WorldWideScience

Sample records for coordinated chromatin control

  1. Transcriptional networks and chromatin remodeling controlling adipogenesis

    DEFF Research Database (Denmark)

    Siersbæk, Rasmus; Nielsen, Ronni; Mandrup, Susanne

    2012-01-01

    Adipocyte differentiation is tightly controlled by a transcriptional cascade, which directs the extensive reprogramming of gene expression required to convert fibroblast-like precursor cells into mature lipid-laden adipocytes. Recent global analyses of transcription factor binding and chromatin...... remodeling have revealed 'snapshots' of this cascade and the chromatin landscape at specific time-points of differentiation. These studies demonstrate that multiple adipogenic transcription factors co-occupy hotspots characterized by an open chromatin structure and specific epigenetic modifications....... Such transcription factor hotspots are likely to represent key signaling nodes which integrate multiple adipogenic signals at specific chromatin sites, thereby facilitating coordinated action on gene expression....

  2. INO80 Chromatin Remodeling Coordinates Metabolic Homeostasis with Cell Division

    Directory of Open Access Journals (Sweden)

    Graeme J. Gowans

    2018-01-01

    Full Text Available Adaptive survival requires the coordination of nutrient availability with expenditure of cellular resources. For example, in nutrient-limited environments, 50% of all S. cerevisiae genes synchronize and exhibit periodic bursts of expression in coordination with respiration and cell division in the yeast metabolic cycle (YMC. Despite the importance of metabolic and proliferative synchrony, the majority of YMC regulators are currently unknown. Here, we demonstrate that the INO80 chromatin-remodeling complex is required to coordinate respiration and cell division with periodic gene expression. Specifically, INO80 mutants have severe defects in oxygen consumption and promiscuous cell division that is no longer coupled with metabolic status. In mutant cells, chromatin accessibility of periodic genes, including TORC1-responsive genes, is relatively static, concomitant with severely attenuated gene expression. Collectively, these results reveal that the INO80 complex mediates metabolic signaling to chromatin to restrict proliferation to metabolically optimal states.

  3. Ascl1 Coordinately Regulates Gene Expression and the Chromatin Landscape during Neurogenesis

    Directory of Open Access Journals (Sweden)

    Alexandre A.S.F. Raposo

    2015-03-01

    Full Text Available The proneural transcription factor Ascl1 coordinates gene expression in both proliferating and differentiating progenitors along the neuronal lineage. Here, we used a cellular model of neurogenesis to investigate how Ascl1 interacts with the chromatin landscape to regulate gene expression when promoting neuronal differentiation. We find that Ascl1 binding occurs mostly at distal enhancers and is associated with activation of gene transcription. Surprisingly, the accessibility of Ascl1 to its binding sites in neural stem/progenitor cells remains largely unchanged throughout their differentiation, as Ascl1 targets regions of both readily accessible and closed chromatin in proliferating cells. Moreover, binding of Ascl1 often precedes an increase in chromatin accessibility and the appearance of new regions of open chromatin, associated with de novo gene expression during differentiation. Our results reveal a function of Ascl1 in promoting chromatin accessibility during neurogenesis, linking the chromatin landscape at Ascl1 target regions with the temporal progression of its transcriptional program.

  4. ERECTA signaling controls Arabidopsis inflorescence architecture through chromatin-mediated activation of PRE1 expression.

    Science.gov (United States)

    Cai, Hanyang; Zhao, Lihua; Wang, Lulu; Zhang, Man; Su, Zhenxia; Cheng, Yan; Zhao, Heming; Qin, Yuan

    2017-06-01

    Flowering plants display a remarkable diversity in inflorescence architecture, and pedicel length is one of the key contributors to this diversity. In Arabidopsis thaliana, the receptor-like kinase ERECTA (ER) mediated signaling pathway plays important roles in regulating inflorescence architecture by promoting cell proliferation. However, the regulating mechanism remains elusive in the pedicel. Genetic interactions between ERECTA signaling and the chromatin remodeling complex SWR1 in the control of inflorescence architecture were studied. Comparative transcriptome analysis was applied to identify downstream components. Chromatin immunoprecipitation and nucleosome occupancy was further investigated. The results indicated that the chromatin remodeler SWR1 coordinates with ERECTA signaling in regulating inflorescence architecture by activating the expression of PRE1 family genes and promoting pedicel elongation. It was found that SWR1 is required for the incorporation of the H2A.Z histone variant into nucleosomes of the whole PRE1 gene family and the ERECTA controlled expression of PRE1 gene family through regulating nucleosome dynamics. We propose that utilization of a chromatin remodeling complex to regulate gene expression is a common theme in developmental control across kingdoms. These findings shed light on the mechanisms through which chromatin remodelers orchestrate complex transcriptional regulation of gene expression in coordination with a developmental cue. © 2017 The Authors. New Phytologist © 2017 New Phytologist Trust.

  5. Assembly of two transgenes in an artificial chromatin domain gives highly coordinated expression in tobacco

    NARCIS (Netherlands)

    Mlynárová, L.; Loonen, A.; Mietkiewska, E.; Jansen, R.C.; Nao, J.P.

    2002-01-01

    The chromatin loop model predicts that genes within the same chromatin domain exhibit coordinated regulation. We here present the first direct experimental support for this model in plants. Two reporter genes, the E. coli ß-glucuronidase gene and the firefly luciferase gene, driven by different

  6. Assembly of Two Transgenes in an Artificial Chromatin Domain Gives Highly Coordinated Expression in Tobacco

    NARCIS (Netherlands)

    Mlynárová, Ludmila; Loonen, Annelies; Mietkiewska, Elzbieta; Jansen, Ritsert C.; Nap, Jan-Peter

    The chromatin loop model predicts that genes within the same chromatin domain exhibit coordinated regulation. We here present the first direct experimental support for this model in plants. Two reporter genes, the E. coli β-glucuronidase gene and the firefly luciferase gene, driven by different

  7. A SWI/SNF Chromatin Remodelling Protein Controls Cytokinin Production through the Regulation of Chromatin Architecture

    KAUST Repository

    Jégu, Teddy

    2015-10-12

    Chromatin architecture determines transcriptional accessibility to DNA and consequently gene expression levels in response to developmental and environmental stimuli. Recently, chromatin remodelers such as SWI/SNF complexes have been recognized as key regulators of chromatin architecture. To gain insight into the function of these complexes during root development, we have analyzed Arabidopsis knock-down lines for one sub-unit of SWI/SNF complexes: BAF60. Here, we show that BAF60 is a positive regulator of root development and cell cycle progression in the root meristem via its ability to down-regulate cytokinin production. By opposing both the deposition of active histone marks and the formation of a chromatin regulatory loop, BAF60 negatively regulates two crucial target genes for cytokinin biosynthesis (IPT3 and IPT7) and one cell cycle inhibitor (KRP7). Our results demonstrate that SWI/SNF complexes containing BAF60 are key factors governing the equilibrium between formation and dissociation of a chromatin loop controlling phytohormone production and cell cycle progression.

  8. A SWI/SNF Chromatin Remodelling Protein Controls Cytokinin Production through the Regulation of Chromatin Architecture

    KAUST Repository

    Jé gu, Teddy; Domenichini, Sé verine; Blein, Thomas; Ariel, Federico; Christ, Auré lie; Kim, SoonKap; Crespi, Martin; Boutet-Mercey, Sté phanie; Mouille, Gré gory; Bourge, Mickaë l; Hirt, Heribert; Bergounioux, Catherine; Raynaud, Cé cile; Benhamed, Moussa

    2015-01-01

    Chromatin architecture determines transcriptional accessibility to DNA and consequently gene expression levels in response to developmental and environmental stimuli. Recently, chromatin remodelers such as SWI/SNF complexes have been recognized as key regulators of chromatin architecture. To gain insight into the function of these complexes during root development, we have analyzed Arabidopsis knock-down lines for one sub-unit of SWI/SNF complexes: BAF60. Here, we show that BAF60 is a positive regulator of root development and cell cycle progression in the root meristem via its ability to down-regulate cytokinin production. By opposing both the deposition of active histone marks and the formation of a chromatin regulatory loop, BAF60 negatively regulates two crucial target genes for cytokinin biosynthesis (IPT3 and IPT7) and one cell cycle inhibitor (KRP7). Our results demonstrate that SWI/SNF complexes containing BAF60 are key factors governing the equilibrium between formation and dissociation of a chromatin loop controlling phytohormone production and cell cycle progression.

  9. Circadian expression profiles of chromatin remodeling factor genes in Arabidopsis.

    Science.gov (United States)

    Lee, Hong Gil; Lee, Kyounghee; Jang, Kiyoung; Seo, Pil Joon

    2015-01-01

    The circadian clock is a biological time keeper mechanism that regulates biological rhythms to a period of approximately 24 h. The circadian clock enables organisms to anticipate environmental cycles and coordinates internal cellular physiology with external environmental cues. In plants, correct matching of the clock with the environment confers fitness advantages to plant survival and reproduction. Therefore, circadian clock components are regulated at multiple layers to fine-tune the circadian oscillation. Epigenetic regulation provides an additional layer of circadian control. However, little is known about which chromatin remodeling factors are responsible for circadian control. In this work, we analyzed circadian expression of 109 chromatin remodeling factor genes and identified 17 genes that display circadian oscillation. In addition, we also found that a candidate interacts with a core clock component, supporting that clock activity is regulated in part by chromatin modification. As an initial attempt to elucidate the relationship between chromatin modification and circadian oscillation, we identified novel regulatory candidates that provide a platform for future investigations of chromatin regulation of the circadian clock.

  10. Coordination of KSHV Latent and Lytic Gene Control by CTCF-Cohesin Mediated Chromosome Conformation

    Science.gov (United States)

    Kang, Hyojeung; Wiedmer, Andreas; Yuan, Yan; Robertson, Erle; Lieberman, Paul M.

    2011-01-01

    Herpesvirus persistence requires a dynamic balance between latent and lytic cycle gene expression, but how this balance is maintained remains enigmatic. We have previously shown that the Kaposi's Sarcoma-Associated Herpesvirus (KSHV) major latency transcripts encoding LANA, vCyclin, vFLIP, v-miRNAs, and Kaposin are regulated, in part, by a chromatin organizing element that binds CTCF and cohesins. Using viral genome-wide chromatin conformation capture (3C) methods, we now show that KSHV latency control region is physically linked to the promoter regulatory region for ORF50, which encodes the KSHV immediate early protein RTA. Other linkages were also observed, including an interaction between the 5′ and 3′ end of the latency transcription cluster. Mutation of the CTCF-cohesin binding site reduced or eliminated the chromatin conformation linkages, and deregulated viral transcription and genome copy number control. siRNA depletion of CTCF or cohesin subunits also disrupted chromosomal linkages and deregulated viral latent and lytic gene transcription. Furthermore, the linkage between the latent and lytic control region was subject to cell cycle fluctuation and disrupted during lytic cycle reactivation, suggesting that these interactions are dynamic and regulatory. Our findings indicate that KSHV genomes are organized into chromatin loops mediated by CTCF and cohesin interactions, and that these inter-chromosomal linkages coordinate latent and lytic gene control. PMID:21876668

  11. Chromatin remodeling, development and disease

    International Nuclear Information System (INIS)

    Ko, Myunggon; Sohn, Dong H.; Chung, Heekyoung; Seong, Rho H.

    2008-01-01

    Development is a stepwise process in which multi-potent progenitor cells undergo lineage commitment, differentiation, proliferation and maturation to produce mature cells with restricted developmental potentials. This process is directed by spatiotemporally distinct gene expression programs that allow cells to stringently orchestrate intricate transcriptional activation or silencing events. In eukaryotes, chromatin structure contributes to developmental progression as a blueprint for coordinated gene expression by actively participating in the regulation of gene expression. Changes in higher order chromatin structure or covalent modification of its components are considered to be critical events in dictating lineage-specific gene expression during development. Mammalian cells utilize multi-subunit nuclear complexes to alter chromatin structure. Histone-modifying complex catalyzes covalent modifications of histone tails including acetylation, methylation, phosphorylation and ubiquitination. ATP-dependent chromatin remodeling complex, which disrupts histone-DNA contacts and induces nucleosome mobilization, requires energy from ATP hydrolysis for its catalytic activity. Here, we discuss the diverse functions of ATP-dependent chromatin remodeling complexes during mammalian development. In particular, the roles of these complexes during embryonic and hematopoietic development are reviewed in depth. In addition, pathological conditions such as tumor development that are induced by mutation of several key subunits of the chromatin remodeling complex are discussed, together with possible mechanisms that underlie tumor suppression by the complex

  12. Gametophyte differentiation and imprinting control in plants: Crosstalk between RBR and chromatin.

    Science.gov (United States)

    Johnston, Amal J; Gruissem, Wilhelm

    2009-01-01

    The Retinoblastoma (pRb) pathway has been implicated as a convergent regulatory unit in the control of cell cycle and disease. We have shown that a crosstalk between RETINOBLASTOMA RELATED (RBR), the Arabidopsis homologue of pRb, and the genes encoding proteins of the chromatin complexes involved in DNA or histone methylation, controls gametophytic and post-fertilization differentiation events and a subset of imprinting effects. We describe here a plausible model that incorporates several components of the plant Retinoblastoma pathway, thus offering a novel paradigm that merges the traditional cell cycle and the chromatin components in the control of cell differentiation and imprinting.

  13. Control of trichome branching by Chromatin Assembly Factor-1

    Directory of Open Access Journals (Sweden)

    Hennig Lars

    2008-05-01

    Full Text Available Abstract Background Chromatin dynamics and stability are both required to control normal development of multicellular organisms. Chromatin assembly factor CAF-1 is a histone chaperone that facilitates chromatin formation and the maintenance of specific chromatin states. In plants and animals CAF-1 is essential for normal development, but it is poorly understood which developmental pathways require CAF-1 function. Results Mutations in all three CAF-1 subunits affect Arabidopsis trichome morphology and lack of CAF-1 function results in formation of trichomes with supernumerary branches. This phenotype can be partially alleviated by external sucrose. In contrast, other aspects of the CAF-1 mutant phenotype, such as defective meristem function and organ formation, are aggravated by external sucrose. Double mutant analyses revealed epistatic interactions between CAF-1 mutants and stichel, but non-epistatic interactions between CAF-1 mutants and glabra3 and kaktus. In addition, mutations in CAF-1 could partly suppress the strong overbranching and polyploidization phenotype of kaktus mutants. Conclusion CAF-1 is required for cell differentiation and regulates trichome development together with STICHEL in an endoreduplication-independent pathway. This function of CAF-1 can be partially substituted by application of exogenous sucrose. Finally, CAF-1 is also needed for the high degree of endoreduplication in kaktus mutants and thus for the realization of kaktus' extreme overbranching phenotype.

  14. Chromatin Structure and Replication Origins: Determinants Of Chromosome Replication And Nuclear Organization

    Science.gov (United States)

    Smith, Owen K.; Aladjem, Mirit I.

    2014-01-01

    The DNA replication program is, in part, determined by the epigenetic landscape that governs local chromosome architecture and directs chromosome duplication. Replication must coordinate with other biochemical processes occurring concomitantly on chromatin, such as transcription and remodeling, to insure accurate duplication of both genetic and epigenetic features and to preserve genomic stability. The importance of genome architecture and chromatin looping in coordinating cellular processes on chromatin is illustrated by two recent sets of discoveries. First, chromatin-associated proteins that are not part of the core replication machinery were shown to affect the timing of DNA replication. These chromatin-associated proteins could be working in concert, or perhaps in competition, with the transcriptional machinery and with chromatin modifiers to determine the spatial and temporal organization of replication initiation events. Second, epigenetic interactions are mediated by DNA sequences that determine chromosomal replication. In this review we summarize recent findings and current models linking spatial and temporal regulation of the replication program with epigenetic signaling. We discuss these issues in the context of the genome’s three-dimensional structure with an emphasis on events occurring during the initiation of DNA replication. PMID:24905010

  15. A role for chromatin topology in imprinted domain regulation.

    Science.gov (United States)

    MacDonald, William A; Sachani, Saqib S; White, Carlee R; Mann, Mellissa R W

    2016-02-01

    Recently, many advancements in genome-wide chromatin topology and nuclear architecture have unveiled the complex and hidden world of the nucleus, where chromatin is organized into discrete neighbourhoods with coordinated gene expression. This includes the active and inactive X chromosomes. Using X chromosome inactivation as a working model, we utilized publicly available datasets together with a literature review to gain insight into topologically associated domains, lamin-associated domains, nucleolar-associating domains, scaffold/matrix attachment regions, and nucleoporin-associated chromatin and their role in regulating monoallelic expression. Furthermore, we comprehensively review for the first time the role of chromatin topology and nuclear architecture in the regulation of genomic imprinting. We propose that chromatin topology and nuclear architecture are important regulatory mechanisms for directing gene expression within imprinted domains. Furthermore, we predict that dynamic changes in chromatin topology and nuclear architecture play roles in tissue-specific imprint domain regulation during early development and differentiation.

  16. The condensed chromatin fiber: an allosteric chemo-mechanical machine for signal transduction and genome processing

    International Nuclear Information System (INIS)

    Lesne, Annick; Victor, Jean–Marc; Bécavin, Christophe

    2012-01-01

    Allostery is a key concept of molecular biology which refers to the control of an enzyme activity by an effector molecule binding the enzyme at another site rather than the active site (allos = other in Greek). We revisit here allostery in the context of chromatin and argue that allosteric principles underlie and explain the functional architecture required for spacetime coordination of gene expression at all scales from DNA to the whole chromosome. We further suggest that this functional architecture is provided by the chromatin fiber itself. The structural, mechanical and topological features of the chromatin fiber endow chromosomes with a tunable signal transduction from specific (or nonspecific) effectors to specific (or nonspecific) active sites. Mechanical constraints can travel along the fiber all the better since the fiber is more compact and regular, which speaks in favor of the actual existence of the (so-called 30 nm) chromatin fiber. Chromatin fiber allostery reconciles both the physical and biochemical approaches of chromatin. We illustrate this view with two supporting specific examples. Moreover, from a methodological point of view, we suggest that the notion of chromatin fiber allostery is particularly relevant for systemic approaches. Finally we discuss the evolutionary power of allostery in the context of chromatin and its relation to modularity. (perspective)

  17. The condensed chromatin fiber: an allosteric chemo-mechanical machine for signal transduction and genome processing

    Science.gov (United States)

    Lesne, Annick; Bécavin, Christophe; Victor, Jean–Marc

    2012-02-01

    Allostery is a key concept of molecular biology which refers to the control of an enzyme activity by an effector molecule binding the enzyme at another site rather than the active site (allos = other in Greek). We revisit here allostery in the context of chromatin and argue that allosteric principles underlie and explain the functional architecture required for spacetime coordination of gene expression at all scales from DNA to the whole chromosome. We further suggest that this functional architecture is provided by the chromatin fiber itself. The structural, mechanical and topological features of the chromatin fiber endow chromosomes with a tunable signal transduction from specific (or nonspecific) effectors to specific (or nonspecific) active sites. Mechanical constraints can travel along the fiber all the better since the fiber is more compact and regular, which speaks in favor of the actual existence of the (so-called 30 nm) chromatin fiber. Chromatin fiber allostery reconciles both the physical and biochemical approaches of chromatin. We illustrate this view with two supporting specific examples. Moreover, from a methodological point of view, we suggest that the notion of chromatin fiber allostery is particularly relevant for systemic approaches. Finally we discuss the evolutionary power of allostery in the context of chromatin and its relation to modularity.

  18. Heterogeneous chromatin target model

    International Nuclear Information System (INIS)

    Watanabe, Makoto

    1996-01-01

    The higher order structure of the entangled chromatin fibers in a chromosome plays a key role in molecular control mechanism involved in chromosome mutation due to ionizing radiations or chemical mutagens. The condensed superstructure of chromatin is not so rigid and regular as has been postulated in general. We have proposed a rheological explanation for the flexible network system ('chromatin network') that consists of the fluctuating assembly of nucleosome clusters linked with supertwisting DNA in a chromatin fiber ('Supertwisting Particulate Model'). We have proposed a 'Heterosensitive Target Model' for cellular radiosensitivity that is a modification of 'Heterogeneous Target Model'. The heterogeneity of chromatin target is derived from the highly condensed organization of chromatin segments consist of unstable and fragile sites in the fluctuating assembly of nucleosome clusters, namely 'supranucleosomal particles' or 'superbeads'. The models have been principally supported by our electron microscopic experiments employing 'surface - spreading whole - mount technique' since 1967. However, some deformation and artifacts in the chromatin structure are inevitable with these electron microscopic procedures. On the contrary, the 'atomic force microscope (AFM)' can be operated in liquid as well as in the air. A living specimen can be examined without any preparative procedures. Micromanipulation of the isolated chromosome is also possible by the precise positional control of a cantilever on the nanometer scale. The living human chromosomes were submerged in a solution of culture medium and observed by AFM using a liquid immersion cell. The surface - spreading whole - mount technique was applicable for this observation. The particulate chromatin segments of nucleosome clusters were clearly observed within mitotic human chromosomes in a living hydrated condition. These findings support the heterogeneity of chromatin target in a living cell. (J.P.N.)

  19. Controlled cooling versus rapid freezing of teratozoospermic semen samples: Impact on sperm chromatin integrity

    Directory of Open Access Journals (Sweden)

    Shivananda N Kalludi

    2011-01-01

    Full Text Available Aim: The present study evaluates the impact of controlled slow cooling and rapid freezing techniques on the sperm chromatin integrity in teratozoospermic and normozoospermic samples. Setting: The study was done in a university infertility clinic, which is a tertiary healthcare center serving the general population. Design: It was a prospective study designed in vitro. Materials and Methods: Semen samples from normozoospermic (N=16 and teratozoospermic (N=13 infertile men were cryopreserved using controlled cooling and rapid freezing techniques. The sperm chromatin integrity was analyzed in fresh and frozen-thawed samples. Statistical Analysis Used: Data were reported as mean and standard error (mean ± SEM of mean. The difference between two techniques was determined by a paired t-test. Results: The freeze-thaw induced chromatin denaturation was significantly (P<0.01 elevated in the post-thaw samples of normozoospermic and teratozoospermic groups. Compared to rapid freezing, there was no difference in the number of red sperms (with DNA damage by the controlled slow cooling method in both normozoospermic and teratozoospermic groups. Freeze-thaw induced sperm chromatin denaturation in teratozoospermic samples did not vary between controlled slow cooling and rapid freezing techniques. Conclusions: Since the controlled slow cooling technique involves the use of expensive instrument and is a time consuming protocol, rapid freezing can be a good alternative technique for teratozoospermic and normozoospermic samples when sperm DNA damage is a concern.

  20. The nucleosome: orchestrating DNA damage signaling and repair within chromatin.

    Science.gov (United States)

    Agarwal, Poonam; Miller, Kyle M

    2016-10-01

    DNA damage occurs within the chromatin environment, which ultimately participates in regulating DNA damage response (DDR) pathways and repair of the lesion. DNA damage activates a cascade of signaling events that extensively modulates chromatin structure and organization to coordinate DDR factor recruitment to the break and repair, whilst also promoting the maintenance of normal chromatin functions within the damaged region. For example, DDR pathways must avoid conflicts between other DNA-based processes that function within the context of chromatin, including transcription and replication. The molecular mechanisms governing the recognition, target specificity, and recruitment of DDR factors and enzymes to the fundamental repeating unit of chromatin, i.e., the nucleosome, are poorly understood. Here we present our current view of how chromatin recognition by DDR factors is achieved at the level of the nucleosome. Emerging evidence suggests that the nucleosome surface, including the nucleosome acidic patch, promotes the binding and activity of several DNA damage factors on chromatin. Thus, in addition to interactions with damaged DNA and histone modifications, nucleosome recognition by DDR factors plays a key role in orchestrating the requisite chromatin response to maintain both genome and epigenome integrity.

  1. Restoring chromatin after replication: How new and old histone marks come together

    DEFF Research Database (Denmark)

    Jasencakova, Zusana; Groth, Anja

    2010-01-01

    In dividing cells genome stability and function rely on faithful transmission of both DNA sequence and its organization into chromatin. In the course of DNA replication chromatin undergoes transient genome-wide disruption followed by restoration on new DNA. This involves tight coordination of DNA...... replication and chromatin assembly processes in time and space. Dynamic recycling and de novo deposition of histones are fundamental for chromatin restoration. Histone post-translational modifications (PTMs) are thought to have a causal role in establishing distinct chromatin structures. Here we discuss PTMs...... present on new and parental histones and how they influence genome stability and restoration of epigenetically defined domains. Newly deposited histones must change their signature in the process of chromatin restoration, this may occur in a step-wise fashion involving replication-coupled processes...

  2. Argonaute2 and LaminB modulate gene expression by controlling chromatin topology.

    Directory of Open Access Journals (Sweden)

    Ezequiel Nazer

    2018-03-01

    Full Text Available Drosophila Argonaute2 (AGO2 has been shown to regulate expression of certain loci in an RNA interference (RNAi-independent manner, but its genome-wide function on chromatin remains unknown. Here, we identified the nuclear scaffolding protein LaminB as a novel interactor of AGO2. When either AGO2 or LaminB are depleted in Kc cells, similar transcription changes are observed genome-wide. In particular, changes in expression occur mainly in active or potentially active chromatin, both inside and outside LaminB-associated domains (LADs. Furthermore, we identified a somatic target of AGO2 transcriptional repression, no hitter (nht, which is immersed in a LAD located within a repressive topologically-associated domain (TAD. Null mutation but not catalytic inactivation of AGO2 leads to ectopic expression of nht and downstream spermatogenesis genes. Depletion of either AGO2 or LaminB results in reduced looping interactions within the nht TAD as well as ectopic inter-TAD interactions, as detected by 4C-seq analysis. Overall, our findings reveal coordination of AGO2 and LaminB function to dictate genome architecture and thereby regulate gene expression.

  3. Analysis of DNA replication associated chromatin decondensation: in vivo assay for understanding chromatin remodeling mechanisms of selected proteins.

    Science.gov (United States)

    Borysov, Sergiy; Bryant, Victoria L; Alexandrow, Mark G

    2015-01-01

    Of critical importance to many of the events underlying transcriptional control of gene expression are modifications to core and linker histones that regulate the accessibility of trans-acting factors to the DNA substrate within the context of chromatin. Likewise, control over the initiation of DNA replication, as well as the ability of the replication machinery to proceed during elongation through the multiple levels of chromatin condensation that are likely to be encountered, is known to involve the creation of chromatin accessibility. In the latter case, chromatin access will likely need to be a transient event so as to prevent total genomic unraveling of the chromatin that would be deleterious to cells. While there are many molecular and biochemical approaches in use to study histone changes and their relationship to transcription and chromatin accessibility, few techniques exist that allow a molecular dissection of the events underlying DNA replication control as it pertains to chromatin changes and accessibility. Here, we outline a novel experimental strategy for addressing the ability of specific proteins to induce large-scale chromatin unfolding (decondensation) in vivo upon site-specific targeting to an engineered locus. Our laboratory has used this powerful system in novel ways to directly address the ability of DNA replication proteins to create chromatin accessibility, and have incorporated modifications to the basic approach that allow for a molecular genetic analysis of the mechanisms and associated factors involved in causing chromatin decondensation by a protein of interest. Alternative approaches involving co-expression of other proteins (competitors or stimulators), concurrent drug treatments, and analysis of co-localizing histone modifications are also addressed, all of which are illustrative of the utility of this experimental system for extending basic findings to physiologically relevant mechanisms. Although used by our group to analyze

  4. Temporal profiling of the chromatin proteome reveals system-wide responses to replication inhibition

    DEFF Research Database (Denmark)

    Khoudoli, Guennadi A; Gillespie, Peter J; Stewart, Graeme

    2008-01-01

    Although the replication, expression, and maintenance of DNA are well-studied processes, the way that they are coordinated is poorly understood. Here, we report an analysis of the changing association of proteins with chromatin (the chromatin proteome) during progression through interphase...... of the cell cycle. Sperm nuclei were incubated in Xenopus egg extracts, and chromatin-associated proteins were analyzed by mass spectrometry at different times. Approximately 75% of the proteins varied in abundance on chromatin by more than 15%, suggesting that the chromatin proteome is highly dynamic....... Proteins were then assigned to one of 12 different clusters on the basis of their pattern of chromatin association. Each cluster contained functional groups of proteins involved in different nuclear processes related to progression through interphase. We also blocked DNA replication by inhibiting either...

  5. Reprogramming chromatin

    DEFF Research Database (Denmark)

    Ehrensberger, Andreas Hasso; Svejstrup, Jesper Qualmann

    2012-01-01

    attributed to high kinetic barriers that affect all cells equally and can only be overcome by rare stochastic events. The barriers to reprogramming are likely to involve transformations of chromatin state because (i) inhibitors of chromatin-modifying enzymes can enhance the efficiency of reprogramming...... and (ii) knockdown or knock-out of chromatin-modifying enzymes can lower the efficiency of reprogramming. Here, we review the relationship between chromatin state transformations (chromatin reprogramming) and cellular reprogramming, with an emphasis on transcription factors, chromatin remodeling factors...

  6. Keeping it quiet: chromatin control of gammaherpesvirus latency.

    Science.gov (United States)

    Lieberman, Paul M

    2013-12-01

    The human gammaherpesviruses Epstein-Barr virus (EBV) and Kaposi's sarcoma-associated herpesvirus (KSHV) establish long-term latent infections associated with diverse human cancers. Viral oncogenesis depends on the ability of the latent viral genome to persist in host nuclei as episomes that express a restricted yet dynamic pattern of viral genes. Multiple epigenetic events control viral episome generation and maintenance. This Review highlights some of the recent findings on the role of chromatin assembly, histone and DNA modifications, and higher-order chromosome structures that enable gammaherpesviruses to establish stable latent infections that mediate viral pathogenesis.

  7. Chromatin in embryonic stem cell neuronal differentiation.

    Science.gov (United States)

    Meshorer, E

    2007-03-01

    Chromatin, the basic regulatory unit of the eukaryotic genetic material, is controlled by epigenetic mechanisms including histone modifications, histone variants, DNA methylation and chromatin remodeling. Cellular differentiation involves large changes in gene expression concomitant with alterations in genome organization and chromatin structure. Such changes are particularly evident in self-renewing pluripotent embryonic stem cells, which begin, in terms of cell fate, as a tabula rasa, and through the process of differentiation, acquire distinct identities. Here I describe the changes in chromatin that accompany neuronal differentiation, particularly of embryonic stem cells, and discuss how chromatin serves as the master regulator of cellular destiny.

  8. Effects of fast neutrons on chromatin: dependence on chromatin structure

    Energy Technology Data Exchange (ETDEWEB)

    Radu, L. [Dept. of Molecular Genetics, V. Babes National Inst., Bd. Timisoara, Bucharest (Romania); Constantinescu, B. [Dept. of Cyclotron, H. Hulubei National Inst., Bucharest (Romania); Gazdaru, D. [Dept. of Biophysics, Physics Faculty, Univ. of Bucharest (Romania)

    2002-07-01

    The effects of fast neutrons (10-100 Gy) on chromatin extracted from normal (liver of Wistar rats) and tumor (Walker carcinosarcoma maintained on Wistar rats) tissues were compared. The spectroscopic assays used were (i) chromatin intrinsic fluorescence, (ii) time-resolved fluorescence of chromatin-proflavine complexes, and (iii) fluorescence resonance energy transfer (FRET) between dansyl chloride and acridine orange coupled to chromatin. For both normal and tumor chromatin, the intensity of intrinsic fluorescence specific for acidic and basic proteins decreased with increasing dose. The relative contributions of the excited-state lifetime of proflavine bound to chromatin were reduced upon fast-neutron irradiation, indicating a decrease in the proportion of chromatin DNA available for ligand binding. The Forster energy transfer efficiencies were also modified by irradiation. These effects were larger for chromatin from tumor tissue. In the range 0-100 Gy, fast neutrons induced alterations in DNA and acidic and basic proteins, as well as in global chromatin structure. The radiosensitivity of chromatin extracted from tumor tissue seems to be higher than that of chromatin extracted from normal tissue, probably because of its higher euchromatin (loose)-heterochromatin (compact) ratio. (author)

  9. Effects of fast neutrons on chromatin: dependence on chromatin structure

    International Nuclear Information System (INIS)

    Radu, L.; Constantinescu, B.; Gazdaru, D.

    2002-01-01

    The effects of fast neutrons (10-100 Gy) on chromatin extracted from normal (liver of Wistar rats) and tumor (Walker carcinosarcoma maintained on Wistar rats) tissues were compared. The spectroscopic assays used were (i) chromatin intrinsic fluorescence, (ii) time-resolved fluorescence of chromatin-proflavine complexes, and (iii) fluorescence resonance energy transfer (FRET) between dansyl chloride and acridine orange coupled to chromatin. For both normal and tumor chromatin, the intensity of intrinsic fluorescence specific for acidic and basic proteins decreased with increasing dose. The relative contributions of the excited-state lifetime of proflavine bound to chromatin were reduced upon fast-neutron irradiation, indicating a decrease in the proportion of chromatin DNA available for ligand binding. The Forster energy transfer efficiencies were also modified by irradiation. These effects were larger for chromatin from tumor tissue. In the range 0-100 Gy, fast neutrons induced alterations in DNA and acidic and basic proteins, as well as in global chromatin structure. The radiosensitivity of chromatin extracted from tumor tissue seems to be higher than that of chromatin extracted from normal tissue, probably because of its higher euchromatin (loose)-heterochromatin (compact) ratio. (author)

  10. Control of Genome Integrity by RFC Complexes; Conductors of PCNA Loading onto and Unloading from Chromatin during DNA Replication

    Directory of Open Access Journals (Sweden)

    Yasushi Shiomi

    2017-01-01

    Full Text Available During cell division, genome integrity is maintained by faithful DNA replication during S phase, followed by accurate segregation in mitosis. Many DNA metabolic events linked with DNA replication are also regulated throughout the cell cycle. In eukaryotes, the DNA sliding clamp, proliferating cell nuclear antigen (PCNA, acts on chromatin as a processivity factor for DNA polymerases. Since its discovery, many other PCNA binding partners have been identified that function during DNA replication, repair, recombination, chromatin remodeling, cohesion, and proteolysis in cell-cycle progression. PCNA not only recruits the proteins involved in such events, but it also actively controls their function as chromatin assembles. Therefore, control of PCNA-loading onto chromatin is fundamental for various replication-coupled reactions. PCNA is loaded onto chromatin by PCNA-loading replication factor C (RFC complexes. Both RFC1-RFC and Ctf18-RFC fundamentally function as PCNA loaders. On the other hand, after DNA synthesis, PCNA must be removed from chromatin by Elg1-RFC. Functional defects in RFC complexes lead to chromosomal abnormalities. In this review, we summarize the structural and functional relationships among RFC complexes, and describe how the regulation of PCNA loading/unloading by RFC complexes contributes to maintaining genome integrity.

  11. Real-Time Tracking of Parental Histones Reveals Their Contribution to Chromatin Integrity Following DNA Damage.

    Science.gov (United States)

    Adam, Salomé; Dabin, Juliette; Chevallier, Odile; Leroy, Olivier; Baldeyron, Céline; Corpet, Armelle; Lomonte, Patrick; Renaud, Olivier; Almouzni, Geneviève; Polo, Sophie E

    2016-10-06

    Chromatin integrity is critical for cell function and identity but is challenged by DNA damage. To understand how chromatin architecture and the information that it conveys are preserved or altered following genotoxic stress, we established a system for real-time tracking of parental histones, which characterize the pre-damage chromatin state. Focusing on histone H3 dynamics after local UVC irradiation in human cells, we demonstrate that parental histones rapidly redistribute around damaged regions by a dual mechanism combining chromatin opening and histone mobilization on chromatin. Importantly, parental histones almost entirely recover and mix with new histones in repairing chromatin. Our data further define a close coordination of parental histone dynamics with DNA repair progression through the damage sensor DDB2 (DNA damage-binding protein 2). We speculate that this mechanism may contribute to maintaining a memory of the original chromatin landscape and may help preserve epigenome stability in response to DNA damage. Copyright © 2016 The Author(s). Published by Elsevier Inc. All rights reserved.

  12. Chromatin Controls DNA Replication Origin Selection, Lagging-Strand Synthesis, and Replication Fork Rates.

    Science.gov (United States)

    Kurat, Christoph F; Yeeles, Joseph T P; Patel, Harshil; Early, Anne; Diffley, John F X

    2017-01-05

    The integrity of eukaryotic genomes requires rapid and regulated chromatin replication. How this is accomplished is still poorly understood. Using purified yeast replication proteins and fully chromatinized templates, we have reconstituted this process in vitro. We show that chromatin enforces DNA replication origin specificity by preventing non-specific MCM helicase loading. Helicase activation occurs efficiently in the context of chromatin, but subsequent replisome progression requires the histone chaperone FACT (facilitates chromatin transcription). The FACT-associated Nhp6 protein, the nucleosome remodelers INO80 or ISW1A, and the lysine acetyltransferases Gcn5 and Esa1 each contribute separately to maximum DNA synthesis rates. Chromatin promotes the regular priming of lagging-strand DNA synthesis by facilitating DNA polymerase α function at replication forks. Finally, nucleosomes disrupted during replication are efficiently re-assembled into regular arrays on nascent DNA. Our work defines the minimum requirements for chromatin replication in vitro and shows how multiple chromatin factors might modulate replication fork rates in vivo. Copyright © 2017 The Authors. Published by Elsevier Inc. All rights reserved.

  13. Chromatin Regulation of Neuronal Maturation and Plasticity.

    Science.gov (United States)

    Gallegos, David A; Chan, Urann; Chen, Liang-Fu; West, Anne E

    2018-05-01

    Neurons are dynamic cells that respond and adapt to stimuli throughout their long postmitotic lives. The structural and functional plasticity of neurons requires the regulated transcription of new gene products, and dysregulation of transcription in either the developing or adult brain impairs cognition. We discuss how mechanisms of chromatin regulation help to orchestrate the transcriptional programs that underlie the maturation of developing neurons and the plasticity of adult neurons. We review how chromatin regulation acts locally to modulate the expression of specific genes and more broadly to coordinate gene expression programs during transitions between cellular states. These data highlight the importance of epigenetic transcriptional mechanisms in postmitotic neurons. We suggest areas where emerging methods may advance understanding in the future. Copyright © 2018 Elsevier Ltd. All rights reserved.

  14. Phosphorylation-dependent regulation of plant chromatin and chromatin-associated proteins

    KAUST Repository

    Bigeard, Jean; Rayapuram, Naganand; Pflieger, Delphine; Hirt, Heribert

    2014-01-01

    In eukaryotes, most of the DNA is located in the nucleus where it is organized with histone proteins in a higher order structure as chromatin. Chromatin and chromatin-associated proteins contribute to DNA-related processes such as replication and transcription as well as epigenetic regulation. Protein functions are often regulated by PTMs among which phosphorylation is one of the most abundant PTM. Phosphorylation of proteins affects important properties, such as enzyme activity, protein stability, or subcellular localization. We here describe the main specificities of protein phosphorylation in plants and review the current knowledge on phosphorylation-dependent regulation of plant chromatin and chromatin-associated proteins. We also outline some future challenges to further elucidate protein phosphorylation and chromatin regulation.

  15. Phosphorylation-dependent regulation of plant chromatin and chromatin-associated proteins

    KAUST Repository

    Bigeard, Jean

    2014-07-10

    In eukaryotes, most of the DNA is located in the nucleus where it is organized with histone proteins in a higher order structure as chromatin. Chromatin and chromatin-associated proteins contribute to DNA-related processes such as replication and transcription as well as epigenetic regulation. Protein functions are often regulated by PTMs among which phosphorylation is one of the most abundant PTM. Phosphorylation of proteins affects important properties, such as enzyme activity, protein stability, or subcellular localization. We here describe the main specificities of protein phosphorylation in plants and review the current knowledge on phosphorylation-dependent regulation of plant chromatin and chromatin-associated proteins. We also outline some future challenges to further elucidate protein phosphorylation and chromatin regulation.

  16. Chromatin Hydrodynamics

    Science.gov (United States)

    Bruinsma, Robijn; Grosberg, Alexander Y.; Rabin, Yitzhak; Zidovska, Alexandra

    2014-01-01

    Following recent observations of large scale correlated motion of chromatin inside the nuclei of live differentiated cells, we present a hydrodynamic theory—the two-fluid model—in which the content of a nucleus is described as a chromatin solution with the nucleoplasm playing the role of the solvent and the chromatin fiber that of a solute. This system is subject to both passive thermal fluctuations and active scalar and vector events that are associated with free energy consumption, such as ATP hydrolysis. Scalar events drive the longitudinal viscoelastic modes (where the chromatin fiber moves relative to the solvent) while vector events generate the transverse modes (where the chromatin fiber moves together with the solvent). Using linear response methods, we derive explicit expressions for the response functions that connect the chromatin density and velocity correlation functions to the corresponding correlation functions of the active sources and the complex viscoelastic moduli of the chromatin solution. We then derive general expressions for the flow spectral density of the chromatin velocity field. We use the theory to analyze experimental results recently obtained by one of the present authors and her co-workers. We find that the time dependence of the experimental data for both native and ATP-depleted chromatin can be well-fitted using a simple model—the Maxwell fluid—for the complex modulus, although there is some discrepancy in terms of the wavevector dependence. Thermal fluctuations of ATP-depleted cells are predominantly longitudinal. ATP-active cells exhibit intense transverse long wavelength velocity fluctuations driven by force dipoles. Fluctuations with wavenumbers larger than a few inverse microns are dominated by concentration fluctuations with the same spectrum as thermal fluctuations but with increased intensity. PMID:24806919

  17. Chromatin decondensed by acetylation shows an elevated radiation response

    International Nuclear Information System (INIS)

    Nackerdien, Z.; Michie, J.; Boehm, L.

    1989-01-01

    V-79 Chinese hamster lung fibroblasts exposed to 5 mM n-sodium butyrate were irradiated with 60Co gamma rays and cell survival was determined by the cell colony assay. In a separate set of experiments the acetylated chromatin obtained from these cells was irradiated and the change of molecular weight of the DNA was evaluated by alkaline sucrose density centrifugation. At a survival level of 10(-2) to 10(-4) cells exposed to butyrate were found to be 1.3-1.4 times more radiosensitive than control cells. Exposure of isolated chromatin to 100 Gy of 60Co gamma irradiation generated 0.9 +/- 0.03 single-strand breaks (ssb) per 10 Gy per 10(8) Da and 2.0 +/- 0.3 ssb/10 Gy/10(8) Da for control and acetylated chromatin, respectively. The elevated radiation sensitivity of chromatin relaxed by acetylation is in good agreement with previous results on chromatin expanded by histone H1 depletion. Packing and accessibility of DNA in chromatin appear to be major factors which influence the radiation sensitivity. The intrinsic radiation sensitivity of chromatin in various packing states is discussed in light of the variation of radiation sensitivity of whole cells in the cell cycle which incorporates repair

  18. Nucleolar chromatin organization at different activities of soybean root meristematic cell nucleoli.

    Science.gov (United States)

    Stępiński, Dariusz

    2013-06-01

    Nucleolar chromatin, including nucleolus-associated chromatin as well as active and inactive condensed ribosomal DNA (rDNA) chromatin, derives mostly from secondary constrictions known as nucleolus organizer regions containing rDNA genes on nucleolus-forming chromosomes. This chromatin may occupy different nucleolar positions being in various condensation states which may imply different rDNA transcriptional competence. Sections of nucleoli originating from root meristematic cells of soybean seedlings grown at 25 °C (the control), then subjected to chilling stress (10 °C), and next transferred again to 25 °C (the recovery) were used to measure profile areas occupied by nucleolar condensed chromatin disclosed with sodium hydroxide methylation-acetylation plus uranyl acetate technique. The biggest total area of condensed chromatin was found in the nucleoli of chilled plants, while the smallest was found in those of recovered plants in relation to the amounts of chromatin in the control nucleoli. The condensed nucleolar chromatin, in the form of different-sized and different-shaped clumps, was mainly located in fibrillar centers. One can suppose that changes of condensed rDNA chromatin amounts might be a mechanism controlling the number of transcriptionally active rDNA genes as the nucleoli of plants grown under these experimental conditions show different transcriptional activity and morphology.

  19. Chromatin proteins and modifications as drug targets

    DEFF Research Database (Denmark)

    Helin, Kristian; Dhanak, Dashyant

    2013-01-01

    A plethora of groundbreaking studies have demonstrated the importance of chromatin-associated proteins and post-translational modifications of histones, proteins and DNA (so-called epigenetic modifications) for transcriptional control and normal development. Disruption of epigenetic control...... is a frequent event in disease, and the first epigenetic-based therapies for cancer treatment have been approved. A generation of new classes of potent and specific inhibitors for several chromatin-associated proteins have shown promise in preclinical trials. Although the biology of epigenetic regulation...

  20. SATB1 packages densely-looped, transciptionally-active chromatinfor coordinated expression of cytokine genes

    Energy Technology Data Exchange (ETDEWEB)

    Cai, Shutao; Lee, Charles C.; Kohwi-Shigematsu, Terumi

    2006-05-23

    SATB1 is an important regulator of nuclear architecture that anchors specialized DNA sequences onto its cage-like network and recruits chromatin remodeling/modifying factors to control gene transcription. We studied the role of SATB1 in regulating the coordinated expression of Il5, Il4, and Il13 from the 200kb cytokine gene cluster region of mouse chromosome 11 during T-helper 2 (Th2)-cell activation. We show that upon cell activation, SATB1 is rapidly induced to form a unique transcriptionally-active chromatin structure that includes the cytokine gene region. Chromatin is folded into numerous small loops all anchored by SATB1, is histone H3 acetylated at lysine 9/14, and associated with Th2-specific factors, GATA3, STAT6, c-Maf, the chromatin-remodeling enzyme Brg-1, and RNA polymerase II across the 200kb region. Before activation, the chromatin displays some of these features, such as association with GATA3 and STAT6, but these were insufficient for cytokine gene expression. Using RNA interference (RNAi), we show that upon cell activation, SATB1 is not only required for chromatin folding into dense loops, but also for c-Maf induction and subsequently for Il4, Il5, and Il13 transcription. Our results show that SATB1 is an important determinant for chromatin architecture that constitutes a novel higher-order, transcriptionally-active chromatin structure upon Th2-cell activation.

  1. Anti-chromatin antibodies in juvenile rheumatoid arthritis

    Directory of Open Access Journals (Sweden)

    V. Gerloni

    2011-09-01

    Full Text Available Objective: to evaluate the prevalence and clinical significance of anti-chromatin antibodies (Abs in juvenile rheumatoid arthritis (JRA. Methods: IgG anti-chromatin Abs were detected by an enzyme-linked immunosorbent assay (ELISA, in sera of 94 children with JRA (10 children with systemic, 38 with polyarticular and 46 with oligoarticular disease onset. As control group, 33 age- and-sex-matched healthy children (HC were also examined. Results: Abs to chromatin were detected in 24/94 (25,5% of children suffering from JRA. Particularly, the higher prevalence of anti-chromatin Abs has been found in children with oligoarticular (30,4% and polyarticular (23,7% onset JRA. In these groups Abs titers were significantly higher compared to systemic JRA and HC (p=0.003. Anti-chromatin Abs were observed more frequently in patients with oligoarticular disease and chronic uveitis (21,7%. Furthermore, higher levels of anti-chromatin Abs has been found in all the patients treated with anti-TNFα therapy (p<0.0001. Conclusions: our results confirm previous data about the prevalence of anti-chromatin Abs in JRA. These Abs were significantly higher in the group of patients with oligoarticular onset with past or present hystory of ocular involvement and in the group with polyarticular JRA treated with biologic therapy. A long-term follow-up study could be useful to evaluate the potential utility of these autoantibodies.

  2. Chromatin Structure and Function

    CERN Document Server

    Wolffe, Alan P

    1999-01-01

    The Third Edition of Chromatin: Structure and Function brings the reader up-to-date with the remarkable progress in chromatin research over the past three years. It has been extensively rewritten to cover new material on chromatin remodeling, histone modification, nuclear compartmentalization, DNA methylation, and transcriptional co-activators and co-repressors. The book is written in a clear and concise fashion, with 60 new illustrations. Chromatin: Structure and Function provides the reader with a concise and coherent account of the nature, structure, and assembly of chromatin and its active

  3. Modeling, Control and Coordination of Helicopter Systems

    CERN Document Server

    Ren, Beibei; Chen, Chang; Fua, Cheng-Heng; Lee, Tong Heng

    2012-01-01

    Modeling, Control and Coordination of Helicopter Systems provides a comprehensive treatment of helicopter systems, ranging from related nonlinear flight dynamic modeling and stability analysis to advanced control design for single helicopter systems, and also covers issues related to the coordination and formation control of multiple helicopter systems to achieve high performance tasks. Ensuring stability in helicopter flight is a challenging problem for nonlinear control design and development. This book is a valuable reference on modeling, control and coordination of helicopter systems,providing readers with practical solutions for the problems that still plague helicopter system design and implementation. Readers will gain a complete picture of helicopters at the systems level, as well as a better understanding of the technical intricacies involved. This book also: Presents a complete picture of modeling, control and coordination for helicopter systems Provides a modeling platform for a general class of ro...

  4. Coordinating controls

    Energy Technology Data Exchange (ETDEWEB)

    Anon.

    1986-07-15

    While physics Laboratories are having to absorb cuts in resources, the machines they rely on are becoming more and more complex, requiring increasingly sophisticated systems. Rather than being a resourceful engineer or physicist able to timber together solutions in his 'backyard', the modern controls specialist has become a professional in his own right. Because of possible conflicts between increasing sophistication on one hand and scarcer resources on the other, there was felt a need for more contacts among controls specialists to exchange experiences, coordinate development and discuss 'family problems', away from meetings where the main interest is on experimental physics.

  5. Coordinated control of micro-grid based on distributed moving horizon control.

    Science.gov (United States)

    Ma, Miaomiao; Shao, Liyang; Liu, Xiangjie

    2018-05-01

    This paper proposed the distributed moving horizon coordinated control scheme for the power balance and economic dispatch problems of micro-grid based on distributed generation. We design the power coordinated controller for each subsystem via moving horizon control by minimizing a suitable objective function. The objective function of distributed moving horizon coordinated controller is chosen based on the principle that wind power subsystem has the priority to generate electricity while photovoltaic power generation coordinates with wind power subsystem and the battery is only activated to meet the load demand when necessary. The simulation results illustrate that the proposed distributed moving horizon coordinated controller can allocate the output power of two generation subsystems reasonably under varying environment conditions, which not only can satisfy the load demand but also limit excessive fluctuations of output power to protect the power generation equipment. Copyright © 2018 ISA. Published by Elsevier Ltd. All rights reserved.

  6. PREDICTION OF CHROMATIN STATES USING DNA SEQUENCE PROPERTIES

    KAUST Repository

    Bahabri, Rihab R.

    2013-06-01

    Activities of DNA are to a great extent controlled epigenetically through the internal struc- ture of chromatin. This structure is dynamic and is influenced by different modifications of histone proteins. Various combinations of epigenetic modification of histones pinpoint to different functional regions of the DNA determining the so-called chromatin states. How- ever, the characterization of chromatin states by the DNA sequence properties remains largely unknown. In this study we aim to explore whether DNA sequence patterns in the human genome can characterize different chromatin states. Using DNA sequence motifs we built binary classifiers for each chromatic state to eval- uate whether a given genomic sequence is a good candidate for belonging to a particular chromatin state. Of four classification algorithms (C4.5, Naive Bayes, Random Forest, and SVM) used for this purpose, the decision tree based classifiers (C4.5 and Random Forest) yielded best results among those we evaluated. Our results suggest that in general these models lack sufficient predictive power, although for four chromatin states (insulators, het- erochromatin, and two types of copy number variation) we found that presence of certain motifs in DNA sequences does imply an increased probability that such a sequence is one of these chromatin states.

  7. Coordination of flower development by homeotic master regulators.

    Science.gov (United States)

    Ito, Toshiro

    2011-02-01

    Floral homeotic genes encode transcription factors and act as master regulators of flower development. The homeotic protein complex is expressed in a specific whorl of the floral primordium and determines floral organ identity by the combinatorial action. Homeotic proteins continue to be expressed until late in flower development to coordinate growth and organogenesis. Recent genomic studies have shown that homeotic proteins bind thousands of target sites in the genome and regulate the expression of transcription factors, chromatin components and various proteins involved in hormone biosynthesis and signaling and other physiological activities. Further, homeotic proteins program chromatin to direct the developmental coordination of stem cell maintenance and differentiation in shaping floral organs. Copyright © 2010 Elsevier Ltd. All rights reserved.

  8. Chromatin changes in response to drought, salinity, heat, and cold stresses in plants

    Directory of Open Access Journals (Sweden)

    Jong-Myong eKim

    2015-03-01

    Full Text Available Chromatin regulation is essential to regulate genes and genome activities. In plants, the alteration of histone modification and DNA methylation are coordinated with changes in the expression of stress-responsive genes to adapt to environmental changes. Several chromatin regulators have been shown to be involved in the regulation of stress-responsive gene networks under abiotic stress conditions. Specific histone modification sites and the histone modifiers that regulate key stress-responsive genes have been identified by genetic and biochemical approaches, revealing the importance of chromatin regulation in plant stress responses. Recent studies have also suggested that histone modification plays an important role in plant stress memory. In this review, we summarize recent progress on the regulation and alteration of histone modification (acetylation, methylation, phosphorylation, and SUMOylation in response to the abiotic stresses, drought, high-salinity, heat, and cold in plants.

  9. The chromatin remodeler SPLAYED regulates specific stress signaling pathways.

    Directory of Open Access Journals (Sweden)

    Justin W Walley

    2008-12-01

    Full Text Available Organisms are continuously exposed to a myriad of environmental stresses. Central to an organism's survival is the ability to mount a robust transcriptional response to the imposed stress. An emerging mechanism of transcriptional control involves dynamic changes in chromatin structure. Alterations in chromatin structure are brought about by a number of different mechanisms, including chromatin modifications, which covalently modify histone proteins; incorporation of histone variants; and chromatin remodeling, which utilizes ATP hydrolysis to alter histone-DNA contacts. While considerable insight into the mechanisms of chromatin remodeling has been gained, the biological role of chromatin remodeling complexes beyond their function as regulators of cellular differentiation and development has remained poorly understood. Here, we provide genetic, biochemical, and biological evidence for the critical role of chromatin remodeling in mediating plant defense against specific biotic stresses. We found that the Arabidopsis SWI/SNF class chromatin remodeling ATPase SPLAYED (SYD is required for the expression of selected genes downstream of the jasmonate (JA and ethylene (ET signaling pathways. SYD is also directly recruited to the promoters of several of these genes. Furthermore, we show that SYD is required for resistance against the necrotrophic pathogen Botrytis cinerea but not the biotrophic pathogen Pseudomonas syringae. These findings demonstrate not only that chromatin remodeling is required for selective pathogen resistance, but also that chromatin remodelers such as SYD can regulate specific pathways within biotic stress signaling networks.

  10. Proteomic interrogation of human chromatin.

    Directory of Open Access Journals (Sweden)

    Mariana P Torrente

    Full Text Available Chromatin proteins provide a scaffold for DNA packaging and a basis for epigenetic regulation and genomic maintenance. Despite understanding its functional roles, mapping the chromatin proteome (i.e. the "Chromatome" is still a continuing process. Here, we assess the biological specificity and proteomic extent of three distinct chromatin preparations by identifying proteins in selected chromatin-enriched fractions using mass spectrometry-based proteomics. These experiments allowed us to produce a chromatin catalog, including several proteins ranging from highly abundant histone proteins to less abundant members of different chromatin machinery complexes. Using a Normalized Spectral Abundance Factor approach, we quantified relative abundances of the proteins across the chromatin enriched fractions giving a glimpse into their chromosomal abundance. The large-scale data sets also allowed for the discovery of a variety of novel post-translational modifications on the identified chromatin proteins. With these comparisons, we find one of the probed methods to be qualitatively superior in specificity for chromatin proteins, but inferior in proteomic extent, evidencing a compromise that must be made between biological specificity and broadness of characterization. Additionally, we attempt to identify proteins in eu- and heterochromatin, verifying the enrichments by characterizing the post-translational modifications detected on histone proteins from these chromatin regions. In summary, our results provide insights into the value of different methods to extract chromatin-associated proteins and provide starting points to study the factors that may be involved in directing gene expression and other chromatin-related processes.

  11. Chromatin is wonderful stuff.

    NARCIS (Netherlands)

    van Driel, R.

    2007-01-01

    Chromatin molecules have properties that set them aside from all other biomacromolecules in the cell. (i) Chromosomes, which are single chromatin molecules, are the largest macromolecules in eukaryotic cells. (ii) Chromatin molecules carry the cell's genetic and epigenetic information and all

  12. Coordinating controls

    International Nuclear Information System (INIS)

    Anon.

    1986-01-01

    While physics Laboratories are having to absorb cuts in resources, the machines they rely on are becoming more and more complex, requiring increasingly sophisticated systems. Rather than being a resourceful engineer or physicist able to timber together solutions in his 'backyard', the modern controls specialist has become a professional in his own right. Because of possible conflicts between increasing sophistication on one hand and scarcer resources on the other, there was felt a need for more contacts among controls specialists to exchange experiences, coordinate development and discuss 'family problems', away from meetings where the main interest is on experimental physics

  13. RISC-mediated control of selected chromatin regulators stabilizes ground state pluripotency of mouse embryonic stem cells.

    Science.gov (United States)

    Pandolfini, Luca; Luzi, Ettore; Bressan, Dario; Ucciferri, Nadia; Bertacchi, Michele; Brandi, Rossella; Rocchiccioli, Silvia; D'Onofrio, Mara; Cremisi, Federico

    2016-05-06

    Embryonic stem cells are intrinsically unstable and differentiate spontaneously if they are not shielded from external stimuli. Although the nature of such instability is still controversial, growing evidence suggests that protein translation control may play a crucial role. We performed an integrated analysis of RNA and proteins at the transition between naïve embryonic stem cells and cells primed to differentiate. During this transition, mRNAs coding for chromatin regulators are specifically released from translational inhibition mediated by RNA-induced silencing complex (RISC). This suggests that, prior to differentiation, the propensity of embryonic stem cells to change their epigenetic status is hampered by RNA interference. The expression of these chromatin regulators is reinstated following acute inactivation of RISC and it correlates with loss of stemness markers and activation of early cell differentiation markers in treated embryonic stem cells. We propose that RISC-mediated inhibition of specific sets of chromatin regulators is a primary mechanism for preserving embryonic stem cell pluripotency while inhibiting the onset of embryonic developmental programs.

  14. ATP-Dependent Chromatin Remodeling Factors and Their Roles in Affecting Nucleosome Fiber Composition

    Directory of Open Access Journals (Sweden)

    Alexandra Lusser

    2011-10-01

    Full Text Available ATP-dependent chromatin remodeling factors of the SNF2 family are key components of the cellular machineries that shape and regulate chromatin structure and function. Members of this group of proteins have broad and heterogeneous functions ranging from controlling gene activity, facilitating DNA damage repair, promoting homologous recombination to maintaining genomic stability. Several chromatin remodeling factors are critical components of nucleosome assembly processes, and recent reports have identified specific functions of distinct chromatin remodeling factors in the assembly of variant histones into chromatin. In this review we will discuss the specific roles of ATP-dependent chromatin remodeling factors in determining nucleosome composition and, thus, chromatin fiber properties.

  15. High-throughput assessment of context-dependent effects of chromatin proteins

    NARCIS (Netherlands)

    Brueckner, L. (Laura); Van Arensbergen, J. (Joris); Akhtar, W. (Waseem); L. Pagie (Ludo); B. van Steensel (Bas)

    2016-01-01

    textabstractBackground: Chromatin proteins control gene activity in a concerted manner. We developed a high-throughput assay to study the effects of the local chromatin environment on the regulatory activity of a protein of interest. The assay combines a previously reported multiplexing strategy

  16. Chromatin replication and epigenome maintenance

    DEFF Research Database (Denmark)

    Alabert, Constance; Groth, Anja

    2012-01-01

    Stability and function of eukaryotic genomes are closely linked to chromatin structure and organization. During cell division the entire genome must be accurately replicated and the chromatin landscape reproduced on new DNA. Chromatin and nuclear structure influence where and when DNA replication...... initiates, whereas the replication process itself disrupts chromatin and challenges established patterns of genome regulation. Specialized replication-coupled mechanisms assemble new DNA into chromatin, but epigenome maintenance is a continuous process taking place throughout the cell cycle. If DNA...

  17. Chromatin Flavors: Chromatin composition and domain organization in Drosophila melanogaster

    NARCIS (Netherlands)

    J.G. van Bemmel (Joke)

    2012-01-01

    textabstractChromatin was originally identified by W. Flemming in 1882 as not much more than the stainable substance of the cell nucleus. Flemming named this substance according to the Greek word “chroma”, meaning color. In 1911 chromatin was characterized as proteins, named histones, that

  18. Self-triggered coordination with ternary controllers

    NARCIS (Netherlands)

    De Persis, Claudio; Frasca, Paolo

    2012-01-01

    This paper regards coordination of networked systems with ternary controllers. We develop a hybrid coordination system which implements a self-triggered communication policy, based on polling the neighbors upon need. We prove that the proposed scheme ensures finite-time convergence to a neighborhood

  19. Probing chromatin structure with nuclease sensitivity assays.

    Science.gov (United States)

    Gregory, R I; Khosla, S; Feil, R

    2001-01-01

    To further our understanding of genomic imprinting it will be essential to identify key control elements, and to investigate their regulation by both epigenetic modifications (such as DNA methylation) and trans-acting factors. So far, sequence elements that regulate parental allele-specific gene expression have been identified in a number of imprinted loci, either because of their differential DNA methylation or through functional studies in transgenic mice (1,2). A systematic search for allele-specific chromatin features constitutes an alternative strategy to identify elements that regulate imprinting. The validity of such an in vivo chromatin approach derives from the fact that in several known imprinting control-elements, a specialized organization of chromatin characterized by nuclease hypersensitivity is present on only one of the two parental chromosome (3). For example, the differentially methylated 5 -portion of the human SNRPN gene-a sequence element that controls imprinting in the Prader-Willi and Angelman syndromes' domain on chromosome 15q11- q13-has strong DNase-I hypersensitive sites on the unmethylated paternal chromosome (4). A differentially methylated region that regulates the imprinting of H19 and that of the neighboring insulin-like growth factor-2 gene on mouse chromosome 7 was also found to have parental chromosome-specific hypersensitive sites (5,6). The precise nature of the allelic nuclease hypersensitivity in these and other imprinted loci remains to be determined in more detail, for example, by applying complementary chromatin methodologies (7,8). However, it is commonly observed that a nuclease hypersensitive site corresponds to a small region where nucleosomes are absent or partially disrupted.

  20. Gibberellin-induced change in the structure of chromatin in wheat sprouts: decrease in the accessibility of DNA in preparations of soluble chromatin to the action of EcoRII methylase

    International Nuclear Information System (INIS)

    Noskov, V.A.; Kintsurashvili, L.N.; Smirnova, T.A.; Manamsh'yan, T.A.; Kir'yanov, G.I.; Vanyushin, B.F.

    1986-01-01

    A method has been perfected for producing soluble chromatin from whole wheat sprouts at low ionic strength. The chromatin preparations isolated possess a native structure: they have a nucleosome organization. Under identical conditions the soluble wheat chromatin undergoes more profound degradation by DNase I and staphylococcal nuclease than the chromatin from the rat liver. The DNA contained in the isolated chromatin is capable of accepting CHnumber groups from S-[methyl- 3 H]-adenosylmethionine during incubation with DNA methylase EcoRII; not all the CC A/T GG sequences in DNA are methylated in vivo. Chromatin from gibberellin A 3 -treated wheat sprout DNA accepts 40% fewer CH 3 groups than that from the control sprouts, which is probably due to the greater compactness of the chromatin. In the case of longer incubation, the level of methylation of the chromatin falls, which may be associated with the presence of DNA-demethylating activity

  1. Chromatin replication and histone dynamics

    DEFF Research Database (Denmark)

    Alabert, Constance; Jasencakova, Zuzana; Groth, Anja

    2017-01-01

    Inheritance of the DNA sequence and its proper organization into chromatin is fundamental for genome stability and function. Therefore, how specific chromatin structures are restored on newly synthesized DNA and transmitted through cell division remains a central question to understand cell fate...... choices and self-renewal. Propagation of genetic information and chromatin-based information in cycling cells entails genome-wide disruption and restoration of chromatin, coupled with faithful replication of DNA. In this chapter, we describe how cells duplicate the genome while maintaining its proper...... organization into chromatin. We reveal how specialized replication-coupled mechanisms rapidly assemble newly synthesized DNA into nucleosomes, while the complete restoration of chromatin organization including histone marks is a continuous process taking place throughout the cell cycle. Because failure...

  2. Nascent chromatin capture proteomics determines chromatin dynamics during DNA replication and identifies unknown fork components

    DEFF Research Database (Denmark)

    Alabert, Constance; Bukowski-Wills, Jimi-Carlo; Lee, Sung-Po

    2014-01-01

    To maintain genome function and stability, DNA sequence and its organization into chromatin must be duplicated during cell division. Understanding how entire chromosomes are copied remains a major challenge. Here, we use nascent chromatin capture (NCC) to profile chromatin proteome dynamics during...... replication in human cells. NCC relies on biotin-dUTP labelling of replicating DNA, affinity purification and quantitative proteomics. Comparing nascent chromatin with mature post-replicative chromatin, we provide association dynamics for 3,995 proteins. The replication machinery and 485 chromatin factors...... such as CAF-1, DNMT1 and SUV39h1 are enriched in nascent chromatin, whereas 170 factors including histone H1, DNMT3, MBD1-3 and PRC1 show delayed association. This correlates with H4K5K12diAc removal and H3K9me1 accumulation, whereas H3K27me3 and H3K9me3 remain unchanged. Finally, we combine NCC enrichment...

  3. Replicating centromeric chromatin: Spatial and temporal control of CENP-A assembly

    International Nuclear Information System (INIS)

    Nechemia-Arbely, Yael; Fachinetti, Daniele; Cleveland, Don W.

    2012-01-01

    The centromere is the fundamental unit for insuring chromosome inheritance. This complex region has a distinct type of chromatin in which histone H3 is replaced by a structurally different homologue identified in humans as CENP-A. In metazoans, specific DNA sequences are neither required nor sufficient for centromere identity. Rather, an epigenetic mark comprised of CENP-A containing chromatin is thought to be the major determinant of centromere identity. In this view, CENP-A deposition and chromatin assembly are fundamental processes for the maintenance of centromeric identity across mitotic and meiotic divisions. Several lines of evidence support CENP-A deposition in metazoans occurring at only one time in the cell cycle. Such cell cycle-dependent loading of CENP-A is found in divergent species from human to fission yeast, albeit with differences in the cell cycle point at which CENP-A is assembled. Cell cycle dependent CENP-A deposition requires multiple assembly factors for its deposition and maintenance. This review discusses the regulation of new CENP-A deposition and its relevance to centromere identity and inheritance.

  4. Regulation of chromatin structure by poly(ADP-ribosylation

    Directory of Open Access Journals (Sweden)

    Sascha eBeneke

    2012-09-01

    Full Text Available The interaction of DNA with proteins in the context of chromatin has to be tightly regulated to achieve so different tasks as packaging, transcription, replication and repair. The very rapid and transient post-translational modification of proteins by poly(ADP-ribose has been shown to take part in all four. Originally identified as immediate cellular answer to a variety of genotoxic stresses, already early data indicated the ability of this highly charged nucleic acid-like polymer to modulate nucleosome structure, the basic unit of chromatin. At the same time the enzyme responsible for synthesizing poly(ADP-ribose, the zinc-finger protein poly(ADP-ribose polymerase-1 (PARP1, was shown to control transcription initiation as basic factor TFIIC within the RNA-polymerase II machinery. Later research focused more on PARP-mediated regulation of DNA repair and cell death, but in the last few years, transcription as well as chromatin modulation has re-appeared on the scene. This review will discuss the impact of PARP1 on transcription and transcription factors, its implication in chromatin remodeling for DNA repair and probably also replication, and its role in controlling epigenetic events such as DNA methylation and the functionality of the insulator protein CCCTC-binding factor.

  5. The architects of crenarchaeal chromatin : A biophysical characterization of chromatin proteins from Sulfolobus solfataricus

    NARCIS (Netherlands)

    Driessen, Rosalie Paula Catharina

    2014-01-01

    Understanding of chromatin organization and compaction in Archaea is currently limited. The genome of several megabasepairs long is folded by a set of small chromatin proteins to fit into the micron-sized cell. A first step in understanding archaeal chromatin organization is to study the action of

  6. Power Generation and Distribution via Distributed Coordination Control

    OpenAIRE

    Kim, Byeong-Yeon; Oh, Kwang-Kyo; Ahn, Hyo-Sung

    2014-01-01

    This paper presents power coordination, power generation, and power flow control schemes for supply-demand balance in distributed grid networks. Consensus schemes using only local information are employed to generate power coordination, power generation and power flow control signals. For the supply-demand balance, it is required to determine the amount of power needed at each distributed power node. Also due to the different power generation capacities of each power node, coordination of pow...

  7. Coordinated Voltage Control of Active Distribution Network

    Directory of Open Access Journals (Sweden)

    Xie Jiang

    2016-01-01

    Full Text Available This paper presents a centralized coordinated voltage control method for active distribution network to solve off-limit problem of voltage after incorporation of distributed generation (DG. The proposed method consists of two parts, it coordinated primal-dual interior point method-based voltage regulation schemes of DG reactive powers and capacitors with centralized on-load tap changer (OLTC controlling method which utilizes system’s maximum and minimum voltages, to improve the qualified rate of voltage and reduce the operation numbers of OLTC. The proposed coordination has considered the cost of capacitors. The method is tested using a radial edited IEEE-33 nodes distribution network which is modelled using MATLAB.

  8. Chromatin Remodelers: From Function to Dysfunction

    Directory of Open Access Journals (Sweden)

    Gernot Längst

    2015-06-01

    Full Text Available Chromatin remodelers are key players in the regulation of chromatin accessibility and nucleosome positioning on the eukaryotic DNA, thereby essential for all DNA dependent biological processes. Thus, it is not surprising that upon of deregulation of those molecular machines healthy cells can turn into cancerous cells. Even though the remodeling enzymes are very abundant and a multitude of different enzymes and chromatin remodeling complexes exist in the cell, the particular remodeling complex with its specific nucleosome positioning features must be at the right place at the right time in order to ensure the proper regulation of the DNA dependent processes. To achieve this, chromatin remodeling complexes harbor protein domains that specifically read chromatin targeting signals, such as histone modifications, DNA sequence/structure, non-coding RNAs, histone variants or DNA bound interacting proteins. Recent studies reveal the interaction between non-coding RNAs and chromatin remodeling complexes showing importance of RNA in remodeling enzyme targeting, scaffolding and regulation. In this review, we summarize current understanding of chromatin remodeling enzyme targeting to chromatin and their role in cancer development.

  9. Design of coordinated controller in nuclear power plant based on digital instrument and control technology

    International Nuclear Information System (INIS)

    Cheng Shouyu; Peng Minjun; Liu Xinkai; Zhao Qiang; Deng Xiangxin

    2014-01-01

    Nuclear power plant (NPP) is a multi-input and multi-output, no-linear and time-varying complex system. The conventional PID controller is usually used in NPP control system which is based on analog instrument. The system parameters are easy to overshoot and the response time is longer in the control mode of the conventional PID. In order to improve this condition, a new coordinated control strategy which is based on expert system and the original controllers in the digital instrument and control technology was presented. In order to verify and validate it, the proposed coordinated control technology was tested by the full-scope real-time simulation system. The results prove that using digital instrument and control technology to achieve coordinated controller is feasible, the coordinated controller can effectively improve the dynamic operating characteristics of the system, and the coordinated controller is superior to the conventional PID controller in control performance. (authors)

  10. Effect of hyperthermia on replicating chromatin

    International Nuclear Information System (INIS)

    Warters, R.L.; Roti Roti, J.L.

    1981-01-01

    The extent of heat-induced structural alterations in chromatin containing nascent (pulse-labeled) DNA was assayed using the enzyme micrococcal nuclease. The basic nucleosome structure in nascent and mature chromatin of S-phase cells appeared unaltered for up to 16 hr after exposure to hyperthermic temperatures as high as 48 0 C for 15 min. However, the rate of nuclease digestion of DNA in both nascent and mature chromatin is inhibited following exposure to hyperthermic temperatures. In unheated cells, pulse-labeled nascent DNA matured into mature chromatin structure with a half-time of 2.5 min. The half-time for the maturation of pulse-labeled DNA from nascent into mature chromatin increased in a linear manner as a function of increasing temperature of exposure with constant heating time at temperatures above 43 0 C. Both the reduced nuclease digestibility of nascent DNA and the increased time for chromatin structural changes could be due to the increased protein mass of chromatin following hyperthermia

  11. Epigenetic regulation and chromatin remodeling in learning and memory.

    Science.gov (United States)

    Kim, Somi; Kaang, Bong-Kiun

    2017-01-13

    Understanding the underlying mechanisms of memory formation and maintenance has been a major goal in the field of neuroscience. Memory formation and maintenance are tightly controlled complex processes. Among the various processes occurring at different levels, gene expression regulation is especially crucial for proper memory processing, as some genes need to be activated while some genes must be suppressed. Epigenetic regulation of the genome involves processes such as DNA methylation and histone post-translational modifications. These processes edit genomic properties or the interactions between the genome and histone cores. They then induce structural changes in the chromatin and lead to transcriptional changes of different genes. Recent studies have focused on the concept of chromatin remodeling, which consists of 3D structural changes in chromatin in relation to gene regulation, and is an important process in learning and memory. In this review, we will introduce three major epigenetic processes involved in memory regulation: DNA methylation, histone methylation and histone acetylation. We will also discuss general mechanisms of long-term memory storage and relate the epigenetic control of learning and memory to chromatin remodeling. Finally, we will discuss how epigenetic mechanisms can contribute to the pathologies of neurological disorders and cause memory-related symptoms.

  12. Chromatin maturation depends on continued DNA-replication

    International Nuclear Information System (INIS)

    Schlaeger, E.J.; Puelm, W.; Knippers, R.

    1983-01-01

    The structure of [ 3 H]thymidine pulse-labeled chromatin in lymphocytes differs from that of non-replicating chromatin by several operational criteria which are related to the higher nuclease sensitivity of replicating chromatin. These structural features of replicating chromatin rapidly disappear when the [ 3 H]thymidine pulse is followed by a chase in the presence of an excess of non-radioactive thymidine. However, when the rate of DNA replication is reduced, as in cycloheximide-treated lymphocytes, chromatin maturation is retarded. No chromatin maturation is observed when nuclei from pulse-labeled lymphocytes are incubated in vitro in the absence of DNA precursors. In contrast, when these nuclei are incubated under conditions known to be optimal for DNA replication, the structure of replicating chromatin is efficiently converted to that of 'mature', non-replicating chromatin. The authors conclude that the properties of nascent DNA and/or the distance from the replication fork are important factors in chromatin maturation. (Auth.)

  13. The Chromatin Scaffold Protein SAFB1 Renders Chromatin Permissive for DNA Damage Signaling

    DEFF Research Database (Denmark)

    Altmeyer, Matthias; Toledo Lazaro, Luis Ignacio; Gudjonsson, Thorkell

    2013-01-01

    Although the general relevance of chromatin modifications for genotoxic stress signaling, cell-cycle checkpoint activation, and DNA repair is well established, how these modifications reach initial thresholds in order to trigger robust responses remains largely unexplored. Here, we identify...... the chromatin-associated scaffold attachment factor SAFB1 as a component of the DNA damage response and show that SAFB1 cooperates with histone acetylation to allow for efficient γH2AX spreading and genotoxic stress signaling. SAFB1 undergoes a highly dynamic exchange at damaged chromatin in a poly......(ADP-ribose)-polymerase 1- and poly(ADP-ribose)-dependent manner and is required for unperturbed cell-cycle checkpoint activation and guarding cells against replicative stress. Altogether, our data reveal that transient recruitment of an architectural chromatin component is required in order to overcome physiological...

  14. Effect of triiodothyronine on rat liver chromatin protein kinase

    International Nuclear Information System (INIS)

    Kruh, J.; Tichonicky, L.

    1976-01-01

    1) Injection of triiodothyronine to rats stimulates protein kinase activity in liver chromatin nonhistone proteins. A significant increase was found after two daily injections. A 4-fold increase was observed with the purified enzyme after eight daily injections of the hormone. No variations were observed in cytosol protein kinase activity. Electrophoretic pattern, effect of heat denaturation, effect of p-hydroxymercuribenzoate seem to indicate that the enzyme present in treated rats is not identical to the enzyme in control animals, which suggests that thyroid hormone has induced nuclear protein kinase. Diiodothyronine, 3, 3', 5'-triiodothyronine have no effect on protein kinase. 2) Chromatin non-histone proteins isolated from rats injected with triiodothyronine incorporated more 32 P when incubated with [γ- 32 P]ATP than the chromatin proteins from untreated rats. Thyroidectomy reduced the in vitro 32 P incorporation. It is suggested that some of the biological activity of thyroid hormone could be mediated through its effect on chromatin non-histone proteins. (orig.) [de

  15. Noncoding transcription by alternative rna polymerases dynamically regulates an auxin-driven chromatin loop

    KAUST Repository

    Ariel, Federico D.; Jé gu, Teddy; Latrasse, David; Romero-Barrios, Natali; Christ, Auré lie; Benhamed, Moussa; Crespi, Martí n D.

    2014-01-01

    The eukaryotic epigenome is shaped by the genome topology in three-dimensional space. Dynamic reversible variations in this epigenome structure directly influence the transcriptional responses to developmental cues. Here, we show that the Arabidopsis long intergenic noncoding RNA (lincRNA) APOLO is transcribed by RNA polymerases II and V in response to auxin, a phytohormone controlling numerous facets of plant development. This dual APOLO transcription regulates the formation of a chromatin loop encompassing the promoter of its neighboring gene PID, a key regulator of polar auxin transport. Altering APOLO expression affects chromatin loop formation, whereas RNA-dependent DNA methylation, active DNA demethylation, and Polycomb complexes control loop dynamics. This dynamic chromatin topology determines PID expression patterns. Hence, the dual transcription of a lincRNA influences local chromatin topology and directs dynamic auxin-controlled developmental outputs on neighboring genes. This mechanism likely underscores the adaptive success of plants in diverse environments and may be widespread in eukaryotes. © 2014 Elsevier Inc.

  16. Noncoding transcription by alternative rna polymerases dynamically regulates an auxin-driven chromatin loop

    KAUST Repository

    Ariel, Federico D.

    2014-08-01

    The eukaryotic epigenome is shaped by the genome topology in three-dimensional space. Dynamic reversible variations in this epigenome structure directly influence the transcriptional responses to developmental cues. Here, we show that the Arabidopsis long intergenic noncoding RNA (lincRNA) APOLO is transcribed by RNA polymerases II and V in response to auxin, a phytohormone controlling numerous facets of plant development. This dual APOLO transcription regulates the formation of a chromatin loop encompassing the promoter of its neighboring gene PID, a key regulator of polar auxin transport. Altering APOLO expression affects chromatin loop formation, whereas RNA-dependent DNA methylation, active DNA demethylation, and Polycomb complexes control loop dynamics. This dynamic chromatin topology determines PID expression patterns. Hence, the dual transcription of a lincRNA influences local chromatin topology and directs dynamic auxin-controlled developmental outputs on neighboring genes. This mechanism likely underscores the adaptive success of plants in diverse environments and may be widespread in eukaryotes. © 2014 Elsevier Inc.

  17. Robust Self-Triggered Coordination With Ternary Controllers

    NARCIS (Netherlands)

    De Persis, Claudio; Frasca, Paolo; Nair, G.N.

    2013-01-01

    This paper regards the coordination of networked systems, studied in the framework of hybrid dynamical systems. We design a coordination scheme which combines the use of ternary controllers with a self-triggered communication policy. The communication policy requires the agents to measure, at each

  18. Robust self-triggered coordination with ternary controllers

    NARCIS (Netherlands)

    De Persis, Claudio; Frasca, Paolo

    2013-01-01

    This paper regards the coordination of networked systems, studied in the framework of hybrid dynamical systems. We design a coordination scheme which combines the use of ternary controllers with a self-triggered communication policy. The communication policy requires the agents to measure, at each

  19. Control Coordination of Large Scale Hereditary Systems.

    Science.gov (United States)

    1985-07-01

    Theory - A Hilbert Space Approach, (Academic Press, New York, 1982). [4] W. Findeisen , F. N. Bailey, M. Brdys, K Malinowski, P. Tatjewski and A. Wozniak... Findeisen et al. (1980), in the sense that local models are used in the design of component control laws and a higher level coordination problem is...Vol. 1, pp. 590-591, 1985. 3. W. Findeisen , F.N. Bailley, M. Brdys, K. Malinowski, P. Tatjewski and A. Wozniak, Control Coordination in Hierarchical

  20. Control coordination abilities in shock combat sports

    Directory of Open Access Journals (Sweden)

    Natalya Boychenko

    2014-12-01

    Full Text Available Purpose: optimize the process control level of coordination abilities in martial arts. Material and Methods: analysis and compilation of scientific and methodological literature, interviews with coaches of drum martial arts, video analysis techniques, teacher observations. Results: identified specific types of coordination abilities in shock combat sports. Pod branny and offered specific and nonspecific tests to monitor the level of species athletes coordination abilities. Conclusion: it is determined that in order to achieve victory in the fight martial artists to navigate the space to be able to assess and manage dynamic and spatio-temporal parameters of movements, maintain balance, have a high coordination of movements. The proposed tests to monitor species coordination abilities athletes allow an objective assessment of not only the overall level of coordination, and the level of specific types of manifestations of this ability.

  1. Chromatin dynamics in genome stability

    DEFF Research Database (Denmark)

    Nair, Nidhi; Shoaib, Muhammad; Sørensen, Claus Storgaard

    2017-01-01

    Genomic DNA is compacted into chromatin through packaging with histone and non-histone proteins. Importantly, DNA accessibility is dynamically regulated to ensure genome stability. This is exemplified in the response to DNA damage where chromatin relaxation near genomic lesions serves to promote...... access of relevant enzymes to specific DNA regions for signaling and repair. Furthermore, recent data highlight genome maintenance roles of chromatin through the regulation of endogenous DNA-templated processes including transcription and replication. Here, we review research that shows the importance...... of chromatin structure regulation in maintaining genome integrity by multiple mechanisms including facilitating DNA repair and directly suppressing endogenous DNA damage....

  2. Development of the Coordination between Posture and Manual Control

    Science.gov (United States)

    Haddad, Jeffrey M.; Claxton, Laura J.; Keen, Rachel; Berthier, Neil E.; Riccio, Gary E.; Hamill, Joseph; Van Emmerik, Richard E. A.

    2012-01-01

    Studies have suggested that proper postural control is essential for the development of reaching. However, little research has examined the development of the coordination between posture and manual control throughout childhood. We investigated the coordination between posture and manual control in children (7- and 10-year-olds) and adults during…

  3. Distributed probing of chromatin structure in vivo reveals pervasive chromatin accessibility for expressed and non-expressed genes during tissue differentiation in C. elegans

    Directory of Open Access Journals (Sweden)

    Sha Ky

    2010-08-01

    Full Text Available Abstract Background Tissue differentiation is accompanied by genome-wide changes in the underlying chromatin structure and dynamics, or epigenome. By controlling when, where, and what regulatory factors have access to the underlying genomic DNA, the epigenome influences the cell's transcriptome and ultimately its function. Existing genomic methods for analyzing cell-type-specific changes in chromatin generally involve two elements: (i a source for purified cells (or nuclei of distinct types, and (ii a specific treatment that partitions or degrades chromatin by activity or structural features. For many cell types of great interest, such assays are limited by our inability to isolate the relevant cell populations in an organism or complex tissue containing an intertwined mixture of other cells. This limitation has confined available knowledge of chromatin dynamics to a narrow range of biological systems (cell types that can be sorted/separated/dissected in large numbers and tissue culture models or to amalgamations of diverse cell types (tissue chunks, whole organisms. Results Transgene-driven expression of DNA/chromatin modifying enzymes provides one opportunity to query chromatin structures in expression-defined cell subsets. In this work we combine in vivo expression of a bacterial DNA adenine methyltransferase (DAM with high throughput sequencing to sample tissue-specific chromatin accessibility on a genome-wide scale. We have applied the method (DALEC: Direct Asymmetric Ligation End Capture towards mapping a cell-type-specific view of genome accessibility as a function of differentiated state. Taking advantage of C. elegans strains expressing the DAM enzyme in diverse tissues (body wall muscle, gut, and hypodermis, our efforts yield a genome-wide dataset measuring chromatin accessibility at each of 538,000 DAM target sites in the C. elegans (diploid genome. Conclusions Validating the DALEC mapping results, we observe a strong association

  4. UV-induced structural changes in chromatin

    International Nuclear Information System (INIS)

    Lang, H.; Zimmer, C.; Vengerov, Yu.Yu.

    1985-01-01

    UV-induced structural alterations of chromatin were studied by means of CD, electron microscopic, and gel electrophoretic measurements. The results indicate that chromatin undergoes serious structural changes after irradiation even at very low fluences. In the low fluence range the structural transitions from the higher ordered chromatin structure to the unfolded state occur without detectable changes in the content of histone H1 and of the core histones. Histone H1 disappears only at fluences above 10 kJ/m 2 . Furthermore, DNA in chromatin is much more sensitive against UV-irradiation and shows a higher degree of strand scission relative to free DNA. While fragmentation in free DNA occurs at fluences above 15 kJ/m 2 , it occurs even at 5.5 kJ/m 2 in the case of chromatin. The biological meaning of the observed UV-induced structural alterations of chromatin is discussed. (author)

  5. The effect of higher order chromatin structure on DNA damage and repair

    International Nuclear Information System (INIS)

    Yasui, L.S.; Warters, R.L.; Higashikubo, R.

    1985-01-01

    Alterations in chromatin structure are thought to play an important role in various radiobiological end points, i.e., DNA damage, DNA damage repair and cell survival. The authors use here the isoleucine deprivation technique to decondense higher order chromatin structure and asses X-ray induced DNA damage, DNA damage repair and cell survival on cells with decondensed chromatin as compared to controls. This chromatin decondensation manifests itself as a 30 fold decrease in nuclear area occupied by heterochromatin, an increased rate of Micrococcal nuclease digestion, 15% increased ethidium bromide intercalation and an altered binding capacity of Hl histone. These chromatin/nuclear changes do not affect X-ray induced DNA damage as measured by the alkaline elution technique or cell survival but slows DNA damage repair by 2 fold. Therefore, even though the chromatin appears more accessible to DNA damage and repair processes, these particular nuclear changes do not affect the DNA damaging effects of X-rays and in addition, repair is not enhanced by the ''relaxed'' state of chromatin. It is proposed that the altered metabolic state of isoleucine deprived cells provides a less efficient system for the repair of X-ray induced DNA damage

  6. Neutron-scattering studies of chromatin

    International Nuclear Information System (INIS)

    Bradbury, E.M.; Baldwin, J.P.; Carpenter, B.G.; Hjelm, R.P.; Hancock, R.; Ibel, K.

    1976-01-01

    It is clear that a knowledge of the basic molecular structure of chromatin is a prerequisite for any progress toward an understanding of chromosome organization. With a two-component system, protein and nucleic acid, neutrons have a particularly powerful application to studies of the spatial arrangements of these components because of the ability, by contrast matching with H 2 O-D 2 O mixtures, to obtain neutron-scattering data on the individual components. With this approach it has been shown that the neutron diffraction of chromatin is consistent with a ''beads on a string'' model in which the bead consists of a protein core with DNA coiled on the outside. However, because chromatin is a gel and gives limited structural data, confirmation of such a model requires extension of the neutron studies by deuteration of specific chromatin components and the isolation of chromatin subunits. Although these studies are not complete, the neutron results so far obtained support the subunit model described above

  7. Chromatin challenges during DNA replication and repair

    DEFF Research Database (Denmark)

    Groth, Anja; Rocha, Walter; Verreault, Alain

    2007-01-01

    Inheritance and maintenance of the DNA sequence and its organization into chromatin are central for eukaryotic life. To orchestrate DNA-replication and -repair processes in the context of chromatin is a challenge, both in terms of accessibility and maintenance of chromatin organization. To meet...... the challenge of maintenance, cells have evolved efficient nucleosome-assembly pathways and chromatin-maturation mechanisms that reproduce chromatin organization in the wake of DNA replication and repair. The aim of this Review is to describe how these pathways operate and to highlight how the epigenetic...... landscape may be stably maintained even in the face of dramatic changes in chromatin structure....

  8. A Poly-ADP-Ribose Trigger Releases the Auto-Inhibition of a Chromatin Remodeling Oncogene

    DEFF Research Database (Denmark)

    Singh, Hari R; Nardozza, Aurelio P; Möller, Ingvar R

    2017-01-01

    DNA damage triggers chromatin remodeling by mechanisms that are poorly understood. The oncogene and chromatin remodeler ALC1/CHD1L massively decompacts chromatin in vivo yet is inactive prior to DNA-damage-mediated PARP1 induction. We show that the interaction of the ALC1 macrodomain......-macrodomain interactions, promotes an ungated conformation, and activates the remodeler's ATPase. ALC1 fragments lacking the regulatory macrodomain relax chromatin in vivo without requiring PARP1 activation. Further, the ATPase restricts the macrodomain's interaction with PARP1 under non-DNA damage conditions. Somatic...... cancer mutants disrupt ALC1's auto-inhibition and activate chromatin remodeling. Our data show that the NAD+-metabolite and nucleic acid PAR triggers ALC1 to drive chromatin relaxation. Modular allostery in this oncogene tightly controls its robust, DNA-damage-dependent activation....

  9. A chromatin insulator driving three-dimensional Polycomb response element (PRE) contacts and Polycomb association with the chromatin fiber

    DEFF Research Database (Denmark)

    Comet, Itys; Schuettengruber, Bernd; Sexton, Tom

    2011-01-01

    to insulate genes from regulatory elements or to take part in long-distance interactions. Using a high-resolution chromatin conformation capture (H3C) method, we show that the Drosophila gypsy insulator behaves as a conformational chromatin border that is able to prohibit contacts between a Polycomb response...... element (PRE) and a distal promoter. On the other hand, two spaced gypsy elements form a chromatin loop that is able to bring an upstream PRE in contact with a downstream gene to mediate its repression. Chromatin immunoprecipitation (ChIP) profiles of the Polycomb protein and its associated H3K27me3...... histone mark reflect this insulator-dependent chromatin conformation, suggesting that Polycomb action at a distance can be organized by local chromatin topology....

  10. Breakdowns in Coordination Between Air Traffic Controllers

    Science.gov (United States)

    Bearman, Chris; Orasanu, Judith; Miller, Ronald C.

    2011-01-01

    This talk outlines the complexity of coordination in air traffic control, introduces the NextGen technologies, identifies common causes for coordination breakdowns in air traffic control and examines whether these causes are likely to be reduced with the introduction of NextGen technologies. While some of the common causes of breakdowns will be reduced in a NextGen environment this conclusion should be drawn carefully given the current stage of development of the technologies and the observation that new technologies often shift problems rather than reduce them.

  11. Spectroscopic study of fast-neutron-irradiated chromatin

    International Nuclear Information System (INIS)

    Radu, L.; Gazdaru, D.; Constantinescu, B.

    2004-01-01

    The effects produced by fast neutrons (0-100 Gy) on chromatin structure were analyzed by (i) [ 1 H]-NMR spectroscopy, (ii) time resolved spectroscopy, and (iii) fluorescence resonance energy transfer (FRET). Two types of chromatin were tested: (i) a chromatin from a normal tissue (liver of Wistar rats) and (ii) a chromatin from a tumoral tissue (Guerin limphotrope epithelioma, a rat solid tumor). The fast-neutron action on chromatin determines greater values of the [ 1 H]-NMR transverse relaxation time, indicating a more injured structure. Time-resolved fluorescence measurements show that the relative contribution of the excited state lifetime of bound ethidium bromide to chromatin DNA diminishes with increasing irradiation doses. This reflects the damage that occurs in DNA structure: production of single- and double-strand breaks due to sugar and base modifications. By the FRET method, the distance between dansyl chloride and acridine orange coupled at chromatin was determined. This distance increases upon fast-neutron action. The radiosensitivity of the tumor tissue chromatin seems higher than that of the normal tissue chromatin, probably because of its higher (loose) euchromatin/(compact) heterochromatin ratio. As the values of the physical parameters analyzed are specific for a determined dose, the establishment of these parameters may constitute a criterion for the microdosimetry of chromatin radiolesions produced by fast neutrons. (author)

  12. Spectroscopic study of fast-neutron-irradiated chromatin

    Energy Technology Data Exchange (ETDEWEB)

    Radu, L. [V. Babes National Inst., Dept. of Molecular Genetics, Bucharest (Romania)]. E-mail: serbanradu@pcnet.ro; Gazdaru, D. [Bucharest Univ., Dept. of Biophysics, Physics Faculty, Bucharest (Romania); Constantinescu, B. [H. Hulubei National Inst., Dept. of Cyclotron, Bucharest (Romania)

    2004-02-01

    The effects produced by fast neutrons (0-100 Gy) on chromatin structure were analyzed by (i) [{sup 1}H]-NMR spectroscopy, (ii) time resolved spectroscopy, and (iii) fluorescence resonance energy transfer (FRET). Two types of chromatin were tested: (i) a chromatin from a normal tissue (liver of Wistar rats) and (ii) a chromatin from a tumoral tissue (Guerin limphotrope epithelioma, a rat solid tumor). The fast-neutron action on chromatin determines greater values of the [{sup 1}H]-NMR transverse relaxation time, indicating a more injured structure. Time-resolved fluorescence measurements show that the relative contribution of the excited state lifetime of bound ethidium bromide to chromatin DNA diminishes with increasing irradiation doses. This reflects the damage that occurs in DNA structure: production of single- and double-strand breaks due to sugar and base modifications. By the FRET method, the distance between dansyl chloride and acridine orange coupled at chromatin was determined. This distance increases upon fast-neutron action. The radiosensitivity of the tumor tissue chromatin seems higher than that of the normal tissue chromatin, probably because of its higher (loose) euchromatin/(compact) heterochromatin ratio. As the values of the physical parameters analyzed are specific for a determined dose, the establishment of these parameters may constitute a criterion for the microdosimetry of chromatin radiolesions produced by fast neutrons. (author)

  13. Studies on the Chromatin Isolated from the Organs of Animals Received Whole-body X-ray Irradiation

    International Nuclear Information System (INIS)

    Han, Su Nam

    1967-01-01

    Within experimental chromatin, the total protein: DNA ratio did not vary in the same organs of control and irradiated rats. However, the amount of RNA and total protein associated with the DNA varied considerably among the different types of chromatin. In particular, the content of chromatin was the highest in the irradiated tissue, and the lowest in the chromatin control tissue. RNA and total protein ratio of chromatins from brain, liver, testis and spleen declined with experimental organs. 2) There was the same quantitative relationship between the amount of RNA and the amount histone-protein associated with DNA in each chromatin. 3) RNA:DNA ratio of chromatin showed a 1.5-2 times increase in the irradiated organs except brain. However, RNA:DNA ratio was decreased in chromatin by irradiation. 4) Histone-protein: Residual protein ratio was greatly varied among the organs. However, the effect was not found by irradiation. 5) Priming activity of chromatins showed a higher value in testis and the activity was greater in organs with higher metabolic activity. 6) Inhibition of Actinomycin D observable in chromatin for testis, liver, spleen and brain declined without relationship between irradiated and non-irradiated conditions. Ammonium sulfate in DNA of chromatin from histone showed increased priming activity with dissociation by Electrostatics. It may give different effect of ammonium sulfate on stimulation by property of chromatins. 7) It is suggested that the results support a proposal that the higher sensitivity of radioactive in testis, spleen by irradiated showed a increase and decrease lower-sensitivity of radioactive from brain, liver than did priming activity under the radioactive conditions.

  14. Studies on the Chromatin Isolated from the Organs of Animals Received Whole-body X-ray Irradiation

    Energy Technology Data Exchange (ETDEWEB)

    Han, Su Nam [Seoul National University College of Medicine, Seoul (Korea, Republic of)

    1967-09-15

    Within experimental chromatin, the total protein: DNA ratio did not vary in the same organs of control and irradiated rats. However, the amount of RNA and total protein associated with the DNA varied considerably among the different types of chromatin. In particular, the content of chromatin was the highest in the irradiated tissue, and the lowest in the chromatin control tissue. RNA and total protein ratio of chromatins from brain, liver, testis and spleen declined with experimental organs. 2) There was the same quantitative relationship between the amount of RNA and the amount histone-protein associated with DNA in each chromatin. 3) RNA:DNA ratio of chromatin showed a 1.5-2 times increase in the irradiated organs except brain. However, RNA:DNA ratio was decreased in chromatin by irradiation. 4) Histone-protein: Residual protein ratio was greatly varied among the organs. However, the effect was not found by irradiation. 5) Priming activity of chromatins showed a higher value in testis and the activity was greater in organs with higher metabolic activity. 6) Inhibition of Actinomycin D observable in chromatin for testis, liver, spleen and brain declined without relationship between irradiated and non-irradiated conditions. Ammonium sulfate in DNA of chromatin from histone showed increased priming activity with dissociation by Electrostatics. It may give different effect of ammonium sulfate on stimulation by property of chromatins. 7) It is suggested that the results support a proposal that the higher sensitivity of radioactive in testis, spleen by irradiated showed a increase and decrease lower-sensitivity of radioactive from brain, liver than did priming activity under the radioactive conditions.

  15. Structural chromatin organization as a factor determining the rate of chromatin endonucleolysis in irradiated and intact thymocytes

    International Nuclear Information System (INIS)

    Ryabchenko, N.I.; Ivannik, B.P.

    1987-01-01

    A study was made of chromatin endonucleolysis in hypotonized thymocytes incubating in digestive buffers containing different concentrations of potassium, magnesium, calcium, and mercaptoethanol. Inhibition of endonucleolysis by univalent cation during the first 20 min of incubation was followed by intensive chromatin degradation. A decrease in free potassium content retarded chromatin degradation and enhanced the inhibiting effect of the univalent cations. The regularities of changes in the rate of chromatin endonucleolysis in different digestive buffers were similar with both exposed and intact thymocytes

  16. Towards Coordination and Control of Multi-robot Systems

    DEFF Research Database (Denmark)

    Quottrup, Michael Melholt

    This thesis focuses on control and coordination of mobile multi-robot systems (MRS). MRS can often deal with tasks that are difficult to be accomplished by a single robot. One of the challenges is the need to control, coordinate and synchronize the operation of several robots to perform some...... specified task. This calls for new strategies and methods which allow the desired system behavior to be specified in a formal and succinct way. Two different frameworks for the coordination and control of MRS have been investigated. Framework I - A network of robots is modeled as a network of multi...... a requirement specification in Computational Tree Logic (CTL) for a network of robots. The result is a set of motion plans for the robots which satisfy the specification. Framework II - A framework for controller synthesis for a single robot with respect to requirement specification in Linear-time Temporal...

  17. Megabase replication domains along the human genome: relation to chromatin structure and genome organisation.

    Science.gov (United States)

    Audit, Benjamin; Zaghloul, Lamia; Baker, Antoine; Arneodo, Alain; Chen, Chun-Long; d'Aubenton-Carafa, Yves; Thermes, Claude

    2013-01-01

    In higher eukaryotes, the absence of specific sequence motifs, marking the origins of replication has been a serious hindrance to the understanding of (i) the mechanisms that regulate the spatio-temporal replication program, and (ii) the links between origins activation, chromatin structure and transcription. In this chapter, we review the partitioning of the human genome into megabased-size replication domains delineated as N-shaped motifs in the strand compositional asymmetry profiles. They collectively span 28.3% of the genome and are bordered by more than 1,000 putative replication origins. We recapitulate the comparison of this partition of the human genome with high-resolution experimental data that confirms that replication domain borders are likely to be preferential replication initiation zones in the germline. In addition, we highlight the specific distribution of experimental and numerical chromatin marks along replication domains. Domain borders correspond to particular open chromatin regions, possibly encoded in the DNA sequence, and around which replication and transcription are highly coordinated. These regions also present a high evolutionary breakpoint density, suggesting that susceptibility to breakage might be linked to local open chromatin fiber state. Altogether, this chapter presents a compartmentalization of the human genome into replication domains that are landmarks of the human genome organization and are likely to play a key role in genome dynamics during evolution and in pathological situations.

  18. Interphase Chromosome Conformation and Chromatin-Chromatin Interactions in Human Epithelial Cells Cultured Under Different Gravity Conditions

    Science.gov (United States)

    Zhang, Ye; Wong, Michael; Hada, Megumi; Wu, Honglu

    2015-01-01

    Microgravity has been shown to alter global gene expression patterns and protein levels both in cultured cells and animal models. It has been suggested that the packaging of chromatin fibers in the interphase nucleus is closely related to genome function, and the changes in transcriptional activity are tightly correlated with changes in chromatin folding. This study explores the changes of chromatin conformation and chromatin-chromatin interactions in the simulated microgravity environment, and investigates their correlation to the expression of genes located at different regions of the chromosome. To investigate the folding of chromatin in interphase under various culture conditions, human epithelial cells, fibroblasts, and lymphocytes were fixed in the G1 phase. Interphase chromosomes were hybridized with a multicolor banding in situ hybridization (mBAND) probe for chromosome 3 which distinguishes six regions of the chromosome as separate colors. After images were captured with a laser scanning confocal microscope, the 3-dimensional structure of interphase chromosome 3 was reconstructed at multi-mega base pair scale. In order to determine the effects of microgravity on chromosome conformation and orientation, measures such as distance between homologous pairs, relative orientation of chromosome arms about a shared midpoint, and orientation of arms within individual chromosomes were all considered as potentially impacted by simulated microgravity conditions. The studies revealed non-random folding of chromatin in interphase, and suggested an association of interphase chromatin folding with radiation-induced chromosome aberration hotspots. Interestingly, the distributions of genes with expression changes over chromosome 3 in cells cultured under microgravity environment are apparently clustered on specific loci and chromosomes. This data provides important insights into how mammalian cells respond to microgravity at molecular level.

  19. Chromatin meets its organizers.

    Science.gov (United States)

    Bodnar, Megan S; Spector, David L

    2013-06-06

    Chromatin organization and gene-gene interactions are critical components of carrying out developmental programs. Phillips-Cremins et al. identify a series of unexpected architectural proteins that work in a combinatorial manner to functionally organize chromatin in a cell-type-specific manner at the submegabase-length scale. Copyright © 2013 Elsevier Inc. All rights reserved.

  20. Genome-wide identification of physically clustered genes suggests chromatin-level co-regulation in male reproductive development in Arabidopsis thaliana.

    Science.gov (United States)

    Reimegård, Johan; Kundu, Snehangshu; Pendle, Ali; Irish, Vivian F; Shaw, Peter; Nakayama, Naomi; Sundström, Jens F; Emanuelsson, Olof

    2017-04-07

    Co-expression of physically linked genes occurs surprisingly frequently in eukaryotes. Such chromosomal clustering may confer a selective advantage as it enables coordinated gene regulation at the chromatin level. We studied the chromosomal organization of genes involved in male reproductive development in Arabidopsis thaliana. We developed an in-silico tool to identify physical clusters of co-regulated genes from gene expression data. We identified 17 clusters (96 genes) involved in stamen development and acting downstream of the transcriptional activator MS1 (MALE STERILITY 1), which contains a PHD domain associated with chromatin re-organization. The clusters exhibited little gene homology or promoter element similarity, and largely overlapped with reported repressive histone marks. Experiments on a subset of the clusters suggested a link between expression activation and chromatin conformation: qRT-PCR and mRNA in situ hybridization showed that the clustered genes were up-regulated within 48 h after MS1 induction; out of 14 chromatin-remodeling mutants studied, expression of clustered genes was consistently down-regulated only in hta9/hta11, previously associated with metabolic cluster activation; DNA fluorescence in situ hybridization confirmed that transcriptional activation of the clustered genes was correlated with open chromatin conformation. Stamen development thus appears to involve transcriptional activation of physically clustered genes through chromatin de-condensation. © The Author(s) 2017. Published by Oxford University Press on behalf of Nucleic Acids Research.

  1. Comparative analysis of chromatin landscape in regulatory regions of human housekeeping and tissue specific genes

    Directory of Open Access Journals (Sweden)

    Dasgupta Dipayan

    2005-05-01

    Full Text Available Abstract Background Global regulatory mechanisms involving chromatin assembly and remodelling in the promoter regions of genes is implicated in eukaryotic transcription control especially for genes subjected to spatial and temporal regulation. The potential to utilise global regulatory mechanisms for controlling gene expression might depend upon the architecture of the chromatin in and around the gene. In-silico analysis can yield important insights into this aspect, facilitating comparison of two or more classes of genes comprising of a large number of genes within each group. Results In the present study, we carried out a comparative analysis of chromatin characteristics in terms of the scaffold/matrix attachment regions, nucleosome formation potential and the occurrence of repetitive sequences, in the upstream regulatory regions of housekeeping and tissue specific genes. Our data show that putative scaffold/matrix attachment regions are more abundant and nucleosome formation potential is higher in the 5' regions of tissue specific genes as compared to the housekeeping genes. Conclusion The differences in the chromatin features between the two groups of genes indicate the involvement of chromatin organisation in the control of gene expression. The presence of global regulatory mechanisms mediated through chromatin organisation can decrease the burden of invoking gene specific regulators for maintenance of the active/silenced state of gene expression. This could partially explain the lower number of genes estimated in the human genome.

  2. Radiation response and chromatin dynamics

    International Nuclear Information System (INIS)

    Ikura, Tsuyoshi

    2009-01-01

    Described is a recent progress in studies of chromatin structural alterations induced by DNA damage by radiation. DNA in eukaryotes exists in the chromatin structure and different mechanisms of response to damage and repair of DNA from those in prokaryotes have been recognized. Chromatin is composed from its unit structure of mono-nucleosome, which is formed from DNA and an octamer of core histones of H2A, H2B, H3 and H4. When DNA is damaged, histone structural alterations are required for repair factors and checkpoint proteins to access the damaged site. At the actual genome damage, chemical modification of histone to work as a code occurs dependently on the damage where chromatin remodeling factors and histone chaperone participate for structural alteration and remodeling. As well, the exchange of histone variants and fluidization of histones are recently reported. Known chemical modification involves phosphorylation, acetylation and ubiquitination of H2AX (a variant of H2A), and acetylation and methylation of H3. Each complex of TIP60, NuA4 and INO80 is known to be included in the regulation of chromatin with damaged/repaired DNA for remodeling, but little is known about recruitment of the factors concerned at the damage site. Regulatory mechanisms in above chromatin dynamics with consideration of quality and timing of radiation should be further elucidated for understanding the precise response to DNA damage. (K.T.)

  3. Coordination control of distributed systems

    CERN Document Server

    Villa, Tiziano

    2015-01-01

    This book describes how control of distributed systems can be advanced by an integration of control, communication, and computation. The global control objectives are met by judicious combinations of local and nonlocal observations taking advantage of various forms of communication exchanges between distributed controllers. Control architectures are considered according to  increasing degrees of cooperation of local controllers:  fully distributed or decentralized controlcontrol with communication between controllerscoordination control, and multilevel control.  The book covers also topics bridging computer science, communication, and control, like communication for control of networks, average consensus for distributed systems, and modeling and verification of discrete and of hybrid systems. Examples and case studies are introduced in the first part of the text and developed throughout the book. They include: control of underwater vehicles, automated-guided vehicles on a container terminal, contro...

  4. CTCF-dependent chromatin bias constitutes transient epigenetic memory of the mother at the H19-Igf2 imprinting control region in prospermatogonia.

    Directory of Open Access Journals (Sweden)

    Dong-Hoon Lee

    2010-11-01

    Full Text Available Genomic imprints-parental allele-specific DNA methylation marks at the differentially methylated regions (DMRs of imprinted genes-are erased and reestablished in germ cells according to the individual's sex. Imprint establishment at paternally methylated germ line DMRs occurs in fetal male germ cells. In prospermatogonia, the two unmethylated alleles exhibit different rates of de novo methylation at the H19/Igf2 imprinting control region (ICR depending on parental origin. We investigated the nature of this epigenetic memory using bisulfite sequencing and allele-specific ChIP-SNuPE assays. We found that the chromatin composition in fetal germ cells was biased at the ICR between the two alleles with the maternally inherited allele exhibiting more H3K4me3 and less H3K9me3 than the paternally inherited allele. We determined genetically that the chromatin bias, and also the delayed methylation establishment in the maternal allele, depended on functional CTCF insulator binding sites in the ICR. Our data suggest that, in primordial germ cells, maternally inherited allele-specific CTCF binding sets up allele-specific chromatin differences at the ICR. The erasure of these allele-specific chromatin marks is not complete before the process of de novo methylation imprint establishment begins. CTCF-dependent allele-specific chromatin composition imposes a maternal allele-specific delay on de novo methylation imprint establishment at the H19/Igf2 ICR in prospermatogonia.

  5. New Face for Chromatin-Related Mesenchymal Modulator: n-CHD9 Localizes to Nucleoli and Interacts With Ribosomal Genes.

    Science.gov (United States)

    Salomon-Kent, Ronit; Marom, Ronit; John, Sam; Dundr, Miroslav; Schiltz, Louis R; Gutierrez, Jose; Workman, Jerry; Benayahu, Dafna; Hager, Gordon L

    2015-09-01

    Mesenchymal stem cells' differentiation into several lineages is coordinated by a complex of transcription factors and co-regulators which bind to specific gene promoters. The Chromatin-Related Mesenchymal Modulator, CHD9 demonstrated in vitro its ability for remodeling activity to reposition nucleosomes in an ATP-dependent manner. Epigenetically, CHD9 binds with modified H3-(K9me2/3 and K27me3). Previously, we presented a role for CHD9 with RNA Polymerase II (Pol II)-dependent transcription of tissue specific genes. Far less is known about CHD9 function in RNA Polymerase I (Pol I) related transcription of the ribosomal locus that also drives specific cell fate. We here describe a new form, the nucleolar CHD9 (n-CHD9) that is dynamically associated with Pol I, fibrillarin, and upstream binding factor (UBF) in the nucleoli, as shown by imaging and molecular approaches. Inhibitors of transcription disorganized the nucleolar compartment of transcription sites where rDNA is actively transcribed. Collectively, these findings link n-CHD9 with RNA pol I transcription in fibrillar centers. Using chromatin immunoprecipitation (ChIP) and tilling arrays (ChIP- chip), we find an association of n-CHD9 with Pol I related to rRNA biogenesis. Our new findings support the role for CHD9 in chromatin regulation and association with rDNA genes, in addition to its already known function in transcription control of tissue specific genes. © 2015 Wiley Periodicals, Inc.

  6. A novel coordinated control for Integrated Pressurized Water Reactor

    International Nuclear Information System (INIS)

    Zhao, Yuxin; Du, Xue; Xia, Genglei; Gao, Feng

    2015-01-01

    Highlights: • Proposed IPWR coordinated control strategy to avoid flow instability of OTSG. • Tuned PID controller parameters by Fuzzy kernel wavelet neural network with kernel trick and adaptive variable step-size. • Transition process exhibit the effectiveness of the novel IPWR control system. - Abstract: Integrated Pressurized Water Reactor (IPWR) has the characteristic of strong coupling, nonlinearity and complicated dynamic performance, which requires high standards of the control strategy and controller design. Most of IPWR systems utilize control strategy of ideal steady-state and PID controller, even though this strategy causes flow instability in the once through steam generator (OTSG) in low load conditions. Besides, the simple form of PID limits the performance developing which could not appropriately satisfy the requirements for quality. Motivated by these drawbacks, this paper proposes an IPWR coordinated control strategy and adopts PID controller to control each subsystem. The control strategy considers the system as a two-level hierarchical control system, and considers coordinating controller and bottom controllers. In the period of controller design, this strategy utilizes PID controller to control each subsystem, and modifies the controller parameters in real time by Fuzzy-KWNN algorithm, which adaptively achieves the system adjustment. Finally, simulation results are presented to exhibit the effectiveness of the proposed IPWR control system

  7. A Long-Distance Chromatin Affair

    NARCIS (Netherlands)

    Denker, Annette; de Laat, Wouter

    2015-01-01

    Changes in transcription factor binding sequences result in correlated changes in chromatin composition locally and at sites hundreds of kilobases away. New studies demonstrate that this concordance is mediated via spatial chromatin interactions that constitute regulatory modules of the human

  8. Dual motor drive vehicle speed synchronization and coordination control strategy

    Science.gov (United States)

    Huang, Hao; Tu, Qunzhang; Jiang, Chenming; Ma, Limin; Li, Pei; Zhang, Hongxing

    2018-04-01

    Multi-motor driven systems are more and more widely used in the field of electric engineering vehicles, as a result of the road conditions and the variable load of engineering vehicles, makes multi-motors synchronization coordinated control system as a key point of the development of the electric vehicle drive system. This paper based on electrical machinery transmission speed in the process of engineering vehicles headed for coordinated control problem, summarized control strategies at home and abroad in recent years, made analysis and comparison of the characteristics, finally discussed the trend of development of the multi-motor coordination control, provided a reference for synchronized control system research of electric drive engineering vehicles.

  9. Cardiac-enriched BAF chromatin-remodeling complex subunit Baf60c regulates gene expression programs essential for heart development and function

    Directory of Open Access Journals (Sweden)

    Xin Sun

    2018-01-01

    Full Text Available How chromatin-remodeling complexes modulate gene networks to control organ-specific properties is not well understood. For example, Baf60c (Smarcd3 encodes a cardiac-enriched subunit of the SWI/SNF-like BAF chromatin complex, but its role in heart development is not fully understood. We found that constitutive loss of Baf60c leads to embryonic cardiac hypoplasia and pronounced cardiac dysfunction. Conditional deletion of Baf60c in cardiomyocytes resulted in postnatal dilated cardiomyopathy with impaired contractile function. Baf60c regulates a gene expression program that includes genes encoding contractile proteins, modulators of sarcomere function, and cardiac metabolic genes. Many of the genes deregulated in Baf60c null embryos are targets of the MEF2/SRF co-factor Myocardin (MYOCD. In a yeast two-hybrid screen, we identified MYOCD as a BAF60c interacting factor; we showed that BAF60c and MYOCD directly and functionally interact. We conclude that Baf60c is essential for coordinating a program of gene expression that regulates the fundamental functional properties of cardiomyocytes.

  10. Coordinated Voltage Control Scheme for VSC-HVDC Connected Wind Power Plants

    DEFF Research Database (Denmark)

    Guo, Yifei; Gao, Houlei; Wu, Qiuwei

    2017-01-01

    This paper proposes a coordinated voltage control scheme based on model predictive control (MPC) for voltage source converter‐based high voltage direct current (VSC‐HVDC) connected wind power plants (WPPs). In the proposed scheme, voltage regulation capabilities of VSC and WTGs are fully utilized...... and optimally coordinated. Two control modes, namely operation optimization mode and corrective mode, are designed to coordinate voltage control and economic operation of the system. In the first mode, the control objective includes the bus voltages, power losses and dynamic Var reserves of wind turbine...

  11. New mitotic regulators released from chromatin

    Directory of Open Access Journals (Sweden)

    Hideki eYokoyama

    2013-12-01

    Full Text Available Faithful action of the mitotic spindle segregates duplicated chromosomes into daughter cells. Perturbations of this process result in chromosome mis-segregation, leading to chromosomal instability and cancer development. Chromosomes are not simply passengers segregated by spindle microtubules but rather play a major active role in spindle assembly. The GTP bound form of the Ran GTPase (RanGTP, produced around chromosomes, locally activates spindle assembly factors. Recent studies have uncovered that chromosomes organize mitosis beyond spindle formation. They distinctly regulate other mitotic events, such as spindle maintenance in anaphase, which is essential for chromosome segregation. Furthermore, the direct function of chromosomes is not only to produce RanGTP but, in addition, to release key mitotic regulators from chromatin. Chromatin-remodeling factors and nuclear pore complex proteins, which have established functions on chromatin in interphase, dissociate from mitotic chromatin and function in spindle assembly or maintenance. Thus, chromosomes actively organize their own segregation using chromatin-releasing mitotic regulators as well as RanGTP.

  12. A transient ischemic environment induces reversible compaction of chromatin.

    Science.gov (United States)

    Kirmes, Ina; Szczurek, Aleksander; Prakash, Kirti; Charapitsa, Iryna; Heiser, Christina; Musheev, Michael; Schock, Florian; Fornalczyk, Karolina; Ma, Dongyu; Birk, Udo; Cremer, Christoph; Reid, George

    2015-11-05

    Cells detect and adapt to hypoxic and nutritional stress through immediate transcriptional, translational and metabolic responses. The environmental effects of ischemia on chromatin nanostructure were investigated using single molecule localization microscopy of DNA binding dyes and of acetylated histones, by the sensitivity of chromatin to digestion with DNAseI, and by fluorescence recovery after photobleaching (FRAP) of core and linker histones. Short-term oxygen and nutrient deprivation of the cardiomyocyte cell line HL-1 induces a previously undescribed chromatin architecture, consisting of large, chromatin-sparse voids interspersed between DNA-dense hollow helicoid structures 40-700 nm in dimension. The chromatin compaction is reversible, and upon restitution of normoxia and nutrients, chromatin transiently adopts a more open structure than in untreated cells. The compacted state of chromatin reduces transcription, while the open chromatin structure induced upon recovery provokes a transitory increase in transcription. Digestion of chromatin with DNAseI confirms that oxygen and nutrient deprivation induces compaction of chromatin. Chromatin compaction is associated with depletion of ATP and redistribution of the polyamine pool into the nucleus. FRAP demonstrates that core histones are not displaced from compacted chromatin; however, the mobility of linker histone H1 is considerably reduced, to an extent that far exceeds the difference in histone H1 mobility between heterochromatin and euchromatin. These studies exemplify the dynamic capacity of chromatin architecture to physically respond to environmental conditions, directly link cellular energy status to chromatin compaction and provide insight into the effect ischemia has on the nuclear architecture of cells.

  13. Long range epigenetic silencing is a trans-species mechanism that results in cancer specific deregulation by overriding the chromatin domains of normal cells.

    Science.gov (United States)

    Forn, Marta; Muñoz, Mar; Tauriello, Daniele V F; Merlos-Suárez, Anna; Rodilla, Verónica; Bigas, Anna; Batlle, Eduard; Jordà, Mireia; Peinado, Miguel A

    2013-12-01

    DNA methylation and chromatin remodeling are frequently implicated in the silencing of genes involved in carcinogenesis. Long Range Epigenetic Silencing (LRES) is a mechanism of gene inactivation that affects multiple contiguous CpG islands and has been described in different human cancer types. However, it is unknown whether there is a coordinated regulation of the genes embedded in these regions in normal cells and in early stages of tumor progression. To better characterize the molecular events associated with the regulation and remodeling of these regions we analyzed two regions undergoing LRES in human colon cancer in the mouse model. We demonstrate that LRES also occurs in murine cancer in vivo and mimics the molecular features of the human phenomenon, namely, downregulation of gene expression, acquisition of inactive histone marks, and DNA hypermethylation of specific CpG islands. The genes embedded in these regions showed a dynamic and autonomous regulation during mouse intestinal cell differentiation, indicating that, in the framework considered here, the coordinated regulation in LRES is restricted to cancer. Unexpectedly, benign adenomas in Apc(Min/+) mice showed overexpression of most of the genes affected by LRES in cancer, which suggests that the repressive remodeling of the region is a late event. Chromatin immunoprecipitation analysis of the transcriptional insulator CTCF in mouse colon cancer cells revealed disrupted chromatin domain boundaries as compared with normal cells. Malignant regression of cancer cells by in vitro differentiation resulted in partial reversion of LRES and gain of CTCF binding. We conclude that genes in LRES regions are plastically regulated in cell differentiation and hyperproliferation, but are constrained to a coordinated repression by abolishing boundaries and the autonomous regulation of chromatin domains in cancer cells. Copyright © 2013 Federation of European Biochemical Societies. Published by Elsevier B.V. All

  14. Neuron-specific chromatin remodeling: a missing link in epigenetic mechanisms underlying synaptic plasticity, memory, and intellectual disability disorders.

    Science.gov (United States)

    Vogel-Ciernia, Annie; Wood, Marcelo A

    2014-05-01

    Long-term memory formation requires the coordinated regulation of gene expression. Until recently nucleosome remodeling, one of the major epigenetic mechanisms for controlling gene expression, had been largely unexplored in the field of neuroscience. Nucleosome remodeling is carried out by chromatin remodeling complexes (CRCs) that interact with DNA and histones to physically alter chromatin structure and ultimately regulate gene expression. Human exome sequencing and gene wide association studies have linked mutations in CRC subunits to intellectual disability disorders, autism spectrum disorder and schizophrenia. However, how mutations in CRC subunits were related to human cognitive disorders was unknown. There appears to be both developmental and adult specific roles for the neuron specific CRC nBAF (neuronal Brg1/hBrm Associated Factor). nBAF regulates gene expression required for dendritic arborization during development, and in the adult, contributes to long-term potentiation, a form of synaptic plasticity, and long-term memory. We propose that the nBAF complex is a novel epigenetic mechanism for regulating transcription required for long-lasting forms of synaptic plasticity and memory processes and that impaired nBAF function may result in human cognitive disorders. Copyright © 2013 Elsevier Ltd. All rights reserved.

  15. Chromatin versus pathogens: the function of epigenetics in plant immunity

    Science.gov (United States)

    Ding, Bo; Wang, Guo-Liang

    2015-01-01

    To defend against pathogens, plants have developed a sophisticated innate immunity that includes effector recognition, signal transduction, and rapid defense responses. Recent evidence has demonstrated that plants utilize the epigenetic control of gene expression to fine-tune their defense when challenged by pathogens. In this review, we highlight the current understanding of the molecular mechanisms of histone modifications (i.e., methylation, acetylation, and ubiquitination) and chromatin remodeling that contribute to plant immunity against pathogens. Functions of key histone-modifying and chromatin remodeling enzymes are discussed. PMID:26388882

  16. Coordinate control of integral reactor based on single neuron PID controller

    International Nuclear Information System (INIS)

    Liu Yan; Xia Hong

    2014-01-01

    As one of the main type of reactors in the future, the development of the integral reactor has attracted worldwide attention. On the basis of understanding the background of the integral reactor, the author will be familiar with and master the power control of reactor and the feedwater flow control of steam generator, and the speed control of turbine (turbine speed control is associated with the turbine load control). According to the expectative program 'reactor power following turbine load' of the reactor, it will make coordinate control of the three and come to a overall control scheme. The author will use the supervisory learning algorithm of Hebb for single neuron PID controller with self-adaptation to study the coordinate control of integral reactor. Compared with conventional PI or PID controller, to a certain extent, it solves the problems that traditional PID controller is not easy to tune real-time parameters and lack of effective control for a number of complex processes and slow-varying parameter systems. It improves the security, reliability, stability and flexibility of control process and achieves effective control of the system. (authors)

  17. Optical tweezers stretching of chromatin

    NARCIS (Netherlands)

    Pope, L.H.; Bennink, Martin L.; Greve, Jan

    2003-01-01

    Recently significant success has emerged from exciting research involving chromatin stretching using optical tweezers. These experiments, in which a single chromatin fibre is attached by one end to a micron-sized bead held in an optical trap and to a solid surface or second bead via the other end,

  18. Flightless I (Drosophila) homolog facilitates chromatin accessibility of the estrogen receptor α target genes in MCF-7 breast cancer cells

    Energy Technology Data Exchange (ETDEWEB)

    Jeong, Kwang Won, E-mail: kwjeong@gachon.ac.kr

    2014-04-04

    Highlights: • H3K4me3 and Pol II binding at TFF1 promoter were reduced in FLII-depleted MCF-7 cells. • FLII is required for chromatin accessibility of the enhancer of ERalpha target genes. • Depletion of FLII causes inhibition of proliferation of MCF-7 cells. - Abstract: The coordinated activities of multiple protein complexes are essential to the remodeling of chromatin structure and for the recruitment of RNA polymerase II (Pol II) to the promoter in order to facilitate the initiation of transcription in nuclear receptor-mediated gene expression. Flightless I (Drosophila) homolog (FLII), a nuclear receptor coactivator, is associated with the SWI/SNF-chromatin remodeling complex during estrogen receptor (ER)α-mediated transcription. However, the function of FLII in estrogen-induced chromatin opening has not been fully explored. Here, we show that FLII plays a critical role in establishing active histone modification marks and generating the open chromatin structure of ERα target genes. We observed that the enhancer regions of ERα target genes are heavily occupied by FLII, and histone H3K4me3 and Pol II binding induced by estrogen are decreased in FLII-depleted MCF-7 cells. Furthermore, formaldehyde-assisted isolation of regulatory elements (FAIRE)-quantitative polymerase chain reaction (qPCR) experiments showed that depletion of FLII resulted in reduced chromatin accessibility of multiple ERα target genes. These data suggest FLII as a key regulator of ERα-mediated transcription through its role in regulating chromatin accessibility for the binding of RNA Polymerase II and possibly other transcriptional coactivators.

  19. Flightless I (Drosophila) homolog facilitates chromatin accessibility of the estrogen receptor α target genes in MCF-7 breast cancer cells

    International Nuclear Information System (INIS)

    Jeong, Kwang Won

    2014-01-01

    Highlights: • H3K4me3 and Pol II binding at TFF1 promoter were reduced in FLII-depleted MCF-7 cells. • FLII is required for chromatin accessibility of the enhancer of ERalpha target genes. • Depletion of FLII causes inhibition of proliferation of MCF-7 cells. - Abstract: The coordinated activities of multiple protein complexes are essential to the remodeling of chromatin structure and for the recruitment of RNA polymerase II (Pol II) to the promoter in order to facilitate the initiation of transcription in nuclear receptor-mediated gene expression. Flightless I (Drosophila) homolog (FLII), a nuclear receptor coactivator, is associated with the SWI/SNF-chromatin remodeling complex during estrogen receptor (ER)α-mediated transcription. However, the function of FLII in estrogen-induced chromatin opening has not been fully explored. Here, we show that FLII plays a critical role in establishing active histone modification marks and generating the open chromatin structure of ERα target genes. We observed that the enhancer regions of ERα target genes are heavily occupied by FLII, and histone H3K4me3 and Pol II binding induced by estrogen are decreased in FLII-depleted MCF-7 cells. Furthermore, formaldehyde-assisted isolation of regulatory elements (FAIRE)-quantitative polymerase chain reaction (qPCR) experiments showed that depletion of FLII resulted in reduced chromatin accessibility of multiple ERα target genes. These data suggest FLII as a key regulator of ERα-mediated transcription through its role in regulating chromatin accessibility for the binding of RNA Polymerase II and possibly other transcriptional coactivators

  20. Optimal coordination and control of posture and movements.

    Science.gov (United States)

    Johansson, Rolf; Fransson, Per-Anders; Magnusson, Måns

    2009-01-01

    This paper presents a theoretical model of stability and coordination of posture and locomotion, together with algorithms for continuous-time quadratic optimization of motion control. Explicit solutions to the Hamilton-Jacobi equation for optimal control of rigid-body motion are obtained by solving an algebraic matrix equation. The stability is investigated with Lyapunov function theory and it is shown that global asymptotic stability holds. It is also shown how optimal control and adaptive control may act in concert in the case of unknown or uncertain system parameters. The solution describes motion strategies of minimum effort and variance. The proposed optimal control is formulated to be suitable as a posture and movement model for experimental validation and verification. The combination of adaptive and optimal control makes this algorithm a candidate for coordination and control of functional neuromuscular stimulation as well as of prostheses. Validation examples with experimental data are provided.

  1. Structured illumination to spatially map chromatin motions.

    Science.gov (United States)

    Bonin, Keith; Smelser, Amanda; Moreno, Naike Salvador; Holzwarth, George; Wang, Kevin; Levy, Preston; Vidi, Pierre-Alexandre

    2018-05-01

    We describe a simple optical method that creates structured illumination of a photoactivatable probe and apply this method to characterize chromatin motions in nuclei of live cells. A laser beam coupled to a diffractive optical element at the back focal plane of an excitation objective generates an array of near diffraction-limited beamlets with FWHM of 340  ±  30  nm, which simultaneously photoactivate a 7  ×  7 matrix pattern of GFP-labeled histones, with spots 1.70  μm apart. From the movements of the photoactivated spots, we map chromatin diffusion coefficients at multiple microdomains of the cell nucleus. The results show correlated motions of nearest chromatin microdomain neighbors, whereas chromatin movements are uncorrelated at the global scale of the nucleus. The method also reveals a DNA damage-dependent decrease in chromatin diffusion. The diffractive optical element instrumentation can be easily and cheaply implemented on commercial inverted fluorescence microscopes to analyze adherent cell culture models. A protocol to measure chromatin motions in nonadherent human hematopoietic stem and progenitor cells is also described. We anticipate that the method will contribute to the identification of the mechanisms regulating chromatin mobility, which influences most genomic processes and may underlie the biogenesis of genomic translocations associated with hematologic malignancies. (2018) COPYRIGHT Society of Photo-Optical Instrumentation Engineers (SPIE).

  2. Map of open and closed chromatin domains in Drosophila genome.

    Science.gov (United States)

    Milon, Beatrice; Sun, Yezhou; Chang, Weizhong; Creasy, Todd; Mahurkar, Anup; Shetty, Amol; Nurminsky, Dmitry; Nurminskaya, Maria

    2014-11-18

    Chromatin compactness has been considered a major determinant of gene activity and has been associated with specific chromatin modifications in studies on a few individual genetic loci. At the same time, genome-wide patterns of open and closed chromatin have been understudied, and are at present largely predicted from chromatin modification and gene expression data. However the universal applicability of such predictions is not self-evident, and requires experimental verification. We developed and implemented a high-throughput analysis for general chromatin sensitivity to DNase I which provides a comprehensive epigenomic assessment in a single assay. Contiguous domains of open and closed chromatin were identified by computational analysis of the data, and correlated to other genome annotations including predicted chromatin "states", individual chromatin modifications, nuclear lamina interactions, and gene expression. While showing that the widely trusted predictions of chromatin structure are correct in the majority of cases, we detected diverse "exceptions" from the conventional rules. We found a profound paucity of chromatin modifications in a major fraction of closed chromatin, and identified a number of loci where chromatin configuration is opposite to that expected from modification and gene expression patterns. Further, we observed that chromatin of large introns tends to be closed even when the genes are expressed, and that a significant proportion of active genes including their promoters are located in closed chromatin. These findings reveal limitations of the existing predictive models, indicate novel mechanisms of epigenetic regulation, and provide important insights into genome organization and function.

  3. Mass Spectrometry-Based Proteomics for the Analysis of Chromatin Structure and Dynamics

    Directory of Open Access Journals (Sweden)

    Monica Soldi

    2013-03-01

    Full Text Available Chromatin is a highly structured nucleoprotein complex made of histone proteins and DNA that controls nearly all DNA-dependent processes. Chromatin plasticity is regulated by different associated proteins, post-translational modifications on histones (hPTMs and DNA methylation, which act in a concerted manner to enforce a specific “chromatin landscape”, with a regulatory effect on gene expression. Mass Spectrometry (MS has emerged as a powerful analytical strategy to detect histone PTMs, revealing interplays between neighbouring PTMs and enabling screens for their readers in a comprehensive and quantitative fashion. Here we provide an overview of the recent achievements of state-of-the-art mass spectrometry-based proteomics for the detailed qualitative and quantitative characterization of histone post-translational modifications, histone variants, and global interactomes at specific chromatin regions. This synopsis emphasizes how the advances in high resolution MS, from “Bottom Up” to “Top Down” analysis, together with the uptake of quantitative proteomics methods by chromatin biologists, have made MS a well-established method in the epigenetics field, enabling the acquisition of original information, highly complementary to that offered by more conventional, antibody-based, assays.

  4. Coordinated Control of Wave Energy Converters Subject to Motion Constraints

    Directory of Open Access Journals (Sweden)

    Liguo Wang

    2016-06-01

    Full Text Available In this paper, a generic coordinated control method for wave energy converters is proposed, and the constraints on motion amplitudes and the hydrodynamic interaction between converters are considered. The objective of the control problem is to maximize the energy converted from ocean waves, and this is achieved by coordinating the power take-off (PTO damping of each wave energy converter in the frequency domain in each sea state. In a case study, a wave energy farm consisting of four converters based on the concept developed by Uppsala University is studied. In the solution, motion constraints, including constraints on the amplitudes of displacement and velocity, are included. Twelve months of sea states, based on measured wave data at the Lysekil test site on the Swedish west coast, are used in the simulation to evaluate the performance of the wave energy farm using the new method. Results from the new coordinated control method and traditional control method are compared, indicating that the coordinated control of wave energy converters is an effective way to improve the energy production of wave energy farm in harmonic waves.

  5. Electron microscopic study on the initial effect of gamma-irradiation on the chromatin structure of L cells

    International Nuclear Information System (INIS)

    Kondo, Takashi; Nakanishi, Y.H.; Yoshii, Giichi

    1979-01-01

    Mouse L cells are gamma-irradiated at a dose of 1 Mrad, and ultrathin sections of the cells are examined by electron microscopy. The distance between chromatin fibers in diffused chromatin regions in the irradiated nuclei is essentially identical with the nonirradiated control. In contrast, an increase of the distance between the chromatin fibers is observed in the excess of Ca ions in irradiation. (author)

  6. Chromosome aberration model combining radiation tracks, chromatin structure, DSB repair and chromatin mobility

    International Nuclear Information System (INIS)

    Friedland, W.; Kundrat, P.

    2015-01-01

    The module that simulates the kinetics and yields of radiation-induced chromosome aberrations within the biophysical code PARTRAC is described. Radiation track structures simulated by Monte Carlo methods are overlapped with multi-scale models of DNA and chromatin to assess the resulting DNA damage. Spatial mobility of individual DNA ends from double-strand breaks is modelled simultaneously with their processing by the non-homologous end-joining enzymes. To score diverse types of chromosome aberrations, the joined ends are classified regarding their original chromosomal location, orientation and the involvement of centromeres. A comparison with experimental data on dicentrics induced by gamma and alpha particles shows that their relative dose dependence is predicted correctly, although the absolute yields are overestimated. The critical model assumptions on chromatin mobility and on the initial damage recognition and chromatin remodelling steps and their future refinements to solve this issue are discussed. (authors)

  7. Fast neutron irradiation effects on liver chromatin structure

    International Nuclear Information System (INIS)

    Constantinescu, B.; Radu, L.

    1996-01-01

    The growing interest in neutron therapy requires complex studies on the mechanisms of neutron action on biological systems, especially on chromatin. The chromatin was extracted from a normal tissue-livers of Wistar rats - and from a tumoral tissue - Walker tumour maintained on Wistar rats. Irradiation doses from 5 Gy to 100 Gy by fast neutron intense beams produced via d(13.5 MeV) +Be (thick target) reaction at Bucharest U-120 Classical Cyclotron were used. To study the post-irradiation effects, various methods were employed. So, the variation in the 260 nm absorbency in chromatin thermal transition was pursuit. The chromatin-ethidium bromide complexes fluorescence with λ ex =480 nm and λ em =600 nm was analyzed. To determine chromatin DNA strand breaks a fluorimetric method, with cells' suspensions as starting material was used. This method requires a partial treatment with alkali producing three components: T-estimating the total fluorescence of DNA double helix, P-assigning the untwisting rate and B-the blank, where DNA is completely unfolded The percentsge of DNA double strand,-D-, remaining after this treatment, is: %D=100x(P-B)/(T-B). The intrinsic chromatin fluorescence was determined for tyrosine (λ ex =280 nm, λ em =305 nm), specific for badic chromatin prooteins, and for tryptophane (λ ex =290 nm, λ em =345 nm) specific for acid chromatin proteins. Polyacrylamide gel electrophoresis was performed: The double fluorescent labelling of chromatin was realized with acridine orange for DNA and with dansyl chloride for chromatin proteins. Fluorescence intensity determinations were done with λ ex =505 nm, λ em =530 nm for acridine orange and with λ ex =323 nm, λ em =505 nm for dansyl chloride. A Pye Unicam SP 1800 spectrophotometer and a Aminco SPF 500 spectrofluorimeter were employed. (author)

  8. Chromatin-modifying proteins in cancer

    DEFF Research Database (Denmark)

    Fog, Cathrine K; Jensen, Klaus T; Lund, Anders Henrik

    2007-01-01

    -despite the fact that all cells in the organism contain the same genetic information. A large amount of data gathered over the last decades has demonstrated that deregulation of chromatin-modifying proteins is etiologically involved in the development and progression of cancer. Here we discuss how epigenetic...... alterations influence cancer development and review known cancer-associated alterations in chromatin-modifying proteins....

  9. A Poly-ADP-Ribose Trigger Releases the Auto-Inhibition of a Chromatin Remodeling Oncogene.

    Science.gov (United States)

    Singh, Hari R; Nardozza, Aurelio P; Möller, Ingvar R; Knobloch, Gunnar; Kistemaker, Hans A V; Hassler, Markus; Harrer, Nadine; Blessing, Charlotte; Eustermann, Sebastian; Kotthoff, Christiane; Huet, Sébastien; Mueller-Planitz, Felix; Filippov, Dmitri V; Timinszky, Gyula; Rand, Kasper D; Ladurner, Andreas G

    2017-12-07

    DNA damage triggers chromatin remodeling by mechanisms that are poorly understood. The oncogene and chromatin remodeler ALC1/CHD1L massively decompacts chromatin in vivo yet is inactive prior to DNA-damage-mediated PARP1 induction. We show that the interaction of the ALC1 macrodomain with the ATPase module mediates auto-inhibition. PARP1 activation suppresses this inhibitory interaction. Crucially, release from auto-inhibition requires a poly-ADP-ribose (PAR) binding macrodomain. We identify tri-ADP-ribose as a potent PAR-mimic and synthetic allosteric effector that abrogates ATPase-macrodomain interactions, promotes an ungated conformation, and activates the remodeler's ATPase. ALC1 fragments lacking the regulatory macrodomain relax chromatin in vivo without requiring PARP1 activation. Further, the ATPase restricts the macrodomain's interaction with PARP1 under non-DNA damage conditions. Somatic cancer mutants disrupt ALC1's auto-inhibition and activate chromatin remodeling. Our data show that the NAD + -metabolite and nucleic acid PAR triggers ALC1 to drive chromatin relaxation. Modular allostery in this oncogene tightly controls its robust, DNA-damage-dependent activation. Copyright © 2017 Elsevier Inc. All rights reserved.

  10. Chromatin Dynamics of the mouse β-globin locus

    NARCIS (Netherlands)

    M.P.C. van de Corput (Mariëtte); E. de Boer (Ernie); T.A. Knoch (Tobias); W.A. van Cappellen (Gert); M. Lesnussa (Michael); H.J.F.M.M. Eussen (Bert)

    2010-01-01

    textabstractLately it has become more clear that (subtle) changes in 3D organization of chromatin can either trigger transcription or silence genes or gene clusters. It has also been postulated that due to changes in chromatin structure, a change in chromatin accessibility of transcription factors

  11. Chromatin damage induced by fast neutrons or UV laser radiation

    Energy Technology Data Exchange (ETDEWEB)

    Radu, L.; Constantinescu, B.; Gazdaru, D.; Mihailescu, I

    2002-07-01

    Chromatin samples from livers of Wistar rats were subjected to fast neutron irradiation in doses of 10-100 Gy or to a 248 nm excimer laser radiation, in doses of 0.5-3 MJ.m{sup -2}. The action of the radiation on chromatin was monitored by chromatin intrinsic fluorescence and fluorescence lifetimes (of bound ethidium bromide to chromatin) and by analysing fluorescence resonance energy transfer between dansyl chloride and acridine orange coupled to chromatin. For the mentioned doses of UV excimer laser radiation, the action on chromatin was more intense than in the case of fast neutrons. The same types of damage are produced by the two radiations: acidic and basic destruction of chromatin protein structure, DNA strand breaking and the increase of the distance between DNA and proteins in chromatin. (author)

  12. Chromatin damage induced by fast neutrons or UV laser radiation

    International Nuclear Information System (INIS)

    Radu, L.; Constantinescu, B.; Gazdaru, D.; Mihailescu, I.

    2002-01-01

    Chromatin samples from livers of Wistar rats were subjected to fast neutron irradiation in doses of 10-100 Gy or to a 248 nm excimer laser radiation, in doses of 0.5-3 MJ.m -2 . The action of the radiation on chromatin was monitored by chromatin intrinsic fluorescence and fluorescence lifetimes (of bound ethidium bromide to chromatin) and by analysing fluorescence resonance energy transfer between dansyl chloride and acridine orange coupled to chromatin. For the mentioned doses of UV excimer laser radiation, the action on chromatin was more intense than in the case of fast neutrons. The same types of damage are produced by the two radiations: acidic and basic destruction of chromatin protein structure, DNA strand breaking and the increase of the distance between DNA and proteins in chromatin. (author)

  13. Probing Chromatin-modifying Enzymes with Chemical Tools

    KAUST Repository

    Fischle, Wolfgang

    2016-02-04

    Chromatin is the universal template of genetic information in all eukaryotic organisms. Chemical modifications of the DNA-packaging histone proteins and the DNA bases are crucial signaling events in directing the use and readout of eukaryotic genomes. The enzymes that install and remove these chromatin modifications as well as the proteins that bind these marks govern information that goes beyond the sequence of DNA. Therefore, these so-called epigenetic regulators are intensively studied and represent promising drug targets in modern medicine. We summarize and discuss recent advances in the field of chemical biology that have provided chromatin research with sophisticated tools for investigating the composition, activity, and target sites of chromatin modifying enzymes and reader proteins.

  14. The Role of Chromatin-Associated Proteins in Cancer

    DEFF Research Database (Denmark)

    Helin, Kristian; Minucci, Saverio

    2017-01-01

    The organization of the chromatin structure is essential for maintaining cell-type-specific gene expression and therefore for cell identity. This structure is highly dynamic and is regulated by a large number of chromatin-associated proteins that are required for normal development...... and differentiation. Recurrent somatic mutations have been found with high frequency in genes coding for chromatin-associated proteins in cancer, and several of these are required for cancer maintenance. In this review, we discuss recent advances in understanding the role of chromatin-associated proteins...

  15. Neuromuscular Control and Coordination during Cycling

    Science.gov (United States)

    Li, Li

    2004-01-01

    The neuromuscular control aspect of cycling has been investigated through the effects of modifying posture and cadence. These studies show that changing posture has a more profound influence on neuromuscular coordination than does changing slope. Most of the changes with standing posture occur late in the downstroke: increased ankle and knee joint…

  16. Fuzzy Coordinated PI Controller: Application to the Real-Time Pressure Control Process

    Directory of Open Access Journals (Sweden)

    N. Kanagaraj

    2008-01-01

    Full Text Available This paper presents the real-time implementation of a fuzzy coordinated classical PI control scheme for controlling the pressure in a pilot pressure tank system. The fuzzy system has been designed to track the variation parameters in a feedback loop and tune the classical controller to achieve a better control action for load disturbances and set point changes. The error and process inputs are chosen as the inputs of fuzzy system to tune the conventional PI controller according to the process condition. This online conventional controller tuning technique will reduce the human involvement in controller tuning and increase the operating range of the conventional controller. The proposed control algorithm is experimentally implemented for the real-time pressure control of a pilot air tank system and validated using a high-speed 32-bit ARM7 embedded microcontroller board (ATMEL AT91M55800A. To demonstrate the performance of the fuzzy coordinated PI control scheme, results are compared with a classical PI and PI-type fuzzy control method. It is observed that the proposed controller structure is able to quickly track the parameter variation and perform better in load disturbances and also for set point changes.

  17. Statistical-mechanical lattice models for protein-DNA binding in chromatin

    International Nuclear Information System (INIS)

    Teif, Vladimir B; Rippe, Karsten

    2010-01-01

    Statistical-mechanical lattice models for protein-DNA binding are well established as a method to describe complex ligand binding equilibria measured in vitro with purified DNA and protein components. Recently, a new field of applications has opened up for this approach since it has become possible to experimentally quantify genome-wide protein occupancies in relation to the DNA sequence. In particular, the organization of the eukaryotic genome by histone proteins into a nucleoprotein complex termed chromatin has been recognized as a key parameter that controls the access of transcription factors to the DNA sequence. New approaches have to be developed to derive statistical-mechanical lattice descriptions of chromatin-associated protein-DNA interactions. Here, we present the theoretical framework for lattice models of histone-DNA interactions in chromatin and investigate the (competitive) DNA binding of other chromosomal proteins and transcription factors. The results have a number of applications for quantitative models for the regulation of gene expression.

  18. Coordinated control of electrical drives

    International Nuclear Information System (INIS)

    Keresztely, S.

    1983-01-01

    The control system developed for the fuel handling machine of nuclear power plants contains seven microcomputers. Redundant hardware and software structure ensures high reliability and availability. The sensors are doubled and each set is connected to its own microcomputer for evaluation of measurements. The control program, coordinating seven electrical drives, is run on two identical microcomputers, and has access to both sets of measurement results. Two control desks are provided. The seventh microcomputer generates the digital picture of the working site around the actual position and the picture is sent to color TV monitors at the control desks. System reliability: failure of any part of the system causes an error message and no action. System availability: for emergency purposes, one of every pair of the identical subsystems must be operational. In this emergency mode unconditional reliability is lost. (author)

  19. Reprogramming the chromatin landscape

    DEFF Research Database (Denmark)

    Miranda, Tina B; Voss, Ty C; Sung, Myong-Hee

    2013-01-01

    , mechanistic details defining the cellular interactions between ER and GR are poorly understood. We investigated genome-wide binding profiles for ER and GR upon coactivation and characterized the status of the chromatin landscape. We describe a novel mechanism dictating the molecular interplay between ER...... and GR. Upon induction, GR modulates access of ER to specific sites in the genome by reorganization of the chromatin configuration for these elements. Binding to these newly accessible sites occurs either by direct recognition of ER response elements or indirectly through interactions with other factors...

  20. Chromatin dynamics resolved with force spectroscopy

    NARCIS (Netherlands)

    Chien, Fan-Tso

    2011-01-01

    In eukaryotic cells, genomic DNA is organized in chromatin fibers composed of nucleosomes as structural units. A nucleosome contains 1.7 turns of DNA wrapped around a histone octamer and is connected to the adjacent nucleosomes with linker DNA. The folding of chromatin fibers effectively increases

  1. A microscopic analysis of Arabidopsis chromatin

    NARCIS (Netherlands)

    Willemse, J.J.

    2007-01-01

    Genetic information of eukaryotic organisms is stored as DNA in the nuclei of their cells. Nuclear DNA is associated with several proteins, which together form chromatin. The most abundant chromatin proteins arehistones,they arrange the initial packaging step of the DNA. DNA

  2. Coordination of baseload power plant group control with static reactive power compensator control

    Directory of Open Access Journals (Sweden)

    Zbigniew Szczerba

    2012-06-01

    Full Text Available Reactive power sources in power system nodes: generators and static reactive power compensators, are controlled by control systems. Generators – by generator node group controllers, compensators – by voltage controllers. The paper presents issues of these control systems’ coordination and proposals for its implementation.

  3. Chromatin organization and cellular sensitivity to ionizing radiation

    International Nuclear Information System (INIS)

    Szumiel, I.; Walicka, M.

    1987-01-01

    The paper briefly describes chromatin organization in mammalian cells and reviews experimental work concerning relations between chromatin structure and accesibility of damaged DNA to repair enzymes. The ''contact effect'', the size of super-coiled DNA domains and ADP-ribosylation of chromatin proteins are discussed in relation to cellular radiosensitivity. 88 refs. (author)

  4. The AID-induced DNA damage response in chromatin

    DEFF Research Database (Denmark)

    Daniel, Jeremy A; Nussenzweig, André

    2013-01-01

    Chemical modifications to the DNA and histone protein components of chromatin can modulate gene expression and genome stability. Understanding the physiological impact of changes in chromatin structure remains an important question in biology. As one example, in order to generate antibody diversity...... with somatic hypermutation and class switch recombination, chromatin must be made accessible for activation-induced cytidine deaminase (AID)-mediated deamination of cytosines in DNA. These lesions are recognized and removed by various DNA repair pathways but, if not handled properly, can lead to formation...... of oncogenic chromosomal translocations. In this review, we focus the discussion on how chromatin-modifying activities and -binding proteins contribute to the native chromatin environment in which AID-induced DNA damage is targeted and repaired. Outstanding questions remain regarding the direct roles...

  5. The Impact of Chromatin Dynamics on Cas9-Mediated Genome Editing in Human Cells.

    Science.gov (United States)

    Daer, René M; Cutts, Josh P; Brafman, David A; Haynes, Karmella A

    2017-03-17

    In order to efficiently edit eukaryotic genomes, it is critical to test the impact of chromatin dynamics on CRISPR/Cas9 function and develop strategies to adapt the system to eukaryotic contexts. So far, research has extensively characterized the relationship between the CRISPR endonuclease Cas9 and the composition of the RNA-DNA duplex that mediates the system's precision. Evidence suggests that chromatin modifications and DNA packaging can block eukaryotic genome editing by custom-built DNA endonucleases like Cas9; however, the underlying mechanism of Cas9 inhibition is unclear. Here, we demonstrate that closed, gene-silencing-associated chromatin is a mechanism for the interference of Cas9-mediated DNA editing. Our assays use a transgenic cell line with a drug-inducible switch to control chromatin states (open and closed) at a single genomic locus. We show that closed chromatin inhibits binding and editing at specific target sites and that artificial reversal of the silenced state restores editing efficiency. These results provide new insights to improve Cas9-mediated editing in human and other mammalian cells.

  6. Secondary Coordinated Control of Islanded Microgrids Based on Consensus Algorithms

    DEFF Research Database (Denmark)

    Wu, Dan; Dragicevic, Tomislav; Vasquez, Juan Carlos

    2014-01-01

    systems. Nevertheless, the conventional decentralized secondary control, although does not need to be implemented in a microgrid central controller (MGCC), it has the limitation that all decentralized controllers must be mutually synchronized. In a clear cut contrast, the proposed secondary control......This paper proposes a decentralized secondary control for islanded microgrids based on consensus algorithms. In a microgrid, the secondary control is implemented in order to eliminate the frequency changes caused by the primary control when coordinating renewable energy sources and energy storage...... requires only a more simplified communication protocol and a sparse communication network. Moreover, the proposed approach based on dynamic consensus algorithms is able to achieve the coordinated secondary performance even when all units are initially out-of-synchronism. The control algorithm implemented...

  7. Chromatin preferences of the perichromosomal layer constituent pKi-67.

    Science.gov (United States)

    Traut, Walther; Endl, Elmar; Garagna, Silvia; Scholzen, Thomas; Schwinger, Eberhard; Gerdes, Johannes; Winking, Heinz

    2002-01-01

    The proliferation-associated nuclear protein pKi-67 relocates from the nucleolus to the chromosome surface during the G2/M transition of the cell cycle and contributes to the formation of the 'perichromosomal layer'. We investigated the in-vivo binding preferences of pKi-67 for various chromatin blocks of the mitotic chromosomes from the human and two mouse species, Mus musculus and M. caroli. All chromosomes were decorated with pKi-67 but displayed a gap of pKi-67 decoration in the centromere and NOR regions. pKi-67 distribution in a rearranged mouse chromosome showed that the formation of the centromeric gap was controlled by the specific chromatin in that region. While most chromatin served as a substrate for direct or indirect binding of pKi-67, we identified three types of chromatin that bound less or no pKi-67. These were: (1) the centromeric heterochromatin defined by the alpha satellite DNA in the human, by the mouse minor satellite in M. musculus and the 60- and 79-bp satellites in M. caroli; (2) the pericentromeric heterochromatin in M. musculus defined by the mouse major satellite, and (3) NORs in the human and in M. musculus defined by rDNA repeats. In contrast, the conspicuous blocks of pericentromeric heterochromatin in human chromosomes 1, 9 and 16 containing the 5-bp satellite showed intense pKi-67 decoration. The centromeric gap may have a biological significance for the proper attachment of the chromosomes to the mitotic spindle. In this context, our results suggest a new role for centromeric heterochromatin: the control of the centromeric gap in the perichromosomal layer.

  8. Local Nucleosome Dynamics Facilitate Chromatin Accessibility in Living Mammalian Cells

    Directory of Open Access Journals (Sweden)

    Saera Hihara

    2012-12-01

    Full Text Available Genome information, which is three-dimensionally organized within cells as chromatin, is searched and read by various proteins for diverse cell functions. Although how the protein factors find their targets remains unclear, the dynamic and flexible nature of chromatin is likely crucial. Using a combined approach of fluorescence correlation spectroscopy, single-nucleosome imaging, and Monte Carlo computer simulations, we demonstrate local chromatin dynamics in living mammalian cells. We show that similar to interphase chromatin, dense mitotic chromosomes also have considerable chromatin accessibility. For both interphase and mitotic chromatin, we observed local fluctuation of individual nucleosomes (∼50 nm movement/30 ms, which is caused by confined Brownian motion. Inhibition of these local dynamics by crosslinking impaired accessibility in the dense chromatin regions. Our findings show that local nucleosome dynamics drive chromatin accessibility. We propose that this local nucleosome fluctuation is the basis for scanning genome information.

  9. A coordinated MIMO control design for a power plant using improved sliding mode controller.

    Science.gov (United States)

    Ataei, Mohammad; Hooshmand, Rahmat-Allah; Samani, Siavash Golmohammadi

    2014-03-01

    For the participation of the steam power plants in regulating the network frequency, boilers and turbines should be co-ordinately controlled in addition to the base load productions. Lack of coordinated control over boiler-turbine may lead to instability; oscillation in producing power and boiler parameters; reduction in the reliability of the unit; and inflicting thermodynamic tension on devices. This paper proposes a boiler-turbine coordinated multivariable control system based on improved sliding mode controller (ISMC). The system controls two main boiler-turbine parameters i.e., the turbine revolution and superheated steam pressure of the boiler output. For this purpose, a comprehensive model of the system including complete and exact description of the subsystems is extracted. The parameters of this model are determined according to our case study that is the 320MW unit of Islam-Abad power plant in Isfahan/Iran. The ISMC method is simulated on the power plant and its performance is compared with the related real PI (proportional-integral) controllers which have been used in this unit. The simulation results show the capability of the proposed controller system in controlling local network frequency and superheated steam pressure in the presence of load variations and disturbances of boiler. © 2013 ISA. Published by Elsevier Ltd. All rights reserved.

  10. Multimodal Perception and Multicriterion Control of Nested Systems. 1; Coordination of Postural Control and Vehicular Control

    Science.gov (United States)

    Riccio, Gary E.; McDonald, P. Vernon

    1998-01-01

    The purpose of this report is to identify the essential characteristics of goal-directed whole-body motion. The report is organized into three major sections (Sections 2, 3, and 4). Section 2 reviews general themes from ecological psychology and control-systems engineering that are relevant to the perception and control of whole-body motion. These themes provide an organizational framework for analyzing the complex and interrelated phenomena that are the defining characteristics of whole-body motion. Section 3 of this report applies the organization framework from the first section to the problem of perception and control of aircraft motion. This is a familiar problem in control-systems engineering and ecological psychology. Section 4 examines an essential but generally neglected aspect of vehicular control: coordination of postural control and vehicular control. To facilitate presentation of this new idea, postural control and its coordination with vehicular control are analyzed in terms of conceptual categories that are familiar in the analysis of vehicular control.

  11. Coordination control of discrete-event systems revisited

    Czech Academy of Sciences Publication Activity Database

    Komenda, Jan; Masopust, Tomáš; van Schuppen, J. H.

    2015-01-01

    Roč. 25, 1-2 (2015), s. 65-94 ISSN 0924-6703 R&D Projects: GA ČR(CZ) GPP202/11/P028; GA ČR(CZ) GAP103/11/0517 Institutional support: RVO:67985840 Keywords : coordination control * supervisory control Subject RIV: BA - General Mathematics Impact factor: 1.268, year: 2015 http://link.springer.com/article/10.1007%2Fs10626-013-0179-x

  12. Chromatin Remodeling and Plant Immunity.

    Science.gov (United States)

    Chen, W; Zhu, Q; Liu, Y; Zhang, Q

    Chromatin remodeling, an important facet of the regulation of gene expression in eukaryotes, is performed by two major types of multisubunit complexes, covalent histone- or DNA-modifying complexes, and ATP-dependent chromosome remodeling complexes. Snf2 family DNA-dependent ATPases constitute the catalytic subunits of ATP-dependent chromosome remodeling complexes, which accounts for energy supply during chromatin remodeling. Increasing evidence indicates a critical role of chromatin remodeling in the establishment of long-lasting, even transgenerational immune memory in plants, which is supported by the findings that DNA methylation, histone deacetylation, and histone methylation can prime the promoters of immune-related genes required for disease defense. So what are the links between Snf2-mediated ATP-dependent chromosome remodeling and plant immunity, and what mechanisms might support its involvement in disease resistance? © 2017 Elsevier Inc. All rights reserved.

  13. Identification of chromatin-associated regulators of MSL complex targeting in Drosophila dosage compensation.

    Directory of Open Access Journals (Sweden)

    Erica Larschan

    Full Text Available Sex chromosome dosage compensation in Drosophila provides a model for understanding how chromatin organization can modulate coordinate gene regulation. Male Drosophila increase the transcript levels of genes on the single male X approximately two-fold to equal the gene expression in females, which have two X-chromosomes. Dosage compensation is mediated by the Male-Specific Lethal (MSL histone acetyltransferase complex. Five core components of the MSL complex were identified by genetic screens for genes that are specifically required for male viability and are dispensable for females. However, because dosage compensation must interface with the general transcriptional machinery, it is likely that identifying additional regulators that are not strictly male-specific will be key to understanding the process at a mechanistic level. Such regulators would not have been recovered from previous male-specific lethal screening strategies. Therefore, we have performed a cell culture-based, genome-wide RNAi screen to search for factors required for MSL targeting or function. Here we focus on the discovery of proteins that function to promote MSL complex recruitment to "chromatin entry sites," which are proposed to be the initial sites of MSL targeting. We find that components of the NSL (Non-specific lethal complex, and a previously unstudied zinc-finger protein, facilitate MSL targeting and display a striking enrichment at MSL entry sites. Identification of these factors provides new insight into how MSL complex establishes the specialized hyperactive chromatin required for dosage compensation in Drosophila.

  14. Global chromatin fibre compaction in response to DNA damage

    International Nuclear Information System (INIS)

    Hamilton, Charlotte; Hayward, Richard L.; Gilbert, Nick

    2011-01-01

    Highlights: ► Robust KAP1 phosphorylation in response to DNA damage in HCT116 cells. ► DNA repair foci are found in soluble chromatin. ► Biophysical analysis reveals global chromatin fibre compaction after DNA damage. ► DNA damage is accompanied by rapid linker histone dephosphorylation. -- Abstract: DNA is protected by packaging it into higher order chromatin fibres, but this can impede nuclear processes like DNA repair. Despite considerable research into the factors required for signalling and repairing DNA damage, it is unclear if there are concomitant changes in global chromatin fibre structure. In human cells DNA double strand break (DSB) formation triggers a signalling cascade resulting in H2AX phosphorylation (γH2AX), the rapid recruitment of chromatin associated proteins and the subsequent repair of damaged sites. KAP1 is a transcriptional corepressor and in HCT116 cells we found that after DSB formation by chemicals or ionising radiation there was a wave of, predominantly ATM dependent, KAP1 phosphorylation. Both KAP1 and phosphorylated KAP1 were readily extracted from cells indicating they do not have a structural role and γH2AX was extracted in soluble chromatin indicating that sites of damage are not attached to an underlying structural matrix. After DSB formation we did not find a concomitant change in the sensitivity of chromatin fibres to micrococcal nuclease digestion. Therefore to directly investigate higher order chromatin fibre structures we used a biophysical sedimentation technique based on sucrose gradient centrifugation to compare the conformation of chromatin fibres isolated from cells before and after DNA DSB formation. After damage we found global chromatin fibre compaction, accompanied by rapid linker histone dephosphorylation, consistent with fibres being more regularly folded or fibre deformation being stabilized by linker histones. We suggest that following DSB formation, although there is localised chromatin unfolding to

  15. Cytoplasmic chromatin triggers inflammation in senescence and cancer.

    Science.gov (United States)

    Dou, Zhixun; Ghosh, Kanad; Vizioli, Maria Grazia; Zhu, Jiajun; Sen, Payel; Wangensteen, Kirk J; Simithy, Johayra; Lan, Yemin; Lin, Yanping; Zhou, Zhuo; Capell, Brian C; Xu, Caiyue; Xu, Mingang; Kieckhaefer, Julia E; Jiang, Tianying; Shoshkes-Carmel, Michal; Tanim, K M Ahasan Al; Barber, Glen N; Seykora, John T; Millar, Sarah E; Kaestner, Klaus H; Garcia, Benjamin A; Adams, Peter D; Berger, Shelley L

    2017-10-19

    Chromatin is traditionally viewed as a nuclear entity that regulates gene expression and silencing. However, we recently discovered the presence of cytoplasmic chromatin fragments that pinch off from intact nuclei of primary cells during senescence, a form of terminal cell-cycle arrest associated with pro-inflammatory responses. The functional significance of chromatin in the cytoplasm is unclear. Here we show that cytoplasmic chromatin activates the innate immunity cytosolic DNA-sensing cGAS-STING (cyclic GMP-AMP synthase linked to stimulator of interferon genes) pathway, leading both to short-term inflammation to restrain activated oncogenes and to chronic inflammation that associates with tissue destruction and cancer. The cytoplasmic chromatin-cGAS-STING pathway promotes the senescence-associated secretory phenotype in primary human cells and in mice. Mice deficient in STING show impaired immuno-surveillance of oncogenic RAS and reduced tissue inflammation upon ionizing radiation. Furthermore, this pathway is activated in cancer cells, and correlates with pro-inflammatory gene expression in human cancers. Overall, our findings indicate that genomic DNA serves as a reservoir to initiate a pro-inflammatory pathway in the cytoplasm in senescence and cancer. Targeting the cytoplasmic chromatin-mediated pathway may hold promise in treating inflammation-related disorders.

  16. Fragmentation of chromatin with 125I radioactive disintegrations

    International Nuclear Information System (INIS)

    Turner, G.N.; Nobis, P.; Dewey, W.C.

    1976-01-01

    The DNA in Chinese hamster cells was labeled first for 3 h with [ 3 H]TdR and then for 3 h with [ 125 I]UdR. Chromatin was extracted, frozen, and stored at -30 0 C until 1.0 x 10 17 and 1.25 x 10 17 disintegrations/g of labeled DNA occurred for 125 I and 3 H, respectively. Velocity sedimentation of chromatin (DNA with associated chromosomal proteins) in neutral sucrose gradients indicated that the localized energy from the 125 I disintegrations, which gave about 1 double-strand break/disintegration plus an additional 1.3 single strand breaks, selectively fragmented the [ 125 I] chromatin into pieces smaller than the [ 3 H] chromatin. In other words, 125 I disintegrations caused much more localized damage in the chromatin labeled with 125 I than in the chromatin labeled with 3 H, and fragments induced in DNA by 125 I disintegrations were not held together by the associated chromosomal proteins. Use of this 125 I technique for studying chromosomal proteins associated with different regions in the cellular DNA is discussed. For these studies, the number of disintegrations required for fragmenting DNA molecules of different sizes is illustrated

  17. Chromatin architecture: A new dimension in the dynamic control of gene expression

    KAUST Repository

    Ramirez Prado, Juan Sebastian; Rodriguez-Granados, Natalia Yaneth; Ariel, Federico; Raynaud, Cé cile; Benhamed, Moussa

    2016-01-01

    As the most recent evidence of eukaryotic cell complexity, genome architecture has astounded the scientific community and prompted a variety of technical and cognitive challenges. Several technologies have emerged and evidenced the integration of chromatin packaging and topology, epigenetic processes, and transcription for the pertinent regulation of gene expression. In the present addendum we present and discuss some of our recent research, directed toward the holistic comprehension of the processes by which plants respond to environmental and developmental stimuli. We propose that the study of genome topology and genomic interactions is essential for the understanding of the molecular mechanisms behind a phenotype. Even though our knowledge and understanding of genome architecture and hierarchy has improved substantially in the last few years -in Arabidopsis and other eukaryotes -, there is still a long way ahead in this relatively new field of study. For this, it is necessary to take advantage of the high resolution of the emerging available techniques, and perform integrative approaches with which it will be possible to depict the role of chromatin architecture in the regulation of transcription and ultimately, physiological processes.

  18. Chromatin architecture: A new dimension in the dynamic control of gene expression

    KAUST Repository

    Ramirez Prado, Juan Sebastian

    2016-09-10

    As the most recent evidence of eukaryotic cell complexity, genome architecture has astounded the scientific community and prompted a variety of technical and cognitive challenges. Several technologies have emerged and evidenced the integration of chromatin packaging and topology, epigenetic processes, and transcription for the pertinent regulation of gene expression. In the present addendum we present and discuss some of our recent research, directed toward the holistic comprehension of the processes by which plants respond to environmental and developmental stimuli. We propose that the study of genome topology and genomic interactions is essential for the understanding of the molecular mechanisms behind a phenotype. Even though our knowledge and understanding of genome architecture and hierarchy has improved substantially in the last few years -in Arabidopsis and other eukaryotes -, there is still a long way ahead in this relatively new field of study. For this, it is necessary to take advantage of the high resolution of the emerging available techniques, and perform integrative approaches with which it will be possible to depict the role of chromatin architecture in the regulation of transcription and ultimately, physiological processes.

  19. Coordinated Pitch & Torque Control of Large-Scale Wind Turbine Based on Pareto Eciency Analysis

    DEFF Research Database (Denmark)

    Lin, Zhongwei; Chen, Zhenyu; Wu, Qiuwei

    2018-01-01

    For the existing pitch and torque control of the wind turbine generator system (WTGS), further development on coordinated control is necessary to improve effectiveness for practical applications. In this paper, the WTGS is modeled as a coupling combination of two subsystems: the generator torque...... control subsystem and blade pitch control subsystem. Then, the pole positions in each control subsystem are adjusted coordinately to evaluate the controller participation and used as the objective of optimization. A two-level parameters-controllers coordinated optimization scheme is proposed and applied...... to optimize the controller coordination based on the Pareto optimization theory. Three solutions are obtained through optimization, which includes the optimal torque solution, optimal power solution, and satisfactory solution. Detailed comparisons evaluate the performance of the three selected solutions...

  20. Guarding against Collateral Damage during Chromatin Transactions

    DEFF Research Database (Denmark)

    Altmeyer, Matthias; Lukas, Jiri

    2013-01-01

    Signal amplifications are vital for chromatin function, yet they also bear the risk of transforming into unrestrained, self-escalating, and potentially harmful responses. Examples of inbuilt limitations are emerging, revealing how chromatin transactions are confined within physiological boundaries....

  1. RevSex duplication-induced and sex-related differences in the SOX9 regulatory region chromatin landscape in human fibroblasts.

    Science.gov (United States)

    Lybæk, Helle; de Bruijn, Diederik; den Engelsman-van Dijk, Anke H A; Vanichkina, Darya; Nepal, Chirag; Brendehaug, Atle; Houge, Gunnar

    2014-03-01

    It was recently shown that duplications of the RevSex element, located 0.5 Mb upstream of SOX9, cause XX-disorder of sex development (DSD), and that deletions cause XY-DSD. To explore how a 148 kb RevSex duplication could have turned on gonadal SOX9 expression in the absence of SRY in an XX-male, we examined the chromatin landscape in primary skin fibroblast cultures from the index, his RevSex duplication-carrier father and six controls. The ENCODE project supports the notion that chromatin state maps show overlap between different cell types, i.e., that our study of fibroblasts could be of biological relevance. We examined the SOX9 regulatory region by high-resolution ChIP-on-chip experiments (a kind of "chromatin-CGH") and DNA methylation investigations. The RevSex duplication was associated with chromatin changes predicting better accessibility of the SRY-responsive TESCO enhancer region 14-15 kb upstream of SOX9. Four kb downstream of the TESCO evolutionary conserved region, a peak of the enhancer/promoter-associated H3K4me3 mark was found together with a major dip of the repressive H3K9me3 chromatin mark. Similar differences were also found when three control males were compared with three control females. A marked male/female difference was a more open chromatin signature in males starting ~400 kb upstream of SOX9 and increasing toward the SOX9 promoter. In the RevSex duplication-carrier father, two positions of DNA hypomethylation were also found, one corresponding to the H3K4me3 peak mentioned above. Our results suggest that the RevSex duplication could operate by inducing long-range epigenetic changes. Furthermore, the differences in chromatin state maps between males and females suggest that the Y chromosome or X chromosome dosage may affect chromatin conformation, i.e., that sex-dependent gene regulation may take place by chromatin modification.

  2. A common control signal and a ballistic stage can explain the control of coordinated eye-hand movements.

    Science.gov (United States)

    Gopal, Atul; Murthy, Aditya

    2016-06-01

    Voluntary control has been extensively studied in the context of eye and hand movements made in isolation, yet little is known about the nature of control during eye-hand coordination. We probed this with a redirect task. Here subjects had to make reaching/pointing movements accompanied by coordinated eye movements but had to change their plans when the target occasionally changed its position during some trials. Using a race model framework, we found that separate effector-specific mechanisms may be recruited to control eye and hand movements when executed in isolation but when the same effectors are coordinated a unitary mechanism to control coordinated eye-hand movements is employed. Specifically, we found that performance curves were distinct for the eye and hand when these movements were executed in isolation but were comparable when they were executed together. Second, the time to switch motor plans, called the target step reaction time, was different in the eye-alone and hand-alone conditions but was similar in the coordinated condition under assumption of a ballistic stage of ∼40 ms, on average. Interestingly, the existence of this ballistic stage could predict the extent of eye-hand dissociations seen in individual subjects. Finally, when subjects were explicitly instructed to control specifically a single effector (eye or hand), redirecting one effector had a strong effect on the performance of the other effector. Taken together, these results suggest that a common control signal and a ballistic stage are recruited when coordinated eye-hand movement plans require alteration. Copyright © 2016 the American Physiological Society.

  3. Chromatin Immunoprecipitation Assay for the Identification of Arabidopsis Protein-DNA Interactions In Vivo.

    Science.gov (United States)

    Komar, Dorota N; Mouriz, Alfonso; Jarillo, José A; Piñeiro, Manuel

    2016-01-14

    Intricate gene regulatory networks orchestrate biological processes and developmental transitions in plants. Selective transcriptional activation and silencing of genes mediate the response of plants to environmental signals and developmental cues. Therefore, insights into the mechanisms that control plant gene expression are essential to gain a deep understanding of how biological processes are regulated in plants. The chromatin immunoprecipitation (ChIP) technique described here is a procedure to identify the DNA-binding sites of proteins in genes or genomic regions of the model species Arabidopsis thaliana. The interactions with DNA of proteins of interest such as transcription factors, chromatin proteins or posttranslationally modified versions of histones can be efficiently analyzed with the ChIP protocol. This method is based on the fixation of protein-DNA interactions in vivo, random fragmentation of chromatin, immunoprecipitation of protein-DNA complexes with specific antibodies, and quantification of the DNA associated with the protein of interest by PCR techniques. The use of this methodology in Arabidopsis has contributed significantly to unveil transcriptional regulatory mechanisms that control a variety of plant biological processes. This approach allowed the identification of the binding sites of the Arabidopsis chromatin protein EBS to regulatory regions of the master gene of flowering FT. The impact of this protein in the accumulation of particular histone marks in the genomic region of FT was also revealed through ChIP analysis.

  4. Control of nerve cord formation by Engrailed and Gooseberry-Neuro: A multi-step, coordinated process.

    Science.gov (United States)

    Bonneaud, Nathalie; Layalle, Sophie; Colomb, Sophie; Jourdan, Christophe; Ghysen, Alain; Severac, Dany; Dantec, Christelle; Nègre, Nicolas; Maschat, Florence

    2017-12-15

    One way to better understand the molecular mechanisms involved in the construction of a nervous system is to identify the downstream effectors of major regulatory proteins. We previously showed that Engrailed (EN) and Gooseberry-Neuro (GsbN) transcription factors act in partnership to drive the formation of posterior commissures in the central nervous system of Drosophila. In this report, we identified genes regulated by both EN and GsbN through chromatin immunoprecipitation ("ChIP on chip") and transcriptome experiments, combined to a genetic screen relied to the gene dose titration method. The genomic-scale approaches allowed us to define 175 potential targets of EN-GsbN regulation. We chose a subset of these genes to examine ventral nerve cord (VNC) defects and found that half of the mutated targets show clear VNC phenotypes when doubly heterozygous with en or gsbn mutations, or when homozygous. This strategy revealed new groups of genes never described for their implication in the construction of the nerve cord. Their identification suggests that, to construct the nerve cord, EN-GsbN may act at three levels, in: (i) sequential control of the attractive-repulsive signaling that ensures contralateral projection of the commissural axons, (ii) temporal control of the translation of some mRNAs, (iii) regulation of the capability of glial cells to act as commissural guideposts for developing axons. These results illustrate how an early, coordinated transcriptional control may orchestrate the various mechanisms involved in the formation of stereotyped neuronal networks. They also validate the overall strategy to identify genes that play crucial role in axonal pathfinding. Copyright © 2017 Elsevier Inc. All rights reserved.

  5. Hierarchical Delay-Dependent Distributed Coordinated Control for DC Ring-Bus Microgrids

    DEFF Research Database (Denmark)

    Dou, Chunxia; Yue, Dong; Zhang, Zhanqiang

    2017-01-01

    In this paper, a hierarchical distributed coordinated control method is proposed based on the multi-agent system for dc ring-bus microgrids to improve the bus voltage performance. First, a two-level multi-agent system is built, where each first-level unit control agent is associated with a distri......In this paper, a hierarchical distributed coordinated control method is proposed based on the multi-agent system for dc ring-bus microgrids to improve the bus voltage performance. First, a two-level multi-agent system is built, where each first-level unit control agent is associated...

  6. Coordinated Formation Control of Multiple Autonomous Underwater Vehicles for Pipeline Inspection

    Directory of Open Access Journals (Sweden)

    Xianbo Xiang

    2010-02-01

    Full Text Available This paper addresses the control problem of inspecting underwater pipeline on the seabed, with coordinated multiple autonomous underwater vehicles in a formation. Based on the leader-follower strategy, the dedicated nonlinear path following controller is rigorously built on Lyapunov-based design, driving a fleet of vehicles onto assigned parallel paths elevated and offset from the underwater pipeline, while keeping a triangle formation to capture complete 3D images for inspection. Due to the spatial-temporal decoupling characteristics of individual path following controller, the velocities of the followers can be adapted in the coordinated control level, only relying on the information of generalized along-path length from the leader, in order to build the desired formation. Thus, the communication variable broadcast from the leader is kept to a minimum, which is feasible under the severely constraints of acoustic communication bandwidth. Simulation results illustrate the efficiency of coordinated formation controller proposed for underwater pipeline inspection.

  7. [Changes in the chromatin structure of hepatocyte nuclei of rats trained to hypoxia].

    Science.gov (United States)

    Domkina, L K; Bresler, V M; Simanovskiĭ, L N

    1976-03-01

    Structure of chromatin in the nuclei of the isolated surviving hepatocytes and in the isolated nuclei of hepatocytes were studied by fluorochroming with acridine orange and by microfluorimetry of fluorescenc connected with the stain chromatin at 530 and 590 nm in intact rats and in the animals trained to hypoxia in a pressure chamber for 60 days. The nuclei of hepatocytes of intact rats were distributed by fluorescence at 530 nm into three classes with the intensity ratio of 1:2:4; as to the nuclei of hepatocytes of the rats trained to hypoxia - they formed a single class corresponding to the second class of control. In intact rats the ratio of the fluorescence intensity at 590 nm to such at 530 nm (alpha coefficient) formed normal distribution; in trained rats - a bimodal distribution with a shift of the maximum in the direction of reduction and increase of alpha in comparison with control. It is supposed that in hypoxia there is a repression of one and depression of other genes in the chromatine of the nuclei of the liver.

  8. Analysis of Myc-induced histone modifications on target chromatin.

    Directory of Open Access Journals (Sweden)

    Francesca Martinato

    Full Text Available The c-myc proto-oncogene is induced by mitogens and is a central regulator of cell growth and differentiation. The c-myc product, Myc, is a transcription factor that binds a multitude of genomic sites, estimated to be over 10-15% of all promoter regions. Target promoters generally pre-exist in an active or poised chromatin state that is further modified by Myc, contributing to fine transcriptional regulation (activation or repression of the afferent gene. Among other mechanisms, Myc recruits histone acetyl-transferases to target chromatin and locally promotes hyper-acetylation of multiple lysines on histones H3 and H4, although the identity and combination of the modified lysines is unknown. Whether Myc dynamically regulates other histone modifications (or marks at its binding sites also remains to be addressed. Here, we used quantitative chromatin immunoprecipitation (qChIP to profile a total of 24 lysine-acetylation and -methylation marks modulated by Myc at target promoters in a human B-cell line with a regulatable c-myc transgene. Myc binding promoted acetylation of multiple lysines, primarily of H3K9, H3K14, H3K18, H4K5 and H4K12, but significantly also of H4K8, H4K91 and H2AK5. Dimethylation of H3K79 was also selectively induced at target promoters. A majority of target promoters showed co-induction of multiple marks - in various combinations - correlating with recruitment of the two HATs tested (Tip60 and HBO1, incorporation of the histone variant H2A.Z and transcriptional activation. Based on this and previous findings, we surmise that Myc recruits the Tip60/p400 complex to achieve a coordinated histone acetylation/exchange reaction at activated promoters. Our data are also consistent with the additive and redundant role of multiple acetylation events in transcriptional activation.

  9. Rapid and reversible epigenome editing by endogenous chromatin regulators.

    Science.gov (United States)

    Braun, Simon M G; Kirkland, Jacob G; Chory, Emma J; Husmann, Dylan; Calarco, Joseph P; Crabtree, Gerald R

    2017-09-15

    Understanding the causal link between epigenetic marks and gene regulation remains a central question in chromatin biology. To edit the epigenome we developed the FIRE-Cas9 system for rapid and reversible recruitment of endogenous chromatin regulators to specific genomic loci. We enhanced the dCas9-MS2 anchor for genome targeting with Fkbp/Frb dimerizing fusion proteins to allow chemical-induced proximity of a desired chromatin regulator. We find that mSWI/SNF (BAF) complex recruitment is sufficient to oppose Polycomb within minutes, leading to activation of bivalent gene transcription in mouse embryonic stem cells. Furthermore, Hp1/Suv39h1 heterochromatin complex recruitment to active promoters deposits H3K9me3 domains, resulting in gene silencing that can be reversed upon washout of the chemical dimerizer. This inducible recruitment strategy provides precise kinetic information to model epigenetic memory and plasticity. It is broadly applicable to mechanistic studies of chromatin in mammalian cells and is particularly suited to the analysis of endogenous multi-subunit chromatin regulator complexes.Understanding the link between epigenetic marks and gene regulation requires the development of new tools to directly manipulate chromatin. Here the authors demonstrate a Cas9-based system to recruit chromatin remodelers to loci of interest, allowing rapid, reversible manipulation of epigenetic states.

  10. Transcription Through Chromatin - Dynamic Organization of Genes

    Indian Academy of Sciences (India)

    different proteins involved in the synthesis of mRNA from the. DNA template. ... CBP - CREB Binding Protein. CHRAC. Chromatin .... nucleosomal interactions, and thereby change the chromatin structure, as per the ..... methyltransferases in gene regulation is yet to be elucidated. .... Molecular Biology and. Genetics Unit.

  11. Vacuum ultraviolet (VUV) absorption spectra of chromatin and its components

    International Nuclear Information System (INIS)

    Dodonova, N.Y.; Kiseleva, M.N.; Petrov, M.Y.; Tsyganenko, N.M.; Bubyakina, V.V.; Chikhirzhina, G.I.

    1984-01-01

    The electron absorption spectra of thin films of chromatin and chromatin components in the ultraviolet region (140-280 nm) were investigated. The absorption coefficients μ(lambda) of chromatin, nucleosomes with and without histone H1, total histones (TH), and DNA were compared. The spectra of nucleosomes differ from the sum-spectrum of DNA plus TH. The chromatin and nucleosome spectra are not similar in the spectral region of 190-160 nm. The lack of additivity of absorption coefficients at different wavelengths may be explained by different conformational changes of DNA, TH in nucleosomes and chromatin during the process of drying aqueous solutions for the preparation of thin films. The μ(lambda) values are useful for an estimate of the DNA and TH absorption in chromatin and nucleosomes in discussing UV and VUV irradiation damages. (Auth.)

  12. The Latest Twists in Chromatin Remodeling.

    Science.gov (United States)

    Blossey, Ralf; Schiessel, Helmut

    2018-01-05

    In its most restrictive interpretation, the notion of chromatin remodeling refers to the action of chromatin-remodeling enzymes on nucleosomes with the aim of displacing and removing them from the chromatin fiber (the effective polymer formed by a DNA molecule and proteins). This local modification of the fiber structure can have consequences for the initiation and repression of the transcription process, and when the remodeling process spreads along the fiber, it also results in long-range effects essential for fiber condensation. There are three regulatory levels of relevance that can be distinguished for this process: the intrinsic sequence preference of the histone octamer, which rules the positioning of the nucleosome along the DNA, notably in relation to the genetic information coded in DNA; the recognition or selection of nucleosomal substrates by remodeling complexes; and, finally, the motor action on the nucleosome exerted by the chromatin remodeler. Recent work has been able to provide crucial insights at each of these three levels that add new twists to this exciting and unfinished story, which we highlight in this perspective. Copyright © 2017 Biophysical Society. Published by Elsevier Inc. All rights reserved.

  13. Combgap Promotes Ovarian Niche Development and Chromatin Association of EcR-Binding Regions in BR-C.

    Science.gov (United States)

    Hitrik, Anna; Popliker, Malka; Gancz, Dana; Mukamel, Zohar; Lifshitz, Aviezer; Schwartzman, Omer; Tanay, Amos; Gilboa, Lilach

    2016-11-01

    The development of niches for tissue-specific stem cells is an important aspect of stem cell biology. Determination of niche size and niche numbers during organogenesis involves precise control of gene expression. How this is achieved in the context of a complex chromatin landscape is largely unknown. Here we show that the nuclear protein Combgap (Cg) supports correct ovarian niche formation in Drosophila by controlling ecdysone-Receptor (EcR)- mediated transcription and long-range chromatin contacts in the broad locus (BR-C). Both cg and BR-C promote ovarian growth and the development of niches for germ line stem cells. BR-C levels were lower when Combgap was either reduced or over-expressed, indicating an intricate regulation of the BR-C locus by Combgap. Polytene chromosome stains showed that Cg co-localizes with EcR, the major regulator of BR-C, at the BR-C locus and that EcR binding to chromatin was sensitive to changes in Cg levels. Proximity ligation assay indicated that the two proteins could reside in the same complex. Finally, chromatin conformation analysis revealed that EcR-bound regions within BR-C, which span ~30 KBs, contacted each other. Significantly, these contacts were stabilized in an ecdysone- and Combgap-dependent manner. Together, these results highlight Combgap as a novel regulator of chromatin structure that promotes transcription of ecdysone target genes and ovarian niche formation.

  14. Determination of local chromatin composition by CasID.

    Science.gov (United States)

    Schmidtmann, Elisabeth; Anton, Tobias; Rombaut, Pascaline; Herzog, Franz; Leonhardt, Heinrich

    2016-09-02

    Chromatin structure and function are determined by a plethora of proteins whose genome-wide distribution is typically assessed by immunoprecipitation (ChIP). Here, we developed a novel tool to investigate the local chromatin environment at specific DNA sequences. We combined the programmable DNA binding of dCas9 with the promiscuous biotin ligase BirA* (CasID) to biotinylate proteins in the direct vicinity of specific loci. Subsequent streptavidin-mediated precipitation and mass spectrometry identified both known and previously unknown chromatin factors associated with repetitive telomeric, major satellite and minor satellite DNA. With super-resolution microscopy, we confirmed the localization of the putative transcription factor ZNF512 at chromocenters. The versatility of CasID facilitates the systematic elucidation of functional protein complexes and locus-specific chromatin composition.

  15. A CHROMATIN MODIFYING ENZYME, SDG8, IS REQUIRED FOR MORPHOLOGICAL, GENE EXPRESSION, AND EPIGENETIC RESPONSES TO MECHANICAL STIMULATION

    OpenAIRE

    Christopher Ian Cazzonelli; Nazia eNisar; Andrea C Roberts; Kevin eMurray; Justin O Borevitz; Barry James Pogson

    2014-01-01

    Thigmomorphogenesis is viewed as being a response process of acclimation to short repetitive bursts of mechanical stimulation or touch. The underlying molecular mechanisms that coordinate changes in how touch signals lead to long-term morphological changes are enigmatic. Touch responsive gene expression is rapid and transient, and no transcription factor or DNA regulatory motif has been reported that could confer a genome wide mechanical stimulus. We report here on a chromatin modifying enzy...

  16. A chromatin modifying enzyme, SDG8, is involved in morphological, gene expression, and epigenetic responses to mechanical stimulation

    OpenAIRE

    Cazzonelli, Christopher I.; Nisar, Nazia; Roberts, Andrea C.; Murray, Kevin D.; Borevitz, Justin O.; Pogson, Barry J.

    2014-01-01

    Thigmomorphogenesis is viewed as being a response process of acclimation to short repetitive bursts of mechanical stimulation or touch. The underlying molecular mechanisms that coordinate changes in how touch signals lead to long-term morphological changes are enigmatic. Touch responsive gene expression is rapid and transient, and no transcription factor or DNA regulatory motif has been reported that could confer a genome wide mechanical stimulus. We report here on a chromatin modifying enzym...

  17. A microgrid cluster structure and its autonomous coordination control strategy

    DEFF Research Database (Denmark)

    Zhou, Xiaoping; Zhou, Leming; Chen, Yandong

    2018-01-01

    This paper proposes a microgrid cluster structure and its autonomous coordination control strategy. Unlike existing microgrids that are purely AC or DC, the microgrid cluster studied here is an interconnected system with multiple AC and DC microgrids, which enables mutual power support among...... control method combining the normalized droop-based control and adaptive control is proposed for PEU, which can effectively realize mutual power support among microgrids and reduce the bus voltage or frequency deviation in microgrids. In addition, the adaptive control strategy of PEU can ensure...... that the bigger the normalized index of microgrid is, the larger the active power exchange coefficient is, which can make all of microgrids operate around the rated state as much as possible. Besides, EP is mainly used to balance the system power, and the hierarchical coordinated control method of EP is proposed...

  18. The action of fast neutrons on Walker tumor chromatin in rats treated with thiotepa and lomustine cytostatics and with estradiol hormone

    International Nuclear Information System (INIS)

    Radu, L.; Constantinescu, B.; Gostian, O.

    1994-01-01

    Wistar rats bearing Walker carcinosarcoma were treated with thiotepa (1 mg) and lomustine (3 mg) cytostatics and with each of these cytostatics associated with estradiol hormone (0.15 mg). The extracted chromatins were subjected to fast neutrons (d(13 MeV)+Be thick target) at 30-100 Gy doses. The parameters estimated at chromatin samples were: the tyrosine and tryptophan intrinsic fluorescence, the fluorescence of chromatin - ethidium bromide complexes and thermal transition. A different and specific susceptibility to fast neutrons was observed in treated chromatin samples, when compared with controls. The chromatin acidic proteins destruction was greater in the case of estradiol - thiotepa association. (Author)

  19. Retroviruses Hijack Chromatin Loops to Drive Oncogene Expression and Highlight the Chromatin Architecture around Proto-Oncogenic Loci

    Science.gov (United States)

    Pattison, Jillian M.; Wright, Jason B.; Cole, Michael D.

    2015-01-01

    The majority of the genome consists of intergenic and non-coding DNA sequences shown to play a major role in different gene regulatory networks. However, the specific potency of these distal elements as well as how these regions exert function across large genomic distances remains unclear. To address these unresolved issues, we closely examined the chromatin architecture around proto-oncogenic loci in the mouse and human genomes to demonstrate a functional role for chromatin looping in distal gene regulation. Using cell culture models, we show that tumorigenic retroviral integration sites within the mouse genome occur near existing large chromatin loops and that this chromatin architecture is maintained within the human genome as well. Significantly, as mutagenesis screens are not feasible in humans, we demonstrate a way to leverage existing screens in mice to identify disease relevant human enhancers and expose novel disease mechanisms. For instance, we characterize the epigenetic landscape upstream of the human Cyclin D1 locus to find multiple distal interactions that contribute to the complex cis-regulation of this cell cycle gene. Furthermore, we characterize a novel distal interaction upstream of the Cyclin D1 gene which provides mechanistic evidence for the abundant overexpression of Cyclin D1 occurring in multiple myeloma cells harboring a pathogenic translocation event. Through use of mapped retroviral integrations and translocation breakpoints, our studies highlight the importance of chromatin looping in oncogene expression, elucidate the epigenetic mechanisms crucial for distal cis-regulation, and in one particular instance, explain how a translocation event drives tumorigenesis through upregulation of a proto-oncogene. PMID:25799187

  20. A Coordinated LVRT Control for a PMSG Wind Turbine

    DEFF Research Database (Denmark)

    Kim, Chunghun; Gui, Yonghao; Chung, Chung Choo

    2017-01-01

    This paper proposes a coordinated controller for a permanent-magnet synchronous generator wind turbine to enhance its low voltage ride through capability. In the proposed method, both rotor side and grid side converters are cooperatively controlled to regulate the DC link voltage during the grid...

  1. Multiagent System-Based Distributed Coordinated Control for Radial DC Microgrid Considering Transmission Time Delays

    DEFF Research Database (Denmark)

    Dou, Chun-Xia; Yue, Dong; Guerrero, Josep M.

    2017-01-01

    This paper focuses on a multi-agent based distributed coordinated control for radial DC microgrid considering trans-mission time delays. Firstly, a two-level multi-agent system is constructed, where local control is formulated based on local states and executed by means of the first-level agent......, and dis-tributed coordinated control law is formulated based on wide-area information and executed by means of the secondary- level agent in order to improve the voltage control performances. Afterwards, the research mainly focuses on designing the local controller and the distributed coordinated...

  2. Chromatin structure and evolution in the human genome

    Directory of Open Access Journals (Sweden)

    Dunlop Malcolm G

    2007-05-01

    Full Text Available Abstract Background Evolutionary rates are not constant across the human genome but genes in close proximity have been shown to experience similar levels of divergence and selection. The higher-order organisation of chromosomes has often been invoked to explain such phenomena but previously there has been insufficient data on chromosome structure to investigate this rigorously. Using the results of a recent genome-wide analysis of open and closed human chromatin structures we have investigated the global association between divergence, selection and chromatin structure for the first time. Results In this study we have shown that, paradoxically, synonymous site divergence (dS at non-CpG sites is highest in regions of open chromatin, primarily as a result of an increased number of transitions, while the rates of other traditional measures of mutation (intergenic, intronic and ancient repeat divergence as well as SNP density are highest in closed regions of the genome. Analysis of human-chimpanzee divergence across intron-exon boundaries indicates that although genes in relatively open chromatin generally display little selection at their synonymous sites, those in closed regions show markedly lower divergence at their fourfold degenerate sites than in neighbouring introns and intergenic regions. Exclusion of known Exonic Splice Enhancer hexamers has little affect on the divergence observed at fourfold degenerate sites across chromatin categories; however, we show that closed chromatin is enriched with certain classes of ncRNA genes whose RNA secondary structure may be particularly important. Conclusion We conclude that, overall, non-CpG mutation rates are lowest in open regions of the genome and that regions of the genome with a closed chromatin structure have the highest background mutation rate. This might reflect lower rates of DNA damage or enhanced DNA repair processes in regions of open chromatin. Our results also indicate that dS is a poor

  3. Extensive Variation in Chromatin States Across Humans

    KAUST Repository

    Kasowski, M.

    2013-10-17

    The majority of disease-associated variants lie outside protein-coding regions, suggesting a link between variation in regulatory regions and disease predisposition. We studied differences in chromatin states using five histone modifications, cohesin, and CTCF in lymphoblastoid lines from 19 individuals of diverse ancestry. We found extensive signal variation in regulatory regions, which often switch between active and repressed states across individuals. Enhancer activity is particularly diverse among individuals, whereas gene expression remains relatively stable. Chromatin variability shows genetic inheritance in trios, correlates with genetic variation and population divergence, and is associated with disruptions of transcription factor binding motifs. Overall, our results provide insights into chromatin variation among humans.

  4. Extensive Variation in Chromatin States Across Humans

    KAUST Repository

    Kasowski, M.; Kyriazopoulou-Panagiotopoulou, S.; Grubert, F.; Zaugg, J. B.; Kundaje, A.; Liu, Y.; Boyle, A. P.; Zhang, Q. C.; Zakharia, F.; Spacek, D. V.; Li, J.; Xie, D.; Olarerin-George, A.; Steinmetz, L. M.; Hogenesch, J. B.; Kellis, M.; Batzoglou, S.; Snyder, M.

    2013-01-01

    The majority of disease-associated variants lie outside protein-coding regions, suggesting a link between variation in regulatory regions and disease predisposition. We studied differences in chromatin states using five histone modifications, cohesin, and CTCF in lymphoblastoid lines from 19 individuals of diverse ancestry. We found extensive signal variation in regulatory regions, which often switch between active and repressed states across individuals. Enhancer activity is particularly diverse among individuals, whereas gene expression remains relatively stable. Chromatin variability shows genetic inheritance in trios, correlates with genetic variation and population divergence, and is associated with disruptions of transcription factor binding motifs. Overall, our results provide insights into chromatin variation among humans.

  5. Diazinon alters sperm chromatin structure in mice by phosphorylating nuclear protamines

    International Nuclear Information System (INIS)

    Pina-Guzman, B.; Solis-Heredia, M.J.; Quintanilla-Vega, B.

    2005-01-01

    Organophosphorus (OP) pesticides, widely used in agriculture and pest control, are associated with male reproductive effects, including sperm chromatin alterations, but the mechanisms underlying these effects are unknown. The main toxic action of OP is related to phosphorylation of proteins. Chemical alterations in sperm nuclear proteins (protamines), which pack DNA during the last steps of spermatogenesis, contribute to male reproductive toxicity. Therefore, in the present study, we tested the ability of diazinon (DZN), an OP compound, to alter sperm chromatin by phosphorylating nuclear protamines. Mice were injected with a single dose of DZN (8.12 mg/kg, i.p.), and killed 8 and 15 days after treatment. Quality of sperm from epididymis and vas deferens was evaluated through standard methods and chromatin condensation by flow cytometry (DNA Fragmented Index parameters: DFI and DFI%) and fluorescence microscopy using chromomycin-A 3 (CMA 3 ). Increases in DFI (15%), DFI% (4.5-fold), and CMA 3 (2-fold) were observed only at 8 days post-treatment, indicating an alteration in sperm chromatin condensation and DNA damage during late spermatid differentiation. In addition, an increase of phosphorous content (approximately 50%) in protamines, especially in the phosphoserine content (approximately 73%), was found at 8 days post-treatment. Sperm viability, motility, and morphology showed significant alterations at this time. These data strongly suggest that spermatozoa exposed during the late steps of maturation were the targets of DZN exposure. The correlation observed between the phosphorous content in nuclear protamines with DFI%, DFI, and CMA 3 provides evidence that phosphorylation of nuclear protamines is involved in the OP effects on sperm chromatin

  6. Formation of DNA-protein crosslinks in gamma-irradiated chromatin

    International Nuclear Information System (INIS)

    Mee, L.K.

    1985-01-01

    Gamma-irradiation of chromatin in vitro and in vivo induces DNA-protein crosslinks which are stable to salt and detergent treatment. The efficiency of crosslink formation is 100 times greater in irradiated isolated chromatin than in chromatin irradiated in cells before isolation. Gamma-irradiation of isolated chromatin in the presence of radical scavengers shows that OH . is the most effective radical for the promotion of crosslinking whereas e/sub aq//sup -/ and O/sub 2//sup -/ are essentially ineffective. For chromatin irradiated in the cell before isolation, fewer crosslinks are formed in air than in an atmosphere of nitrogen; the greatest effect is found in cells irradiated in an atmosphere of nitrous oxide, suggesting that OH . may be involved in the formation of crosslinks in vivo. On the basis of comparing radiation-induced crosslinking in whole chromating (DNA, H1 histone, the core histones - H2A, H2B, H3 and H4 - and non-histone chromosomal proteins) and in a chromatin subunit (DNA and the core histones), the authors identified the core histones as the specific chromosomal proteins predominantly involved in crosslinking to DNA

  7. Synaptic, transcriptional and chromatin genes disrupted in autism.

    Science.gov (United States)

    De Rubeis, Silvia; He, Xin; Goldberg, Arthur P; Poultney, Christopher S; Samocha, Kaitlin; Cicek, A Erucment; Kou, Yan; Liu, Li; Fromer, Menachem; Walker, Susan; Singh, Tarinder; Klei, Lambertus; Kosmicki, Jack; Shih-Chen, Fu; Aleksic, Branko; Biscaldi, Monica; Bolton, Patrick F; Brownfeld, Jessica M; Cai, Jinlu; Campbell, Nicholas G; Carracedo, Angel; Chahrour, Maria H; Chiocchetti, Andreas G; Coon, Hilary; Crawford, Emily L; Curran, Sarah R; Dawson, Geraldine; Duketis, Eftichia; Fernandez, Bridget A; Gallagher, Louise; Geller, Evan; Guter, Stephen J; Hill, R Sean; Ionita-Laza, Juliana; Jimenz Gonzalez, Patricia; Kilpinen, Helena; Klauck, Sabine M; Kolevzon, Alexander; Lee, Irene; Lei, Irene; Lei, Jing; Lehtimäki, Terho; Lin, Chiao-Feng; Ma'ayan, Avi; Marshall, Christian R; McInnes, Alison L; Neale, Benjamin; Owen, Michael J; Ozaki, Noriio; Parellada, Mara; Parr, Jeremy R; Purcell, Shaun; Puura, Kaija; Rajagopalan, Deepthi; Rehnström, Karola; Reichenberg, Abraham; Sabo, Aniko; Sachse, Michael; Sanders, Stephan J; Schafer, Chad; Schulte-Rüther, Martin; Skuse, David; Stevens, Christine; Szatmari, Peter; Tammimies, Kristiina; Valladares, Otto; Voran, Annette; Li-San, Wang; Weiss, Lauren A; Willsey, A Jeremy; Yu, Timothy W; Yuen, Ryan K C; Cook, Edwin H; Freitag, Christine M; Gill, Michael; Hultman, Christina M; Lehner, Thomas; Palotie, Aaarno; Schellenberg, Gerard D; Sklar, Pamela; State, Matthew W; Sutcliffe, James S; Walsh, Christiopher A; Scherer, Stephen W; Zwick, Michael E; Barett, Jeffrey C; Cutler, David J; Roeder, Kathryn; Devlin, Bernie; Daly, Mark J; Buxbaum, Joseph D

    2014-11-13

    The genetic architecture of autism spectrum disorder involves the interplay of common and rare variants and their impact on hundreds of genes. Using exome sequencing, here we show that analysis of rare coding variation in 3,871 autism cases and 9,937 ancestry-matched or parental controls implicates 22 autosomal genes at a false discovery rate (FDR) < 0.05, plus a set of 107 autosomal genes strongly enriched for those likely to affect risk (FDR < 0.30). These 107 genes, which show unusual evolutionary constraint against mutations, incur de novo loss-of-function mutations in over 5% of autistic subjects. Many of the genes implicated encode proteins for synaptic formation, transcriptional regulation and chromatin-remodelling pathways. These include voltage-gated ion channels regulating the propagation of action potentials, pacemaking and excitability-transcription coupling, as well as histone-modifying enzymes and chromatin remodellers-most prominently those that mediate post-translational lysine methylation/demethylation modifications of histones.

  8. Chk1 protects against chromatin bridges by constitutively phosphorylating BLM serine 502 to inhibit BLM degradation.

    Science.gov (United States)

    Petsalaki, Eleni; Dandoulaki, Maria; Morrice, Nick; Zachos, George

    2014-09-15

    Chromatin bridges represent incompletely segregated chromosomal DNA connecting the anaphase poles and can result in chromosome breakage. The Bloom's syndrome protein helicase (BLM, also known as BLMH) suppresses formation of chromatin bridges. Here, we show that cells deficient in checkpoint kinase 1 (Chk1, also known as CHEK1) exhibit higher frequency of chromatin bridges and reduced BLM protein levels compared to controls. Chk1 inhibition leads to BLM ubiquitylation and proteasomal degradation during interphase. Furthermore, Chk1 constitutively phosphorylates human BLM at serine 502 (S502) and phosphorylated BLM localises to chromatin bridges. Mutation of S502 to a non-phosphorylatable alanine residue (BLM-S502A) reduces the stability of BLM, whereas expression of a phospho-mimicking BLM-S502D, in which S502 is mutated to aspartic acid, stabilises BLM and prevents chromatin bridges in Chk1-deficient cells. In addition, wild-type but not BLM-S502D associates with cullin 3, and cullin 3 depletion rescues BLM accumulation and localisation to chromatin bridges after Chk1 inhibition. We propose that Chk1 phosphorylates BLM-S502 to inhibit cullin-3-mediated BLM degradation during interphase. These results suggest that Chk1 prevents deleterious anaphase bridges by stabilising BLM. © 2014. Published by The Company of Biologists Ltd.

  9. RNA polymerase III transcription - regulated by chromatin structure and regulator of nuclear chromatin organization.

    Science.gov (United States)

    Pascali, Chiara; Teichmann, Martin

    2013-01-01

    RNA polymerase III (Pol III) transcription is regulated by modifications of the chromatin. DNA methylation and post-translational modifications of histones, such as acetylation, phosphorylation and methylation have been linked to Pol III transcriptional activity. In addition to being regulated by modifications of DNA and histones, Pol III genes and its transcription factors have been implicated in the organization of nuclear chromatin in several organisms. In yeast, the ability of the Pol III transcription system to contribute to nuclear organization seems to be dependent on direct interactions of Pol III genes and/or its transcription factors TFIIIC and TFIIIB with the structural maintenance of chromatin (SMC) protein-containing complexes cohesin and condensin. In human cells, Pol III genes and transcription factors have also been shown to colocalize with cohesin and the transcription regulator and genome organizer CCCTC-binding factor (CTCF). Furthermore, chromosomal sites have been identified in yeast and humans that are bound by partial Pol III machineries (extra TFIIIC sites - ETC; chromosome organizing clamps - COC). These ETCs/COC as well as Pol III genes possess the ability to act as boundary elements that restrict spreading of heterochromatin.

  10. Coordinating IMC-PID and adaptive SMC controllers for a PEMFC.

    Science.gov (United States)

    Wang, Guo-Liang; Wang, Yong; Shi, Jun-Hai; Shao, Hui-He

    2010-01-01

    For a Proton Exchange Membrane Fuel Cell (PEMFC) power plant with a methanol reformer, the process parameters and power output are considered simultaneously to avoid violation of the constraints and to keep the fuel cell power plant safe and effective. In this paper, a novel coordinating scheme is proposed by combining an Internal Model Control (IMC) based PID Control and adaptive Sliding Mode Control (SMC). The IMC-PID controller is designed for the reformer of the fuel flow rate according to the expected first-order dynamic properties. The adaptive SMC controller of the fuel cell current has been designed using the constant plus proportional rate reaching law. The parameters of the SMC controller are adaptively tuned according to the response of the fuel flow rate control system. When the power output controller feeds back the current references to these two controllers, the coordinating controllers system works in a system-wide way. The simulation results of the PEMFC power plant demonstrate the effectiveness of the proposed method. 2009 ISA. Published by Elsevier Ltd. All rights reserved.

  11. Neutron scattering studies on chromatin higher-order structure

    Energy Technology Data Exchange (ETDEWEB)

    Graziano, V.; Gerchman, S.E.; Schneider, D.K.; Ramakrishnan, V. [Brookhaven National Laboratory, Upton, NY (United States)

    1994-12-31

    We have been engaged in studies of the structure and condensation of chromatin into the 30nm filament using small-angle neutron scattering. We have also used deuterated histone H1 to determine its location in the chromatin 30nm filament. Our studies indicate that chromatin condenses with increasing ionic strength to a limiting structure that has a mass per unit length of 6-7 nucleosomes/11 nm. They also show that the linker histone H1/H5 is located in the interior of the chromatin filament, in a position compatible with its binding to the inner face of the nucleosome. Analysis of the mass per unit length as a function of H5 stoichiometry suggests that 5-7 contiguous nucleosomes need to have H5 bound before a stable higher order structure can exist.

  12. Neutron scattering studies on chromatin higher-order structure

    International Nuclear Information System (INIS)

    Graziano, V.; Gerchman, S.E.; Schneider, D.K.; Ramakrishnan, V.

    1994-01-01

    We have been engaged in studies of the structure and condensation of chromatin into the 30nm filament using small-angle neutron scattering. We have also used deuterated histone H1 to determine its location in the chromatin 30nm filament. Our studies indicate that chromatin condenses with increasing ionic strength to a limiting structure that has a mass per unit length of 6-7 nucleosomes/11 nm. They also show that the linker histone H1/H5 is located in the interior of the chromatin filament, in a position compatible with its binding to the inner face of the nucleosome. Analysis of the mass per unit length as a function of H5 stoichiometry suggests that 5-7 contiguous nucleosomes need to have H5 bound before a stable higher order structure can exist

  13. Radiation-induced cell death by chromatin loss

    International Nuclear Information System (INIS)

    Campbell, I.R.; Warenius, H.M.

    1989-01-01

    A model is proposed which relates reproductive death of cells caused by radiation to loss of chromatin at cell division. This loss of chromatin can occur through chromosomal deletions or through the formation of asymmetrical chromosomal exchanges. It is proposed that smaller doses of radiation produce fewer chromatin breaks, which are more likely to be accurately repaired, compared with larger doses. Consequently, smaller doses of radiation are less efficient in causing cell death, leading to a shoulder on the cell survival curve. Experimental evidence supports this model, and the fit between the derived formula and experimental cell survival curves is good. The derived formula approximates to the linear-quadratic equation at low doses of radiation. (author)

  14. Critical electrolyte concentration of silk gland chromatin of the sugarcane borer Diatraea saccharalis, induced using agrochemicals.

    Science.gov (United States)

    Santos, S A; Fermino, F; Moreira, B M T; Araujo, K F; Falco, J R P; Ruvolo-Takasusuki, M C C

    2014-09-29

    The sugarcane borer Diatraea saccharalis is widely known as the main pest of sugarcane crop, causing increased damage to the entire fields. Measures to control this pest involve the use of chemicals and biological control with Cotesia flavipes wasps. In this study, we evaluated the insecticides fipronil (Frontline; 0.0025%), malathion (Malatol Bio Carb; 0.4%), cipermetrina (Galgotrin; 10%), and neem oil (Natuneem; 100%) and the herbicide nicosulfuron (Sanson 40 SC; 100%) in the posterior region silk glands of 3rd- and 5th-instar D. saccharalis by studying the variation in the critical electrolyte concentration (CEC). Observations of 3rd-instar larvae indicated that malathion, cipermetrina, and neem oil induced increased chromatin condensation that may consequently disable genes. Tests with fipronil showed no alteration in chromatin condensation. With the use of nicosulfuron, there was chromatin and probable gene decompaction. In the 5th-instar larvae, the larval CEC values indicated that malathion and neem oil induced increased chromatin condensation. The CEC values for 5th-instar larvae using cipermetrina, fipronil, and nicosulfuron indicated chromatin unpacking. These observations led us to conclude that the quantity of the pesticide does not affect the mortality of these pests, can change the conformation of complexes of DNA, RNA, and protein from the posterior region of silk gland cells of D. saccharalis, activating or repressing the expression of genes related to the defense mechanism of the insect and contributing to the selection and survival of resistant individuals.

  15. Coordinated Control of Cross-Flow Turbines

    Science.gov (United States)

    Strom, Benjamin; Brunton, Steven; Polagye, Brian

    2016-11-01

    Cross-flow turbines, also known as vertical-axis turbines, have several advantages over axial-flow turbines for a number of applications including urban wind power, high-density arrays, and marine or fluvial currents. By controlling the angular velocity applied to the turbine as a function of angular blade position, we have demonstrated a 79 percent increase in cross-flow turbine efficiency over constant-velocity control. This strategy uses the downhill simplex method to optimize control parameter profiles during operation of a model turbine in a recirculating water flume. This optimization method is extended to a set of two turbines, where the blade motions and position of the downstream turbine are optimized to beneficially interact with the coherent structures in the wake of the upstream turbine. This control scheme has the potential to enable high-density arrays of cross-flow turbines to operate at cost-effective efficiency. Turbine wake and force measurements are analyzed for insight into the effect of a coordinated control strategy.

  16. Chromatin architecture and gene expression in Escherichia coli

    DEFF Research Database (Denmark)

    Willenbrock, Hanni; Ussery, David

    2004-01-01

    Two recent genome-scale analyses underscore the importance of DNA topology and chromatin structure in regulating transcription in Escherichia coli.......Two recent genome-scale analyses underscore the importance of DNA topology and chromatin structure in regulating transcription in Escherichia coli....

  17. Structural hierarchy of chromatin in chicken erythrocyte nuclei based on small-angle neutron scattering: Fractal nature of the large-scale chromatin organization

    International Nuclear Information System (INIS)

    Lebedev, D. V.; Filatov, M. V.; Kuklin, A. I.; Islamov, A. Kh.; Stellbrink, J.; Pantina, R. A.; Denisov, Yu. Yu.; Toperverg, B. P.; Isaev-Ivanov, V. V.

    2008-01-01

    The chromatin organization in chicken erythrocyte nuclei was studied by small-angle neutron scattering in the scattering-vector range from 1.5 x 10 -1 to 10 -4 A -1 with the use of the contrast-variation technique. This scattering-vector range corresponds to linear dimensions from 4 nm to 6 μm and covers the whole hierarchy of chromatin structures, from the nucleosomal structure to the entire nucleus. The results of the present study allowed the following conclusions to be drawn: (1) both the chromatin-protein structure and the structure of the nucleic acid component in chicken erythrocyte nuclei have mass-fractal properties, (2) the structure of the protein component of chromatin exhibits a fractal behavior on scales extending over two orders of magnitude, from the nucleosomal size to the size of an entire nucleus, and (3) the structure of the nucleic acid component of chromatin in chicken erythrocyte nuclei is likewise of a fractal nature and has two levels of organization or two phases with the crossover point at about 300-400 nm

  18. Replicating chromatin: a tale of histones

    DEFF Research Database (Denmark)

    Groth, Anja

    2009-01-01

    Chromatin serves structural and functional roles crucial for genome stability and correct gene expression. This organization must be reproduced on daughter strands during replication to maintain proper overlay of epigenetic fabric onto genetic sequence. Nucleosomes constitute the structural...... framework of chromatin and carry information to specify higher-order organization and gene expression. When replication forks traverse the chromosomes, nucleosomes are transiently disrupted, allowing the replication machinery to gain access to DNA. Histone recycling, together with new deposition, ensures...

  19. Developing a taxonomy of coordination behaviours in nuclear power plant control rooms during emergencies.

    Science.gov (United States)

    Wang, Dunxing; Gao, Qin; Li, Zhizhong; Song, Fei; Ma, Liang

    2017-12-01

    This study aims to develop a taxonomy of coordination behaviours during emergencies in nuclear power plants (NPPs). We summarised basic coordination behaviours from literature in aviation, health care and nuclear field and identified coordination behaviours specific to the nuclear domain by interviewing and surveying control crew operators. The established taxonomy includes 7 workflow stages and 24 basic coordination behaviours. To evaluate the reliability and feasibility of the taxonomy, we analysed 12 videos of operators' training sessions by coding coordination behaviours with the taxonomy and the inter-rater reliability was acceptable. Further analysis of the frequency, the duration and the direction of the coordination behaviours revealed four coordination problems. This taxonomy provides a foundation of systematic observation of coordination behaviours among NPP crews, advances researchers' understanding of the coordination mechanism during emergencies in NPPs and facilitate the possibility to deepen the understanding of the relationships between coordination behaviours and team performance. Practitioner Summary: A taxonomy of coordination behaviours during emergencies in nuclear power plants was developed. Reliability and feasibility of the taxonomy was verified through the analysis of 12 training sessions. The taxonomy can serve as an observation system for analysis of coordination behaviours and help to identify coordination problems of control crews.

  20. Tracking the mechanical dynamics of human embryonic stem cell chromatin

    Directory of Open Access Journals (Sweden)

    Hinde Elizabeth

    2012-12-01

    Full Text Available Abstract Background A plastic chromatin structure has emerged as fundamental to the self-renewal and pluripotent capacity of embryonic stem (ES cells. Direct measurement of chromatin dynamics in vivo is, however, challenging as high spatiotemporal resolution is required. Here, we present a new tracking-based method which can detect high frequency chromatin movement and quantify the mechanical dynamics of chromatin in live cells. Results We use this method to study how the mechanical properties of chromatin movement in human embryonic stem cells (hESCs are modulated spatiotemporally during differentiation into cardiomyocytes (CM. Notably, we find that pluripotency is associated with a highly discrete, energy-dependent frequency of chromatin movement that we refer to as a ‘breathing’ state. We find that this ‘breathing’ state is strictly dependent on the metabolic state of the cell and is progressively silenced during differentiation. Conclusions We thus propose that the measured chromatin high frequency movements in hESCs may represent a hallmark of pluripotency and serve as a mechanism to maintain the genome in a transcriptionally accessible state. This is a result that could not have been observed without the high spatial and temporal resolution provided by this novel tracking method.

  1. Phosphorylation of linker histones regulates ATP-dependent chromatin remodeling enzymes.

    NARCIS (Netherlands)

    Horn, P.J.; Carruthers, L.M.; Logie, C.; Hill, D.A.; Solomon, M.J.; Wade, P.A.; Imbalzano, A.N.; Hansen, J.; Peterson, C.L.

    2002-01-01

    Members of the ATP-dependent family of chromatin remodeling enzymes play key roles in the regulation of transcription, development, DNA repair and cell cycle control. We find that the remodeling activities of the ySWI/SNF, hSWI/SNF, xMi-2 and xACF complexes are nearly abolished by incorporation of

  2. Do chromatin changes around a nascent double strand DNA break spread spherically into linearly non-adjacent chromatin?

    Science.gov (United States)

    Savic, Velibor

    2013-01-01

    In the last decade, a lot has been done in elucidating the sequence of events that occur at the nascent double strand DNA break. Nevertheless, the overall structure formed by the DNA damage response (DDR) factors around the break site, the repair focus, remains poorly understood. Although most of the data presented so far only address events that occur in chromatin in cis around the break, there are strong indications that in mammalian systems it may also occur in trans, analogous to the recent findings showing this if budding yeast. There have been attempts to address the issue but the final proof is still missing due to lack of a proper experimental system. If found to be true, the spatial distribution of DDR factors would have a major impact on the neighboring chromatin both in cis and in trans, significantly affecting local chromatin function; gene transcription and potentially other functions.

  3. Encounter times of chromatin loci influenced by polymer decondensation

    Science.gov (United States)

    Amitai, A.; Holcman, D.

    2018-03-01

    The time for a DNA sequence to find its homologous counterpart depends on a long random search inside the cell nucleus. Using polymer models, we compute here the mean first encounter time (MFET) between two sites located on two different polymer chains and confined locally by potential wells. We find that reducing tethering forces acting on the polymers results in local decondensation, and numerical simulations of the polymer model show that these changes are associated with a reduction of the MFET by several orders of magnitude. We derive here new asymptotic formula for the MFET, confirmed by Brownian simulations. We conclude from the present modeling approach that the fast search for homology is mediated by a local chromatin decondensation due to the release of multiple chromatin tethering forces. The present scenario could explain how the homologous recombination pathway for double-stranded DNA repair is controlled by its random search step.

  4. Infection Reveals a Modification of SIRT2 Critical for Chromatin Association

    Directory of Open Access Journals (Sweden)

    Jorge M. Pereira

    2018-04-01

    Full Text Available Summary: Sirtuin 2 is a nicotinamide-adenine-dinucleotide-dependent deacetylase that regulates cell processes such as carcinogenesis, cell cycle, DNA damage, and infection. Subcellular localization of SIRT2 is crucial for its function but is poorly understood. Infection with the bacterial pathogen Listeria monocytogenes, which relocalizes SIRT2 from the cytoplasm to the chromatin, provides an ideal stimulus for the molecular study of this process. In this report, we provide a map of SIRT2 post-translational modification sites and focus on serine 25 phosphorylation. We show that infection specifically induces dephosphorylation of S25, an event essential for SIRT2 chromatin association. Furthermore, we identify a nuclear complex formed by the phosphatases PPM1A and PPM1B, with SIRT2 essential for controlling H3K18 deacetylation and SIRT2-mediated gene repression during infection and necessary for a productive Listeria infection. This study reveals a molecular mechanism regulating SIRT2 function and localization, paving the way for understanding other SIRT2-regulated cellular processes. : Sirtuins are enzymes critical for various processes, including genomic stability, metabolism, and aging. Through study of Listeria monocytogenes, a bacterial pathogen that exploits SIRT2 for productive infection, Pereira et al. uncover a SIRT2 modification necessary for chromatin association and function. Keywords: chromatin, sirtuin, Listeria monocytogenes, phosphorylation, PPM1, histone acetylation, H3K18, infection, subcellular localization

  5. The Mediator subunit MED23 couples H2B mono-ubiquitination to transcriptional control and cell fate determination.

    Science.gov (United States)

    Yao, Xiao; Tang, Zhanyun; Fu, Xing; Yin, Jingwen; Liang, Yan; Li, Chonghui; Li, Huayun; Tian, Qing; Roeder, Robert G; Wang, Gang

    2015-12-02

    The Mediator complex orchestrates multiple transcription factors with the Pol II apparatus for precise transcriptional control. However, its interplay with the surrounding chromatin remains poorly understood. Here, we analyze differential histone modifications between WT and MED23(-/-) (KO) cells and identify H2B mono-ubiquitination at lysine 120 (H2Bub) as a MED23-dependent histone modification. Using tandem affinity purification and mass spectrometry, we find that MED23 associates with the RNF20/40 complex, the enzyme for H2Bub, and show that this association is critical for the recruitment of RNF20/40 to chromatin. In a cell-free system, Mediator directly and substantially increases H2Bub on recombinant chromatin through its cooperation with RNF20/40 and the PAF complex. Integrative genome-wide analyses show that MED23 depletion specifically reduces H2Bub on a subset of MED23-controlled genes. Importantly, MED23-coupled H2Bub levels are oppositely regulated during myogenesis and lung carcinogenesis. In sum, these results establish a mechanistic link between the Mediator complex and a critical chromatin modification in coordinating transcription with cell growth and differentiation. © 2015 The Authors.

  6. Decrease of H1 histone and changes in chromatin structure and transcription in pea seedlings after γ-irradiation

    International Nuclear Information System (INIS)

    Bagi, G.; Hidvegi, E.J.

    1983-01-01

    Seeds and seedlings of pea have been irradiated between zero to 300 Gy doses of 60 Co gamma-irradiation and examinations were carried out on the chromatin of shoots of 1-week-old etiolated seedlings. There was only a slight change in the gross composition of chromatin after irradiation (in the mass ratios of DNA:RNA:histone:non-histone proteins). Separation of histones, however, showed that after 300 Gy irradiation the quantity of H1 histones decreased by 33% after seed irradiation and 43% after seedling irradiation. The ratio of H1 subfractions also changed. Enzymes DNAase II and micrococcal nuclease digested the chromatin of the irradiated sample 30% faster than the unirradiated one. Transcription kinetics of chromatin showed a gradual decrease of Ksub(m) value on increasing doses of irradiation. There was, however, no difference in the rate of transcription of DNAs, isolated from the chromatin of the control and irradiated samples. Protease and RNAase activity of whole shoots showed enhancement after irradiation. These data suggest that irradiation of either seeds or seedlings results in loosening of the seedling chromatin structure, while there is no change in basic nucleosomal structure. The specific degradation or dissociation of histone H1, localized in the internucleosomal region may be responsible for these changes in the higher order structure of chromatin. This may explain the easier accessibility of chromatin to DNAase II after irradiation and the more tightly bound RNA polymerase, exhibited in decreasing Ksub(m) values. (Auth.)

  7. Classical and Nonclassical Estrogen Receptor Action on Chromatin Templates

    National Research Council Canada - National Science Library

    Nordeen, Steven

    2000-01-01

    .... Using newly-developed approaches, I investigated mechanisms of estrogen/estrogen receptor action on chromatin templates in vitro in order to better understand the role of chromatin in steroid-regulated gene expression...

  8. Classical and Nonclassical Estrogen Receptor Action on Chromatin Templaces

    National Research Council Canada - National Science Library

    Nordeen, Steve

    2001-01-01

    .... Using newly-developed approaches, I investigated mechanisms of estrogen/estrogen receptor action on chromatin templates in vitro in order to better understand the role of chromatin in steroid-regulated gene expression...

  9. Deoxyribonuclease probing of sea urchin embryo chromatin

    International Nuclear Information System (INIS)

    Landsman, D.

    1983-01-01

    The role that the sea urchin, Parechinus angulosus, embryo and sperm histone variants plays in chromatin structure has been investigated. Chromatin structure has been determined at different levels of resolution in sperm and in developing embryos using micrococcal nuclease, pancreatic deoxyribonuclease (DNase I) and restriction endonucleases. Micrococcal nuclease and restriction endonuclease digestions of sea urchin gastrula chromatin have been analysed and it is shown that it is not possible to isolate large polynucleosomal chromatin complexes which are soluble in low ionic strength buffers. The repeat length for sperm is significantly larger than blastula and gastrula repeat lengths whereas blastula and gastrula repeat lengths are not significantly different. Nucleosomal core particles have been isolated from early blastula, gastrula and sperm of sea urchins. After DNase I digestion of 5'-labelled core particles the rate constants of cutting of the DNA at the susceptible sites on these core particles have been determined. The DNase I digestion kinetics of blastula and gastrula core particles are similar whereas sperm core particles are digested at a slower rate, mainly at the sites which are closest to the ends of the core particle DNA

  10. Autism genes keep turning up chromatin.

    Science.gov (United States)

    Lasalle, Janine M

    2013-06-19

    Autism-spectrum disorders (ASD) are complex genetic disorders collectively characterized by impaired social interactions and language as well as repetitive and restrictive behaviors. Of the hundreds of genes implicated in ASD, those encoding proteins acting at neuronal synapses have been most characterized by candidate gene studies. However, recent unbiased genome-wide analyses have turned up a multitude of novel candidate genes encoding nuclear factors implicated in chromatin remodeling, histone demethylation, histone variants, and the recognition of DNA methylation. Furthermore, the chromatin landscape of the human genome has been shown to influence the location of de novo mutations observed in ASD as well as the landscape of DNA methylation underlying neurodevelopmental and synaptic processes. Understanding the interactions of nuclear chromatin proteins and DNA with signal transduction pathways and environmental influences in the developing brain will be critical to understanding the relevance of these ASD candidate genes and continued uncovering of the "roots" of autism etiology.

  11. Capturing Structural Heterogeneity in Chromatin Fibers.

    Science.gov (United States)

    Ekundayo, Babatunde; Richmond, Timothy J; Schalch, Thomas

    2017-10-13

    Chromatin fiber organization is implicated in processes such as transcription, DNA repair and chromosome segregation, but how nucleosomes interact to form higher-order structure remains poorly understood. We solved two crystal structures of tetranucleosomes with approximately 11-bp DNA linker length at 5.8 and 6.7 Å resolution. Minimal intramolecular nucleosome-nucleosome interactions result in a fiber model resembling a flat ribbon that is compatible with a two-start helical architecture, and that exposes histone and DNA surfaces to the environment. The differences in the two structures combined with electron microscopy reveal heterogeneous structural states, and we used site-specific chemical crosslinking to assess the diversity of nucleosome-nucleosome interactions through identification of structure-sensitive crosslink sites that provide a means to characterize fibers in solution. The chromatin fiber architectures observed here provide a basis for understanding heterogeneous chromatin higher-order structures as they occur in a genomic context. Copyright © 2017 Elsevier Ltd. All rights reserved.

  12. Nuclear visions enhanced: chromatin structure, organization and dynamics

    OpenAIRE

    Meshorer, Eran; Herrmann, Harald; Raška, Ivan

    2011-01-01

    The EMBO Workshop on ‘Chromatin Structure, Organization and Dynamics' took place in April 2011 in Prague, Czech Republic. Participants presented data on the generation of models of the genome, working to correlate changes in the organization of chromatin with the functional state of the genome.

  13. From the chromatin interaction network to the organization of the human genome into replication N/U-domains

    International Nuclear Information System (INIS)

    Boulos, Rasha E; Julienne, Hanna; Baker, Antoine; Jensen, Pablo; Arneodo, Alain; Audit, Benjamin; Chen, Chun-Long; D'Aubenton-Carafa, Yves; Thermes, Claude; Petryk, Nataliya; Kahli, Malik; Hyrien, Olivier; Goldar, Arach

    2014-01-01

    The three-dimensional (3D) architecture of the mammalian nucleus is now being unraveled thanks to the recent development of chromatin conformation capture (3C) technologies. Here we report the results of a combined multiscale analysis of genome-wide mean replication timing and chromatin conformation data that reveal some intimate relationships between chromatin folding and human DNA replication. We previously described megabase replication N/U-domains as mammalian multiorigin replication units, and showed that their borders are ‘master’ replication initiation zones that likely initiate cascades of origin firing responsible for the stereotypic replication of these domains. Here, we demonstrate that replication N/U-domains correspond to the structural domains of self-interacting chromatin, and that their borders act as insulating regions both in high-throughput 3C (Hi-C) data and high-resolution 3C (4C) experiments. Further analyses of Hi-C data using a graph-theoretical approach reveal that N/U-domain borders are long-distance, interconnected hubs of the chromatin interaction network. Overall, these results and the observation that a well-defined ordering of chromatin states exists from N/U-domain borders to centers suggest that ‘master’ replication initiation zones are at the heart of a high-order, epigenetically controlled 3D organization of the human genome. (paper)

  14. Insights into Chromatin Structure and Dynamics in Plants

    Directory of Open Access Journals (Sweden)

    Stefanie Rosa

    2013-11-01

    Full Text Available The packaging of chromatin into the nucleus of a eukaryotic cell requires an extraordinary degree of compaction and physical organization. In recent years, it has been shown that this organization is dynamically orchestrated to regulate responses to exogenous stimuli as well as to guide complex cell-type-specific developmental programs. Gene expression is regulated by the compartmentalization of functional domains within the nucleus, by distinct nucleosome compositions accomplished via differential modifications on the histone tails and through the replacement of core histones by histone variants. In this review, we focus on these aspects of chromatin organization and discuss novel approaches such as live cell imaging and photobleaching as important tools likely to give significant insights into our understanding of the very dynamic nature of chromatin and chromatin regulatory processes. We highlight the contribution plant studies have made in this area showing the potential advantages of plants as models in understanding this fundamental aspect of biology.

  15. Shelterin Protects Chromosome Ends by Compacting Telomeric Chromatin

    Science.gov (United States)

    Bandaria, Jigar N.; Qin, Peiwu; Berk, Veysel; Chu, Steven; Yildiz, Ahmet

    2016-01-01

    SUMMARY Telomeres, repetitive DNA sequences at chromosome ends, are shielded against the DNA damage response (DDR) by the shelterin complex. To understand how shelterin protects telomere ends, we investigated the structural organization of telomeric chromatin in human cells using super-resolution microscopy. We found that telomeres form compact globular structures through a complex network of interactions between shelterin subunits and telomeric DNA, and not by DNA methylation, histone deacetylation or histone trimethylation at telomeres and subtelomeric regions. Mutations that abrogate shelterin assembly or removal of individual subunits from telomeres cause up to a 10-fold increase in telomere volume. Decompacted telomeres become more accessible to telomere-associated proteins and accumulate DDR signals. Recompaction of telomeric chromatin using an orthogonal method displaces DDR signals from telomeres. These results reveal the chromatin remodeling activity of shelterin and demonstrate that shelterin-mediated compaction of telomeric chromatin provides robust protection of chromosome ends against the DDR machinery. PMID:26871633

  16. RNA is an integral component of chromatin that contributes to its structural organization.

    Directory of Open Access Journals (Sweden)

    Antonio Rodríguez-Campos

    Full Text Available Chromatin structure is influenced by multiples factors, such as pH, temperature, nature and concentration of counterions, post-translational modifications of histones and binding of structural non-histone proteins. RNA is also known to contribute to the regulation of chromatin structure as chromatin-induced gene silencing was shown to depend on the RNAi machinery in S. pombe, plants and Drosophila. Moreover, both in Drosophila and mammals, dosage compensation requires the contribution of specific non-coding RNAs. However, whether RNA itself plays a direct structural role in chromatin is not known. Here, we report results that indicate a general structural role for RNA in eukaryotic chromatin. RNA is found associated to purified chromatin prepared from chicken liver, or cultured Drosophila S2 cells, and treatment with RNase A alters the structural properties of chromatin. Our results indicate that chromatin-associated RNAs, which account for 2%-5% of total chromatin-associated nucleic acids, are polyA(- and show a size similar to that of the DNA contained in the corresponding chromatin fragments. Chromatin-associated RNA(s are not likely to correspond to nascent transcripts as they are also found bound to chromatin when cells are treated with alpha-amanitin. After treatment with RNase A, chromatin fragments of molecular weight >3.000 bp of DNA showed reduced sedimentation through sucrose gradients and increased sensitivity to micrococcal nuclease digestion. This structural transition, which is observed both at euchromatic and heterochromatic regions, proceeds without loss of histone H1 or any significant change in core-histone composition and integrity.

  17. Hi-C Chromatin Interaction Networks Predict Co-expression in the Mouse Cortex

    Science.gov (United States)

    Hulsman, Marc; Lelieveldt, Boudewijn P. F.; de Ridder, Jeroen; Reinders, Marcel

    2015-01-01

    The three dimensional conformation of the genome in the cell nucleus influences important biological processes such as gene expression regulation. Recent studies have shown a strong correlation between chromatin interactions and gene co-expression. However, predicting gene co-expression from frequent long-range chromatin interactions remains challenging. We address this by characterizing the topology of the cortical chromatin interaction network using scale-aware topological measures. We demonstrate that based on these characterizations it is possible to accurately predict spatial co-expression between genes in the mouse cortex. Consistent with previous findings, we find that the chromatin interaction profile of a gene-pair is a good predictor of their spatial co-expression. However, the accuracy of the prediction can be substantially improved when chromatin interactions are described using scale-aware topological measures of the multi-resolution chromatin interaction network. We conclude that, for co-expression prediction, it is necessary to take into account different levels of chromatin interactions ranging from direct interaction between genes (i.e. small-scale) to chromatin compartment interactions (i.e. large-scale). PMID:25965262

  18. Wide Area Coordinated Control of Multi-FACTS Devices to Damp Power System Oscillations

    Directory of Open Access Journals (Sweden)

    Shiyun Xu

    2017-12-01

    Full Text Available Aiming at damping the inter-area oscillations of power systems, the present study proposes a wide-area decentralized coordinated control framework, where the upper-level controller is designed to coordinate the lower-level multiple FACTS devices. Based on the polytopic differential inclusion method, the derived controller adopts a decentralized structure and it is guaranteed to be robust to meet the demand of operation under multiple operating conditions. Since time delay of wide area signal transmission is inevitable, in what follows, the quantum evolution algorithm (QEA method is introduced to find an optimal solution of the time-delay coordinated controller. In this regard, the stability of the system with a prescribed time delay is guaranteed and the system damping ratio is increased. Effectiveness and applicability of the proposed controller design methods have been demonstrated through numerical simulations.

  19. The chromatin-remodeling factor CHD4 coordinates signaling and repair after DNA damage

    DEFF Research Database (Denmark)

    Larsen, Dorthe Helena; Poinsignon, Catherine; Gudjonsson, Thorkell

    2010-01-01

    In response to ionizing radiation (IR), cells delay cell cycle progression and activate DNA repair. Both processes are vital for genome integrity, but the mechanisms involved in their coordination are not fully understood. In a mass spectrometry screen, we identified the adenosine triphosphate...

  20. Distributed voltage control coordination between renewable generation plants in MV distribution grids

    DEFF Research Database (Denmark)

    Petersen, Lennart; Iov, Florin

    2017-01-01

    This study focuses on distributed voltage control coordination between renewable generation plants in medium-voltage distribution grids (DGs). A distributed offline coordination concept has been defined in a previous publication, leading to satisfactory voltage regulation in the DG. However, here...

  1. Decentralized Receding Horizon Control and Coordination of Autonomous Vehicle Formations

    NARCIS (Netherlands)

    Keviczky, T.; Borelli, F.; Fregene, K.; Godbole, D.; Bals, G.J.

    2008-01-01

    This paper describes the application of a novel methodology for high-level control and coordination of autonomous vehicle teams and its demonstration on high-fidelity models of the organic air vehicle developed at Honeywell Laboratories. The scheme employs decentralized receding horizon controllers

  2. Epigenetic regulation of open chromatin in pluripotent stem cells

    Science.gov (United States)

    Kobayashi, Hiroshi; Kikyo, Nobuaki

    2014-01-01

    The recent progress in pluripotent stem cell research has opened new avenues of disease modeling, drug screening, and transplantation of patient-specific tissues that had been unimaginable until a decade ago. The central mechanism underlying pluripotency is epigenetic gene regulation; the majority of cell signaling pathways, both extracellular and cytoplasmic, eventually alter the epigenetic status of their target genes during the process of activating or suppressing the genes to acquire or maintain pluripotency. It has long been thought that the chromatin of pluripotent stem cells is globally open to enable the timely activation of essentially all genes in the genome during differentiation into multiple lineages. The current article reviews descriptive observations and the epigenetic machinery relevant to what is supposed to be globally open chromatin in pluripotent stem cells. This includes microscopic appearance, permissive gene transcription, chromatin remodeling complexes, histone modifications, DNA methylation, noncoding RNAs, dynamic movement of chromatin proteins, nucleosome accessibility and positioning, and long-range chromosomal interactions. Detailed analyses of each element, however, have revealed that the globally open chromatin hypothesis is not necessarily supported by some of the critical experimental evidence, such as genome-wide nucleosome accessibility and nucleosome positioning. Further understanding of the epigenetic gene regulation is expected to determine the true nature of the so-called globally open chromatin in pluripotent stem. PMID:24695097

  3. Contribution of Topological Domains and Loop Formation to 3D Chromatin Organization

    Directory of Open Access Journals (Sweden)

    Vuthy Ea

    2015-07-01

    Full Text Available Recent investigations on 3D chromatin folding revealed that the eukaryote genomes are both highly compartmentalized and extremely dynamic. This review presents the most recent advances in topological domains’ organization of the eukaryote genomes and discusses the relationship to chromatin loop formation. CTCF protein appears as a central factor of these two organization levels having either a strong insulating role at TAD borders, or a weaker architectural role in chromatin loop formation. TAD borders directly impact on chromatin dynamics by restricting contacts within specific genomic portions thus confining chromatin loop formation within TADs. We discuss how sub-TAD chromatin dynamics, constrained into a recently described statistical helix conformation, can produce functional interactions by contact stabilization.

  4. Chromatin Immunoprecipitation (ChIP) using Drosophila tissue

    OpenAIRE

    Tran, Vuong; Gan, Qiang; Chen, Xin

    2012-01-01

    Epigenetics remains a rapidly developing field that studies how the chromatin state contributes to differential gene expression in distinct cell types at different developmental stages. Epigenetic regulation contributes to a broad spectrum of biological processes, including cellular differentiation during embryonic development and homeostasis in adulthood. A critical strategy in epigenetic studies is to examine how various histone modifications and chromatin factors regulate gene expression. ...

  5. Voice loops as coordination aids in space shuttle mission control.

    Science.gov (United States)

    Patterson, E S; Watts-Perotti, J; Woods, D D

    1999-01-01

    Voice loops, an auditory groupware technology, are essential coordination support tools for experienced practitioners in domains such as air traffic management, aircraft carrier operations and space shuttle mission control. They support synchronous communication on multiple channels among groups of people who are spatially distributed. In this paper, we suggest reasons for why the voice loop system is a successful medium for supporting coordination in space shuttle mission control based on over 130 hours of direct observation. Voice loops allow practitioners to listen in on relevant communications without disrupting their own activities or the activities of others. In addition, the voice loop system is structured around the mission control organization, and therefore directly supports the demands of the domain. By understanding how voice loops meet the particular demands of the mission control environment, insight can be gained for the design of groupware tools to support cooperative activity in other event-driven domains.

  6. Arm coordination in octopus crawling involves unique motor control strategies.

    Science.gov (United States)

    Levy, Guy; Flash, Tamar; Hochner, Binyamin

    2015-05-04

    To cope with the exceptional computational complexity that is involved in the control of its hyper-redundant arms [1], the octopus has adopted unique motor control strategies in which the central brain activates rather autonomous motor programs in the elaborated peripheral nervous system of the arms [2, 3]. How octopuses coordinate their eight long and flexible arms in locomotion is still unknown. Here, we present the first detailed kinematic analysis of octopus arm coordination in crawling. The results are surprising in several respects: (1) despite its bilaterally symmetrical body, the octopus can crawl in any direction relative to its body orientation; (2) body and crawling orientation are monotonically and independently controlled; and (3) contrasting known animal locomotion, octopus crawling lacks any apparent rhythmical patterns in limb coordination, suggesting a unique non-rhythmical output of the octopus central controller. We show that this uncommon maneuverability is derived from the radial symmetry of the arms around the body and the simple pushing-by-elongation mechanism by which the arms create the crawling thrust. These two together enable a mechanism whereby the central controller chooses in a moment-to-moment fashion which arms to recruit for pushing the body in an instantaneous direction. Our findings suggest that the soft molluscan body has affected in an embodied way [4, 5] the emergence of the adaptive motor behavior of the octopus. Copyright © 2015 Elsevier Ltd. All rights reserved.

  7. Circulating chromatin-anti-chromatin antibody complexes bind with high affinity to dermo-epidermal structures in murine and human lupus nephritis

    DEFF Research Database (Denmark)

    Fismen, S; Hedberg, A; Fenton, K A

    2009-01-01

    Murine and human lupus nephritis are characterized by glomerular deposits of electron-dense structures (EDS). Dominant components of EDS are chromatin fragments and IgG antibodies. Whether glomerular EDS predispose for similar deposits in skin is unknown. We analysed (i) whether dermo-epidermal i......Murine and human lupus nephritis are characterized by glomerular deposits of electron-dense structures (EDS). Dominant components of EDS are chromatin fragments and IgG antibodies. Whether glomerular EDS predispose for similar deposits in skin is unknown. We analysed (i) whether dermo......-epidermal immune complex deposits have similar molecular composition as glomerular deposits, (ii) whether chromatin fragments bind dermo-epidermal structures, and (iii) whether deposits in nephritic glomeruli predispose for accumulation of similar deposits in skin. Paired skin and kidney biopsies from nephritic...... (NZBxNZW)F1 and MRL-lpr/lpr mice and from five patients with lupus nephritis were analysed by immunofluorescence, immune electron microscopy (IEM) and co-localization TUNEL IEM. Affinity of chromatin fragments for membrane structures was determined by surface plasmon resonance. Results demonstrated (i...

  8. Seed maturation in Arabidopsis thaliana is characterized by nuclear size reduction and increased chromatin condensation.

    Science.gov (United States)

    van Zanten, Martijn; Koini, Maria A; Geyer, Regina; Liu, Yongxiu; Brambilla, Vittoria; Bartels, Dorothea; Koornneef, Maarten; Fransz, Paul; Soppe, Wim J J

    2011-12-13

    Most plant species rely on seeds for their dispersal and survival under unfavorable environmental conditions. Seeds are characterized by their low moisture content and significantly reduced metabolic activities. During the maturation phase, seeds accumulate storage reserves and become desiccation-tolerant and dormant. Growth is resumed after release of dormancy and the occurrence of favorable environmental conditions. Here we show that embryonic cotyledon nuclei of Arabidopsis thaliana seeds have a significantly reduced nuclear size, which is established at the beginning of seed maturation. In addition, the chromatin of embryonic cotyledon nuclei from mature seeds is highly condensed. Nuclei regain their size and chromatin condensation level during germination. The reduction in nuclear size is controlled by the seed maturation regulator ABSCISIC ACID-INSENSITIVE 3, and the increase during germination requires two predicted nuclear matrix proteins, LITTLE NUCLEI 1 and LITTLE NUCLEI 2. Our results suggest that the specific properties of nuclei in ripe seeds are an adaptation to desiccation, independent of dormancy. We conclude that the changes in nuclear size and chromatin condensation in seeds are independent, developmentally controlled processes.

  9. Probing the role of HDACs and mechanisms of chromatin-mediated neuroplasticity.

    Science.gov (United States)

    Haggarty, Stephen J; Tsai, Li-Huei

    2011-07-01

    Advancing our understanding of neuroplasticity and the development of novel therapeutics based upon this knowledge is critical in order to improve the treatment and prevention of a myriad of nervous system disorders. Epigenetic mechanisms of neuroplasticity involve the post-translational modification of chromatin and the recruitment or loss of macromolecular complexes that control neuronal activity-dependent gene expression. While over a century after Ramón y Cajal first described nuclear subcompartments and foci that we now know correspond to sites of active transcription with acetylated histones that are under epigenetic control, the rate and extent to which epigenetic processes act in a dynamic and combinatorial fashion to shape experience-dependent phenotypic and behavioral plasticity in response to various types of neuronal stimuli over a range of time scales is only now coming into focus. With growing recognition that a subset of human diseases involving cognitive dysfunction can be classified as 'chromatinopathies', in which aberrant chromatin-mediated neuroplasticity plays a causal role in the underlying disease pathophysiology, understanding the molecular nature of epigenetic mechanisms in the nervous system may provide important new avenues for the development of novel therapeutics. In this review, we discuss the chemistry and neurobiology of the histone deacetylase (HDAC) family of chromatin-modifying enzymes, outline the role of HDACs in the epigenetic control of neuronal function, and discuss the potential relevance of these epigenetic mechanisms to the development of therapeutics aiming to enhance memory and neuroplasticity. Finally, open questions, challenges, and critical needs for the field of 'neuroepigenetics' in the years to come will be summarized. Copyright © 2011 Elsevier Inc. All rights reserved.

  10. Chromatin regulation at the frontier of synthetic biology

    Science.gov (United States)

    Keung, Albert J.; Joung, J. Keith; Khalil, Ahmad S.; Collins, James J.

    2016-01-01

    As synthetic biology approaches are extended to diverse applications throughout medicine, biotechnology and basic biological research, there is an increasing need to engineer yeast, plant and mammalian cells. Eukaryotic genomes are regulated by the diverse biochemical and biophysical states of chromatin, which brings distinct challenges, as well as opportunities, over applications in bacteria. Recent synthetic approaches, including `epigenome editing', have allowed the direct and functional dissection of many aspects of physiological chromatin regulation. These studies lay the foundation for biomedical and biotechnological engineering applications that could take advantage of the unique combinatorial and spatiotemporal layers of chromatin regulation to create synthetic systems of unprecedented sophistication. PMID:25668787

  11. Coordinated Resolved Motion Control of Dual-Arm Manipulators with Closed Chain

    Directory of Open Access Journals (Sweden)

    Tianliang Liu

    2016-05-01

    Full Text Available When applied to some tasks, such as payload handling, assembling, repairing and so on, the two arms of a humanoid robot will form a closed kinematic chain. It makes the motion planning and control for dual-arm coordination very complex and difficult. In this paper, we present three types of resolved motion control methods for a humanoid robot during coordinated manipulation. They are, respectively, position-level, velocity-level and acceleration-level resolved motion control methods. The desired pose, velocity and acceleration of each end-effector are then resolved according to the desired motion of the payload and the constraints on the closed-chain system without consideration of the internal force. Corresponding to the three cases above, the joint variables of each arm are then calculated using the inverse kinematic equations, at position-level, velocity-level or acceleration-level. Finally, a dynamic modelling and simulation platform is established based on ADAMS and Matlab software. The proposed methods are verified by typical cases. The simulation results show that the proposed control strategy can realize the dual-arm coordinated operation and the internal force of the closed chain during the operation is controlled in a reasonable range at the same time.

  12. Quantitative evaluation of radiation-induced changes in sperm morphology and chromatin distribution

    International Nuclear Information System (INIS)

    Aubele, M.; Juetting, U.R.; Rodenacker, K.; Gais, P.; Burger, G.; Hacker-Klom, U.

    1990-01-01

    Sperm head cytometry provides a useful assay for the detection of radiation-induced damage in mouse germ cells. Exposure of the gonads to radiation is known to lead to an increase of diploid and higher polyploid sperm and of sperm with head shape abnormalities. In the pilot studies reported here quantitative analysis of the total DNA content, the morphology, and the chromatin distribution of mouse sperm was performed. The goal was to evaluate the discriminative power of features derived by high resolution image cytometry in distinguishing sperm of control and irradiated mice. Our results suggest that besides the induction of the above mentioned variations in DNA content and shape of sperm head, changes of the nonhomogeneous chromatin distribution within the sperm may also be used to quantify the radiation effect on sperm cells. Whereas the chromatin distribution features show larger variations for sperm 21 days after exposure (dpr), the shape parameters seem to be more important to discriminate sperm 35 dpr. This may be explained by differentiation processes, which take place in different stages during mouse spermatogenesis

  13. Genome-Wide Mapping Targets of the Metazoan Chromatin Remodeling Factor NURF Reveals Nucleosome Remodeling at Enhancers, Core Promoters and Gene Insulators.

    Directory of Open Access Journals (Sweden)

    So Yeon Kwon

    2016-04-01

    Full Text Available NURF is a conserved higher eukaryotic ISWI-containing chromatin remodeling complex that catalyzes ATP-dependent nucleosome sliding. By sliding nucleosomes, NURF is able to alter chromatin dynamics to control transcription and genome organization. Previous biochemical and genetic analysis of the specificity-subunit of Drosophila NURF (Nurf301/Enhancer of Bithorax (E(bx has defined NURF as a critical regulator of homeotic, heat-shock and steroid-responsive gene transcription. It has been speculated that NURF controls pathway specific transcription by co-operating with sequence-specific transcription factors to remodel chromatin at dedicated enhancers. However, conclusive in vivo demonstration of this is lacking and precise regulatory elements targeted by NURF are poorly defined. To address this, we have generated a comprehensive map of in vivo NURF activity, using MNase-sequencing to determine at base pair resolution NURF target nucleosomes, and ChIP-sequencing to define sites of NURF recruitment. Our data show that, besides anticipated roles at enhancers, NURF interacts physically and functionally with the TRF2/DREF basal transcription factor to organize nucleosomes downstream of active promoters. Moreover, we detect NURF remodeling and recruitment at distal insulator sites, where NURF functionally interacts with and co-localizes with DREF and insulator proteins including CP190 to establish nucleosome-depleted domains. This insulator function of NURF is most apparent at subclasses of insulators that mark the boundaries of chromatin domains, where multiple insulator proteins co-associate. By visualizing the complete repertoire of in vivo NURF chromatin targets, our data provide new insights into how chromatin remodeling can control genome organization and regulatory interactions.

  14. Cytogenetic abnormality in man, wider implications of theories of sex chromatin origin.

    Science.gov (United States)

    MILES, C P

    1962-01-01

    Female nuclei may be identified by means of sex chromatin. In general the number of sex chromatin bodies is one less than the number of X chromosomes. An exception to this rule is a case of sex chromatin-positive XO Turner's syndrome. This case suggests the possibility of sex chromatin-positive XY males, and it may be evidence for chromosomal differentiation.

  15. Two-phase strategy of controlling motor coordination determined by task performance optimality.

    Science.gov (United States)

    Shimansky, Yury P; Rand, Miya K

    2013-02-01

    A quantitative model of optimal coordination between hand transport and grip aperture has been derived in our previous studies of reach-to-grasp movements without utilizing explicit knowledge of the optimality criterion or motor plant dynamics. The model's utility for experimental data analysis has been demonstrated. Here we show how to generalize this model for a broad class of reaching-type, goal-directed movements. The model allows for measuring the variability of motor coordination and studying its dependence on movement phase. The experimentally found characteristics of that dependence imply that execution noise is low and does not affect motor coordination significantly. From those characteristics it is inferred that the cost of neural computations required for information acquisition and processing is included in the criterion of task performance optimality as a function of precision demand for state estimation and decision making. The precision demand is an additional optimized control variable that regulates the amount of neurocomputational resources activated dynamically. It is shown that an optimal control strategy in this case comprises two different phases. During the initial phase, the cost of neural computations is significantly reduced at the expense of reducing the demand for their precision, which results in speed-accuracy tradeoff violation and significant inter-trial variability of motor coordination. During the final phase, neural computations and thus motor coordination are considerably more precise to reduce the cost of errors in making a contact with the target object. The generality of the optimal coordination model and the two-phase control strategy is illustrated on several diverse examples.

  16. Widespread Chromatin Accessibility at Repetitive Elements Links Stem Cells with Human Cancer

    Directory of Open Access Journals (Sweden)

    Nicholas C. Gomez

    2016-11-01

    Full Text Available Chromatin regulation is critical for differentiation and disease. However, features linking the chromatin environment of stem cells with disease remain largely unknown. We explored chromatin accessibility in embryonic and multipotent stem cells and unexpectedly identified widespread chromatin accessibility at repetitive elements. Integrating genomic and biochemical approaches, we demonstrate that these sites of increased accessibility are associated with well-positioned nucleosomes marked by distinct histone modifications. Differentiation is accompanied by chromatin remodeling at repetitive elements associated with altered expression of genes in relevant developmental pathways. Remarkably, we found that the chromatin environment of Ewing sarcoma, a mesenchymally derived tumor, is shared with primary mesenchymal stem cells (MSCs. Accessibility at repetitive elements in MSCs offers a permissive environment that is exploited by the critical oncogene responsible for this cancer. Our data demonstrate that stem cells harbor a unique chromatin landscape characterized by accessibility at repetitive elements, a feature associated with differentiation and oncogenesis.

  17. Chd1 remodelers maintain open chromatin and regulate the epigenetics of differentiation

    Energy Technology Data Exchange (ETDEWEB)

    Persson, Jenna [Department of Biosciences and Nutrition, Center for Biosciences, Karolinska Institutet (Sweden); Ekwall, Karl, E-mail: karl.ekwall@ki.se [Department of Biosciences and Nutrition, Center for Biosciences, Karolinska Institutet (Sweden); School of Life Sciences, University College Sodertorn, NOVUM, Huddinge (Sweden)

    2010-05-01

    Eukaryotic DNA is packaged around octamers of histone proteins into nucleosomes, the basic unit of chromatin. In addition to enabling meters of DNA to fit within the confines of a nucleus, the structure of chromatin has functional implications for cell identity. Covalent chemical modifications to the DNA and to histones, histone variants, ATP-dependent chromatin remodelers, small noncoding RNAs and the level of chromatin compaction all contribute to chromosomal structure and to the activity or silencing of genes. These chromatin-level alterations are defined as epigenetic when they are heritable from mother to daughter cell. The great diversity of epigenomes that can arise from a single genome permits a single, totipotent cell to generate the hundreds of distinct cell types found in humans. Two recent studies in mouse and in fly have highlighted the importance of Chd1 chromatin remodelers for maintaining an open, active chromatin state. Based on evidence from fission yeast as a model system, we speculate that Chd1 remodelers are involved in the disassembly of nucleosomes at promoter regions, thus promoting active transcription and open chromatin. It is likely that these nucleosomes are specifically marked for disassembly by the histone variant H2A.Z.

  18. Chd1 remodelers maintain open chromatin and regulate the epigenetics of differentiation

    International Nuclear Information System (INIS)

    Persson, Jenna; Ekwall, Karl

    2010-01-01

    Eukaryotic DNA is packaged around octamers of histone proteins into nucleosomes, the basic unit of chromatin. In addition to enabling meters of DNA to fit within the confines of a nucleus, the structure of chromatin has functional implications for cell identity. Covalent chemical modifications to the DNA and to histones, histone variants, ATP-dependent chromatin remodelers, small noncoding RNAs and the level of chromatin compaction all contribute to chromosomal structure and to the activity or silencing of genes. These chromatin-level alterations are defined as epigenetic when they are heritable from mother to daughter cell. The great diversity of epigenomes that can arise from a single genome permits a single, totipotent cell to generate the hundreds of distinct cell types found in humans. Two recent studies in mouse and in fly have highlighted the importance of Chd1 chromatin remodelers for maintaining an open, active chromatin state. Based on evidence from fission yeast as a model system, we speculate that Chd1 remodelers are involved in the disassembly of nucleosomes at promoter regions, thus promoting active transcription and open chromatin. It is likely that these nucleosomes are specifically marked for disassembly by the histone variant H2A.Z.

  19. Chromatinization of the KSHV Genome During the KSHV Life Cycle

    Energy Technology Data Exchange (ETDEWEB)

    Uppal, Timsy [Department of Microbiology and Immunology, School of Medicine, University of Nevada, 1664 N Virginia Street, MS 320, Reno, NV 89557 (United States); Jha, Hem C. [Department of Microbiology and the Tumor Virology Program of the Abramson Cancer Center, Perelman School of Medicine at the University of Pennsylvania, 201E Johnson Pavilion, 3610 Hamilton Walk, Philadelphia, PA 19104 (United States); Verma, Subhash C. [Department of Microbiology and Immunology, School of Medicine, University of Nevada, 1664 N Virginia Street, MS 320, Reno, NV 89557 (United States); Robertson, Erle S., E-mail: erle@mail.med.upenn.edu [Department of Microbiology and the Tumor Virology Program of the Abramson Cancer Center, Perelman School of Medicine at the University of Pennsylvania, 201E Johnson Pavilion, 3610 Hamilton Walk, Philadelphia, PA 19104 (United States)

    2015-01-14

    Kaposi’s sarcoma-associated herpesvirus (KSHV) belongs to the gamma herpesvirus family and is the causative agent of various lymphoproliferative diseases in humans. KSHV, like other herpesviruses, establishes life-long latent infection with the expression of a limited number of viral genes. Expression of these genes is tightly regulated by both the viral and cellular factors. Recent advancements in identifying the expression profiles of viral transcripts, using tilling arrays and next generation sequencing have identified additional coding and non-coding transcripts in the KSHV genome. Determining the functions of these transcripts will provide a better understanding of the mechanisms utilized by KSHV in altering cellular pathways involved in promoting cell growth and tumorigenesis. Replication of the viral genome is critical in maintaining the existing copies of the viral episomes during both latent and lytic phases of the viral life cycle. The replication of the viral episome is facilitated by viral components responsible for recruiting chromatin modifying enzymes and replication factors for altering the chromatin complexity and replication initiation functions, respectively. Importantly, chromatin modification of the viral genome plays a crucial role in determining whether the viral genome will persist as latent episome or undergo lytic reactivation. Additionally, chromatinization of the incoming virion DNA, which lacks chromatin structure, in the target cells during primary infection, helps in establishing latent infection. Here, we discuss the recent advancements on our understating of KSHV genome chromatinization and the consequences of chromatin modifications on viral life cycle.

  20. Chromatinization of the KSHV Genome During the KSHV Life Cycle

    International Nuclear Information System (INIS)

    Uppal, Timsy; Jha, Hem C.; Verma, Subhash C.; Robertson, Erle S.

    2015-01-01

    Kaposi’s sarcoma-associated herpesvirus (KSHV) belongs to the gamma herpesvirus family and is the causative agent of various lymphoproliferative diseases in humans. KSHV, like other herpesviruses, establishes life-long latent infection with the expression of a limited number of viral genes. Expression of these genes is tightly regulated by both the viral and cellular factors. Recent advancements in identifying the expression profiles of viral transcripts, using tilling arrays and next generation sequencing have identified additional coding and non-coding transcripts in the KSHV genome. Determining the functions of these transcripts will provide a better understanding of the mechanisms utilized by KSHV in altering cellular pathways involved in promoting cell growth and tumorigenesis. Replication of the viral genome is critical in maintaining the existing copies of the viral episomes during both latent and lytic phases of the viral life cycle. The replication of the viral episome is facilitated by viral components responsible for recruiting chromatin modifying enzymes and replication factors for altering the chromatin complexity and replication initiation functions, respectively. Importantly, chromatin modification of the viral genome plays a crucial role in determining whether the viral genome will persist as latent episome or undergo lytic reactivation. Additionally, chromatinization of the incoming virion DNA, which lacks chromatin structure, in the target cells during primary infection, helps in establishing latent infection. Here, we discuss the recent advancements on our understating of KSHV genome chromatinization and the consequences of chromatin modifications on viral life cycle

  1. Wide-Area Robust Decentralized Coordinated Control of HVDC Power System Based on Polytopic System Theory

    Directory of Open Access Journals (Sweden)

    Shiyun Xu

    2015-01-01

    Full Text Available The present study proposes a hierarchical wide-area decentralized coordinated control framework for HVDC power system that is robust to multiple operating conditions. The upper level wide-area coordinated controller is designed in the form of dynamic output feedback control that coordinates the lower level HVDC supplementary controller, PSS, and SVC. In order to enhance the robustness of the designed controller under various operating conditions, the polytopic model is introduced such that the closed-loop control system can be operated under strong damping mode in virtue of the stability criterion based on damping ratio. Simulation results demonstrate that the proposed controller design algorithm is capable of enhancing the system damping over four different conditions.

  2. Coordinated Voltage Control of a Wind Farm based on Model Predictive Control

    DEFF Research Database (Denmark)

    Zhao, Haoran; Wu, Qiuwei; Guo, Qinglai

    2016-01-01

    This paper presents an autonomous wind farm voltage controller based on Model Predictive Control (MPC). The reactive power compensation and voltage regulation devices of the wind farm include Static Var Compensators (SVCs), Static Var Generators (SVGs), Wind Turbine Generators (WTGs) and On...... are calculated based on an analytical method to improve the computation efficiency and overcome the convergence problem. Two control modes are designed for both voltage violated and normal operation conditions. A wind farm with 20 wind turbines was used to conduct case studies to verify the proposed coordinated...

  3. Chromatin Repressive Complexes in Stem Cells, Development, and Cancer

    DEFF Research Database (Denmark)

    Laugesen, Anne; Helin, Kristian

    2014-01-01

    The chromatin environment is essential for the correct specification and preservation of cell identity through modulation and maintenance of transcription patterns. Many chromatin regulators are required for development, stem cell maintenance, and differentiation. Here, we review the roles...

  4. Feedforward Coordinate Control of a Robotic Cell Injection Catheter.

    Science.gov (United States)

    Cheng, Weyland; Law, Peter K

    2017-08-01

    Remote and robotically actuated catheters are the stepping-stones toward autonomous catheters, where complex intravascular procedures may be performed with minimal intervention from a physician. This article proposes a concept for the positional, feedforward control of a robotically actuated cell injection catheter used for the injection of myogenic or undifferentiated stem cells into the myocardial infarct boundary zones of the left ventricle. The prototype for the catheter system was built upon a needle-based catheter with a single degree of deflection, a 3-D printed handle combined with actuators, and the Arduino microcontroller platform. A bench setup was used to mimic a left ventricle catheter procedure starting from the femoral artery. Using Matlab and the open-source video modeling tool Tracker, the planar coordinates ( y, z) of the catheter position were analyzed, and a feedforward control system was developed based on empirical models. Using the Student's t test with a sample size of 26, it was determined that for both the y- and z-axes, the mean discrepancy between the calibrated and theoretical coordinate values had no significant difference compared to the hypothetical value of µ = 0. The root mean square error of the calibrated coordinates also showed an 88% improvement in the z-axis and 31% improvement in the y-axis compared to the unmodified trial run. This proof of concept investigation leads to the possibility of further developing a feedfoward control system in vivo using catheters with omnidirectional deflection. Feedforward positional control allows for more flexibility in the design of an automated catheter system where problems such as systemic time delay may be a hindrance in instances requiring an immediate reaction.

  5. HAMLET interacts with histones and chromatin in tumor cell nuclei.

    Science.gov (United States)

    Düringer, Caroline; Hamiche, Ali; Gustafsson, Lotta; Kimura, Hiroshi; Svanborg, Catharina

    2003-10-24

    HAMLET is a folding variant of human alpha-lactalbumin in an active complex with oleic acid. HAMLET selectively enters tumor cells, accumulates in their nuclei and induces apoptosis-like cell death. This study examined the interactions of HAMLET with nuclear constituents and identified histones as targets. HAMLET was found to bind histone H3 strongly and to lesser extent histones H4 and H2B. The specificity of these interactions was confirmed using BIAcore technology and chromatin assembly assays. In vivo in tumor cells, HAMLET co-localized with histones and perturbed the chromatin structure; HAMLET was found associated with chromatin in an insoluble nuclear fraction resistant to salt extraction. In vitro, HAMLET bound strongly to histones and impaired their deposition on DNA. We conclude that HAMLET interacts with histones and chromatin in tumor cell nuclei and propose that this interaction locks the cells into the death pathway by irreversibly disrupting chromatin organization.

  6. Small chromosomal regions position themselves autonomously according to their chromatin class.

    Science.gov (United States)

    van de Werken, Harmen J G; Haan, Josien C; Feodorova, Yana; Bijos, Dominika; Weuts, An; Theunis, Koen; Holwerda, Sjoerd J B; Meuleman, Wouter; Pagie, Ludo; Thanisch, Katharina; Kumar, Parveen; Leonhardt, Heinrich; Marynen, Peter; van Steensel, Bas; Voet, Thierry; de Laat, Wouter; Solovei, Irina; Joffe, Boris

    2017-06-01

    The spatial arrangement of chromatin is linked to the regulation of nuclear processes. One striking aspect of nuclear organization is the spatial segregation of heterochromatic and euchromatic domains. The mechanisms of this chromatin segregation are still poorly understood. In this work, we investigated the link between the primary genomic sequence and chromatin domains. We analyzed the spatial intranuclear arrangement of a human artificial chromosome (HAC) in a xenospecific mouse background in comparison to an orthologous region of native mouse chromosome. The two orthologous regions include segments that can be assigned to three major chromatin classes according to their gene abundance and repeat repertoire: (1) gene-rich and SINE-rich euchromatin; (2) gene-poor and LINE/LTR-rich heterochromatin; and (3) gene-depleted and satellite DNA-containing constitutive heterochromatin. We show, using fluorescence in situ hybridization (FISH) and 4C-seq technologies, that chromatin segments ranging from 0.6 to 3 Mb cluster with segments of the same chromatin class. As a consequence, the chromatin segments acquire corresponding positions in the nucleus irrespective of their chromosomal context, thereby strongly suggesting that this is their autonomous property. Interactions with the nuclear lamina, although largely retained in the HAC, reveal less autonomy. Taken together, our results suggest that building of a functional nucleus is largely a self-organizing process based on mutual recognition of chromosome segments belonging to the major chromatin classes. © 2017 van de Werken et al.; Published by Cold Spring Harbor Laboratory Press.

  7. Impact of the Chromatin Remodeling Factor CHD1 on Gut Microbiome Composition of Drosophila melanogaster.

    Directory of Open Access Journals (Sweden)

    Johanna Sebald

    Full Text Available The composition of the intestinal microbiota of Drosophila has been studied in some detail in recent years. Environmental, developmental and host-specific genetic factors influence microbiome composition in the fly. Our previous work has indicated that intestinal bacterial load can be affected by chromatin-targeted regulatory mechanisms. Here we studied a potential role of the conserved chromatin assembly and remodeling factor CHD1 in the shaping of the gut microbiome in Drosophila melanogaster. Using high-throughput sequencing of 16S rRNA gene amplicons, we found that Chd1 deletion mutant flies exhibit significantly reduced microbial diversity compared to rescued control strains. Specifically, although Acetobacteraceae dominated the microbiota of both Chd1 wild-type and mutant guts, Chd1 mutants were virtually monoassociated with this bacterial family, whereas in control flies other bacterial taxa constituted ~20% of the microbiome. We further show age-linked differences in microbial load and microbiota composition between Chd1 mutant and control flies. Finally, diet supplementation experiments with Lactobacillus plantarum revealed that, in contrast to wild-type flies, Chd1 mutant flies were unable to maintain higher L. plantarum titres over time. Collectively, these data provide evidence that loss of the chromatin remodeler CHD1 has a major impact on the gut microbiome of Drosophila melanogaster.

  8. Mechanism of chromatin degradation in thymocytes of irradiated rats

    International Nuclear Information System (INIS)

    Zotova, R.N.; Umanskij, S.R.; Tokarskaya, V.I.

    1983-01-01

    A biphase change in poly (ADP-ribose) polymerase activity of the thymocyte chromatin was observed after 10 Gy irradiation of rats: during the first minutes the incorporation of 14 C-NAD increased by 40% then started decreasing to make 110, 60 and 35% after 1, 2 and 3 h, respectively. Irradiation of rat thymus chromatin in vitro sharply decreased poly (ADP-ribose) polymerase activity. The possible role of changes in the poly (ADP-ribose) synthesis in the activation of nuclear Ca/Mg-dependent endonuclease and in the postirradiation degradation of the thymocyte chromatin is discussed

  9. Dynamic coordinated control laws in multiple agent models

    International Nuclear Information System (INIS)

    Morgan, David S.; Schwartz, Ira B.

    2005-01-01

    We present an active control scheme of a kinetic model of swarming. It has been shown previously that the global control scheme for the model, presented in [Systems Control Lett. 52 (2004) 25], gives rise to spontaneous collective organization of agents into a unified coherent swarm, via steering controls and utilizing long-range attractive and short-range repulsive interactions. We extend these results by presenting control laws whereby a single swarm is broken into independently functioning subswarm clusters. The transition between one coordinated swarm and multiple clustered subswarms is managed simply with a homotopy parameter. Additionally, we present as an alternate formulation, a local control law for the same model, which implements dynamic barrier avoidance behavior, and in which swarm coherence emerges spontaneously

  10. The design of traffic signal coordinated control

    Science.gov (United States)

    Guo, Xueting; Sun, Hongsheng; Wang, Xifu

    2017-05-01

    Traffic as the tertiary industry is an important pillar industry to support the normal development of the economy. But now China's road traffic development and economic development has shown a great imbalance and fault phenomenon, which greatly inhibited the normal development of China's economy. Now in many large and medium-sized cities in China are implementing green belt construction. The so-called green band is when the road conditions to meet the conditions for the establishment of the green band, the sections of the intersection of several planning to a traffic coordination control system, so that when the driver at a specific speed can be achieved without stopping the continuous Through the intersection. Green belt can effectively reduce the delay and queuing length of vehicle driving, the normal function of urban roads and reduce the economic losses caused by traffic congestion is a great help. In this paper, the theoretical basis of the design of the coordinated control system is described. Secondly, the green time offset is calculated by the analytic method and the green band is established. And then the VISSIM software is used to simulate the traffic system before and after the improvement. Finally, the results of the two simulations are compared.

  11. Fast neutron biological effects on normal and tumor chromatin

    International Nuclear Information System (INIS)

    Constantinescu, B.; Bugoi, Roxana; Paunica, Tatiana; Radu, Liliana

    1997-01-01

    Growing interest in neutron therapy and radioprotection requires complex studies on the mechanisms of neutron action on biological systems, especially on chromatin (the complex of deoxyribonucleic acid-DNA- with proteins in eukaryotic cells). Our study aims to investigate the fast neutrons induced damages in normal and tumor chromatin, studying thermal transition, intrinsic fluorescence and fluorescence of chromatin-ethidium bromide complexes behavior versus irradiation dose. The Bucharest U-120 variable energy Cyclotron was employed as an intense source of fast neutrons produced by 13.5 MeV deuterons on a thick beryllium target (166.5 mg/cm 2 ) placed at 20 angle against the incident beam. The average energy is 5.24 MeV. The total yield at 0 angle is 6.7 x 10 16 n/sr·C·MeV. To determine neutron and gamma irradiation doses, home made thermoluminescent detectors-TLD(γ) and TLD (γ + n) were used: for gamma MgF 2 : Mn mixed with Teflon pellets (φ 12.5 mm, 0.6±0.1 mm thick) and for gamma plus neutrons MgF 2 :Mn mixed with 6 LiF and Teflon pellets (same dimensions). Using a 8.022 x 10 -2 albedo factor value and the equivalence 1Gy (n)=2·10 10 fast neutron/cm 2 , the dose for the irradiation of 1.2 x 10 2 Gy/μC, with an estimated precision of 15% C for neutrons and 7.8 x 10 -4 Gy/μC for gamma, at 10 cm behind Be target, was found, respectively. A diminution of the negative fluorescence intensity for chromatin-ethidium bromide complexes with the increasing of neutron dose (from 0.98 at 5 Gy to 0.85 at 100 Gy) was observed for normal chromatin. This fact reflects chromatin DNA injuries, with the decrease of double helix DNA proportion. To study the influence of gyrostan, thyroxine and D3 vitamin treatments on fast neutron radiolysis in tumor chromatin,10 mg/kg of anticancer drug gyrostan, 40μg/kg of hormonal compound thyroxine and 30,000 IU/kg of D3 vitamin were administrated, separately or associated, to Wistar rats bearing Walker carcinosarcoma. Representing

  12. Cytology of DNA Replication Reveals Dynamic Plasticity of Large-Scale Chromatin Fibers.

    Science.gov (United States)

    Deng, Xiang; Zhironkina, Oxana A; Cherepanynets, Varvara D; Strelkova, Olga S; Kireev, Igor I; Belmont, Andrew S

    2016-09-26

    In higher eukaryotic interphase nuclei, the 100- to >1,000-fold linear compaction of chromatin is difficult to reconcile with its function as a template for transcription, replication, and repair. It is challenging to imagine how DNA and RNA polymerases with their associated molecular machinery would move along the DNA template without transient decondensation of observed large-scale chromatin "chromonema" fibers [1]. Transcription or "replication factory" models [2], in which polymerases remain fixed while DNA is reeled through, are similarly difficult to conceptualize without transient decondensation of these chromonema fibers. Here, we show how a dynamic plasticity of chromatin folding within large-scale chromatin fibers allows DNA replication to take place without significant changes in the global large-scale chromatin compaction or shape of these large-scale chromatin fibers. Time-lapse imaging of lac-operator-tagged chromosome regions shows no major change in the overall compaction of these chromosome regions during their DNA replication. Improved pulse-chase labeling of endogenous interphase chromosomes yields a model in which the global compaction and shape of large-Mbp chromatin domains remains largely invariant during DNA replication, with DNA within these domains undergoing significant movements and redistribution as they move into and then out of adjacent replication foci. In contrast to hierarchical folding models, this dynamic plasticity of large-scale chromatin organization explains how localized changes in DNA topology allow DNA replication to take place without an accompanying global unfolding of large-scale chromatin fibers while suggesting a possible mechanism for maintaining epigenetic programming of large-scale chromatin domains throughout DNA replication. Copyright © 2016 Elsevier Ltd. All rights reserved.

  13. Is there a relationship between the chromatin status and DNA fragmentation of boar spermatozoa following freezing-thawing?

    Science.gov (United States)

    Fraser, L; Strzezek, J

    2007-07-15

    In this study a radioisotope method, which is based on the quantitative measurements of tritiated-labeled actinomycin D ((3)H-AMD) incorporation into the sperm nuclei ((3)H-AMD incorporation assay), was used to assess the chromatin status of frozen-thawed boar spermatozoa. This study also tested the hypothesis that frozen-thawed spermatozoa with altered chromatin were susceptible to DNA fragmentation measured with the neutral comet assay (NCA). Boar semen was diluted in lactose-hen egg yolk-glycerol extender (L-HEY) or lactose ostrich egg yolk lipoprotein fractions-glycerol extender (L-LPFo), packaged into aluminum tubes or plastic straws and frozen in a controlled programmable freezer. In Experiment 1, the chromatin status and DNA fragmentation were measured in fresh and frozen-thawed spermatozoa from the same ejaculates. There was a significant increase in sperm chromatin destabilization and DNA fragmentation in frozen-thawed semen as compared with fresh semen. The proportions of spermatozoa labeled with (3)H-AMD were concurrent with elevated levels of sperm DNA fragmentation in K-3 extender, without cryoprotective substances, compared with L-HEY or L-LPFo extender. Regression analysis revealed that the results of the (3)H-AMD incorporation assay and NCA for frozen-thawed spermatozoa were correlated. Boars differed significantly in terms of post-thaw sperm DNA damage. In Experiment 2, the susceptibility of sperm chromatin to decondensation was assessed using a low concentration of heparin. Treatment of frozen-thawed spermatozoa with heparin revealed enhanced (3)H-AMD binding, suggesting nuclear chromatin decondensation. The deterioration in post-thaw sperm viability, such as motility, mitochondrial function and plasma membrane integrity, was concurrent with increased chromatin instability and DNA fragmentation. This is the first report to show that freezing-thawing procedure facilitated destabilization in the chromatin structure of boar spermatozoa, resulting in

  14. Dynamics of Histone Tails within Chromatin

    Science.gov (United States)

    Bernier, Morgan; North, Justin; Page, Michael; Jaroniec, Christopher; Hammel, Christopher; Poirier, Michael

    2012-02-01

    Genetic information in humans is encoded within DNA molecules that is wrapped around histone octamer proteins and compacted into a highly conserved structural polymer, chromatin. The physical and material properties of chromatin appear to influence gene expression by altering the accessibility of proteins to the DNA. The tails of the histones are flexible domains that are thought to play a role in regulating DNA accessibility and compaction; however the molecular mechanisms for these phenomena are not understood. I will present CW-EPR studies on site directed spin labeled nucleosomes that probe the structure and dynamics of these histone tails within nucleosomes.

  15. Manipulation of Cell Cycle and Chromatin Configuration by Means of Cell-Penetrating Geminin.

    Directory of Open Access Journals (Sweden)

    Yoshinori Ohno

    Full Text Available Geminin regulates chromatin remodeling and DNA replication licensing which play an important role in regulating cellular proliferation and differentiation. Transcription of the Geminin gene is regulated via an E2F-responsive region, while the protein is being closely regulated by the ubiquitin-proteasome system. Our objective was to directly transduce Geminin protein into cells. Recombinant cell-penetrating Geminin (CP-Geminin was generated by fusing Geminin with a membrane translocating motif from FGF4 and was efficiently incorporated into NIH 3T3 cells and mouse embryonic fibroblasts. The withdrawal study indicated that incorporated CP-Geminin was quickly reduced after removal from medium. We confirmed CP-Geminin was imported into the nucleus after incorporation and also that the incorporated CP-Geminin directly interacted with Cdt1 or Brahma/Brg1 as the same manner as Geminin. We further demonstrated that incorporated CP-Geminin suppressed S-phase progression of the cell cycle and reduced nuclease accessibility in the chromatin, probably through suppression of chromatin remodeling, indicating that CP-Geminin constitutes a novel tool for controlling chromatin configuration and the cell cycle. Since Geminin has been shown to be involved in regulation of stem cells and cancer cells, CP-Geminin is expected to be useful for elucidating the role of Geminin in stem cells and cancer cells, and for manipulating their activity.

  16. Fast Coordinated Control of DFIG Wind Turbine Generators for Low and High Voltage Ride-Through

    DEFF Research Database (Denmark)

    Wang, Yun; Wu, Qiuwei; Xu, Honghua

    2014-01-01

    This paper presents a fast coordinated control scheme of the rotor side converter (RSC), the DC chopper and the grid side converter (GSC) of doubly fed induction generator (DFIG) wind turbine generators (WTGs) which is to improve the low voltage ride through (LVRT) and high voltage ride through...... were proposed considering the characteristics of the DFIG WTGs during voltage changes. The fast coordinated control of RSC and GSC were developed based on the characteristic analysis in order to realize efficient LVRT and HVRT of the DFIG WTGs. The proposed fast coordinated control schemes were...

  17. Coordinated control of distributed energy resources to support load frequency control

    International Nuclear Information System (INIS)

    Ravikumar Pandi, V.; Al-Hinai, A.; Feliachi, Ali

    2015-01-01

    Highlights: • We aims to maintain feeder power flow by the coordination of DER units. • The error in feeder flow with respect to scheduled value is used by the controller. • The particle swarm optimization is employed to minimize the error in feeder flow. • Implemented on a transmission system along with 37 bus distribution feeder. • The results of proposed feeder control is analyzed with no feeder control scheme. - Abstract: The control of generating resources to follow the unscheduled load changes is considered to be an essential process in the power system in order to maintain the frequency of power supply. This load frequency control (LFC) problem has been given more importance in the recent smart grid environment because of the impact from high penetration of distributed energy resources (DER) installed at the distribution level. The renewable sources are highly intermittent in nature, so it is required to coordinate and control the DER units to maintain the feeder power flow at substation bus bar which is seen by transmission system operator during the LFC process. This paper aims to identify the impact of distributed generation and its control method to reduce the deviation of feeder power flow from the scheduled value in real time operation. The error in feeder power flow with respect to scheduled value is utilized by the PI controller to estimate the change in power reference of all DER units. The power output of DER units are maintained to reference values by the individual PI controllers. The particle swarm optimization algorithm is employed to minimize the error in feeder power flow by optimally tuning the gain values of all PI controllers. The proposed method is examined on a small transmission system along with the feeder of IEEE 37 bus distribution system with balanced loading condition. The complete system along with DER units is implemented in the MATLAB based stability package named Power Analysis Toolbox (PAT) for performing time domain

  18. Torque Coordination Control during Braking Mode Switch for a Plug-in Hybrid Electric Vehicle

    Directory of Open Access Journals (Sweden)

    Yang Yang

    2017-10-01

    Full Text Available Hybrid vehicles usually have several braking systems, and braking mode switches are significant events during braking. It is difficult to coordinate torque fluctuations caused by mode switches because the dynamic characteristics of braking systems are different. In this study, a new type of plug-in hybrid vehicle is taken as the research object, and braking mode switches are divided into two types. The control strategy of type one is achieved by controlling the change rates of clutch hold-down and motor braking forces. The control strategy of type two is achieved by simultaneously changing the target braking torque during different mode switch stages and controlling the motor to participate in active coordination control. Finally, the torque coordination control strategy is modeled in MATLAB/Simulink, and the results show that the proposed control strategy has a good effect in reducing the braking torque fluctuation and vehicle shocks during braking mode switches.

  19. Interplay between chromatin modulators and histone acetylation regulates the formation of accessible chromatin in the upstream regulatory region of fission yeast fbp1.

    Science.gov (United States)

    Adachi, Akira; Senmatsu, Satoshi; Asada, Ryuta; Abe, Takuya; Hoffman, Charles S; Ohta, Kunihiro; Hirota, Kouji

    2018-05-03

    Numerous noncoding RNA transcripts are detected in eukaryotic cells. Noncoding RNAs transcribed across gene promoters are involved in the regulation of mRNA transcription via chromatin modulation. This function of noncoding RNA transcription was first demonstrated for the fission yeast fbp1 gene, where a cascade of noncoding RNA transcription events induces chromatin remodeling to facilitate transcription factor binding. We recently demonstrated that the noncoding RNAs from the fbp1 upstream region facilitate binding of the transcription activator Atf1 and thereby promote histone acetylation. Histone acetylation by histone acetyl transferases (HATs) and ATP-dependent chromatin remodelers (ADCRs) are implicated in chromatin remodeling, but the interplay between HATs and ADCRs in this process has not been fully elucidated. Here, we examine the roles played by two distinct ADCRs, Snf22 and Hrp3, and by the HAT Gcn5 in the transcriptional activation of fbp1. Snf22 and Hrp3 redundantly promote disassembly of chromatin in the fbp1 upstream region. Gcn5 critically contributes to nucleosome eviction in the absence of either Snf22 or Hrp3, presumably by recruiting Hrp3 in snf22∆ cells and Snf22 in hrp3∆ cells. Conversely, Gcn5-dependent histone H3 acetylation is impaired in snf22∆/hrp3∆ cells, suggesting that both redundant ADCRs induce recruitment of Gcn5 to the chromatin array in the fbp1 upstream region. These results reveal a previously unappreciated interplay between ADCRs and histone acetylation in which histone acetylation facilitates recruitment of ADCRs, while ADCRs are required for histone acetylation.

  20. Toxic effects of lead and nickel nitrate on rat liver chromatin components.

    Science.gov (United States)

    Rabbani-Chadegani Iii, Azra; Fani, Nesa; Abdossamadi, Sayeh; Shahmir, Nosrat

    2011-01-01

    The biological activity of heavy metals is related to their physicochemical interaction with biological receptors. In the present study, the effect of low concentrations of nickel nitrate and lead nitrate (lead nitrate to chromatin compared to nickel nitrate. Also, the binding affinity of lead nitrate to histone proteins free in solution was higher than nickel. On the basis of the results, it is concluded that lead reacts with chromatin components even at very low concentrations and induce chromatin aggregation through histone-DNA cross-links. Whereas, nickel nitrate is less effective on chromatin at low concentrations, suggesting higher toxicity of lead nitrate on chromatin compared to nickel. Copyright © 2010 Wiley Periodicals, Inc.

  1. Targeted resequencing of regulatory regions at schizophrenia risk loci: Role of rare functional variants at chromatin repressive states.

    Science.gov (United States)

    González-Peñas, Javier; Amigo, Jorge; Santomé, Luis; Sobrino, Beatriz; Brenlla, Julio; Agra, Santiago; Paz, Eduardo; Páramo, Mario; Carracedo, Ángel; Arrojo, Manuel; Costas, Javier

    2016-07-01

    There is mounting evidence that regulatory variation plays an important role in genetic risk for schizophrenia. Here, we specifically search for regulatory variants at risk by sequencing promoter regions of twenty-three genes implied in schizophrenia by copy number variant or genome-wide association studies. After strict quality control, a total of 55,206bp per sample were analyzed in 526 schizophrenia cases and 516 controls from Galicia, NW Spain, using the Applied Biosystems SOLiD System. Variants were filtered based on frequency from public databases, chromatin states from the RoadMap Epigenomics Consortium at tissues relevant for schizophrenia, such as fetal brain, mid-frontal lobe, and angular gyrus, and prediction of functionality from RegulomeDB. The proportion of rare variants at polycomb repressive chromatin state at relevant tissues was higher in cases than in controls. The proportion of rare variants with predicted regulatory role was significantly higher in cases than in controls (P=0.0028, OR=1.93, 95% C.I.=1.23-3.04). Combination of information from both sources led to the identification of an excess of carriers of rare variants with predicted regulatory role located at polycomb repressive chromatin state at relevant tissues in cases versus controls (P=0.0016, OR=19.34, 95% C.I.=2.45-2495.26). The variants are located at two genes affected by the 17q12 copy number variant, LHX1 and HNF1B. These data strongly suggest that a specific epigenetic mechanism, chromatin remodeling by histone modification during early development, may be impaired in a subset of schizophrenia patients, in agreement with previous data. Copyright © 2016 Elsevier B.V. All rights reserved.

  2. Quantitative evaluation of radiation-induced changes in sperm morphology and chromatin distribution

    International Nuclear Information System (INIS)

    Aubele, M.; Burger, G.; Gais, P.; Juetting, V.; Rodenacker, K.; Hacker-Klom, V.

    1993-01-01

    Sperm head cytometry provides a useful assay for the detection of radiation induced damage in mouse germ cells. Exposure of the gonads to radiation is long known to lead to an increase of diploid and higher polyploid sperm and of sperm with head shape abnormalities. In the pilot studies reported here quantitative analysis of the total DNA content, the morphology, and the chromatin distribution of mouse sperm were performed. The goal was to evaluate the discriminative power of features derived by high resolution image cytometry in distinguishing sperm of control and irradiated mice. Our results suggest that besides the induction of the above mentioned variations in DNA content and shape of sperm head changes of the nonhomogeneous chromatin distribution within the sperm may also be used to quantify the radiation effect on sperm cells. Whereas the chromatin distribution features show bigger variations for sperm 21 days after exposure (dpr), the shape parameters seem to be more important to discriminate sperm 35 dpr. This may be explained by differentiation processes, which take place in different stages during mouse spermatogenesis. (authors). 25 refs., 4 tabs., 7 figs

  3. Quantitative evaluation of radiation-induced changes in sperm morphology and chromatin distribution

    Energy Technology Data Exchange (ETDEWEB)

    Aubele, M; Burger, G; Gais, P; Juetting, V; Rodenacker, K [Gesellschaft fuer Strahlen- und Umweltforschung mbH Muenchen, Neuherberg (Germany); Hacker-Klom, V [Muenster Univ. (Germany). Inst. fuer Strahlenbiologie

    1994-12-31

    Sperm head cytometry provides a useful assay for the detection of radiation induced damage in mouse germ cells. Exposure of the gonads to radiation is long known to lead to an increase of diploid and higher polyploid sperm and of sperm with head shape abnormalities. In the pilot studies reported here quantitative analysis of the total DNA content, the morphology, and the chromatin distribution of mouse sperm were performed. The goal was to evaluate the discriminative power of features derived by high resolution image cytometry in distinguishing sperm of control and irradiated mice. Our results suggest that besides the induction of the above mentioned variations in DNA content and shape of sperm head changes of the nonhomogeneous chromatin distribution within the sperm may also be used to quantify the radiation effect on sperm cells. Whereas the chromatin distribution features show bigger variations for sperm 21 days after exposure (dpr), the shape parameters seem to be more important to discriminate sperm 35 dpr. This may be explained by differentiation processes, which take place in different stages during mouse spermatogenesis. (authors). 25 refs., 4 tabs., 7 figs.

  4. ICT Based HIL Validation of Voltage Control Coordination in Smart Grids Scenarios

    DEFF Research Database (Denmark)

    Shahid, Kamal; Petersen, Lennart; Olsen, Rasmus Løvenstein

    2018-01-01

    . However, here, the results are validated through a real-time Hardware-In-The-Loop framework using an exemplary benchmark grid area in Denmark as a base case that includes flexible renewable power plants providing voltage control functionality. The provision of voltage control support from ReGen plants...... is verified on a large-scale power system against the baseline scenario, considering the hierarchical industrial controller platforms used nowadays in power plants. Moreover, the verification of online voltage control support is carried out by taking into account a communication network as well......This paper aims to validate the capability of renewable generation (ReGen) plants to provide online voltage control coordination ancillary service to the system operators. Simulation studies on online coordination concepts from ReGen plants have already been identified in previous publications...

  5. Overvoltage Mitigation Using Coordinated Control of Demand Response and Grid-tied Photovoltaics

    DEFF Research Database (Denmark)

    Bhattarai, Bishnu Prasad; Bak-Jensen, Birgitte; Pillai, Jayakrishnan Radhakrishna

    2015-01-01

    Overvoltages in low voltage distribution grids with high solar photovoltaic (PV) integration are usually alleviated by implementing various active/reactive power control techniques. As those methods create revenue loss or inverter cost increase to PV owners, a coordinated control of load demand...... and the PVs, considering electric vehicles (EVs) as potential demand response resource, is proposed in this study to alleviate the overvoltages. A two-stage control is designed to comprehend the proposed coordinated control such that a centralized stage periodically determines optimum operating set......-points for PVs/EVs and a decentralized stage adaptively control the PVs/EVs in real-time. To demonstrate effectiveness of the proposed approach, simulations are performed in a typical 0.4 kV/400 kVA Danish distribution network containing 45 detached residential consumers. The presented method demonstrates better...

  6. Vibrational energy relaxation: proposed pathway of fast local chromatin denaturation

    International Nuclear Information System (INIS)

    Harder, D.; Greinert, R.

    2002-01-01

    The molecular mechanism responsible for the a component of exchange-type chromosome aberrations, of chromosome fragmentation and of reproductive cell death is one of the unsolved issues of radiation biology. Under review is whether vibrational energy relaxation in the constitutive biopolymers of chromatin, induced by inelastic energy deposition events and mediated via highly excited vibrational states, may provide a pathway of fast local chromatin denaturation, thereby producing the severe DNA lesion able to interact chemically with other, non-damaged chromatin. (author)

  7. Motion Intention Analysis-Based Coordinated Control for Amputee-Prosthesis Interaction

    Directory of Open Access Journals (Sweden)

    Fei Wang

    2010-01-01

    Full Text Available To study amputee-prosthesis (AP interaction, a novel reconfigurable biped robot was designed and fabricated. In homogeneous configuration, two identical artificial legs (ALs were used to simulate the symmetrical lower limbs of a healthy person. Linear inverted pendulum model combining with ZMP stability criterion was used to generate the gait trajectories of ALs. To acquire interjoint coordination for healthy gait, rate gyroscopes were mounted on CoGs of thigh and shank of both legs. By employing principal component analysis, the measured angular velocities were processed and the motion synergy was obtained in the final. Then, one of two ALs was replaced by a bionic leg (BL, and the biped robot was changed into heterogeneous configuration to simulate the AP coupling system. To realize symmetrical stable walking, master/slave coordinated control strategy is proposed. According to information acquired by gyroscopes, BL recognized the motion intention of AL and reconstructed its kinematic variables based on interjoint coordination. By employing iterative learning control, gait tracking of BL to AL was archived. Real environment robot walking experiments validated the correctness and effectiveness of the proposed scheme.

  8. HACking the centromere chromatin code: insights from human artificial chromosomes.

    Science.gov (United States)

    Bergmann, Jan H; Martins, Nuno M C; Larionov, Vladimir; Masumoto, Hiroshi; Earnshaw, William C

    2012-07-01

    The centromere is a specialized chromosomal region that serves as the assembly site of the kinetochore. At the centromere, CENP-A nucleosomes form part of a chromatin landscape termed centrochromatin. This chromatin environment conveys epigenetic marks regulating kinetochore formation. Recent work sheds light on the intricate relationship between centrochromatin state, the CENP-A assembly pathway and the maintenance of centromere function. Here, we review the emerging picture of how chromatin affects mammalian kinetochore formation. We place particular emphasis on data obtained from Human Artificial Chromosome (HAC) biology and the targeted engineering of centrochromatin using synthetic HACs. We discuss implications of these findings, which indicate that a delicate balance of histone modifications and chromatin state dictates both de novo centromere formation and the maintenance of centromere identity in dividing cell populations.

  9. Local changes of higher-order chromatin structure during DSB-repair

    International Nuclear Information System (INIS)

    Falk, M; Lukasova, E; Gabrielova, B; Ondrej, V; Kozubek, S

    2008-01-01

    We show that double-strand breaks (DSBs) induced in DNA of human cells by γ-radiation arise mainly in active, gene-rich, decondensed chromatin. We demonstrate that DSBs show limited movement in living cells, occasionally resulting in their permanent clustering, which poses a risk of incorrect DNA rejoining. In addition, some DSBs remain unrepaired for several days after irradiation, forming lesions repairable only with difficulty which are hazardous for genome stability. These 'late' DSBs colocalize with heterochromatin markers (dimethylated histone H3 at lysine 9, HP1 and CENP-A proteins), despite the low density of the surrounding chromatin. This indicates that there is epigenetic silencing of loci close to unrepaired DSBs and/or stabilization of damaged decondensed chromatin loops during repair and post-repair reconstitution of chromatin structure

  10. Higher-order structure of Saccharomyces cerevisiae chromatin

    International Nuclear Information System (INIS)

    Lowary, P.T.; Widom, J.

    1989-01-01

    We have developed a method for partially purifying chromatin from Saccharomyces cerevisiae (baker's yeast) to a level suitable for studies of its higher-order folding. This has required the use of yeast strains that are free of the ubiquitous yeast killer virus. Results from dynamic light scattering, electron microscopy, and x-ray diffraction show that the yeast chromatin undergoes a cation-dependent folding into 30-nm filaments that resemble those characteristic of higher-cell chromatin; moreover, the packing of nucleosomes within the yeast 30-nm filaments is similar to that of higher cells. These results imply that yeast has a protein or protein domain that serves the role of the histone H 1 found in higher cells; physical and genetic studies of the yeast activity could help elucidate the structure and function of H 1. Images of the yeast 30-nm filaments can be used to test crossed-linker models for 30-nm filament structure

  11. Optimization Method of Intersection Signal Coordinated Control Based on Vehicle Actuated Model

    Directory of Open Access Journals (Sweden)

    Chen Zhao-Meng

    2015-01-01

    Full Text Available Traditional timing green wave control with predetermined cycle, split, and offset cannot adapt for dynamic real-time traffic flow. This paper proposes a coordinated control method for variable cycle time green wave bandwidth optimization integrated with traffic-actuated control. In the coordinated control, green split is optimized in real time by the measured presence of arriving and/or standing vehicles in each intersection and simultaneously green waves along arterials are guaranteed. Specifically, the dynamic bound of green wave is firstly determined, and then green early-start and green late-start algorithms are presented respectively to accommodate the fluctuations in vehicle arrival rates in each phase. Numerical examples show that the proposed method improves green time, expands green wave bandwidth, and reduces queuing.

  12. Microgrids and distributed generation systems: Control, operation, coordination and planning

    Science.gov (United States)

    Che, Liang

    Distributed Energy Resources (DERs) which include distributed generations (DGs), distributed energy storage systems, and adjustable loads are key components in microgrid operations. A microgrid is a small electric power system integrated with on-site DERs to serve all or some portion of the local load and connected to the utility grid through the point of common coupling (PCC). Microgrids can operate in both grid-connected mode and island mode. The structure and components of hierarchical control for a microgrid at Illinois Institute of Technology (IIT) are discussed and analyzed. Case studies would address the reliable and economic operation of IIT microgrid. The simulation results of IIT microgrid operation demonstrate that the hierarchical control and the coordination strategy of distributed energy resources (DERs) is an effective way of optimizing the economic operation and the reliability of microgrids. The benefits and challenges of DC microgrids are addressed with a DC model for the IIT microgrid. We presented the hierarchical control strategy including the primary, secondary, and tertiary controls for economic operation and the resilience of a DC microgrid. The simulation results verify that the proposed coordinated strategy is an effective way of ensuring the resilient response of DC microgrids to emergencies and optimizing their economic operation at steady state. The concept and prototype of a community microgrid that interconnecting multiple microgrids in a community are proposed. Two works are conducted. For the coordination, novel three-level hierarchical coordination strategy to coordinate the optimal power exchanges among neighboring microgrids is proposed. For the planning, a multi-microgrid interconnection planning framework using probabilistic minimal cut-set (MCS) based iterative methodology is proposed for enhancing the economic, resilience, and reliability signals in multi-microgrid operations. The implementation of high-reliability microgrids

  13. Acquisition and Retention of Team Coordination in Command-and-Control

    National Research Council Canada - National Science Library

    Cooke, Nancy J; Gorman, Jamie; Pedersen, Harry K; Winner, Jennifer; Duran, Jasmine; Taylor, Amanda; Amazeen, Polemnia G; Andrews, Dee; Rowe, Leah

    2007-01-01

    ...) command-and-control. In Experiment 1 we addressed the development of team coordination with experience and over lengthy intervals without practice in situations in which the team retains the same or different members over time...

  14. Oxidative stress signaling to chromatin in health and disease

    KAUST Repository

    Kreuz, Sarah

    2016-06-20

    Oxidative stress has a significant impact on the development and progression of common human pathologies, including cancer, diabetes, hypertension and neurodegenerative diseases. Increasing evidence suggests that oxidative stress globally influences chromatin structure, DNA methylation, enzymatic and non-enzymatic post-translational modifications of histones and DNA-binding proteins. The effects of oxidative stress on these chromatin alterations mediate a number of cellular changes, including modulation of gene expression, cell death, cell survival and mutagenesis, which are disease-driving mechanisms in human pathologies. Targeting oxidative stress-dependent pathways is thus a promising strategy for the prevention and treatment of these diseases. We summarize recent research developments connecting oxidative stress and chromatin regulation.

  15. SUMO-2 Orchestrates Chromatin Modifiers in Response to DNA Damage

    DEFF Research Database (Denmark)

    Hendriks, Ivo A; Treffers, Louise W; Verlaan-de Vries, Matty

    2015-01-01

    dynamically SUMOylated interaction networks of chromatin modifiers, transcription factors, DNA repair factors, and nuclear body components. SUMOylated chromatin modifiers include JARID1B/KDM5B, JARID1C/KDM5C, p300, CBP, PARP1, SetDB1, and MBD1. Whereas SUMOylated JARID1B was ubiquitylated by the SUMO......-targeted ubiquitin ligase RNF4 and degraded by the proteasome in response to DNA damage, JARID1C was SUMOylated and recruited to the chromatin to demethylate histone H3K4....

  16. Differential affinity of mammalian histone H1 somatic subtypes for DNA and chromatin

    Directory of Open Access Journals (Sweden)

    Mora Xavier

    2007-05-01

    Full Text Available Abstract Background Histone H1 is involved in the formation and maintenance of chromatin higher order structure. H1 has multiple isoforms; the subtypes differ in timing of expression, extent of phosphorylation and turnover rate. In vertebrates, the amino acid substitution rates differ among subtypes by almost one order of magnitude, suggesting that each subtype might have acquired a unique function. We have devised a competitive assay to estimate the relative binding affinities of histone H1 mammalian somatic subtypes H1a-e and H1° for long chromatin fragments (30–35 nucleosomes in physiological salt (0.14 M NaCl at constant stoichiometry. Results The H1 complement of native chromatin was perturbed by adding an additional amount of one of the subtypes. A certain amount of SAR (scaffold-associated region DNA was present in the mixture to avoid precipitation of chromatin by excess H1. SAR DNA also provided a set of reference relative affinities, which were needed to estimate the relative affinities of the subtypes for chromatin from the distribution of the subtypes between the SAR and the chromatin. The amounts of chromatin, SAR and additional H1 were adjusted so as to keep the stoichiometry of perturbed chromatin similar to that of native chromatin. H1 molecules freely exchanged between the chromatin and SAR binding sites. In conditions of free exchange, H1a was the subtype of lowest affinity, H1b and H1c had intermediate affinities and H1d, H1e and H1° the highest affinities. Subtype affinities for chromatin differed by up to 19-fold. The relative affinities of the subtypes for chromatin were equivalent to those estimated for a SAR DNA fragment and a pUC19 fragment of similar length. Avian H5 had an affinity ~12-fold higher than H1e for both DNA and chromatin. Conclusion H1 subtypes freely exchange in vitro between chromatin binding sites in physiological salt (0.14 M NaCl. The large differences in relative affinity of the H1 subtypes for

  17. Chromatin modifications and the DNA damage response to ionizing radiation

    International Nuclear Information System (INIS)

    Kumar, Rakesh; Horikoshi, Nobuo; Singh, Mayank; Gupta, Arun; Misra, Hari S.; Albuquerque, Kevin; Hunt, Clayton R.; Pandita, Tej K.

    2013-01-01

    In order to survive, cells have evolved highly effective repair mechanisms to deal with the potentially lethal DNA damage produced by exposure to endogenous as well as exogenous agents. Ionizing radiation exposure induces highly lethal DNA damage, especially DNA double-strand breaks (DSBs), that is sensed by the cellular machinery and then subsequently repaired by either of two different DSB repair mechanisms: (1) non-homologous end joining, which re-ligates the broken ends of the DNA and (2) homologous recombination, that employs an undamaged identical DNA sequence as a template, to maintain the fidelity of DNA repair. Repair of DSBs must occur within the natural context of the cellular DNA which, along with specific proteins, is organized to form chromatin, the overall structure of which can impede DNA damage site access by repair proteins. The chromatin complex is a dynamic structure and is known to change as required for ongoing cellular processes such as gene transcription or DNA replication. Similarly, during the process of DNA damage sensing and repair, chromatin needs to undergo several changes in order to facilitate accessibility of the repair machinery. Cells utilize several factors to modify the chromatin in order to locally open up the structure to reveal the underlying DNA sequence but post-translational modification of the histone components is one of the primary mechanisms. In this review, we will summarize chromatin modifications by the respective chromatin modifying factors that occur during the DNA damage response.

  18. FACT facilitates chromatin transcription by RNA polymerases I and III

    DEFF Research Database (Denmark)

    Birch, Joanna L; Tan, Bertrand C-M; Panov, Kostya I

    2009-01-01

    Efficient transcription elongation from a chromatin template requires RNA polymerases (Pols) to negotiate nucleosomes. Our biochemical analyses demonstrate that RNA Pol I can transcribe through nucleosome templates and that this requires structural rearrangement of the nucleosomal core particle....... The subunits of the histone chaperone FACT (facilitates chromatin transcription), SSRP1 and Spt16, co-purify and co-immunoprecipitate with mammalian Pol I complexes. In cells, SSRP1 is detectable at the rRNA gene repeats. Crucially, siRNA-mediated repression of FACT subunit expression in cells results...... in a significant reduction in 47S pre-rRNA levels, whereas synthesis of the first 40 nt of the rRNA is not affected, implying that FACT is important for Pol I transcription elongation through chromatin. FACT also associates with RNA Pol III complexes, is present at the chromatin of genes transcribed by Pol III...

  19. Citrullination regulates pluripotency and histone H1 binding to chromatin

    DEFF Research Database (Denmark)

    Christophorou, Maria A; Castelo-Branco, Gonçalo; Halley-Stott, Richard P

    2014-01-01

    citrullination of core histones has been linked to transcriptional regulation and the DNA damage response. PADI4 (also called PAD4 or PADV), the only PADI with a nuclear localization signal, was previously shown to act in myeloid cells where it mediates profound chromatin decondensation during the innate immune...... and activating their expression. Its inhibition lowers the percentage of pluripotent cells in the early mouse embryo and significantly reduces reprogramming efficiency. Using an unbiased proteomic approach we identify linker histone H1 variants, which are involved in the generation of compact chromatin, as novel...... PADI4 substrates. Citrullination of a single arginine residue within the DNA-binding site of H1 results in its displacement from chromatin and global chromatin decondensation. Together, these results uncover a role for citrullination in the regulation of pluripotency and provide new mechanistic...

  20. EBV Latency Types Adopt Alternative Chromatin Conformations

    Science.gov (United States)

    Tempera, Italo; Klichinsky, Michael; Lieberman, Paul M.

    2011-01-01

    Epstein-Barr Virus (EBV) can establish latent infections with distinct gene expression patterns referred to as latency types. These different latency types are epigenetically stable and correspond to different promoter utilization. Here we explore the three-dimensional conformations of the EBV genome in different latency types. We employed Chromosome Conformation Capture (3C) assay to investigate chromatin loop formation between the OriP enhancer and the promoters that determine type I (Qp) or type III (Cp) gene expression. We show that OriP is in close physical proximity to Qp in type I latency, and to Cp in type III latency. The cellular chromatin insulator and boundary factor CTCF was implicated in EBV chromatin loop formation. Combining 3C and ChIP assays we found that CTCF is physically associated with OriP-Qp loop formation in type I and OriP-Cp loop formation in type III latency. Mutations in the CTCF binding site located at Qp disrupt loop formation between Qp and OriP, and lead to the activation of Cp transcription. Mutation of the CTCF binding site at Cp, as well as siRNA depletion of CTCF eliminates both OriP-associated loops, indicating that CTCF plays an integral role in loop formation. These data indicate that epigenetically stable EBV latency types adopt distinct chromatin architectures that depend on CTCF and mediate alternative promoter targeting by the OriP enhancer. PMID:21829357

  1. EBV latency types adopt alternative chromatin conformations.

    Directory of Open Access Journals (Sweden)

    Italo Tempera

    2011-07-01

    Full Text Available Epstein-Barr Virus (EBV can establish latent infections with distinct gene expression patterns referred to as latency types. These different latency types are epigenetically stable and correspond to different promoter utilization. Here we explore the three-dimensional conformations of the EBV genome in different latency types. We employed Chromosome Conformation Capture (3C assay to investigate chromatin loop formation between the OriP enhancer and the promoters that determine type I (Qp or type III (Cp gene expression. We show that OriP is in close physical proximity to Qp in type I latency, and to Cp in type III latency. The cellular chromatin insulator and boundary factor CTCF was implicated in EBV chromatin loop formation. Combining 3C and ChIP assays we found that CTCF is physically associated with OriP-Qp loop formation in type I and OriP-Cp loop formation in type III latency. Mutations in the CTCF binding site located at Qp disrupt loop formation between Qp and OriP, and lead to the activation of Cp transcription. Mutation of the CTCF binding site at Cp, as well as siRNA depletion of CTCF eliminates both OriP-associated loops, indicating that CTCF plays an integral role in loop formation. These data indicate that epigenetically stable EBV latency types adopt distinct chromatin architectures that depend on CTCF and mediate alternative promoter targeting by the OriP enhancer.

  2. A new and improved algorithm for the quantification of chromatin condensation from microscopic data shows decreased chromatin condensation in regenerating axolotl limb cells.

    Directory of Open Access Journals (Sweden)

    Julian Sosnik

    Full Text Available The nuclear landscape plays an important role in the regulation of tissue and positional specific genes in embryonic and developing cells. Changes in this landscape can be dynamic, and are associated with the differentiation of cells during embryogenesis, and the de-differentiation of cells during induced pluripotent stem cell (iPSC formation and in many cancers. However, tools to quantitatively characterize these changes are limited, especially in the in vivo context, where numerous tissue types are present and cells are arranged in multiple layers. Previous tools have been optimized for the monolayer nature of cultured cells. Therefore, we present a new algorithm to quantify the condensation of chromatin in two in vivo systems. We first developed this algorithm to quantify changes in chromatin compaction and validated it in differentiating spermatids in zebrafish testes. Our algorithm successfully detected the typical increase in chromatin compaction as these cells differentiate. We then employed the algorithm to quantify the changes that occur in amphibian limb cells as they participate in a regenerative response. We observed that the chromatin in the limb cells de-compacts as they contribute to the regenerating organ. We present this new tool as an open sourced software that can be readily accessed and optimized to quantify chromatin compaction in complex multi-layered samples.

  3. High-Frequency Promoter Firing Links THO Complex Function to Heavy Chromatin Formation

    DEFF Research Database (Denmark)

    Mouaikel, John; Causse, Sébastien Z; Rougemaille, Mathieu

    2013-01-01

    The THO complex is involved in transcription, genome stability, and messenger ribonucleoprotein (mRNP) formation, but its precise molecular function remains enigmatic. Under heat shock conditions, THO mutants accumulate large protein-DNA complexes that alter the chromatin density of target genes...... (heavy chromatin), defining a specific biochemical facet of THO function and a powerful tool of analysis. Here, we show that heavy chromatin distribution is dictated by gene boundaries and that the gene promoter is necessary and sufficient to convey THO sensitivity in these conditions. Single......-molecule fluorescence insitu hybridization measurements show that heavy chromatin formation correlates with an unusually high firing pace of the promoter with more than 20 transcription events per minute. Heavy chromatin formation closely follows the modulation of promoter firing and strongly correlates with polymerase...

  4. [Automated morphometric evaluation of the chromatin structure of liver cell nuclei after vagotomy].

    Science.gov (United States)

    Butusova, N N; Zhukotskiĭ, A V; Sherbo, I V; Gribkov, E N; Dubovaia, T K

    1989-05-01

    The morphometric analysis of the interphase chromatine structure of the hepatic cells nuclei was carried out on the automated TV installation for the quantitative analysis of images "IBAS-2" (by the OPTON firm, the FRG) according to 50 optical and geometric parameters during various periods (1.2 and 4 weeks) after the vagotomy operation. It is determined that upper-molecular organisation of chromatine undergoes the biggest changes one week after operation, and changes of granular component are more informative than changes of the nongranular component (with the difference 15-20%). It was also revealed that chromatine components differ in tinctorial properties, which are evidently dependent on physicochemical characteristics of the chromatine under various functional conditions of the cell. As a result of the correlation analysis the group of morphometric indices of chromatine structure was revealed, which are highly correlated with level of transcription activity of chromatine during various terms after denervation. The correlation quotient of these parameters is 0.85-0.97. The summing up: vagus denervation of the liver causes changes in the morphofunctional organisation of the chromatine.

  5. N-Butyrate alters chromatin accessibility to DNA repair enzymes

    International Nuclear Information System (INIS)

    Smith, P.J.

    1986-01-01

    Current evidence suggests that the complex nature of mammalian chromatin can result in the concealment of DNA damage from repair enzymes and their co-factors. Recently it has been proposed that the acetylation of histone proteins in chromatin may provide a surveillance system whereby damaged regions of DNA become exposed due to changes in chromatin accessibility. This hypothesis has been tested by: (i) using n-butyrate to induce hyperacetylation in human adenocarcinoma (HT29) cells; (ii) monitoring the enzymatic accessibility of chromatin in permeabilised cells; (iii) measuring u.v. repair-associated nicking of DNA in intact cells and (iv) determining the effects of n-butyrate on cellular sensitivity to DNA damaging agents. The results indicate that the accessibility of chromatin to Micrococcus luteus u.v. endonuclease is enhanced by greater than 2-fold in n-butyrate-treated cells and that there is a corresponding increase in u.v. repair incision rates in intact cells exposed to the drug. Non-toxic levels of n-butyrate induce a block to G1 phase transit and there is a significant growth delay on removal of the drug. Resistance of HT29 cells to u.v.-radiation and adriamycin is enhanced in n-butyrate-treated cells whereas X-ray sensitivity is increased. Although changes in the responses of cells to DNA damaging agents must be considered in relation to the effects of n-butyrate on growth rate and cell-cycle distribution, the results are not inconsistent with the proposal that increased enzymatic-accessibility/repair is biologically favourable for the resistance of cells to u.v.-radiation damage. Overall the results support the suggested operation of a histone acetylation-based chromatin surveillance system in human cells

  6. Coordinated Control Design for the HTR-PM Plant: From Theoretic Analysis to Simulation Verification

    International Nuclear Information System (INIS)

    Dong Zhe; Huang Xiaojin

    2014-01-01

    HTR-PM plant is a two-modular nuclear power plant based on pebble bed modular high temperature gas-cooled reactor (MHTGR), and adopts operation scheme of two nuclear steam supplying systems (NSSSs) driving one turbine. Here, an NSSS is composed of an MHTGR, a once-through steam generator (OTSG) and some connecting pipes. Due to the coupling effect induced by two NSSSs driving one common turbine and that between the MHTGR and OTSG given by common helium flow, it is necessary to design a coordinated control for the safe, stable and efficient operation of the HTR-PM plant. In this paper, the design of the feedback loops and control algorithms of the coordinated plant control law is firstly given. Then, the hardware-in-loop (HIL) system for verifying the feasibility and performance of this control strategy is introduced. Finally, some HIL simulation results are given, which preliminarily show that this coordinated control law can be implemented practically. (author)

  7. Chromatin and lamin A determine two different mechanical response regimes of the cell nucleus.

    Science.gov (United States)

    Stephens, Andrew D; Banigan, Edward J; Adam, Stephen A; Goldman, Robert D; Marko, John F

    2017-07-07

    The cell nucleus must continually resist and respond to intercellular and intracellular mechanical forces to transduce mechanical signals and maintain proper genome organization and expression. Altered nuclear mechanics is associated with many human diseases, including heart disease, progeria, and cancer. Chromatin and nuclear envelope A-type lamin proteins are known to be key nuclear mechanical components perturbed in these diseases, but their distinct mechanical contributions are not known. Here we directly establish the separate roles of chromatin and lamin A/C and show that they determine two distinct mechanical regimes via micromanipulation of single isolated nuclei. Chromatin governs response to small extensions (<3 μm), and euchromatin/heterochromatin levels modulate the stiffness. In contrast, lamin A/C levels control nuclear strain stiffening at large extensions. These results can be understood through simulations of a polymeric shell and cross-linked polymer interior. Our results provide a framework for understanding the differential effects of chromatin and lamin A/C in cell nuclear mechanics and their alterations in disease. © 2017 Stephens et al. This article is distributed by The American Society for Cell Biology under license from the author(s). Two months after publication it is available to the public under an Attribution–Noncommercial–Share Alike 3.0 Unported Creative Commons License (http://creativecommons.org/licenses/by-nc-sa/3.0).

  8. A Novel Distributed Secondary Coordination Control Approach for Islanded Microgrids

    DEFF Research Database (Denmark)

    Lu, Xiaoqing; Yu, Xinghuo; Lai, Jingang

    2018-01-01

    This paper develops a new distributed secondary cooperative control scheme to coordinate distributed generators (DGs) in islanded microgrids (MGs). A finite time frequency regulation strategy containing a consensus-based distributed active power regulator is presented, which can not only guarantee...

  9. ATP-dependent chromatin remodeling in the DNA-damage response

    Directory of Open Access Journals (Sweden)

    Lans Hannes

    2012-01-01

    Full Text Available Abstract The integrity of DNA is continuously challenged by metabolism-derived and environmental genotoxic agents that cause a variety of DNA lesions, including base alterations and breaks. DNA damage interferes with vital processes such as transcription and replication, and if not repaired properly, can ultimately lead to premature aging and cancer. Multiple DNA pathways signaling for DNA repair and DNA damage collectively safeguard the integrity of DNA. Chromatin plays a pivotal role in regulating DNA-associated processes, and is itself subject to regulation by the DNA-damage response. Chromatin influences access to DNA, and often serves as a docking or signaling site for repair and signaling proteins. Its structure can be adapted by post-translational histone modifications and nucleosome remodeling, catalyzed by the activity of ATP-dependent chromatin-remodeling complexes. In recent years, accumulating evidence has suggested that ATP-dependent chromatin-remodeling complexes play important, although poorly characterized, roles in facilitating the effectiveness of the DNA-damage response. In this review, we summarize the current knowledge on the involvement of ATP-dependent chromatin remodeling in three major DNA repair pathways: nucleotide excision repair, homologous recombination, and non-homologous end-joining. This shows that a surprisingly large number of different remodeling complexes display pleiotropic functions during different stages of the DNA-damage response. Moreover, several complexes seem to have multiple functions, and are implicated in various mechanistically distinct repair pathways.

  10. Motion coordination for VTOL unmanned aerial vehicles attitude synchronisation and formation control

    CERN Document Server

    Abdessameud, Abdelkader

    2013-01-01

    Motion Coordination for VTOL Unmanned Aerial Vehicles develops new control design techniques for the distributed coordination of a team of autonomous unmanned aerial vehicles. In particular, it provides new control design approaches for the attitude synchronization of a formation of rigid body systems. In addition, by integrating new control design techniques with some concepts from nonlinear control theory and multi-agent systems, it presents  a new theoretical framework for the formation control of a class of under-actuated aerial vehicles capable of vertical take-off and landing. Several practical problems related to the systems’ inputs, states measurements, and  restrictions on the interconnection  topology  between the aerial vehicles in the team  are addressed. Worked examples with sufficient details and simulation results are provided to illustrate the applicability and effectiveness of the theoretical results discussed in the book. The material presented is primarily intended for researchers an...

  11. DNA repair goes hip-hop: SMARCA and CHD chromatin remodellers join the break dance.

    Science.gov (United States)

    Rother, Magdalena B; van Attikum, Haico

    2017-10-05

    Proper signalling and repair of DNA double-strand breaks (DSB) is critical to prevent genome instability and diseases such as cancer. The packaging of DNA into chromatin, however, has evolved as a mere obstacle to these DSB responses. Posttranslational modifications and ATP-dependent chromatin remodelling help to overcome this barrier by modulating nucleosome structures and allow signalling and repair machineries access to DSBs in chromatin. Here we recap our current knowledge on how ATP-dependent SMARCA- and CHD-type chromatin remodellers alter chromatin structure during the signalling and repair of DSBs and discuss how their dysfunction impacts genome stability and human disease.This article is part of the themed issue 'Chromatin modifiers and remodellers in DNA repair and signalling'. © 2017 The Authors.

  12. Efficient Messaging through Cluster Coordinators in Decentralized Controlled Material Flow Systems

    Directory of Open Access Journals (Sweden)

    Lieberoth-Leden Christian

    2016-01-01

    Full Text Available The modularization of the hard- and software is one approach handling the demand for increasing flexibility and changeability of automated material flow systems. A control that is distributed across several different hardware controllers leads to a great demand for coordination between the modules while planning for example transports, especially if there is a mutual dependency between the modules on the executing tasks. Short-term changes in planning often initiate a rescheduling chain reaction, which causes a high communication load in the system. In the presented approach, module clusters with a centralized coordinator are automatically formed out of multiple modules and substitutional take over the surrounding communication for the modules. As a result, they minimize exchanged messages by focusing on the essential information.

  13. Homoeologous chromatin exchange in a radiation-induced gene transfer

    International Nuclear Information System (INIS)

    Dvorak, J.; Knott, D.R.

    1977-01-01

    Some of the ionizing-radiation-induced translocations between alien and wheat chromosomes show no deleterious effects and are transmitted normally through the pollen. Translocations of this type will be called ''compensating''. In one such compensating translocation, designated T4, it was found that chromatin in the long arm of wheat chromosome 7D was replaced with homoeologous chromatin of the Agropyron chromosome

  14. Homoeologous chromatin exchange in a radiation-induced gene transfer

    Energy Technology Data Exchange (ETDEWEB)

    Dvorak, J; Knott, D R [Department of Crop Science, University of Saskatchewan, Saskatoon, Saskatchewan, Canada

    1977-03-01

    Some of the ionizing-radiation-induced translocations between alien and wheat chromosomes show no deleterious effects and are transmitted normally through the pollen. Translocations of this type will be called ''compensating''. In one such compensating translocation, designated T4, it was found that chromatin in the long arm of wheat chromosome 7D was replaced with homologous chromatin of the Agropyron chromosome.

  15. A Signal Coordination Control Based on Traversing Empty between Mid-Block Street Crossing and Intersection

    Directory of Open Access Journals (Sweden)

    Changjiang Zheng

    2012-01-01

    Full Text Available To solve the problem in pedestrian Mid-Block street crossing, the method of signal coordination control between mid-block street crossing and intersection is researched in this paper. The paper proposes to use “distance-flow rate-time” graph as the tool for building coordination control system model which is for different situations of traffic control. Through alternating the linear optimization model, the system outputs the distribution of signal timing and system operational factors (delays in vehicles and mid-block street crossing. Finally, taking one section on the Taiping North Road in Nanjing as an example, the signal coordination control is carried out. And the results which are delays in the vehicles and mid-block street crossing are compared to those in the current distribution of signal timing.

  16. Bimanual motor coordination controlled by cooperative interactions in intrinsic and extrinsic coordinates.

    Science.gov (United States)

    Sakurada, Takeshi; Ito, Koji; Gomi, Hiroaki

    2016-01-01

    Although strong motor coordination in intrinsic muscle coordinates has frequently been reported for bimanual movements, coordination in extrinsic visual coordinates is also crucial in various bimanual tasks. To explore the bimanual coordination mechanisms in terms of the frame of reference, here we characterized implicit bilateral interactions in visuomotor tasks. Visual perturbations (finger-cursor gain change) were applied while participants performed a rhythmic tracking task with both index fingers under an in-phase or anti-phase relationship in extrinsic coordinates. When they corrected the right finger's amplitude, the left finger's amplitude unintentionally also changed [motor interference (MI)], despite the instruction to keep its amplitude constant. Notably, we observed two specificities: one was large MI and low relative-phase variability (PV) under the intrinsic in-phase condition, and the other was large MI and high PV under the extrinsic in-phase condition. Additionally, using a multiple-interaction model, we successfully decomposed MI into intrinsic components caused by motor correction and extrinsic components caused by visual-cursor mismatch of the right finger's movements. This analysis revealed that the central nervous system facilitates MI by combining intrinsic and extrinsic components in the condition with in-phases in both intrinsic and extrinsic coordinates, and that under-additivity of the effects is explained by the brain's preference for the intrinsic interaction over extrinsic interaction. In contrast, the PV was significantly correlated with the intrinsic component, suggesting that the intrinsic interaction dominantly contributed to bimanual movement stabilization. The inconsistent features of MI and PV suggest that the central nervous system regulates multiple levels of bilateral interactions for various bimanual tasks. © 2015 The Authors. European Journal of Neuroscience published by Federation of European Neuroscience Societies and

  17. Chromatin organisation and cancer prognosis: a pan-cancer study.

    Science.gov (United States)

    Kleppe, Andreas; Albregtsen, Fritz; Vlatkovic, Ljiljana; Pradhan, Manohar; Nielsen, Birgitte; Hveem, Tarjei S; Askautrud, Hanne A; Kristensen, Gunnar B; Nesbakken, Arild; Trovik, Jone; Wæhre, Håkon; Tomlinson, Ian; Shepherd, Neil A; Novelli, Marco; Kerr, David J; Danielsen, Håvard E

    2018-03-01

    Chromatin organisation affects gene expression and regional mutation frequencies and contributes to carcinogenesis. Aberrant organisation of DNA has been correlated with cancer prognosis in analyses of the chromatin component of tumour cell nuclei using image texture analysis. As yet, the methodology has not been sufficiently validated to permit its clinical application. We aimed to define and validate a novel prognostic biomarker for the automatic detection of heterogeneous chromatin organisation. Machine learning algorithms analysed the chromatin organisation in 461 000 images of tumour cell nuclei stained for DNA from 390 patients (discovery cohort) treated for stage I or II colorectal cancer at the Aker University Hospital (Oslo, Norway). The resulting marker of chromatin heterogeneity, termed Nucleotyping, was subsequently independently validated in six patient cohorts: 442 patients with stage I or II colorectal cancer in the Gloucester Colorectal Cancer Study (UK); 391 patients with stage II colorectal cancer in the QUASAR 2 trial; 246 patients with stage I ovarian carcinoma; 354 patients with uterine sarcoma; 307 patients with prostate carcinoma; and 791 patients with endometrial carcinoma. The primary outcome was cancer-specific survival. In all patient cohorts, patients with chromatin heterogeneous tumours had worse cancer-specific survival than patients with chromatin homogeneous tumours (univariable analysis hazard ratio [HR] 1·7, 95% CI 1·2-2·5, in the discovery cohort; 1·8, 1·0-3·0, in the Gloucester validation cohort; 2·2, 1·1-4·5, in the QUASAR 2 validation cohort; 3·1, 1·9-5·0, in the ovarian carcinoma cohort; 2·5, 1·8-3·4, in the uterine sarcoma cohort; 2·3, 1·2-4·6, in the prostate carcinoma cohort; and 4·3, 2·8-6·8, in the endometrial carcinoma cohort). After adjusting for established prognostic patient characteristics in multivariable analyses, Nucleotyping was prognostic in all cohorts except for the prostate carcinoma

  18. CHD chromatin remodelers and the transcription cycle

    Science.gov (United States)

    Murawska, Magdalena

    2011-01-01

    It is well established that ATP-dependent chromatin remodelers modulate DNA access of transcription factors and RNA polymerases by “opening” or “closing” chromatin structure. However, this view is far too simplistic. Recent findings have demonstrated that these enzymes not only set the stage for the transcription machinery to act but also are actively involved at every step of the transcription process. As a consequence, they affect initiation, elongation, termination and RNA processing. In this review we will use the CHD family as a paradigm to illustrate the progress that has been made in revealing these new concepts. PMID:22223048

  19. Modulation of chromatin access during adipocyte differentiation

    DEFF Research Database (Denmark)

    Mandrup, Susanne; Hager, Gordon L

    2012-01-01

    identified; however, it is not until recently that we have begun to understand how these factors act at a genome-wide scale. In a recent publication we have mapped the genome-wide changes in chromatin structure during differentiation of 3T3-L1 preadipocytes and shown that a major reorganization...... of the chromatin landscape occurs within few hours following the addition of the adipogenic cocktail. In addition, we have mapped the genome-wide profiles of several of the early adipogenic transcription factors and shown that they act in a highly cooperative manner to drive this dramatic remodeling process....

  20. Transcriptional decomposition reveals active chromatin architectures and cell specific regulatory interactions

    DEFF Research Database (Denmark)

    Rennie, Sarah; Dalby, Maria; van Duin, Lucas

    2018-01-01

    Transcriptional regulation is tightly coupled with chromosomal positioning and three-dimensional chromatin architecture. However, it is unclear what proportion of transcriptional activity is reflecting such organisation, how much can be informed by RNA expression alone and how this impacts disease...... proportion of total levels and is highly informative of topological associating domain activities and organisation, revealing boundaries and chromatin compartments. Furthermore, expression data alone accurately predict individual enhancer-promoter interactions, drawing features from expression strength...... between transcription and chromatin architecture....

  1. Contribution of transposable elements and distal enhancers to evolution of human-specific features of interphase chromatin architecture in embryonic stem cells.

    Science.gov (United States)

    Glinsky, Gennadi V

    2018-03-01

    Transposable elements have made major evolutionary impacts on creation of primate-specific and human-specific genomic regulatory loci and species-specific genomic regulatory networks (GRNs). Molecular and genetic definitions of human-specific changes to GRNs contributing to development of unique to human phenotypes remain a highly significant challenge. Genome-wide proximity placement analysis of diverse families of human-specific genomic regulatory loci (HSGRL) identified topologically associating domains (TADs) that are significantly enriched for HSGRL and designated rapidly evolving in human TADs. Here, the analysis of HSGRL, hESC-enriched enhancers, super-enhancers (SEs), and specific sub-TAD structures termed super-enhancer domains (SEDs) has been performed. In the hESC genome, 331 of 504 (66%) of SED-harboring TADs contain HSGRL and 68% of SEDs co-localize with HSGRL, suggesting that emergence of HSGRL may have rewired SED-associated GRNs within specific TADs by inserting novel and/or erasing existing non-coding regulatory sequences. Consequently, markedly distinct features of the principal regulatory structures of interphase chromatin evolved in the hESC genome compared to mouse: the SED quantity is 3-fold higher and the median SED size is significantly larger. Concomitantly, the overall TAD quantity is increased by 42% while the median TAD size is significantly decreased (p = 9.11E-37) in the hESC genome. Present analyses illustrate a putative global role for transposable elements and HSGRL in shaping the human-specific features of the interphase chromatin organization and functions, which are facilitated by accelerated creation of novel transcription factor binding sites and new enhancers driven by targeted placement of HSGRL at defined genomic coordinates. A trend toward the convergence of TAD and SED architectures of interphase chromatin in the hESC genome may reflect changes of 3D-folding patterns of linear chromatin fibers designed to enhance both

  2. The protein encoded by the proto-oncogene DEK changes the topology of chromatin and reduces the efficiency of DNA replication in a chromatin-specific manner

    DEFF Research Database (Denmark)

    Alexiadis, V; Waldmann, T; Andersen, Jens S.

    2000-01-01

    The structure of chromatin regulates the genetic activity of the underlying DNA sequence. We report here that the protein encoded by the proto-oncogene DEK, which is involved in acute myelogenous leukemia, induces alterations of the superhelical density of DNA in chromatin. The change in topology...

  3. Decentralized Coordinated Control Strategy of Islanded Microgrids

    DEFF Research Database (Denmark)

    Wu, Dan

    as grid voltage/frequency regulation. In order to enhance the reliability of overall islanded Microgrid operation, basic functions of coordinated control which taking into account the state of charge (SoC) limitation and power availability of renewable energy sources is implemented in a distributed level...... control strategies in this thesis, in order to promote the decentralization of the overall system. Especially the consensus algorithm based secondary level is investigated in the thesis in order to simplify the communication configuration which only flood information through the neighboring units......Facing the challenges brought by the traditional large power system concerning the environmental and economic issues, along recent years distributed generation is considered as an alternative solution to provide clean energy in a local manner. In this context, Microgrid which performing as a local...

  4. Chromatin-bound RNA and the neurobiology of psychiatric disease.

    Science.gov (United States)

    Tushir, J S; Akbarian, S

    2014-04-04

    A large, and still rapidly expanding literature on epigenetic regulation in the nervous system has provided fundamental insights into the dynamic regulation of DNA methylation and post-translational histone modifications in the context of neuronal plasticity in health and disease. Remarkably, however, very little is known about the potential role of chromatin-bound RNAs, including many long non-coding transcripts and various types of small RNAs. Here, we provide an overview on RNA-mediated regulation of chromatin structure and function, with focus on histone lysine methylation and psychiatric disease. Examples of recently discovered chromatin-bound long non-coding RNAs important for neuronal health and function include the brain-derived neurotrophic factor antisense transcript (Bdnf-AS) which regulates expression of the corresponding sense transcript, and LOC389023 which is associated with human-specific histone methylation signatures at the chromosome 2q14.1 neurodevelopmental risk locus by regulating expression of DPP10, an auxillary subunit for voltage-gated K(+) channels. We predict that the exploration of chromatin-bound RNA will significantly advance our current knowledge base in neuroepigenetics and biological psychiatry. Copyright © 2013 IBRO. Published by Elsevier Ltd. All rights reserved.

  5. Connecting the dots: chromatin and alternative splicing in EMT.

    Science.gov (United States)

    Warns, Jessica A; Davie, James R; Dhasarathy, Archana

    2016-02-01

    Nature has devised sophisticated cellular machinery to process mRNA transcripts produced by RNA Polymerase II, removing intronic regions and connecting exons together, to produce mature RNAs. This process, known as splicing, is very closely linked to transcription. Alternative splicing, or the ability to produce different combinations of exons that are spliced together from the same genomic template, is a fundamental means of regulating protein complexity. Similar to transcription, both constitutive and alternative splicing can be regulated by chromatin and its associated factors in response to various signal transduction pathways activated by external stimuli. This regulation can vary between different cell types, and interference with these pathways can lead to changes in splicing, often resulting in aberrant cellular states and disease. The epithelial to mesenchymal transition (EMT), which leads to cancer metastasis, is influenced by alternative splicing events of chromatin remodelers and epigenetic factors such as DNA methylation and non-coding RNAs. In this review, we will discuss the role of epigenetic factors including chromatin, chromatin remodelers, DNA methyltransferases, and microRNAs in the context of alternative splicing, and discuss their potential involvement in alternative splicing during the EMT process.

  6. Power coordinated control method with frequency support capability for hybrid single/three-phase microgrid

    DEFF Research Database (Denmark)

    Zhou, Xiaoping; Chen, Yandong; Zhou, Leming

    2018-01-01

    storage unit (ESU) are added into hybrid single/three-phase microgrid, and a power coordinated control method with frequency support capability is proposed for hybrid single/three-phase microgrid in this study. PEU is connected with three single-phase microgrids to coordinate power exchange among three...... phases and provide frequency support for hybrid microgrid. Meanwhile, a power coordinated control method based on the droop control is proposed for PEU to alleviate three-phase power imbalance and reduce voltage fluctuation of hybrid microgrid. Besides, ESU is injected into the DC-link to buffer......Due to the intermittent output power of distributed generations (DGs) and the variability of loads, voltage fluctuation and three-phase power imbalance easily occur when hybrid single/three-phase microgrid operates in islanded mode. To address these issues, the power exchange unit (PEU) and energy...

  7. Effects of relational coordination among colleagues and span of control on work engagement among home-visiting nurses.

    Science.gov (United States)

    Naruse, Takashi; Sakai, Mahiro; Nagata, Satoko

    2016-04-01

    Home-visiting nursing agencies are required to foster staff nurse's work engagement; thus, the factors related to work engagement require identification. This study examined relational coordination among colleagues and agency span of control on the work engagement of home-visiting nurses. Cross-sectional data from 93 staff nurses in 31 home-visiting nursing agencies were collected via a survey and analyzed using mixed linear regression. There was no significant main effect of relational coordination among nurse colleagues on work engagement. In large agencies with a large span of control, relational coordination among nursing colleagues predicted work engagement. Nursing managers' relational coordination was found to be positively associated with staff nurse work engagement. Agency span of control is a moderating factor on the positive effect of relational coordination with nursing colleagues on staff nurse work engagement. © 2016 Japan Academy of Nursing Science.

  8. DNA packing in chromatine, a manifestation of the Bonnet transformation.

    Science.gov (United States)

    Blum, Z; Lidin, S

    1988-08-01

    The packing of DNA is described using the formalism of differential geometry. Winding of the DNA double helix around the histone 2-5 octamer forming a nucleosome and the condensation of the so-formed bead-on-a-string chromatine aided by histone 1 is interpreted as two consecutive isometric, i.e. Bonnet, transformations. The DNA double helix can be approximated to a helicoid which can be transformed isometrically to a catenoid, an approximation of the nucleosome. Owing to the organization of the histone octamer the extended chromatine takes a helicoidal shape allowing a second Bonnet transformation to consummate the condensation into a chromatine fibre.

  9. HDAC up-regulation in early colon field carcinogenesis is involved in cell tumorigenicity through regulation of chromatin structure.

    Directory of Open Access Journals (Sweden)

    Yolanda Stypula-Cyrus

    Full Text Available Normal cell function is dependent on the proper maintenance of chromatin structure. Regulation of chromatin structure is controlled by histone modifications that directly influence chromatin architecture and genome function. Specifically, the histone deacetylase (HDAC family of proteins modulate chromatin compaction and are commonly dysregulated in many tumors, including colorectal cancer (CRC. However, the role of HDAC proteins in early colorectal carcinogenesis has not been previously reported. We found HDAC1, HDAC2, HDAC3, HDAC5, and HDAC7 all to be up-regulated in the field of human CRC. Furthermore, we observed that HDAC2 up-regulation is one of the earliest events in CRC carcinogenesis and observed this in human field carcinogenesis, the azoxymethane-treated rat model, and in more aggressive colon cancer cell lines. The universality of HDAC2 up-regulation suggests that HDAC2 up-regulation is a novel and important early event in CRC, which may serve as a biomarker. HDAC inhibitors (HDACIs interfere with tumorigenic HDAC activity; however, the precise mechanisms involved in this process remain to be elucidated. We confirmed that HDAC inhibition by valproic acid (VPA targeted the more aggressive cell line. Using nuclease digestion assays and transmission electron microscopy imaging, we observed that VPA treatment induced greater changes in chromatin structure in the more aggressive cell line. Furthermore, we used the novel imaging technique partial wave spectroscopy (PWS to quantify nanoscale alterations in chromatin. We noted that the PWS results are consistent with the biological assays, indicating a greater effect of VPA treatment in the more aggressive cell type. Together, these results demonstrate the importance of HDAC activity in early carcinogenic events and the unique role of higher-order chromatin structure in determining cell tumorigenicity.

  10. Chromatin Remodeling BAF (SWI/SNF Complexes in Neural Development and Disorders

    Directory of Open Access Journals (Sweden)

    Godwin Sokpor

    2017-08-01

    Full Text Available The ATP-dependent BRG1/BRM associated factor (BAF chromatin remodeling complexes are crucial in regulating gene expression by controlling chromatin dynamics. Over the last decade, it has become increasingly clear that during neural development in mammals, distinct ontogenetic stage-specific BAF complexes derived from combinatorial assembly of their subunits are formed in neural progenitors and post-mitotic neural cells. Proper functioning of the BAF complexes plays critical roles in neural development, including the establishment and maintenance of neural fates and functionality. Indeed, recent human exome sequencing and genome-wide association studies have revealed that mutations in BAF complex subunits are linked to neurodevelopmental disorders such as Coffin-Siris syndrome, Nicolaides-Baraitser syndrome, Kleefstra's syndrome spectrum, Hirschsprung's disease, autism spectrum disorder, and schizophrenia. In this review, we focus on the latest insights into the functions of BAF complexes during neural development and the plausible mechanistic basis of how mutations in known BAF subunits are associated with certain neurodevelopmental disorders.

  11. Chromatin Remodeling BAF (SWI/SNF) Complexes in Neural Development and Disorders

    Science.gov (United States)

    Sokpor, Godwin; Xie, Yuanbin; Rosenbusch, Joachim; Tuoc, Tran

    2017-01-01

    The ATP-dependent BRG1/BRM associated factor (BAF) chromatin remodeling complexes are crucial in regulating gene expression by controlling chromatin dynamics. Over the last decade, it has become increasingly clear that during neural development in mammals, distinct ontogenetic stage-specific BAF complexes derived from combinatorial assembly of their subunits are formed in neural progenitors and post-mitotic neural cells. Proper functioning of the BAF complexes plays critical roles in neural development, including the establishment and maintenance of neural fates and functionality. Indeed, recent human exome sequencing and genome-wide association studies have revealed that mutations in BAF complex subunits are linked to neurodevelopmental disorders such as Coffin-Siris syndrome, Nicolaides-Baraitser syndrome, Kleefstra's syndrome spectrum, Hirschsprung's disease, autism spectrum disorder, and schizophrenia. In this review, we focus on the latest insights into the functions of BAF complexes during neural development and the plausible mechanistic basis of how mutations in known BAF subunits are associated with certain neurodevelopmental disorders. PMID:28824374

  12. Chromatin Remodeling BAF (SWI/SNF) Complexes in Neural Development and Disorders.

    Science.gov (United States)

    Sokpor, Godwin; Xie, Yuanbin; Rosenbusch, Joachim; Tuoc, Tran

    2017-01-01

    The ATP-dependent BRG1/BRM associated factor (BAF) chromatin remodeling complexes are crucial in regulating gene expression by controlling chromatin dynamics. Over the last decade, it has become increasingly clear that during neural development in mammals, distinct ontogenetic stage-specific BAF complexes derived from combinatorial assembly of their subunits are formed in neural progenitors and post-mitotic neural cells. Proper functioning of the BAF complexes plays critical roles in neural development, including the establishment and maintenance of neural fates and functionality. Indeed, recent human exome sequencing and genome-wide association studies have revealed that mutations in BAF complex subunits are linked to neurodevelopmental disorders such as Coffin-Siris syndrome, Nicolaides-Baraitser syndrome, Kleefstra's syndrome spectrum, Hirschsprung's disease, autism spectrum disorder, and schizophrenia. In this review, we focus on the latest insights into the functions of BAF complexes during neural development and the plausible mechanistic basis of how mutations in known BAF subunits are associated with certain neurodevelopmental disorders.

  13. Artificial neural network controller for automatic ship berthing using head-up coordinate system

    Directory of Open Access Journals (Sweden)

    Nam-Kyun Im

    2018-05-01

    Full Text Available The Artificial Neural Network (ANN model has been known as one of the most effective theories for automatic ship berthing, as it has learning ability and mimics the actions of the human brain when performing the stages of ship berthing. However, existing ANN controllers can only bring a ship into a berth in a certain port, where the inputs of the ANN are the same as those of the teaching data. This means that those ANN controllers must be retrained when the ship arrives to a new port, which is time-consuming and costly. In this research, by using the head-up coordinate system, which includes the relative bearing and distance from the ship to the berth, a novel ANN controller is proposed to automatically control the ship into the berth in different ports without retraining the ANN structure. Numerical simulations were performed to verify the effectiveness of the proposed controller. First, teaching data were created in the original port to train the neural network; then, the controller was tested for automatic berthing in other ports, where the initial conditions of the inputs in the head-up coordinate system were similar to those of the teaching data in the original port. The results showed that the proposed controller has good performance for ship berthing in ports. Keywords: Automatic ship berthing, ANN controller, Head-up coordinate system, Low speed, Relative bearing

  14. Effect of Seminal Vesicles and Dithiotritol (Dtt on Stability of Sperm Chromatin

    Directory of Open Access Journals (Sweden)

    MH Nasr-Esfahani

    2005-04-01

    Full Text Available Introduction: Different studies have shown that there is no relation between sperm chromatin stability and fertilization rate in both IVF and ICSI patients. However, the relation between SDS tests, as a detergent, along with DTT as reducer of disulphide bridges has not been studied so far in ICSI patients. Since different concentrations of DTT can induce different degrees of sperm chromatin decondensation, the aim of this study was to evaluate the effect of different concentrations of DTT on sperm chromatin decondensation in IVF and ICSI cases. Methods: During this study, 85 patients were divided into two groups according to their treatment procedure (IVF or ICSI.Semen samples of each patient was evaluated for sperm chromatin tests including SDS, SDS+EDTA & SDS+DTT for assessment of free thiole groups level (-SH, amount of non covalent bond between Zn and thioles(-SH Zn SH- and levels of disulfide bond (-S-S- in sperm chromatin, respectively. In this study, seminal fructose concentration, corrected seminal fructose level and true corrected fructose level as indicators of seminal vesicle function on sperm chromatin stability were assessed. Results: No correlation was observed between any of the above tests and rate of fertilization, both in IVF and ICSI cases. However, in IVF patients, a significant correlation was observed between SDS, SDS+DTT test and seminal fructose level, while in ICSI patients, only a significant correlation was observed between SDS+DTT and corrected or true fructose concentration. Conclusion: Since no correlation was observed between sperm chromatin test and fertilization rate, it is suggested that the chromatin status of these samples are adequate for fertilization to take place and extent of disulphide bridges has no effect on fertilization rate. However, the amount of disulphide bound present in sperms of ICSI and IVF patients are different, and this difference is related to seminal vesicle performance in these patients.

  15. PTIP chromatin regulator controls development and activation of B cell subsets to license humoral immunity in mice

    DEFF Research Database (Denmark)

    Su, Dan; Vanhee, Stijn; Soria, Rebeca

    2017-01-01

    B cell receptor signaling and downstream NF-κB activity are crucial for the maturation and functionality of all major B cell subsets, yet the molecular players in these signaling events are not fully understood. Here we use several genetically modified mouse models to demonstrate that expression...... of the multifunctional BRCT (BRCA1 C-terminal) domain-containing PTIP (Pax transactivation domain-interacting protein) chromatin regulator is controlled by B cell activation and potentiates steady-state and postimmune antibody production in vivo. By examining the effects of PTIP deficiency in mice at various ages during...... ontogeny, we demonstrate that PTIP promotes bone marrow B cell development as well as the neonatal establishment and subsequent long-term maintenance of self-reactive B-1 B cells. Furthermore, we find that PTIP is required for B cell receptor- and T:B interaction-induced proliferation, differentiation...

  16. Model-Free Coordinated Control for MHTGR-Based Nuclear Steam Supply Systems

    Directory of Open Access Journals (Sweden)

    Zhe Dong

    2016-01-01

    Full Text Available The modular high temperature gas-cooled reactor (MHTGR is a typical small modular reactor (SMR that offers simpler, standardized and safer modular design by being factory built, requiring smaller initial capital investment, and having a shorter construction period. Thanks to its small size, the MHTGRs could be beneficial in providing electric power to remote areas that are deficient in transmission or distribution and in generating local power for large population centers. Based on the multi-modular operation scheme, the inherent safety feature of the MHTGRs can be applicable to large nuclear plants of any desired power rating. The MHTGR-based nuclear steam supplying system (NSSS is constituted by an MHTGR, a side-by-side arranged helical-coil once-through steam generator (OTSG and some connecting pipes. Due to the side-by-side arrangement, there is a tight coupling effect between the MHTGR and OTSG. Moreover, there always exists the parameter perturbation of the NSSSs. Thus, it is meaningful to study the model-free coordinated control of MHTGR-based NSSSs for safe, stable, robust and efficient operation. In this paper, a new model-free coordinated control strategy that regulates the nuclear power, MHTGR outlet helium temperature and OTSG outlet overheated steam temperature by properly adjusting the control rod position, helium flowrate and feed-water flowrate is established for the MHTGR-based NSSSs. Sufficient conditions for the globally asymptotic closed-loop stability is given. Finally, numerical simulation results in the cases of large range power decrease and increase illustrate the satisfactory performance of this newly-developed model-free coordinated NSSS control law.

  17. The physics of chromatin silencing: Bi-stability and front propagation

    Science.gov (United States)

    Sedighi, Mohammad

    A mean-field dynamical model of chromatin silencing in budding yeast is provided and the conditions giving rise to two states: one silenced and another un-silenced, is studied. Based on these conditions, the space of control parameters is divided into two distinct regions of mono-stable and bi-stable solutions (the bifurcation diagram). Then, considering both the discrete and continuous versions of the model, the formation of a stable boundary between the silenced and un-silenced areas on DNA is investigated. As a result, a richer phase diagram is provided. The dynamics of the boundary is also studied under different conditions. Consequently, assuming negative feedback due to possible depletion of silencing proteins, the model explains a paradoxical epigenetic behavior of yeast that happens under some mutation. A stochastic treatment of the model is also considered to verify the results of the mean-field approximation and also to understand the role of intrinsic noise at single cell level. This model could be used as a general guide to discuss chromatin silencing in many organisms.

  18. Impedance coordinative control for cascaded converter in bidirectional application

    DEFF Research Database (Denmark)

    Tian, Yanjun; Loh, Poh Chiang; Deng, Fujin

    2016-01-01

    A two-stage cascaded converter is formed by connecting two sub-converters in series. Output impedance of one sub-converter will therefore interact with input impedance of the other sub-converter. Such interaction may affect the system dynamics and stability, especially when one sub......-converter is constant-power-controlled, and hence has different impedance characteristics when its power reverses. To lessen such constant-power effects, a control scheme that can coordinate impedance behaviors of the two sub-converters is proposed. The idea is to reshape the lowfrequency negative impedance...

  19. Default assembly of early adenovirus chromatin

    International Nuclear Information System (INIS)

    Spector, David J.

    2007-01-01

    In adenovirus particles, the viral nucleoprotein is organized into a highly compacted core structure. Upon delivery to the nucleus, the viral nucleoprotein is very likely to be remodeled to a form accessible to the transcription and replication machinery. Viral protein VII binds to intra-nuclear viral DNA, as do at least two cellular proteins, SET/TAF-Iβ and pp32, components of a chromatin assembly complex that is implicated in template remodeling. We showed previously that viral DNA-protein complexes released from infecting particles were sensitive to shearing after cross-linking with formaldehyde, presumably after transport of the genome into the nucleus. We report here the application of equilibrium-density gradient centrifugation to the analysis of the fate of these complexes. Most of the incoming protein VII was recovered in a form that was not cross-linked to viral DNA. This release of protein VII, as well as the binding of SET/TAF-Iβ and cellular transcription factors to the viral chromatin, did not require de novo viral gene expression. The distinct density profiles of viral DNA complexes containing protein VII, compared to those containing SET/TAF-Iβ or transcription factors, were consistent with the notion that the assembly of early viral chromatin requires both the association of SET/TAF-1β and the release of protein VII

  20. Higher order chromatin organization in cancer

    Science.gov (United States)

    Reddy, Karen L.; Feinberg, Andrew P.

    2013-01-01

    In spite of our increased understanding of how genomes are dysregulated in cancer and a plethora of molecular diagnostic tools, the front line and ‘gold standard’ detection of cancer remains the pathologist’s detection of gross changes in cellular and tissue structure, most strikingly nuclear dis-organization. In fact, for over 140 years it has been noted that nuclear morphology is often disrupted in cancer. Even today, nuclear morphology measures include nuclear size, shape, DNA content (ploidy) and ‘chromatin organization’. Given the importance of nuclear shape to diagnoses of cancer phenotypes, it is surprising and frustrating that we currently lack a detailed understanding to explain these changes and how they might arise and relate to molecular events in the cell. It is an implicit hypothesis that perturbation of chromatin and epigenetic signatures may lead to alterations in nuclear structure (or vice versa) and that these perturbations lie at the heart of cancer genesis. In this review, we attempt to synthesize research leading to our current understanding on how chromatin interactions at the nuclear lamina, epigenetic modulation and gene regulation may intersect in cancer and offer a perspective on critical experiments that would help clarify how nuclear architecture may contribute to the cancerous phenotype. We also discuss the historical understanding of nuclear structure in normal cells and as a diagnostic in cancer. PMID:23266653

  1. COORDINATION IN MULTILEVEL NETWORK-CENTRIC CONTROL SYSTEMS OF REGIONAL SECURITY: APPROACH AND FORMAL MODEL

    Directory of Open Access Journals (Sweden)

    A. V. Masloboev

    2015-01-01

    Full Text Available The paper deals with development of methods and tools for mathematical and computer modeling of the multilevel network-centric control systems of regional security. This research is carried out under development strategy implementation of the Arctic zone of the Russian Federation and national safeguarding for the period before 2020 in the Murmansk region territory. Creation of unified interdepartmental multilevel computer-aided system is proposed intended for decision-making information support and socio-economic security monitoring of the Arctic regions of Russia. The distinctive features of the investigated system class are openness, self-organization, decentralization of management functions and decision-making, weak hierarchy in the decision-making circuit and goal generation capability inside itself. Research techniques include functional-target approach, mathematical apparatus of multilevel hierarchical system theory and principles of network-centric control of distributed systems with pro-active components and variable structure. The work considers network-centric management local decisions coordination problem-solving within the multilevel distributed systems intended for information support of regional security. The coordination problem-solving approach and problem formalization in the multilevel network-centric control systems of regional security have been proposed based on developed multilevel recurrent hierarchical model of regional socio-economic system complex security. The model provides coordination of regional security indexes, optimized by the different elements of multilevel control systems, subject to decentralized decision-making. The model specificity consists in application of functional-target technology and mathematical apparatus of multilevel hierarchical system theory for coordination procedures implementation of the network-centric management local decisions. The work-out and research results can find further

  2. Coordinated Secondary Control for Balanced Discharge Rate of Energy Storage System in Islanded Microgrids

    DEFF Research Database (Denmark)

    Guan, Yajuan; Guerrero, Josep M.; Quintero, Juan Carlos Vasquez

    2015-01-01

    current and unintentional outage of DGs. Thus, the stability and reliability of islanded MG can be improved. The eigenvalues and root locus with the proposed controller are presented to design the parameters as well as analyzing the system stability. Simulation results based on Matlab......A coordinated secondary control based on a novel autonomous currents sharing control strategy for balanced discharge rate of energy storage systems in islanded microgrid (MG) is proposed in this paper. The coordinated secondary controller is able to regulate the output power of distributed...... generating (DG) systems according to their state-of-charge by adjusting the virtual resistances of their voltage controlled inverters. This controller can not only provide the faster response and accurate output current sharing control, but also avoid the potential operation failure resulting from the over...

  3. Modern human sperm freezing: Effect on DNA, chromatin and acrosome integrity

    Directory of Open Access Journals (Sweden)

    Tahereh Rahiminia

    2017-08-01

    Conclusion: Sperm in Vapour was healthier in terms of DNA, chromatin and acrosome integrity. In contrast of higher motility and normal morphology; DNA, chromatin and acrosome integrity were decreased in Vit. However, these findings were more acceptable in SSV or Vapour.

  4. PSS and TCSC damping controller coordinated design using PSO in multi-machine power system

    Energy Technology Data Exchange (ETDEWEB)

    Shayeghi, H., E-mail: hshayeghi@gmail.co [Technical Engineering Department, University of Mohaghegh Ardabili, Ardabil (Iran, Islamic Republic of); Safari, A.; Shayanfar, H.A. [Center of Excellence for Power System Automation and Operation, Electrical Engineering Department, Iran University of Science and Technology, Tehran (Iran, Islamic Republic of)

    2010-12-15

    The paper develops a new design procedure for simultaneous coordinated designing of the thyristor controlled series capacitor (TCSC) damping controller and power system stabilizer (PSS) in multi-machine power system. The coordinated design problem of PSS and TCSC damping controllers over a wide range of loading conditions is converted to an optimization problem with the time domain-based objective function that is solved by a particle swarm optimization (PSO) technique which has a strong ability to find the most optimistic results. By minimizing the proposed fitness function in which oscillatory characteristics between areas are included and thus the interactions among the TCSC controller and PSS under transient conditions in the multi-machine power system are improved. To ensure the robustness of the proposed stabilizers, the design process takes a wide range of operating conditions into account. The effectiveness of the proposed controller is demonstrated through the nonlinear time-domain simulation and some performance indices studies. The results of these studies show that the proposed coordinated controllers have an excellent capability in damping power system inter-area oscillations and enhance greatly the dynamic stability of the power system. Moreover, it is superior to both the uncoordinated designed stabilizers of the PSS and the TCSC damping controller.

  5. Relaxed selection against accidental binding of transcription factors with conserved chromatin contexts.

    Science.gov (United States)

    Babbitt, G A

    2010-10-15

    The spurious (or nonfunctional) binding of transcription factors (TF) to the wrong locations on DNA presents a formidable challenge to genomes given the relatively low ceiling for sequence complexity within the short lengths of most binding motifs. The high potential for the occurrence of random motifs and subsequent nonfunctional binding of many transcription factors should theoretically lead to natural selection against the occurrence of spurious motif throughout the genome. However, because of the active role that chromatin can influence over eukaryotic gene regulation, it may also be expected that many supposed spurious binding sites could escape purifying selection if (A) they simply occur in regions of high nucleosome occupancy or (B) their surrounding chromatin was dynamically involved in their identity and function. We compared nucleosome occupancy and the presence/absence of functionally conserved chromatin context to the strength of selection against spurious binding of various TF binding motifs in Saccharomyces yeast. While we find no direct relationship with nucleosome occupancy, we find strong evidence that transcription factors spatially associated with evolutionarily conserved chromatin states are under relaxed selection against accidental binding. Transcription factors (with/without) a conserved chromatin context were found to occur on average, (87.7%/49.3%) of their expected frequencies. Functional binding motifs with conserved chromatin contexts were also significantly shorter in length and more often clustered. These results indicate a role of chromatin context dependency in relaxing selection against spurious binding in nearly half of all TF binding motifs throughout the yeast genome. 2010 Elsevier B.V. All rights reserved.

  6. Aggregation of fragmented chromatin associated with the appearance of products of its nuclease treatment

    International Nuclear Information System (INIS)

    Lobanenkov, V.V.; Mironov, N.M.; Kupriyanova, E.I.; Shapot, V.S.

    1986-01-01

    Isolated cell nuclei were incubated with nucleases, and then the chromatin was extracted with a low-salt buffer. When degradation of the nuclear chromatin DNase I or micrococcal nuclease is intensified, solubilization of the deoxyribonucleoprotein (DNP) in low-salt buffer at first increases, reaching a maximum in the case of hydrolysis of 2-4% of the nuclear DNA, but after intensive treatment with nucleases, it decreases sharply. Soluble fragmented chromatin is aggregated during treatment with DNase I. The addition of exogenous products of nuclease treatment of isolated nuclei to a preparation of gelatinous chromatin induces its aggregation. Pretreatment of nuclear chromatin with RNase prevents the solubilization of DNP by solutions with low ionic strength. Certain experimental data obtained using rigorous nuclease treatment are discussed; for their interpretation it is necessary to consider the effect of aggregation of fragmented chromatin by products of its nuclease degradation

  7. Chromatin Pioneers | Center for Cancer Research

    Science.gov (United States)

    Taking advantage of their ability to explore provocative ideas, NCI investigators pioneered the study of chromatin to demonstrate its functional importance and lay the groundwork for understanding its role in cancer and other diseases.

  8. MRN1 implicates chromatin remodeling complexes and architectural factors in mRNA maturation

    DEFF Research Database (Denmark)

    Düring, Louis; Thorsen, Michael; Petersen, Darima

    2012-01-01

    A functional relationship between chromatin structure and mRNA processing events has been suggested, however, so far only a few involved factors have been characterized. Here we show that rsc nhp6¿¿ mutants, deficient for the function of the chromatin remodeling factor RSC and the chromatin....... Genetic interactions are observed between 2 µm-MRN1 and the splicing deficient mutants snt309¿, prp3, prp4, and prp22, and additional genetic analyses link MRN1, SNT309, NHP6A/B, SWI/SNF, and RSC supporting the notion of a role of chromatin structure in mRNA processing....

  9. A CHROMATIN MODIFYING ENZYME, SDG8, IS REQUIRED FOR MORPHOLOGICAL, GENE EXPRESSION, AND EPIGENETIC RESPONSES TO MECHANICAL STIMULATION

    Directory of Open Access Journals (Sweden)

    Christopher Ian Cazzonelli

    2014-10-01

    Full Text Available Thigmomorphogenesis is viewed as being a response process of acclimation to short repetitive bursts of mechanical stimulation or touch. The underlying molecular mechanisms that coordinate changes in how touch signals lead to long-term morphological changes are enigmatic. Touch responsive gene expression is rapid and transient, and no transcription factor or DNA regulatory motif has been reported that could confer a genome wide mechanical stimulus. We report here on a chromatin modifying enzyme, SDG8/ASHH2, which can regulate the expression of many touch responsive genes identified in Arabidopsis. SDG8 is required for the permissive expression of touch induced genes; and the loss of function of sdg8 perturbs the maximum levels of induction on selected touch gene targets. SDG8 is required to maintain permissive H3K4 trimethylation marks surrounding the Arabidopsis touch-inducible gene TOUCH 3 (TCH3, which encodes a calmodulin-like protein (CML12. The gene neighbouring was also slightly down regulated, revealing a new target for SDG8 mediated chromatin modification. Finally, sdg8 mutants show perturbed morphological response to wind-agitated mechanical stimuli, implicating an epigenetic memory-forming process in the acclimation response of thigmomorphogenesis.

  10. A chromatin modifying enzyme, SDG8, is involved in morphological, gene expression, and epigenetic responses to mechanical stimulation.

    Science.gov (United States)

    Cazzonelli, Christopher I; Nisar, Nazia; Roberts, Andrea C; Murray, Kevin D; Borevitz, Justin O; Pogson, Barry J

    2014-01-01

    Thigmomorphogenesis is viewed as being a response process of acclimation to short repetitive bursts of mechanical stimulation or touch. The underlying molecular mechanisms that coordinate changes in how touch signals lead to long-term morphological changes are enigmatic. Touch responsive gene expression is rapid and transient, and no transcription factor or DNA regulatory motif has been reported that could confer a genome wide mechanical stimulus. We report here on a chromatin modifying enzyme, SDG8/ASHH2, which can regulate the expression of many touch responsive genes identified in Arabidopsis. SDG8 is required for the permissive expression of touch induced genes; and the loss of function of sdg8 perturbs the maximum levels of induction on selected touch gene targets. SDG8 is required to maintain permissive H3K4 trimethylation marks surrounding the Arabidopsis touch-inducible gene TOUCH 3 (TCH3), which encodes a calmodulin-like protein (CML12). The gene neighboring was also slightly down regulated, revealing a new target for SDG8 mediated chromatin modification. Finally, sdg8 mutants show perturbed morphological response to wind-agitated mechanical stimuli, implicating an epigenetic memory-forming process in the acclimation response of thigmomorphogenesis.

  11. High-resolution mapping reveals links of HP1 with active and inactive chromatin components.

    Directory of Open Access Journals (Sweden)

    Elzo de Wit

    2007-03-01

    Full Text Available Heterochromatin protein 1 (HP1 is commonly seen as a key factor of repressive heterochromatin, even though a few genes are known to require HP1-chromatin for their expression. To obtain insight into the targeting of HP1 and its interplay with other chromatin components, we have mapped HP1-binding sites on Chromosomes 2 and 4 in Drosophila Kc cells using high-density oligonucleotide arrays and the DNA adenine methyltransferase identification (DamID technique. The resulting high-resolution maps show that HP1 forms large domains in pericentric regions, but is targeted to single genes on chromosome arms. Intriguingly, HP1 shows a striking preference for exon-dense genes on chromosome arms. Furthermore, HP1 binds along entire transcription units, except for 5' regions. Comparison with expression data shows that most of these genes are actively transcribed. HP1 target genes are also marked by the histone variant H3.3 and dimethylated histone 3 lysine 4 (H3K4me2, which are both typical of active chromatin. Interestingly, H3.3 deposition, which is usually observed along entire transcription units, is limited to the 5' ends of HP1-bound genes. Thus, H3.3 and HP1 are mutually exclusive marks on active chromatin. Additionally, we observed that HP1-chromatin and Polycomb-chromatin are nonoverlapping, but often closely juxtaposed, suggesting an interplay between both types of chromatin. These results demonstrate that HP1-chromatin is transcriptionally active and has extensive links with several other chromatin components.

  12. Chromatin-regulating proteins as targets for cancer therapy

    International Nuclear Information System (INIS)

    Oike, Takahiro; Ogiwara, Hideaki; Kohno, Takashi; Amornwichet, Napapat; Nakano, Takashi

    2014-01-01

    Chromatin-regulating proteins represent a large class of novel targets for cancer therapy. In the context of radiotherapy, acetylation and deacetylation of histones by histone acetyltransferases (HATs) and histone deacetylases (HDACs) play important roles in the repair of DNA double-strand breaks generated by ionizing irradiation, and are therefore attractive targets for radiosensitization. Small-molecule inhibitors of HATs (garcinol, anacardic acid and curcumin) and HDACs (vorinostat, sodium butyrate and valproic acid) have been shown to sensitize cancer cells to ionizing irradiation in preclinical models, and some of these molecules are being tested in clinical trials, either alone or in combination with radiotherapy. Meanwhile, recent large-scale genome analyses have identified frequent mutations in genes encoding chromatin-regulating proteins, especially in those encoding subunits of the SWI/SNF chromatin-remodeling complex, in various human cancers. These observations have driven researchers toward development of targeted therapies against cancers carrying these mutations. DOT1L inhibition in MLL-rearranged leukemia, EZH2 inhibition in EZH2-mutant or MLL-rearranged hematologic malignancies and SNF5-deficient tumors, BRD4 inhibition in various hematologic malignancies, and BRM inhibition in BRG1-deficient tumors have demonstrated promising anti-tumor effects in preclinical models, and these strategies are currently awaiting clinical application. Overall, the data collected so far suggest that targeting chromatin-regulating proteins is a promising strategy for tomorrow's cancer therapy, including radiotherapy and molecularly targeted chemotherapy. (author)

  13. Non coding RNA: sequence-specific guide for chromatin modification and DNA damage signaling

    Directory of Open Access Journals (Sweden)

    Sofia eFrancia

    2015-11-01

    Full Text Available Chromatin conformation shapes the environment in which our genome is transcribed into RNA. Transcription is a source of DNA damage, thus it often occurs concomitantly to DNA damage signaling. Growing amounts of evidence suggest that different types of RNAs can, independently from their protein-coding properties, directly affect chromatin conformation, transcription and splicing, as well as promote the activation of the DNA damage response (DDR and DNA repair. Therefore, transcription paradoxically functions to both threaten and safeguard genome integrity. On the other hand, DNA damage signaling is known to modulate chromatin to suppress transcription of the surrounding genetic unit. It is thus intriguing to understand how transcription can modulate DDR signaling while, in turn, DDR signaling represses transcription of chromatin around the DNA lesion. An unexpected player in this field is the RNA interference (RNAi machinery, which play roles in transcription, splicing and chromatin modulation in several organisms. Non-coding RNAs (ncRNAs and several protein factors involved in the RNAi pathway are well known master regulators of chromatin while only recent reports suggest that ncRNAs are involved in DDR signaling and homology-mediated DNA repair. Here, we discuss the experimental evidence supporting the idea that ncRNAs act at the genomic loci from which they are transcribed to modulate chromatin, DDR signaling and DNA repair.

  14. Reading the maps: Organization and function of chromatin types in Drosophila

    NARCIS (Netherlands)

    Braunschweig, U.

    2010-01-01

    The work presented in this thesis shows that the Drosophila genome is organized in chromatin domains with many implications for gene regulation, nuclear organization, and evolution. Furthermore it provides examples of how maps of chromatin protein binding, combined with computational approaches, can

  15. Neural network-based distributed attitude coordination control for spacecraft formation flying with input saturation.

    Science.gov (United States)

    Zou, An-Min; Kumar, Krishna Dev

    2012-07-01

    This brief considers the attitude coordination control problem for spacecraft formation flying when only a subset of the group members has access to the common reference attitude. A quaternion-based distributed attitude coordination control scheme is proposed with consideration of the input saturation and with the aid of the sliding-mode observer, separation principle theorem, Chebyshev neural networks, smooth projection algorithm, and robust control technique. Using graph theory and a Lyapunov-based approach, it is shown that the distributed controller can guarantee the attitude of all spacecraft to converge to a common time-varying reference attitude when the reference attitude is available only to a portion of the group of spacecraft. Numerical simulations are presented to demonstrate the performance of the proposed distributed controller.

  16. The importance of topoisomerases for chromatin regulated genes

    DEFF Research Database (Denmark)

    Fredsøe, Jacob Christian; Pedersen, Jakob Madsen; Rødgaard, Morten Terpager

    2013-01-01

    DNA topoisomerases are enzymes, which function to relieve torsional stress in the DNA helix by introducing transient breaks into the DNA molecule. By use of Saccharomyces cerevisiae and microarray technology we have previously shown that topoisomerases are required for the activation of chromatin...... topoisomerases for optimal activation, but in contrast to the PHO5 gene, topoisomerases are not required for chromatin remodeling of the GAL1/10 promoter region, indicating a different role of the enzymes. We are currently performing a detailed investigation of the GAL genes to elucidate the precise role...

  17. Chromatin Structure of Epstein-Barr Virus Latent Episomes.

    Science.gov (United States)

    Lieberman, Paul M

    2015-01-01

    EBV latent infection is characterized by a highly restricted pattern of viral gene expression. EBV can establish latent infections in multiple different tissue types with remarkable variation and plasticity in viral transcription and replication. During latency, the viral genome persists as a multi-copy episome, a non-integrated-closed circular DNA with nucleosome structure similar to cellular chromosomes. Chromatin assembly and histone modifications contribute to the regulation of viral gene expression, DNA replication, and episome persistence during latency. This review focuses on how EBV latency is regulated by chromatin and its associated processes.

  18. Chromatin association of UHRF1 during the cell cycle

    KAUST Repository

    Al-Gashgari, Bothayna

    2017-05-01

    Ubiquitin-like with PHD and RING Finger domains 1 (UHRF1) is a nuclear protein that associates with chromatin. Regardless of the various functions of UHRF1 in the cell, one of its more important functions is its role in the maintenance of DNA methylation patterns by the recruitment of DNMT1. Studies on UHRF1 based on this function have revealed the importance of UHRF1 during the cell cycle. Moreover, based on different studies various factors were described to be involved in the regulation of UHRF1 with different functionalities that can control its binding affinity to different targets on chromatin. These factors are regulated differently in a cell cycle specific manner. In light of this, we propose that UHRF1 has different binding behaviors during the cell cycle in regard to its association with chromatin. In this project, we first analyzed the binding behavior of endogenous UHRF1 from different unsynchronized cell systems in pull-down assays with peptides and oligonucleotides. Moreover, to analyze UHRF1 binding behavior during the cell cycle, we used two different approaches. First we sorted Jurkat and HT1080 cells based on their cell cycle stage using FACS analysis. Additionally, we synchronized HeLa cells to different stages of the cell cycle by chemical treatments, and used extracts from cellsorting and cell synchronization experiments for pull-down assays. We observed that UHRF1 in different cell systems has different preferences in regard to its binding to H3 unmodified and H3K9me3. Moreover, we detected that UHRF1, in general, displays different patterns between different stages of cell cycle; however, we cannot draw a final model for UHRF1 binding pattern during cell cycle.

  19. Care coordinators: a controlled evaluation of an inpatient mental health service innovation.

    Science.gov (United States)

    Stewart, Malcolm W; Wilson, Michael; Bergquist, Karla; Thorburn, John

    2012-02-01

    The study aimed to evaluate the impact of introducing designated care coordinators into an acute mental health inpatient unit in terms of service delivery, clinical outcomes, and service user and significant other perceptions. A pre-post-controlled design was implemented with a consecutive sample of 292 service users admitted and staying more than 5 days in two wards, with care coordinators introduced in one ward. Data were obtained from clinical records, standard measures, and service user and significant other surveys. Care coordinator input was associated with significant improvements in service delivery and stronger involvement of significant others and community resources. Care-coordinated clients showed significantly better clinical outcomes, including the Health of Nations Outcome Scales behaviour subscale, less time in the intensive care subunit, less community crisis team input in the week following discharge, and lower rates of readmission in the month following discharge. Care-coordinated service users and their significant others gave higher ratings of service delivery, outcome, and satisfaction. The results indicate that designated care coordinators significantly improve care processes, outcomes, and service user experience in acute inpatient mental health settings. © 2011 The Authors. International Journal of Mental Health Nursing © 2011 Australian College of Mental Health Nurses Inc.

  20. Controlling the wave propagation through the medium designed by linear coordinate transformation

    International Nuclear Information System (INIS)

    Wu, Yicheng; He, Chengdong; Wang, Yuzhuo; Liu, Xuan; Zhou, Jing

    2015-01-01

    Based on the principle of transformation optics, we propose to control the wave propagating direction through the homogenous anisotropic medium designed by linear coordinate transformation. The material parameters of the medium are derived from the linear coordinate transformation applied. Keeping the space area unchanged during the linear transformation, the polarization-dependent wave control through a non-magnetic homogeneous medium can be realized. Beam benders, polarization splitter, and object illusion devices are designed, which have application prospects in micro-optics and nano-optics. The simulation results demonstrate the feasibilities and the flexibilities of the method and the properties of these devices. Design details and full-wave simulation results are provided. The work in this paper comprehensively applies the fundamental theories of electromagnetism and mathematics. The method of obtaining a new solution of the Maxwell equations in a medium from a vacuum plane wave solution and a linear coordinate transformation is introduced. These have a pedagogical value and are methodologically and motivationally appropriate for physics students and teachers at the undergraduate and graduate levels. (paper)

  1. Controlling the wave propagation through the medium designed by linear coordinate transformation

    Science.gov (United States)

    Wu, Yicheng; He, Chengdong; Wang, Yuzhuo; Liu, Xuan; Zhou, Jing

    2015-01-01

    Based on the principle of transformation optics, we propose to control the wave propagating direction through the homogenous anisotropic medium designed by linear coordinate transformation. The material parameters of the medium are derived from the linear coordinate transformation applied. Keeping the space area unchanged during the linear transformation, the polarization-dependent wave control through a non-magnetic homogeneous medium can be realized. Beam benders, polarization splitter, and object illusion devices are designed, which have application prospects in micro-optics and nano-optics. The simulation results demonstrate the feasibilities and the flexibilities of the method and the properties of these devices. Design details and full-wave simulation results are provided. The work in this paper comprehensively applies the fundamental theories of electromagnetism and mathematics. The method of obtaining a new solution of the Maxwell equations in a medium from a vacuum plane wave solution and a linear coordinate transformation is introduced. These have a pedagogical value and are methodologically and motivationally appropriate for physics students and teachers at the undergraduate and graduate levels.

  2. Coordinated Control of Multi-terminal DC Grid for Wind Power Integration

    DEFF Research Database (Denmark)

    Hao, Yu; Zhao, Haoran; Wu, Qiuwei

    2016-01-01

    Multi-terminal HVDC (MTDC) technology using voltage source converter (VSC) is a good option for wind power integration. Compared with point to point DC connection, MTDC provide better controllability based on different control strategies. In this paper, proportional-integral (PI) controllers...... with tuned PI parameters are designed to coordinate DC flow among the DC grid with good dynamic performance. In order to overcome the disadvantages of the conventional PI control, a simple adaptive PI control strategy is proposed based on the system transfer function. Case studies were conducted with PowerFactory....

  3. Strategy of arm movement control is determined by minimization of neural effort for joint coordination.

    Science.gov (United States)

    Dounskaia, Natalia; Shimansky, Yury

    2016-06-01

    Optimality criteria underlying organization of arm movements are often validated by testing their ability to adequately predict hand trajectories. However, kinematic redundancy of the arm allows production of the same hand trajectory through different joint coordination patterns. We therefore consider movement optimality at the level of joint coordination patterns. A review of studies of multi-joint movement control suggests that a 'trailing' pattern of joint control is consistently observed during which a single ('leading') joint is rotated actively and interaction torque produced by this joint is the primary contributor to the motion of the other ('trailing') joints. A tendency to use the trailing pattern whenever the kinematic redundancy is sufficient and increased utilization of this pattern during skillful movements suggests optimality of the trailing pattern. The goal of this study is to determine the cost function minimization of which predicts the trailing pattern. We show that extensive experimental testing of many known cost functions cannot successfully explain optimality of the trailing pattern. We therefore propose a novel cost function that represents neural effort for joint coordination. That effort is quantified as the cost of neural information processing required for joint coordination. We show that a tendency to reduce this 'neurocomputational' cost predicts the trailing pattern and that the theoretically developed predictions fully agree with the experimental findings on control of multi-joint movements. Implications for future research of the suggested interpretation of the trailing joint control pattern and the theory of joint coordination underlying it are discussed.

  4. The alteration of chromatin domains during damage repair induced by ionizing radiation

    International Nuclear Information System (INIS)

    Cress, A.E.; Olson, K.M.; Olson, G.B.

    1995-01-01

    Several groups previously have reported the ability of chromatin structure to influence the production of damage induced by ionizing radiation. The authors' interest has been to determine whether chromatin structural alterations exist after ionizing radiation during a repair interval. The earlier work investigated this question using biochemical techniques. The crosslinking of nuclear structural proteins to DNA after ionizing radiation was observed. In addition, they found that the chromatin structure in vitro as measured by sucrose density gradient sedimentation, was altered after ionizing radiation. These observations added to earlier studies in which digital imaging techniques showed an alteration in feulgen-positive DNA after irradiation prompted the present study. The object of this study was to detect whether the higher order structure of DNA into chromatin domains within interphase human cells was altered in interphase cells in response to a radiation induced damage. The present study takes advantage of the advances in the detection of chromatin domains in situ using DNA specific dyes and digital image processing of established human T and B cell lines

  5. Immersion and Invariance-Based Coordinated Generator Excitation and SVC Control for Power Systems

    Directory of Open Access Journals (Sweden)

    Adirak Kanchanaharuthai

    2014-01-01

    Full Text Available A nonlinear coordinated control of excitation and SVC of an electrical power system is proposed for transient stability, and voltage regulation enhancement after the occurrence of a large disturbance and a small perturbation. Using the concept of Immersion and Invariance (I&I design methodology, the proposed nonlinear controller is used to not only achieve power angle stability, frequency and voltage regulation but also ensure that the closed-loop system is transiently and asymptotically stable. In order to show the effectiveness of the proposed controller design, the simulation results illustrate that, in spite of the case where a large perturbation occurs on the transmission line or there is a small perturbation to mechanical power inputs, the proposed controller can not only keep the system transiently stable but also simultaneously accomplish better dynamic properties of the system as compared to operation with the existing controllers designed through a coordinated passivation technique controller and a feedback linearization scheme, respectively.

  6. The possible role of chromatin conformation changes in adaptive responses to ionizing radiation

    International Nuclear Information System (INIS)

    Ekhtiar, A.; Ammer, A.; Jbawi, A.; Othman, A.

    2012-05-01

    Organisms are affected by different DNA damaging agents naturally present in the environment or released as a result of human activity. Many defense mechanisms have evolved in organisms to minimize genotoxic damage. One of them is induced radioresistance or adaptive response. The adaptive response could be considered as a nonspecific phenomenon in which exposure to minimal stress could result in increased resistance to higher levels of the same or to other types of stress some hours later. A better understanding of the molecular mechanism underlying the adaptive response may lead to an improvement of cancer treatment, risk assessment and risk management strategies, radiation protection. The aim of current study was to study the possible role of chromatin conformation changes induced by ionizing radiation on the adaptive responses in human lymphocyte. For this aim the chromatin conformation have been studied in human lymphocytes from three non-smoking and three smoking healthy volunteers prior, and after espouser to gamma radiation (adaptive dose 0.1 Gy, challenge dose 1.5 Gy and adaptive + dose challenge). Chromosomal aberrations and micronucleus have been used as end point to study radio cytotoxicity and adaptive response. Our results indicated individual differences in radio adaptive response and the level of this response was dependent of chromatin de condensation induced by a adaptive small dose.The results showed that different dose of gamma rays induce a chromatin de condensation in human lymphocyte. The maximum chromatin relaxation were record when lymphocyte exposed to adaptive dose (0.1 Gy.). Results also showed that Adaptive dose have affected on the induction of challenge dose (1.5 Gy) of chromosome aberration and micronucleus . The comparison of results of chromatin de condensation induction as measured by flow cytometry and cytogenetic damages measured by chromosomal aberrations or micronucleus, was showed a proportionality of adaptive response with

  7. Autodigestion of chromatin in some radiosensitive and radioresistant mouse cells. Role of proteolysis and endonucleolysis

    International Nuclear Information System (INIS)

    Suciu, D.; Bojan, O.

    1981-01-01

    Evidence is presented indicating that mouse thymus, spleen, kidney, lung and heart contain a protease activity with relatively high specificity for histones. It is suggested that degradation of chromatin occurring in irradiated lymphoid tissues is produced by the action of alkaline endonuclease in association with this histone protease. The autodigestion of chromatin was assessed by determining the release of soluble chromatin from cells suspended in sucrose media of low ionic strength. It was found that the protease inhibitors, phenylmethylsulphonyl fluoride and especially NaHSO 3 , were also capable of depressing the activity of alkaline endonuclease, the fragmentation of chromatin, and the release of soluble chromatin. The results suggest that the release of histones from irradiated lymphoid tissues cannot be considered as a determinant step in the fragmentation of DNA in chromatin. (author)

  8. Assessment of the operating conditions of coordinated Q-V controller within secondary voltage control system

    Directory of Open Access Journals (Sweden)

    Arnautović Dušan

    2014-01-01

    Full Text Available The paper, discusses the possibility to use coordinated Q-V controller (CQVC to perform secondary voltage control at the power plant level. The CQVC performs the coordination of the synchronous generators' (SG reactive power outputs in order to maintain the same total reactive power delivered by the steam power plant (SPP, while at the same time maintaining a constant voltage with programmed reactive droop characteristic at the SPP HV busbar. This busbar is the natural pilot node for secondary voltage control at HV level as the node with maximum power production and maximum power consumption. In addition to voltage control, the CQVC maintains the uniform allocation of reactive power reserves at all SGs in the power plant. This is accomplished by setting the reactive power of each SG at given operating point in accordance to the available reactive power of the same SG at that point. Different limitations imposed by unit's and plant equipment are superimposed on original SG operating chart (provided by the manufacturer in order to establish realistic limits of SG operation at given operating point. The CQVC facilitates: i practical implementation of secondary voltage control in power system, as it is capable of ensuring delivery of reactive power as requested by regional/voltage control while maintaining voltage at system pilot node, ii the full deployment of available reactive power of SGs which in turn contributes to system stability, iii assessment of the reactive power impact/contribution of each generator in providing voltage control as ancillary service. Furthermore, it is also possible to use CQVC to pricing reactive power production cost at each SG involved and to design reactive power bidding structure for transmission network devices by using recorded data. Practical exploitation experience acquired during CQVC continuous operation for over two years enabled implementation of the optimal setting of reference voltage and droop on daily

  9. Coordinated Secondary Control for Balanced Discharge Rate of Energy Storage System in Islanded AC Microgrids

    DEFF Research Database (Denmark)

    Guan, Yajuan; Quintero, Juan Carlos Vasquez; Guerrero, Josep M.

    2016-01-01

    A coordinated secondary control approach based on an autonomous current-sharing control strategy for balancing the discharge rates of energy storage systems (ESSs) in islanded AC microgrids is proposed in this paper. The coordinated secondary controller can regulate the power outputs of distributed...... incidents and unintentional outages in DG units, but also aims to provide a fast transient response and an accurate output-current-sharing performance. A complete root locus analysis is given in order to achieve system stability and parameter sensitivity. Experimental results are presented to show...... the performance of the whole system and to verify the effectiveness of the proposed controller....

  10. The effect of radiation on processing of nuclear RNA and chromatin ribonuclease activity in rat liver and thymus

    International Nuclear Information System (INIS)

    Tokarskaya, V.I.; Skotnikova, O.I.; Umansky, S.R.

    1975-01-01

    The effect of radiation on the kinetics of nuclear RNA degradation was studied during actinomycin chase. The intranuclear breakdown of RNA in thymus was inhibited for the first 30 to 120 min after 800 R irradiation of rats. In liver the degradation of nuclear RNA was unchanged for 60 min after irradiation. By the second hour, the breakdown of the rRNA precursor accelerated and the processing of D-RNA slowed down. Rat thymus and liver chromatin showed RNAase activity with two optimal pH values - in the acidic (pH 5.0 to 5.5) and weakly alkaline (pH 7.5) regions. The activity of the acidic RNAase of thymus (but not the liver) chromatin fell after 5 to 20 kR irradiation in vitro. The activity of the alkaline RNAase did not change under these conditions. The data indicate that a fall in activity of the acidic RNAase in irradiated thymus chromatin may be related to disturbance in the enzyme-inhibitor interaction. A possible contribution of the chromatin acidic RNAase to the processing of nuclear RNA in control and after irradiation is discussed. (author)

  11. Systematic dissection of roles for chromatin regulators in a yeast stress response.

    Directory of Open Access Journals (Sweden)

    Assaf Weiner

    Full Text Available Packaging of eukaryotic genomes into chromatin has wide-ranging effects on gene transcription. Curiously, it is commonly observed that deletion of a global chromatin regulator affects expression of only a limited subset of genes bound to or modified by the regulator in question. However, in many single-gene studies it has become clear that chromatin regulators often do not affect steady-state transcription, but instead are required for normal transcriptional reprogramming by environmental cues. We therefore have systematically investigated the effects of 83 histone mutants, and 119 gene deletion mutants, on induction/repression dynamics of 170 transcripts in response to diamide stress in yeast. Importantly, we find that chromatin regulators play far more pronounced roles during gene induction/repression than they do in steady-state expression. Furthermore, by jointly analyzing the substrates (histone mutants and enzymes (chromatin modifier deletions we identify specific interactions between histone modifications and their regulators. Combining these functional results with genome-wide mapping of several histone marks in the same time course, we systematically investigated the correspondence between histone modification occurrence and function. We followed up on one pathway, finding that Set1-dependent H3K4 methylation primarily acts as a gene repressor during multiple stresses, specifically at genes involved in ribosome biosynthesis. Set1-dependent repression of ribosomal genes occurs via distinct pathways for ribosomal protein genes and ribosomal biogenesis genes, which can be separated based on genetic requirements for repression and based on chromatin changes during gene repression. Together, our dynamic studies provide a rich resource for investigating chromatin regulation, and identify a significant role for the "activating" mark H3K4me3 in gene repression.

  12. Prediction of highly expressed genes in microbes based on chromatin accessibility

    DEFF Research Database (Denmark)

    Willenbrock, Hanni; Ussery, David

    2007-01-01

    BACKGROUND: It is well known that gene expression is dependent on chromatin structure in eukaryotes and it is likely that chromatin can play a role in bacterial gene expression as well. Here, we use a nucleosomal position preference measure of anisotropic DNA flexibility to predict highly expressed...

  13. C-terminal region of DNA ligase IV drives XRCC4/DNA ligase IV complex to chromatin

    International Nuclear Information System (INIS)

    Liu, Sicheng; Liu, Xunyue; Kamdar, Radhika Pankaj; Wanotayan, Rujira; Sharma, Mukesh Kumar; Adachi, Noritaka; Matsumoto, Yoshihisa

    2013-01-01

    Highlights: •Chromatin binding of XRCC4 is dependent on the presence of DNA ligase IV. •C-terminal region of DNA ligase IV alone can recruit itself and XRCC4 to chromatin. •Two BRCT domains of DNA ligase IV are essential for the chromatin binding of XRCC4. -- Abstract: DNA ligase IV (LIG4) and XRCC4 form a complex to ligate two DNA ends at the final step of DNA double-strand break (DSB) repair through non-homologous end-joining (NHEJ). It is not fully understood how these proteins are recruited to DSBs. We recently demonstrated radiation-induced chromatin binding of XRCC4 by biochemical fractionation using detergent Nonidet P-40. In the present study, we examined the role of LIG4 in the recruitment of XRCC4/LIG4 complex to chromatin. The chromatin binding of XRCC4 was dependent on the presence of LIG4. The mutations in two BRCT domains (W725R and W893R, respectively) of LIG4 reduced the chromatin binding of LIG4 and XRCC4. The C-terminal fragment of LIG4 (LIG4-CT) without N-terminal catalytic domains could bind to chromatin with XRCC4. LIG4-CT with W725R or W893R mutation could bind to chromatin but could not support the chromatin binding of XRCC4. The ability of C-terminal region of LIG4 to interact with chromatin might provide us with an insight into the mechanisms of DSB repair through NHEJ

  14. Coordination and Control of Flexible Building Loads for Renewable Integration; Demonstrations using VOLTTRON

    Energy Technology Data Exchange (ETDEWEB)

    Hao, He [Pacific Northwest National Lab. (PNNL), Richland, WA (United States); Liu, Guopeng [Pacific Northwest National Lab. (PNNL), Richland, WA (United States); Huang, Sen [Pacific Northwest National Lab. (PNNL), Richland, WA (United States); Katipamula, Srinivas [Pacific Northwest National Lab. (PNNL), Richland, WA (United States)

    2016-10-31

    Renewable energy resources such as wind and solar power have a high degree of uncertainty. Large-scale integration of these variable generation sources into the grid is a big challenge for power system operators. Buildings, in which we live and work, consume about 75% of the total electricity in the United States. They also have a large capacity of power flexibility due to their massive thermal capacitance. Therefore, they present a great opportunity to help the grid to manage power balance. In this report, we study coordination and control of flexible building loads for renewable integration. We first present the motivation and background, and conduct a literature review on building-to-grid integration. We also compile a catalog of flexible building loads that have great potential for renewable integration, and discuss their characteristics. We next collect solar generation data from a photovoltaic panel on Pacific Northwest National Laboratory campus, and conduct data analysis to study their characteristics. We find that solar generation output has a strong uncertainty, and the uncertainty occurs at almost all time scales. Additional data from other sources are also used to verify our study. We propose two transactive coordination strategies to manage flexible building loads for renewable integration. We prove the theories that support the two transactive coordination strategies and discuss their pros and cons. In this report, we select three types of flexible building loads—air-handling unit, rooftop unit, and a population of WHs—for which we demonstrate control of the flexible load to track a dispatch signal (e.g., renewable generation fluctuation) using experiment, simulation, or hardware-in-the-loop study. More specifically, we present the system description, model identification, controller design, test bed setup, and experiment results for each demonstration. We show that coordination and control of flexible loads has a great potential to integrate

  15. Macrogenomic engineering via modulation of the scaling of chromatin packing density.

    Science.gov (United States)

    Almassalha, Luay M; Bauer, Greta M; Wu, Wenli; Cherkezyan, Lusik; Zhang, Di; Kendra, Alexis; Gladstein, Scott; Chandler, John E; VanDerway, David; Seagle, Brandon-Luke L; Ugolkov, Andrey; Billadeau, Daniel D; O'Halloran, Thomas V; Mazar, Andrew P; Roy, Hemant K; Szleifer, Igal; Shahabi, Shohreh; Backman, Vadim

    2017-11-01

    Many human diseases result from the dysregulation of the complex interactions between tens to thousands of genes. However, approaches for the transcriptional modulation of many genes simultaneously in a predictive manner are lacking. Here, through the combination of simulations, systems modelling and in vitro experiments, we provide a physical regulatory framework based on chromatin packing-density heterogeneity for modulating the genomic information space. Because transcriptional interactions are essentially chemical reactions, they depend largely on the local physical nanoenvironment. We show that the regulation of the chromatin nanoenvironment allows for the predictable modulation of global patterns in gene expression. In particular, we show that the rational modulation of chromatin density fluctuations can lead to a decrease in global transcriptional activity and intercellular transcriptional heterogeneity in cancer cells during chemotherapeutic responses to achieve near-complete cancer cell killing in vitro. Our findings represent a 'macrogenomic engineering' approach to modulating the physical structure of chromatin for whole-scale transcriptional modulation.

  16. The role of proteins and metal ions in the protection of chromatin DNA at fast neutrons action

    International Nuclear Information System (INIS)

    Radu, L.; Preoteasa, V.; Radulescu, I.; Constantinescu, B.

    1997-01-01

    The role of chromatin proteins and of some ions on the fast neutrons actions on chromatin DNA from rat Walker tumors was analysed. The DNA in chromatin is effectively protected against fast neutrons actions by DNA bound proteins and specially by histones, because of the limited accessibility of the condensed chromatin DNA to hydroxyl radicals and of the scavenging of radicals by the chromatin proteins. The ions utilised protect chromatin DNA against the damage produced ed by fast neutrons, through the induction of structural DNA changes with a less accessibility to OH radicals. (authors)

  17. Mechanism of chromatin degradation in thymocytes of irradiated rats

    International Nuclear Information System (INIS)

    Nikonova, L.V.; Nelipovich, P.A.; Umanskij, S.R.

    1983-01-01

    Chromatin digestion in isolated thymocyte nuclei with DNAase I, micrococcal nuclease and nuclease from Serratia marcescens was studied. It was shown that 3 h after irradiation (10 Gy), the kinetics of accumulation of acid soluble and salt soluble products of DNA degradation, caused by exogenous nucleases, remains unchanged. The administration of cycloheximide does not influence the sensitivity of chromatin to DNAase I and somewhat increases the rate of salt soluble products formation upon the nuclease from S, marcescens treatment

  18. The histone chaperone TAF-I/SET/INHAT is required for transcription in vitro of chromatin templates.

    Science.gov (United States)

    Gamble, Matthew J; Erdjument-Bromage, Hediye; Tempst, Paul; Freedman, Leonard P; Fisher, Robert P

    2005-01-01

    To uncover factors required for transcription by RNA polymerase II on chromatin, we fractionated a mammalian cell nuclear extract. We identified the histone chaperone TAF-I (also known as INHAT [inhibitor of histone acetyltransferase]), which was previously proposed to repress transcription, as a potent activator of chromatin transcription responsive to the vitamin D3 receptor or to Gal4-VP16. TAF-I associates with chromatin in vitro and can substitute for the related protein NAP-1 in assembling chromatin onto cloned DNA templates in cooperation with the remodeling enzyme ATP-dependent chromatin assembly factor (ACF). The chromatin assembly and transcriptional activation functions are distinct, however, and can be dissociated temporally. Efficient transcription of chromatin assembled with TAF-I still requires the presence of TAF-I during the polymerization reaction. Conversely, TAF-I cannot stimulate transcript elongation when added after the other factors necessary for assembly of a preinitiation complex on naked DNA. Thus, TAF-I is required to facilitate transcription at a step after chromatin assembly but before transcript elongation.

  19. Radiolysis of chromatin extracted from cultured mammalian cells: production of alkali-labile strand damage in DNA

    International Nuclear Information System (INIS)

    Mee, L.K.; Adelstein, S.J.; Stein, G.

    1978-01-01

    Chromatin has been isolated from cultured Chinese-hamster lung fibroblasts as an expanded aqueous gel. The DNA in isolated chromatin has been examined by sedimentation on alkaline sucrose gradients. The average molecular weight of the DNA has been determined to be 50 million. γ -irradiation of isolated chromatin degraded the DNA to lower molecular weight. The yield of single-strand breaks in the DNA was 0.02 single-strand breaks per krad-10 6 dalton, calculated from a dose-range of 1 to 400 krad and covering a DNA molecular weight range of 2 x 10 7 to 1.4 x 10 5 . There was a considerable difference in the efficiency of the formation of single-strand breaks in DNA irradiated as isolated chromatin compared with chromatin irradiated in whole cells before isolation. For isolated chromatin, values of 6 eV per break have been calculated compared with about 80 eV per break for chromatin irradiated in whole cells, which suggest a large contribution from indirect action by aqueous radicals in isolated chromatin. (author)

  20. Titration and hysteresis in epigenetic chromatin silencing

    International Nuclear Information System (INIS)

    Dayarian, Adel; Sengupta, Anirvan M

    2013-01-01

    Epigenetic mechanisms of silencing via heritable chromatin modifications play a major role in gene regulation and cell fate specification. We consider a model of epigenetic chromatin silencing in budding yeast and study the bifurcation diagram and characterize the bistable and the monostable regimes. The main focus of this paper is to examine how the perturbations altering the activity of histone modifying enzymes affect the epigenetic states. We analyze the implications of having the total number of silencing proteins, given by the sum of proteins bound to the nucleosomes and the ones available in the ambient, to be constant. This constraint couples different regions of chromatin through the shared reservoir of ambient silencing proteins. We show that the response of the system to perturbations depends dramatically on the titration effect caused by the above constraint. In particular, for a certain range of overall abundance of silencing proteins, the hysteresis loop changes qualitatively with certain jump replaced by continuous merger of different states. In addition, we find a nonmonotonic dependence of gene expression on the rate of histone deacetylation activity of Sir2. We discuss how these qualitative predictions of our model could be compared with experimental studies of the yeast system under anti-silencing drugs. (paper)

  1. Large-scale Comparative Study of Hi-C-based Chromatin 3D Structure Modeling Methods

    KAUST Repository

    Wang, Cheng

    2018-05-17

    Chromatin is a complex polymer molecule in eukaryotic cells, primarily consisting of DNA and histones. Many works have shown that the 3D folding of chromatin structure plays an important role in DNA expression. The recently proposed Chro- mosome Conformation Capture technologies, especially the Hi-C assays, provide us an opportunity to study how the 3D structures of the chromatin are organized. Based on the data from Hi-C experiments, many chromatin 3D structure modeling methods have been proposed. However, there is limited ground truth to validate these methods and no robust chromatin structure alignment algorithms to evaluate the performance of these methods. In our work, we first made a thorough literature review of 25 publicly available population Hi-C-based chromatin 3D structure modeling methods. Furthermore, to evaluate and to compare the performance of these methods, we proposed a novel data simulation method, which combined the population Hi-C data and single-cell Hi-C data without ad hoc parameters. Also, we designed a global and a local alignment algorithms to measure the similarity between the templates and the chromatin struc- tures predicted by different modeling methods. Finally, the results from large-scale comparative tests indicated that our alignment algorithms significantly outperform the algorithms in literature.

  2. Transcriptional regulation by histone modifications: towards a theory of chromatin re-organization during stem cell differentiation

    International Nuclear Information System (INIS)

    Binder, Hans; Steiner, Lydia; Przybilla, Jens; Rohlf, Thimo; Prohaska, Sonja; Galle, Jörg

    2013-01-01

    Chromatin-related mechanisms, as e.g. histone modifications, are known to be involved in regulatory switches within the transcriptome. Only recently, mathematical models of these mechanisms have been established. So far they have not been applied to genome-wide data. We here introduce a mathematical model of transcriptional regulation by histone modifications and apply it to data of trimethylation of histone 3 at lysine 4 (H3K4me3) and 27 (H3K27me3) in mouse pluripotent and lineage-committed cells. The model describes binding of protein complexes to chromatin which are capable of reading and writing histone marks. Molecular interactions of the complexes with DNA and modified histones create a regulatory switch of transcriptional activity. The regulatory states of the switch depend on the activity of histone (de-) methylases, the strength of complex-DNA-binding and the number of nucleosomes capable of cooperatively contributing to complex-binding. Our model explains experimentally measured length distributions of modified chromatin regions. It suggests (i) that high CpG-density facilitates recruitment of the modifying complexes in embryonic stem cells and (ii) that re-organization of extended chromatin regions during lineage specification into neuronal progenitor cells requires targeted de-modification. Our approach represents a basic step towards multi-scale models of transcriptional control during development and lineage specification. (paper)

  3. Testing Whether Defective Chromatin Assembly in S-Phase Contributes to Breast Cancer

    National Research Council Canada - National Science Library

    Adams, Peter

    2003-01-01

    .... We used a dominant negative mutant of (chromatin assembly factor-I) CAF1, a complex that assembles newly synthesized DNA into nucleosomes, to inhibit S-phase chromatin assembly and found that this induced S-phase arrest...

  4. Testing Whether Defective Chromatin Assembly in S-Phase Contributes to Breast Cancer

    National Research Council Canada - National Science Library

    Adams, Peter

    2004-01-01

    .... We used a dominant negative mutant of (chromatin assembly factor-I) CAF1, a complex that assembles newly synthesized DNA into nucleosomes, to inhibit S-phase chromatin assembly and found that this induced S-phase arrest...

  5. Video Demo: Deep Reinforcement Learning for Coordination in Traffic Light Control

    NARCIS (Netherlands)

    van der Pol, E.; Oliehoek, F.A.; Bosse, T.; Bredeweg, B.

    2016-01-01

    This video demonstration contrasts two approaches to coordination in traffic light control using reinforcement learning: earlier work, based on a deconstruction of the state space into a linear combination of vehicle states, and our own approach based on the Deep Q-learning algorithm.

  6. Identification of potential nuclear reprogramming and differentiation factors by a novel selection method for cloning chromatin-binding proteins

    International Nuclear Information System (INIS)

    Wang Liu; Zheng Aihua; Yi Ling; Xu Chongren; Ding Mingxiao; Deng Hongkui

    2004-01-01

    Nuclear reprogramming is critical for animal cloning and stem cell creation through nuclear transfer, which requires extensive remodeling of chromosomal architecture involving dramatic changes in chromatin-binding proteins. To understand the mechanism of nuclear reprogramming, it is critical to identify chromatin-binding factors specify the reprogramming process. In this report, we have developed a high-throughput selection method, based on T7 phage display and chromatin immunoprecipitation, to isolate chromatin-binding factors expressed in mouse embryonic stem cells using primary mouse embryonic fibroblast chromatin. Seven chromatin-binding proteins have been isolated by this method. We have also isolated several chromatin-binding proteins involved in hepatocyte differentiation. Our method provides a powerful tool to rapidly and selectively identify chromatin-binding proteins. The method can be used to study epigenetic modification of chromatin during nuclear reprogramming, cell differentiation, and transdifferentiation

  7. Extensive chromatin remodelling and establishment of transcription factor 'hotspots' during early adipogenesis

    DEFF Research Database (Denmark)

    Siersbæk, Rasmus; Nielsen, Ronni; John, Sam

    2011-01-01

    hypersensitive site analysis to investigate the genome-wide changes in chromatin structure that accompany the binding of adipogenic transcription factors. These analyses revealed a dramatic and dynamic modulation of the chromatin landscape during the first hours of adipocyte differentiation that coincides...... and chromatin remodelling and is required for their establishment. Furthermore, a subset of early remodelled C/EBP-binding sites persists throughout differentiation and is later occupied by PPARγ, indicating that early C/EBP family members, in addition to their well-established role in activation of PPARγ...

  8. The global relationship between chromatin physical topology, fractal structure, and gene expression

    DEFF Research Database (Denmark)

    Almassalha, Luay M; Tiwari, A; Ruhoff, P T

    2017-01-01

    in an empty space, but in a highly complex, interrelated, and dense nanoenvironment that profoundly influences chemical interactions. We explored the relationship between the physical nanoenvironment of chromatin and gene transcription in vitro. We analytically show that changes in the fractal dimension, D...... show that the increased heterogeneity of physical structure of chromatin due to increase in fractal dimension correlates with increased heterogeneity of gene networks. These findings indicate that the higher order folding of chromatin topology may act as a molecular-pathway independent code regulating...

  9. The Chd1 Chromatin Remodeler Shifts Nucleosomal DNA Bidirectionally as a Monomer

    Energy Technology Data Exchange (ETDEWEB)

    Qiu, Yupeng; Levendosky, Robert F.; Chakravarthy, Srinivas; Patel, Ashok; Bowman, Gregory D.; Myong, Sua

    2017-10-01

    Chromatin remodelers catalyze dynamic packaging of the genome by carrying out nucleosome assembly/disassembly, histone exchange, and nucleosome repositioning. Remodeling results in evenly spaced nucleosomes, which requires probing both sides of the nucleosome, yet the way remodelers organize sliding activity to achieve this task is not understood. Here, we show that the monomeric Chd1 remodeler shifts DNA back and forth by dynamically alternating between different segments of the nucleosome. During sliding, Chd1 generates unstable remodeling intermediates that spontaneously relax to a pre-remodeled position. We demonstrate that nucleosome sliding is tightly controlled by two regulatory domains: the DNA-binding domain, which interferes with sliding when its range is limited by a truncated linking segment, and the chromodomains, which play a key role in substrate discrimination. We propose that active interplay of the ATPase motor with the regulatory domains may promote dynamic nucleosome structures uniquely suited for histone exchange and chromatin reorganization during transcription.

  10. First Exon Length Controls Active Chromatin Signatures and Transcription

    Directory of Open Access Journals (Sweden)

    Nicole I. Bieberstein

    2012-07-01

    Full Text Available Here, we explore the role of splicing in transcription, employing both genome-wide analysis of human ChIP-seq data and experimental manipulation of exon-intron organization in transgenic cell lines. We show that the activating histone modifications H3K4me3 and H3K9ac map specifically to first exon-intron boundaries. This is surprising, because these marks help recruit general transcription factors (GTFs to promoters. In genes with long first exons, promoter-proximal levels of H3K4me3 and H3K9ac are greatly reduced; consequently, GTFs and RNA polymerase II are low at transcription start sites (TSSs and exhibit a second, promoter-distal peak from which transcription also initiates. In contrast, short first exons lead to increased H3K4me3 and H3K9ac at promoters, higher expression levels, accuracy in TSS usage, and a lower frequency of antisense transcription. Therefore, first exon length is predictive for gene activity. Finally, splicing inhibition and intron deletion reduce H3K4me3 levels and transcriptional output. Thus, gene architecture and splicing determines transcription quantity and quality as well as chromatin signatures.

  11. A high-resolution map of the three-dimensional chromatin interactome in human cells.

    Science.gov (United States)

    Jin, Fulai; Li, Yan; Dixon, Jesse R; Selvaraj, Siddarth; Ye, Zhen; Lee, Ah Young; Yen, Chia-An; Schmitt, Anthony D; Espinoza, Celso A; Ren, Bing

    2013-11-14

    A large number of cis-regulatory sequences have been annotated in the human genome, but defining their target genes remains a challenge. One strategy is to identify the long-range looping interactions at these elements with the use of chromosome conformation capture (3C)-based techniques. However, previous studies lack either the resolution or coverage to permit a whole-genome, unbiased view of chromatin interactions. Here we report a comprehensive chromatin interaction map generated in human fibroblasts using a genome-wide 3C analysis method (Hi-C). We determined over one million long-range chromatin interactions at 5-10-kb resolution, and uncovered general principles of chromatin organization at different types of genomic features. We also characterized the dynamics of promoter-enhancer contacts after TNF-α signalling in these cells. Unexpectedly, we found that TNF-α-responsive enhancers are already in contact with their target promoters before signalling. Such pre-existing chromatin looping, which also exists in other cell types with different extracellular signalling, is a strong predictor of gene induction. Our observations suggest that the three-dimensional chromatin landscape, once established in a particular cell type, is relatively stable and could influence the selection or activation of target genes by a ubiquitous transcription activator in a cell-specific manner.

  12. Voltage Control Support and Coordination between Renewable Generation Plants in MV Distribution Systems

    DEFF Research Database (Denmark)

    Petersen, Lennart; Iov, Florin; Hansen, Anca Daniela

    2016-01-01

    This paper focusses on voltage control support and coordination between renewable generation plants in medium voltage distribution systems. An exemplary benchmark grid in Denmark, including a number of flexible ReGen plants providing voltage control functionality, is used as a base case. First...

  13. Micro- and nanoscale devices for the investigation of epigenetics and chromatin dynamics

    Science.gov (United States)

    Aguilar, Carlos A.; Craighead, Harold G.

    2013-10-01

    Deoxyribonucleic acid (DNA) is the blueprint on which life is based and transmitted, but the way in which chromatin -- a dynamic complex of nucleic acids and proteins -- is packaged and behaves in the cellular nucleus has only begun to be investigated. Epigenetic modifications sit 'on top of' the genome and affect how DNA is compacted into chromatin and transcribed into ribonucleic acid (RNA). The packaging and modifications around the genome have been shown to exert significant influence on cellular behaviour and, in turn, human development and disease. However, conventional techniques for studying epigenetic or conformational modifications of chromosomes have inherent limitations and, therefore, new methods based on micro- and nanoscale devices have been sought. Here, we review the development of these devices and explore their use in the study of DNA modifications, chromatin modifications and higher-order chromatin structures.

  14. Vitamin D receptor (VDR) promoter targeting through a novel chromatin remodeling complex.

    Science.gov (United States)

    Kato, Shigeaki; Fujiki, Ryoji; Kitagawa, Hirochika

    2004-05-01

    We have purified nuclear complexes for Vitamin D receptor (VDR), and identified one of them as a novel ATP-dependent chromatine remodeling containing Williams syndrome transcription factor (WSTF), that is supposed to be responsible for Williams syndrome. This complex (WSTF including nucleosome assembly complex (WINAC)) exhibited an ATP-dependent chromatin remodeling activity in vitro. Transient expression assays revealed that WINAC potentiates ligand-induced function of VDR in gene activation and repression. Thus, this study describes a molecular basis of the VDR function on chromosomal DNA through chromatine remodeling.

  15. Coordinated signal control for arterial intersections using fuzzy logic

    Science.gov (United States)

    Kermanian, Davood; Zare, Assef; Balochian, Saeed

    2013-09-01

    Every day growth of the vehicles has become one of the biggest problems of urbanism especially in major cities. This can waste people's time, increase the fuel consumption, air pollution, and increase the density of cars and vehicles. Fuzzy controllers have been widely used in many consumer products and industrial applications with success over the past two decades. This article proposes a comprehensive model of urban traffic network using state space equations and then using Fuzzy Logic Tool Box and SIMULINK Program MATLAB a fuzzy controller in order to optimize and coordinate signal control at two intersections at an arterial road. The fuzzy controller decides to extend, early cut or terminate a signal phase and phase sequence to ensure smooth flow of traffic with minimal waiting time and length of queue. Results show that the performance of the proposed traffic controller at novel fuzzy model is better that of conventional controllers under normal and abnormal traffic conditions.

  16. Time-resolved spectroscopy and fluorescence resonance energy transfer in the study of excimer laser damage of chromatin

    Energy Technology Data Exchange (ETDEWEB)

    Radu, L. [Department of Molecular Genetics and Radiobiology, Babes National Institute, Bucharest (Romania)], E-mail: lilianajradu@yahoo.fr; Mihailescu, I. [Department of Lasers, Laser, Plasma and Radiation Physics Institute, Bucharest (Romania); Radu, S. [Department of Computer Science, Polytechnics University, Bucharest (Romania); Gazdaru, D. [Department of Biophysics, Bucharest University (Romania)

    2007-09-21

    The analysis of chromatin damage produced by a 248 nm excimer laser radiation, for doses of 0.3-3 MJ/m{sup 2} was carried out by time-resolved spectroscopy and fluorescence resonance energy transfer (FRET). The chromatin was extracted from a normal and a tumoral tissue of Wistar rats. The decrease with laser dose of the relative contribution of the excited state lifetimes of ethidium bromide (EtBr) bounded to chromatin constitutes an evidence of the reduction of chromatin deoxyribonucleic acid (DNA) double-strand structure. FRET was performed from dansyl chloride to acridine orange, both coupled to chromatin. The increase of the average distance between these ligands, under the action of laser radiation, reflects a loosening of the chromatin structure. The radiosensitivity of tumor tissue chromatin is higher than that of a normal tissue. The determination of the chromatin structure modification in an excimer laser field can be of interest in laser therapy.

  17. Time-resolved spectroscopy and fluorescence resonance energy transfer in the study of excimer laser damage of chromatin

    International Nuclear Information System (INIS)

    Radu, L.; Mihailescu, I.; Radu, S.; Gazdaru, D.

    2007-01-01

    The analysis of chromatin damage produced by a 248 nm excimer laser radiation, for doses of 0.3-3 MJ/m 2 was carried out by time-resolved spectroscopy and fluorescence resonance energy transfer (FRET). The chromatin was extracted from a normal and a tumoral tissue of Wistar rats. The decrease with laser dose of the relative contribution of the excited state lifetimes of ethidium bromide (EtBr) bounded to chromatin constitutes an evidence of the reduction of chromatin deoxyribonucleic acid (DNA) double-strand structure. FRET was performed from dansyl chloride to acridine orange, both coupled to chromatin. The increase of the average distance between these ligands, under the action of laser radiation, reflects a loosening of the chromatin structure. The radiosensitivity of tumor tissue chromatin is higher than that of a normal tissue. The determination of the chromatin structure modification in an excimer laser field can be of interest in laser therapy

  18. Scaffold Attachment Factor B1: A Novel Chromatin Regulator of Prostate Cancer Metabolism

    Science.gov (United States)

    2016-10-01

    AWARD NUMBER: W81XWH-14-1-0152 TITLE: Scaffold Attachment Factor B1: A Novel Chromatin Regulator of Prostate Cancer Metabolism PRINCIPAL...TITLE AND SUBTITLE 5a. CONTRACT NUMBER W81XWH-14-1-0152 Scaffold Attachment Factor B1: A Novel Chromatin Regulator of Prostate Cancer Metabolism... chromatin immunoprecipitation-next generation DNA sequencing (ChIP-seq) and integrative network modeling to identify the SAFB1 cistrome and the extent of

  19. Induction of stable protein-deoxyribonucleic acid adducts in Chinese hamster cell chromatin by ultraviolet light

    International Nuclear Information System (INIS)

    Strniste, G.F.; Rall, S.C.

    1976-01-01

    Ultraviolet (uv)-light-mediated formation of protein-DNA adducts in Chinese hamster cell chromatin was investigated in an attempt to compare chromatin alterations induced in vitro with those observed in vivo. Three independent methods of analysis indicated stable protein-DNA associations: a membrane filter assay which retained DNA on the filter in the presence of high salt-detergent; a Sepharose 4B column assay in which protein eluted coincident with DNA; and a CsCl density gradient equilibrium assay which showed both protein and DNA banding at densities other than their respective native densities. Treatment of the irradiated chromatin with DNase provided further evidence that protein--DNA and not protein-protein adducts were being observed in the column assay. There is a fluence-dependent response of protein-DNA adduct formation when the chromatin is irradiated at low ionic strength and is linear for protein over the range studied. When the chromatin is exposed to differing conditions of pH, ionic strength, or divalent metal ion concentration, the quantity of adduct formed upon uv irradiation varies. Susceptibility to adduct formation can be partially explained in terms of the condensation state of the chromatin and other factors such as rearrangement, denaturation, and dissociation of the chromatin components. Besides providing information on the biological significance of these types of uv-induced lesions, this technique may be useful as a probe of chromatin structure

  20. Trithorax dependent changes in chromatin landscape at enhancer and promoter regions drive female puberty.

    Science.gov (United States)

    Toro, Carlos A; Wright, Hollis; Aylwin, Carlos F; Ojeda, Sergio R; Lomniczi, Alejandro

    2018-01-04

    Polycomb group (PcG) proteins control the timing of puberty by repressing the Kiss1 gene in hypothalamic arcuate nucleus (ARC) neurons. Here we identify two members of the Trithorax group (TrxG) of modifiers, mixed-lineage leukemia 1 (MLL1), and 3 (MLL3), as central components of an activating epigenetic machinery that dynamically counteracts PcG repression. Preceding puberty, MLL1 changes the chromatin configuration at the promoters of Kiss1 and Tac3, two genes required for puberty to occur, from repressive to permissive. Concomitantly, MLL3 institutes a chromatin structure that changes the functional status of a Kiss1 enhancer from poised to active. RNAi-mediated, ARC-specific Mll1 knockdown reduced Kiss1 and Tac3 expression, whereas CRISPR-Cas9-directed epigenome silencing of the Kiss1 enhancer selectively reduced Kiss1 activity. Both interventions delay puberty and disrupt reproductive cyclicity. Our results demonstrate that an epigenetic switch from transcriptional repression to activation is crucial to the regulatory mechanism controlling the timing of mammalian puberty.

  1. Regular character of chromatin degradation in lymphoid tissues after treatment with biological alkylating agents in vivo

    International Nuclear Information System (INIS)

    Matyasova, J.; Skalka, M.; Cejkova, M.

    1979-01-01

    The chromatin changes are reevaluated occurring in lymphoid tissues of mice treated with alkylating agents of the nitrogen-mustard type in relation to recent evidence on the nucleosomal organization of chromatin and to our new data on the regular character of chromatin degradation in lymphoid tissues of irradiated mice. DNA was isolated from nuclei at various intervals (1 to 18 h) after treatment of mice and subjected to gel electrophoresis in polyacrylamide gels. Thymus chromatin from treated mice has been shown to degrade in a regular fashion and to yield discrete DNA fragments, resembling those that originate in lymphoid tissues of irradiated mice or in thymus nuclei digested with micrococcal nuclease in vitro. With increasing interval after treatment higher amounts of smaller DNA fragments appear. Chromatin in spleen cells responds to treatment in a similar way, whilst no degradation in vivo takes place in liver chromatin. Chromatin of LS/BL lymphosarcoma cells in mice treated with alkylating agents or with irradiation suffers from a similar regular degradation. The results stress the significance of the action of liberated or activated endogenous nuclease(s) in the development of chromatin damage in lymphoid cells after treatment with alkylating agents. (author)

  2. Chromatin Regulation and the Histone Code in HIV Latency
.

    Science.gov (United States)

    Turner, Anne-Marie W; Margolis, David M

    2017-06-01

    The formation of a latent reservoir of Human Immunodeficiency Virus (HIV) infection hidden from immune clearance remains a significant obstacle to approaches to eradicate HIV infection. Towards an understanding of the mechanisms of HIV persistence, there is a growing body of work implicating epigenetic regulation of chromatin in establishment and maintenance of this latent reservoir. Here we discuss recent advances in the field of chromatin regulation, specifically in our understanding of the histone code, and how these discoveries relate to our current knowledge of the chromatin mechanisms linked to HIV transcriptional repression and the reversal of latency. We also examine mechanisms unexplored in the context of HIV latency and briefly discuss current therapies aimed at the induction of proviral expression within latently infected cells. We aim to emphasize that a greater understanding of the epigenetic mechanisms which govern HIV latency could lead to new therapeutic targets for latency reversal and clearance cure strategies.

  3. Co-ordinated voltage control of DFIG wind turbines in uninterrupted operation during grid faults

    DEFF Research Database (Denmark)

    Hansen, Anca Daniela; Michalke, G.; Sørensen, Poul Ejnar

    2007-01-01

    Emphasis in this article is on the design of a co-ordinated voltage control strategy for doubly fed induction generator (DFIG) wind turbines that enhances their capability to provide grid support during grid faults. In contrast to its very good performance in normal operation, the DFIG wind turbine...... concept is quite sensitive to grid faults and requires special power converter protection. The fault ride-through and grid support capabilities of the DFIG address therefore primarily the design of DFIG wind turbine control with special focus on power converter protection and voltage control issues....... A voltage control strategy is designed and implemented in this article, based on the idea that both converters of the DFIG (i.e. rotor-side converter and grid-side converter) participate in the grid voltage control in a co-ordinated manner. By default the grid voltage is controlled by the rotor...

  4. [Comparative investigation of the non-histone proteins of chromatin from pigeon erythroblasts and erythrocytes].

    Science.gov (United States)

    Fedina, A B; Gazarian, G G

    1976-01-01

    Chromosomal non-histone proteins are obtained from nuclei of two types of pigeon erythroid cells: erythroblasts (cells active in RNA synthesis) and erythrocytes (cells with repressed RNA synthesis). They are well soluble in solutions of low ionic strength. Electrophoretic separation of the obtained non-histone proteins in polyacrylamide gels with urea and SDS shows the presence of qualitative differences in the pattern of non-histone proteins of chromatine from erythroblasts and erythrocytes. By electrophoresis in urea some protein bands of non-histone proteins of chromatine from erythroblasts were found which disappear with the aging of cells. At the same time two protein fractions were observed in chromatine from erythrocytes which were absent in that of erythroblasts. Disappearance of some high molecular weight protein fractions from erythrocyte chromatine as compared to erythroblasts was observed by separation of the non-histone proteins in the presence of SDS. These fractions of the non-histone proteins disappearing during aging of cells are well extractable from erythroblast chromatine by 0.35 M NaCl solution. In the in vitro system with E. coli RNA polymerase addition of non-histone proteins of chromatine from erythroblasts to chromatine from erythrocytes increases RNA synthesis 2--3 times. At the same time addition of non-histone proteins from erythrocytes is either without any influence on this process or somewhat inhibiting.

  5. Coordinated Primary and Secondary Control with Frequency-Bus-Signaling for Distributed Generation and Storage in Islanded Microgrids

    DEFF Research Database (Denmark)

    Wu, Dan; Tang, Fen; Dragicevic, Tomislav

    2013-01-01

    In this paper, a distributed coordinated control scheme based on frequency-bus-signaling (FBS) method for a low-voltage AC three phase microgrid is proposed. The control scheme is composed by two levels. Firstly a primary local control which is different for the DGs and the ESS is proposed. The ESS...... control is implemented to restore the frequency deviation produced by the primary ESS controller while preserving the coordinated control performance. Real-time simulation results show the feasibility of the proposed approach by showing the operation of the microgrid in different scenarios....

  6. New insights into chromatin folding and dynamics from multi-scale modeling

    Science.gov (United States)

    Olson, Wilma

    The dynamic organization of chromatin plays an essential role in the regulation of gene expression and in other fundamental cellular processes. The underlying physical basis of these activities lies in the sequential positioning, chemical composition, and intermolecular interactions of the nucleosomes-the familiar assemblies of roughly 150 DNA base pairs and eight histone proteins-found on chromatin fibers. We have developed a mesoscale model of short nucleosomal arrays and a computational framework that make it possible to incorporate detailed structural features of DNA and histones in simulations of short chromatin constructs with 3-25 evenly spaced nucleosomes. The correspondence between the predicted and observed effects of nucleosome composition, spacing, and numbers on long-range communication between regulatory proteins bound to the ends of designed nucleosome arrays lends credence to the model and to the molecular insights gleaned from the simulated structures. We have extracted effective nucleosome-nucleosome potentials from the mesoscale simulations and introduced the potentials in a larger scale computational treatment of regularly repeating chromatin fibers. Our results reveal a remarkable influence of nucleosome spacing on chromatin flexibility. Small changes in the length of the DNA fragments linking successive nucleosomes introduce marked changes in the local interactions of the nucleosomes and in the spatial configurations of the fiber as a whole. The changes in nucleosome positioning influence the statistical properties of longer chromatin constructs with 100-10,000 nucleosomes. We are investigating the extent to which the `local' interactions of regularly spaced nucleosomes contribute to the corresponding interactions in chains with mixed spacings as a step toward the treatment of fibers with nucleosomes positioned at the sites mapped at base-pair resolution on genomic sequences. Support of the work by USPHS R01 GM 34809 is gratefully acknowledged.

  7. To spread or not to spread - chromatin modifications in response to DNA damage

    DEFF Research Database (Denmark)

    Altmeyer, M.; Lukas, J.

    2013-01-01

    Chromatin modifications in response to DNA damage are vital for genome integrity. Multiple proteins and pathways required to generate specialized chromatin domains around DNA lesions have been identified and the increasing amount of information calls for unifying concepts that would allow us...... to grasp the ever-increasing complexity. This review aims at contributing to this trend by focusing on feed-forward and feedback mechanisms, which in mammalian cells determine the extent of chromatin modifications after DNA damage. We highlight the emerging notion that the nodal points of these highly...... dynamic pathways operate in a rate-limiting mode, whose deregulation can disrupt physiological boundaries between damaged and undamaged chromatin, dictate repair pathway choice, and determine the fate of cells exposed to genotoxic stress....

  8. Damping Improvement of Multiple Damping Controllers by Using Optimal Coordinated Design Based on PSS and FACTS-POD in a Multi-Machine Power System

    Directory of Open Access Journals (Sweden)

    Ali Nasser Hussain

    2016-09-01

    Full Text Available The aim of this study is to present a comprehensive comparison and assessment of the damping function improvement of power system oscillation for the multiple damping controllers using the simultaneously coordinated design based on Power System Stabilizer (PSS and Flexible AC Transmission System (FACTS devices. FACTS devices can help in the enhancing the stability of the power system by adding supplementary damping controller to the control channel of the FACTS input to implement the task of Power Oscillation Damping (FACT POD controller. Simultaneous coordination can be performed in different ways. First, the dual coordinated designs between PSS and FACTS POD controller or between different FACTS POD controllers are arranged in a multiple FACTS devices without PSS. Second, the simultaneous coordination has been extended to triple coordinated design among PSS and different FACTS POD controllers. The parameters of the damping controllers have been tuned in the individual controllers and coordinated designs by using a Chaotic Particle Swarm Optimization (CPSO algorithm that optimized the given eigenvalue-based objective function. The simulation results for a multi-machine power system show that the dual coordinated design provide satisfactory damping performance over the individual control responses. Furthermore, the triple coordinated design has been shown to be more effective in damping oscillations than the dual damping controllers.

  9. Sex-switching of the Drosophila brain by two antagonistic chromatin factors

    Science.gov (United States)

    Ito, Hiroki; Sato, Kosei; Yamamoto, Daisuke

    2013-01-01

    In Drosophila melanogaster, the fruitless (fru) gene encoding BTB-Zn-finger transcription factors organizes male sexual behavior by controlling the development of sexually dimorphic neuronal circuitry. However, the molecular mechanism by which fru controls the sexual fate of neurons has been unknown. Our recent study represents a first step toward clarification of this mechanism. We have shown that: (1) Fru forms a complex with the transcriptional cofactor Bonus (Bon), which recruits either of two chromatin regulators, Histone deacetylase 1 (HDAC1) or Heterochromatin protein 1a (HP1a), to Fru-target sites; (2) the Fru-Bon complex has a masculinizing effect on single sexually-dimorphic neurons when it recruits HDAC1, whereas it has a demasculinizing effect when it recruits HP1a; (3) HDAC1 or HP1a thus recruited to Fru-target sites determines the sexual fate of single neurons in an all-or-none manner, as manipulations of HDAC1 or HP1a expression levels affect the proportion of male-typical neurons and female-typical neurons without producing neurons of intersexual characteristics. Here, we hypothesize that chromatin landscape changes induced by ecdysone surges direct the HDAC1- or HP1a-containing Fru complex to distinct targets, thereby allowing them to switch the neuronal sexual fate in the brain. PMID:23519136

  10. ChromaSig: a probabilistic approach to finding common chromatin signatures in the human genome.

    Directory of Open Access Journals (Sweden)

    Gary Hon

    2008-10-01

    Full Text Available Computational methods to identify functional genomic elements using genetic information have been very successful in determining gene structure and in identifying a handful of cis-regulatory elements. But the vast majority of regulatory elements have yet to be discovered, and it has become increasingly apparent that their discovery will not come from using genetic information alone. Recently, high-throughput technologies have enabled the creation of information-rich epigenetic maps, most notably for histone modifications. However, tools that search for functional elements using this epigenetic information have been lacking. Here, we describe an unsupervised learning method called ChromaSig to find, in an unbiased fashion, commonly occurring chromatin signatures in both tiling microarray and sequencing data. Applying this algorithm to nine chromatin marks across a 1% sampling of the human genome in HeLa cells, we recover eight clusters of distinct chromatin signatures, five of which correspond to known patterns associated with transcriptional promoters and enhancers. Interestingly, we observe that the distinct chromatin signatures found at enhancers mark distinct functional classes of enhancers in terms of transcription factor and coactivator binding. In addition, we identify three clusters of novel chromatin signatures that contain evolutionarily conserved sequences and potential cis-regulatory elements. Applying ChromaSig to a panel of 21 chromatin marks mapped genomewide by ChIP-Seq reveals 16 classes of genomic elements marked by distinct chromatin signatures. Interestingly, four classes containing enrichment for repressive histone modifications appear to be locally heterochromatic sites and are enriched in quickly evolving regions of the genome. The utility of this approach in uncovering novel, functionally significant genomic elements will aid future efforts of genome annotation via chromatin modifications.

  11. Fragmentation of chromatin DNA in mouse thymus cells after whole body γ-irradiation

    International Nuclear Information System (INIS)

    Wei Kang; Liu Xueying; Zhu Xuefen

    1984-01-01

    The characteristics of soluble chromatin in mouse thymus nuclei after whole body γ-irradiation were investigated by means of polyacrylamide gel electrophoresis. After deproteinization and electrophoresis eight regular DNA bands were revealed. The molecular weights of these bands were estimated by comparing their migration rates with those of the standard fragments obtained from PBR 322 digested completely by restrictive endonuclease Hae III. The molecular weight of the first band was calculated to be 186 base pairs corresponding approximately to the size of DNA fragment from a single nucleosome, and those of other bands appeared to be its multiples. The results suggested that the disintegration of chromatin DNA after γ-irradiation might have occurred at the linkage regions of chromatin. The autolysis product of normal thymus chromatin under sterile condition were also analyzed and its electrophoretic pattern was found to be just the same as that of the postirradiation product. It seems, therefore, that the endonuclease existing in normal tissues might be responsible for the postirradiation chromatin degradation. The mechanism of this kind of enzymatic digestion remains to be elucidated in further investigation. (author)

  12. ICT Based HIL Validation of Voltage Control Coordination in Smart Grids Scenarios

    Directory of Open Access Journals (Sweden)

    Kamal Shahid

    2018-05-01

    Full Text Available This paper aims to validate the capability of renewable generation (ReGen plants to provide online voltage control coordination ancillary service to the system operators in smart grids. Simulation studies about online coordination concepts from ReGen plants have already been identified in previous publications. However, here, the results are validated through a real-time Hardware-In-the-Loop framework using an exemplary benchmark grid area in Denmark as a base case that includes flexible renewable power plants providing voltage control functionality. The provision of voltage control support from ReGen plants is verified on a large-scale power system against the baseline scenario, considering the hierarchical industrial controller platforms used nowadays in power plants. Moreover, the verification of online voltage control support is carried out by taking into account a communication network as well as the associated data traffic patterns obtained from a real network. Based on the sets of recordings, guidelines and recommendations for practical implementation of the developed control algorithms for targeted ancillary service are made. This provides a deep insight for stakeholders, i.e., wind turbine and photo-voltaic system manufacturers and system operators, regarding the existing boundaries for current technologies and requirements for accommodating the new ancillary services in industrial application.

  13. Synthesis of controllable and normal sublanguages for discrete-event systems using a coordinator

    Czech Academy of Sciences Publication Activity Database

    Komenda, Jan; Masopust, Tomáš; van Schuppen, J. H.

    2011-01-01

    Roč. 60, č. 7 (2011), s. 492-502 ISSN 0167-6911 R&D Projects: GA ČR(CZ) GAP103/11/0517; GA ČR(CZ) GPP202/11/P028 Grant - others:European Commission(XE) EU. ICT .DISC 224498 Institutional research plan: CEZ:AV0Z10190503 Keywords : discrete-event system * coordination control * coordinator Subject RIV: BA - General Mathematics Impact factor: 1.222, year: 2011 http://www.sciencedirect.com/science/article/pii/S0167691111000739

  14. Synthesis of controllable and normal sublanguages for discrete-event systems using a coordinator

    Czech Academy of Sciences Publication Activity Database

    Komenda, Jan; Masopust, Tomáš; van Schuppen, J. H.

    2011-01-01

    Roč. 60, č. 7 (2011), s. 492-502 ISSN 0167-6911 R&D Projects: GA ČR(CZ) GAP103/11/0517; GA ČR(CZ) GPP202/11/P028 Grant - others:European Commission(XE) EU.ICT.DISC 224498 Institutional research plan: CEZ:AV0Z10190503 Keywords : discrete-event system * coordination control * coordinator Subject RIV: BA - General Mathematics Impact factor: 1.222, year: 2011 http://www.sciencedirect.com/science/article/pii/S0167691111000739

  15. FACT prevents the accumulation of free histones evicted from transcribed chromatin and a subsequent cell cycle delay in G1.

    Directory of Open Access Journals (Sweden)

    Macarena Morillo-Huesca

    2010-05-01

    Full Text Available The FACT complex participates in chromatin assembly and disassembly during transcription elongation. The yeast mutants affected in the SPT16 gene, which encodes one of the FACT subunits, alter the expression of G1 cyclins and exhibit defects in the G1/S transition. Here we show that the dysfunction of chromatin reassembly factors, like FACT or Spt6, down-regulates the expression of the gene encoding the cyclin that modulates the G1 length (CLN3 in START by specifically triggering the repression of its promoter. The G1 delay undergone by spt16 mutants is not mediated by the DNA-damage checkpoint, although the mutation of RAD53, which is otherwise involved in histone degradation, enhances the cell-cycle defects of spt16-197. We reveal how FACT dysfunction triggers an accumulation of free histones evicted from transcribed chromatin. This accumulation is enhanced in a rad53 background and leads to a delay in G1. Consistently, we show that the overexpression of histones in wild-type cells down-regulates CLN3 in START and causes a delay in G1. Our work shows that chromatin reassembly factors are essential players in controlling the free histones potentially released from transcribed chromatin and describes a new cell cycle phenomenon that allows cells to respond to excess histones before starting DNA replication.

  16. Relationship Between Chromatin Structure and Sensitivity to Molecularly Targeted Auger Electron Radiation Therapy

    International Nuclear Information System (INIS)

    Terry, Samantha Y.A.; Vallis, Katherine A.

    2012-01-01

    Purpose: The open structure of euchromatin renders it susceptible to DNA damage by ionizing radiation (IR) compared with compact heterochromatin. The effect of chromatin configuration on the efficacy of Auger electron radiotherapy was investigated. Methods and Materials: Chromatin structure was altered in MDA-MB-468 and 231-H2N human breast cancer cells by suberoylanilide hydroxamic acid (SAHA), 5-aza-2-deoxycytidine, or hypertonic treatment. The extent and duration of chromatin structural changes were evaluated using the micrococcal nuclease assay. DNA damage (γH2AX assay) and clonogenic survival were evaluated after exposure to 111 In-DTPA-hEGF, an Auger electron-emitting radiopharmaceutical, or IR. The intracellular distribution of 111 In-DTPA-hEGF after chromatin modification was investigated in cell fractionation experiments. Results: Chromatin remained condensed for up to 20 minutes after NaCl and in a relaxed state 24 hours after SAHA treatment. The number of γH2AX foci per cell was greater in MDA-MB-468 and 231-H2N cells after IR (0.5 Gy) plus SAHA (1 μM) compared with IR alone (16 ± 0.6 and 14 ± 0.3 vs. 12 ± 0.4 and 11 ± 0.2, respectively). More γH2AX foci were observed in MDA-MB-468 and 231-H2N cells exposed to 111 In-DTPA-hEGF (6 MBq/μg) plus SAHA vs. 111 In-DTPA-hEGF alone (11 ± 0.3 and 12 ± 0.7 vs. 9 ± 0.4 and 7 ± 0.3, respectively). 5-aza-2-deoxycytidine enhanced the DNA damage caused by IR and 111 In-DTPA-hEGF. Clonogenic survival was reduced in MDA-MB-468 and 231-H2N cells after IR (6 Gy) plus SAHA (1 μM) vs. IR alone (0.6% ± 0.01 and 0.3% ± 0.2 vs. 5.8% ± 0.2 and 2% ± 0.1, respectively) and after 111 In-DTPA-hEGF plus SAHA compared to 111 In-DTPA-hEGF alone (21% ± 0.4% and 19% ± 4.6 vs. 33% ± 2.3 and 32% ± 3.7). SAHA did not affect 111 In-DTPA-hEGF nuclear localization. Hypertonic treatment resulted in fewer γH2AX foci per cell after IR and 111 In-DTPA-hEGF compared to controls but did not significantly alter clonogenic

  17. Fast Coordinated Control of DFIG Wind Turbine Generators for Low and High Voltage Ride-Through

    Directory of Open Access Journals (Sweden)

    Yun Wang

    2014-06-01

    Full Text Available This paper presents a fast coordinated control scheme of the rotor side converter (RSC, the Direct Current (DC chopper and the grid side converter (GSC of doubly fed induction generator (DFIG wind turbine generators (WTGs to improve the low voltage ride through (LVRT and high voltage ride through (HVRT capability of the DFIG WTGs. The characteristics of DFIG WTGs under voltage sags and swells were studied focusing on the DFIG WTG stator flux and rotor voltages during the transient periods of grid voltage changes. The protection schemes of the rotor crowbar circuit and the DC chopper circuit were proposed considering the characteristics of the DFIG WTGs during voltage changes. The fast coordinated control of RSC and GSC were developed based on the characteristic analysis in order to realize efficient LVRT and HVRT of the DFIG WTGs. The proposed fast coordinated control schemes were verified by time domain simulations using Matlab-Simulink.

  18. Chromatin Immunoprecipitation Assay for the Identification of Arabidopsis Protein-DNA Interactions In Vivo

    OpenAIRE

    Komar, Dorota N.; Mouriz, Alfonso; Jarillo, José A.; Piñeiro, Manuel

    2016-01-01

    Intricate gene regulatory networks orchestrate biological processes and developmental transitions in plants. Selective transcriptional activation and silencing of genes mediate the response of plants to environmental signals and developmental cues. Therefore, insights into the mechanisms that control plant gene expression are essential to gain a deep understanding of how biological processes are regulated in plants. The chromatin immunoprecipitation (ChIP) technique described here is a proced...

  19. Nuclear and chromatin structures and their influence on the radiosensitivity of DNA

    International Nuclear Information System (INIS)

    Oleinick, N.L.; Chiu, S.-M.

    1994-01-01

    Among the factors contributing to the distribution of DNA damage within irradiated mammalian cell nuclei are the interactions of DNA with nuclear proteins and the formation of multi-molecular chromatin structures. Studies on the manipulation of chromatin structures of isolated nuclei are summarised. The majority of chromatin within the nucleus of living cells is tightly compacted into nucleosomal superhelices and other higher order structures which have a limited ability to be damaged by radiation. The treatment of isolated nuclei with hypotonic buffers causes a decondensation of these structures and markedly sensitises the DNA to radiation, while retaining the majority of the chromosomal proteins. On the other hand, treatment of nuclei with hypertonic buffers strips the DNA of specific classes of nuclear proteins, destroying chromatin structure, and this procedure also enhances the sensitivity of the DNA to radiation. The various expanded chromatin structures are models for the structure of the minor fraction of DNA which is decondensed in preparation for transcription or replication. The combined results indicate that the majority of nuclear DNA is protected by histones and other nuclear proteins from radiation damage, partially as a result of the limited accessibility of the condensed structures to hydroxyl radical and partially as a result of the scavenging of radicals by the proteins. (Author)

  20. Acetylation-Dependent Chromatin Reorganization by BRDT, a Testis-Specific Bromodomain-Containing Protein

    Science.gov (United States)

    Pivot-Pajot, Christophe; Caron, Cécile; Govin, Jérôme; Vion, Alexandre; Rousseaux, Sophie; Khochbin, Saadi

    2003-01-01

    The association between histone acetylation and replacement observed during spermatogenesis prompted us to consider the testis as a source for potential factors capable of remodelling acetylated chromatin. A systematic search of data banks for open reading frames encoding testis-specific bromodomain-containing proteins focused our attention on BRDT, a testis-specific protein of unknown function containing two bromodomains. BRDT specifically binds hyperacetylated histone H4 tail depending on the integrity of both bromodomains. Moreover, in somatic cells, the ectopic expression of BRDT triggered a dramatic reorganization of the chromatin only after induction of histone hyperacetylation by trichostatin A (TSA). We then defined critical domains of BRDT involved in its activity. Both bromodomains of BRDT, as well as flanking regions, were found indispensable for its histone acetylation-dependent remodelling activity. Interestingly, we also observed that recombinant BRDT was capable of inducing reorganization of the chromatin of isolated nuclei in vitro only when the nuclei were from TSA-treated cells. This assay also allowed us to show that the action of BRDT was ATP independent, suggesting a structural role for the protein in the remodelling of acetylated chromatin. This is the first demonstration of a large-scale reorganization of acetylated chromatin induced by a specific factor. PMID:12861021

  1. Evaluation of chromatin integrity of motile bovine spermatozoa capacitated in vitro.

    Science.gov (United States)

    Reckova, Z; Machatkova, M; Rybar, R; Horakova, J; Hulinska, P; Machal, L

    2008-08-01

    The efficiency of in vitro embryo production is highly variable amongst individual sires in cattle. To eliminate that this variability is not caused by sperm chromatin damage caused by separation or capacitacion, chromatin integrity was evaluated. Seventeen of AI bulls with good NRRs but variable embryo production efficiency were used. For each bull, motile spermatozoa were separated on a Percoll gradient, resuspended in IVF-TALP medium and capacitated with or incubated without heparin for 6 h. Samples before and after separation and after 3-h and 6-h capacitacion or incubation were evaluated by the Sperm Chromatin Structure Assay (SCSA) and the proportion of sperm with intact chromatin structure was calculated. Based on changes in the non-DFI-sperm proportion, the sires were categorized as DNA-unstable (DNA-us), DNA-stable (DNA-s) and DNA-most stable (DNA-ms) bulls (n=3, n=5 and n=9, respectively). In DNA-us bulls, separation produced a significant increase of the mean non-DFI-sperm proportion (p Capacitacion produced a significant decrease in the mean non-DFI-sperm proportion in H+ sperm (p capacitacion, the mean non-DFI-sperm proportion remained almost unchanged. In DNA-ms bulls, neither separation nor capacitacion had any effect on the mean non-DFI-sperm proportion. It can be concluded that, although separation and capacitacion may produce some changes in sperm chromatin integrity, these are not associated with different in vitro fertility of the bulls involved.

  2. The ATRX syndrome protein forms a chromatin-remodeling complex with Daxx and localizes in promyelocytic leukemia nuclear bodies.

    Science.gov (United States)

    Xue, Yutong; Gibbons, Richard; Yan, Zhijiang; Yang, Dafeng; McDowell, Tarra L; Sechi, Salvatore; Qin, Jun; Zhou, Sharleen; Higgs, Doug; Wang, Weidong

    2003-09-16

    ATRX syndrome is characterized by X-linked mental retardation associated with alpha-thalassemia. The gene mutated in this disease, ATRX, encodes a plant homeodomain-like finger and a SWI2/SNF2-like ATPase motif, both of which are often found in chromatin-remodeling enzymes, but ATRX has not been characterized biochemically. By immunoprecipitation from HeLa extract, we found that ATRX is in a complex with transcription cofactor Daxx. The following evidence supports that ATRX and Daxx are components of an ATP-dependent chromatin-remodeling complex: (i) Daxx and ATRX can be coimmunoisolated by antibodies specific for each protein; (ii) a proportion of Daxx cofractionates with ATRX as a complex of 1 MDa by gel-filtration analysis; (iii) in extract from cells of a patient with ATRX syndrome, the level of the Daxx-ATRX complex is correspondingly reduced; (iv) a proportion of ATRX and Daxx colocalize in promyelocytic leukemia nuclear bodies, with which Daxx had previously been located; and (v) the ATRX complex displays ATP-dependent activities that resemble those of other chromatin-remodeling complexes, including triple-helix DNA displacement and alteration of mononucleosome disruption patterns. But unlike the previously described SWI/SNF or NURD complexes, the ATRX complex does not randomize DNA phasing of the mononucleosomes, suggesting that it may remodel chromatin differently. Taken together, the results suggest that ATRX functions in conjunction with Daxx in a novel chromatin-remodeling complex. The defects in ATRX syndrome may result from inappropriate expression of genes controlled by this complex.

  3. Model for the structure of the active nucleolar chromatin

    International Nuclear Information System (INIS)

    Labhart, P.; Ness, P.; Banz, E.; Parish, R.; Koller, T.; Universitaet Zurich, Switzerland)

    1983-01-01

    Transcribed ribosomal genes of Xenopus laevis oocytes and of Dictyostelium discoideum were studied electron microscopically using step gradients at different ionic strengths. Under these conditions the fiber of the active chromatin appears smooth and is indistinguishable from free DNA. The accessibility of the coding region and of a nontranscribed spacer region to restriction enzymes and micrococcal nuclease were investigated. All of the results obtained are consistent with a model in which active nucleolar chromatin is mostly composed of free DNA and the components required for transcription. 50 references, 7 figures

  4. Chromatin remodelling: the industrial revolution of DNA around histones.

    Science.gov (United States)

    Saha, Anjanabha; Wittmeyer, Jacqueline; Cairns, Bradley R

    2006-06-01

    Chromatin remodellers are specialized multi-protein machines that enable access to nucleosomal DNA by altering the structure, composition and positioning of nucleosomes. All remodellers have a catalytic ATPase subunit that is similar to known DNA-translocating motor proteins, suggesting DNA translocation as a unifying aspect of their mechanism. Here, we explore the diversity and specialization of chromatin remodellers, discuss how nucleosome modifications regulate remodeller activity and consider a model for the exposure of nucleosomal DNA that involves the use of directional DNA translocation to pump 'DNA waves' around the nucleosome.

  5. Modulation of chromatin structure by the FACT histone chaperone complex regulates HIV-1 integration.

    Science.gov (United States)

    Matysiak, Julien; Lesbats, Paul; Mauro, Eric; Lapaillerie, Delphine; Dupuy, Jean-William; Lopez, Angelica P; Benleulmi, Mohamed Salah; Calmels, Christina; Andreola, Marie-Line; Ruff, Marc; Llano, Manuel; Delelis, Olivier; Lavigne, Marc; Parissi, Vincent

    2017-07-28

    Insertion of retroviral genome DNA occurs in the chromatin of the host cell. This step is modulated by chromatin structure as nucleosomes compaction was shown to prevent HIV-1 integration and chromatin remodeling has been reported to affect integration efficiency. LEDGF/p75-mediated targeting of the integration complex toward RNA polymerase II (polII) transcribed regions ensures optimal access to dynamic regions that are suitable for integration. Consequently, we have investigated the involvement of polII-associated factors in the regulation of HIV-1 integration. Using a pull down approach coupled with mass spectrometry, we have selected the FACT (FAcilitates Chromatin Transcription) complex as a new potential cofactor of HIV-1 integration. FACT is a histone chaperone complex associated with the polII transcription machinery and recently shown to bind LEDGF/p75. We report here that a tripartite complex can be formed between HIV-1 integrase, LEDGF/p75 and FACT in vitro and in cells. Biochemical analyzes show that FACT-dependent nucleosome disassembly promotes HIV-1 integration into chromatinized templates, and generates highly favored nucleosomal structures in vitro. This effect was found to be amplified by LEDGF/p75. Promotion of this FACT-mediated chromatin remodeling in cells both increases chromatin accessibility and stimulates HIV-1 infectivity and integration. Altogether, our data indicate that FACT regulates HIV-1 integration by inducing local nucleosomes dissociation that modulates the functional association between the incoming intasome and the targeted nucleosome.

  6. Relationship between chromatin complexity and nuclear envelope circularity in hippocampal pyramidal neurons

    International Nuclear Information System (INIS)

    Pantic, Igor; Basailovic, Milos; Paunovic, Jovana; Pantic, Senka

    2015-01-01

    Highlights: •We analyzed chromatin structure and nuclear envelope of 200 hippocampal pyramidal neurons. •Fractal and GLCM mathematical parameters were calculated each chromatin structure. •Nuclear shape was quantified by calculating circularity of the nuclear envelope. •Circularity was in significant relationship with chromatin fractal dimension. •Strong correlation was detected between circularity and some GLCM parameters. -- Abstract: In this study we tested the existence and strength of the relationship between circularity of nuclear envelope and mathematical parameters of chromatin structure. Coronal sections of the brain were made in 10 male albino mice. The brain tissue was stained using a modification of Feulgen method for DNA visualization. A total of 200 hippocampal pyramidal neurons (20 per animal) were visualized using DEM 200 High-Speed Color CMOS Chip and Olympus CX21FS1 microscope. Circularity of the nuclear membrane was calculated in ImageJ (NIH, USA) after the nuclear segmentation, based on the freehand selection of the nuclear regions of interest. Circularity was determined from the values of area and perimeter. For each chromatin structure, using fractal and grey level co-occurrence matrix (GLCM) algorithms, we determined the values of fractal dimension, lacunarity, angular second moment, GLCM entropy, inverse difference moment, GLCM correlation, and GLCM contrast. It was found that circularity is in a significant correlation (p < 0.05) with fractal dimension as the main parameter of fractal complexity analysis. Also, circularity was in a very strong relationship (p < 0.001) with certain parameters of grey level co-occurrence matrix such as the angular second moment and GLCM correlation. This is the first study to indicate that nuclear shape is significantly related to mathematical parameters of higher chromatin organization. Also, it seems that circularity of the nuclear envelope is a good predictor of certain features of chromatin

  7. An adaptive control strategy of converter based DG to maintain protection coordination in distribution system

    DEFF Research Database (Denmark)

    Su, Chi; Liu, Zhou; Chen, Zhe

    2014-01-01

    of network protection devices. As a protection measure commonly used in distribution network, recloser-fuse coordination could suffer from this impact. Research work has been conducted to deal with this problem by modifying the control strategy of the DG converters during faults. These solutions generally...... reduce the current output from the converters during faults so as to mitigate the influence on protection coordination. However, converter current reduction may not be necessary for all types of faults. This paper proposes a converter control strategy with adaptivity to different fault types and also non......-fault voltage drop events. This control strategy is validated by simulations in DIgSILENT PowerFactory....

  8. Coordination Control Strategy for AC/DC Hybrid Microgrids in Stand-Alone Mode

    Directory of Open Access Journals (Sweden)

    Dwi Riana Aryani

    2016-06-01

    Full Text Available Interest in DC microgrids is rapidly increasing along with the improvement of DC power technology because of its advantages. To support the integration process of DC microgrids with the existing AC utility grids, the form of hybrid AC/DC microgrids is considered for higher power conversion efficiency, lower component cost and better power quality. In the system, AC and DC portions are connected through interlink bidirectional AC/DC converters (IC with a proper control system and power management. In the stand-alone operation mode of AC/DC hybrid microgrids, the control of power injection through the IC is crucial in order to maintain the system security. This paper mainly deals with a coordination control strategy of IC and a battery energy storage system (BESS converter under stand-alone operation. A coordinated control strategy for the IC, which considers the state of charge (SOC level of BESS and the load shedding scheme as the last resort, is proposed to obtain better power sharing between AC and DC subgrids. The scheme will be tested with a hybrid AC/DC microgrid, using the tool of the PSCAD/EMTDC software.

  9. Chromatin organisation during Arabidopsis root development

    NARCIS (Netherlands)

    Lorvellec, M.

    2007-01-01

    The genetic information is stored in a highly compact manner in every nucleus. About 150 bp of DNA is packed around a histone octamer constituting a nucleosome. Nucleosomes are linked together by histone H1 and further compaction of this "beads on a string" form higher-order chromatin structures.

  10. Discovery of transcription factors and regulatory regions driving in vivo tumor development by ATAC-seq and FAIRE-seq open chromatin profiling.

    Directory of Open Access Journals (Sweden)

    Kristofer Davie

    2015-02-01

    Full Text Available Genomic enhancers regulate spatio-temporal gene expression by recruiting specific combinations of transcription factors (TFs. When TFs are bound to active regulatory regions, they displace canonical nucleosomes, making these regions biochemically detectable as nucleosome-depleted regions or accessible/open chromatin. Here we ask whether open chromatin profiling can be used to identify the entire repertoire of active promoters and enhancers underlying tissue-specific gene expression during normal development and oncogenesis in vivo. To this end, we first compare two different approaches to detect open chromatin in vivo using the Drosophila eye primordium as a model system: FAIRE-seq, based on physical separation of open versus closed chromatin; and ATAC-seq, based on preferential integration of a transposon into open chromatin. We find that both methods reproducibly capture the tissue-specific chromatin activity of regulatory regions, including promoters, enhancers, and insulators. Using both techniques, we screened for regulatory regions that become ectopically active during Ras-dependent oncogenesis, and identified 3778 regions that become (over-activated during tumor development. Next, we applied motif discovery to search for candidate transcription factors that could bind these regions and identified AP-1 and Stat92E as key regulators. We validated the importance of Stat92E in the development of the tumors by introducing a loss of function Stat92E mutant, which was sufficient to rescue the tumor phenotype. Additionally we tested if the predicted Stat92E responsive regulatory regions are genuine, using ectopic induction of JAK/STAT signaling in developing eye discs, and observed that similar chromatin changes indeed occurred. Finally, we determine that these are functionally significant regulatory changes, as nearby target genes are up- or down-regulated. In conclusion, we show that FAIRE-seq and ATAC-seq based open chromatin profiling

  11. Autonomous Control of Distributed Generation and Storage to Coordinate P/Q Sharing in Islanded Microgrids

    DEFF Research Database (Denmark)

    Wu, Dan; Tang, Fen; Guerrero, Josep M.

    2014-01-01

    In this paper, a decentralized control for coordinate both active and reactive powers is proposed for islanded microgrids. Compared with the conventional droop control strategies, the proposed control realizes decentralized power distribution among renewable energy sources (RES) and energy storage...... systems (ESS) according to the local source conditions. Based on bus-signaling method, the ESS is able to limit charging power by decreasing RES power generation automatically. As well, the reactive power coordinated control makes the RES units able to support reactive power in a decentralized way, which...... allows ESS providing for more active power availability. Moreover, the reactive power is distributed according to the apparent power capacity of each unit. The control strategy principle is simple and easy to implement without extra communication requirements. Real time hardware-in-the-loop results...

  12. MAS-based Distributed Coordinated Control and Optimization in Microgrid and Microgrid Clusters: A Comprehensive Overview

    DEFF Research Database (Denmark)

    Han, Yang; Zhang, Ke; Hong, Li

    2018-01-01

    The increasing integration of the distributed renewable energy sources highlights the requirement to design various control strategies for microgrids (MGs) and microgrid clusters (MGCs). The multi-agent system (MAS)-based distributed coordinated control strategies shows the benefits to balance...... the power and energy, stabilize voltage and frequency, achieve economic and coordinated operation among the MGs and MGCs. However, the complex and diverse combinations of distributed generations in multi-agent system increase the complexity of system control and operation. In order to design the optimized...... configuration and control strategy using MAS, the topology models and mathematic models such as the graph topology model, non-cooperative game model, the genetic algorithm and particle swarm optimization algorithm are summarized. The merits and drawbacks of these control methods are compared. Moreover, since...

  13. A coordinated multivariable control system design for a HVDC linked remote ABWR nuclear power park

    International Nuclear Information System (INIS)

    Hara, T.; Kurita, A.; Younkins, T.D.; Sanchez-Gasca, J.J.; Chow, J.H.

    1987-01-01

    This paper presents a conceptual design of a coordinated output feedback multivariable control system for a remote nuclear generation park connected to a load area with an HVDC link. The control design presented in this paper is for both normal operation (e.g., load following and frequency regulation) and contingencies (e.g., loss of a dc bipole or loss of two nuclear reactors). The design is simple and compact: four control signals, five measurements, and the integrals of two measurements are used to meet all the objectives and constraints for normal operation and contingencies. The multivariable control coordinates the measurements and controls according to the time frame of response and the amount of interactions between variables. This paper describes the model of the system, the multivariable control design, and the nonlinear time domain simulation of the overall system performance

  14. Probing Chromatin-modifying Enzymes with Chemical Tools

    KAUST Repository

    Fischle, Wolfgang; Schwarzer, Dirk

    2016-01-01

    and represent promising drug targets in modern medicine. We summarize and discuss recent advances in the field of chemical biology that have provided chromatin research with sophisticated tools for investigating the composition, activity, and target sites

  15. Radiation-induced XRCC4 association with chromatin DNA analyzed by biochemical fractionation

    International Nuclear Information System (INIS)

    Kamdar, R.P.; Matsumoto, Yoshihisa

    2010-01-01

    XRCC4, in association with DNA ligase IV, is thought to play a critical role in the ligation of two DNA ends in DNA double-strand break (DSB) repair through non-homologous end-joining (NHEJ) pathway. In the present study, we captured radiation-induced chromatin-recruitment of XRCC4 by biochemical fractionation using detergent Nonidet P-40. A subpopulation of XRCC4 changed into a form that is resistant to the extraction with 0.5% Nonidet P-40-containing buffer after irradiation. This form of XRCC4 was liberated by micrococcal nuclease treatment, indicating that it had been tethered to chromatin DNA. This chromatin-recruitment of XRCC4 could be seen immediately (<0.1 hr) after irradiation and remained up to 4 hr after 20 Gy irradiation. It was seen even after irradiation of small doses, id est (i.e.), 2 Gy, but the residence of XRCC4 on chromatin was very transient after 2 Gy irradiation, returning to near normal level in 0.2-0.5 hr after irradiation. The chromatin-bound XRCC4 represented only -1% of total XRCC4 molecules even after 20 Gy irradiation and the quantitative analysis using purified protein as the reference suggested that only a few XRCC4-DNA ligase IV complexes were recruited to each DNA end. We further show that the chromatin-recruitment of XRCC4 was not attenuated by wortmannin, an inhibitor of DNA-PK, or siRNA-mediated knockdown of the DNA-PK catalytic subunit (DNA-PKcs), indicating that this process does not require DNA-PKcs. These results would provide us with useful experimental tools and important insights to understand the DNA repair process through NHEJ pathway. (author)

  16. Condensins Exert Force on Chromatin-Nuclear Envelope Tethers to Mediate Nucleoplasmic Reticulum Formation in Drosophila melanogaster

    Science.gov (United States)

    Bozler, Julianna; Nguyen, Huy Q.; Rogers, Gregory C.; Bosco, Giovanni

    2014-01-01

    Although the nuclear envelope is known primarily for its role as a boundary between the nucleus and cytoplasm in eukaryotes, it plays a vital and dynamic role in many cellular processes. Studies of nuclear structure have revealed tissue-specific changes in nuclear envelope architecture, suggesting that its three-dimensional structure contributes to its functionality. Despite the importance of the nuclear envelope, the factors that regulate and maintain nuclear envelope shape remain largely unexplored. The nuclear envelope makes extensive and dynamic interactions with the underlying chromatin. Given this inexorable link between chromatin and the nuclear envelope, it is possible that local and global chromatin organization reciprocally impact nuclear envelope form and function. In this study, we use Drosophila salivary glands to show that the three-dimensional structure of the nuclear envelope can be altered with condensin II-mediated chromatin condensation. Both naturally occurring and engineered chromatin-envelope interactions are sufficient to allow chromatin compaction forces to drive distortions of the nuclear envelope. Weakening of the nuclear lamina further enhanced envelope remodeling, suggesting that envelope structure is capable of counterbalancing chromatin compaction forces. Our experiments reveal that the nucleoplasmic reticulum is born of the nuclear envelope and remains dynamic in that they can be reabsorbed into the nuclear envelope. We propose a model where inner nuclear envelope-chromatin tethers allow interphase chromosome movements to change nuclear envelope morphology. Therefore, interphase chromatin compaction may be a normal mechanism that reorganizes nuclear architecture, while under pathological conditions, such as laminopathies, compaction forces may contribute to defects in nuclear morphology. PMID:25552604

  17. Condensins exert force on chromatin-nuclear envelope tethers to mediate nucleoplasmic reticulum formation in Drosophila melanogaster.

    Science.gov (United States)

    Bozler, Julianna; Nguyen, Huy Q; Rogers, Gregory C; Bosco, Giovanni

    2014-12-30

    Although the nuclear envelope is known primarily for its role as a boundary between the nucleus and cytoplasm in eukaryotes, it plays a vital and dynamic role in many cellular processes. Studies of nuclear structure have revealed tissue-specific changes in nuclear envelope architecture, suggesting that its three-dimensional structure contributes to its functionality. Despite the importance of the nuclear envelope, the factors that regulate and maintain nuclear envelope shape remain largely unexplored. The nuclear envelope makes extensive and dynamic interactions with the underlying chromatin. Given this inexorable link between chromatin and the nuclear envelope, it is possible that local and global chromatin organization reciprocally impact nuclear envelope form and function. In this study, we use Drosophila salivary glands to show that the three-dimensional structure of the nuclear envelope can be altered with condensin II-mediated chromatin condensation. Both naturally occurring and engineered chromatin-envelope interactions are sufficient to allow chromatin compaction forces to drive distortions of the nuclear envelope. Weakening of the nuclear lamina further enhanced envelope remodeling, suggesting that envelope structure is capable of counterbalancing chromatin compaction forces. Our experiments reveal that the nucleoplasmic reticulum is born of the nuclear envelope and remains dynamic in that they can be reabsorbed into the nuclear envelope. We propose a model where inner nuclear envelope-chromatin tethers allow interphase chromosome movements to change nuclear envelope morphology. Therefore, interphase chromatin compaction may be a normal mechanism that reorganizes nuclear architecture, while under pathological conditions, such as laminopathies, compaction forces may contribute to defects in nuclear morphology. Copyright © 2015 Bozler et al.

  18. [Biochemical characterization of fractionated rat liver chromatin in experimental D-hypovitaminosis and after administration of steroidal drugs].

    Science.gov (United States)

    Levitskiĭ, E L; Kholodova, Iu D; Gubskiĭ, Iu I; Primak, R G; Chabannyĭ, V N; Kindruk, N L; Mozzhukhina, T G; Lenchevskaia, L K; Mironova, V N; Saad, L M

    1993-01-01

    Marked changes in the structural and functional characteristics of liver nuclear chromatin fractions are observed under experimental D-hypovitaminosis, which differ in the degree of transcriptional activity. DNA-polymerase activity and activity of the fraction, enriched with RNA-polymerase I, increases in the active fraction. Free radical LPO reactions are modified in the chromatin fraction with low activity and to the less degree in the active one. Disturbances of chromatine structural properties are caused with the change in the protein and lipid components of chromatin. Administration of ecdysterone preparations (separately and together with vitamin D3) has a partial corrective effect on structural and functional organization of nuclear chromatine. At the action of ecdysterone normalization of LPO reactions modified by pathological changes is observed in the chromatin fraction with low activity and to the less degree in the active one. This kind of influence corrects to the less degree chromatin functional activity and quantitative and qualitative modifications of its protein component. Simultaneous influence of ecdysterone and vitamin D3 leads to the partial normalization of the biochemical indices studied (except for those which characterize LPO reactions) mainly in the active chromatin fraction.

  19. Influence of histones and calcium and magnesium ions on the ultrastructure of chromatin in isolated nuclei of Pinus silvestris L. root meristem

    Directory of Open Access Journals (Sweden)

    Halina Michniewicz

    2015-01-01

    Full Text Available The width of chromatin fibrils in nuclei fixed in situ is about 10 nm. In nuclei isolated in the presence of Ca+2 and Mg+2 ions the fibrils coalesce, and thus their width secondarily increases, whereas in nuclei isolated without the presence of the cations the diameter of fibrils increases somewhat as compared with that in nuclei in situ, probably owing to absorption of nonchromatin nuclear proteins. Lysine histone extraction caused dispersion of condensed chromatin, and reintroduction of these proteins - its reconstruction. On the other hand, extraction and reintroduction of the arginine histone did not cause chromatin dispersion, but rather coalescence of the chromatin mass. Lysine histone extraction from material isolated in the presence of Ca+2 and Mg+2 ions caused the appearance of a large number of 10-nm fibrils, only sporadically seen in the control material, and disappearance of the 30-nm forms. Reintroduction of the lysine histone reduced the number of single fibrils and enhanced the appearance of coalescent form with 30 nm diameter. Removal of arginine histones did not produce disappearance of single fibrils, but reduced their diameter. Reintroduction of this fraction caused coalescence of chromatin threads, owing to which 90 per cent of the population consisted of fibrils with diameter around 30 nm.

  20. [Microcytomorphometric video-image detection of nuclear chromatin in ovarian cancer].

    Science.gov (United States)

    Grzonka, Dariusz; Kamiński, Kazimierz; Kaźmierczak, Wojciech

    2003-09-01

    Technology of detection of tissue preparates precisious evaluates contents of nuclear chromatine, largeness and shape of cellular nucleus, indicators of mitosis, DNA index, ploidy, phase-S fraction and other parameters. Methods of detection of picture are: microcytomorphometry video-image (MCMM-VI), flow, double flow and activated by fluorescence. Diagnostic methods of malignant neoplasm of ovary are still nonspecific and not precise, that is a reason of unsatisfied results of treatment. Evaluation of microcytomorphometric measurements of nuclear chromatine histopathologic tissue preparates (HP) of ovarian cancer and comparison to normal ovarian tissue. Estimated 10 paraffin embedded tissue preparates of serous ovarian cancer, 4 preparates mucinous cancer and 2 cases of tumor Kruckenberg patients operated in Clinic of Perinatology and Gynaecology Silesian Medical Academy in Zabrze in period 2001-2002, MCMM-VI estimation based on computer aided analysis system: microscope Axioscop 20, camera tv JVCTK-C 1380, CarlZeiss KS Vision 400 rel.3.0 software. Following MCMM-VI parameters assessed: count of pathologic nucleus, diameter of nucleus, area, min/max diameter ratio, equivalent circle diameter (Dcircle), mean of brightness (mean D), integrated optical density (IOD = area x mean D), DNA index and 2.5 c exceeding rate percentage (2.5 c ER%). MCMM-VI performed on the 160 areas of 16 preparates of cancer and 100 areas of normal ovarian tissue. Statistical analysis was performed by used t-Student test. We obtained stastistically significant higher values parameters of nuclear chromatine, DI, 2.5 c ER of mucinous cancer and tumor Kruckenberg comparison to serous cancer. MCMM-VI parameters of chromatine malignant ovarian neoplasm were statistically significantly higher than normal ovarian tissue. Cytometric and karyometric parametres of nuclear chromatine estimated MCMM-VI are useful in the diagnostics and prognosis of ovarian cancer.

  1. [Radiation-induced changes in the cellular chromatin of cereal plants cultivated in the area of the Chernobyl Atomic Electric Power Station].

    Science.gov (United States)

    Reshetnikov, V N; Lapteva, O K; Sosnovskaia, T F; Roshchenko, M V

    1996-01-01

    The changes in chromatin and DNA of seedling and callus tissues of cereals grown in the Chernobyl NPP zones with contamination levels of 15, 40 and 60 Ci/km2 were studied. Test samples produced by germinating and culturing seed cells of grown in contaminated areas were notable for the content of soluble polydesoxiribonucleotides, amount of DNA damages, DNA distribution over separate compartments of cell nucleus as compared to the control. Analogy between radiation-induced changes in chromatine and processes occurring in cell nucleus senescence was observed.

  2. Saccharomyces cerevisiae Linker Histone—Hho1p Maintains Chromatin Loop Organization during Ageing

    Directory of Open Access Journals (Sweden)

    Katya Uzunova

    2013-01-01

    Full Text Available Intricate, dynamic, and absolutely unavoidable ageing affects cells and organisms through their entire lifetime. Driven by diverse mechanisms all leading to compromised cellular functions and finally to death, this process is a challenge for researchers. The molecular mechanisms, the general rules that it follows, and the complex interplay at a molecular and cellular level are yet little understood. Here, we present our results showing a connection between the linker histones, the higher-order chromatin structures, and the process of chronological lifespan of yeast cells. By deleting the gene for the linker histone in Saccharomyces cerevisiae we have created a model for studying the role of chromatin structures mainly at its most elusive and so far barely understood higher-order levels of compaction in the processes of yeast chronological lifespan. The mutant cells demonstrated controversial features showing slower growth than the wild type combined with better survival during the whole process. The analysis of the global chromatin organization during different time points demonstrated certain loss of the upper levels of chromatin compaction in the cells without linker histone. The results underlay the importance of this histone for the maintenance of the chromatin loop structures during ageing.

  3. Excision of x-ray-induced thymine damage in chromatin from heated cells

    International Nuclear Information System (INIS)

    Warters, R.L.; Roti Roti, J.L.

    1979-01-01

    Experiments were performed to distinguish between two possible modes of hyperthermia-induced inhibition of thymine base damage excision from the DNA of CHO cells: (1) heat denaturation of excision enzyme(s) or (2) heat-induced alteration of the substrate for damage excision (chromatin). While hyperthermia (45 0 C, 15 min) had no apparent effect on the capacity of the excision enzymes to excise damage from DNA it had a dramatic effect (ca. 80% inhibition) on the ability of chromatin to serve as a substrate for unheated enzymes. These results suggest that hyperthermia-induced radiosensitization of CHO cells may be due primarily to lesions in the cellular chromatin

  4. Friend of Prmt1, a novel chromatin target of protein arginine methyltransferases

    NARCIS (Netherlands)

    T.B. van Dijk (Thamar); N. Gillemans (Nynke); C. Stein (Claudia); P. Fanis (Pavlos); J.A.A. Demmers (Jeroen); M.P.C. van de Corput (Mariëtte); J. Essers (Jeroen); F.G. Grosveld (Frank); U.M. Bauer (Uta-Maria); J.N.J. Philipsen (Sjaak)

    2010-01-01

    textabstractWe describe the isolation and characterization of Friend of Prmt1 (Fop), a novel chromatin target of protein arginine methyltransferases. Human Fop is encoded by C1orf77, a gene of previously unknown function. We show that Fop is tightly associated with chromatin, and that it is modified

  5. Biochemical and structural characterization of Cren7, a novel chromatin protein conserved among Crenarchaea

    OpenAIRE

    Guo, Li; Feng, Yingang; Zhang, Zhenfeng; Yao, Hongwei; Luo, Yuanming; Wang, Jinfeng; Huang, Li

    2007-01-01

    Archaea contain a variety of chromatin proteins consistent with the evolution of different genome packaging mechanisms. Among the two main kingdoms in the Archaea, Euryarchaeota synthesize histone homologs, whereas Crenarchaeota have not been shown to possess a chromatin protein conserved at the kingdom level. We report the identification of Cren7, a novel family of chromatin proteins highly conserved in the Crenarchaeota. A small, basic, methylated and abundant protein, Cren7 displays a high...

  6. Using local chromatin structure to improve CRISPR/Cas9 efficiency in zebrafish.

    Science.gov (United States)

    Chen, Yunru; Zeng, Shiyang; Hu, Ruikun; Wang, Xiangxiu; Huang, Weilai; Liu, Jiangfang; Wang, Luying; Liu, Guifen; Cao, Ying; Zhang, Yong

    2017-01-01

    Although the CRISPR/Cas9 has been successfully applied in zebrafish, considerable variations in efficiency have been observed for different gRNAs. The workload and cost of zebrafish mutant screening is largely dependent on the mutation rate of injected embryos; therefore, selecting more effective gRNAs is especially important for zebrafish mutant construction. Besides the sequence features, local chromatin structures may have effects on CRISPR/Cas9 efficiency, which remain largely unexplored. In the only related study in zebrafish, nucleosome organization was not found to have an effect on CRISPR/Cas9 efficiency, which is inconsistent with recent studies in vitro and in mammalian cell lines. To understand the effects of local chromatin structure on CRISPR/Cas9 efficiency in zebrafish, we first determined that CRISPR/Cas9 introduced genome editing mainly before the dome stage. Based on this observation, we reanalyzed our published nucleosome organization profiles and generated chromatin accessibility profiles in the 256-cell and dome stages using ATAC-seq technology. Our study demonstrated that chromatin accessibility showed positive correlation with CRISPR/Cas9 efficiency, but we did not observe a clear correlation between nucleosome organization and CRISPR/Cas9 efficiency. We constructed an online database for zebrafish gRNA selection based on local chromatin structure features that could prove beneficial to zebrafish homozygous mutant construction via CRISPR/Cas9.

  7. Relationship between chromatin structure and sensitivity to molecularly targeted auger electron radiation therapy.

    NARCIS (Netherlands)

    Terry, S.Y.A.; Vallis, K.A.

    2012-01-01

    PURPOSE: The open structure of euchromatin renders it susceptible to DNA damage by ionizing radiation (IR) compared with compact heterochromatin. The effect of chromatin configuration on the efficacy of Auger electron radiotherapy was investigated. METHODS AND MATERIALS: Chromatin structure was

  8. The Effect of Headquarter Integration Mechanisms on Subsidiaries’ New Product Success: From Control to Coordination Mechanism

    Directory of Open Access Journals (Sweden)

    Firmanzah Firmanzah

    2013-07-01

    Full Text Available New product launching (NPL to the local market by subsidiary managers is a strategic activity, which requires organizational supports from MNC global network. The NPL activity is marked by high level of uncertainty, risk, and market failure. Thus, a headquarter needs to integrate the subsidiary NPL into global strategy. There are two mechanisms to integrate subsidiaries’ activities during NPL process; coordination and control process. By testing the effect of each mechanism on role clarity and functional conflict, I found that coordination mechanism increase role clarity between headquarter and subsidiaries’ managers. In contrast, exercising control mechanism reduces role clarity and functional conflict between headquarter and subsidiaries’ managers during NPL. This research shows that both role clarity and functional conflict increase new product commercial performance introduced by subsidiary in the local market. Keywords: new product launching (NPL, coordination mechanism, control mechanism, and new product performance

  9. Protocol: methodology for chromatin immunoprecipitation (ChIP in Chlamydomonas reinhardtii

    Directory of Open Access Journals (Sweden)

    Strenkert Daniela

    2011-11-01

    Full Text Available Abstract We report on a detailed chromatin immunoprecipitation (ChIP protocol for the unicellular green alga Chlamydomonas reinhardtii. The protocol is suitable for the analysis of nucleosome occupancy, histone modifications and transcription factor binding sites at the level of mononucleosomes for targeted and genome-wide studies. We describe the optimization of conditions for crosslinking, chromatin fragmentation and antibody titer determination and provide recommendations and an example for the normalization of ChIP results as determined by real-time PCR.

  10. FIND: difFerential chromatin INteractions Detection using a spatial Poisson process.

    Science.gov (United States)

    Djekidel, Mohamed Nadhir; Chen, Yang; Zhang, Michael Q

    2018-02-12

    Polymer-based simulations and experimental studies indicate the existence of a spatial dependency between the adjacent DNA fibers involved in the formation of chromatin loops. However, the existing strategies for detecting differential chromatin interactions assume that the interacting segments are spatially independent from the other segments nearby. To resolve this issue, we developed a new computational method, FIND, which considers the local spatial dependency between interacting loci. FIND uses a spatial Poisson process to detect differential chromatin interactions that show a significant difference in their interaction frequency and the interaction frequency of their neighbors. Simulation and biological data analysis show that FIND outperforms the widely used count-based methods and has a better signal-to-noise ratio. © 2018 Djekidel et al.; Published by Cold Spring Harbor Laboratory Press.

  11. Sequential chromatin immunoprecipitation to detect SUMOylated MeCP2 in neurons

    Directory of Open Access Journals (Sweden)

    Tao Wu

    2016-03-01

    Full Text Available The small ubiquitin-like modifier (SUMO is a short peptide that can be covalently linked to proteins altering their function. SUMOylation is an essential post-translational modification (PTM. Because of its dynamic nature, low abundance levels, and technical limitations, the occupation of endogenous SUMOylated transcription factors at genomic loci is challenging to detect. The chromatin regulator Methyl CpG binding protein 2 (MeCP2 is subjected to PTMs including SUMO. Mutations in MeCP2 lead to Rett syndrome, a severe neurodevelopmental disorder. Here, we present an efficient method to perform sequential chromatin immunoprecipitation (Seq-ChIP for detecting SUMOylated MeCP2 in neurons. This Seq-ChIP technique is a useful tool to determine the occupancy of SUMOylated transcription and chromatin factors at specific genomic regions.

  12. Chromatin Heterogeneity and Distribution of Regulatory Elements in the Late-Replicating Intercalary Heterochromatin Domains of Drosophila melanogaster Chromosomes.

    Directory of Open Access Journals (Sweden)

    Varvara A Khoroshko

    Full Text Available Late-replicating domains (intercalary heterochromatin in the Drosophila genome display a number of features suggesting their organization is quite unique. Typically, they are quite large and encompass clusters of functionally unrelated tissue-specific genes. They correspond to the topologically associating domains and conserved microsynteny blocks. Our study aims at exploring further details of molecular organization of intercalary heterochromatin and has uncovered surprising heterogeneity of chromatin composition in these regions. Using the 4HMM model developed in our group earlier, intercalary heterochromatin regions were found to host chromatin fragments with a particular epigenetic profile. Aquamarine chromatin fragments (spanning 0.67% of late-replicating regions are characterized as a class of sequences that appear heterogeneous in terms of their decompactization. These fragments are enriched with enhancer sequences and binding sites for insulator proteins. They likely mark the chromatin state that is related to the binding of cis-regulatory proteins. Malachite chromatin fragments (11% of late-replicating regions appear to function as universal transitional regions between two contrasting chromatin states. Namely, they invariably delimit intercalary heterochromatin regions from the adjacent active chromatin of interbands. Malachite fragments also flank aquamarine fragments embedded in the repressed chromatin of late-replicating regions. Significant enrichment of insulator proteins CP190, SU(HW, and MOD2.2 was observed in malachite chromatin. Neither aquamarine nor malachite chromatin types appear to correlate with the positions of highly conserved non-coding elements (HCNE that are typically replete in intercalary heterochromatin. Malachite chromatin found on the flanks of intercalary heterochromatin regions tends to replicate earlier than the malachite chromatin embedded in intercalary heterochromatin. In other words, there exists a

  13. Mode transition coordinated control for a compound power-split hybrid car

    Science.gov (United States)

    Wang, Chen; Zhao, Zhiguo; Zhang, Tong; Li, Mengna

    2017-03-01

    With a compound power-split transmission directly connected to the engine in hybrid cars, dramatic fluctuations in engine output torque result in noticeable jerks when the car is in mode transition from electric drive mode to hybrid drive mode. This study designed a mode transition coordinated control strategy, and verified that strategy's effectiveness with both simulations and experiments. Firstly, the mode transition process was analyzed, and ride comfort issues during the mode transition process were demonstrated. Secondly, engine ripple torque was modeled using the measured cylinder pumping pressure when the engine was not in operation. The complete dynamic plant model of the power-split hybrid car was deduced, and its effectiveness was validated by a comparison of experimental and simulation results. Thirdly, a coordinated control strategy was designed to determine the desired engine torque, motor torque, and the moment of fuel injection. Active damping control with two degrees of freedom, based on reference output shaft speed estimation, was designed to mitigate driveline speed oscillations. Carrier torque estimation based on transmission kinematics and dynamics was used to suppress torque disturbance during engine cranking. The simulation and experimental results indicate that the proposed strategy effectively suppressed vehicle jerks and improved ride comfort during mode transition.

  14. Maize histone H2B-mCherry: a new fluorescent chromatin marker for somatic and meiotic chromosome research.

    Science.gov (United States)

    Howe, Elizabeth S; Clemente, Thomas E; Bass, Hank W

    2012-06-01

    Cytological studies of fluorescent proteins are rapidly yielding insights into chromatin structure and dynamics. Here we describe the production and cytological characterization of new transgenic maize lines expressing a fluorescent histone fusion protein, H2B-mCherry. The transgene is expressed under the control of the maize ubiquitin1 promoter, including its first exon and intron. Polymerase chain reaction-based genotyping and root-tip microscopy showed that most of the lines carrying the transgene also expressed it, producing bright uniform staining of nuclei. Further, plants showing expression in root tips at the seedling stage also showed expression during meiosis, late in the life cycle. Detailed high-resolution three-dimensional imaging of cells and nuclei from various somatic and meiotic cell types showed that H2B-mCherry produced remarkably clear images of chromatin and chromosome fiber morphology, as seen in somatic, male meiotic prophase, and early microgametophyte cells. H2B-mCherry also yielded distinct nucleolus staining and was shown to be compatible with fluorescence in situ hybridization. We found several instances where H2B-mCherry was superior to DAPI as a generalized chromatin stain. Our study establishes these histone H2B-mCherry lines as new biological reagents for visualizing chromatin structure, chromosome morphology, and nuclear dynamics in fixed and living cells in a model plant genetic system.

  15. Neuromotor task training for children with developmental coordination disorder: a controlled trial.

    NARCIS (Netherlands)

    Niemeijer, A.S.; Smits-Engelsman, B.C.M.; Schoemaker, M.M.

    2007-01-01

    The aim of this study was to evaluate neuromotor task training (NTT), a recently developed child-centred and task-oriented treatment programme for children with developmental coordination disorder (DCD). A treatment and a non-treatment control group of children with DCD were included. Children were

  16. Neuromotor Task Training for children with Developmental Coordination Disorder : a controlled trial

    NARCIS (Netherlands)

    Niemeijer, A. S.; Smits-Engelsman, B. C. M.; Schoemaker, M. M.

    The aim of this study was to evaluate neuromotor task training (NTT), a recently developed child-centred and task-oriented treatment programme for children with developmental coordination disorder (DCD). A treatment and a non-treatment control group of children with DCD were included. Children were

  17. Effect of ultraviolet irradiation on chromatin and its components from Yoshida ascites tumour cells

    International Nuclear Information System (INIS)

    Ramakrishnan, N.; Patil, M.S.; Pradhan, D.S.

    1981-01-01

    A study has been made of the effect of U.V. irradiation on Yoshida ascites tumour chromatin and its non-DNA components. The extractability of total histones was increased from 6% to 17% with an increase in U.V. incident radiation dose from 500J/m 2 to 2000J/m 2 . The polyacrylamide gel electrophoresis pattern of chromosomal proteins was examined after irradiation of the chromatin, and the effect of U.V. irradiation of chromatin on histones was also investigated. The results indicated that cross-linking of DNA with chromosomal proteins is an important category of U.V. radiation-induced lesions discerned in U.V. irradiated chromatin. Histones and several non-histone proteins seemed to undergo U.V. radiation-induced cross-linking with DNA, which was taken as indicative of their close association with DNA in the chromatin structure. It is suggested that the cross-link formation between DNA and non-histone proteins may be due to sequence-specific association of non-histone proteins with DNA. (U.K.)

  18. Chromatin structure in the unicellular algae Olisthodiscus luteus, Crypthecodinium cohnii and Peridiniun balticum.

    Science.gov (United States)

    Rizzo, P J; Burghardt, R C

    1980-01-01

    Isolated nuclei of the unicellular alga Olisthodiscus luteus, the uninucleate dinoflagellate Crypthecodinium cohnii and the binucleate dinoflagellate Peridinium balticum were lysed and deposited on grids by the microcentrifugation technique. The ultrastructure of the released chromatin fibers was compared to that of mouse liver nuclei. Chromatin from nuclei of Olisthodiscus luteus and the "eukaryotic" nuclei of Peridinium balticum, appeared as linear arrays of regularly repeating subunits which were identical in size and morphology to mouse nucleosomes. In contrast, the chromatin fibers from Crypthecodinium cohnii nuclei appeared as smoothe threads with a diameter of about 6.5 nm. Nuclear preparations containing mixtures of "dinokaryotic" and "eukaryotic" nuclei of Peridinium balticum also contained smooth fibers which most likely originated from the dinokaryotic nuclei. These and other results demonstrating the presence of nucleosomes in lower eukaryotes suggest that the subunit structure of chromatin arose very early in the evolution of the eukaryotic cell.

  19. Genetics, chromatin diminution, and sex chromosome evolution in the parasitic nematode genus Strongyloides.

    Science.gov (United States)

    Nemetschke, Linda; Eberhardt, Alexander G; Hertzberg, Hubertus; Streit, Adrian

    2010-10-12

    When chromatin diminution occurs during a cell division a portion of the chromatin is eliminated, resulting in daughter cells with a smaller amount of genetic material. In the parasitic roundworms Ascaris and Parascaris, chromatin diminution creates a genetic difference between the soma and the germline. However, the function of chromatin diminution remains a mystery, because the vast majority of the eliminated DNA is noncoding. Within the parasitic roundworm genus Strongyloides, S. stercoralis (in man) and S. ratti (in rat) employ XX/XO sex determination, but the situation in S. papillosus (in sheep) is different but controversial. We demonstrate genetically that S. papillosus employs sex-specific chromatin diminution to eliminate an internal portion of one of the two homologs of one chromosome pair in males. Contrary to ascarids, the eliminated DNA in S. papillosus contains a large number of genes. We demonstrate that the region undergoing diminution is homologous to the X chromosome of the closely related S. ratti. The flanking regions, which are not diminished, are homologous to the S. ratti autosome number I. Furthermore, we found that the diminished chromosome is not incorporated into sperm, resulting in a male-specific transmission ratio distortion. Our data indicate that on the evolutionary path to S. papillosus, the X chromosome fused with an autosome. Chromatin diminution serves to functionally restore an XX/XO sex-determining system. A consequence of the fusion and the process that copes with it is a transmission ratio distortion in males for certain loci. Copyright © 2010 Elsevier Ltd. All rights reserved.

  20. The SWI/SNF chromatin-remodeling factors BAF60a, b, and c in nutrient signaling and metabolic control

    Directory of Open Access Journals (Sweden)

    Ruo-Ran Wang

    2017-07-01

    Full Text Available ABSTRACT Metabolic syndrome has become a global epidemic that adversely affects human health. Both genetic and environmental factors contribute to the pathogenesis of metabolic disorders; however, the mechanisms that integrate these cues to regulate metabolic physiology and the development of metabolic disorders remain incompletely defined. Emerging evidence suggests that SWI/SNF chromatin-remodeling complexes are critical for directing metabolic reprogramming and adaptation in response to nutritional and other physiological signals. The ATP-dependent SWI/SNF chromatin-remodeling complexes comprise up to 11 subunits, among which the BAF60 subunit serves as a key link between the core complexes and specific transcriptional factors. The BAF60 subunit has three members, BAF60a, b, and c. The distinct tissue distribution patterns and regulatory mechanisms of BAF60 proteins confer each isoform with specialized functions in different metabolic cell types. In this review, we summarize the emerging roles and mechanisms of BAF60 proteins in the regulation of nutrient sensing and energy metabolism under physiological and disease conditions.

  1. Processing of DNA double strand breaks by alternative non-homologous end-joining in hyperacetylated chromatin.

    Science.gov (United States)

    Manova, Vasilissa; Singh, Satyendra K; Iliakis, George

    2012-08-22

    Mammalian cells employ at least two subpathways of non-homologous end-joining for the repair of ionizing radiation induced DNA double strand breaks: The canonical DNA-PK-dependent form of non-homologous end-joining (D-NHEJ) and an alternative, slowly operating, error-prone backup pathway (B-NHEJ). In contrast to D-NHEJ, which operates with similar efficiency throughout the cell cycle, B-NHEJ operates more efficiently in G2-phase. Notably, B-NHEJ also shows strong and as of yet unexplained dependency on growth activity and is markedly compromised in serum-deprived cells, or in cells that enter the plateau-phase of growth. The molecular mechanisms underpinning this response remain unknown. Since chromatin structure or changes in chromatin structure are prime candidate-B-NHEJ-modulators, we study here the role of chromatin hyperacetylation, either by HDAC2 knockdown or treatment with the HDAC inhibitor TSA, on the repair by B-NHEJ of IR-induced DSBs. siRNA-mediated knockdown of HDAC2 fails to provoke histone hyperacetylation in Lig4-/- MEFs and has no detectable effect on B-NHEJ function. Treatment with TSA that inhibits multiple HDACs causes efficient, reversible chromatin hyperacetylation in Lig4-/- MEFs, as well as in human HCT116 Lig4-/- cells and the human glioma cell line M059K. The IR yield of DSBs in TSA-treated cells remains similar to that of untreated cells despite the expected chromatin relaxation. In addition, chromatin hyperacetylation leaves unchanged repair of DSBs by B-NHEJ in irradiated exponentially growing, or plateau-phase cells. Notably, under the experimental conditions employed here, chromatin hyperacetylation fails to detectably modulate B-NHEJ in M059K cells as well. In summary, the results show that chromatin acetylation or deacetylation does not affect the kinetics of alternative NHEJ in all types of cells examined both in exponentially growing and serum deprived cultures. We conclude that parameters beyond chromatin acetylation determine B

  2. The N-terminal domain determines the affinity and specificity of H1 binding to chromatin

    International Nuclear Information System (INIS)

    Öberg, Christine; Belikov, Sergey

    2012-01-01

    Highlights: ► wt Human histone H1.4 and hH1.4 devoid of N-terminal domain, ΔN-hH1.4, were compared. ► Both histones bind to chromatin, however, ΔN-hH1.4 displays lower binding affinity. ► Interaction of ΔN-hH1.4 with chromatin includes a significant unspecific component. ► N-terminal domain is a determinant of specificity of histone H1 binding to chromatin. -- Abstract: Linker histone H1, one of the most abundant nuclear proteins in multicellular eukaryotes, is a key component of the chromatin structure mainly due to its role in the formation and maintenance of the 30 nm chromatin fiber. It has a three-domain structure; a central globular domain flanked by a short N-terminal domain and a long, highly basic C-terminal domain. Previous studies have shown that the binding abilities of H1 are at large determined by the properties of the C-terminal domain; much less attention has been paid to role of the N-terminal domain. We have previously shown that H1 can be reconstituted via cytoplasmic mRNA injection in Xenopus oocytes, cells that lack somatic H1. The heterologously expressed H1 proteins are incorporated into in vivo assembled chromatin at specific sites and the binding event is monitored as an increase in nucleosomal repeat length (NRL). Using this setup we have here compared the binding properties of wt-H1.4 and hH1.4 devoid of its N-terminal domain (ΔN-hH1.4). The ΔN-hH1.4 displays a drastically lower affinity for chromatin binding as compared to the wild type hH1.4. Our data also indicates that ΔN-hH1.4 is more prone to unspecific chromatin binding than the wild type. We conclude that the N-terminal domain of H1 is an important determinant of affinity and specificity of H1-chromatin interactions.

  3. Central coordination as an alternative for local coordination in a multicenter randomized controlled trial: the FAITH trial experience

    Directory of Open Access Journals (Sweden)

    Zielinski Stephanie M

    2012-01-01

    Full Text Available Abstract Background Surgeons in the Netherlands, Canada and the US participate in the FAITH trial (Fixation using Alternative Implants for the Treatment of Hip fractures. Dutch sites are managed and visited by a financed central trial coordinator, whereas most Canadian and US sites have local study coordinators and receive per patient payment. This study was aimed to assess how these different trial management strategies affected trial performance. Methods Details related to obtaining ethics approval, time to trial start-up, inclusion, and percentage completed follow-ups were collected for each trial site and compared. Pre-trial screening data were compared with actual inclusion rates. Results Median trial start-up ranged from 41 days (P25-P75 10-139 in the Netherlands to 232 days (P25-P75 98-423 in Canada (p = 0.027. The inclusion rate was highest in the Netherlands; median 1.03 patients (P25-P75 0.43-2.21 per site per month, representing 34.4% of the total eligible population. It was lowest in Canada; 0.14 inclusions (P25-P75 0.00-0.28, representing 3.9% of eligible patients (p Conclusions In this trial, a central financed trial coordinator to manage all trial related tasks in participating sites resulted in better trial progression and a similar follow-up. It is therefore a suitable alternative for appointing these tasks to local research assistants. The central coordinator approach can enable smaller regional hospitals to participate in multicenter randomized controlled trials. Circumstances such as available budget, sample size, and geographical area should however be taken into account when choosing a management strategy. Trial Registration ClinicalTrials.gov: NCT00761813

  4. Poly(ADP-ribosyl)ation of Methyl CpG Binding Domain Protein 2 Regulates Chromatin Structure*

    Science.gov (United States)

    Becker, Annette; Zhang, Peng; Allmann, Lena; Meilinger, Daniela; Bertulat, Bianca; Eck, Daniel; Hofstaetter, Maria; Bartolomei, Giody; Hottiger, Michael O.; Schreiber, Valérie; Leonhardt, Heinrich; Cardoso, M. Cristina

    2016-01-01

    The epigenetic information encoded in the genomic DNA methylation pattern is translated by methylcytosine binding proteins like MeCP2 into chromatin topology and structure and gene activity states. We have shown previously that the MeCP2 level increases during differentiation and that it causes large-scale chromatin reorganization, which is disturbed by MeCP2 Rett syndrome mutations. Phosphorylation and other posttranslational modifications of MeCP2 have been described recently to modulate its function. Here we show poly(ADP-ribosyl)ation of endogenous MeCP2 in mouse brain tissue. Consequently, we found that MeCP2 induced aggregation of pericentric heterochromatin and that its chromatin accumulation was enhanced in poly(ADP-ribose) polymerase (PARP) 1−/− compared with wild-type cells. We mapped the poly(ADP-ribosyl)ation domains and engineered MeCP2 mutation constructs to further analyze potential effects on DNA binding affinity and large-scale chromatin remodeling. Single or double deletion of the poly(ADP-ribosyl)ated regions and PARP inhibition increased the heterochromatin clustering ability of MeCP2. Increased chromatin clustering may reflect increased binding affinity. In agreement with this hypothesis, we found that PARP-1 deficiency significantly increased the chromatin binding affinity of MeCP2 in vivo. These data provide novel mechanistic insights into the regulation of MeCP2-mediated, higher-order chromatin architecture and suggest therapeutic opportunities to manipulate MeCP2 function. PMID:26772194

  5. Mathematical analysis and coordinated current allocation control in battery power module systems

    Science.gov (United States)

    Han, Weiji; Zhang, Liang

    2017-12-01

    As the major energy storage device and power supply source in numerous energy applications, such as solar panels, wind plants, and electric vehicles, battery systems often face the issue of charge imbalance among battery cells/modules, which can accelerate battery degradation, cause more energy loss, and even incur fire hazard. To tackle this issue, various circuit designs have been developed to enable charge equalization among battery cells/modules. Recently, the battery power module (BPM) design has emerged to be one of the promising solutions for its capability of independent control of individual battery cells/modules. In this paper, we propose a new current allocation method based on charging/discharging space (CDS) for performance control in BPM systems. Based on the proposed method, the properties of CDS-based current allocation with constant parameters are analyzed. Then, real-time external total power requirement is taken into account and an algorithm is developed for coordinated system performance control. By choosing appropriate control parameters, the desired system performance can be achieved by coordinating the module charge balance and total power efficiency. Besides, the proposed algorithm has complete analytical solutions, and thus is very computationally efficient. Finally, the efficacy of the proposed algorithm is demonstrated using simulations.

  6. Introducing enteral feeding induces intestinal subclinical inflammation and respective chromatin changes in preterm pigs

    DEFF Research Database (Denmark)

    Willems, Rhea; Krych, Lukasz; Rybicki, Verena

    2015-01-01

    AIM: To analyze how enteral food introduction affects intestinal gene regulation and chromatin structure in preterm pigs. MATERIALS & METHODS: Preterm pigs were fed parenteral nutrition plus/minus slowly increasing volumes of enteral nutrition. Intestinal gene-expression and chromatin structure......; no significant differences for colostrum) with corresponding decondensed chromatin configurations. On histology this correlated with mild mucosal lesions, particularly in formula-fed pigs. In CaCo-2 cells, histone hyperacetylation led to a marked increase in TLR4 mRNA and increased IL8 expression upon...... stimulation with lipopolysaccharide (median: 7.0; interquartile range: 5.63-8.85) compared with naive cells (median 4.2; interquartile range: 2.45-6.33; p = 0.03). CONCLUSION: Enteral feeding, particular with formula, induces subclinical inflammation in the premature intestine and more open chromatin...

  7. Antisense RNA Controls LRP1 Sense Transcript Expression through Interaction with a Chromatin-Associated Protein, HMGB2

    Directory of Open Access Journals (Sweden)

    Yasunari Yamanaka

    2015-05-01

    Full Text Available Long non-coding RNAs (lncRNAs, including natural antisense transcripts (NATs, are expressed more extensively than previously anticipated and have widespread roles in regulating gene expression. Nevertheless, the molecular mechanisms of action of the majority of NATs remain largely unknown. Here, we identify a NAT of low-density lipoprotein receptor-related protein 1 (Lrp1, referred to as Lrp1-AS, that negatively regulates Lrp1 expression. We show that Lrp1-AS directly binds to high-mobility group box 2 (Hmgb2 and inhibits the activity of Hmgb2 to enhance Srebp1a-dependent transcription of Lrp1. Short oligonucleotides targeting Lrp1-AS inhibit the interaction of antisense transcript and Hmgb2 protein and increase Lrp1 expression by enhancing Hmgb2 activity. Quantitative RT-PCR analysis of brain tissue samples from Alzheimer’s disease patients and aged-matched controls revealed upregulation of LRP1-AS and downregulation of LRP1. Our data suggest a regulatory mechanism whereby a NAT interacts with a ubiquitous chromatin-associated protein to modulate its activity in a locus-specific fashion.

  8. histone H3 predominantly mark the pericentromeric chromatin

    Indian Academy of Sciences (India)

    SANTOSH KUMAR SHARMA

    pericentromeric chromatin during mitosis in monokinetic plants. J. Genet. .... bigger), cytological preparations (easy to difficult) as well as their habitat ... Poaceae. Monocot. Land. 14. Triticum aestivum. Common wheat. Poaceae. Monocot. Land.

  9. Chromatin- and temperature-dependent modulation of radiation-induced double-strand breaks.

    Science.gov (United States)

    Elmroth, K; Nygren, J; Stenerlöw, B; Hultborn, R

    2003-10-01

    To investigate the influence of chromatin organization and scavenging capacity in relation to irradiation temperature on the induction of double-strand breaks (DSB) in structures derived from human diploid fibroblasts. Agarose plugs with different chromatin structures (intact cells+/-wortmannin, permeabilized cells with condensed chromatin, nucleoids and DNA) were prepared and irradiated with X-rays at 2 or 37 degrees C and lysed using two different lysis protocols (new ice-cold lysis or standard lysis at 37 degrees C). Induction of DSB was determined by constant-field gel electrophoresis. The dose-modifying factor (DMF(temp)) for irradiation at 37 compared with 2 degrees C was 0.92 in intact cells (i.e. more DSB induced at 2 degrees C), but gradually increased to 1.5 in permeabilized cells, 2.2 in nucleoids and 2.6 in naked DNA, suggesting a role of chromatin organization for temperature modulation of DNA damage. In addition, DMF(temp) was influenced by the presence of 0.1 M DMSO or 30 mM glutathione, but not by post-irradiation temperature. The protective effect of low temperature was correlated to the indirect effects of ionizing radiation and was not dependent on post-irradiation temperature. Reasons for a dose modifying factor <1 in intact cells are discussed.

  10. Transcriptional activation by the thyroid hormone receptor through ligand-dependent receptor recruitment and chromatin remodelling.

    Science.gov (United States)

    Grøntved, Lars; Waterfall, Joshua J; Kim, Dong Wook; Baek, Songjoon; Sung, Myong-Hee; Zhao, Li; Park, Jeong Won; Nielsen, Ronni; Walker, Robert L; Zhu, Yuelin J; Meltzer, Paul S; Hager, Gordon L; Cheng, Sheue-yann

    2015-04-28

    A bimodal switch model is widely used to describe transcriptional regulation by the thyroid hormone receptor (TR). In this model, the unliganded TR forms stable, chromatin-bound complexes with transcriptional co-repressors to repress transcription. Binding of hormone dissociates co-repressors and facilitates recruitment of co-activators to activate transcription. Here we show that in addition to hormone-independent TR occupancy, ChIP-seq against endogenous TR in mouse liver tissue demonstrates considerable hormone-induced TR recruitment to chromatin associated with chromatin remodelling and activated gene transcription. Genome-wide footprinting analysis using DNase-seq provides little evidence for TR footprints both in the absence and presence of hormone, suggesting that unliganded TR engagement with repressive complexes on chromatin is, similar to activating receptor complexes, a highly dynamic process. This dynamic and ligand-dependent interaction with chromatin is likely shared by all steroid hormone receptors regardless of their capacity to repress transcription in the absence of ligand.

  11. EBNA1 efficiently assembles on chromatin containing the Epstein-Barr virus latent origin of replication

    International Nuclear Information System (INIS)

    Avolio-Hunter, Tina M.; Frappier, Lori

    2003-01-01

    The Epstein-Barr virus (EBV) protein, EBNA1, activates the replication of latent EBV episomes and the transcription of EBV latency genes by binding to recognition sites in the DS and FR elements of oriP. Since EBV episomes exist as chromatin, we have examined the interaction of EBNA1 with oriP templates assembled with physiologically spaced nucleosomes. We show that EBNA1 retains the ability to efficiently bind its recognition sites within the DS and FR elements in oriP chromatin and that this property is intrinsic to the EBNA1 DNA binding domain. The efficient assembly of EBNA1 on oriP chromatin does not require ATP-dependent chromatin remodeling factors and does not cause the precise positioning of nucleosomes within or adjacent to the FR and DS elements. Thus EBNA1 belongs to a select group of proteins that can efficiently access their recognition sites within nucleosomes without the need for additional chromatin remodeling factors

  12. A Systematic Analysis of Factors Localized to Damaged Chromatin Reveals PARP-Dependent Recruitment of Transcription Factors.

    Science.gov (United States)

    Izhar, Lior; Adamson, Britt; Ciccia, Alberto; Lewis, Jedd; Pontano-Vaites, Laura; Leng, Yumei; Liang, Anthony C; Westbrook, Thomas F; Harper, J Wade; Elledge, Stephen J

    2015-06-09

    Localization to sites of DNA damage is a hallmark of DNA damage response (DDR) proteins. To identify DDR factors, we screened epitope-tagged proteins for localization to sites of chromatin damaged by UV laser microirradiation and found >120 proteins that localize to damaged chromatin. These include the BAF tumor suppressor complex and the amyotrophic lateral sclerosis (ALS) candidate protein TAF15. TAF15 contains multiple domains that bind damaged chromatin in a poly-(ADP-ribose) polymerase (PARP)-dependent manner, suggesting a possible role as glue that tethers multiple PAR chains together. Many positives were transcription factors; > 70% of randomly tested transcription factors localized to sites of DNA damage, and of these, ∼90% were PARP dependent for localization. Mutational analyses showed that localization to damaged chromatin is DNA-binding-domain dependent. By examining Hoechst staining patterns at damage sites, we see evidence of chromatin decompaction that is PARP dependent. We propose that PARP-regulated chromatin remodeling at sites of damage allows transient accessibility of DNA-binding proteins. Copyright © 2015 The Authors. Published by Elsevier Inc. All rights reserved.

  13. A Systematic Analysis of Factors Localized to Damaged Chromatin Reveals PARP-Dependent Recruitment of Transcription Factors

    Directory of Open Access Journals (Sweden)

    Lior Izhar

    2015-06-01

    Full Text Available Localization to sites of DNA damage is a hallmark of DNA damage response (DDR proteins. To identify DDR factors, we screened epitope-tagged proteins for localization to sites of chromatin damaged by UV laser microirradiation and found >120 proteins that localize to damaged chromatin. These include the BAF tumor suppressor complex and the amyotrophic lateral sclerosis (ALS candidate protein TAF15. TAF15 contains multiple domains that bind damaged chromatin in a poly-(ADP-ribose polymerase (PARP-dependent manner, suggesting a possible role as glue that tethers multiple PAR chains together. Many positives were transcription factors; > 70% of randomly tested transcription factors localized to sites of DNA damage, and of these, ∼90% were PARP dependent for localization. Mutational analyses showed that localization to damaged chromatin is DNA-binding-domain dependent. By examining Hoechst staining patterns at damage sites, we see evidence of chromatin decompaction that is PARP dependent. We propose that PARP-regulated chromatin remodeling at sites of damage allows transient accessibility of DNA-binding proteins.

  14. Dietary polyphenols and chromatin remodeling.

    Science.gov (United States)

    Russo, Gian Luigi; Vastolo, Viviana; Ciccarelli, Marco; Albano, Luigi; Macchia, Paolo Emidio; Ungaro, Paola

    2017-08-13

    Polyphenols are the most abundant phytochemicals in fruits, vegetables, and plant-derived beverages. Recent findings suggest that polyphenols display the ability to reverse adverse epigenetic regulation involved in pathological conditions, such as obesity, metabolic disorder, cardiovascular and neurodegenerative diseases, and various forms of cancer. Epigenetics, defined as heritable changes to the transcriptome, independent from those occurring in the genome, includes DNA methylation, histone modifications, and posttranscriptional gene regulation by noncoding RNAs. Sinergistically and cooperatively, these processes regulate gene expression by changing chromatin organization and DNA accessibility. Such induced epigenetic changes can be inherited during cell division, resulting in permanent maintenance of the acquired phenotype, but they may also occur throughout an individual life-course and may ultimately influence phenotypic outcomes (health and disease risk). In the last decade, a number of studies have shown that nutrients can affect metabolic traits by altering the structure of chromatin and directly regulate both transcription and translational processes. In this context, dietary polyphenol-targeted epigenetics becomes an attractive approach for disease prevention and intervention. Here, we will review how polyphenols, including flavonoids, curcuminoids, and stilbenes, modulate the establishment and maintenance of key epigenetic marks, thereby influencing gene expression and, hence, disease risk and health.

  15. Reorganization of Damaged Chromatin by the Exchange of Histone Variant H2A.Z-2

    Energy Technology Data Exchange (ETDEWEB)

    Nishibuchi, Ikuno [Department of Cellular Biology, Research Institute for Radiation Biology and Medicine, Hiroshima University, Hiroshima (Japan); Department of Radiation Oncology, Graduate School of Biomedical and Health Sciences, Hiroshima University, Hiroshima (Japan); Department of Radiation Oncology, Hiroshima Prefectural Hospital, Hiroshima (Japan); Suzuki, Hidekazu; Kinomura, Aiko; Sun, Jiying; Liu, Ning-Ang [Department of Cellular Biology, Research Institute for Radiation Biology and Medicine, Hiroshima University, Hiroshima (Japan); Horikoshi, Yasunori [Department of Cellular Biology, Research Institute for Radiation Biology and Medicine, Hiroshima University, Hiroshima (Japan); Research Center for Mathematics of Chromatin Live Dynamics, Hiroshima University, Hiroshima (Japan); Shima, Hiroki [Department of Biochemistry, Graduate School of Medical Sciences, Tohoku University, Sendai (Japan); Kusakabe, Masayuki; Harata, Masahiko [Laboratory of Molecular Biology, Graduate School of Agricultural Science, Tohoku University, Sendai (Japan); Fukagawa, Tatsuo [Department of Molecular Genetics, National Institute of Genetics and The Graduate University for Advanced Studies, Mishima (Japan); Ikura, Tsuyoshi [Laboratory of Chromatin Regulatory Network, Department of Mutagenesis, Radiation Biology Center, Kyoto University, Kyoto (Japan); Ishida, Takafumi [Department of Cardiovascular Medicine, Graduate School of Biomedical and Health Sciences, Hiroshima University, Hiroshima (Japan); Nagata, Yasushi [Department of Radiation Oncology, Graduate School of Biomedical and Health Sciences, Hiroshima University, Hiroshima (Japan); Tashiro, Satoshi, E-mail: ktashiro@hiroshima-u.ac.jp [Department of Cellular Biology, Research Institute for Radiation Biology and Medicine, Hiroshima University, Hiroshima (Japan); Research Center for Mathematics of Chromatin Live Dynamics, Hiroshima University, Hiroshima (Japan)

    2014-07-15

    Purpose: The reorganization of damaged chromatin plays an important role in the regulation of the DNA damage response. A recent study revealed the presence of 2 vertebrate H2A.Z isoforms, H2A.Z-1 and H2A.Z-2. However, the roles of the vertebrate H2A.Z isoforms are still unclear. Thus, in this study we examined the roles of the vertebrate H2A.Z isoforms in chromatin reorganization after the induction of DNA double-strand breaks (DSBs). Methods and Materials: To examine the dynamics of H2A.Z isoforms at damaged sites, we constructed GM0637 cells stably expressing each of the green fluorescent protein (GFP)-labeled H2A.Z isoforms, and performed fluorescence recovery after photobleaching (FRAP) analysis and inverted FRAP analysis in combination with microirradiation. Immunofluorescence staining using an anti-RAD51 antibody was performed to study the kinetics of RAD51 foci formation after 2-Gy irradiation of wild-type (WT), H2A.Z-1- and H2A.Z-2-deficient DT40 cells. Colony-forming assays were also performed to compare the survival rates of WT, H2A.Z-1-, and H2A.Z-2-deficient DT40 cells with control, and H2A.Z-1- and H2A.Z-2-depleted U2OS cells after irradiation. Results: FRAP analysis revealed that H2A.Z-2 was incorporated into damaged chromatin just after the induction of DSBs, whereas H2A.Z-1 remained essentially unchanged. Inverted FRAP analysis showed that H2A.Z-2 was released from damaged chromatin. These findings indicated that H2A.Z-2 was exchanged at DSB sites immediately after the induction of DSBs. RAD51 focus formation after ionizing irradiation was disturbed in H2A.Z-2-deficient DT40 cells but not in H2A.Z-1-deficient cells. The survival rate of H2A.Z-2-deficient cells after irradiation was lower than those of WT and H2A.Z-1- DT40 cells. Similar to DT40 cells, H2A.Z-2-depleted U2OS cells were also radiation-sensitive compared to control and H2A.Z-1-depleted cells. Conclusions: We found that vertebrate H2A.Z-2 is involved in the regulation of the DNA

  16. Reorganization of Damaged Chromatin by the Exchange of Histone Variant H2A.Z-2

    International Nuclear Information System (INIS)

    Nishibuchi, Ikuno; Suzuki, Hidekazu; Kinomura, Aiko; Sun, Jiying; Liu, Ning-Ang; Horikoshi, Yasunori; Shima, Hiroki; Kusakabe, Masayuki; Harata, Masahiko; Fukagawa, Tatsuo; Ikura, Tsuyoshi; Ishida, Takafumi; Nagata, Yasushi; Tashiro, Satoshi

    2014-01-01

    Purpose: The reorganization of damaged chromatin plays an important role in the regulation of the DNA damage response. A recent study revealed the presence of 2 vertebrate H2A.Z isoforms, H2A.Z-1 and H2A.Z-2. However, the roles of the vertebrate H2A.Z isoforms are still unclear. Thus, in this study we examined the roles of the vertebrate H2A.Z isoforms in chromatin reorganization after the induction of DNA double-strand breaks (DSBs). Methods and Materials: To examine the dynamics of H2A.Z isoforms at damaged sites, we constructed GM0637 cells stably expressing each of the green fluorescent protein (GFP)-labeled H2A.Z isoforms, and performed fluorescence recovery after photobleaching (FRAP) analysis and inverted FRAP analysis in combination with microirradiation. Immunofluorescence staining using an anti-RAD51 antibody was performed to study the kinetics of RAD51 foci formation after 2-Gy irradiation of wild-type (WT), H2A.Z-1- and H2A.Z-2-deficient DT40 cells. Colony-forming assays were also performed to compare the survival rates of WT, H2A.Z-1-, and H2A.Z-2-deficient DT40 cells with control, and H2A.Z-1- and H2A.Z-2-depleted U2OS cells after irradiation. Results: FRAP analysis revealed that H2A.Z-2 was incorporated into damaged chromatin just after the induction of DSBs, whereas H2A.Z-1 remained essentially unchanged. Inverted FRAP analysis showed that H2A.Z-2 was released from damaged chromatin. These findings indicated that H2A.Z-2 was exchanged at DSB sites immediately after the induction of DSBs. RAD51 focus formation after ionizing irradiation was disturbed in H2A.Z-2-deficient DT40 cells but not in H2A.Z-1-deficient cells. The survival rate of H2A.Z-2-deficient cells after irradiation was lower than those of WT and H2A.Z-1- DT40 cells. Similar to DT40 cells, H2A.Z-2-depleted U2OS cells were also radiation-sensitive compared to control and H2A.Z-1-depleted cells. Conclusions: We found that vertebrate H2A.Z-2 is involved in the regulation of the DNA

  17. Coordinated voltage control for multiple wind plants in Eastern Wyoming. Analysis, field experience and validation

    Energy Technology Data Exchange (ETDEWEB)

    Miller, Nicholas; MacDowell, Jason; Chmiel, Gary; Konopinski, Ryan; Gautam, Durga [GE Energy, Schenectady, NY (United States); Laughter, Grant; Hagen, Dave [PacifiCorp., Salt Lake City, UT (United States)

    2012-07-01

    At high levels of wind power penetration, multiple wind plants may be the predominant generation resource over large geographic areas. Thus, not only do wind plants need to provide a high level of functionality, they must coordinate properly with each other. This paper describes the analysis and field testing of wind plant voltage controllers designed to improve system voltage performance through passive coordination. The described wind power plant controls can coordinate the real and reactive power response of multiple wind turbines and thereby make the plant function as a single ''grid friendly'' power generation source. For this application, involving seven large wind plants with predominantly GE wind turbines in Eastern Wyoming, the voltage portion of the controllers were configured and tuned to allow the collective reactive power response of multiple wind plants in the region to work well together. This paper presents the results of the initial configuration and tuning study, and the results of the subsequent field tuning and testing of the modified controls. The paper also presents some comparisons of the measured field performance with the stability simulation models, which show that the available wind plant models provide accurate, high fidelity results for actual operating conditions of commercial wind power plants. (orig.)

  18. High-Resolution Mapping of Chromatin Conformation in Cardiac Myocytes Reveals Structural Remodeling of the Epigenome in Heart Failure.

    Science.gov (United States)

    Rosa-Garrido, Manuel; Chapski, Douglas J; Schmitt, Anthony D; Kimball, Todd H; Karbassi, Elaheh; Monte, Emma; Balderas, Enrique; Pellegrini, Matteo; Shih, Tsai-Ting; Soehalim, Elizabeth; Liem, David; Ping, Peipei; Galjart, Niels J; Ren, Shuxun; Wang, Yibin; Ren, Bing; Vondriska, Thomas M

    2017-10-24

    Cardiovascular disease is associated with epigenomic changes in the heart; however, the endogenous structure of cardiac myocyte chromatin has never been determined. To investigate the mechanisms of epigenomic function in the heart, genome-wide chromatin conformation capture (Hi-C) and DNA sequencing were performed in adult cardiac myocytes following development of pressure overload-induced hypertrophy. Mice with cardiac-specific deletion of CTCF (a ubiquitous chromatin structural protein) were generated to explore the role of this protein in chromatin structure and cardiac phenotype. Transcriptome analyses by RNA-seq were conducted as a functional readout of the epigenomic structural changes. Depletion of CTCF was sufficient to induce heart failure in mice, and human patients with heart failure receiving mechanical unloading via left ventricular assist devices show increased CTCF abundance. Chromatin structural analyses revealed interactions within the cardiac myocyte genome at 5-kb resolution, enabling examination of intra- and interchromosomal events, and providing a resource for future cardiac epigenomic investigations. Pressure overload or CTCF depletion selectively altered boundary strength between topologically associating domains and A/B compartmentalization, measurements of genome accessibility. Heart failure involved decreased stability of chromatin interactions around disease-causing genes. In addition, pressure overload or CTCF depletion remodeled long-range interactions of cardiac enhancers, resulting in a significant decrease in local chromatin interactions around these functional elements. These findings provide a high-resolution chromatin architecture resource for cardiac epigenomic investigations and demonstrate that global structural remodeling of chromatin underpins heart failure. The newly identified principles of endogenous chromatin structure have key implications for epigenetic therapy. © 2017 The Authors.

  19. A Method to Identify Nucleolus-Associated Chromatin Domains (NADs).

    Science.gov (United States)

    Carpentier, Marie-Christine; Picart-Picolo, Ariadna; Pontvianne, Frédéric

    2018-01-01

    The nuclear context needs to be taken into consideration to better understand the mechanisms shaping the epigenome and its organization, and therefore its impact on gene expression. For example, in Arabidopsis, heterochromatin is preferentially localized at the nuclear and the nucleolar periphery. Although chromatin domains associating with the nuclear periphery remain to be identified in plant cells, Nucleolus Associated chromatin Domains (NADs) can be identified thanks to a protocol allowing the isolation of pure nucleoli. We describe here the protocol enabling the identification of NADs in Arabidopsis. Providing the transfer of a nucleolus marker as described here in other crop species, this protocol is broadly applicable.

  20. Retention of the Native Epigenome in Purified Mammalian Chromatin.

    Directory of Open Access Journals (Sweden)

    Andreas H Ehrensberger

    Full Text Available A protocol is presented for the isolation of native mammalian chromatin as fibers of 25-250 nucleosomes under conditions that preserve the natural epigenetic signature. The material is composed almost exclusively of histones and DNA and conforms to the structure expected by electron microscopy. All sequences probed for were retained, indicating that the material is representative of the majority of the genome. DNA methylation marks and histone marks resembled the patterns observed in vivo. Importantly, nucleosome positions also remained largely unchanged, except on CpG islands, where nucleosomes were found to be unstable. The technical challenges of reconstituting biochemical reactions with native mammalian chromatin are discussed.

  1. Coordinated Control of Wind Turbine and Energy Storage System for Reducing Wind Power Fluctuation

    Energy Technology Data Exchange (ETDEWEB)

    Muljadi, Eduard [National Renewable Energy Laboratory (NREL), Golden, CO (United States); Kim, Chunghun [Hanyang University; Chung, Chung Choo [Hanyang University

    2017-11-13

    This paper proposes a coordinated control of wind turbine and energy storage system (ESS). Because wind power (WP) is highly dependent on variable wind speed and could induce a severe stability problem to power system especially when the WP has high penetration level. To solve this problem, many power generation corporations or grid operators recently use the ESS. It has very quick response and good performance for reducing the impact of WP fluctuation but has high cost for its installation. Therefore, it is very important to design the control algorithm considering both ESS capacity and grid reliability. Thus, we propose the control algorithm to mitigate the WP fluctuation by using the coordinated control between wind turbine and ESS considering ESS state of charge (SoC) and the WP fluctuation. From deloaded control according to WP fluctuation and ESS SoC management, we can expect the ESS lifespan expansion and improved grid reliability. The effectiveness of the proposed method is validated in MATLAB/Simulink considering power system including both wind turbine generator and conventional generators which react to system frequency deviation.

  2. C/EBP maintains chromatin accessibility in liver and facilitates glucocorticoid receptor recruitment to steroid response elements

    DEFF Research Database (Denmark)

    Grøntved, Lars; John, Sam; Baek, Songjoon

    2013-01-01

    -binding sites are occupied by C/EBPβ. At the majority of these sites, chromatin is preaccessible suggesting a priming function of C/EBPβ for GR recruitment. Disruption of C/EBPβ binding to chromatin results in attenuation of pre-programmed chromatin accessibility, GR recruitment and GR-induced chromatin...... remodelling specifically at sites co-occupied by GR and C/EBPβ. Collectively, we demonstrate a highly cooperative mechanism by which C/EBPβ regulates selective GR binding to the genome in liver tissue. We suggest that selective targeting of GR in other tissues is likely mediated by the combined action of cell...

  3. Comparative proteome analysis between C . briggsae embryos and larvae reveals a role of chromatin modification proteins in embryonic cell division

    KAUST Repository

    An, Xiaomeng

    2017-06-21

    Caenorhabditis briggsae has emerged as a model for comparative biology against model organism C. elegans. Most of its cell fate specifications are completed during embryogenesis whereas its cell growth is achieved mainly in larval stages. The molecular mechanism underlying the drastic developmental changes is poorly understood. To gain insights into the molecular changes between the two stages, we compared the proteomes between the two stages using iTRAQ. We identified a total of 2,791 proteins in the C. briggsae embryos and larvae, 247 of which undergo up- or down-regulation between the two stages. The proteins that are upregulated in the larval stages are enriched in the Gene Ontology categories of energy production, protein translation, and cytoskeleton; whereas those upregulated in the embryonic stage are enriched in the categories of chromatin dynamics and posttranslational modification, suggesting a more active chromatin modification in the embryos than in the larva. Perturbation of a subset of chromatin modifiers followed by cell lineage analysis suggests their roles in controlling cell division pace. Taken together, we demonstrate a general molecular switch from chromatin modification to metabolism during the transition from C. briggsae embryonic to its larval stages using iTRAQ approach. The switch might be conserved across metazoans.

  4. Coordinated control of active and reactive power of distribution network with distributed PV cluster via model predictive control

    Science.gov (United States)

    Ji, Yu; Sheng, Wanxing; Jin, Wei; Wu, Ming; Liu, Haitao; Chen, Feng

    2018-02-01

    A coordinated optimal control method of active and reactive power of distribution network with distributed PV cluster based on model predictive control is proposed in this paper. The method divides the control process into long-time scale optimal control and short-time scale optimal control with multi-step optimization. The models are transformed into a second-order cone programming problem due to the non-convex and nonlinear of the optimal models which are hard to be solved. An improved IEEE 33-bus distribution network system is used to analyse the feasibility and the effectiveness of the proposed control method

  5. Quantitative FLIM-FRET Microscopy to Monitor Nanoscale Chromatin Compaction In Vivo Reveals Structural Roles of Condensin Complexes

    Directory of Open Access Journals (Sweden)

    David Llères

    2017-02-01

    Full Text Available How metazoan genomes are structured at the nanoscale in living cells and tissues remains unknown. Here, we adapted a quantitative FRET (Förster resonance energy transfer-based fluorescence lifetime imaging microscopy (FLIM approach to assay nanoscale chromatin compaction in living organisms. Caenorhabditis elegans was chosen as a model system. By measuring FRET between histone-tagged fluorescent proteins, we visualized distinct chromosomal regions and quantified the different levels of nanoscale compaction in meiotic cells. Using RNAi and repetitive extrachromosomal array approaches, we defined the heterochromatin state and showed that its architecture presents a nanoscale-compacted organization controlled by Heterochromatin Protein-1 (HP1 and SETDB1 H3-lysine-9 methyltransferase homologs in vivo. Next, we functionally explored condensin complexes. We found that condensin I and condensin II are essential for heterochromatin compaction and that condensin I additionally controls lowly compacted regions. Our data show that, in living animals, nanoscale chromatin compaction is controlled not only by histone modifiers and readers but also by condensin complexes.

  6. Containment and Consensus-based Distributed Coordination Control for Voltage Bound and Reactive Power Sharing in AC Microgrid

    DEFF Research Database (Denmark)

    Han, Renke; Meng, Lexuan; Ferrari-Trecate, Giancarlo

    2017-01-01

    This paper offers a highly flexible and reliable control strategy to achieve voltage bounded regulation and accurate reactive power sharing coordinately in AC Micro-Grids. A containment and consensus-based distributed coordination controller is proposed, by which each output voltage magnitude can...... be bounded within a reasonable range and the accurate reactive power sharing among distributed generators can be also achieved. Combined with the two proposed controllers and electrical part of the AC Micro-Grid, a small signal model is fully developed to analyze the sensitivity of different control...... parameters. The effectiveness of the proposed controller in case of load variation, communication failure, plug-and-play capability are verified by the experimental setup as an islanded Micro-Grid....

  7. Early aberrations in chromatin dynamics in embryos produced under In vitro conditions

    DEFF Research Database (Denmark)

    Deshmukh, Rahul Shahaji; Østrup, Olga; Strejcek, Frantisek

    2012-01-01

    standard to that of embryos produced by IVF, parthenogenetic activation (PA), or SCNT. In contrast to IV embryos, chromatin spatial and temporal dynamics in PA, IVF, and SCNT embryos were altered; starting with aberrant chromatin-nuclear envelope interactions at the two-cell stage, delayed chromatin...... decondensation and nucleolar development at the four-cell stage, and ultimately culminating in failure of proper first lineage segregation at the blastocyst stage, demonstrated by poorly defined inner cell mass. Interestingly, in vitro produced (IVP) embryos also lacked a heterochromatin halo around nucleolar...

  8. Curriculum Management Practices in Pedagogical Coordinations of Araucania Schools: Unveiling Technical/Instrumental Rationality, Control and Power Mechanisms Underlying

    Directory of Open Access Journals (Sweden)

    Juan Carlos Beltrán-Véliz

    2016-01-01

    Full Text Available This article consists of a case study regarding curriculum management practices of pedagogical coordinators in schools in Araucania area. The study aims to reveal technical/instrumental rationality, control and power mechanisms that underlie the curriculum management practices of such pedagogical coordinators of schools in Araucania region. A descriptive qualitative design based on the constructionist grounded theory and the constant comparative method is considered. Subjects studied included 12 technical leaders and 22 teachers from Araucania schools. Techniques for collecting information were semi-structured interview and texts for reading. Four categories rose from axial coding. Findings reveal that the teaching process is reduced to an instructional process. Furthermore, there is no uniformity of criteria regarding general functions that must be met. In the same extent, activity coordination is centered on bureaucratic administrative aspects, with main focus on task control. Regulations, programs and educational projects are used as control mechanisms. In addition, absence of spaces for professional discussion of pedagogical work and for constructive criticism is envisioned. This study concludes that pedagogical coordination practices are geared from an “instrumental rationality”, anchored in technical management set up in control and power.

  9. Large-scale Comparative Study of Hi-C-based Chromatin 3D Structure Modeling Methods

    KAUST Repository

    Wang, Cheng

    2018-01-01

    Chromatin is a complex polymer molecule in eukaryotic cells, primarily consisting of DNA and histones. Many works have shown that the 3D folding of chromatin structure plays an important role in DNA expression. The recently proposed Chro- mosome

  10. Recognition of chromatin by the plant alkaloid, ellipticine as a dual binder

    Energy Technology Data Exchange (ETDEWEB)

    Banerjee, Amrita; Sanyal, Sulagna; Majumder, Parijat [Biophysics & Structural Genomics Division, Saha Institute of Nuclear Physics, Block-AF, Sector-1, Bidhan Nagar, Kolkata 700064, West Bengal (India); Chakraborty, Payal [Bionivid Technology Pvt Ltd, Kasturi Nagar, Bangalore 560043 (India); Jana, Kuladip [Division of Molecular Medicine, Centre for Translational Animal Research, Bose Institute, P-1/12 C.I.T. Scheme VIIM, Kolkata 700054, West Bengal (India); Das, Chandrima, E-mail: chandrima.das@saha.ac.in [Biophysics & Structural Genomics Division, Saha Institute of Nuclear Physics, Block-AF, Sector-1, Bidhan Nagar, Kolkata 700064, West Bengal (India); Dasgupta, Dipak, E-mail: dipak.dasgupta@saha.ac.in [Biophysics & Structural Genomics Division, Saha Institute of Nuclear Physics, Block-AF, Sector-1, Bidhan Nagar, Kolkata 700064, West Bengal (India)

    2015-07-10

    Recognition of core histone components of chromatin along with chromosomal DNA by a class of small molecule modulators is worth examining to evaluate their intracellular mode of action. A plant alkaloid ellipticine (ELP) which is a putative anticancer agent has so far been reported to function via DNA intercalation, association with topoisomerase II and binding to telomere region. However, its effect upon the potential intracellular target, chromatin is hitherto unreported. Here we have characterized the biomolecular recognition between ELP and different hierarchical levels of chromatin. The significant result is that in addition to DNA, it binds to core histone(s) and can be categorized as a ‘dual binder’. As a sequel to binding with histone(s) and core octamer, it alters post-translational histone acetylation marks. We have further demonstrated that it has the potential to modulate gene expression thereby regulating several key biological processes such as nuclear organization, transcription, translation and histone modifications. - Highlights: • Ellipticine acts a dual binder binding to both DNA and core histone(s). • It induces structural perturbations in chromatin, chromatosome and histone octamer. • It alters histones acetylation and affects global gene expression.

  11. Recognition of chromatin by the plant alkaloid, ellipticine as a dual binder

    International Nuclear Information System (INIS)

    Banerjee, Amrita; Sanyal, Sulagna; Majumder, Parijat; Chakraborty, Payal; Jana, Kuladip; Das, Chandrima; Dasgupta, Dipak

    2015-01-01

    Recognition of core histone components of chromatin along with chromosomal DNA by a class of small molecule modulators is worth examining to evaluate their intracellular mode of action. A plant alkaloid ellipticine (ELP) which is a putative anticancer agent has so far been reported to function via DNA intercalation, association with topoisomerase II and binding to telomere region. However, its effect upon the potential intracellular target, chromatin is hitherto unreported. Here we have characterized the biomolecular recognition between ELP and different hierarchical levels of chromatin. The significant result is that in addition to DNA, it binds to core histone(s) and can be categorized as a ‘dual binder’. As a sequel to binding with histone(s) and core octamer, it alters post-translational histone acetylation marks. We have further demonstrated that it has the potential to modulate gene expression thereby regulating several key biological processes such as nuclear organization, transcription, translation and histone modifications. - Highlights: • Ellipticine acts a dual binder binding to both DNA and core histone(s). • It induces structural perturbations in chromatin, chromatosome and histone octamer. • It alters histones acetylation and affects global gene expression

  12. Control of human adenovirus type 5 gene expression by cellular Daxx/ATRX chromatin-associated complexes

    DEFF Research Database (Denmark)

    Schreiner, Sabrina; Bürck, Carolin; Glass, Mandy

    2013-01-01

    to interact with ATRX. To ensure efficient viral replication, Ad5 E1B-55K protein inhibits Daxx and targets ATRX for proteasomal degradation in cooperation with early region 4 open reading frame protein 6 and cellular components of a cullin-dependent E3-ubiquitin ligase. Our studies illustrate the importance...... is the targeting factor, leading to histone deacetylase recruitment, H3.3 deposition and transcriptional repression of cellular promoters. Despite recent findings on the fundamental importance of chromatin modification in host-cell gene regulation, it remains unclear whether adenovirus type 5 (Ad5) transcription...

  13. ATM-dependent pathways of chromatin remodelling and oxidative DNA damage responses.

    Science.gov (United States)

    Berger, N Daniel; Stanley, Fintan K T; Moore, Shaun; Goodarzi, Aaron A

    2017-10-05

    Ataxia-telangiectasia mutated (ATM) is a serine/threonine protein kinase with a master regulatory function in the DNA damage response. In this role, ATM commands a complex biochemical network that signals the presence of oxidative DNA damage, including the dangerous DNA double-strand break, and facilitates subsequent repair. Here, we review the current state of knowledge regarding ATM-dependent chromatin remodelling and epigenomic alterations that are required to maintain genomic integrity in the presence of DNA double-strand breaks and/or oxidative stress. We will focus particularly on the roles of ATM in adjusting nucleosome spacing at sites of unresolved DNA double-strand breaks within complex chromatin environments, and the impact of ATM on preserving the health of cells within the mammalian central nervous system.This article is part of the themed issue 'Chromatin modifiers and remodellers in DNA repair and signalling'. © 2017 The Author(s).

  14. Effect of benzimidazol-derivatives on the DNA-protein binding formation after UV-radiation of chromatin

    International Nuclear Information System (INIS)

    Mil', E.M.; Binyukov, V.I.; Zhil'tsova, V.M.; Stolyarova, L.G.; Kuznetsov, Yu.V.

    1991-01-01

    Effect of benzimidazol-derivatives on the DNA-protein binding formation was studied after UV-radiation of chromatin. These derivatives were shown to protect chromatin from UV-induced DNA-protein binding formation. Structural analog contained two aminomethyl residuals sensibilized additional binding formation in chromatin. Results suggested, that benzimidazol interacted with DNA, while aminomethyl groups interacted with protein and sensibilized binding of DNA, whilt aminomethyl groups interacted with protein and sensibilized binding of DNA with histone H1

  15. Evf2 lncRNA/BRG1/DLX1 interactions reveal RNA-dependent inhibition of chromatin remodeling.

    Science.gov (United States)

    Cajigas, Ivelisse; Leib, David E; Cochrane, Jesse; Luo, Hao; Swyter, Kelsey R; Chen, Sean; Clark, Brian S; Thompson, James; Yates, John R; Kingston, Robert E; Kohtz, Jhumku D

    2015-08-01

    Transcription-regulating long non-coding RNAs (lncRNAs) have the potential to control the site-specific expression of thousands of target genes. Previously, we showed that Evf2, the first described ultraconserved lncRNA, increases the association of transcriptional activators (DLX homeodomain proteins) with key DNA enhancers but represses gene expression. In this report, mass spectrometry shows that the Evf2-DLX1 ribonucleoprotein (RNP) contains the SWI/SNF-related chromatin remodelers Brahma-related gene 1 (BRG1, SMARCA4) and Brahma-associated factor (BAF170, SMARCC2) in the developing mouse forebrain. Evf2 RNA colocalizes with BRG1 in nuclear clouds and increases BRG1 association with key DNA regulatory enhancers in the developing forebrain. While BRG1 directly interacts with DLX1 and Evf2 through distinct binding sites, Evf2 directly inhibits BRG1 ATPase and chromatin remodeling activities. In vitro studies show that both RNA-BRG1 binding and RNA inhibition of BRG1 ATPase/remodeling activity are promiscuous, suggesting that context is a crucial factor in RNA-dependent chromatin remodeling inhibition. Together, these experiments support a model in which RNAs convert an active enhancer to a repressed enhancer by directly inhibiting chromatin remodeling activity, and address the apparent paradox of RNA-mediated stabilization of transcriptional activators at enhancers with a repressive outcome. The importance of BRG1/RNA and BRG1/homeodomain interactions in neurodevelopmental disorders is underscored by the finding that mutations in Coffin-Siris syndrome, a human intellectual disability disorder, localize to the BRG1 RNA-binding and DLX1-binding domains. © 2015. Published by The Company of Biologists Ltd.

  16. The use of ultraviolet light in the fractionation of chromatin containing unsubstituted and bromodeoxyuridine-substituted DNA

    International Nuclear Information System (INIS)

    Taichman, L.B.

    1979-01-01

    Two procedures are described for the fractionation of chromatin containing unsubstituted (LL) DNA and DNA unifilarly substituted with bromodeoxyuridine (HL). The two procedures rely upon the sensitivity of bromodeoxyuridine-containing DNA to UV light to induce either strand breakage or protein crosslinking. When a mixture of LL and HL chromatin is irradiated with UV light, the HL DNA fragments into molecules of smaller molecular weight than the LL DNA and crosslinks more chromosomal protein than the LL DNA. LL and HL chromatin can be fractionated on the basis of size by centrifuging through a neutral sucrose gradient. The HL DNA-protein adducts that are generated by the UV light have a unique buoyant density and may be isolated by isopycnic centrifugation in Cs 2 S0 4 . The ability to fractionate LL and HL chromatin permits certain studies on the structure of replicating chromatin. (author)

  17. A new non-catalytic role for ubiquitin ligase RNF8 in unfolding higher-order chromatin structure

    DEFF Research Database (Denmark)

    Luijsterburg, Martijn S; Acs, Klara; Ackermann, Leena

    2012-01-01

    The ubiquitin ligases RNF8 and RNF168 orchestrate DNA damage signalling through the ubiquitylation of histone H2A and the recruitment of downstream repair factors. Here, we demonstrate that RNF8, but not RNF168 or the canonical H2A ubiquitin ligase RNF2, mediates extensive chromatin decondensation....... Our data show that CHD4, the catalytic subunit of the NuRD complex, interacts with RNF8 and is essential for RNF8-mediated chromatin unfolding. The chromatin remodelling activity of CHD4 promotes efficient ubiquitin conjugation and assembly of RNF168 and BRCA1 at DNA double-strand breaks....... Interestingly, RNF8-mediated recruitment of CHD4 and subsequent chromatin remodelling were independent of the ubiquitin-ligase activity of RNF8, but involved a non-canonical interaction with the forkhead-associated (FHA) domain. Our study reveals a new mechanism of chromatin remodelling-assisted ubiquitylation...

  18. Early and late effects of Ibuprofen on mouse sperm parameters, chromatin condensation, and DNA integrity in mice.

    Science.gov (United States)

    Roodbari, Fatemeh; Abedi, Nahid; Talebi, Ali Reza

    2015-11-01

    There are few studies indicating the detrimental effects of ibuprofen on sperm fertility potential and DNA integrity. To determine the effects of Ibuprofen on sperm parameters, chromatin condensation and DNA integrity of mice. In this experimental study, 36 adult male mice with average weight 37 gr were divided into three groups, including control (group I, n=12), normal dosage of ibuprofen (group II, n=12) and high dosage (group III, n=12). Ibuprofen with different doses was dissolved in daily water of animals. After 35, 70 and 105 days, the cauda epididymis of mice were cut and incubated in Ham's F10 media. Sperm samples were analyzed for parameters (motility, morphology and count), DNA integrity (SCD test) and chromatin condensation (chromomycin A3 and Aniline blue staining). After 35 days, in addition to above mentioned sperm parameters, all of the treated mice showed statistically significant increase in spermatozoa with immature chromatin (Psperm DNA fragmentation assessed by SCD was increased in group II (66.5±0.7) and the percentage of immature spermatozoa (AB(+) and CMA3(+)) was higher in group III (77.5±0.7 and 49.5±6.3 respectively) than other groups. After 105 days, the AB(+) spermatozoa were increased in both normal dose and high dose groups. Ibuprofen may cause a significant reduction in sperm parameters and sperm chromatin/DNA integrity in mice. It should be noted that these deleterious effects are dose-dependent and can be seen in early and late stage of drug treatments.

  19. Chromatin dynamics during DSB repair

    Czech Academy of Sciences Publication Activity Database

    Falk, Martin; Lukášová, Emilie; Gabrielová, Barbora; Ondřej, Vladan; Kozubek, Stanislav

    2007-01-01

    Roč. 1773, č. 10 (2007), s. 1534-1545 ISSN 0167-4889 R&D Projects: GA ČR(CZ) GP204/06/P349; GA ČR(CZ) 1QS500040508; GA AV ČR(CZ) IAA1065203; GA MŠk(CZ) 1P05OC084 Institutional research plan: CEZ:AV0Z50040507; CEZ:AV0Z50040702 Keywords : chromatin structure * double- strand breaks (DSB) * DNA repair Subject RIV: BO - Biophysics Impact factor: 4.374, year: 2007

  20. H4 replication-dependent diacetylation and Hat1 promote S-phase chromatin assembly in vivo

    Science.gov (United States)

    Ejlassi-Lassallette, Aïda; Mocquard, Eloïse; Arnaud, Marie-Claire; Thiriet, Christophe

    2011-01-01

    While specific posttranslational modification patterns within the H3 and H4 tail domains are associated with the S-phase, their actual functions in replication-dependent chromatin assembly have not yet been defined. Here we used incorporation of trace amounts of recombinant proteins into naturally synchronous macroplasmodia of Physarum polycephalum to examine the function of H3 and H4 tail domains in replication-coupled chromatin assembly. We found that the H3/H4 complex lacking the H4 tail domain was not efficiently recovered in nuclei, whereas depletion of the H3 tail domain did not impede nuclear import but chromatin assembly failed. Furthermore, our results revealed that the proper pattern of acetylation on the H4 tail domain is required for nuclear import and chromatin assembly. This is most likely due to binding of Hat1, as coimmunoprecipitation experiments showed Hat1 associated with predeposition histones in the cytoplasm and with replicating chromatin. These results suggest that the type B histone acetyltransferase assists in shuttling the H3/H4 complex from cytoplasm to the replication forks. PMID:21118997

  1. Pilot/Controller Coordinated Decision Making in the Next Generation Air Transportation System

    Science.gov (United States)

    Bearman, Chris; Miller, Ronald c.; Orasanu, Judith M.

    2011-01-01

    Introduction: NextGen technologies promise to provide considerable benefits in terms of enhancing operations and improving safety. However, there needs to be a thorough human factors evaluation of the way these systems will change the way in which pilot and controllers share information. The likely impact of these new technologies on pilot/controller coordinated decision making is considered in this paper using the "operational, informational and evaluative disconnect" framework. Method: Five participant focus groups were held. Participants were four experts in human factors, between x and x research students and a technical expert. The participant focus group evaluated five key NextGen technologies to identify issues that made different disconnects more or less likely. Results: Issues that were identified were: Decision Making will not necessarily improve because pilots and controllers possess the same information; Having a common information source does not mean pilots and controllers are looking at the same information; High levels of automation may lead to disconnects between the technology and pilots/controllers; Common information sources may become the definitive source for information; Overconfidence in the automation may lead to situations where appropriate breakdowns are not initiated. Discussion: The issues that were identified lead to recommendations that need to be considered in the development of NextGen technologies. The current state of development of these technologies provides a good opportunity to utilize recommendations at an early stage so that NextGen technologies do not lead to difficulties in resolving breakdowns in coordinated decision making.

  2. Chromatin degradation under the effect of differentiation inductors and γ-radiation on thymus lymphocytes in vitro

    International Nuclear Information System (INIS)

    Soldatenkov, V.A.; Sorokina, N.I.; Filippovich, I.V.

    1985-01-01

    Chemical inductors of differentiation were shown to cause chromatin degradation in thymus lymphocytes. This process was prevented by the protein synthesis inhibitors. The fragments formed after the effect of chemical differentiation inductors on thymocytes were fully identical to chromatin internucleosome degradation products formed in the exposed cells. Chromatin degradation under the effect of chemical differentiation inductors was most pronounced in a more radiosensitive thymocyte fraction

  3. Keystone Symposia on Epigenomics and Chromatin Dynamics

    DEFF Research Database (Denmark)

    Ravnskjær, Kim

    2012-01-01

    Keystone Symposia kicked off the start of 2012 with two joint meetings on Epigenomics and Chromatin Dynamics and a star-studded list of speakers. Held in Keystone, CO, January 17-22, and organized by Steven Jacobsen and Steven Henikoff and by Bradley Cairns and Geneviève Almouzni, respectively...

  4. Repression of germline RNAi pathways in somatic cells by retinoblastoma pathway chromatin complexes.

    Directory of Open Access Journals (Sweden)

    Xiaoyun Wu

    Full Text Available The retinoblastoma (Rb tumor suppressor acts with a number of chromatin cofactors in a wide range of species to suppress cell proliferation. The Caenorhabditis elegans retinoblastoma gene and many of these cofactors, called synMuv B genes, were identified in genetic screens for cell lineage defects caused by growth factor misexpression. Mutations in many synMuv B genes, including lin-35/Rb, also cause somatic misexpression of the germline RNA processing P granules and enhanced RNAi. We show here that multiple small RNA components, including a set of germline-specific Argonaute genes, are misexpressed in the soma of many synMuv B mutant animals, revealing one node for enhanced RNAi. Distinct classes of synMuv B mutants differ in the subcellular architecture of their misexpressed P granules, their profile of misexpressed small RNA and P granule genes, as well as their enhancement of RNAi and the related silencing of transgenes. These differences define three classes of synMuv B genes, representing three chromatin complexes: a LIN-35/Rb-containing DRM core complex, a SUMO-recruited Mec complex, and a synMuv B heterochromatin complex, suggesting that intersecting chromatin pathways regulate the repression of small RNA and P granule genes in the soma and the potency of RNAi. Consistent with this, the DRM complex and the synMuv B heterochromatin complex were genetically additive and displayed distinct antagonistic interactions with the MES-4 histone methyltransferase and the MRG-1 chromodomain protein, two germline chromatin regulators required for the synMuv phenotype and the somatic misexpression of P granule components. Thus intersecting synMuv B chromatin pathways conspire with synMuv B suppressor chromatin factors to regulate the expression of small RNA pathway genes, which enables heightened RNAi response. Regulation of small RNA pathway genes by human retinoblastoma may also underlie its role as a tumor suppressor gene.

  5. TECHNICAL COORDINATION

    CERN Multimedia

    A. Ball

    Overview From a technical perspective, CMS has been in “beam operation” state since 6th November. The detector is fully closed with all components operational and the magnetic field is normally at the nominal 3.8T. The UXC cavern is normally closed with the radiation veto set. Access to UXC is now only possible during downtimes of LHC. Such accesses must be carefully planned, documented and carried out in agreement with CMS Technical Coordination, Experimental Area Management, LHC programme coordination and the CCC. Material flow in and out of UXC is now strictly controlled. Access to USC remains possible at any time, although, for safety reasons, it is necessary to register with the shift crew in the control room before going down.It is obligatory for all material leaving UXC to pass through the underground buffer zone for RP scanning, database entry and appropriate labeling for traceability. Technical coordination (notably Stephane Bally and Christoph Schaefer), the shift crew and run ...

  6. histone H3 predominantly mark the pericentromeric chromatin

    Indian Academy of Sciences (India)

    SANTOSH KUMAR SHARMA

    packaging of eukaryotic DNA in nucleoprotein complex known as .... The plant material used in the present study has ... materials (root tips/flower buds) were fixed in PHEMES ..... fications that mark active chromatin, while there are no data.

  7. Effect of radiation and alkylating agents on chromatin degradation in normal and malignant lymphoid cells

    International Nuclear Information System (INIS)

    Ryabchenko, N.I.; Yurashkova, V.; Ivannik, B.P.; Konov, A.V.; Drashil, V.

    1991-01-01

    Regularities of chromatin degradation in thymocytes and LS/BL tumor cells have been investigated. It has been shown that the rate of DNA degradation by Ca/Mg-dependent endonuclease in LS/BL tumor cells is 25 times lower than that in thymocytes, and radiation does not induce chormatin degradation. The alkylating agent TS 160 causes chromatin degradation in both LS/Bl cells and thymocytes. In contrast to radiation TS 160 inhibits the endogenous chromatin degradation by Ca/Mg-dependent endonuclease in thymocytes

  8. Structural Modeling of GR Interactions with the SWI/SNF Chromatin Remodeling Complex and C/EBP

    DEFF Research Database (Denmark)

    Muratcioglu, Serena; Presman, Diego M; Pooley, John R

    2015-01-01

    The glucocorticoid receptor (GR) is a steroid-hormone-activated transcription factor that modulates gene expression. Transcriptional regulation by the GR requires dynamic receptor binding to specific target sites located across the genome. This binding remodels the chromatin structure to allow...... interaction with other transcription factors. Thus, chromatin remodeling is an essential component of GR-mediated transcriptional regulation, and understanding the interactions between these molecules at the structural level provides insights into the mechanisms of how GR and chromatin remodeling cooperate...

  9. Improved Power System Stability Using Backtracking Search Algorithm for Coordination Design of PSS and TCSC Damping Controller.

    Science.gov (United States)

    Niamul Islam, Naz; Hannan, M A; Mohamed, Azah; Shareef, Hussain

    2016-01-01

    Power system oscillation is a serious threat to the stability of multimachine power systems. The coordinated control of power system stabilizers (PSS) and thyristor-controlled series compensation (TCSC) damping controllers is a commonly used technique to provide the required damping over different modes of growing oscillations. However, their coordinated design is a complex multimodal optimization problem that is very hard to solve using traditional tuning techniques. In addition, several limitations of traditionally used techniques prevent the optimum design of coordinated controllers. In this paper, an alternate technique for robust damping over oscillation is presented using backtracking search algorithm (BSA). A 5-area 16-machine benchmark power system is considered to evaluate the design efficiency. The complete design process is conducted in a linear time-invariant (LTI) model of a power system. It includes the design formulation into a multi-objective function from the system eigenvalues. Later on, nonlinear time-domain simulations are used to compare the damping performances for different local and inter-area modes of power system oscillations. The performance of the BSA technique is compared against that of the popular particle swarm optimization (PSO) for coordinated design efficiency. Damping performances using different design techniques are compared in term of settling time and overshoot of oscillations. The results obtained verify that the BSA-based design improves the system stability significantly. The stability of the multimachine power system is improved by up to 74.47% and 79.93% for an inter-area mode and a local mode of oscillation, respectively. Thus, the proposed technique for coordinated design has great potential to improve power system stability and to maintain its secure operation.

  10. Improved Power System Stability Using Backtracking Search Algorithm for Coordination Design of PSS and TCSC Damping Controller.

    Directory of Open Access Journals (Sweden)

    Naz Niamul Islam

    Full Text Available Power system oscillation is a serious threat to the stability of multimachine power systems. The coordinated control of power system stabilizers (PSS and thyristor-controlled series compensation (TCSC damping controllers is a commonly used technique to provide the required damping over different modes of growing oscillations. However, their coordinated design is a complex multimodal optimization problem that is very hard to solve using traditional tuning techniques. In addition, several limitations of traditionally used techniques prevent the optimum design of coordinated controllers. In this paper, an alternate technique for robust damping over oscillation is presented using backtracking search algorithm (BSA. A 5-area 16-machine benchmark power system is considered to evaluate the design efficiency. The complete design process is conducted in a linear time-invariant (LTI model of a power system. It includes the design formulation into a multi-objective function from the system eigenvalues. Later on, nonlinear time-domain simulations are used to compare the damping performances for different local and inter-area modes of power system oscillations. The performance of the BSA technique is compared against that of the popular particle swarm optimization (PSO for coordinated design efficiency. Damping performances using different design techniques are compared in term of settling time and overshoot of oscillations. The results obtained verify that the BSA-based design improves the system stability significantly. The stability of the multimachine power system is improved by up to 74.47% and 79.93% for an inter-area mode and a local mode of oscillation, respectively. Thus, the proposed technique for coordinated design has great potential to improve power system stability and to maintain its secure operation.

  11. Chromatin remodeling regulates catalase expression during cancer cells adaptation to chronic oxidative stress.

    Science.gov (United States)

    Glorieux, Christophe; Sandoval, Juan Marcelo; Fattaccioli, Antoine; Dejeans, Nicolas; Garbe, James C; Dieu, Marc; Verrax, Julien; Renard, Patricia; Huang, Peng; Calderon, Pedro Buc

    2016-10-01

    Regulation of ROS metabolism plays a major role in cellular adaptation to oxidative stress in cancer cells, but the molecular mechanism that regulates catalase, a key antioxidant enzyme responsible for conversion of hydrogen peroxide to water and oxygen, remains to be elucidated. Therefore, we investigated the transcriptional regulatory mechanism controlling catalase expression in three human mammary cell lines: the normal mammary epithelial 250MK primary cells, the breast adenocarcinoma MCF-7 cells and an experimental model of MCF-7 cells resistant against oxidative stress resulting from chronic exposure to H 2 O 2 (Resox), in which catalase was overexpressed. Here we identify a novel promoter region responsible for the regulation of catalase expression at -1518/-1226 locus and the key molecules that interact with this promoter and affect catalase transcription. We show that the AP-1 family member JunB and retinoic acid receptor alpha (RARα) mediate catalase transcriptional activation and repression, respectively, by controlling chromatin remodeling through a histone deacetylases-dependent mechanism. This regulatory mechanism plays an important role in redox adaptation to chronic exposure to H 2 O 2 in breast cancer cells. Our study suggests that cancer adaptation to oxidative stress may be regulated by transcriptional factors through chromatin remodeling, and reveals a potential new mechanism to target cancer cells. Copyright © 2016 Elsevier Inc. All rights reserved.

  12. Coordinated Voltage Control Scheme for SEIG-Based Wind Park Utilizing Substation STATCOM and ULTC Transformer

    DEFF Research Database (Denmark)

    S. El Moursi, Mohamed; Bak-Jensen, Birgitte; Abdel-Rahman, Mansour Hassan

    2011-01-01

    and optimal tracking secondary voltage control for wind parks based on self-excited induction generators which comprise STATCOM and under-load tap changer (ULTC) substation transformers. The voltage controllers for the STATCOM and ULTC transformer are coordinated and ensure the voltage support. In steady...

  13. Modulation of Higher Order Chromatin Conformation in Mammalian Cell Nuclei Can Be Mediated by Polyamines and Divalent Cations.

    Directory of Open Access Journals (Sweden)

    Ashwat Visvanathan

    Full Text Available The organisation of the large volume of mammalian genomic DNA within cell nuclei requires mechanisms to regulate chromatin compaction involving the reversible formation of higher order structures. The compaction state of chromatin varies between interphase and mitosis and is also subject to rapid and reversible change upon ATP depletion/repletion. In this study we have investigated mechanisms that may be involved in promoting the hyper-condensation of chromatin when ATP levels are depleted by treating cells with sodium azide and 2-deoxyglucose. Chromatin conformation was analysed in both live and permeabilised HeLa cells using FLIM-FRET, high resolution fluorescence microscopy and by electron spectroscopic imaging microscopy. We show that chromatin compaction following ATP depletion is not caused by loss of transcription activity and that it can occur at a similar level in both interphase and mitotic cells. Analysis of both live and permeabilised HeLa cells shows that chromatin conformation within nuclei is strongly influenced by the levels of divalent cations, including calcium and magnesium. While ATP depletion results in an increase in the level of unbound calcium, chromatin condensation still occurs even in the presence of a calcium chelator. Chromatin compaction is shown to be strongly affected by small changes in the levels of polyamines, including spermine and spermidine. The data are consistent with a model in which the increased intracellular pool of polyamines and divalent cations, resulting from depletion of ATP, bind to DNA and contribute to the large scale hyper-compaction of chromatin by a charge neutralisation mechanism.

  14. Coordinated voltage control in offshore HVDC connected cluster of wind power plants

    DEFF Research Database (Denmark)

    Sakamuri, Jayachandra Naidu; Rather, Zakir Hussain; Rimez, Johan

    This paper presents a coordinated voltage control scheme (CVCS) for a cluster of offshore wind power plants connected to a voltage-source converter-based high-voltage direct current system. The primary control point of the proposed voltage control scheme is the introduced Pilot bus, which is having...... by dispatching reactive power references to each wind turbine (WT) in the wind power plant cluster based on their available reactive power margin and network sensitivity-based participation factors, which are derived from the dV/dQ sensitivity of a WT bus w.r.t. the Pilot bus. This method leads...

  15. A DC Microgrid Coordinated Control Strategy Based on Integrator Current-Sharing

    DEFF Research Database (Denmark)

    Gao, Liyuan; Liu, Yao; Ren, Huisong

    2017-01-01

    The DC microgrid has become a new trend for microgrid study with the advantages of high reliability, simple control and low losses. With regard to the drawbacks of the traditional droop control strategies, an improved DC droop control strategy based on integrator current-sharing is introduced....... In the strategy, the principle of eliminating deviation through an integrator is used, constructing the current-sharing term in order to make the power-sharing between different distributed generation (DG) units uniform and reasonable, which can reduce the circulating current between DG units. Furthermore......, at the system coordinated control level, a hierarchical/droop control strategy based on the DC bus voltage is proposed. In the strategy, the operation modes of the AC main network and micro-sources are determined through detecting the DC voltage variation, which can ensure the power balance of the DC microgrid...

  16. Polymer physics predicts the effects of structural variants on chromatin architecture.

    Science.gov (United States)

    Bianco, Simona; Lupiáñez, Darío G; Chiariello, Andrea M; Annunziatella, Carlo; Kraft, Katerina; Schöpflin, Robert; Wittler, Lars; Andrey, Guillaume; Vingron, Martin; Pombo, Ana; Mundlos, Stefan; Nicodemi, Mario

    2018-05-01

    Structural variants (SVs) can result in changes in gene expression due to abnormal chromatin folding and cause disease. However, the prediction of such effects remains a challenge. Here we present a polymer-physics-based approach (PRISMR) to model 3D chromatin folding and to predict enhancer-promoter contacts. PRISMR predicts higher-order chromatin structure from genome-wide chromosome conformation capture (Hi-C) data. Using the EPHA4 locus as a model, the effects of pathogenic SVs are predicted in silico and compared to Hi-C data generated from mouse limb buds and patient-derived fibroblasts. PRISMR deconvolves the folding complexity of the EPHA4 locus and identifies SV-induced ectopic contacts and alterations of 3D genome organization in homozygous or heterozygous states. We show that SVs can reconfigure topologically associating domains, thereby producing extensive rewiring of regulatory interactions and causing disease by gene misexpression. PRISMR can be used to predict interactions in silico, thereby providing a tool for analyzing the disease-causing potential of SVs.

  17. Androgen Receptor Deregulation Drives Bromodomain-Mediated Chromatin Alterations in Prostate Cancer

    Directory of Open Access Journals (Sweden)

    Alfonso Urbanucci

    2017-06-01

    Full Text Available Global changes in chromatin accessibility may drive cancer progression by reprogramming transcription factor (TF binding. In addition, histone acetylation readers such as bromodomain-containing protein 4 (BRD4 have been shown to associate with these TFs and contribute to aggressive cancers including prostate cancer (PC. Here, we show that chromatin accessibility defines castration-resistant prostate cancer (CRPC. We show that the deregulation of androgen receptor (AR expression is a driver of chromatin relaxation and that AR/androgen-regulated bromodomain-containing proteins (BRDs mediate this effect. We also report that BRDs are overexpressed in CRPCs and that ATAD2 and BRD2 have prognostic value. Finally, we developed gene stratification signature (BROMO-10 for bromodomain response and PC prognostication, to inform current and future trials with drugs targeting these processes. Our findings provide a compelling rational for combination therapy targeting bromodomains in selected patients in which BRD-mediated TF binding is enhanced or modified as cancer progresses.

  18. eRNAs promote transcription by establishing chromatin accessibility at defined genomic loci

    DEFF Research Database (Denmark)

    Mousavi, Kambiz; Zare, Hossein; Dell'orso, Stefania

    2013-01-01

    )RNA acted to activate the downstream myogenic genes. The deployment of transcriptional machinery to appropriate loci is contingent on chromatin accessibility, a rate-limiting step preceding Pol II assembly. By nuclease sensitivity assay, we found that eRNAs regulate genomic access of the transcriptional...... complex to defined regulatory regions. In conclusion, our data suggest that eRNAs contribute to establishing a cell-type-specific transcriptional circuitry by directing chromatin-remodeling events....

  19. Snake-like chromatin in conjunctival cells of a population aged 30-60 years from Copenhagen City

    DEFF Research Database (Denmark)

    Bjerrum, Kirsten Birgitte

    1998-01-01

    ophthalmology, keratoconjunctivitis sicca, Sjögrens Syndrome, epidemiology, imprint biopsy, snake-like chromatin......ophthalmology, keratoconjunctivitis sicca, Sjögrens Syndrome, epidemiology, imprint biopsy, snake-like chromatin...

  20. Chromatin conformation capture strategies in molecular diagnostics

    NARCIS (Netherlands)

    de Vree, Pauline J.P.

    2015-01-01

    In this thesis I have explored the clinical potential of the 4C-technology and worked on development of a novel chromatin conformation capture based technology, called TLA. In chapter 2 I describe how the 4C-technology can be applied as a targeted strategy to identify putative fusion-genes or