine transforming growth factor β (TGF-β signaling to promote the growth of axons and dendrites. Surprisingly, removing TGF-β type II receptor in DA neurons also disrupts the balance in TGF-β1 expression in DA neurons and neighboring GABAergic neurons, which increases inhibitory input, reduces excitatory synaptic input, and alters phasic firing patterns in DA neurons. Mice lacking TGF-β signaling in DA neurons are hyperactive and exhibit inflexibility in relinquishing learned behaviors and re-establishing new stimulus-reward associations. These results support a role for TGF-β in regulating the delicate balance of excitatory/inhibitory synaptic input in local microcircuits involving DA and GABAergic neurons and its potential contributions to neuropsychiatric disorders.

  1. Cannabinoid CB1 receptor calibrates excitatory synaptic balance in the mouse hippocampus.

    Science.gov (United States)

    Monory, Krisztina; Polack, Martin; Remus, Anita; Lutz, Beat; Korte, Martin

    2015-03-04

    The endocannabinoid system negatively regulates the release of various neurotransmitters in an activity-dependent manner, thereby influencing the excitability of neuronal circuits. In the hippocampus, cannabinoid type 1 (CB1) receptor is present on both GABAergic and glutamatergic axon terminals. CB1 receptor-deficient mice were previously shown to have increased hippocampal long-term potentiation (LTP). In this study, we have investigated the consequences of cell-type-specific deletion of the CB1 receptor on the induction of hippocampal LTP and on CA1 pyramidal cell morphology. Deletion of CB1 receptor in GABAergic neurons in GABA-CB1-KO mice leads to a significantly decreased hippocampal LTP compared with WT controls. Concomitantly, CA1 pyramidal neurons have a significantly reduced dendritic branching both on the apical and on the basal dendrites. Moreover, the average spine density on the apical dendrites of CA1 pyramidal neurons is significantly diminished. In contrast, in mice lacking CB1 receptor in glutamatergic cells (Glu-CB1-KO), hippocampal LTP is significantly enhanced and CA1 pyramidal neurons show an increased branching and an increased spine density in the apical dendritic region. Together, these results indicate that the CB1 receptor signaling system both on inhibitory and excitatory neurons controls functional and structural synaptic plasticity of pyramidal neurons in the hippocampal CA1 region to maintain an appropriate homeostatic state upon neuronal activation. Consequently, if the CB1 receptor is lost in either neuronal population, an allostatic shift will occur leading to a long-term dysregulation of neuronal functions.

  2. Excitatory synaptic activity is associated with a rapid structural plasticity of inhibitory synapses on hippocampal CA1 pyramidal cells.

    Science.gov (United States)

    Lushnikova, Irina; Skibo, Galina; Muller, Dominique; Nikonenko, Irina

    2011-04-01

    Synaptic activity, such as long-term potentiation (LTP), has been shown to induce morphological plasticity of excitatory synapses on dendritic spines through the spine head and postsynaptic density (PSD) enlargement and reorganization. Much less, however, is known about activity-induced morphological modifications of inhibitory synapses. Using an in vitro model of rat organotypic hippocampal slice cultures and electron microscopy, we studied activity-related morphological changes of somatic inhibitory inputs triggered by a brief oxygen-glucose deprivation (OGD) episode, a condition associated with a synaptic enhancement referred to as anoxic LTP and a structural remodeling of excitatory synapses. Three-dimensional reconstruction of inhibitory axo-somatic synapses at different times before and after brief OGD revealed important morphological changes. The PSD area significantly and markedly increased at synapses with large and complex PSDs, but not at synapses with simple, macular PSDs. Activity-related changes of PSD size and presynaptic bouton volume developed in a strongly correlated manner. Analyses of single and serial sections further showed that the density of inhibitory synaptic contacts on the cell soma did not change within 1 h after OGD. In contrast, the proportion of the cell surface covered with inhibitory PSDs, as well as the complexity of these PSDs significantly increased, with less macular PSDs and more complex, segmented shapes. Together, these data reveal a rapid activity-related restructuring of somatic inhibitory synapses characterized by an enlargement and increased complexity of inhibitory PSDs, providing a new mechanism for a quick adjustment of the excitatory-inhibitory balance. This article is part of a Special Issue entitled 'Synaptic Plasticity & Interneurons'.

  3. Neuroligin-1 regulates excitatory synaptic transmission, LTP and EPSP-spike coupling in the dentate gyrus in vivo.

    Science.gov (United States)

    Jedlicka, Peter; Vnencak, Matej; Krueger, Dilja D; Jungenitz, Tassilo; Brose, Nils; Schwarzacher, Stephan W

    2015-01-01

    Neuroligins are transmembrane cell adhesion proteins with a key role in the regulation of excitatory and inhibitory synapses. Based on previous in vitro and ex vivo studies, neuroligin-1 (NL1) has been suggested to play a selective role in the function of glutamatergic synapses. However, the role of NL1 has not yet been investigated in the brain of live animals. We studied the effects of NL1-deficiency on synaptic transmission in the hippocampal dentate gyrus using field potential recordings evoked by perforant path stimulation in urethane-anesthetized NL1 knockout (KO) mice. We report that in NL1 KOs the activation of glutamatergic perforant path granule cell inputs resulted in reduced synaptic responses. In addition, NL1 KOs displayed impairment in long-term potentiation. Furthermore, field EPSP-population spike (E-S) coupling was greater in NL1 KO than WT mice and paired-pulse inhibition was reduced, indicating a compensatory rise of excitability in NL1 KO granule cells. Consistent with changes in excitatory transmission, NL1 KOs showed a significant reduction in hippocampal synaptosomal expression levels of the AMPA receptor subunit GluA2 and NMDA receptor subunits GluN1, GluN2A and GluN2B. Taken together, we provide first evidence that NL1 is essential for normal excitatory transmission and long-term synaptic plasticity in the hippocampus of intact animals. Our data provide insights into synaptic and circuit mechanisms of neuropsychiatric abnormalities such as learning deficits and autism.

  4. Inhibitory effect of morphine on excitatory synaptic transmission via presynaptic mechanism in rat SON neurons in brain slices

    Institute of Scientific and Technical Information of China (English)

    WANG Xiao-bin; HU San-jue; JU Gong

    2001-01-01

    To observe the effects of morphine on the excitatory postsynaptic currents (EPSCs) and miniature EPSCs (mEPSCs) in rat supraoptic nucleus (SON) neurons and to explore its synaptic mechanism. Methods: Using whole-cell voltage-clamp recording technique in the brain slices, the EPSCS and mEPSCs of rat SON neurons were recorded, respectively. Results: Morphine (20 μmol/L) decreased the frequency of EPSCs and mEPSCs (by 65% for EPSCS and by 45% for mEPSCs), and reduced the amplitude of EPSCs by 44% in all SON neurons, but the amplitude distribution ofmEPSCs was not affected. Conclusion: Morphine inhibits the excitatory transmissions via presynaptic mechanisms in SON neurons from rat brain slices.

  5. Purines released from astrocytes inhibit excitatory synaptic transmission in the ventral horn of the spinal cord

    DEFF Research Database (Denmark)

    Carlsen, Eva Maria Meier; Perrier, Jean-Francois Marie

    2014-01-01

    by releasing gliotransmitters, which in turn modulate synaptic transmission. Here we investigated if astrocytes present in the ventral horn of the spinal cord modulate synaptic transmission. We evoked synaptic inputs in ventral horn neurons recorded in a slice preparation from the spinal cord of neonatal mice...

  6. Excitatory amino acid transporters tonically restrain nTS synaptic and neuronal activity to modulate cardiorespiratory function.

    Science.gov (United States)

    Matott, Michael P; Ruyle, Brian C; Hasser, Eileen M; Kline, David D

    2016-03-01

    The nucleus tractus solitarii (nTS) is the initial central termination site for visceral afferents and is important for modulation and integration of multiple reflexes including cardiorespiratory reflexes. Glutamate is the primary excitatory neurotransmitter in the nTS and is removed from the extracellular milieu by excitatory amino acid transporters (EAATs). The goal of this study was to elucidate the role of EAATs in the nTS on basal synaptic and neuronal function and cardiorespiratory regulation. The majority of glutamate clearance in the central nervous system is believed to be mediated by astrocytic EAAT 1 and 2. We confirmed the presence of EAAT 1 and 2 within the nTS and their colocalization with astrocytic markers. EAAT blockade withdl-threo-β-benzyloxyaspartic acid (TBOA) produced a concentration-related depolarization, increased spontaneous excitatory postsynaptic current (EPSC) frequency, and enhanced action potential discharge in nTS neurons. Solitary tract-evoked EPSCs were significantly reduced by EAAT blockade. Microinjection of TBOA into the nTS of anesthetized rats induced apneic, sympathoinhibitory, depressor, and bradycardic responses. These effects mimicked the response to microinjection of exogenous glutamate, and glutamate responses were enhanced by EAAT blockade. Together these data indicate that EAATs tonically restrain nTS excitability to modulate cardiorespiratory function.

  7. Cholinergic modulation of excitatory synaptic input integration in hippocampal CA1.

    Science.gov (United States)

    McQuiston, A Rory

    2010-10-01

    During theta rhythm, the timing of inputs to hippocampal CA1 from the perforant path (PP) of the entorhinal cortex and the Schaffer collaterals (SCs) from individual CA3 pyramidal neurons can vary within an individual theta period. Importantly, during theta rhythms these interactions occur during elevated acetylcholine concentrations. Thus, I examined the effect that PP inputs have on SC inputs in hippocampal CA1 during cholinergic receptor activation. To do this I measured the impact that a single electrical stimulus of the stratum lacunosum-moleculare (SLM, which contains the PP) had on excitation evoked by stimulation of the stratum radiatum (SR, which contains the SC) using voltage-sensitive dye imaging, field excitatory postsynaptic potentials and whole cell patch clamping in rat hippocampal brain slices. My data showed that SLM stimulation one half a theta cycle or less (25-75 ms) before SR stimulation resulted in the summation of excitatory events in SR and SP of hippocampal CA1. The summation was unaffected by cholinergic receptor activation by carbachol. SLM stimulation one theta cycle (150-225 ms) preceding SR stimulation significantly suppressed excitatory events measured in SR and SP. This SLM stimulus inhibition of SR-driven excitatory events was augmented by carbachol application. The carbachol effect was blocked by atropine and SLM-driven suppression of excitatory events was blocked by the GABA(B) receptor antagonist CGP 54626. SR field EPSP slopes were unaffected by SLM prepulses. Carbachol increased the probability of SR input to drive action potential firing in CA1 pyramidal neurons, which was inhibited by SLM prepulses (150-225 ms). Together these data provide important information regarding the integration of inputs in hippocampal CA1 during theta rhythms. More specifically, SR inputs can be differentially gated by SLM feedforward inhibition at varying temporal intervals within a theta cycle.

  8. The neurotoxin 1-methyl-4-phenylpyridinium (MPP+ alters hippocampal excitatory synaptic transmission by modulation of the GABAergic system

    Directory of Open Access Journals (Sweden)

    YuYing eHuang

    2015-08-01

    Full Text Available The neurotoxin 1-methyl-4-phenyl-1,2,3,6-tetrahydropyridine (MPTP induces Parkinson’s disease (PD-like symptoms following administration to mice, monkeys and humans. A common view is that MPTP is metabolized to 1-methyl-4-phenylpyridinium ion (MPP+ to induce its neurodegenerative effects on dopaminergic neurons in the substantia nigra. Moreover, the hippocampus contains dopaminergic fibers, which are projecting from the ventral tegmental area, substantia nigra and pars compacta and contain the whole machinery required for dopamine synthesis making them sensitive to MPTP and MPP+. Here we present data showing that acute bath-application of MPP+ elicited a dose-dependent facilitation followed by a depression of synaptic transmission of hippocampal Schaffer collaterals-CA1 synapses in mice. The effects of MPP+ were not mediated by D1/D5- and D2-like receptor activation. Inhibition of the dopamine transporters (DAT did not prevent but increased the depression of excitatory postsynaptic field potentials. In the search for a possible mechanism, we observed that MPP+ reduced the appearance of polyspikes in population spikes recorded in str. pyramidale and increased the frequency of miniature inhibitory postsynaptic currents. The acute effect of MPP+ on synaptic transmission was attenuated by co-application of a GABAA receptor antagonist. Taking these data together, we suggest that MPP+ affects hippocampal synaptic transmission by enhancing some aspects of

  9. Surviving mossy cells enlarge and receive more excitatory synaptic input in a mouse model of temporal lobe epilepsy.

    Science.gov (United States)

    Zhang, Wei; Thamattoor, Ajoy K; LeRoy, Christopher; Buckmaster, Paul S

    2015-05-01

    Numerous hypotheses of temporal lobe epileptogenesis have been proposed, and several involve hippocampal mossy cells. Building on previous hypotheses we sought to test the possibility that after epileptogenic injuries surviving mossy cells develop into super-connected seizure-generating hub cells. If so, they might require more cellular machinery and consequently have larger somata, elongate their dendrites to receive more synaptic input, and display higher frequencies of miniature excitatory synaptic currents (mEPSCs). To test these possibilities pilocarpine-treated mice were evaluated using GluR2-immunocytochemistry, whole-cell recording, and biocytin-labeling. Epileptic pilocarpine-treated mice displayed substantial loss of GluR2-positive hilar neurons. Somata of surviving neurons were 1.4-times larger than in controls. Biocytin-labeled mossy cells also were larger in epileptic mice, but dendritic length per cell was not significantly different. The average frequency of mEPSCs of mossy cells recorded in the presence of tetrodotoxin and bicuculline was 3.2-times higher in epileptic pilocarpine-treated mice as compared to controls. Other parameters of mEPSCs were similar in both groups. Average input resistance of mossy cells in epileptic mice was reduced to 63% of controls, which is consistent with larger somata and would tend to make surviving mossy cells less excitable. Other intrinsic physiological characteristics examined were similar in both groups. Increased excitatory synaptic input is consistent with the hypothesis that surviving mossy cells develop into aberrantly super-connected seizure-generating hub cells, and soma hypertrophy is indirectly consistent with the possibility of axon sprouting. However, no obvious evidence of hyperexcitable intrinsic physiology was found. Furthermore, similar hypertrophy and hyper-connectivity has been reported for other neuron types in the dentate gyrus, suggesting mossy cells are not unique in this regard. Thus

  10. Synaptic Effects of Munc18-1 Alternative Splicing in Excitatory Hippocampal Neurons.

    Directory of Open Access Journals (Sweden)

    Marieke Meijer

    Full Text Available The munc18-1 gene encodes two splice-variants that vary at the C-terminus of the protein and are expressed at different levels in different regions of the adult mammalian brain. Here, we investigated the expression pattern of these splice variants within the brainstem and tested whether they are functionally different. Munc18-1a is expressed in specific nuclei of the brainstem including the LRN, VII and SOC, while Munc18-1b expression is relatively low/absent in these regions. Furthermore, Munc18-1a is the major splice variant in the Calyx of Held. Synaptic transmission was analyzed in autaptic hippocampal munc18-1 KO neurons re-expressing either Munc18-1a or Munc18-1b. The two splice variants supported synaptic transmission to a similar extent, but Munc18-1b was slightly more potent in sustaining synchronous release during high frequency stimulation. Our data suggest that alternative splicing of Munc18-1 support synaptic transmission to a similar extent, but could modulate presynaptic short-term plasticity.

  11. Synaptic Effects of Munc18-1 Alternative Splicing in Excitatory Hippocampal Neurons.

    Science.gov (United States)

    Meijer, Marieke; Cijsouw, Tony; Toonen, Ruud F; Verhage, Matthijs

    2015-01-01

    The munc18-1 gene encodes two splice-variants that vary at the C-terminus of the protein and are expressed at different levels in different regions of the adult mammalian brain. Here, we investigated the expression pattern of these splice variants within the brainstem and tested whether they are functionally different. Munc18-1a is expressed in specific nuclei of the brainstem including the LRN, VII and SOC, while Munc18-1b expression is relatively low/absent in these regions. Furthermore, Munc18-1a is the major splice variant in the Calyx of Held. Synaptic transmission was analyzed in autaptic hippocampal munc18-1 KO neurons re-expressing either Munc18-1a or Munc18-1b. The two splice variants supported synaptic transmission to a similar extent, but Munc18-1b was slightly more potent in sustaining synchronous release during high frequency stimulation. Our data suggest that alternative splicing of Munc18-1 support synaptic transmission to a similar extent, but could modulate presynaptic short-term plasticity.

  12. Increased Excitatory Synaptic Transmission of Dentate Granule Neurons in Mice Lacking PSD-95-Interacting Adhesion Molecule Neph2/Kirrel3 during the Early Postnatal Period

    Science.gov (United States)

    Roh, Junyeop D.; Choi, Su-Yeon; Cho, Yi Sul; Choi, Tae-Yong; Park, Jong-Sil; Cutforth, Tyler; Chung, Woosuk; Park, Hanwool; Lee, Dongsoo; Kim, Myeong-Heui; Lee, Yeunkum; Mo, Seojung; Rhee, Jeong-Seop; Kim, Hyun; Ko, Jaewon; Choi, Se-Young; Bae, Yong Chul; Shen, Kang; Kim, Eunjoon; Han, Kihoon

    2017-01-01

    Copy number variants and point mutations of NEPH2 (also called KIRREL3) gene encoding an immunoglobulin (Ig) superfamily adhesion molecule have been linked to autism spectrum disorders, intellectual disability and neurocognitive delay associated with Jacobsen syndrome, but the physiological roles of Neph2 in the mammalian brain remain largely unknown. Neph2 is highly expressed in the dentate granule (DG) neurons of the hippocampus and is localized in both dendrites and axons. It was recently shown that Neph2 is required for the formation of mossy fiber filopodia, the axon terminal structure of DG neurons forming synapses with GABAergic neurons of CA3. In contrast, however, it is unknown whether Neph2 also has any roles in the postsynaptic compartments of DG neurons. We here report that, through its C-terminal PDZ domain-binding motif, Neph2 directly interacts with postsynaptic density (PSD)-95, an abundant excitatory postsynaptic scaffolding protein. Moreover, Neph2 protein is detected in the brain PSD fraction and interacts with PSD-95 in synaptosomal lysates. Functionally, loss of Neph2 in mice leads to age-specific defects in the synaptic connectivity of DG neurons. Specifically, Neph2−/− mice show significantly increased spontaneous excitatory synaptic events in DG neurons at postnatal week 2 when the endogenous Neph2 protein expression peaks, but show normal excitatory synaptic transmission at postnatal week 3. The evoked excitatory synaptic transmission and synaptic plasticity of medial perforant pathway (MPP)-DG synapses are also normal in Neph2−/− mice at postnatal week 3, further confirming the age-specific synaptic defects. Together, our results provide some evidence for the postsynaptic function of Neph2 in DG neurons during the early postnatal period, which might be implicated in neurodevelopmental and cognitive disorders caused by NEPH2 mutations. PMID:28381988

  13. Increased Excitatory Synaptic Transmission of Dentate Granule Neurons in Mice Lacking PSD-95-Interacting Adhesion Molecule Neph2/Kirrel3 during the Early Postnatal Period.

    Science.gov (United States)

    Roh, Junyeop D; Choi, Su-Yeon; Cho, Yi Sul; Choi, Tae-Yong; Park, Jong-Sil; Cutforth, Tyler; Chung, Woosuk; Park, Hanwool; Lee, Dongsoo; Kim, Myeong-Heui; Lee, Yeunkum; Mo, Seojung; Rhee, Jeong-Seop; Kim, Hyun; Ko, Jaewon; Choi, Se-Young; Bae, Yong Chul; Shen, Kang; Kim, Eunjoon; Han, Kihoon

    2017-01-01

    Copy number variants and point mutations of NEPH2 (also called KIRREL3) gene encoding an immunoglobulin (Ig) superfamily adhesion molecule have been linked to autism spectrum disorders, intellectual disability and neurocognitive delay associated with Jacobsen syndrome, but the physiological roles of Neph2 in the mammalian brain remain largely unknown. Neph2 is highly expressed in the dentate granule (DG) neurons of the hippocampus and is localized in both dendrites and axons. It was recently shown that Neph2 is required for the formation of mossy fiber filopodia, the axon terminal structure of DG neurons forming synapses with GABAergic neurons of CA3. In contrast, however, it is unknown whether Neph2 also has any roles in the postsynaptic compartments of DG neurons. We here report that, through its C-terminal PDZ domain-binding motif, Neph2 directly interacts with postsynaptic density (PSD)-95, an abundant excitatory postsynaptic scaffolding protein. Moreover, Neph2 protein is detected in the brain PSD fraction and interacts with PSD-95 in synaptosomal lysates. Functionally, loss of Neph2 in mice leads to age-specific defects in the synaptic connectivity of DG neurons. Specifically, Neph2(-/-) mice show significantly increased spontaneous excitatory synaptic events in DG neurons at postnatal week 2 when the endogenous Neph2 protein expression peaks, but show normal excitatory synaptic transmission at postnatal week 3. The evoked excitatory synaptic transmission and synaptic plasticity of medial perforant pathway (MPP)-DG synapses are also normal in Neph2(-/-) mice at postnatal week 3, further confirming the age-specific synaptic defects. Together, our results provide some evidence for the postsynaptic function of Neph2 in DG neurons during the early postnatal period, which might be implicated in neurodevelopmental and cognitive disorders caused by NEPH2 mutations.

  14. GABA B receptor modulation of excitatory and inhibitory synaptic transmission onto rat CA3 hippocampal interneurons.

    Science.gov (United States)

    Lei, Saobo; McBain, Chris J

    2003-01-15

    Hippocampal stratum radiatum inhibitory interneurons receive glutamatergic excitatory innervation via the recurrent collateral fibers of CA3 pyramidal neurons and GABAergic inhibition from other interneurons. We examined both presynaptic- and postsynaptic-GABA(B) receptor-mediated responses at both synapse types. Postsynaptic GABA(B) receptor-mediated responses were absent in recordings from young (P16-18) but present in recordings from older animals (> or =P30) suggesting developmental regulation. In young animals, the GABA(B) receptor agonist, baclofen, inhibited the amplitude of evoked EPSCs and IPSCs, an effect blocked by prior application of the selective antagonist CGP55845. Baclofen enhanced the paired-pulse ratio and coefficient of variation of evoked EPSCs and IPSCs, consistent with a presynaptic mechanism of regulation. In addition, baclofen reduced the frequency of miniature IPSCs but not mEPSCs. However, baclofen reduced the frequency of KCl-induced mEPSCs; an effect blocked by Cd(2+), implicating presynaptic voltage-gated Ca(2+) channels as a target for baclofen modulation. In contrast, although Cd(2+) prevented the KCl-induced increase in mIPSC frequency, it failed to block baclofen's reduction of mIPSC frequency. Whereas N- and P/Q-types of Ca(2+) channels contributed equally to GABA(B) receptor-mediated inhibition of EPSCs, more P/Q-type Ca(2+) channels were involved in GABA(B) receptor-mediated inhibition of IPSCs. Finally, baclofen blocked the frequency-dependent depression of EPSCs and IPSCs, but was less effective at blocking frequency-dependent facilitation of EPSCs. Our results demonstrate that presynaptic GABA(B) receptors are expressed on the terminals of both excitatory and inhibitory synapses onto CA3 interneurons and that their activation modulates essential components of the release process underlying transmission at these two synapse types.

  15. L-DOPA inhibits excitatory synaptic transmission in the rat nucleus tractus solitarius through release of dopamine.

    Science.gov (United States)

    Ohi, Y; Kodama, D; Haji, A

    2017-09-30

    The mode of action of L-DOPA on excitatory synaptic transmission in second-order neurons of the nucleus tractus solitarius (NTS) was studied using the rat brainstem slices. Superfusion of L-DOPA (10μM) reduced the frequency of miniature excitatory postsynaptic currents (mEPSCs) without any effect on the amplitude. A low concentration (1μM) was ineffective on the mEPSCs, and the highest concentration (100μM) exerted a stronger inhibitory effect. L-DOPA (10μM) decreased the amplitude of EPSCs (eEPSCs) evoked by electrical stimulation of the tractus solitarius and increased the paired-pulse ratio. The inhibitory effects of L-DOPA on mEPSCs and eEPSCs were similar to those of dopamine (100μM). The effects of L-DOPA were blocked by a competitive antagonist, L-DOPA methyl ester (100μM) and also by a D2 receptor antagonist, sulpiride (10μM), while those of dopamine were blocked by the latter but not by the former. In reserpine (5mg/kg, s.c.)-treated rats, the effects of L-DOPA on both mEPSCs and eEPSCs were completely abolished, but those of dopamine remained unchanged. The present results suggest a possibility that L-DOPA may induce the release of dopamine from the axon terminals in the NTS and the released dopamine suppresses the glutamatergic transmission through activation of the presynaptic D2 receptors. Copyright © 2017 IBRO. Published by Elsevier Ltd. All rights reserved.

  16. Propofol suppresses synaptic responsiveness of somatosensory relay neurons to excitatory input by potentiating GABAA receptor chloride channels

    Directory of Open Access Journals (Sweden)

    Goldstein Peter A

    2005-01-01

    Full Text Available Abstract Propofol is a widely used intravenous general anesthetic. Propofol-induced unconsciousness in humans is associated with inhibition of thalamic activity evoked by somatosensory stimuli. However, the cellular mechanisms underlying the effects of propofol in thalamic circuits are largely unknown. We investigated the influence of propofol on synaptic responsiveness of thalamocortical relay neurons in the ventrobasal complex (VB to excitatory input in mouse brain slices, using both current- and voltage-clamp recording techniques. Excitatory responses including EPSP temporal summation and action potential firing were evoked in VB neurons by electrical stimulation of corticothalamic fibers or pharmacological activation of glutamate receptors. Propofol (0.6 – 3 μM suppressed temporal summation and spike firing in a concentration-dependent manner. The thalamocortical suppression was accompanied by a marked decrease in both EPSP amplitude and input resistance, indicating that a shunting mechanism was involved. The propofol-mediated thalamocortical suppression could be blocked by a GABAA receptor antagonist or chloride channel blocker, suggesting that postsynaptic GABAA receptors in VB neurons were involved in the shunting inhibition. GABAA receptor-mediated inhibitory postsynaptic currents (IPSCs were evoked in VB neurons by electrical stimulation of the reticular thalamic nucleus. Propofol markedly increased amplitude, decay time, and charge transfer of GABAA IPSCs. The results demonstrated that shunting inhibition of thalamic somatosensory relay neurons by propofol at clinically relevant concentrations is primarily mediated through the potentiation of the GABAA receptor chloride channel-mediated conductance, and such inhibition may contribute to the impaired thalamic responses to sensory stimuli seen during propofol-induced anesthesia.

  17. Cocaine-evoked synaptic plasticity of excitatory transmission in the ventral tegmental area.

    Science.gov (United States)

    Lüscher, Christian

    2013-05-01

    Cocaine leads to a strong euphoria, which is at the origin of its recreational use. Past the acute effects, the drug leaves traces in the brain that persist long after it has been cleared from the body. These traces eventually shape behavior such that drug use may become compulsive and addiction develops. Here we discuss cocaine-evoked synaptic plasticity of glutamatergic transmission onto dopamine (DA) neurons of the ventral tegmental area (VTA) as one of the earliest traces after a first injection of cocaine. We review the literature that has examined the induction requirements as well as the expression mechanism of this form of plasticity and ask the question about its functional significance.

  18. Adenosine Inhibits the Excitatory Synaptic Inputs to Basal Forebrain Cholinergic, GABAergic and Parvalbumin Neurons in mice

    Directory of Open Access Journals (Sweden)

    Chun eYang

    2013-06-01

    Full Text Available Coffee and tea contain the stimulants caffeine and theophylline. These compounds act as antagonists of adenosine receptors. Adenosine promotes sleep and its extracellular concentration rises in association with prolonged wakefulness, particularly in the basal forebrain (BF region involved in activating the cerebral cortex. However, the effect of adenosine on identified BF neurons, especially non-cholinergic neurons, is incompletely understood. Here we used whole-cell patch-clamp recordings in mouse brain slices prepared from two validated transgenic mouse lines with fluorescent proteins expressed in GABAergic or parvalbumin (PV neurons to determine the effect of adenosine. Whole-cell recordings were made BF cholinergic neurons and from BF GABAergic & PV neurons with the size (>20 µm and intrinsic membrane properties (prominent H-currents corresponding to cortically projecting neurons. A brief (2 min bath application of adenosine (100 μM decreased the frequency but not the amplitude of spontaneous excitatory postsynaptic currents in all groups of BF cholinergic, GABAergic and PV neurons we recorded. In addition, adenosine decreased the frequency of miniature EPSCs in BF cholinergic neurons. Adenosine had no effect on the frequency of spontaneous inhibitory postsynaptic currents in cholinergic neurons or GABAergic neurons with large H-currents but reduced them in a group of GABAergic neurons with smaller H-currents. All effects of adenosine were blocked by a selective, adenosine A1 receptor antagonist, cyclopentyltheophylline (CPT, 1 μM. Adenosine had no postsynaptic effects. Taken together, our work suggests that adenosine promotes sleep by an A1-receptor mediated inhibition of glutamatergic inputs to cortically-projecting cholinergic and GABA/PV neurons. Conversely, caffeine and theophylline promote attentive wakefulness by inhibiting these A1 receptors in BF thereby promoting the high-frequency oscillations in the cortex required for

  19. Prenatal stress enhances excitatory synaptic transmission and impairs long-term potentiation in the frontal cortex of adult offspring rats.

    Directory of Open Access Journals (Sweden)

    Joanna Sowa

    Full Text Available The effects of prenatal stress procedure were investigated in 3 months old male rats. Prenatally stressed rats showed depressive-like behavior in the forced swim test, including increased immobility, decreased mobility and decreased climbing. In ex vivo frontal cortex slices originating from prenatally stressed animals, the amplitude of extracellular field potentials (FPs recorded in cortical layer II/III was larger, and the mean amplitude ratio of pharmacologically-isolated NMDA to the AMPA/kainate component of the field potential--smaller than in control preparations. Prenatal stress also resulted in a reduced magnitude of long-term potentiation (LTP. These effects were accompanied by an increase in the mean frequency, but not the mean amplitude, of spontaneous excitatory postsynaptic currents (sEPSCs in layer II/III pyramidal neurons. These data demonstrate that stress during pregnancy may lead not only to behavioral disturbances, but also impairs the glutamatergic transmission and long-term synaptic plasticity in the frontal cortex of the adult offspring.

  20. Aβ induces acute depression of excitatory glutamatergic synaptic transmission through distinct phosphatase-dependent mechanisms in rat CA1 pyramidal neurons.

    Science.gov (United States)

    Yao, Wen; Zou, Hao-Jun; Sun, Da; Ren, Si-Qiang

    2013-06-17

    Beta-amyloid peptide (Aβ) has a causal role in the pathophysiology of Alzheimer's disease (AD). Recent studies indicate that Aβ can disrupt excitatory glutamatergic synaptic function at synaptic level. However, the underlying mechanisms remain obscure. In this study, we recorded evoked and spontaneous EPSCs in hippocampal CA1 pyramidal neurons via whole-cell voltage-clamping methods and found that 1 μM Aβ can induce acute depression of basal glutamatergic synaptic transmission through both presynaptic and postsynaptic dysfunction. Moreover, we also found that Aβ-induced both presynaptic and postsynaptic dysfunction can be reversed by the inhibitor of protein phosphatase 2B (PP2B), FK506, whereas only postsynaptic disruption can be ameliorated by the inhibitor of PP1/PP2A, Okadaic acid (OA). These results indicate that PP1/PP2A and PP2B have overlapping but not identical functions in Aβ-induced acute depression of excitatory glutamatergic synaptic transmission of hippocampal CA1 pyramidal neurons.

  1. Imbalance of Excitatory/Inhibitory Synaptic Protein Expression in iPSC-derived Neurons from FOXG1+/− Patients and in Foxg1+/− Mice

    Science.gov (United States)

    Patriarchi, Tommaso; Amabile, Sonia; Frullanti, Elisa; Landucci, Elisa; Lo Rizzo, Caterina; Ariani, Francesca; Costa, Mario; Olimpico, Francesco; Hell, Johannes W.; Vaccarino, Flora M.; Renieri, Alessandra; Meloni, Ilaria

    2015-01-01

    Rett Syndrome (RTT) is a severe neurodevelopmental disorder associated with mutations in either MECP2, CDKL5 or FOXG1. The precise molecular mechanisms that lead to the pathogenesis of RTT have yet to be elucidated. We recently reported that expression of GluD1 (orphan Glutamate receptor Delta-1 subunit) is increased in iPSC-derived neurons obtained from patients with mutations in either MECP2 or CDKL5. GluD1 controls synaptic differentiation and shifts the balance between excitatory and inhibitory synapses towards the latter. Thus, an increase in GluD1 might be a critical factor in the etiology of RTT by affecting the excitatory/inhibitory balance in the developing brain. To test this hypothesis, we generated iPSC-derived neurons from FOXG1+/− patients. We analyzed mRNA and protein levels of GluD1 together with key markers of excitatory and inhibitory synapses in these iPSC-derived neurons and in Foxg1+/− mouse fetal (E11.5) and adult (P70) brains. We found strong correlation between iPSC-derived neurons and fetal mouse brains, where GluD1 and inhibitory synaptic markers (GAD67 and GABA AR-α1) were increased, while the levels of a number of excitatory synaptic markers (VGLUT1, GluA1, GluN1, PSD-95) were decreased. In adult mice, GluD1 was decreased along with all GABAergic and glutamatergic markers. Our findings further the understanding of the etiology of RTT by introducing a new pathological event occurring in the brain of FOXG1+/− patients during embryonic development and its time-dependent shift toward a general decrease in brain synapses. PMID:26443267

  2. Pentraxins coordinate excitatory synapse maturation and circuit integration of parvalbumin interneurons.

    Science.gov (United States)

    Pelkey, Kenneth A; Barksdale, Elizabeth; Craig, Michael T; Yuan, Xiaoqing; Sukumaran, Madhav; Vargish, Geoffrey A; Mitchell, Robert M; Wyeth, Megan S; Petralia, Ronald S; Chittajallu, Ramesh; Karlsson, Rose-Marie; Cameron, Heather A; Murata, Yasunobu; Colonnese, Matthew T; Worley, Paul F; McBain, Chris J

    2015-03-18

    Circuit computation requires precision in the timing, extent, and synchrony of principal cell (PC) firing that is largely enforced by parvalbumin-expressing, fast-spiking interneurons (PVFSIs). To reliably coordinate network activity, PVFSIs exhibit specialized synaptic and membrane properties that promote efficient afferent recruitment such as expression of high-conductance, rapidly gating, GluA4-containing AMPA receptors (AMPARs). We found that PVFSIs upregulate GluA4 during the second postnatal week coincident with increases in the AMPAR clustering proteins NPTX2 and NPTXR. Moreover, GluA4 is dramatically reduced in NPTX2(-/-)/NPTXR(-/-) mice with consequent reductions in PVFSI AMPAR function. Early postnatal NPTX2(-/-)/NPTXR(-/-) mice exhibit delayed circuit maturation with a prolonged critical period permissive for giant depolarizing potentials. Juvenile NPTX2(-/-)/NPTXR(-/-) mice display reduced feedforward inhibition yielding a circuit deficient in rhythmogenesis and prone to epileptiform discharges. Our findings demonstrate an essential role for NPTXs in controlling network dynamics highlighting potential therapeutic targets for disorders with inhibition/excitation imbalances such as schizophrenia.

  3. Familial hemiplegic migraine type-1 mutated cav2.1 calcium channels alter inhibitory and excitatory synaptic transmission in the lateral superior olive of mice.

    Science.gov (United States)

    Inchauspe, Carlota González; Pilati, Nadia; Di Guilmi, Mariano N; Urbano, Francisco J; Ferrari, Michel D; van den Maagdenberg, Arn M J M; Forsythe, Ian D; Uchitel, Osvaldo D

    2015-01-01

    CaV2.1 Ca(2+) channels play a key role in triggering neurotransmitter release and mediating synaptic transmission. Familial hemiplegic migraine type-1 (FHM-1) is caused by missense mutations in the CACNA1A gene that encodes the α1A pore-forming subunit of CaV2.1 Ca(2+) channels. We used knock-in (KI) transgenic mice harbouring the pathogenic FHM-1 mutation R192Q to study inhibitory and excitatory neurotransmission in the principle neurons of the lateral superior olive (LSO) in the auditory brainstem. We tested if the R192Q FHM-1 mutation differentially affects excitatory and inhibitory synaptic transmission, disturbing the normal balance between excitation and inhibition in this nucleus. Whole cell patch-clamp was used to measure neurotransmitter elicited excitatory (EPSCs) and inhibitory (IPSCs) postsynaptic currents in wild-type (WT) and R192Q KI mice. Our results showed that the FHM-1 mutation in CaV2.1 channels has multiple effects. Evoked EPSC amplitudes were smaller whereas evoked and miniature IPSC amplitudes were larger in R192Q KI compared to WT mice. In addition, in R192Q KI mice, the release probability was enhanced compared to WT, at both inhibitory (0.53 ± 0.02 vs. 0.44 ± 0.01, P = 2.10(-5), Student's t-test) and excitatory synapses (0.60 ± 0.03 vs. 0.45 ± 0.02, P = 4 10(-6), Student's t-test). Vesicle pool size was diminished in R192Q KI mice compared to WT mice (68 ± 6 vs 91 ± 7, P = 0.008, inhibitory; 104 ± 13 vs 335 ± 30, P = 10(-6), excitatory, Student's t-test). R192Q KI mice present enhanced short-term plasticity. Repetitive stimulation of the afferent axons caused short-term depression (STD) of E/IPSCs that recovered significantly faster in R192Q KI mice compared to WT. This supports the hypothesis of a gain-of-function of the CaV2.1 channels in R192Q KI mice, which alters the balance of excitatory/inhibitory inputs and could also have implications in the altered cortical excitability responsible for FHM

  4. VIP enhances both pre- and postsynaptic GABAergic transmission to hippocampal interneurones leading to increased excitatory synaptic transmission to CA1 pyramidal cells.

    Science.gov (United States)

    Cunha-Reis, Diana; Sebastião, Ana M; Wirkner, Kerstin; Illes, Peter; Ribeiro, Joaquim Alexandre

    2004-11-01

    Vasoactive intestinal peptide (VIP) is present in the hippocampus in three subtypes of GABAergic interneurones, two of which innervate preferentially other interneurones, responsible for pyramidal cell inhibition. We investigated how pre- and postsynaptic modulation of GABAergic transmission (to both pyramidal cells and interneurones) by VIP could influence excitatory synaptic transmission in the CA1 area of the hippocampus. VIP (0.1-100 nM) increased [(3)H]GABA release from hippocampal synaptosomes (maximum effect at 1 nM VIP; 63.8 +/- 4.0%) but did not change [(3)H]glutamate release. VIP (0.3-30 nM) enhanced synaptic transmission in hippocampal slices (maximum effect at 1 nM VIP; field excitatory postsynaptic potentials (epsp) slope: 23.7 +/- 1.1%; population spike amplitude: 20.3 +/- 1.7%). The action on field epsp slope was fully dependent on GABAergic transmission since it was absent in the presence of picrotoxin (50 microM) plus CGP55845 (1 microM). VIP (1 nM) did not change paired-pulse facilitation but increased paired-pulse inhibition in CA1 pyramidal cells (16.0 +/- 0.9%), reinforcing the involvement of GABAergic transmission in the action of VIP. VIP (1 nM) increased muscimol-evoked inhibitory currents by 36.4 +/- 8.7% in eight out of ten CA1 interneurones in the stratum radiatum. This suggests that VIP promotes increased inhibition of interneurones that control pyramidal cells, leading to disinhibition of synaptic transmission to pyramidal cell dendrites. In conclusion, concerted pre- and postsynaptic actions of VIP lead to disinhibition of pyramidal cell dendrites causing an enhancement of synaptic transmission.

  5. Loss of mTOR repressors Tsc1 or Pten has divergent effects on excitatory and inhibitory synaptic transmission in single hippocampal neuron cultures.

    Directory of Open Access Journals (Sweden)

    Matthew C Weston

    2014-02-01

    Full Text Available The Pten and Tsc1 genes both encode proteins that repress mechanistic target of rapamycin (mTOR signaling. Disruption of either gene in the brain results in epilepsy and autism-like symptoms in humans and mouse models, therefore it is important to understand the molecular and physiological events that lead from gene disruption to disease phenotypes. Given the similar roles these two molecules play in the regulation of cellular growth and the overlap in the phenotypes that result from their loss, we predicted that the deletion of either the Pten or Tsc1 gene from hippocampal neurons would have similar effects on neuronal morphology and synaptic transmission. Accordingly, we found that loss of either Pten or Tsc1 caused comparable increases in soma size, dendrite length and action potential properties. However, the effects of Pten and Tsc1 loss on synaptic transmission were different. Loss of Pten lead to an increase in both excitatory and inhibitory neurotransmission, while loss of Tsc1 did not affect excitatory neurotransmission and reduced inhibitory transmission by decreasing mIPSC amplitude. Although the loss of Pten or Tsc1 both increased downstream mTORC1 signaling, phosphorylation of Akt was increased in Pten-ko and decreased in Tsc1-ko neurons, potentially accounting for the different effects on synaptic transmission. Despite the different effects at the synaptic level, our data suggest that loss of Pten or Tsc1 may both lead to an increase in the ratio of excitation to inhibition at the network level, an effect that has been proposed to underlie both epilepsy and autism.

  6. The cell-autonomous role of excitatory synaptic transmission in the regulation of neuronal structure and function

    OpenAIRE

    2013-01-01

    The cell-autonomous role of synaptic transmission in the regulation of neuronal structural and electrical properties is unclear. We have now employed a genetic approach to eliminate glutamatergic synaptic transmission onto individual CA1 pyramidal neurons in a mosaic fashion in vivo. Surprisingly, while electrical properties are profoundly affected in these neurons, as well as inhibitory synaptic transmission, we found little perturbation of neuronal morphology, demonstrating a functional seg...

  7. Characterisation of the effects of ATPA, a GLU(K5) receptor selective agonist, on excitatory synaptic transmission in area CA1 of rat hippocampal slices.

    Science.gov (United States)

    Clarke, V R J; Collingridge, G L

    2002-06-01

    Kainate receptors are involved in a variety of synaptic functions in the CNS including the regulation of excitatory synaptic transmission. Previously we described the depressant action of the GLU(K5) selective agonist (RS)-2-amino-3-(3-hydroxy-5-tert-butylisoxazol-4-yl)propanoic acid (ATPA) on synaptic transmission in the Schaffer collateral-commissural pathway of rat hippocampal slices. In the present study we report several new features of the actions of ATPA at this synapse. Firstly, the effectiveness of ATPA is developmentally regulated. Secondly, the effects of ATPA decline during prolonged or repeated applications. Thirdly, the effects of ATPA are not mediated indirectly via activation of GABA(A), GABA(B), muscarinic or adenosine A(1) receptors. Fourthly, elevating extracellular Ca(2+) from 2 to 4 mM antagonises the effects of ATPA. Some differences between the actions of ATPA and kainate on synaptic transmission in the Schaffer collateral-commissural pathway are also noted.

  8. The GluR5 subtype of kainate receptor regulates excitatory synaptic transmission in areas CA1 and CA3 of the rat hippocampus.

    Science.gov (United States)

    Vignes, M; Clarke, V R; Parry, M J; Bleakman, D; Lodge, D; Ornstein, P L; Collingridge, G L

    1998-01-01

    Activation of kainate receptors depresses excitatory synaptic transmission in the hippocampus. In the present study, we have utilised a GluR5 selective agonist, ATPA [(RS)-2-amino-3-(3-hydroxy-5-tert-butylisoxazol-4-yl)propanoic acid], and a GluR5 selective antagonist, LY294486 [(3SR,4aRS,6SR,8aRS)-6-([[(1H-tetrazol-5-y l)methyl]oxy]methyl)-1,2,3,4,4a,5,6,7,8,8a-decahydroisoquinoline-3 -carboxylic acid], to determine whether GluR5 subunits are involved in this effect. ATPA mimicked the presynaptic depressant effects of kainate in the CA1 region of the hippocampus. It depressed reversibly AMPA (alpha-amino-3-hydroxy-5-methylisoxazole-4-propionic acid) receptor-mediated field excitatory postsynaptic potentials (field EPSPs) with an IC50 value of approximately 0.60 microM. The dual-component excitatory postsynaptic current (EPSC) and the pharmacologically isolated NMDA (N-methyl-D-aspartate) receptor-mediated EPSC were depressed to a similar extent by 2 microM ATPA (61 +/- 7% and 58 +/- 6%, respectively). Depressions were associated with an increase in the paired-pulse facilitation ratio suggesting a presynaptic locus of action. LY294486 (20 microM) blocked the effects of 2 microM ATPA on NMDA receptor-mediated EPSCs in a reversible manner. In area CA3, 1 microM ATPA depressed reversibly mossy fibre-evoked synaptic transmission (by 82 +/- 10%). The effects of ATPA were not accompanied by any changes in the passive properties of CA1 or CA3 neurones. However, in experiments where K+, rather than Cs+, containing electrodes were used, a small outward current was observed. These results show that GluR5 subunits comprise or contribute to a kainate receptor that regulates excitatory synaptic transmission in both the CA1 and CA3 regions of the hippocampus.

  9. Excitatory and inhibitory synaptic mechanisms at the first stage of integration in the electroreception system of the shark.

    Science.gov (United States)

    Rotem, Naama; Sestieri, Emanuel; Hounsgaard, Jorn; Yarom, Yosef

    2014-01-01

    High impulse rate in afferent nerves is a common feature in many sensory systems that serve to accommodate a wide dynamic range. However, the first stage of integration should be endowed with specific properties that enable efficient handling of the incoming information. In elasmobranches, the afferent nerve originating from the ampullae of Lorenzini targets specific neurons located at the Dorsal Octavolateral Nucleus (DON), the first stage of integration in the electroreception system. Using intracellular recordings in an isolated brainstem preparation from the shark we analyze the properties of this afferent pathway. We found that stimulating the afferent nerve activates a mixture of excitatory and inhibitory synapses mediated by AMPA-like and GABAA receptors, respectively. The excitatory synapses that are extremely efficient in activating the postsynaptic neurons display unusual voltage dependence, enabling them to operate as a current source. The inhibitory input is powerful enough to completely eliminate the excitatory action of the afferent nerve but is ineffective regarding other excitatory inputs. These observations can be explained by the location and efficiency of the synapses. We conclude that the afferent nerve provides powerful and reliable excitatory input as well as a feed-forward inhibitory input, which is partially presynaptic in origin. These results question the cellular location within the DON where cancelation of expected incoming signals occurs.

  10. Excitatory and inhibitory synaptic mechanisms at the first stage of integration in the electroreception system of the shark

    Directory of Open Access Journals (Sweden)

    Naama eRotem

    2014-03-01

    Full Text Available High impulse rate in afferent nerves is a common feature in many sensory systems that serve to accommodate a wide dynamic range. However, the first stage of integration should be endowed with specific properties that enable efficient handling of the incoming information. In elasmobranches, the afferent nerve originating from the ampullae of Lorenzini targets specific neurons located at the Dorsal Octavolateral Nucleus (DON, the first stage of integration in the electroreception system. Using intracellular recordings in an isolated brainstem preparation from the shark we analyze the properties of this afferent pathway. We found that stimulating the afferent nerve activates a mixture of excitatory and inhibitory synapses mediated by AMPA-like and GABAA receptors, respectively. The excitatory synapses that are extremely efficient in activating the postsynaptic neurons display unusual voltage dependence, enabling them to operate as a current source. The inhibitory input is powerful enough to completely eliminate the excitatory action of the afferent nerve but is ineffective regarding other excitatory inputs. These observations can be explained by the location and efficiency of the synapses. We conclude that the afferent nerve provides powerful and reliable excitatory input as well as a feed-forward inhibitory input, which is partially presynaptic in origin. These results question the cellular location within the dorsal octavolateral nucleus where cancelation of expected incoming signals occurs.

  11. Dopaminergic enhancement of excitatory synaptic transmission in layer II entorhinal neurons is dependent on D₁-like receptor-mediated signaling.

    Science.gov (United States)

    Glovaci, I; Caruana, D A; Chapman, C A

    2014-01-31

    The modulatory neurotransmitter dopamine induces concentration-dependent changes in synaptic transmission in the entorhinal cortex, in which high concentrations of dopamine suppress evoked excitatory postsynaptic potentials (EPSPs) and lower concentrations induce an acute synaptic facilitation. Whole-cell current-clamp recordings were used to investigate the dopaminergic facilitation of synaptic responses in layer II neurons of the rat lateral entorhinal cortex. A constant bath application of 1 μM dopamine resulted in a consistent facilitation of EPSPs evoked in layer II fan cells by layer I stimulation; the size of the facilitation was more variable in pyramidal neurons, and synaptic responses in a small group of multiform neurons were not modulated by dopamine. Isolated inhibitory synaptic responses were not affected by dopamine, and the facilitation of EPSPs was not associated with a change in paired-pulse facilitation ratio. Voltage-clamp recordings of α-amino-3-hydroxy-5-methylisoxazole-4-propionic acid (AMPA) glutamate receptor-mediated excitatory postsynaptic currents (EPSCs) were facilitated by dopamine, but N-methyl-D-aspartate receptor-mediated currents were not. Bath application of the dopamine D₁-like receptor blocker SCH23390 (50 μM), but not the D₂-like receptor blocker sulpiride (50 μM), prevented the facilitation, indicating that it is dependent upon D₁-like receptor activation. Dopamine D₁ receptors lead to activation of protein kinase A (PKA), and including the PKA inhibitor H-89 or KT 5720 in the recording pipette solution prevented the facilitation of EPSCs. PKA-dependent phosphorylation of inhibitor 1 or the dopamine- and cAMP-regulated protein phosphatase (DARPP-32) can lead to a facilitation of AMPA receptor responses by inhibiting the activity of protein phosphatase 1 (PP1) that reduces dephosphorylation of AMPA receptors, and we found here that inhibition of PP1 occluded the facilitatory effect of dopamine. The dopamine

  12. Inhibitory effects of endomorphin-2 on excitatory synaptic transmission and the neuronal excitability of sacral parasympathetic preganglionic neurons in young rats

    Science.gov (United States)

    Chen, Ying-Biao; Huang, Fen-Sheng; Fen, Ban; Yin, Jun-Bin; Wang, Wei; Li, Yun-Qing

    2015-01-01

    The function of the urinary bladder is partly controlled by parasympathetic preganglionic neurons (PPNs) of the sacral parasympathetic nucleus (SPN). Our recent work demonstrated that endomorphin-2 (EM-2)-immunoreactive (IR) terminals form synapses with μ-opioid receptor (MOR)-expressing PPNs in the rat SPN. Here, we examined the effects of EM-2 on excitatory synaptic transmission and the neuronal excitability of the PPNs in young rats (24–30 days old) using a whole-cell patch-clamp approach. PPNs were identified by retrograde labeling with the fluorescent tracer tetramethylrhodamine-dextran (TMR). EM-2 (3 μM) markedly decreased both the amplitude and the frequency of the spontaneous and miniature excitatory postsynaptic currents (sEPSCs and mEPSCs) of PPNs. EM-2 not only decreased the resting membrane potentials (RMPs) in 61.1% of the examined PPNs with half-maximal response at the concentration of 0.282 μM, but also increased the rheobase current and reduced the repetitive action potential firing of PPNs. Analysis of the current–voltage relationship revealed that the EM-2-induced current was reversed at −95 ± 2.5 mV and was suppressed by perfusion of the potassium channel blockers 4-aminopyridine (4-AP) or BaCl2 or by the addition of guanosine 5′-[β-thio]diphosphate trilithium salt (GDP-β-S) to the pipette solution, suggesting the involvement of the G-protein-coupled inwardly rectifying potassium (GIRK) channel. The above EM-2-invoked inhibitory effects were abolished by the MOR selective antagonist D-Phe-Cys-Tyr-D-Trp-Orn-Thr-Pen-Thr-NH2 (CTOP), indicating that the effects of EM-2 on PPNs were mediated by MOR via pre- and/or post-synaptic mechanisms. EM-2 activated pre- and post-synaptic MORs, inhibiting excitatory neurotransmitter release from the presynaptic terminals and decreasing the excitability of PPNs due to hyperpolarization of their membrane potentials, respectively. These inhibitory effects of EM-2 on PPNs at the spinal cord level may

  13. Structure and function of the amygdaloid NPY system: NPY Y2 receptors regulate excitatory and inhibitory synaptic transmission in the centromedial amygdala.

    Science.gov (United States)

    Wood, J; Verma, D; Lach, G; Bonaventure, P; Herzog, H; Sperk, G; Tasan, R O

    2016-09-01

    The amygdala is essential for generating emotional-affective behaviors. It consists of several nuclei with highly selective, elaborate functions. In particular, the central extended amygdala, consisting of the central amygdala (CEA) and the bed nucleus of the stria terminalis (BNST) is an essential component actively controlling efferent connections to downstream effectors like hypothalamus and brain stem. Both, CEA and BNST contain high amounts of different neuropeptides that significantly contribute to synaptic transmission. Among these, neuropeptide Y (NPY) has emerged as an important anxiolytic and fear-reducing neuromodulator. Here, we characterized the expression, connectivity and electrophysiological function of NPY and Y2 receptors within the CEA. We identified several NPY-expressing neuronal populations, including somatostatin- and calretinin-expressing neurons. Furthermore, in the main intercalated nucleus, NPY is expressed primarily in dopamine D1 receptor-expressing neurons but also in interspersed somatostatin-expressing neurons. Interestingly, NPY neurons did not co-localize with the Y2 receptor. Retrograde tract tracing experiments revealed that NPY neurons reciprocally connect the CEA and BNST. Functionally, the Y2 receptor agonist PYY3-36, reduced both, inhibitory as well as excitatory synaptic transmission in the centromedial amygdala (CEm). However, we also provide evidence that lack of NPY or Y2 receptors results in increased GABA release specifically at inhibitory synapses in the CEm. Taken together, our findings suggest that NPY expressed by distinct populations of neurons can modulate afferent and efferent projections of the CEA via presynaptic Y2 receptors located at inhibitory and excitatory synapses.

  14. Transmission to interneurons is via slow excitatory synaptic potentials mediated by P2Y(1 receptors during descending inhibition in guinea-pig ileum.

    Directory of Open Access Journals (Sweden)

    Peter D J Thornton

    Full Text Available BACKGROUND: The nature of synaptic transmission at functionally distinct synapses in intestinal reflex pathways has not been fully identified. In this study, we investigated whether transmission between interneurons in the descending inhibitory pathway is mediated by a purine acting at P2Y receptors to produce slow excitatory synaptic potentials (EPSPs. METHODOLOGY/PRINCIPAL FINDINGS: Myenteric neurons from guinea-pig ileum in vitro were impaled with intracellular microelectrodes. Responses to distension 15 mm oral to the recording site, in a separately perfused stimulation chamber and to electrical stimulation of local nerve trunks were recorded. A subset of neurons, previously identified as nitric oxide synthase immunoreactive descending interneurons, responded to both stimuli with slow EPSPs that were reversibly abolished by a high concentration of PPADS (30 μM, P2 receptor antagonist. When added to the central chamber of a three chambered organ bath, PPADS concentration-dependently depressed transmission through that chamber of descending inhibitory reflexes, measured as inhibitory junction potentials in the circular muscle of the anal chamber. Reflexes evoked by distension in the central chamber were unaffected. A similar depression of transmission was seen when the specific P2Y(1 receptor antagonist MRS 2179 (10 μM was in the central chamber. Blocking either nicotinic receptors (hexamethonium 200 μM or 5-HT(3 receptors (granisetron 1 μM together with P2 receptors had no greater effect than blocking P2 receptors alone. CONCLUSIONS/SIGNIFICANCE: Slow EPSPs mediated by P2Y(1 receptors, play a primary role in transmission between descending interneurons of the inhibitory reflexes in the guinea-pig ileum. This is the first demonstration for a primary role of excitatory metabotropic receptors in physiological transmission at a functionally identified synapse.

  15. Excitatory synapses are stronger in the hippocampus of Rett syndrome mice due to altered synaptic trafficking of AMPA-type glutamate receptors.

    Science.gov (United States)

    Li, Wei; Xu, Xin; Pozzo-Miller, Lucas

    2016-03-15

    Deficits in long-term potentiation (LTP) at central excitatory synapses are thought to contribute to cognitive impairments in neurodevelopmental disorders associated with intellectual disability and autism. Using the methyl-CpG-binding protein 2 (Mecp2) knockout (KO) mouse model of Rett syndrome, we show that naïve excitatory synapses onto hippocampal pyramidal neurons of symptomatic mice have all of the hallmarks of potentiated synapses. Stronger Mecp2 KO synapses failed to undergo LTP after either theta-burst afferent stimulation or pairing afferent stimulation with postsynaptic depolarization. On the other hand, basal synaptic strength and LTP were not affected in slices from younger presymptomatic Mecp2 KO mice. Furthermore, spine synapses in pyramidal neurons from symptomatic Mecp2 KO are larger and do not grow in size or incorporate GluA1 subunits after electrical or chemical LTP. Our data suggest that LTP is occluded in Mecp2 KO mice by already potentiated synapses. The higher surface levels of GluA1-containing receptors are consistent with altered expression levels of proteins involved in AMPA receptor trafficking, suggesting previously unidentified targets for therapeutic intervention for Rett syndrome and other MECP2-related disorders.

  16. Neuroprotection via strychnine-sensitive glycine receptors during post-ischemic recovery of excitatory synaptic transmission in the hippocampus.

    Science.gov (United States)

    Tanabe, Mitsuo; Nitta, Azusa; Ono, Hideki

    2010-01-01

    Recent evidence indicates that strychnine-sensitive glycine receptors are located in upper brain regions including the hippocampus. Because of excitatory effects of glycine via facilitation of NMDA-receptor function, however, the net effects of increased extracellular glycine on neuronal excitability in either physiological or pathophysiological conditions are mostly unclear. Here, we addressed the potential neuroprotective effect of either exogenous application of glycine and taurine, which are both strychnine-sensitive glycine-receptor agonists, or an endogenous increase of glycine via blockade of glycine transporter 1 (GlyT1) by assessing their ability to facilitate the functional recovery of field excitatory postsynaptic potentials (fEPSPs) after termination of brief oxygen/glucose deprivation (OGD) in the CA1 region in mouse hippocampal slices. Glycine and taurine promoted restoration of the fEPSPs after reperfusion, but this was never observed in the presence of strychnine. Interestingly, glycine and taurine appeared to generate neuroprotective effects only at their optimum concentration range. By contrast, blockade of GlyT1 by N-[3-(4'-fluorophenyl)-3-(4'-phenylphenoxy)propyl]sarcosine or sarcosine did not elicit significant neuroprotection. These results suggest that activation of strychnine-sensitive glycine receptors potentially produces neuroprotection against metabolic stress such as OGD. However, GlyT1 inhibition is unlikely to elicit a sufficient increase in the extracellular level of glycine to generate neuroprotection.

  17. Sensitivity of N-methyl-D-aspartate receptor-mediated excitatory postsynaptic potentials and synaptic plasticity to TCN 201 and TCN 213 in rat hippocampal slices.

    Science.gov (United States)

    Izumi, Yukitoshi; Zorumski, Charles F

    2015-02-01

    Whereas ifenprodil has been used as a selective GluN1/GluN2B (NR1/NR2B, B-type) receptor antagonist to distinguish between GluN2B (NR2B) and GluN2A (NR2A)-containing N-methyl-d-aspartate receptors (NMDARs), TCN 201 (3-chloro-4-fluoro-N-[4-[[2-(phenylcarbonyl)hydrazino]carbonyl]benzyl]benzenesulphonamide) and TCN 213 [N-(cyclohexylmethyl)-2-[{5-[(phenylmethyl)amino]-1,3,4-thiadiazol-2-yl}thio]acetamide] have been found to be selective GluN1/GluN2A (NR1/NR2A, A-type) antagonists. Based on the premise that A- and B-types are major synaptic NMDARs, we examined whether inhibition of NMDAR excitatory postsynaptic potentials (EPSPs) by the TCN compounds and ifenprodil are complementary. Contrary to this prediction, inhibition of NMDAR EPSPs by the TCN compounds and ifenprodil were largely overlapping in the CA1 region of hippocampal slices from 30-day-old rats. After partial inhibition by ifenprodil, TCN compounds produced little further suppression of NMDAR EPSPs. Similarly, after partial inhibition by TCN compounds ifenprodil failed to further suppress NMDAR EPSPs. However, low micromolar d-2-amino-5-phosphonovalerate, a competitive NMDAR antagonist, which alone only partially inhibits NMDAR EPSPs, markedly suppresses residual NMDAR responses in the presence of ifenprodil or the TCNs, suggesting that low 2-amino-5-phosphonovalerate antagonizes both ifenprodil- and TCN-insensitive synaptic NMDARs. These observations can be most readily interpreted if ifenprodil and TCNs act on a similar population of synaptic NMDARs. Recent lines of evidence suggest that the majority of hippocampal synaptic NMDARs are triheteromers. If so, modulation of GluN2A, and not just GluN2B NMDARs, could dampen long-term depression (LTD). Indeed, both TCNs, like ifenprodil, blocked LTD, suggesting the involvement of ifenprodil- and TCN-sensitive NMDARs in LTD induction. However, the TCNs plus ifenprodil failed to inhibit long-term potentiation (LTP), suggesting that neither ifenprodil- nor TCN

  18. The Abused Inhalant Toluene Differentially Modulates Excitatory and Inhibitory Synaptic Transmission in Deep-Layer Neurons of the Medial Prefrontal Cortex

    Science.gov (United States)

    Beckley, Jacob T; Woodward, John J

    2011-01-01

    Volatile organic solvents such as toluene are voluntarily inhaled for their intoxicating effects. Solvent use is especially prevalent among adolescents, and is associated with deficits in a wide range of cognitive tasks including attention, behavioral control, and risk assessment. Despite these findings, little is known about the effects of toluene on brain areas mediating these behaviors. In this study, whole-cell patch-clamp recordings were used to determine the effect toluene on neurons within the medial PFC, a region critically involved in cognitive function. Toluene had no effect on measures of intrinsic excitability, but enhanced stimulus-evoked γ-amino butyric acid A-mediated inhibitory postsynaptic currents (IPSCs). In the presence of tetrodotoxin (TTX) to block action potentials, toluene increased the frequency and amplitude of miniature IPSCs. In contrast, toluene induced a delayed but persistent decrease in evoked or spontaneous AMPA-mediated excitatory postsynaptic currents (EPSCs). This effect was prevented by an intracellular calcium chelator or by the ryanodine receptor and SERCA inhibitors, dantrolene or thapsigargin, respectively, suggesting that toluene may mobilize intracellular calcium pools. The toluene-induced reduction in AMPA EPSCs was also prevented by a cannabinoid receptor (CB1R) antagonist, and was occluded by the CB1 agonist WIN 55,212-2 that itself induced a profound decrease in AMPA-mediated EPSCs. Toluene had no effect on the frequency or amplitude of miniature EPSCs recorded in the presence of TTX. Finally, toluene dose-dependently inhibited N-methyl--aspartate (NMDA)-mediated EPSCs and the magnitude and reversibility of this effect was CB1R sensitive indicating both direct and indirect actions of toluene on NMDA-mediated responses. Together, these results suggest that the effect of toluene on cognitive behaviors may result from its action on inhibitory and excitatory synaptic transmission of PFC neurons. PMID:21430649

  19. Streptozotocin Inhibits Electrophysiological Determinants of Excitatory and Inhibitory Synaptic Transmission in CA1 Pyramidal Neurons of Rat Hippocampal Slices: Reduction of These Effects by Edaravone

    Directory of Open Access Journals (Sweden)

    Ting Ju

    2016-12-01

    Full Text Available Background: Streptozotocin (STZ has served as an agent to generate an Alzheimer's disease (AD model in rats, while edaravone (EDA, a novel free radical scavenger, has recently emerged as an effective treatment for use in vivo and vitro AD models. However, to date, these beneficial effects of EDA have only been clearly demonstrated within STZ-induced animal models of AD and in cell models of AD. A better understanding of the mechanisms of EDA may provide the opportunity for their clinical application in the treatment of AD. Therefore, the purpose of this study was to investigate the underlying mechanisms of STZ and EDA as assessed upon electrophysiological alterations in CA1 pyramidal neurons of rat hippocampal slices. Methods: Through measures of evoked excitatory postsynaptic currents (eEPSCs, AMPAR-mediated eEPSCs (eEPSCsAMPA, evoked inhibitory postsynaptic currents (eIPSCs, evoked excitatory postsynaptic current paired pulse ratio (eEPSC PPR and evoked inhibitory postsynaptic current paired pulse ratio (eIPSC PPR, it was possible to investigate mechanisms as related to the neurotoxicity of STZ and reductions in these effects by EDA. Results: Our results showed that STZ (1000 µM significantly inhibited peak amplitudes of eEPSCs, eEPSCsAMPA and eIPSCs, while EDA (1000 µM attenuated these STZ-induced changes at holding potentials ranging from -60mV to +40 mV for EPSCs and -60mV to +20 mV for IPSCs. Our work also indicated that mean eEPSC PPR were substantially altered by STZ, effects which were partially restored by EDA. In contrast, no significant effects upon eIPSC PPR were obtained in response to STZ and EDA. Conclusion: Our data suggest that STZ inhibits glutamatergic transmission involving pre-synaptic mechanisms and AMPAR, and that STZ inhibits GABAergic transmission by post-synaptic mechanisms within CA1 pyramidal neurons. These effects are attenuated by EDA.

  20. Electrical coupling and excitatory synaptic transmission between rhythmogenic respiratory neurons in the preBötzinger complex

    DEFF Research Database (Denmark)

    Rekling, J C; Shao, X M; Feldman, J L

    2000-01-01

    mice, we found that intracellularly recorded pairs of XII motoneurons and pairs of preBötC inspiratory type-1 neurons showed bidirectional electrical coupling. Coupling strength was low (10 Hz). Dual......Breathing pattern is postulated to be generated by brainstem neurons. However, determination of the underlying cellular mechanisms, and in particular the synaptic interactions between respiratory neurons, has been difficult. Here we used dual recordings from two distinct populations of brainstem...... respiratory neurons, hypoglossal (XII) motoneurons, and rhythmogenic (type-1) neurons in the preBötzinger complex (preBötC), the hypothesized site for respiratory rhythm generation, to determine whether electrical and chemical transmission is present. Using an in vitro brainstem slice preparation from newborn...

  1. Coordinated Regulation of Synaptic Plasticity at Striatopallidal and Striatonigral Neurons Orchestrates Motor Control

    Directory of Open Access Journals (Sweden)

    Massimo Trusel

    2015-11-01

    Full Text Available The basal ganglia play a critical role in shaping motor behavior. For this function, the activity of medium spiny neurons (MSNs of the striatonigral and striatopallidal pathways must be integrated. It remains unclear whether the activity of the two pathways is primarily coordinated by synaptic plasticity mechanisms. Using a model of Parkinson’s disease, we determined the circuit and behavioral effects of concurrently regulating cell-type-specific forms of corticostriatal long-term synaptic depression (LTD by inhibiting small-conductance Ca2+-activated K+ channels (SKs of the dorsolateral striatum. At striatopallidal synapses, SK channel inhibition rescued the disease-linked deficits in endocannabinoid (eCB-dependent LTD. At striatonigral cells, inhibition of these channels counteracted a form of adenosine-mediated LTD by activating the ERK cascade. Interfering with eCB-, adenosine-, and ERK signaling in vivo alleviated motor abnormalities, which supports that synaptic modulation of striatal pathways affects behavior. Thus, our results establish a central role of coordinated synaptic plasticity at MSN subpopulations in motor control.

  2. Monoallelic deletion of the microRNA biogenesis gene Dgcr8 produces deficits in the development of excitatory synaptic transmission in the prefrontal cortex

    Directory of Open Access Journals (Sweden)

    Barker Alison J

    2011-04-01

    Full Text Available Abstract Background Neuronal phenotypes associated with hemizygosity of individual genes within the 22q11.2 deletion syndrome locus hold potential towards understanding the pathogenesis of schizophrenia and autism. Included among these genes is Dgcr8, which encodes an RNA-binding protein required for microRNA biogenesis. Dgcr8 haploinsufficient mice (Dgcr8+/- have reduced expression of microRNAs in brain and display cognitive deficits, but how microRNA deficiency affects the development and function of neurons in the cerebral cortex is not fully understood. Results In this study, we show that Dgcr8+/- mice display reduced expression of a subset of microRNAs in the prefrontal cortex, a deficit that emerges over postnatal development. Layer V pyramidal neurons in the medial prefrontal cortex of Dgcr8+/- mice have altered electrical properties, decreased complexity of basal dendrites, and reduced excitatory synaptic transmission. Conclusions These findings demonstrate that precise microRNA expression is critical for the postnatal development of prefrontal cortical circuitry. Similar defects in neuronal maturation resulting from microRNA deficiency could represent endophenotypes of certain neuropsychiatric diseases of developmental onset.

  3. Coordinated movement, neuromuscular synaptogenesis and trans-synaptic signaling defects in Drosophila galactosemia models.

    Science.gov (United States)

    Jumbo-Lucioni, Patricia P; Parkinson, William M; Kopke, Danielle L; Broadie, Kendal

    2016-09-01

    The multiple galactosemia disease states manifest long-term neurological symptoms. Galactosemia I results from loss of galactose-1-phosphate uridyltransferase (GALT), which converts galactose-1-phosphate + UDP-glucose to glucose-1-phosphate + UDP-galactose. Galactosemia II results from loss of galactokinase (GALK), phosphorylating galactose to galactose-1-phosphate. Galactosemia III results from the loss of UDP-galactose 4'-epimerase (GALE), which interconverts UDP-galactose and UDP-glucose, as well as UDP-N-acetylgalactosamine and UDP-N-acetylglucosamine. UDP-glucose pyrophosphorylase (UGP) alternatively makes UDP-galactose from uridine triphosphate and galactose-1-phosphate. All four UDP-sugars are essential donors for glycoprotein biosynthesis with critical roles at the developing neuromuscular synapse. Drosophila galactosemia I (dGALT) and II (dGALK) disease models genetically interact; manifesting deficits in coordinated movement, neuromuscular junction (NMJ) development, synaptic glycosylation, and Wnt trans-synaptic signalling. Similarly, dGALE and dUGP mutants display striking locomotor and NMJ formation defects, including expanded synaptic arbours, glycosylation losses, and differential changes in Wnt trans-synaptic signalling. In combination with dGALT loss, both dGALE and dUGP mutants compromise the synaptomatrix glycan environment that regulates Wnt trans-synaptic signalling that drives 1) presynaptic Futsch/MAP1b microtubule dynamics and 2) postsynaptic Frizzled nuclear import (FNI). Taken together, these findings indicate UDP-sugar balance is a key modifier of neurological outcomes in all three interacting galactosemia disease models, suggest that Futsch homolog MAP1B and the Wnt Frizzled receptor may be disease-relevant targets in epimerase and transferase galactosemias, and identify UGP as promising new potential therapeutic target for galactosemia neuropathology.

  4. Opposing effects of traumatic brain injury on excitatory synaptic function in the lateral amygdala in the absence and presence of preinjury stress.

    Science.gov (United States)

    Klein, Rebecca C; Acheson, Shawn K; Qadri, Laura H; Dawson, Alina A; Rodriguiz, Ramona M; Wetsel, William C; Moore, Scott D; Laskowitz, Daniel T; Dawson, Hana N

    2016-06-01

    Traumatic brain injury (TBI) is a leading cause of death and disability among young adults and is highly prevalent among recently deployed military personnel. Survivors of TBI often experience cognitive and emotional deficits, suggesting that long-term effects of injury may disrupt neuronal function in critical brain regions, including the amygdala, which is involved in emotion and fear memory. Amygdala hyperexcitability has been reported in both TBI and posttraumatic stress disorder patients, yet little is known regarding the effects of combined stress and TBI on amygdala structure and function at the neuronal level. The present study seeks to determine how the long-term effects of preinjury foot-shock stress and TBI interact to influence synaptic plasticity in the lateral amygdala (LA) of adult male C57BL/6J mice by using whole-cell patch clamp electrophysiology 2-3 months postinjury. In the absence of stress, TBI resulted in a significant increase in membrane excitability and spontaneous excitatory postsynaptic currents (sEPSCs) in LA pyramidal-like neurons. Foot-shock stress in the absence of TBI also resulted in increased sEPSC activity. In contrast, when preinjury stress and TBI occurred in combination, sEPSC activity was significantly decreased compared with either condition alone. There were no significant differences in inhibitory activity or total dendritic length among any of the treatment groups. These results demonstrate that stress and TBI may be contributing to amygdala hyperexcitability via different mechanisms and that these pathways may counterbalance each other with respect to long-term pathophysiology in the LA.

  5. Experimental hypothyroidism delays field excitatory post-synaptic potentials and disrupts hippocampal long-term potentiation in the dentate gyrus of hippocampal formation and Y-maze performance in adult rats.

    Science.gov (United States)

    Artis, A S; Bitiktas, S; Taşkın, E; Dolu, N; Liman, N; Suer, C

    2012-03-01

    Manipulations of thyroid hormones have been shown to influence learning and memory. Although a large body of literature is available on the effect of thyroid hormone deficiency on learning and memory functions during the developmental stage, electrophysiological and behavioural findings, particularly on propylthiouracil administration to adult normothyroid animals, are not satisfactory. The experiments in the present study were carried out on 12 adult male Wistar rats aged 6-7 months. Hypothyroidism was induced by administering 6-n-propyl-2-thiouracil in their drinking water for 21 days at a concentration of 0.05%. The spatial learning performance of hypothyroid and control rats was studied on a Y-maze. The rats were then placed in a stereotaxic frame under urethane anaesthesia. A bipolar tungsten electrode was used to stimulate the medial perforant path. A glass micropipette was inserted into the granule cell layer of the ipsilateral dentate gyrus to record field excitatory post-synaptic potentials. After a 15-min baseline recording of field potentials, long-term potentiation was induced by four sets of tetanic trains. The propylthiouracil-treated rats showed a significantly attenuated input-output (I/O) relationship when population spike (PS) amplitudes and field excitatory post-synaptic potentials (fEPSP) were compared. fEPSP and PS latencies were found to be longer in the hypothyroid group than in the control group. The PS amplitude and fEPSP slope potentiations in the hypothyroid rats were not statistically different from those in the control rats, except for the field EPSP slope measured in the post-tetanic and maintenance phases. The hypothyroid rats also showed lower thyroxine levels and poor performance in the spatial memory task. The present study provides in vivo evidence for the action of propylthiouracil leading to impaired synaptic plasticity, which might explain deficit in spatial memory tasks in adult hypothyroid rats.

  6. Presynaptic alpha-7 nicotinic acetylcholine receptors modulate excitatory synaptic transmission in hippocampal neurons%突触前α7烟碱受体对海马神经元兴奋性突触传递的调控

    Institute of Scientific and Technical Information of China (English)

    刘振伟; 杨胜; 张永祥; 刘传缋

    2003-01-01

    The effects of presynaptic nicotinic acetylcholine receptors (nAChRs) on excitatory synaptic transmission in CA1 pyramidal neurons of the rat hippocampus were examined by blind whole-cell patch clamp recording from hippocampal slice preparations. Local application of the nAChRs agonist dimethylphenyl-piperazinium iodide (DMPP) did not induce a postsynaptic current response in CA1 pyramidal cells. However, DMPP enhanced the frequency and amplitude of spontaneous excitatory postsynaptic current (sEPSC) in these cells in a dose-dependent manner. This enhancement was blocked by the selective nicotinic α-7 receptor antagonist α-bungarotoxin, but not by the antagonist mecamylamine, hexamethonium or dihyhro3-erythroidine. The frequency of miniature excitatory postsynaptic current (mEPSC) in CA1 pyramidal neurons was also increased by application of DMPP, indicating a presynaptic site of action of the agonist. Taken together, these results suggest that activation of presynaptic nAChRs in CA1 pyramidal neurons, which contain α-7 subunits, potentiates presynaptic glutamate release and consequently modulate excitatory synaptic transmission in the hippocampus.%采用盲法膜片钳技术观察突触前烟碱受体(nicotinic acetylcholine receptors,nAChRs)对海马脑片CA1区锥体神经元兴奋性突触传递的调控作用.结果显示,nAChRs激动剂碘化二甲基苯基哌嗪(dimethylphenyl-piperazinium iodide,DMPP)不能在CA1区锥体神经元上诱发出烟碱电流.DMPP对CA1区锥体神经元自发兴奋性突触后电流(spontaneous excitatory postsynaptic current,sEPSC)具有明显的增频和增幅作用,并呈现明显的浓度依赖关系.DMPP对微小兴奋性突触后电流(miniature excitatory postsynaptic current,mEPSC)具有增频作用,但不具有增幅作用.上述DMPP增强突触传递的作用不能被nAChRs拮抗剂美加明、六烃季铵和双氢-β-刺桐丁所阻断,但可被α-银环蛇毒素阻断.上述结果提示,海马脑片CA1

  7. Role of mental retardation-associated dystrophin-gene product Dp71 in excitatory synapse organization, synaptic plasticity and behavioral functions.

    Directory of Open Access Journals (Sweden)

    Fatma Daoud

    Full Text Available BACKGROUND: Duchenne muscular dystrophy (DMD is caused by deficient expression of the cytoskeletal protein, dystrophin. One third of DMD patients also have mental retardation (MR, likely due to mutations preventing expression of dystrophin and other brain products of the DMD gene expressed from distinct internal promoters. Loss of Dp71, the major DMD-gene product in brain, is thought to contribute to the severity of MR; however, the specific function of Dp71 is poorly understood. METHODOLOGY/PRINCIPAL FINDINGS: Complementary approaches were used to explore the role of Dp71 in neuronal function and identify mechanisms by which Dp71 loss may impair neuronal and cognitive functions. Besides the normal expression of Dp71 in a subpopulation of astrocytes, we found that a pool of Dp71 colocalizes with synaptic proteins in cultured neurons and is expressed in synaptic subcellular fractions in adult brains. We report that Dp71-associated protein complexes interact with specialized modular scaffolds of proteins that cluster glutamate receptors and organize signaling in postsynaptic densities. We then undertook the first functional examination of the brain and cognitive alterations in the Dp71-null mice. We found that these mice display abnormal synapse organization and maturation in vitro, altered synapse density in the adult brain, enhanced glutamatergic transmission and reduced synaptic plasticity in CA1 hippocampus. Dp71-null mice show selective behavioral disturbances characterized by reduced exploratory and novelty-seeking behavior, mild retention deficits in inhibitory avoidance, and impairments in spatial learning and memory. CONCLUSIONS/SIGNIFICANCE: Results suggest that Dp71 expression in neurons play a regulatory role in glutamatergic synapse organization and function, which provides a new mechanism by which inactivation of Dp71 in association with that of other DMD-gene products may lead to increased severity of MR.

  8. Male-specific alteration in excitatory post-synaptic development and social interaction in pre-natal valproic acid exposure model of autism spectrum disorder.

    Science.gov (United States)

    Kim, Ki Chan; Kim, Pitna; Go, Hyo Sang; Choi, Chang Soon; Park, Jin Hee; Kim, Hee Jin; Jeon, Se Jin; Dela Pena, Ike Campomayor; Han, Seol-Heui; Cheong, Jae Hoon; Ryu, Jong Hoon; Shin, Chan Young

    2013-03-01

    Autism spectrum disorder (ASD) is a pervasive developmental disorder characterized by three main behavioral symptoms including social deficits, impaired communication, and stereotyped and repetitive behaviors. ASD prevalence shows gender bias to male. Prenatal exposure to valproic acid (VPA), a drug used in epilepsy and bipolar disorder, induces autistic symptoms in both human and rodents. As we reported previously, prenatally VPA-exposed animals at E12 showed impairment in social behavior without any overt reproductive toxicity. Social interactions were not significantly different between male and female rats in control condition. However, VPA-exposed male offspring showed significantly impaired social interaction while female offspring showed only marginal deficits in social interaction. Similar male inclination was observed in hyperactivity behavior induced by VPA. In addition to the ASD-like behavioral phenotype, prenatally VPA-exposed rat offspring shows crooked tail phenotype, which was not different between male and female groups. Both male and female rat showed reduced GABAergic neuronal marker GAD and increased glutamatergic neuronal marker vGluT1 expression. Interestingly, despite of the similar increased expression of vGluT1, post-synaptic marker proteins such as PSD-95 and α-CAMKII expression was significantly elevated only in male offspring. Electron microscopy showed increased number of post-synapse in male but not in female at 4 weeks of age. These results might suggest that the altered glutamatergic neuronal differentiation leads to deranged post-synaptic maturation only in male offspring prenatally exposed to VPA. Consistent with the increased post-synaptic compartment, VPA-exposed male rats showed higher sensitivity to electric shock than VPA-exposed female rats. These results suggest that prenatally VPA-exposed rats show the male preponderance of ASD-like behaviors including defective social interaction similar to human autistic patients, which

  9. Interaction of inhibition and triplets of excitatory spikes modulates the NMDA-R-mediated synaptic plasticity in a computational model of spike timing-dependent plasticity.

    Science.gov (United States)

    Cutsuridis, Vassilis

    2013-01-01

    Spike timing-dependent plasticity (STDP) experiments have shown that a synapse is strengthened when a presynaptic spike precedes a postsynaptic one and depressed vice versa. The canonical form of STDP has been shown to have an asymmetric shape with the peak long-term potentiation at +6 ms and the peak long-term depression at -5 ms. Experiments in hippocampal cultures with more complex stimuli such as triplets (one presynaptic spike combined with two postsynaptic spikes or one postsynaptic spike with two presynaptic spikes) have shown that pre-post-pre spike triplets result in no change in synaptic strength, whereas post-pre-post spike triplets lead to significant potentiation. The sign and magnitude of STDP have also been experimentally hypothesized to be modulated by inhibition. Recently, a computational study showed that the asymmetrical form of STDP in the CA1 pyramidal cell dendrite when two spikes interact switches to a symmetrical one in the presence of inhibition under certain conditions. In the present study, I investigate computationally how inhibition modulates STDP in the CA1 pyramidal neuron dendrite when it is driven by triplets. The model uses calcium as the postsynaptic signaling agent for STDP and is shown to be consistent with the experimental triplet observations in the absence of inhibition: simulated pre-post-pre spike triplets result in no change in synaptic strength, whereas simulated post-pre-post spike triplets lead to significant potentiation. When inhibition is bounded by the onset and offset of the triplet stimulation, then the strength of the synapse is decreased as the strength of inhibition increases. When inhibition arrives either few milliseconds before or at the onset of the last spike in the pre-post-pre triplet stimulation, then the synapse is potentiated. Variability in the frequency of inhibition (50 vs. 100 Hz) produces no change in synaptic strength. Finally, a 5% variation in model's calcium parameters (calcium thresholds

  10. Changes in action potential duration alter reliance of excitatory synaptic transmission on multiple types of Ca2+ channels in rat hippocampus.

    Science.gov (United States)

    Wheeler, D B; Randall, A; Tsien, R W

    1996-04-01

    It has been established that multiple types of Ca2+ channels participate in triggering neurotransmitter release at central synapses, but there is uncertainty about the nature of their combined actions. We investigated synaptic transmission at CA3-CA1 synapses of rat hippocampal slices and asked whether the dependence on omega-CTx-GVIA-sensitive N-type channels and omega-Aga-IVA-sensitive P/Q-type Ca2+ channels can be altered by physiological mechanisms. The reliance on multiple types of Ca2+ channels was not absolute but depended strongly on the amount of Ca2+ influx through individual channels, which was manipulated by prolonging the presynaptic action potential with the K+ channel blocker 4-aminopyridine (4-AP) and by varying the extracellular Ca2+ concentration ([Ca2+]o). We quantified the influence of spike broadening on Ca2+ influx through various Ca2+ channels by imposing mock action potentials on voltage-clamped cerebellar granule neurons. In field recordings of the EPSP in hippocampal slices, action potential prolongation increased the EPSP slope by 2-fold and decreased its reliance on either N-type or P/Q-type Ca2+ channels. The inhibition of synaptic transmission by N-type channel blockade was virtually eliminated in the presence of 4-AP, but it could be restored by lowering [Ca2+]o. These results rule out a scenario in which a significant fraction of presynaptic terminals rely solely on N-type channels to trigger transmission. The change in sensitivity to the neurotoxins with 4-AP could be explained in terms of a nonlinear relationship between Ca2+ entry and synaptic strength, which rises steeply at low [Ca2+]o, but approaches saturation at high [Ca2+]o. This relationship was evaluated experimentally by varying [CA2+]o in the absence and presence of 4-AP. One consequence of this relationship is that down-modulation of presynaptic Ca2+ channels by various modulators would increase the relative impact of spike broadening greatly.

  11. Ongoing epileptiform activity in the post-ischemic hippocampus is associated with a permanent shift of the excitatory-inhibitory synaptic balance in CA3 pyramidal neurons.

    Science.gov (United States)

    Epsztein, Jérôme; Milh, Mathieu; Bihi, Rachid Id; Jorquera, Isabel; Ben-Ari, Yehezkel; Represa, Alfonso; Crépel, Valérie

    2006-06-28

    Ischemic strokes are often associated with late-onset epilepsy, but the underlying mechanisms are poorly understood. In the hippocampus, which is one of the regions most sensitive to ischemic challenge, global ischemia induces a complete loss of CA1 pyramidal neurons, whereas the resistant CA3 pyramidal neurons display a long-term hyperexcitability several months after the insult. The mechanisms of this long-term hyperexcitability remain unknown despite its clinical implication. Using chronic in vivo EEG recordings and in vitro field recordings in slices, we now report spontaneous interictal epileptiform discharges in the CA3 area of the hippocampus from post-ischemic rats several months after the insult. Whole-cell recordings from CA3 pyramidal neurons, revealed a permanent reduction in the frequency of spontaneous and miniature GABAergic IPSCs and a parallel increase in the frequency of spontaneous and miniature glutamatergic postsynaptic currents. Global ischemia also induced a dramatic loss of GABAergic interneurons and terminals together with an increase in glutamatergic terminals in the CA3 area of the hippocampus. Altogether, our results show a morpho-functional reorganization in the CA3 network several months after global ischemia, resulting in a net shift in the excitatory-inhibitory balance toward excitation that may constitute a substrate for the generation of epileptiform discharges in the post-ischemic hippocampus.

  12. Differential effects of prenatal chronic high-decibel noise and music exposure on the excitatory and inhibitory synaptic components of the auditory cortex analog in developing chicks (Gallus gallus domesticus).

    Science.gov (United States)

    Kumar, V; Nag, T C; Sharma, U; Jagannathan, N R; Wadhwa, S

    2014-06-06

    Proper development of the auditory cortex depends on early acoustic experience that modulates the balance between excitatory and inhibitory (E/I) circuits. In the present social and occupational environment exposure to chronic loud sound in the form of occupational or recreational noise, is becoming inevitable. This could especially disrupt the functional auditory cortex development leading to altered processing of complex sound and hearing impairment. Here we report the effects of prenatal chronic loud sound (110-dB sound pressure level (SPL)) exposure (rhythmic [music] and arrhythmic [noise] forms) on the molecular components involved in regulation of the E/I balance in the developing auditory cortex analog/Field L (AuL) in domestic chicks. Noise exposure at 110-dB SPL significantly enhanced the E/I ratio (increased expression of AMPA receptor GluR2 subunit and glutamate with decreased expression of GABA(A) receptor gamma 2 subunit and GABA), whereas loud music exposure maintained the E/I ratio. Expressions of markers of synaptogenesis, synaptic stability and plasticity i.e., synaptophysin, PSD-95 and gephyrin were reduced with noise but increased with music exposure. Thus our results showed differential effects of prenatal chronic loud noise and music exposures on the E/I balance and synaptic function and stability in the developing auditory cortex. Loud music exposure showed an overall enrichment effect whereas loud noise-induced significant alterations in E/I balance could later impact the auditory function and associated cognitive behavior. Copyright © 2014 IBRO. Published by Elsevier Ltd. All rights reserved.

  13. Excitatory amino acid transporters as potential drug targets

    DEFF Research Database (Denmark)

    Bunch, Lennart; Erichsen, Mette Navy; Jensen, Anders Asbjørn

    2009-01-01

    BACKGROUND: Excitatory amino acid transporters (EAATs) are transmembrane proteins responsible for the uptake of (S)-glutamate (Glu) from the synaptic cleft, thereby terminating the glutamatergic neurotransmitter signal. Today five subtypes have been identified. Except for EAAT2, their individual...

  14. Dlgh1 coordinates actin polymerization, synaptic T cell receptor and lipid raft aggregation, and effector function in T cells.

    Science.gov (United States)

    Round, June L; Tomassian, Tamar; Zhang, Min; Patel, Viresh; Schoenberger, Stephen P; Miceli, M Carrie

    2005-02-07

    Lipid raft membrane compartmentalization and membrane-associated guanylate kinase (MAGUK) family molecular scaffolds function in establishing cell polarity and organizing signal transducers within epithelial cell junctions and neuronal synapses. Here, we elucidate a role for the MAGUK protein, Dlgh1, in polarized T cell synapse assembly and T cell function. We find that Dlgh1 translocates to the immune synapse and lipid rafts in response to T cell receptor (TCR)/CD28 engagement and that LckSH3-mediated interactions with Dlgh1 control its membrane targeting. TCR/CD28 engagement induces the formation of endogenous Lck-Dlgh1-Zap70-Wiskott-Aldrich syndrome protein (WASp) complexes in which Dlgh1 acts to facilitate interactions of Lck with Zap70 and WASp. Using small interfering RNA and overexpression approaches, we show that Dlgh1 promotes antigen-induced actin polymerization, synaptic raft and TCR clustering, nuclear factor of activated T cell activity, and cytokine production. We propose that Dlgh1 coordinates TCR/CD28-induced actin-driven T cell synapse assembly, signal transduction, and effector function. These findings highlight common molecular strategies used to regulate cell polarity, synapse assembly, and transducer organization in diverse cellular systems.

  15. Experience-Dependent Equilibration of AMPAR-Mediated Synaptic Transmission during the Critical Period

    Directory of Open Access Journals (Sweden)

    Kyung-Seok Han

    2017-01-01

    Full Text Available Experience-dependent synapse refinement is essential for functional optimization of neural circuits. However, how sensory experience sculpts excitatory synaptic transmission is poorly understood. Here, we show that despite substantial remodeling of synaptic connectivity, AMPAR-mediated synaptic transmission remains at equilibrium during the critical period in the mouse primary visual cortex. The maintenance of this equilibrium requires neurogranin (Ng, a postsynaptic calmodulin-binding protein important for synaptic plasticity. With normal visual experience, loss of Ng decreased AMPAR-positive synapse numbers, prevented AMPAR-silent synapse maturation, and increased spine elimination. Importantly, visual deprivation halted synapse loss caused by loss of Ng, revealing that Ng coordinates experience-dependent AMPAR-silent synapse conversion to AMPAR-active synapses and synapse elimination. Loss of Ng also led to sensitized long-term synaptic depression (LTD and impaired visually guided behavior. Our synaptic interrogation reveals that experience-dependent coordination of AMPAR-silent synapse conversion and synapse elimination hinges upon Ng-dependent mechanisms for constructive synaptic refinement during the critical period.

  16. Excitatory amino acid transporters: recent insights into molecular mechanisms, novel modes of modulation and new therapeutic possibilities

    DEFF Research Database (Denmark)

    Jensen, Anders A.; Fahlke, Christoph; Bjørn-Yoshimoto, Walden Emil;

    2015-01-01

    The five excitatory amino acid transporters (EAAT1–5) mediating the synaptic uptake of the major excitatory neurotransmitter glutamate are differently expressed throughout the CNS and at the synaptic level. Although EAATs are crucial for normal excitatory neurotransmission, explorations into the ...... of EAATs and their intricate transport process, the novel approaches to pharmacological modulation of the transporters that have emerged, and interesting new perspectives in EAAT as drug targets proposed in recent years....

  17. Enrichment of Conserved Synaptic Activity-Responsive Element in Neuronal Genes Predicts a Coordinated Response of MEF2, CREB and SRF

    Science.gov (United States)

    Rodríguez-Tornos, Fernanda M.; San Aniceto, Iñigo; Cubelos, Beatriz; Nieto, Marta

    2013-01-01

    A unique synaptic activity-responsive element (SARE) sequence, composed of the consensus binding sites for SRF, MEF2 and CREB, is necessary for control of transcriptional upregulation of the Arc gene in response to synaptic activity. We hypothesize that this sequence is a broad mechanism that regulates gene expression in response to synaptic activation and during plasticity; and that analysis of SARE-containing genes could identify molecular mechanisms involved in brain disorders. To search for conserved SARE sequences in the mammalian genome, we used the SynoR in silico tool, and found the SARE cluster predominantly in the regulatory regions of genes expressed specifically in the nervous system; most were related to neural development and homeostatic maintenance. Two of these SARE sequences were tested in luciferase assays and proved to promote transcription in response to neuronal activation. Supporting the predictive capacity of our candidate list, up-regulation of several SARE containing genes in response to neuronal activity was validated using external data and also experimentally using primary cortical neurons and quantitative real time RT-PCR. The list of SARE-containing genes includes several linked to mental retardation and cognitive disorders, and is significantly enriched in genes that encode mRNA targeted by FMRP (fragile X mental retardation protein). Our study thus supports the idea that SARE sequences are relevant transcriptional regulatory elements that participate in plasticity. In addition, it offers a comprehensive view of how activity-responsive transcription factors coordinate their actions and increase the selectivity of their targets. Our data suggest that analysis of SARE-containing genes will reveal yet-undescribed pathways of synaptic plasticity and additional candidate genes disrupted in mental disease. PMID:23382855

  18. Enrichment of conserved synaptic activity-responsive element in neuronal genes predicts a coordinated response of MEF2, CREB and SRF.

    Directory of Open Access Journals (Sweden)

    Fernanda M Rodríguez-Tornos

    Full Text Available A unique synaptic activity-responsive element (SARE sequence, composed of the consensus binding sites for SRF, MEF2 and CREB, is necessary for control of transcriptional upregulation of the Arc gene in response to synaptic activity. We hypothesize that this sequence is a broad mechanism that regulates gene expression in response to synaptic activation and during plasticity; and that analysis of SARE-containing genes could identify molecular mechanisms involved in brain disorders. To search for conserved SARE sequences in the mammalian genome, we used the SynoR in silico tool, and found the SARE cluster predominantly in the regulatory regions of genes expressed specifically in the nervous system; most were related to neural development and homeostatic maintenance. Two of these SARE sequences were tested in luciferase assays and proved to promote transcription in response to neuronal activation. Supporting the predictive capacity of our candidate list, up-regulation of several SARE containing genes in response to neuronal activity was validated using external data and also experimentally using primary cortical neurons and quantitative real time RT-PCR. The list of SARE-containing genes includes several linked to mental retardation and cognitive disorders, and is significantly enriched in genes that encode mRNA targeted by FMRP (fragile X mental retardation protein. Our study thus supports the idea that SARE sequences are relevant transcriptional regulatory elements that participate in plasticity. In addition, it offers a comprehensive view of how activity-responsive transcription factors coordinate their actions and increase the selectivity of their targets. Our data suggest that analysis of SARE-containing genes will reveal yet-undescribed pathways of synaptic plasticity and additional candidate genes disrupted in mental disease.

  19. Dissecting molecular architecture of post-synaptic density at excitatory synapses: An Editorial Highlight for 'Hierarchical organization and genetically separable subfamilies of PSD95 postsynaptic supercomplexes' on page 504.

    Science.gov (United States)

    Chen, Jinjun; Pan, Hui-Lin

    2017-08-01

    This Editorial highlights a study by Frank and colleagues (2017) in the current issue of Journal of Neurochemistry. The authors report the genetic composition and stoichiometry of endogenous subfamilies of PSD95-containing supercomplexes in the mouse brain using an innovative strategy of combining gene-tagging knock-in, targeted mutations, and quantitative biochemical assays. Their findings shed new light on our understanding of the genetic hierarchy required for the assembly of distinct supercomplex subfamilies at excitatory synapses in the brain. © 2017 International Society for Neurochemistry.

  20. Neural signal transduction aided by noise in multisynaptic excitatory and inhibitory pathways with saturation

    Science.gov (United States)

    Duan, Fabing; Chapeau-Blondeau, François; Abbott, Derek

    2011-08-01

    We study the stochastic resonance phenomenon in saturating dynamical models of neural signal transduction, at the synaptic stage, wherein the noise in multipathways enhances the processing of neuronal information integrated by excitatory and inhibitory synaptic currents. For an excitatory synaptic pathway, the additive intervention of an inhibitory pathway reduces the stochastic resonance effect. However, as the number of synaptic pathways increases, the signal transduction is greatly improved for parallel multipathways that feature both excitation and inhibition. The obtained results lead us to the realization that the collective property of inhibitory synapses assists neural signal transmission, and a parallel array of neurons can enhance their responses to multiple synaptic currents by adjusting the contributions of excitatory and inhibitory currents.

  1. S-nitrosylation-dependent proteasomal degradation restrains Cdk5 activity to regulate hippocampal synaptic strength.

    Science.gov (United States)

    Zhang, Peng; Fu, Wing-Yu; Fu, Amy K Y; Ip, Nancy Y

    2015-10-27

    Precise regulation of synaptic strength requires coordinated activity and functions of synaptic proteins, which is controlled by a variety of post-translational modification. Here we report that S-nitrosylation of p35, the activator of cyclin-dependent kinase 5 (Cdk5), by nitric oxide (NO) is important for the regulation of excitatory synaptic strength. While blockade of NO signalling results in structural and functional synaptic deficits as indicated by reduced mature dendritic spine density and surface expression of glutamate receptor subunits, phosphorylation of numerous synaptic substrates of Cdk5 and its activity are aberrantly upregulated following reduced NO production. The results show that the NO-induced reduction in Cdk5 activity is mediated by S-nitrosylation of p35, resulting in its ubiquitination and degradation by the E3 ligase PJA2. Silencing p35 protein in hippocampal neurons partially rescues the NO blockade-induced synaptic deficits. These findings collectively demonstrate that p35 S-nitrosylation by NO signalling is critical for regulating hippocampal synaptic strength.

  2. THE INFLUENCE OF SINGLE COCAINE EXPOSURE ON EXCITATORY SYNAPTIC TRANSMISSION AND INTRINSIC EXCITABILITY OF DOPAMINERGIC NEURONS IN VENTRAL TEGMENTAL AREA%单次可卡因注射对VTA区DA神经元兴奋性突触传递和内在兴奋性的影响

    Institute of Scientific and Technical Information of China (English)

    任盼; 刘志强; 任维

    2012-01-01

    Objective: To investigate the modulation of cocaine exposure on synaptic plasticity and plasticity of neuronal intrinsic excitability of dopaminergic< DA) neurons in ventral tegmental area( VTA) . Methods: In this study, by using in vitro patch -clamp technique, we observed the effects of single cocaine injection on slow inward currents( SICs) , intrinsic excitability and excitatory postsynaptic currents( EPSCs; of DA neurons in VTA. Results: The SICs, intrinsic excitability, and ratio of a - amino - 3 - hydroxy -5 - methylisoxazole - 4 - propionic acid receptors to N - methyl - D - aspartate receptors( AMPAR/ NMDAR) mediated currents of DA neurons were significantly enhanced 24 hours after single cocaine injection. Conclusion: There is a synergistic mechanism between synaptic plasticity and plasticity of neuronal intrinsic excitability after single cocaine exposure which might be response to neuron adaptation associated with drug addiction.%目的:研究单次可卡因注射24 h后VTA区多巴胺能(DA)神经元兴奋性突触传递强度和内在兴奋性的变化.方法:采用离体膜片钳技术,检测单次可卡因注射24 h后VTA区DA神经元自发性慢性内向流(slow inward currents,SICs)、内在兴奋性以及兴奋性突触后电流(EPSCs)的变化.结果:DA神经元的SICs、内在兴奋性和EPSCs均有显著增强.结论:单次可卡因注射后VTA区DA神经元兴奋性突触传递强度和内在兴奋性呈现协同增强效应.

  3. Coordinated regulation of endocannabinoid-mediated retrograde synaptic suppression in the cerebellum by neuronal and astrocytic monoacylglycerol lipase

    Science.gov (United States)

    Liu, Xiaojie; Chen, Yao; Vickstrom, Casey R.; Li, Yan; Viader, Andreu; Cravatt, Benjamin F.; Liu, Qing-song

    2016-01-01

    The endocannabinoid 2-arachidonoylglycerol (2-AG) mediates retrograde synaptic depression including depolarization-induced suppression of excitation (DSE) and inhibition (DSI). 2-AG is degraded primarily by monoacylglycerol lipase (MAGL), which is expressed in neurons and astrocytes. Using knockout mice in which MAGL is deleted globally or selectively in neurons or astrocytes, we investigated the relative contribution of neuronal and astrocytic MAGL to the termination of DSE and DSI in Purkinje cells (PCs) in cerebellar slices. We report that neuronal MAGL plays a predominant role in terminating DSE at climbing fiber (CF) to PC synapses, while both neuronal and astrocytic MAGL significantly contributes to the termination of DSE at parallel fiber (PF) to PC synapses and DSI at putative Stellate cell to PC synapses. Thus, DSE and DSI at different synapses is not uniformly affected by global and cell type-specific knockout of MAGL. Additionally, MAGL global knockout, but not cell type-specific knockout, caused tonic activation and partial desensitization of the CB1 receptor at PF-PC synapses. This tonic CB1 activation is mediated by 2-AG since it was blocked by the diacylglycerol lipase inhibitor DO34. Together, these results suggest that both neuronal and astrocytic MAGL contribute to 2-AG clearance and prevent CB1 receptor over-stimulation in the cerebellum. PMID:27775008

  4. The Relative Contribution of NMDARs to Excitatory Postsynaptic Currents is Controlled by Ca2+-Induced Inactivation

    OpenAIRE

    Fliza eValiullina; Yulia eZakharova; Andreas eDraguhn; Marat eMukhtarov; Nail eBurnashev; Andrei eRozov

    2016-01-01

    NMDA receptors (NMDARs) are important mediators of excitatory synaptic transmission and plasticity. A hallmark of these channels is their high permeability to Ca2+. At the same time, they are themselves inhibited by the elevation of intracellular Ca2+ concentration. It is unclear however, whether the Ca2+ entry associated with single NMDAR mediated synaptic events is sufficient to self-inhibit their activation. Such auto-regulation would have important effects on the dynamics of synaptic exci...

  5. Effects of Ketamine on Neuronal Spontaneous Excitatory Postsynaptic Currents and Miniature Excitatory Postsynaptic Currents in the Somatosensory Cortex of Rats

    Directory of Open Access Journals (Sweden)

    Chengdong Yuan

    2016-07-01

    Full Text Available Background: Ketamine is a commonly used intravenous anesthetic which produces dissociation anesthesia, analgesia, and amnesia. The mechanism of ketamine-induced synaptic inhibition in high-level cortical areas is still unknown. We aimed to elucidate the effects of different concentrations of ketamine on the glutamatergic synaptic transmission of the neurons in the primary somatosensory cortex by using the whole-cell patch-clamp method. Methods: Sprague-Dawley rats (11–19 postnatal days, n=36 were used to obtain brain slices (300 μM. Spontaneous excitatory postsynaptic currents (data from 40 neurons were recorded at a command potential of -70 mV in the presence of bicuculline (a competitive antagonist of GABAA receptors, 30 μM and strychnine (glycine receptor antagonist, 30 μM. Miniature excitatory postsynaptic currents (data from 40 neurons were also recorded when 1 μM of tetrodotoxin was added into the artificial cerebrospinal fluid. We used GraphPad Prism5for statistical analysis. Significant differences in the mean amplitude and frequency were tested using the Student paired 2-tailed t test. Values of P<0.05 were considered significant. Results: Different concentrations of ketamine inhibited the frequency and amplitude of the spontaneous excitatory postsynaptic currents as well as the amplitude of the miniature excitatory postsynaptic currents in a concentration-dependent manner, but they exerted no significant effect on the frequency of the miniature excitatory postsynaptic currents. Conclusion: Ketamine inhibited the excitatory synaptic transmission of the neurons in the primary somatosensory cortex. The inhibition may have been mediated by a reduction in the sensitivity of the postsynaptic glutamatergic receptors.

  6. Nonmonotonic Synaptic Excitation and Imbalanced Inhibition Underlying Cortical Intensity Tuning

    OpenAIRE

    Wu, Guangying K.; Li, Pingyang; Tao, Huizhong W.; Zhang, Li I.

    2006-01-01

    Intensity-tuned neurons, characterized by their nonmonotonic response-level function, may play important roles in the encoding of sound intensity-related information. The synaptic mechanisms underlying intensity-tuning remain yet unclear. Here, in vivo whole-cell recordings in rat auditory cortex revealed that intensity-tuned neurons, mostly clustered in a posterior zone, receive imbalanced tone-evoked excitatory and inhibitory synaptic inputs. Excitatory inputs exhibit nonmonotonic intensity...

  7. Desynchronizing Electrical and Sensory Coordinated Reset Neuromodulation

    Directory of Open Access Journals (Sweden)

    Oleksandr V. Popovych

    2012-03-01

    Full Text Available Coordinated reset (CR stimulation is a desynchronizing stimulation technique based on timely coordinated phase resets of sub-populations of a synchronized neuronal ensemble. It has initially been computationally developed for electrical deep brain stimulation (DBS,to enable an effective desynchronization and unlearning of pathological synchrony and connectivity (anti-kindling. Here we computationally show for ensembles of spiking and bursting model neurons interacting via excitatory and inhibitory adaptive synapses that a phase reset of neuronal populations as well as a desynchronization and an anti-kindling can robustly be achieved by direct electrical stimulation or indirect (synaptically-mediated excitatory and inhibitory stimulation.Our findings are relevant for DBS as well as for sensory stimulation in neurological disorders characterized by pathological neuronalsynchrony. Based on the obtained results, we may expect that the local effects in the vicinity of a depth electrode (realized by direct stimulation of the neurons' somata or stimulation of axon terminals and the non-local CR effects (realized by stimulation of excitatory or inhibitory efferent fibers of deep brain CR neuromodulation may be similar or even identical. Furthermore, ourresults indicate that an effective desynchronization and anti-kindlingcan even be achieved by non-invasive, sensory CR neuromodulation. We discuss the concept of sensory CR neuromodulation in the context of neurological disorders.

  8. AMPA receptor inhibition by synaptically released zinc.

    Science.gov (United States)

    Kalappa, Bopanna I; Anderson, Charles T; Goldberg, Jacob M; Lippard, Stephen J; Tzounopoulos, Thanos

    2015-12-22

    The vast amount of fast excitatory neurotransmission in the mammalian central nervous system is mediated by AMPA-subtype glutamate receptors (AMPARs). As a result, AMPAR-mediated synaptic transmission is implicated in nearly all aspects of brain development, function, and plasticity. Despite the central role of AMPARs in neurobiology, the fine-tuning of synaptic AMPA responses by endogenous modulators remains poorly understood. Here we provide evidence that endogenous zinc, released by single presynaptic action potentials, inhibits synaptic AMPA currents in the dorsal cochlear nucleus (DCN) and hippocampus. Exposure to loud sound reduces presynaptic zinc levels in the DCN and abolishes zinc inhibition, implicating zinc in experience-dependent AMPAR synaptic plasticity. Our results establish zinc as an activity-dependent, endogenous modulator of AMPARs that tunes fast excitatory neurotransmission and plasticity in glutamatergic synapses.

  9. The discovery of GluA3-dependent synaptic plasticity

    NARCIS (Netherlands)

    Renner, M.C.

    2016-01-01

    AMPA receptors (AMPARs) are responsible for fast excitatory synaptic transmission. GluA1-containing AMPARs have been extensively studied and play a key role in several forms of synaptic plasticity and memory. In contrast, GluA3-containing AMPARs have historically been ignored because they have

  10. Remodeling of inhibitory synaptic connections in developing ferret visual cortex

    Directory of Open Access Journals (Sweden)

    Dalva Matthew B

    2010-02-01

    Full Text Available Abstract Background In the visual cortex, as in many other regions of the developing brain, excitatory synaptic connections undergo substantial remodeling during development. While evidence suggests that local inhibitory synapses may behave similarly, the extent and mechanisms that mediate remodeling of inhibitory connections are not well understood. Results Using scanning laser photostimulation in slices of developing ferret visual cortex, we assessed the overall patterns of developing inhibitory and excitatory synaptic connections converging onto individual neurons. Inhibitory synaptic inputs onto pyramidal neurons in cortical layers 2 and 3 were already present as early as postnatal day 20, well before eye opening, and originated from regions close to the recorded neurons. During the ensuing 2 weeks, the numbers of synaptic inputs increased, with the numbers of inhibitory (and excitatory synaptic inputs peaking near the time of eye opening. The pattern of inhibitory inputs refined rapidly prior to the refinement of excitatory inputs. By uncaging the neurotransmtter GABA in brain slices from animals of different ages, we find that this rapid refinement correlated with a loss of excitatory activity by GABA. Conclusion Inhibitory synapses, like excitatory synapses, undergo significant postnatal remodeling. The time course of the remodeling of inhibitory connections correlates with the emergence of orientation tuning in the visual cortex, implicating these rearrangements in the genesis of adult cortical response properties.

  11. Activation of perineuronal net-expressing excitatory neurons during associative memory encoding and retrieval

    Science.gov (United States)

    Morikawa, Shota; Ikegaya, Yuji; Narita, Minoru; Tamura, Hideki

    2017-01-01

    Perineuronal nets (PNNs), proteoglycan-rich extracellular matrix structures, are thought to be expressed around inhibitory neurons and contribute to critical periods of brain function and synaptic plasticity. However, in some specific brain regions such as the amygdala, PNNs were predominantly expressed around excitatory neurons. These neurons were recruited during auditory fear conditioning and memory retrieval. Indeed, the activation of PNN-expressing excitatory neurons predicted cognitive performance. PMID:28378772

  12. Excitatory effects of thyrotropin-releasing hormone (TRH) in hypoglossal motoneurons

    DEFF Research Database (Denmark)

    Rekling, J C

    1990-01-01

    The effect of thyrotropin-releasing hormone (TRH) was studied in 30 hypoglossal motoneurons from brainstem slices of guinea pigs. Bath application of TRH resulted in an increase of the spontaneous excitatory synaptic activity, depolarization of the neurons, increase of the input resistance...... and change of the duration of the falling phase of excitatory postsynaptic potentials. The depolarizing response and membrane conductance change was the result of a direct postsynaptic action of TRH, possibly mediated by a reduction of a potassium conductance....

  13. Synaptic basis for intense thalamocortical activation of feedforward inhibitory cells in neocortex.

    Science.gov (United States)

    Cruikshank, Scott J; Lewis, Timothy J; Connors, Barry W

    2007-04-01

    The thalamus provides fundamental input to the neocortex. This input activates inhibitory interneurons more strongly than excitatory neurons, triggering powerful feedforward inhibition. We studied the mechanisms of this selective neuronal activation using a mouse somatosensory thalamocortical preparation. Notably, the greater responsiveness of inhibitory interneurons was not caused by their distinctive intrinsic properties but was instead produced by synaptic mechanisms. Axons from the thalamus made stronger and more frequent excitatory connections onto inhibitory interneurons than onto excitatory cells. Furthermore, circuit dynamics allowed feedforward inhibition to suppress responses in excitatory cells more effectively than in interneurons. Thalamocortical excitatory currents rose quickly in interneurons, allowing them to fire action potentials before significant feedforward inhibition emerged. In contrast, thalamocortical excitatory currents rose slowly in excitatory cells, overlapping with feedforward inhibitory currents that suppress action potentials. These results demonstrate the importance of selective synaptic targeting and precise timing in the initial stages of neocortical processing.

  14. Layer selective presynaptic modulation of excitatory inputs to hippocampal CA1 by μ-opioid receptor activation

    OpenAIRE

    McQuiston, A. Rory

    2007-01-01

    Chronic and acute activation of μ-opioid receptors (MOR) in hippocampal CA1 disrupts rhythmic activity, alters activity-dependent synaptic plasticity and impairs spatial memory formation. In CA1, MORs act by hyperpolarizing inhibitory interneurons and suppressing inhibitory synaptic transmission. MOR modulation of inhibitory synaptic function translates into an increase in excitatory activity in all layers of CA1. However, the exact anatomical sites for MOR actions are not completely known. T...

  15. Multiplicative gain modulation arising from inhibitory synaptic plasticity in the cerebellar nuclei

    Directory of Open Access Journals (Sweden)

    Dimitris Bampasakis

    2014-03-01

    Full Text Available Neurons use the rate of action potentials to encode sensory variables. This makes the output rate as a function of input, also known as input-output (I–O relationship, a core computational function in neuronal processing. The introduction, or increase, of a modulatory input, can transform this function in multiple ways: additive transformations result in a shift, and multiplicative transformations in a change of slope of the I–O relationship. This slope change is known as gain modulation, and it can implement important forms of neural computation such as coordinate transformations. Gain modulation can be found in a wide range of brain systems, including the cerebellum, where it can be enabled by synaptic plasticity at both excitatory and inhibitory synapses. We use a realistic, conductance based, multi-compartmental model of a cerebellar nucleus (CN neuron, to investigate the determinants of gain modulation mediated by synaptic plasticity. In particular, we are interested in the effect of short term depression (STD at the inhibitory synapse from Purkinje cells (PCs to CN neurons. Considering the inhibitory PC input as the driving input, we compare the I–O relationship of the CN neuron in the presence and absence of STD for 20 Hz of excitatory synaptic input from mossy fibers (MFs, and find that STD introduces a gain change, changing the slope of the I–O function. We then proceed to compare the transformation performed by the increase of the modulatory input from 20 to 50 Hz, in the presence and absence of STD. We find that the presence of STD in the inhibitory synapse introduces a multiplicative component in the transformation performed by the excitatory input, an effect that persists for different levels of STD, and various combinations of regularity and synchronicity in the input.

  16. Mechanism of the differentiation of neural responses to excitatory input signals

    Science.gov (United States)

    Zakharov, D. G.; Kuznetsov, A. S.

    2012-08-01

    A dynamical mechanism of the generation of qualitatively different neural responses to typical excitatory stimuli such as an applied current or AMPA and NMDA synaptic currents has been presented. The mechanism is based on a nonlinearity simulating the calcium-dependent potassium current. It has been shown with the FitzHugh-Nagumo equation that, in the presence of such a nonlinearity, only the NMDA synaptic current can strongly increase the frequency of self-sustained oscillations, whereas other stimuli suppress neural activity.

  17. Complexins facilitate neurotransmitter release at excitatory and inhibitory synapses in mammalian central nervous system.

    Science.gov (United States)

    Xue, Mingshan; Stradomska, Alicja; Chen, Hongmei; Brose, Nils; Zhang, Weiqi; Rosenmund, Christian; Reim, Kerstin

    2008-06-03

    Complexins (Cplxs) are key regulators of synaptic exocytosis, but whether they act as facilitators or inhibitors is currently being disputed controversially. We show that genetic deletion of all Cplxs expressed in the mouse brain causes a reduction in Ca(2+)-triggered and spontaneous neurotransmitter release at both excitatory and inhibitory synapses. Our results demonstrate that at mammalian central nervous system synapses, Cplxs facilitate neurotransmitter release and do not simply act as inhibitory clamps of the synaptic vesicle fusion machinery.

  18. NO regulates the strength of synaptic inputs onto hippocampal CA1 neurons via NO-GC1/cGMP signalling.

    Science.gov (United States)

    Neitz, A; Mergia, E; Neubacher, U; Koesling, D; Mittmann, T

    2015-06-01

    GABAergic interneurons are the predominant source of inhibition in the brain that coordinate the level of excitation and synchronization in neuronal circuitries. However, the underlying cellular mechanisms are still not fully understood. Here we report nitric oxide (NO)/NO-GC1 signalling as an important regulatory mechanism of GABAergic and glutamatergic synaptic transmission in the hippocampal CA1 region. Deletion of the NO receptor NO-GC1 induced functional alterations, indicated by a strong reduction of spontaneous and evoked inhibitory postsynaptic currents (IPSCs), which could be compensated by application of the missing second messenger cGMP. Moreover, we found a general impairment in the strength of inhibitory and excitatory synaptic inputs onto CA1 pyramidal neurons deriving from NO-GC1KO mice. Finally, we disclosed one subpopulation of GABAergic interneurons, fast-spiking interneurons, that receive less excitatory synaptic input and consequently respond with less spike output after blockage of the NO/cGMP signalling pathway. On the basis of these and previous findings, we propose NO-GC1 as the major NO receptor which transduces the NO signal into cGMP at presynaptic terminals of different neuronal subtypes in the hippocampal CA1 region. Furthermore, we suggest NO-GC1-mediated cGMP signalling as a mechanism which regulates the strength of synaptic transmission, hence being important in gating information processing between hippocampal CA3 and CA1 region.

  19. Spatial distribution of excitatory synapses on the dendrites of ganglion cells in the mouse retina.

    Science.gov (United States)

    Chen, Yin-Peng; Chiao, Chuan-Chin

    2014-01-01

    Excitatory glutamatergic inputs from bipolar cells affect the physiological properties of ganglion cells in the mammalian retina. The spatial distribution of these excitatory synapses on the dendrites of retinal ganglion cells thus may shape their distinct functions. To visualize the spatial pattern of excitatory glutamatergic input into the ganglion cells in the mouse retina, particle-mediated gene transfer of plasmids expressing postsynaptic density 95-green fluorescent fusion protein (PSD95-GFP) was used to label the excitatory synapses. Despite wide variation in the size and morphology of the retinal ganglion cells, the expression of PSD95 puncta was found to follow two general rules. Firstly, the PSD95 puncta are regularly spaced, at 1-2 µm intervals, along the dendrites, whereby the presence of an excitatory synapse creates an exclusion zone that rules out the presence of other glutamatergic synaptic inputs. Secondly, the spatial distribution of PSD95 puncta on the dendrites of diverse retinal ganglion cells are similar in that the number of excitatory synapses appears to be less on primary dendrites and to increase to a plateau on higher branch order dendrites. These observations suggest that synaptogenesis is spatially regulated along the dendritic segments and that the number of synaptic contacts is relatively constant beyond the primary dendrites. Interestingly, we also found that the linear puncta density is slightly higher in large cells than in small cells. This may suggest that retinal ganglion cells with a large dendritic field tend to show an increased connectivity of excitatory synapses that makes up for their reduced dendrite density. Mapping the spatial distribution pattern of the excitatory synapses on retinal ganglion cells thus provides explicit structural information that is essential for our understanding of how excitatory glutamatergic inputs shape neuronal responses.

  20. Mapping homeostatic synaptic plasticity using cable properties of dendrites.

    Science.gov (United States)

    Queenan, B N; Lee, K J; Tan, H; Huganir, R L; Vicini, S; Pak, D T S

    2016-02-19

    When chronically silenced, cortical and hippocampal neurons homeostatically upregulate excitatory synaptic function. However, the subcellular position of such changes on the dendritic tree is not clear. We exploited the cable-filtering properties of dendrites to derive a parameter, the dendritic filtering index (DFI), to map the spatial distribution of synaptic currents. Our analysis indicates that young rat cortical neurons globally scale AMPA receptor-mediated currents, while mature hippocampal neurons do not, revealing distinct homeostatic strategies between brain regions and developmental stages. The DFI presents a useful tool for mapping the dendritic origin of synaptic currents and the location of synaptic plasticity changes.

  1. Distinct modifications of convergent excitatory and inhibitory inputs in developing olfactory circuits.

    Science.gov (United States)

    Ma, T-F; Chen, P-H; Hu, X-Q; Zhao, X-L; Tian, T; Lu, W

    2014-06-06

    The interaction between excitatory and inhibitory inputs is critical to neuronal signal processing. However, little is known about this fundamental property, largely due to the inability to clearly isolate the respective inputs. Here we took advantage of the characteristic stereotypical architecture of synaptic connections in the main olfactory bulb, which enabled us to entirely separate excitatory and inhibitory inputs. Using paired stimulation of two glomeruli located apart at different intensities, we separately elicited excitatory and inhibitory inputs and mimicked stimulation of competing mitral cells (MCs) with different odorants. We performed dual whole-cell patch recording of evoked excitatory postsynaptic responses (EPSPs) and inhibitory postsynaptic responses (IPSPs) in current-clamp mode from two competitive MCs that are connected to the two stimulated glomeruli in slices of the main olfactory bulb in 2-3-week-old rats. We deliberately held the recorded cells at a relative hyperpolarized potential. This manipulation not only suppressed action potential generation but also excluded the possible contamination of inhibitory components in excitatory inputs. We found that in weakly activated MCs repetitive EPSP-IPSP interactions (5 Hz, 180 times) induced long-term potentiation (LTP) and long-term depression (LTD) in convergent excitatory and inhibitory inputs, respectively. Unexpectedly, these forms of plasticity depend on activity of somatic (mainly non-synaptic) NMDA receptors (NMDARs). In contrast, the same repetitive stimulation induced the LTP of excitatory inputs in strongly activated MCs (MC2) that require activity of synaptic NMDARs. These distinct forms of plasticity in the developing olfactory circuit may represent a novel rule of modification in convergent inputs that leads to decorrelation of inputs and facilitates odor discrimination.

  2. Distance-dependent homeostatic synaptic scaling mediated by A-type potassium channels

    Directory of Open Access Journals (Sweden)

    Hiroshi T Ito

    2009-11-01

    Full Text Available Many lines of evidence suggest that the efficacy of synapses on CA1 pyramidal neuron dendrites increases as a function of distance from the cell body. The strength of an individual synapse is also dynamically modulated by activity-dependent synaptic plasticity, which raises the question as to how a neuron can reconcile individual synaptic changes with the maintenance of the proximal-to-distal gradient of synaptic strength along the dendrites. As the density of A-type potassium channels exhibits a similar gradient from proximal (low-to-distal (high dendrites, the A-current may play a role in coordinating local synaptic changes with the global synaptic strength gradient. Here we describe a form of homeostatic plasticity elicited by conventional activity blockade (with TTX coupled with a block of the A-type potassium channel. Following A-type potassium channel inhibition for 12 hrs, recordings from CA1 somata revealed a significantly higher miniature excitatory postsynaptic current (mEPSC frequency, whereas in dendritic recordings, there was no change in mEPSC frequency. Consistent with mEPSC recordings, we observed a significant increase in AMPA receptor density in stratum pyramidale but not stratum radiatum. Based on these data, we propose that the differential distribution of A-type potassium channels along the apical dendrites may create a proximal-to-distal membrane potential gradient. This gradient may regulate AMPA receptor distribution along the same axis. Taken together, our results indicate that A-type potassium channels play an important role in controlling synaptic strength along the dendrites, which may help to maintain the computational capacity of the neuron.

  3. Transient oxytocin signaling primes the development and function of excitatory hippocampal neurons.

    Science.gov (United States)

    Ripamonti, Silvia; Ambrozkiewicz, Mateusz C; Guzzi, Francesca; Gravati, Marta; Biella, Gerardo; Bormuth, Ingo; Hammer, Matthieu; Tuffy, Liam P; Sigler, Albrecht; Kawabe, Hiroshi; Nishimori, Katsuhiko; Toselli, Mauro; Brose, Nils; Parenti, Marco; Rhee, JeongSeop

    2017-02-23

    Beyond its role in parturition and lactation, oxytocin influences higher brain processes that control social behavior of mammals, and perturbed oxytocin signaling has been linked to the pathogenesis of several psychiatric disorders. However, it is still largely unknown how oxytocin exactly regulates neuronal function. We show that early, transient oxytocin exposure in vitro inhibits the development of hippocampal glutamatergic neurons, leading to reduced dendrite complexity, synapse density, and excitatory transmission, while sparing GABAergic neurons. Conversely, genetic elimination of oxytocin receptors increases the expression of protein components of excitatory synapses and excitatory synaptic transmission in vitro. In vivo, oxytocin-receptor-deficient hippocampal pyramidal neurons develop more complex dendrites, which leads to increased spine number and reduced γ-oscillations. These results indicate that oxytocin controls the development of hippocampal excitatory neurons and contributes to the maintenance of a physiological excitation/inhibition balance, whose disruption can cause neurobehavioral disturbances.

  4. Pannexin 1 regulates bidirectional hippocampal synaptic plasticity in adult mice

    Science.gov (United States)

    Ardiles, Alvaro O.; Flores-Muñoz, Carolina; Toro-Ayala, Gabriela; Cárdenas, Ana M.; Palacios, Adrian G.; Muñoz, Pablo; Fuenzalida, Marco; Sáez, Juan C.; Martínez, Agustín D.

    2014-01-01

    The threshold for bidirectional modification of synaptic plasticity is known to be controlled by several factors, including the balance between protein phosphorylation and dephosphorylation, postsynaptic free Ca2+ concentration and NMDA receptor (NMDAR) composition of GluN2 subunits. Pannexin 1 (Panx1), a member of the integral membrane protein family, has been shown to form non-selective channels and to regulate the induction of synaptic plasticity as well as hippocampal-dependent learning. Although Panx1 channels have been suggested to play a role in excitatory long-term potentiation (LTP), it remains unknown whether these channels also modulate long-term depression (LTD) or the balance between both types of synaptic plasticity. To study how Panx1 contributes to excitatory synaptic efficacy, we examined the age-dependent effects of eliminating or blocking Panx1 channels on excitatory synaptic plasticity within the CA1 region of the mouse hippocampus. By using different protocols to induce bidirectional synaptic plasticity, Panx1 channel blockade or lack of Panx1 were found to enhance LTP, whereas both conditions precluded the induction of LTD in adults, but not in young animals. These findings suggest that Panx1 channels restrain the sliding threshold for the induction of synaptic plasticity and underlying brain mechanisms of learning and memory. PMID:25360084

  5. Pannexin 1 Regulates Bidirectional Hippocampal Synaptic Plasticity in Adult Mice

    Directory of Open Access Journals (Sweden)

    Alvaro O. Ardiles

    2014-10-01

    Full Text Available The threshold for bidirectional modification of synaptic plasticity is known to be controlled by several factors, including the balance between protein phosphorylation and dephosphorylation, postsynaptic free Ca2+ concentration and NMDA receptor (NMDAR composition of GluN2 subunits. Pannexin 1 (Panx1, a member of the integral membrane protein family, has been shown to form non-selective channels and to regulate the induction of synaptic plasticity as well as hippocampal-dependent learning. Although Panx1 channels have been suggested to play a role in excitatory long-term potentiation (LTP, it remains unknown whether these channels also modulate long-term depression (LTD or the balance between both types of synaptic plasticity. To study how Panx1 contributes to excitatory synaptic efficacy, we examined the age-dependent effects of eliminating or blocking Panx1 channels on excitatory synaptic plasticity within the CA1 region of the mouse hippocampus. By using different protocols to induce bidirectional synaptic plasticity, Panx1 channel blockade or lack of Panx1 were found to enhance LTP, whereas both conditions precluded the induction of LTD in adults, but not in young animals. These findings suggest that Panx1 channels restrain the sliding threshold for the induction of synaptic plasticity and underlying brain mechanisms of learning and memory.

  6. Selective Maturation of Temporal Dynamics of Intracortical Excitatory Transmission at the Critical Period Onset.

    Science.gov (United States)

    Miao, Qinglong; Yao, Li; Rasch, Malte J; Ye, Qian; Li, Xiang; Zhang, Xiaohui

    2016-08-01

    Although the developmental maturation of cortical inhibitory synapses is known to be a critical factor in gating the onset of critical period (CP) for experience-dependent cortical plasticity, how synaptic transmission dynamics of other cortical synapses are regulated during the transition to CP remains unknown. Here, by systematically examining various intracortical synapses within layer 4 of the mouse visual cortex, we demonstrate that synaptic temporal dynamics of intracortical excitatory synapses on principal cells (PCs) and inhibitory parvalbumin- or somatostatin-expressing cells are selectively regulated before the CP onset, whereas those of intracortical inhibitory synapses and long-range thalamocortical excitatory synapses remain unchanged. This selective maturation of synaptic dynamics results from a ubiquitous reduction of presynaptic release and is dependent on visual experience. These findings provide an additional essential circuit mechanism for regulating CP timing in the developing visual cortex.

  7. Selective Maturation of Temporal Dynamics of Intracortical Excitatory Transmission at the Critical Period Onset

    Directory of Open Access Journals (Sweden)

    Qinglong Miao

    2016-08-01

    Full Text Available Although the developmental maturation of cortical inhibitory synapses is known to be a critical factor in gating the onset of critical period (CP for experience-dependent cortical plasticity, how synaptic transmission dynamics of other cortical synapses are regulated during the transition to CP remains unknown. Here, by systematically examining various intracortical synapses within layer 4 of the mouse visual cortex, we demonstrate that synaptic temporal dynamics of intracortical excitatory synapses on principal cells (PCs and inhibitory parvalbumin- or somatostatin-expressing cells are selectively regulated before the CP onset, whereas those of intracortical inhibitory synapses and long-range thalamocortical excitatory synapses remain unchanged. This selective maturation of synaptic dynamics results from a ubiquitous reduction of presynaptic release and is dependent on visual experience. These findings provide an additional essential circuit mechanism for regulating CP timing in the developing visual cortex.

  8. Dynamical Responses to External Stimuli for Both Cases of Excitatory and Inhibitory Synchronization in A Complex Neuronal Network

    CERN Document Server

    Kim, Sang-Yoon

    2016-01-01

    For studying how dynamical responses to external stimuli depend on the synaptic-coupling type, we consider two types of excitatory and inhibitory synchronization (i.e., synchronization via synaptic excitation and inhibition) in complex small-world networks of excitatory regular spiking (RS) pyramidal neurons and inhibitory fast spiking (FS) interneurons. For both cases of excitatory and inhibitory synchronization, effects of synaptic couplings on dynamical responses to external time-periodic stimuli $S(t)$ (applied to a fraction of neurons) are investigated by varying the driving amplitude $A$ of $S(t)$. Stimulated neurons are phase-locked to external stimuli for both cases of excitatory and inhibitory couplings. On the other hand, the stimulation effect on non-stimulated neurons depends on the type of synaptic coupling. The external stimulus $S(t)$ makes a constructive effect on excitatory non-stimulated RS neurons (i.e., it causes external phase lockings in the non-stimulated sub-population), while $S(t)$ m...

  9. Inhibitory and Excitatory Spike-Timing-Dependent Plasticity in the Auditory Cortex

    Science.gov (United States)

    D'amour, James A.; Froemke, Robert C.

    2015-01-01

    Summary Synapses are plastic and can be modified by changes of spike timing. While most studies of long-term synaptic plasticity focus on excitation, inhibitory plasticity may be critical for controlling information processing, memory storage, and overall excitability in neural circuits. Here we examine spike-timing-dependent plasticity (STDP) of inhibitory synapses onto layer 5 neurons in slices of mouse auditory cortex, together with concomitant STDP of excitatory synapses. Pairing pre- and postsynaptic spikes potentiated inhibitory inputs irrespective of precise temporal order within ~10 msec. This was in contrast to excitatory inputs, which displayed an asymmetrical STDP time window. These combined synaptic modifications both required NMDA receptor activation, and adjusted the excitatory-inhibitory ratio of events paired together with postsynaptic spiking. Finally, subthreshold events became suprathreshold, and the time window between excitation and inhibition became more precise. These findings demonstrate that cortical inhibitory plasticity requires interactions with co-activated excitatory synapses to properly regulate excitatory-inhibitory balance. PMID:25843405

  10. Summation of excitatory postsynaptic potentials in electrically-coupled neurones.

    Science.gov (United States)

    Vazquez, Y; Mendez, B; Trueta, C; De-Miguel, F F

    2009-09-29

    Dendritic electrical coupling increases the number of effective synaptic inputs onto neurones by allowing the direct spread of synaptic potentials from one neurone to another. Here we studied the summation of excitatory postsynaptic potentials (EPSPs) produced locally and arriving from the coupled neurone (transjunctional) in pairs of electrically-coupled Retzius neurones of the leech. We combined paired recordings of EPSPs, the production of artificial excitatory postsynaptic potentials (APSPs) in neurone pairs with different coupling coefficients and simulations of EPSPs produced in the coupled dendrites. Summation of the EPSPs produced in the dendrites was always linear, suggesting that synchronous EPSPs are produced at two or more different pairs of coupled dendrites and not in both sides of any one gap junction. The different spatio-temporal relationships explored between pairs of EPSPs or APSPs produced three main effects. (1) Synchronous pairs of EPSPs or APSPs exhibited an elongation of their decay phase compared to single EPSPs. (2) Asymmetries in the amplitudes between the pair of EPSPs added a "hump" to the smallest EPSP. (3) Modelling the inputs near the electrical synapse or anticipating the production of the transjunctional APSP increased the amplitude of the compound EPSP. The magnitude of all these changes depended on the coupling coefficient of the neurones. We also show that the hump improves the passive conduction of EPSPs by adding low frequency components. The diverse effects of summation of local and alien EPSPs shown here endow electrically-coupled neurones with a wider repertoire of adjustable integrative possibilities.

  11. Delayed excitatory and inhibitory feedback shape neural information transmission

    Science.gov (United States)

    Chacron, Maurice J.; Longtin, André; Maler, Leonard

    2017-01-01

    Feedback circuitry with conduction and synaptic delays is ubiquitous in the nervous system. Yet the effects of delayed feedback on sensory processing of natural signals are poorly understood. This study explores the consequences of delayed excitatory and inhibitory feedback inputs on the processing of sensory information. We show, through numerical simulations and theory, that excitatory and inhibitory feedback can alter the firing frequency response of stochastic neurons in opposite ways by creating dynamical resonances, which in turn lead to information resonances (i.e., increased information transfer for specific ranges of input frequencies). The resonances are created at the expense of decreased information transfer in other frequency ranges. Using linear response theory for stochastically firing neurons, we explain how feedback signals shape the neural transfer function for a single neuron as a function of network size. We also find that balanced excitatory and inhibitory feedback can further enhance information tuning while maintaining a constant mean firing rate. Finally, we apply this theory to in vivo experimental data from weakly electric fish in which the feedback loop can be opened. We show that it qualitatively predicts the observed effects of inhibitory feedback. Our study of feedback excitation and inhibition reveals a possible mechanism by which optimal processing may be achieved over selected frequency ranges. PMID:16383655

  12. Effects of changes in glucose concentration on synaptic plasticity in hippocampal slices

    NARCIS (Netherlands)

    Gispen, W.H.; Kamal, A.; Spoelstra, K.; Biessels, G.J.; Urban, I.J.A.

    1999-01-01

    The effects of a low or high concentration of glucose in the perfusion medium on synaptic activity and plasticity were studied in hippocampal slices from rats. Low-glucose medium depressed the field excitatory post-synaptic potentials (fEPSP) significantly, whereas high-glucose medium had little eff

  13. The importance of the excitatory amino acid transporter 3 (EAAT3)

    DEFF Research Database (Denmark)

    E. Bjørn-Yoshimoto, Walden; Underhill, Suzanne M.

    2016-01-01

    Abstract The neuronal excitatory amino acid transporter 3 (EAAT3) is fairly ubiquitously expressed in the brain, though it does not necessarily maintain the same function everywhere. It is important in maintaining low local concentrations of glutamate, where its predominant post-synaptic localiza......Abstract The neuronal excitatory amino acid transporter 3 (EAAT3) is fairly ubiquitously expressed in the brain, though it does not necessarily maintain the same function everywhere. It is important in maintaining low local concentrations of glutamate, where its predominant post...

  14. Norepinephrine versus dopamine and their interaction in modulating synaptic function in the prefrontal cortex.

    Science.gov (United States)

    Xing, Bo; Li, Yan-Chun; Gao, Wen-Jun

    2016-06-15

    Among the neuromodulators that regulate prefrontal cortical circuit function, the catecholamine transmitters norepinephrine (NE) and dopamine (DA) stand out as powerful players in working memory and attention. Perturbation of either NE or DA signaling is implicated in the pathogenesis of several neuropsychiatric disorders, including attention deficit hyperactivity disorder (ADHD), post-traumatic stress disorder (PTSD), schizophrenia, and drug addiction. Although the precise mechanisms employed by NE and DA to cooperatively control prefrontal functions are not fully understood, emerging research indicates that both transmitters regulate electrical and biochemical aspects of neuronal function by modulating convergent ionic and synaptic signaling in the prefrontal cortex (PFC). This review summarizes previous studies that investigated the effects of both NE and DA on excitatory and inhibitory transmissions in the prefrontal cortical circuitry. Specifically, we focus on the functional interaction between NE and DA in prefrontal cortical local circuitry, synaptic integration, signaling pathways, and receptor properties. Although it is clear that both NE and DA innervate the PFC extensively and modulate synaptic function by activating distinctly different receptor subtypes and signaling pathways, it remains unclear how these two systems coordinate their actions to optimize PFC function for appropriate behavior. Throughout this review, we provide perspectives and highlight several critical topics for future studies. This article is part of a Special Issue entitled SI: Noradrenergic System. Copyright © 2016 Elsevier B.V. All rights reserved.

  15. Autaptic self-inhibition of cortical GABAergic neurons: synaptic narcissism or useful introspection?

    Science.gov (United States)

    Deleuze, Charlotte; Pazienti, Antonio; Bacci, Alberto

    2014-06-01

    Fast synaptic inhibition sculpts all forms of cortical activity by means of a specialized connectivity pattern between highly heterogeneous inhibitory interneurons and principal excitatory cells. Importantly, inhibitory neurons connect also to each other extensively, following a detailed blueprint, and, indeed, specific forms of disinhibition affect important behavioral functions. Here we discuss a peculiar form of cortical disinhibition: the massive autaptic self-inhibition of parvalbumin-(PV) positive basket cells. Despite being described long ago, autaptic inhibition onto PV basket cells is rarely included in cortical circuit diagrams, perhaps because of its still elusive function. We propose here a potential dual role of autaptic feedback inhibition in temporally coordinating PV basket cells during cortical network activity.

  16. Autism-Associated Insertion Mutation (InsG) of Shank3 Exon 21 Causes Impaired Synaptic Transmission and Behavioral Deficits.

    Science.gov (United States)

    Speed, Haley E; Kouser, Mehreen; Xuan, Zhong; Reimers, Jeremy M; Ochoa, Christine F; Gupta, Natasha; Liu, Shunan; Powell, Craig M

    2015-07-01

    SHANK3 (also known as PROSAP2) is a postsynaptic scaffolding protein at excitatory synapses in which mutations and deletions have been implicated in patients with idiopathic autism, Phelan-McDermid (aka 22q13 microdeletion) syndrome, and other neuropsychiatric disorders. In this study, we have created a novel mouse model of human autism caused by the insertion of a single guanine nucleotide into exon 21 (Shank3(G)). The resulting frameshift causes a premature STOP codon and loss of major higher molecular weight Shank3 isoforms at the synapse. Shank3(G/G) mice exhibit deficits in hippocampus-dependent spatial learning, impaired motor coordination, altered response to novelty, and sensory processing deficits. At the cellular level, Shank3(G/G) mice also exhibit impaired hippocampal excitatory transmission and plasticity as well as changes in baseline NMDA receptor-mediated synaptic responses. This work identifies clear alterations in synaptic function and behavior in a novel, genetically accurate mouse model of autism mimicking an autism-associated insertion mutation. Furthermore, these findings lay the foundation for future studies aimed to validate and study region-selective and temporally selective genetic reversal studies in the Shank3(G/G) mouse that was engineered with such future experiments in mind.

  17. LRRTM3 Regulates Excitatory Synapse Development through Alternative Splicing and Neurexin Binding

    Directory of Open Access Journals (Sweden)

    Ji Won Um

    2016-02-01

    Full Text Available The four members of the LRRTM family (LRRTM1-4 are postsynaptic adhesion molecules essential for excitatory synapse development. They have also been implicated in neuropsychiatric diseases. Here, we focus on LRRTM3, showing that two distinct LRRTM3 variants generated by alternative splicing regulate LRRTM3 interaction with PSD-95, but not its excitatory synapse-promoting activity. Overexpression of either LRRTM3 variant increased excitatory synapse density in dentate gyrus (DG granule neurons, whereas LRRTM3 knockdown decreased it. LRRTM3 also controlled activity-regulated AMPA receptor surface expression in an alternative splicing-dependent manner. Furthermore, Lrrtm3-knockout mice displayed specific alterations in excitatory synapse density, excitatory synaptic transmission and excitability in DG granule neurons but not in CA1 pyramidal neurons. Lastly, LRRTM3 required only specific splice variants of presynaptic neurexins for their synaptogenic activity. Collectively, our data highlight alternative splicing and differential presynaptic ligand utilization in the regulation of LRRTMs, revealing key regulatory mechanisms for excitatory synapse development.

  18. Dynamic microtubules regulate dendritic spine morphology and synaptic plasticity

    NARCIS (Netherlands)

    Jaworski, J.; Kapitein, L.C.; Montenegro Gouveia, S.; Dortland, B.R.; Wulf, P.S.; Grigoriev, I.; Camera, P.; Spangler, S.A.; Di Stefano, P.; Demmers, J.; Krugers, H.; Defilippi, P.; Akhmanova, A.; Hoogenraad, C.C.

    2009-01-01

    Dendritic spines are the major sites of excitatory synaptic input, and their morphological changes have been linked to learning and memory processes. Here, we report that growing microtubule plus ends decorated by the microtubule tip-tracking protein EB3 enter spines and can modulate spine morpholog

  19. Spikes Synchronization in Neural Networks with Synaptic Plasticity

    CERN Document Server

    Borges, Rafael R; Batista, Antonio M; Caldas, Iberê L; Borges, Fernando S; Lameu, Ewandson L

    2015-01-01

    In this paper, we investigated the neural spikes synchronisation in a neural network with synaptic plasticity and external perturbation. In the simulations the neural dynamics is described by the Hodgkin Huxley model considering chemical synapses (excitatory) among neurons. According to neural spikes synchronisation is expected that a perturbation produce non synchronised regimes. However, in the literature there are works showing that the combination of synaptic plasticity and external perturbation may generate synchronised regime. This article describes the effect of the synaptic plasticity on the synchronisation, where we consider a perturbation with a uniform distribution. This study is relevant to researches of neural disorders control.

  20. Permanent central synaptic disconnection of proprioceptors after nerve injury and regeneration. I. Loss of VGLUT1/IA synapses on motoneurons.

    Science.gov (United States)

    Alvarez, Francisco J; Titus-Mitchell, Haley E; Bullinger, Katie L; Kraszpulski, Michal; Nardelli, Paul; Cope, Timothy C

    2011-11-01

    Motor and sensory proprioceptive axons reinnervate muscles after peripheral nerve transections followed by microsurgical reattachment; nevertheless, motor coordination remains abnormal and stretch reflexes absent. We analyzed the possibility that permanent losses of central IA afferent synapses, as a consequence of peripheral nerve injury, are responsible for this deficit. VGLUT1 was used as a marker of proprioceptive synapses on rat motoneurons. After nerve injuries synapses are stripped from motoneurons, but while other excitatory and inhibitory inputs eventually recover, VGLUT1 synapses are permanently lost on the cell body (75-95% synaptic losses) and on the proximal 100 μm of dendrite (50% loss). Lost VGLUT1 synapses did not recover, even many months after muscle reinnervation. Interestingly, VGLUT1 density in more distal dendrites did not change. To investigate whether losses are due to VGLUT1 downregulation in injured IA afferents or to complete synaptic disassembly and regression of IA ventral projections, we studied the central trajectories and synaptic varicosities of axon collaterals from control and regenerated afferents with IA-like responses to stretch that were intracellularly filled with neurobiotin. VGLUT1 was present in all synaptic varicosities, identified with the synaptic marker SV2, of control and regenerated afferents. However, regenerated afferents lacked axon collaterals and synapses in lamina IX. In conjunction with the companion electrophysiological study [Bullinger KL, Nardelli P, Pinter MJ, Alvarez FJ, Cope TC. J Neurophysiol (August 10, 2011). doi:10.1152/jn.01097.2010], we conclude that peripheral nerve injuries cause a permanent retraction of IA afferent synaptic varicosities from lamina IX and disconnection with motoneurons that is not recovered after peripheral regeneration and reinnervation of muscle by sensory and motor axons.

  1. Selective localization of Shanks to VGLUT1-positive excitatory synapses in the mouse hippocampus

    Directory of Open Access Journals (Sweden)

    Christopher eHeise

    2016-04-01

    Full Text Available AbstractMembers of the Shank family of multidomain proteins (Shank1, Shank2, and Shank3 are core components of the postsynaptic density (PSD of excitatory synapses. At synaptic sites Shanks serve as scaffolding molecules that cluster neurotransmitter receptors as well as cell adhesion molecules attaching them to the actin cytoskeleton. In this study we investigated the synapse specific localization of Shank1-3 and focused on well-defined synaptic contacts within the hippocampal formation. We found that all three family members are present only at VGLUT1-positive synapses, which is particularly visible at mossy fiber contacts. No costaining was found at VGLUT2-positive contacts indicating that the molecular organization of VGLUT2-associated PSDs diverges from classical VGLUT1-positive excitatory contacts in the hippocampus. In light of SHANK mutations in neuropsychiatric disorders, this study indicates which glutamatergic networks within the hippocampus will be primarily affected by shankopathies.

  2. EDITORIAL: Synaptic electronics Synaptic electronics

    Science.gov (United States)

    Demming, Anna; Gimzewski, James K.; Vuillaume, Dominique

    2013-09-01

    Conventional computers excel in logic and accurate scientific calculations but make hard work of open ended problems that human brains handle easily. Even von Neumann—the mathematician and polymath who first developed the programming architecture that forms the basis of today's computers—was already looking to the brain for future developments before his death in 1957 [1]. Neuromorphic computing uses approaches that better mimic the working of the human brain. Recent developments in nanotechnology are now providing structures with very accommodating properties for neuromorphic approaches. This special issue, with guest editors James K Gimzewski and Dominique Vuillaume, is devoted to research at the serendipitous interface between the two disciplines. 'Synaptic electronics', looks at artificial devices with connections that demonstrate behaviour similar to synapses in the nervous system allowing a new and more powerful approach to computing. Synapses and connecting neurons respond differently to incident signals depending on the history of signals previously experienced, ultimately leading to short term and long term memory behaviour. The basic characteristics of a synapse can be replicated with around ten simple transistors. However with the human brain having around 1011 neurons and 1015 synapses, artificial neurons and synapses from basic transistors are unlikely to accommodate the scalability required. The discovery of nanoscale elements that function as 'memristors' has provided a key tool for the implementation of synaptic connections [2]. Leon Chua first developed the concept of the 'The memristor—the missing circuit element' in 1971 [3]. In this special issue he presents a tutorial describing how memristor research has fed into our understanding of synaptic behaviour and how they can be applied in information processing [4]. He also describes, 'The new principle of local activity, which uncovers a minuscule life-enabling "Goldilocks zone", dubbed the

  3. Balancing feed-forward excitation and inhibition via Hebbian inhibitory synaptic plasticity.

    Directory of Open Access Journals (Sweden)

    Yotam Luz

    2012-01-01

    Full Text Available It has been suggested that excitatory and inhibitory inputs to cortical cells are balanced, and that this balance is important for the highly irregular firing observed in the cortex. There are two hypotheses as to the origin of this balance. One assumes that it results from a stable solution of the recurrent neuronal dynamics. This model can account for a balance of steady state excitation and inhibition without fine tuning of parameters, but not for transient inputs. The second hypothesis suggests that the feed forward excitatory and inhibitory inputs to a postsynaptic cell are already balanced. This latter hypothesis thus does account for the balance of transient inputs. However, it remains unclear what mechanism underlies the fine tuning required for balancing feed forward excitatory and inhibitory inputs. Here we investigated whether inhibitory synaptic plasticity is responsible for the balance of transient feed forward excitation and inhibition. We address this issue in the framework of a model characterizing the stochastic dynamics of temporally anti-symmetric Hebbian spike timing dependent plasticity of feed forward excitatory and inhibitory synaptic inputs to a single post-synaptic cell. Our analysis shows that inhibitory Hebbian plasticity generates 'negative feedback' that balances excitation and inhibition, which contrasts with the 'positive feedback' of excitatory Hebbian synaptic plasticity. As a result, this balance may increase the sensitivity of the learning dynamics to the correlation structure of the excitatory inputs.

  4. Characterization of emergent synaptic topologies in noisy neural networks

    Science.gov (United States)

    Miller, Aaron James

    Learned behaviors are one of the key contributors to an animal's ultimate survival. It is widely believed that the brain's microcircuitry undergoes structural changes when a new behavior is learned. In particular, motor learning, during which an animal learns a sequence of muscular movements, often requires precisely-timed coordination between muscles and becomes very natural once ingrained. Experiments show that neurons in the motor cortex exhibit precisely-timed spike activity when performing a learned motor behavior, and constituent stereotypical elements of the behavior can last several hundred milliseconds. The subject of this manuscript concerns how organized synaptic structures that produce stereotypical spike sequences emerge from random, dynamical networks. After a brief introduction in Chapter 1, we begin Chapter 2 by introducing a spike-timing-dependent plasticity (STDP) rule that defines how the activity of the network drives changes in network topology. The rule is then applied to idealized networks of leaky integrate-and-fire neurons (LIF). These neurons are not subjected to the variability that typically characterize neurons in vivo. In noiseless networks, synapses develop closed loops of strong connectivity that reproduce stereotypical, precisely-timed spike patterns from an initially random network. We demonstrate the characteristics of the asymptotic synaptic configuration are dependent on the statistics of the initial random network. The spike timings of the neurons simulated in Chapter 2 are generated exactly by a computationally economical, nonlinear mapping which is extended to LIF neurons injected with fluctuating current in Chapter 3. Development of an economical mapping that incorporates noise provides a practical solution to the long simulation times required to produce asymptotic synaptic topologies in networks with STDP in the presence of realistic neuronal variability. The mapping relies on generating numerical solutions to the dynamics

  5. The amygdala excitatory/inhibitory balance in a valproate-induced rat autism model.

    Directory of Open Access Journals (Sweden)

    Hui-Ching Lin

    Full Text Available The amygdala is an important structure contributing to socio-emotional behavior. However, the role of the amygdala in autism remains inconclusive. In this study, we used the 28-35 days valproate (VPA-induced rat model of autism to observe the autistic phenotypes and evaluate their synaptic characteristics in the lateral nucleus (LA of the amygdala. The VPA-treated offspring demonstrated less social interaction, increased anxiety, enhanced fear learning and impaired fear memory extinction. Slice preparation and electrophysiological recordings of the amygdala showed significantly enhanced long-term potentiation (LTP while stimulating the thalamic-amygdala pathway of the LA. In addition, the pair pulse facilitation (PPF at 30- and 60-ms intervals decreased significantly. Whole-cell recordings of the LA pyramidal neurons showed an increased miniature excitatory postsynaptic current (EPSC frequency and amplitude. The relative contributions of the AMPA receptor and NMDA receptor to the EPSCs did not differ significantly between groups. These results suggested that the enhancement of the presynaptic efficiency of excitatory synaptic transmission might be associated with hyperexcitibility and enhanced LTP in LA pyramidal neurons. Disruption of the synaptic excitatory/inhibitory (E/I balance in the LA of VPA-treated rats might play certain roles in the development of behaviors in the rat that may be relevant to autism. Further experiments to demonstrate the direct link are warranted.

  6. Modulation of Synaptic Plasticity in the Cortex Needs to Understand All the Players

    Science.gov (United States)

    Meunier, Claire N. J.; Chameau, Pascal; Fossier, Philippe M.

    2017-01-01

    The prefrontal cortex (PFC) is involved in cognitive tasks such as working memory, decision making, risk assessment and regulation of attention. These functions performed by the PFC are supposed to rely on rhythmic electrical activity generated by neuronal network oscillations determined by a precise balance between excitation and inhibition balance (E/I balance) resulting from the coordinated activities of recurrent excitation and feedback and feedforward inhibition. Functional alterations in PFC functions have been associated with cognitive deficits in several pathologies such as major depression, anxiety and schizophrenia. These pathological situations are correlated with alterations of different neurotransmitter systems (i.e., serotonin (5-HT), dopamine (DA), acetylcholine…) that result in alterations of the E/I balance. The aim of this review article is to cover the basic aspects of the regulation of the E/I balance as well as to highlight the importance of the complementarity role of several neurotransmitters in the modulation of the plasticity of excitatory and inhibitory synapses. We illustrate our purpose by recent findings that demonstrate that 5-HT and DA cooperate to regulate the plasticity of excitatory and inhibitory synapses targeting layer 5 pyramidal neurons (L5PyNs) of the PFC and to fine tune the E/I balance. Using a method based on the decomposition of the synaptic conductance into its excitatory and inhibitory components, we show that concomitant activation of D1-like receptors (D1Rs) and 5-HT1ARs, through a modulation of NMDA receptors, favors long term potentiation (LTP) of both excitation and inhibition and consequently does not modify the E/I balance. We also demonstrate that activation of D2-receptors requires functional 5-HT1ARs to shift the E-I balance towards more inhibition and to favor long term depression (LTD) of excitatory synapses through the activation of glycogen synthase kinase 3β (GSK3β). This cooperation between different

  7. Synaptic Basis for the Generation of Response Variation in Auditory Cortex.

    Science.gov (United States)

    Tao, Can; Zhang, Guangwei; Zhou, Chang; Wang, Lijuan; Yan, Sumei; Zhang, Li I; Zhou, Yi; Xiong, Ying

    2016-08-03

    Cortical neurons can exhibit significant variation in their responses to the same sensory stimuli, as reflected by the reliability and temporal precision of spikes. However the synaptic mechanism underlying response variation still remains unclear. Here, in vivo whole-cell patch-clamp recording of excitatory neurons revealed variation in the amplitudes as well as the temporal profiles of excitatory and inhibitory synaptic inputs evoked by the same sound stimuli in layer 4 of the rat primary auditory cortex. Synaptic inputs were reliably induced by repetitive stimulation, although with large variation in amplitude. The variation in the amplitude of excitation was much higher than that of inhibition. In addition, the temporal jitter of the synaptic onset latency was much smaller than the jitter of spike response. We further demonstrated that the amplitude variation of excitatory inputs can largely account for the spike variation, while the jitter in spike timing can be primarily attributed to the temporal variation of excitatory inputs. Furthermore, the spike reliability of excitatory but not inhibitory neurons is dependent on tone frequency. Our results thus revealed an inherent cortical synaptic contribution for the generation of variation in the spike responses of auditory cortical neurons.

  8. Synaptic Homeostasis and Restructuring across the Sleep-Wake Cycle.

    Directory of Open Access Journals (Sweden)

    Wilfredo Blanco

    2015-05-01

    Full Text Available Sleep is critical for hippocampus-dependent memory consolidation. However, the underlying mechanisms of synaptic plasticity are poorly understood. The central controversy is on whether long-term potentiation (LTP takes a role during sleep and which would be its specific effect on memory. To address this question, we used immunohistochemistry to measure phosphorylation of Ca2+/calmodulin-dependent protein kinase II (pCaMKIIα in the rat hippocampus immediately after specific sleep-wake states were interrupted. Control animals not exposed to novel objects during waking (WK showed stable pCaMKIIα levels across the sleep-wake cycle, but animals exposed to novel objects showed a decrease during subsequent slow-wave sleep (SWS followed by a rebound during rapid-eye-movement sleep (REM. The levels of pCaMKIIα during REM were proportional to cortical spindles near SWS/REM transitions. Based on these results, we modeled sleep-dependent LTP on a network of fully connected excitatory neurons fed with spikes recorded from the rat hippocampus across WK, SWS and REM. Sleep without LTP orderly rescaled synaptic weights to a narrow range of intermediate values. In contrast, LTP triggered near the SWS/REM transition led to marked swaps in synaptic weight ranking. To better understand the interaction between rescaling and restructuring during sleep, we implemented synaptic homeostasis and embossing in a detailed hippocampal-cortical model with both excitatory and inhibitory neurons. Synaptic homeostasis was implemented by weakening potentiation and strengthening depression, while synaptic embossing was simulated by evoking LTP on selected synapses. We observed that synaptic homeostasis facilitates controlled synaptic restructuring. The results imply a mechanism for a cognitive synergy between SWS and REM, and suggest that LTP at the SWS/REM transition critically influences the effect of sleep: Its lack determines synaptic homeostasis, its presence causes

  9. The relative contribution of NMDARs to excitatory postsynaptic currents is controlled by Ca2+-induced inactivation.

    Directory of Open Access Journals (Sweden)

    Fliza eValiullina

    2016-01-01

    Full Text Available NMDA receptors (NMDARs are important mediators of excitatory synaptic transmission and plasticity. A hallmark of these channels is their high permeability to Ca2+. At the same time, they are themselves inhibited by the elevation of intracellular Ca2+ concentration. It is unclear however, whether the Ca2+ entry associated with single NMDAR mediated synaptic events is sufficient to self-inhibit their activation. Such auto-regulation would have important effects on the dynamics of synaptic excitation in several central networks. Therefore, we studied NMDAR-mediated synaptic currents in mouse hippocampal CA1 pyramidal neurons. Postsynaptic responses to subthreshold Schaffer collateral stimulation depended strongly on the absence or presence of intracellular Ca2+ buffers. Loading of pyramidal cells with exogenous Ca2+ buffers increased the amplitude and decay time of NMDAR mediated EPSCs (EPSP and prolonged the time window for action potential generation.Our data indicate that the Ca2+ influx mediated by unitary synaptic events is sufficient to produce detectable self-inhibition of NMDARs even at a physiological Mg2+ concentration. Therefore, the contribution of NMDARs to synaptic excitation is strongly controlled by both previous synaptic activity as well as by the Ca2+ buffer capacity of postsynaptic neurons.

  10. Mechanisms of glycine release, which build up synaptic and extrasynaptic glycine levels: the role of synaptic and non-synaptic glycine transporters.

    Science.gov (United States)

    Harsing, Laszlo G; Matyus, Peter

    2013-04-01

    Glycine is an amino acid neurotransmitter that is involved in both inhibitory and excitatory neurochemical transmission in the central nervous system. The role of glycine in excitatory neurotransmission is related to its coagonist action at glutamatergic N-methyl-D-aspartate receptors. The glycine levels in the synaptic cleft rise many times higher during synaptic activation assuring that glycine spills over into the extrasynaptic space. Another possible origin of extrasynaptic glycine is the efflux of glycine occurring from astrocytes associated with glutamatergic synapses. The release of glycine from neuronal or glial origins exhibits several differences compared to that of biogenic amines or other amino acid neurotransmitters. These differences appear in an external Ca(2+)- and temperature-dependent manner, conferring unique characteristics on glycine as a neurotransmitter. Glycine transporter type-1 at synapses may exhibit neural and glial forms and plays a role in controlling synaptic glycine levels and the spill over rate of glycine from the synaptic cleft into the extrasynaptic biophase. Non-synaptic glycine transporter type-1 regulates extrasynaptic glycine concentrations, either increasing or decreasing them depending on the reverse or normal mode operation of the carrier molecule. While we can, at best, only estimate synaptic glycine levels at rest and during synaptic activation, glycine concentrations are readily measurable via brain microdialysis technique applied in the extrasynaptic space. The non-synaptic N-methyl-D-aspartate receptor may obtain glycine for activation following its spill over from highly active synapses or from its release mediated by the reverse operation of non-synaptic glycine transporter-1. The sensitivity of non-synaptic N-methyl-D-aspartate receptors to glutamate and glycine is many times higher than that of synaptic N-methyl-D-aspartate receptors making the former type of receptor the primary target for drug action. Synaptic

  11. Spike Train Auto-Structure Impacts Post-Synaptic Firing and Timing-Based Plasticity

    Science.gov (United States)

    Scheller, Bertram; Castellano, Marta; Vicente, Raul; Pipa, Gordon

    2011-01-01

    Cortical neurons are typically driven by several thousand synapses. The precise spatiotemporal pattern formed by these inputs can modulate the response of a post-synaptic cell. In this work, we explore how the temporal structure of pre-synaptic inhibitory and excitatory inputs impact the post-synaptic firing of a conductance-based integrate and fire neuron. Both the excitatory and inhibitory input was modeled by renewal gamma processes with varying shape factors for modeling regular and temporally random Poisson activity. We demonstrate that the temporal structure of mutually independent inputs affects the post-synaptic firing, while the strength of the effect depends on the firing rates of both the excitatory and inhibitory inputs. In a second step, we explore the effect of temporal structure of mutually independent inputs on a simple version of Hebbian learning, i.e., hard bound spike-timing-dependent plasticity. We explore both the equilibrium weight distribution and the speed of the transient weight dynamics for different mutually independent gamma processes. We find that both the equilibrium distribution of the synaptic weights and the speed of synaptic changes are modulated by the temporal structure of the input. Finally, we highlight that the sensitivity of both the post-synaptic firing as well as the spike-timing-dependent plasticity on the auto-structure of the input of a neuron could be used to modulate the learning rate of synaptic modification. PMID:22203800

  12. Cell type-specific synaptic dynamics of synchronized bursting in the juvenile CA3 rat hippocampus.

    Science.gov (United States)

    Aradi, Ildiko; Maccaferri, Gianmaria

    2004-10-27

    Spontaneous synchronous bursting of the CA3 hippocampus in vitro is a widely studied model of physiological and pathological network synchronization. The role of inhibitory conductances during network bursting is not understood in detail, despite the fact that several antiepileptic drugs target GABA(A) receptors. Here, we show that the first manifestation of a burst event is a cell type-specific flurry of GABA(A) receptor-mediated inhibitory input to pyramidal cells, but not to stratum oriens horizontal interneurons. Moreover, GABA(A) receptor-mediated synaptic input is proportionally smaller in these interneurons compared with pyramidal cells. Computational models and dynamic-clamp studies using experimentally derived conductance waveforms indicate that both these factors modulate spike timing during synchronized activity. In particular, the different kinetics and the larger strength of GABAergic input to pyramidal cells defer action potential initiation and contribute to the observed delay of firing, so that the interneuronal activity leads the burst cycle. In contrast, excitatory inputs to both neuronal populations during a burst are kinetically similar, as required to maintain synchronicity. We also show that the natural pattern of activation of inhibitory and excitatory conductances during a synchronized burst cycle is different within the same neuronal population. In particular, GABA(A) receptor-mediated currents activate earlier and outlast the excitatory components driving the bursts. Thus, cell type-specific balance and timing of GABA(A) receptor-mediated input are critical to set the appropriate spike timing in pyramidal cells and interneurons and coordinate additional neurotransmitter release modulating burst strength and network frequency.

  13. BDNF has opposite effects on the quantal amplitude of pyramidal neuron and interneuron excitatory synapses.

    Science.gov (United States)

    Rutherford, L C; Nelson, S B; Turrigiano, G G

    1998-09-01

    Recently, we have identified a novel form of synaptic plasticity that acts to stabilize neocortical firing rates by scaling the quantal amplitude of AMPA-mediated synaptic inputs up or down as a function of neuronal activity. Here, we show that the effects of activity blockade on quantal amplitude are mediated through the neurotrophin brain-derived neurotrophic factor (BDNF). Exogenous BDNF prevented, and a TrkB-IgG fusion protein reproduced, the effects of activity blockade on pyramidal quantal amplitude. BDNF had opposite effects on pyramidal neuron and interneuron quantal amplitudes and modified the ratio of pyramidal neuron to interneuron firing rates. These data demonstrate a novel role for BDNF in the homeostatic regulation of excitatory synaptic strengths and in the maintenance of the balance of cortical excitation and inhibition.

  14. Synaptic plasticity, AMPA-R trafficking, and Ras-MAPK signaling

    Institute of Scientific and Technical Information of China (English)

    Yun GU; Ruth L STORNETTA

    2007-01-01

    Synaptic modification of transmission is a general phenomenon expressed at al-most every excitatory synapse in the mammalian brain. Over the last three decades,much has been discovered about the cellular, synaptic, molecular, and signalingmechanisms responsible for controlling synaptic transmission and plasticity. Here,we present a brief review of these mechanisms with emphasis on the currentunderstanding of α-amino-3-hydroxy-5-methyl-4-isoxazole propionic acid recep-tor (AMPA-R) trafficking and Ras-mitogen-activated protein kinase (MAPK)signaling events involved in controlling synaptic transmission.

  15. Is ATP a central synaptic mediator for certain primary afferent fibers from mammalian skin?

    OpenAIRE

    Fyffe, R E; Perl, E R

    1984-01-01

    The possibility that ATP acts as a synaptic mediator at the central terminals of primary afferent fibers was examined by applying it iontophoretically to neurons of the outer layers of the cat spinal cord in vivo. ATP proved to be selectively excitatory for a limited subset of spinal neurons. Those units consistently excited by ATP iontophoresis with very small currents (2-15 nA) responded to gentle mechanical stimulation of the skin and usually evidenced excitatory input from unmyelinated pr...

  16. Input-specific learning rules at excitatory synapses onto hippocampal parvalbumin-expressing interneurons

    Science.gov (United States)

    Le Roux, Nicolas; Cabezas, Carolina; Böhm, Urs Lucas; Poncer, Jean Christophe

    2013-01-01

    Hippocampal parvalbumin-expressing interneurons (PV INs) provide fast and reliable GABAergic signalling to principal cells and orchestrate hippocampal ensemble activities. Precise coordination of principal cell activity by PV INs relies in part on the efficacy of excitatory afferents that recruit them in the hippocampal network. Feed-forward (FF) inputs in particular from Schaffer collaterals influence spike timing precision in CA1 principal cells whereas local feedback (FB) inputs may contribute to pacemaker activities. Although PV INs have been shown to undergo activity-dependent long term plasticity, how both inputs are modulated during principal cell firing is unknown. Here we show that FF and FB synapses onto PV INs are endowed with distinct postsynaptic glutamate receptors which set opposing long-term plasticity rules. Inward-rectifying AMPA receptors (AMPARs) expressed at both FF and FB inputs mediate a form of anti-Hebbian long term potentiation (LTP), relying on coincident membrane hyperpolarization and synaptic activation. In contrast, FF inputs are largely devoid of NMDA receptors (NMDARs) which are more abundant at FB afferents and confer on them an additional form of LTP with Hebbian properties. Both forms of LTP are expressed with no apparent change in presynaptic function. The specific endowment of FF and FB inputs with distinct coincidence detectors allow them to be differentially tuned upon high frequency afferent activity. Thus, high frequency (>20 Hz) stimulation specifically potentiates FB, but not FF afferents. We propose that these differential, input-specific learning rules may allow PV INs to adapt to changes in hippocampal activity while preserving their precisely timed, clockwork operation. PMID:23339172

  17. Structural basis for integration of GluD receptors within synaptic organizer complexes.

    Science.gov (United States)

    Elegheert, Jonathan; Kakegawa, Wataru; Clay, Jordan E; Shanks, Natalie F; Behiels, Ester; Matsuda, Keiko; Kohda, Kazuhisa; Miura, Eriko; Rossmann, Maxim; Mitakidis, Nikolaos; Motohashi, Junko; Chang, Veronica T; Siebold, Christian; Greger, Ingo H; Nakagawa, Terunaga; Yuzaki, Michisuke; Aricescu, A Radu

    2016-07-15

    Ionotropic glutamate receptor (iGluR) family members are integrated into supramolecular complexes that modulate their location and function at excitatory synapses. However, a lack of structural information beyond isolated receptors or fragments thereof currently limits the mechanistic understanding of physiological iGluR signaling. Here, we report structural and functional analyses of the prototypical molecular bridge linking postsynaptic iGluR δ2 (GluD2) and presynaptic β-neurexin 1 (β-NRX1) via Cbln1, a C1q-like synaptic organizer. We show how Cbln1 hexamers "anchor" GluD2 amino-terminal domain dimers to monomeric β-NRX1. This arrangement promotes synaptogenesis and is essential for D: -serine-dependent GluD2 signaling in vivo, which underlies long-term depression of cerebellar parallel fiber-Purkinje cell (PF-PC) synapses and motor coordination in developing mice. These results lead to a model where protein and small-molecule ligands synergistically control synaptic iGluR function.

  18. Linking neuronal ensembles by associative synaptic plasticity.

    Directory of Open Access Journals (Sweden)

    Qi Yuan

    Full Text Available Synchronized activity in ensembles of neurons recruited by excitatory afferents is thought to contribute to the coding information in the brain. However, the mechanisms by which neuronal ensembles are generated and modified are not known. Here we show that in rat hippocampal slices associative synaptic plasticity enables ensembles of neurons to change by incorporating neurons belonging to different ensembles. Associative synaptic plasticity redistributes the composition of different ensembles recruited by distinct inputs such as to specifically increase the similarity between the ensembles. These results show that in the hippocampus, the ensemble of neurons recruited by a given afferent projection is fluid and can be rapidly and persistently modified to specifically include neurons from different ensembles. This linking of ensembles may contribute to the formation of associative memories.

  19. Electron Tomographic Analysis of Synaptic Ultrastructure

    Science.gov (United States)

    Burette, Alain C.; Lesperance, Thomas; Crum, John; Martone, Maryann; Volkmann, Niels; Ellisman, Mark H.; Weinberg, Richard J.

    2013-01-01

    Synaptic function depends on interactions among sets of proteins that assemble into complex supramolecular machines. Molecular biology, electrophysiology, and live-cell imaging studies have provided tantalizing glimpses into the inner workings of the synapse, but fundamental questions remain regarding the functional organization of these “nano-machines.” Electron tomography reveals the internal structure of synapses in three dimensions with exceptional spatial resolution. Here we report results from an electron tomographic study of axospinous synapses in neocortex and hippocampus of the adult rat, based on aldehyde-fixed material stabilized with tannic acid in lieu of postfixation with osmium tetroxide. Our results provide a new window into the structural basis of excitatory synaptic processing in the mammalian brain. PMID:22684938

  20. Effects of excitatory amino acid antagonists on evoked and spontaneous excitatory potentials in guinea-pig hippocampus.

    Science.gov (United States)

    Cotman, C W; Flatman, J A; Ganong, A H; Perkins, M N

    1986-09-01

    Evoked and spontaneous excitatory post-synaptic potentials (e.p.s.p.s) at the mossy fibre input to CA3 pyramidal neurones were recorded intracellularly in slices from the guinea-pig hippocampus. The effects of several amino acid antagonists on these responses were examined. L-2-amino-4-phosphonobutyrate (L-AP4), L-serine-O-phosphate (L-SOP), kynurenate, and N-(p-bromobenzoyl)piperazine-2,3-dicarboxylate (pBB-PzDA) reduced the amplitude of evoked mossy fibre e.p.s.p.s without affecting membrane potential or input resistance. Antagonism of mossy fibre spontaneous miniature e.p.s.p.s (m.e.p.s.p.s) by these compounds fell into two groups. L-AP4 and L-SOP applied at concentrations that blocked evoked e.p.s.p.s did not affect amplitude distributions of spontaneous m.e.p.s.p.s. Kynurenate and pBB-PzDA significantly affected the amplitude distributions and reduced the mean amplitude of spontaneous m.e.p.s.p.s. These results are consistent with a presynaptic site of action for L-AP4 and L-SOP and a post-synaptic site of action for kynurenate and pBB-PzDA as antagonists of e.p.s.p.s at the guinea-pig mossy fibre-CA3 pyramidal neurone synapse.

  1. Effects of excitatory amino acid antagonists on evoked and spontaneous excitatory potentials in guinea-pig hippocampus.

    Science.gov (United States)

    Cotman, C W; Flatman, J A; Ganong, A H; Perkins, M N

    1986-01-01

    Evoked and spontaneous excitatory post-synaptic potentials (e.p.s.p.s) at the mossy fibre input to CA3 pyramidal neurones were recorded intracellularly in slices from the guinea-pig hippocampus. The effects of several amino acid antagonists on these responses were examined. L-2-amino-4-phosphonobutyrate (L-AP4), L-serine-O-phosphate (L-SOP), kynurenate, and N-(p-bromobenzoyl)piperazine-2,3-dicarboxylate (pBB-PzDA) reduced the amplitude of evoked mossy fibre e.p.s.p.s without affecting membrane potential or input resistance. Antagonism of mossy fibre spontaneous miniature e.p.s.p.s (m.e.p.s.p.s) by these compounds fell into two groups. L-AP4 and L-SOP applied at concentrations that blocked evoked e.p.s.p.s did not affect amplitude distributions of spontaneous m.e.p.s.p.s. Kynurenate and pBB-PzDA significantly affected the amplitude distributions and reduced the mean amplitude of spontaneous m.e.p.s.p.s. These results are consistent with a presynaptic site of action for L-AP4 and L-SOP and a post-synaptic site of action for kynurenate and pBB-PzDA as antagonists of e.p.s.p.s at the guinea-pig mossy fibre-CA3 pyramidal neurone synapse. PMID:3795109

  2. Pain-related increase of excitatory transmission and decrease of inhibitory transmission in the central nucleus of the amygdala are mediated by mGluR1

    Directory of Open Access Journals (Sweden)

    Neugebauer Volker

    2010-12-01

    Full Text Available Abstract Neuroplasticity in the central nucleus of the amygdala (CeA, particularly its latero-capsular division (CeLC, is an important contributor to the emotional-affective aspects of pain. Previous studies showed synaptic plasticity of excitatory transmission to the CeLC in different pain models, but pain-related changes of inhibitory transmission remain to be determined. The CeLC receives convergent excitatory inputs from the parabrachial nucleus in the brainstem and from the basolateral amygdala (BLA. In addition, feedforward inhibition of CeA neurons is driven by glutamatergic projections from the BLA area to a cluster of GABAergic neurons in the intercalated cell masses (ITC. Using patch-clamp in rat brain slices we measured monosynaptic excitatory postsynaptic currents (EPSCs and polysynaptic inhibitory currents (IPSCs that were evoked by electrical stimulation in the BLA. In brain slices from arthritic rats, input-output functions of excitatory synaptic transmission were enhanced whereas inhibitory synaptic transmission was decreased compared to control slices from normal untreated rats. A non-NMDA receptor antagonist (NBQX blocked the EPSCs and reduced the IPSCs, suggesting that non-NMDA receptors mediate excitatory transmission and also contribute to glutamate-driven feed-forward inhibition of CeLC neurons. IPSCs were blocked by a GABAA receptor antagonist (bicuculline. Bicuculline increased EPSCs under normal conditions but not in slices from arthritic rats, which indicates a loss of GABAergic control of excitatory transmission. A metabotropic glutamate receptor subtype 1 (mGluR1 antagonist (LY367385 reversed both the increase of excitatory transmission and the decrease of inhibitory transmission in the arthritis pain model but had no effect on basal synaptic transmission in control slices from normal rats. The inhibitory effect of LY367385 on excitatory transmission was blocked by bicuculline suggesting the involvement of a GABAergic

  3. The kinase activity of EphA4 mediates homeostatic scaling-down of synaptic strength via activation of Cdk5.

    Science.gov (United States)

    Peng, Yi-Rong; Hou, Zai-Hua; Yu, Xiang

    2013-02-01

    Neurons within a network have the ability to homeostatically scale-down their excitatory synaptic strength under conditions of persistent neuronal activity elevation, a process pivotal to neural circuit stability. How this homeostatic regulation is achieved at the molecular level in developing neural circuits, which face gradually elevated neuronal activity as part of circuit wiring, is not well-understood. Using dissociated hippocampal neuronal cultures, we identified a critical and cell autonomous role for the receptor tyrosine kinase EphA4 in mediating activity-induced homeostatic down-regulation of excitatory synaptic strength. Reducing the endogenous level of EphA4 in individual neurons by RNAi effectively blocked activity-induced scaling-down of excitatory synaptic strength, while co-transfection of RNAi resistant EphA4 rescued this effect. Furthermore, interfering with EphA4 forward signaling using EphA4-Fc blocked activity-induced homeostatic synaptic scaling-down, while direct activation of EphA4 with its ligand EphrinA1 weakened excitatory synaptic strength. Up- or down-regulating EphA4 function in individual neurons also did not affect the density of excitatory synapses. The kinase activities of EphA4 and its downstream effector Cdk5 were both required for homeostatic synaptic scaling, as overexpression of EphA4 with constitutively active kinase activity reduced excitatory synaptic strength, while interfering with either the kinase activity of EphA4 or Cdk5 blocked activity-induced synaptic scaling. Consistently, the activities of EphA4 and Cdk5 increased significantly during global and persistent activity elevation. Together, our work demonstrated that the kinase activity of EphA4, via activation of downstream Cdk5 activity, mediates the scaling-down of excitatory synaptic strength under conditions of global activity elevation.

  4. Synaptic plasticity in inhibitory neurons of the auditory brainstem.

    Science.gov (United States)

    Bender, Kevin J; Trussell, Laurence O

    2011-04-01

    There is a growing appreciation of synaptic plasticity in the early levels of auditory processing, and particularly of its role in inhibitory circuits. Synaptic strength in auditory brainstem and midbrain is sensitive to standard protocols for induction of long-term depression, potentiation, and spike-timing-dependent plasticity. Differential forms of plasticity are operative at synapses onto inhibitory versus excitatory neurons within a circuit, and together these could serve to tune circuits involved in sound localization or multisensory integration. Such activity-dependent control of synaptic function in inhibitory neurons may also be expressed after hearing loss and could underlie persistent neuronal activity in patients with tinnitus. This article is part of a Special Issue entitled 'Synaptic Plasticity & Interneurons'.

  5. Enhanced quantal release of excitatory transmitter in anterior cingulate cortex of adult mice with chronic pain

    Directory of Open Access Journals (Sweden)

    Zhao Ming-Gao

    2009-01-01

    Full Text Available Abstract The anterior cingulate cortex (ACC is a forebrain structure that plays important roles in emotion, learning, memory and persistent pain. Our previous studies have demonstrated that the enhancement of excitatory synaptic transmission was induced by peripheral inflammation and nerve injury in ACC synapses. However, little information is available on their presynaptic mechanisms, since the source of the enhanced synaptic transmission could include the enhanced probability of neurotransmitter release at existing release sites and/or increases in the number of available vesicles. The present study aims to perform quantal analysis of excitatory synapses in the ACC with chronic pain to examine the source of these increases. The quantal analysis revealed that both probability of transmitter release and number of available vesicles were increased in a mouse model of peripheral inflammation, whereas only probability of transmitter release but not number of available vesicles was enhanced in a mouse model of neuropathic pain. In addition, we compared the miniature excitatory postsynaptic potentials (mEPSCs in ACC synapses with those in other pain-related brain areas such as the amygdala and spinal cord. Interestingly, the rate and amplitude of mEPSCs in ACC synapses were significantly lower than those in the amygdala and spinal cord. Our studies provide strong evidences that chronic inflammatory pain increases both probability of transmitter release and number of available vesicles, whereas neuropathic pain increases only probability of transmitter release in the ACC synapses.

  6. BACE1 Is Necessary for Experience-Dependent Homeostatic Synaptic Plasticity in Visual Cortex

    Directory of Open Access Journals (Sweden)

    Emily Petrus

    2014-01-01

    Full Text Available Alzheimer’s disease (AD is the most common form of age-related dementia, which is thought to result from overproduction and/or reduced clearance of amyloid-beta (Aβ peptides. Studies over the past few decades suggest that Aβ is produced in an activity-dependent manner and has physiological relevance to normal brain functions. Similarly, physiological functions for β- and γ-secretases, the two key enzymes that produce Aβ by sequentially processing the amyloid precursor protein (APP, have been discovered over recent years. In particular, activity-dependent production of Aβ has been suggested to play a role in homeostatic regulation of excitatory synaptic function. There is accumulating evidence that activity-dependent immediate early gene Arc is an activity “sensor,” which acts upstream of Aβ production and triggers AMPA receptor endocytosis to homeostatically downregulate the strength of excitatory synaptic transmission. We previously reported that Arc is critical for sensory experience-dependent homeostatic reduction of excitatory synaptic transmission in the superficial layers of visual cortex. Here we demonstrate that mice lacking the major neuronal β-secretase, BACE1, exhibit a similar phenotype: stronger basal excitatory synaptic transmission and failure to adapt to changes in visual experience. Our results indicate that BACE1 plays an essential role in sensory experience-dependent homeostatic synaptic plasticity in the neocortex.

  7. Spatial patterning of excitatory and inhibitory neuropil territories during spinal circuit development.

    Science.gov (United States)

    Yan, Qing; Zhai, Lu; Zhang, Bo; Dallman, Julia E

    2017-05-01

    To generate rhythmic motor behaviors, both single neurons and neural circuits require a balance between excitatory inputs that trigger action potentials and inhibitory inputs that promote a stable resting potential (E/I balance). Previous studies have focused on individual neurons and have shown that, over a short spatial scale, excitatory and inhibitory (E/I) synapses tend to form structured territories with inhibitory inputs enriched on cell bodies and proximal dendrites and excitatory inputs on distal dendrites. However, systems-level E/I patterns, at spatial scales larger than single neurons, are largely uncharted. We used immunostaining for PSD-95 and gephyrin postsynaptic scaffolding proteins as proxies for excitatory and inhibitory synapses, respectively, to quantify the numbers and map the distributions of E/I synapses in zebrafish spinal cord at both an embryonic stage and a larval stage. At the embryonic stage, we found that PSD-95 puncta outnumber gephyrin puncta, with the number of gephyrin puncta increasing to match that of PSD-95 puncta at the larval stage. At both stages, PSD-95 puncta are enriched in the most lateral neuropil corresponding to distal dendrites while gephyrin puncta are enriched on neuronal somata and in the medial neuropil. Significantly, similar to synaptic puncta, neuronal processes also exhibit medial-lateral territories at both developmental stages with enrichment of glutamatergic (excitatory) processes laterally and glycinergic (inhibitory) processes medially. This establishment of neuropil excitatory-inhibitory structure largely precedes dendritic arborization of primary motor neurons, suggesting that the structured neuropil could provide a framework for the development of E/I balance at the cellular level. J. Comp. Neurol. 525:1649-1667, 2017. © 2016 Wiley Periodicals, Inc. © 2017 Wiley Periodicals, Inc.

  8. Light-evoked synaptic activity of retinal ganglion and amacrine cells is regulated in developing mouse retina

    Science.gov (United States)

    He, Quanhua; Wang, Ping; Tian, Ning

    2010-01-01

    Recent studies have shown a continued maturation of visual responsiveness and synaptic activity of retina after eye opening, including the size of receptive fields of retinal ganglion cells (RGCs), light-evoked synaptic output of RGCs, bipolar cell spontaneous synaptic inputs to RGCs, and the synaptic connections between RGCs and ON and OFF bipolar cells. Light deprivation retarded some of these age-dependent changes. However, many other functional and morphological features of RGCs are not sensitive to visual experience. To determine whether light-evoked synaptic responses of RGCs undergo developmental change, we directly examined the light-evoked synaptic inputs from ON and OFF synaptic pathways to RGCs in developing retinas and found that both light-evoked excitatory and inhibitory synaptic currents decreased, but not increased, with age. We also examined the light-evoked synaptic inputs from ON and OFF synaptic pathways to amacrine cells in developing retinas and found that the light-evoked synaptic input of amacrine cells is also down-regulated in developing mouse retina. Different from the developmental changes of RGC spontaneous synaptic activity, dark rearing has little effect on the developmental changes of light-evoked synaptic activity of both RGCs and amacrine cells. Therefore, we concluded that the synaptic mechanisms mediating spontaneous and light-evoked synaptic activity of RGCs and amacrine cells are likely to be different. PMID:21091802

  9. Prolonged modification of action potential shape by synaptic inputs in molluscan neurones.

    Science.gov (United States)

    Winlow, W

    1985-01-01

    1. Somatic action potentials of Lymnaea neurons are modified by excitatory or inhibitory synaptic inputs and have been studied using phase-plane techniques and an action potential duration monitor. 2. Excitatory synaptic inputs increase the rate of neuronal discharge, cause action potential broadening, a decrease in the maximum rate of depolarization (Vd) and a decrease in the maximum rate of repolarization (Vr). 3. Inhibitory synaptic inputs decrease the discharge rate and cause narrowing of action potentials, an increase in Vd and an increase in Vr. 4. The effects reported above outlast the original synaptic inputs by many seconds and, if the somatic action potentials are similar to those in the axon terminals, they may have far-reaching effects on transmitter release.

  10. Transient oxytocin signaling primes the development and function of excitatory hippocampal neurons

    Science.gov (United States)

    Ripamonti, Silvia; Ambrozkiewicz, Mateusz C; Guzzi, Francesca; Gravati, Marta; Biella, Gerardo; Bormuth, Ingo; Hammer, Matthieu; Tuffy, Liam P; Sigler, Albrecht; Kawabe, Hiroshi; Nishimori, Katsuhiko; Toselli, Mauro; Brose, Nils; Parenti, Marco; Rhee, JeongSeop

    2017-01-01

    Beyond its role in parturition and lactation, oxytocin influences higher brain processes that control social behavior of mammals, and perturbed oxytocin signaling has been linked to the pathogenesis of several psychiatric disorders. However, it is still largely unknown how oxytocin exactly regulates neuronal function. We show that early, transient oxytocin exposure in vitro inhibits the development of hippocampal glutamatergic neurons, leading to reduced dendrite complexity, synapse density, and excitatory transmission, while sparing GABAergic neurons. Conversely, genetic elimination of oxytocin receptors increases the expression of protein components of excitatory synapses and excitatory synaptic transmission in vitro. In vivo, oxytocin-receptor-deficient hippocampal pyramidal neurons develop more complex dendrites, which leads to increased spine number and reduced γ-oscillations. These results indicate that oxytocin controls the development of hippocampal excitatory neurons and contributes to the maintenance of a physiological excitation/inhibition balance, whose disruption can cause neurobehavioral disturbances. DOI: http://dx.doi.org/10.7554/eLife.22466.001 PMID:28231043

  11. Morphology and physiology of excitatory neurons in layer 6b of the somatosensory rat barrel cortex.

    Science.gov (United States)

    Marx, Manuel; Feldmeyer, Dirk

    2013-12-01

    Neocortical lamina 6B (L6B) is a largely unexplored layer with a very heterogeneous cellular composition. To date, only little is known about L6B neurons on a systematic and quantitative basis. We investigated the morphological and electrophysiological properties of excitatory L6B neurons in the rat somatosensory barrel cortex using whole-cell patch-clamp recordings and simultaneous biocytin fillings. Subsequent histological processing and computer-assisted 3D reconstructions provided the basis for a classification of excitatory L6B neurons according to their structural and functional characteristics. Three distinct clusters of excitatory L6B neurons were identified: (C1) pyramidal neurons with an apical dendrite pointing towards the pial surface, (C2) neurons with a prominent, "apical"-like dendrite not oriented towards the pia, and (C3) multipolar spiny neurons without any preferential dendritic orientation. The second group could be further subdivided into three categories termed inverted, "tangentially" oriented and "horizontally" oriented neurons. Furthermore, based on the axonal domain two subcategories of L6B pyramidal cells were identified that had either a more barrel-column confined or an extended axonal field. The classification of excitatory L6B neurons provided here may serve as a basis for future studies on the structure, function, and synaptic connectivity of L6B neurons.

  12. Multiple forms of long-term synaptic plasticity at hippocampal mossy fiber synapses onto interneurons

    OpenAIRE

    Galván, Emilio J; Cosgrove, Kathleen E.; Barrionuevo, Germán

    2010-01-01

    The hippocampal mossy fiber (MF) pathway originates from the dentate gyrus granule cells and provides a powerful excitatory synaptic drive to neurons in the dentate gyrus hilus and area CA3. Much of the early work on the MF pathway focused on its electrophysiological properties, and ability to drive CA3 pyramidal cell activity. Over the last ten years, however, a new focus on the synaptic interaction between granule cells with inhibitory interneurons has emerged. These data have revealed an i...

  13. Cocaine-induced Modification of Synaptic Plasticity in Rat Medial Prefrontal Cortex

    OpenAIRE

    Lu, Hui

    2009-01-01

    Medial prefrontal cortex (mPFC) is involved in relapse after withdrawal for cocaine exposure, but changes in synaptic function and plasticity in the mPFC during the period of withdrawal remain largely unknown. After the termination of repeated cocaine treatments in rats, I observed a gradual enhancement in the susceptibility of excitatory synapses on layer V mPFC pyramidal neurons to activity-induced long-term potentiation (LTP). This enhanced synaptic plasticity could be attributed to a grad...

  14. Remodeling and Tenacity of Inhibitory Synapses: Relationships with Network Activity and Neighboring Excitatory Synapses.

    Science.gov (United States)

    Rubinski, Anna; Ziv, Noam E

    2015-11-01

    Glutamatergic synapse size remodeling is governed not only by specific activity forms but also by apparently stochastic processes with well-defined statistics. These spontaneous remodeling processes can give rise to skewed and stable synaptic size distributions, underlie scaling of these distributions and drive changes in glutamatergic synapse size "configurations". Where inhibitory synapses are concerned, however, little is known on spontaneous remodeling dynamics, their statistics, their activity dependence or their long-term consequences. Here we followed individual inhibitory synapses for days, and analyzed their size remodeling dynamics within the statistical framework previously developed for glutamatergic synapses. Similar to glutamatergic synapses, size distributions of inhibitory synapses were skewed and stable; at the same time, however, sizes of individual synapses changed considerably, leading to gradual changes in synaptic size configurations. The suppression of network activity only transiently affected spontaneous remodeling dynamics, did not affect synaptic size configuration change rates and was not followed by the scaling of inhibitory synapse size distributions. Comparisons with glutamatergic synapses within the same dendrites revealed a degree of coupling between nearby inhibitory and excitatory synapse remodeling, but also revealed that inhibitory synapse size configurations changed at considerably slower rates than those of their glutamatergic neighbors. These findings point to quantitative differences in spontaneous remodeling dynamics of inhibitory and excitatory synapses but also reveal deep qualitative similarities in the processes that control their sizes and govern their remodeling dynamics.

  15. Neuroligin-1 loss is associated with reduced tenacity of excitatory synapses.

    Directory of Open Access Journals (Sweden)

    Adel Zeidan

    Full Text Available Neuroligins (Nlgns are postsynaptic, integral membrane cell adhesion molecules that play important roles in the formation, validation, and maturation of synapses in the mammalian central nervous system. Given their prominent roles in the life cycle of synapses, it might be expected that the loss of neuroligin family members would affect the stability of synaptic organization, and ultimately, affect the tenacity and persistence of individual synaptic junctions. Here we examined whether and to what extent the loss of Nlgn-1 affects the dynamics of several key synaptic molecules and the constancy of their contents at individual synapses over time. Fluorescently tagged versions of the postsynaptic scaffold molecule PSD-95, the AMPA-type glutamate receptor subunit GluA2 and the presynaptic vesicle molecule SV2A were expressed in primary cortical cultures from Nlgn-1 KO mice and wild-type (WT littermates, and live imaging was used to follow the constancy of their contents at individual synapses over periods of 8-12 hours. We found that the loss of Nlgn-1 was associated with larger fluctuations in the synaptic contents of these molecules and a poorer preservation of their contents at individual synapses. Furthermore, rates of synaptic turnover were somewhat greater in neurons from Nlgn-1 knockout mice. Finally, the increased GluA2 redistribution rates observed in neurons from Nlgn-1 knockout mice were negated by suppressing spontaneous network activity. These findings suggest that the loss of Nlgn-1 is associated with some use-dependent destabilization of excitatory synapse organization, and indicate that in the absence of Nlgn-1, the tenacity of excitatory synapses might be somewhat impaired.

  16. 17beta-Estradiol reduces excitatory postsynaptic potential (EPSP) amplitude in rat basolateral amygdala neurons.

    Science.gov (United States)

    Womble, Mark D; Andrew, James A; Crook, Joseph J

    2002-10-11

    We examined the actions of estrogen on excitatory synaptic transmission in the basolateral amygdala (BLA), a brain region involved in learning, emotions, and the effects of stress. Intracellular recordings of monosynaptic excitatory postsynaptic potentials (EPSPs) were obtained from BLA neurons in a slice preparation. Bath application of 17beta-estradiol (2 micro M) reduced EPSP amplitude by an average of 77%. This reduction was readily reversed by washing with control saline and was not mimicked by the inactive isomer 17 alpha-estradiol. Other passive and active properties of BLA neurons were unaffected by 17beta-estradiol. The observed EPSP reduction is in sharp contrast to the potentiation of EPSPs by estrogen observed in other brain regions.

  17. ELKS controls the pool of readily releasable vesicles at excitatory synapses through its N-terminal coiled-coil domains.

    Science.gov (United States)

    Held, Richard G; Liu, Changliang; Kaeser, Pascal S

    2016-06-02

    In a presynaptic nerve terminal, synaptic strength is determined by the pool of readily releasable vesicles (RRP) and the probability of release (P) of each RRP vesicle. These parameters are controlled at the active zone and vary across synapses, but how such synapse specific control is achieved is not understood. ELKS proteins are enriched at vertebrate active zones and enhance P at inhibitory hippocampal synapses, but ELKS functions at excitatory synapses are not known. Studying conditional knockout mice for ELKS, we find that ELKS enhances the RRP at excitatory synapses without affecting P. Surprisingly, ELKS C-terminal sequences, which interact with RIM, are dispensable for RRP enhancement. Instead, the N-terminal ELKS coiled-coil domains that bind to Liprin-α and Bassoon are necessary to control RRP. Thus, ELKS removal has differential, synapse-specific effects on RRP and P, and our findings establish important roles for ELKS N-terminal domains in synaptic vesicle priming.

  18. Synapse geometry and receptor dynamics modulate synaptic strength.

    Directory of Open Access Journals (Sweden)

    Dominik Freche

    Full Text Available Synaptic transmission relies on several processes, such as the location of a released vesicle, the number and type of receptors, trafficking between the postsynaptic density (PSD and extrasynaptic compartment, as well as the synapse organization. To study the impact of these parameters on excitatory synaptic transmission, we present a computational model for the fast AMPA-receptor mediated synaptic current. We show that in addition to the vesicular release probability, due to variations in their release locations and the AMPAR distribution, the postsynaptic current amplitude has a large variance, making a synapse an intrinsic unreliable device. We use our model to examine our experimental data recorded from CA1 mice hippocampal slices to study the differences between mEPSC and evoked EPSC variance. The synaptic current but not the coefficient of variation is maximal when the active zone where vesicles are released is apposed to the PSD. Moreover, we find that for certain type of synapses, receptor trafficking can affect the magnitude of synaptic depression. Finally, we demonstrate that perisynaptic microdomains located outside the PSD impacts synaptic transmission by regulating the number of desensitized receptors and their trafficking to the PSD. We conclude that geometrical modifications, reorganization of the PSD or perisynaptic microdomains modulate synaptic strength, as the mechanisms underlying long-term plasticity.

  19. Activity-dependent dendritic spine neck changes are correlated with synaptic strength.

    Science.gov (United States)

    Araya, Roberto; Vogels, Tim P; Yuste, Rafael

    2014-07-15

    Most excitatory inputs in the mammalian brain are made on dendritic spines, rather than on dendritic shafts. Spines compartmentalize calcium, and this biochemical isolation can underlie input-specific synaptic plasticity, providing a raison d'etre for spines. However, recent results indicate that the spine can experience a membrane potential different from that in the parent dendrite, as though the spine neck electrically isolated the spine. Here we use two-photon calcium imaging of mouse neocortical pyramidal neurons to analyze the correlation between the morphologies of spines activated under minimal synaptic stimulation and the excitatory postsynaptic potentials they generate. We find that excitatory postsynaptic potential amplitudes are inversely correlated with spine neck lengths. Furthermore, a spike timing-dependent plasticity protocol, in which two-photon glutamate uncaging over a spine is paired with postsynaptic spikes, produces rapid shrinkage of the spine neck and concomitant increases in the amplitude of the evoked spine potentials. Using numerical simulations, we explore the parameter regimes for the spine neck resistance and synaptic conductance changes necessary to explain our observations. Our data, directly correlating synaptic and morphological plasticity, imply that long-necked spines have small or negligible somatic voltage contributions, but that, upon synaptic stimulation paired with postsynaptic activity, they can shorten their necks and increase synaptic efficacy, thus changing the input/output gain of pyramidal neurons.

  20. Distinct forms of synaptic inhibition and neuromodulation regulate calretinin-positive neuron excitability in the spinal cord dorsal horn.

    Science.gov (United States)

    Smith, K M; Boyle, K A; Mustapa, M; Jobling, P; Callister, R J; Hughes, D I; Graham, B A

    2016-06-21

    The dorsal horn (DH) of the spinal cord contains a heterogenous population of neurons that process incoming sensory signals before information ascends to the brain. We have recently characterized calretinin-expressing (CR+) neurons in the DH and shown that they can be divided into excitatory and inhibitory subpopulations. The excitatory population receives high-frequency excitatory synaptic input and expresses delayed firing action potential discharge, whereas the inhibitory population receives weak excitatory drive and exhibits tonic or initial bursting discharge. Here, we characterize inhibitory synaptic input and neuromodulation in the two CR+ populations, in order to determine how each is regulated. We show that excitatory CR+ neurons receive mixed inhibition from GABAergic and glycinergic sources, whereas inhibitory CR+ neurons receive inhibition, which is dominated by glycine. Noradrenaline and serotonin produced robust outward currents in excitatory CR+ neurons, predicting an inhibitory action on these neurons, but neither neuromodulator produced a response in CR+ inhibitory neurons. In contrast, enkephalin (along with selective mu and delta opioid receptor agonists) produced outward currents in inhibitory CR+ neurons, consistent with an inhibitory action but did not affect the excitatory CR+ population. Our findings show that the pharmacology of inhibitory inputs and neuromodulator actions on CR+ cells, along with their excitatory inputs can define these two subpopulations further, and this could be exploited to modulate discrete aspects of sensory processing selectively in the DH.

  1. Structural and functional dynamics of Excitatory Amino Acid Transporters (EAAT

    Directory of Open Access Journals (Sweden)

    Thomas Rauen

    2014-09-01

    Full Text Available Glutamate transporters control the glutamate homeostasis in the central nervous system, and, thus, are not only crucial for physiological excitatory synaptic signaling, but also for the prevention of a large number of neurodegenerative diseases that are associated with excessive and prolonged presence of the neurotransmitter glutamate in the extracellular space. Until now, five subtypes of high-affinity glutamate transporters (excitatory amino acid transporters, EAATs 1–5 have been identified. These 5 high-affinity glutamate transporter subtypes belong to the solute carrier 1 (SLC1 family of transmembrane proteins: EAAT1/GLAST (SLC1A3, EAAT2/GLT1 (SLC1A2, EAAT3/EAAC1 (SLC1A1, EAAT4 (SLC1A6 and EAAT5 (SLC1A7. EAATs are secondary-active transporters, taking up glutamate into the cell against a substantial concentration gradient. The driving force for concentrative uptake is provided by the co-transport of Na+ ions and the counter-transport of one K+ in a step independent of the glutamate translocation step. Due to the electrogenicity of transport, the transmembrane potential can also act as driving force. Glutamate transporters are also able to run in reverse, resulting in glutamate release from cells. Due to these important physiological functions, glutamate transporter expression and, therefore, the transport rate, are tightly regulated. The EAAT protein family are structurally expected to be highly similar, however, these transporters show a functional diversity that ranges from high capacity glutamate uptake systems (EAATs 1–3 to receptor-like glutamate activated anion channels (EAATs 4–5. Here, we provide an update on most recent progress made on EAAT’s molecular transport mechanism, structure-function relationships, pharmacology, and will add recent insights into mechanism of rapid membrane trafficking of glutamate transporters.

  2. Activity-dependent regulation of release probability at excitatory hippocampal synapses: a crucial role of FMRP in neurotransmission

    OpenAIRE

    2014-01-01

    Transcriptional silencing of the Fmr1 gene encoding fragile X mental retardation protein (FMRP) causes Fragile X Syndrome (FXS), the most common form of inherited intellectual disability and the leading genetic cause of autism. FMRP has been suggested to play important roles in regulating neurotransmission and short-term synaptic plasticity at excitatory hippocampal and cortical synapses. However, the origins and the mechanisms of these FMRP actions remain incompletely understood, and the rol...

  3. The effect of STDP temporal kernel structure on the learning dynamics of single excitatory and inhibitory synapses.

    Directory of Open Access Journals (Sweden)

    Yotam Luz

    Full Text Available Spike-Timing Dependent Plasticity (STDP is characterized by a wide range of temporal kernels. However, much of the theoretical work has focused on a specific kernel - the "temporally asymmetric Hebbian" learning rules. Previous studies linked excitatory STDP to positive feedback that can account for the emergence of response selectivity. Inhibitory plasticity was associated with negative feedback that can balance the excitatory and inhibitory inputs. Here we study the possible computational role of the temporal structure of the STDP. We represent the STDP as a superposition of two processes: potentiation and depression. This allows us to model a wide range of experimentally observed STDP kernels, from Hebbian to anti-Hebbian, by varying a single parameter. We investigate STDP dynamics of a single excitatory or inhibitory synapse in purely feed-forward architecture. We derive a mean-field-Fokker-Planck dynamics for the synaptic weight and analyze the effect of STDP structure on the fixed points of the mean field dynamics. We find a phase transition along the Hebbian to anti-Hebbian parameter from a phase that is characterized by a unimodal distribution of the synaptic weight, in which the STDP dynamics is governed by negative feedback, to a phase with positive feedback characterized by a bimodal distribution. The critical point of this transition depends on general properties of the STDP dynamics and not on the fine details. Namely, the dynamics is affected by the pre-post correlations only via a single number that quantifies its overlap with the STDP kernel. We find that by manipulating the STDP temporal kernel, negative feedback can be induced in excitatory synapses and positive feedback in inhibitory. Moreover, there is an exact symmetry between inhibitory and excitatory plasticity, i.e., for every STDP rule of inhibitory synapse there exists an STDP rule for excitatory synapse, such that their dynamics is identical.

  4. Synaptic vesicle endocytosis.

    Science.gov (United States)

    Saheki, Yasunori; De Camilli, Pietro

    2012-09-01

    Neurons can sustain high rates of synaptic transmission without exhausting their supply of synaptic vesicles. This property relies on a highly efficient local endocytic recycling of synaptic vesicle membranes, which can be reused for hundreds, possibly thousands, of exo-endocytic cycles. Morphological, physiological, molecular, and genetic studies over the last four decades have provided insight into the membrane traffic reactions that govern this recycling and its regulation. These studies have shown that synaptic vesicle endocytosis capitalizes on fundamental and general endocytic mechanisms but also involves neuron-specific adaptations of such mechanisms. Thus, investigations of these processes have advanced not only the field of synaptic transmission but also, more generally, the field of endocytosis. This article summarizes current information on synaptic vesicle endocytosis with an emphasis on the underlying molecular mechanisms and with a special focus on clathrin-mediated endocytosis, the predominant pathway of synaptic vesicle protein internalization.

  5. An excitatory GABA loop operating in vivo

    Directory of Open Access Journals (Sweden)

    Guadalupe eAstorga

    2015-07-01

    Full Text Available While it has been proposed that the conventional inhibitory neurotransmitter GABA can be excitatory in the mammalian brain, much remains to be learned concerning the circumstances and the cellular mechanisms governing potential excitatory GABA action. Using a combination of optogenetics and two-photon calcium imaging in vivo, we find that activation of chloride-permeable GABAA receptors in parallel fibers of the cerebellar molecular layer of adult mice causes parallel fiber excitation. Stimulation of parallel fibers at submaximal stimulus intensities leads to GABA release from molecular layer interneurons, thus creating a positive feedback loop that enhances excitation near the center of an activated parallel fiber bundle. Our results imply that elevated chloride concentration can occur in specific intracellular compartments of mature mammalian neurons and suggest an excitatory role for GABAA receptors in the cerebellar cortex of adult mice.

  6. Diurnal rhythms in neurexins transcripts and inhibitory/excitatory synapse scaffold proteins in the biological clock.

    Directory of Open Access Journals (Sweden)

    Mika Shapiro-Reznik

    Full Text Available The neurexin genes (NRXN1/2/3 encode two families (α and β of highly polymorphic presynaptic proteins that are involved in excitatory/inhibitory synaptic balance. Recent studies indicate that neuronal activation and memory formation affect NRXN1/2/3α expression and alternative splicing at splice sites 3 and 4 (SS#3/SS#4. Neurons in the biological clock residing in the suprachiasmatic nuclei of the hypothalamus (SCN act as self-sustained oscillators, generating rhythms in gene expression and electrical activity, to entrain circadian bodily rhythms to the 24 hours day/night cycles. Cell autonomous oscillations in NRXN1/2/3α expression and SS#3/SS#4 exons splicing and their links to rhythms in excitatory/inhibitory synaptic balance in the circadian clock were explored. NRXN1/2/3α expression and SS#3/SS#4 splicing, levels of neurexin-2α and the synaptic scaffolding proteins PSD-95 and gephyrin (representing excitatory and inhibitory synapses, respectively were studied in mRNA and protein extracts obtained from SCN of C3H/J mice at different times of the 24 hours day/night cycle. Further studies explored the circadian oscillations in these components and causality relationships in immortalized rat SCN2.2 cells. Diurnal rhythms in mNRXN1α and mNRXN2α transcription, SS#3/SS#4 exon-inclusion and PSD-95 gephyrin and neurexin-2α levels were found in the SCN in vivo. No such rhythms were found with mNRXN3α. SCN2.2 cells also exhibited autonomous circadian rhythms in rNRXN1/2 expression SS#3/SS#4 exon inclusion and PSD-95, gephyrin and neurexin-2α levels. rNRXN3α and rNRXN1/2β were not expressed. Causal relationships were demonstrated, by use of specific siRNAs, between rNRXN2α SS#3 exon included transcripts and gephyrin levels in the SCN2.2 cells. These results show for the first time dynamic, cell autonomous, diurnal rhythms in expression and splicing of NRXN1/2 and subsequent effects on the expression of neurexin-2α and postsynaptic

  7. Interaction of baseline synaptic noise and Ia EPSPs: evidence for appreciable negative correlation under physiological conditions.

    Science.gov (United States)

    Solodkin, M; Jiménez, I; Collins, W F; Mendell, L M; Rudomin, P

    1991-04-01

    1. In the anesthetized cat, simultaneous intracellular recordings from pairs of spinal motoneurons were undertaken to see whether the amplitude of single-fiber excitatory postsynaptic potentials (EPSPs) in both cells fluctuated in a coordinated manner that would indicate correlative mechanisms at either pre- or post-synaptic level. Although these recordings revealed correlated fluctuations in the baseline, the single-fiber Ia/EPSPs recorded with the spike-triggered averaging technique exhibited no correlated fluctuations and, unexpectedly, virtually no increase in baseline variance associated with the EPSP. However, the fact that these experiments were carried out under conditions of high baseline synaptic noise (i.e., with muscle stretch) may have influenced the outcome because of interaction between EPSP and synaptic noise, and this possibility was evaluated explicitly. 2. A given connection was studied under low noise by electrically stimulating a single Ia fiber in the absence of muscle stretch. The same connection was analyzed under conditions of high noise by activating the fiber and all other stretch receptor afferents with muscle stretch and by using spike-triggered averaging to extract the EPSP. The differences in mean EPSP amplitude at a given connection under conditions of low noise and high noise were minimal. 3. Fluctuations in EPSP amplitude were then determined to see whether these were influenced by presence of baseline synaptic noise and whether the interaction was nonlinear. Two methods were used to measure EPSP fluctuations: measurement of the variance associated with the EPSP, and determination by the use of deconvolution methods of the discrete amplitude components associated with the EPSP. 4. An increase in baseline variance was observed during the EPSP evoked under low noise conditions at all six connections studied in this way. This increase disappeared at two of these connections when examined under high noise. This may help to explain the

  8. Trophic factor-induced excitatory synaptogenesis involves postsynaptic modulation of nicotinic acetylcholine receptors.

    Science.gov (United States)

    Woodin, Melanie A; Munno, David W; Syed, Naweed I

    2002-01-15

    Neurotrophic factors have well established roles in neuronal development, although their precise involvement in synapse formation and plasticity is yet to be fully determined. Using soma-soma synapses between identified Lymnaea neurons, we have shown recently that trophic factors are required for excitatory but not inhibitory synapse formation. However, neither the precise site (presynaptic versus postsynaptic cell) nor the underlying mechanisms have yet been defined. In the present study, synapse formation between the presynaptic cell visceral dorsal 4 (VD4) and its postsynaptic partner right pedal dorsal 1 (RPeD1) was examined to define the cellular mechanisms mediating trophic factor-induced excitatory synaptogenesis in cell culture. When paired in a soma-soma configuration in the presence of defined media (DM, nonproteinacious), mutually inhibitory synapses were appropriately reconstructed between VD4 and RPeD1. However, when cells were paired in the presence of increasing concentrations of Lymnaea brain-conditioned medium (CM), a biphasic synapse (initial excitatory synaptic component followed by inhibition) developed. The CM-induced excitatory synapse formation required trophic factor-mediated activation of receptor tyrosine kinases in the postsynaptic cell, RPeD1, and a concomitant modulation of existing postsynaptic nicotinic acetylcholine receptors (nAChRs). Specifically, when RPeD1 was isolated in DM, exogenously applied ACh induced a hyperpolarizing response that was sensitive to the AChR antagonist methyllycaconitine (MLA). In contrast, a single RPeD1 isolated in CM exhibited a biphasic response to exogenously applied ACh. The initial depolarizing phase of the biphasic response was sensitive to both mecamylamine and hexamethonium chloride, whereas the hyperpolarizing phase was blocked by MLA. In soma-soma-paired neurons, the VD4-induced synaptic responses in RPeD1 were sensitive to the cholinergic antagonists in a concentration range similar to that

  9. Bilinearity in spatiotemporal integration of synaptic inputs.

    Directory of Open Access Journals (Sweden)

    Songting Li

    2014-12-01

    Full Text Available Neurons process information via integration of synaptic inputs from dendrites. Many experimental results demonstrate dendritic integration could be highly nonlinear, yet few theoretical analyses have been performed to obtain a precise quantitative characterization analytically. Based on asymptotic analysis of a two-compartment passive cable model, given a pair of time-dependent synaptic conductance inputs, we derive a bilinear spatiotemporal dendritic integration rule. The summed somatic potential can be well approximated by the linear summation of the two postsynaptic potentials elicited separately, plus a third additional bilinear term proportional to their product with a proportionality coefficient [Formula: see text]. The rule is valid for a pair of synaptic inputs of all types, including excitation-inhibition, excitation-excitation, and inhibition-inhibition. In addition, the rule is valid during the whole dendritic integration process for a pair of synaptic inputs with arbitrary input time differences and input locations. The coefficient [Formula: see text] is demonstrated to be nearly independent of the input strengths but is dependent on input times and input locations. This rule is then verified through simulation of a realistic pyramidal neuron model and in electrophysiological experiments of rat hippocampal CA1 neurons. The rule is further generalized to describe the spatiotemporal dendritic integration of multiple excitatory and inhibitory synaptic inputs. The integration of multiple inputs can be decomposed into the sum of all possible pairwise integration, where each paired integration obeys the bilinear rule. This decomposition leads to a graph representation of dendritic integration, which can be viewed as functionally sparse.

  10. Implementing dynamic clamp with synaptic and artificial conductances in mouse retinal ganglion cells.

    Science.gov (United States)

    Huang, Jin Y; Stiefel, Klaus M; Protti, Dario A

    2013-05-16

    Ganglion cells are the output neurons of the retina and their activity reflects the integration of multiple synaptic inputs arising from specific neural circuits. Patch clamp techniques, in voltage clamp and current clamp configurations, are commonly used to study the physiological properties of neurons and to characterize their synaptic inputs. Although the application of these techniques is highly informative, they pose various limitations. For example, it is difficult to quantify how the precise interactions of excitatory and inhibitory inputs determine response output. To address this issue, we used a modified current clamp technique, dynamic clamp, also called conductance clamp (1, 2, 3) and examined the impact of excitatory and inhibitory synaptic inputs on neuronal excitability. This technique requires the injection of current into the cell and is dependent on the real-time feedback of its membrane potential at that time. The injected current is calculated from predetermined excitatory and inhibitory synaptic conductances, their reversal potentials and the cell's instantaneous membrane potential. Details on the experimental procedures, patch clamping cells to achieve a whole-cell configuration and employment of the dynamic clamp technique are illustrated in this video article. Here, we show the responses of mouse retinal ganglion cells to various conductance waveforms obtained from physiological experiments in control conditions or in the presence of drugs. Furthermore, we show the use of artificial excitatory and inhibitory conductances generated using alpha functions to investigate the responses of the cells.

  11. Cationic influences upon synaptic transmission at the hair cell-afferent fiber synapse of the frog

    Science.gov (United States)

    Cochran, S. L.

    1995-01-01

    The concentrations of inorganic cations (K+, Na+, and Ca2+) bathing the isolated frog labyrinth were varied in order to assess their role in influencing and mediating synaptic transmission at the hair cell-afferent fiber synapse. Experiments employed intracellular recordings of synaptic activity from VIIIth nerve afferents. Recordings were digitized continuously at 50 kHz, and excitatory postsynaptic potentials were detected and parameters quantified by computer algorithms. Particular attention was focused on cationic effects upon excitatory postsynaptic potential frequency of occurrence and excitatory postsynaptic potential amplitude, in order to discriminate between pre- and postsynaptic actions. Because the small size of afferents preclude long term stable recordings, alterations in cationic concentrations were applied transiently and their peak effects on synaptic activity were assessed. Increases in extracellular K+ concentration of a few millimolar produced a large increase in the frequency of occurrence of excitatory postsynaptic potentials with little change in amplitude, indicating that release of transmitter from the hair cell is tightly coupled to its membrane potential. Increasing extracellular Na+ concentration resulted in an increase in excitatory postsynaptic potential amplitude with no significant change in excitatory postsynaptic potential frequency of occurrence, suggesting that the transmitter-gated subsynaptic channel conducts Na+ ions. Decreases in extracellular Ca2+ concentration had little effect upon excitatory postsynaptic potential frequency, but increased excitatory postsynaptic potential frequency and amplitude. These findings suggest that at higher concentrations Ca2+ act presynaptically to prevent transmitter release and postsynaptically to prevent Na+ influx during the generation of the excitatory postsynaptic potential. The influences of these ions on synaptic activity at this synapse are remarkably similar to those reported at the

  12. Synaptic potentials in locus coeruleus neurons in brain slices.

    Science.gov (United States)

    Williams, J T; Bobker, D H; Harris, G C

    1991-01-01

    Neurons of the locus coeruleus (LC) fire action potentials spontaneously in vitro in the absence of any stimulation. This spontaneous activity is thought to arise from intrinsic membrane properties that include a balance between at least two ion conductances. One is a persistent inward sodium current that is active near the threshold for action potential generation. The second is a calcium-dependent potassium current that is activated following the entry of calcium during the action potential, is responsible for the after-hyperpolarization following the action potential, and decays over a period of 1-2 sec following the action potential. The spontaneous activity of LC neurons can be altered by both excitatory and inhibitory synaptic inputs. One excitatory input has been described that is mediated by glutamate receptors of both the non-NMDA and NMDA subtypes. Inhibitory synaptic potentials include those mediated by GABA (acting on GABAA-receptors), glycine (acting on a strychnine-sensitive receptor) and noradrenaline (acting on alpha 2-adrenoceptors). The presence of synaptic potentials mediated by these transmitters, studied in vitro, correlate with studies made in vivo and with histochemical identification of synaptic inputs to the locus coeruleus.

  13. Heterogeneous reallocation of presynaptic efficacy in recurrent excitatory circuits adapting to inactivity.

    Science.gov (United States)

    Mitra, Ananya; Mitra, Siddhartha S; Tsien, Richard W

    2011-12-18

    Recurrent excitatory circuits face extreme challenges in balancing efficacy and stability. We recorded from CA3 pyramidal neuron pairs in rat hippocampal slice cultures to characterize synaptic and circuit-level changes in recurrent synapses resulting from long-term inactivity. Chronic tetrodotoxin treatment greatly reduced the percentage of connected CA3-CA3 neurons, but enhanced the strength of the remaining connections; presynaptic release probability sharply increased, whereas quantal size was unaltered. Connectivity was decreased in activity-deprived circuits by functional silencing of synapses, whereas three-dimensional anatomical analysis revealed no change in spine or bouton density or aggregate dendrite length. The silencing arose from enhanced Cdk5 activity and could be reverted by acute Cdk5 inhibition with roscovitine. Our results suggest that recurrent circuits adapt to chronic inactivity by reallocating presynaptic weights heterogeneously, strengthening certain connections while silencing others. This restricts synaptic output and input, preserving signaling efficacy among a subset of neuronal ensembles while protecting network stability.

  14. A synaptically controlled, associative signal for Hebbian plasticity in hippocampal neurons.

    Science.gov (United States)

    Magee, J C; Johnston, D

    1997-01-10

    The role of back-propagating dendritic action potentials in the induction of long-term potentiation (LTP) was investigated in CA1 neurons by means of dendritic patch recordings and simultaneous calcium imaging. Pairing of subthreshold excitatory postsynaptic potentials (EPSPs) with back-propagating action potentials resulted in an amplification of dendritic action potentials and evoked calcium influx near the site of synaptic input. This pairing also induced a robust LTP, which was reduced when EPSPs were paired with non-back-propagating action potentials or when stimuli were unpaired. Action potentials thus provide a synaptically controlled, associative signal to the dendrites for Hebbian modifications of synaptic strength.

  15. Loss of predominant Shank3 isoforms results in hippocampus-dependent impairments in behavior and synaptic transmission.

    Science.gov (United States)

    Kouser, Mehreen; Speed, Haley E; Dewey, Colleen M; Reimers, Jeremy M; Widman, Allie J; Gupta, Natasha; Liu, Shunan; Jaramillo, Thomas C; Bangash, Muhammad; Xiao, Bo; Worley, Paul F; Powell, Craig M

    2013-11-20

    The Shank3 gene encodes a scaffolding protein that anchors multiple elements of the postsynaptic density at the synapse. Previous attempts to delete the Shank3 gene have not resulted in a complete loss of the predominant naturally occurring Shank3 isoforms. We have now characterized a homozygous Shank3 mutation in mice that deletes exon 21, including the Homer binding domain. In the homozygous state, deletion of exon 21 results in loss of the major naturally occurring Shank3 protein bands detected by C-terminal and N-terminal antibodies, allowing us to more definitively examine the role of Shank3 in synaptic function and behavior. This loss of Shank3 leads to an increased localization of mGluR5 to both synaptosome and postsynaptic density-enriched fractions in the hippocampus. These mice exhibit a decrease in NMDA/AMPA excitatory postsynaptic current ratio in area CA1 of the hippocampus, reduced long-term potentiation in area CA1, and deficits in hippocampus-dependent spatial learning and memory. In addition, these mice also exhibit motor-coordination deficits, hypersensitivity to heat, novelty avoidance, altered locomotor response to novelty, and minimal social abnormalities. These data suggest that Shank3 isoforms are required for normal synaptic transmission/plasticity in the hippocampus, as well as hippocampus-dependent spatial learning and memory.

  16. Balanced synaptic input shapes the correlation between neural spike trains.

    Science.gov (United States)

    Litwin-Kumar, Ashok; Oswald, Anne-Marie M; Urban, Nathaniel N; Doiron, Brent

    2011-12-01

    Stimulus properties, attention, and behavioral context influence correlations between the spike times produced by a pair of neurons. However, the biophysical mechanisms that modulate these correlations are poorly understood. With a combined theoretical and experimental approach, we show that the rate of balanced excitatory and inhibitory synaptic input modulates the magnitude and timescale of pairwise spike train correlation. High rate synaptic inputs promote spike time synchrony rather than long timescale spike rate correlations, while low rate synaptic inputs produce opposite results. This correlation shaping is due to a combination of enhanced high frequency input transfer and reduced firing rate gain in the high input rate state compared to the low state. Our study extends neural modulation from single neuron responses to population activity, a necessary step in understanding how the dynamics and processing of neural activity change across distinct brain states.

  17. Balanced synaptic input shapes the correlation between neural spike trains.

    Directory of Open Access Journals (Sweden)

    Ashok Litwin-Kumar

    2011-12-01

    Full Text Available Stimulus properties, attention, and behavioral context influence correlations between the spike times produced by a pair of neurons. However, the biophysical mechanisms that modulate these correlations are poorly understood. With a combined theoretical and experimental approach, we show that the rate of balanced excitatory and inhibitory synaptic input modulates the magnitude and timescale of pairwise spike train correlation. High rate synaptic inputs promote spike time synchrony rather than long timescale spike rate correlations, while low rate synaptic inputs produce opposite results. This correlation shaping is due to a combination of enhanced high frequency input transfer and reduced firing rate gain in the high input rate state compared to the low state. Our study extends neural modulation from single neuron responses to population activity, a necessary step in understanding how the dynamics and processing of neural activity change across distinct brain states.

  18. Endocannabinoids and synaptic function in the CNS.

    Science.gov (United States)

    Hashimotodani, Yuki; Ohno-Shosaku, Takako; Kano, Masanobu

    2007-04-01

    Marijuana affects neural functions through the binding of its active component (Delta(9)-THC) to cannabinoid receptors in the CNS. Recent studies have elucidated that endogenous ligands for cannabinoid receptors, endocannabinoids, serve as retrograde messengers at central synapses. Endocannabinoids are produced on demand in activity-dependent manners and released from postsynaptic neurons. The released endocannabinoids travel backward across the synapse, activate presynaptic CB1 cannabinoid receptors, and modulate presynaptic functions. Retrograde endocannabinoid signaling is crucial for certain forms of short-term and long-term synaptic plasticity at excitatory or inhibitory synapses in many brain regions, and thereby contributes to various aspects of brain function including learning and memory. Molecular identities of the CB1 receptor and enzymes involved in production and degradation of endocannabinoids have been elucidated. Anatomical studies have demonstrated unique distributions of these molecules around synapses, which provide morphological bases for the roles of endocannabinoids as retrograde messengers. CB1-knockout mice exhibit various behavioral abnormalities and multiple defects in synaptic plasticity, supporting the notion that endocannabinoid signaling is involved in various aspects of neural function. In this review article, the authors describe molecular mechanisms of the endocannabinoid-mediated synaptic modulation and its possible physiological significance.

  19. Network Self-Organization Explains the Statistics and Dynamics of Synaptic Connection Strengths in Cortex

    Science.gov (United States)

    Zheng, Pengsheng; Dimitrakakis, Christos; Triesch, Jochen

    2013-01-01

    The information processing abilities of neural circuits arise from their synaptic connection patterns. Understanding the laws governing these connectivity patterns is essential for understanding brain function. The overall distribution of synaptic strengths of local excitatory connections in cortex and hippocampus is long-tailed, exhibiting a small number of synaptic connections of very large efficacy. At the same time, new synaptic connections are constantly being created and individual synaptic connection strengths show substantial fluctuations across time. It remains unclear through what mechanisms these properties of neural circuits arise and how they contribute to learning and memory. In this study we show that fundamental characteristics of excitatory synaptic connections in cortex and hippocampus can be explained as a consequence of self-organization in a recurrent network combining spike-timing-dependent plasticity (STDP), structural plasticity and different forms of homeostatic plasticity. In the network, associative synaptic plasticity in the form of STDP induces a rich-get-richer dynamics among synapses, while homeostatic mechanisms induce competition. Under distinctly different initial conditions, the ensuing self-organization produces long-tailed synaptic strength distributions matching experimental findings. We show that this self-organization can take place with a purely additive STDP mechanism and that multiplicative weight dynamics emerge as a consequence of network interactions. The observed patterns of fluctuation of synaptic strengths, including elimination and generation of synaptic connections and long-term persistence of strong connections, are consistent with the dynamics of dendritic spines found in rat hippocampus. Beyond this, the model predicts an approximately power-law scaling of the lifetimes of newly established synaptic connection strengths during development. Our results suggest that the combined action of multiple forms of

  20. Principal component analysis of minimal excitatory postsynaptic potentials.

    Science.gov (United States)

    Astrelin, A V; Sokolov, M V; Behnisch, T; Reymann, K G; Voronin, L L

    1998-02-20

    'Minimal' excitatory postsynaptic potentials (EPSPs) are often recorded from central neurones, specifically for quantal analysis. However the EPSPs may emerge from activation of several fibres or transmission sites so that formal quantal analysis may give false results. Here we extended application of the principal component analysis (PCA) to minimal EPSPs. We tested a PCA algorithm and a new graphical 'alignment' procedure against both simulated data and hippocampal EPSPs. Minimal EPSPs were recorded before and up to 3.5 h following induction of long-term potentiation (LTP) in CA1 neurones. In 29 out of 45 EPSPs, two (N=22) or three (N=7) components were detected which differed in latencies, rise time (Trise) or both. The detected differences ranged from 0.6 to 7.8 ms for the latency and from 1.6-9 ms for Trise. Different components behaved differently following LTP induction. Cases were found when one component was potentiated immediately after tetanus whereas the other with a delay of 15-60 min. The immediately potentiated component could decline in 1-2 h so that the two components contributed differently into early (reflections of synchronized quantal releases. In general, the results demonstrate PCA applicability to separate EPSPs into different components and its usefulness for precise analysis of synaptic transmission.

  1. EIGENVALUE FUNCTIONS IN EXCITATORY-INHIBITORY NEURONAL NETWORKS

    Institute of Scientific and Technical Information of China (English)

    Zhang Linghai

    2004-01-01

    We study the exponential stability of traveling wave solutions of nonlinear systems of integral differential equations arising from nonlinear, nonlocal, synaptically coupled, excitatory-inhibitory neuronal networks. We have proved that exponential stability of traveling waves is equivalent to linear stability. Moreover, if the real parts of nonzero spectrum of an associated linear differential operator have a uniform negative upper bound, namely, max{Reλ: λ∈σ(L), λ≠ 0} ≤ -D, for some positive constant D, and λ = 0 is an algebraically simple eigenvalue of , then the linear stability follows, where is the linear differential operator obtained by linearizing the nonlinear system about its traveling wave and σ(L) denotes the spectrum of . The main aim of this paper is to construct complex analytic functions (also called eigenvalue or Evans functions) for exploring eigenvalues of linear differential operators to study the exponential stability of traveling waves. The zeros of the eigenvalue functions coincide with the eigenvalues of(L) .When studying multipulse solutions, some components of the traveling waves cross their thresholds for many times. These crossings cause great difficulty in the construction of the eigenvalue functions. In particular, we have to solve an over-determined system to construct the eigenvalue functions. By investigating asymptotic behaviors as z → -co of candidates for eigenfunctions, we find a way to construct the eigenvalue functions.By analyzing the zeros of the eigenvalue functions, we can establish the exponential stability of traveling waves arising from neuronal networks.

  2. Synaptic ultrastructure changes in trigeminocervical complex posttrigeminal nerve injury.

    Science.gov (United States)

    Park, John; Trinh, Van Nancy; Sears-Kraxberger, Ilse; Li, Kang-Wu; Steward, Oswald; Luo, Z David

    2016-02-01

    Trigeminal nerves collecting sensory information from the orofacial area synapse on second-order neurons in the dorsal horn of subnucleus caudalis and cervical C1/C2 spinal cord (Vc/C2, or trigeminocervical complex), which is critical for sensory information processing. Injury to the trigeminal nerves may cause maladaptive changes in synaptic connectivity that plays an important role in chronic pain development. Here we examined whether injury to the infraorbital nerve, a branch of the trigeminal nerves, led to synaptic ultrastructural changes when the injured animals have developed neuropathic pain states. Transmission electron microscopy was used to examine synaptic profiles in Vc/C2 at 3 weeks postinjury, corresponding to the time of peak behavioral hypersensitivity following chronic constriction injury to the infraorbital nerve (CCI-ION). Using established criteria, synaptic profiles were classified as associated with excitatory (R-), inhibitory (F-), and primary afferent (C-) terminals. Each type was counted within the superficial dorsal horn of the Vc/C2 and the means from each rat were compared between sham and injured animals; synaptic contact length was also measured. The overall analysis indicates that rats with orofacial pain states had increased numbers and decreased mean synaptic length of R-profiles within the Vc/C2 superficial dorsal horn (lamina I) 3 weeks post-CCI-ION. Increases in the number of excitatory synapses in the superficial dorsal horn of Vc/C2 could lead to enhanced activation of nociceptive pathways, contributing to the development of orofacial pain states. © 2015 Wiley Periodicals, Inc.

  3. Emergence of Functional Specificity in Balanced Networks with Synaptic Plasticity.

    Directory of Open Access Journals (Sweden)

    Sadra Sadeh

    2015-06-01

    Full Text Available In rodent visual cortex, synaptic connections between orientation-selective neurons are unspecific at the time of eye opening, and become to some degree functionally specific only later during development. An explanation for this two-stage process was proposed in terms of Hebbian plasticity based on visual experience that would eventually enhance connections between neurons with similar response features. For this to work, however, two conditions must be satisfied: First, orientation selective neuronal responses must exist before specific recurrent synaptic connections can be established. Second, Hebbian learning must be compatible with the recurrent network dynamics contributing to orientation selectivity, and the resulting specific connectivity must remain stable for unspecific background activity. Previous studies have mainly focused on very simple models, where the receptive fields of neurons were essentially determined by feedforward mechanisms, and where the recurrent network was small, lacking the complex recurrent dynamics of large-scale networks of excitatory and inhibitory neurons. Here we studied the emergence of functionally specific connectivity in large-scale recurrent networks with synaptic plasticity. Our results show that balanced random networks, which already exhibit highly selective responses at eye opening, can develop feature-specific connectivity if appropriate rules of synaptic plasticity are invoked within and between excitatory and inhibitory populations. If these conditions are met, the initial orientation selectivity guides the process of Hebbian learning and, as a result, functionally specific and a surplus of bidirectional connections emerge. Our results thus demonstrate the cooperation of synaptic plasticity and recurrent dynamics in large-scale functional networks with realistic receptive fields, highlight the role of inhibition as a critical element in this process, and paves the road for further computational

  4. Phosphorylation of AMPA receptors is required for sensory deprivation-induced homeostatic synaptic plasticity.

    Directory of Open Access Journals (Sweden)

    Anubhuti Goel

    Full Text Available Sensory experience, and the lack thereof, can alter the function of excitatory synapses in the primary sensory cortices. Recent evidence suggests that changes in sensory experience can regulate the synaptic level of Ca(2+-permeable AMPA receptors (CP-AMPARs. However, the molecular mechanisms underlying such a process have not been determined. We found that binocular visual deprivation, which is a well-established in vivo model to produce multiplicative synaptic scaling in visual cortex of juvenile rodents, is accompanied by an increase in the phosphorylation of AMPAR GluR1 (or GluA1 subunit at the serine 845 (S845 site and the appearance of CP-AMPARs at synapses. To address the role of GluR1-S845 in visual deprivation-induced homeostatic synaptic plasticity, we used mice lacking key phosphorylation sites on the GluR1 subunit. We found that mice specifically lacking the GluR1-S845 site (GluR1-S845A mutants, which is a substrate of cAMP-dependent kinase (PKA, show abnormal basal excitatory synaptic transmission and lack visual deprivation-induced homeostatic synaptic plasticity. We also found evidence that increasing GluR1-S845 phosphorylation alone is not sufficient to produce normal multiplicative synaptic scaling. Our study provides concrete evidence that a GluR1 dependent mechanism, especially S845 phosphorylation, is a necessary pre-requisite step for in vivo homeostatic synaptic plasticity.

  5. Phosphorylation of AMPA receptors is required for sensory deprivation-induced homeostatic synaptic plasticity.

    Science.gov (United States)

    Goel, Anubhuti; Xu, Linda W; Snyder, Kevin P; Song, Lihua; Goenaga-Vazquez, Yamila; Megill, Andrea; Takamiya, Kogo; Huganir, Richard L; Lee, Hey-Kyoung

    2011-03-31

    Sensory experience, and the lack thereof, can alter the function of excitatory synapses in the primary sensory cortices. Recent evidence suggests that changes in sensory experience can regulate the synaptic level of Ca(2+)-permeable AMPA receptors (CP-AMPARs). However, the molecular mechanisms underlying such a process have not been determined. We found that binocular visual deprivation, which is a well-established in vivo model to produce multiplicative synaptic scaling in visual cortex of juvenile rodents, is accompanied by an increase in the phosphorylation of AMPAR GluR1 (or GluA1) subunit at the serine 845 (S845) site and the appearance of CP-AMPARs at synapses. To address the role of GluR1-S845 in visual deprivation-induced homeostatic synaptic plasticity, we used mice lacking key phosphorylation sites on the GluR1 subunit. We found that mice specifically lacking the GluR1-S845 site (GluR1-S845A mutants), which is a substrate of cAMP-dependent kinase (PKA), show abnormal basal excitatory synaptic transmission and lack visual deprivation-induced homeostatic synaptic plasticity. We also found evidence that increasing GluR1-S845 phosphorylation alone is not sufficient to produce normal multiplicative synaptic scaling. Our study provides concrete evidence that a GluR1 dependent mechanism, especially S845 phosphorylation, is a necessary pre-requisite step for in vivo homeostatic synaptic plasticity.

  6. Plasticity of inhibitory synaptic network interactions in the lateral amygdala upon fear conditioning in mice.

    Science.gov (United States)

    Szinyei, Csaba; Narayanan, Rajeevan T; Pape, Hans-Christian

    2007-02-01

    After fear conditioning, plastic changes of excitatory synaptic transmission occur in the amygdala. Fear-related memory also involves the GABAergic system, although no influence on inhibitory synaptic transmission is known. In the present study we assessed the influence of Pavlovian fear conditioning on the plasticity of GABAergic synaptic interactions in the lateral amygdala (LA) in brain slices prepared from fear-conditioned, pseudo-trained and naïve adult mice. Theta-burst tetanization of thalamic afferent inputs to the LA evoked an input-specific potentiation of inhibitory postsynaptic responses in projection neurons; the cortical input was unaffected. Philanthotoxin (10 microM), an antagonist of Ca2+-permeable AMPA receptors, disabled this plastic phenomenon. Surgical isolation of the LA, extracellular application of a GABA(B) receptor antagonist (CGP 55845A, 10 microM) or an NMDA receptor antagonist (APV, 50 microM), or intracellular application of BAPTA (10 mM), did not influence the plasticity. The plasticity also showed as a potentiation of monosynaptic excitatory responses in putative GABAergic interneurons. Pavlovian fear conditioning, but not pseudo-conditioning, resulted in a significant reduction in this potentiation that was evident 24 h after training. Two weeks after training, the potentiation returned to control levels. In conclusion, a reduction in potentiation of inhibitory synaptic interactions occurs in the LA and may contribute to a shift in synaptic balance towards excitatory signal flow during the processes of fear-memory acquisition or consolidation.

  7. Synaptic Plasticity, Dementia and Alzheimer Disease.

    Science.gov (United States)

    Skaper, Stephen D; Facci, Laura; Zusso, Morena; Giusti, Pietro

    2017-01-13

    Neuroplasticity is not only shaped by learning and memory but is also a mediator of responses to neuron attrition and injury (compensatory plasticity). As an ongoing process it reacts to neuronal cell activity and injury, death, and genesis, which encompasses the modulation of structural and functional processes of axons, dendrites, and synapses. The range of structural elements that comprise plasticity includes long-term potentiation (a cellular correlate of learning and memory), synaptic efficacy and remodelling, synaptogenesis, axonal sprouting and dendritic remodelling, and neurogenesis and recruitment. Degenerative diseases of the human brain continue to pose one of biomedicine's most intractable problems. Research on human neurodegeneration is now moving from descriptive to mechanistic analyses. At the same time, it is increasing apparent that morphological lesions traditionally used by neuropathologists to confirm post-mortem clinical diagnosis might furnish us with an experimentally tractable handle to understand causative pathways. Consider the aging-dependent neurodegenerative disorder Alzheimer's disease (AD) which is characterised at the neuropathological level by deposits of insoluble amyloid b-peptide (Ab) in extracellular plaques and aggregated tau protein, which is found largely in the intracellular neurofibrillary tangles. We now appreciate that mild cognitive impairment in early AD may be due to synaptic dysfunction caused by accumulation of non-fibrillar, oligomeric Ab, occurring well in advance of evident widespread synaptic loss and neurodegeneration. Soluble Ab oligomers can adversely affect synaptic structure and plasticity at extremely low concentrations, although the molecular substrates by which synaptic memory mechanisms are disrupted remain to be fully elucidated. The dendritic spine constitutes a primary locus of excitatory synaptic transmission in the mammalian central nervous system. These structures protruding from dendritic shafts

  8. Bidirectional Synaptic Structural Plasticity after Chronic Cocaine Administration Occurs through Rap1 Small GTPase Signaling.

    Science.gov (United States)

    Cahill, Michael E; Bagot, Rosemary C; Gancarz, Amy M; Walker, Deena M; Sun, HaoSheng; Wang, Zi-Jun; Heller, Elizabeth A; Feng, Jian; Kennedy, Pamela J; Koo, Ja Wook; Cates, Hannah M; Neve, Rachael L; Shen, Li; Dietz, David M; Nestler, Eric J

    2016-02-03

    Dendritic spines are the sites of most excitatory synapses in the CNS, and opposing alterations in the synaptic structure of medium spiny neurons (MSNs) of the nucleus accumbens (NAc), a primary brain reward region, are seen at early versus late time points after cocaine administration. Here we investigate the time-dependent molecular and biochemical processes that regulate this bidirectional synaptic structural plasticity of NAc MSNs and associated changes in cocaine reward in response to chronic cocaine exposure. Our findings reveal key roles for the bidirectional synaptic expression of the Rap1b small GTPase and an associated local synaptic protein translation network in this process. The transcriptional mechanisms and pathway-specific inputs to NAc that regulate Rap1b expression are also characterized. Collectively, these findings provide a precise mechanism by which nuclear to synaptic interactions induce "metaplasticity" in NAc MSNs, and we reveal the specific effects of this plasticity on reward behavior in a brain circuit-specific manner.

  9. Characterization and Modeling of Nonfilamentary Ta/TaOx/TiO2/Ti Analog Synaptic Device.

    Science.gov (United States)

    Wang, Yu-Fen; Lin, Yen-Chuan; Wang, I-Ting; Lin, Tzu-Ping; Hou, Tuo-Hung

    2015-05-08

    A two-terminal analog synaptic device that precisely emulates biological synaptic features is expected to be a critical component for future hardware-based neuromorphic computing. Typical synaptic devices based on filamentary resistive switching face severe limitations on the implementation of concurrent inhibitory and excitatory synapses with low conductance and state fluctuation. For overcoming these limitations, we propose a Ta/TaOx/TiO2/Ti device with superior analog synaptic features. A physical simulation based on the homogeneous (nonfilamentary) barrier modulation induced by oxygen ion migration accurately reproduces various DC and AC evolutions of synaptic states, including the spike-timing-dependent plasticity and paired-pulse facilitation. Furthermore, a physics-based compact model for facilitating circuit-level design is proposed on the basis of the general definition of memristor devices. This comprehensive experimental and theoretical study of the promising electronic synapse can facilitate realizing large-scale neuromorphic systems.

  10. New players tip the scales in the balance between excitatory and inhibitory synapses

    Directory of Open Access Journals (Sweden)

    El-Husseini Alaa

    2005-03-01

    Full Text Available Abstract Synaptogenesis is a highly controlled process, involving a vast array of players which include cell adhesion molecules, scaffolding and signaling proteins, neurotransmitter receptors and proteins associated with the synaptic vesicle machinery. These molecules cooperate in an intricate manner on both the pre- and postsynaptic sides to orchestrate the precise assembly of neuronal contacts. This is an amazing feat considering that a single neuron receives tens of thousands of synaptic inputs but virtually no mismatch between pre- and postsynaptic components occur in vivo. One crucial aspect of synapse formation is whether a nascent synapse will develop into an excitatory or inhibitory contact. The tight control of a balance between the types of synapses formed regulates the overall neuronal excitability, and is thus critical for normal brain function and plasticity. However, little is known about how this balance is achieved. This review discusses recent findings which provide clues to how neurons may control excitatory and inhibitory synapse formation, with focus on the involvement of the neuroligin family and PSD-95 in this process.

  11. Post-tetanic potentiation, habituation and facilitation of synaptic potentials in reticulospinal neurones of lamprey.

    Science.gov (United States)

    Wickelgren, W O

    1977-08-01

    1. Synaptic potentials evoked by electrical stimulation of cranial nerves were recorded in giant reticulospinal neurones (Müller cells) of lamprey. A variety of patterns of stimulation was employed to explore further the functional properties of the pathways intervening between the cranial nerve fibres and Müller cells.2. Simultaneous low intensity stimulation of two different cranial nerves produced excitatory short-latency synaptic potentials whose amplitudes summed linearly.3. Tetanic (10/sec) stimulation of a cranial nerve depressed the evoked short-latency synaptic response, but following the tetanus the synaptic response was potentiated above control amplitude for several minutes. Tetanic stimulation of one cranial nerve had no effect upon the synaptic responses evoked by stimulation of other cranial nerves.4. Low-frequency stimulation (1/sec to 1/20 sec) of a cranial nerve produced a progressive decrease in the amplitude of the evoked short-latency synaptic response. This phenomenon was termed synaptic habituation because its characteristics were functionally similar to behavioural habituation in animals.5. Habituation of the synaptic response to stimulation of one cranial nerve had no effect on the synaptic responses produced by stimulation of other cranial nerves.6. Synaptic afterdischarges lasting from several seconds to several minutes were recorded in Müller cells. They occurred both spontaneously and in response to strong electrical stimulation of cranial nerves. For several minutes following an afterdischarge the amplitudes of short-latency synaptic potentials produced by stimulation of any one of the cranial nerves were increased as much as twofold. This facilitation occurred equally well whether the short-latency synaptic responses had been habituated or not.7. A theoretical cell-wiring diagram is proposed to account for the properties of short-latency evoked synaptic responses and synaptic afterdischarges and for the facilitation of short

  12. AIDA-1 Moves out of the Postsynaptic Density Core under Excitatory Conditions.

    Directory of Open Access Journals (Sweden)

    Ayse Dosemeci

    Full Text Available AIDA-1 is highly enriched in postsynaptic density (PSD fractions and is considered a major component of the PSD complex. In the present study, immunogold electron microscopy was applied to determine localization as well as the activity-induced redistribution of AIDA-1 at the PSD using two antibodies that recognize two different epitopes. In cultured rat hippocampal neurons under basal conditions, immunogold label for AIDA-1 is mostly located within the dense core of the PSD, with a median distance of ~30 nm from the postsynaptic membrane. Under excitatory conditions, such as depolarization with high K+ (90 mM, 2 min or application of NMDA (50 μM, 2 min, AIDA-1 label density at the PSD core is reduced to 40% of controls and the median distance of label from the postsynaptic membrane increases to ~55 nm. The effect of excitatory conditions on the postsynaptic distribution of AIDA-1 is reversed within 30 minutes after returning to control conditions. The reversible removal of AIDA-1 from the PSD core under excitatory conditions is similar to the redistribution of another abundant PSD protein, SynGAP. Both SynGAP-alpha1 and AIDA-1 are known to bind PSD-95. Activity-induced transient translocation of these abundant proteins from the PSD core could promote structural flexibility, vacate sites on PSD-95 for the insertion of other components and thus may create a window for synaptic modification.

  13. Propofol facilitated excitatory postsynaptic currents frequency on nucleus tractus solitarii (NTS) neurons.

    Science.gov (United States)

    Jin, Zhenhua; Choi, Myung-Jin; Park, Cheung-Seog; Park, Young Seek; Jin, Young-Ho

    2012-01-13

    Propofol, an intravenous anesthetic, is broadly used for general anesthesia and diagnostic sedations due to its fast onset and recovery. Propofol depresses respiratory and cardiovascular reflex responses, however, their underlying mechanisms are not well known. Cardiorespiratory information from visceral afferent vagus nerves is integrated in the nucleus tractus solitarii (NTS). Cardiac and respiratory signals transducing vagal afferent neurons release the excitatory neurotransmitter glutamate onto NTS neurons in an activity dependent manner and trigger negative feedback reflex responses. In this experiment, the effects of propofol on glutamatergic synaptic responses at NTS neurons was tested using patch clamp methods. Glutamatergic excitatory postsynaptic currents (EPSC) were recorded at chloride reversal potential (-49mV) without γ-aminobutyric acid type A (GABA(A)) receptor antagonists. Propofol (≥3μM) facilitated frequency of the spontaneous EPSCs in a concentration dependent manner without altering amplitude and decay time. The GABA(A) receptor selective antagonist, gabazine (6μM), attenuated propofol effects on glutamate release. Propofol (10μM) evoked glutamate release was also blocked in the presence of the voltage dependent Na(+) and Ca(2+) channel blockers TTX (0.3μM) and Cd(2+) (0.2mM), respectively. In addition, the Na(+)-K(+)-Cl(-) cotransporter type 1 antagonist bumetanide (10μM) also inhibited propofol evoked increase in sEPSC frequency. These results suggest that propofol evoked glutamate release onto NTS neurons by GABA(A) receptor-mediated depolarization of the presynaptic excitatory terminals.

  14. Genetic rescue of CB1 receptors on medium spiny neurons prevents loss of excitatory striatal synapses but not motor impairment in HD mice.

    Science.gov (United States)

    Naydenov, Alipi V; Sepers, Marja D; Swinney, Katie; Raymond, Lynn A; Palmiter, Richard D; Stella, Nephi

    2014-11-01

    Huntington's disease (HD) is caused by an expanded polyglutamine repeat in huntingtin protein that disrupts synaptic function in specific neuronal populations and results in characteristic motor, cognitive and affective deficits. Histopathological hallmarks observed in both HD patients and genetic mouse models include the reduced expression of synaptic proteins, reduced medium spiny neuron (MSN) dendritic spine density and decreased frequency of spontaneous excitatory post-synaptic currents (sEPSCs). Early down-regulation of cannabinoid CB1 receptor expression on MSN (CB1(MSN)) is thought to participate in HD pathogenesis. Here we present a cell-specific genetic rescue of CB1(MSN) in R6/2 mice and report that treatment prevents the reduction of excitatory synaptic markers in the striatum (synaptophysin, vGLUT1 and vGLUT2), of dendritic spine density on MSNs and of MSN sEPSCs, but does not prevent motor impairment. We conclude that loss of excitatory striatal synapses in HD mice is controlled by CB1(MSN) and can be uncoupled from the motor phenotype.

  15. Loss of SynDIG1 Reduces Excitatory Synapse Maturation But Not Formation In Vivo

    Science.gov (United States)

    Kaur, Inderpreet; Liu, Xiao-Bo; Kirk, Lyndsey M.; Speca, David J.; McMahon, Samuel A.; Zito, Karen

    2016-01-01

    Abstract Modification of the strength of excitatory synaptic connections is a fundamental mechanism by which neural circuits are refined during development and learning. Synapse Differentiation Induced Gene 1 (SynDIG1) has been shown to play a key role in regulating synaptic strength in vitro. Here, we investigated the role of SynDIG1 in vivo in mice with a disruption of the SynDIG1 gene rather than use an alternate loxP-flanked conditional mutant that we find retains a partial protein product. The gene-trap insertion with a reporter cassette mutant mice shows that the SynDIG1 promoter is active during embryogenesis in the retina with some activity in the brain, and postnatally in the mouse hippocampus, cortex, hindbrain, and spinal cord. Ultrastructural analysis of the hippocampal CA1 region shows a decrease in the average PSD length of synapses and a decrease in the number of synapses with a mature phenotype. Intriguingly, the total synapse number appears to be increased in SynDIG1 mutant mice. Electrophysiological analyses show a decrease in AMPA and NMDA receptor function in SynDIG1-deficient hippocampal neurons. Glutamate stimulation of individual dendritic spines in hippocampal slices from SynDIG1-deficient mice reveals increased short-term structural plasticity. Notably, the overall levels of PSD-95 or glutamate receptors enriched in postsynaptic biochemical fractions remain unaltered; however, activity-dependent synapse development is strongly compromised upon the loss of SynDIG1, supporting its importance for excitatory synapse maturation. Together, these data are consistent with a model in which SynDIG1 regulates the maturation of excitatory synapse structure and function in the mouse hippocampus in vivo.

  16. Rescue of tau-induced synaptic transmission pathology by paclitaxel

    Directory of Open Access Journals (Sweden)

    Hdas eErez

    2014-02-01

    Full Text Available Behavioral and electrophysiological studies of Alzheimer’s disease (AD and other tauopathies have revealed that the onset of cognitive decline correlates better with synaptic dysfunctions than with hallmark pathologies such as extracellular amyloid-β plaques, intracellular hyperphosphorylated tau or neuronal loss. Recent experiments have also demonstrated that anti-cancer microtubule-stabilizing drugs can rescue tau-induced behavioral decline and hallmark neuron pathologies. Nevertheless, the mechanisms underlying tau-induced synaptic dysfunction as well as those involved in the rescue of cognitive decline by microtubules stabilizing drugs remain unclear. Here we began to study these mechanisms using the glutaminergic sensory-motoneuron synapse derived from Aplysia ganglia, electrophysiological methods, the expression of mutant-human-tau (mt-htau either pre- or post-synaptically and the antimitotic drug paclitaxel. Expression of mt-htau in the presynaptic neurons led to reduced excitatory postsynaptic potential (EPSP amplitude generated by rested synapses within 3 days of mt-htau expression, and to deeper levels of homosynaptic depression. mt-htau-induced synaptic weakening correlated with reduced releasable presynaptic vesicle pools as revealed by the induction of asynchronous neurotransmitter release by hypertonic sucrose solution. Paclitaxel totally rescued tau-induced synaptic weakening by maintaining the availability of the presynaptic vesicle stores. Postsynaptic expression of mt-htau did not impair the above described synaptic-transmission parameters for up to 5 days. Along with earlier confocal microscope observations from our laboratory, these findings suggest that tau-induced synaptic dysfunction is the outcome of impaired axoplasmic transport and the ensuing reduction in the releasable presynaptic vesicle stores rather than the direct effects of mt-htau or paclitaxel on the synaptic release mechanisms.

  17. Inositol hexakisphosphate suppresses excitatory neurotransmission via synaptotagmin-1 C2B domain in the hippocampal neuron

    Science.gov (United States)

    Yang, Shao-Nian; Shi, Yue; Yang, Guang; Li, Yuxin; Yu, Lina; Shin, Ok-Ho; Bacaj, Taulant; Südhof, Thomas C.; Yu, Jia; Berggren, Per-Olof

    2012-01-01

    Inositol hexakisphosphate (InsP6) levels rise and fall with neuronal excitation and silence, respectively, in the hippocampus, suggesting potential signaling functions of this inositol polyphosphate in hippocampal neurons. We now demonstrate that intracellular application of InsP6 caused a concentration-dependent inhibition of autaptic excitatory postsynaptic currents (EPSCs) in cultured hippocampal neurons. The treatment did not alter the size and replenishment rate of the readily releasable pool in autaptic neurons. Intracellular exposure to InsP6 did not affect spontaneous EPSCs or excitatory amino acid-activated currents in neurons lacking autapses. The InsP6-induced inhibition of autaptic EPSCs was effectively abolished by coapplication of an antibody to synaptotagmin-1 C2B domain. Importantly, preabsorption of the antibody with a GST-WT synaptotagmin-1 C2B domain fragment but not with a GST-mutant synaptotagmin-1 C2B domain fragment that poorly reacted with the antibody impaired the activity of the antibody on the InsP6-induced inhibition of autaptic EPSCs. Furthermore, K+ depolarization significantly elevated endogenous levels of InsP6 and occluded the inhibition of autaptic EPSCs by exogenous InsP6. These data reveal that InsP6 suppresses excitatory neurotransmission via inhibition of the presynaptic synaptotagmin-1 C2B domain-mediated fusion via an interaction with the synaptotagmin Ca2+-binding sites rather than via interference with presynaptic Ca2+ levels, synaptic vesicle trafficking, or inactivation of postsynaptic ionotropic glutamate receptors. Therefore, elevated InsP6 in activated neurons serves as a unique negative feedback signal to control hippocampal excitatory neurotransmission. PMID:22778403

  18. Model-free reconstruction of excitatory neuronal connectivity from calcium imaging signals.

    Directory of Open Access Journals (Sweden)

    Olav Stetter

    Full Text Available A systematic assessment of global neural network connectivity through direct electrophysiological assays has remained technically infeasible, even in simpler systems like dissociated neuronal cultures. We introduce an improved algorithmic approach based on Transfer Entropy to reconstruct structural connectivity from network activity monitored through calcium imaging. We focus in this study on the inference of excitatory synaptic links. Based on information theory, our method requires no prior assumptions on the statistics of neuronal firing and neuronal connections. The performance of our algorithm is benchmarked on surrogate time series of calcium fluorescence generated by the simulated dynamics of a network with known ground-truth topology. We find that the functional network topology revealed by Transfer Entropy depends qualitatively on the time-dependent dynamic state of the network (bursting or non-bursting. Thus by conditioning with respect to the global mean activity, we improve the performance of our method. This allows us to focus the analysis to specific dynamical regimes of the network in which the inferred functional connectivity is shaped by monosynaptic excitatory connections, rather than by collective synchrony. Our method can discriminate between actual causal influences between neurons and spurious non-causal correlations due to light scattering artifacts, which inherently affect the quality of fluorescence imaging. Compared to other reconstruction strategies such as cross-correlation or Granger Causality methods, our method based on improved Transfer Entropy is remarkably more accurate. In particular, it provides a good estimation of the excitatory network clustering coefficient, allowing for discrimination between weakly and strongly clustered topologies. Finally, we demonstrate the applicability of our method to analyses of real recordings of in vitro disinhibited cortical cultures where we suggest that excitatory connections

  19. Model-Free Reconstruction of Excitatory Neuronal Connectivity from Calcium Imaging Signals

    Science.gov (United States)

    Stetter, Olav; Battaglia, Demian; Soriano, Jordi; Geisel, Theo

    2012-01-01

    A systematic assessment of global neural network connectivity through direct electrophysiological assays has remained technically infeasible, even in simpler systems like dissociated neuronal cultures. We introduce an improved algorithmic approach based on Transfer Entropy to reconstruct structural connectivity from network activity monitored through calcium imaging. We focus in this study on the inference of excitatory synaptic links. Based on information theory, our method requires no prior assumptions on the statistics of neuronal firing and neuronal connections. The performance of our algorithm is benchmarked on surrogate time series of calcium fluorescence generated by the simulated dynamics of a network with known ground-truth topology. We find that the functional network topology revealed by Transfer Entropy depends qualitatively on the time-dependent dynamic state of the network (bursting or non-bursting). Thus by conditioning with respect to the global mean activity, we improve the performance of our method. This allows us to focus the analysis to specific dynamical regimes of the network in which the inferred functional connectivity is shaped by monosynaptic excitatory connections, rather than by collective synchrony. Our method can discriminate between actual causal influences between neurons and spurious non-causal correlations due to light scattering artifacts, which inherently affect the quality of fluorescence imaging. Compared to other reconstruction strategies such as cross-correlation or Granger Causality methods, our method based on improved Transfer Entropy is remarkably more accurate. In particular, it provides a good estimation of the excitatory network clustering coefficient, allowing for discrimination between weakly and strongly clustered topologies. Finally, we demonstrate the applicability of our method to analyses of real recordings of in vitro disinhibited cortical cultures where we suggest that excitatory connections are characterized

  20. Repetitive magnetic stimulation induces plasticity of excitatory postsynapses on proximal dendrites of cultured mouse CA1 pyramidal neurons.

    Science.gov (United States)

    Lenz, Maximilian; Platschek, Steffen; Priesemann, Viola; Becker, Denise; Willems, Laurent M; Ziemann, Ulf; Deller, Thomas; Müller-Dahlhaus, Florian; Jedlicka, Peter; Vlachos, Andreas

    2015-11-01

    Repetitive transcranial magnetic stimulation (rTMS) of the human brain can lead to long-lasting changes in cortical excitability. However, the cellular and molecular mechanisms which underlie rTMS-induced plasticity remain incompletely understood. Here, we used repetitive magnetic stimulation (rMS) of mouse entorhino-hippocampal slice cultures to study rMS-induced plasticity of excitatory postsynapses. By employing whole-cell patch-clamp recordings of CA1 pyramidal neurons, local electrical stimulations, immunostainings for the glutamate receptor subunit GluA1 and compartmental modeling, we found evidence for a preferential potentiation of excitatory synapses on proximal dendrites of CA1 neurons (2-4 h after stimulation). This rMS-induced synaptic potentiation required the activation of voltage-gated sodium channels, L-type voltage-gated calcium channels and N-methyl-D-aspartate-receptors. In view of these findings we propose a cellular model for the preferential strengthening of excitatory synapses on proximal dendrites following rMS in vitro, which is based on a cooperative effect of synaptic glutamatergic transmission and postsynaptic depolarization.

  1. Methamphetamine reduces LTP and increases baseline synaptic transmission in the CA1 region of mouse hippocampus.

    Directory of Open Access Journals (Sweden)

    Jarod Swant

    Full Text Available Methamphetamine (METH is an addictive psychostimulant whose societal impact is on the rise. Emerging evidence suggests that psychostimulants alter synaptic plasticity in the brain--which may partly account for their adverse effects. While it is known that METH increases the extracellular concentration of monoamines dopamine, serotonin, and norepinephrine, it is not clear how METH alters glutamatergic transmission. Within this context, the aim of the present study was to investigate the effects of acute and systemic METH on basal synaptic transmission and long-term potentiation (LTP; an activity-induced increase in synaptic efficacy in CA1 sub-field in the hippocampus. Both the acute ex vivo application of METH to hippocampal slices and systemic administration of METH decreased LTP. Interestingly, the acute ex vivo application of METH at a concentration of 30 or 60 microM increased baseline synaptic transmission as well as decreased LTP. Pretreatment with eticlopride (D2-like receptor antagonist did not alter the effects of METH on synaptic transmission or LTP. In contrast, pretreatment with D1/D5 dopamine receptor antagonist SCH23390 or 5-HT1A receptor antagonist NAN-190 abrogated the effect of METH on synaptic transmission. Furthermore, METH did not increase baseline synaptic transmission in D1 dopamine receptor haploinsufficient mice. Our findings suggest that METH affects excitatory synaptic transmission via activation of dopamine and serotonin receptor systems in the hippocampus. This modulation may contribute to synaptic maladaption induced by METH addiction and/or METH-mediated cognitive dysfunction.

  2. A mathematical modeling study of inter-segmental coordination during stick insect walking.

    Science.gov (United States)

    Daun-Gruhn, Silvia

    2011-04-01

    The biomechanical conditions for walking in the stick insect require a modeling approach that is based on the control of pairs of antagonistic motoneuron (MN) pools for each leg joint by independent central pattern generators (CPGs). Each CPG controls a pair of antagonistic MN pools. Furthermore, specific sensory feedback signals play an important role in the control of single leg movement and in the generation of inter-leg coordination or the interplay between both tasks. Currently, however, no mathematical model exists that provides a theoretical approach to understanding the generation of coordinated locomotion in such a multi-legged locomotor system. In the present study, I created such a theoretical model for the stick insect walking system, which describes the MN activity of a single forward stepping middle leg and helps to explain the neuronal mechanisms underlying coordinating information transfer between ipsilateral legs. In this model, CPGs that belong to the same leg, as well as those belonging to different legs, are connected by specific sensory feedback pathways that convey information about movements and forces generated during locomotion. The model emphasizes the importance of sensory feedback, which is used by the central nervous system to enhance weak excitatory and inhibitory synaptic connections from front to rear between the three thorax-coxa-joint CPGs. Thereby the sensory feedback activates caudal pattern generation networks and helps to coordinate leg movements by generating in-phase and out-of-phase thoracic MN activity.

  3. Synaptic Plasticity and Nociception

    Institute of Scientific and Technical Information of China (English)

    ChenJianguo

    2004-01-01

    Synaptic plasticity is one of the fields that progresses rapidly and has a lot of success in neuroscience. The two major types of synaptie plasticity: long-term potentiation ( LTP and long-term depression (LTD are thought to be the cellular mochanisms of learning and memory. Recently, accumulating evidence suggests that, besides serving as a cellular model for learning and memory, the synaptic plasticity involves in other physiological or pathophysiological processes, such as the perception of pain and the regulation of cardiovascular system. This minireview will focus on the relationship between synaptic plasticity and nociception.

  4. NR2 subunits and NMDA receptors on lamina II inhibitory and excitatory interneurons of the mouse dorsal horn

    Directory of Open Access Journals (Sweden)

    MacDermott Amy B

    2010-05-01

    Full Text Available Abstract Background NMDA receptors expressed by spinal cord neurons in the superficial dorsal horn are involved in the development of chronic pain associated with inflammation and nerve injury. The superficial dorsal horn has a complex and still poorly understood circuitry that is mainly populated by inhibitory and excitatory interneurons. Little is known about how NMDA receptor subunit composition, and therefore pharmacology and voltage dependence, varies with neuronal cell type. NMDA receptors are typically composed of two NR1 subunits and two of four NR2 subunits, NR2A-2D. We took advantage of the differences in Mg2+ sensitivity of the NMDA receptor subtypes together with subtype preferring antagonists to identify the NR2 subunit composition of NMDA receptors expressed on lamina II inhibitory and excitatory interneurons. To distinguish between excitatory and inhibitory interneurons, we used transgenic mice expressing enhanced green fluorescent protein driven by the GAD67 promoter. Results Analysis of conductance ratio and selective antagonists showed that lamina II GABAergic interneurons express both the NR2A/B containing Mg2+ sensitive receptors and the NR2C/D containing NMDA receptors with less Mg2+ sensitivity. In contrast, excitatory lamina II interneurons express primarily NR2A/B containing receptors. Despite this clear difference in NMDA receptor subunit expression in the two neuronal populations, focally stimulated synaptic input is mediated exclusively by NR2A and 2B containing receptors in both neuronal populations. Conclusions Stronger expression of NMDA receptors with NR2C/D subunits by inhibitory interneurons compared to excitatory interneurons may provide a mechanism to selectively increase activity of inhibitory neurons during intense excitatory drive that can provide inhibitory feedback.

  5. mGluRs modulate strength and timing of excitatory transmission in hippocampal area CA3.

    Science.gov (United States)

    Cosgrove, Kathleen E; Galván, Emilio J; Barrionuevo, Germán; Meriney, Stephen D

    2011-08-01

    Excitatory transmission within hippocampal area CA3 stems from three major glutamatergic pathways: the perforant path formed by axons of layer II stellate cells in the entorhinal cortex, the mossy fiber axons originating from the dentate gyrus granule cells, and the recurrent axon collaterals of CA3 pyramidal cells. The synaptic communication of each of these pathways is modulated by metabotropic glutamate receptors that fine-tune the signal by affecting both the timing and strength of the connection. Within area CA3 of the hippocampus, group I mGluRs (mGluR1 and mGluR5) are expressed postsynaptically, whereas group II (mGluR2 and mGluR3) and III mGluRs (mGluR4, mGluR7, and mGluR8) are expressed presynaptically. Receptors from each group have been demonstrated to be required for different forms of pre- and postsynaptic long-term plasticity and also have been implicated in regulating short-term plasticity. A recent observation has demonstrated that a presynaptically expressed mGluR can affect the timing of action potentials elicited in the postsynaptic target. Interestingly, mGluRs can be distributed in a target-specific manner, such that synaptic input from one presynaptic neuron can be modulated by different receptors at each of its postsynaptic targets. Consequently, mGluRs provide a mechanism for synaptic specialization of glutamatergic transmission in the hippocampus. This review will highlight the variability in mGluR modulation of excitatory transmission within area CA3 with an emphasis on how these receptors contribute to the strength and timing of network activity within pyramidal cells and interneurons.

  6. EEA1 restores homeostatic synaptic plasticity in hippocampal neurons from Rett syndrome mice.

    Science.gov (United States)

    Xu, Xin; Pozzo-Miller, Lucas

    2017-08-15

    Rett syndrome is a neurodevelopmental disorder caused by loss-of-function mutations in MECP2, the gene encoding the transcriptional regulator methyl-CpG-binding protein 2 (MeCP2). Mecp2 deletion in mice results in an imbalance of excitation and inhibition in hippocampal neurons, which affects 'Hebbian' synaptic plasticity. We show that Mecp2-deficient neurons also lack homeostatic synaptic plasticity, likely due to reduced levels of EEA1, a protein involved in AMPA receptor endocytosis. Expression of EEA1 restored homeostatic synaptic plasticity in Mecp2-deficient neurons, providing novel targets of intervention in Rett syndrome. Rett syndrome is a neurodevelopmental disorder caused by loss-of-function mutations in MECP2, the gene encoding the transcriptional regulator methyl-CpG-binding protein 2 (MeCP2). Deletion of Mecp2 in mice results in an imbalance of synaptic excitation and inhibition in hippocampal pyramidal neurons, which affects 'Hebbian' long-term synaptic plasticity. Since the excitatory-inhibitory balance is maintained by homeostatic mechanisms, we examined the role of MeCP2 in homeostatic synaptic plasticity (HSP) at excitatory synapses. Negative feedback HSP, also known as synaptic scaling, maintains the global synaptic strength of individual neurons in response to sustained alterations in neuronal activity. Hippocampal neurons from Mecp2 knockout (KO) mice do not show the characteristic homeostatic scaling up of the amplitude of miniature excitatory postsynaptic currents (mEPSCs) and of synaptic levels of the GluA1 subunit of AMPA-type glutamate receptors after 48 h silencing with the Na(+) channel blocker tetrodotoxin. This deficit in HSP is bidirectional because Mecp2 KO neurons also failed to scale down mEPSC amplitudes and GluA1 synaptic levels after 48 h blockade of type A GABA receptor (GABAA R)-mediated inhibition with bicuculline. Consistent with the role of synaptic trafficking of AMPA-type of glutamate receptors in HSP, Mecp2 KO neurons

  7. Energy Efficient Sparse Connectivity from Imbalanced Synaptic Plasticity Rules.

    Directory of Open Access Journals (Sweden)

    João Sacramento

    2015-06-01

    Full Text Available It is believed that energy efficiency is an important constraint in brain evolution. As synaptic transmission dominates energy consumption, energy can be saved by ensuring that only a few synapses are active. It is therefore likely that the formation of sparse codes and sparse connectivity are fundamental objectives of synaptic plasticity. In this work we study how sparse connectivity can result from a synaptic learning rule of excitatory synapses. Information is maximised when potentiation and depression are balanced according to the mean presynaptic activity level and the resulting fraction of zero-weight synapses is around 50%. However, an imbalance towards depression increases the fraction of zero-weight synapses without significantly affecting performance. We show that imbalanced plasticity corresponds to imposing a regularising constraint on the L1-norm of the synaptic weight vector, a procedure that is well-known to induce sparseness. Imbalanced plasticity is biophysically plausible and leads to more efficient synaptic configurations than a previously suggested approach that prunes synapses after learning. Our framework gives a novel interpretation to the high fraction of silent synapses found in brain regions like the cerebellum.

  8. Potentiation of Acetylcholine-Mediated Facilitation of Inhibitory Synaptic Transmission by an Azaindolizione Derivative, ZSET1446 (ST101), in the Rat Hippocampus.

    Science.gov (United States)

    Takeda, Kentaro; Yamaguchi, Yoshimasa; Hino, Masataka; Kato, Fusao

    2016-02-01

    The integrity of the hippocampal network depends on the coordination of excitatory and inhibitory signaling, which are under dynamic control by various regulatory influences such as the cholinergic systems. ZSET1446 (ST101; spiro[imidazo[1,2-a]pyridine-3,2-indan]-2(3H)-one) is a newly synthesized azaindolizinone derivative that significantly improves learning deficits in various types of Alzheimer disease (AD) models in rats. We examined the effect of ZSET1446 on the nicotinic acetylcholine (ACh) receptor (nAChR)-mediated regulation of synaptic transmission in hippocampal slices of rats. ZSET1446 significantly potentiated the facilitatory effect of nicotine and ACh on the frequency of spontaneous postsynaptic currents (sPSCs) recorded in CA1 pyramidal neurons with a maximum effect at 100 pM (tested range, 10 pM-1000 pM). The basal sPSC frequency without ACh was not affected. Such potentiation by ZSET1446 was observed in both the pharmacologic isolations of inhibitory and excitatory sPSCs and markedly reduced by blockade of either α7 or α4β2 nAChRs. ZSET1446 did not affect ACh-activated inward currents or depolarization of interneurons in the stratum radiatum and the lacunosum moleculare. These results indicate that ZSET1446 potentiates the nicotine-mediated enhancement of synaptic transmission in the hippocampal neurons without affecting nAChRs themselves, providing a novel possible mechanism of procognitive action that might improve learning deficits in clinical therapy.

  9. Potentiation of excitatory transmission in substantia gelatinosa neurons of rat spinal cord by inhibition of estrogen receptor alpha

    Directory of Open Access Journals (Sweden)

    Li Kai-Cheng

    2010-12-01

    Full Text Available Abstract Background It has been shown that estrogen is synthesized in the spinal dorsal horn and plays a role in modulating pain transmission. One of the estrogen receptor (ER subtypes, estrogen receptor alpha (ERα, is expressed in the spinal laminae I-V, including substantia gelatinosa (SG, lamina II. However, it is unclear how ERs are involved in the modulation of nociceptive transmission. Results In the present study, a selective ERα antagonist, methyl-piperidino-pyrazole (MPP, was used to test the potential functional roles of spinal ERα in the nociceptive transmission. Using the whole-cell patch-clamp technique, we examined the effects of MPP on SG neurons in the dorsal root-attached spinal cord slice prepared from adult rats. We found that MPP increased glutamatergic excitatory postsynaptic currents (EPSCs evoked by the stimulation of either Aδ- or C-afferent fibers. Further studies showed that MPP treatment dose-dependently increased spontaneous EPSCs frequency in SG neurons, while not affecting the amplitude. In addition, the PKC was involved in the MPP-induced enhancement of synaptic transmission. Conclusions These results suggest that the selective ERα antagonist MPP pre-synaptically facilitates the excitatory synaptic transmission to SG neurons. The nociceptive transmission evoked by Aδ- and C-fiber stimulation could be potentiated by blocking ERα in the spinal neurons. Thus, the spinal estrogen may negatively regulate the nociceptive transmission through the activation of ERα.

  10. Population synaptic potentials evoked in lumbar motoneurons following stimulation of the nucleus reticularis gigantocellularis during carbachol-induced atonia.

    Science.gov (United States)

    Yamuy, J; Jiménez, I; Morales, F; Rudomin, P; Chase, M

    1994-03-14

    The effect of electrical stimulation of the medullary nucleus reticularis gigantocellularis (NRGc) on lumbar spinal cord motoneurons was studied in the decerebrate cat using sucrose-gap recordings from ventral roots. The NRGc was stimulated ipsi- and contralaterally before and during atonia elicited by the microinjection of carbachol into the pontine reticular formation. Prior to carbachol administration, the NRGc-induced response recorded from the sucrose-gap consisted of two consecutive excitatory population synaptic potentials followed by a long-lasting, small amplitude inhibitory population synaptic potential. Following carbachol injection, the same NRGc stimulus evoked a distinct, large amplitude inhibitory population synaptic potential, whereas the excitatory population synaptic potentials decreased in amplitude. In addition, after carbachol administration, the amplitude of the monosynaptic excitatory population synaptic potential, which was evoked by stimulation of group Ia afferents in hindlimb nerves, was reduced by 18 to 43%. When evoked at the peak of the NRGc-induced inhibitory response, this potential was further decreased in amplitude. Systemic strychnine administration (0.07-0.1 mg/kg, i.v.) blocked the NRGc-induced inhibitory population synaptic potential and promoted an increase in the amplitude of the excitatory population synaptic potentials induced by stimulation of the NRGc and group Ia afferents. These data indicate that during the state of carbachol-induced atonia, the NRGc effects on ipsi- and contralateral spinal cord motoneurons are predominantly inhibitory and that glycine is likely to be involved in this inhibitory process. These results support the hypothesis that the nucleus reticularis gigantocellularis is part of the system responsible for state-dependent somatomotor inhibition that occurs during active sleep.

  11. APP Homodimers Transduce an Amyloid-β-Mediated Increase in Release Probability at Excitatory Synapses

    Directory of Open Access Journals (Sweden)

    Hilla Fogel

    2014-06-01

    Full Text Available Accumulation of amyloid-β peptides (Aβ, the proteolytic products of the amyloid precursor protein (APP, induces a variety of synaptic dysfunctions ranging from hyperactivity to depression that are thought to cause cognitive decline in Alzheimer’s disease. While depression of synaptic transmission has been extensively studied, the mechanisms underlying synaptic hyperactivity remain unknown. Here, we show that Aβ40 monomers and dimers augment release probability through local fine-tuning of APP-APP interactions at excitatory hippocampal boutons. Aβ40 binds to the APP, increases the APP homodimer fraction at the plasma membrane, and promotes APP-APP interactions. The APP activation induces structural rearrangements in the APP/Gi/o-protein complex, boosting presynaptic calcium flux and vesicle release. The APP growth-factor-like domain (GFLD mediates APP-APP conformational changes and presynaptic enhancement. Thus, the APP homodimer constitutes a presynaptic receptor that transduces signal from Aβ40 to glutamate release. Excessive APP activation may initiate a positive feedback loop, contributing to hippocampal hyperactivity in Alzheimer’s disease.

  12. Neuroinflammation and excitatory symptoms in bipolar disorder

    Directory of Open Access Journals (Sweden)

    Isabella Panaccione

    2015-01-01

    Full Text Available Neuroinflammation has been proposed as a strong biological factor underlying the development of neuropsychiatric diseases. A role for dysregulation of the immune system was initially suggested in depressive disorders and subsequently extended to other illnesses, including bipolar disorder (BD. Indeed, there is growing evidence confirming the presence of a generalized pro-inflammatory state in BD patients, involving alterations in cytokine, acute-phase proteins, and complement factor secretion, white blood cell differentiation, microglial activation, arachidonic acid signaling pathways, and increased oxidative stress markers. Medications commonly used to treat BD, such as lithium, antiepileptics and antipsychotics, show some immunoregulatory activity both in vitro and in vivo. The aim of our study was to review the role of different inflammatory mechanisms, specifically in the development of excitatory symptoms, via a systematic PubMed search of the literature. Despite the high variability of results among studies, we found evidence indicating specific alterations of the inflammatory response during manic and mixed states of BD. These findings may help to clarify some of the complex mechanisms underlying the development of excitatory symptoms and suggest a potential role for drugs targeting the inflammatory system as new therapeutic options.

  13. Differential Effect of Neuropeptides on Excitatory Synaptic Transmission in Human Epileptic Hippocampus

    DEFF Research Database (Denmark)

    Ledri, Marco; Sorensen, Andreas T.; Madsen, Marita G.;

    2015-01-01

    antiepileptic actions in human epileptic tissue as well, we applied these neuropeptides directly to human hippocampal slices in vitro. NPY strongly decreased stimulation-induced EPSPs in dentate gyrus and CA1 (up to 30 and 55%, respectively) via Y2 receptors, while galanin had no significant effect. Receptor...

  14. Developmental regulation of hippocampal excitatory synaptic transmission by metabotropic glutamate receptors

    National Research Council Canada - National Science Library

    Ross, F M; Cassidy, J; Wilson, M; Davies, S N

    2000-01-01

    ... postsynaptic potentials L ‐AP4 L‐(+)‐2‐amino‐4‐phosphonobutyric acid LTD long term depression MAP4 ( S )‐2‐amino‐2‐methyl‐4‐phosphonobutanoic acid MCCG (2 S ,3 S ,4 S )‐2...

  15. Trisomy of the G protein-coupled K+ channel gene, Kcnj6, affects reward mechanisms, cognitive functions, and synaptic plasticity in mice.

    Science.gov (United States)

    Cooper, Ayelet; Grigoryan, Gayane; Guy-David, Liora; Tsoory, Michael M; Chen, Alon; Reuveny, Eitan

    2012-02-14

    G protein-activated inwardly rectifying K+ channels (GIRK) generate slow inhibitory postsynaptic potentials in the brain via G(i/o) protein-coupled receptors. GIRK2, a GIRK subunit, is widely abundant in the brain and has been implicated in various functions and pathologies, such as learning and memory, reward, motor coordination, and Down syndrome. Down syndrome, the most prevalent cause of mental retardation, results from the presence of an extra maternal chromosome 21 (trisomy 21), which comprises the Kcnj6 gene (GIRK2). The present study examined the behaviors and cellular physiology properties in mice harboring a single trisomy of the Kcnj6 gene. Kcnj6 triploid mice exhibit deficits in hippocampal-dependent learning and memory, altered responses to rewards, hampered depotentiation, a form of excitatory synaptic plasticity, and have accentuated long-term synaptic depression. Collectively the findings suggest that triplication of Kcnj6 gene may play an active role in some of the abnormal neurological phenotypes found in Down syndrome.

  16. Genetic targeting of NRXN2 in mice unveils role in excitatory cortical synapse function and social behaviors

    Directory of Open Access Journals (Sweden)

    Gesche eBorn

    2015-02-01

    Full Text Available Human genetics has identified rare copy number variations and deleterious mutations for all neurexin genes (NRXN1-3 in patients with neurodevelopmental diseases, and electrophysiological recordings in animal brains have shown that Nrxns are important for synaptic transmission. While several mouse models for Nrxn1α inactivation have previously been studied for behavioral changes, very little information is available for other variants. Here, we validate that mice lacking Nrxn2α exhibit behavioral abnormalities, characterized by social interaction deficits and increased anxiety-like behavior, which partially overlap, partially differ from Nrxn1α mutant behaviors. Using patch-clamp recordings in Nrxn2α knockout brains, we observe reduced spontaneous transmitter release at excitatory synapses in the neocortex. We also analyse at this cellular level a novel NRXN2 mouse model that carries a combined deletion of Nrxn2α and Nrxn2β. Electrophysiological analysis of this Nrxn2-mutant mouse shows surprisingly similar defects of excitatory release to Nrxn2α, indicating that the β-variant of Nrxn2 has no strong function in basic transmission at these synapses. Inhibitory transmission as well as synapse densities and ultrastructure remain unchanged in the neocortex of both models. Furthermore, at Nrxn2α and Nrxn2-mutant excitatory synapses we find an altered facilitation and N-methyl-D-aspartate receptor (NMDAR function because NMDAR-dependent decay time and NMDAR-mediated responses are reduced. As Nrxn can indirectly be linked to NMDAR via neuroligin and PSD-95, the trans-synaptic nature of this complex may help to explain occurrence of presynaptic and postsynaptic effects. Since excitatory/inhibitory imbalances and impairment of NMDAR function are alledged to have a role in autism and schizophrenia, our results support the idea of a related pathomechanism in these disorders.

  17. Dendritic spine actin dynamics in neuronal maturation and synaptic plasticity.

    Science.gov (United States)

    Hlushchenko, Iryna; Koskinen, Mikko; Hotulainen, Pirta

    2016-09-01

    The majority of the postsynaptic terminals of excitatory synapses in the central nervous system exist on small bulbous structures on dendrites known as dendritic spines. The actin cytoskeleton is a structural element underlying the proper development and morphology of dendritic spines. Synaptic activity patterns rapidly change actin dynamics, leading to morphological changes in dendritic spines. In this mini-review, we will discuss recent findings on neuronal maturation and synaptic plasticity-induced changes in the dendritic spine actin cytoskeleton. We propose that actin dynamics in dendritic spines decrease through actin filament crosslinking during neuronal maturation. In long-term potentiation, we evaluate the model of fast breakdown of actin filaments through severing and rebuilding through polymerization and later stabilization through crosslinking. We will discuss the role of Ca(2+) in long-term depression, and suggest that actin filaments are dissolved through actin filament severing. © 2016 Wiley Periodicals, Inc. © 2016 Wiley Periodicals, Inc.

  18. Multiquantal release underlies the distribution of synaptic efficacies in the neocortex

    Directory of Open Access Journals (Sweden)

    Alex Loebel

    2009-11-01

    Full Text Available Inter-pyramidal synaptic connections are characterized by a wide range of EPSP amplitudes. Although repeatedly observed at different brain regions and across layers, little is known about the synaptic characteristics that contribute to this wide range. In particular, the range could potentially be accounted for by differences in all three parameters of the quantal model of synaptic transmission, i.e. the number of release sites, release probability and quantal size. Here, we present a rigorous statistical analysis of the transmission properties of excitatory synaptic connections between layer-5 pyramidal neurons of the somatosensory cortex. Our central finding is that the EPSP amplitude is strongly correlated with the number of estimated release sites, but not with the release probability or quantal size. In addition, we found that the number of release sites can be more than an order of magnitude higher than the typical number of synaptic contacts for this type of connection. Our findings indicate that transmission at stronger synaptic connections is mediated by multiquantal release from their synaptic contacts. We propose that modulating the number of release sites could be an important mechanism in regulating neocortical synaptic transmission.

  19. Translational concepts of mGluR5 in synaptic diseases of the brain

    Directory of Open Access Journals (Sweden)

    Thomas M Piers

    2012-11-01

    Full Text Available The G-protein coupled receptor family of glutamate receptors, termed metabotropic glutamate receptors (mGluRs, are implicated in numerous cellular mechanisms ranging from neural development to the processing of cognitive, sensory, and motor information. Over the last decade, multiple mGluR-related signal cascades have been identified at excitatory synapses, indicating their potential roles in various forms of synaptic function and dysfunction. This review highlights recent studies investigating mGluR5, a subtype of group I mGluRs, and its association with a number of developmental, psychiatric and senile synaptic disorders with respect to associated synaptic proteins, with an emphasis on translational pre-clinical studies targeting mGluR5 in a range of synaptic diseases of the brain.

  20. Impact of weak excitatory synapses on chaotic transients in a diffusively coupled Morris-Lecar neuronal network

    Energy Technology Data Exchange (ETDEWEB)

    Lafranceschina, Jacopo, E-mail: jlafranceschina@alaska.edu; Wackerbauer, Renate, E-mail: rawackerbauer@alaska.edu [Department of Physics, University of Alaska, Fairbanks, Alaska 99775-5920 (United States)

    2015-01-15

    Spatiotemporal chaos collapses to either a rest state or a propagating pulse solution in a ring network of diffusively coupled, excitable Morris-Lecar neurons. Weak excitatory synapses can increase the Lyapunov exponent, expedite the collapse, and promote the collapse to the rest state rather than the pulse state. A single traveling pulse solution may no longer be asymptotic for certain combinations of network topology and (weak) coupling strengths, and initiate spatiotemporal chaos. Multiple pulses can cause chaos initiation due to diffusive and synaptic pulse-pulse interaction. In the presence of chaos initiation, intermittent spatiotemporal chaos exists until typically a collapse to the rest state.

  1. Long-term relationships between cholinergic tone, synchronous bursting and synaptic remodeling.

    Directory of Open Access Journals (Sweden)

    Maya Kaufman

    Full Text Available Cholinergic neuromodulation plays key roles in the regulation of neuronal excitability, network activity, arousal, and behavior. On longer time scales, cholinergic systems play essential roles in cortical development, maturation, and plasticity. Presumably, these processes are associated with substantial synaptic remodeling, yet to date, long-term relationships between cholinergic tone and synaptic remodeling remain largely unknown. Here we used automated microscopy combined with multielectrode array recordings to study long-term relationships between cholinergic tone, excitatory synapse remodeling, and network activity characteristics in networks of cortical neurons grown on multielectrode array substrates. Experimental elevations of cholinergic tone led to the abrupt suppression of episodic synchronous bursting activity (but not of general activity, followed by a gradual growth of excitatory synapses over hours. Subsequent blockage of cholinergic receptors led to an immediate restoration of synchronous bursting and the gradual reversal of synaptic growth. Neither synaptic growth nor downsizing was governed by multiplicative scaling rules. Instead, these occurred in a subset of synapses, irrespective of initial synaptic size. Synaptic growth seemed to depend on intrinsic network activity, but not on the degree to which bursting was suppressed. Intriguingly, sustained elevations of cholinergic tone were associated with a gradual recovery of synchronous bursting but not with a reversal of synaptic growth. These findings show that cholinergic tone can strongly affect synaptic remodeling and synchronous bursting activity, but do not support a strict coupling between the two. Finally, the reemergence of synchronous bursting in the presence of elevated cholinergic tone indicates that the capacity of cholinergic neuromodulation to indefinitely suppress synchronous bursting might be inherently limited.

  2. Evidence for loss of synaptic AMPA receptors in anterior piriform cortex of aged mice.

    Science.gov (United States)

    Gocel, James; Larson, John

    2013-01-01

    It has been suggested that age-related impairments in learning and memory may be due to age-related deficits in long-term potentiation of glutamatergic synaptic transmission. For example, olfactory discrimination learning is significantly affected by aging in mice and this may be due, in part, to diminished synaptic plasticity in piriform cortex. In the present study, we tested for alterations in electrophysiological properties and synaptic transmission in this simple cortical network. Whole-cell recordings were made from principal neurons in slices of anterior piriform cortex from young (3-6 months old) and old (24-28 months) C57Bl/6 mice. Miniature excitatory postsynaptic currents (mEPSCs) mediated by AMPA receptors were collected from cells in presence of tetrodotoxin (TTX) and held at -80 mV in voltage-clamp. Amplitudes of mEPSCs were significantly reduced in aged mice, suggesting that synaptic AMPA receptor expression is decreased during aging. In a second set of experiments, spontaneous excitatory postsynaptic currents (s/mEPSCs) were recorded in slices from different cohorts of young and old mice, in the absence of TTX. These currents resembled mEPSCs and were similarly reduced in amplitude in old mice. The results represent the first electrophysiological evidence for age-related declines in glutamatergic synaptic function in the mammalian olfactory system.

  3. Functional dissection of synaptic circuits: in vivo patch-clamp recording in neuroscience

    Directory of Open Access Journals (Sweden)

    Can eTao

    2015-05-01

    Full Text Available Neuronal activity is dominated by synaptic inputs from excitatory or inhibitory neural circuits. With the development of in vivo patch-clamp recording, especially in vivo voltage-clamp recording, researchers can not only directly measure neuronal activity, such as spiking responses or membrane potential dynamics, but also quantify synaptic inputs from excitatory and inhibitory circuits in living animals. This approach enables researchers to directly unravel different synaptic components and to understand their underlying roles in particular brain functions. Combining in vivo patch-clamp recording with other techniques, such as two-photon imaging or optogenetics, can provide even clearer functional dissection of the synaptic contributions of different neurons or nuclei. Here, we summarized current applications and recent research progress using the in vivo patch-clamp recording method and focused on its role in the functional dissection of different synaptic inputs. The key factors of a successful in vivo patch-clamp experiment and possible solutions based on references and our experiences were also discussed.

  4. A method for the three-dimensional reconstruction of Neurobiotin™-filled neurons and the location of their synaptic inputs

    Directory of Open Access Journals (Sweden)

    Matthew Joseph Fogarty

    2013-10-01

    Full Text Available Here, we describe a robust method for mapping the number and type of neuro-chemically distinct synaptic inputs that a single reconstructed neuron receives. We have used individual hypoglossal motor neurons filled with Neurobiotin by semi-loose seal electroporation in thick brainstem slices. These filled motor neurons were then processed for excitatory and inhibitory synaptic inputs, using immunohistochemical-labeling procedures. For excitatory synapses, we used anti-VGLUT2 to locate glutamatergic pre-synaptic terminals and anti-PSD-95 to locate post-synaptic specializations on and within the surface of these filled motor neurons. For inhibitory synapses, we used anti-VGAT to locate GABAergic pre-synaptic terminals and anti-GABA-A receptor subunit α1 to locate the post-synaptic domain. The Neurobiotin-filled and immuno-labeled motor neuron was then processed for optical sectioning using confocal microscopy. The morphology of the motor neuron including its dendritic tree and the distribution of excitatory and inhibitory synapses were then determined by three-dimensional reconstruction using IMARIS software (Bitplane. Using surface rendering, fluorescence thresholding, and masking of unwanted immuno-labeling, tools found in IMARIS, we were able to obtain an accurate 3D structure of an individual neuron including the number and location of its glutamatergic and GABAergic synaptic inputs. The power of this method allows for a rapid morphological confirmation of the post-synaptic responses recorded by patch-clamp prior to Neurobiotin filling. Finally, we show that this method can be adapted to super-resolution microscopy techniques, which will enhance its applicability to the study of neural circuits at the level of synapses.

  5. Inverse stochastic resonance induced by synaptic background activity with unreliable synapses

    Energy Technology Data Exchange (ETDEWEB)

    Uzuntarla, Muhammet, E-mail: muzuntarla@yahoo.com

    2013-11-15

    Inverse stochastic resonance (ISR) is a recently pronounced phenomenon that is the minimum occurrence in mean firing rate of a rhythmically firing neuron as noise level varies. Here, by using a realistic modeling approach for the noise, we investigate the ISR with concrete biophysical mechanisms. It is shown that mean firing rate of a single neuron subjected to synaptic bombardment exhibits a minimum as the spike transmission probability varies. We also demonstrate that the occurrence of ISR strongly depends on the synaptic input regime, where it is most prominent in the balanced state of excitatory and inhibitory inputs.

  6. Somatodendritic and excitatory postsynaptic distribution of neuron-type dystrophin isoform, Dp40, in hippocampal neurons

    Energy Technology Data Exchange (ETDEWEB)

    Fujimoto, Takahiro; Itoh, Kyoko, E-mail: kxi14@koto.kpu-m.ac.jp; Yaoi, Takeshi; Fushiki, Shinji

    2014-09-12

    Highlights: • Identification of dystrophin (Dp) shortest isoform, Dp40, is a neuron-type Dp. • Dp40 expression is temporally and differentially regulated in comparison to Dp71. • Somatodendritic and nuclear localization of Dp40. • Dp40 is localized to excitatory postsynapses. • Dp40 might play roles in dendritic and synaptic functions. - Abstract: The Duchenne muscular dystrophy (DMD) gene produces multiple dystrophin (Dp) products due to the presence of several promoters. We previously reported the existence of a novel short isoform of Dp, Dp40, in adult mouse brain. However, the exact biochemical expression profile and cytological distribution of the Dp40 protein remain unknown. In this study, we generated a polyclonal antibody against the NH{sub 2}-terminal region of the Dp40 and identified the expression profile of Dp40 in the mouse brain. Through an analysis using embryonic and postnatal mouse cerebrums, we found that Dp40 emerged from the early neonatal stages until adulthood, whereas Dp71, an another Dp short isoform, was highly detected in both prenatal and postnatal cerebrums. Intriguingly, relative expressions of Dp40 and Dp71 were prominent in cultured dissociated neurons and non-neuronal cells derived from mouse hippocampus, respectively. Furthermore, the immunocytological distribution of Dp40 was analyzed in dissociated cultured neurons, revealing that Dp40 is detected in the soma and its dendrites, but not in the axon. It is worthy to note that Dp40 is localized along the subplasmalemmal region of the dendritic shafts, as well as at excitatory postsynaptic sites. Thus, Dp40 was identified as a neuron-type Dp possibly involving dendritic and synaptic functions.

  7. ATP participates in three excitatory postsynaptic potentials in the submucous plexus of the guinea pig ileum.

    Science.gov (United States)

    Monro, R L; Bertrand, P P; Bornstein, J C

    2004-04-15

    Synaptic transmission between neurones intrinsic to the wall of the intestine involves multiple neurotransmitters. This study aimed to identify neurotransmitters responsible for non-cholinergic excitatory synaptic transmission in the submucous plexus of the guinea pig ileum. Intracellular recordings were made from secretomotor and vasodilator neurones. A single electrical stimulus to a fibre tract evoked excitatory postsynaptic potentials (EPSPs) with three different time courses - fast, slow and an EPSP with an intermediate time course (latency 96 ms, duration 1.2 s). In all neurones, blocking nicotinic receptors reduced fast EPSPs, but they were abolished in only 57 of 78 neurones. Fast EPSPs were also reduced by P2 purinoceptor blockade (5 of 27 neurones) or 5-HT(3) receptor blockade (3 of 20 neurones). The intermediate EPSP was abolished by P2 receptor blockade (13 of 13 neurones) or by the specific P2Y(1) receptor antagonist MRS 2179 (5 of 5 neurones) and was always preceded by a nicotinic or mixed nicotinic/purinergic fast EPSP. Intermediate EPSPs were observed in over half of all neurones including most non-cholinergic secretomotor neurones identified by immunoreactivity for vasoactive intestinal peptide. The slow EPSP evoked by a single pulse stimulus was also abolished by P2 receptor blockade (5 of 5 neurones) or by MRS 2179 (3 of 3 neurones). We conclude that fast EPSPs in submucous neurones are mediated by acetylcholine acting at nicotinic receptors, ATP acting at P2X receptors and 5-HT acting at 5-HT(3) receptors. Both the intermediate EPSP and the single stimulus slow EPSP are mediated by ATP acting at P2Y(1) receptors.

  8. Synaptic Plasticity and NO-cGMP-PKG Signaling Coordinately Regulate ERK-Driven Gene Expression in the Lateral Amygdala and in the Auditory Thalamus Following Pavlovian Fear Conditioning

    Science.gov (United States)

    Ota, Kristie T.; Monsey, Melissa S.; Wu, Melissa S.; Young, Grace J.; Schafe, Glenn E.

    2010-01-01

    We have recently hypothesized that NO-cGMP-PKG signaling in the lateral nucleus of the amygdala (LA) during auditory fear conditioning coordinately regulates ERK-driven transcriptional changes in both auditory thalamic (MGm/PIN) and LA neurons that serve to promote pre- and postsynaptic alterations at thalamo-LA synapses, respectively. In the…

  9. Homeostatic regulation of excitatory synapses on striatal medium spiny neurons expressing the D2 dopamine receptor.

    Science.gov (United States)

    Thibault, Dominic; Giguère, Nicolas; Loustalot, Fabien; Bourque, Marie-Josée; Ducrot, Charles; El Mestikawy, Salah; Trudeau, Louis-Éric

    2016-05-01

    Striatal medium spiny neurons (MSNs) are contacted by glutamatergic axon terminals originating from cortex, thalamus and other regions. The striatum is also innervated by dopaminergic (DAergic) terminals, some of which release glutamate as a co-transmitter. Despite evidence for functional DA release at birth in the striatum, the role of DA in the establishment of striatal circuitry is unclear. In light of recent work suggesting activity-dependent homeostatic regulation of glutamatergic terminals on MSNs expressing the D2 DA receptor (D2-MSNs), we used primary co-cultures to test the hypothesis that stimulation of DA and glutamate receptors regulates the homeostasis of glutamatergic synapses on MSNs. Co-culture of D2-MSNs with mesencephalic DA neurons or with cortical neurons produced an increase in spines and functional glutamate synapses expressing VGLUT2 or VGLUT1, respectively. The density of VGLUT2-positive terminals was reduced by the conditional knockout of this gene from DA neurons. In the presence of both mesencephalic and cortical neurons, the density of synapses reached the same total, compatible with the possibility of a homeostatic mechanism capping excitatory synaptic density. Blockade of D2 receptors increased the density of cortical and mesencephalic glutamatergic terminals, without changing MSN spine density or mEPSC frequency. Combined blockade of AMPA and NMDA glutamate receptors increased the density of cortical terminals and decreased that of mesencephalic VGLUT2-positive terminals, with no net change in total excitatory terminal density or in mEPSC frequency. These results suggest that DA and glutamate signaling regulate excitatory inputs to striatal D2-MSNs at both the pre- and postsynaptic level, under the influence of a homeostatic mechanism controlling functional output of the circuit.

  10. Enhancement by citral of glutamatergic spontaneous excitatory transmission in adult rat substantia gelatinosa neurons.

    Science.gov (United States)

    Zhu, Lan; Fujita, Tsugumi; Jiang, Chang-Yu; Kumamoto, Eiichi

    2016-02-10

    Although citral, which is abundantly present in lemongrass, has various actions including antinociception, how citral affects synaptic transmission has not been examined as yet. Citral activates in heterologous cells transient receptor potential vanilloid-1, ankyrin-1, and melastatin-8 (TRPV1, TRPA1, and TRPM8, respectively) channels, the activation of which in the spinal lamina II [substantia gelatinosa (SG)] increases the spontaneous release of L-glutamate from nerve terminals. It remains to be examined what types of transient receptor potential channel in native neurons are activated by citral. With a focus on transient receptor potential activation, we examined the effect of citral on glutamatergic spontaneous excitatory transmission using the whole-cell patch-clamp technique to SG neurons in adult rat spinal cord slices. Bath-applied citral for 3 min increased the frequency of spontaneous excitatory postsynaptic current in a concentration-dependent manner (half-maximal effective concentration=0.58 mM), with a small increase in its amplitude. The spontaneous excitatory postsynaptic current frequency increase produced by citral was repeated at a time interval of 30 min, albeit this action recovered with a slow time course after washout. The presynaptic effect of citral was inhibited by TRPA1 antagonist HC-030031, but not by voltage-gated Na-channel blocker tetrodotoxin, TRPV1 antagonist capsazepine, and TRPM8 antagonist BCTC. It is concluded that citral increases spontaneous L-glutamate release in SG neurons by activating TRPA1 channels. Considering that the SG plays a pivotal role in modulating nociceptive transmission from the periphery, the citral activity could contribute toward at least a part of the modulation.

  11. Integrated plasticity at inhibitory and excitatory synapses in the cerebellar circuit

    Directory of Open Access Journals (Sweden)

    Lisa eMapelli

    2015-05-01

    Full Text Available The way long-term potentiation (LTP and depression (LTD are integrated within the different synapses of brain neuronal circuits is poorly understood. In order to progress beyond the identification of specific molecular mechanisms, a system in which multiple forms of plasticity can be correlated with large-scale neural processing is required. In this paper we take as an example the cerebellar network , in which extensive investigations have revealed LTP and LTD at several excitatory and inhibitory synapses. Cerebellar LTP and LTD occur in all three main cerebellar subcircuits (granular layer, molecular layer, deep cerebellar nuclei and correspondingly regulate the function of their three main neurons: granule cells (GrCs, Purkinje cells (PCs and deep cerebellar nuclear (DCN cells. All these neurons, in addition to be excited, are reached by feed-forward and feed-back inhibitory connections, in which LTP and LTD may either operate synergistically or homeostatically in order to control information flow through the circuit. Although the investigation of individual synaptic plasticities in vitro is essential to prove their existence and mechanisms, it is insufficient to generate a coherent view of their impact on network functioning in vivo. Recent computational models and cell-specific genetic mutations in mice are shedding light on how plasticity at multiple excitatory and inhibitory synapses might regulate neuronal activities in the cerebellar circuit and contribute to learning and memory and behavioral control.

  12. Intrinsic bursters increase the robustness of rhythm generation in an excitatory network.

    Science.gov (United States)

    Purvis, L K; Smith, J C; Koizumi, H; Butera, R J

    2007-02-01

    The pre-Botzinger complex (pBC) is a vital subcircuit of the respiratory central pattern generator. Although the existence of neurons with pacemaker-like bursting properties in this network is not questioned, their role in network rhythmogenesis is unresolved. Modeling is ideally suited to address this debate because of the ease with which biophysical parameters of individual cells and network architecture can be manipulated. We modeled the parameter variability of experimental data from pBC bursting pacemaker and nonpacemaker neurons using a modified version of our previously developed pBC neuron and network models. To investigate the role of pacemakers in networkwide rhythmogenesis, we simulated networks of these neurons and varied the fraction of the population made up of pacemakers. For each number of pacemaker neurons, we varied the amount of tonic drive to the network and measured the frequency of synchronous networkwide bursting produced. Both excitatory networks with all-to-all coupling and sparsely connected networks were explored for several levels of synaptic coupling strength. Networks containing only nonpacemakers were able to produce networkwide bursting, but with a low probability of bursting and low input and output ranges. Our results indicate that inclusion of pacemakers in an excitatory network increases robustness of the network by more than tripling the input and output ranges compared with networks containing no pacemakers. The largest increase in dynamic range occurs when the number of pacemakers in the network is greater than 20% of the population. Experimental tests of our model predictions are proposed.

  13. Integrated plasticity at inhibitory and excitatory synapses in the cerebellar circuit.

    Science.gov (United States)

    Mapelli, Lisa; Pagani, Martina; Garrido, Jesus A; D'Angelo, Egidio

    2015-01-01

    The way long-term potentiation (LTP) and depression (LTD) are integrated within the different synapses of brain neuronal circuits is poorly understood. In order to progress beyond the identification of specific molecular mechanisms, a system in which multiple forms of plasticity can be correlated with large-scale neural processing is required. In this paper we take as an example the cerebellar network, in which extensive investigations have revealed LTP and LTD at several excitatory and inhibitory synapses. Cerebellar LTP and LTD occur in all three main cerebellar subcircuits (granular layer, molecular layer, deep cerebellar nuclei) and correspondingly regulate the function of their three main neurons: granule cells (GrCs), Purkinje cells (PCs) and deep cerebellar nuclear (DCN) cells. All these neurons, in addition to be excited, are reached by feed-forward and feed-back inhibitory connections, in which LTP and LTD may either operate synergistically or homeostatically in order to control information flow through the circuit. Although the investigation of individual synaptic plasticities in vitro is essential to prove their existence and mechanisms, it is insufficient to generate a coherent view of their impact on network functioning in vivo. Recent computational models and cell-specific genetic mutations in mice are shedding light on how plasticity at multiple excitatory and inhibitory synapses might regulate neuronal activities in the cerebellar circuit and contribute to learning and memory and behavioral control.

  14. Synaptic polarity of the interneuron circuit controlling C. elegans locomotion

    Directory of Open Access Journals (Sweden)

    Franciszek eRakowski

    2013-10-01

    Full Text Available C. elegans is the only animal for which a detailed neural connectivity diagram has been constructed. However, synaptic polarities in this diagram, and thus, circuit functions are largely unknown. Here, we deciphered the likely polarities of 7 pre-motor neurons implicated in the control of worm's locomotion, using a combination of experimental and computational tools. We performed single and multiple laser ablations in the locomotor interneuron circuit and recorded times the worms spent in forward and backward locomotion. We constructed a theoretical model of the locomotor circuit and searched its all possible synaptic polarity combinations and sensory input patterns in order to find the best match to the timing data. The optimal solution is when either all or most of the interneurons are inhibitory and forward interneurons receive the strongest input, which suggests that inhibition governs the dynamics of the locomotor interneuron circuit. From the five pre-motor interneurons, only AVB and AVD are equally likely to be excitatory, i.e. they have probably similar number of inhibitory and excitatory connections to distant targets. The method used here has a general character and thus can be also applied to other neural systems consisting of small functional networks.

  15. Synaptic polarity of the interneuron circuit controlling C. elegans locomotion.

    Science.gov (United States)

    Rakowski, Franciszek; Srinivasan, Jagan; Sternberg, Paul W; Karbowski, Jan

    2013-01-01

    Caenorhabditis elegans is the only animal for which a detailed neural connectivity diagram has been constructed. However, synaptic polarities in this diagram, and thus, circuit functions are largely unknown. Here, we deciphered the likely polarities of seven pre-motor neurons implicated in the control of worm's locomotion, using a combination of experimental and computational tools. We performed single and multiple laser ablations in the locomotor interneuron circuit and recorded times the worms spent in forward and backward locomotion. We constructed a theoretical model of the locomotor circuit and searched its all possible synaptic polarity combinations and sensory input patterns in order to find the best match to the timing data. The optimal solution is when either all or most of the interneurons are inhibitory and forward interneurons receive the strongest input, which suggests that inhibition governs the dynamics of the locomotor interneuron circuit. From the five pre-motor interneurons, only AVB and AVD are equally likely to be excitatory, i.e., they have probably similar number of inhibitory and excitatory connections to distant targets. The method used here has a general character and thus can be also applied to other neural systems consisting of small functional networks.

  16. Spike-Timing–Dependent Synaptic Plasticity and Synaptic Democracy in Dendrites

    Science.gov (United States)

    Gidon, Albert; Segev, Idan

    2009-01-01

    We explored in a computational study the effect of dendrites on excitatory synapses undergoing spike-timing–dependent plasticity (STDP), using both cylindrical dendritic models and reconstructed dendritic trees. We show that even if the initial strength, gpeak, of distal synapses is augmented in a location independent manner, the efficacy of distal synapses diminishes following STDP and proximal synapses would eventually dominate. Indeed, proximal synapses always win over distal synapses following linear STDP rule, independent of the initial synaptic strength distribution in the dendritic tree. This effect is more pronounced as the dendritic cable length increases but it does not depend on the dendritic branching structure. Adding a small multiplicative component to the linear STDP rule, whereby already strong synapses tend to be less potentiated than depressed (and vice versa for weak synapses) did partially “save” distal synapses from “dying out.” Another successful strategy for balancing the efficacy of distal and proximal synapses following STDP is to increase the upper bound for the synaptic conductance (gmax) with distance from the soma. We conclude by discussing an experiment for assessing which of these possible strategies might actually operate in dendrites. PMID:19357339

  17. Spike-timing-dependent synaptic plasticity and synaptic democracy in dendrites.

    Science.gov (United States)

    Gidon, Albert; Segev, Idan

    2009-06-01

    We explored in a computational study the effect of dendrites on excitatory synapses undergoing spike-timing-dependent plasticity (STDP), using both cylindrical dendritic models and reconstructed dendritic trees. We show that even if the initial strength, g(peak), of distal synapses is augmented in a location independent manner, the efficacy of distal synapses diminishes following STDP and proximal synapses would eventually dominate. Indeed, proximal synapses always win over distal synapses following linear STDP rule, independent of the initial synaptic strength distribution in the dendritic tree. This effect is more pronounced as the dendritic cable length increases but it does not depend on the dendritic branching structure. Adding a small multiplicative component to the linear STDP rule, whereby already strong synapses tend to be less potentiated than depressed (and vice versa for weak synapses) did partially "save" distal synapses from "dying out." Another successful strategy for balancing the efficacy of distal and proximal synapses following STDP is to increase the upper bound for the synaptic conductance (g(max)) with distance from the soma. We conclude by discussing an experiment for assessing which of these possible strategies might actually operate in dendrites.

  18. Asymmetry between excitatory and inhibitory learning.

    Science.gov (United States)

    Harris, Justin A; Patterson, Angela E; Andrew, Benjamin J; Kwok, Dorothy W S; Loy, Ignacio

    2016-10-01

    Five experiments investigated how learning about the added feature in a feature-positive discrimination or feature-negative discrimination is related to the change in reinforcement rate that the feature signals. Rats were trained in a magazine-approach paradigm with 2 concurrent discriminations between A versus AX and B versus BY. In 2 experiments (1 and 3), X and Y signaled an increase of 0.3 in the probability of reinforcement, from 0.1 to 0.4 (A vs. AX), or from 0.6 to 0.9 (B vs. BY). After extended training, each session included probe test trials in which X and Y were presented alone (Experiment 1) or in compound with another excitatory conditional stimulus (CS), C (Experiment 3). There was no difference in response rate between the 2 types of test trial (X vs. Y; XC vs. YC), consistent with the fact that X and Y signaled the same absolute change in reinforcement. In Experiments 2 and 4, X and Y signaled a decrease of 0.3 in the probability of reinforcement, from 0.4 to 0.1 (A vs. AX) or from 0.9 to 0.6 (B vs. BY). Test trials in which X or Y was presented with C showed that X had greater inhibitory strength than Y, consistent with the fact that X signaled a larger relative change in reinforcement. This was confirmed in Experiment 5, in which X and Y had the same inhibitory strength on test after training in which they signaled the same relative change in reinforcement but different absolute changes (0.3 to 0.1 for A vs. AX; 0.9 to 0.3 for B vs. BY). The results show that excitatory conditioning is linearly related to the increase in reinforcement rate, whereas inhibitory learning is not linearly related to the decrease in reinforcement rate. Implications of this for theories of associative learning are discussed. (PsycINFO Database Record

  19. Synaptic currents in anatomically identified CA3 neurons during hippocampal gamma oscillations in vitro.

    Science.gov (United States)

    Oren, Iris; Mann, Edward O; Paulsen, Ole; Hájos, Norbert

    2006-09-27

    Gamma-frequency oscillations are prominent during active network states in the hippocampus. An intrahippocampal gamma generator has been identified in the CA3 region. To better understand the synaptic mechanisms involved in gamma oscillogenesis, we recorded action potentials and synaptic currents in distinct types of anatomically identified CA3 neurons during carbachol-induced (20-25 microM) gamma oscillations in rat hippocampal slices. We wanted to compare and contrast the relationship between excitatory and inhibitory postsynaptic currents in pyramidal cells and perisomatic-targeting interneurons, cell types implicated in gamma oscillogenesis, as well as in other interneuron subtypes, and to relate synaptic currents to the firing properties of the cells. We found that phasic synaptic input differed between cell classes. Most strikingly, the dominant phasic input to pyramidal neurons was inhibitory, whereas phase-coupled perisomatic-targeting interneurons often received a strong phasic excitatory input. Differences in synaptic input could account for some of the differences in firing rate, action potential phase precision, and mean action potential phase angle, both between individual cells and between cell types. There was a strong positive correlation between the ratio of phasic synaptic excitation to inhibition and firing rate over all neurons and between the phase precision of excitation and action potentials in interneurons. Moreover, mean action potential phase angle correlated with the phase of the peak of the net-estimated synaptic reversal potential in all phase-coupled neurons. The data support a recurrent mechanism of gamma oscillations, whereby spike timing is controlled primarily by inhibition in pyramidal cells and by excitation in interneurons.

  20. Replacement of asymmetric synaptic profiles in the molecular layer of dentate gyrus following cycloheximide in the pilocarpine model in rats.

    Directory of Open Access Journals (Sweden)

    Simone eBittencourt

    2015-11-01

    Full Text Available Mossy fiber sprouting is among the best-studied forms of post-lesional synaptic plasticity and is regarded by many as contributory to seizures in both humans and animal models of epilepsy. It is not known whether mossy fiber sprouting increases the number of synapses in the molecular layer or merely replaces lost contacts. Using the pilocarpine model of status epilepticus to induce mossy fiber sprouting, and cycloheximide to block this sprouting, we evaluated at the ultrastructural level the number and type of asymmetric synaptic contacts in the molecular layer of the dentate gyrus. As expected, whereas pilocarpine-treated rats had dense silver grain deposits in the inner molecular layer (reflecting mossy fiber sprouting, pilocarpine+cycloheximide-treated animals did not differ from controls. Both groups of treated rats (Pilo group and CHX+Pilo group had reduced density of asymmetric synaptic profiles (putative excitatory synaptic contacts, which was greater for cycloheximide-treated animals. For both treated groups the loss of excitatory synaptic contacts was even greater in the outer molecular layer than in the best studied inner molecular layer (in which mossy fiber sprouting occurs. These results indicate that mossy fiber sprouting tends to replace lost synaptic contacts rather than increase the absolute number of contacts. We speculate that the overall result is more consistent with restored rather than with increased excitability.

  1. [The receptors involved in the excitatory effects of kynurenines].

    Science.gov (United States)

    Lapin, I P; Ryzhov, I V

    1989-01-01

    There is presented a brief review of the authors' and literature data on the excitatory and convulsant effects of kynurenines, mainly 1-kynurenine and quinolinic acid. Particular attention is given to the interactions of kynurenines with the excitatory and inhibitory amino acids, their receptors, benzodiazepine receptor complex, catecholamines, serotonin, acetylcholine. The following trends of studies on the neuroactivity of kynurenines seem to be promising: isolation of specific binding sites for the most active kynurenines--kynurenine, quinolinic and kynurenic acids, the interaction with other endogenous convulsants like beta-carbolines, endorphines, folates, etc., the search of the brain structures triggering or deferring the excitatory and convulsant effects of kynurenines.

  2. Anatomy and function of an excitatory network in the visual cortex.

    Science.gov (United States)

    Lee, Wei-Chung Allen; Bonin, Vincent; Reed, Michael; Graham, Brett J; Hood, Greg; Glattfelder, Katie; Reid, R Clay

    2016-04-21

    Circuits in the cerebral cortex consist of thousands of neurons connected by millions of synapses. A precise understanding of these local networks requires relating circuit activity with the underlying network structure. For pyramidal cells in superficial mouse visual cortex (V1), a consensus is emerging that neurons with similar visual response properties excite each other, but the anatomical basis of this recurrent synaptic network is unknown. Here we combined physiological imaging and large-scale electron microscopy to study an excitatory network in V1. We found that layer 2/3 neurons organized into subnetworks defined by anatomical connectivity, with more connections within than between groups. More specifically, we found that pyramidal neurons with similar orientation selectivity preferentially formed synapses with each other, despite the fact that axons and dendrites of all orientation selectivities pass near (<5 μm) each other with roughly equal probability. Therefore, we predict that mechanisms of functionally specific connectivity take place at the length scale of spines. Neurons with similar orientation tuning formed larger synapses, potentially enhancing the net effect of synaptic specificity. With the ability to study thousands of connections in a single circuit, functional connectomics is proving a powerful method to uncover the organizational logic of cortical networks.

  3. Serotonin increases synaptic activity in olfactory bulb glomeruli.

    Science.gov (United States)

    Brill, Julia; Shao, Zuoyi; Puche, Adam C; Wachowiak, Matt; Shipley, Michael T

    2016-03-01

    Serotoninergic fibers densely innervate olfactory bulb glomeruli, the first sites of synaptic integration in the olfactory system. Acting through 5HT2A receptors, serotonin (5HT) directly excites external tufted cells (ETCs), key excitatory glomerular neurons, and depolarizes some mitral cells (MCs), the olfactory bulb's main output neurons. We further investigated 5HT action on MCs and determined its effects on the two major classes of glomerular interneurons: GABAergic/dopaminergic short axon cells (SACs) and GABAergic periglomerular cells (PGCs). In SACs, 5HT evoked a depolarizing current mediated by 5HT2C receptors but did not significantly impact spike rate. 5HT had no measurable direct effect in PGCs. Serotonin increased spontaneous excitatory and inhibitory postsynaptic currents (sEPSCs and sIPSCs) in PGCs and SACs. Increased sEPSCs were mediated by 5HT2A receptors, suggesting that they are primarily due to enhanced excitatory drive from ETCs. Increased sIPSCs resulted from elevated excitatory drive onto GABAergic interneurons and augmented GABA release from SACs. Serotonin-mediated GABA release from SACs was action potential independent and significantly increased miniature IPSC frequency in glomerular neurons. When focally applied to a glomerulus, 5HT increased MC spontaneous firing greater than twofold but did not increase olfactory nerve-evoked responses. Taken together, 5HT modulates glomerular network activity in several ways: 1) it increases ETC-mediated feed-forward excitation onto MCs, SACs, and PGCs; 2) it increases inhibition of glomerular interneurons; 3) it directly triggers action potential-independent GABA release from SACs; and 4) these network actions increase spontaneous MC firing without enhancing responses to suprathreshold sensory input. This may enhance MC sensitivity while maintaining dynamic range.

  4. Optical fiber synaptic sensor

    Science.gov (United States)

    Pisarchik, A. N.; Jaimes-Reátegui, R.; Sevilla-Escoboza, R.; García-Lopez, J. H.; Kazantsev, V. B.

    2011-06-01

    Understanding neuron connections is a great challenge, which is needed to solve many important problems in neurobiology and neuroengineering for recreation of brain functions and efficient biorobotics. In particular, a design of an optical synapse capable to communicate with neuron spike sequences would be crucial to improve the functionality of neuromimmetic networks. In this work we propose an optical synaptic sensor based on an erbium-doped fiber laser driven by a FitzHung-Nagumo electronic neuron, to connect with another electronic neuron. Two possible optical synaptic configurations are analyzed for optoelectronic coupling between neurons: laser cavity loss modulation and pump laser modulation. The control parameters of the proposed optical synapse provide additional degrees of flexibility to the neuron connection traditionally controlled only by coupling strengths in artificial networks.

  5. Optogenetics and synaptic plasticity.

    Science.gov (United States)

    Xie, Yu-feng; Jackson, Michael F; Macdonald, John F

    2013-11-01

    The intricate and complex interaction between different populations of neurons in the brain has imposed limits on our ability to gain detailed understanding of synaptic transmission and its integration when employing classical electrophysiological approaches. Indeed, electrical field stimulation delivered via traditional microelectrodes does not permit the targeted, precise and selective control of neuronal activity amongst a varied population of neurons and their inputs (eg, cholinergic, dopaminergic or glutamatergic neurons). Recently established optogenetic techniques overcome these limitations allowing precise control of the target neuron populations, which is essential for the elucidation of the neural substrates underlying complex animal behaviors. Indeed, by introducing light-activated channels (ie, microbial opsin genes) into specific neuronal populations, optogenetics enables non-invasive optical control of specific neurons with milliseconds precision. These approaches can readily be applied to freely behaving live animals. Recently there is increased interests in utilizing optogenetics tools to understand synaptic plasticity and learning/memory. Here, we summarize recent progress in applying optogenetics in in the study of synaptic plasticity.

  6. Real Time Multiplicative Memory Amplification Mediated by Whole-Cell Scaling of Synaptic Response in Key Neurons

    Science.gov (United States)

    Reuveni, Iris; Ghosh, Sourav; Barkai, Edi

    2017-01-01

    Intense spiking response of a memory-pattern is believed to play a crucial role both in normal learning and pathology, where it can create biased behavior. We recently proposed a novel model for memory amplification where the simultaneous two-fold increase of all excitatory (AMPAR-mediated) and inhibitory (GABAAR-mediated) synapses in a sub-group of cells that constitutes a memory-pattern selectively amplifies this memory. Here we confirm the cellular basis of this model by validating its major predictions in four sets of experiments, and demonstrate its induction via a whole-cell transduction mechanism. Subsequently, using theory and simulations, we show that this whole-cell two-fold increase of all inhibitory and excitatory synapses functions as an instantaneous and multiplicative amplifier of the neurons’ spiking. The amplification mechanism acts through multiplication of the net synaptic current, where it scales both the average and the standard deviation of the current. In the excitation-inhibition balance regime, this scaling creates a linear multiplicative amplifier of the cell’s spiking response. Moreover, the direct scaling of the synaptic input enables the amplification of the spiking response to be synchronized with rapid changes in synaptic input, and to be independent of previous spiking activity. These traits enable instantaneous real-time amplification during brief elevations of excitatory synaptic input. Furthermore, the multiplicative nature of the amplifier ensures that the net effect of the amplification is large mainly when the synaptic input is mostly excitatory. When induced on all cells that comprise a memory-pattern, these whole-cell modifications enable a substantial instantaneous amplification of the memory-pattern when the memory is activated. The amplification mechanism is induced by CaMKII dependent phosphorylation that doubles the conductance of all GABAA and AMPA receptors in a subset of neurons. This whole-cell transduction

  7. Synaptic dysfunction in amygdala in intellectual disorder models.

    Science.gov (United States)

    Aincy, Marianne; Meziane, Hamid; Herault, Yann; Humeau, Yann

    2017-08-01

    The amygdala is a part of the limbic circuit that has been extensively studied in terms of synaptic connectivity, plasticity and cellular organization since decades (Ehrlich et al., 2009; Ledoux, 2000; Maren, 2001). Amygdala sub-nuclei, including lateral, basolateral and central amygdala appear now as "hubs" providing in parallel and in series neuronal processing enabling the animal to elicit freezing or escaping behavior in response to external threats. In rodents, these behaviors are easily observed and quantified following associative fear conditioning. Thus, studies on amygdala circuit in association with threat/fear behavior became very popular in laboratories and are often used among other behavioral tests to evaluate learning abilities of mouse models for various neuropsychiatric conditions including genetically encoded intellectual disabilities (ID). Yet, more than 100 human X-linked genes - and several hundreds of autosomal genes - have been associated with ID in humans. These mutations introduced in mice can generate social deficits, anxiety dysregulations and fear learning impairments (McNaughton et al., 2008; Houbaert et al., 2013; Jayachandran et al., 2014; Zhang et al., 2015). Noteworthy, a significant proportion of the coded ID gene products are synaptic proteins. It is postulated that the loss of function of these proteins could destabilize neuronal circuits by global changes of the balance between inhibitory and excitatory drives onto neurons. However, whereas amygdala related behavioral deficits are commonly observed in ID models, the role of most of these ID-genes in synaptic function and plasticity in the amygdala are only sparsely studied. We will here discuss some of the concepts that emerged from amygdala-targeted studies examining the role of syndromic and non-syndromic ID genes in fear-related behaviors and/or synaptic function. Along describing these cases, we will discuss how synaptic deficits observed in amygdala circuits could impact

  8. Astroglial calcium signaling displays short-term plasticity and adjusts synaptic efficacy

    Directory of Open Access Journals (Sweden)

    Jeremie eSibille

    2015-05-01

    Full Text Available Astrocytes are dynamic signaling brain elements able to sense neuronal inputs and to respond by complex calcium signals, which are thought to represent their excitability. Such signaling has been proposed to modulate, or not, neuronal activities ranging from basal synaptic transmission to epileptiform discharges. However, whether calcium signaling in astrocytes exhibits activity-dependent changes and acutely modulates short-term synaptic plasticity is currently unclear. We here show, using dual recordings of astroglial calcium signals and synaptic transmission, that calcium signaling in astrocytes displays, concomitantly to excitatory synapses, short-term plasticity in response to prolonged repetitive and tetanic stimulations of Schaffer collaterals. We also found that acute inhibition of calcium signaling in astrocytes by intracellular calcium chelation rapidly potentiates excitatory synaptic transmission and short-term plasticity of Shaffer collateral CA1 synapses, i.e. paired-pulse facilitation and responses to tetanic and prolonged repetitive stimulation. These data reveal that calcium signaling of astrocytes is plastic and down-regulates basal transmission and short-term plasticity of hippocampal CA1 glutamatergic synapses.

  9. Dysregulated Expression of Neuregulin-1 by Cortical Pyramidal Neurons Disrupts Synaptic Plasticity

    Directory of Open Access Journals (Sweden)

    Amit Agarwal

    2014-08-01

    Full Text Available Neuregulin-1 (NRG1 gene variants are associated with increased genetic risk for schizophrenia. It is unclear whether risk haplotypes cause elevated or decreased expression of NRG1 in the brains of schizophrenia patients, given that both findings have been reported from autopsy studies. To study NRG1 functions in vivo, we generated mouse mutants with reduced and elevated NRG1 levels and analyzed the impact on cortical functions. Loss of NRG1 from cortical projection neurons resulted in increased inhibitory neurotransmission, reduced synaptic plasticity, and hypoactivity. Neuronal overexpression of cysteine-rich domain (CRD-NRG1, the major brain isoform, caused unbalanced excitatory-inhibitory neurotransmission, reduced synaptic plasticity, abnormal spine growth, altered steady-state levels of synaptic plasticity-related proteins, and impaired sensorimotor gating. We conclude that an “optimal” level of NRG1 signaling balances excitatory and inhibitory neurotransmission in the cortex. Our data provide a potential pathomechanism for impaired synaptic plasticity and suggest that human NRG1 risk haplotypes exert a gain-of-function effect.

  10. Augmented brain function by coordinated reset stimulation with slowly varying sequences

    Directory of Open Access Journals (Sweden)

    Magteld eZeitler

    2015-03-01

    Full Text Available Several brain disorders are characterized by abnormally strong neuronal synchrony. Coordinated Reset (CR stimulation was developed to selectively counteract abnormal neuronal synchrony by desynchronization. For this, phase resetting stimuli are delivered to different subpopulations in a timely coordinated way. In neural networks with spike timing-dependent plasticity CR stimulation may eventually lead to an anti-kindling, i.e. an unlearning of abnormal synaptic connectivity and abnormal synchrony. The spatiotemporal sequence by which all stimulation sites are stimulated exactly once is called the stimulation site sequence, or briefly sequence. So far, in simulations, pre-clinical and clinical applications CR was applied either with fixed sequences or rapidly varying sequences (RVS. In this computational study we show that appropriate repetition of the sequence with occasional random switching to the next sequence may significantly improve the anti-kindling effect of CR. To this end, a sequence is applied many times before randomly switching to the next sequence. This new method is called SVS CR stimulation, i.e. CR with slowly varying sequences. In a neuronal network with strong short-range excitatory and weak long-range inhibitory dynamic couplings SVS CR stimulation turns out to be superior to CR stimulation with fixed sequences or RVS.

  11. Differential changes in thalamic and cortical excitatory synapses onto striatal spiny projection neurons in a Huntington disease mouse model.

    Science.gov (United States)

    Kolodziejczyk, Karolina; Raymond, Lynn A

    2016-02-01

    Huntington disease (HD), a neurodegenerative disorder caused by CAG repeat expansion in the gene encoding huntingtin, predominantly affects the striatum, especially the spiny projection neurons (SPN). The striatum receives excitatory input from cortex and thalamus, and the role of the former has been well-studied in HD. Here, we report that mutated huntingtin alters function of thalamostriatal connections. We used a novel thalamostriatal (T-S) coculture and an established corticostriatal (C-S) coculture, generated from YAC128 HD and WT (FVB/NJ background strain) mice, to investigate excitatory neurotransmission onto striatal SPN. SPN in T-S coculture from WT mice showed similar mini-excitatory postsynaptic current (mEPSC) frequency and amplitude as in C-S coculture; however, both the frequency and amplitude were significantly reduced in YAC128 T-S coculture. Further investigation in T-S coculture showed similar excitatory synapse density in WT and YAC128 SPN dendrites by immunostaining, suggesting changes in total dendritic length or probability of release as possible explanations for mEPSC frequency changes. Synaptic N-methyl-D-aspartate receptor (NMDAR) current was similar, but extrasynaptic current, associated with cell death signaling, was enhanced in YAC128 SPN in T-S coculture. Employing optical stimulation of cortical versus thalamic afferents and recording from striatal SPN in brain slice, we found increased glutamate release probability and reduced AMPAR/NMDAR current ratios in thalamostriatal synapses, most prominently in YAC128. Enhanced extrasynaptic NMDAR current in YAC128 SPN was apparent with both cortical and thalamic stimulation. We conclude that thalamic afferents to the striatum are affected early, prior to an overt HD phenotype; however, changes in NMDAR localization in SPN are independent of the source of glutamatergic input.

  12. Addiction therapy. Refining deep brain stimulation to emulate optogenetic treatment of synaptic pathology.

    Science.gov (United States)

    Creed, Meaghan; Pascoli, Vincent Jean; Lüscher, Christian

    2015-02-06

    Circuit remodeling driven by pathological forms of synaptic plasticity underlies several psychiatric diseases, including addiction. Deep brain stimulation (DBS) has been applied to treat a number of neurological and psychiatric conditions, although its effects are transient and mediated by largely unknown mechanisms. Recently, optogenetic protocols that restore normal transmission at identified synapses in mice have provided proof of the idea that cocaine-adaptive behavior can be reversed in vivo. The most efficient protocol relies on the activation of metabotropic glutamate receptors, mGluRs, which depotentiates excitatory synaptic inputs onto dopamine D1 receptor medium-sized spiny neurons and normalizes drug-adaptive behavior. We discovered that acute low-frequency DBS, refined by selective blockade of dopamine D1 receptors, mimics optogenetic mGluR-dependent normalization of synaptic transmission. Consequently, there was a long-lasting abolishment of behavioral sensitization. Copyright © 2015, American Association for the Advancement of Science.

  13. The AAA+ ATPase, Thorase Regulates AMPA Receptor-Dependent Synaptic Plasticity and Behavior

    Science.gov (United States)

    Zhang, Jianmin; Wang, Yue; Chi, Zhikai; Keuss, Matthew J.; Pai, Ying-Min Emily; Kang, Ho Chul; Shin, Jooho; Bugayenko, Artem; Wang, Hong; Xiong, Yulan; Pletnikov, Mikhail V.; Mattson, Mark P.; Dawson, Ted M.; Dawson, Valina L.

    2011-01-01

    SUMMARY The synaptic insertion or removal of AMPA receptors (AMPAR) plays critical roles in the regulation of synaptic activity reflected in the expression of long-term potentiation (LTP) and long-term depression (LTD). The cellular events underlying this important process in learning and memory are still being revealed. Here we describe and characterize the AAA+ ATPase, Thorase, that regulates the expression of surface AMPAR. In an ATPase-dependent manner Thorase mediates the internalization of AMPAR by disassembling the AMPAR-GRIP1 complex. Following genetic deletion of Thorase, the internalization of AMPAR is substantially reduced, leading to increased amplitudes of miniature excitatory postsynaptic currents, enhancement of LTP and elimination of LTD. These molecular events are expressed as deficits in learning and memory in Thorase null mice. This study identifies an AAA+ ATPase that plays a critical role in regulating the surface expression of AMPAR and thereby regulates synaptic plasticity and learning and memory. PMID:21496646

  14. Recent advances in understanding synaptic abnormalities in Rett syndrome [version 1; referees: 2 approved

    Directory of Open Access Journals (Sweden)

    Michael Johnston

    2015-12-01

    Full Text Available Rett syndrome is an extremely disabling X-linked nervous system disorder that mainly affects girls in early childhood and causes autism-like behavior, severe intellectual disability, seizures, sleep disturbances, autonomic instability, and other disorders due to mutations in the MeCP2 (methyl CpG-binding protein 2 transcription factor. The disorder targets synapses and synaptic plasticity and has been shown to disrupt the balance between glutamate excitatory synapses and GABAergic inhibitory synapses. In fact, it can be argued that Rett syndrome is primarily a disorder of synaptic plasticity and that agents that can correct this imbalance may have beneficial effects on brain development. This review briefly summarizes the link between disrupted synaptic plasticity mechanisms and Rett syndrome and early clinical trials that aim to target these abnormalities to improve the outcome for these severely disabled children.

  15. Multi-walled carbon nanotube inhibits CA1 glutamatergic synaptic transmission in rat's hippocampal slices.

    Science.gov (United States)

    Chen, Ting; Yang, Jiajia; Zhang, Hui; Ren, Guogang; Yang, Zhuo; Zhang, Tao

    2014-09-17

    The purpose of the study was to investigate the neurotoxic effect of multi-walled carbon nanotubes (MWCNTs) on the properties of glutamatergic synaptic transmission in rat's hippocampal slices using whole-cell patch clamp technique. The amplitude and frequency of excitatory postsynaptic current (EPSC) were accessed on the hippocampal pyramidal neurons. The alterations of glutamatergic synaptic transmission in CA3-CA1 were examined by measuring both the amplitude of evoked excitatory postsynaptic current (eEPSC) and paired-pulse ratio (PPR). The data showed that the amplitude of either spontaneous excitatory postsynaptic current (sEPSC) or miniature excitatory postsynaptic current (mEPSC) was significantly inhibited by 1 μg/mL MWCNTs. However, it was found that there was a trend of different change on the frequency index. When 1 μg/mL MWCNTs was applied, there were a decreased frequency of mEPSC and an increased frequency of sEPSC, which might be due to the effect of action potential. Furthermore, the amplitudes of eEPSC at CA3-CA1 synapses were remarkably decreased. And the mean amplitude of AMPAR-mediated eEPSC was significantly reduced as well. Meanwhile, a majority of PPRs data were greater than one. There were no significant differences of PPRs between control and MWCNTs states, but an increased trend of paired-pulse facilitation was found. These results suggested that MWCNT markedly inhibited hippocampal CA1 glutamatergic synaptic transmission in vitro, which provided new insights into the MWCNT toxicology on CNS at cellular level.

  16. Synaptic and cellular profile of neurons in the lateral habenula.

    Directory of Open Access Journals (Sweden)

    Frank Julius Meye

    2013-12-01

    Full Text Available The lateral habenula (LHb is emerging as a crucial structure capable of conveying rewarding and aversive information. Recent evidence indicates that a rapid increase in the activity of LHb neurons drives negative states and avoidance. Furthermore, the hyperexcitability of neurons in the lateral habenula, especially those projecting to the midbrain, may represent an important cellular correlate for neuropsychiatric disorders like depression and drug addiction. Despite the recent insights regarding the implications of the LHb in the context of reward and aversion, the exact nature of the synaptic and cellular players regulating LHb neuronal functions remains largely unknown. Here we focus on the synaptic and cellular physiology of LHb neurons. First, we discuss the properties of excitatory transmission and the implications of glutamate receptors for long-term synaptic plasticity; second, we review the features of GABAergic transmission onto LHb neurons; and finally, we describe the contribution that neuromodulators such as dopamine and serotonin may have for LHb neuronal physiology. We relate these findings to the role that the LHb can play in processing aversive and rewarding stimuli, both in health and disease states.

  17. Binocular Rivalry in a Competitive Neural Network with Synaptic Depression

    KAUST Repository

    Kilpatrick, Zachary P.

    2010-01-01

    We study binocular rivalry in a competitive neural network with synaptic depression. In particular, we consider two coupled hypercolums within primary visual cortex (V1), representing orientation selective cells responding to either left or right eye inputs. Coupling between hypercolumns is dominated by inhibition, especially for neurons with dissimilar orientation preferences. Within hypercolumns, recurrent connectivity is excitatory for similar orientations and inhibitory for different orientations. All synaptic connections are modifiable by local synaptic depression. When the hypercolumns are driven by orthogonal oriented stimuli, it is possible to induce oscillations that are representative of binocular rivalry. We first analyze the occurrence of oscillations in a space-clamped version of the model using a fast-slow analys is, taking advantage of the fact that depression evolves much slower than population activity. We th en analyze the onset of oscillations in the full spatially extended system by carrying out a piecewise smooth stability analysis of single (winner-take-all) and double (fusion) bumps within the network. Although our stability analysis takes into account only instabilities associated with real eigenvalues, it identifies points of instability that are consistent with what is found numerically. In particular, we show that, in regions of parameter space where double bumps are unstable and no single bumps exist, binocular rivalry can arise as a slow alternation between either population supporting a bump. © 2010 Society for Industrial and Applied Mathematics.

  18. Statistical theory of synaptic connectivity in the neocortex

    Science.gov (United States)

    Escobar, Gina

    Learning and long-term memory rely on plasticity of neural circuits. In adult cerebral cortex plasticity can be mediated by modulation of existing synapses and structural reorganization of circuits through growth and retraction of dendritic spines. In the first part of this thesis, we describe a theoretical framework for the analysis of spine remodeling plasticity. New synaptic contacts appear in the neuropil where gaps between axonal and dendritic branches can be bridged by dendritic spines. Such sites are termed potential synapses. We derive expressions for the densities of potential synapses in the neuropil. We calculate the ratio of actual to potential synapses, called the connectivity fraction, and use it to find the number of structurally different circuits attainable with spine remodeling. These parameters are calculated in four systems: mouse occipital cortex, rat hippocampal area CA1, monkey primary visual (V1), and human temporal cortex. The neurogeometric results indicate that a dendritic spine can choose among an average of 4-7 potential targets in rodents, while in primates it can choose from 10-20 potential targets. The potential of the neuropil to undergo circuit remodeling is found to be highest in rat CA1 (4.9-6.0 nats/mum 3) and lowest in monkey V1 (0.9-1.0 nats/mum3). We evaluate the lower bound of neuron selectivity in the choice of synaptic partners and find that post-synaptic excitatory neurons in rodents make synaptic contacts with more than 21-30% of pre-synaptic axons encountered with new spine growth. Primate neurons appear to be more selective, making synaptic connections with more than 7-15% of encountered axons. Another plasticity mechanism is included in the second part of this work: long-term potentiation and depression of excitatory synaptic connections. Because synaptic strength is correlated with the size of the synapse, the former can be inferred from the distribution of spine head volumes. To this end we analyze and compare 166

  19. Computer simulation study of the relationship between the profile of excitatory postsynaptic potential and stimulus-correlated motoneuron firing.

    Science.gov (United States)

    Piotrkiewicz, Maria; Kudina, Lydia; Jakubiec, Michal

    2009-03-01

    This paper shows the results of computer simulation of changes in motoneuron (MN) firing evoked by a repetitively applied synaptic volley that consists of a single excitatory postsynaptic potential (EPSP). Spike trains produced by the threshold-crossing MN model were analyzed as experimental results. Various output functions were applied for analysis; the most useful was a peristimulus time histogram, a special modification of a raster plot and a peristimulus time frequencygram (PSTF). It has been shown that all functions complement each other in distinguishing between the genuine results evoked by the excitatory volley and the secondary results of the EPSP-evoked synchronization. The EPSP rising edge was best reproduced by the PSTF. However, whereas the EPSP rise time could be estimated quite accurately, especially for high EPSP amplitudes at high MN firing rates, the EPSP amplitude estimate was also influenced by factors unrelated to the synaptic volley, such as the afterhyperpolarization duration of the MN or the amplitude of synaptic noise, which cannot be directly assessed in human experiments. Thus, the attempts to scale any estimate of the EPSP amplitude in millivolts appear to be useless. The decaying phase of the EPSP cannot be reproduced accurately by any of the functions. For the short EPSPs, it is extinguished by the generation of an action potential and a subsequent decrease in the MN excitability. For longer EPSPs, it is inseparable from the secondary effects of synchronization. Thus, the methods aimed at extracting information about long-lasting and complex postsynaptic potentials from stimulus-correlated MN firing, should be refined, and the theoretical considerations checked in computer simulations.

  20. Near-Perfect Synaptic Integration by Nav1.7 in Hypothalamic Neurons Regulates Body Weight.

    Science.gov (United States)

    Branco, Tiago; Tozer, Adam; Magnus, Christopher J; Sugino, Ken; Tanaka, Shinsuke; Lee, Albert K; Wood, John N; Sternson, Scott M

    2016-06-16

    Neurons are well suited for computations on millisecond timescales, but some neuronal circuits set behavioral states over long time periods, such as those involved in energy homeostasis. We found that multiple types of hypothalamic neurons, including those that oppositely regulate body weight, are specialized as near-perfect synaptic integrators that summate inputs over extended timescales. Excitatory postsynaptic potentials (EPSPs) are greatly prolonged, outlasting the neuronal membrane time-constant up to 10-fold. This is due to the voltage-gated sodium channel Nav1.7 (Scn9a), previously associated with pain-sensation but not synaptic integration. Scn9a deletion in AGRP, POMC, or paraventricular hypothalamic neurons reduced EPSP duration, synaptic integration, and altered body weight in mice. In vivo whole-cell recordings in the hypothalamus confirmed near-perfect synaptic integration. These experiments show that integration of synaptic inputs over time by Nav1.7 is critical for body weight regulation and reveal a mechanism for synaptic control of circuits regulating long term homeostatic functions.

  1. Functional localization of neurotransmitter receptors and synaptic inputs to mature neurons of the medial superior olive.

    Science.gov (United States)

    Couchman, Kiri; Grothe, Benedikt; Felmy, Felix

    2012-02-01

    Neurons of the medial superior olive (MSO) code for the azimuthal location of low-frequency sound sources via a binaural coincidence detection system operating on microsecond time scales. These neurons are morphologically simple and stereotyped, and anatomical studies have indicated a functional segregation of excitatory and inhibitory inputs between cellular compartments. It is thought that this morphological arrangement holds important implications for the computational task of these cells. To date, however, there has been no functional investigation into synaptic input sites or functional receptor distributions on mature neurons of the MSO. Here, functional neurotransmitter receptor maps for amino-3-hydroxyl-5-methyl-4-isoxazole propionate (AMPA), N-methyl-D-aspartate (NMDA), glycine (Gly), and ionotropic γ-aminobutyric acid (GABA(A)) receptors (Rs) were compared and complemented by their corresponding synaptic input map. We find in MSO neurons from postnatal day 20-35 gerbils that AMPARs and their excitatory inputs target the soma and dendrites. Functional GlyRs and their inhibitory inputs are predominantly refined to the somata, although a pool of functional GlyRs is present extrasynaptically on MSO dendrites. GABA(A)R responses are present throughout the cell but lack direct synaptic contact indicating an involvement in volume transmission. NMDARs are present both synaptically and extrasynaptically with an overall distribution similar to GlyRs. Interestingly, even at physiological temperatures these functional NMDARs can be potentiated by synaptically released Gly. The functional receptor and synaptic input maps produced here led to the identification of a cross talk between transmitter systems and raises the possibility that extrasynaptic receptors could be modulating leak conductances as a homeostatic mechanism.

  2. The temporoammonic input to the hippocampal CA1 region displays distinctly different synaptic plasticity compared to the Schaffer collateral input in vivo: significance for synaptic information processing

    Science.gov (United States)

    Aksoy-Aksel, Ayla; Manahan-Vaughan, Denise

    2013-01-01

    In terms of its sub-regional differentiation, the hippocampal CA1 region receives cortical information directly via the perforant (temporoammonic) path (pp-CA1 synapse) and indirectly via the tri-synaptic pathway where the last relay station is the Schaffer collateral-CA1 synapse (Sc-CA1 synapse). Research to date on pp-CA1 synapses has been conducted predominantly in vitro and never in awake animals, but these studies hint that information processing at this synapse might be distinct to processing at the Sc-CA1 synapse. Here, we characterized synaptic properties and synaptic plasticity at the pp-CA1 synapse of freely behaving adult rats. We observed that field excitatory postsynaptic potentials at the pp-CA1 synapse have longer onset latencies and a shorter time-to-peak compared to the Sc-CA1 synapse. LTP (>24 h) was successfully evoked by tetanic afferent stimulation of pp-CA1 synapses. Low frequency stimulation evoked synaptic depression at Sc-CA1 synapses, but did not elicit LTD at pp-CA1 synapses unless the Schaffer collateral afferents to the CA1 region had been severed. Paired-pulse responses also showed significant differences. Our data suggest that synaptic plasticity at the pp-CA1 synapse is distinct from the Sc-CA1 synapse and that this may reflect its specific role in hippocampal information processing. PMID:23986697

  3. The temporoammonic input to the hippocampal CA1 region displays distinctly different synaptic plasticity compared to the Schaffer collateral input in vivo: significance for synaptic information processing

    Directory of Open Access Journals (Sweden)

    Ayla eAksoy Aksel

    2013-08-01

    Full Text Available In terms of its sub-regional differentiation, the hippocampal CA1 region receives cortical information directly via the perforant (temporoammonic path (pp-CA1 synapse and indirectly via the tri-synaptic pathway where the last relay station is the Schaffer collateral-CA1 synapse (Sc-CA1 synapse. Research to date on pp-CA1 synapses has been conducted predominantly in vitro and never in awake animals, but these studies hint that information processing at this synapse might be distinct to processing at the Sc-CA1 synapse. Here, we characterized synaptic properties and synaptic plasticity at the pp-CA1 synapse of freely behaving adult rats. We established that field excitatory postsynaptic potentials at the pp-CA1 have longer onset latencies and a shorter time-to-peak compared to the Sc-CA1 synapse. LTP (> 24h was successfully evoked by tetanic afferent stimulation of pp-CA1 synapses. Low frequency stimulation evoked synaptic depression at Sc-CA1 synapses, but did not elicit LTD at pp-CA1 synapses unless the Schaffer collateral afferents to the CA1 region had been severed. Paired-pulse responses also showed significant differences. Our data suggest that synaptic plasticity at the pp-CA1 synapse is distinct from the Sc-CA1 synapse and that this may reflect its specific role in hippocampal information processing.

  4. Obesity-driven synaptic remodeling affects endocannabinoid control of orexinergic neurons.

    Science.gov (United States)

    Cristino, Luigia; Busetto, Giuseppe; Imperatore, Roberta; Ferrandino, Ida; Palomba, Letizia; Silvestri, Cristoforo; Petrosino, Stefania; Orlando, Pierangelo; Bentivoglio, Marina; Mackie, Kenneth; Di Marzo, Vincenzo

    2013-06-11

    Acute or chronic alterations in energy status alter the balance between excitatory and inhibitory synaptic transmission and associated synaptic plasticity to allow for the adaptation of energy metabolism to new homeostatic requirements. The impact of such changes on endocannabinoid and cannabinoid receptor type 1 (CB1)-mediated modulation of synaptic transmission and strength is not known, despite the fact that this signaling system is an important target for the development of new drugs against obesity. We investigated whether CB1-expressing excitatory vs. inhibitory inputs to orexin-A-containing neurons in the lateral hypothalamus are altered in obesity and how this modifies endocannabinoid control of these neurons. In lean mice, these inputs are mostly excitatory. By confocal and ultrastructural microscopic analyses, we observed that in leptin-knockout (ob/ob) obese mice, and in mice with diet-induced obesity, orexinergic neurons receive predominantly inhibitory CB1-expressing inputs and overexpress the biosynthetic enzyme for the endocannabinoid 2-arachidonoylglycerol, which retrogradely inhibits synaptic transmission at CB1-expressing axon terminals. Patch-clamp recordings also showed increased CB1-sensitive inhibitory innervation of orexinergic neurons in ob/ob mice. These alterations are reversed by leptin administration, partly through activation of the mammalian target of rapamycin pathway in neuropeptide-Y-ergic neurons of the arcuate nucleus, and are accompanied by CB1-mediated enhancement of orexinergic innervation of target brain areas. We propose that enhanced inhibitory control of orexin-A neurons, and their CB1-mediated disinhibition, are a consequence of leptin signaling impairment in the arcuate nucleus. We also provide initial evidence of the participation of this phenomenon in hyperphagia and hormonal dysregulation in obesity.

  5. Calcium current homeostasis and synaptic deficits in hippocampal neurons from Kelch-like 1 knockout mice

    Directory of Open Access Journals (Sweden)

    Paula Patricia Perissinotti

    2015-01-01

    Full Text Available Kelch-like 1 (KLHL1 is a neuronal actin-binding protein that modulates voltage-gated CaV2.1 (P/Q-type and CaV3.2 (α1H T-type calcium channels; KLHL1 knockdown experiments (KD cause down-regulation of both channel types and altered synaptic properties in cultured rat hippocampal neurons (Perissinotti et al., 2014. Here, we studied the effect of ablation of KLHL1 on calcium channel function and synaptic properties in cultured hippocampal neurons from KLHL1 knockout (KO mice. Western blot data showed the P/Q-type channel α1A subunit was less abundant in KO hippocampus compared to wildtype (WT; and PQ-type calcium currents were smaller in KO neurons than WT during early days in vitro, although this decrease was compensated for at late stages by increases in L-type calcium current. In contrast, T-type currents did not change in culture. However, biophysical properties and western blot analysis revealed a differential contribution of T-type channel isoforms in the KO, with CaV3.2 α1H subunit being down-regulated and CaV3.1 α1G up-regulated. Synapsin I levels were reduced in the KO hippocampus; cultured neurons displayed a concomitant reduction in synapsin I puncta and decreased miniature excitatory postsynaptic current (mEPSC frequency. In summary, genetic ablation of the calcium channel modulator resulted in compensatory mechanisms to maintain calcium current homeostasis in hippocampal KO neurons; however, synaptic alterations resulted in a reduction of excitatory synapse number, causing an imbalance of the excitatory-inhibitory synaptic input ratio favoring inhibition.

  6. Involvement of ClC-3 chloride/proton exchangers in controlling glutamatergic synaptic strength in cultured hippocampal neurons

    Directory of Open Access Journals (Sweden)

    Raul Enrique Guzman

    2014-05-01

    Full Text Available ClC-3 is a member of the CLC family of anion channels and transporters that localizes to early and late endosomes as well as to synaptic vesicles. Its genetic disruption in mouse models results in pronounced hippocampal and retinal neurodegeneration, suggesting that ClC-3 might be important for normal excitatory and/or inhibitory neurotransmission in central neurons. To characterize the role of ClC-3 in glutamate accumulation in synaptic vesicles we compared glutamatergic synaptic transmission in cultured hippocampal neurons from WT and Clcn3-/- mice. In Clcn3-/- neurons the amplitude and frequency of miniature as well as the amplitudes of action-potential evoked EPSCs were significantly increased as compared to WT neurons. The low-affinity competitive AMPA receptor antagonist -DGG reduced the quantal size of synaptic events more effectively in WT than in Clcn3-/- neurons, whereas no difference was observed for the high-affinity competitive non-NMDA antagonist NBQX. Paired pulse ratios of evoked EPSCs were significantly reduced, whereas the size of the readily releasable pool was not affected by the genetic ablation of ClC-3. Electron microscopy revealed increased volumes of synaptic vesicles in hippocampi of Clcn3-/- mice. Our findings demonstrate that ClC-3 controls fast excitatory synaptic transmission by regulating the amount of neurotransmitter as well as the release probability of synaptic vesicles. These results provide novel insights into the role of ClC-3 in synaptic transmission and identify excessive glutamate release as a likely basis of neurodegeneration in Clcn3-/-.

  7. Synaptic encoding of temporal contiguity

    Directory of Open Access Journals (Sweden)

    Srdjan eOstojic

    2013-04-01

    Full Text Available Often we need to perform tasks in an environment that changes stochastically. In these situations it is important to learn the statistics of sequences of events in order to predict the future and the outcome of our actions. The statistical description of many of these sequences can be reduced to the set of probabilities that a particular event follows another event (temporal contiguity. Under these conditions, it is important to encode and store in our memory these transition probabilities. Here we show that for a large class of synaptic plasticity models, the distribution of synaptic strengths encodes transitions probabilities. Specifically, when the synaptic dynamics depend on pairs of contiguous events and the synapses can remember multiple instances of the transitions, then the average synaptic weights are a monotonic function of the transition probabilities. The synaptic weights converge to the distribution encoding the probabilities also when the correlations between consecutive synaptic modifications are considered. We studied how this distribution depends on the number of synaptic states for a specific model of a multi-state synapse with hard bounds. In the case of bistable synapses, the average synaptic weights are a smooth function of the transition probabilities and the accuracy of the encoding depends on the learning rate. As the number of synaptic states increases, the average synaptic weights become a step function of the transition probabilities. We finally show that the information stored in the synaptic weights can be read out by a simple rate-based neural network. Our study shows that synapses encode transition probabilities under general assumptions and this indicates that temporal contiguity is likely to be encoded and harnessed in almost every neural circuit in the brain.

  8. Synaptic Impairment in Layer 1 of the Prefrontal Cortex Induced by Repeated Stress During Adolescence is Reversed in Adulthood

    Science.gov (United States)

    Negrón-Oyarzo, Ignacio; Dagnino-Subiabre, Alexies; Muñoz Carvajal, Pablo

    2015-01-01

    Chronic stress is a risk factor for the development of psychiatric disorders, some of which involve dysfunction of the prefrontal cortex (PFC). There is a higher prevalence of these chronic stress-related psychiatric disorders during adolescence, when the PFC has not yet fully matured. In the present work we studied the effect of repeated stress during adolescence on synaptic function in the PFC in adolescence and adulthood. To this end, adolescent Sprague-Dawley rats were subjected to seven consecutive days of restraint stress. Afterward, both synaptic transmission and short- and long-term synaptic plasticity were evaluated in layer 1 of medial-PFC (mPFC) slices from adolescent and adult rats. We found that repeated stress significantly reduced the amplitude of evoked field excitatory post-synaptic potential (fEPSP) in the mPFC. Isolation of excitatory transmission reveled that lower-amplitude fEPSPs were associated with a reduction in α-amino-3-hydroxy-5-methyl-4-isoxazolepropionic acid (AMPA) receptor-mediated transmission. We also found that repeated stress significantly decreased long-term depression (LTD). Interestingly, AMPA/kainate receptor-mediated transmission and LTD were recovered in adult animals that experienced a three-week stress-free recovery period. The data indicates that the changes in synaptic transmission and plasticity in the mPFC induced by repeated stress during adolescence are reversed in adulthood after a stress-free period. PMID:26617490

  9. Structure–Activity Relationship Study of Selective Excitatory Amino Acid Transporter Subtype 1 (EAAT1) Inhibitor 2-Amino-4-(4-methoxyphenyl)-7-(naphthalen-1-yl)-5-oxo-5,6,7,8-tetrahydro-4H-chromene-3-carbonitrile (UCPH-101) and Absolute Configurational Assignment Using Infrared and Vibrational

    DEFF Research Database (Denmark)

    Huynh, Tri H.V.; Shim, Irene; Bohr, Henrik

    2012-01-01

    The excitatory amino acid transporters (EAATs) play essential roles in regulating the synaptic concentration of the neurotransmitter glutamate in the mammalian central nervous system. To date, five subtypes have been identified, named EAAT1–5 in humans, and GLAST, GLT-1, EAAC1, EAAT4, and EAAT5 i...

  10. A comparison of peripheral and rubrospinal synaptic input to slow and fast twitch motor units of triceps surae.

    Science.gov (United States)

    Burke, R E; Jankowska, E; ten Bruggencate, G

    1970-05-01

    1. Post-synaptic potentials (PSPs) evoked by electrical stimulation of a variety of input systems have been compared in triceps surae motoneurones innervating slow and fast muscle units, the speed of contraction of which was also determined.2. Stimulation of high threshold afferents in both flexor and extensor muscle nerves, and of joint afferents, evoked polysynaptic PSPs which were predominantly hyperpolarizing in both fast and slow twitch motor units.3. Volleys in cutaneous afferents in the sural and saphenous nerves evoked polysynaptic PSPs composed of mixtures of inhibitory and excitatory components. The inhibitory components were predominant in slow twitch motor units, while in fast twitch units there was a trend towards excitatory predominance.4. Repetitive stimulation of the red nucleus caused predominantly inhibitory PSPs in slow twitch units and mixed or predominantly excitatory PSPs in fast twitch units. There was a correlation in the excitatory/inhibitory balance between PSPs of cutaneous and rubrospinal origin in those motoneurones in which both types of PSPs were studied.5. The amplitudes of group Ia disynaptic inhibitory PSPs were found to be correlated with motor unit twitch type: IPSPs in slow twitch units were larger than those in fast twitch units. Rubrospinal conditioning volleys were found to facilitate group Ia IPSPs in both fast and slow twitch motor units.6. The results suggest that there may be several basic patterns of synaptic input organization to motoneurones within a given motor unit pool. In addition to quantitative variation in synaptic distribution, there is evidence that qualitative differences in excitatory to inhibitory balance also exist in the pathways conveying input from cutaneous afferents and rubrospinal systems to triceps surae motoneurones. These qualitative differences are correlated with the motor unit twitch type.

  11. Age-related changes in cerebellar and hypothalamic function accompany non-microglial immune gene expression, altered synapse organization, and excitatory amino acid neurotransmission deficits

    Science.gov (United States)

    Bonasera, Stephen J.; Arikkath, Jyothi; Boska, Michael D.; Chaudoin, Tammy R.; DeKorver, Nicholas W.; Goulding, Evan H.; Hoke, Traci A.; Mojtahedzedah, Vahid; Reyelts, Crystal D.; Sajja, Balasrinivasa; Schenk, A. Katrin; Tecott, Laurence H.; Volden, Tiffany A.

    2016-01-01

    We describe age-related molecular and neuronal changes that disrupt mobility or energy balance based on brain region and genetic background. Compared to young mice, aged C57BL/6 mice exhibit marked locomotor (but not energy balance) impairments. In contrast, aged BALB mice exhibit marked energy balance (but not locomotor) impairments. Age-related changes in cerebellar or hypothalamic gene expression accompany these phenotypes. Aging evokes upregulation of immune pattern recognition receptors and cell adhesion molecules. However, these changes do not localize to microglia, the major CNS immunocyte. Consistent with a neuronal role, there is a marked age-related increase in excitatory synapses over the cerebellum and hypothalamus. Functional imaging of these regions is consistent with age-related synaptic impairments. These studies suggest that aging reactivates a developmental program employed during embryogenesis where immune molecules guide synapse formation and pruning. Renewed activity in this program may disrupt excitatory neurotransmission, causing significant behavioral deficits. PMID:27689748

  12. Frequency-dependent gating of synaptic transmission and plasticity by dopamine

    Directory of Open Access Journals (Sweden)

    Hiroshi T Ito

    2007-11-01

    Full Text Available The neurotransmitter dopamine (DA plays an important role in learning by enhancing the saliency of behaviorally relevant stimuli. How this stimulus selection is achieved on the cellular level, however, is not known. Here, in recordings from hippocampal slices, we show that DA acts specifically at the direct cortical input to hippocampal area CA1 (the temporoammonic (TA pathway to filter the excitatory drive onto pyramidal neurons based on the input frequency. During low-frequency patterns of stimulation, DA depressed excitatory TA inputs to both CA1 pyramidal neurons and local inhibitory GABAergic interneurons via presynaptic inhibition. In contrast, during high-frequency patterns of stimulation, DA potently facilitated the TA excitatory drive onto CA1 pyramidal neurons, owing to diminished feedforward inhibition. Analysis of DA's effects over a broad range of stimulus frequencies indicates that it acts as a high-pass filter, augmenting the response to high-frequency inputs while diminishing the impact of low-frequency inputs. These modulatory effects of DA exert a profound influence on activity-dependent forms of synaptic plasticity at both TA-CA1 and Schaffer-collateral (SC-CA1 synapses. Taken together, our data demonstrate that DA acts as a gate on the direct cortical input to the hippocampus, modulating information flow and synaptic plasticity in a frequency-dependent manner.

  13. Fragile X astrocytes induce developmental delays in dendrite maturation and synaptic protein expression

    Directory of Open Access Journals (Sweden)

    Doering Laurie C

    2010-10-01

    Full Text Available Abstract Background Fragile X syndrome is the most common inherited form of mental impairment characterized by cognitive impairment, attention deficit and autistic behaviours. The mouse model of Fragile X is used to study the underlying neurobiology associated with behavioral deficiencies. The effect of Fragile X glial cells on the development of neurons has not been studied. We used a co-culture technique in combination with morphometrics on immunostained neurons to investigate the role of astrocytes in the development delays associated with hippocampal neuron development. Results We found that hippocampal neurons grown on Fragile X astrocytes exhibited a significant difference from the neurons grown with normal astrocytes after 7 days in vitro for many parameters including increases in dendritic branching and in area of the cell body. However, after 21 days in culture, the neurons grown on Fragile X astrocytes exhibited morphological characteristics that did not differ significantly from the neurons grown on normal astrocytes. With antibodies to the pre-synaptic protein, synapsin, and to the excitatory post-synaptic protein, PSD-95, we quantified the number of developing excitatory synapses on the dendrites. In addition to the delays in dendritic patterning, the development of excitatory synapses was also delayed in the hippocampal neurons. Conclusions These experiments are the first to establish a role for astrocytes in the delayed growth characteristics and abnormal morphological features in dendrites and synapses that characterize the Fragile X syndrome.

  14. Effects of homeostatic constraints on associative memory storage and synaptic connectivity of cortical circuits

    Directory of Open Access Journals (Sweden)

    Julio eChapeton

    2015-06-01

    Full Text Available The impact of learning and long-term memory storage on synaptic connectivity is not completely understood. In this study, we examine the effects of associative learning on synaptic connectivity in adult cortical circuits by hypothesizing that these circuits function in a steady-state, in which the memory capacity of a circuit is maximal and learning must be accompanied by forgetting. Steady-state circuits should be characterized by unique connectivity features. To uncover such features we developed a biologically constrained, exactly solvable model of associative memory storage. The model is applicable to networks of multiple excitatory and inhibitory neuron classes and can account for homeostatic constraints on the number and the overall weight of functional connections received by each neuron. The results show that in spite of a large number of neuron classes, functional connections between potentially connected cells are realized with less than 50% probability if the presynaptic cell is excitatory and generally a much greater probability if it is inhibitory. We also find that constraining the overall weight of presynaptic connections leads to Gaussian connection weight distributions that are truncated at zero. In contrast, constraining the total number of functional presynaptic connections leads to non-Gaussian distributions, in which weak connections are absent. These theoretical predictions are compared with a large dataset of published experimental studies reporting amplitudes of unitary postsynaptic potentials and probabilities of connections between various classes of excitatory and inhibitory neurons in the cerebellum, neocortex, and hippocampus.

  15. Granger causality-based synaptic weights estimation for analyzing neuronal networks.

    Science.gov (United States)

    Shao, Pei-Chiang; Huang, Jian-Jia; Shann, Wei-Chang; Yen, Chen-Tung; Tsai, Meng-Li; Yen, Chien-Chang

    2015-06-01

    Granger causality (GC) analysis has emerged as a powerful analytical method for estimating the causal relationship among various types of neural activity data. However, two problems remain not very clear and further researches are needed: (1) The GC measure is designed to be nonnegative in its original form, lacking of the trait for differentiating the effects of excitations and inhibitions between neurons. (2) How is the estimated causality related to the underlying synaptic weights? Based on the GC, we propose a computational algorithm under a best linear predictor assumption for analyzing neuronal networks by estimating the synaptic weights among them. Under this assumption, the GC analysis can be extended to measure both excitatory and inhibitory effects between neurons. The method was examined by three sorts of simulated networks: those with linear, almost linear, and nonlinear network structures. The method was also illustrated to analyze real spike train data from the anterior cingulate cortex (ACC) and the striatum (STR). The results showed, under the quinpirole administration, the significant existence of excitatory effects inside the ACC, excitatory effects from the ACC to the STR, and inhibitory effects inside the STR.

  16. Synaptic electronics: materials, devices and applications.

    Science.gov (United States)

    Kuzum, Duygu; Yu, Shimeng; Wong, H-S Philip

    2013-09-27

    In this paper, the recent progress of synaptic electronics is reviewed. The basics of biological synaptic plasticity and learning are described. The material properties and electrical switching characteristics of a variety of synaptic devices are discussed, with a focus on the use of synaptic devices for neuromorphic or brain-inspired computing. Performance metrics desirable for large-scale implementations of synaptic devices are illustrated. A review of recent work on targeted computing applications with synaptic devices is presented.

  17. A model of synaptic reconsolidation

    Directory of Open Access Journals (Sweden)

    David B. Kastner

    2016-05-01

    Full Text Available Reconsolidation of memories has mostly been studied at the behavioral and molecular level. Here, we put forward a simple extension of existing computational models of synaptic consolidation to capture hippocampal slice experiments that have been interpreted as reconsolidation at the synaptic level. The model implements reconsolidation through stabilization of consolidated synapses by stabilizing entities combined with an activity-dependent reservoir of stabilizing entities that are immune to protein synthesis inhibition (PSI. We derive a reduced version of our model to explore the conditions under which synaptic reconsolidation does or does not occur, often referred to as the boundary conditions of reconsolidation. We find that our computational model of synaptic reconsolidation displays complex boundary conditions. Our results suggest that a limited resource of hypothetical stabilizing molecules or complexes, which may be implemented by protein phosphorylation or different receptor subtypes, can underlie the phenomenon of synaptic reconsolidation.

  18. Excitatory effects of parvalbumin-expressing interneurons maintain hippocampal epileptiform activity via synchronous afterdischarges.

    Science.gov (United States)

    Ellender, Tommas J; Raimondo, Joseph V; Irkle, Agnese; Lamsa, Karri P; Akerman, Colin J

    2014-11-12

    Epileptic seizures are characterized by periods of hypersynchronous, hyperexcitability within brain networks. Most seizures involve two stages: an initial tonic phase, followed by a longer clonic phase that is characterized by rhythmic bouts of synchronized network activity called afterdischarges (ADs). Here we investigate the cellular and network mechanisms underlying hippocampal ADs in an effort to understand how they maintain seizure activity. Using in vitro hippocampal slice models from rats and mice, we performed electrophysiological recordings from CA3 pyramidal neurons to monitor network activity and changes in GABAergic signaling during epileptiform activity. First, we show that the highest synchrony occurs during clonic ADs, consistent with the idea that specific circuit dynamics underlie this phase of the epileptiform activity. We then show that ADs require intact GABAergic synaptic transmission, which becomes excitatory as a result of a transient collapse in the chloride (Cl(-)) reversal potential. The depolarizing effects of GABA are strongest at the soma of pyramidal neurons, which implicates somatic-targeting interneurons in AD activity. To test this, we used optogenetic techniques to selectively control the activity of somatic-targeting parvalbumin-expressing (PV(+)) interneurons. Channelrhodopsin-2-mediated activation of PV(+) interneurons during the clonic phase generated excitatory GABAergic responses in pyramidal neurons, which were sufficient to elicit and entrain synchronous AD activity across the network. Finally, archaerhodopsin-mediated selective silencing of PV(+) interneurons reduced the occurrence of ADs during the clonic phase. Therefore, we propose that activity-dependent Cl(-) accumulation subverts the actions of PV(+) interneurons to perpetuate rather than terminate pathological network hyperexcitability during the clonic phase of seizures.

  19. Adolescent chronic mild stress alters hippocampal CB1 receptor-mediated excitatory neurotransmission and plasticity.

    Science.gov (United States)

    Reich, C G; Mihalik, G R; Iskander, A N; Seckler, J C; Weiss, M S

    2013-12-03

    Endocannabinoids (eCBs) are involved in the stress response and alterations in eCB signaling may contribute to the etiology of mood disorders. Exposure to chronic mild stress (CMS), a model of depression, produces downregulation of the cannabinoid 1 (CB1) receptor in the hippocampus of male rats. However, it is unknown how this stress-induced change in CB1 levels affects eCB-mediated neurotransmission. In vitro, field potential recordings from CMS-exposed (21-days) rats were performed to assess the effects of stress on eCB-regulated glutamatergic neurotransmission in/on hippocampal area CA1. We observed that application of the CB1 agonist, WIN 55,212-5 (1 μM), in stress animals resulted in a ∼135% increase in excitatory neurotransmission, whereas CB1 activation in non-stress animals leads to a ∼30% decrease. However, during blockade of GABA(A) neurotransmission with picrotoxin, CB1 activation yielded a ∼35% decrease in stress animals. These findings indicate that CMS does not directly affect glutamatergic neurotransmission. Rather, CMS sensitizes CB1 function on GABAergic terminals, leading to less inhibition and an increase in excitatory neurotransmission. This finding is reinforced in that induction of weak long-term-potentiation (LTP) is enhanced in CMS-exposed animals compared to controls and this enhancement is CB1-dependent. Lastly, we observed that the LTP-blocking property of WIN 55,212-5 shifts from being glutamate-dependent in non-stress animals to being GABA-dependent in stress animals. These results effectively demonstrate that CMS significantly alters hippocampal eCB-mediated neurotransmission and synaptic plasticity.

  20. Dynamics of networks of excitatory and inhibitory neurons in response to time-dependent inputs.

    Science.gov (United States)

    Ledoux, Erwan; Brunel, Nicolas

    2011-01-01

    We investigate the dynamics of recurrent networks of excitatory (E) and inhibitory (I) neurons in the presence of time-dependent inputs. The dynamics is characterized by the network dynamical transfer function, i.e., how the population firing rate is modulated by sinusoidal inputs at arbitrary frequencies. Two types of networks are studied and compared: (i) a Wilson-Cowan type firing rate model; and (ii) a fully connected network of leaky integrate-and-fire (LIF) neurons, in a strong noise regime. We first characterize the region of stability of the "asynchronous state" (a state in which population activity is constant in time when external inputs are constant) in the space of parameters characterizing the connectivity of the network. We then systematically characterize the qualitative behaviors of the dynamical transfer function, as a function of the connectivity. We find that the transfer function can be either low-pass, or with a single or double resonance, depending on the connection strengths and synaptic time constants. Resonances appear when the system is close to Hopf bifurcations, that can be induced by two separate mechanisms: the I-I connectivity and the E-I connectivity. Double resonances can appear when excitatory delays are larger than inhibitory delays, due to the fact that two distinct instabilities exist with a finite gap between the corresponding frequencies. In networks of LIF neurons, changes in external inputs and external noise are shown to be able to change qualitatively the network transfer function. Firing rate models are shown to exhibit the same diversity of transfer functions as the LIF network, provided delays are present. They can also exhibit input-dependent changes of the transfer function, provided a suitable static non-linearity is incorporated.

  1. Dynamics of networks of excitatory and inhibitory neuronsin response to time-dependent inputs

    Directory of Open Access Journals (Sweden)

    Erwan eLedoux

    2011-05-01

    Full Text Available We investigate the dynamics of recurrent networks of excitatory (E and inhibitory(I neurons in the presence of time-dependent inputs. The dynamics is characterizedby the network dynamical transfer function, i.e. how the population firing rate ismodulated by sinusoidal inputs at arbitrary frequencies. Two types of networks arestudied and compared: (i a Wilson-Cowan type firing rate model; and (ii a fullyconnected network of leaky integrate-and-fire neurons, in a strong noise regime. Wefirst characterize the region of stability of the ‘asynchronous state’ (a state in whichpopulation activity is constant in time when external inputs are constant in the spaceof parameters characterizing the connectivity of the network. We then systematicallycharacterize the qualitative behaviors of the dynamical transfer function, as a functionof the connectivity. We find that the transfer function can be either low-pass, or witha single or double resonance, depending on the connection strengths and synaptic timeconstants. Resonances appear when the system is close to Hopf bifurcations, that canbe induced by two separate mechanisms: the I-I connectivity and the E-I connectivity.Double resonances can appear when excitatory delays are larger than inhibitory delays,due to the fact that two distinct instabilities exist with a finite gap between thecorresponding frequencies. In networks of LIF neurons, changes in external inputs andexternal noise are shown to be able to change qualitatively the network transfer function.Firing rate models are shown to exhibit the same diversity of transfer functions asthe LIF network, provided delays are present. They can also exhibit input-dependentchanges of the transfer function, provided a suitable static nonlinearity is incorporated.

  2. Src, a molecular switch governing gain control of synaptic transmission mediated by N-methyl-d-aspartate receptors

    OpenAIRE

    Yu, Xian-Min; Salter, Michael W

    1999-01-01

    The N-methyl-d-aspartate (NMDA) receptor is a principal subtype of glutamate receptor mediating fast excitatory transmission at synapses in the dorsal horn of the spinal cord and other regions of the central nervous system. NMDA receptors are crucial for the lasting enhancement of synaptic transmission that occurs both physiologically and in pathological conditions such as chronic pain. Over the past several years, evidence has accumulated indicating that the activ...

  3. The brain-specific RasGEF very-KIND is required for normal dendritic growth in cerebellar granule cells and proper motor coordination

    Science.gov (United States)

    Hayashi, Kanehiro; Furuya, Asako; Sakamaki, Yuriko; Akagi, Takumi; Shinoda, Yo; Sadakata, Tetsushi; Hashikawa, Tsutomu; Shimizu, Kazuki; Minami, Haruka; Sano, Yoshitake; Nakayama, Manabu

    2017-01-01

    Very-KIND/Kndc1/KIAA1768 (v-KIND) is a brain-specific Ras guanine nucleotide exchange factor carrying two sets of the kinase non-catalytic C-lobe domain (KIND), and is predominantly expressed in cerebellar granule cells. Here, we report the impact of v-KIND deficiency on dendritic and synaptic growth in cerebellar granule cells in v-KIND knockout (KO) mice. Furthermore, we evaluate motor function in these animals. The gross anatomy of the cerebellum, including the cerebellar lobules, layered cerebellar cortex and densely-packed granule cell layer, in KO mice appeared normal, and was similar to wild-type (WT) mice. However, KO mice displayed an overgrowth of cerebellar granule cell dendrites, compared with WT mice, resulting in an increased number of dendrites, dendritic branches and terminals. Immunoreactivity for vGluT2 (a marker for excitatory presynapses of mossy fiber terminals) was increased in the cerebellar glomeruli of KO mice, compared with WT mice. The postsynaptic density around the terminals of mossy fibers was also increased in KO mice. Although there were no significant differences in locomotor ability between KO and WT animals in their home cages or in the open field, young adult KO mice had an increased grip strength and a tendency to exhibit better motor performance in balance-related tests compared with WT animals. Taken together, our results suggest that v-KIND is required for compact dendritic growth and proper excitatory synaptic connections in cerebellar granule cells, which are necessary for normal motor coordination and balance. PMID:28264072

  4. GABA Metabolism and Transport: Effects on Synaptic Efficacy

    Directory of Open Access Journals (Sweden)

    Fabian C. Roth

    2012-01-01

    Full Text Available GABAergic inhibition is an important regulator of excitability in neuronal networks. In addition, inhibitory synaptic signals contribute crucially to the organization of spatiotemporal patterns of network activity, especially during coherent oscillations. In order to maintain stable network states, the release of GABA by interneurons must be plastic in timing and amount. This homeostatic regulation is achieved by several pre- and postsynaptic mechanisms and is triggered by various activity-dependent local signals such as excitatory input or ambient levels of neurotransmitters. Here, we review findings on the availability of GABA for release at presynaptic terminals of interneurons. Presynaptic GABA content seems to be an important determinant of inhibitory efficacy and can be differentially regulated by changing synthesis, transport, and degradation of GABA or related molecules. We will discuss the functional impact of such regulations on neuronal network patterns and, finally, point towards pharmacological approaches targeting these processes.

  5. Spatial signal correlation from an III-nitride synaptic device

    Science.gov (United States)

    Zhang, Shuai; Zhu, Bingcheng; Shi, Zheng; Yuan, Jialei; Jiang, Yuan; Shen, Xiangfei; Cai, Wei; Yang, Yongchao; Wang, Yongjin

    2017-10-01

    The mechanism by which the external environment affects the internal nervous system is investigated via the spatial correlation of an III-nitride synaptic device, which combines in-plane and out-of-plane illumination. The InGaN/GaN multiple-quantum-well collector (MQW-collector) demonstrates a simultaneous light emission and light detection mode due to the unique property of the MQW-diode. The MQW-collector absorbs the internal incoming light and the external illumination at the same time to generate an integration of the excitatory postsynaptic voltages (EPSVs). Signal cognition can be distinctly decoded from the integrated EPSVs because the signal differences are maintained, which is in good agreement with the simulation results. These results suggest that the nervous system can simultaneously amplify the EPSV amplitude and achieve signal cognition by spatial EPSV summation, which can be further optimized to explore the connections between the internal nervous system and the external environment.

  6. Microglia and Spinal Cord Synaptic Plasticity in Persistent Pain

    Directory of Open Access Journals (Sweden)

    Sarah Taves

    2013-01-01

    Full Text Available Microglia are regarded as macrophages in the central nervous system (CNS and play an important role in neuroinflammation in the CNS. Microglial activation has been strongly implicated in neurodegeneration in the brain. Increasing evidence also suggests an important role of spinal cord microglia in the genesis of persistent pain, by releasing the proinflammatory cytokines tumor necrosis factor-alpha (TNFα, Interleukine-1beta (IL-1β, and brain derived neurotrophic factor (BDNF. In this review, we discuss the recent findings illustrating the importance of microglial mediators in regulating synaptic plasticity of the excitatory and inhibitory pain circuits in the spinal cord, leading to enhanced pain states. Insights into microglial-neuronal interactions in the spinal cord dorsal horn will not only further our understanding of neural plasticity but may also lead to novel therapeutics for chronic pain management.

  7. Pain-related synaptic plasticity in spinal dorsal horn neurons: role of CGRP

    Directory of Open Access Journals (Sweden)

    Willis William D

    2006-09-01

    Full Text Available Abstract Background The synaptic and cellular mechanisms of pain-related central sensitization in the spinal cord are not fully understood yet. Calcitonin gene-related peptide (CGRP has been identified as an important molecule in spinal nociceptive processing and ensuing behavioral responses, but its contribution to synaptic plasticity, cellular mechanisms and site of action in the spinal cord remain to be determined. Here we address the role of CGRP in synaptic plasticity in the spinal dorsal horn in a model of arthritic pain. Results Whole-cell current- and voltage-clamp recordings were made from substantia gelatinosa (SG neurons in spinal cord slices from control rats and arthritic rats (> 6 h postinjection of kaolin/carrageenan into the knee. Monosynaptic excitatory postsynaptic currents (EPSCs were evoked by electrical stimulation of afferents in the dorsal root near the dorsal root entry zone. Neurons in slices from arthritic rats showed increased synaptic transmission and excitability compared to controls. A selective CGRP1 receptor antagonist (CGRP8-37 reversed synaptic plasticity in neurons from arthritic rats but had no significant effect on normal transmission. CGRP facilitated synaptic transmission in the arthritis pain model more strongly than under normal conditions where both facilitatory and inhibitory effects were observed. CGRP also increased neuronal excitability. Miniature EPSC analysis suggested a post- rather than pre-synaptic mechanism of CGRP action. Conclusion This study is the first to show synaptic plasticity in the spinal dorsal horn in a model of arthritic pain that involves a postsynaptic action of CGRP on SG neurons.

  8. Spike Pattern Structure Influences Synaptic Efficacy Variability under STDP and Synaptic Homeostasis. II: Spike Shuffling Methods on LIF Networks

    Science.gov (United States)

    Bi, Zedong; Zhou, Changsong

    2016-01-01

    Synapses may undergo variable changes during plasticity because of the variability of spike patterns such as temporal stochasticity and spatial randomness. Here, we call the variability of synaptic weight changes during plasticity to be efficacy variability. In this paper, we investigate how four aspects of spike pattern statistics (i.e., synchronous firing, burstiness/regularity, heterogeneity of rates and heterogeneity of cross-correlations) influence the efficacy variability under pair-wise additive spike-timing dependent plasticity (STDP) and synaptic homeostasis (the mean strength of plastic synapses into a neuron is bounded), by implementing spike shuffling methods onto spike patterns self-organized by a network of excitatory and inhibitory leaky integrate-and-fire (LIF) neurons. With the increase of the decay time scale of the inhibitory synaptic currents, the LIF network undergoes a transition from asynchronous state to weak synchronous state and then to synchronous bursting state. We first shuffle these spike patterns using a variety of methods, each designed to evidently change a specific pattern statistics; and then investigate the change of efficacy variability of the synapses under STDP and synaptic homeostasis, when the neurons in the network fire according to the spike patterns before and after being treated by a shuffling method. In this way, we can understand how the change of pattern statistics may cause the change of efficacy variability. Our results are consistent with those of our previous study which implements spike-generating models on converging motifs. We also find that burstiness/regularity is important to determine the efficacy variability under asynchronous states, while heterogeneity of cross-correlations is the main factor to cause efficacy variability when the network moves into synchronous bursting states (the states observed in epilepsy). PMID:27555816

  9. Electrostimulation to reduce synaptic scaling driven progression of Alzheimer's disease.

    Science.gov (United States)

    Rowan, Mark S; Neymotin, Samuel A; Lytton, William W

    2014-01-01

    Cell death and synapse dysfunction are two likely causes of cognitive decline in AD. As cells die and synapses lose their drive, remaining cells suffer an initial decrease in activity. Neuronal homeostatic synaptic scaling then provides a feedback mechanism to restore activity. This homeostatic mechanism is believed to sense levels of activity-dependent cytosolic calcium within the cell and to adjust neuronal firing activity by increasing the density of AMPA synapses at remaining synapses to achieve balance. The scaling mechanism increases the firing rates of remaining cells in the network to compensate for decreases in network activity. However, this effect can itself become a pathology, as it produces increased imbalance between excitatory and inhibitory circuits, leading to greater susceptibility to further cell loss via calcium-mediated excitotoxicity. Here, we present a mechanistic explanation of how directed brain stimulation might be expected to slow AD progression based on computational simulations in a 470-neuron biomimetic model of a neocortical column. The simulations demonstrate that the addition of low-intensity electrostimulation (neuroprosthesis) to a network undergoing AD-like cell death can raise global activity and break this homeostatic-excitotoxic cascade. The increase in activity within the remaining cells in the column results in lower scaling-driven AMPAR upregulation, reduced imbalances in excitatory and inhibitory circuits, and lower susceptibility to ongoing damage.

  10. Electrostimulation to reduce synaptic scaling driven progression of Alzheimer's disease

    Directory of Open Access Journals (Sweden)

    Mark eRowan

    2014-04-01

    Full Text Available Cell death and synapse dysfunction are two likely causes of cognitive decline in AD. As cells die and synapses lose their drive, remaining cells suffer an initial decrease in activity. Neuronal homeostatic synaptic scaling then provides a feedback mechanism to restore activity. This homeostatic mechanism is believed to sense levels of activity-dependent cytosolic calcium within the cell and to adjust neuronal firing activity by increasing the density of AMPA synapses at remaining synapses to achieve balance. The scaling mechanism increases the firing rates of remaining cells in the network to compensate for decreases in network activity. However, this effect can itself become a pathology, as it produces increased imbalance between excitatory and inhibitory circuits, leading to greater susceptibility to further cell loss via calcium-mediated excitotoxicity.Here, we present a mechanistic explanation of how directed brain stimulation might be expected to slow AD progression based on computational simulations in a 470-neuron biomimetic model of a neocortical column. The simulations demonstrate that the addition of low-intensity electrostimulation (neuroprosthesis to a network undergoing AD-like cell death can raise global activity and break this homeostatic-excitotoxic cascade. The increase in activity within the remaining cells in the column results in lower scaling-driven AMPAR upregulation, reduced imbalances in excitatory and inhibitory circuits, and lower susceptibility to ongoing damage.

  11. Cooperation between BDNF and glutamate in the regulation of synaptic transmission and neuronal development.

    Science.gov (United States)

    Martin, Jean-Luc; Finsterwald, Charles

    2011-01-01

    Ample evidence supports a role of brain-derived neurotrophic factor (BDNF) in the survival and differentiation of selective populations of neurons in the peripheral and central nervous systems. In addition to its trophic actions, BDNF exerts acute effects on synaptic transmission and plasticity. In particular, BDNF enhances excitatory synaptic transmission through pre- and postsynaptic mechanisms. In this regard, BDNF enhances glutamate release, the frequency of miniature excitatory postsynaptic currents (mEPSCs), NMDA receptor activity and the phosphorylation of NMDA receptor subunits. Our recent studies revealed a novel cooperative interaction between BDNF and glutamate in the regulation of dendritic development. Indeed, we found that the effects of BDNF on dendritic growth of cortical neurons require both the stimulation of cAMP response element-binding protein (CREB) phosphorylation by BDNF and the activation of the CREB-regulated transcription coactivator 1 (CRTC1) by glutamate. Together, these studies highlight the importance of the cooperation between BDNF and glutamate in the regulation of synaptic transmission and neuronal development.

  12. Circadian Regulation of Synaptic Plasticity

    Directory of Open Access Journals (Sweden)

    Marcos G. Frank

    2016-07-01

    Full Text Available Circadian rhythms refer to oscillations in biological processes with a period of approximately 24 h. In addition to the sleep/wake cycle, there are circadian rhythms in metabolism, body temperature, hormone output, organ function and gene expression. There is also evidence of circadian rhythms in synaptic plasticity, in some cases driven by a master central clock and in other cases by peripheral clocks. In this article, I review the evidence for circadian influences on synaptic plasticity. I also discuss ways to disentangle the effects of brain state and rhythms on synaptic plasticity.

  13. Excitatory action of gamma-aminobutyric acid (GABA) on crustacean neurosecretory cells.

    Science.gov (United States)

    García, U; Onetti, C; Valdiosera, R; Aréchiga, H

    1994-02-01

    1. Intracellular and voltage-clamp recordings were obtained from a selected population of neurosecretory (ns) cells in the X organ of the crayfish isolated eyestalk. Pulses of gamma-aminobutyric acid (GABA) elicited depolarizing responses and bursts of action potentials in a dose-dependent manner. These effects were blocked by picrotoxin (50 microM) but not by bicuculline. Picrotoxin also suppressed spontaneous synaptic activity. 2. The responses to GABA were abolished by severing the neurite of X organ cells, at about 150 microns from the cell body. Responses were larger when the application was made at the neuropil level. 3. Topical application of Cd2+ (2 mM), while suppressing synaptic activity, was incapable of affecting the responses to GABA. 4. Under whole-cell voltage-clamp, GABA elicited an inward current with a reversal potential dependent on the chloride equilibrium potential. The GABA effect was accompanied by an input resistance reduction up to 33% at a -50 mV holding potential. No effect of GABA was detected on potassium, calcium, and sodium currents present in X organ cells. 5. The effect of GABA on steady-state currents was dependent on the intracellular calcium concentration. At 10(-6) M [Ca2+]i, GABA (50 microM) increased the membrane conductance more than threefold and shifted the zero-current potential from -25 to -10 mV. At 10(-9) M [Ca2+]i, GABA induced only a 1.3-fold increase in membrane conductance, without shifting the zero-current potential. 6. These results support the notion that in the population of X organ cells sampled in this study, GABA acts as an excitatory neurotransmitter, opening chloride channels.

  14. Mapping synaptic pathology within cerebral cortical circuits in subjects with schizophrenia

    Directory of Open Access Journals (Sweden)

    Robert Sweet

    2010-06-01

    Full Text Available Converging lines of evidence indicate that schizophrenia is characterized by impairments of synaptic machinery within cerebral cortical circuits. Efforts to localize these alterations in brain tissue from subjects with schizophrenia have frequently been limited to the quantification of structures that are non-selectively identified (e.g. dendritic spines labeled in Golgi preparations, axon boutons labeled with synaptophysin, or to quantification of proteins using methods unable to resolve relevant cellular compartments. Multiple label fluorescence confocal microscopy represents a means to circumvent many of these limitations, by concurrently extracting information regarding the number, morphology, and relative protein content of synaptic structures. An important adaptation required for studies of human disease is coupling this approach to stereologic methods for systematic random sampling of relevant brain regions. In this review article we consider the application of multiple label fluorescence confocal microscopy to the mapping of synaptic alterations in subjects with schizophrenia and describe the application of a novel, readily automated, iterative intensity/morphological segmentation algorithm for the extraction of information regarding synaptic structure number, size, and relative protein level from tissue sections obtained using unbiased stereological principles of sampling. In this context, we provide examples of the examination of pre- and post-synaptic structures within excitatory and inhibitory circuits of the cerebral cortex.

  15. Electrochemical-reaction-induced synaptic plasticity in MoOx-based solid state electrochemical cells.

    Science.gov (United States)

    Yang, Chuan-Sen; Shang, Da-Shan; Chai, Yi-Sheng; Yan, Li-Qin; Shen, Bao-Gen; Sun, Young

    2017-02-08

    Solid state electrochemical cells with synaptic functions have important applications in building smart-terminal networks. Here, the essential synaptic functions including potentiation and depression of synaptic weight, transition from short- to long-term plasticity, spike-rate-dependent plasticity, and spike-timing-dependent plasticity behavior were successfully realized in an Ag/MoOx/fluorine-doped tin oxide (FTO) cell with continual resistance switching. The synaptic plasticity underlying these functions was controlled by tuning the excitatory post-synaptic current (EPSC) decay, which is determined by the applied voltage pulse number, width, frequency, and intervals between the pre- and post-spikes. The physical mechanism of the artificial synapse operation is attributed to the interfacial electrochemical reaction processes of the MoOx films with the adsorbed water, where protons generated by water decomposition under an electric field diffused into the MoOx films and intercalated into the lattice, leading to the short- and long-term retention of cell resistance, respectively. These results indicate the possibility of achieving advanced artificial synapses with solid state electrochemical cells and will contribute to the development of smart-terminal networking systems.

  16. Synaptic transmission and plasticity require AMPA receptor anchoring via its N-terminal domain

    Science.gov (United States)

    Watson, Jake F; Ho, Hinze; Greger, Ingo H

    2017-01-01

    AMPA-type glutamate receptors (AMPARs) mediate fast excitatory neurotransmission and are selectively recruited during activity-dependent plasticity to increase synaptic strength. A prerequisite for faithful signal transmission is the positioning and clustering of AMPARs at postsynaptic sites. The mechanisms underlying this positioning have largely been ascribed to the receptor cytoplasmic C-termini and to AMPAR-associated auxiliary subunits, both interacting with the postsynaptic scaffold. Here, using mouse organotypic hippocampal slices, we show that the extracellular AMPAR N-terminal domain (NTD), which projects midway into the synaptic cleft, plays a fundamental role in this process. This highly sequence-diverse domain mediates synaptic anchoring in a subunit-selective manner. Receptors lacking the NTD exhibit increased mobility in synapses, depress synaptic transmission and are unable to sustain long-term potentiation (LTP). Thus, synaptic transmission and the expression of LTP are dependent upon an AMPAR anchoring mechanism that is driven by the NTD. DOI: http://dx.doi.org/10.7554/eLife.23024.001 PMID:28290985

  17. Synaptic gating at axonal branches, and sharp-wave ripples with replay: a simulation study.

    Science.gov (United States)

    Vladimirov, Nikita; Tu, Yuhai; Traub, Roger D

    2013-11-01

    Mechanisms of place cell replay occurring during sharp-wave ripples (SPW-Rs) remain obscure due to the fact that ripples in vitro depend on non-synaptic mechanisms, presumably via axo-axonal gap junctions between pyramidal cells. We suggest a model of in vivo SPW-Rs in which synaptic excitatory post-synaptic potentials (EPSPs) control the axonal spiking of cells in SPW-Rs: ripple activity remains hidden in the network of axonal collaterals (connected by gap junctions) due to conduction failures, unless there is a sufficient dendritic EPSP. The EPSP brings the axonal branching point to threshold, and action potentials from the collateral start to propagate to the soma and to the distal axon. The model coherently explains multiple experimental data on SPW-Rs, both in vitro and in vivo. The mechanism of synaptic gating leads to the following implication: a sequence of pyramidal cells can be replayed at ripple frequency by the superposition of subthreshold dendritic EPSPs and ripple activity in the axonal plexus. Replay is demonstrated in both forward and reverse directions. We discuss several testable predictions. In general, the mechanism of synaptic gating suggests that pyramidal cells under certain conditions can act like a transistor.

  18. Spatiotemporal discrimination in neural networks with short-term synaptic plasticity

    Science.gov (United States)

    Shlaer, Benjamin; Miller, Paul

    2015-03-01

    Cells in recurrently connected neural networks exhibit bistability, which allows for stimulus information to persist in a circuit even after stimulus offset, i.e. short-term memory. However, such a system does not have enough hysteresis to encode temporal information about the stimuli. The biophysically described phenomenon of synaptic depression decreases synaptic transmission strengths due to increased presynaptic activity. This short-term reduction in synaptic strengths can destabilize attractor states in excitatory recurrent neural networks, causing the network to move along stimulus dependent dynamical trajectories. Such a network can successfully separate amplitudes and durations of stimuli from the number of successive stimuli. Stimulus number, duration and intensity encoding in randomly connected attractor networks with synaptic depression. Front. Comput. Neurosci. 7:59., and so provides a strong candidate network for the encoding of spatiotemporal information. Here we explicitly demonstrate the capability of a recurrent neural network with short-term synaptic depression to discriminate between the temporal sequences in which spatial stimuli are presented.

  19. Actions of endomorphins on synaptic transmission of Adelta-fibers in spinal cord dorsal horn neurons.

    Science.gov (United States)

    Yajiri, Y; Huang, L Y

    2000-01-01

    The effects of endogenous mu-opioid ligands, endomorphins, on Adelta-afferent-evoked excitatory postsynaptic currents (EPSCs) were studied in substantia gelatinosa neurons in spinal cord slices. Under voltage-clamp conditions, endomorphins blocked the evoked EPSCs in a dose-dependent manner. To determine if the block resulted from changes in transmitter release from glutamatergic synaptic terminals, the opioid actions on miniature excitatory postsynaptic currents (mEPSCs) were examined. Endomorphins (1 microM) reduced the frequency but not the amplitude of mEPSCs, suggesting that endomorphins directly act on presynaptic terminals. The effects of endomorphins on the unitary (quantal) properties of the evoked EPSCs were also studied. Endomorphins reduced unitary content without significantly changing unitary amplitude. These results suggest that in addition to presynaptic actions on interneurons, endomorphins also inhibit evoked EPSCs by reducing transmitter release from Adelta-afferent terminals.

  20. Glutamatergic synaptic inputs activate neurons in the subfornical organ through non-NMDA receptors.

    Science.gov (United States)

    Xu, S H; Inenaga, K; Honda, E; Yamashita, H

    2000-01-14

    The subfornical organ (SFO) plays an important role in central regulation of the autonomic nervous system. The synaptic transmission properties of neurons in the SFO were studied with intracellular and whole-cell patch clamp recordings in the rat slice preparations. Both the spontaneous and evoked excitatory postsynaptic potentials (EPSPs) and currents (EPSCs) were almost completely suppressed by the glutamate receptor antagonist kynurenic acid and the non-NMDA (N-methyl-D-aspartic acid) antagonist CNQX. The non-NMDA agonist kainic acid depolarized the membrane most potently, compared with NMDA and quisqualic acid. These suggest that glutamate is a main excitatory neurotransmitter in the SFO and that its action is at least partly mediated through non-NMDA receptors.

  1. Synaptic dimorphism in Onychophoran cephalic ganglia

    Directory of Open Access Journals (Sweden)

    Z Peña-Contreras

    2007-03-01

    Full Text Available The taxonomic location of the Onychophora has been controversial because of their phenotypic and genotypic characteristics, related to both annelids and arthropods. We analyzed the ultrastructure of the neurons and their synapses in the cephalic ganglion of a poorly known invertebrate, the velvet worm Peripatus sedgwicki, from the mountainous region of El Valle, Mérida, Venezuela. Cephalic ganglia were dissected, fixed and processed for transmission electron microscopy. The animal has a high degree of neurobiological development, as evidenced by the presence of asymmetric (excitatory and symmetric (inhibitory synapses, as well as the existence of glial cell processes in a wide neuropile zone. The postsynaptic terminals were seen to contain subsynaptic cisterns formed by membranes of smooth endoplasmic reticulum beneath the postsynaptic density, whereas the presynaptic terminal showed numerous electron transparent synaptic vesicles. From the neurophylogenetic perspectives, the ultrastructural characteristics of the central nervous tissue of the Onychophora show important evolutionary acquirements, such as the presence of both excitatory and inhibitory synapses, indicating functional synaptic transmission, and the appearance of mature glial cells. Rev. Biol . Trop. 55 (1: 261-267. Epub 2007 March. 31.Estudiamos la ultraestructura de las neuronas y sus sinapsis del ganglio cefálico de un invertebrado poco conocido del phylum Onychophora: Peripatus sedgwicki de los Andes Venezolanos, utilizando para ello la microscopía electrónica de transmisión. La localización taxonómica de los onicóforos ha sido controversial debido a sus características fenotípicas y genotípicas que los relacionan tanto con los anélidos como con los artrópodos. Para este trabajo se estudió el ganglio cefálico de P. sedgwicki de la zona montañosa de El Valle, Mérida, Venezuela. El ganglio cefálico se localiza en la región anterior del animal y fue diseccionado

  2. Excitatory response of rabbit myometrium to nitric oxide in vitro.

    Science.gov (United States)

    Nakanishi, H; Matsuoka, I; Ono, T; Okawa, T; Katahira, K; Nakahata, N

    1996-05-01

    Nitric oxide (NO) at high concentration (approx. 33 microM) produced a marked excitation: increase of tension development or increase in amplitude of spontaneous contraction, in 7 out of 8 rabbit nonpregnant myometrial strips. One case produced an inhibition: disappearance of spontaneous contraction. A latent period of several sec usually preceded the excitation. The response of the myometrium to NO approx. 33 microM associated with remarkable increase in tissue cyclic GMP levels. NO approx. 33 microM reduced an inhibition, in 1 out of 3 myometrial strips taken from ovariectomized rabbits. Two cases produced an excitatory. A precursor of NO, L-Arginine 100 microM or an inhibitor of NO synthase, NG-nitro-L-arginine 100 microM also produced a transient weak excitatory response. On the contrary, 8-bromo-cyclic GMP 100 microM produced an inhibition. The excitatory response to NO 33 microM was almost unaffected by pretreatment with indomethacin 10 microM, whereas the spontaneous motility was remarkably depressed. The contractile response of the isolated rabbit myometrium to electrical field stimulation was almost unaffected by the pretreatment with L-arginine 100 microM or NG-nitro-L-arginine 100 microM. The present findings may indicate that NO has inhibitory and excitatory components on the mechanical activity of the rabbit isolated myometrium.

  3. Synaptic dynamics in analog VLSI.

    Science.gov (United States)

    Bartolozzi, Chiara; Indiveri, Giacomo

    2007-10-01

    Synapses are crucial elements for computation and information transfer in both real and artificial neural systems. Recent experimental findings and theoretical models of pulse-based neural networks suggest that synaptic dynamics can play a crucial role for learning neural codes and encoding spatiotemporal spike patterns. Within the context of hardware implementations of pulse-based neural networks, several analog VLSI circuits modeling synaptic functionality have been proposed. We present an overview of previously proposed circuits and describe a novel analog VLSI synaptic circuit suitable for integration in large VLSI spike-based neural systems. The circuit proposed is based on a computational model that fits the real postsynaptic currents with exponentials. We present experimental data showing how the circuit exhibits realistic dynamics and show how it can be connected to additional modules for implementing a wide range of synaptic properties.

  4. Growth Factors in Synaptic Function

    Directory of Open Access Journals (Sweden)

    Vivian Yi Nuo Poon

    2013-09-01

    Full Text Available Synapses are increasingly recognized as key structures that malfunction in disorders like schizophrenia, mental retardation, and neurodegenerative diseases. The importance and complexity of the synapse has fuelled research into the molecular mechanisms underlying synaptogenesis, synaptic transmission, and plasticity. In this regard, neurotrophic factors such as netrin, Wnt, transforming growth factor-beta (TGF-beta, tumor necrosis factor-α (TNF-α, and others have gained prominence for their ability to regulate synaptic function. Several of these factors were first implicated in neuroprotection, neuronal growth, and axon guidance. However, their roles in synaptic development and function have become increasingly clear, and the downstream signaling pathways employed by these factors have begun to be elucidated. In this review, we will address the role of these factors and their downstream effectors in synaptic function in vivo and in cultured neurons.

  5. Excitatory projections from the amygdala to neurons in the nucleus pontis oralis in the rat: an intracellular study.

    Science.gov (United States)

    Xi, M; Fung, S J; Sampogna, S; Chase, M H

    2011-12-01

    There is a consensus that active (REM) sleep (AS) is controlled by cholinergic projections from the laterodorsal and pedunculopontine tegmental nuclei (LDT/PPT) to neurons in the nucleus pontis oralis (NPO) that generate AS (i.e. AS-Generator neurons). The present study was designed to provide evidence that other projections to the NPO, such as those from the amygdala, are also capable of inducing AS. Accordingly, the responses of neurons, recorded intracellularly in the NPO, were examined following stimulation of the ipsilateral central nucleus of the amygdala (CNA) in urethane-anesthetized rats. Single pulse stimulation in the CNA produced an early, fast depolarizing potential (EPSP) in neurons within the NPO. The mean latency to the onset of these excitatory postsynaptic potentials (EPSPs) was 3.6±0.2 ms. A late, small-amplitude inhibitory synaptic potential (IPSP) was present following EPSPs in a portion of the NPO neurons. Following stimulation of the CNA with a train of 8-10 pulses, NPO neurons exhibited a sustained depolarization (5-10 mV) of their resting membrane potential. When single subthreshold intracellular depolarizing current pulses were delivered to NPO neurons, CNA-induced EPSPs were sufficient to promote the discharge of these cells. Stimulation of the CNA with a short train of stimuli induced potent temporal facilitation of EPSPs in NPO neurons. Two forms of synaptic plasticity were revealed by the patterns of response of NPO neurons following stimulation of the CNA: paired-pulse facilitation (PPF) and post-tetanic potentiation (PTP). Six of recorded NPO neurons were identified morphologically with neurobiotin. They were medium to large, multipolar cells with diameters >20 μM, which resemble AS-on cells in the NPO. The present results demonstrate that amygdalar projections are capable of exerting a powerful excitatory postsynaptic drive that activates NPO neurons. Therefore, we suggest that the amygdala is capable of inducing AS via direct

  6. Excitatory action of GABA on immature neurons is not due to absence of ketone bodies metabolites or other energy substrates.

    Science.gov (United States)

    Ben-Ari, Yehezkel; Tyzio, Roman; Nehlig, Astrid

    2011-09-01

    Brain slices incubated with glucose have provided most of our knowledge on cellular, synaptic, and network driven mechanisms. It has been recently suggested that γ-aminobutyric acid (GABA) excites neonatal neurons in conventional glucose-perfused slices but not when ketone bodies metabolites, pyruvate, and/or lactate are added, suggesting that the excitatory actions of GABA are due to energy deprivation when glucose is the sole energy source. In this article, we review the vast number of studies that show that slices are not energy deprived in glucose-containing medium, and that addition of other energy substrates at physiologic concentrations does not alter the excitatory actions of GABA on neonatal neurons. In contrast, lactate, like other weak acids, can produce an intracellular acidification that will cause a reduction of intracellular chloride and a shift of GABA actions. The effects of high concentrations of lactate, and particularly of pyruvate (4-5 mm), as used are relevant primarily to pathologic conditions; these concentrations not being found in the brain in normal "control" conditions. Slices in glucose-containing medium may not be ideal, but additional energy substrates neither correspond to physiologic conditions nor alter GABA actions. In keeping with extensive observations in a wide range of animal species and brain structures, GABA depolarizes immature neurons and the reduction of the intracellular concentration of chloride ([Cl(-)](i)) is a basic property of brain maturation that has been preserved throughout evolution. In addition, this developmental sequence has important clinical implications, notably concerning the higher incidence of seizures early in life and their long-lasting deleterious sequels. Immature neurons have difficulties exporting chloride that accumulates during seizures, leading to permanent increase of [Cl(-)](i) that converts the inhibitory actions of GABA to excitatory and hampers the efficacy of GABA-acting antiepileptic

  7. Fear learning increases the number of polyribosomes associated with excitatory and inhibitory synapses in the barrel cortex.

    Directory of Open Access Journals (Sweden)

    Malgorzata Jasinska

    Full Text Available Associative fear learning, resulting from whisker stimulation paired with application of a mild electric shock to the tail in a classical conditioning paradigm, changes the motor behavior of mice and modifies the cortical functional representation of sensory receptors involved in the conditioning. It also induces the formation of new inhibitory synapses on double-synapse spines of the cognate barrel hollows. We studied density and distribution of polyribosomes, the putative structural markers of enhanced synaptic activation, following conditioning. By analyzing serial sections of the barrel cortex by electron microscopy and stereology, we found that the density of polyribosomes was significantly increased in dendrites of the barrel activated during conditioning. The results revealed fear learning-induced increase in the density of polyribosomes associated with both excitatory and inhibitory synapses located on dendritic spines (in both single- and double-synapse spines and only with the inhibitory synapses located on dendritic shafts. This effect was accompanied by a significant increase in the postsynaptic density area of the excitatory synapses on single-synapse spines and of the inhibitory synapses on double-synapse spines containing polyribosomes. The present results show that associative fear learning not only induces inhibitory synaptogenesis, as demonstrated in the previous studies, but also stimulates local protein synthesis and produces modifications of the synapses that indicate their potentiation.

  8. Nutritional state-dependent ghrelin activation of vasopressin neurons via retrograde trans-neuronal-glial stimulation of excitatory GABA circuits.

    Science.gov (United States)

    Haam, Juhee; Halmos, Katalin C; Di, Shi; Tasker, Jeffrey G

    2014-04-30

    Behavioral and physiological coupling between energy balance and fluid homeostasis is critical for survival. The orexigenic hormone ghrelin has been shown to stimulate the secretion of the osmoregulatory hormone vasopressin (VP), linking nutritional status to the control of blood osmolality, although the mechanism of this systemic crosstalk is unknown. Here, we show using electrophysiological recordings and calcium imaging in rat brain slices that ghrelin stimulates VP neurons in the hypothalamic paraventricular nucleus (PVN) in a nutritional state-dependent manner by activating an excitatory GABAergic synaptic input via a retrograde neuronal-glial circuit. In slices from fasted rats, ghrelin activation of a postsynaptic ghrelin receptor, the growth hormone secretagogue receptor type 1a (GHS-R1a), in VP neurons caused the dendritic release of VP, which stimulated astrocytes to release the gliotransmitter adenosine triphosphate (ATP). ATP activation of P2X receptors excited presynaptic GABA neurons to increase GABA release, which was excitatory to the VP neurons. This trans-neuronal-glial retrograde circuit activated by ghrelin provides an alternative means of stimulation of VP release and represents a novel mechanism of neuronal control by local neuronal-glial circuits. It also provides a potential cellular mechanism for the physiological integration of energy and fluid homeostasis.

  9. Dendritic Target Region-Specific Formation of Synapses Between Excitatory Layer 4 Neurons and Layer 6 Pyramidal Cells.

    Science.gov (United States)

    Qi, Guanxiao; Feldmeyer, Dirk

    2016-04-01

    Excitatory connections between neocortical layer 4 (L4) and L6 are part of the corticothalamic feedback microcircuitry. Here we studied the intracortical element of this feedback loop, the L4 spiny neuron-to-L6 pyramidal cell connection. We found that the distribution of synapses onto both putative corticothalamic (CT) and corticocortical (CC) L6 pyramidal cells (PCs) depends on the presynaptic L4 neuron type but is independent of the postsynaptic L6 PC type. L4 spiny stellate cells establish synapses on distal apical tuft dendrites of L6 PCs and elicit slow unitary excitatory postsynaptic potentials (uEPSPs) in L6 somata. In contrast, the majority of L4 star pyramidal neurons target basal and proximal apical oblique dendrites of L6 PCs and show fast uEPSPs. Compartmental modeling suggests that the slow uEPSP time course is primarily the result of dendritic filtering. This suggests that the dendritic target specificity of the 2 L4 spiny neuron types is due to their different axonal projection patterns across cortical layers. The preferential dendritic targeting by different L4 neuron types may facilitate the generation of dendritic Ca(2+) or Na(+) action potentials in L6 PCs; this could play a role in synaptic gain modulation in the corticothalamic pathway.

  10. Up-Regulation of the Excitatory Amino Acid Transporters EAAT1 and EAAT2 by Mammalian Target of Rapamycin

    Directory of Open Access Journals (Sweden)

    Abeer Abousaab

    2016-11-01

    Full Text Available Background: The excitatory amino-acid transporters EAAT1 and EAAT2 clear glutamate from the synaptic cleft and thus terminate neuronal excitation. The carriers are subject to regulation by various kinases. The EAAT3 isoform is regulated by mammalian target of rapamycin (mTOR. The present study thus explored whether mTOR influences transport by EAAT1 and/or EAAT2. Methods: cRNA encoding wild type EAAT1 (SLC1A3 or EAAT2 (SLC1A2 was injected into Xenopus oocytes without or with additional injection of cRNA encoding mTOR. Dual electrode voltage clamp was performed in order to determine electrogenic glutamate transport (IEAAT. EAAT2 protein abundance was determined utilizing chemiluminescence. Results: Appreciable IEAAT was observed in EAAT1 or EAAT2 expressing but not in water injected oocytes. IEAAT was significantly increased by coexpression of mTOR. Coexpression of mTOR increased significantly the maximal IEAAT in EAAT1 or EAAT2 expressing oocytes, without significantly modifying affinity of the carriers. Moreover, coexpression of mTOR increased significantly EAAT2 protein abundance in the cell membrane. Conclusions: The kinase mTOR up-regulates the excitatory amino acid transporters EAAT1 and EAAT2.

  11. Postsynaptic target specific synaptic dysfunctions in the CA3 area of BACE1 knockout mice.

    Directory of Open Access Journals (Sweden)

    Hui Wang

    Full Text Available Beta-amyloid precursor protein cleaving enzyme 1 (BACE1, a major neuronal β-secretase critical for the formation of β-amyloid (Aβ peptide, is considered one of the key therapeutic targets that can prevent the progression of Alzheimer's disease (AD. Although a complete ablation of BACE1 gene prevents Aβ formation, we previously reported that BACE1 knockouts (KOs display presynaptic deficits, especially at the mossy fiber (MF to CA3 synapses. Whether the defect is specific to certain inputs or postsynaptic targets in CA3 is unknown. To determine this, we performed whole-cell recording from pyramidal cells (PYR and the stratum lucidum (SL interneurons in the CA3, both of which receive excitatory MF terminals with high levels of BACE1 expression. BACE1 KOs displayed an enhancement of paired-pulse facilitation at the MF inputs to CA3 PYRs without changes at the MF inputs to SL interneurons, which suggests postsynaptic target specific regulation. The synaptic dysfunction in CA3 PYRs was not restricted to excitatory synapses, as seen by an increase in the paired-pulse ratio of evoked inhibitory postsynaptic currents from SL to CA3 PYRs. In addition to the changes in evoked synaptic transmission, BACE1 KOs displayed a reduction in the frequency of miniature excitatory and inhibitory postsynaptic currents (mEPSCs and mIPSCs in CA3 PYRs without alteration in mEPSCs recorded from SL interneurons. This suggests that the impairment may be more global across diverse inputs to CA3 PYRs. Our results indicate that the synaptic dysfunctions seen in BACE1 KOs are specific to the postsynaptic target, the CA3 PYRs, independent of the input type.

  12. Postsynaptic target specific synaptic dysfunctions in the CA3 area of BACE1 knockout mice.

    Science.gov (United States)

    Wang, Hui; Megill, Andrea; Wong, Philip C; Kirkwood, Alfredo; Lee, Hey-Kyoung

    2014-01-01

    Beta-amyloid precursor protein cleaving enzyme 1 (BACE1), a major neuronal β-secretase critical for the formation of β-amyloid (Aβ) peptide, is considered one of the key therapeutic targets that can prevent the progression of Alzheimer's disease (AD). Although a complete ablation of BACE1 gene prevents Aβ formation, we previously reported that BACE1 knockouts (KOs) display presynaptic deficits, especially at the mossy fiber (MF) to CA3 synapses. Whether the defect is specific to certain inputs or postsynaptic targets in CA3 is unknown. To determine this, we performed whole-cell recording from pyramidal cells (PYR) and the stratum lucidum (SL) interneurons in the CA3, both of which receive excitatory MF terminals with high levels of BACE1 expression. BACE1 KOs displayed an enhancement of paired-pulse facilitation at the MF inputs to CA3 PYRs without changes at the MF inputs to SL interneurons, which suggests postsynaptic target specific regulation. The synaptic dysfunction in CA3 PYRs was not restricted to excitatory synapses, as seen by an increase in the paired-pulse ratio of evoked inhibitory postsynaptic currents from SL to CA3 PYRs. In addition to the changes in evoked synaptic transmission, BACE1 KOs displayed a reduction in the frequency of miniature excitatory and inhibitory postsynaptic currents (mEPSCs and mIPSCs) in CA3 PYRs without alteration in mEPSCs recorded from SL interneurons. This suggests that the impairment may be more global across diverse inputs to CA3 PYRs. Our results indicate that the synaptic dysfunctions seen in BACE1 KOs are specific to the postsynaptic target, the CA3 PYRs, independent of the input type.

  13. Depression of excitatory synapses onto parvalbumin interneurons in the medial prefrontal cortex in susceptibility to stress.

    Science.gov (United States)

    Perova, Zinaida; Delevich, Kristen; Li, Bo

    2015-02-18

    In response to extreme stress, individuals either show resilience or succumb to despair. The prefrontal cortex (PFC) is required for coping with stress, and PFC dysfunction has been implicated in stress-related mental disorders, including depression. Nevertheless, the mechanisms by which the PFC participates in stress responses remain unclear. Here, we investigate the role of parvalbumin (PV) interneurons in the medial PFC (mPFC) in shaping behavioral responses to stress induced by the learned helplessness procedure, in which animals are subjected to an unpredictable and inescapable stressor. PV interneurons in the mPFC were probed and manipulated in knock-in mice expressing the Cre recombinase under the endogenous parvalbumin promoter. Notably, we found that excitatory synaptic transmission onto these neurons was decreased in mice showing helplessness, a behavioral state that is thought to resemble features of human depression. Furthermore, selective suppression of PV interneurons in the mPFC using hM4Di, a DREADD (designer receptor exclusively activated by designer drug), promoted helplessness, indicating that activation of these neurons during stress promotes the establishment of resilient behavior. Our results reveal a cellular mechanism of mPFC dysfunction that may contribute to the emergence of maladaptive behavioral responses in the face of adverse life events.

  14. Dopaminergic Modulation of Excitatory Transmission in the Anterior Cingulate Cortex of Adult Mice

    Science.gov (United States)

    Darvish-Ghane, Soroush; Yamanaka, Manabu

    2016-01-01

    Dopamine (DA) possesses potent neuromodulatory properties in the central nervous system. In the anterior cingulate cortex, α-amino-3-hydroxy-5-methyl-4-isoxazole propionic acid receptors (AMPAR) are key ion channels in mediating nerve injury induced long-term potentiation (LTP) and chronic pain phenotype. In the present study, we reported the effects of DA on glutamate mediated excitatory post-synaptic currents (EPSCs) in pyramidal neurons of layer II/III of the ACC in adult mice. Bath application of DA (50 μM) caused a significant, rapid and reversible inhibition of evoked EPSCs (eEPSC). This inhibitory effect is dose-related and was absent in lower concentration of DA (5 μM). Furthermore, selective postsynaptic application of GDP-β-S (1.6 mM) in the internal solution completely abolished the inhibitory effects of DA (50 μM). We also investigated modulation of spontaneous EPSCs (sEPSCs) and TTX sensitive, miniature EPSCs (mEPSCs) by DA. Our results indicated mixed effects of potentiation and inhibition of frequency and amplitude for sEPSCs and mEPSCs. Furthermore, high doses of SCH23390 (100 μM) and sulpiride (100 μM) revealed that, inhibition of eEPSCs is mediated by postsynaptic D2-receptors (D2R). Our finding posits a pre- and postsynaptic mode of pyramidal neuron EPSC modulation in mice ACC by DA. PMID:27317578

  15. The GABA excitatory/inhibitory shift in brain maturation and neurological disorders.

    Science.gov (United States)

    Ben-Ari, Yehezkel; Khalilov, Ilgam; Kahle, Kristopher T; Cherubini, Enrico

    2012-10-01

    Ionic currents and the network-driven patterns they generate differ in immature and adult neurons: The developing brain is not a "small adult brain." One of the most investigated examples is the developmentally regulated shift of actions of the transmitter GABA that inhibit adult neurons but excite immature ones because of an initially higher intracellular chloride concentration [Cl(-)](i), leading to depolarizing and often excitatory actions of GABA instead of hyperpolarizing and inhibitory actions. The levels of [Cl(-)](i) are also highly labile, being readily altered transiently or persistently by enhanced episodes of activity in relation to synaptic plasticity or a variety of pathological conditions, including seizures and brain insults. Among the plethora of channels, transporters, and other devices involved in controlling [Cl(-)](i), two have emerged as playing a particularly important role: the chloride importer NKCC1 and the chloride exporter KCC2. Here, the authors stress the importance of determining how [Cl(-)](i) is dynamically regulated and how this affects brain operation in health and disease. In a clinical perspective, agents that control [Cl(-)](i) and reinstate inhibitory actions of GABA open novel therapeutic perspectives in many neurological disorders, including infantile epilepsies, autism spectrum disorders, and other developmental disorders.

  16. Anti-epileptic effects of focal micro-injection of excitatory amino acid antagonists.

    Science.gov (United States)

    Meldrum, B; Millan, M; Patel, S; de Sarro, G

    1988-01-01

    The role of excitatory synaptic activity at various brain regions in the development and spread of seizure activity has been investigated by the focal microinjection of 2-amino-7-phosphono-heptanoate (2-APH), a selective antagonist at the N-methyl-D-aspartate preferring receptor, or gamma-D-glutamyl-aminomethyl sulphonate (GAMS), a partially selective antagonist at the kainate receptor. In genetically epilepsy prone rats the seizure response to a loud sound in most effectively suppressed by focal injections of 2-APH, 0.1-1.0 nmol, in the inferior colliculus. Protection is also seen after injections of 2-APH, 25 nmoles, in the substantia nigra (pars reticulata) or the midbrain reticular formation. Motor limbic seizures induced by pilocarpine, 380 mg/kg intraperitoneally, are prevented by prior injection into the substantia nigra, pars reticulata, or the entopeduncular nucleus, of 2-APH, 10 nmol or 10 pmol, respectively. Similar protection follows the injection of 2-APH, 1-5 pmol in the piriform cortex. The convulsant effects of pilocarpine are also blocked by the focal injection of GAMS, 10 nmol in the entopeduncular nucleus. This experimental approach can indicate critical sites at which seizure activity is initiated in particular models (e.g., inferior colliculus in sound-induced seizures, and piriform cortex in limbic seizures) and the pathways controlling seizure expression, such as the basal ganglia outputs. It also identifies specific receptors at which anticonvulsant drugs may operate.

  17. Somatodendritic and excitatory postsynaptic distribution of neuron-type dystrophin isoform, Dp40, in hippocampal neurons.

    Science.gov (United States)

    Fujimoto, Takahiro; Itoh, Kyoko; Yaoi, Takeshi; Fushiki, Shinji

    2014-09-12

    The Duchenne muscular dystrophy (DMD) gene produces multiple dystrophin (Dp) products due to the presence of several promoters. We previously reported the existence of a novel short isoform of Dp, Dp40, in adult mouse brain. However, the exact biochemical expression profile and cytological distribution of the Dp40 protein remain unknown. In this study, we generated a polyclonal antibody against the NH2-terminal region of the Dp40 and identified the expression profile of Dp40 in the mouse brain. Through an analysis using embryonic and postnatal mouse cerebrums, we found that Dp40 emerged from the early neonatal stages until adulthood, whereas Dp71, an another Dp short isoform, was highly detected in both prenatal and postnatal cerebrums. Intriguingly, relative expressions of Dp40 and Dp71 were prominent in cultured dissociated neurons and non-neuronal cells derived from mouse hippocampus, respectively. Furthermore, the immunocytological distribution of Dp40 was analyzed in dissociated cultured neurons, revealing that Dp40 is detected in the soma and its dendrites, but not in the axon. It is worthy to note that Dp40 is localized along the subplasmalemmal region of the dendritic shafts, as well as at excitatory postsynaptic sites. Thus, Dp40 was identified as a neuron-type Dp possibly involving dendritic and synaptic functions.

  18. Theta-burst repetitive transcranial magnetic stimulation suppresses specific excitatory circuits in the human motor cortex.

    Science.gov (United States)

    Di Lazzaro, V; Pilato, F; Saturno, E; Oliviero, A; Dileone, M; Mazzone, P; Insola, A; Tonali, P A; Ranieri, F; Huang, Y Z; Rothwell, J C

    2005-06-15

    In four conscious patients who had electrodes implanted in the cervical epidural space for the control of pain, we recorded corticospinal volleys evoked by single-pulse transcranial magnetic stimulation (TMS) over the motor cortex before and after a 20 s period of continuous theta-burst stimulation (cTBS). It has previously been reported that this form of repetitive TMS reduces the amplitude of motor-evoked potentials (MEPs), with the maximum effect occurring at 5-10 min after the end of stimulation. The present results show that cTBS preferentially decreases the amplitude of the corticospinal I1 wave, with approximately the same time course. This is consistent with a cortical origin of the effect on the MEP. However, other protocols that lead to MEP suppression, such as short-interval intracortical inhibition, are characterized by reduced excitability of late I waves (particularly I3), suggesting that cTBS suppresses MEPs through different mechanisms, such as long-term depression in excitatory synaptic connections.

  19. Traveling waves and breathers in an excitatory-inhibitory neural field

    Science.gov (United States)

    Folias, Stefanos E.

    2017-03-01

    We study existence and stability of traveling activity bump solutions in an excitatory-inhibitory (E-I) neural field with Heaviside firing rate functions by deriving existence conditions for traveling bumps and an Evans function to analyze their spectral stability. Subsequently, we show that these existence and stability results reduce, in the limit of wave speed c →0 , to the equivalent conditions developed for the stationary bump case. Using the results for the stationary bump case, we show that drift bifurcations of stationary bumps serve as a mechanism for generating traveling bump solutions in the E-I neural field as parameters are varied. Furthermore, we explore the interrelations between stationary and traveling types of bumps and breathers (time-periodic oscillatory bumps) by bridging together analytical and simulation results for stationary and traveling bumps and their bifurcations in a region of parameter space. Interestingly, we find evidence for a codimension-2 drift-Hopf bifurcation occurring as two parameters, inhibitory time constant τ and I-to-I synaptic connection strength w¯i i, are varied and show that the codimension-2 point serves as an organizing center for the dynamics of these four types of spatially localized solutions. Additionally, we describe a case involving subcritical bifurcations that lead to traveling waves and breathers as τ is varied.

  20. Coordinated modulation of cellular signaling through ligand-gated ion channels in Hydra vulgaris (Cnidaria, Hydrozoa).

    Science.gov (United States)

    Pierobon, Paola

    2012-01-01

    Cnidarians lack well developed organs, but they have evolved the molecular and cellular components needed to assemble a nervous system. The apparent 'simplicity' of the cnidarian nervous net does not occur at the cellular level, but rather in the organisation of conducting systems. Cnidarian neurons are in fact electrically excitable, show the typical extended morphology and are connected by chemical synapses or gap junctions. They have been regarded as peptidergic, given the wealth of neuropeptides generally distributed along neurites and in cell bodies, supporting the hypothesis of a modulatory role in neurotransmission. However, the presence of clear-cored, as well as dense-cored synaptic vesicles in cnidarian neurons suggests both fast and slow synaptic transmission mechanisms. In fact, biochemical and functional evidence indicates that classical neurotransmitters and their metabolic partners are present in cnidarian tissues, where they are involved in coordinating motility and behavior. We have identified and characterized in Hydra tissues receptors to the inhibitory and excitatory amino acid neurotransmitters, GABA, glycine and NMDA, that are similar to mammalian ionotropic receptors in terms of their biochemical and pharmacological properties. These receptors appear to regulate pacemaker activities and their physiological correlates; in the live animal, they also affect feeding behavior, namely the duration and termination of the response elicited by reduced glutathione, with opposite actions of GABA and glycine or NMDA, respectively. These results suggest that modulation of cellular signaling through ligand-gated-ion channels is an ancient characteristic in the animal kingdom, and that the pharmacological properties of these receptors have been highly conserved during evolution.

  1. Emerging Links between Homeostatic Synaptic Plasticity and Neurological Disease

    Directory of Open Access Journals (Sweden)

    Dion eDickman

    2013-11-01

    Full Text Available Homeostatic signaling systems are ubiquitous forms of biological regulation, having been studied for hundreds of years in the context of diverse physiological processes including body temperature and osmotic balance. However, only recently has this concept been brought to the study of excitatory and inhibitory electrical activity that the nervous system uses to establish and maintain stable communication. Synapses are a primary target of neuronal regulation with a variety of studies over the past 15 years demonstrating that these cellular junctions are under bidirectional homeostatic control. Recent work from an array of diverse systems and approaches has revealed exciting new links between homeostatic synaptic plasticity and a variety of seemingly disparate neurological and psychiatric diseases. These include autism spectrum disorders, intellectual disabilities, schizophrenia, and Fragile X Syndrome. Although the molecular mechanisms through which defective homeostatic signaling may lead to disease pathogenesis remain unclear, rapid progress is likely to be made in the coming years using a powerful combination of genetic, imaging, electrophysiological, and next generation sequencing approaches. Importantly, understanding homeostatic synaptic plasticity at a cellular and molecular level may lead to developments in new therapeutic innovations to treat these diseases. In this review we will examine recent studies that demonstrate homeostatic control of postsynaptic protein translation, retrograde signaling, and presynaptic function that may contribute to the etiology of complex neurological and psychiatric diseases.

  2. Emerging links between homeostatic synaptic plasticity and neurological disease.

    Science.gov (United States)

    Wondolowski, Joyce; Dickman, Dion

    2013-11-21

    Homeostatic signaling systems are ubiquitous forms of biological regulation, having been studied for hundreds of years in the context of diverse physiological processes including body temperature and osmotic balance. However, only recently has this concept been brought to the study of excitatory and inhibitory electrical activity that the nervous system uses to establish and maintain stable communication. Synapses are a primary target of neuronal regulation with a variety of studies over the past 15 years demonstrating that these cellular junctions are under bidirectional homeostatic control. Recent work from an array of diverse systems and approaches has revealed exciting new links between homeostatic synaptic plasticity and a variety of seemingly disparate neurological and psychiatric diseases. These include autism spectrum disorders, intellectual disabilities, schizophrenia, and Fragile X Syndrome. Although the molecular mechanisms through which defective homeostatic signaling may lead to disease pathogenesis remain unclear, rapid progress is likely to be made in the coming years using a powerful combination of genetic, imaging, electrophysiological, and next generation sequencing approaches. Importantly, understanding homeostatic synaptic plasticity at a cellular and molecular level may lead to developments in new therapeutic innovations to treat these diseases. In this review we will examine recent studies that demonstrate homeostatic control of postsynaptic protein translation, retrograde signaling, and presynaptic function that may contribute to the etiology of complex neurological and psychiatric diseases.

  3. Cntnap4 differentially contributes to GABAergic and dopaminergic synaptic transmission.

    Science.gov (United States)

    Karayannis, T; Au, E; Patel, J C; Kruglikov, I; Markx, S; Delorme, R; Héron, D; Salomon, D; Glessner, J; Restituito, S; Gordon, A; Rodriguez-Murillo, L; Roy, N C; Gogos, J A; Rudy, B; Rice, M E; Karayiorgou, M; Hakonarson, H; Keren, B; Huguet, G; Bourgeron, T; Hoeffer, C; Tsien, R W; Peles, E; Fishell, G

    2014-07-10

    Although considerable evidence suggests that the chemical synapse is a lynchpin underlying affective disorders, how molecular insults differentially affect specific synaptic connections remains poorly understood. For instance, Neurexin 1a and 2 (NRXN1 and NRXN2) and CNTNAP2 (also known as CASPR2), all members of the neurexin superfamily of transmembrane molecules, have been implicated in neuropsychiatric disorders. However, their loss leads to deficits that have been best characterized with regard to their effect on excitatory cells. Notably, other disease-associated genes such as BDNF and ERBB4 implicate specific interneuron synapses in psychiatric disorders. Consistent with this, cortical interneuron dysfunction has been linked to epilepsy, schizophrenia and autism. Using a microarray screen that focused upon synapse-associated molecules, we identified Cntnap4 (contactin associated protein-like 4, also known as Caspr4) as highly enriched in developing murine interneurons. In this study we show that Cntnap4 is localized presynaptically and its loss leads to a reduction in the output of cortical parvalbumin (PV)-positive GABAergic (γ-aminobutyric acid producing) basket cells. Paradoxically, the loss of Cntnap4 augments midbrain dopaminergic release in the nucleus accumbens. In Cntnap4 mutant mice, synaptic defects in these disease-relevant neuronal populations are mirrored by sensory-motor gating and grooming endophenotypes; these symptoms could be pharmacologically reversed, providing promise for therapeutic intervention in psychiatric disorders.

  4. Synaptic maturation at cortical projections to the lateral amygdala in a mouse model of Rett syndrome.

    Directory of Open Access Journals (Sweden)

    Frédéric Gambino

    Full Text Available Rett syndrome (RTT is a neuro-developmental disorder caused by loss of function of Mecp2--methyl-CpG-binding protein 2--an epigenetic factor controlling DNA transcription. In mice, removal of Mecp2 in the forebrain recapitulates most of behavioral deficits found in global Mecp2 deficient mice, including amygdala-related hyper-anxiety and lack of social interaction, pointing a role of Mecp2 in emotional learning. Yet very little is known about the establishment and maintenance of synaptic function in the adult amygdala and the role of Mecp2 in these processes. Here, we performed a longitudinal examination of synaptic properties at excitatory projections to principal cells of the lateral nucleus of the amygdala (LA in Mecp2 mutant mice and their wild-type littermates. We first show that during animal life, Cortico-LA projections switch from a tonic to a phasic mode, whereas Thalamo-LA synapses are phasic at all ages. In parallel, we observed a specific elimination of Cortico-LA synapses and a decrease in their ability of generating presynaptic long term potentiation. In absence of Mecp2, both synaptic maturation and synaptic elimination were exaggerated albeit still specific to cortical projections. Surprisingly, associative LTP was unaffected at Mecp2 deficient synapses suggesting that synaptic maintenance rather than activity-dependent synaptic learning may be causal in RTT physiopathology. Finally, because the timing of synaptic evolution was preserved, we propose that some of the developmental effects of Mecp2 may be exerted within an endogenous program and restricted to synapses which maturate during animal life.

  5. Promoter-Specific Effects of DREADD Modulation on Hippocampal Synaptic Plasticity and Memory Formation

    OpenAIRE

    Lopez, AJ; Kramar, E; Matheos, DP; White, AO; Kwapis, J; Vogel-Ciernia, A; Sakata, K.; Espinoza, M; Wood, MA

    2016-01-01

    Designer receptors exclusively activated by designer drug (DREADDs) are a novel tool with the potential to bidirectionally drive cellular, circuit, and ultimately, behavioral changes. We used DREADDs to evaluate memory formation in a hippocampus-dependent task in mice and effects on synaptic physiology in the dorsal hippocampus. We expressed neuron-specific (hSyn promoter) DREADDs that were either excitatory (HM3D) or inhibitory (HM4D) in the dorsal hippocampus. As predicted, hSyn–HM3D was ab...

  6. Synaptic consolidation across multiple timescales

    Directory of Open Access Journals (Sweden)

    Lorric Ziegler

    2014-03-01

    Full Text Available The brain is bombarded with a continuous stream of sensory events, but retains only a small subset in memory. The selectivity of memory formation prevents our memory from being overloaded with irrelevant items that would rapidly bring the brain to its storage limit; moreover, selectivity also prevents overwriting previously formed memories with new ones. Memory formation in the hippocampus, as well as in other brain regions, is thought to be linked to changes in the synaptic connections between neurons. In this view, sensory events imprint traces at the level of synapses that reflect potential memory items. The question of memory selectivity can therefore be reformulated as follows: what are the reasons and conditions that some synaptic traces fade away whereas others are consolidated and persist? Experimentally, changes in synaptic strength induced by 'Hebbian' protocols fade away over a few hours (early long-term potentiation or e-LTP, unless these changes are consolidated. The experiments and conceptual theory of synaptic tagging and capture (STC provide a mechanistic explanation for the processes involved in consolidation. This theory suggests that the initial trace of synaptic plasticity sets a tag at the synapse, which then serves as a marker for potential consolidation of the changes in synaptic efficacy. The actual consolidation processes, transforming e-LTP into late LTP (l-LTP, require the capture of plasticity-related proteins (PRP. We translate the above conceptual model into a compact computational model that accounts for a wealth of in vitro data including experiments on cross-tagging, tag-resetting and depotentiation. A central ingredient is that synaptic traces are described with several variables that evolve on different time scales. Consolidation requires the transmission of information from a 'fast' synaptic trace to a 'slow' one through a 'write' process, including the formation of tags and the production of PRP for the

  7. Cannabinoids modulate spontaneous synaptic activity in retinal ganglion cells.

    Science.gov (United States)

    Middleton, T P; Protti, D A

    2011-09-01

    The endocannabinoid (ECB) system has been found throughout the central nervous system and modulates cell excitability in various forms of short-term plasticity. ECBs and their receptors have also been localized to all retinal cells, and cannabinoid receptor activation has been shown to alter voltage-dependent conductances in several different retinal cell types, suggesting a possible role for cannabinoids in retinal processing. Their effects on synaptic transmission in the mammalian retina, however, have not been previously investigated. Here, we show that exogenous cannabinoids alter spontaneous synaptic transmission onto retinal ganglion cells (RGCs). Using whole-cell voltage-clamp recordings in whole-mount retinas, we measured spontaneous postsynaptic currents (SPSCs) in RGCs in adult and young (P14-P21) mice. We found that the addition of an exogenous cannabinoid agonist, WIN55212-2 (5 μM), caused a significant reversible reduction in the frequency of SPSCs. This change, however, did not alter the kinetics of the SPSCs, indicating a presynaptic locus of action. Using blockers to isolate inhibitory or excitatory currents, we found that cannabinoids significantly reduced the release probability of both GABA and glutamate, respectively. While the addition of cannabinoids reduced the frequency of both GABAergic and glutamatergic SPSCs in both young and adult mice, we found that the largest effect was on GABA-mediated currents in young mice. These results suggest that the ECB system may potentially be involved in the modulation of signal transmission in the retina. Furthermore, they suggest that it might play a role in the developmental maturation of synaptic circuits, and that exogenous cannabinoids are likely able to disrupt retinal processing and consequently alter vision.

  8. Compensating for thalamocortical synaptic loss in Alzheimer's disease.

    Science.gov (United States)

    Abuhassan, Kamal; Coyle, Damien; Maguire, Liam

    2014-01-01

    The study presents a thalamocortical network model which oscillates within the alpha frequency band (8-13 Hz) as recorded in the wakeful relaxed state with closed eyes to study the neural causes of abnormal oscillatory activity in Alzheimer's disease (AD). Incorporated within the model are various types of cortical excitatory and inhibitory neurons, recurrently connected to thalamic and reticular thalamic regions with the ratios and distances derived from the mammalian thalamocortical system. The model is utilized to study the impacts of four types of connectivity loss on the model's spectral dynamics. The study focuses on investigating degeneration of corticocortical, thalamocortical, corticothalamic, and corticoreticular couplings, with an emphasis on the influence of each modeled case on the spectral output of the model. Synaptic compensation has been included in each model to examine the interplay between synaptic deletion and compensation mechanisms, and the oscillatory activity of the network. The results of power spectra and event related desynchronization/synchronization (ERD/S) analyses show that the dynamics of the thalamic and cortical oscillations are significantly influenced by corticocortical synaptic loss. Interestingly, the patterns of changes in thalamic spectral activity are correlated with those in the cortical model. Similarly, the thalamic oscillatory activity is diminished after partial corticothalamic denervation. The results suggest that thalamic atrophy is a secondary pathology to cortical shrinkage in Alzheimer's disease. In addition, this study finds that the inhibition from neurons in the thalamic reticular nucleus (RTN) to thalamic relay (TCR) neurons plays a key role in regulating thalamic oscillations; disinhibition disrupts thalamic oscillatory activity even though TCR neurons are more depolarized after being released from RTN inhibition. This study provides information that can be explored experimentally to further our understanding

  9. Compensating for Thalamocortical Synaptic Loss in Alzheimer’s Disease

    Directory of Open Access Journals (Sweden)

    Kamal eAbuhassan

    2014-06-01

    Full Text Available The study presents a thalamocortical network model which oscillates within the alpha frequency band (8-13 Hz as recorded in the wakeful relaxed state with closed eyes to study the neural causes of abnormal oscillatory activity in Alzheimer’s disease (AD. Incorporated within the model are various types of cortical excitatory and inhibitory neurons, recurrently connected to thalamic and reticular thalamic regions with the ratios and distances derived from the mammalian thalamocortical system. The model is utilized to study the impacts of four types of connectivity loss on the model’s spectral dynamics. The study focuses on investigating degeneration of corticocortical, thalamocortical, corticothalamic and corticoreticular couplings, with an emphasis on the influence of each modelled case on the spectral output of the model. Synaptic compensation has been included in each model to examine the interplay between synaptic deletion and compensation mechanisms, and the oscillatory activity of the network. The results of power spectra and event related desynchronisation/synchronisation (ERD/S analyses show that the dynamics of the thalamic and cortical oscillations are significantly influenced by corticocortical synaptic loss. Interestingly, the patterns of changes in thalamic spectral activity are correlated with those in the cortical model. Similarly, the thalamic oscillatory activity is diminished after partial corticothalamic denervation. The results suggest that thalamic atrophy is a secondary pathology to cortical shrinkage in Alzheimer’s disease. In addition, this study finds that the inhibition from neurons in the thalamic reticular nucleus (RTN to thalamic relay (TCR neurons plays a key role in regulating thalamic oscillations; disinhibition disrupts thalamic oscillatory activity even though TCR neurons are more depolarized after being released from RTN inhibition. This study provides information that can be explored experimentally to

  10. Precise synaptic efficacy alignment suggests potentiation dominated learning

    Directory of Open Access Journals (Sweden)

    Christoph eHartmann

    2016-01-01

    coordinated potentiation -- in this case, from STDP in the presence of correlated pre- and post-synaptic activity -- naturally leads to an alignment of parallel synapses.

  11. Emerging Synaptic Molecules as Candidates in the Etiology of Neurological Disorders

    Science.gov (United States)

    Torres, Viviana I.; Vallejo, Daniela

    2017-01-01

    Synapses are complex structures that allow communication between neurons in the central nervous system. Studies conducted in vertebrate and invertebrate models have contributed to the knowledge of the function of synaptic proteins. The functional synapse requires numerous protein complexes with specialized functions that are regulated in space and time to allow synaptic plasticity. However, their interplay during neuronal development, learning, and memory is poorly understood. Accumulating evidence links synapse proteins to neurodevelopmental, neuropsychiatric, and neurodegenerative diseases. In this review, we describe the way in which several proteins that participate in cell adhesion, scaffolding, exocytosis, and neurotransmitter reception from presynaptic and postsynaptic compartments, mainly from excitatory synapses, have been associated with several synaptopathies, and we relate their functions to the disease phenotype. PMID:28331639

  12. Hearing requires otoferlin-dependent efficient replenishment of synaptic vesicles in hair cells.

    Science.gov (United States)

    Pangrsic, Tina; Lasarow, Livia; Reuter, Kirsten; Takago, Hideki; Schwander, Martin; Riedel, Dietmar; Frank, Thomas; Tarantino, Lisa M; Bailey, Janice S; Strenzke, Nicola; Brose, Nils; Müller, Ulrich; Reisinger, Ellen; Moser, Tobias

    2010-07-01

    Inner hair cell ribbon synapses indefatigably transmit acoustic information. The proteins mediating their fast vesicle replenishment (hundreds of vesicles per s) are unknown. We found that an aspartate to glycine substitution in the C(2)F domain of the synaptic vesicle protein otoferlin impaired hearing by reducing vesicle replenishment in the pachanga mouse model of human deafness DFNB9. In vitro estimates of vesicle docking, the readily releasable vesicle pool (RRP), Ca(2+) signaling and vesicle fusion were normal. Moreover, we observed postsynaptic excitatory currents of variable size and spike generation. However, mutant active zones replenished vesicles at lower rates than wild-type ones and sound-evoked spiking in auditory neurons was sparse and only partially improved during longer interstimulus intervals. We conclude that replenishment does not match the release of vesicles at mutant active zones in vivo and a sufficient standing RRP therefore cannot be maintained. We propose that otoferlin is involved in replenishing synaptic vesicles.

  13. Emerging Synaptic Molecules as Candidates in the Etiology of Neurological Disorders

    Directory of Open Access Journals (Sweden)

    Viviana I. Torres

    2017-01-01

    Full Text Available Synapses are complex structures that allow communication between neurons in the central nervous system. Studies conducted in vertebrate and invertebrate models have contributed to the knowledge of the function of synaptic proteins. The functional synapse requires numerous protein complexes with specialized functions that are regulated in space and time to allow synaptic plasticity. However, their interplay during neuronal development, learning, and memory is poorly understood. Accumulating evidence links synapse proteins to neurodevelopmental, neuropsychiatric, and neurodegenerative diseases. In this review, we describe the way in which several proteins that participate in cell adhesion, scaffolding, exocytosis, and neurotransmitter reception from presynaptic and postsynaptic compartments, mainly from excitatory synapses, have been associated with several synaptopathies, and we relate their functions to the disease phenotype.

  14. Gastrin-releasing peptide facilitates glutamatergic transmission in the hippocampus and effectively prevents vascular dementia induced cognitive and synaptic plasticity deficits.

    Science.gov (United States)

    Yang, Jiajia; Yao, Yang; Wang, Ling; Yang, Chunxiao; Wang, Faqi; Guo, Jie; Wang, Zhiyun; Yang, Zhuo; Ming, Dong

    2017-01-01

    Neuronal gastrin-releasing peptide (GRP) has been proved to be an important neuromodulator in the brain and involved in a variety of neurological diseases. Whether GRP could attenuate cognition impairment induced by vascular dementia (VD) in rats, and the mechanism of synaptic plasticity and GRP's action on synaptic efficiency are still poorly understood. In this study, we first investigated the effects of GRP on glutamatergic transmission with patch-clamp recording. We found that acute application of GRP enhanced the excitatory synaptic transmission in hippocampal CA1 neurons via GRPR in a presynaptic mechanism. Secondly, we examined whether exogenous GRP or its analogue neuromedin B (NMB) could prevent VD-induced cognitive deficits and the mechanism of synaptic plasticity. By using Morris water maze, long-term potentiation (LTP) recording, western blot assay and immunofluorescent staining, we verified for the first time that GRP or NMB substantially improved the spatial learning and memory abilities in VD rats, restored the impaired synaptic plasticity and was able to elevate the expression of synaptic proteins, synaptophysin (SYP) and CaMKII, which play pivotal roles in synaptic plasticity. These results suggest that the facilitatory effects of GRP on glutamate release may contribute to its long-term action on synaptic efficacy which is essential in cognitive function. Our findings present a new entry point for a better understanding of physiological function of GRP and raise the possibility that GRPR agonists might ameliorate cognitive deficits associated with neurological diseases.

  15. The transformation of synaptic to system plasticity in motor output from the sacral cord of the adult mouse.

    Science.gov (United States)

    Jiang, Mingchen C; Elbasiouny, Sherif M; Collins, William F; Heckman, C J

    2015-09-01

    Synaptic plasticity is fundamental in shaping the output of neural networks. The transformation of synaptic plasticity at the cellular level into plasticity at the system level involves multiple factors, including behavior of local networks of interneurons. Here we investigate the synaptic to system transformation for plasticity in motor output in an in vitro preparation of the adult mouse spinal cord. System plasticity was assessed from compound action potentials (APs) in spinal ventral roots, which were generated simultaneously by the axons of many motoneurons (MNs). Synaptic plasticity was assessed from intracellular recordings of MNs. A computer model of the MN pool was used to identify the middle steps in the transformation from synaptic to system behavior. Two input systems that converge on the same MN pool were studied: one sensory and one descending. The two synaptic input systems generated very different motor outputs, with sensory stimulation consistently evoking short-term depression (STD) whereas descending stimulation had bimodal plasticity: STD at low frequencies but short-term facilitation (STF) at high frequencies. Intracellular and pharmacological studies revealed contributions from monosynaptic excitation and stimulus time-locked inhibition but also considerable asynchronous excitation sustained from local network activity. The computer simulations showed that STD in the monosynaptic excitatory input was the primary driver of the system STD in the sensory input whereas network excitation underlies the bimodal plasticity in the descending system. These results provide insight on the roles of plasticity in the monosynaptic and polysynaptic inputs converging on the same MN pool to overall motor plasticity.

  16. Developmental changes in electrophysiological properties and a transition from electrical to chemical coupling between excitatory layer 4 neurons in the rat barrel cortex

    Directory of Open Access Journals (Sweden)

    Fliza eValiullina

    2016-01-01

    Full Text Available During development, sensory systems switch from an immature to an adult mode of function along with the emergence of the active cortical states. Here, we used patch-clamp recordings from neocortical slices in vitro to characterize the developmental changes in the basic electrophysiological properties of excitatory L4 neurons and their connectivity before and after the developmental switch, which occurs in the rat barrel cortex in vivo at postnatal day P8. Prior to the switch, L4 neurons had lower resting membrane potentials, higher input resistance, lower membrane capacity, as well as action potentials (APs with smaller amplitudes, longer durations and higher AP thresholds compared to the neurons after the switch. A sustained firing pattern also emerged around the switch. Dual patch-clamp recordings from L4 neurons revealed that recurrent connections between L4 excitatory cells do not exist before and develop rapidly across the switch. In contrast, electrical coupling between these neurons waned around the switch. We suggest that maturation of electrophysiological features, particularly acquisition of a sustained firing pattern, and a transition from the immature electrical to mature chemical synaptic coupling between excitatory L4 neurons, contributes to the developmental switch in the cortical mode of function.

  17. A new regime for highly robust gamma oscillation with co-exist of accurate and weak synchronization in excitatory-inhibitory networks.

    Science.gov (United States)

    Wang, Zhijie; Fan, Hong; Han, Fang

    2014-08-01

    A great number of biological experiments show that gamma oscillation occurs in many brain areas after the presentation of stimulus. The neural systems in these brain areas are highly heterogeneous. Specifically, the neurons and synapses in these neural systems are diversified; the external inputs and parameters of these neurons and synapses are heterogeneous. How the gamma oscillation generated in such highly heterogeneous networks remains a challenging problem. Aiming at this problem, a highly heterogeneous complex network model that takes account of many aspects of real neural circuits was constructed. The network model consists of excitatory neurons and fast spiking interneurons, has three types of synapses (GABAA, AMPA, and NMDA), and has highly heterogeneous external drive currents. We found a new regime for robust gamma oscillation, i.e. the oscillation in inhibitory neurons is rather accurate but the oscillation in excitatory neurons is weak, in such highly heterogeneous neural networks. We also found that the mechanism of the oscillation is a mixture of interneuron gamma (ING) and pyramidal-interneuron gamma (PING). We explained the mixture ING and PING mechanism in a consistent-way by a compound post-synaptic current, which has a slowly rising-excitatory stage and a sharp decreasing-inhibitory stage.

  18. Compartmentalized PDE4A5 Signaling Impairs Hippocampal Synaptic Plasticity and Long-Term Memory.

    Science.gov (United States)

    Havekes, Robbert; Park, Alan J; Tolentino, Rosa E; Bruinenberg, Vibeke M; Tudor, Jennifer C; Lee, Yool; Hansen, Rolf T; Guercio, Leonardo A; Linton, Edward; Neves-Zaph, Susana R; Meerlo, Peter; Baillie, George S; Houslay, Miles D; Abel, Ted

    2016-08-24

    Alterations in cAMP signaling are thought to contribute to neurocognitive and neuropsychiatric disorders. Members of the cAMP-specific phosphodiesterase 4 (PDE4) family, which contains >25 different isoforms, play a key role in determining spatial cAMP degradation so as to orchestrate compartmentalized cAMP signaling in cells. Each isoform binds to a different set of protein complexes through its unique N-terminal domain, thereby leading to targeted degradation of cAMP in specific intracellular compartments. However, the functional role of specific compartmentalized PDE4 isoforms has not been examined in vivo Here, we show that increasing protein levels of the PDE4A5 isoform in mouse hippocampal excitatory neurons impairs a long-lasting form of hippocampal synaptic plasticity and attenuates hippocampus-dependent long-term memories without affecting anxiety. In contrast, viral expression of a truncated version of PDE4A5, which lacks the unique N-terminal targeting domain, does not affect long-term memory. Further, overexpression of the PDE4A1 isoform, which targets a different subset of signalosomes, leaves memory undisturbed. Fluorescence resonance energy transfer sensor-based cAMP measurements reveal that the full-length PDE4A5, in contrast to the truncated form, hampers forskolin-mediated increases in neuronal cAMP levels. Our study indicates that the unique N-terminal localization domain of PDE4A5 is essential for the targeting of specific cAMP-dependent signaling underlying synaptic plasticity and memory. The development of compounds to disrupt the compartmentalization of individual PDE4 isoforms by targeting their unique N-terminal domains may provide a fruitful approach to prevent cognitive deficits in neuropsychiatric and neurocognitive disorders that are associated with alterations in cAMP signaling. Neurons exhibit localized signaling processes that enable biochemical cascades to be activated selectively in specific subcellular compartments. The

  19. Synaptic determinants of Rett syndrome

    Directory of Open Access Journals (Sweden)

    Elena M B Boggio

    2010-08-01

    Full Text Available There is mounting evidence showing that the structural and molecular organization of synaptic connections are affected both in human patients and in animal models of neurological and psychiatric diseases. As a consequence of these experimental observations, it has been introduced the concept of synapsopathies, a notion describing brain disorders of synaptic function and plasticity. A close correlation between neurological diseases and synaptic abnormalities is especially relevant for those syndromes including also mental retardation in their symptomatology, such as Rett Syndrome (RS. RS (MIM312750 is an X-linked dominant neurological disorder that is caused, in the majority of cases by mutations in methyl-CpG-binding protein 2 (MeCP2. This review will focus on the current knowledge of the synaptic alterations produced by mutations of the gene MeCP2 in mouse models of RS and will highlight prospects experimental therapies currently in use. Different experimental approaches have revealed that RS could be the consequence of an impairment in the homeostasis of synaptic transmission in specific brain regions. Indeed, several forms of experience-induced neuronal plasticity are impaired in the absence of MeCP2. Based on the results presented in this review, it is reasonable to propose that understanding how the brain is affected by diseases such as RS is at reach. This effort will bring us closer to identify the neurobiological bases of human cognition.

  20. 3D Clustering of GABAergic Neurons Enhances Inhibitory Actions on Excitatory Neurons in the Mouse Visual Cortex

    Directory of Open Access Journals (Sweden)

    Teppei Ebina

    2014-12-01

    Full Text Available Neocortical neurons with similar functional properties assemble into spatially coherent circuits, but it remains unclear how inhibitory interneurons are organized. We applied in vivo two-photon functional Ca2+ imaging and whole-cell recording of synaptic currents to record visual responses of cortical neurons and analyzed their spatial arrangements. GABAergic interneurons were clustered in the 3D space of the mouse visual cortex, and excitatory neurons located within the clusters (insiders had a lower amplitude and sharper orientation tuning of visual responses than outsiders. Inhibitory synaptic currents recorded from the insiders were larger than those of the outsiders. Single, isolated interneurons did not show such a location-tuning/amplitude relationship. The two principal subtypes of interneurons, parvalbumin- and somatostatin-expressing neurons, also formed clusters with only slightly overlapping each other and exhibited a different location-tuning relationship. These findings suggest that GABAergic interneurons and their subgroups form clusters to make their inhibitory function more effective than isolated interneurons.

  1. Optogenetic activation of VGLUT2-expressing excitatory neurons blocks epileptic seizure-like activity in the mouse entorhinal cortex

    Science.gov (United States)

    Yekhlef, Latefa; Breschi, Gian Luca; Taverna, Stefano

    2017-01-01

    We investigated whether an anti-epileptic effect is obtained by selectively activating excitatory neurons expressing ChR2 under the promoter for the synaptic vesicular glutamate transporter 2 (VGLUT2). VGLUT2-expressing cells were optically stimulated while local field potential and whole-cell patch-clamp recordings were performed in mouse entorhinal cortical slices perfused with the proconvulsive compound 4-aminopyridine (4-AP). In control conditions, blue light flashes directly depolarized the majority of putative glutamatergic cells, which in turn synaptically excited GABAergic interneurons. During bath perfusion with 4-AP, photostimuli triggered a fast EPSP-IPSP sequence which was often followed by tonic-clonic seizure-like activity closely resembling spontaneous ictal discharges. The GABAA-receptor antagonist gabazine blocked the progression of both light-induced and spontaneous seizures. Surprisingly, prolonged photostimuli delivered during ongoing seizures caused a robust interruption of synchronous discharges. Such break was correlated with a membrane potential depolarization block in principal cells, while putative GABAergic interneurons changed their firing activity from a burst-like to an irregular single-spike pattern. These data suggest that photostimulation of glutamatergic neurons triggers seizure-like activity only in the presence of an intact GABAergic transmission and that selectively activating the same glutamatergic cells robustly interrupts ongoing seizures by inducing a strong depolarization block, resulting in the disruption of paroxysmal burst-like firing. PMID:28230208

  2. Imaging and analysis of evoked excitatory-postsynaptic-calcium-transients by individual presynaptic-boutons of cultured Aplysia sensorimotor synapse.

    Science.gov (United States)

    Malkinson, Guy; Spira, Micha E

    2010-04-01

    The use of the sensory-motor (SN-MN) synapse of the Aplysia gill withdrawal reflex has contributed immensely to the understanding of synaptic transmission, learning and memory acquisition processes. Whereas the majority of the studies focused on analysis of the presynaptic mechanisms, recent studies indicated that as in mammalian synapses, long term potentiation (LTP) formed by Aplysia SN-MN synapse depends on elevation of the postsynaptic free intracellular calcium concentration ([Ca2+](i)). Consistently, injection of the fast calcium chelator BAPTA to the MN prevents the formation of serotonin-induced LTP. Nevertheless, currently there are no published reports that directly examine and document whether evoked synaptic transmission is associated with transient increase in the postsynaptic [Ca2+](i). In the present study we imaged, for the first time, alterations in the postsynaptic [Ca2+](i) in response to presynaptic stimulation and analyzed the underlying mechanisms. Using live imaging of the postsynaptic [Ca2+](i) while monitoring the EPSP, we found that evoked transmitter release generates excitatory postsynaptic calcium concentration transients (EPSCaTs) by two mechanisms: (a) activation of DNQX-sensitive postsynaptic receptors-gated calcium influx and (b) calcium influx through nitrendipine-sensitive voltage-gated calcium channels (VGCCs). Concomitant confocal imaging of presynaptic boutons and EPSCaTs revealed that approximately 86% of the presynaptic boutons are associated with functional synapses.

  3. EXCITATORY CONNECTIONS BETWEEN SPINAL MOTONEURONS IN THE ADULT RAT

    Institute of Scientific and Technical Information of China (English)

    2000-01-01

    Objectives. Dendro-dendritic and dendro-somatic projections are common between spinal motoneurons. We attempted to clarify whether there are functional connections through these projections.Methods. Motoneurons were antidromically stimulated by the muscle nerve and recorded intracellularly to examine the direct interaction between them, after the related dorsal roots had been cut.Results. Excitatory connections, demonstrated by depolarizing potentials in response to muscle nerve stimulation, were found between motoneurons innervating the same muscle or synergistic muscles, but never between motoneurons innervating antagonistic muscles. These potentials were finely graded in response to a series of increasing stimuli and resistant to high frequency (50Hz) stimulation.Conclusions.These results indicate that excitatory connections, with certain specificity of spatial and temporal distribution, occur in the spinal motoneurons. It is also suggested that electrical coupling should be involved in these connections and this mechanism should improve the excitability of the motoneurons in the same column.

  4. Sequential dynamics in the motif of excitatory coupled elements

    Science.gov (United States)

    Korotkov, Alexander G.; Kazakov, Alexey O.; Osipov, Grigory V.

    2015-11-01

    In this article a new model of motif (small ensemble) of neuron-like elements is proposed. It is built with the use of the generalized Lotka-Volterra model with excitatory couplings. The main motivation for this work comes from the problems of neuroscience where excitatory couplings are proved to be the predominant type of interaction between neurons of the brain. In this paper it is shown that there are two modes depending on the type of coupling between the elements: the mode with a stable heteroclinic cycle and the mode with a stable limit cycle. Our second goal is to examine the chaotic dynamics of the generalized three-dimensional Lotka-Volterra model.

  5. Differences in chloride gradients allow for three distinct types of synaptic modulation by endocannabinoids.

    Science.gov (United States)

    Wang, Yanqing; Burrell, Brian D

    2016-08-01

    Endocannabinoids can elicit persistent depression of excitatory and inhibitory synapses, reducing or enhancing (disinhibiting) neural circuit output, respectively. In this study, we examined whether differences in Cl(-) gradients can regulate which synapses undergo endocannabinoid-mediated synaptic depression vs. disinhibition using the well-characterized central nervous system (CNS) of the medicinal leech, Hirudo verbana Exogenous application of endocannabinoids or capsaicin elicits potentiation of pressure (P) cell synapses and depression of both polymodal (Npoly) and mechanical (Nmech) nociceptive synapses. In P synapses, blocking Cl(-) export prevented endocannabinoid-mediated potentiation, consistent with a disinhibition process that has been indicated by previous experiments. In Nmech neurons, which are depolarized by GABA due to an elevated Cl(-) equilibrium potentials (ECl), endocannabinoid-mediated depression was prevented by blocking Cl(-) import, indicating that this decrease in synaptic signaling was due to depression of excitatory GABAergic input (disexcitation). Npoly neurons are also depolarized by GABA, but endocannabinoids elicit depression in these synapses directly and were only weakly affected by disruption of Cl(-) import. Consequently, the primary role of elevated ECl may be to protect Npoly synapses from disinhibition. All forms of endocannabinoid-mediated plasticity required activation of transient potential receptor vanilloid (TRPV) channels. Endocannabinoid/TRPV-dependent synaptic plasticity could also be elicited by distinct patterns of afferent stimulation with low-frequency stimulation (LFS) eliciting endocannabinoid-mediated depression of Npoly synapses and high-frequency stimulus (HFS) eliciting endocannabinoid-mediated potentiation of P synapses and depression of Nmech synapses. These findings demonstrate a critical role of differences in Cl(-) gradients between neurons in determining the sign, potentiation vs. depression, of

  6. Excitatory GABA in rodent developing neocortex in vitro.

    Science.gov (United States)

    Rheims, Sylvain; Minlebaev, Marat; Ivanov, Anton; Represa, Alfonso; Khazipov, Rustem; Holmes, Gregory L; Ben-Ari, Yehezkel; Zilberter, Yuri

    2008-08-01

    GABA depolarizes immature cortical neurons. However, whether GABA excites immature neocortical neurons and drives network oscillations as in other brain structures remains controversial. Excitatory actions of GABA depend on three fundamental parameters: the resting membrane potential (Em), reversal potential of GABA (E(GABA)), and threshold of action potential generation (Vthr). We have shown recently that conventional invasive recording techniques provide an erroneous estimation of these parameters in immature neurons. In this study, we used noninvasive single N-methyl-d-aspartate and GABA channel recordings in rodent brain slices to measure both Em and E(GABA) in the same neuron. We show that GABA strongly depolarizes pyramidal neurons and interneurons in both deep and superficial layers of the immature neocortex (P2-P10). However, GABA generates action potentials in layer 5/6 (L5/6) but not L2/3 pyramidal cells, since L5/6 pyramidal cells have more depolarized resting potentials and more hyperpolarized Vthr. The excitatory GABA transiently drives oscillations generated by L5/6 pyramidal cells and interneurons during development (P5-P12). The NKCC1 co-transporter antagonist bumetanide strongly reduces [Cl(-)]i, GABA-induced depolarization, and network oscillations, confirming the importance of GABA signaling. Thus a strong GABA excitatory drive coupled with high intrinsic excitability of L5/6 pyramidal neurons and interneurons provide a powerful mechanism of synapse-driven oscillatory activity in the rodent neocortex in vitro. In the companion paper, we show that the excitatory GABA drives layer-specific seizures in the immature neocortex.

  7. Traveling wave front solutions in lateral-excitatory neuronal networks

    Directory of Open Access Journals (Sweden)

    Sittipong Ruktamatakul

    2008-05-01

    Full Text Available In this paper, we discuss the shape of traveling wave front solutions to a neuronal model with the connection function to be of lateral excitation type. This means that close connecting cells have an inhibitory influence, while cells that aremore distant have an excitatory influence. We give results on the shape of the wave fronts solutions, which exhibit different shapes depend ing on the size of a threshold parameter.

  8. Target- and input-dependent organization of AMPA and NMDA receptors in synaptic connections of the cochlear nucleus.

    Science.gov (United States)

    Rubio, María E; Fukazawa, Yugo; Kamasawa, Naomi; Clarkson, Cheryl; Molnár, Elek; Shigemoto, Ryuichi

    2014-12-15

    We examined the synaptic structure, quantity, and distribution of α-amino-3-hydroxy-5-methylisoxazole-4-propionic acid (AMPA)- and N-methyl-D-aspartate (NMDA)-type glutamate receptors (AMPARs and NMDARs, respectively) in rat cochlear nuclei by a highly sensitive freeze-fracture replica labeling technique. Four excitatory synapses formed by two distinct inputs, auditory nerve (AN) and parallel fibers (PF), on different cell types were analyzed. These excitatory synapse types included AN synapses on bushy cells (AN-BC synapses) and fusiform cells (AN-FC synapses) and PF synapses on FC (PF-FC synapses) and cartwheel cell spines (PF-CwC synapses). Immunogold labeling revealed differences in synaptic structure as well as AMPAR and NMDAR number and/or density in both AN and PF synapses, indicating a target-dependent organization. The immunogold receptor labeling also identified differences in the synaptic organization of FCs based on AN or PF connections, indicating an input-dependent organization in FCs. Among the four excitatory synapse types, the AN-BC synapses were the smallest and had the most densely packed intramembrane particles (IMPs), whereas the PF-CwC synapses were the largest and had sparsely packed IMPs. All four synapse types showed positive correlations between the IMP-cluster area and the AMPAR number, indicating a common intrasynapse-type relationship for glutamatergic synapses. Immunogold particles for AMPARs were distributed over the entire area of individual AN synapses; PF synapses often showed synaptic areas devoid of labeling. The gold-labeling for NMDARs occurred in a mosaic fashion, with less positive correlations between the IMP-cluster area and the NMDAR number. Our observations reveal target- and input-dependent features in the structure, number, and organization of AMPARs and NMDARs in AN and PF synapses. © 2014 Wiley Periodicals, Inc.

  9. Exercise Training after Spinal Cord Injury Selectively Alters Synaptic Properties in Neurons in Adult Mouse Spinal Cord

    Science.gov (United States)

    Flynn, Jamie R.; Dunn, Lynda R.; Galea, Mary P.; Callister, Robin; Rank, Michelle M.

    2013-01-01

    Abstract Following spinal cord injury (SCI), anatomical changes such as axonal sprouting occur within weeks in the vicinity of the injury. Exercise training enhances axon sprouting; however, the exact mechanisms that mediate exercised-induced plasticity are unknown. We studied the effects of exercise training after SCI on the intrinsic and synaptic properties of spinal neurons in the immediate vicinity (<2 segments) of the SCI. Male mice (C57BL/6, 9–10 weeks old) received a spinal hemisection (T10) and after 1 week of recovery, they were randomized to trained (treadmill exercise for 3 weeks) and untrained (no exercise) groups. After 3 weeks, mice were killed and horizontal spinal cord slices (T6–L1, 250 μm thick) were prepared for visually guided whole cell patch clamp recording. Intrinsic properties, including resting membrane potential, input resistance, rheobase current, action potential (AP) threshold and after-hyperpolarization (AHP) amplitude were similar in neurons from trained and untrained mice (n=67 and 70 neurons, respectively). Neurons could be grouped into four categories based on their AP discharge during depolarizing current injection; the proportions of tonic firing, initial bursting, single spiking, and delayed firing neurons were similar in trained and untrained mice. The properties of spontaneous excitatory synaptic currents (sEPSCs) did not differ in trained and untrained animals. In contrast, evoked excitatory synaptic currents recorded after dorsal column stimulation were markedly increased in trained animals (peak amplitude 78.9±17.5 vs. 42.2±6.8 pA; charge 1054±376 vs. 348±75 pA·ms). These data suggest that 3 weeks of treadmill exercise does not affect the intrinsic properties of spinal neurons after SCI; however, excitatory synaptic drive from dorsal column pathways, such as the corticospinal tract, is enhanced. PMID:23320512

  10. Alterations in Brain Inflammation, Synaptic Proteins, and Adult Hippocampal Neurogenesis during Epileptogenesis in Mice Lacking Synapsin2.

    Directory of Open Access Journals (Sweden)

    Deepti Chugh

    Full Text Available Synapsins are pre-synaptic vesicle-associated proteins linked to the pathogenesis of epilepsy through genetic association studies in humans. Deletion of synapsins causes an excitatory/inhibitory imbalance, exemplified by the epileptic phenotype of synapsin knockout mice. These mice develop handling-induced tonic-clonic seizures starting at the age of about 3 months. Hence, they provide an opportunity to study epileptogenic alterations in a temporally controlled manner. Here, we evaluated brain inflammation, synaptic protein expression, and adult hippocampal neurogenesis in the epileptogenic (1 and 2 months of age and tonic-clonic (3.5-4 months phase of synapsin 2 knockout mice using immunohistochemical and biochemical assays. In the epileptogenic phase, region-specific microglial activation was evident, accompanied by an increase in the chemokine receptor CX3CR1, interleukin-6, and tumor necrosis factor-α, and a decrease in chemokine keratinocyte chemoattractant/ growth-related oncogene. Both post-synaptic density-95 and gephyrin, scaffolding proteins at excitatory and inhibitory synapses, respectively, showed a significant up-regulation primarily in the cortex. Furthermore, we observed an increase in the inhibitory adhesion molecules neuroligin-2 and neurofascin and potassium chloride co-transporter KCC2. Decreased expression of γ-aminobutyric acid receptor-δ subunit and cholecystokinin was also evident. Surprisingly, hippocampal neurogenesis was reduced in the epileptogenic phase. Taken together, we report molecular alterations in brain inflammation and excitatory/inhibitory balance that could serve as potential targets for therapeutics and diagnostic biomarkers. In addition, the regional differences in brain inflammation and synaptic protein expression indicate an epileptogenic zone from where the generalized seizures in synapsin 2 knockout mice may be initiated or spread.

  11. Shape perception enhances perceived contrast: evidence for excitatory predictive feedback?

    Science.gov (United States)

    Han, Biao; VanRullen, Rufin

    2016-03-14

    Predictive coding theory suggests that predictable responses are "explained away" (i.e., reduced) by feedback. Experimental evidence for feedback inhibition, however, is inconsistent: most neuroimaging studies show reduced activity by predictive feedback, while neurophysiology indicates that most inter-areal cortical feedback is excitatory and targets excitatory neurons. In this study, we asked subjects to judge the luminance of two gray disks containing stimulus outlines: one enabling predictive feedback (a 3D-shape) and one impeding it (random-lines). These outlines were comparable to those used in past neuroimaging studies. All 14 subjects consistently perceived the disk with a 3D-shape stimulus brighter; thus, predictive feedback enhanced perceived contrast. Since early visual cortex activity at the population level has been shown to have a monotonic relationship with subjective contrast perception, we speculate that the perceived contrast enhancement could reflect an increase in neuronal activity. In other words, predictive feedback may have had an excitatory influence on neuronal responses. Control experiments ruled out attention bias, local feature differences and response bias as alternate explanations.

  12. Tourette syndrome and excitatory substances: is there a connection?

    Science.gov (United States)

    Zou, Li-Ping; Wang, Ying; Zhang, Li-Ping; Zhao, Jian-Bo; Lu, Jin-Fang; Liu, Qun; Wang, Hang-Yan

    2011-05-01

    The objective of this study is to investigate the relationship between excitatory substances by testing the urine in children with Tourette syndrome (TS). We performed a control study involving 44 patients with TS and 44 normal children by investigating the children's daily eating habits. We used the gas chromatograph-mass spectrometer and liquid chromatograph-mass spectrometer from Agilent. Substances for detection included 197 excitatory substances prohibited by the International Olympic Committee and other substances with similar chemical structures or biological functions for urine samples. Forty-four patients who did not take any drugs in the past 2 weeks enrolled in the study. The positive rate in the experiment group was three cases, while it was negative in the control group. The level of 1-testosterone increased in one extremely severe TS patient who ate large amounts of puffed food and drank an average of 350 ml of cola per day. Cathine and other substances with similar chemical constitution or similar biological effects increased in one severe TS patient who ate bags of instant noodles daily, according to the high score of the Yale Global Tic Severity Scale. An increase in ephedrine type, testosterone, and stimulants may be related to the pathogenesis of TS. Unhealthy food possibly causes TS. The relationship between excitatory substances and TS needs to be explored with the goal of providing more information on diagnosing and treating TS.

  13. Synaptic vesicle pools and dynamics.

    Science.gov (United States)

    Alabi, AbdulRasheed A; Tsien, Richard W

    2012-08-01

    Synaptic vesicles release neurotransmitter at chemical synapses, thus initiating the flow of information in neural networks. To achieve this, vesicles undergo a dynamic cycle of fusion and retrieval to maintain the structural and functional integrity of the presynaptic terminals in which they reside. Moreover, compelling evidence indicates these vesicles differ in their availability for release and mobilization in response to stimuli, prompting classification into at least three different functional pools. Ongoing studies of the molecular and cellular bases for this heterogeneity attempt to link structure to physiology and clarify how regulation of vesicle pools influences synaptic strength and presynaptic plasticity. We discuss prevailing perspectives on vesicle pools, the role they play in shaping synaptic transmission, and the open questions that challenge current understanding.

  14. Astrocyte matricellular proteins that control excitatory synaptogenesis are regulated by inflammatory cytokines and correlate with paralysis severity during experimental autoimmune encephalomyelitis

    Directory of Open Access Journals (Sweden)

    Pennelope K. Blakely

    2015-10-01

    Full Text Available The matricellular proteins, secreted protein acidic and rich in cysteine (SPARC and SPARC-like 1 (SPARCL1, are produced by astrocytes and control excitatory synaptogenesis in the central nervous system. While SPARCL1 directly promotes excitatory synapse formation in vitro and in the developing nervous system in vivo, SPARC specifically antagonizes the synaptogenic actions of SPARCL1. We hypothesized these proteins also help maintain existing excitatory synapses in adult hosts, and that local inflammation in the spinal cord alters their production in a way that dynamically modulates motor synapses and impacts the severity of paralysis during experimental autoimmune encephalomyelitis (EAE in mice. Using a spontaneously remitting EAE model, paralysis severity correlated inversely with both expression of synaptic proteins and the number of synapses in direct contact with the perikarya of motor neurons in spinal grey matter. In both remitting and non-remitting EAE models, paralysis severity also correlated inversely with sparcl1:sparc transcript and SPARCL1:SPARC protein ratios directly in lumbar spinal cord tissue. In vitro, astrocyte production of both SPARCL1 and SPARC was regulated by T cell-derived cytokines, causing dynamic modulation of the SPARCL1:SPARC expression ratio. Taken together, these data support a model whereby proinflammatory cytokines inhibit SPARCL1 and/or augment SPARC expression by astrocytes in spinal grey matter that, in turn, cause either transient or sustained synaptic retraction from lumbar spinal motor neurons thereby regulating hind limb paralysis during EAE. Ongoing studies seek ways to alter this SPARCL1:SPARC expression ratio in favor of synapse reformation/maintenance and thus help to modulate neurologic deficits during times of inflammation. This could identify new astrocyte-targeted therapies for diseases such as multiple sclerosis.

  15. Total number and ratio of excitatory and inhibitory synapses converging onto single interneurons of different types in the CA1 area of the rat hippocampus.

    Science.gov (United States)

    Gulyás, A I; Megías, M; Emri, Z; Freund, T F

    1999-11-15

    The least known aspect of the functional architecture of hippocampal microcircuits is the quantitative distribution of synaptic inputs of identified cell classes. The complete dendritic trees of functionally distinct interneuron types containing parvalbumin (PV), calbindin D(28k) (CB), or calretinin (CR) were reconstructed at the light microscopic level to describe their geometry, total length, and laminar distribution. Serial electron microscopic reconstruction and postembedding GABA immunostaining was then used to determine the density of GABA-negative asymmetrical (excitatory) and GABA-positive symmetrical (inhibitory) synaptic inputs on their dendrites, somata, and axon initial segments. The total convergence and the distribution of excitatory and inhibitory inputs were then calculated using the light and electron microscopic data sets. The three populations showed characteristic differences in dendritic morphology and in the density and distribution of afferent synapses. PV cells possessed the most extensive dendritic tree (4300 microm) and the thickest dendrites. CR cells had the smallest dendritic tree (2500 microm) and the thinnest shafts. The density of inputs as well as the total number of excitatory plus inhibitory synapses was several times higher on PV cells (on average, 16,294) than on CB (3839) or CR (2186) cells. The ratio of GABAergic inputs was significantly higher on CB (29.4%) and CR (20.71%) cells than on PV cells (6.4%). The density of inhibitory terminals was higher in the perisomatic region than on the distal dendrites. These anatomical data are essential to understand the distinct behavior and role of these interneuron types during hippocampal activity patterns and represent fundamental information for modeling studies.

  16. Synaptic Effects of Electric Fields

    Science.gov (United States)

    Rahman, Asif

    Learning and sensory processing in the brain relies on the effective transmission of information across synapses. The strength and efficacy of synaptic transmission is modifiable through training and can be modulated with noninvasive electrical brain stimulation. Transcranial electrical stimulation (TES), specifically, induces weak intensity and spatially diffuse electric fields in the brain. Despite being weak, electric fields modulate spiking probability and the efficacy of synaptic transmission. These effects critically depend on the direction of the electric field relative to the orientation of the neuron and on the level of endogenous synaptic activity. TES has been used to modulate a wide range of neuropsychiatric indications, for various rehabilitation applications, and cognitive performance in diverse tasks. How can a weak and diffuse electric field, which simultaneously polarizes neurons across the brain, have precise changes in brain function? Designing therapies to maximize desired outcomes and minimize undesired effects presents a challenging problem. A series of experiments and computational models are used to define the anatomical and functional factors leading to specificity of TES. Anatomical specificity derives from guiding current to targeted brain structures and taking advantage of the direction-sensitivity of neurons with respect to the electric field. Functional specificity originates from preferential modulation of neuronal networks that are already active. Diffuse electric fields may recruit connected brain networks involved in a training task and promote plasticity along active synaptic pathways. In vitro, electric fields boost endogenous synaptic plasticity and raise the ceiling for synaptic learning with repeated stimulation sessions. Synapses undergoing strong plasticity are preferentially modulated over weak synapses. Therefore, active circuits that are involved in a task could be more susceptible to stimulation than inactive circuits

  17. Enhancement of NMDA receptor-mediated excitatory postsynaptic currents by gp120-treated macrophages: implications for HIV-1-associated neuropathology.

    Science.gov (United States)

    Yang, Jianming; Hu, Dehui; Xia, Jianxun; Liu, Jianuo; Zhang, Gang; Gendelman, Howard E; Boukli, Nawal M; Xiong, Huangui

    2013-09-01

    A plethora of prior studies has linked HIV-1-infected and immune activated brain mononuclear phagocytes (MP; blood borne macrophages and microglia) to neuronal dysfunction. These are modulated by N-methyl-D-aspartate receptor (NMDAR) antagonists and supporting their relevance for HIV-1-associated nervous system disease. The role of NMDAR subsets in HIV-1-induced neuronal injury, nonetheless, is poorly understood. To this end, we investigated conditioned media from HIV-1gp120-treated human monocyte-derived-macrophages (MDM) for its abilities to affect NMDAR-mediated excitatory postsynaptic currents (EPSC(NMDAR)) in rat hippocampal slices. Bath application of gp120-treated MDM-conditioned media (MCM) produced an increase of EPSC(NMDAR). In contrast, control (untreated) MCM had limited effects on EPSC(NMDAR). Testing NR2A NMDAR (NR2AR)-mediated EPSC (EPSC(NR2AR)) and NR2B NMDAR (NR2BR)-mediated EPSC (EPSC(NR2BR)) for MCM showed significant increased EPSC(NR2BR) when compared to EPSC(NR2AR) enhancement. When synaptic NR2AR-mediated EPSC was blocked by bath application of MK801 combined with low frequency stimulations, MCM retained its ability to enhance EPSC(NMDAR) evoked by stronger stimulations. This suggested that increase in EPSC(NMDAR) was mediated, in part, through extra-synaptic NR2BR. Further analyses revealed that the soluble factors with low (NR2BR but not NR2AR blockers. Taken together, these results indicate that macrophage secretory products induce neuronal injury through extra-synaptic NR2BRs.

  18. Hippocampal testosterone relates to reference memory performance and synaptic plasticity in male rats

    Directory of Open Access Journals (Sweden)

    Kristina eSchulz

    2010-12-01

    Full Text Available Steroids are important neuromodulators influencing cognitive performance and synaptic plasticity. While the majority of literature concerns adrenal- and gonadectomized animals, very little is known about the natural endogenous release of hormones during learning. Therefore, we measured blood and brain (hippocampus, prefrontal cortex testosterone, estradiol, and corticosterone concentrations of intact male rats undergoing a spatial learning paradigm which is known to reinforce hippocampal plasticity. We found significant modulations of all investigated hormones over the training course. Corticosterone and testosterone were correlated manifold with behaviour, while estradiol expressed fewer correlations. In the recall session, testosterone was tightly coupled to reference memory performance, which is crucial for reinforcement of synaptic plasticity in the dentate gyrus. Intriguingly, prefrontal cortex and hippocampal levels related differentially to reference memory performance. Correlations of testosterone and corticosterone switched from unspecific activity to specific cognitive functions over training. Correspondingly, exogenous application of testosterone revealed different effects on synaptic and neuronal plasticity in trained versus untrained animals. While hippocampal long-term potentiation (LTP of the field excitatory postsynaptic potential (fEPSP was prolonged in untrained rats, both the fEPSP- and the population spike amplitude-LTP was impaired in trained rats. Behavioural performance was unaffected, but correlations of hippocampal field potentials with behaviour were decoupled in treated rats. The data provide important evidence that besides adrenal, also gonadal steroids play a mechanistic role in linking synaptic plasticity to cognitive performance.

  19. HDAC2 expression in parvalbumin interneurons regulates synaptic plasticity in the mouse visual cortex

    Directory of Open Access Journals (Sweden)

    Alexi Nott

    2015-01-01

    Full Text Available An experience-dependent postnatal increase in GABAergic inhibition in the visual cortex is important for the closure of a critical period of enhanced synaptic plasticity. Although maturation of the subclass of parvalbumin (Pv–expressing GABAergic interneurons is known to contribute to critical period closure, the role of epigenetics on cortical inhibition and synaptic plasticity has not been explored. The transcription regulator, histone deacetylase 2 (HDAC2, has been shown to modulate synaptic plasticity and learning processes in hippocampal excitatory neurons. We found that genetic deletion of HDAC2 specifically from Pv interneurons reduces inhibitory input in the visual cortex of adult mice and coincides with enhanced long-term depression that is more typical of young mice. These findings show that HDAC2 loss in Pv interneurons leads to a delayed closure of the critical period in the visual cortex and supports the hypothesis that HDAC2 is a key negative regulator of synaptic plasticity in the adult brain.

  20. INVOLVEMENT OF SYNAPTIC GENES IN THE PATHOGENESIS OF AUTISM SPECTRUM DISORDERS: THE CASE OF SYNAPSINS

    Directory of Open Access Journals (Sweden)

    Silvia eGiovedi

    2014-09-01

    Full Text Available Autism spectrum disorders (ASDs are heterogeneous neurodevelopmental disorders characterized by deficits in social interaction and social communication, restricted interests and repetitive behaviors. Many synaptic protein genes are linked to the pathogenesis of ASDs, making them prototypical synaptopathies. An array of mutations in the synapsin (Syn genes in humans have been recently associated with ASD and epilepsy, diseases that display a frequent comorbidity. Synapsins are presynaptic proteins regulating synaptic vesicle traffic, neurotransmitter release and short-term synaptic plasticity. In doing so, Syn isoforms control the tone of activity of neural circuits and the balance between excitation and inhibition. As ASD pathogenesis is believed to result from dysfunctions in the balance between excitatory and inhibitory transmissions in neocortical areas, Syns are novel ASD candidate genes. Accordingly, deletion of single Syn genes in mice, in addition to epilepsy, causes core symptoms of ASD by affecting social behavior, social communication and repetitive behaviors. Thus, Syn knockout mice represent a good experimental model to define synaptic alterations involved in the pathogenesis of ASD and epilepsy.

  1. Synaptic conductances during interictal discharges in pyramidal neurons of rat entorhinal cortex

    Directory of Open Access Journals (Sweden)

    Dmitry V. Amakhin

    2016-10-01

    Full Text Available In epilepsy, the balance of excitation and inhibition underlying the basis of neural network activity shifts, resulting in neuronal network hyperexcitability and recurrent seizure-associated discharges. Mechanisms involved in ictal and interictal events are not fully understood, in particular, because of controversial data regarding the dynamics of excitatory and inhibitory synaptic conductances. In the present study, we estimated AMPAR-, NMDAR-, and GABAAR-mediated conductances during two distinct types of interictal discharge (IID in pyramidal neurons of rat entorhinal cortex in cortico-hippocampal slices. Repetitively emerging seizure-like events and IIDs were recorded in high extracellular potassium, 4-aminopyridine, and reduced magnesium-containing solution. An original procedure for estimating synaptic conductance during IIDs was based on the differences among the current-voltage characteristics of the synaptic components. The synaptic conductance dynamics obtained revealed that the first type of IID is determined by activity of GABAAR channels with depolarized reversal potential. The second type of IID is determined by the interplay between excitation and inhibition, with prominent early AMPAR and prolonged depolarized GABAAR and NMDAR-mediated components. The study then validated the contribution of these components to IIDs by intracellular pharmacological isolation. These data provide new insights into the mechanisms of seizures generation, development, and cessation.

  2. Complement emerges as a masterful regulator of CNS homeostasis, neural synaptic plasticity and cognitive function.

    Science.gov (United States)

    Mastellos, Dimitrios C

    2014-11-01

    Growing evidence points to a previously elusive role of complement-modulated pathways in CNS development, neurogenesis and synaptic plasticity. Distinct complement effectors appear to play a multifaceted role in brain homeostasis by regulating synaptic pruning in the retinogeniculate system and sculpting functional neural circuits both in the developing and adult mammalian brain. A recent study by Perez-Alcazar et al. (2014) provides novel insights into this intricate interplay between complement and the dynamically regulated brain synaptic circuitry, by reporting that mice deficient in C3 exhibit enhanced hippocampus-dependent spatial learning and cognitive performance. This behavioral pattern is associated with an impact of C3 on the functional capacity of glutamatergic synapses, supporting a crucial role for complement in excitatory synapse elimination in the hippocampus. These findings add a fresh twist to this rapidly evolving research field, suggesting that discrete complement components may differentially modulate synaptic connectivity by wiring up with diverse neural effectors in different regions of the brain. The emerging role of complement in synaptogenesis and neural network plasticity opens new conceptual avenues for considering complement interception as a potential therapeutic modality for ameliorating progressive cognitive impairment in age-related, debilitating brain diseases with a prominent inflammatory signature.

  3. Hippocampal Testosterone Relates to Reference Memory Performance and Synaptic Plasticity in Male Rats

    Science.gov (United States)

    Schulz, Kristina; Korz, Volker

    2010-01-01

    Steroids are important neuromodulators influencing cognitive performance and synaptic plasticity. While the majority of literature concerns adrenal- and gonadectomized animals, very little is known about the “natural” endogenous release of hormones during learning. Therefore, we measured blood and brain (hippocampus, prefrontal cortex) testosterone, estradiol, and corticosterone concentrations of intact male rats undergoing a spatial learning paradigm which is known to reinforce hippocampal plasticity. We found significant modulations of all investigated hormones over the training course. Corticosterone and testosterone were correlated manifold with behavior, while estradiol expressed fewer correlations. In the recall session, testosterone was tightly coupled to reference memory (RM) performance, which is crucial for reinforcement of synaptic plasticity in the dentate gyrus. Intriguingly, prefrontal cortex and hippocampal levels related differentially to RM performance. Correlations of testosterone and corticosterone switched from unspecific activity to specific cognitive functions over training. Correspondingly, exogenous application of testosterone revealed different effects on synaptic and neuronal plasticity in trained versus untrained animals. While hippocampal long-term potentiation (LTP) of the field excitatory postsynaptic potential (fEPSP) was prolonged in untrained rats, both the fEPSP- and the population spike amplitude (PSA)-LTP was impaired in trained rats. Behavioral performance was unaffected, but correlations of hippocampal field potentials with behavior were decoupled in treated rats. The data provide important evidence that besides adrenal, also gonadal steroids play a mechanistic role in linking synaptic plasticity to cognitive performance. PMID:21188275

  4. Emerging Link between Alzheimer’s Disease and Homeostatic Synaptic Plasticity

    Directory of Open Access Journals (Sweden)

    Sung-Soo Jang

    2016-01-01

    Full Text Available Alzheimer’s disease (AD is an irreversible brain disorder characterized by progressive cognitive decline and neurodegeneration of brain regions that are crucial for learning and memory. Although intracellular neurofibrillary tangles and extracellular senile plaques, composed of insoluble amyloid-β (Aβ peptides, have been the hallmarks of postmortem AD brains, memory impairment in early AD correlates better with pathological accumulation of soluble Aβ oligomers and persistent weakening of excitatory synaptic strength, which is demonstrated by inhibition of long-term potentiation, enhancement of long-term depression, and loss of synapses. However, current, approved interventions aiming to reduce Aβ levels have failed to retard disease progression; this has led to a pressing need to identify and target alternative pathogenic mechanisms of AD. Recently, it has been suggested that the disruption of Hebbian synaptic plasticity in AD is due to aberrant metaplasticity, which is a form of homeostatic plasticity that tunes the magnitude and direction of future synaptic plasticity based on previous neuronal or synaptic activity. This review examines emerging evidence for aberrant metaplasticity in AD. Putative mechanisms underlying aberrant metaplasticity in AD will also be discussed. We hope this review inspires future studies to test the extent to which these mechanisms contribute to the etiology of AD and offer therapeutic targets.

  5. TrkB and PKMζ regulate synaptic localization of PSD-95 in developing cortex

    Science.gov (United States)

    Yoshii, Akira; Murata, Yasunobu; Kim, Jihye; Zhang, Chao; Shokat, Kevan M.; Constantine-Paton, Martha

    2011-01-01

    Post-synaptic density 95 (PSD-95), the major scaffold at excitatory synapses, is critical for synapse maturation and learning. In rodents, eye opening, the onset of pattern vision, triggers a rapid movement of PSD-95 from visual neuron somata to synapses. We previously showed that the PI3 kinase-Akt pathway downstream of BDNF/TrkB signaling stimulates synaptic delivery of PSD-95 via vesicular transport. However, vesicular transport requires PSD-95 palmitoylation to attach it to a lipid membrane. Also PSD-95 insertion at synapses is known to require this lipid modification. Here, we show that BDNF/TrkB signaling is also necessary for PSD-95 palmitoylation and its transport to synapses in mouse visual cortical layer 2/3 neurons. However, palmitoylation of PSD-95 requires the activation of another pathway downstream of BDNF/TrkB, namely signaling through PLCγ and the brain-specific PKC variant PKMζ. We find that PKMζ selectively regulates phosphorylation of the palmitoylation enzyme ZDHHC8. Inhibition of PKMζ results in a reduction of synaptic PSD-95 accumulation in vivo, which can be rescued by over-expression ZDHHC8. Therefore, TrkB and PKMζ, two critical regulators of synaptic plasticity, facilitate PSD-95 targeting to synapses. These results also indicate that palmitoylation can be regulated by a trophic factor. Our findings have implications for neurodevelopmental disorders as well as ageing brains. PMID:21849550

  6. Network burst dynamics under heterogeneous cholinergic modulation of neural firing properties and heterogeneous synaptic connectivity.

    Science.gov (United States)

    Knudstrup, Scott; Zochowski, Michal; Booth, Victoria

    2016-05-01

    The characteristics of neural network activity depend on intrinsic neural properties and synaptic connectivity in the network. In brain networks, both of these properties are critically affected by the type and levels of neuromodulators present. The expression of many of the most powerful neuromodulators, including acetylcholine (ACh), varies tonically and phasically with behavioural state, leading to dynamic, heterogeneous changes in intrinsic neural properties and synaptic connectivity properties. Namely, ACh significantly alters neural firing properties as measured by the phase response curve in a manner that has been shown to alter the propensity for network synchronization. The aim of this simulation study was to build an understanding of how heterogeneity in cholinergic modulation of neural firing properties and heterogeneity in synaptic connectivity affect the initiation and maintenance of synchronous network bursting in excitatory networks. We show that cells that display different levels of ACh modulation have differential roles in generating network activity: weakly modulated cells are necessary for burst initiation and provide synchronizing drive to the rest of the network, whereas strongly modulated cells provide the overall activity level necessary to sustain burst firing. By applying several quantitative measures of network activity, we further show that the existence of network bursting and its characteristics, such as burst duration and intraburst synchrony, are dependent on the fraction of cell types providing the synaptic connections in the network. These results suggest mechanisms underlying ACh modulation of brain oscillations and the modulation of seizure activity during sleep states.

  7. Understanding complexities of synaptic transmission in medically intractable seizures: A paradigm of epilepsy research

    Directory of Open Access Journals (Sweden)

    Jyotirmoy Banerjee

    2013-01-01

    Full Text Available Investigating the changes associated with the development of epileptic state in humans is complex and requires a multidisciplinary approach. Understanding the intricacies of medically intractable epilepsy still remains a challenge for neurosurgeons across the world. A significant number of patients who has undergone resective brain surgery for epilepsy still continue to have seizures. The reason behind this therapy resistance still eludes us. Thus to develop a cure for the difficult to treat epilepsy, we need to comprehensively study epileptogenesis. Although various animal models are developed but none of them replicate the pathological conditions in humans. So the ideal way to understand epileptogenecity is to examine the tissue resected for the treatment of intractable epilepsy. Advanced imaging and electrical localization procedures are utilized to establish the epileptogenic zone in epilepsy patients. Further molecular and cytological studies are required for the microscopic analysis of brain samples collected from the epileptogenic focus. As alterations in inhibitory as well as excitatory synaptic transmission are key features of epilepsy, understanding the regulation of neurotransmission in the resected surgery zone is of immense importance. Here we summarize various modalities of in vitro slice analysis from the resected brain specimen to understand the changes in GABAergic and glutamatergic synaptic transmission in epileptogenic zone. We also review evidence pertaining to the proposed role of nicotinic receptors in abnormal synaptic transmission which is one of the major causes of epileptiform activity. Elucidation of current concepts in regulation of synaptic transmission will help develop therapies for epilepsy cases that cannot me managed pharmacologically.

  8. Synaptic Conversion of Chloride-Dependent Synapses in Spinal Nociceptive Circuits: Roles in Neuropathic Pain

    Directory of Open Access Journals (Sweden)

    Mark S. Cooper

    2011-01-01

    Full Text Available Electrophysiological conversion of chloride-dependent synapses from inhibitory to excitatory function, as a result of aberrant neuronal chloride homeostasis, is a known mechanism for the genesis of neuropathic pain. This paper examines theoretically how this type of synaptic conversion can disrupt circuit logic in spinal nociceptive circuits. First, a mathematical scaling factor is developed to represent local aberration in chloride electrochemical driving potential. Using this mathematical scaling factor, electrophysiological symbols are developed to represent the magnitude of synaptic conversion within nociceptive circuits. When inserted into a nociceptive circuit diagram, these symbols assist in understanding the generation of neuropathic pain associated with the collapse of transmembrane chloride gradients. A more generalized scaling factor is also derived to represent the interplay of chloride and bicarbonate driving potentials on the function of GABAergic and glycinergic synapses. These mathematical and symbolic representations of synaptic conversion help illustrate the critical role that anion driving potentials play in the transduction of pain. Using these representations, we discuss ramifications of glial-mediated synaptic conversion in the genesis, and treatment, of neuropathic pain.

  9. Prolonged enhancement and depression of synaptic transmission in CA1 pyramidal neurons induced by transient forebrain ischemia in vivo.

    Science.gov (United States)

    Gao, T M; Pulsinelli, W A; Xu, Z C

    1998-11-01

    Evoked postsynaptic potentials of CA1 pyramidal neurons in rat hippocampus were studied during 48 h after severe ischemic insult using in vivo intracellular recording and staining techniques. Postischemic CA1 neurons displayed one of three distinct response patterns following contralateral commissural stimulation. At early recirculation times (0-12 h) approximately 50% of neurons exhibited, in addition to the initial excitatory postsynaptic potential, a late depolarizing postsynaptic potential lasting for more than 100 ms. Application of dizocilpine maleate reduced the amplitude of late depolarizing postsynaptic potential by 60%. Other CA1 neurons recorded in this interval failed to develop late depolarizing postsynaptic potentials but showed a modest blunting of initial excitatory postsynaptic potentials (non-late depolarizing postsynaptic potential neuron). The proportion of recorded neurons with late depolarizing postsynaptic potential characteristics increased to more than 70% during 13-24 h after reperfusion. Beyond 24 h reperfusion, approximately 20% of CA neurons exhibited very small excitatory postsynaptic potentials even with maximal stimulus intensity. The slope of the initial excitatory postsynaptic potentials in late depolarizing postsynaptic potential neurons increased to approximately 150% of control values up to 12 h after reperfusion indicating a prolonged enhancement of synaptic transmission. In contrast, the slope of the initial excitatory postsynaptic potentials in non-late depolarizing postsynaptic potential neurons decreased to less than 50% of preischemic values up to 24 h after reperfusion indicating a prolonged depression of synaptic transmission. More late depolarizing postsynaptic potential neurons were located in the medial portion of CA1 zone where neurons are more vulnerable to ischemia whereas more non-late depolarizing postsynaptic potential neurons were located in the lateral portion of CA1 zone where neurons are more resistant to

  10. Biphasic synaptic Ca influx arising from compartmentalized electrical signals in dendritic spines.

    Directory of Open Access Journals (Sweden)

    Brenda L Bloodgood

    2009-09-01

    Full Text Available Excitatory synapses on mammalian principal neurons are typically formed onto dendritic spines, which consist of a bulbous head separated from the parent dendrite by a thin neck. Although activation of voltage-gated channels in the spine and stimulus-evoked constriction of the spine neck can influence synaptic signals, the contribution of electrical filtering by the spine neck to basal synaptic transmission is largely unknown. Here we use spine and dendrite calcium (Ca imaging combined with 2-photon laser photolysis of caged glutamate to assess the impact of electrical filtering imposed by the spine morphology on synaptic Ca transients. We find that in apical spines of CA1 hippocampal neurons, the spine neck creates a barrier to the propagation of current, which causes a voltage drop and results in spatially inhomogeneous activation of voltage-gated Ca channels (VGCCs on a micron length scale. Furthermore, AMPA and NMDA-type glutamate receptors (AMPARs and NMDARs, respectively that are colocalized on individual spine heads interact to produce two kinetically and mechanistically distinct phases of synaptically evoked Ca influx. Rapid depolarization of the spine triggers a brief and large Ca current whose amplitude is regulated in a graded manner by the number of open AMPARs and whose duration is terminated by the opening of small conductance Ca-activated potassium (SK channels. A slower phase of Ca influx is independent of AMPAR opening and is determined by the number of open NMDARs and the post-stimulus potential in the spine. Biphasic synaptic Ca influx only occurs when AMPARs and NMDARs are coactive within an individual spine. These results demonstrate that the morphology of dendritic spines endows associated synapses with specialized modes of signaling and permits the graded and independent control of multiple phases of synaptic Ca influx.

  11. Identifying and tracking simulated synaptic inputs from neuronal firing: insights from in vitro experiments.

    Directory of Open Access Journals (Sweden)

    Maxim Volgushev

    2015-03-01

    Full Text Available Accurately describing synaptic interactions between neurons and how interactions change over time are key challenges for systems neuroscience. Although intracellular electrophysiology is a powerful tool for studying synaptic integration and plasticity, it is limited by the small number of neurons that can be recorded simultaneously in vitro and by the technical difficulty of intracellular recording in vivo. One way around these difficulties may be to use large-scale extracellular recording of spike trains and apply statistical methods to model and infer functional connections between neurons. These techniques have the potential to reveal large-scale connectivity structure based on the spike timing alone. However, the interpretation of functional connectivity is often approximate, since only a small fraction of presynaptic inputs are typically observed. Here we use in vitro current injection in layer 2/3 pyramidal neurons to validate methods for inferring functional connectivity in a setting where input to the neuron is controlled. In experiments with partially-defined input, we inject a single simulated input with known amplitude on a background of fluctuating noise. In a fully-defined input paradigm, we then control the synaptic weights and timing of many simulated presynaptic neurons. By analyzing the firing of neurons in response to these artificial inputs, we ask 1 How does functional connectivity inferred from spikes relate to simulated synaptic input? and 2 What are the limitations of connectivity inference? We find that individual current-based synaptic inputs are detectable over a broad range of amplitudes and conditions. Detectability depends on input amplitude and output firing rate, and excitatory inputs are detected more readily than inhibitory. Moreover, as we model increasing numbers of presynaptic inputs, we are able to estimate connection strengths more accurately and detect the presence of connections more quickly. These results

  12. Effects of diazepam on glutamatergic synaptic transmission in the hippocampal CA1 area of rats with traumatic brain injury.

    Science.gov (United States)

    Cao, Lei; Bie, Xiaohua; Huo, Su; Du, Jubao; Liu, Lin; Song, Weiqun

    2014-11-01

    The activity of the Schaffer collaterals of hippocampal CA3 neurons and hippocampal CA1 neurons has been shown to increase after fluid percussion injury. Diazepam can inhibit the hyperexcitability of rat hippocampal neurons after injury, but the mechanism by which it affects excitatory synaptic transmission remains poorly understood. Our results showed that diazepam treatment significantly increased the slope of input-output curves in rat neurons after fluid percussion injury. Diazepam significantly decreased the numbers of spikes evoked by super stimuli in the presence of 15 μmol/L bicuculline, indicating the existence of inhibitory pathways in the injured rat hippocampus. Diazepam effectively increased the paired-pulse facilitation ratio in the hippocampal CA1 region following fluid percussion injury, reduced miniature excitatory postsynaptic potentials, decreased action-potential-dependent glutamine release, and reversed spontaneous glutamine release. These data suggest that diazepam could decrease the fluid percussion injury-induced enhancement of excitatory synaptic transmission in the rat hippocampal CA1 area.

  13. Effects of diazepam on glutamatergic synaptic transmission in the hippocampal CA1 area of rats with traumatic brain injury

    Institute of Scientific and Technical Information of China (English)

    Lei Cao; Xiaohua Bie; Su Huo; Jubao Du; Lin Liu; Weiqun Song

    2014-01-01

    The activity of the Schaffer collaterals of hippocampal CA3 neurons and hippocampal CA1 neurons has been shown to increase after lfuid percussion injury. Diazepam can inhibit the hy-perexcitability of rat hippocampal neurons after injury, but the mechanism by which it affects excitatory synaptic transmission remains poorly understood. Our results showed that diazepam treatment signiifcantly increased the slope of input-output curves in rat neurons after lfuid per-cussion injury. Diazepam signiifcantly decreased the numbers of spikes evoked by super stimuli in the presence of 15 μmol/L bicuculline, indicating the existence of inhibitory pathways in the injured rat hippocampus. Diazepam effectively increased the paired-pulse facilitation ratio in the hippocampal CA1 region following fluid percussion injury, reduced miniature excitatory postsynaptic potentials, decreased action-potential-dependent glutamine release, and reversed spontaneous glutamine release. These data suggest that diazepam could decrease the lfuid per-cussion injury-induced enhancement of excitatory synaptic transmission in the rat hippocampal CA1 area.

  14. Regulation of synaptic strength at mixed synapses: effects of dopamine receptor blockade and protein kinase C activation.

    Science.gov (United States)

    Silva, A; Kumar, S; Pereda, A; Faber, D S

    1995-11-01

    Previous studies of the mixed excitatory synapses between eighth nerve afferents and the lateral dendrite of the goldfish Mauthner (M-) cell have shown that synaptic strength is enhanced for an hour or longer following either repeated brief tetanizations or local extracellular applications of dopamine. Both the initial electrotonic coupling potential, mediated via current flow through gap junctions, and the subsequent chemically mediated excitatory postsynaptic potentials (EPSPs) are potentiated. Different second messenger pathways are implicated in the postsynaptic induction of these potentiations, with a Ca2+ influx presumably triggering the activity dependent long-term potentiations (LTP) and dopamine acting via a cAMP dependent pathway. Experiments performed to determine whether the LTP involves a stimulus-induced release of dopamine or requires a background level of dopamine receptor activation suggest neither is the case, as tetanization in the presence of a D1 receptor antagonist, which blocks the dopamine effects, produced an LTP comparable to that in the absence of the blocker. The effects of Ca2+ are presumably not due to protein kinase C (PKC) activation, since phorbol esters had no effect on the mixed excitatory synaptic responses, although they did enhance the frequency of spontaneously occurring inhibitory PSPs.

  15. Synaptic plasticity: Building memories to last.

    Science.gov (United States)

    Thompson, S M

    2000-03-23

    A series of recent studies has provided long-awaited direct evidence that enduring changes in synaptic strength, presumably underlying the formation of persistent memories, may be encoded in a lasting form as a change in synaptic structure.

  16. Excitatory and inhibitory synaptic mechanisms at the first stage of integration in the electroreception system of the shark

    DEFF Research Database (Denmark)

    Rotem, Naama; Sestieri, Emanuel; Hounsgaard, Jørn Dybkjær;

    2014-01-01

    , the afferent nerve originating from the ampullae of Lorenzini targets specific neurons located at the Dorsal Octavolateral Nucleus (DON), the first stage of integration in the electroreception system. Using intracellular recordings in an isolated brainstem preparation from the shark we analyze the properties...

  17. Excitatory and inhibitory synaptic mechanisms at the first stage of integration in the electroreception system of the shark

    National Research Council Canada - National Science Library

    Rotem, Naama; Sestieri, Emanuel; Hounsgaard, Jorn; Yarom, Yosef

    2014-01-01

    ...), the first stage of integration in the electroreception system. Using intracellular recordings in an isolated brainstem preparation from the shark we analyze the properties of this afferent pathway...

  18. Excitatory Synaptic Drive and Feedforward Inhibition in the Hippocampal CA3 Circuit Are Regulated by SynCAM 1

    OpenAIRE

    Park, Kellie A.; Ribic, Adema; Laage Gaupp, Fabian M.; Coman, Daniel; Huang, Yuegao; Dulla, Chris G.; Hyder, Fahmeed; Biederer, Thomas

    2016-01-01

    Select adhesion proteins control the development of synapses and modulate their structural and functional properties. Despite these important roles, the extent to which different synapse-organizing mechanisms act across brain regions to establish connectivity and regulate network properties is incompletely understood. Further, their functional roles in different neuronal populations remain to be defined. Here, we applied diffusion tensor imaging (DTI), a modality of magnetic resonance imaging...

  19. Correlated network activity enhances synaptic efficacy via BDNF and the ERK pathway at immature CA3–CA1 connections in the hippocampus

    OpenAIRE

    Mohajerani, Majid H.; Sivakumaran, Sudhir; Zacchi, Paola; Aguilera, Pedro de (O.P.); Cherubini, Enrico

    2007-01-01

    At early developmental stages, correlated neuronal activity is thought to exert a critical control on functional and structural refinement of synaptic connections. In the hippocampus, between postnatal day 2 (P2) and P6, network-driven giant depolarizing potentials (GDPs) are generated by the synergistic action of glutamate and GABA, which is depolarizing and excitatory. Here the rising phase of GDPs was used to trigger Schaffer collateral stimulation in such a way that synchronized network a...

  20. gamma-Aminobutyric acid (GABA): a fast excitatory transmitter which may regulate the development of hippocampal neurones in early postnatal life.

    Science.gov (United States)

    Ben-Ari, Y; Tseeb, V; Raggozzino, D; Khazipov, R; Gaiarsa, J L

    1994-01-01

    The properties of neonatal GABAergic synapses were investigated in neurones of the hippocampal CA3 region. GABA, acting on GABAA receptors, provides most of the excitatory drive on immature CA3 pyramidal neurones at an early stage of development, whereas glutamatergic synapses (in particular, those mediated by AMPA receptors) are mostly quiescent. Thus, during the first postnatal week of life, bicuculline fully blocked spontaneous and evoked depolarising potentials, and GABAA receptor agonists depolarised CA3 pyramidal neurones. GABAA mediated currents also had a reduced sensitivity to benzodiazepines. In the presence of bicuculline, between P0 and P4, increasing the stimulus strength reveals an excitatory postsynaptic potential which is mostly mediated by NMDA receptors. During the same developmental period, pre- (but not post) synaptic GABAB inhibition is present. Intracellular injections of biocytin showed that the axonal network of the GABAergic interneurones is well developed at birth, whereas the pyramidal recurrent collaterals are only beginning to develop. Finally, chronic bicuculline treatment of hippocampal neurones in culture reduced the extent of neuritic arborisation, suggesting that GABA acts as a trophic factor in that period. In conclusion, it is suggested that during the first postnatal week of life, when excitatory inputs are still poorly developed, GABAA receptors provide the excitatory drive necessary for pyramidal cell outgrowth. Starting from the end of the first postnatal week of life, when excitatory inputs are well developed, GABA (acting on both GABAA and GABAB receptors) will hyperpolarise the CA3 pyramidal neurones and, as in the adult, will prevent excessive neuronal discharges. Our electrophysiological and morphological studies have shown that hippocampal GABAergic interneurones are in a unique position to modulate the development of CA3 pyramidal neurones. Developing neurones require a certain degree of membrane depolarisation, and a

  1. Mitochondria, synaptic plasticity, and schizophrenia.

    Science.gov (United States)

    Ben-Shachar, Dorit; Laifenfeld, Daphna

    2004-01-01

    The conceptualization of schizophrenia as a disorder of connectivity, i.e., of neuronal?synaptic plasticity, suggests abnormal synaptic modeling and neuronal signaling, possibly as a consequence of flawed interactions with the environment, as at least a secondary mechanism underlying the pathophysiology of this disorder. Indeed, deficits in episodic memory and malfunction of hippocampal circuitry, as well as anomalies of axonal sprouting and synapse formation, are all suggestive of diminished neuronal plasticity in schizophrenia. Evidence supports a dysfunction of mitochondria in schizophrenia, including mitochondrial hypoplasia, and a dysfunction of the oxidative phosphorylation system, as well as altered mitochondrial-related gene expression. Mitochondrial dysfunction leads to alterations in ATP production and cytoplasmatic calcium concentrations, as well as reactive oxygen species and nitric oxide production. All of the latter processes have been well established as leading to altered synaptic strength or plasticity. Moreover, mitochondria have been shown to play a role in plasticity of neuronal polarity, and studies in the visual cortex show an association between mitochondria and synaptogenesis. Finally, mitochondrial gene upregulation has been observed following synaptic and neuronal activity. This review proposes that mitochondrial dysfunction in schizophrenia could cause, or arise from, anomalies in processes of plasticity in this disorder.

  2. Transcriptional coordination of synaptogenesis and neurotransmitter signaling.

    Science.gov (United States)

    Kratsios, Paschalis; Pinan-Lucarré, Bérangère; Kerk, Sze Yen; Weinreb, Alexis; Bessereau, Jean-Louis; Hobert, Oliver

    2015-05-18

    During nervous system development, postmitotic neurons face the challenge of generating and structurally organizing specific synapses with appropriate synaptic partners. An important unexplored question is whether the process of synaptogenesis is coordinated with the adoption of specific signaling properties of a neuron. Such signaling properties are defined by the neurotransmitter system that a neuron uses to communicate with postsynaptic partners, the neurotransmitter receptor type used to receive input from presynaptic neurons, and, potentially, other sensory receptors that activate a neuron. Elucidating the mechanisms that coordinate synaptogenesis, neuronal activation, and neurotransmitter signaling in a postmitotic neuron represents one key approach to understanding how neurons develop as functional units. Using the SAB class of Caenorhabditis elegans motor neurons as a model system, we show here that the phylogenetically conserved COE-type transcription factor UNC-3 is required for synaptogenesis. UNC-3 directly controls the expression of the ADAMTS-like protein MADD-4/Punctin, a presynaptically secreted synapse-organizing molecule that clusters postsynaptic receptors. UNC-3 also controls the assembly of presynaptic specializations and ensures the coordinated expression of enzymes and transporters that define the cholinergic neurotransmitter identity of the SAB neurons. Furthermore, synaptic output properties of the SAB neurons are coordinated with neuronal activation and synaptic input, as evidenced by UNC-3 also regulating the expression of ionotropic neurotransmitter receptors and putative stretch receptors. Our study shows how synaptogenesis and distinct, function-defining signaling features of a postmitotic neuron are hardwired together through coordinated transcriptional control.

  3. Calpains and neuronal damage in the ischemic brain: The swiss knife in synaptic injury.

    Science.gov (United States)

    Curcio, Michele; Salazar, Ivan L; Mele, Miranda; Canzoniero, Lorella M T; Duarte, Carlos B

    2016-08-01

    The excessive extracellular accumulation of glutamate in the ischemic brain leads to an overactivation of glutamate receptors with consequent excitotoxic neuronal death. Neuronal demise is largely due to a sustained activation of NMDA receptors for glutamate, with a consequent increase in the intracellular Ca(2+) concentration and activation of calcium- dependent mechanisms. Calpains are a group of Ca(2+)-dependent proteases that truncate specific proteins, and some of the cleavage products remain in the cell, although with a distinct function. Numerous studies have shown pre- and post-synaptic effects of calpains on glutamatergic and GABAergic synapses, targeting membrane- associated proteins as well as intracellular proteins. The resulting changes in the presynaptic proteome alter neurotransmitter release, while the cleavage of postsynaptic proteins affects directly or indirectly the activity of neurotransmitter receptors and downstream mechanisms. These alterations also disturb the balance between excitatory and inhibitory neurotransmission in the brain, with an impact in neuronal demise. In this review we discuss the evidence pointing to a role for calpains in the dysregulation of excitatory and inhibitory synapses in brain ischemia, at the pre- and post-synaptic levels, as well as the functional consequences. Although targeting calpain-dependent mechanisms may constitute a good therapeutic approach for stroke, specific strategies should be developed to avoid non-specific effects given the important regulatory role played by these proteases under normal physiological conditions.

  4. The role of cAMP in synaptic homeostasis in response to environmental temperature challenges and hyperexcitability mutations

    Directory of Open Access Journals (Sweden)

    Atsushi eUeda

    2015-02-01

    Full Text Available Homeostasis is the ability of physiological systems to regain functional balance following environment or experimental insults and synaptic homeostasis has been demonstrated in various species following genetic or pharmacological disruptions. Among environmental challenges, homeostatic responses to temperature extremes are critical to animal survival under natural conditions. We previously reported that axon terminal arborization in Drosophila larval neuromuscular junctions is enhanced at elevated temperatures; however, the amplitude of excitatory junctional potentials (EJPs remains unaltered despite the increase in synaptic bouton numbers. Here we determine the cellular basis of this homeostatic adjustment in larvae reared at high temperature (HT, 29 ˚C. We found that synaptic current focally recorded from individual synaptic boutons was unaffected by rearing temperature (30 ˚C. However, HT rearing decreased the quantal size (amplitude of spontaneous miniature EJPs, or mEJPs, which compensates for the increased number of synaptic releasing sites to retain a normal EJP size. The quantal size decrease is accounted for by a decrease in input resistance of the postsynaptic muscle fiber, indicating an increase in membrane area that matches the synaptic growth at HT. Interestingly, a mutation in rutabaga (rut encoding adenylyl cyclase (AC exhibited no obvious changes in quantal size or input resistance of postsynaptic muscle cells after HT rearing, suggesting an important role for rut AC in temperature-induced synaptic homeostasis in Drosophila. This extends our previous finding of rut-dependent synaptic homeostasis in hyperexcitable mutants, e.g. slowpoke (slo. In slo larvae, the lack of BK channel function is partially ameliorated by upregulation of presynaptic Sh IA current to limit excessive transmitter release in addition to postsynaptic glutamate receptor recomposition that reduces the quantal size.

  5. Dynamic learning and memory, synaptic plasticity and neurogenesis: An update

    Directory of Open Access Journals (Sweden)

    Ales eStuchlik

    2014-04-01

    Full Text Available Mammalian memory is the result of the interaction of millions of neurons in the brain and their coordinated activity. Candidate mechanisms for memory are synaptic plasticity changes, such as long-term potentiation (LTP. LTP is essentially an electrophysiological phenomenon manifested in hours-lasting increase on postsynaptic potentials after synapse tetanization. It is thought to ensure long-term changes in synaptic efficacy in distributed networks, leading to persistent changes in the behavioral patterns, actions and choices, which are often interpreted as the retention of information, i.e., memory. Interestingly, new neurons are born in the mammalian brain and adult hippocampal neurogenesis is proposed to provide a substrate for dynamic and flexible aspects of behavior such as pattern separation, prevention of interference, flexibility of behavior and memory resolution. This work provides a brief review on the memory and involvement of LTP and adult neurogenesis in memory phenomena.

  6. Differential contributions of microglial and neuronal IKKβ to synaptic plasticity and associative learning in alert behaving mice.

    Science.gov (United States)

    Kyrargyri, Vasiliki; Vega-Flores, Germán; Gruart, Agnès; Delgado-García, José M; Probert, Lesley

    2015-04-01

    Microglia are CNS resident immune cells and a rich source of neuroactive mediators, but their contribution to physiological brain processes such as synaptic plasticity, learning, and memory is not fully understood. In this study, we used mice with partial depletion of IκB kinase β, the main activating kinase in the inducible NF-κB pathway, selectively in myeloid lineage cells (mIKKβKO) or excitatory neurons (nIKKβKO) to measure synaptic strength at hippocampal Schaffer collaterals during long-term potentiation (LTP) and instrumental conditioning in alert behaving individuals. Resting microglial cells in mIKKβKO mice showed less Iba1-immunoreactivity, and brain IL-1β mRNA levels were selectively reduced compared with controls. Measurement of field excitatory postsynaptic potentials (fEPSPs) evoked by stimulation of the CA3-CA1 synapse in mIKKβKO mice showed higher facilitation in response to paired pulses and enhanced LTP following high frequency stimulation. In contrast, nIKKβKO mice showed normal basic synaptic transmission and LTP induction but impairments in late LTP. To understand the consequences of such impairments in synaptic plasticity for learning and memory, we measured CA1 fEPSPs in behaving mice during instrumental conditioning. IKKβ was not necessary in either microglia or neurons for mice to learn lever-pressing (appetitive behavior) to obtain food (consummatory behavior) but was required in both for modification of their hippocampus-dependent appetitive, not consummatory behavior. Our results show that microglia, through IKKβ and therefore NF-κB activity, regulate hippocampal synaptic plasticity and that both microglia and neurons, through IKKβ, are necessary for animals to modify hippocampus-driven behavior during associative learning. © 2014 Wiley Periodicals, Inc.

  7. Ligands targeting the excitatory amino acid transporters (EAATs).

    Science.gov (United States)

    Dunlop, John; Butera, John A

    2006-01-01

    This review provides an overview of ligands for the excitatory amino acid transporters (EAATs), a family of high-affinity glutamate transporters localized to the plasma membrane of neurons and astroglial cells. Ligand development from the perspective of identifying novel and more selective tools for elucidating transporter subtype function, and the potential of transporter ligands in a therapeutic setting are discussed. Acute pharmacological modulation of EAAT activity in the form of linear and conformationally restricted glutamate and aspartate analogs is presented, in addition to recent strategies aimed more toward modulating transporter expression levels, the latter of particular significance to the development of transporter based therapeutics.

  8. A Role for Excitatory Amino Acids in Diabetic Eye Disease

    Science.gov (United States)

    Pulido, Jose E.; Pulido, Jose S.; Erie, Jay C.; Arroyo, Jorge; Bertram, Kurt; Lu, Miao-Jen; Shippy, Scott A.

    2007-01-01

    Diabetic retinopathy is a leading cause of vision loss. The primary clinical hallmarks are vascular changes that appear to contribute to the loss of sight. In a number of neurodegenerative disorders there is an appreciation that increased levels of excitatory amino acids are excitotoxic. The primary amino acid responsible appears to be the neurotransmitter glutamate. This review examines the nature of glutamatergic signaling at the retina and the growing evidence from clinical and animal model studies that glutamate may be playing similar excitotoxic roles at the diabetic retina. PMID:17713594

  9. A Role for Excitatory Amino Acids in Diabetic Eye Disease

    Directory of Open Access Journals (Sweden)

    Jose E. Pulido

    2007-01-01

    Full Text Available Diabetic retinopathy is a leading cause of vision loss. The primary clinical hallmarks are vascular changes that appear to contribute to the loss of sight. In a number of neurodegenerative disorders there is an appreciation that increased levels of excitatory amino acids are excitotoxic. The primary amino acid responsible appears to be the neurotransmitter glutamate. This review examines the nature of glutamatergic signaling at the retina and the growing evidence from clinical and animal model studies that glutamate may be playing similar excitotoxic roles at the diabetic retina.

  10. Fission and uncoating of synaptic clathrin-coated vesicles are perturbed by disruption of interactions with the SH3 domain of endophilin

    DEFF Research Database (Denmark)

    Gad, H; Ringstad, N; Löw, P

    2000-01-01

    Coordination between sequential steps in synaptic vesicle endocytosis, including clathrin coat formation, fission, and uncoating, appears to involve proteinprotein interactions. Here, we show that compounds that disrupt interactions of the SH3 domain of endophilin with dynamin and synaptojanin...

  11. NMDA currents modulate the synaptic input-output functions of neurons in the dorsal nucleus of the lateral lemniscus in Mongolian gerbils.

    Science.gov (United States)

    Porres, Christian P; Meyer, Elisabeth M M; Grothe, Benedikt; Felmy, Felix

    2011-03-23

    Neurons in the dorsal nucleus of the lateral lemniscus (DNLL) receive excitatory and inhibitory inputs from the superior olivary complex (SOC) and convey GABAergic inhibition to the contralateral DNLL and the inferior colliculi. Unlike the fast glycinergic inhibition in the SOC, this GABAergic inhibition outlasts auditory stimulation by tens of milliseconds. Two mechanisms have been postulated to explain this persistent inhibition. One, an "integration-based" mechanism, suggests that postsynaptic excitatory integration in DNLL neurons generates prolonged activity, and the other favors the synaptic time course of the DNLL output itself. The feasibility of the integration-based mechanism was tested in vitro in DNLL neurons of Mongolian gerbils by quantifying the cellular excitability and synaptic input-output functions (IO-Fs). All neurons were sustained firing and generated a near monotonic IO-F on current injections. From synaptic stimulations, we estimate that activation of approximately five fibers, each on average liberating ∼18 vesicles, is sufficient to trigger a single postsynaptic action potential. A strong single pulse of afferent fiber stimulation triggered multiple postsynaptic action potentials. The steepness of the synaptic IO-F was dependent on the synaptic NMDA component. The synaptic NMDA receptor current defines the slope of the synaptic IO-F by enhancing the temporal and spatial EPSP summation. Blocking this NMDA-dependent amplification during postsynaptic integration of train stimulations resulted into a ∼20% reduction of the decay time course of the GABAergic inhibition. Thus, our data show that the NMDA-dependent amplification of the postsynaptic activity contributes to the GABAergic persistent inhibition generated by DNLL neurons.

  12. PKMzeta inhibition reverses learning-induced increases in hippocampal synaptic strength and memory during trace eyeblink conditioning.

    Directory of Open Access Journals (Sweden)

    Noelia Madroñal

    Full Text Available A leading candidate in the process of memory formation is hippocampal long-term potentiation (LTP, a persistent enhancement in synaptic strength evoked by the repetitive activation of excitatory synapses, either by experimental high-frequency stimulation (HFS or, as recently shown, during actual learning. But are the molecular mechanisms for maintaining synaptic potentiation induced by HFS and by experience the same? Protein kinase Mzeta (PKMzeta, an autonomously active atypical protein kinase C isoform, plays a key role in the maintenance of LTP induced by tetanic stimulation and the storage of long-term memory. To test whether the persistent action of PKMzeta is necessary for the maintenance of synaptic potentiation induced after learning, the effects of ZIP (zeta inhibitory peptide, a PKMzeta inhibitor, on eyeblink-conditioned mice were studied. PKMzeta inhibition in the hippocampus disrupted both the correct retrieval of conditioned responses (CRs and the experience-dependent persistent increase in synaptic strength observed at CA3-CA1 synapses. In addition, the effects of ZIP on the same associative test were examined when tetanic LTP was induced at the hippocampal CA3-CA1 synapse before conditioning. In this case, PKMzeta inhibition both reversed tetanic LTP and prevented the expected LTP-mediated deleterious effects on eyeblink conditioning. Thus, PKMzeta inhibition in the CA1 area is able to reverse both the expression of trace eyeblink conditioned memories and the underlying changes in CA3-CA1 synaptic strength, as well as the anterograde effects of LTP on associative learning.

  13. Poisson Coordinates.

    Science.gov (United States)

    Li, Xian-Ying; Hu, Shi-Min

    2013-02-01

    Harmonic functions are the critical points of a Dirichlet energy functional, the linear projections of conformal maps. They play an important role in computer graphics, particularly for gradient-domain image processing and shape-preserving geometric computation. We propose Poisson coordinates, a novel transfinite interpolation scheme based on the Poisson integral formula, as a rapid way to estimate a harmonic function on a certain domain with desired boundary values. Poisson coordinates are an extension of the Mean Value coordinates (MVCs) which inherit their linear precision, smoothness, and kernel positivity. We give explicit formulas for Poisson coordinates in both continuous and 2D discrete forms. Superior to MVCs, Poisson coordinates are proved to be pseudoharmonic (i.e., they reproduce harmonic functions on n-dimensional balls). Our experimental results show that Poisson coordinates have lower Dirichlet energies than MVCs on a number of typical 2D domains (particularly convex domains). As well as presenting a formula, our approach provides useful insights for further studies on coordinates-based interpolation and fast estimation of harmonic functions.

  14. Synaptic dynamics and decision making

    Science.gov (United States)

    Deco, Gustavo; Rolls, Edmund T.; Romo, Ranulfo

    2010-01-01

    During decision making between sequential stimuli, the first stimulus must be held in memory and then compared with the second. Here, we show that in systems that encode the stimuli by their firing rate, neurons can use synaptic facilitation not only to remember the first stimulus during the delay but during the presentation of the second stimulus so that they respond to a combination of the first and second stimuli, as has been found for “partial differential” neurons recorded in the ventral premotor cortex during vibrotactile flutter frequency decision making. Moreover, we show that such partial differential neurons provide important input to a subsequent attractor decision-making network that can then compare this combination of the first and second stimuli with inputs from other neurons that respond only to the second stimulus. Thus, both synaptic facilitation and neuronal attractor dynamics can account for sequential decision making in such systems in the brain. PMID:20360555

  15. Axonal dynamics of excitatory and inhibitory neurons in somatosensory cortex.

    Directory of Open Access Journals (Sweden)

    Sally A Marik

    Full Text Available Cortical topography can be remapped as a consequence of sensory deprivation, suggesting that cortical circuits are continually modified by experience. To see the effect of altered sensory experience on specific components of cortical circuits, we imaged neurons, labeled with a genetically modified adeno-associated virus, in the intact mouse somatosensory cortex before and after whisker plucking. Following whisker plucking we observed massive and rapid reorganization of the axons of both excitatory and inhibitory neurons, accompanied by a transient increase in bouton density. For horizontally projecting axons of excitatory neurons there was a net increase in axonal projections from the non-deprived whisker barrel columns into the deprived barrel columns. The axon collaterals of inhibitory neurons located in the deprived whisker barrel columns retracted in the vicinity of their somata and sprouted long-range projections beyond their normal reach towards the non-deprived whisker barrel columns. These results suggest that alterations in the balance of excitation and inhibition in deprived and non-deprived barrel columns underlie the topographic remapping associated with sensory deprivation.

  16. Activity-dependent endogenous taurine release facilitates excitatory neurotransmission in the neocortical marginal zone of neonatal rats.

    Science.gov (United States)

    Qian, Taizhe; Chen, Rongqing; Nakamura, Masato; Furukawa, Tomonori; Kumada, Tatsuro; Akita, Tenpei; Kilb, Werner; Luhmann, Heiko J; Nakahara, Daiichiro; Fukuda, Atsuo

    2014-01-01

    In the developing cerebral cortex, the marginal zone (MZ), consisting of early-generated neurons such as Cajal-Retzius cells, plays an important role in cell migration and lamination. There is accumulating evidence of widespread excitatory neurotransmission mediated by γ-aminobutyric acid (GABA) in the MZ. Cajal-Retzius cells express not only GABAA receptors but also α2/β subunits of glycine receptors, and exhibit glycine receptor-mediated depolarization due to high [Cl(-)]i. However, the physiological roles of glycine receptors and their endogenous agonists during neurotransmission in the MZ are yet to be elucidated. To address this question, we performed optical imaging from the MZ using the voltage-sensitive dye JPW1114 on tangential neocortical slices of neonatal rats. A single electrical stimulus evoked an action-potential-dependent optical signal that spread radially over the MZ. The amplitude of the signal was not affected by glutamate receptor blockers, but was suppressed by either GABAA or glycine receptor antagonists. Combined application of both antagonists nearly abolished the signal. Inhibition of Na(+), K(+)-2Cl(-) cotransporter by 20 µM bumetanide reduced the signal, indicating that this transporter contributes to excitation. Analysis of the interstitial fluid obtained by microdialysis from tangential neocortical slices with high-performance liquid chromatography revealed that GABA and taurine, but not glycine or glutamate, were released in the MZ in response to the electrical stimulation. The ambient release of taurine was reduced by the addition of a voltage-sensitive Na(+) channel blocker. Immunohistochemistry and immunoelectron microscopy indicated that taurine was stored both in Cajal-Retzius and non-Cajal-Retzius cells in the MZ, but was not localized in presynaptic structures. Our results suggest that activity-dependent non-synaptic release of endogenous taurine facilitates excitatory neurotransmission through activation of glycine

  17. Pharmacology of morphine and morphine-3-glucuronide at opioid, excitatory amino acid, GABA and glycine binding sites

    Energy Technology Data Exchange (ETDEWEB)

    Bartlett, S.E.; Smith, M.T. (Department of Pharmacy, The University of Queensland (Australia)); Dood, P.R. (Clinical Research Centre, Royal Brisbane Hospital Foundation, Brisbane (Australia))

    1994-07-01

    Morphine in high doses and its major metabolite, morphine-3-glucuronide, cause CNS excitation following intrathecal and intracerebroventricular administration by an unknown mechanism. This study investigated whether morphine and morphine-3-glucuronide interact at major excitatory (glutamate), major inhibitory (GABA or glycine), or opioid binding sites. Homogenate binding assays were performed using specific radioligands. At opioid receptors, morphine-3-glucuronide and morphine caused an equipotent sodium shift, consistent with morphine-3-glucuronide behaving as an agonist. This suggests that morphine-3-glucuronide-mediated excitation is not caused by an interaction at opioid receptors. Morphine-3-glucuronide and morphine caused a weak inhibition of the binding of [sup 3]H-MK801 (non-competitive antagonist) and [sup 125]I-ifenprodil (polyamine site antagonist), but at unphysiologically high concentrations. This suggests that CNS excitation would not result from an interaction of morphine-3-glucuronide and high-dose morphine with these sites on the NMDA receptor. Morphine-3-glucuronide and morphine inhibited the binding of [sup 3]H-muscimol (GABA receptor agonist), [sup 3]H-diazepam and [sup 3]H-flunitraxepam (benzodiazepine agonists) binding very weakly, suggesting the excitatory effects of morphine-3-glucuronide and high-dose morphine are not elicited through GABA[sub A] receptors. Morphine-3-glucuronide and high-dose morphine did not prevent re-uptake of glutamate into presynaptic nerve terminals. In addition, morphine-3-glucuronide and morphine did not inhibit the binding of [sup 3]H-strychnine (glycine receptor antagonist) to synaptic membranes prepared from bovine spinal cord. It is concluded that excitation caused by high-dose morphine and morphine-3-glucuronide is not mediated by an interaction with postsynaptic amino acid receptors. (au) (30 refs.).

  18. NAD+ Attenuates Bilirubin-Induced Hyperexcitation in the Ventral Cochlear Nucleus by Inhibiting Excitatory Neurotransmission and Neuronal Excitability

    Science.gov (United States)

    Liang, Min; Yin, Xin-Lu; Wang, Lu-Yang; Yin, Wei-Hai; Song, Ning-Ying; Shi, Hai-Bo; Li, Chun-Yan; Yin, Shan-Kai

    2017-01-01

    Nicotinamide adenine dinucleotide (NAD+) is an important molecule with extensive biological functions in various cellular processes, including protection against cell injuries. However, little is known regarding the roles of NAD+ in neuronal excitation and excitotoxicity associated with many neurodegenerative disorders and diseases. Using patch-clamp recordings, we studied its potential effects on principal neurons in the ventral cochlear nucleus (VCN), which is particularly vulnerable to bilirubin excitotoxicity. We found that NAD+ effectively decreased the size of evoked excitatory postsynaptic currents (eEPSCs), increased paired-pulse ratio (PPR) and reversed the effect of bilirubin on eEPSCs, implicating its inhibitory effects on the presynaptic release probability (Pr). Moreover, NAD+ not only decreased the basal frequency of miniature EPSCs (mEPSCs), but also reversed bilirubin-induced increases in the frequency of mEPSCs without affecting their amplitude under either condition. Furthermore, we found that NAD+ decreased the frequency of spontaneous firing of VCN neurons as well as bilirubin-induced increases in firing frequency. Whole-cell current-clamp recordings showed that NAD+ could directly decrease the intrinsic excitability of VCN neurons in the presence of synaptic blockers, suggesting NAD+ exerts its actions in both presynaptic and postsynaptic loci. Consistent with these observations, we found that the latency of the first postsynaptic spike triggered by high-frequency train stimulation of presynaptic afferents (i.e., the auditory nerve) was prolonged by NAD+. These results collectively indicate that NAD+ suppresses presynaptic transmitter release and postsynaptic excitability, jointly weakening excitatory neurotransmission. Our findings provide a basis for the exploration of NAD+ for the prevention and treatment of bilirubin encephalopathy and excitotoxicity associated with other neurological disorders. PMID:28217084

  19. Comparative ultrastructural features of excitatory synapses in the visual and frontal cortices of the adult mouse and monkey.

    Science.gov (United States)

    Hsu, Alexander; Luebke, Jennifer I; Medalla, Maria

    2017-03-03

    The excitatory glutamatergic synapse is the principal site of communication between cortical pyramidal neurons and their targets, a key locus of action of many drugs, and highly vulnerable to dysfunction and loss in neurodegenerative disease. A detailed knowledge of the structure of these synapses in distinct cortical areas and across species is a prerequisite for understanding the anatomical underpinnings of cortical specialization and, potentially, selective vulnerability in neurological disorders. We used serial electron microscopy to assess the ultrastructural features of excitatory (asymmetric) synapses in the layers 2-3 (L2-3) neuropil of visual (V1) and frontal (FC) cortices of the adult mouse and compared findings to those in the rhesus monkey (V1 and lateral prefrontal cortex [LPFC]). Analyses of multiple ultrastructural variables revealed four organizational features. First, the density of asymmetric synapses does not differ between frontal and visual cortices in either species, but is significantly higher in mouse than in monkey. Second, the structural properties of asymmetric synapses in mouse V1 and FC are nearly identical, by stark contrast to the significant differences seen between monkey V1 and LPFC. Third, while the structural features of postsynaptic entities in mouse and monkey V1 do not differ, the size of presynaptic boutons are significantly larger in monkey V1. Fourth, both presynaptic and postsynaptic entities are significantly smaller in the mouse FC than in the monkey LPFC. The diversity of synaptic ultrastructural features demonstrated here have broad implications for the nature and efficacy of glutamatergic signaling in distinct cortical areas within and across species.

  20. Subregion-specific modulation of excitatory input and dopaminergic output in the striatum by tonically activated glycine and GABAA receptors

    Directory of Open Access Journals (Sweden)

    Louise eAdermark

    2011-10-01

    Full Text Available The flow of cortical information through the basal ganglia is a complex spatiotemporal pattern of increased and decreased firing. The striatum is the biggest input nucleus to the basal ganglia and the aim of this study was to assess the role of inhibitory GABAA and glycine receptors in regulating synaptic activity in the dorsolateral (DLS and ventral striatum (nucleus accumbens, nAc. Local field potential recordings from coronal brain slices of juvenile and adult Wistar rats showed that GABAA receptors and strychnine-sensitive glycine receptors are tonically activated and inhibit excitatory input to the DLS and to the nAc. Strychnine-induced disinhibition of glutamatergic transmission was insensitive to the muscarinic receptor inhibitor scopolamine (10 µM, inhibited by the nicotinic acetylcholine receptor antagonist mecamylamine (10 µM and blocked by GABAA receptor inhibitors, suggesting that tonically activated glycine receptors depress excitatory input to the striatum through modulation of cholinergic and GABAergic neurotransmission. As an end-product example of striatal GABAergic output in vivo we measured dopamine release in the DLS and nAc by microdialysis in the awake and freely moving rat. Reversed dialysis of bicuculline (50 μM in perfusate only increased extrasynaptic dopamine levels in the nAc, while strychnine administered locally (200 μM in perfusate decreased dopamine output by 60% in both the DLS and nAc. Our data suggest that GABAA and glycine receptors are tonically activated and modulate striatal transmission in a partially sub-region specific manner.

  1. Activity-dependent endogenous taurine release facilitates excitatory neurotransmission in the neocortical marginal zone of neonatal rats

    Directory of Open Access Journals (Sweden)

    Taizhe eQian

    2014-02-01

    Full Text Available In the developing cerebral cortex, the marginal zone (MZ, consisting of early-generated neurons such as Cajal-Retzius cells, plays an important role in cell migration and lamination. There is accumulating evidence of widespread excitatory neurotransmission mediated by γ-aminobutyric acid (GABA in the MZ. Cajal-Retzius cells express not only GABAA receptors but also α2/β subunits of glycine receptors, and exhibit glycine receptor-mediated depolarization due to high [Cl−]i. However, the physiological roles of glycine receptors and their endogenous agonists during neurotransmission in the MZ are yet to be elucidated. To address this question, we performed optical imaging from the MZ using the voltage-sensitive dye JPW1114 on tangential neocortical slices of neonatal rats. A single electrical stimulus evoked an action-potential-dependent optical signal that spread radially over the MZ. The amplitude of the signal was not affected by glutamate receptor blockers, but was suppressed by either GABAA or glycine receptor antagonists. Combined application of both antagonists nearly abolished the signal. Inhibition of Na+, K+-2Cl− cotransporter by 20 µM bumetanide reduced the signal, indicating that this transporter contributes to excitation. Analysis of the interstitial fluid obtained by microdialysis from tangential neocortical slices with high-performance liquid chromatography revealed that GABA and taurine, but not glycine or glutamate, were released in the MZ in response to the electrical stimulation. The ambient release of taurine was reduced by the addition of a voltage-sensitive Na+ channel blocker. Immunohistochemistry and immunoelectron microscopy indicated that taurine was stored both in Cajal-Retzius and non-Cajal-Retzius cells in the MZ, but was not localized in presynaptic structures. Our results suggest that activity-dependent non-synaptic release of endogenous taurine facilitates excitatory neurotransmission through activation of

  2. Multireceptor GABAergic regulation of synaptic communication in amphibian retina.

    Science.gov (United States)

    Shen, W; Slaughter, M M

    2001-01-01

    The synaptic output of retinal bipolar cells was monitored by recording light-evoked EPSCs in ganglion cells. Application of (RS)-2-amino-3-(3-hydroxy-5-tert-butyl-4-isoxazolyl (ATPA), a selective agonist at kainate receptors, depolarized amacrine cells and reduced the light-evoked excitatory current (L-EPSC) in ganglion cells. ATPA had only a slight effect on the light responses of bipolar cells. Therefore, ATPA suppresses bipolar cell synaptic output to ganglion cells. ATPA reduced the transient L-EPSC, but had comparatively little effect on sustained L-EPSC, of ganglion cells. The transient ON L-EPSC was more suppressed than the transient OFF L-EPSC. Thus, ATPA preferentially suppressed transient output from bipolar cells.GABA receptor antagonists blocked the effect of ATPA. This indicates that ATPA stimulated an endogenous inhibitory feedback pathway that suppressed bipolar cell output.CGP55845 and CGP35348 reduced the ATPA-induced suppression of L-EPSCs in ganglion cells, signifying that part of the feedback pathway is mediated by metabotropic GABA receptors.(1,2,5,6-Tetrahydropyridine-4-yl)-methylphosphinic acid (TPMPA) and picrotoxin, GABAC receptor antagonists, reduced the ATPA effect. Picrotoxin was more effective than ATPA. However, picrotoxin blocked only a part of this GABAC effect, while imidazole-4-acetic acid (I4AA) blocked another segment of the effect. This indicates that two pharmacologically distinct GABAC receptors mediate feedback to bipolar cells. SR95531 produced a very small suppression of the ATPA effect. Thus, GABAA receptors provide a negligible component to this feedback pathway. The experiments indicate that endogenous GABAergic feedback to bipolar cells suppresses their output, and that this feedback is mediated by at least three types of GABA receptor, both metabotropic and ionotropic.In conjunction with previous studies, the results indicate that feedback inhibition is the predominant factor regulating transient signalling in

  3. Synaptic reorganization in the adult rat's ventral cochlear nucleus following its total sensory deafferentation.

    Directory of Open Access Journals (Sweden)

    Heika Hildebrandt

    Full Text Available Ablation of a cochlea causes total sensory deafferentation of the cochlear nucleus in the brainstem, providing a model to investigate nervous degeneration and formation of new synaptic contacts in the adult brain. In a quantitative electron microscopical study on the plasticity of the central auditory system of the Wistar rat, we first determined what fraction of the total number of synaptic contact zones (SCZs in the anteroventral cochlear nucleus (AVCN is attributable to primary sensory innervation and how many synapses remain after total unilateral cochlear ablation. Second, we attempted to identify the potential for a deafferentation-dependent synaptogenesis. SCZs were ultrastructurally identified before and after deafferentation in tissue treated for ethanolic phosphotungstic acid (EPTA staining. This was combined with pre-embedding immunocytochemistry for gephyrin identifying inhibitory SCZs, the growth-associated protein GAP-43, glutamate, and choline acetyltransferase. A stereological analysis of EPTA stained sections revealed 1.11±0.09 (S.E.M.×10(9 SCZs per mm(3 of AVCN tissue. Within 7 days of deafferentation, this number was down by 46%. Excitatory and inhibitory synapses were differentially affected on the side of deafferentation. Excitatory synapses were quickly reduced and then began to increase in number again, necessarily being complemented from sources other than cochlear neurons, while inhibitory synapses were reduced more slowly and continuously. The result was a transient rise of the relative fraction of inhibitory synapses with a decline below original levels thereafter. Synaptogenesis was inferred by the emergence of morphologically immature SCZs that were consistently associated with GAP-43 immunoreactivity. SCZs of this type were estimated to make up a fraction of close to 30% of the total synaptic population present by ten weeks after sensory deafferentation. In conclusion, there appears to be a substantial potential

  4. Multiscale modeling and synaptic plasticity.

    Science.gov (United States)

    Bhalla, Upinder S

    2014-01-01

    Synaptic plasticity is a major convergence point for theory and computation, and the process of plasticity engages physiology, cell, and molecular biology. In its many manifestations, plasticity is at the hub of basic neuroscience questions about memory and development, as well as more medically themed questions of neural damage and recovery. As an important cellular locus of memory, synaptic plasticity has received a huge amount of experimental and theoretical attention. If computational models have tended to pick specific aspects of plasticity, such as STDP, and reduce them to an equation, some experimental studies are equally guilty of oversimplification each time they identify a new molecule and declare it to be the last word in plasticity and learning. Multiscale modeling begins with the acknowledgment that synaptic function spans many levels of signaling, and these are so tightly coupled that we risk losing essential features of plasticity if we focus exclusively on any one level. Despite the technical challenges and gaps in data for model specification, an increasing number of multiscale modeling studies have taken on key questions in plasticity. These have provided new insights, but importantly, they have opened new avenues for questioning. This review discusses a wide range of multiscale models in plasticity, including their technical landscape and their implications.

  5. Effects of chronic stress in adolescence on learned fear, anxiety, and synaptic transmission in the rat prelimbic cortex.

    Science.gov (United States)

    Negrón-Oyarzo, Ignacio; Pérez, Miguel Ángel; Terreros, Gonzalo; Muñoz, Pablo; Dagnino-Subiabre, Alexies

    2014-02-01

    The prelimbic cortex and amygdala regulate the extinction of conditioned fear and anxiety, respectively. In adult rats, chronic stress affects the dendritic morphology of these brain areas, slowing extinction of learned fear and enhancing anxiety. The aim of this study was to determine whether rats subjected to chronic stress in adolescence show changes in learned fear, anxiety, and synaptic transmission in the prelimbic cortex during adulthood. Male Sprague Dawley rats were subjected to seven days of restraint stress on postnatal day forty-two (PND 42, adolescence). Afterward, the fear-conditioning paradigm was used to study conditioned fear extinction. Anxiety-like behavior was measured one day (PND 50) and twenty-one days (PND 70, adulthood) after stress using the elevated-plus maze and dark-light box tests, respectively. With another set of rats, excitatory synaptic transmission was analyzed with slices of the prelimbic cortex. Rats that had been stressed during adolescence and adulthood had higher anxiety-like behavior levels than did controls, while stress-induced slowing of learned fear extinction in adolescence was reversed during adulthood. As well, the field excitatory postsynaptic potentials of stressed adolescent rats had significantly lower amplitudes than those of controls, although the amplitudes were higher in adulthood. Our results demonstrate that short-term stress in adolescence induces strong effects on excitatory synaptic transmission in the prelimbic cortex and extinction of learned fear, where the effect of stress on anxiety is more persistent than on the extinction of learned fear. These data contribute to the understanding of stress neurobiology.

  6. Synaptic organizations and dynamical properties of weakly connected neural oscillators. I. Analysis of a canonical model.

    Science.gov (United States)

    Hoppensteadt, F C; Izhikevich, E M

    1996-08-01

    We study weakly connected networks of neural oscillators near multiple Andronov-Hopf bifurcation points. We analyze relationships between synaptic organizations (anatomy) of the networks and their dynamical properties (function). Our principal assumptions are: (1) Each neural oscillator comprises two populations of neurons; excitatory and inhibitory ones; (2) activity of each population of neurons is described by a scalar (one-dimensional) variable; (3) each neural oscillator is near a nondegenerate supercritical Andronov-Hopf bifurcation point; (4) the synaptic connections between the neural oscillators are weak. All neural networks satisfying these hypotheses are governed by the same dynamical system, which we call the canonical model. Studying the canonical model shows that: (1) A neural oscillator can communicate only with those oscillators which have roughly the same natural frequency. That is, synaptic connections between a pair of oscillators having different natural frequencies are functionally insignificant. (2) Two neural oscillators having the same natural frequencies might not communicate if the connections between them are from among a class of pathological synaptic configurations. In both cases the anatomical presence of synaptic connections between neural oscillators does not necessarily guarantee that the connections are functionally significant. (3) There can be substantial phase differences (time delays) between the neural oscillators, which result from the synaptic organization of the network, not from the transmission delays. Using the canonical model we can illustrate self-ignition and autonomous quiescence (oscillator death) phenomena. That is, a network of passive elements can exhibit active properties and vice versa. We also study how Dale's principle affects dynamics of the networks, in particular, the phase differences that the network can reproduce. We present a complete classification of all possible synaptic organizations from this

  7. Effect of VGLUT inhibitors on glutamatergic synaptic transmission in the rodent hippocampus and prefrontal cortex.

    Science.gov (United States)

    Neale, S A; Copeland, C S; Salt, T E

    2014-07-01

    Vesicular glutamate transporters (VGLUTs) are known to be important in the uptake of glutamate into vesicles in the presynaptic terminal; thereby playing a role in synaptic function. VGLUT dysfunction has also been suggested in neurological and psychiatric disorders such as epilepsy and schizophrenia. A number of compounds have been identified as VGLUT inhibitors; however, little is known as to how these compounds affect synaptic transmission. We therefore investigated the effects of structurally unrelated VGLUT inhibitors on synaptic transmission in the rodent hippocampus and prefrontal cortex. In the CA1 and dentate gyrus regions of the in vitro slice preparation of mouse hippocampus, AMPA receptor-mediated field excitatory postsynaptic potentials (fEPSPs) were evoked in response to Schaffer collateral/commissural pathway stimulation. Application of the VGLUT inhibitors Rose Bengal (RB), Congo Red (CR) or Chicago Sky Blue 6B (CB) resulted in a concentration-related reduction of fEPSP amplitudes. RB (30μM) or CB (300μM) also depressed NMDA receptor-mediated responses in the CA1 region. The naturally occurring kynurenine Xanthurenic Acid (XA) is reported to be a VGLUT inhibitor. We found XA attenuated both AMPA and NMDA receptor-mediated synaptic transmission. The potency order of the VGLUT inhibitors was consistent with literature Ki values for VGLUT inhibition. Impaired glutamatergic neurotransmission is believed to contribute to schizophrenia, and VGLUTs have also been implicated in this disease. We therefore investigated the effect of VGLUT inhibition in the prefrontal cortex. Application of the VGLUT inhibitors RB or CB resulted in a concentration-dependent reduction in the amplitude of glutamate receptor-mediated fEPSPs recorded in layer V/VI in response to stimulation in the forceps minor. We conclude that VGLUT inhibitors can modulate glutamatergic synaptic transmission in the PFC and hippocampus. This could be important in the pathophysiology of nervous

  8. Molecular underpinnings of synaptic vesicle pool heterogeneity.

    Science.gov (United States)

    Crawford, Devon C; Kavalali, Ege T

    2015-04-01

    Neuronal communication relies on chemical synaptic transmission for information transfer and processing. Chemical neurotransmission is initiated by synaptic vesicle fusion with the presynaptic active zone resulting in release of neurotransmitters. Classical models have assumed that all synaptic vesicles within a synapse have the same potential to fuse under different functional contexts. In this model, functional differences among synaptic vesicle populations are ascribed to their spatial distribution in the synapse with respect to the active zone. Emerging evidence suggests, however, that synaptic vesicles are not a homogenous population of organelles, and they possess intrinsic molecular differences and differential interaction partners. Recent studies have reported a diverse array of synaptic molecules that selectively regulate synaptic vesicles' ability to fuse synchronously and asynchronously in response to action potentials or spontaneously irrespective of action potentials. Here we discuss these molecular mediators of vesicle pool heterogeneity that are found on the synaptic vesicle membrane, on the presynaptic plasma membrane, or within the cytosol and consider some of the functional consequences of this diversity. This emerging molecular framework presents novel avenues to probe synaptic function and uncover how synaptic vesicle pools impact neuronal signaling.

  9. The GABA excitatory/inhibitory developmental sequence: a personal journey.

    Science.gov (United States)

    Ben-Ari, Y

    2014-10-24

    The developing brain is talkative but its language is not that of the adult. Most if not all voltage and transmitter-gated ionic currents follow a developmental sequence and network-driven patterns differ in immature and adult brains. This is best illustrated in studies engaged almost three decades ago in which we observed elevated intracellular chloride (Cl(-))i levels and excitatory GABA early during development and a perinatal excitatory/inhibitory shift. This sequence is observed in a wide range of brain structures and animal species suggesting that it has been conserved throughout evolution. It is mediated primarily by a developmentally regulated expression of the NKCC1 and KCC2 chloride importer and exporter respectively. The GABAergic depolarization acts in synergy with N-methyl-d-aspartate (NMDA) receptor-mediated and voltage-gated calcium currents to enhance intracellular calcium exerting trophic effects on neuritic growth, migration and synapse formation. These sequences can be deviated in utero by genetic or environmental insults leading to a persistence of immature features in the adult brain. This "neuroarcheology" concept paves the way to novel therapeutic perspectives based on the use of drugs that block immature but not adult currents. This is illustrated notably with the return to immature high levels of chloride and excitatory actions of GABA observed in many pathological conditions. This is due to the fact that in the immature brain a down regulation of KCC2 and an up regulation of NKCC1 are seen. Here, I present a personal history of how an unexpected observation led to novel concepts in developmental neurobiology and putative treatments of autism and other developmental disorders. Being a personal account, this review is neither exhaustive nor provides an update of this topic with all the studies that have contributed to this evolution. We all rely on previous inventors to allow science to advance. Here, I present a personal summary of this

  10. Glutamate Receptor Modulation Is Restricted to Synaptic Microdomains

    Directory of Open Access Journals (Sweden)

    Gyorgy Lur

    2015-07-01

    Full Text Available A diverse array of neuromodulators governs cellular function in the prefrontal cortex (PFC via the activation of G-protein-coupled receptors (GPCRs. However, these functionally diverse signals are carried and amplified by a relatively small assortment of intracellular second messengers. Here, we examine whether two distinct Gαi-coupled neuromodulators (norepinephrine and GABA act as redundant regulators of glutamatergic synaptic transmission. Our results reveal that, within single dendritic spines of layer 5 pyramidal neurons, alpha-2 adrenergic receptors (α2Rs selectively inhibit excitatory transmission mediated by AMPA-type glutamate receptors, while type B GABA receptors (GABABRs inhibit NMDA-type receptors. We show that both modulators act via the downregulation of cAMP and PKA. However, by restricting the lifetime of active Gαi, RGS4 promotes the independent control of these two distinct target proteins. Our findings highlight a mechanism by which neuromodulatory microdomains can be established in subcellular compartments such as dendritic spines.

  11. Distinct Functions of Endophilin Isoforms in Synaptic Vesicle Endocytosis

    Directory of Open Access Journals (Sweden)

    Jifeng Zhang

    2015-01-01

    Full Text Available Endophilin isoforms perform distinct characteristics in their interactions with N-type Ca2+ channels and dynamin. However, precise functional differences for the endophilin isoforms on synaptic vesicle (SV endocytosis remain unknown. By coupling RNA interference and electrophysiological recording techniques in cultured rat hippocampal neurons, we investigated the functional differences of three isoforms of endophilin in SV endocytosis. The results showed that the amplitude of normalized evoked excitatory postsynaptic currents in endophilin1 knockdown neurons decreased significantly for both single train and multiple train stimulations. Similar results were found using endophilin2 knockdown neurons, whereas endophilin3 siRNA exhibited no change compared with control neurons. Endophilin1 and endophilin2 affected SV endocytosis, but the effect of endophilin1 and endophilin2 double knockdown was not different from that of either knockdown alone. This result suggested that endophilin1 and endophilin2 functioned together but not independently during SV endocytosis. Taken together, our results indicate that SV endocytosis is sustained by endophilin1 and endophilin2 isoforms, but not by endophilin3, in primary cultured hippocampal neurons.

  12. Upregulation of excitatory neurons and downregulation of inhibitory neurons in barrel cortex are associated with loss of whisker inputs

    Directory of Open Access Journals (Sweden)

    Zhang Guanjun

    2013-01-01

    Full Text Available Abstract Loss of a sensory input causes the hypersensitivity in other modalities. In addition to cross-modal plasticity, the sensory cortices without receiving inputs undergo the plastic changes. It is not clear how the different types of neurons and synapses in the sensory cortex coordinately change after input deficits in order to prevent loss of their functions and to be used for other modalities. We studied this subject in the barrel cortices from whiskers-trimmed mice vs. controls. After whisker trimming for a week, the intrinsic properties of pyramidal neurons and the transmission of excitatory synapses were upregulated in the barrel cortex, but inhibitory neurons and GABAergic synapses were downregulated. The morphological analyses indicated that the number of processes and spines in pyramidal neurons increased, whereas the processes of GABAergic neurons decreased in the barrel cortex. The upregulation of excitatory neurons and the downregulation of inhibitory neurons boost the activity of network neurons in the barrel cortex to be high levels, which prevent the loss of their functions and enhances their sensitivity to sensory inputs. These changes may prepare for attracting the innervations from sensory cortices and/or peripheral nerves for other modalities during cross-modal plasticity.

  13. The effects of realistic synaptic distribution and 3D geometry on signal integration and extracellular field generation of hippocampal pyramidal cells and inhibitory neurons

    Directory of Open Access Journals (Sweden)

    Attila I Gulyas

    2016-11-01

    Full Text Available In vivo and in vitro multichannel field and somatic intracellular recordings are frequently used to study mechanisms of network pattern generation. When interpreting these data, neurons are often implicitly considered as electrotonically compact cylinders with a homogeneous distribution of excitatory and inhibitory inputs. However, the actual distributions of dendritic length, diameter, and the densities of excitatory and inhibitory input are non-uniform and cell type-specific. We first review quantitative data on the dendritic structure and synaptic input and output distribution of pyramidal cells and interneurons in the hippocampal CA1 area. Second, using multicompartmental passive models of four different types of neurons, we quantitatively explore the effect of differences in dendritic structure and synaptic distribution on the errors and biases of voltage clamp measurements of inhibitory and excitatory postsynaptic currents. Finally, using the 3-dimensional distribution of dendrites and synaptic inputs we calculate how different inhibitory and excitatory inputs contribute to the generation of local field potential in the hippocampus. We analyze these effects at different realistic background activity levels as synaptic bombardment influences neuronal conductance and thus the propagation of signals in the dendritic tree.We conclude that, since dendrites are electrotonically long and entangled in 3D, somatic intracellular and field potential recordings miss the majority of dendritic events in some cell types, and thus overemphasize the importance of perisomatic inhibitory inputs and belittle the importance of complex dendritic processing. Modeling results also suggest that pyramidal cells and inhibitory neurons probably use different input integration strategies. In pyramidal cells, second- and higher-order thin dendrites are relatively well-isolated from each other, which may support branch-specific local processing as suggested by studies

  14. Dysfunctional astrocytic and synaptic regulation of hypothalamic glutamatergic transmission in a mouse model of early-life adversity: relevance to neurosteroids and programming of the stress response.

    Science.gov (United States)

    Gunn, Benjamin G; Cunningham, Linda; Cooper, Michelle A; Corteen, Nicole L; Seifi, Mohsen; Swinny, Jerome D; Lambert, Jeremy J; Belelli, Delia

    2013-12-11

    Adverse early-life experiences, such as poor maternal care, program an abnormal stress response that may involve an altered balance between excitatory and inhibitory signals. Here, we explored how early-life stress (ELS) affects excitatory and inhibitory transmission in corticotrophin-releasing factor (CRF)-expressing dorsal-medial (mpd) neurons of the neonatal mouse hypothalamus. We report that ELS associates with enhanced excitatory glutamatergic transmission that is manifested as an increased frequency of synaptic events and increased extrasynaptic conductance, with the latter associated with dysfunctional astrocytic regulation of glutamate levels. The neurosteroid 5α-pregnan-3α-ol-20-one (5α3α-THPROG) is an endogenous, positive modulator of GABAA receptors (GABAARs) that is abundant during brain development and rises rapidly during acute stress, thereby enhancing inhibition to curtail stress-induced activation of the hypothalamic-pituitary-adrenocortical axis. In control mpd neurons, 5α3α-THPROG potently suppressed neuronal discharge, but this action was greatly compromised by prior ELS exposure. This neurosteroid insensitivity did not primarily result from perturbations of GABAergic inhibition, but rather arose functionally from the increased excitatory drive onto mpd neurons. Previous reports indicated that mice (dams) lacking the GABAAR δ subunit (δ(0/0)) exhibit altered maternal behavior. Intriguingly, δ(0/0) offspring showed some hallmarks of abnormal maternal care that were further exacerbated by ELS. Moreover, in common with ELS, mpd neurons of δ(0/0) pups exhibited increased synaptic and extrasynaptic glutamatergic transmission and consequently a blunted neurosteroid suppression of neuronal firing. This study reveals that increased synaptic and tonic glutamatergic transmission may be a common maladaptation to ELS, leading to enhanced excitation of CRF-releasing neurons, and identifies neurosteroids as putative early regulators of the stress

  15. Dendritic attenuation of synaptic potentials and currents: the role of passive membrane properties.

    Science.gov (United States)

    Spruston, N; Jaffe, D B; Johnston, D

    1994-04-01

    The dendritic trees of neurons are structurally and functionally complex integrative units receiving thousands of synaptic inputs that have excitatory and inhibitory, fast and slow, and electrical and biochemical effects. The pattern of activation of these synaptic inputs determines if the neuron will fire an action potential at any given point in time and how it will respond to similar inputs in the future. Two critical factors affect the integrative function of dendrites: the distribution of voltage-gated ion channels in the dendritic tree and the passive electrical properties, or 'electrotonic structure', upon which these active channels are superimposed. The authors review recent data from patch-clamp recordings that provide new estimates of the passive membrane properties of hippocampal neurons, and show, with examples, how these properties affect the shaping and attenuation of synaptic potentials as they propagate in the dendrites, as well as how they affect the measurement of current from synapses located in the dendrites. Voltage-gated channels might influence the measurement of 'passive' membrane properties and, reciprocally, passive membrane properties might affect the activation of voltage-gated channels in dendrites.

  16. Tuning synaptic transmission in the hippocampus by stress: The CRH system

    Directory of Open Access Journals (Sweden)

    Yuncai eChen

    2012-04-01

    Full Text Available To enhance survival, an organism needs to remember--and learn from--threatening or stressful events. This fact necessitates the presence of mechanisms by which stress can influence synaptic transmission in brain regions, such as hippocampus, that subserve learning and memory. A major focus of this series of monographs is on the role and actions of adrenal-derived hormones, corticosteroids, and of brain-derived neurotransmitters, on synaptic function in the stressed hippocampus. Here we focus on the contribution of hippocampus-intrinsic, stress-activated CRH-CRH receptor signaling to the function and structure of hippocampal synapses. CRH is expressed in interneurons of adult hippocampus, and is released from axon terminals during stress. The peptide exerts time- and dose-dependent effects on learning and memory via modulation of synaptic function and plasticity. Whereas physiological levels of CRH, acting over seconds to minutes, augment memory processes, exposure to presumed severe-stress levels of the peptide results in spine retraction and loss of synapses over more protracted time-frames. Loss of dendritic spines (and hence of synapses takes place through actin cytoskeleton collapse downstream of CRHR1 receptors that reside within excitatory synapses on spine heads. Chronic exposure to stress levels of CRH may promote dying-back (atrophy of spine-carrying dendrites. Thus, the acute effects of CRH may contribute to stress-induced adaptive mechanisms, whereas chronic or excessive exposure to the peptide may promote learning problems and premature cognitive decline.

  17. Synaptic Vesicle Recycling Is Unaffected in the Ts65Dn Mouse Model of Down Syndrome.

    Science.gov (United States)

    Marland, Jamie R K; Smillie, Karen J; Cousin, Michael A

    2016-01-01

    Down syndrome (DS) is the most common genetic cause of intellectual disability, and arises from trisomy of human chromosome 21. Accumulating evidence from studies of both DS patient tissue and mouse models has suggested that synaptic dysfunction is a key factor in the disorder. The presence of several genes within the DS trisomy that are either directly or indirectly linked to synaptic vesicle (SV) endocytosis suggested that presynaptic dysfunction could underlie some of these synaptic defects. Therefore we determined whether SV recycling was altered in neurons from the Ts65Dn mouse, the best characterised model of DS to date. We found that SV exocytosis, the size of the SV recycling pool, clathrin-mediated endocytosis, activity-dependent bulk endocytosis and SV generation from bulk endosomes were all unaffected by the presence of the Ts65Dn trisomy. These results were obtained using battery of complementary assays employing genetically-encoded fluorescent reporters of SV cargo trafficking, and fluorescent and morphological assays of fluid-phase uptake in primary neuronal culture. The absence of presynaptic dysfunction in central nerve terminals of the Ts65Dn mouse suggests that future research should focus on the established alterations in excitatory / inhibitory balance as a potential route for future pharmacotherapy.

  18. Synaptic Vesicle Recycling Is Unaffected in the Ts65Dn Mouse Model of Down Syndrome.

    Directory of Open Access Journals (Sweden)

    Jamie R K Marland

    Full Text Available Down syndrome (DS is the most common genetic cause of intellectual disability, and arises from trisomy of human chromosome 21. Accumulating evidence from studies of both DS patient tissue and mouse models has suggested that synaptic dysfunction is a key factor in the disorder. The presence of several genes within the DS trisomy that are either directly or indirectly linked to synaptic vesicle (SV endocytosis suggested that presynaptic dysfunction could underlie some of these synaptic defects. Therefore we determined whether SV recycling was altered in neurons from the Ts65Dn mouse, the best characterised model of DS to date. We found that SV exocytosis, the size of the SV recycling pool, clathrin-mediated endocytosis, activity-dependent bulk endocytosis and SV generation from bulk endosomes were all unaffected by the presence of the Ts65Dn trisomy. These results were obtained using battery of complementary assays employing genetically-encoded fluorescent reporters of SV cargo trafficking, and fluorescent and morphological assays of fluid-phase uptake in primary neuronal culture. The absence of presynaptic dysfunction in central nerve terminals of the Ts65Dn mouse suggests that future research should focus on the established alterations in excitatory / inhibitory balance as a potential route for future pharmacotherapy.

  19. Kalirin-7 is necessary for normal NMDA receptor-dependent synaptic plasticity

    KAUST Repository

    Lemtiri-Chlieh, Fouad

    2011-12-19

    Background: Dendritic spines represent the postsynaptic component of the vast majority of excitatory synapses present in the mammalian forebrain. The ability of spines to rapidly alter their shape, size, number and receptor content in response to stimulation is considered to be of paramount importance during the development of synaptic plasticity. Indeed, long-term potentiation (LTP), widely believed to be a cellular correlate of learning and memory, has been repeatedly shown to induce both spine enlargement and the formation of new dendritic spines. In our studies, we focus on Kalirin-7 (Kal7), a Rho GDP/GTP exchange factor (Rho-GEF) localized to the postsynaptic density that plays a crucial role in the development and maintenance of dendritic spines both in vitro and in vivo. Previous studies have shown that mice lacking Kal7 (Kal7 KO) have decreased dendritic spine density in the hippocampus as well as focal hippocampal-dependent learning impairments.Results: We have performed a detailed electrophysiological characterization of the role of Kal7 in hippocampal synaptic plasticity. We show that loss of Kal7 results in impaired NMDA receptor-dependent LTP and long-term depression, whereas a NMDA receptor-independent form of LTP is shown to be normal in the absence of Kal7.Conclusions: These results indicate that Kal7 is an essential and selective modulator of NMDA receptor-dependent synaptic plasticity in the hippocampus. 2011 Lemtiri-Chlieh et al; licensee BioMed Central Ltd.

  20. Kalirin-7 is necessary for normal NMDA receptor-dependent synaptic plasticity

    Directory of Open Access Journals (Sweden)

    Lemtiri-Chlieh Fouad

    2011-12-01

    Full Text Available Abstract Background Dendritic spines represent the postsynaptic component of the vast majority of excitatory synapses present in the mammalian forebrain. The ability of spines to rapidly alter their shape, size, number and receptor content in response to stimulation is considered to be of paramount importance during the development of synaptic plasticity. Indeed, long-term potentiation (LTP, widely believed to be a cellular correlate of learning and memory, has been repeatedly shown to induce both spine enlargement and the formation of new dendritic spines. In our studies, we focus on Kalirin-7 (Kal7, a Rho GDP/GTP exchange factor (Rho-GEF localized to the postsynaptic density that plays a crucial role in the development and maintenance of dendritic spines both in vitro and in vivo. Previous studies have shown that mice lacking Kal7 (Kal7KO have decreased dendritic spine density in the hippocampus as well as focal hippocampal-dependent learning impairments. Results We have performed a detailed electrophysiological characterization of the role of Kal7 in hippocampal synaptic plasticity. We show that loss of Kal7 results in impaired NMDA receptor-dependent LTP and long-term depression, whereas a NMDA receptor-independent form of LTP is shown to be normal in the absence of Kal7. Conclusions These results indicate that Kal7 is an essential and selective modulator of NMDA receptor-dependent synaptic plasticity in the hippocampus.

  1. TrkB and protein kinase Mζ regulate synaptic localization of PSD-95 in developing cortex.

    Science.gov (United States)

    Yoshii, Akira; Murata, Yasunobu; Kim, Jihye; Zhang, Chao; Shokat, Kevan M; Constantine-Paton, Martha

    2011-08-17

    Postsynaptic density 95 (PSD-95), the major scaffold at excitatory synapses, is critical for synapse maturation and learning. In rodents, eye opening, the onset of pattern vision, triggers a rapid movement of PSD-95 from visual neuron somata to synapses. We showed previously that the PI3 kinase-Akt pathway downstream of BDNF/TrkB signaling stimulates synaptic delivery of PSD-95 via vesicular transport. However, vesicular transport requires PSD-95 palmitoylation to attach it to a lipid membrane. Also, PSD-95 insertion at synapses is known to require this lipid modification. Here, we show that BDNF/TrkB signaling is also necessary for PSD-95 palmitoylation and its transport to synapses in mouse visual cortical layer 2/3 neurons. However, palmitoylation of PSD-95 requires the activation of another pathway downstream of BDNF/TrkB, namely, signaling through phospholipase Cγ and the brain-specific PKC variant protein kinase M ζ (PKMζ). We find that PKMζ selectively regulates phosphorylation of the palmitoylation enzyme ZDHHC8. Inhibition of PKMζ results in a reduction of synaptic PSD-95 accumulation in vivo, which can be rescued by overexpressing ZDHHC8. Therefore, TrkB and PKMζ, two critical regulators of synaptic plasticity, facilitate PSD-95 targeting to synapses. These results also indicate that palmitoylation can be regulated by a trophic factor. Our findings have implications for neurodevelopmental disorders as well as aging brains.

  2. Multiple forms of long-term synaptic plasticity at hippocampal mossy fiber synapses on interneurons.

    Science.gov (United States)

    Galván, Emilio J; Cosgrove, Kathleen E; Barrionuevo, Germán

    2011-04-01

    The hippocampal mossy fiber (MF) pathway originates from the dentate gyrus granule cells and provides a powerful excitatory synaptic drive to neurons in the dentate gyrus hilus and area CA3. Much of the early work on the MF pathway focused on its electrophysiological properties, and ability to drive CA3 pyramidal cell activity. Over the last ten years, however, a new focus on the synaptic interaction between granule cells and inhibitory interneurons has emerged. These data have revealed an immense heterogeneity of long-term plasticity at MF synapses on various interneuron targets. Interestingly, these studies also indicate that the mechanisms of MF long-term plasticity in some interneuron subtypes may be more similar to pyramidal cells than previously appreciated. In this review, we first define the synapse types at each of the interneuron targets based on the receptors present. We then describe the different forms of long-term plasticity observed, and the mechanisms underlying each form as they are currently understood. Finally we highlight various open questions surrounding MF long-term plasticity in interneurons, focusing specifically on the induction and maintenance of LTP, and what the functional impact of persistent changes in efficacy at MF-interneuron synapses might be on the emergent properties of the inhibitory network dynamics in area CA3. This article is part of a Special Issue entitled 'Synaptic Plasticity & Interneurons'.

  3. Homer 1a gates the induction mechanism for endocannabinoid-mediated synaptic plasticity.

    Science.gov (United States)

    Roloff, Alan M; Anderson, Garret R; Martemyanov, Kirill A; Thayer, Stanley A

    2010-02-24

    At hippocampal excitatory synapses, endocannabinoids (eCBs) mediate two forms of retrograde synaptic inhibition that are induced by postsynaptic depolarization or activation of metabotropic glutamate receptors (mGluRs). The homer family of molecular scaffolds provides spatial organization to regulate postsynaptic signaling cascades, including those activated by mGluRs. Expression of the homer 1a (H1a) immediate-early gene produces a short homer protein that lacks the domain required for homer oligomerization, enabling it to uncouple homer assemblies. Here, we report that H1a differentially modulates two forms of eCB-mediated synaptic plasticity, depolarization-induced suppression of excitation (DSE) and metabotropic suppression of excitation (MSE). EPSCs were recorded from cultured hippocampal neurons and DSE evoked by a 15 s depolarization to 0 mV and MSE evoked by a type I mGluR agonist. Expression of H1a enhanced DSE and inhibited MSE at the same synapse. Many physiologically important stimuli initiate H1a expression including brain-derived neurotrophic factor (BDNF). Treating hippocampal cultures with BDNF increased transcription of H1a and uncoupled homer 1c-GFP (green fluorescent protein) clusters. BDNF treatment blocked MSE and enhanced DSE. Thus, physiological changes in H1a expression gate the induction pathway for eCB-mediated synaptic plasticity by uncoupling mGluR from eCB production.

  4. Psychopathology of excitatory and compulsive aspects of vandalistic graffiti.

    Science.gov (United States)

    Pani, Roberto; Sagliaschi, Samanta

    2009-12-01

    In this paper were explored psychological themes underlying vandalistic graffiti by 162 Italian adolescents (154 boys, 8 girls; M age = 17.5 yr., SD = 2.3) who "felt hooked" on vandalistic graffiti and agreed to participate in an interview with a graffiti writer. Use of this interview could clarify the motivations which led these youths to write on walls, the meaning they give to that act, the emotions they feel as they write, and their perception of risks and excitement involved. Qualitative analysis of their responses suggested these adolescents present a marked excitatory-compulsive trait, report a sense of emptiness, boredom, loneliness, and a lack of internal points of reference, and adopt behaviors linked to a pressing need for immediate gratification.

  5. Optimal properties of analog perceptrons with excitatory weights.

    Directory of Open Access Journals (Sweden)

    Claudia Clopath

    Full Text Available The cerebellum is a brain structure which has been traditionally devoted to supervised learning. According to this theory, plasticity at the Parallel Fiber (PF to Purkinje Cell (PC synapses is guided by the Climbing fibers (CF, which encode an 'error signal'. Purkinje cells have thus been modeled as perceptrons, learning input/output binary associations. At maximal capacity, a perceptron with excitatory weights expresses a large fraction of zero-weight synapses, in agreement with experimental findings. However, numerous experiments indicate that the firing rate of Purkinje cells varies in an analog, not binary, manner. In this paper, we study the perceptron with analog inputs and outputs. We show that the optimal input has a sparse binary distribution, in good agreement with the burst firing of the Granule cells. In addition, we show that the weight distribution consists of a large fraction of silent synapses, as in previously studied binary perceptron models, and as seen experimentally.

  6. Reflections on the specificity of synaptic connections.

    Science.gov (United States)

    White, Edward L

    2007-10-01

    The principal focus of this treatise is the specificity of synaptic connectivity in the mammalian central nervous system. The occurrence of stereotypical patterns of connection at the macro level (e.g., the general consistency with which axonal pathways impinge on and originate within specific cortical areas and layers) implies that the cerebral cortex is a highly ordered structure. Order is seen also at the more micro level of synaptic connectivity, for instance, in the contrasting synaptic patterns of spiny vs. non-spiny neurons. Quantitative electron microscopic studies of synapses between identified neurons and correlative anatomical/electrophysiological investigations indicate that the high degree of order characterizing many aspects of cortical organization is mirrored by an equally ordered arrangement of synaptic connections between specific types of neurons. The recognition of recurring synaptic patterns has generated increased support for the notion of synaptic specificity as opposed to randomness, and we have begun now to understand the role of specificity in cortical function. At the core of cortical processing lie myriad possibilities for computation provided by the wealth of synaptic connections involving each neuron. Specificity, by limiting possibilities for connection, imposes an order on synaptic interactions even as processes of dynamic selection or synaptic remodeling ensure the constant formation and dissolution of cortical circuits. Collectively, these operations make maximal use of the richness of cortical synaptic connections to produce a highly flexible system, irrespective of the degree of hard-wiring, mutability, randomness or specificity that obtains for cortical wiring at any particular time. A brief, historical account of developments leading to our current understanding of cortical synaptic organization will precede the presentation of evidence for synaptic specificity.

  7. Age-related deficits in synaptic plasticity rescued by activating PKA or PKC in sensory neurons of Aplysia californica

    Directory of Open Access Journals (Sweden)

    Andrew T Kempsell

    2015-09-01

    Full Text Available Brain aging is associated with declines in synaptic function that contribute to memory loss, including reduced postsynaptic response to neurotransmitters and decreased neuronal excitability. To understand how aging affects memory in a simple neural circuit, we studied neuronal proxies of memory for sensitization in mature versus advanced age Aplysia. Glutamate- (L-Glu- evoked excitatory currents were facilitated by the neuromodulator serotonin (5-HT in sensory neurons (SN isolated from mature but not aged animals. Activation of PKA and PKC signaling rescued facilitation of L-Glu currents in aged SN. Similarly, PKA and PKC activators restored increased excitability in aged tail SN. These results suggest that altered synaptic plasticity during aging involves defects in second messenger systems

  8. Immunogold detection of L-glutamate and D-serine in small synaptic-like microvesicles in adult hippocampal astrocytes.

    Science.gov (United States)

    Bergersen, L H; Morland, C; Ormel, L; Rinholm, J E; Larsson, M; Wold, J F H; Røe, A T; Stranna, A; Santello, M; Bouvier, D; Ottersen, O P; Volterra, A; Gundersen, V

    2012-07-01

    Glutamate and the N-methyl-D-aspartate receptor ligand D-serine are putative gliotransmitters. Here, we show by immunogold cytochemistry of the adult hippocampus that glutamate and D-serine accumulate in synaptic-like microvesicles (SLMVs) in the perisynaptic processes of astrocytes. The estimated concentration of fixed glutamate in the astrocytic SLMVs is comparable to that in synaptic vesicles of excitatory nerve terminals (≈ 45 and ≈ 55 mM, respectively), whereas the D-serine level is about 6 mM. The vesicles are organized in small spaced clusters located near the astrocytic plasma membrane. Endoplasmic reticulum is regularly found in close vicinity to SLMVs, suggesting that astrocytes contain functional nanodomains, where a local Ca(2+) increase can trigger release of glutamate and/or D-serine.

  9. Mice lacking the synaptic adhesion molecule Neph2/Kirrel3 display moderate hyperactivity and defective novel object preference

    Directory of Open Access Journals (Sweden)

    Su Yeon eChoi

    2015-07-01

    Full Text Available Synaptic adhesion molecules regulate diverse aspects of neuronal synapse development, including synapse specificity, formation, and maturation. Neph2, also known as Kirrel3, is an immunoglobulin superfamily adhesion molecule implicated in intellectual disability, neurocognitive delay associated with Jacobsen syndrome, and autism spectrum disorders. We here report mice lacking Neph2 (Neph2–/– mice display moderate hyperactivity in a familiar but not novel environment and novel object recognition deficit with normal performances in Morris water maze spatial learning and memory, contextual fear conditioning and extinction, and pattern separation tests. These mice show normal levels of anxiety-like behaviors, social interaction, and repetitive behaviors. At the synapse level, Neph2–/– dentate gyrus granule cells exhibit unaltered dendritic spine density and spontaneous excitatory synaptic transmission. These results suggest that Neph2 is important for normal locomotor activity and object recognition memory.

  10. Patterns of presynaptic activity and synaptic strength interact to produce motor output.

    Science.gov (United States)

    Wright, Terrence Michael; Calabrese, Ronald L

    2011-11-30

    Motor neuron activity is coordinated by premotor networks into a functional motor pattern by complex patterns of synaptic drive. These patterns combine both the temporal pattern of spikes of the premotor network and the profiles of synaptic strengths (i.e., conductances). Given the complexity of premotor networks in vertebrates, it has been difficult to ascertain the relative contributions of temporal patterns and synaptic strength profiles to the motor patterns observed in these animals. Here, we use the leech (Hirudo sp.) heartbeat central pattern generator (CPG), in which we can measure both the temporal pattern and the synaptic strength profiles of the entire premotor network and the motor outflow in individual animals. In this system, a series of motor neurons all receive input from the same premotor interneurons of the CPG but must be coordinated differentially to produce a functional pattern. These properties allow a theoretical and experimental dissection of the rules that govern how temporal patterns and synaptic strength profiles are combined in motor neurons so that functional motor patterns emerge, including an analysis of the impact of animal-to-animal variation in input to such vari