WorldWideScience

Sample records for cooling energy consumption

  1. Controlled cooling of an electronic system for reduced energy consumption

    Science.gov (United States)

    David, Milnes P.; Iyengar, Madhusudan K.; Schmidt, Roger R.

    2016-08-09

    Energy efficient control of a cooling system cooling an electronic system is provided. The control includes automatically determining at least one adjusted control setting for at least one adjustable cooling component of a cooling system cooling the electronic system. The automatically determining is based, at least in part, on power being consumed by the cooling system and temperature of a heat sink to which heat extracted by the cooling system is rejected. The automatically determining operates to reduce power consumption of the cooling system and/or the electronic system while ensuring that at least one targeted temperature associated with the cooling system or the electronic system is within a desired range. The automatically determining may be based, at least in part, on one or more experimentally obtained models relating the targeted temperature and power consumption of the one or more adjustable cooling components of the cooling system.

  2. Thermal indoor environment and energy consumption in a plus-energy house: cooling season measurements

    DEFF Research Database (Denmark)

    Kazanci, Ongun Berk; Olesen, Bjarne W.

    2015-01-01

    . The house was cooled by a floor cooling system and was ventilated with a mechanical ventilation system. Different operative temperature set-points and different ventilation rates were tested. Operative temperature at a representative location inside the occupied zone was used as an indicator of the thermal...... the floor cooling system) and increasing the ventilation rate provided a better thermal indoor environment but with increased energy consumption. The thermal indoor environment and energy performance of the house can be improved with decreased glazing area, increased thermal mass, installation of solar......The present study is concerned with the thermal indoor environment and HVAC system energy consumption of a detached, one-story, single family, plus-energy house during a cooling season. The house was located in Denmark and it has been used as a full-scale experimental facility for one year...

  3. Energy consumption of cooling systems. Optimization of the energy consumption of the cooling system in electric refrigerators; Energiforbrug i koelesystemer. Optimering af energiforbruget i koelesystemer i eldrevne koeleskabe

    Energy Technology Data Exchange (ETDEWEB)

    Danig, P.O. [Danmarks Tekniske Universitet (Denmark); Pedersen, J.K.; Ritchie, E. [Aalborg Universitet (Denmark); Kierkegaard, P. [CETEC E/F (Denmark)

    1997-12-31

    The aim of the project was to determine an energy optimum solution for household refrigerators comprising the whole system from electric power supply to the cooled food. The basic idea was to replace the normal ON/OFF control with continuous operation, but so that the engine`s speed of rotation and thereby the performance of the compressor should be controlled according to the cooling demand. A 325 l Gram refrigerator model KS350 was used in the experiments and as a reference. In conventional operation - with a 3,13 cm{sup 3} compressor using ON/OFF control - this refrigerator on average used 33 W at the ISO point (ISO 7371 standard). The most important technical results are that continuous operation of refrigerators uses substantial less energy than ON/OFF control, and that this mode of operation improves the quality of the stored food. A compressor which is small enough to even a refrigerator of the size of 325 l does not exist on the market. A new compressor type must therefore be developed which must by combined and optimized with a pinion. A new compressor type with pinion will, when developed, demand substantial production changes at costs of probably a three-figure million amount. There is no doubt that the continuous operation of refrigerators will become dominating in the future, and globally it will result in a decrease of the energy consumption of 2-3%. (LN)

  4. The updated algorithm of the Energy Consumption Program (ECP): A computer model simulating heating and cooling energy loads in buildings

    Science.gov (United States)

    Lansing, F. L.; Strain, D. M.; Chai, V. W.; Higgins, S.

    1979-01-01

    The energy Comsumption Computer Program was developed to simulate building heating and cooling loads and compute thermal and electric energy consumption and cost. This article reports on the new additional algorithms and modifications made in an effort to widen the areas of application. The program structure was rewritten accordingly to refine and advance the building model and to further reduce the processing time and cost. The program is noted for its very low cost and ease of use compared to other available codes. The accuracy of computations is not sacrificed however, since the results are expected to lie within + or - 10% of actual energy meter readings.

  5. The potential for reducing urban air temperatures and energy consumption through vegetative cooling

    Energy Technology Data Exchange (ETDEWEB)

    Kurn, D.M.; Bretz, S.E.; Huang, B.; Akbari, H.

    1994-05-01

    A network of 23 weather stations was used to detect existing oases in Southern California. Four stations, separated from one another by 15--25 miles (24--40 km), were closely examined. Data were strongly affected by the distance of the stations from the Pacific Ocean. This and other city-scale effects made the network inadequate for detection of urban oases. We also conducted traverse measurements of temperature and humidity in the Whittier Narrows Recreation Area in Los Angeles County on September 8--10, 1993. Near-surface air temperatures over vegetated areas were 1--2{degrees}C lower than background air temperatures. We estimate that vegetation may lower urban temperatures by 1{degrees}C, while the establishment of vegetative canopies may lower local temperatures by an additional 2{degrees}C. An increase in vegetation in residential neighborhoods may reduce peak loads in the Los Angeles area by 0.3 GW, and reduce energy consumption by 0.2 BkWh/year, saving $20 million annually. Large additional savings would result from regional cooling.

  6. Comparative Thermal Analysis of Different Cool Roof Materials for Minimizing Building Energy Consumption

    Directory of Open Access Journals (Sweden)

    Y. Anand

    2014-01-01

    Full Text Available The roof and walls in the urban areas contribute to major share in the absorption of solar radiations and also retard the outflow of the absorbed radiation from the building envelope, thereby increasing the global warming by inducing the heat island effect. The impact of using cool roof technologies on the thermal comfort of the office buildings has been estimated. Cool roofs reduce electricity consumption for maintaining the temperature of the air-conditioned buildings in the comfort level and also increase comfort in buildings merely not relying completely on cooling equipment. The cool roofs and cool pavements, however, can mitigate summer urban heat islands by improving indoor air quality and comfort. The thermal analysis of different materials has been carried out to analyze the impact of the rate of heat transfer on the building envelope and the results obtained indicate that different cool roof techniques are beneficial in maintaining the comfort level of the building which purely depends on the ambient temperature conditions.

  7. COOLING SYSTEMS OF MILK, FRUIT AND VEGETABLES STORAGE WITH LOW CONSUMPTION OF ENERGY

    Directory of Open Access Journals (Sweden)

    Volkonovich L.

    2007-04-01

    Full Text Available Article is devoted to use of a natural cold for cooling milk and fruit and vegetables storage. The analysis of the block diagrams, description of storehouses and the curves of temperature and air humidity changes for various types of cooling systems are given; the analysis of quality of vegetables and fruit and energy expenses per unit of production are done, which prove the efficiency of the offered systems.

  8. Guided design of heating and cooling mains for lower water and energy consumption and increased efficiency

    CSIR Research Space (South Africa)

    Gololo, V

    2011-01-01

    Full Text Available in higher cooling water flowrate and low cooling water return temperature thus reducing cooling towers efficiency. This indicates the importance of the system structure, the possibility of mixing of heating or cooling water; recycling and reuse of heating...

  9. Thermal Comfort and Energy Consumption Using Different Radiant Heating/Cooling Systems in a Modern Office Building

    Science.gov (United States)

    Nemethova, Ema; Stutterecker, Werner; Schoberer, Thomas

    2017-06-01

    The aim of the study is to evaluate the potential of enhancing thermal comfort and energy consumption created by three different radiant systems in the newly-built Energetikum office building. A representative office, Simulation room 1/1, was selected from 6 areas equipped with portable sensor groups for the indoor environment monitoring. The presented data obtained from 3 reference weeks; the heating, transition and cooling periods indicate overheating, particularly during the heating and transition period. The values of the indoor air temperature during the heating and transition period could not meet the normative criteria according to standard EN 15251:2007 (cat. II.) for 15-30% of the time intervals evaluated. Consequently, a simulation model of the selected office was created and points to the possibilities of improving the control system, which can lead to an elimination of the problem with overheating. Three different radiant systems - floor heating/ cooling, a thermally active ceiling, and a near-surface thermally active ceiling were implemented in the model. A comparison of their effects on thermal comfort and energy consumption is presented in the paper.

  10. Cool roofs and the influence on the energy consumption under Danish conditions

    DEFF Research Database (Denmark)

    Brandt, Erik; Bunch-Nielsen, Tommy; Juhl, Lasse

    that there are no significant advantages of using white roofing felt instead of dark under Danish conditions in common buildings with active heating and passive cooling. Quite to the contrary it appears that dark roofing felts have significant advantages over white roofing felts. The results are discussed in the paper....... It should be mentioned that white roofing materials might be beneficial for poorly insulated buildings with high internal heat loads. In this case the white roofing might contribute to a reduced cooling. Also buildings with constant cooling demands or cold-storage plants etc. may benefit from white roofing...

  11. Using passive cooling strategies to improve thermal performance and reduce energy consumption of residential buildings in U.A.E. buildings

    Directory of Open Access Journals (Sweden)

    Hanan M. Taleb

    2014-06-01

    Full Text Available Passive design responds to local climate and site conditions in order to maximise the comfort and health of building users while minimising energy use. The key to designing a passive building is to take best advantage of the local climate. Passive cooling refers to any technologies or design features adopted to reduce the temperature of buildings without the need for power consumption. Consequently, the aim of this study is to test the usefulness of applying selected passive cooling strategies to improve thermal performance and to reduce energy consumption of residential buildings in hot arid climate settings, namely Dubai, United Arab Emirates. One case building was selected and eight passive cooling strategies were applied. Energy simulation software – namely IES – was used to assess the performance of the building. Solar shading performance was also assessed using Sun Cast Analysis, as a part of the IES software. Energy reduction was achieved due to both the harnessing of natural ventilation and the minimising of heat gain in line with applying good shading devices alongside the use of double glazing. Additionally, green roofing proved its potential by acting as an effective roof insulation. The study revealed several significant findings including that the total annual energy consumption of a residential building in Dubai may be reduced by up to 23.6% when a building uses passive cooling strategies.

  12. Energy consumption: energy consumption in mainland Norway

    Energy Technology Data Exchange (ETDEWEB)

    Magnussen, Inger Helene; Killingland, Magnus; Spilde, Dag

    2012-07-25

    The purpose of this report is to describe trends in energy consumption in mainland Norway, with an emphasis on key trends within the largest consumer groups. We also explain common terms and concepts in the field of energy consumption. Finally, we look at forecasts for future energy consumption, produced by bodies outside NVE. Total final energy consumption in mainland Norway in 2009 was 207 TWh. The most important end-user groups are households, service industries, manufacturing industry and transport. In addition, the energy sector in mainland Norway consumed 15 TWh. Energy consumed in the energy sector is not considered as final consumption, as the energy is used to produce new energy products. The long-term trend in energy consumption in mainland Norway is that fuel in the transport sector and electricity for the energy sector increases, while energy consumption in other sectors flattens out. The main reason for an increased use of fuel in the transport sector is the rise in the number of motorised machinery and vehicles in mainland Norway. This has caused a rise in gasoline and diesel consumption of 75 per cent since 1976. The petroleum sector is the largest consumer of energy within the energy sector in mainland Norway, and electricity from onshore to platforms in the North Sea and to new shore side installations has led to a rise in electricity consumption from 1 TWh in 1995 to 5 TWh in 2009. The energy consumption in households showed flat trend from 1996 to 2009, after many years of growth. The main reasons are a warmer climate, higher energy prices, the use of heats pumps and more energy-efficient buildings. In the service industries, the growth in energy consumptions has slightly decreased since the late 1990s, for much the same reasons as for households. In manufacturing industries the energy consumption have flatten out mainly due to the closure of energy-intensive businesses and the establishment of new more energy-efficient businesses. Electricity is

  13. High energy electron cooling

    Energy Technology Data Exchange (ETDEWEB)

    Parkhomchuk, V. [Budker Institute of Nuclear Physics, Novosibirsk (Russian Federation)

    1997-09-01

    High energy electron cooling requires a very cold electron beam. The questions of using electron cooling with and without a magnetic field are presented for discussion at this workshop. The electron cooling method was suggested by G. Budker in the middle sixties. The original idea of the electron cooling was published in 1966. The design activities for the NAP-M project was started in November 1971 and the first run using a proton beam occurred in September 1973. The first experiment with both electron and proton beams was started in May 1974. In this experiment good result was achieved very close to theoretical prediction for a usual two component plasma heat exchange.

  14. Impact Analysis of Window-Wall Ratio on Heating and Cooling Energy Consumption of Residential Buildings in Hot Summer and Cold Winter Zone in China

    Directory of Open Access Journals (Sweden)

    Qiaoxia Yang

    2015-01-01

    Full Text Available In order to assess the optimal window-wall ratio and the proper glazing type in different air conditioning system operation modes of residential buildings for each orientation in three typical cities in hot summer and cold winter zone: Chongqing, Shanghai, and Wuhan simulation models were built and analyzed using Designer’s Simulation Toolkit (DeST. The study analyzed the variation of annual heating energy demand, annual cooling energy demand, and the annual total energy consumption in different conditions, including different orientations, patterns of utilization of air conditioning system, window-wall ratio, and types of windows. The results show that the total energy consumption increased when the window-wall ratio is also increased. It appears more obvious when the window orientation is east or west. Furthermore, in terms of energy efficiency, low-emissivity (Low-E glass performs better than hollow glass. From this study, it can be concluded that the influence and sensitivity of window-wall ratio on the total energy consumption are related to the operation mode of air conditioning system, the orientation of outside window, and the glazing types of window. The influence of the factors can be regarded as reference mode for the window-wall ratio when designing residential buildings.

  15. Thermal analysis for energy consumption reduction in cooling water systems; Analisis termico para la reduccion del consumo de energia en sistemas de agua de enfriamiento

    Energy Technology Data Exchange (ETDEWEB)

    Picon Nunez, Martin [Instituto de Investigaciones Cientificas, Universidad de Guanajuato, Guanajuato (Mexico); Quillares Vargas, Luis [Tecnopinch, S. A. de C. V., (Mexico)

    1998-12-31

    This paper presents the fundamental principles for the thermal analysis of cooling water systems in processing plants. In existing heat dissipating networks this methodology application allows the identification of opportunities for reducing the energy consumption used for cooling water pumping. The methodology is based on the determination of the minimum cooling water flow as a function of the installed heat exchange capacity, subjected to the restrictions of the maximum allowed temperature elevation. The methodology application to real systems, has resulted in saving 20% of the total energy consumed in cooling water pumping. [Espanol] En este trabajo se presentan los principios fundamentales para el analisis termico de sistemas de enfriamiento en plantas de proceso. En redes de eliminacion de calor existentes, la aplicacion de esta metodologia permite identificar oportunidades para reducir el consumo de energia utilizada para el bombeo del fluido enfriante. La metodologia se basa en la determinacion del flujo minimo de agua de enfriamiento en funcion de la capacidad de transferencia de calor instalada, sujeta a las restricciones de maximo incremento de temperatura permitido. La aplicacion de la metodologia a sistemas reales, ha resultado en ahorros del 20% del total de la energia que se consume en el bombeo del agua de enfriamiento.

  16. Development of tool for implementation of energy economic cooling systems with natural coolants. Part 1: Installation and calculation of annual energy consumption; Udvikling af vaerktoej til implementering af energioekonomiske koeleanlaeg med naturlige koelemidler. Del 1: Opstilling og beregning af aersenergiforbrug

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    2006-02-15

    This report presents the results reached during the project 'Development of tools for implementation of energy economic cooling systems with natural coolants. Part 1: Installation and calculation of annual energy consumption'. The report is primarily directed at grant-awarding authorities, as the results only propose recommendations concerning further research. The aim of making a tool is, quite simply, to compare the economy for alternative designs of cooling systems when both investments and operational costs during the system's service life are taken into consideration. Thus the tool gives a buyer of a cooling system the possibility of choosing the most energy economic system, and hereby spread the most energy economic systems in connection with the system replacement that will take place due to out phasing of CFC/HCFC/HFC coolants. The project has been divided into two phases. Phase no. 1, this phase, contains the development of the tool. (BA)

  17. Energy Consumption vs. Energy Requirement

    Science.gov (United States)

    Fan, L. T.; Zhang, Tengyan; Schlup, John R.

    2006-01-01

    Energy is necessary for any phenomenon to occur or any process to proceed. Nevertheless, energy is never consumed; instead, it is conserved. What is consumed is available energy, or exergy, accompanied by an increase in entropy. Obviously, the terminology, "energy consumption" is indeed a misnomer although it is ubiquitous in the…

  18. The role of absorption cooling for reaching sustainable energy systems

    OpenAIRE

    Lindmark, Susanne

    2005-01-01

    The energy consumption is continuous to increase around the world and with that follows the demand for sustainable solutions for future energy systems. With growing energy consumption from fossil based fuels the threat of global warming through release of CO2 to the atmosphere increases. The demand for cooling is also growing which would result in an increased consumption of electricity if the cooling demand was to be fulfilled by electrically driven cooling technology. A more sustainable sol...

  19. Energy-consumption modelling

    Energy Technology Data Exchange (ETDEWEB)

    Reiter, E.R.

    1980-01-01

    A highly sophisticated and accurate approach is described to compute on an hourly or daily basis the energy consumption for space heating by individual buildings, urban sectors, and whole cities. The need for models and specifically weather-sensitive models, composite models, and space-heating models are discussed. Development of the Colorado State University Model, based on heat-transfer equations and on a heuristic, adaptive, self-organizing computation learning approach, is described. Results of modeling energy consumption by the city of Minneapolis and Cheyenne are given. Some data on energy consumption in individual buildings are included.

  20. Energy and resource consumption

    Science.gov (United States)

    1973-01-01

    The present and projected energy requirements for the United States are discussed. The energy consumption and demand sectors are divided into the categories: residential and commercial, transportation, and industrial and electrical generation (utilities). All sectors except electrical generation use varying amounts of fossile fuel resources for non-energy purposes. The highest percentage of non-energy use by sector is industrial with 71.3 percent. The household and commercial sector uses 28.4 percent, and transportation about 0.3 percent. Graphs are developed to project fossil fuel demands for non-energy purposes and the perdentage of the total fossil fuel used for non-energy needs.

  1. Energy consumption: Past, present, future

    Science.gov (United States)

    1973-01-01

    The energy consumption history of the United States and the changes which could occur in consumption characteristics in the next 50 years are presented. The various sources of energy are analyzed to show the limitations involved in development and utilization as a function of time available. Several scenarios were prepared to show the consumption and supply of energy under varying conditions.

  2. Manufacturing consumption of energy 1991

    Energy Technology Data Exchange (ETDEWEB)

    1994-12-01

    This report provides estimates on energy consumption in the manufacturing sector of the US economy. These estimates are based on data from the 1991 Manufacturing Energy Consumption Survey (MECS). This survey--administered by the Energy End Use and Integrated Statistics Division, Office of Energy Markets and End Use, Energy Information Administration (EIA)--is the most comprehensive source of national-level data on energy-related information for the manufacturing industries.

  3. Energy Efficient Electronics Cooling Project

    Energy Technology Data Exchange (ETDEWEB)

    Steve O' Shaughnessey; Tim Louvar; Mike Trumbower; Jessica Hunnicutt; Neil Myers

    2012-02-17

    Parker Precision Cooling Business Unit was awarded a Department of Energy grant (DE-EE0000412) to support the DOE-ITP goal of reducing industrial energy intensity and GHG emissions. The project proposed by Precision Cooling was to accelerate the development of a cooling technology for high heat generating electronics components. These components are specifically related to power electronics found in power drives focused on the inverter, converter and transformer modules. The proposed cooling system was expected to simultaneously remove heat from all three of the major modules listed above, while remaining dielectric under all operating conditions. Development of the cooling system to meet specific customer's requirements and constraints not only required a robust system design, but also new components to support long system functionality. Components requiring further development and testing during this project included pumps, fluid couplings, cold plates and condensers. All four of these major categories of components are required in every Precision Cooling system. Not only was design a key area of focus, but the process for manufacturing these components had to be determined and proven through the system development.

  4. JPL Energy Consumption Program (ECP) documentation: A computer model simulating heating, cooling and energy loads in buildings. [low cost solar array efficiency

    Science.gov (United States)

    Lansing, F. L.; Chai, V. W.; Lascu, D.; Urbenajo, R.; Wong, P.

    1978-01-01

    The engineering manual provides a complete companion documentation about the structure of the main program and subroutines, the preparation of input data, the interpretation of output results, access and use of the program, and the detailed description of all the analytic, logical expressions and flow charts used in computations and program structure. A numerical example is provided and solved completely to show the sequence of computations followed. The program is carefully structured to reduce both user's time and costs without sacrificing accuracy. The user would expect a cost of CPU time of approximately $5.00 per building zone excluding printing costs. The accuracy, on the other hand, measured by deviation of simulated consumption from watt-hour meter readings, was found by many simulation tests not to exceed + or - 10 percent margin.

  5. Monitoring Energy Consumption of Smartphones

    CERN Document Server

    Ding, Fangwei; Zhang, Wei; Zhao, Xuhai; Ma, Chengchuan

    2012-01-01

    With the rapid development of new and innovative applications for mobile devices like smartphones, advances in battery technology have not kept pace with rapidly growing energy demands. Thus energy consumption has become a more and more important issue of mobile devices. To meet the requirements of saving energy, it is critical to monitor and analyze the energy consumption of applications on smartphones. For this purpose, we develop a smart energy monitoring system called SEMO for smartphones using Android operating system. It can profile mobile applications with battery usage information, which is vital for both developers and users.

  6. Sistema de enfriamiento con desecante para reducir consumo de energía en restaurante caso de estudio; Desiccant cooling system to decrease energy consumption in Restaurant study case

    Directory of Open Access Journals (Sweden)

    Tania Carbonell Morales

    2015-12-01

    Full Text Available Este artículo mostró la posibilidad de emplear un sistema de enfriamiento con rueda desecante para el tratamiento del aire de las diferentes áreas del Restaurante caso de estudio, instalación alta consumidora de energía, de ahí la necesidad de estudiar nuevas alternativas para el acondicionamiento de aire que permitan el control de la humedad y el ahorro de energía. El análisis bibliográfico realizado mostró que actualmente los sistemas de enfriamiento con desecante están siendo estudiados y empleados como una alternativa para el ahorro de energía y el cuidado del medioambiente en el campo del tratamiento del aire. Se propuso un sistema compuesto fundamentalmente por una rueda desecante de gel de sílice, una rueda conservadora de energía y un intercambiador de calor. Con el nuevo sistema de enfriamiento la demanda de energía eléctrica disminuye previéndose ahorros del orden de 1 1802 CUC anualmente solo por concepto de consumo de energía eléctrica.In this paper the possibility of using a cooling system with a desiccant wheel for air treatment of different areas of the case study restaurant is shown. This facility is classified as high consumer of energy, making it necessaryto study new alternatives for air conditioning allowing humidity control and energy saving. The literature review conducted on cooling systems with desiccant wheel technology was currently being studied and used as analternative to saving energy and protecting the environment in the field of air treatment. The desiccant cooling system proposed is fundamentally for a desiccant wheel of silica gel, an energy conservative wheel and a heatexchanger. With the new cooling system electricity demand decreases and significant savings of about 1 1802 CUC are forecasted only in annual electricity consumption.

  7. An analysis of residential energy consumption in a temperate climate

    Energy Technology Data Exchange (ETDEWEB)

    Clark, Y.Y.; Vincent, W.

    1987-06-01

    Electrical energy consumption data have been recorded for several hundred submetered residential structures in Middle Tennessee. All houses were constructed with a common energy package.'' Specifically, daily cooling usage data have been collected for 130 houses for the 1985 and 1986 cooling seasons, and monthly heating usage data for 186 houses have been recorded by occupant participation over a seven-year period. Cooling data have been analyzed using an SPSSx multiple regression analysis and results are compared to several cooling models. Heating, base, and total energy usage are also analyzed and regression correlation coefficients are determined as a function of several house parameters.

  8. Interactive energy consumption visualization

    CSIR Research Space (South Africa)

    Lunga, D

    2014-11-01

    Full Text Available , Sweden; 2008 [4] Widen J, Wckelgard E. A high-resolution stochastic model of domestic activity patterns and electricity demand. Appl Energy, Volume 87, Pages 18801892, 2010. [5] Gyberg P, Palm J. Influencing households energy behavior: how is this done... and Social Change, Linkoping University, 581 83 Linkoping, Sweden [9] Ramik Sadana and John Stasko, Designing and Implementing an In- teractive Scatterplot Visualization for a Tablet Computer, International Working Conference on Advanced Visual Interfaces...

  9. Effects of socioeconomic factors on household appliance, lighting, and space cooling electricity consumption

    Energy Technology Data Exchange (ETDEWEB)

    Aydinalp, M. [Itron Inc., Boston, MA (United States); Ismet Ugursal, V.; Fung, A.S. [Dalhousie University, Halifax (Canada). Dept. of Mechanical Engineering

    2003-07-01

    Two methods are currently used to model residential energy consumption at the national or regional level: the engineering method and the conditional demand analysis (CDA) method. One of the major difficulties associated with the use of engineering models is the inclusion of consumer behaviour and socioeconomic factors that have significant effects on the residential energy consumption. The CDA method can handle socioeconomic factors if they are included in the model formulation. However, the multicollinearity problem and the need for a very large amount of data make the use of CDA models very difficult. It is shown in this paper that the neural network (NN) method can be used to model the residential energy consumption with the inclusion of socioeconomic factors. The appliances, lighting, and cooling component of the NN based energy consumption model developed for the Canadian residential sector is presented here and the effects of some socioeconomic factors on the residential energy consumption are examined using the model. (author)

  10. Analysis of annual cooling energy requirements for glazed academic buildings

    Energy Technology Data Exchange (ETDEWEB)

    Sulaiman, S.A. [Universiti Teknologi Petronas, Tronoh, Perak (Malaysia). Dept. of Mechanical Engineering; Hassan, A.H. [Vinyl Chloride Malaysia Sdn Bhd, Terengganu (Malaysia). Dept. of Engineering

    2011-07-01

    Malaysia experienced rapid increase in energy consumption in the last decade due to its high economic growth and increase in the standard living of household. Energy is becoming more costly and the situation is worsened by the global warming as a result of greenhouse gas emission. A more efficient energy usage and significant reduction in the released emission is therefore required. Space cooling with the use of air conditioners is practiced all year round in Malaysia and this accounts for 42% of total electricity energy consumption for commercial buildings and 30% of residential buildings. Reduction in the energy used for cooling in the built environment is a vital step to energy conservation in Malaysia. The objective of the present study was to analyze the annual cooling energy of highly glazed academic buildings which are located in a university in Malaysia. The outcome of the study would enable further remedial actions in reducing the energy consumption of the buildings' air conditioning system. The study is conducted by computer simulation using EnergyPlus software to calculate the cooling energy of a selected building or area. Comparison is made against the rated equipment load (i.e., the air handling unit) installed in the buildings. Since the buildings in the present study are not constructed parallel to each other the effect of building orientations with respect to the sun positions are also studied. The implications of shades such as venetian blind on the cooling energy are investigated in assessing their effectiveness in reducing the cooling energy, apart from providing thermal comfort to the occupants. In the aspect of operation, the present study includes the effects of reducing the set point air temperature and infiltration of outdoor air due to doors that are left open by the occupants. It is found from the present study that there are significant potentials for savings in the cooling energy of the buildings.

  11. Energy sustainability: consumption, efficiency, and ...

    Science.gov (United States)

    One of the critical challenges in achieving sustainability is finding a way to meet the energy consumption needs of a growing population in the face of increasing economic prosperity and finite resources. According to ecological footprint computations, the global resource consumption began exceeding planetary supply in 1977 and by 2030, global energy demand, population, and gross domestic product are projected to greatly increase over 1977 levels. With the aim of finding sustainable energy solutions, we present a simple yet rigorous procedure for assessing and counterbalancing the relationship between energy demand, environmental impact, population, GDP, and energy efficiency. Our analyses indicated that infeasible increases in energy efficiency (over 100 %) would be required by 2030 to return to 1977 environmental impact levels and annual reductions (2 and 3 %) in energy demand resulted in physical, yet impractical requirements; hence, a combination of policy and technology approaches is needed to tackle this critical challenge. This work emphasizes the difficulty in moving toward energy sustainability and helps to frame possible solutions useful for policy and management. Based on projected energy consumption, environmental impact, human population, gross domestic product (GDP), and energy efficiency, for this study, we explore the increase in energy-use efficiency and the decrease in energy use intensity required to achieve sustainable environmental impact le

  12. Use of nanofiltration to reduce cooling tower water consumption.

    Energy Technology Data Exchange (ETDEWEB)

    Altman, Susan Jeanne; Ciferno, Jared

    2010-10-01

    Nanofiltration (NF) can effectively treat cooling-tower water to reduce water consumption and maximize water usage efficiency of thermoelectric power plants. A pilot is being run to verify theoretical calculations. A side stream of water from a 900 gpm cooling tower is being treated by NF with the permeate returning to the cooling tower and the concentrate being discharged. The membrane efficiency is as high as over 50%. Salt rejection ranges from 77-97% with higher rejection for divalent ions. The pilot has demonstrated a reduction of makeup water of almost 20% and a reduction of discharge of over 50%.

  13. Greenhouse energy consumption

    Science.gov (United States)

    Eric van Steenis

    2009-01-01

    Depending on location and luck, natural gas rates have gone from less that CAN$ 3.00 to more than CAN$ 20.00/gigajoule (Gj). Natural gas rates are currently around CAN$ 13.00/Gj, although industry "analysts" predict an increase. A gigajoule is equivalent to the energy released by the combustion of approximately 30 L (8 gal) of gasoline. It is also equivalent...

  14. DC Motor Load Analysis and Cooling Consideration to Optimise the Power Consumption- Case Study

    Directory of Open Access Journals (Sweden)

    Mr. K.G. Bante

    2013-06-01

    Full Text Available The need of energy conservation is the increased requirement of all industries as the cost of the energy increasing day by day. DC motors have been the workhorse of variable speed drives in the continuous steel rolling mills for many years. DC motors in the steel rolling mills are usually separately ventilated by providing air blower, heat exchanger and water. Cooling air is circulated inside the motor by air blower. Water circulates through the heat exchanger and cools the air. Energy consumption by the air blower plays a vital role in optimizing the energy consumption. This article indicates that the loading pattern of the DC motor should decide the control strategy for effective and efficient cooling arrangement.

  15. Optimization operation analysis on energy-saving & consumption reduction of air cooling equipment in ethylene plant%乙烯装置空冷设备节能降耗优化操作分析

    Institute of Scientific and Technical Information of China (English)

    刘传云; 李海波

    2015-01-01

    In the existing cooling equipment of ethylene plant,field staffs has a high randomness in the operation of air cooling equipment,and has not achieved fine management. With the air cooling equipment of an ethylene cracking plant as an example,grids were established by using Gambit,and air flow pattern calculation was made by using Fluent to get the best heat exchange condition. They were used to guide the field staffs in actual operation,and the goal of plant energy saving and consumption reduction was achieved.%在现行的乙烯装置空冷设备中,现场人员对空冷的操作上随意性比较大,没有做到精细化管理。文中以某乙烯裂解装置的空冷设备为例,通过Gambit建立网格,再利用Fluent进行空气流动形态计算得到最佳的换热状态,用于指导现场人员实际操作,达到装置节能降耗的目的。

  16. ANALYSIS OF TROLLEYBUS ENERGY CONSUMPTION

    Directory of Open Access Journals (Sweden)

    Ewa Siemionek

    2013-06-01

    Full Text Available Developing energy-saving solutions in vehicle construction and operation has become a priority in the automotive sector. For this reason, zero-emission and low-noise trolleybuses have started to play a significant role in urban public transportation. The paper discusses the methodology and results of energy consumption analysis for trolleybus travel on a determined route. For a given section of the route, energy recovery under braking was calculated.

  17. Manufacturing consumption of energy 1994

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    1997-12-01

    This report provides estimates on energy consumption in the manufacturing sector of the U.S. economy based on data from the Manufacturing Energy Consumption Survey. The sample used in this report represented about 250,000 of the largest manufacturing establishments which account for approximately 98 percent of U.S. economic output from manufacturing, and an expected similar proportion of manufacturing energy use. The amount of energy use was collected for all operations of each establishment surveyed. Highlights of the report include profiles for the four major energy-consuming industries (petroleum refining, chemical, paper, and primary metal industries), and an analysis of the effects of changes in the natural gas and electricity markets on the manufacturing sector. Seven appendices are included to provide detailed background information. 10 figs., 51 tabs.

  18. Smart energy option: Reusing wastewater for cooling energy

    Energy Technology Data Exchange (ETDEWEB)

    Clapham, A. [Boeing Co., Seattle, WA (United States); Jackman, J. [Puget Sound Power and Light Co., Bellevue, WA (United States); Lundt, M.M. [King County Department of Metropolitan Services, Seattle, WA (United States). Water Pollution Control Dept.

    1996-12-31

    The King County Department of Metropolitan Services, an airplane manufacturer, and a Seattle utility are ready to begin operating the first commercial effluent-based cooling system for buildings in the Northwest. This paper details the studies undertaken to design the system and how the manufacturer addressed its employees` concerns about a new system. There are several environmental benefits to using effluent as a cooling medium. Considerable energy savings in chiller operations are achieved because the effluent temperature is 10 to 20 degrees cooler than water returned from cooling towers. Another major benefit is water conservation. Conventional cooling towers would consume several million gallons of water each year. By using effluent, the consumption of this water will be avoided. Water run through cooling towers is treated with chemicals to prevent corrosion and biological growth. With the effluent in a closed-loop system, there will be no need to treat the effluent. Consequently there will be a reduction in use of water treatment chemicals that are ultimately discharged into the sewer system. This reduces the treatment load to the county and helps to maintain a cleaner environment. The concept is simple: recover heat wasted from one activity for reuse in another. The delivery is easy: send effluent via a pipeline to customer`s chillers to pick up heat and return that heat to the plant. The selling of this idea is the focus of this paper.

  19. Sistema de enfriamiento con desecante para reducir consumo de energía en restaurante caso de estudio; Desiccant cooling system to decrease energy consumption in Restaurant study case

    Directory of Open Access Journals (Sweden)

    Tania – Carbonell Morales

    2016-02-01

    Full Text Available Este artículo mostró la posibilidad de emplear un sistema de enfriamiento con rueda desecante para el tratamiento del aire de las diferentes áreas del Restaurante caso de estudio, instalación alta consumidora de energía, de ahí la necesidad de es tudiar nuevas alternativas para el acondicionamiento de aire que permitan el control de la humedad y el ahorro de energía. El análisis bibliográfico realizado mostró que actualmente los sistemas de enfriamiento con desecante están siendo estudia dos y empleados como una alternativa para el ahorro de energía y el cuidado del medioambiente en el campo del tratamiento del aire. Se propuso un sistema compuesto fundamentalmente por una rueda desecante de gel de sílice, una rueda conservadora de energía y un intercambiador de calor. Con el nuevo sistema de enfriamiento la demanda de energía eléctrica disminuye previéndose ahorros del orden de 11802 CUC anualmente solo por concepto de consumo de energía eléctrica. In this paper the possibility of using a cooling syst em with a desiccant wheel for air treatment of different areas of the case study restaurant is shown. This facility is classified as high consumer of energy, making it necessary to study new alternatives for air conditioning allowing humidity control and energy saving. The literature review conducted on cooling systems with desiccant wheel technology was currently being studied and used as an alternative to saving energy and protecting the environment in the field of air treatment. The desiccant cooling system proposed is fundamentally for a desiccant wheel of silica gel, an energy conservative wheel and a heat exchanger. With the new cooling system electricit y demand decreases and significant savings of about 11802 CUC are forecasted only in annual electricity consumption

  20. Household vehicles energy consumption 1994

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    1997-08-01

    Household Vehicles Energy Consumption 1994 reports on the results of the 1994 Residential Transportation Energy Consumption Survey (RTECS). The RTECS is a national sample survey that has been conducted every 3 years since 1985. For the 1994 survey, more than 3,000 households that own or use some 6,000 vehicles provided information to describe vehicle stock, vehicle-miles traveled, energy end-use consumption, and energy expenditures for personal vehicles. The survey results represent the characteristics of the 84.9 million households that used or had access to vehicles in 1994 nationwide. (An additional 12 million households neither owned or had access to vehicles during the survey year.) To be included in then RTECS survey, vehicles must be either owned or used by household members on a regular basis for personal transportation, or owned by a company rather than a household, but kept at home, regularly available for the use of household members. Most vehicles included in the RTECS are classified as {open_quotes}light-duty vehicles{close_quotes} (weighing less than 8,500 pounds). However, the RTECS also includes a very small number of {open_quotes}other{close_quotes} vehicles, such as motor homes and larger trucks that are available for personal use.

  1. State energy data report 1992: Consumption estimates

    Energy Technology Data Exchange (ETDEWEB)

    1994-05-01

    This is a report of energy consumption by state for the years 1960 to 1992. The report contains summaries of energy consumption for the US and by state, consumption by source, comparisons to other energy use reports, consumption by energy use sector, and describes the estimation methodologies used in the preparation of the report. Some years are not listed specifically although they are included in the summary of data.

  2. Monitoring and optimization of energy consumption of base transceiver stations

    CERN Document Server

    Spagnuolo, Antonio; Vetromile, Carmela; Formosi, Roberto; Lubritto, Carmine

    2015-01-01

    The growth and development of the mobile phone network has led to an increased demand for energy by the telecommunications sector, with a noticeable impact on the environment. Monitoring of energy consumption is a great tool for understanding how to better manage this consumption and find the best strategy to adopt in order to maximize reduction of unnecessary usage of electricity. This paper reports on a monitoring campaign performed on six Base Transceiver Stations (BSs) located central Italy, with different technology, typology and technical characteristics. The study focuses on monitoring energy consumption and environmental parameters (temperature, noise, and global radiation), linking energy consumption with the load of telephone traffic and with the air conditioning functions used to cool the transmission equipment. Moreover, using experimental data collected, it is shown, with a Monte Carlo simulation based on power saving features, how the BS monitored could save energy.

  3. Modeling and energy simulation of the variable refrigerant flow air conditioning system with water-cooled condenser under cooling conditions

    Energy Technology Data Exchange (ETDEWEB)

    Li, Yueming; Wu, Jingyi [Shanghai Jiao Tong University, Institute of Refrigeration and Cryogenics (China); Shiochi, Sumio [Daikin Industries Ltd. (Japan)

    2009-09-15

    As a new system, variable refrigerant flow system with water-cooled condenser (water-cooled VRF) can offer several interesting characteristics for potential users. However, at present, its dynamic simulation simultaneously in association with building and other equipments is not yet included in the energy simulation programs. Based on the EnergyPlus's codes, and using manufacturer's performance parameters and data, the special simulation module for water-cooled VRF is developed and embedded in the software of EnergyPlus. After modeling and testing the new module, on the basis of a typical office building in Shanghai with water-cooled VRF system, the monthly and seasonal cooling energy consumption and the breakdown of the total power consumption are analyzed. The simulation results show that, during the whole cooling period, the fan-coil plus fresh air (FPFA) system consumes about 20% more power than the water-cooled VRF system does. The power comparison between the water-cooled VRF system and the air-cooled VRF system is performed too. All of these can provide designers some ideas to analyze the energy features of this new system and then to determine a better scheme of the air conditioning system. (author)

  4. Magnetocaloric materials for energy efficient cooling

    Science.gov (United States)

    Lyubina, Julia

    2017-02-01

    Solid-state magnetic cooling near room temperature has recently gained a prominent position among alternative cooling technologies that are deemed to have higher energy efficiency compared to vapour compression. This prospect has surged a rapid growth of the area of magnetocaloric materials. Although several breakthroughs were achieved, the extensive study revealed a number of challenges in the effective deployment of the magnetic refrigerants. This review focuses on fundamentally and technologically relevant aspects of the cooling with magnetocaloric materials. A critical evaluation of magnetic refrigerants and progress made in improvement of their performance is provided. Future development trends in the field of materials for the solid state cooling are highlighted.

  5. Climate impacts on extreme energy consumption of different types of buildings.

    Directory of Open Access Journals (Sweden)

    Mingcai Li

    Full Text Available Exploring changes of building energy consumption and its relationships with climate can provide basis for energy-saving and carbon emission reduction. Heating and cooling energy consumption of different types of buildings during 1981-2010 in Tianjin city, was simulated by using TRNSYS software. Daily or hourly extreme energy consumption was determined by percentile methods, and the climate impact on extreme energy consumption was analyzed. The results showed that days of extreme heating consumption showed apparent decrease during the recent 30 years for residential and large venue buildings, whereas days of extreme cooling consumption increased in large venue building. No significant variations were found for the days of extreme energy consumption for commercial building, although a decreasing trend in extreme heating energy consumption. Daily extreme energy consumption for large venue building had no relationship with climate parameters, whereas extreme energy consumption for commercial and residential buildings was related to various climate parameters. Further multiple regression analysis suggested heating energy consumption for commercial building was affected by maximum temperature, dry bulb temperature, solar radiation and minimum temperature, which together can explain 71.5 % of the variation of the daily extreme heating energy consumption. The daily extreme cooling energy consumption for commercial building was only related to the wet bulb temperature (R2= 0.382. The daily extreme heating energy consumption for residential building was affected by 4 climate parameters, but the dry bulb temperature had the main impact. The impacts of climate on hourly extreme heating energy consumption has a 1-3 hour delay in all three types of buildings, but no delay was found in the impacts of climate on hourly extreme cooling energy consumption for the selected buildings.

  6. Climate impacts on extreme energy consumption of different types of buildings.

    Science.gov (United States)

    Li, Mingcai; Shi, Jun; Guo, Jun; Cao, Jingfu; Niu, Jide; Xiong, Mingming

    2015-01-01

    Exploring changes of building energy consumption and its relationships with climate can provide basis for energy-saving and carbon emission reduction. Heating and cooling energy consumption of different types of buildings during 1981-2010 in Tianjin city, was simulated by using TRNSYS software. Daily or hourly extreme energy consumption was determined by percentile methods, and the climate impact on extreme energy consumption was analyzed. The results showed that days of extreme heating consumption showed apparent decrease during the recent 30 years for residential and large venue buildings, whereas days of extreme cooling consumption increased in large venue building. No significant variations were found for the days of extreme energy consumption for commercial building, although a decreasing trend in extreme heating energy consumption. Daily extreme energy consumption for large venue building had no relationship with climate parameters, whereas extreme energy consumption for commercial and residential buildings was related to various climate parameters. Further multiple regression analysis suggested heating energy consumption for commercial building was affected by maximum temperature, dry bulb temperature, solar radiation and minimum temperature, which together can explain 71.5 % of the variation of the daily extreme heating energy consumption. The daily extreme cooling energy consumption for commercial building was only related to the wet bulb temperature (R2= 0.382). The daily extreme heating energy consumption for residential building was affected by 4 climate parameters, but the dry bulb temperature had the main impact. The impacts of climate on hourly extreme heating energy consumption has a 1-3 hour delay in all three types of buildings, but no delay was found in the impacts of climate on hourly extreme cooling energy consumption for the selected buildings.

  7. Household energy consumption and expenditures 1993

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    1995-10-05

    This presents information about household end-use consumption of energy and expenditures for that energy. These data were collected in the 1993 Residential Energy Consumption Survey; more than 7,000 households were surveyed for information on their housing units, energy consumption and expenditures, stock of energy-consuming appliances, and energy-related behavior. The information represents all households nationwide (97 million). Key findings: National residential energy consumption was 10.0 quadrillion Btu in 1993, a 9% increase over 1990. Weather has a significant effect on energy consumption. Consumption of electricity for appliances is increasing. Houses that use electricity for space heating have lower overall energy expenditures than households that heat with other fuels. RECS collected data for the 4 most populous states: CA, FL, NY, TX.

  8. Heat Driven Cooling in District Energy Systems; Vaermedriven Kyla

    Energy Technology Data Exchange (ETDEWEB)

    Rydstrand, Magnus; Martin, Viktoria; Westermark, Mats [Royal Inst. of Technology, Stockholm (Sweden). Dept. of Chemical Engineering and Technology

    2004-07-01

    This report is reviewing different heat driven technologies for the production of cooling. It is shown that the supply of cooling gives the highest fuel utilization if heat from CHP production is used for the production of cooling instead of maximizing the electricity output in a condensing plant. High fuel utilization is reached since the direct production of cooling from heat is a thermodynamic shortcut as compared to the production of electricity as an intermediate product before cooling is produced. At direct production of cooling from heat it is possible to obtain 70 percent of the obtainable cooling of an ideal process. If electricity is produced from heat, 70 percent electricity could be obtained as compared to an ideal process. If this electricity would be used for the production of cooling 70 percent of the obtainable cooling in an ideal process would the result. The total production of cooling from heat with electricity as an intermediate product would therefore give 50 percent cooling as compared to an ideal process. Hence, heat driven cooling will give more cooling for a given fuel input. In the review of the different heat driven cooling options it was found that there are many alternatives suitable for different applications. Absorption cooling is suitable for water distributed cooling if the latent cooling load is low. Desiccant cooling is believed to have a large market in climates (applications) with high latent cooling loads. In the energy efficiency evaluation it is found that the highest fuel utilization is given for a central production of electricity using either district heating or district cooling as the energy carrier to supply cooling. In fact the potential of district heating as the energy carrier is thought to be the largest in large cities with humid climates. Further it is found that the chiller heat sink can contribute significantly to the cost in many applications, especially if water and/or electricity consumption are issues with

  9. Study of fuel consumption and cooling system in low heat rejection turbocharged diesel engines

    Energy Technology Data Exchange (ETDEWEB)

    Taymaz, I.; Gur, M.; Cally, I.; Mimaroglu, A.

    1998-07-01

    In a conventional internal combustion engine, approximately one-third of total fuel input energy is converted to useful work. Since the working gas in a practical engine cycle is not exhausted at ambient temperature, a major part of the energy is lost with the exhaust gases. In addition another major part of energy input is rejected in the form of heat via the cooling system. If the energy normally rejected to the coolant could be recovered instead on the crankshaft as useful work, then a substantial improvement in fuel economy would result. At the same time, the cooling water, antifreeze, thermostat, radiator, water pump, cooling fan, and associated hoses and clamps could be eliminated. A new trend in the field of internal combustion engines is to insulate the heat transfer surfaces such as the combustion chamber, cylinder wall, cylinder head, piston and valves by ceramic insulating materials for the improvement of engine performance and elimination of cooling system. In this study, the effect of insulated heat transfer surfaces on direct injected and turbocharged diesel engine fuel consumption and cooling system were investigated. The research engine was a four-stroke, direct injected, six cylinder, turbocharged and intercooled diesel engine. This engine was tested at different speeds and loads conditions without coating. Then, combustion chamber surfaces, cylinder head, valves and piston crown faces was coated with ceramic materials. Ceramic layers were made of CaZrO{sub 3} and MgZrO{sub 3} and plasma coated onto base of the NiCrAl bond coat. The ceramic coated research engine was tested at the same operation conditions as the standard (without coating) engine. The results indicate a reduction in fuel consumption and heat losses to engine cooling system of the ceramic coated engine.

  10. Technology Roadmaps: Energy-efficient Buildings: Heating and Cooling Equipment

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    2011-07-01

    Buildings account for almost a third of final energy consumption globally and are an equally important source of CO2 emissions. Currently, both space heating and cooling as well as hot water are estimated to account for roughly half of global energy consumption in buildings. Energy-efficient and low/zero-carbon heating and cooling technologies for buildings have the potential to reduce CO2 emissions by up to 2 gigatonnes (Gt) and save 710 million tonnes oil equivalent (Mtoe) of energy by 2050. Most of these technologies -- which include solar thermal, combined heat and power (CHP), heat pumps and thermal energy storage -- are commercially available today. The Energy-Efficient Buildings: Heating and Cooling Equipment Roadmap sets out a detailed pathway for the evolution and deployment of the key underlying technologies. It finds that urgent action is required if the building stock of the future is to consume less energy and result in lower CO2 emissions. The roadmap concludes with a set of near-term actions that stakeholders will need to take to achieve the roadmap's vision.

  11. Improved Large-Scale Process Cooling Operation through Energy Optimization

    Directory of Open Access Journals (Sweden)

    Kriti Kapoor

    2013-11-01

    Full Text Available This paper presents a study based on real plant data collected from chiller plants at the University of Texas at Austin. It highlights the advantages of operating the cooling processes based on an optimal strategy. A multi-component model is developed for the entire cooling process network. The model is used to formulate and solve a multi-period optimal chiller loading problem, posed as a mixed-integer nonlinear programming (MINLP problem. The results showed that an average energy savings of 8.57% could be achieved using optimal chiller loading as compared to the historical energy consumption data from the plant. The scope of the optimization problem was expanded by including a chilled water thermal storage in the cooling system. The effect of optimal thermal energy storage operation on the net electric power consumption by the cooling system was studied. The results include a hypothetical scenario where the campus purchases electricity at wholesale market prices and an optimal hour-by-hour operating strategy is computed to use the thermal energy storage tank.

  12. Household vehicles energy consumption 1991

    Energy Technology Data Exchange (ETDEWEB)

    1993-12-09

    The purpose of this report is to provide information on the use of energy in residential vehicles in the 50 States and the District of Columbia. Included are data about: the number and type of vehicles in the residential sector, the characteristics of those vehicles, the total annual Vehicle Miles Traveled (VMT), the per household and per vehicle VMT, the vehicle fuel consumption and expenditures, and vehicle fuel efficiencies. The data for this report are based on the household telephone interviews from the 1991 RTECS, conducted during 1991 and early 1992. The 1991 RTECS represents 94.6 million households, of which 84.6 million own or have access to 151.2 million household motor vehicles in the 50 States and the District of Columbia.

  13. Analysis of Energy Consumption in Beijing

    Institute of Scientific and Technical Information of China (English)

    Li Zhou; Tong Lizhi; Sun Juan

    2010-01-01

    @@ 1. Present characteristics of Beijing's energy consumption 1.1 The slowing of the growth in total energy consumption In 2008, Beijing's total energy consumption reached 63.437 million tons of standard coal, an increase of 586.6 thousand tons compared with the previous year. The increasing range was 1%, dropping 5.45% compared with the previous year, as shown in Figure 1. Since 2005, the annual growth rate of the total energy consumption showed a decreasing trend each year. The city's GDP over the same period reached RMB 1.048803 trillion, increasing 9%. The energy consumption rate fell clearly. In 2008, the energy consumption rate was 0.61 tons of standard coal per 10 thousand yuan GDP, a decline of 7.4%. It continued the favorable condition of 2007's energy saving.

  14. Sensitivity of energy and exergy performances of heating and cooling systems to auxiliary components

    DEFF Research Database (Denmark)

    Kazanci, Ongun Berk; Shukuya, Masanori; Olesen, Bjarne W.

    2017-01-01

    should be used in design and analysis of the whole heating and cooling systems, in addition to the energy analysis. In this study, water-based (floor heating and cooling, and radiator heating) and air-based (air heating and cooling) heating and cooling systems were compared in terms of their energy use...... and exergy consumption for auxiliary components (pumps and fans). The effects of the auxiliary components on whole system energy and exergy performance were identified. Water-based heating systems required 68% lower auxiliary exergy input than the warm-air heating system with heat recovery, and floor cooling...

  15. State energy data report 1993: Consumption estimates

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    1995-07-01

    The State Energy Data Report (SEDR) provides annual time series estimates of State-level energy consumption by major economic sector. The estimates are developed in the State Energy Data System (SEDS), which is maintained and operated by the Energy Information Administration (EIA). The goal in maintaining SEDS is to create historical time series of energy consumption by State that are defined as consistently as possible over time and across sectors. SEDS exists for two principal reasons: (1) to provide State energy consumption estimates to Members of Congress, Federal and State agencies, and the general public; and (2) to provide the historical series necessary for EIA`s energy models.

  16. State Energy Data Report, 1991: Consumption estimates

    Energy Technology Data Exchange (ETDEWEB)

    1993-05-01

    The State Energy Data Report (SEDR) provides annual time series estimates of State-level energy consumption by major economic sector. The estimates are developed in the State Energy Data System (SEDS), which is maintained and operated by the Energy Information Administration (EIA). The goal in maintaining SEDS is to create historical time series of energy consumption by State that are defined as consistently as possible over time and across sectors. SEDS exists for two principal reasons: (1) to provide State energy consumption estimates to the Government, policy makers, and the public; and (2) to provide the historical series necessary for EIA`s energy models.

  17. Passive cooling in a low-energy office building

    Energy Technology Data Exchange (ETDEWEB)

    Breesch, H.; Janssens, A. [Buildings and Climatic Control, Department of Architecture and Urban Planning, Ghent University, J. Plateaustraat 22, B-9000 Ghent (Belgium); Bossaer, A. [Cenergie cvba, B-2600 Berchem (Belgium)

    2005-12-01

    In office buildings, the use of passive cooling techniques combined with a reduced cooling load may result in a good thermal summer comfort and therefore save cooling energy consumption. This is shown in the low-energy office building 'SD Worx' in Kortrijk (Belgium), in which natural night ventilation and an earth-to-air heat exchanger are applied. In winter, the supply air is successively heated by the earth-to-air heat exchanger and the regenerative heat exchanger, which recovers the heat from the exhaust air. In summer, the earth-to-air heat exchanger cools the ventilation air by day. In addition, natural night ventilation cools down the exposed structure which has accumulated the heat of the previous day. In this article the overall thermal comfort in the office building is evaluated by means of measuring and simulation results. Measurements of summer 2002 are discussed and compared to simulations with a coupled thermal and ventilation simulation model TRNSYS-COMIS. The simulations are used to estimate the relative importance of the different techniques. The evaluation shows that passive cooling has an important impact on the thermal summer comfort in the building. Furthermore, natural night ventilation appears to be much more effective than an earth-to-air heat exchanger to improve comfort. (author)

  18. Simulation Tool For Energy Consumption and Production

    DEFF Research Database (Denmark)

    Nysteen, Michael; Mynderup, Henrik; Poulsen, Bjarne

    2013-01-01

    the energy consumption in smart homes. This paper presents a prototype simulation tool that allows graphical modeling of a home. Based on the modeled homes the user is able to simulate the energy consumptions and compare scenarios. The simulations are based on dynamic weather and energy price data as well...

  19. Energy Savings Potential of Radiative Cooling Technologies

    Energy Technology Data Exchange (ETDEWEB)

    Fernandez, Nicholas [Pacific Northwest National Lab. (PNNL), Richland, WA (United States); Wang, Weimin [Pacific Northwest National Lab. (PNNL), Richland, WA (United States); Alvine, Kyle J. [Pacific Northwest National Lab. (PNNL), Richland, WA (United States); Katipamula, Srinivas [Pacific Northwest National Lab. (PNNL), Richland, WA (United States)

    2015-11-30

    Pacific Northwest National Laboratory (PNNL), with funding from the U.S. Department of Energy’s (DOE’s) Building Technologies Program (BTP), conducted a study to estimate, through simulation, the potential cooling energy savings that could be achieved through novel approaches to capturing free radiative cooling in buildings, particularly photonic ‘selective emittance’ materials. This report documents the results of that study.

  20. "Movable platform" - the idea and energy consumption

    OpenAIRE

    Czesław PYPNO; Margielewicz, Jerzy; Gąska, Damian

    2011-01-01

    This paper presents the application of the concept of moving sidewalks at railway stations (the movable platform) including the calculation of electricity consumption. Particular focus was placed on issue of energy profit and loss in two stages - through the loss (consumption) of energy by using a moving sidewalk at a railway station platform and the profit (reduced consumption) of energy, by the lack of having to start the train, that supports movable platform, from the initial speed of 0 km/h.

  1. Energy consumption analysis for a single screw extruder

    Energy Technology Data Exchange (ETDEWEB)

    Deng, Jing; Harkin-Jones, Eileen; Price, Mark; Karnachi, Nayeem [Queen' s Univ., Belfast (United Kingdom). School of Mechanical and Aerospace Engineering; Li, Kang [Queen' s Univ., Belfast (United Kingdom). School of Electronics, Electrical Engineering and Computer Science; Fei, Minrui [Shanghai Univ. (China). School of Mechatronic Engineering and Automation

    2013-07-01

    Polymer extrusion is regarded as an energy intensive production process, the real-time monitoring of both thermal energy and motor drive energy consumption becomes necessary for the development of energy efficient management system. The use of power meter is a simple and easy way to achieve this, however the cost sometimes can be high. Mathematical models based on the process settings provide an affordable alternative, but the resultant models cannot be easily extended to other extruders with different geometry. In this paper, simple and accurate energy real-time monitoring methods are developed for the analysis of energy consumption of the thermal heating and motor drive respectively. This is achieved by looking inside the controller, and use the control variables to calculate the power consumption. The developed methods are then adopted to study the effects of operating settings on the energy efficiency. These include the barrel heating temperature, water cooling temperature, and screw speed. The experimental results on Killion KTS-100 extruder show that the barrel heating temperature has a negative effect on energy efficiency, while the water cooling setting affects the energy efficiency positively but insignificantly. Undoubtedly, screw speed has the most significant effect on energy efficiency.

  2. State energy data report 1994: Consumption estimates

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    1996-10-01

    This document provides annual time series estimates of State-level energy consumption by major economic sector. The estimates are developed in the State Energy Data System (SEDS), operated by EIA. SEDS provides State energy consumption estimates to members of Congress, Federal and State agencies, and the general public, and provides the historical series needed for EIA`s energy models. Division is made for each energy type and end use sector. Nuclear electric power is included.

  3. Psychological strategies to reduce energy consumption: project summary report

    Energy Technology Data Exchange (ETDEWEB)

    Becker, L J; Seligman, C; Darley, J M

    1979-06-30

    This report reviews the research conducted in connection with a project to apply psychological theory and procedures to the problems of encouraging residential energy conservation. A major part of the project involved surveys of residents' energy-related attitudes. The best (and only consistent) attitudinal predictor of residents' actual energy consumption was their attitude about thermal comfort. A number of other attitudes that could conceivably have been related to consumption, such as attitudes about the reality of the crisis, were not found to be related to consumption. Another major focus of the project was on the effectiveness of feedback (that is, giving residents information about their energy use) as an aid to residents' conservation efforts. A series of experiments demonstrated that frequent, credible energy-consumption feedback, coupled with encouragement to adopt a reasonable but difficult energy-conservation goal, could facilitate conservation. However, these studies also demonstrated that residents could not be given just any kind of information about their energy use as feedback and that even proper feedback would not lead to conservation in all households. Conditions that are crucial for the success of feedback as a conservation aid are discussed. Other studies conducted by the project looked at the effect on energy consumption of (1) a device to reduce air-conditioning waste by signalling when it is cool outside, (2) an automatic multi-setback thermostat, and (3) utility companies' average payment plans. A survey of residents' knowledge of their energy use also was conducted. 23 references.

  4. State energy data report 1996: Consumption estimates

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    1999-02-01

    The State Energy Data Report (SEDR) provides annual time series estimates of State-level energy consumption by major economic sectors. The estimates are developed in the Combined State Energy Data System (CSEDS), which is maintained and operated by the Energy Information Administration (EIA). The goal in maintaining CSEDS is to create historical time series of energy consumption by State that are defined as consistently as possible over time and across sectors. CSEDS exists for two principal reasons: (1) to provide State energy consumption estimates to Members of Congress, Federal and State agencies, and the general public and (2) to provide the historical series necessary for EIA`s energy models. To the degree possible, energy consumption has been assigned to five sectors: residential, commercial, industrial, transportation, and electric utility sectors. Fuels covered are coal, natural gas, petroleum, nuclear electric power, hydroelectric power, biomass, and other, defined as electric power generated from geothermal, wind, photovoltaic, and solar thermal energy. 322 tabs.

  5. Stochastic cooling of a high energy collider

    Energy Technology Data Exchange (ETDEWEB)

    Blaskiewicz, M.; Brennan, J.M.; Lee, R.C.; Mernick, K.

    2011-09-04

    Gold beams in RHIC revolve more than a billion times over the course of a data acquisition session or store. During operations with these heavy ions the event rates in the detectors decay as the beams diffuse. A primary cause for this beam diffusion is small angle Coloumb scattering of the particles within the bunches. This intra-beam scattering (IBS) is particularly problematic at high energy because the negative mass effect removes the possibility of even approximate thermal equilibrium. Stochastic cooling can combat IBS. A theory of bunched beam cooling was developed in the early eighties and stochastic cooling systems for the SPS and the Tevatron were explored. Cooling for heavy ions in RHIC was also considered.

  6. Energy consumption of personal computer workstations

    Energy Technology Data Exchange (ETDEWEB)

    Szydlowski, R.F.; Chvala, W.D. Jr.

    1994-02-01

    The explosive growth of the information age has had a profound effect on the appearance of today`s office. Although the telephone still remains an important part of the information exchange and processing system within an office, other electronic devices are now considered required equipment within this environment. This office automation equipment includes facsimile machines, photocopiers, personal computers, printers, modems, and other peripherals. A recent estimate of the installed base indicated that 42 million personal computers and 7.3 million printers are in place, consuming 18.2 billion kWh/yr-and this installed base is growing (Luhn 1992). From a productivity standpoint, it can be argued that this equipment greatly improves the efficiency of those working in the office. But of primary concern to energy system designers, building managers, and electric utilities is the fact that this equipment requires electric energy. Although the impact of each incremental piece of equipment is small, installation of thousands of devices per building has resulted in office automation equipment becoming the major contributor to electric consumption and demand growth in commercial buildings. Personal computers and associated equipment are the dominant part of office automation equipment. In some cases, this electric demand growth has caused office buildings electric and cooling systems to overload.

  7. Energy Consumption in Cloud Computing Data Centers

    Directory of Open Access Journals (Sweden)

    Uchechukwu Awada

    2014-06-01

    Full Text Available The implementation of cloud computing has attracted computing as a utility and enables penetrative applications from scientific, consumer and business domains. However, this implementation faces tremendous energy consumption, carbon dioxide emission and associated costs concerns. With energy consumption becoming key issue for the operation and maintenance of cloud datacenters, cloud computing providers are becoming profoundly concerned.  In this paper, we present formulations and solutions for Green Cloud Environments (GCE to minimize its environmental impact and energy consumption under new models by considering static and dynamic portions of cloud components. Our proposed methodology captures cloud computing data centers and presents a generic model for them. To implement this objective, an in-depth knowledge of energy consumption patterns in cloud environment is necessary. We investigate energy consumption patterns and show that by applying suitable optimization policies directed through our energy consumption models, it is possible to save 20% of energy consumption in cloud data centers. Our research results can be integrated into cloud computing systems to monitor energy consumption and support static and dynamic system level-optimization.

  8. Modeling and Optimization for Piercing Energy Consumption

    Institute of Scientific and Technical Information of China (English)

    XIAO Dong; PAN Xiao-li; YUAN Yong; MAO Zhi-zhong; WANG Fu-li

    2009-01-01

    Energy consumption is an important quality index in the production of seamless tubes. The complex factors affecting energy consumption make it difficult to build its mechanism model, and optimization is also very difficult, if not impossible. The piercing process was divided into three parts based on the production process, and an energy consumption prediction model was proposed based on the step mean value staged multiway partial least square meth-od. On the basis of the batch process prediction model, a genetic algorithm was adopted to calculate the optimum mean value of each process parameter and the minimum piercing energy consumption. Simulation proves that the op-timization method based on the energy consumption prediction model can obtain the optimum process parameters ef-fectively and also provide reliable evidences for practical production.

  9. Calculations of energy consumption in ventilation systems

    Energy Technology Data Exchange (ETDEWEB)

    Kreslins, Andris; Ramata, Anna [Riga Technical University (Latvia)], e-mail: kreslins@rbf.rtu.lv, email: Anna.Ramata@rtu.lv

    2011-07-01

    Energy cost is an important economic factor in the food industry production process. With the rising price of energy, a reduction in energy consumption would greatly impact production and the end product. The aim of this study was to develop a methodology for optimizing energy consumption. A comparison between a traditional ventilation system and a mechanical system was carried out; the necessary enthalpy for heating the air supply and thermal energy consumption were calculated and compared for both systems during the heating season, from October to April, using climatological data for Latvia. Results showed that energy savings of 46% to 87% can be achieved by applying the methodology in the design of industrial buildings; in addition, a well-designed ventilation system increases the workers' productivity. This study presented a methodology which can optimize energy consumption in the food industry sector.

  10. Alternative energies. Keeping cool in Helsinki, Finland

    Energy Technology Data Exchange (ETDEWEB)

    Gatermann, R.

    2009-09-15

    For more than fifty years the combination of power generation with district heating has been the norm in Helsinki, Finland. A few years ago Helsinki Energy decided to integrate district cooling into the system, with great success. It showed that Helsinki is an excellent example of how the efficient use of fossil fuels can be environmentally friendly.

  11. Residential Energy Consumption Survey: Quality Profile

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    1996-03-01

    The Residential Energy Consumption Survey (RECS) is a periodic national survey that provides timely information about energy consumption and expenditures of U.S. households and about energy-related characteristics of housing units. The survey was first conducted in 1978 as the National Interim Energy Consumption Survey (NIECS), and the 1979 survey was called the Household Screener Survey. From 1980 through 1982 RECS was conducted annually. The next RECS was fielded in 1984, and since then, the survey has been undertaken at 3-year intervals. The most recent RECS was conducted in 1993.

  12. Estimates of US biomass energy consumption 1992

    Energy Technology Data Exchange (ETDEWEB)

    1994-05-06

    This report is the seventh in a series of publications developed by the Energy Information Administration (EIA) to quantify the biomass-derived primary energy used by the US economy. It presents estimates of 1991 and 1992 consumption. The objective of this report is to provide updated estimates of biomass energy consumption for use by Congress, Federal and State agencies, biomass producers and end-use sectors, and the public at large.

  13. Energy Beverage Consumption Among Naval Aviation Candidates.

    Science.gov (United States)

    Sather, Thomas E; Delorey, Donald R

    2016-06-01

    Since the debut of energy beverages, the consumption of energy beverages has been immensely popular with young adults. Research regarding energy beverage consumption has included college students, European Union residents, and U.S. Army military personnel. However, energy beverage consumption among naval aviation candidates in the United States has yet to be examined. The purpose of this study was to assess energy beverage consumption patterns (frequency and volume) among naval aviation candidates, including attitudes and perceptions regarding the benefits and safety of energy beverage consumption. A 44-item survey was used to assess energy beverage consumption patterns of 302 students enrolled in the Aviation Preflight Indoctrination Course at Naval Air Station Pensacola, FL. Results indicated that 79% of participants (N = 239) reported consuming energy beverages within the last year. However, of those who reported consuming energy beverages within the last year, only 36% (N = 85) reported consuming energy beverages within the last 30 d. Additionally, 51% (N = 153) of participants reported no regular energy beverages consumption. The majority of participants consumed energy beverages for mental alertness (67%), mental endurance (37%), and physical endurance (12%). The most reported side effects among participants included increased mental alertness (67%), increased heart rate (53%), and restlessness (41%). Naval aviation candidates appear to use energy drinks as frequently as a college student population, but less frequently than expected for an active duty military population. The findings of this study indicate that naval aviation candidates rarely use energy beverages (less than once per month), but when consumed, they use it for fatigue management.

  14. Energy consumption projection of Nepal

    DEFF Research Database (Denmark)

    Parajuli, Ranjan; Østergaard, Poul Alberg; Dalgaard, Tommy

    2014-01-01

    differing from each other on the basis of growth rates of economic indicators: total GDP, GDP-agriculture, GDP-trade, GDP-industry, and other variables including growth in private consumptions, population, transport vehicles numbers, prices of fossil fuels etc. Scenarios are: Business as Usual (BAU), Medium...

  15. Citywide Impacts of Cool Roof and Rooftop Solar Photovoltaic Deployment on Near-Surface Air Temperature and Cooling Energy Demand

    Science.gov (United States)

    Salamanca, F.; Georgescu, M.; Mahalov, A.; Moustaoui, M.; Martilli, A.

    2016-10-01

    Assessment of mitigation strategies that combat global warming, urban heat islands (UHIs), and urban energy demand can be crucial for urban planners and energy providers, especially for hot, semi-arid urban environments where summertime cooling demands are excessive. Within this context, summertime regional impacts of cool roof and rooftop solar photovoltaic deployment on near-surface air temperature and cooling energy demand are examined for the two major USA cities of Arizona: Phoenix and Tucson. A detailed physics-based parametrization of solar photovoltaic panels is developed and implemented in a multilayer building energy model that is fully coupled to the Weather Research and Forecasting mesoscale numerical model. We conduct a suite of sensitivity experiments (with different coverage rates of cool roof and rooftop solar photovoltaic deployment) for a 10-day clear-sky extreme heat period over the Phoenix and Tucson metropolitan areas at high spatial resolution (1-km horizontal grid spacing). Results show that deployment of cool roofs and rooftop solar photovoltaic panels reduce near-surface air temperature across the diurnal cycle and decrease daily citywide cooling energy demand. During the day, cool roofs are more effective at cooling than rooftop solar photovoltaic systems, but during the night, solar panels are more efficient at reducing the UHI effect. For the maximum coverage rate deployment, cool roofs reduced daily citywide cooling energy demand by 13-14 %, while rooftop solar photovoltaic panels by 8-11 % (without considering the additional savings derived from their electricity production). The results presented here demonstrate that deployment of both roofing technologies have multiple benefits for the urban environment, while solar photovoltaic panels add additional value because they reduce the dependence on fossil fuel consumption for electricity generation.

  16. Energy Consumption in Wireless Sensor Networks

    Institute of Scientific and Technical Information of China (English)

    JIN Yan; WANG Ling; YANG Xiao-zong; WEN Dong-xin

    2007-01-01

    Wireless sensor networks (WSNs) can be used to collect surrounding data by multi-hop. As sensor networks have the constrained and not rechargeable energy resource, energy efficiency is an important design issue for its topology. In this paper, the energy consumption issue under the different topology is studied. We derive the exact mathematical expression of energy consumption for the fiat and clustering scheme, respectively. Then the energy consumptions of different schemes are compared. By the comparison, multi-level clustering scheme is more energy efficient in large scale networks. Simulation results demonstrate that our analysis is correct from the view of prolonging the large-scale network lifetime and achieving more power reductions.

  17. Uncertainty analysis of energy consumption in dwellings

    Energy Technology Data Exchange (ETDEWEB)

    Pettersen, Trine Dyrstad

    1997-12-31

    This thesis presents a comprehensive study of an energy estimation model that can be used to examine the uncertainty of predicted energy consumption in a dwelling. The variation and uncertainty of input parameters due to the outdoor climate, the building construction and the inhabitants are studied as a basis for further energy evaluations. The occurring variations of energy consumption in nominal similar dwellings are also investigated due to verification of the simulated energy consumption. The main topics are (1) a study of expected variations and uncertainties in both input parameters used in energy consumption calculations and the energy consumption in the dwelling, (2) the development and evaluation of a simplified energy calculation model that considers uncertainties due to the input parameters, (3) an evaluation of the influence of the uncertain parameters on the total variation so that the most important parameters can be identified, and (4) the recommendation of a simplified procedure for treating uncertainties or possible deviations from average conditions. 90 refs., 182 figs., 73 tabs.

  18. Energy consumption for shortcuts to adiabaticity

    Science.gov (United States)

    Torrontegui, E.; Lizuain, I.; González-Resines, S.; Tobalina, A.; Ruschhaupt, A.; Kosloff, R.; Muga, J. G.

    2017-08-01

    Shortcuts to adiabaticity let a system reach the results of a slow adiabatic process in a shorter time. We propose to quantify the "energy cost" of the shortcut by the energy consumption of the system enlarged by including the control device. A mechanical model where the dynamics of the system and control device can be explicitly described illustrates that a broad range of possible values for the consumption is possible, including zero (above the adiabatic energy increment) when friction is negligible and the energy given away as negative power is stored and reused by perfect regenerative braking.

  19. Open cycle cooling systems using solar energy

    Energy Technology Data Exchange (ETDEWEB)

    Lazzarin, R.; Sovrano, M.

    Open cycle cooling systems are particularly suitable for utilizing solar energy. In all these systems the adsorption and absorption phenomena are very important, hence they are described separately. The cycles used are essentially two: the Baum-Kakabaev cycle using liquid absorbers and the dehumidification/humidification cycle where also adsorbent substances can be utilized. Solar energy is used in the regeneration process of dehumidifying substances. Reactivation modes can be various: suitability of one mode or the other can depend on the climate of the site where the system is installed.

  20. An analysis of residential energy consumption in a temperate climate. Volume 1

    Energy Technology Data Exchange (ETDEWEB)

    Clark, Y.Y.; Vincent, W.

    1987-06-01

    Electrical energy consumption data have been recorded for several hundred submetered residential structures in Middle Tennessee. All houses were constructed with a common ``energy package.`` Specifically, daily cooling usage data have been collected for 130 houses for the 1985 and 1986 cooling seasons, and monthly heating usage data for 186 houses have been recorded by occupant participation over a seven-year period. Cooling data have been analyzed using an SPSSx multiple regression analysis and results are compared to several cooling models. Heating, base, and total energy usage are also analyzed and regression correlation coefficients are determined as a function of several house parameters.

  1. An analysis of residential energy consumption in a temperate climate. Volume 2

    Energy Technology Data Exchange (ETDEWEB)

    Clark, Y.Y.; Vincent, W.

    1987-06-01

    Electrical energy consumption data have been recorded for several hundred submetered residential structures in Middle Tennessee. All houses were constructed with a common ``energy package.`` Specifically, daily cooling usage data have been collected for 130 houses for the 1985 and 1986 cooling seasons, and monthly heating usage data for 186 houses have been recorded by occupant participation over a seven-year period. Cooling data have been analyzed using an SPSSx multiple regression analysis and results are compared to several cooling models. Heating, base, and total energy usage are also analyzed and regression correlation coefficients are determined as a function of several house parameters.

  2. Energy consumption for different greenhouses' structures

    Directory of Open Access Journals (Sweden)

    Đević Milan

    2008-01-01

    Full Text Available In this paper influence of greenhouses' structure was estimated for four different double plastic covered greenhouses in winter lettuce production. Plastic coverings are introduced as mean of making this kind of plant production more efficient. Also, as a mean of lowering energy consumption, the tunnel structures are proposed. Four different double plastic covered greenhouses were used for energy analysis. Two tunnel types, 9 x 58m and 8 x 25m covered with double PE folia, and two gutter connected plastic covered greenhouses. One greenhouse is 2 x 7 m wide and 39 m long and the other 20 x 6.4 m wide and 42 m long. Results have shown the lowest energy consumption for gutter connected greenhouses. Energy out/in ratio was also higher in gutter connected greenhouse. Highest energy consumption was obtained in tunnel greenhouse 8 x 25m.

  3. Energy Consumption of Die Casting Operations

    Energy Technology Data Exchange (ETDEWEB)

    Jerald Brevick; clark Mount-Campbell; Carroll Mobley

    2004-03-15

    Molten metal processing is inherently energy intensive and roughly 25% of the cost of die-cast products can be traced to some form of energy consumption [1]. The obvious major energy requirements are for melting and holding molten alloy in preparation for casting. The proper selection and maintenance of melting and holding equipment are clearly important factors in minimizing energy consumption in die-casting operations [2]. In addition to energy consumption, furnace selection also influences metal loss due to oxidation, metal quality, and maintenance requirements. Other important factors influencing energy consumption in a die-casting facility include geographic location, alloy(s) cast, starting form of alloy (solid or liquid), overall process flow, casting yield, scrap rate, cycle times, number of shifts per day, days of operation per month, type and size of die-casting form of alloy (solid or liquid), overall process flow, casting yield, scrap rate, cycle times, number of shifts per day, days of operation per month, type and size of die-casting machine, related equipment (robots, trim presses), and downstream processing (machining, plating, assembly, etc.). Each of these factors also may influence the casting quality and productivity of a die-casting enterprise. In a die-casting enterprise, decisions regarding these issues are made frequently and are based on a large number of factors. Therefore, it is not surprising that energy consumption can vary significantly from one die-casting enterprise to the next, and within a single enterprise as function of time.

  4. Flexible Energy Consumption in Smart House's

    DEFF Research Database (Denmark)

    Madsen, Per Printz

    2012-01-01

    the consumer have to use the energy when it is available. The main electrical energy consumer in a modern society is buildings and private homes. The amount of electrical energy used in this sector is about 70% of the total electricity consumption. Because of that buildings and private homes has to play...... an automatic and inteligente house control system that maximize the consumption exibility based on the energy users behavior with out aection the living comfort. This behavior is of course dierent from household to household, because of that it is nessasary include an adaptive behavior prediction system......The last couple of years more and more non-controllable energy sources, e.g. wind turbines, have been connected to the power grid. This has caused an inecient energy production and a huge variation in the energy prices. In the near future (10 to 15 years) the amount of non-controllable energy...

  5. Dynamic Free Cooling. Efficient and energy saving air conditioner for datahotels; Dynamic Free Cooling. Efficient en energeibesparend airconditioningsysteem voor datacenters

    Energy Technology Data Exchange (ETDEWEB)

    Havenaar, D.

    2009-01-15

    Servers in data centres produce a large amount of heat, which has to be removed by ventilation and air conditioning systems. These systems have a vast energy consumption. Increasing energy costs and limited resources of available electricity are forcing the data centre industry to the use of energy efficient technical equipment. Dynamic Free Cooling is a contrN concept for data centre's air conditioning systems combining Hybrid Indirect Free Cooling Precision Air Conditiening Units, Fan Speed Controlled Dry Coolers and Speed Controlled Central Pumps to highly efficient precision cooling system. All system components are centrally controlled to minimize overall energy consumption depending on the Ambient Temperature and the Room Load Status. [Dutch] Servers in datacenters produceren een grote hoeveelheid warmte die moet worden afgevoerd door middel van ventilatie- en airconditioningsystemen. Deze systemen gebruiken een forse hoeveelheid elektrische energie. Toenemende energiekosten en de beperkte beschikbaarheid van elektriciteit zorgen ervoor dat datacenters steeds meer overgaan op het installeren van energie-efficiente systemen. Dynamic Free Cooling is een regelconcept voor airconditioningsystemen in combinatie met hybride indirecte vrije koeling in precisie-airconditioningunits, ventilatorgeregetde droge koelers en toerengeregetde centrale pompsystemen. AI deze systeemcomponenten worden centraal geregeld om het totale energiegebruik, afhankelijk van de omgevingstemperatuur en de koellast te minimaliseren.

  6. Demonstration of energy savings of cool roofs

    Energy Technology Data Exchange (ETDEWEB)

    Konopacki, S.; Gartland, L.; Akbari, H. [Lawrence Berkeley National Lab., CA (United States). Environmental Energy Technologies Div.; Rainer, L. [Davis Energy Group, Davis, CA (United States)

    1998-06-01

    Dark roofs raise the summertime air-conditioning demand of buildings. For highly-absorptive roofs, the difference between the surface and ambient air temperatures can be as high as 90 F, while for highly-reflective roofs with similar insulative properties, the difference is only about 20 F. For this reason, cool roofs are effective in reducing cooling energy use. Several experiments on individual residential buildings in California and Florida show that coating roofs white reduces summertime average daily air-conditioning electricity use from 2--63%. This demonstration project was carried out to address some of the practical issues regarding the implementation of reflective roofs in a few commercial buildings. The authors monitored air-conditioning electricity use, roof surface temperature, plenum, indoor, and outdoor air temperatures, and other environmental variables in three buildings in California: two medical office buildings in Gilroy and Davis and a retail store in San Jose. Coating the roofs of these buildings with a reflective coating increased the roof albedo from an average of 0.20--0.60. The roof surface temperature on hot sunny summer afternoons fell from 175 F--120 F after the coating was applied. Summertime average daily air-conditioning electricity use was reduced by 18% (6.3 kWh/1000ft{sup 2}) in the Davis building, 13% (3.6 kWh/1000ft{sup 2}) in the Gilroy building, and 2% (0.4 kWh/1000ft{sup 2}) in the San Jose store. In each building, a kiosk was installed to display information from the project in order to educate and inform the general public about the environmental and energy-saving benefits of cool roofs. They were designed to explain cool-roof coating theory and to display real-time measurements of weather conditions, roof surface temperature, and air-conditioning electricity use. 55 figs., 15 tabs.

  7. Demonstration of energy savings of cool roofs

    Energy Technology Data Exchange (ETDEWEB)

    Konopacki, S.; Gartland, L.; Akbari, H. [Lawrence Berkeley National Lab., CA (United States). Environmental Energy Technologies Div.; Rainer, L. [Davis Energy Group, Davis, CA (United States)

    1998-06-01

    Dark roofs raise the summertime air-conditioning demand of buildings. For highly-absorptive roofs, the difference between the surface and ambient air temperatures can be as high as 90 F, while for highly-reflective roofs with similar insulative properties, the difference is only about 20 F. For this reason, cool roofs are effective in reducing cooling energy use. Several experiments on individual residential buildings in California and Florida show that coating roofs white reduces summertime average daily air-conditioning electricity use from 2--63%. This demonstration project was carried out to address some of the practical issues regarding the implementation of reflective roofs in a few commercial buildings. The authors monitored air-conditioning electricity use, roof surface temperature, plenum, indoor, and outdoor air temperatures, and other environmental variables in three buildings in California: two medical office buildings in Gilroy and Davis and a retail store in San Jose. Coating the roofs of these buildings with a reflective coating increased the roof albedo from an average of 0.20--0.60. The roof surface temperature on hot sunny summer afternoons fell from 175 F--120 F after the coating was applied. Summertime average daily air-conditioning electricity use was reduced by 18% (6.3 kWh/1000ft{sup 2}) in the Davis building, 13% (3.6 kWh/1000ft{sup 2}) in the Gilroy building, and 2% (0.4 kWh/1000ft{sup 2}) in the San Jose store. In each building, a kiosk was installed to display information from the project in order to educate and inform the general public about the environmental and energy-saving benefits of cool roofs. They were designed to explain cool-roof coating theory and to display real-time measurements of weather conditions, roof surface temperature, and air-conditioning electricity use. 55 figs., 15 tabs.

  8. Water consumption in the energy sector

    DEFF Research Database (Denmark)

    Larsen, Morten Andreas Dahl; Drews, Martin; Gani, Rafiqul

    2016-01-01

    Energy, water, and food systems are closely interlinked in the Energy-Water-Food Nexus. Water is of paramount importance for the energy sector. Fossil fuels require water for extraction, trans-port and processing. Thermal power plants require water for cooling, whether they use nuclear, fossil......-users. The waste water is often returned to the environment after energy requiring waste water management....... or biofuels. Hydropower is based on water in rivers or reservoirs. Feedstock production for biofuels may depend on water for irrigation. On the other hand, energy is necessary for pumping of ground- and surface water, for water treatment as well as for transport and distribution of water to end...

  9. The Comfortable Home and Energy Consumption

    DEFF Research Database (Denmark)

    Madsen, Line Valdorff

    2017-01-01

    This paper investigates relations between notions of comfort and notions of home, aiming at a better understanding of residential comfort and the related energy consumption. Residential comfort is examined through a practice-theoretical lens and as something that appears in between the social...... concludes that the notion of home is central in understanding comfort and energy consumption in dwellings, as conceptions of comfort and home are intertwined but also carry different meanings. The different rooms of a house relate differently to the notions of home and comfort, which has implications...... for how energy is consumed within the home....

  10. ENERGY CONSUMPTION AND REAL GDP IN IRAN

    Directory of Open Access Journals (Sweden)

    Ali Akbar Naji Meidani

    2014-01-01

    Full Text Available As one of the most important production factors and one of the most urgent final products, energy has a special position in the growth and development of the country. This paper examines the causal relationship between Real GDP and energy consumption in various economic sectors including (household and commercial, industry, transportation and agriculture sectors for Iran during 1967–2010 using the time series technique known as the Toda-Yamamoto method. Moreover, an error correction model is also estimated so that the results of these two methods are compared. We found a strong unidirectional causality from energy consumption in industry sector to real gross domestic product. Energy consumption in industry sector can observably promote the development of economy.

  11. A review on buildings energy consumption information

    Energy Technology Data Exchange (ETDEWEB)

    Perez-Lombard, Luis [Grupo de Termotecnia, Escuela Superior de Ingenieros, Universidad de Sevilla (Spain); Ortiz, Jose; Pout, Christine [Sustainable Energy Centre, BRE, Watford (United Kingdom)

    2008-07-01

    The rapidly growing world energy use has already raised concerns over supply difficulties, exhaustion of energy resources and heavy environmental impacts (ozone layer depletion, global warming, climate change, etc.). The global contribution from buildings towards energy consumption, both residential and commercial, has steadily increased reaching figures between 20% and 40% in developed countries, and has exceeded the other major sectors: industrial and transportation. Growth in population, increasing demand for building services and comfort levels, together with the rise in time spent inside buildings, assure the upward trend in energy demand will continue in the future. For this reason, energy efficiency in buildings is today a prime objective for energy policy at regional, national and international levels. Among building services, the growth in HVAC systems energy use is particularly significant (50% of building consumption and 20% of total consumption in the USA). This paper analyses available information concerning energy consumption in buildings, and particularly related to HVAC systems. Many questions arise: Is the necessary information available? Which are the main building types? What end uses should be considered in the breakdown? Comparisons between different countries are presented specially for commercial buildings. The case of offices is analysed in deeper detail. (author)

  12. Energy consumption, cultural background and payment structure

    NARCIS (Netherlands)

    Beunder, Alexander; Groot, Loek

    2015-01-01

    In order to reduce the ecological footprint of households and mitigate anthropogenic climate change, policy makers need to understand which incentives drive household energy consumption. Economists tend to rely solely on financial instruments, but these might have unintended consequences on energy c

  13. Microbunched electron cooling for high-energy hadron beams.

    Science.gov (United States)

    Ratner, D

    2013-08-23

    Electron and stochastic cooling are proven methods for cooling low-energy hadron beams, but at present there is no way of cooling hadrons as they near the TeV scale. In the 1980s, Derbenev suggested that electron instabilities, such as free-electron lasers, could create collective space charge fields strong enough to correct the hadron energies. This Letter presents a variation on Derbenev's electron cooling scheme using the microbunching instability as the amplifier. The large bandwidth of the instability allows for faster cooling of high-density beams. A simple analytical model illustrates the cooling mechanism, and simulations show cooling rates for realistic parameters of the Large Hadron Collider.

  14. Analysis and Optimization of Building Energy Consumption

    Science.gov (United States)

    Chuah, Jun Wei

    Energy is one of the most important resources required by modern human society. In 2010, energy expenditures represented 10% of global gross domestic product (GDP). By 2035, global energy consumption is expected to increase by more than 50% from current levels. The increased pace of global energy consumption leads to significant environmental and socioeconomic issues: (i) carbon emissions, from the burning of fossil fuels for energy, contribute to global warming, and (ii) increased energy expenditures lead to reduced standard of living. Efficient use of energy, through energy conservation measures, is an important step toward mitigating these effects. Residential and commercial buildings represent a prime target for energy conservation, comprising 21% of global energy consumption and 40% of the total energy consumption in the United States. This thesis describes techniques for the analysis and optimization of building energy consumption. The thesis focuses on building retrofits and building energy simulation as key areas in building energy optimization and analysis. The thesis first discusses and evaluates building-level renewable energy generation as a solution toward building energy optimization. The thesis next describes a novel heating system, called localized heating. Under localized heating, building occupants are heated individually by directed radiant heaters, resulting in a considerably reduced heated space and significant heating energy savings. To support localized heating, a minimally-intrusive indoor occupant positioning system is described. The thesis then discusses occupant-level sensing (OLS) as the next frontier in building energy optimization. OLS captures the exact environmental conditions faced by each building occupant, using sensors that are carried by all building occupants. The information provided by OLS enables fine-grained optimization for unprecedented levels of energy efficiency and occupant comfort. The thesis also describes a retrofit

  15. Low energy building with novel cooling unit using PCM

    Energy Technology Data Exchange (ETDEWEB)

    Jaber, Samar

    2012-02-13

    This thesis aims to reduce the energy consumption as well as greenhouse gases to the environment without negatively affecting the thermal comfort. In the present work, thermal, energetic and economic impacts of employing passive solar systems combined with energy conservation systems have been investigated. These energy systems have been integrated with a typical residential building located in three different climate zones in Europe and Middle East regions.Hour-by-hour energy computer simulations have been carried out using TRNSYS and INSEL programs to analyze the performance of integrated energy systems. Furthermore, IESU software module has been developed to simulate a novel cooling unit using Phase Change Material (PCM). This unit is named as Indirect Evaporative and Storage Unit (IESU). Thereafter, complete economic equations for the Life Cycle Cost (LCC) criterion have been formulated. Furthermore this criterion has been optimized for different variables as a function of thermal parameters and economic figures from local markets. An optimum design of both residential buildings and energy systems has great impact on energy consumption. In fact, results showed that the energy consumption is reduced by 85.62%, 86.33% and 74.05% in Berlin, Amman and Aqaba, respectively. Moreover, the LCC criterion is reduced by 41.85% in Berlin, 19.21% in Amman and 15.22% in Aqaba.The macro economic analysis shows that once this research is applied in one million typical residential buildings in the selected climate zones, the annual avoided CO{sub 2} emissions are estimated to be about 5.7 million Tons in Berlin. In Aqaba, around 2.96 million Tons CO{sub 2} emissions will be saved annually and in Amman about 2.98 million Tons will be reduced. The payback period from the achieved saving is 18 years, 11 years and 8.6 years in Amman, Aqaba and Berlin, respectively.

  16. Retrofitting the Southeast. The Cool Energy House

    Energy Technology Data Exchange (ETDEWEB)

    Zoeller, W. [Steven Winter Associates, Inc., Norwalk, CT (United States); Shapiro, C. [Steven Winter Associates, Inc., Norwalk, CT (United States); Vijayakumar, G. [Steven Winter Associates, Inc., Norwalk, CT (United States); Puttagunta, S. [Steven Winter Associates, Inc., Norwalk, CT (United States)

    2013-02-01

    The Consortium for Advanced Residential Buildings research team has provided the technical engineering and building science support for a highly visible demonstration home that was unveiled at the National Association of Home Builders' International Builders Show on Feb. 9, 2012, in Orlando, FL. The two previous projects, the Las Vegas net-zero ReVISION House and the 2011 VISION and ReVISION Houses in Orlando, met goals for energy efficiency, cost effectiveness, and information dissemination through multiple web-based venues. This report describes the deep energy retrofit of the Cool Energy House (CEH), which began as a mid-1990s two-story traditional specification house of about 4,000 ft2 in the upscale Orlando suburb of Windermere.

  17. Retrofitting the Southeast: The Cool Energy House

    Energy Technology Data Exchange (ETDEWEB)

    Zoeller, W.; Shapiro, C.; Vijayakumar, G.; Puttagunta, S.

    2013-02-01

    The Consortium for Advanced Residential Buildings has provided the technical engineering and building science support for a highly visible demonstration home in connection with the National Association of Home Builders' International Builders Show. The two previous projects, the Las Vegas net-zero ReVISION House and the 2011 VISION and ReVISION Houses in Orlando, met goals for energy efficiency, cost effectiveness, and information dissemination through multiple web-based venues. This project, which was unveiled at the 2012 International Builders Show in Orlando on February 9, is the deep energy retrofit Cool Energy House (CEH). The CEH began as a mid-1990s two-story traditional specification house of about 4,000 ft2 in the upscale Orlando suburb of Windermere.

  18. Passive low energy cooling of buildings

    CERN Document Server

    Givoni, Baruch

    1994-01-01

    A practical sourcebook for building designers, providing comprehensive discussion of the impact of basic architectural choices on cooling efficiency, including the layout and orientation of the structure, window size and shading, exterior color, and even the use of plantings around the site. All major varieties of passive cooling systems are presented, with extensive analysis of performance in different types of buildings and in different climates: ventilation; radiant cooling; evaporative cooling; soil cooling; and cooling of outdoor spaces.

  19. The effect of energy performance regulations on energy consumption

    NARCIS (Netherlands)

    Guerra-Santin, O.; Itard, L.

    2012-01-01

    Governments have developed energy performance regulations in order to lower energy consumption in the housing stock. Most of these regulations are based on the thermal quality of the buildings. In the Netherlands, the energy efficiency for new buildings is expressed as the EPC (energy performance co

  20. The effect of energy performance regulations on energy consumption

    NARCIS (Netherlands)

    Guerra-Santin, O.; Itard, L.

    2012-01-01

    Governments have developed energy performance regulations in order to lower energy consumption in the housing stock. Most of these regulations are based on the thermal quality of the buildings. In the Netherlands, the energy efficiency for new buildings is expressed as the EPC (energy performance co

  1. The effect of energy performance regulations on energy consumption

    NARCIS (Netherlands)

    Guerra-Santin, O.; Itard, L.

    2012-01-01

    Governments have developed energy performance regulations in order to lower energy consumption in the housing stock. Most of these regulations are based on the thermal quality of the buildings. In the Netherlands, the energy efficiency for new buildings is expressed as the EPC (energy performance

  2. Optimum Design and Operation of an HVAC Cooling Tower for Energy and Water Conservation

    Directory of Open Access Journals (Sweden)

    Clemente García Cutillas

    2017-03-01

    Full Text Available The energy consumption increase in the last few years has contributed to developing energy efficiency policies in many countries, the main goal of which is decreasing CO 2 emissions. One of the reasons for this increment has been caused by the use of air conditioning systems due to new comfort standards. In that regard, cooling towers and evaporative condensers are presented as efficient devices that operate with low-level water temperature. Moreover, the energy consumption and the cost of the equipment are lower than other systems like air condensers at the same operation conditions. This work models an air conditioning system in TRNSYS software, the main elements if which are a cooling tower, a water-water chiller and a reference building. The cooling tower model is validated using experimental data in a pilot plant. The main objective is to implement an optimizing control strategy in order to reduce both energy and water consumption. Furthermore a comparison between three typical methods of capacity control is carried out. Additionally, different cooling tower configurations are assessed, involving six drift eliminators and two water distribution systems. Results show the influence of optimizing the control strategy and cooling tower configuration, with a maximum energy savings of 10.8% per story and a reduction of 4.8% in water consumption.

  3. Indoor environmental quality and energy consumption relation in offices: case study of two offices in Iran

    Energy Technology Data Exchange (ETDEWEB)

    Ashrafian, Touraj; Moazzen Ferdos, Nazanin [Islamic Azad University Tabriz branch (Iran, Islamic Republic of)], email: t.ashrafian@gmail.com, email: moazzen_arch@yahoo.com; Haghlesan, Masoud [Islamic Azad University, Ilkhichi Branch (Iran, Islamic Republic of)], email: mhaghlesan@yahoo.com

    2011-07-01

    Nowadays, most people spend more than 90% of their time indoors, therefore the quality of the indoor environment has a significant impact on human health. However, improving indoor environment quality (IEQ) requires a higher energy consumption through increasing lighting, heating and cooling. The aim of this study is to determine an appropriate level of IEQ with the least energy consumption possible. The relation between energy consumption and IEQ in 2 offices in Iran has been studied through the use of questionnaires and simulations. It was found that IEQ has a great impact on workers' productivity and that diminishing the energy consumption does not necessarily translate into economic benefits. In addition it was found that lighting and heating are the main sources of energy consumption and that noise and light are what most influence worker productivity. This study highlighted the relation between energy consumption and IEQ and pointed out the most important factors.

  4. Energy Consumption of Fast Ferries in Danish Domestic Transport

    DEFF Research Database (Denmark)

    Petersen, Morten Steen; Jørgensen, Kaj

    1997-01-01

    Analysis of energy consumption in connection with selected passenger transport trip chains. In particular the publication aims to evaluate the energy consumption of fast ferries in Denmark.......Analysis of energy consumption in connection with selected passenger transport trip chains. In particular the publication aims to evaluate the energy consumption of fast ferries in Denmark....

  5. Scheduling home-appliances to optimize energy consumption

    DEFF Research Database (Denmark)

    Rossello Busquet, Ana

    In order to optimize the energy consumption, energy demand peaks should be avoided, and energy consumption should be smoothly distributed over time. This can be achieved by setting a maximum energy consumption per user’s household. In other words, the overall consumption of the user’s appliances ...

  6. Energy Consumption of Fast Ferries in Danish Domestic Transport

    DEFF Research Database (Denmark)

    Petersen, Morten Steen; Jørgensen, Kaj

    1997-01-01

    Analysis of energy consumption in connection with selected passenger transport trip chains. In particular the publication aims to evaluate the energy consumption of fast ferries in Denmark.......Analysis of energy consumption in connection with selected passenger transport trip chains. In particular the publication aims to evaluate the energy consumption of fast ferries in Denmark....

  7. Scheduling home-appliances to optimize energy consumption

    DEFF Research Database (Denmark)

    Rossello Busquet, Ana

    In order to optimize the energy consumption, energy demand peaks should be avoided, and energy consumption should be smoothly distributed over time. This can be achieved by setting a maximum energy consumption per user’s household. In other words, the overall consumption of the user’s appliances...

  8. A Meta Model for Domestic Energy Consumption

    Directory of Open Access Journals (Sweden)

    K.,J SREEKANTH

    2011-01-01

    Full Text Available Prediction of energy consumption particularly in micro level is of vital importance in terms of energy planning and also implementation of any Clean Development Mechanism (CDM activities that has become the order of the world today. It may be difficult to model household energy consumption using conventional methods such as time series forecasting due to many influencing factors. This paper presents a step wise regression model for forecasting domestic energy consumption based on micro level household survey data collected from Kerala, a state in southern part of India. The analysis of the data reveals significant influence of socio-economic, demographic, geographic, and family attributes upon total household energy requirements. While a wide variation in the pattern of energy requirements across the domestic sector belonging to different expenditure classes, per capita income level can be identified as the most important explanatory variable influencing variation in energy requirements. The models developed also demonstrates the influence of per capita land area, residential area among the higher income group while average age and literacy forms significant variables among the lower income group.

  9. Computer Profile of School Facilities Energy Consumption.

    Science.gov (United States)

    Oswalt, Felix E.

    This document outlines a computerized management tool designed to enable building managers to identify energy consumption as related to types and uses of school facilities for the purpose of evaluating and managing the operation, maintenance, modification, and planning of new facilities. Specifically, it is expected that the statistics generated…

  10. Energy sustainability: consumption, efficiency, and environmental impact

    Science.gov (United States)

    One of the critical challenges in achieving sustainability is finding a way to meet the energy consumption needs of a growing population in the face of increasing economic prosperity and finite resources. According to ecological footprint computations, the global resource consump...

  11. Energy consumption in static muscle contraction

    NARCIS (Netherlands)

    Koerhuis, CL; Hof, AL; van der Heide, F.M.

    2003-01-01

    Energy consumption during static contraction of the human triceps surae muscles was studied in 11 healthy subjects. The subjects had to stand intermittently on the left and then right foot at different frequencies (for periods of 15 s, 10 s or 5 s), first on the whole foot and then on the forefoot.

  12. Energy consumption in static muscle contraction

    NARCIS (Netherlands)

    Koerhuis, CL; Hof, AL; van der Heide, F.M.

    Energy consumption during static contraction of the human triceps surae muscles was studied in 11 healthy subjects. The subjects had to stand intermittently on the left and then right foot at different frequencies (for periods of 15 s, 10 s or 5 s), first on the whole foot and then on the forefoot.

  13. Energy sustainability: consumption, efficiency, and environmental impact

    Science.gov (United States)

    One of the critical challenges in achieving sustainability is finding a way to meet the energy consumption needs of a growing population in the face of increasing economic prosperity and finite resources. According to ecological footprint computations, the global resource consump...

  14. Energy consumption in the pipeline industry

    Energy Technology Data Exchange (ETDEWEB)

    Banks, W. F.

    1977-12-31

    Estimates are developed of the energy consumption and energy intensity (EI) of five categories of U.S. pipeline industries: natural gas, crude oil, petroleum products, coal slurry, and water. For comparability with other transportation modes, it is desirable to calculate EI in Btu/Ton-Mile, and this is done, although the necessary unit conversions introduce additional uncertainties. Since water and sewer lines operate by lift and gravity, a comparable EI is not definable.

  15. Socio-Demographic Differences in Energy Drink Consumption and Reasons for Consumption among US College Students

    Science.gov (United States)

    Poulos, Natalie S.; Pasch, Keryn E.

    2016-01-01

    Background: Energy drink consumption has become increasingly prevalent among US college students, yet little is known about current rates of consumption and reasons for consumption among current energy drink users, particularly differences related to gender and race/ethnicity. Objectives: To better understand energy drink consumption alone and…

  16. Socio-Demographic Differences in Energy Drink Consumption and Reasons for Consumption among US College Students

    Science.gov (United States)

    Poulos, Natalie S.; Pasch, Keryn E.

    2016-01-01

    Background: Energy drink consumption has become increasingly prevalent among US college students, yet little is known about current rates of consumption and reasons for consumption among current energy drink users, particularly differences related to gender and race/ethnicity. Objectives: To better understand energy drink consumption alone and…

  17. Dwelling Buildings’ Energy Certification by Total Energy Consumption

    OpenAIRE

    Belindževa-Korkla, O; Krēsliņš, A; Borodiņecs, A

    2005-01-01

    One of the requirements of the Directive 2002/91/EC on the energy performance of buildings is introduction in the EU member countries of energy certification of buildings. It has to be implemented starting from 2006. In Latvia the energy certification scheme for dwelling buildings was developed in RTU in 2000 and successfully implemented in Ogre in 2002-2004. The existing buildings’ energy certification scheme takes into account only energy consumption of space heating and hot water supply. I...

  18. Simulation Tool For Energy Consumption and Production

    DEFF Research Database (Denmark)

    Nysteen, Michael; Mynderup, Henrik; Poulsen, Bjarne

    2013-01-01

    In order to promote adoption of smart grid with the general public it is necessary to be able to visualize the benefits of a smart home. Software tools that model the effects can help significantly with this. However, only little work has been done in the area of simulating and visualizing...... the energy consumption in smart homes. This paper presents a prototype simulation tool that allows graphical modeling of a home. Based on the modeled homes the user is able to simulate the energy consumptions and compare scenarios. The simulations are based on dynamic weather and energy price data as well...... as a controller unit of the user’s choice. The results of the simulations can be compared using a dynamic reporting window that allows the user to create custom charts of the data. The application has been designed such that it can easily be extended with additional controller units, price and weather data...

  19. Electrical energy consumption control apparatuses and electrical energy consumption control methods

    Science.gov (United States)

    Hammerstrom, Donald J.

    2012-09-04

    Electrical energy consumption control apparatuses and electrical energy consumption control methods are described. According to one aspect, an electrical energy consumption control apparatus includes processing circuitry configured to receive a signal which is indicative of current of electrical energy which is consumed by a plurality of loads at a site, to compare the signal which is indicative of current of electrical energy which is consumed by the plurality of loads at the site with a desired substantially sinusoidal waveform of current of electrical energy which is received at the site from an electrical power system, and to use the comparison to control an amount of the electrical energy which is consumed by at least one of the loads of the site.

  20. Assessing the Energy Consumption of Smartphone Applications

    Science.gov (United States)

    Abousaleh, Mustafa M.

    Mobile devices are increasingly becoming essential in people's lives. The advancement in technology and mobility factor are allowing users to utilize mobile devices for communication, entertainment, financial planning, fitness tracking, etc. As a result, mobile applications are also becoming important factors contributing to user utility. However, battery capacity is the limiting factor impacting the quality of user experience. Hence, it is imperative to understand how much energy impact do mobile apps have on the system relative to other device activities. This thesis presents a systematic studying of the energy impact of mobile apps features. Time-series electrical current measurements are collected from 4 different modern smartphones. Statistical analysis methodologies are used to calculate the energy impact of each app feature by identifying and extracting mobile app-feature events from the overall current signal. In addition, the app overhead energy costs are also computed. Total energy consumption equations for each component is developed and an overall total energy consumption equation is presented. Minutes Lost (ML) of normal phone operations due to the energy consumption of the mobile app functionality is computed for cases where the mobile app is simulated to run on the various devices for 30 minutes. Tutela Technologies Inc. mobile app, NAT, is used for this study. NAT has two main features: QoS and Throughput. The impact of the QoS feature is indistinguishable, i.e. ML is zero, relative to other phone activities. The ML with only the TP feature enabled is on average 2.1 minutes. Enabling the GPS increases the ML on average to 11.5 minutes. Displaying the app GUI interface in addition to running the app features and enabling the GPS results in an average ML of 12.4 minutes. Amongst the various mobile app features and components studied, the GPS consumes the highest amount of energy. It is estimated that the GPS increases the ML by about 448%.

  1. An Investigation of Energy Consumption and Cost in Large Air-Conditioned Buildings. An Interim Report.

    Science.gov (United States)

    Milbank, N. O.

    Two similarly large buildings and air conditioning systems are comparatively analyzed as to energy consumption, costs, and inefficiency during certain measured periods of time. Building design and velocity systems are compared to heating, cooling, lighting and distribution capabilities. Energy requirements for pumps, fans and lighting are found to…

  2. Chinese kangs and building energy consumption

    Institute of Scientific and Technical Information of China (English)

    LI YuGuo; ZHUANG Zhi; LIU JiaPing

    2009-01-01

    Chinese kangs are an integrated system for cooking, sleeping and heating in rural Northern China with more than 2000 years history. In 2004 there were 67 million Chinese kangs used by 44 million rural families or 174 million people. Chinese kangs store surplus heat from stove during cooking and releases it later for both home heating and localized bed heating. Such a widely used heating system has been rarely studied. Understanding kangs is important for developing new effective home heating systems for better energy efficiency and improving indoor air quality in Northern China. In this paper,we review and present some preliminary results from our field measurement and mathematical modeling, and discuss the development of Chinese kangs as related to future energy consumption in rural homes, and building energy consumption in China in general. We suggest that transition and new technologies for rural home heating in Northern China, i.e. the future of Chinese kangs, should be considered as the top priority in managing future building energy consumption in China.

  3. Urban transport energy consumption: Belgrade case study

    Directory of Open Access Journals (Sweden)

    Jovanović Miomir M.

    2015-01-01

    Full Text Available More than half of the global population now lives in towns and cities. At the same time, transport has become the highest single energy-consuming human activity. Hence, one of the major topics today is the reduction of urban transport demand and of energy consumption in cities. In this article we focused on the whole package of instruments that can reduce energy consumption and transport demand in Belgrade, a city that is currently at a major crossroad. Belgrade can prevent a dramatic increase in energy consumption and CO2 emissions (and mitigate the negative local environmental effects of traffic congestion, traffic accidents and air pollution, only if it: 1 implements a more decisive strategy to limit private vehicles use while its level of car passenger km (PKT is still relatively low; 2 does not try to solve its transport problems only by trying to build urban road infrastructure (bridges and ring roads; and 3 if it continues to provide priority movement for buses (a dominant form of public transport, while 4 at the same time developing urban rail systems (metro or LRT with exclusive tracks, immune to the traffic congestion on urban streets. [Projekat Ministarstva nauke Republike Srbije, br. 37010

  4. Comparing the Life Cycle Energy Consumption, Global ...

    Science.gov (United States)

    Managing the water-energy-nutrient nexus for the built environment requires, in part, a full system analysis of energy consumption, global warming and eutrophication potentials of municipal water services. As an example, we evaluated the life cycle energy use, greenhouse gas (GHG) emissions and aqueous nutrient releases of the whole anthropogenic municipal water cycle starting from raw water extraction to wastewater treatment and reuse/discharge for five municipal water and wastewater systems. The assessed options included conventional centralized services and four alternative options following the principles of source-separation and water fit-for-purpose. The comparative life cycle assessment identified that centralized drinking water supply coupled with blackwater energy recovery and on-site greywater treatment and reuse was the most energyand carbon-efficient water service system evaluated, while the conventional (drinking water and sewerage) centralized system ranked as the most energy- and carbon-intensive system. The electricity generated from blackwater and food residuals co-digestion was estimated to offset at least 40% of life cycle energy consumption for water/waste services. The dry composting toilet option demonstrated the lowest life cycle eutrophication potential. The nutrients in wastewater effluent are the dominating contributors for the eutrophication potential for the assessed system configurations. Among the parameters for which variability

  5. Data mining, mining data : energy consumption modelling

    Energy Technology Data Exchange (ETDEWEB)

    Dessureault, S. [Arizona Univ., Tucson, AZ (United States)

    2007-09-15

    Most modern mining operations are accumulating large amounts of data on production and business processes. Data, however, provides value only if it can be translated into information that appropriate users can utilize. This paper emphasized that a new technological focus should emerge, notably how to concentrate data into information; analyze information sufficiently to become knowledge; and, act on that knowledge. Researchers at the Mining Information Systems and Operations Management (MISOM) laboratory at the University of Arizona have created a method to transform data into action. The data-to-action approach was exercised in the development of an energy consumption model (ECM), in partnership with a major US-based copper mining company, 2 software companies, and the MISOM laboratory. The approach begins by integrating several key data sources using data warehousing techniques, and increasing the existing level of integration and data cleaning. An online analytical processing (OLAP) cube was also created to investigate the data and identify a subset of several million records. Data mining algorithms were applied using the information that was isolated by the OLAP cube. The data mining results showed that traditional cost drivers of energy consumption are poor predictors. A comparison was made between traditional methods of predicting energy consumption and the prediction formed using data mining. Traditionally, in the mines for which data were available, monthly averages of tons and distance are used to predict diesel fuel consumption. However, this article showed that new information technology can be used to incorporate many more variables into the budgeting process, resulting in more accurate predictions. The ECM helped mine planners improve the prediction of energy use through more data integration, measure development, and workflow analysis. 5 refs., 11 figs.

  6. Energy consumption program: A computer model simulating energy loads in buildings

    Science.gov (United States)

    Stoller, F. W.; Lansing, F. L.; Chai, V. W.; Higgins, S.

    1978-01-01

    The JPL energy consumption computer program developed as a useful tool in the on-going building modification studies in the DSN energy conservation project is described. The program simulates building heating and cooling loads and computes thermal and electric energy consumption and cost. The accuracy of computations are not sacrificed, however, since the results lie within + or - 10 percent margin compared to those read from energy meters. The program is carefully structured to reduce both user's time and running cost by asking minimum information from the user and reducing many internal time-consuming computational loops. Many unique features were added to handle two-level electronics control rooms not found in any other program.

  7. Energy consumption program: A computer model simulating energy loads in buildings

    Science.gov (United States)

    Stoller, F. W.; Lansing, F. L.; Chai, V. W.; Higgins, S.

    1978-01-01

    The JPL energy consumption computer program developed as a useful tool in the on-going building modification studies in the DSN energy conservation project is described. The program simulates building heating and cooling loads and computes thermal and electric energy consumption and cost. The accuracy of computations are not sacrificed, however, since the results lie within + or - 10 percent margin compared to those read from energy meters. The program is carefully structured to reduce both user's time and running cost by asking minimum information from the user and reducing many internal time-consuming computational loops. Many unique features were added to handle two-level electronics control rooms not found in any other program.

  8. An Investigation of Envelope Situation and Simulation of Heating/Cooling Energy Consumption for Rural Residential Buildings in Shanghai%上海农村住宅围护结构现状调查与供暖空调能耗模拟

    Institute of Scientific and Technical Information of China (English)

    孙雨林; 林忠平; 王晓梅

    2011-01-01

    In this paper, based on the building envelope investigation results of 108 rural residential houses in Shanghai, the comparison work with the national standard of Hot Summer and Cold Winter Region Residential Building Design Standard was carried out. The envelope thermal performance of current rural residential buildings was obtained. Based on the investigation results and with the building energy simulation software of DesignBuilder, a basic model for Shanghai rural residential buildings was established.Furthermore, the heating and cooling energy consumption was simulated, and the energy consumption level was achieved. In addition, the importance of energy conservation of rural residential buildings was presented.%本文基于对108户上海农村住宅围护结构的实际调查结果,通过与(JGJ 134-2001)进行比较,分析得到了上海农村住宅围护结构的热工现状.而后以调查分析结果为基础,采用逐时能耗分析软件DesignBuilder建立了上海农村住宅的基本模型,通过对基本模型进行全年能耗模拟,获得了上海农村住宅的供暖空调能耗水平,并简要分析了农村住宅节能的重要性.

  9. Multicriteria aided design of integrated heating-cooling energy systems in buildings.

    Science.gov (United States)

    Mróz, Tomasz M

    2010-08-01

    This paper presents an analysis of the possible application of integrated heating-cooling systems in buildings. The general algorithm of integrated heating-cooling system design aid was formulated. The evaluation criteria of technically acceptable variants were defined. Fossil fuel energy consumption, carbon dioxide emission, investment, and total exploitation cost were identified as the most important factors describing the considered decision problem. The multicriteria decision aid method ELECTRE III was proposed as the decision tool for the choice of the most compromised variant. The proposed method was used for a case study calculation-the choice of an integrated heating-cooling system for an office building.

  10. Electricity consumption and energy efficiency in agricultural factories; Stromverbrauch und Energieeffizienz im landwirtschaftlichen Betrieb

    Energy Technology Data Exchange (ETDEWEB)

    Neser, Stefan; Neiber, Josef; Bonkoss, Katja [Bayerische Landesanstalt fuer Landwirtschaft, Freising (Germany). Inst. fuer Landtechnik und Tierhaltung

    2012-11-15

    One main approach for energy conservation in pig farming factories is in the area of ventilation and the climate in the stable. The electricity consumption can be reduced significantly by means of aerodynamically favourable design of airflow and optimal dimensioning of the ventilation system as well as by control technology such as frequency control and EC technology. In the case of dairy cattle farming factories, the main approach for energy conservation is in the area of milk removal and cooling of milk. The energy consumption can be reduced significantly by energy efficient plants such as frequency controlled vacuum pumps, pre-cooling and heat-recovery. Fundamentally, beside the criterion electricity consumption, other criteria such as water consumption, functional reliability and the quality of the process should be considered in the decision-making in order to develop an energy efficient overall process. Especially the specific energy consumption of the individual components should be considered at new investments and replacement investments. The consideration of the factorial development as well as the actual and planned energy supply of the factory are of great importance due to the increasing energy prices. Thus, in future the reduction of the maximal power consumption and the factorial load management are of importance with respect to the adjustment to the profiles of power generation from renewable energies.

  11. Energy consumption and income. A semiparametric panel data analysis

    Energy Technology Data Exchange (ETDEWEB)

    Nguyen-Van, Phu [BETA, CNRS and Universite de Strasbourg, 61 avenue de la Foret Noire, F-67085 Strasbourg (France)

    2010-05-15

    This paper proposes a semiparametric analysis for the study of the relationship between energy consumption per capita and income per capita for an international panel dataset. It shows little evidence for the existence of an environmental Kuznets curve for energy consumption. Energy consumption increases with income for a majority of countries and then stabilizes for very high income countries. Neither changes in energy structure nor macroeconomic cycle/technological change have significant effect on energy consumption. (author)

  12. Using LEDs to reduce energy consumption

    Science.gov (United States)

    Eweni, Chukwuebuka E.

    The most popularly used light bulb in homes is the incandescent. It is also the least energy efficient. The filament in the bulb is so thin that it causes resistance in the electricity, which in turn causes the electricity's energy to form heat. This causes the incandescent to waste a lot of energy forming heat rather than forming the light. It uses 15 lumens per watt of input power. A recorded MATLAB demonstration showcased LED versatility and how it can be used by an Arduino UNO board. The objective of this thesis is to showcase how LEDs can reduce energy consumption through the use of an Arduino UNO board and MATLAB and to discuss the applications of LED. LED will be the future of lighting homes and will eventually completely incandescent bulbs when companies begin to make the necessary improvements to the LED.

  13. Determinants of household energy consumption in India

    Energy Technology Data Exchange (ETDEWEB)

    Ekholm, Tommi [VTT Technical Research Centre of Finland, P.O. Box 1000, FIN-02044 VTT (Finland); TKK Helsinki University of Technology, Espoo (Finland); Krey, Volker; Pachauri, Shonali; Riahi, Keywan [International Institute for Applied Systems Analysis, Laxenburg (Austria)

    2010-10-15

    Improving access to affordable modern energy is critical to improving living standards in the developing world. Rural households in India, in particular, are almost entirely reliant on traditional biomass for their basic cooking energy needs. This has adverse effects on their health and productivity, and also causes environmental degradation. This study presents a new generic modelling approach, with a focus on cooking fuel choices, and explores response strategies for energy poverty eradication in India. The modelling approach analyzes the determinants of fuel consumption choices for heterogeneous household groups, incorporating the effect of income distributions and traditionally more intangible factors such as preferences and private discount rates. The methodology is used to develop alternate future scenarios that explore how different policy mechanisms such as fuel subsidies and micro-financing can enhance the diffusion of modern, more efficient, energy sources in India. (author)

  14. FLUIDIZATION COOLING OF RETURN SANDS AND ENERGY ANALYSIS

    Institute of Scientific and Technical Information of China (English)

    1998-01-01

    In order to find out the optimal operation condition for return sands cooler, a cooling model including heat and mass transfer is constructed, and computer simulation is carried out. The results are compared with the operation data obtained from a fluidized bed sand cooler. A method is proposed for the evaluation whether the practical cooling system provides a reasonable energy cost performance. Several key points are discussed concerning enhancement of particles to air heat removal and improvement of energy effciency for cooling.

  15. Global energy consumption for direct water use

    Science.gov (United States)

    Liu, Y.; Hejazi, M. I.; Kim, S. H.; Kyle, P.; Davies, E. G.; Miralles, D. G.; Teuling, R.; He, Y.; Niyogi, D.

    2015-12-01

    Despite significant efforts to quantify the mutual inter-dependence of the water and energy sectors, global energy for water (EFW) remains poorly understood, resulting in biases in energy accounting that directly affect water and energy management and policy. We firstly evaluate the global energy consumption for direct water use from 1973 to 2012 with sectoral, regional and process-level details. Over the 40-year period, we detected multiple shifts in EFW by county and region. For example, we find that India, the Middle East and China have surpassed the United States as the three largest consumers of EFW since 2003, mostly because of rapid growth in groundwater-based irrigation, desalination, and industrial and municipal water use, respectively. Globally, EFW accounts for 1-3% of total primary energy consumption in 2010, of which 52% is surface water, 36% is groundwater, and 12% is non-fresh water. The sectoral allocation of EFW includes municipal (45%), industrial (29%), and agricultural use (26%), and process-level contributions are from source/conveyance (41%), water purification (19%), water distribution (13%) and wastewater treatment (22%). Our evaluation suggests that the EFW may increase in importance in the future due to growth in population and income, and depletion of surface and shallow aquifer water resources in water-scarce regions. We are incorporating this element into an integrated assessment model (IAM) and linking it back to energy balance within that IAM. By doing this, we will then explore the impacts of EFW on the global energy market (e.g., changes in the share of groundwater use and desalination), and the uncertainty of future EFW under different shared social pathway (SSP) and representative concentration pathway (RCP) scenarios, and consequences on the emission of greenhouse gases as well. We expect these EFW induced impacts will be considerable, and will then have significant implications for adaptive management and policy making.

  16. Experimental investigation of using ambient energy to cool Internet Data Center with thermosyphon heat exchanger

    Energy Technology Data Exchange (ETDEWEB)

    Zhou, F.; Tian, X.; Ma, G. [Beijing Univ. of Technology, Beijing (China). College of Environmental and Energy Engineering

    2010-07-01

    The energy consumption of the air-conditioning system at the Internet Data Center (IDC) in Beijing comprises 40 per cent of the building's total energy consumption. Of all the energy energy management strategies available at the IDC, the most unique one is the use of ambient energy to cool the IDC by the thermosyphon heat exchanger. Atmospheric energy can reduce the air conditioner's running time while maintaining the humidity and cleanliness of the IDC. In this study, an IDC test model was set up to analyze the heat dissipating characteristics and the energy consumption of the thermosyphon heat exchanger and the air conditioner in the IDC for winter conditions. The heat dissipating capacity of the building envelope was measured and calculated. The energy consumption of the air conditioner was compared under different indoor and outdoor temperatures. The study showed that the heat dissipating need of the IDC cannot be met just by the heat dissipation of the building envelope in winter conditions. The heat dissipating capacity of the IDC building envelope comprises 19.5 per cent of the total heat load. The average energy consumption of the air conditioner is 3.5 to 4 kWh per day. The temperature difference between indoor and outdoor temperature in the IDC with the thermosyphon heat exchanger was less than 20 degrees C, and the energy consumption of the thermosyphon heat exchanger comprised only 41 per cent of that of the air conditioner. 8 refs., 1 tab., 8 figs.

  17. The Role of Absorption Cooling for Reaching Sustainable Energy Systems

    Energy Technology Data Exchange (ETDEWEB)

    Lindmark, Susanne

    2005-07-01

    This thesis focuses on the role and potential of absorption cooling in future energy systems. Two types of energy systems are investigated: a district energy system based on waste incineration and a distributed energy system with natural gas as fuel. In both cases, low temperature waste heat is used as driving energy for the absorption cooling. The main focus is to evaluate the absorption technology in an environmental perspective, in terms of reduced CO{sub 2} emissions. Economic evaluations are also performed. The reduced electricity when using absorption cooling instead of compression cooling is quantified and expressed as an increased net electrical yield. The results show that absorption cooling is an environmentally friendly way to produce cooling as it reduces the use of electrically driven cooling in the energy system and therefore also reduces global CO{sub 2} emissions. In the small-scale trigeneration system the electricity use is lowered with 84 % as compared to cooling production with compression chillers only. The CO{sub 2} emissions can be lowered to 45 CO{sub 2}/MWh{sub c} by using recoverable waste heat as driving heat for absorption chillers. However, the most cost effective cooling solution in a district energy system is a combination between absorption and compression cooling technologies according to the study. Absorption chillers have the potential to be suitable bottoming cycles for power production in distributed systems. Net electrical yields over 55 % may be reached in some cases with gas motors and absorption chillers. This small-scale system for cogeneration of power and cooling shows electrical efficiencies comparable to large-scale power plants and may contribute to reducing peak electricity demand associated with the cooling demand.

  18. Electricity Demand and Energy Consumption Management System

    CERN Document Server

    Sarmiento, Juan Ojeda

    2008-01-01

    This project describes the electricity demand and energy consumption management system and its application to the Smelter Plant of Southern Peru. It is composted of an hourly demand-forecasting module and of a simulation component for a plant electrical system. The first module was done using dynamic neural networks, with backpropagation training algorithm; it is used to predict the electric power demanded every hour, with an error percentage below of 1%. This information allows management the peak demand before this happen, distributing the raise of electric load to other hours or improving those equipments that increase the demand. The simulation module is based in advanced estimation techniques, such as: parametric estimation, neural network modeling, statistic regression and previously developed models, which simulates the electric behavior of the smelter plant. These modules allow the proper planning because it allows knowing the behavior of the hourly demand and the consumption patterns of the plant, in...

  19. ANALYSIS OF ENERGY CONSUMPTION IN THE FACILITIES OF THE CIECHANÓW DAIRY COOPERATIVE

    Directory of Open Access Journals (Sweden)

    Marek Gugała

    2015-06-01

    Full Text Available The work presents the analysis of electric energy consumption in individual buildings of the Ciechanów Dairy Cooperative in 2011. The plant includes a cool storage facility, a boiler house, a compression room and CIP (Cleaning In Place stations. The plant manufactures liquid milk, cream, cheese, cottage cheese, cream cheese, butter and yoghurts. In 2011, the total electric energy consumption in the Cechanów Dairy Cooperative was 873114.0 kWh. The highest energy consumption (556430.0 kWh0 was recorded for the cooler (63.7% of total consumption and the lowest for CIP stations (33084.0 kWh. The average electric energy consumption in the Cooperative plant was 72759.5 kWh, the highest (104800.6 kWh in November and the lowest (40000.6 kWh in March.

  20. Energy consumption projection of Nepal: An econometric approach

    DEFF Research Database (Denmark)

    Parajuli, Ranjan; Østergaard, Poul A.; Dalgaard, Tommy

    2014-01-01

    In energy dependent economies, energy consumption is often linked with the growth in Gross Domestic Product (GDP). Energy intensity, defined herewith, as the ratio of the total primary energy consumption (TPE) to the GDP, is a useful concept for understanding the relation between energy demand...... and economic development. The scope of this article is to assess the future primary energy consumption of Nepal, and the projection is carried out along with the formulation of simple linear logarithmic energy consumption models. This initiates with a hypothesis that energy consumption is dependent...... with the national macro-economic parameters. To test the hypothesis, nexus between energy consumption and possible determinant variables are examined. Status of energy consumption between the period of 1996 and 2009, and for the same period, growth of economic parameters are assessed. Three scenarios are developed...

  1. Motivating sustainable energy consumption in the home

    Energy Technology Data Exchange (ETDEWEB)

    He, H.A.; Greenberg, S. [Calgary Univ., AB (Canada). Dept. of Computer Science

    2009-07-01

    This paper discussed social motivations related to household energy conservation. The aim of the study was to explore how technology can be designed and used in the home to encourage sustainable energy use. The basic techniques used to motivate sustainable energy action included behaviour change techniques; information techniques; positive motivational techniques; and coercive motivational techniques. The psychological theories used in the study included cognitive dissonance as a means of reminding people of the inconsistency of their attitudes towards energy and their behaviour, and utility theory as a means of determining personal motivations for energy conservation. The study showed that people are more motivated to act when presented with personalized information and monetary losses as opposed to monetary gain. Social value orientation and self-reflection motivations were also considered. The study showed that pro-social orientation can be used in the form of ambient displays located in public areas of the home. Self-reflection can be encouraged by allowing family members to annotate visualizations containing a history of their energy consumption data. Results of the study will be used to design actual feedback visualizations of energy use. 18 refs.

  2. A Data Driven Pre-cooling Framework for Energy Cost Optimization in Commercial Buildings

    Energy Technology Data Exchange (ETDEWEB)

    Vishwanath, Arun; Chandan, Vikas; Mendoza, Cameron; Blake, Charles

    2017-05-16

    Commercial buildings consume significant amount of energy. Facility managers are increasingly grappling with the problem of reducing their buildings’ peak power, overall energy consumption and energy bills. In this paper, we first develop an optimization framework – based on a gray box model for zone thermal dynamics – to determine a pre-cooling strategy that simultaneously shifts the peak power to low energy tariff regimes, and reduces both the peak power and overall energy consumption by exploiting the flexibility in a building’s thermal comfort range. We then evaluate the efficacy of the pre-cooling optimization framework by applying it to building management system data, spanning several days, obtained from a large commercial building located in a tropical region of the world. The results from simulations show that optimal pre-cooling reduces peak power by over 50%, energy consumption by up to 30% and energy bills by up to 37%. Next, to enable ease of use of our framework, we also propose a shortest path based heuristic algorithmfor solving the optimization problemand show that it has comparable erformance with the optimal solution. Finally, we describe an application of the proposed optimization framework for developing countries to reduce the dependency on expensive fossil fuels, which are often used as a source for energy backup.We conclude by highlighting our real world deployment of the optimal pre-cooling framework via a software service on the cloud platform of a major provider. Our pre-cooling methodology, based on the gray box optimization framework, incurs no capital expense and relies on data readily available from a building management system, thus enabling facility managers to take informed decisions for improving the energy and cost footprints of their buildings

  3. Design of low-energy building and energy consumption analyses

    Institute of Scientific and Technical Information of China (English)

    刘鸣; 陈滨; 范悦; 朱佳音; 索健

    2009-01-01

    In China,a new "Design standard for energy efficiency of residential buildings (for cold region)" was introduced in 2006. In this new standard,more high level insulation of the building envelope is required,yearly energy requirement for heating must be less than 55 kWh/(m2·a)(regarded as a low-energy house). The new attempt was carried out in the process of architecture design with an evaluation on energy consumption of the building. The design plan was brought forward and compared. PHPP software from German was applied to calculate energy consumption of the passive residential building. The optimum design planning was discussed and model of passive house suited to China’s national conditions were attempted. The compactness,solar air collector and the window-wall ratio have essential influence on the energy consumption of buildings. The annual heat demands for the buildings with the window-wall ratio 0.35 and 0.50 are 48 kWh/(m2·a) and 46 kWh/(m2·a),respectively. The yearly auxiliary heat of building with the wall-mounted solar air collectors and the window-wall ratio 0.35 is just 4.8 kWh/(m2·a).

  4. Relationships between energy consumption and climate change in China

    Institute of Scientific and Technical Information of China (English)

    QIANHuaisui; YUANShunquan; SUNJiulin; LIZehui

    2004-01-01

    Energy consumption has an inevitable connection with economic level and climate. Based on selected data covering annual total energy consumption and its composition and that of all kinds of energy in 1953-1999, the annual residential energy consumption and the coal and electricity consumption in 1980-1999 in China, the acreage of crops under cultivation suffered from drought and flood annually and gross domestic product (GDP) in 1953-1999 in the whole country, and mean daily temperature data from 29 provincial meteorological stations in the whole country from 1970 to 1999, this paper divides energy consumption into socio-economic energy consumption and climatic energy consumption in the way of multinomial. Itchanges between the climate energy consumption andalso goes further into the relations and their changes between the climate energy consumptionenergy consumption and the economic level inand climate factor and between the socio-economic energy between the climate energy level in China with the method of statistical analysis. At present, there are obvious transitions in the changing relationships of the energy consumption to economy and climate, which comprises the transition of economic system from resource-intensive industry to technology-intensive industry and the transition of climatic driving factors of the energy consumption from driven by the disasters of drought and flood to driven by temperature.

  5. Understanding change and continuity in residential energy consumption

    DEFF Research Database (Denmark)

    Gram-Hanssen, Kirsten

    2011-01-01

    of material consumer goods in practice theory. Case studies on household energy consumption are used as an empirical basis for these discussions. Looking at household energy consumption through the theoretical lens of practice theory necessitates discussion on whether energy consumption should be viewed......Practice theory has recently emerged within consumer studies as a promising approach that shifts focus from the individual consumer towards the collective aspects of consumption and from spectacular and conspicuous dimensions of consumption towards routine and mundane aspects of consumption...

  6. Nuclear energy consumption and economic growth in nine developed countries

    Energy Technology Data Exchange (ETDEWEB)

    Wolde-Rufael, Yemane [135 Carnwath Road, London SW6 3HR (United Kingdom); Menyah, Kojo [London Metropolitan Business School, London Metropolitan University, 84 Moorgate, London EC2M 6SQ (United Kingdom)

    2010-05-15

    This article attempts to test the causal relationship between nuclear energy consumption and real GDP for nine developed countries for the period 1971-2005 by including capital and labour as additional variables. Using a modified version of the Granger causality test developed by Toda and Yamamoto (1995), we found a unidirectional causality running from nuclear energy consumption to economic growth in Japan, Netherlands and Switzerland; the opposite uni-directional causality running from economic growth to nuclear energy consumption in Canada and Sweden; and a bi-directional causality running between economic growth and nuclear energy consumption in France, Spain, the United Kingdom and the United States. In Spain, the United Kingdom and the USA, increases in nuclear energy consumption caused increases in economic growth implying that conservation measures taken that reduce nuclear energy consumption may negatively affect economic growth. In France, Japan, Netherlands and Switzerland increases in nuclear energy consumption caused decreases in economic growth, suggesting that energy conservation measure taken that reduce nuclear energy consumption may help to mitigate the adverse effects of nuclear energy consumption on economic growth. In Canada and Sweden energy conservation measures affecting nuclear energy consumption may not harm economic growth. (author)

  7. Electric energy consumption in the cotton textile processing stages

    Energy Technology Data Exchange (ETDEWEB)

    Palamutcu, S. [Textile Engineering Department, Pamukkale University, Engineering Faculty, 20070 Kinikli, Denizli (Turkey)

    2010-07-15

    Electric energy is one of the primary energy sources consumpted in cotton textile processing. Current energy cost rate is reported about 8-10% in the total production cost of an ordinary textile product manufactured in Turkey. Significantly important share of this energy cost is electric energy. The aim of this paper was to investigate unit electric energy consumption of cotton textile processing stages using real-time measurements method. Actual and estimated Specific Energy Consumption (SEC) values for electric energy was calculated in the cotton textile processing stages of spinning, warping-sizing, weaving, wet processing and clothing manufacturing. Actual electric energy consumption data are gathered from monthly records of the involved plant managements. Estimated electric energy consumption data is gathered through on-site measurement. Actual and estimated electric energy consumption data and monthly production quantities of the corresponding months are used to facilitate specific electric energy consumption of the plants. It is found that actual electric energy consumption amount per unit textile product is higher than the estimated electric energy consumption amount per unit textile product of each involved textile processing stages. (author)

  8. Energy drink consumption and marketing in South Africa.

    Science.gov (United States)

    Stacey, Nicholas; van Walbeek, Corné; Maboshe, Mashekwa; Tugendhaft, Aviva; Hofman, Karen

    2017-05-17

    Energy drinks are a fast-growing class of beverage containing high levels of caffeine and sugar. Advertising and marketing have been key to their growth in South Africa. This paper documents trends in energy drink consumption and energy drink advertising, and examines the relationship between exposure to energy drink advertising and consumption. Logistic regressions were estimated of categories of energy drink consumption on individual characteristics, as well as exposure to energy drink advertising. Exposure to advertising is measured by reported viewing of channels high in energy drink advertising. Energy drink consumption in South Africa is higher among younger, wealthier males. Spending on energy drink advertising is mostly focused on television. Targeted channels include youth, sports and general interest channels. Viewers of channels targeted by energy drink advertisers have higher odds of any and moderate levels of energy drinks consumption. Copyright © 2017 Elsevier Inc. All rights reserved.

  9. High-albedo materials for reducing building cooling energy use

    Energy Technology Data Exchange (ETDEWEB)

    Taha, H.; Sailor, D.; Akbari, H.

    1992-01-01

    One simple and effective way to mitigate urban heat islands, i.e., the higher temperatures in cities compared to those of the surrounds, and their negative impacts on cooling energy consumption is to use high-albedo materials on major urban surfaces such as rooftops, streets, sidewalks, school yards, and the exposed surfaces of parking lots. High-albedo materials can save cooling energy use by directly reducing the heat gain through a building`s envelope (direct effect) and also by lowering the urban air temperature in the neighborhood of the building (indirect effect). This project is an attempt to address high-albedo materials for buildings and to perform measurements of roof coatings. We search for existing methods and materials to implement fighter colors on major building and urban surfaces. Their cost effectiveness are examined and the possible related technical, maintenance, and environmental problems are identified. We develop a method for measuring albedo in the field by studying the instrumentation aspects of such measurements. The surface temperature impacts of various albedo/materials in the actual outdoor environment are studied by measuring the surface temperatures of a variety of materials tested on an actual roof. We also generate an albedo database for several urban surfaces to serve as a reference for future use. The results indicate that high-albedo materials can have a large impact on the surface temperature regime. On clear sunny days, when the solar noon surface temperatures of conventional roofing materials were about 40{degrees}C (72{degrees}F) warmer than air, the surface temperature of high-albedo coatings were only about 5{degrees}C warmer than air. In the morning and in the late afternoon, the high-albedo materials were as cool as the air itself. While conventional roofing materials warm up by an average 0.055{degrees}C/(W m{sup {minus}2}), the high-albedo surfaces warm up by an average 0.015{degrees}C/(W m{sup {minus}2}).

  10. High-albedo materials for reducing building cooling energy use

    Energy Technology Data Exchange (ETDEWEB)

    Taha, H.; Sailor, D.; Akbari, H.

    1992-01-01

    One simple and effective way to mitigate urban heat islands, i.e., the higher temperatures in cities compared to those of the surrounds, and their negative impacts on cooling energy consumption is to use high-albedo materials on major urban surfaces such as rooftops, streets, sidewalks, school yards, and the exposed surfaces of parking lots. High-albedo materials can save cooling energy use by directly reducing the heat gain through a building's envelope (direct effect) and also by lowering the urban air temperature in the neighborhood of the building (indirect effect). This project is an attempt to address high-albedo materials for buildings and to perform measurements of roof coatings. We search for existing methods and materials to implement fighter colors on major building and urban surfaces. Their cost effectiveness are examined and the possible related technical, maintenance, and environmental problems are identified. We develop a method for measuring albedo in the field by studying the instrumentation aspects of such measurements. The surface temperature impacts of various albedo/materials in the actual outdoor environment are studied by measuring the surface temperatures of a variety of materials tested on an actual roof. We also generate an albedo database for several urban surfaces to serve as a reference for future use. The results indicate that high-albedo materials can have a large impact on the surface temperature regime. On clear sunny days, when the solar noon surface temperatures of conventional roofing materials were about 40{degrees}C (72{degrees}F) warmer than air, the surface temperature of high-albedo coatings were only about 5{degrees}C warmer than air. In the morning and in the late afternoon, the high-albedo materials were as cool as the air itself. While conventional roofing materials warm up by an average 0.055{degrees}C/(W m{sup {minus}2}), the high-albedo surfaces warm up by an average 0.015{degrees}C/(W m{sup {minus}2}).

  11. Improved immunization strategy to reduce energy consumption on nodes traffic

    Science.gov (United States)

    Yuan, Jiazheng; Zhao, Dongyan; Long, Keping; Zheng, Yongrong

    2017-04-01

    The increasing requirement of transmission network sizes would result in huge energy consumption with communication traffic. Green communication technologies are expected to help in reducing energy consumption impact to environment. Therefore, it is important to design energy-efficient strategy that can decrease energy consumption. This paper proposes to use the acquaintance and improved targeted immunization strategies from complex systems to resolve energy consumption issues and uses traffic as measure standard to obtain a stable threshold. The simulation results show that the improved control strategy is better and more effective to save as much energy as possible.

  12. Energy consumption and economic growth. A causality analysis for Greece

    Energy Technology Data Exchange (ETDEWEB)

    Tsani, Stela Z. [The University of Reading, Department of Economics, Henley Business School, PO Box 218, Reading, RG6 6AA (United Kingdom)

    2010-05-15

    This paper investigates the causal relationship between aggregated and disaggregated levels of energy consumption and economic growth for Greece for the period 1960-2006 through the application of a later development in the methodology of time series proposed by Toda and Yamamoto (1995). At aggregated levels of energy consumption empirical findings suggest the presence of a uni-directional causal relationship running from total energy consumption to real GDP. At disaggregated levels empirical evidence suggests that there is a bi-directional causal relationship between industrial and residential energy consumption to real GDP but this is not the case for the transport energy consumption with causal relationship being identified in neither direction. The importance of these findings lies on their policy implications and their adoption on structural policies affecting energy consumption in Greece suggesting that in order to address energy import dependence and environmental concerns without hindering economic growth emphasis should be put on the demand side and energy efficiency improvements. (author)

  13. Energy consumption and economic growth: A causality analysis for Greece

    Energy Technology Data Exchange (ETDEWEB)

    Tsani, Stela Z., E-mail: s.cani@reading.ac.u [University of Reading, Department of Economics, Henley Business School, PO Box 218, Reading, RG6 6AA (United Kingdom)

    2010-05-15

    This paper investigates the causal relationship between aggregated and disaggregated levels of energy consumption and economic growth for Greece for the period 1960-2006 through the application of a later development in the methodology of time series proposed by Toda and Yamamoto (1995). At aggregated levels of energy consumption empirical findings suggest the presence of a uni-directional causal relationship running from total energy consumption to real GDP. At disaggregated levels empirical evidence suggests that there is a bi-directional causal relationship between industrial and residential energy consumption to real GDP but this is not the case for the transport energy consumption with causal relationship being identified in neither direction. The importance of these findings lies on their policy implications and their adoption on structural policies affecting energy consumption in Greece suggesting that in order to address energy import dependence and environmental concerns without hindering economic growth emphasis should be put on the demand side and energy efficiency improvements.

  14. PROGRESS OF HIGH-ENERGY ELECTRON COOLING FOR RHIC.

    Energy Technology Data Exchange (ETDEWEB)

    FEDOTOV,A.V.

    2007-09-10

    The fundamental questions about QCD which can be directly answered at Relativistic Heavy Ion Collider (RHIC) call for large integrated luminosities. The major goal of RHIC-I1 upgrade is to achieve a 10 fold increase in luminosity of Au ions at the top energy of 100 GeV/nucleon. Such a boost in luminosity for RHIC-II is achievable with implementation of high-energy electron cooling. The design of the higher-energy cooler for RHIC-II recently adopted a non-magnetized approach which requires a low temperature electron beam. Such electron beams will be produced with a superconducting Energy Recovery Linac (ERL). Detailed simulations of the electron cooling process and numerical simulations of the electron beam transport including the cooling section were performed. An intensive R&D of various elements of the design is presently underway. Here, we summarize progress in these electron cooling efforts.

  15. Low energy consumption spintronics using multiferroic heterostructures.

    Science.gov (United States)

    Trassin, Morgan

    2016-01-27

    We review the recent progress in the field of multiferroic magnetoelectric heterostructures. The lack of single phase multiferroic candidates exhibiting simultaneously strong and coupled magnetic and ferroelectric orders led to an increased effort into the development of artificial multiferroic heterostructures in which these orders are combined by assembling different materials. The magnetoelectric coupling emerging from the created interface between the ferroelectric and ferromagnetic layers can result in electrically tunable magnetic transition temperature, magnetic anisotropy or magnetization reversal. The full potential of low energy consumption magnetic based devices for spintronics lies in our understanding of the magnetoelectric coupling at the scale of the ferroic domains. Although the thin film synthesis progresses resulted into the complete control of ferroic domain ordering using epitaxial strain, the local observation of magnetoelectric coupling remains challenging. The ability to imprint ferroelectric domains into ferromagnets and to manipulate those solely using electric fields suggests new technological advances for spintronics such as magnetoelectric memories or memristors.

  16. Revising China's energy consumption and carbon emissions

    Science.gov (United States)

    Liu, Z.

    2015-12-01

    China is the world's largest carbon emitter and takes the lion's share of new increased emission since 2000, China's carbon emissions and mitigation efforts have received global attentions (Liu et al., Nature 500, 143-145)1. Yet China's emission estimates have been approved to be greatly uncertain (Guan et al., Nature Climate Change 2, 672-675)2. Accurate estimation becomes even crucial as China has recently pledged to reach a carbon emission peak by 2030, but no quantitative target has been given, nor is it even possible to assess without a reasonable baseline. Here we produced new estimates of Chinese carbon emissions for 1950-2012 based on a new investigation in energy consumption activities and emission factors using extensively surveyed and experimental data from 4243 mines and 602 coal samples. We reported that the total energy consumption is 10% higher than the nationally published value. The investigated emission factors used in China are significantly (40%) different from the IPCC default values which were used in drawing up several previous emission inventories. The final calculated total carbon emissions from China are 10% different than the amount reported by international data sets. The new estimate provides a revision of 4% of global emissions, which could have important implications for global carbon budgets and burden-sharing of climate change mitigation. 1 Liu, Z. et al. A low-carbon road map for China. Nature 500, 143-145 (2013). 2 Guan, D., Liu, Z., Geng, Y., Lindner, S. & Hubacek, K. The gigatonne gap in China's carbon dioxide inventories. Nature Climate Change, 672-675 (2012).

  17. Energy conservation at Heineken by means of automation of the cooling system. Energiebesparing bij Heineken door automatisering koelsysteem

    Energy Technology Data Exchange (ETDEWEB)

    1990-08-01

    The central cooling system of the Heineken brewery at Zoeterwoude, Netherlands, consumes circa 15,000 MWh annually. In 1988 Heineken decided to carry out an optimization study in order to decrease the energy consumption of the cooling system. Extensive energy measurements and energy analysis resulted in an optimization program by which compressors and blowers operate more efficient in the cooling system without high costs. The realized efficiency improvement is 20%. A study on a total automated control system, which must result into an even higher efficiency, is in progress. 5 figs., 1 ill.

  18. 10 CFR 431.134 - Uniform test methods for the measurement of energy consumption and water consumption of automatic...

    Science.gov (United States)

    2010-01-01

    ... consumption and water consumption of automatic commercial ice makers. 431.134 Section 431.134 Energy... of energy consumption and water consumption of automatic commercial ice makers. (a) Scope. This... consumption, but instead calculate the energy use rate (kWh/100 lbs Ice) by dividing the energy consumed...

  19. Cooling process of the LHC energy extraction resistors

    CERN Document Server

    Peón-Hernández, G; Coelingh, G J; CERN. Geneva. ST Division

    2003-01-01

    The energy stored in all the LHC dipoles, about 11 GJ, can potentially cause severe damage to the magnets, bus bars and current leads. In order to protect the superconducting elements after a resistive transition, the energy is dissipated into dump resistors switched in series with the magnet chains. This paper describes the cooling process of the resistors and explains the choice process for the main components of the cooling equipment.

  20. Energy and IAQ Implications of Residential Ventilation Cooling

    Energy Technology Data Exchange (ETDEWEB)

    Turner, William [Lawrence Berkeley National Lab. (LBNL), Berkeley, CA (United States); Walker, Iain [Lawrence Berkeley National Lab. (LBNL), Berkeley, CA (United States)

    2014-08-01

    This study evaluates the energy, humidity and indoor air quality (IAQ) implications of residential ventilation cooling in all U.S. IECC climate zones. A computer modeling approach was adopted, using an advanced residential building simulation tool with airflow, energy and humidity models. An economizer (large supply fan) was simulated to provide ventilation cooling while outdoor air temperatures were lower than indoor air temperatures (typically at night). The simulations were performed for a full year using one-minute time steps to allow for scheduling of ventilation systems and to account for interactions between ventilation and heating/cooling systems.

  1. Energy consumption in the production of cellulose and paper

    Energy Technology Data Exchange (ETDEWEB)

    Kubelka, V.

    1979-01-01

    The specific consumption of energy in the cellulose and paper industry of Czechoslovakia is 20% higher than in Austria and the Federal Republic of Germany. For the last 20 years, the specific consumption of fuel decreased by 29% in the Austrian cellulose and paper industry, while the consumption of electricity increased by 16%. The possibility for decreasing the specific consumption of energy in Czechoslovakia by burning by-products, heat recovery, equipment modernization, etc. are examined.

  2. Impact of Window Films on the Overall Energy Consumption of Existing UK Hotel Buildings

    Directory of Open Access Journals (Sweden)

    Ali Bahadori-Jahromi

    2017-05-01

    Full Text Available Recently, considerable attention has justifiably been directed towards energy savings in buildings as they account for up to 20–40% of total energy consumption in developed countries. In the United Kingdom, studies have revealed that buildings’ CO2 emissions for account for at least 43% of total emissions. Window panels are a major component of the building fabric with considerable influence on the façade energy performance and are accountable for up to 60% of a building’s overall energy loss. Therefore, the thermal performance of glazing materials is an important issue within the built environment. This work evaluates the impact of solar window films on the overall energy consumption of an existing commercial building via the use of a case study U.K. hotel and TAS dynamic simulation software. The study results demonstrated that the impact of window films on the overall energy consumption of the case study hotel is approximately 2%. However, an evaluation of various overall energy consumption components showed that the window films reduce the annual total cooling energy consumption by up to 35% along with a marginal 2% increase in the annual total heating energy consumption. They can also provide overall cost and CO2 emissions savings of up to 3%.

  3. Effect of limb cooling on peripheral and global oxygen consumption in neonates.

    Science.gov (United States)

    Hassan, I A-A; Wickramasinghe, Y A; Spencer, S A

    2003-03-01

    To evaluate peripheral oxygen consumption (VO(2)) measurements using near infrared spectroscopy (NIRS) with arterial occlusion in healthy term neonates by studying the effect of limb cooling on peripheral and global VO(2). Twenty two healthy term neonates were studied. Peripheral VO(2) was measured by NIRS using arterial occlusion and measurement of the oxyhaemoglobin (HbO(2)) decrement slope. Global VO(2) was measured by open circuit calorimetry. Global and peripheral VO(2) was measured in each neonate before and after limb cooling. In 10 neonates, a fall in forearm temperature of 2.2 degrees C (mild cooling) decreased forearm VO(2) by 19.6% (p Global VO(2) did not change. In 12 neonates, a fall in forearm temperature of 4 degrees C (moderate cooling) decreased forearm VO(2) by 34.7% (p Global VO(2) increased by 17.6% (p cooling. The changes are more pronounced with moderate limb cooling when a concomitant rise in global VO(2) is observed. Change in peripheral temperature must be taken into consideration in the interpretation of peripheral VO(2) measurements in neonates.

  4. Kaon Condensates, Nuclear Symmetry Energy and Cooling of Neutron Stars

    CERN Document Server

    Kubis, S

    2003-01-01

    The cooling of neutron stars by URCA processes in the kaon-condensed neutron star matter for various forms of nuclear symmetry energy is investigated. The kaon-nucleon interactions are described by a chiral lagrangian. Nuclear matter energy is parametrized in terms of the isoscalar contribution and the nuclear symmetry energy in the isovector sector. High density behaviour of nuclear symmetry energy plays an essential role in determining the composition of the kaon-condensed neutron star matter which in turn affects the cooling properties. We find that the symmetry energy which decreases at higher densities makes the kaon-condensed neutron star matter fully protonized. This effect inhibits strongly direct URCA processes resulting in slower cooling of neutron stars as only kaon-induced URCA cycles are present. In contrast, for increasing symmetry energy direct URCA processes are allowed in the almost whole density range where the kaon condensation exists.

  5. Uncertainty of Energy Consumption Assessment of Domestic Buildings

    DEFF Research Database (Denmark)

    Brohus, Henrik; Heiselberg, Per; Simonsen, A.

    2009-01-01

    In order to assess the influence of energy reduction initiatives, to determine the expected annual cost, to calculate life cycle cost, emission impact, etc. it is crucial to be able to assess the energy consumption reasonably accurate. The present work undertakes a theoretical and empirical study...... of the uncertainty of energy consumption assessment of domestic buildings. The calculated energy consumption of a number of almost identical domestic buildings in Denmark is compared with the measured energy consumption. Furthermore, the uncertainty is determined by means of stochastic modelling based on input...

  6. Monitor energy consumption - Reduce costs; Energieverbrauch ueberwachen - Kosten senken

    Energy Technology Data Exchange (ETDEWEB)

    Bolliger, R.

    2008-07-01

    This article takes a look at energy consumption in residential, industrial and commercial buildings and how energy consumption metering can help reduce energy consumption. The proprietary system briefly described uses the KNX bus system to transfer data. Visualisation of the data collected is briefly described. Peak-load management and ways of adapting user behaviour are discussed. Trends towards higher levels of consumption - particularly in emerging markets - are discussed. Energy needs, carbon dioxide emissions, investments and potentials for making savings are discussed. Possibilities of increasing energy efficiency in the residential, industrial and commercial sectors are examined.

  7. Energy conservation in the dairy cattle farming. Production of milk - vacuum supply, cooling, purification; Energieeinsparung in der Milchviehhaltung. Milchgewinnung - Vakuumsversorgung, Kuehlung, Reinigung

    Energy Technology Data Exchange (ETDEWEB)

    Bonkoss, K.; Neiber, J.; Neser, S.

    2012-09-15

    The major approaches of dairy cattle processing companies in the energy conservation are the milk extraction and milk cooling. The energy consumption can be significantly reduced by means of energy efficient plants such as frequency controlled vacuum pumps, preliminary cooling and heat recovery. Not only the consumption of electricity but also the consumption of water, the functional reality as well as the process quality should be considered. In the case of a new investment or replacement investment in energy saving plants, all influencing factors such as the present technology, the development of the company as well as the actual or planned energy supply of the company are to be considered.

  8. Predicted changes in energy demands for heating and cooling due to climate change

    Science.gov (United States)

    Dolinar, Mojca; Vidrih, Boris; Kajfež-Bogataj, Lučka; Medved, Sašo

    In the last 3 years in Slovenia we experienced extremely hot summers and demand for cooling the buildings have risen significantly. Since climate change scenarios predict higher temperatures for the whole country and for all seasons, we expect that energy demand for heating would decrease while demand for cooling would increase. An analysis for building with permitted energy demand and for low-energy demand building in two typical urban climates in Slovenia was performed. The transient systems simulation program (TRNSYS) was used for simulation of the indoor conditions and the energy use for heating and cooling. Climate change scenarios were presented in form of “future” Test Reference Years (TRY). The time series of hourly data for all meteorological variables for different scenarios were chosen from actual measurements, using the method of highest likelihood. The climate change scenarios predicted temperature rise (+1 °C and +3 °C) and solar radiation increase (+3% and +6%). With the selection of these scenarios we covered the spectra of possible predicted climate changes in Slovenia. The results show that energy use for heating would decrease from 16% to 25% (depends on the intensity of warming) in subalpine region, while in Mediterranean region the rate of change would not be significant. In summer time we would need up to six times more energy for cooling in subalpine region and approximately two times more in Mediterranean region. low-energy building proved to be very economical in wintertime while on average higher energy consumption for cooling is expected in those buildings in summertime. In case of significant warmer and more solar energy intensive climate, the good isolated buildings are more efficient than standard buildings. TRY proved not to be efficient for studying extreme conditions like installed power of the cooling system.

  9. Occupant performance and building energy consumption with different philosophies of determining acceptable thermal conditions

    DEFF Research Database (Denmark)

    Toftum, Jørn; Andersen, Rune Vinther; Jensen, Kasper Lynge

    2009-01-01

    Based on building energy and indoor environment simulations, this study uses a recently developed method relying on Bayesian Network theory to estimate and compare the consequences for occupant performance and energy consumption of applying temperature criteria set according to the adaptive model...... of thermal comfort and the more conventional PMV model. Simulations were carried out for an example building with two configurations (with and without mechanical cooling) located in tropical, subtropical, and temperate climate regions. Even though indoor temperatures differed significantly between building...

  10. EVALUATION OF ENERGY CONSUMPTION IN DAIRY WWTP BIELMLEK BIELSK PODLASKI

    Directory of Open Access Journals (Sweden)

    Wojciech Dąbrowski

    2015-07-01

    Full Text Available Apart from highly efficient treatment of dairy wastewater, a low energy consumption is required in order to lower its costs. During the research period, parameters of raw and treated sewage were tested (BOD, COD, Ntotal, Ptotal. Also, the energy consumption from selected processes as well as the total consumption were measured. It was observed that about 40,5% of energy was used for aeration in SBR chambers, 14,6% for dissolved air flotation and the rest for processes connected with mechanical treatment and sewage sludge treatment. First, all the sources of energy consumption and their power were analysed. Indicators of energy consumption and removed load were calculated. The conducted research will be continued in order to optimize energy consumption while retaining high efficiency of treatment. A mathematical model will be prepared after data collecting. It can be universally applied in different WWTPs, not only dairy ones.

  11. uFLIP: Understanding the Energy Consumption of Flash Devices

    DEFF Research Database (Denmark)

    Bjørling, Matias; Bonnet, Philippe; Bouganim, Luc

    2010-01-01

    Understanding the energy consumption of flash devices is important for two reasons. First, energy is emerging as a key metric for data management systems. It is thus important to understand how we can reason about the energy consumption of flash devices beyond their approximate aggregate...... consumption (low power consumption in idle mode, average Watt consumption from the data sheets). Second, when measured at a sufficiently fine granularity, the energy consumption of a given device might complement the performance characteristics derived from its response time profile. Indeed, background work...... which is not directly observable with a response time profile appears clearly when energy is used as a metric. In this paper, we discuss the results from the {uFLIP} benchmark applied to four different {SSD} devices using both response time and energy as metric....

  12. uFLIP: Understanding the Energy Consumption of Flash Devices

    DEFF Research Database (Denmark)

    Bjørling, Matias; Bonnet, Philippe; Bouganim, Luc

    2010-01-01

    Understanding the energy consumption of flash devices is important for two reasons. First, energy is emerging as a key metric for data management systems. It is thus important to understand how we can reason about the energy consumption of flash devices beyond their approximate aggregate...... consumption (low power consumption in idle mode, average Watt consumption from the data sheets). Second, when measured at a sufficiently fine granularity, the energy consumption of a given device might complement the performance characteristics derived from its response time profile. Indeed, background work...... which is not directly observable with a response time profile appears clearly when energy is used as a metric. In this paper, we discuss the results from the {uFLIP} benchmark applied to four different {SSD} devices using both response time and energy as metric....

  13. Window-Related Energy Consumption in the US Residential andCommercial Building Stock

    Energy Technology Data Exchange (ETDEWEB)

    Apte, Joshua; Arasteh, Dariush

    2006-06-16

    We present a simple spreadsheet-based tool for estimating window-related energy consumption in the United States. Using available data on the properties of the installed US window stock, we estimate that windows are responsible for 2.15 quadrillion Btu (Quads) of heating energy consumption and 1.48 Quads of cooling energy consumption annually. We develop estimates of average U-factor and SHGC for current window sales. We estimate that a complete replacement of the installed window stock with these products would result in energy savings of approximately 1.2 quads. We demonstrate that future window technologies offer energy savings potentials of up to 3.9 Quads.

  14. Energy consumption in office buildings. Trends and drivers; Energibruk i kontorbygg. Trender og drivere

    Energy Technology Data Exchange (ETDEWEB)

    Langseth, Benedicte

    2013-02-01

    This report focuses on the energy usage of Norwegian office buildings. Historic data on the subject is limited, so qualitative input is gathered through interviews with property owners and contractors for energy solutions. We have looked at what affects the total area of office buildings in Norway, and realized that it more or less follows the inland gross domestic product. The report also includes cross-sectional analyses from various data sources to find what affects the specific energy usage of office buildings. The actual measured consumption deviates from estimated consumption, especially in newer buildings and especially within ventilation and cooling. Additionally, a model has been developed for projective purposes. It is well suited to test the effect of various input parameters and assumptions on the total area of office buildings and their energy consumption. Though as of yet the quality of data is not good enough to make a profound and credible estimate of total energy usage.(eb)

  15. Efficiency in energy production and consumption

    Science.gov (United States)

    Kellogg, Ryan Mayer

    This dissertation deals with economic efficiency in the energy industry and consists of three parts. The first examines how joint experience between pairs of firms working together in oil and gas drilling improves productivity. Part two asks whether oil producers time their drilling optimally by taking real options effects into consideration. Finally, I investigate the efficiency with which energy is consumed, asking whether extending Daylight Saving Time (DST) reduces electricity use. The chapter "Learning by Drilling: Inter-Firm Learning and Relationship Persistence in the Texas Oilpatch" examines how oil production companies and the drilling rigs they hire improve drilling productivity by learning through joint experience. I find that the joint productivity of a lead firm and its drilling contractor is enhanced significantly as they accumulate experience working together. Moreover, this result is robust to other relationship specificities and standard firm-specific learning-by-doing effects. The second chapter, "Drill Now or Drill Later: The Effect of Expected Volatility on Investment," investigates the extent to which firms' drilling behavior accords with a key prescription of real options theory: irreversible investments such as drilling should be deferred when the expected volatility of the investments' payoffs increases. I combine detailed data on oil drilling with expectations of future oil price volatility that I derive from the NYMEX futures options market. Conditioning on expected price levels, I find that oil production companies significantly reduce the number of wells they drill when expected price volatility is high. I conclude with "Daylight Time and Energy: Evidence from an Australian Experiment," co-authored with Hendrik Wolff. This chapter assesses DST's impact on electricity demand using a quasi-experiment in which parts of Australia extended DST in 2000 to facilitate the Sydney Olympics. We show that the extension did not reduce overall

  16. Quantification model for energy consumption in edification

    Directory of Open Access Journals (Sweden)

    Mercader, Mª P.

    2012-12-01

    Full Text Available The research conducted in this paper focuses on the generation of a model for the quantification of energy consumption in building. This is to be done through one of the most relevant environmental impact indicators associated with weight per m2 of construction, as well as the energy consumption resulting from the manufacturing process of materials used in building construction. The practical application of the proposed model on different buildings typologies in Seville, will provide information regarding the building materials, the subsystems and the most relevant construction elements. Hence, we will be able to observe the impact the built surface has on the environment. The results obtained aim to reference the scientific community, providing quantitative data comparable to other types of buildings and geographical areas. Furthermore, it may also allow the analysis and the characterization of feasible solutions to reduce the environmental impact generated by the different materials, subsystems and construction elements commonly used in the different building types defined in this study.

    La investigación realizada en el presente trabajo plantea la generación de un modelo de cuantificación del consumo energético en edificación, a través de uno de los indicadores de impacto ambiental más relevantes asociados al peso por m2 de construcción, el consumo energético derivado del proceso de fabricación de los materiales de construcción empleados en edificación. La aplicación práctica del modelo propuesto sobre diferentes tipologías edificatorias en Sevilla aportará información respecto a los materiales de construcción, subsistemas y elementos constructivos más impactantes, permitiendo visualizar la influencia que presenta la superficie construida en cuanto al impacto ambiental generado. Los resultados obtenidos pretenden servir de referencia a la comunidad científica, aportando datos num

  17. Energy consumption in commercial buildings: A comparison with BEPS budgets

    Science.gov (United States)

    1980-09-01

    Metered energy consumption data were collected on existing commercial buildings to help establish the proposed building energy performance standards (BEPS). The search has identified 84 buildings whose metered energy consumption is equal to or less than that proposed for their BEPS budgets and another 7 buildings whose metered consumption is less than 20 percent above their BEPS budgets. The methodology used to identify the buildings and to collect their metered energy consumption data are described. The data are analyzed and summarized and conclusions are drawn.

  18. Design of energy efficient building with radiant slab cooling

    Science.gov (United States)

    Tian, Zhen

    2007-12-01

    Air-conditioning comprises a substantial fraction of commercial building energy use because of compressor-driven refrigeration and fan-driven air circulation. Core regions of large buildings require year-round cooling due to heat gains from people, lights and equipment. Negative environmental impacts include CO2 emissions from electric generation and leakage of ozone-depleting refrigerants. Some argue that radiant cooling simultaneously improves building efficiency and occupant thermal comfort, and that current thermal comfort models fail to reflect occupant experience with radiant thermal control systems. There is little field evidence to test these claims. The University of Calgary's Information and Communications Technology (ICT) Building, is a pioneering radiant slab cooling installation in North America. Thermal comfort and energy performance were evaluated. Measurements included: (1) heating and cooling energy use, (2) electrical energy use for lighting and equipment, and (3) indoor temperatures. Accuracy of a whole building energy simulation model was evaluated with these data. Simulation was then used to compare the radiant slab design with a conventional (variable air volume) system. The radiant system energy performance was found to be poorer mainly due to: (1) simultaneous cooling by the slab and heating by other systems, (2) omission of low-exergy (e.g., groundwater) cooling possible with the high cooling water temperatures possible with radiant slabs and (3) excessive solar gain and conductive heat loss due to the wall and fenestration design. Occupant thermal comfort was evaluated through questionnaires and concurrent measurement of workstation comfort parameters. Analysis of 116 sets of data from 82 occupants showed that occupant assessment was consistent with estimates based on current thermal comfort models. The main thermal comfort improvements were reductions in (1) local discomfort from draft and (2) vertical air temperature stratification. The

  19. Habit formation and consumption of energy for heating

    DEFF Research Database (Denmark)

    Leth-Petersen, Søren

    2007-01-01

    In this paper we ask if consumption of energy for space heating by households is habit forming. A model of intertemporal consumption allocation allowing for habit-forming preferences is estimated on a register-based panel data set with high quality information about consumption of natural gas...

  20. Practical aspects of the application of the pinch technology for the reduction of the energy and cooling water consumption in a fertilizer plant; Aspectos practicos de la aplicacion de la tecnologia pinch para la reduccion del consumo de energia y agua de enfriamiento de una planta de fertilizantes

    Energy Technology Data Exchange (ETDEWEB)

    Picon Nunez, M. [Guanajuato (Mexico)

    1995-12-31

    The energy and cooling water system make-up water consumption of a fertilizer plant were reduced in 18% and in 16.4 Tons/hr respectively, representing a substantial saving in the operational costs. The application of the pinch analysis to the process revealed the potential saving of existing energy. The need of reducing the incoming raw materials temperature and the operating pressure of two evaporators was identified, for this purpose it was necessary to install three additional heat exchangers. [Espanol] Los consumos de energia y de agua de reposicion del sistema de enfriamiento de una planta de fertilizantes se redujeron en 18% y en 16.4 ton/hr respectivamente, representando un ahorro sustancial en los costos de operacion. La aplicacion del analisis Pinch al proceso revelo el potencial de ahorro de energia existente. Se identifico la necesidad de reducir la temperatura de alimentacion de la materia prima y la presion de operacion de dos evaporadores, para lo cual fue necesario implementar tres intercambiadores de calor adicionales.

  1. Energy Consumption and Energy Efficiency Trends in the EU-28 (2000-2014)

    OpenAIRE

    BERTOLDI PAOLO; LOPEZ LORENTE JAVIER; LABANCA NICOLA

    2016-01-01

    This report aims at showing the present status of energy consumption in the EU-28, in the four main energy consuming sectors: residential, tertiary, transport and industry. During the last years, there have been efforts by the European Union to cut down on energy consumption and improve energy efficiency. From 2000 to 2014, there have been various initiatives that aim at reducing final energy consumption. Therefore, the report demonstrates the energy consumption progress from 2000 to 2014 in ...

  2. Attainment of Electron Beam Suitable for Medium Energy Electron Cooling

    Energy Technology Data Exchange (ETDEWEB)

    Seletskiy, Sergei M. [Univ. of Rochester, NY (United States)

    2005-01-01

    Electron cooling of charged particle beams is a well-established technique at electron energies of up to 300 keV. However, up to the present time the advance of electron cooling to the MeV-range energies has remained a purely theoretical possibility. The electron cooling project at Fermilab has recently demonstrated the ¯rst cooling of 8.9 GeV/c antiprotons in the Recycler ring, and therefore, has proved the validity of the idea of relativistic electron cool- ing. The Recycler Electron Cooler (REC) is the key component of the Teva- tron Run II luminosity upgrade project. Its performance depends critically on the quality of electron beam. A stable electron beam of 4.3 MeV car- rying 0.5 A of DC current is required. The beam suitable for the Recycler Electron Cooler must have an angular spread not exceeding 200 ¹rad. The full-scale prototype of the REC was designed, built and tested at Fermilab in the Wideband laboratory to study the feasibility of attaining the high-quality electron beam. In this thesis I describe various aspects of development of the Fermilab electron cooling system, and the techniques used to obtain the electron beam suitable for the cooling process. In particular I emphasize those aspects of the work for which I was principally responsible.

  3. Fundamental principles of energy consumption for gene expression

    Science.gov (United States)

    Huang, Lifang; Yuan, Zhanjiang; Yu, Jianshe; Zhou, Tianshou

    2015-12-01

    How energy is consumed in gene expression is largely unknown mainly due to complexity of non-equilibrium mechanisms affecting expression levels. Here, by analyzing a representative gene model that considers complexity of gene expression, we show that negative feedback increases energy consumption but positive feedback has an opposite effect; promoter leakage always reduces energy consumption; generating more bursts needs to consume more energy; and the speed of promoter switching is at the cost of energy consumption. We also find that the relationship between energy consumption and expression noise is multi-mode, depending on both the type of feedback and the speed of promoter switching. Altogether, these results constitute fundamental principles of energy consumption for gene expression, which lay a foundation for designing biologically reasonable gene modules. In addition, we discuss possible biological implications of these principles by combining experimental facts.

  4. Widening the scope? How intermediary actors can shape energy consumption

    DEFF Research Database (Denmark)

    Maneschi, Davide

    2013-01-01

    This paper deals with energy consumption in the residential sector and with the implementation of measures to reduce it. While most research dealing with energy consumption has targeted factors and drivers at the individual user level, more recent works have highlighted collective aspects...... of (energy) consumption, both to explain the resilience of consumption patterns and to identify leverage points for the reduction of energy use. One understudied aspect of this discussion is the way “intermediary” actors – those actors who are neither policy makers, nor users, nor energy providers...... – influence energy consumption. This paper presents a review of the literature on intermediaries, providing an overview of their roles and contextualizing their functions in energy efficiency improvements. The review shows how the concept of intermediaries has been used in research dealing with innovation...

  5. Analysis of Final Energy Consumption Patterns in 10 Arab Countries

    Science.gov (United States)

    Al-Hinti, I.; Al-Ghandoor, A.

    2009-08-01

    This study presents an analysis of the energy consumption patterns in 10 Arab countries: Saudi Arabia, Kuwait, United Arab Emirates (UAE), Syria, Lebanon, Jordan, Egypt, Libya, Tunisia, and Algeria. Commonalities and variations between these countries are discussed and explained through key economic and energy indicators, and the relationship between the overall final energy consumption per capita and the GDP per capita is examined. The distribution of the final energy consumption across different sectors is also analysed, and the patterns of consumption in the industrial, transportation, and residential sectors are discussed with focus on the types of energy consumed, and the main drivers of this consumption. The findings and the conclusions of this study are believed to be beneficial to the national energy policy planners in identifying possible strengths, weaknesses, and areas of emphasis and improvement in their strategic energy plans.

  6. Energy and exergy analysis of counter flow wet cooling towers

    Directory of Open Access Journals (Sweden)

    Saravanan Mani

    2008-01-01

    Full Text Available Cooling tower is an open system direct contact heat exchanger, where it cools water by both convection and evaporation. In this paper, a mathematical model based on heat and mass transfer principle is developed to find the outlet condition of water and air. The model is solved using iterative method. Energy and exergy analysis infers that inlet air wet bulb temperature is found to be the most important parameter than inlet water temperature and also variation in dead state properties does not affect the performance of wet cooling tower. .

  7. Comparative energy consumption analyses of an ultra high frequency induction heating system for material processing applications

    Energy Technology Data Exchange (ETDEWEB)

    Tastan, M.; Gokozan, H.; Taskin, S.; Cavdar, U.

    2015-07-01

    This study compares an energy consumption results of the TI-6Al-4V based material processing under the 900 kHz induction heating for different cases. By this means, total power consumption and energy consumptions per sample and amount have been analyzed. Experiments have been conducted with 900 kHz, 2.8 kW ultra-high frequency induction system. Two cases are considered in the study. In the first case, TI-6Al-4V samples have been heated up to 900 degree centigrade with classical heating method, which is used in industrial applications, and then they have been cooled down by water. Afterwards, the samples have been heated up to 600 degree centigrade, 650 degree centigrade and 700 degree centigrade respectively and stress relieving process has been applied through natural cooling. During these processes, energy consumptions for each defined process have been measured. In the second case, unlike the first study, can be used five different samples have been heated up to the various temperatures between 600 degree centigrade and 1120 degree centigrade and energy consumptions have been measured for these processes. Thereby, the effect of temperature increase on each sample on energy cost has been analyzed. It has been seen that as a result of heating the titanium bulk materials, which have been used in the experiment, with ultra high frequency induction, temperature increase also increases the energy consumption. But it has been revealed that the increase rate in the energy consumption is more than the increase rate of the temperature. (Author)

  8. Intelligent Cooperative MAC Protocol for Balancing Energy Consumption

    Science.gov (United States)

    Wu, S.; Liu, K.; Huang, B.; Liu, F.

    To extend the lifetime of wireless sensor networks, we proposed an intelligent balanced energy consumption cooperative MAC protocol (IBEC-CMAC) based on the multi-node cooperative transmission model. The protocol has priority to access high-quality channels for reducing energy consumption of each transmission. It can also balance the energy consumption among cooperative nodes by using high residual energy nodes instead of excessively consuming some node's energy. Simulation results show that IBEC-CMAC can obtain longer network lifetime and higher energy utilization than direct transmission.

  9. Thermal comfort and energy-efficient cooling of nonresidential buildings

    CERN Document Server

    Kalz, Doreen

    2014-01-01

    This book supports HVAC planners in reducing the cooling energy demand, improving the indoor environment and designing more cost-effective building concepts. High performance buildings have shown that it is possible to go clearly beyond the energy requirements of existing legislation and obtaining good thermal comfort. However, there is still a strong uncertainty in day-to-day practice due to the lack of legislative regulations for mixed-mode buildings which are neither only naturally ventilated nor fully air-conditioned, but use a mix of different low-energy cooling techniques. Based on the f

  10. Modelling of domestic refrigerators' energy consumption under real life conditions in Europe

    Energy Technology Data Exchange (ETDEWEB)

    Geppert, Jasmin

    2011-05-23

    In recent decades, energy and resource savings have become increasingly important, not only in the industrial, but also the residential sector. As one of the largest energy users in private homes, domestic refrigerators and freezers were among the first appliances to be targeted for energy efficiency improvements. With the aim of encouraging manufacturers to develop and produce more efficient appliances, the European Energy Label was introduced in the mid-nineties. However, the energy use of refrigerators does not only depend on technical components and features. Especially the using conditions in private homes are of a decisive influence. Thus, the present study has been conducted to test the sensitivity of refrigerators' energy consumption to various usage conditions within realistic ranges, which have been determined by means of two empirical studies. Key information gathered from the experiments were used as a base for the development and validation of a simplified model that allows predicting the energy consumption of refrigerators in use. The practical experiments were performed under controlled laboratory conditions with four different refrigerators with an A{sup +} or A{sup ++} energy efficiency rating (two statically cooled built-in fridge-freezers, one dynamically cooled refrigerator and one statically cooled refrigerator). The investigations revealed that the ambient temperature has the greatest impact on a refrigerator's energy consumption, followed by thermostat setting and heat load by insertion of warm items. The refrigerators' load under static conditions as well as the number of door openings have almost no impact on energy consumption. The modelling methodology follows a first-principle approach adjusted by experimental data. When compared to experimental results, model predictions show a reasonable agreement for the whole range of investigated conditions. (orig.)

  11. Advanced simulations of energy demand and indoor climate of passive ventilation systems with heat recovery and night cooling

    DEFF Research Database (Denmark)

    Hviid, Christian Anker; Svendsen, Svend

    with little energy consumption and with satisfying indoor climate. The concept is based on using passive measures like stack and wind driven ventilation, effective night cooling and low pressure loss heat recovery using two fluid coupled water-to-air heat exchangers developed at the Technical University......In building design the requirements for energy consumption for ventilation, heating and cooling and the requirements for increasingly better indoor climate are two opposing factors. This paper presents the schematic layout and simulation results of an innovative multifunctional ventilation concept...... of Denmark. Through building integration in high performance offices the system is optimized to incorporate multiple functions like heating, cooling and ventilation, thus saving the expenses of separate cooling and heating systems. The simulation results are derived using the state-of-the-art building...

  12. Energy conservation in cooling systems. Blowers; Energiebesparing in koelsystemen. Ventilatoren

    Energy Technology Data Exchange (ETDEWEB)

    Huijgens, G.

    2009-03-15

    On the role of blowers with regard to the options to save energy with cooling systems. In particular attention is paid to so-called Electronically Commutated (EC) Motors. [Dutch] Over de rol van ventilatoren in de mogelijkheden om energie te besparen met koelsystemen. In het bijzonder wordt aandacht besteed aan de zogenaamde Electronically Commutated (EC) Motors.

  13. Energy Consumption by Rural Households in Northern Hunan

    Institute of Scientific and Technical Information of China (English)

    LI Lin; ZHOU Jin; ZHANG Guo-qiang

    2009-01-01

    TKs study was conducted to investigate the household energy consumption in rural districts in northern Hunan and to help explore the sustainable and ecological energy policy.Questionnaires were used to ac-quire the details of energy consumption,and the electricity equivalent calculation was used in the energy statis-tics in four villages.The energy consumption in these four villages is influenced by the economic condition,geo-graphic position and landform and the local custom.The traditional biomass energy and coal briquette are the primary energy source for cooking and heating,but they are used in a very low efficiency and result in poorIAQ.For sustainability,further measures should be taken to optimize the energy consumption with the efficient use of biomass energy,coal and electricity.

  14. Energy consumption in the Danish fishery

    DEFF Research Database (Denmark)

    Thrane, Mikkel

    2004-01-01

    Previous studies based on life-cycle assessment (LCA) in Denmark and Sweden have shown that the fishery is the environmental "hot spot" in the life cycle of certain fish products. Within the fishery, fuel consumption is one of the most important factors addressed by LCA. The present study reveals...... that there are great differences in fuel consumption between fisheries targeting groundfish or shellfish and those targeting pelagic fish or industrial fish. Here, I show that fuel consumption per kilogram of caught fish varies considerably as a function of fishing gear and vessel size, even considering the same......) in Denmark and Sweden have shown that the fishery is the environmental "hot spot" in the life cycle of certain fish products. Within the fishery, fuel consumption is one of the most important factors addressed by LCA. The present study reveals that there are great differences in fuel consumption between...

  15. Uncertainty of Energy Consumption Assessment of Domestic Buildings

    DEFF Research Database (Denmark)

    Brohus, Henrik; Heiselberg, Per; Simonsen, A.;

    2009-01-01

    of the uncertainty of energy consumption assessment of domestic buildings. The calculated energy consumption of a number of almost identical domestic buildings in Denmark is compared with the measured energy consumption. Furthermore, the uncertainty is determined by means of stochastic modelling based on input......In order to assess the influence of energy reduction initiatives, to determine the expected annual cost, to calculate life cycle cost, emission impact, etc. it is crucial to be able to assess the energy consumption reasonably accurate. The present work undertakes a theoretical and empirical study...... to correspond reasonably well; however, it is also found that significant differences may occur between calculated and measured energy consumption due to the spread and due to the fact that the result can only be determined with a certain probability. It is found that occupants' behaviour is the major...

  16. Quantification of Uncertainty in Predicting Building Energy Consumption

    DEFF Research Database (Denmark)

    Brohus, Henrik; Frier, Christian; Heiselberg, Per;

    2012-01-01

    for the dynamic thermal behaviour of buildings. However, for air flow and energy consumption it is found to be much more significant due to less “damping”. Probabilistic methods establish a new approach to the prediction of building energy consumption, enabling designers to include stochastic parameters like......Traditional building energy consumption calculation methods are characterised by rough approaches providing approximate figures with high and unknown levels of uncertainty. Lack of reliable energy resources and increasing concerns about climate change call for improved predictive tools. A new...... approach for the prediction of building energy consumption is presented. The approach quantifies the uncertainty of building energy consumption by means of stochastic differential equations. The approach is applied to a general heat balance for an arbitrary number of loads and zones in a building...

  17. Analysis and modelling of the energy consumption of chemical batch plants

    Energy Technology Data Exchange (ETDEWEB)

    Bieler, P.S.

    2004-07-01

    This report for the Swiss Federal Office of Energy (SFOE) describes two different approaches for the energy analysis and modelling of chemical batch plants. A top-down model consisting of a linear equation based on the specific energy consumption per ton of production output and the base consumption of the plant is postulated. The model is shown to be applicable to single and multi-product batches for batch plants with constant production mix and multi-purpose batch plants in which only similar chemicals are produced. For multipurpose batch plants with highly varying production processes and changing production mix, the top-down model produced inaccurate results. A bottom-up model is postulated for such plants. The results obtained are discussed that show that the electricity consumption for infrastructure equipment was significant and responsible for about 50% of total electricity consumption. The specific energy consumption for the different buildings was related to the degree of automation and the production processes. Analyses of the results of modelling are presented. More detailed analyses of the energy consumption of this apparatus group show that about 30 to 40% of steam energy is lost and thus a large potential for optimisation exists. Various potentials for making savings, ranging from elimination of reflux conditions to the development of a new heating/cooling-system for a generic batch reactor, are identified.

  18. A Case of Acute Psychosis Following Energy Drink Consumption.

    Science.gov (United States)

    Görgülü, Yasemin; Taşdelen, Öznur; Sönmez, Mehmet Bülent; Köse Çinar, Rugül

    2014-03-01

    Interest in energy drinks is increasing every day. Energy drink consumption is increasing proportionally. Users often utilize these drinks in order to enjoy, have fun and to increase performance and attention. However, consumption of the energy drinks sometimes may also cause adverse physical and psychological consequences. Unwanted physical results are in the more foreground, noticeable and visible but the data about psychological problems caused by energy drinks is accumulated over the years in the literature. In this case report, we describe the case of a young man with no psychiatric history who was hospitalized for psychotic symptoms following excessive consumption of energy drinks.

  19. The world energy consumption in 2001. Statistical yearbook ENERDATA 2002

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    2002-07-01

    Statistical data on the world energy consumption are given to illustrate the following situation in 2001: the deceleration of the world economic growth and the high prices of oil slowed down the progression of the energy consumption: 0,7 % in 2001; stagnation of the gas and oil consumption and strong progression for coal and electricity in 2001; the deceleration for gas marks a strong inflection compared to the past trends. (A.L.B.)

  20. Sports/energy drinks consumption among young athletes in Kano ...

    African Journals Online (AJOL)

    Sports/energy drinks consumption among young athletes in Kano, Nigeria. ... Athletes who had 'ever' tried a sport drink were significantly higher (p<0.05) than ... health effects, and that they could distinguish between sport and energy drinks.

  1. Danish Sector Guide for Calculation of the Actual Energy Consumption

    DEFF Research Database (Denmark)

    Mortensen, Lone Hedegaard

    2016-01-01

    , the innovation network for sustainable construction, InnoBYG started work on a Danish sector guide for the calculation of actual energy consumption in relation to upgrading of buildings. The focus was to make a common guide for energy calculations that can be used by consultants performing calculations...... consumption compared with the estimated energy demand by calculation. The paper concludes that the result of an energy calculation should not be given as a single figure but rather as a spread between the best and worst case for the assumed conditions. Finally, a brief update on current actions is given...... related to the sector guide for calculation of actual energy consumption. Keywords – Energy calculations, actual energy consumption, energy perfomance...

  2. Efficient energy storage in liquid desiccant cooling systems

    Energy Technology Data Exchange (ETDEWEB)

    Hublitz, Astrid

    2008-07-18

    Liquid Desiccant Cooling Systems (LDCS) are open loop sorption systems for air conditioning that use a liquid desiccant such as a concentrated salt solution to dehumidify the outside air and cool it by evaporative cooling. Thermochemical energy storage in the concentrated liquid desiccant can bridge power mismatches between demand and supply. Low-flow LDCS provide high energy storage capacities but are not a state-of-the-art technology yet. The key challenge remains the uniform distribution of the liquid desiccant on the heat and mass transfer surfaces. The present research analyzes the factors of influence on the energy storage capacity by simulation of the heat and mass transfer processes and specifies performance goals for the distribution of the process media. Consequently, a distribution device for the liquid desiccant is developed that reliably meets the performance goals. (orig.)

  3. Multi-criteria decision analysis of concentrated solar power with thermal energy storage and dry cooling.

    Science.gov (United States)

    Klein, Sharon J W

    2013-12-17

    Decisions about energy backup and cooling options for parabolic trough (PT) concentrated solar power have technical, economic, and environmental implications. Although PT development has increased rapidly in recent years, energy policies do not address backup or cooling option requirements, and very few studies directly compare the diverse implications of these options. This is the first study to compare the annual capacity factor, levelized cost of energy (LCOE), water consumption, land use, and life cycle greenhouse gas (GHG) emissions of PT with different backup options (minimal backup (MB), thermal energy storage (TES), and fossil fuel backup (FF)) and different cooling options (wet (WC) and dry (DC). Multicriteria decision analysis was used with five preference scenarios to identify the highest-scoring energy backup-cooling combination for each preference scenario. MB-WC had the highest score in the Economic and Climate Change-Economy scenarios, while FF-DC and FF-WC had the highest scores in the Equal and Availability scenarios, respectively. TES-DC had the highest score for the Environmental scenario. DC was ranked 1-3 in all preference scenarios. Direct comparisons between GHG emissions and LCOE and between GHG emissions and land use suggest a preference for TES if backup is require for PT plants to compete with baseload generators.

  4. Systems Evaluation at the Cool Energy House

    Energy Technology Data Exchange (ETDEWEB)

    J. Williamson and S. Puttagunta

    2013-09-01

    Steven Winter Associates, Inc. (SWA) monitored several advanced mechanical systems within a 2012 deep energy retrofitted home in the small Orlando suburb of Windermere, FL. This report provides performance results of one of the home's heat pump water heaters (HPWH) and the whole-house dehumidifier (WHD) over a six month period. In addition to assessing the energy performance of these systems, this study sought to quantify potential comfort improvements over traditional systems. This information is applicable to researchers, designers, plumbers, and HVAC contractors. Though builders and homeowners can find useful information within this report, the corresponding case studies are a likely better reference for this audience.

  5. Systems Evaluation at the Cool Energy House

    Energy Technology Data Exchange (ETDEWEB)

    Williamson, J. [Steven Winter Associates, Inc., Norwalk, CT (United States); Puttagunta, S. [Steven Winter Associates, Inc., Norwalk, CT (United States)

    2013-09-01

    Steven Winter Associates, Inc. (SWA) monitored several advanced mechanical systems within a 2012 deep energy retrofitted home in the small Orlando suburb of Windermere, FL. This report provides performance results of one of the home's heat pump water heaters (HPWH) and the whole-house dehumidifier (WHD) over a six month period. In addition to assessing the energy performance of these systems,this study sought to quantify potential comfort improvements over traditional systems. This information is applicable to researchers, designers, plumbers, and HVAC contractors. Though builders and homeowners can find useful information within this report, the corresponding case studies are a likely better reference for this audience.

  6. Low-energy-consumption hybrid lasers for silicon photonics

    DEFF Research Database (Denmark)

    Chung, Il-Sug; Ran, Qijiang; Mørk, Jesper

    2012-01-01

    Physics and characteristics of a hybrid vertical-cavity laser that can be an on-chip Si light source with high speed and low energy consumption are discussed.......Physics and characteristics of a hybrid vertical-cavity laser that can be an on-chip Si light source with high speed and low energy consumption are discussed....

  7. Online Anomaly Energy Consumption Detection Using Lambda Architecture

    DEFF Research Database (Denmark)

    Liu, Xiufeng; Iftikhar, Nadeem; Nielsen, Per Sieverts;

    2016-01-01

    With the widely use of smart meters in the energy sector, anomaly detection becomes a crucial mean to study the unusual consumption behaviors of customers, and to discover unexpected events of using energy promptly. Detecting consumption anomalies is, essentially, a real-time big data analytics p...

  8. Cool roofs as an energy conservation measure for federal buildings

    Energy Technology Data Exchange (ETDEWEB)

    Taha, Haider; Akbari, Hashem

    2003-04-07

    We have developed initial estimates of the potential benefits of cool roofs on federal buildings and facilities (building scale) as well as extrapolated the results to all national facilities under the administration of the Federal Energy Management Program (FEMP). In addition, a spreadsheet ''calculator'' is devised to help FEMP estimate potential energy and cost savings of cool roof projects. Based on calculations for an average insulation level of R-11 for roofs, it is estimated that nationwide annual savings in energy costs will amount to $16M and $32M for two scenarios of increased roof albedo (moderate and high increases), respectively. These savings, corresponding to about 3.8 percent and 7.5 percent of the base energy costs for FEMP facilities, include the increased heating energy use (penalties) in winter. To keep the cost of conserved energy (CCE) under $0.08 kWh-1 as a nationwide average, the calculations suggest that the incremental cost for cool roofs should not exceed $0.06 ft-2, assuming that cool roofs have the same life span as their non-cool counterparts. However, cool roofs usually have extended life spans, e.g., 15-30 years versus 10 years for conventional roofs, and if the costs of re-roofing are also factored in, the cutoff incremental cost to keep CCE under $0.08 kWh-1 can be much higher. In between these two ends, there is of course a range of various combinations and options.

  9. A Case of Acute Psychosis Following Energy Drink Consumption

    OpenAIRE

    G?RG?L?, Yasemin; TA?DELEN, ?znur; S?NMEZ, Mehmet B?lent; K?SE ?INAR, Rug?l

    2014-01-01

    Interest in energy drinks is increasing every day. Energy drink consumption is increasing proportionally. Users often utilize these drinks in order to enjoy, have fun and to increase performance and attention. However, consumption of the energy drinks sometimes may also cause adverse physical and psychological consequences. Unwanted physical results are in the more foreground, noticeable and visible but the data about psychological problems caused by energy drinks is accumulated over the year...

  10. Energy consumption in the Danish fishery

    DEFF Research Database (Denmark)

    Thrane, Mikkel

    2004-01-01

    that there are great differences in fuel consumption between fisheries targeting groundfish or shellfish and those targeting pelagic fish or industrial fish. Here, I show that fuel consumption per kilogram of caught fish varies considerably as a function of fishing gear and vessel size, even considering the same...... fisheries targeting groundfish or shellfish and those targeting pelagic fish or industrial fish. Here, I show that fuel consumption per kilogram of caught fish varies considerably as a function of fishing gear and vessel size, even considering the same target species. I argue that these differences need......Previous studies based on life-cycle assessment (LCA) in Denmark and Sweden have shown that the fishery is the environmental "hot spot" in the life cycle of certain fish products. Within the fishery, fuel consumption is one of the most important factors addressed by LCA. The present study reveals...

  11. A panel study of nuclear energy consumption and economic growth

    Energy Technology Data Exchange (ETDEWEB)

    Apergis, Nicholas [Department of Banking and Financial Management, University of Piraeus, Karaoli and Dimitriou 80, Piraeus, ATTIKI 18534 (Greece); Payne, James E. [Interim Dean and Professor of Economics, College of Arts and Sciences, Illinois State University, Normal, IL 61790-4100 (United States)

    2010-05-15

    This study examines the relationship between nuclear energy consumption and economic growth for sixteen countries within a multivariate panel framework over the period 1980-2005. Pedroni's (1999, 2004) heterogeneous panel cointegration test reveals there is a long-run equilibrium relationship between real GDP, nuclear energy consumption, real gross fixed capital formation, and the labor force with the respective coefficients positive and statistically significant. The results of the panel vector error correction model finds bidirectional causality between nuclear energy consumption and economic growth in the short-run while unidirectional causality from nuclear energy consumption to economic growth in the long-run. Thus, the results provide support for the feedback hypothesis associated with the relationship between nuclear energy consumption and economic growth. (author)

  12. Energy consumption in the Danish fishery

    DEFF Research Database (Denmark)

    Thrane, Mikkel

    2003-01-01

    Previous studies based on Life Cycle Assessment (LCA) in Denmark and Sweden have shown that the fishery is the environmental "hot spot" in the life cycle of fish products. Within the fishery, fuel consumption is one of the most important factors addressed by LCA. The present study reveals...... that there are great differences in the fuel consumption between fisheries targeting ground or shellfish and those targeting pelagic or industrial fish....

  13. Energy consumption and economic growth revisited in African countries

    Energy Technology Data Exchange (ETDEWEB)

    Eggoh, Jude C.; Bangake, Chrysost; Rault, Christophe [Orleans Univ. (France). LEO

    2011-09-15

    The aim of this paper is to provide new empirical evidence on the relationship between energy consumption and economic growth for 21 African countries over the period from 1970 to 2006, using recently developed panel cointegration and causality tests. The countries are divided into two groups: net energy importers and net energy exporters. It is found that there exists a long-run equilibrium relationship between energy consumption, real GDP, prices, labor and capital for each group of countries as well as for the whole set of countries. This result is robust to possible cross-country dependence and still holds when allowing for multiple endogenous structural breaks, which can differ among countries. Furthermore, we find that decreasing energy consumption decreases growth and vice versa, and that increasing energy consumption increases growth, and vice versa, and that this applies for both energy exporters and importers. Finally, there is a marked difference in the cointegration relationship when country groups are considered. (orig.)

  14. Modeling energy consumption of residential furnaces and boilers in U.S. homes

    Energy Technology Data Exchange (ETDEWEB)

    Lutz, James; Dunham-Whitehead, Camilla; Lekov, Alex; McMahon, James

    2004-02-01

    In 2001, DOE initiated a rulemaking process to consider whether to amend the existing energy efficiency standards for furnaces and boilers. A key factor in DOE's consideration of new standards is their cost-effectiveness to consumers. Determining cost-effectiveness requires an appropriate comparison of the additional first cost of energy efficiency design options with the savings in operating costs. This report describes calculation of equipment energy consumption (fuel and electricity) based on estimated conditions in a sample of homes that are representative of expected furnace and boiler installations. To represent actual houses with furnaces and boilers in the United States, we used a set of houses from the Residential Energy Consumption Survey of 1997 conducted by the Energy Information Administration. Our calculation methodology estimates the energy consumption of alternative (more-efficient) furnaces, if they were to be used in each house in place of the existing equipment. We developed the method of calculation described in this report for non-weatherized gas furnaces. We generalized the energy consumption calculation for this product class to the other furnace product classes. Fuel consumption calculations for boilers are similar to those for the other furnace product classes. The electricity calculations for boilers are simpler than for furnaces, because boilers do not provide thermal distribution for space cooling as furnaces often do.

  15. High field – low energy muon ionization cooling channel

    Directory of Open Access Journals (Sweden)

    Hisham Kamal Sayed

    2015-09-01

    Full Text Available Muon beams are generated with large transverse and longitudinal emittances. In order to achieve the low emittances required by a muon collider, within the short lifetime of the muons, ionization cooling is required. Cooling schemes have been developed to reduce the muon beam 6D emittances to ≈300  μm-rad in transverse and ≈1–1.5  mm in longitudinal dimensions. The transverse emittance has to be further reduced to ≈50–25  μm-rad with an upper limit on the longitudinal emittance of ≈76  mm in order to meet the high-energy muon collider luminosity requirements. Earlier studies of the transverse cooling of low energy muon beams in high field magnets showed a promising performance, but did not include transverse or longitudinal matching between the stages. In this study we present the first complete design of the high field-low energy ionization cooling channel with transverse and longitudinal matching. The channel design was based on strong focusing solenoids with fields of 25–30 T and low momentum muon beam starting at 135  MeV/c and gradually decreasing. The cooling channel design presented here is the first to reach ≈50 micron scale emittance beam. We present the channel’s optimized design parameters including the focusing solenoid fields, absorber parameters and the transverse and longitudinal matching.

  16. IEA Solar Heating and Cooling Task 37: Solar facade for residential buildings - Refurbishment with extremely low energy consumption; IEA SHC Task 37: Solarfassade fuer Wohnbau - Erneuerungen mit tiefstem Energieverbrauch - die bauphysikalischen, energetischen und architektonischen Potentiale - Schlussbericht

    Energy Technology Data Exchange (ETDEWEB)

    Nelson, E.; Fent, G.

    2009-12-15

    This final report for the Swiss Federal Office of Energy (SFOE) takes a look at solar facades and discusses their structural-physical, energetic and architectural potentials. The insulation of a building's envelope is the key issue discussed in this paper. Traditional insulation methods (mineral wool or wood fibre) can produce walls 50 to 60 cm thick, making the renovation of old buildings to high standards a lot more difficult. The 'Lucido' solar facade is described. This is a highly efficient insulation system which absorbs the solar radiation and stores it as heat in the outer layer of the facade, thus reducing the amount of conventional insulation needed. The basic components - protective, transparent glazing with an air gap and a solid wood absorber followed by a layer of regular insulation - are described. During the summer the lamellae act as a shading device reducing the impact of the sun thus preventing overheating, while in the winter the lamellae enhance the absorption of solar radiation. The report discusses the simulation of the system's dynamic insulation properties and ecological factors and presents examples of the system's use in refurbishment projects.

  17. Energy consumption, income, and carbon emissions in the United States

    Energy Technology Data Exchange (ETDEWEB)

    Soytas, Ugur [Department of Business Administration, Middle East Technical University Ankara, Turkey 06531 (Turkey); Sari, Ramazan [Department of Economics, Abant Izzet Baysal University Bolu, Turkey 14280 (Turkey); Ewing, Bradley T. [Rawls College of Business Texas Tech University Lubbock, TX 79409-2101 (United States)

    2007-05-15

    This paper investigates the effect of energy consumption and output on carbon emissions in the United States. Earlier research focused on testing the existence and/or shape of an environmental Kuznets curve without taking energy consumption into account. We investigate the Granger causality relationship between income, energy consumption, and carbon emissions, including labor and gross fixed capital formation in the model. We find that income does not Granger cause carbon emissions in the US in the long run, but energy use does. Hence, income growth by itself may not become a solution to environmental problems. (author)

  18. Towards Cooling Tower Efficiency-An Energy Audit Approach

    Directory of Open Access Journals (Sweden)

    Long Su Weng Alwin

    2017-01-01

    Full Text Available This research studied the power generation trends from national grid and gas for a period of 4 years. Energy audit of critical systems like this is needful for optimal energy utilization. An energy audit was carried outon 6 industrial cooloing towers and their annual operating cost calculated. Variable speed drive suggested was installed and corresponding annual energy savings of 114,900 kWh/year cost saving of RM30,000 was achieved at a case study plant located in Malaysia. Cooling towers with smart systems was recommended for higher energy savings.

  19. Optimal energy consumption analysis of natural gas pipeline.

    Science.gov (United States)

    Liu, Enbin; Li, Changjun; Yang, Yi

    2014-01-01

    There are many compressor stations along long-distance natural gas pipelines. Natural gas can be transported using different boot programs and import pressures, combined with temperature control parameters. Moreover, different transport methods have correspondingly different energy consumptions. At present, the operating parameters of many pipelines are determined empirically by dispatchers, resulting in high energy consumption. This practice does not abide by energy reduction policies. Therefore, based on a full understanding of the actual needs of pipeline companies, we introduce production unit consumption indicators to establish an objective function for achieving the goal of lowering energy consumption. By using a dynamic programming method for solving the model and preparing calculation software, we can ensure that the solution process is quick and efficient. Using established optimization methods, we analyzed the energy savings for the XQ gas pipeline. By optimizing the boot program, the import station pressure, and the temperature parameters, we achieved the optimal energy consumption. By comparison with the measured energy consumption, the pipeline now has the potential to reduce energy consumption by 11 to 16 percent.

  20. Advanced simulations of energy demand and indoor climate of passive ventilation systems with heat recovery and night cooling

    DEFF Research Database (Denmark)

    Hviid, Christian Anker; Svendsen, Svend

    with little energy consumption and with satisfying indoor climate. The concept is based on using passive measures like stack and wind driven ventilation, effective night cooling and low pressure loss heat recovery using two fluid coupled water-to-air heat exchangers developed at the Technical University...

  1. Development of Innovative Heating and Cooling Systems Using Renewable Energy Sources for Non-Residential Buildings

    Directory of Open Access Journals (Sweden)

    Cinzia Buratti

    2013-10-01

    Full Text Available Industrial and commercial areas are synonymous with high energy consumption, both for heating/cooling and electric power requirements, which are in general associated to a massive use of fossil fuels producing consequent greenhouse gas emissions. Two pilot systems, co-funded by the Italian Ministry for the Environment, have been created to upgrade the heating/cooling systems of two existing buildings on the largest industrial estate in Umbria, Italy. The upgrade was specifically designed to improve the system efficiency and to cover the overall energy which needs with renewable energy resources. In both cases a solar photovoltaic plant provides the required electric power. The first system features a geothermal heat pump with an innovative layout: a heat-storage water tank, buried just below ground level, allows a significant reduction of the geothermal unit size, hence requiring fewer and/or shorter boreholes (up to 60%–70%. In the other system a biomass boiler is coupled with an absorption chiller machine, controlling the indoor air temperature in both summer and winter. In this case, lower electricity consumption, if compared to an electric compression chiller, is obtained. The first results of the monitoring of summer cooling are presented and an evaluation of the performance of the two pilot systems is given.

  2. Simulation of energy consumption for quadruped walking vehicle

    Science.gov (United States)

    Lei, Jingtao; Gao, Feng; Xu, Guoyan

    2006-11-01

    Simulation of energy consumption for walking vehicle is one of the basic way to preliminarily estimate the energy that will be consumed before constructing the real vehicle, providing basis for the design of vehicle to minish energy consumption. One of the most influential factors of the accuracy dynamic simulation is the appropriate contact model between leg and ground. In this paper, we adopt virtual prototyping technique to develop the dynamic modeling of a quadruped walking vehicle considering contact force between legs and ground during walking, finish simulation of dynamics and obtain dynamics characteristics, investigate the effects of different contact condition and the energy consumption. The purpose is to analyze the relationship between energy consumption and relevant influence factors, and the energy efficiency during walking is discussed with different walking velocity, strokes, duty factors and different contact material. Moreover contact force is obtained from simulations. Commercial ADAMS package is used.

  3. Practical versus theoretical domestic energy consumption for space heating

    Energy Technology Data Exchange (ETDEWEB)

    Audenaert, A., E-mail: amaryllis.audenaert@artesis.be [Department of Applied Engineering: Construction, Artesis University College of Antwerp, Paardenmarkt 92, B-2000 Antwerp (Belgium); Department of Environment, Technology and Technology Management, University of Antwerp, Prinsstraat 13, B-2000 Antwerp (Belgium); Briffaerts, K. [Unit Transition Energy and Environment, VITO NV, Boeretang 200, B-2400 Mol (Belgium); Engels, L. [Department of Applied Engineering: Construction, Artesis University College of Antwerp, Paardenmarkt 92, B-2000 Antwerp (Belgium)

    2011-09-15

    Methods to calculate the theoretical energy consumption consider several things: the number of degree days per year that need to be compensated by heating, the characteristics of the dwelling, the number of occupants and the characteristics of the installation for space heating and sanitary hot water. However, these methods do not take into account consumer behaviour, which may affect the actual consumption. The theoretical calculation methods are based on assumptions and use a number of standardized parameters. The difference between the actual and the theoretical energy consumption, and the impact of the residents' behaviour on energy consumption, is analysed by means of a literature study and a practical research. An energy advice procedure (EAP) audit is executed in five dwellings, as well as a survey regarding the energy related behaviour of the households. The theoretically calculated consumption is compared with the billed actual energy consumption of the families. The results show some problems with the current procedure and give some options to improve it. Some research needs are identified to gain more insights in the influence of different behavioural factors on the actual energy use for heating. - Highlights: > The energy advice procedure (EAP) calculates the energy use for heating in dwellings. > Calculations are compared with the real energy use for 5 dwellings. > A survey on the occupants' behaviour is used to interpret the observed differences. > Default values used in the EAP can be very different from the observed behaviour.

  4. Energy consumption in the Danish fishery

    DEFF Research Database (Denmark)

    Thrane, Mikkel

    2003-01-01

    Previous studies based on Life Cycle Assessment (LCA) in Denmark and Sweden have shown that the fishery is the environmental "hot spot" in the life cycle of fish products. Within the fishery, fuel consumption is one of the most important factors addressed by LCA. The present study reveals that th...... that there are great differences in the fuel consumption between fisheries targeting ground or shellfish and those targeting pelagic or industrial fish.......Previous studies based on Life Cycle Assessment (LCA) in Denmark and Sweden have shown that the fishery is the environmental "hot spot" in the life cycle of fish products. Within the fishery, fuel consumption is one of the most important factors addressed by LCA. The present study reveals...

  5. Comparison of Software Models for Energy Savings from Cool Roofs

    Energy Technology Data Exchange (ETDEWEB)

    New, Joshua Ryan [ORNL; Miller, William A [ORNL; Huang, Yu (Joe) [White Box Technologies; Levinson, Ronnen [Lawrence Berkeley National Laboratory (LBNL)

    2014-01-01

    A web-based Roof Savings Calculator (RSC) has been deployed for the United States Department of Energy as an industry-consensus tool to help building owners, manufacturers, distributors, contractors and researchers easily run complex roof and attic simulations. This tool employs modern web technologies, usability design, and national average defaults as an interface to annual simulations of hour-by-hour, whole-building performance using the world-class simulation tools DOE-2.1E and AtticSim in order to provide estimated annual energy and cost savings. In addition to cool reflective roofs, RSC simulates multiple roof and attic configurations including different roof slopes, above sheathing ventilation, radiant barriers, low-emittance roof surfaces, duct location, duct leakage rates, multiple substrate types, and insulation levels. A base case and energy-efficient alternative can be compared side-by-side to estimate monthly energy. RSC was benchmarked against field data from demonstration homes in Ft. Irwin, California; while cooling savings were similar, heating penalty varied significantly across different simulation engines. RSC results reduce cool roofing cost-effectiveness thus mitigating expected economic incentives for this countermeasure to the urban heat island effect. This paper consolidates comparison of RSC s projected energy savings to other simulation engines including DOE-2.1E, AtticSim, Micropas, and EnergyPlus, and presents preliminary analyses. RSC s algorithms for capturing radiant heat transfer and duct interaction in the attic assembly are considered major contributing factors to increased cooling savings and heating penalties. Comparison to previous simulation-based studies, analysis on the force multiplier of RSC cooling savings and heating penalties, the role of radiative heat exchange in an attic assembly, and changes made for increased accuracy of the duct model are included.

  6. Analysis of energy consumption nodes wireless sensor networks

    Directory of Open Access Journals (Sweden)

    Павел Викторович Галкин

    2014-09-01

    Full Text Available The article considers the issue of energy consumption and energy efficiency of the nodes of wireless sensor networks (WSN. It is revealed that the main factor influencing the increase in the probability of a malfunction of sensor networks is the limited resources of the power node. The methodology of calculation of energy consumption of nodes and the lifetime of the elements of their power.

  7. Energy consumption analysis for the Mars deep space station

    Science.gov (United States)

    Hayes, N. V.

    1982-01-01

    Results for the energy consumption analysis at the Mars deep space station are presented. It is shown that the major energy consumers are the 64-Meter antenna building and the operations support building. Verification of the antenna's energy consumption is highly dependent on an accurate knowlege of the tracking operations. The importance of a regular maintenance schedule for the watt hour meters installed at the station is indicated.

  8. Factors affecting wood energy consumption by U.S. households

    Science.gov (United States)

    Nianfu Song; Francisco X. Aguilar; Stephen R. Shifley; Michael E. Goerndt

    2012-01-01

    About 23% of energy derived from woody sources in the U.S. was consumed by households, of which 70% was used by households in rural areas in 2005. We investigated factors affecting household-level wood energy consumption in the four continental U.S. regions using data from the U.S. Residential Energy Consumption Survey. To account for a large number of zero...

  9. Energy-Consumption Factors of Air-Stream Moulding Machines

    Directory of Open Access Journals (Sweden)

    K. Smyksy

    2012-09-01

    Full Text Available In this article, an outline of the key questions connected with the essential problems of energy-consumption of air-stream mouldingmachines has been presented. Research results and calculations of requisite parameters appraisable of energy-consumption of air-streammoulding machines have been supplemented also by the data analysis of offer of the moulding machines manufacturers. The attention onconstructional and technological factors which are favourable for the diminution of energy-consuming of the moulding process has beenpaid.

  10. International Energy Agency Solar Heating and Cooling Program

    Science.gov (United States)

    Brooks, A. J.

    This trip was undertaken to participate in and represent the United States Industry at the International Energy Agency (IEA) Solar Heating and Cooling Program (SHCP) Task 14 Workshop. The meeting took place at the A1 Bani Hotel in Rome Italy.

  11. Understanding household energy consumption patterns: When 'West Is Best' in Metro Manila

    Energy Technology Data Exchange (ETDEWEB)

    Sahakian, Marlyne D., E-mail: marlyne.sahakian@graduateinstitute.c [Graduate Institute of International and Development Studies, Development Studies, 20 rue Rothschild, 1207 Geneva (Switzerland)

    2011-02-15

    This paper addresses the topic of energy and development through a multi-disciplinary and systemic approach that combines environmental considerations with a social understanding of consumption. The focus is on electricity usage in the home and specifically lighting and cooling. Set in the urban mega-polis of Metro Manila, the Philippines, energy consumption is first placed in its biophysical perspective: the energy sources and electricity grid are presented, in relation to the Philippines as well as the region. The research findings then explore the social and cultural drivers behind household electricity consumption, revealing in several examples the strong influence of globalization-understood here as the flow of people, remittances, images and ideas. Policy recommendations are provided, based on the research results, with concluding remarks relevant to other similar contexts. - Research highlights: {yields}Metro Manila household electricity consumption is environmentally significant. {yields}The meaning given to electricity services varies by socio-economic group. {yields}Structural conditions, such as building type, can lock-in energy consumption. {yields}Global flows-people, ideas, remittances-influence local consumption patterns. {yields}Social networks, rather than the individual consumer, can influence change.

  12. Detectors for low energy electron cooling in RHIC

    Energy Technology Data Exchange (ETDEWEB)

    Carlier, F. S. [Brookhaven National Lab. (BNL), Upton, NY (United States)

    2016-02-15

    Low energy operation of RHIC is of particular interest to study the location of a possible critical point in the QCD phase diagram. The performance of RHIC at energies equal to or lower than 10 GV/nucleon is limited by nonlinearities, Intra-BeamScattering (IBS) processes and space-charge effects. To successfully address the luminosity and ion store lifetime limitations imposed by IBS the method of electron cooling has been envisaged. During electron cooling processes electrons are injected along with the ion beam at the nominal ion bunch velocities. The velocity spread of the ion beam is reduced in all planes through Coulomb interactions between the cold electron beam and the ion beam. The electron cooling system proposed for RHIC will be the first of its kind to use bunched beams for the delivery of the electron bunches, and will therefore be accompanied by the necessary challenges. The designed electron cooler will be located in IP2. The electron bunches will be accelerated by a linac before being injected along side the ion beams. Thirty consecutive electron bunches will be injected to overlap with a single ion bunch. They will first cool the yellow beam before being extracted turned by 180-degrees and reinjected into the blue beam for cooling. As such, both the yellow and blue beams will be cooled by the same ion bunches. This will pose considerable challenges to ensure proper electron beam quality to cool the second ion beam. Furthermore, no ondulator will be used in the electron cooler so radiative recombination between the ions and the electrons will occur.

  13. [Relationships between settlement morphology transition and residents commuting energy consumption].

    Science.gov (United States)

    Zhou, Jian; Xiao, Rong-Bo; Sun, Xiang

    2013-07-01

    Settlement morphology transition is triggered by rapid urbanization and urban expansion, but its relationships with residents commuting energy consumption remains ambiguous. It is of significance to understand the controlling mechanisms of sustainable public management policies on the energy consumption and greenhouse gases emission during the process of urban settlement morphology transition. Taking the Xiamen City of East China as a case, and by using the integrated land use and transportation modeling system TRANUS, a scenario analysis was made to study the effects of urban settlement morphology transition on the urban spatial distribution of population, jobs, and land use, and on the residents commuting energy consumption and greenhouse gasses emission under different scenarios. The results showed that under the Business As Usual (BAU) scenario, the energy consumption of the residents at the morning peak travel time was 54.35 tce, and the CO2 emission was 119.12 t. As compared with those under BAU scenario, both the energy consumption and the CO2 emission under the Transition of Settlement Morphology (TSM) scenario increased by 12%, and, with the implementation of the appropriate policies such as land use, transportation, and economy, the energy consumption and CO2 emission under the Transition of Settlement Morphology with Policies (TSMP) scenario reduced by 7%, indicating that urban public management policies could effectively control the growth of residents commuting energy consumption and greenhouse gases emission during the period of urban settlement morphology transition.

  14. Energy drinks consumption in male construction workers, Chonburi province.

    Science.gov (United States)

    Pichainarong, Natchaporn; Chaveepojnkamjorn, Wisit; Khobjit, Pattama; Veerachai, Viroj; Sujirarat, Dusit

    2004-12-01

    This unmatched case-control study aimed to determine the relationship among caffeine drinks consumption known as "energy drinks consumption", drug dependence and related factors in male construction workers in Chonburi Province. It was conducted during December 15, 2001 and February 15, 2002. Data were collected using interview questionnaires. The logistic regression was used to control possible confounding factors. The subjects consisted of 186 cases who had consumed energy drinks for more than 3 months and 186 controls who had given up for more than 3 months. They were frequency/group matched by age group. There was statistically significant association among energy drinks consumption and overtime work, motivation from advertisements, positive attitude of energy drinks consumption, alcohol drinks, smoking and ex-taking Kratom behavior. Multivariate analyses revealed that only 5 factors were related to energy drinks consumption: marital status (OR = 1.88, 95%CI: 1.14, 3.11), overtime work (OR = 2.84, 95%CI: 1.73, 4.64), motivation from advertisements (OR = 2.72, 95%CI: 1.67, 4.42), positive attitude of energy drinks consumption (OR = 4.06, 95%CI: 1.65, 10.01) and ex-taking Kratom behavior (OR = 2.77, 95%CI: 1.19, 6.44). As a result, construction workers should be provided with the knowledge of energy drinks consumption, the effect of drug dependence behavior, and the advantages of safe and healthy food that is cheap, readily available, and rich in nutrients.

  15. Energy conservation technology for cooling of milk on farms and in the dairy industry. Final report; Elbesparande teknik foer kylning av mjoelk paa gaardar och i mejeriindustrin. Slutrapport

    Energy Technology Data Exchange (ETDEWEB)

    Claesson, Olof [Claessons Forskning och Utveckling AB, Uppsala (Sweden)

    2000-08-01

    This project has studied the possibility of reducing the energy consumption when cooling cow milk to prevent a rapid growth of bacteria. Cooling with groundwater and development of new cold storage systems with efficient heat exchangers, combined with an anti-bacterial system (LPS) is suggested.

  16. Energy consumption and economic growth revisited in African countries

    Energy Technology Data Exchange (ETDEWEB)

    Eggoh, Jude C., E-mail: comlanvi-jude.eggoh@univ-orleans.fr [Laboratoire d' Economie d' Orleans (LEO), Universite d' Orleans, Rue de Blois, BP: 6739, 45067 Orleans Cedex 2 (France); Bangake, Chrysost [Laboratoire d' Economie d' Orleans (LEO), Universite d' Orleans, Rue de Blois, BP: 6739, 45067 Orleans Cedex 2 (France); Universite d' Artois and Laboratoire EQUIPPE, Lille 1, FSES, 59655 Villeneuve d' Ascq Cedex (France); Rault, Christophe [Laboratoire d' Economie d' Orleans (LEO), Universite d' Orleans, Rue de Blois, BP: 6739, 45067 Orleans Cedex 2 (France); Toulouse Business School (France)

    2011-11-15

    The aim of this paper is to provide new empirical evidence on the relationship between energy consumption and economic growth for 21 African countries over the period from 1970 to 2006, using recently developed panel cointegration and causality tests. The countries are divided into two groups: net energy importers and net energy exporters. It is found that there exists a long-run equilibrium relationship between energy consumption, real GDP, prices, labor and capital for each group of countries as well as for the whole set of countries. This result is robust to possible cross-country dependence and still holds when allowing for multiple endogenous structural breaks, which can differ among countries. Furthermore, we find that decreasing energy consumption decreases growth and vice versa, and that increasing energy consumption increases growth, and vice versa, and that this applies for both energy exporters and importers. Finally, there is a marked difference in the cointegration relationship when country groups are considered. - Highlights: > We assess the energy consumption and economic growth nexus in 21 African countries. > There exists a long-run relationship between energy consumption and economic growth. > This result is robust to cross-country dependence and for structural breaks. > Our findings finally support the feedback hypothesis of bidirectional causality.

  17. Energy Consumption and Economic Growth: Evidence from COMESA Countries

    OpenAIRE

    Chali, Nondo; Mulugeta, Kahsai

    2009-01-01

    This study applies panel data techniques to investigate the long-run relationship between energy consumption and GDP for a panel of 19 African countries (COMESA) based on annual data for the period 1980-2005. In the first step, we examine the degree of integration between GDP and energy consumption by employing three panel unit root tests and find that the variables are integrated of order one. In the second step, we investigate the long-run relationship between energy consumption and GDP. Re...

  18. THE INFLUENCE OF AN APARTMENT POSITIONING ON ENERGY CONSUMPTION

    Directory of Open Access Journals (Sweden)

    Marcela PRADA

    2013-06-01

    Full Text Available This work is part of the highly topical subject of global warming and energy conservation. The article contains parametric studies of energy consumption and CO² emissions for an apartment located in a block of flats, depending on its location. It was studied the energy consumption of an apartment having different cardinal orientations in the same building and of an apartment with the same position inside the building but located in different climatic zones. The case studies show the difference between the energy consumption of an apartment depending on its position, thus resulting in a few general directions for their heat insulation, so that the specific energy consumption of the apartment is below 100 kWh/m² year.

  19. Economic energy distribution and consumption in a microgrid Part 2

    DEFF Research Database (Denmark)

    Tahersima, Fatemeh; Stoustrup, Jakob; Andersen, Palle

    2014-01-01

    Energy management of a small scale electrical microgrid is investigated. The microgrid comprises residential houses with local renewable generation, consumption and storage units. The microgrid has the possibility of connection to the electricity grid as well to compensate energy decit of local...... power producers. The nal objective is to full the microgrid's energy demands mainly from the local electricity producers. The other objective is to manage power consumption such that the consumption cost is minimum for individual households. In this study, a hierarchical controller composed of three...... levels is proposed. Each layer from bottom to top focus on individual energy consuming units, individual buildings, and the microgrid respectively. At the middle layer, a model predictive controller is formulated to schedule the building's energy consumption using potential load exibilities. The top...

  20. Reduced energy consumption for melting in foundries

    Energy Technology Data Exchange (ETDEWEB)

    Skov-Hansen, S.

    2007-09-15

    By improving the gating technology in traditional gating systems it is possible to reduce the amount of metal to be re-melted, and hence reduce the energy consumption for melting in foundries. Traditional gating systems are known for a straight tapered down runner a well base and 90 deg. bends in the runner system. In the streamlined gating systems there are no sharp changes in direction and a large effort is done to confine and control the flow of the molten metal during mould filling. Experiments in real production lines have proven that using streamlined gating systems improves yield by decreasing the poured weight compared to traditional layouts. In a layout for casting of valve housings in a vertically parted mould the weight of the gating system was reduced by 1,1kg which is a 20% weight reduction for the gating system. In a layout for horizontally parted moulds the weight of the gating system has been reduced by 3,7kg which is a weight reduction of 60% for the gating system. The experiments casting valve housings in ductile iron also proved that it is possible to lower the pouring temperature from 1400 deg. C to 1300 deg. C without the risk of cold runs. Glass plate fronted moulds have been used to study the flow of melt during mould filling. These experiments have also been used for studying the flow pattern when ceramic filters are used. The thorough study of the use of filters revealed that the metal passing through the filter is divided into a number of small jets. This proves that filters do not have the claimed positive effect on the flow of metal. The volumes necessary on either side of the filter is not filled till a backpressure is build up and results in formation of pressure shocks when backfilled. These pressure shocks result in more turbulence inside the casting than the same gating system with no filter. Not using filters can mean a reduction in poured weight of 0,6kg. To examine if the experiments using glass plate fronted moulds give

  1. 10 CFR 434.508 - Determination of the design energy consumption and design energy cost.

    Science.gov (United States)

    2010-01-01

    ... 10 Energy 3 2010-01-01 2010-01-01 false Determination of the design energy consumption and design... FEDERAL COMMERCIAL AND MULTI-FAMILY HIGH RISE RESIDENTIAL BUILDINGS Building Energy Cost Compliance Alternative § 434.508 Determination of the design energy consumption and design energy cost. 508.1The...

  2. Energy consumption in the food supply system

    DEFF Research Database (Denmark)

    Kamp, Andreas; Østergård, Hanne; Hauggaard-Nielsen, Henrik

    2016-01-01

    Historically, productivity gains have been possible by the application of energy intensive technologies. In the future, new technologies and practices based on energy from renewable resources are central for the development of our food supply system and they will contribute in two different ways....... As the energy sector increasingly bases energy supply on renewable sources, the energy requirements of the food sector will automatically substitute renewable energy for non-renewable energy in all stages of food supply. In principle, the food sector does not need to change if renewable energy is sufficient...... and available as the energy carriers that we are used to today. We may think of this as passive adaptation. A passive adaptation strategy may support a development towards the image ‘high input – high output’. The food sector, however, may also actively adapt to a future without fossil fuels and change...

  3. Modelling energy consumption in a manufacturing plant using productivity KPIs

    Energy Technology Data Exchange (ETDEWEB)

    Gallachoir, Brian O.; Cahill, Caiman (Sustainable Energy Research Group, Dept. of Civil and Environmental Engineering, Univ. College Cork (Ireland))

    2009-07-01

    Energy efficiency initiatives in industrial plants are often focused on getting energy-consuming utilities and devices to operate more efficiently, or on conserving energy. While such device-oriented energy efficiency measures can achieve considerable savings, greater energy efficiency improvement may be achieved by improving the overall productivity and quality of manufacturing processes. The paper highlights the observed relationship between productivity and energy efficiency using aggregated data on unit consumption and production index data for Irish industry. Past studies have developed simple top-down models of final energy consumption in manufacturing plants using energy consumption and production output figures, but these models do not help identify opportunities for energy savings that could achieved through increased productivity. This paper proposes an improved and innovative method of modelling plant final energy demand that introduces standard productivity Key Performance Indicators (KPIs) into the model. The model demonstrates the relationship between energy consumption and productivity, and uses standard productivity metrics to identify the areas of manufacturing activity that offer the most potential for improved energy efficiency. The model provides a means of comparing the effect of device-oriented energy efficiency measures with the potential for improved energy efficiency through increased productivity.

  4. Survey of rural household energy-consumption in China

    Energy Technology Data Exchange (ETDEWEB)

    Wang Xh; Fend Zm [Nanjing Agricultural Univ., JS (China)

    1996-07-01

    Based on comprehensive energy surveys of 3240 households in six different regions, we present the level and structure of rural household energy consumption. There are large differences among regions which depend on locality and available fuels. Energy consumption per household accounts for 700-1200 kgce (we use 7000 kcal/kgce), 40-60% of which is used for cooking; 60-90% of total household energy consumption is in the form of biomass. The average energy-conversion efficiency using biomass fuels is in the range 10-20%. Where the strain of traditional patterns of biomass use on the resource base became too severe, the balance between local agricultural and hillside ecosystems has unraveled and caused accelerating destruction of limited land resources. Higher income households need more commercial energy, especially in the form of electricity. Rural household energy will continue to depend mainly on biomass. (UK)

  5. Lights, Camera, Action ... and Cooling - The case for centralized low carbon energy at Fox Studios

    Energy Technology Data Exchange (ETDEWEB)

    Robinson, Alastair [Lawrence Berkeley National Lab. (LBNL), Berkeley, CA (United States); Regnier, Cindy [Lawrence Berkeley National Lab. (LBNL), Berkeley, CA (United States)

    2013-10-01

    Fox Studios partnered with the U.S. Department of Energy (DOE) to develop and implement solutions to retrofit two production stages and one of its central cooling plants, to reduce energy consumption by at least 30% as part of DOE’s Commercial Building Partnerships (CBP) Program. Although this case study reports expected savings arising from proposed design recommendations for a unique building type and the unusual load characteristics associated with its use, the EEMs implemented for the central plant are applicable to any large campus, office and higher education facility. The intent is that by making the energy-efficiency measures (EEMs) set that were assessed as cost-effective from this project applicable to a larger number of buildings on the campus Fox Studios will be able to implement an integrated campus-wide energy strategy for the long term. The significant challenges for this project in the design phase included identifying how to assess and analyze multiple system types, develop a coherent strategy for assessment and analysis, implement the measurement and verification activities to collect the appropriate data (in terms of capturing ‘normal’ operating characteristics and granularity) and determine the best approach to providing cooling to the site buildings based on the nature of existing systems and the expected improvement in energy performance of the central cooling plant. The analytical framework adopted provides a blueprint for similar projects at other large commercial building campuses.

  6. Thermal energy storage for cooling of commercial buildings

    Energy Technology Data Exchange (ETDEWEB)

    Akbari, H. (Lawrence Berkeley Lab., CA (USA)); Mertol, A. (Science Applications International Corp., Los Altos, CA (USA))

    1988-07-01

    The storage of coolness'' has been in use in limited applications for more than a half century. Recently, because of high electricity costs during utilities' peak power periods, thermal storage for cooling has become a prime target for load management strategies. Systems with cool storage shift all or part of the electricity requirement from peak to off-peak hours to take advantage of reduced demand charges and/or off-peak rates. Thermal storage technology applies equally to industrial, commercial, and residential sectors. In the industrial sector, because of the lack of economic incentives and the custom design required for each application, the penetration of this technology has been limited to a few industries. The penetration rate in the residential sector has been also very limited due to the absence of economic incentives, sizing problems, and the lack of compact packaged systems. To date, the most promising applications of these systems, therefore, appear to be for commercial cooling. In this report, the current and potential use of thermal energy storage systems for cooling commercial buildings is investigated. In addition, a general overview of the technology is presented and the applicability and cost-effectiveness of this technology for developed and developing countries are discussed. 28 refs., 12 figs., 1 tab.

  7. World distribution of commercial energy consumption. [Period 1950-1975

    Energy Technology Data Exchange (ETDEWEB)

    Jacmart, M.C.; Arditi, M.; Arditi, I.

    1979-09-01

    Inequality in the world distribution of income has been widely studied. A related problem is the worldwide maldistribution of per capita energy consumption. This article examines trends in the international distribution of energy use over the period 1950 to 1975. Lorenz curves are used to show that during this 25-year period inequalities in energy consumption have decreaed slowly. Most of this redistribution has however occurred among countries in the top 30% of energy consumers. Of the remaining countries only China has significantly increased its per capita consumption. If China is excluded, 60% of the world's population accounts for only 10% of total world consumption. This imbalance has remained unaltered since 1950.

  8. Energy Drink Consumption Practices of Young People in Bahrain

    Directory of Open Access Journals (Sweden)

    Maryam M. Nassaif

    2016-03-01

    Conclusion: Energy drink consumption is a popular socialization activity among adolescents of Bahrain. The potential health risks necessitates the need for novel health promotion strategies and advocacy efforts for healthy hydration practices.

  9. Investigating energy consumption of coastal vacation rental homes

    Science.gov (United States)

    Myers, Sam

    In 2007, vacation rental properties in the United States accounted for more than 22% of the domestic lodging market. These properties are a unique segment of the lodging industry due to their residential design and commercial use. Coastal vacation rental properties represent the largest supply, demand and value of the nation's vacation rental supply. In the case of North Carolina's Outer Banks, tourism is the area's largest source of income, with vacation real estate agencies being the largest accommodation provider. This study uses a multiple regression analysis to investigate the energy consumption of 30 vacation rental homes on Hatteras Island. Hatteras Island's abundant supply of vacation rental homes provided a diverse sample to study energy consumption with a wide range of houses regarding size, age, and location. Since very little research has been conducted on the energy consumption of vacation rental homes, this study aims to contribute detailed information regarding the energy consumption of unique accommodation sector.

  10. Minimizing energy consumption of accelerators and storage ring facilities

    Energy Technology Data Exchange (ETDEWEB)

    Barton, M. Q.; Gerke, H.; Loew, G. A.; Lundy, R. A.; Schnell, W.

    1980-01-01

    The discussion of energy usage falls naturally into three parts. The first is a review of what the problem is, the second is a description of steps that can be taken to conserve energy at existing facilities, and the third is a review of the implications of energy consumption on future facilities.

  11. On-site energy consumption at softwood sawmills in Montana

    Science.gov (United States)

    Dan Loeffler; Nathaniel Anderson; Todd A. Morgan; Colin B. Sorenson

    2016-01-01

    Total on-site energy requirements for wood product manufacturing are generally not well understood or publicly available, particularly at subregional scales, such as the state level. This article uses a mail survey of softwood sawmills in Montana to develop a profile of all on-site energy consumption. Energy use is delineated by fuel type on a production basis...

  12. Moisture buffering phenomenon and its impact on building energy consumption

    DEFF Research Database (Denmark)

    Zhang, Mingjie; Qin, Menghao; Rode, Carsten

    2017-01-01

    buffering on building energy consumption in different climate conditions is assessed by using numerical simulations. The results show that the potential energy saving rate could be up to 25–30% when using proper hygroscopic materials in the test building in temperate climates and semi-arid climates. Finally......, the relationship between MBV and potential energy saving rate is also discussed....

  13. Occupants Influence on the Energy Consumption of Danish Domestic Buildings

    DEFF Research Database (Denmark)

    Larsen, Tine Steen; Knudsen, Henrik Nellemose; Kanstrup, Anne Marie

    This report is one of the results from the project “Occupants influence on the energy consumption of Danish domestic buildings – Phase 1”, which is partly funded by EUDP (Journalnr.: 64009-0248, Programområde: Energieffektivisering) The report provides state-of-the-art reviews within the various...... disciplines represented in the project by the project members, which all represent areas that relate to the title on occupants influence on the energy consumption....

  14. Analysis of energy consumption in single family houses

    DEFF Research Database (Denmark)

    Nielsen, Henrik Aalborg; Mortensen, Stig Bousgaard; Bacher, Peder

    2010-01-01

    This article deals with estimation of the thermal characteristics of single family houses based on measurements of energy consumption and climate. The thermal characteristics includes the response of the building to changes in temperature (UA-value), solar radiation (gA-value), and wind (w...... to estimate the dynamic effects averages with a sample period around 4 hours are required. Also, it is beneficial to use measurements of the total energy consumption (heat and electricity). However, in most cases it results in adequate estimates if only the heat consumption is used as the response variable...

  15. Analysis of energy consumption in single family houses

    DEFF Research Database (Denmark)

    Nielsen, Henrik Aalborg; Mortensen, Stig Bousgaard; Bacher, Peder

    2010-01-01

    This article deals with estimation of the thermal characteristics of single family houses based on measurements of energy consumption and climate. The thermal characteristics includes the response of the building to changes in temperature (UA-value), solar radiation (gA-value), and wind (w...... to estimate the dynamic effects averages with a sample period around 4 hours are required. Also, it is beneficial to use measurements of the total energy consumption (heat and electricity). However, in most cases it results in adequate estimates if only the heat consumption is used as the response variable...

  16. Specific energy consumption in microwave drying of garlic cloves

    Energy Technology Data Exchange (ETDEWEB)

    Sharma, G.P. [Department of Processing and Food Engineering, College of Technology and Agricultural Engineering, Udaipur 313 001, Rajasthan (India); Prasad, Suresh [Agricultural and Food Engineering Department, Indian Institute of Technology, Kharagpur 721 302 (India)

    2006-09-15

    The convective and microwave-convective drying of garlic cloves was carried out in a laboratory scale microwave dryer, which was developed for this purpose. The specific energy consumption involved in the two drying processes was estimated from the energy supplied to the various components of the dryer during the drying period. The specific energy consumption was computed by dividing the total energy supplied by amount of water removed during the drying process. The specific energy consumption in convective drying of garlic cloves at 70{sup o}C temperature and 1.0m/s air velocity was estimated as 85.45MJ/kg of water evaporated. The increase in air velocity increased the energy consumption. The specific energy consumption at 40W of microwave power output, 70{sup o}C air temperature and 1.0m/s air velocity was 26.32MJ/kg of water removed, resulting in about a 70% energy saving as compared to convective drying processes. The drying time increased with increase in air velocity in microwave-convective drying process; a trend reverse to what was observed in convective drying process of garlic cloves. (author)

  17. Energy-Filtered Tunnel Transistor: A New Device Concept Toward Extremely-Low Energy Consumption Electronics

    Science.gov (United States)

    2015-12-17

    New Device Concept Toward Extremely-Low Energy Consumption Electronics 5a. CONTRACT NUMBER 5b. GRANT NUMBER N00014-12-1-0492 5c. PROGRAM... energy consumption transistors. We have experimentally demonstrated, for the first time, that a quantum well energy level can filter out energetic...Concept Toward Extremely-Low Energy Consumption Electronics (Grant No: N00014-12-1-0492) PI: Seong Jin Koh Department of Materials Science and

  18. Stress of urban energy consumption on air environment

    Institute of Scientific and Technical Information of China (English)

    Gang YAN; Li LI; Bin CHEN

    2009-01-01

    With rapid urbanization and heavy industria-lization as well as the rapid increase of cars in China, the effect of energy consumption on urban air environment is increasingly becoming serious, and has become a hot topic for both scholars and decision-makers. This paper explores the effect mechanism and regulation of urban energy consumption on the air environment, and summarizes the framework of the stress effect relationship and the evolutionary process. In accordance with the effect relationship of the internal factors between the two, analytic approaches studying the stress effect of urban energy consumption on air environment are proposed, including the analysis of air environment effects caused by urban energy consumption structure change, and the analysis of air environment effects caused by urban energy economic efficiency change, as well as a decomposition analysis of air pollutant emission caused by urban energy consumption. Applying the above-mentioned approaches into a case study on Beijing City, this paper analyzes the effect relationship among urban energy consumption structure improvement, energy economic efficiency increase and air quality change since the period when Beijing City officially proposed to bid for the 2008 Olympic Games in 1998. In addition, it further analyzes the effect and contribution of urban industrial activity level, industrial economic structure, industrial energy intensity, and industrial energy structure as well as emission coefficients on the change in industrial SO2 emission, which can provide valuable information to the government for making comPrehensive environmental policies, with the use of the logarithmic mean Divisia index (LMDI) method. It is shown that under the precondition that the industrial economy maintain a continuous and rapid increase, improvements in energy intensity and a decline in emission coefficients are the main means for reducing Beijing's industrial SO2 emissions.

  19. Energy consumption in the food chain - Comparing alternative options in food production and consumption

    NARCIS (Netherlands)

    Dutilh, CE; Kramer, KJ

    Energy consumption in the various stages of the food chain, provides a reasonable indicator for the environmental impact in the production of food. This paper provides specific information on the energy requirement for the main alternatives in each production stage, which should allow the

  20. Energy consumption in the food chain - Comparing alternative options in food production and consumption

    NARCIS (Netherlands)

    Dutilh, CE; Kramer, KJ

    2000-01-01

    Energy consumption in the various stages of the food chain, provides a reasonable indicator for the environmental impact in the production of food. This paper provides specific information on the energy requirement for the main alternatives in each production stage, which should allow the identifica

  1. Predictive Model of Energy Consumption in Beer Production

    Directory of Open Access Journals (Sweden)

    Tiecheng Pu

    2013-07-01

    Full Text Available The predictive model of energy consumption is presented based on subtractive clustering and Adaptive-Network-Based Fuzzy Inference System (for short ANFIS in the beer production. Using the subtractive clustering on the historical data of energy consumption, the limit of artificial experience is conquered while confirming the number of fuzzy rules. The parameters of the fuzzy inference system are acquired by the structure of adaptive network and hybrid on-line learning algorithm. The method can predict and guide the energy consumption of the factual production process. The reducing consumption scheme is provided based on the actual situation of the enterprise. Finally, using concrete examples verified the feasibility of this method comparing with the Radial Basis Functions (for short RBF neural network predictive model.

  2. Structural Evolution of Household Energy Consumption: A China Study

    Directory of Open Access Journals (Sweden)

    Qingsong Wang

    2015-04-01

    Full Text Available Sustainable energy production and consumption is one of the issues for the sustainable development strategy in China. As China’s economic development paradigm shifts, household energy consumption (HEC has become a focus of achieving national goals of energy efficiency and greenhouse gas reduction. The information entropy model and LMDI model were employed in this study in order to analyse the structural evolution of HEC, as well as its associated critical factors. The results indicate that the information entropy of HEC increased gradually, and coal will be reduced by clean energies, such as natural gas and liquefied petroleum gas. The information entropy tends to stabilize and converge due to rapid urbanization. Therefore, from the perspective of environmental protection and natural resource conservation, the structure of household energy consumption will be optimized. This study revealed that residents’ income level is one of the most critical factors for the increase of energy consumption, while the energy intensity is the only driving force for the reduction of HEC. The accumulated contribution of these two factors to the HEC is 240.53% and −161.75%, respectively. It is imperative to improve the energy efficiency in the residential sector. Recommendations are provided to improve the energy efficiency-related technologies, as well as the standards for the sustainable energy strategy.

  3. The energy consumption of control systems; Het energiegebruik van regelinstallaties

    Energy Technology Data Exchange (ETDEWEB)

    Van Gulik, A.R.; De Wildt, M.G. [Grontmij Nederland, Amersfoort (Netherlands)

    2013-07-15

    Control systems for e.g. indoor climate and illumination are essential in modern building services, and useful for comfort or energy conservation. Energy conservation is of course an important aim, but what is the energy consumption of the control systems? Is the consumption higher than the savings? This question was subject of a comprehensive study, with measurements and simulation calculations. It can be concluded that the energy consumption of control installation for spaces is substantial [Dutch] Regelinstallaties voor bijvoorbeeld klimaatregeling, verlichtingsregeling en domotica zijn niet meer weg te denken uit de moderne installatietechniek, of ze nu dienen voor comfort, gemak of energiebesparing. Maar hoeveel energie gebruiken deze installaties eigenlijk? Voor ontwerpers blijkt dit helemaal geen issue te zijn terwijl adviseurs, installateurs en zelfs fabrikanten zeggen hiervan geen idee te hebben. Door metingen en het gebruik van berekeningsmodellen is vastgesteld wat het energiegebruik van regelinstallaties op jaarbasis is. Dit blijkt substantieel te zijn, maar er zijn mogelijkheden om het gebruik te reduceren.

  4. Tweeting : Smart meters raise awareness of energy consumption in buildings

    Energy Technology Data Exchange (ETDEWEB)

    Anon.

    2009-11-15

    The University of Mississippi (UM) will monitor, analyze and report on energy consumption in its campus buildings in real-time using SmartSynch Smart Meters. The technology uses smart meter data to help identify a detailed pattern of electricity usage with the objective of finding methods to alter behaviour to reduce electricity usage and carbon emissions. SmartSynch installed 16 Smart Meters on campus with additional deployments being planned. The technology will enable the university to monitor energy consumption, track building power performance over time, compare building energy usage, and review the impact of the weather on energy use while reducing its carbon footprint. Additionally, UM will use Facebook, Twitter and an RSS feed to provide regular public updates on its buildings' energy consumption based on SmartSynch Smart Meter data. Each building will have its own profile on the social networking sites. 1 ref., 1 fig.

  5. Carbon dioxide emissions, output, and energy consumption categories in Algeria.

    Science.gov (United States)

    Amri, Fethi

    2017-06-01

    This study examines the relation between CO2 emissions, income, non-renewable, and renewable energy consumption in Algeria during the period extending from 1980 to 2011. Our work gives particular attention to the validity of environmental Kuznets curve (EKC) hypothesis. The autoregressive distributed lag (ARDL) with break point method outcome demonstrates the positive effect of non-renewable type of energy on CO2 emissions consumption. On the contrary, the results reveal an insignificant effect of renewable energy on environment improvement. Moreover, the results accept the existence of EKC hypothesis but the highest gross domestic product value in logarithm scale of our data is inferior to the estimated turning point. Consequently, policy-makers in Algeria should expand the ratio of renewable energy and should decrease the quota of non-renewable energy consumption.

  6. Mobile Location Sharing: An Energy Consumption Study

    OpenAIRE

    Vergara Alonso, Ekhiotz Jon; Prihodko, Mihails; Nadjm-Tehrani, Simin

    2013-01-01

    The use of a mobile device's battery for frequent transmissions of position data in a location sharing application can be more expensive than the location retrieval itself. This is in part due to energy-agnostic application development and in part dependent on choice of protocols. This paper studies the lightweight Message Queuing Telemetry Transport protocol (MQTT) as an application layer protocol on top of the third generation cellular communication. The energy efficiency and amount of data...

  7. Production, consumption and research on solar energy

    DEFF Research Database (Denmark)

    Sanz-Casado, Elias; Lascurain-Sánchez, Maria Luisa; Serrano-Lopez, Antonio Eleazar

    2014-01-01

    An analysis of scientific publications on solar energy was conducted to determine whether public interest in the subject is mirrored by more intense research in the area. To this end, the research published by Spain and Germany, the two EU countries with the highest installed photovoltaic capacit...... intense. The main conclusion is the divergence in Germany and Spain between solar energy demand/output growth, being exponential, and the growth of research papers on the subject, which is linear...

  8. Energy consumptions per sector; Les consommations d'energie par secteur

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    2005-07-01

    This document presents the energy consumption data of France per energy type and sector of use in the form of tables and graphics for the last decade and sometimes before: 1 - residential and tertiary sector: energy consumption per energy source, energy consumption per use (coal, heavy and domestic fuels, natural gas, LPG (butane, propane), electricity), comparison of the share of each energy source between 1973 and 2003, 20 years of space heating data in main dwellings (1982-2002), district heating networks from 1987 to 1997; 2 - transportation sector: fuel consumption of individual cars in France (1990-2003, 1990-2002, 1990-2001, 1987-1999), some indicators about the energy consumption in transports in France (2000-2001); 3 - industry sector: consumption of fuel substitutes in the cement industry in 2001, importance and limitations. (J.S.)

  9. Intermediates of Krebs cycle correct the depression of the whole body oxygen consumption and lethal cooling in barbiturate poisoning in rat.

    Science.gov (United States)

    Ivnitsky, Jury Ju; Schäfer, Timur V; Malakhovsky, Vladimir N; Rejniuk, Vladimir L

    2004-10-01

    Rats poisoned with one LD50 of thiopental or amytal are shown to increase oxygen consumption when intraperitoneally given sucinate, malate, citrate, alpha-ketoglutarate, dimethylsuccinate or glutamate (the Krebs cycle intermediates or their precursors) but not when given glucose, pyruvate, acetate, benzoate or nicotinate (energy substrates of other metabolic stages etc). Survival was increased with succinate or malate from control groups, which ranged from 30-83% to 87-100%. These effects were unrelated to respiratory depression or hypoxia as judged by little or no effect of succinate on ventilation indices and by the lack of effect of oxygen administration. Body cooling of comatose rats at ambient temperature approximately 19 degrees C became slower with succinate, the rate of cooling correlated well with oxygen consumption decrease. Succinate had no potency to modify oxygen consumption and body temperature in intact rats. A condition for antidote effect of the Krebs intermediate was sufficiently high dosage (5 mmol/kg), further dose increase made no odds. Repeated dosing of succinate had more marked protective effect, than a single one, to oxygen consumption and tended to promote the attenuation of lethal effect of barbiturates. These data suggest that suppression of whole body oxygen consumption with barbiturate overdose could be an important contributor to both body cooling and mortality. Intermediates of Krebs cycle, not only succinate, may have a pronounced therapeutic effect under the proper treatment regimen. Availability of Krebs cycle intermediates may be a limiting factor for the whole body oxygen consumption in barbiturate coma, its role in brain needs further elucidation.

  10. Cool Colored Roofs to Save Energy and Improve Air Quality

    Energy Technology Data Exchange (ETDEWEB)

    Akbari, Hashem; Levinson, Ronnen; Miller, William; Berdahl, Paul

    2005-08-23

    Urban areas tend to have higher air temperatures than their rural surroundings as a result of gradual surface modifications that include replacing the natural vegetation with buildings and roads. The term ''Urban Heat Island'' describes this phenomenon. The surfaces of buildings and pavements absorb solar radiation and become extremely hot, which in turn warm the surrounding air. Cities that have been ''paved over'' do not receive the benefit of the natural cooling effect of vegetation. As the air temperature rises, so does the demand for air-conditioning (a/c). This leads to higher emissions from power plants, as well as increased smog formation as a result of warmer temperatures. In the United States, we have found that this increase in air temperature is responsible for 5-10% of urban peak electric demand for a/c use, and as much as 20% of population-weighted smog concentrations in urban areas. Simple ways to cool the cities are the use of reflective surfaces (rooftops and pavements) and planting of urban vegetation. On a large scale, the evapotranspiration from vegetation and increased reflection of incoming solar radiation by reflective surfaces will cool a community a few degrees in the summer. As an example, computer simulations for Los Angeles, CA show that resurfacing about two-third of the pavements and rooftops with reflective surfaces and planting three trees per house can cool down LA by an average of 2-3K. This reduction in air temperature will reduce urban smog exposure in the LA basin by roughly the same amount as removing the basin entire onroad vehicle exhaust. Heat island mitigation is an effective air pollution control strategy, more than paying for itself in cooling energy cost savings. We estimate that the cooling energy savings in U.S. from cool surfaces and shade trees, when fully implemented, is about $5 billion per year (about $100 per air-conditioned house).

  11. Estimating Energy Consumption of Transport Modes in China Using DEA

    Directory of Open Access Journals (Sweden)

    Weibin Lin

    2015-04-01

    Full Text Available The rapid growth of transport requirements in China will incur increasing transport energy demands and associated environmental pressures. In this paper, we employ a generalized data envelopment analysis (DEA to evaluate the relative energy efficiency of rail, road, aviation and water transport from 1971 to 2011 by considering the energy input and passenger-kilometers (PKM and freight ton-kilometers (TKM outputs. The results show that the optimal energy efficiencies observed in 2011 are for rail and water transport, with the opposite observed for the energy efficiencies of aviation and road transport. In addition, we extend the DEA model to estimate future transport energy consumption in China. If each transport mode in 2020 is optimized throughout the observed period, the national transport energy consumption in 2020 will reach 497,701 kilotons coal equivalent (ktce, whereas the annual growth rate from 2011 to 2020 will be 5.7%. Assuming that efficiency improvements occur in this period, the estimated national transport energy consumption in 2020 will be 443,126 ktce, whereas the annual growth rate from 2011 to 2020 will be 4.4%, which is still higher than that of the national total energy consumption (3.8%.

  12. Mapping water consumption for energy production around the Pacific Rim

    Science.gov (United States)

    Tidwell, Vincent; Moreland, Barbie

    2016-09-01

    World energy demand is projected to increase by more than a third by 2035 and with it the use of water to extract and process fuels and generate electricity. Management of this energy-water nexus requires a clear understanding of the inter-related demands of these resources as well as their regional distribution. Toward this need the fresh water consumed for energy production was mapped for almost 12 000 watersheds distributed across the 21-economies comprising the Asia-Pacific Economic Cooperation. Fresh water consumption was estimated for ten different sectors including thermoelectric and hydroelectric power; energy extraction including coal, oil, natural gas, uranium and unconventional oil/gas; energy processing including oil and biofuels; and biofuel feedstock irrigation. These measures of water consumption were put in context by drawing comparison with published measures of water risk. In total 791 watersheds (32%) of the 2511 watersheds where energy related water consumption occurred were also characterized by high to extreme water risk, these watersheds were designated as being at energy-water risk. For six economies watersheds at energy-water risk represented half or more of all basins where energy related water consumption occurred, while four additional economies exceeded 30%.

  13. Energy consumption and CO2 emissions in Iran, 2025.

    Science.gov (United States)

    Mirzaei, Maryam; Bekri, Mahmoud

    2017-04-01

    Climate change and global warming as the key human societies' threats are essentially associated with energy consumption and CO2 emissions. A system dynamic model was developed in this study to model the energy consumption and CO2 emission trends for Iran over 2000-2025. Energy policy factors are considered in analyzing the impact of different energy consumption factors on environmental quality. The simulation results show that the total energy consumption is predicted to reach 2150 by 2025, while that value in 2010 is 1910, which increased by 4.3% yearly. Accordingly, the total CO2 emissions in 2025 will reach 985million tonnes, which shows about 5% increase yearly. Furthermore, we constructed policy scenarios based on energy intensity reduction. The analysis show that CO2 emissions will decrease by 12.14% in 2025 compared to 2010 in the scenario of 5% energy intensity reduction, and 17.8% in the 10% energy intensity reduction scenario. The results obtained in this study provide substantial awareness regarding Irans future energy and CO2 emission outlines.

  14. Energy Drink Consumption: Beneficial and Adverse Health Effects

    OpenAIRE

    Alsunni, Ahmed Abdulrahman

    2015-01-01

    Consumption of energy drinks has been increasing dramatically in the last two decades, particularly amongst adolescents and young adults. Energy drinks are aggressively marketed with the claim that these products give an energy boost to improve physical and cognitive performance. However, studies supporting these claims are limited. In fact, several adverse health effects have been related to energy drink; this has raised the question of whether these beverages are safe. This review was carri...

  15. End-use energy consumption estimates for US commercial buildings, 1989

    Energy Technology Data Exchange (ETDEWEB)

    Belzer, D.B.; Wrench, L.E.; Marsh, T.L. [Pacific Northwest Lab., Richland, WA (United States)

    1993-11-01

    An accurate picture of how energy is used in the nation`s stock of commercial buildings can serve a variety of program planning and policy needs within the Department of Energy, by utilities, and other groups seeking to improve the efficiency of energy use in the building sector. This report describes an estimation of energy consumption by end use based upon data from the 1989 Commercial Building Energy Consumption Survey (CBECS). The methodology used in the study combines elements of engineering simulations and statistical analysis to estimate end-use intensities for heating, cooling, ventilation, lighting, refrigeration, hot water, cooking, and miscellaneous equipment. Billing data for electricity and natural gas were first decomposed into weather and nonweather dependent loads. Subsequently, Statistical Adjusted Engineering (SAE) models were estimated by building type with annual data. The SAE models used variables such as building size, vintage, climate region, weekly operating hours, and employee density to adjust the engineering model predicted loads to the observed consumption. End-use consumption by fuel was estimated for each of the 5,876 buildings in the 1989 CBECS. The report displays the summary results for eleven separate building types as well as for the total US commercial building stock.

  16. End-use energy consumption estimates for U.S. commercial buildings, 1992

    Energy Technology Data Exchange (ETDEWEB)

    Belzer, D.B.; Wrench, L.E.

    1997-03-01

    An accurate picture of how energy is used in the nation`s stock of commercial buildings can serve a variety of program planning and policy needs of the US Department of Energy, utilities, and other groups seeking to improve the efficiency of energy use in the building sector. This report describes an estimation of energy consumption by end use based upon data from the 1992 Commercial Building Energy Consumption Survey (CBECS). The methodology used in the study combines elements of engineering simulations and statistical analysis to estimate end-use intensities for heating, cooling, ventilation, lighting, refrigeration, hot water, cooking, and miscellaneous equipment. Statistical Adjusted Engineering (SAE) models were estimated by building type. The nonlinear SAE models used variables such as building size, vintage, climate region, weekly operating hours, and employee density to adjust the engineering model predicted loads to the observed consumption (based upon utility billing information). End-use consumption by fuel was estimated for each of the 6,751 buildings in the 1992 CBECS. The report displays the summary results for 11 separate building types as well as for the total US commercial building stock. 4 figs., 15 tabs.

  17. Circadian rhythm of energy expenditure and oxygen consumption.

    Science.gov (United States)

    Leuck, Marlene; Levandovski, Rosa; Harb, Ana; Quiles, Caroline; Hidalgo, Maria Paz

    2014-02-01

    This study aimed to evaluate the effect of continuous and intermittent methods of enteral nutrition (EN) administration on circadian rhythm. Thirty-four individuals, aged between 52 and 80 years, were fed through a nasoenteric tube. Fifteen individuals received a continuous infusion for 24 hours/d, and 19 received an intermittent infusion in comparable quantities, every 4 hours from 8:00 to 20:00. In each patient, 4 indirect calorimetric measurements were carried out over 24 hours (A: 7:30, B: 10:30, C: 14:30, and D: 21:30) for 3 days. Energy expenditure and oxygen consumption were significantly higher in the intermittent group than in the continuous group (1782 ± 862 vs 1478 ± 817 kcal/24 hours, P = .05; 257 125 vs 212 117 ml/min, P = .048, respectively). The intermittent group had higher levels of energy expenditure and oxygen consumption at all the measured time points compared with the continuous group. energy expenditure and oxygen consumption in both groups were significantly different throughout the day for 3 days. There is circadian rhythm variation of energy expenditure and oxygen consumption with continuous and intermittent infusion for EN. This suggests that only one indirect daily calorimetric measurement is not able to show the patient's true needs. Energy expenditure is higher at night with both food administration methods. Moreover, energy expenditure and oxygen consumption are higher with the intermittent administration method at all times.

  18. Consumption of energy drinks among physical education students.

    Science.gov (United States)

    Ballistreri, Martha Carmen; Corradi-Webster, Clarissa Mendonça

    2008-01-01

    This descriptive and cross-sectional study aimed to characterize the pattern of energy drinks consumption in a sample of physical education students through a self-applied questionnaire (socio-demographic data and characterization of consumption). Variables associated with consumption: gender, marital status, attending gym classes, athletic swim practice, and study in the morning. Consumption pattern (n=137): 2.2% once in their lives, 9.5% at least once in the last 12 months, 38% at least once in the last month, 39.4% six times or more in the last month, 10.9% 20 times or more in the last month. Justification for consumption: 54% to improve the taste of alcoholic drinks, 27.7% to extend their evening leisure periods, 13.9% to improve sports performance, 9.5% for stimulation, 8.8% enjoy the taste, 6.6% for curiosity and 4.4% to study. Of those who consumed energy drinks, 87.6% mixed it with alcohol, and 25.9% of the students reported they consume more alcohol when it is mixed with energy drinks. the consumption of energy drinks is associated to sports and drinking alcohol.

  19. Effects of heated seat and foot heater on thermal comfort and heater energy consumption in vehicle.

    Science.gov (United States)

    Oi, Hajime; Yanagi, Kotaro; Tabata, Koji; Tochihara, Yutaka

    2011-08-01

    Subjective experiments involving 12 different conditions were conducted to investigate the effects of heated seats and foot heaters in vehicles on thermal sensation and thermal comfort. The experimental conditions involved various combinations of the operative temperature in the test room (10 or 20°C), a heated seat (on/off) and a foot heater (room operative temperature +10 or +20°C). The heated seat and foot heater improved the occupant's thermal sensation and comfort in cool environments. The room operative temperature at which the occupants felt a 'neutral' overall thermal sensation was decreased by about 3°C by using the heated seat or foot heater and by about 6°C when both devices were used. Moreover, the effects of these devices on vehicle heater energy consumption were investigated using simulations. As a result, it was revealed that heated seats and foot heaters can reduce the total heater energy consumption of vehicles. Statement of Relevance: Subjective experiments were conducted to investigate the effects of heated seats and foot heaters in vehicles on thermal comfort. The heated seat and foot heater improved the occupant's thermal sensation and comfort in cool environments. These devices can reduce the total heater energy consumption in vehicles.

  20. Exploring the energy consumption of lightweight blockciphers in FPGA

    DEFF Research Database (Denmark)

    Banik, Subhadeep; Bogdanov, Andrey; Regazzoni, Francesco

    2015-01-01

    . Concentrating on applications that require a number of parallel encryptions, we instantiate several designs on the target FPGA and we analyze how the energy consumption varies in each algorithm when changing the amount of unrolled rounds. Our results, obtained on the Xc6slx45t device of the Spartan6 family......, demonstrate that Present is the most energy efficient algorithm and that the relation between the energy consumption and the number of unrolled rounds measured on FPGA is similar to the one measured on dedicated hardware....

  1. Widening the scope? How intermediary actors can shape energy consumption

    DEFF Research Database (Denmark)

    Maneschi, Davide

    2013-01-01

    , socio-technical systems, governance in the water sector and, although limitedly, in the explanation of aspects related to consumption and energy use. Building on the framework given by the review, the paper presents a case study to provide a real-life example of how intermediaries can favor the more...... – influence energy consumption. This paper presents a review of the literature on intermediaries, providing an overview of their roles and contextualizing their functions in energy efficiency improvements. The review shows how the concept of intermediaries has been used in research dealing with innovation...

  2. Consumption Behavior Analytics-Aided Energy Forecasting and Dispatch

    Energy Technology Data Exchange (ETDEWEB)

    Zhang, Yingchen [National Renewable Energy Laboratory (NREL), Golden, CO (United States); Yang, Rui [National Renewable Energy Laboratory (NREL), Golden, CO (United States); Jiang, Huaiguang [National Renewable Energy Laboratory (NREL), Golden, CO (United States); Zhang, Kaiqing [University of Illinois Urbana-Champaign; Zhang, Jun Jason [University of Denver

    2017-08-17

    For decades, electricity customers have been treated as mere recipients of electricity in vertically integrated power systems. However, as customers have widely adopted distributed energy resources and other forms of customer participation in active dispatch (such as demand response) have taken shape, the value of mining knowledge from customer behavior patterns and using it for power system operation is increasing. Further, the variability of renewable energy resources has been considered a liability to the grid. However, electricity consumption has shown the same level of variability and uncertainty, and this is sometimes overlooked. This article investigates data analytics and forecasting methods to identify correlations between electricity consumption behavior and distributed photovoltaic (PV) output. The forecasting results feed into a predictive energy management system that optimizes energy consumption in the near future to balance customer demand and power system needs.

  3. Methods for Reducing the Energy Consumption of Mobile Broadband Networks

    DEFF Research Database (Denmark)

    Micallef, Gilbert

    2010-01-01

    , increasing also their overall energy consumption. However, traffic analysis shows that during a 24 hour period, the volume of carried traffic varies continuously, with the network operating anywhere close to its full capacity for very short periods of time. The problem is that during hours of low network......Up until recently, very little consideration has been given towards reducing the energy consumption of the networks supporting mobile communication. This has now become an important issue since with the predicted boost in traffic, network operators are required to upgrade and extend their networks...... traffic the energy consumption remains high. This article proposes two major solutions for mitigating this problem. In the first case, an energy saving between 14% and 36% is observed by allowing the network to dynamically optimize its available capacity based on the traffic being carried. In the second...

  4. Energy Consumption Information Services for Smart Home Inhabitants

    Science.gov (United States)

    Schwanzer, Michael; Fensel, Anna

    We investigate services giving users an adequate insight on his or her energy consumption habits in order to optimize it in the long run. The explored energy awareness services are addressed to inhabitants of smart homes, equipped with smart meters, advanced communication facilities, sensors and actuators. To analyze the potential of such services, a game at a social network Facebook has been designed and implemented, and the information about players' responses and interactions within the game environment has been collected and analyzed. The players have had their virtual home energy usage visualized in different ways, and had to optimize the energy consumption basing on their own perceptions of the consumption information. Evaluations reveal, in particular, that users are specifically responsive to information shown as a real-time graph and as costs in Euro, and are able to produce and share with each other policies for managing their smart home environments.

  5. Electrode contact configuration and energy consumption in spinal cord stimulation

    NARCIS (Netherlands)

    Vos, de Cecile C.; Hilgerink, Marjolein P.; Buschman, Hendrik P.J.; Holsheimer, Jan

    2009-01-01

    Objective: To test the hypothesis that in spinal cord stimulation, in contrast to an increase of the number of anodes which reduces energy consumption per pulse, an increase of the number of cathodes raises the energy per pulse. Methods: Patients with an Itrel 3 pulse generator and a Pisces Quad qu

  6. Changing organizational energy consumption behaviour through comparative feedback

    NARCIS (Netherlands)

    Siero, F.W.; Bakker, A.B.; Dekker, G.B; van den Burg, T.C

    1996-01-01

    The differential effects of two forms of feedback on energy consumption behaviour were examined in two units of a metallurgical company. In one unit, employees received information about energy conservation, had to set goals and received feedback on their own conservation behaviour. The same procedu

  7. A realistic dynamic blower energy consumption model for wastewater applications.

    Science.gov (United States)

    Amerlinck, Y; De Keyser, W; Urchegui, G; Nopens, I

    2016-10-01

    At wastewater treatment plants (WWTPs) aeration is the largest energy consumer. This high energy consumption requires an accurate assessment in view of plant optimization. Despite the ever increasing detail in process models, models for energy production still lack detail to enable a global optimization of WWTPs. A new dynamic model for a more accurate prediction of aeration energy costs in activated sludge systems, equipped with submerged air distributing diffusers (producing coarse or fine bubbles) connected via piping to blowers, has been developed and demonstrated. This paper addresses the model structure, its calibration and application to the WWTP of Mekolalde (Spain). The new model proved to give an accurate prediction of the real energy consumption by the blowers and captures the trends better than the constant average power consumption models currently being used. This enhanced prediction of energy peak demand, which dominates the price setting of energy, illustrates that the dynamic model is preferably used in multi-criteria optimization exercises for minimizing the energy consumption.

  8. Electricity's "Disappearing Act": Understanding Energy Consumption and Phantom Loads

    Science.gov (United States)

    Rusk, Bryan; Mahfouz, Tarek; Jones, James

    2011-01-01

    Energy exists in many forms and can be converted from one form to another. However, this conversion is not 100% efficient, and energy is lost in the form of heat during conversion. In addition, approximately 6% of the monthly consumption of the average American household's electricity is neither lost nor used by its residents. These losses are…

  9. Electricity's "Disappearing Act": Understanding Energy Consumption and Phantom Loads

    Science.gov (United States)

    Rusk, Bryan; Mahfouz, Tarek; Jones, James

    2011-01-01

    Energy exists in many forms and can be converted from one form to another. However, this conversion is not 100% efficient, and energy is lost in the form of heat during conversion. In addition, approximately 6% of the monthly consumption of the average American household's electricity is neither lost nor used by its residents. These losses are…

  10. Energy balance of forage consumption by phyllophagous insects: optimization model

    Directory of Open Access Journals (Sweden)

    O. V. Tarasova

    2015-06-01

    Full Text Available The model of optimal food consumption by phytophagous insects proposed, in which the metabolic costs are presented in the form of two components – the cost of food utilization and costs for proper metabolism of the individuals. Two measures were introduced – the «price» of food conversion and the «price» of biomass synthesis of individuals to assess the effectiveness of food consumption by caterpillars. The proposed approach to the description of food consumption by insects provides the exact solutions of the equation of energy balance of food consumption and determining the effectiveness of consumption and the risk of death of the individual. Experiments on larvae’s feeding in laboratory conditions were carried out to verify the model. Caterpillars of Aporia crataegi L. (Lepidoptera, Pieridae were the research subjects. Supply­demand balance, calculated value of the environmental price of consumption and efficiency of food consumption for each individual were determined from experimental data. It was found that the fertility of the female does not depend on the weight of food consumed by it, but is linearly dependent on the food consumption efficiency index. The greater the efficiency of food consumption by an individual, the higher its fertility. The data obtained in the course of experiments on the feeding caterpillars Aporia crataegi were compared with the data presented in the works of other authors and counted in the proposed model of consumption. Calculations allowed estimation of the critical value of food conversion price below which the energy balance is negative and the existence of an individual is not possible.

  11. Energy consumption maps for quaternary distillation sequences

    DEFF Research Database (Denmark)

    Gomez-Castro, F.I.; Ramírez-Vallejo, N.E.; Segovia-Hernandez, J.G.

    2016-01-01

    of the solutions space. For the separation of ternary mixtures, Tedder and Rudd (1978) presented a composition map for which thermally coupled systems allowed energy savings. However, the scenario is different for quaternary mixtures, since no similar information is available. Therefore, in this work, energy...... be generated for the separation of multicomponent mixtures. This fact is an advantage, since a wide portfolio of alternatives can be used to separate a specific mixture; however, this is also a disadvantage since a lot of alternatives must be explored in order to find the optimal one. The optimal configuration......, for a given mixture, depends on the nature of the mixture, usually quantified for ternary mixtures through the ease of separation index (ESI), and also on the feed composition. As can be noticed, the size of the design and optimization problem increases when these variables are considered in the generation...

  12. Commercial-sector energy-consumption data-base-development project. Volume III. Analysis of energy consumption in office buildings

    Energy Technology Data Exchange (ETDEWEB)

    None

    1978-04-01

    Results are presented of an effort to develop comprehensive and reliable energy consumption data for office buildings. A survey was conducted of readily available energy consumption data and the literature that describes the factors which drive energy use in such buildings was analyzed. Information on heating, ventilating, and air conditioning (HVAC) systems was assembled. A number of building energy use simulation programs were reviewed to determine their suitability for estimating energy consumption by function and the effects of tradeoffs in building design and operating parameters on building energy use. Simulations using the AXCESS program were conducted. The 1975 data base of the Building Owners and Managers Association (BOMA) was obtained and analyzed. Data describing energy use on a regional and national basis were developed, and regression equations based on these were obtained. The ability of these equations to predict average energy use was then confirmed by applying them to four office buildings not in the BOMA data base. A number of proposals for the further improvement of the equations were developed, including additional data collection. Specifically, the survey of actual and simulated data on a regional basis is reported in Section 2. HVAC systems are discussed in Sections 3 and 4. BOMA obtains annual data on about 1000 buildings covering such items as location, floor area, height, age, average occupancy rate, average number of employees, types of tenants, type of air conditioning, and energy consumption by fuel and the description and analyses of the BOMA data are presented in Sections 5 and 6.

  13. A cooling system for buildings using wind energy

    Energy Technology Data Exchange (ETDEWEB)

    Daiyan, H. [Islamic Azad Univ., Semnan Branch (Iran)

    2007-05-15

    In Iranian historical architecture wind towers are used for cooling and ventilation. A wind tower is a tall structure that stands on the building. A wind tower is used in dray land, and only uses wind energy for conditioning. Its technology dates back over 1000 years. Wind towers were designed according to several parameters, some of the most important of which were building type, cooling space volume, wind direction and velocity and ambient temperature. This paper studies wind towers and characterizes airflow route and explains how to decrease temperature. To confirm the quality of the wind tower, some experiments in a case study shows it can decrease room temperature on comfort range and room temperature is almost constant on during day. (au)

  14. Simulation of Thermal Distribution and Airflow for Efficient Energy Consumption in a Small Data Centers

    Directory of Open Access Journals (Sweden)

    Jing Ni

    2017-04-01

    Full Text Available Data centers have become ubiquitous in the last few years in an attempt to keep pace with the processing and storage needs of the Internet and cloud computing. The steady growth in the heat densities of IT servers leads to a rise in the energy needed to cool them, and constitutes approximately 40% of the power consumed by data centers. However, many data centers feature redundant air conditioning systems that contribute to inefficient air distribution, which significantly increases energy consumption. This remains an insufficiently explored problem. In this paper, a typical, small data center with tiles for an air supply system with a raised floor is used. We use a fluent (Computational Fluid Dynamics, CFD to simulate thermal distribution and airflow, and investigate the optimal conditions of air distribution to save energy. The effects of the airflow outlet angle along the tile, the cooling temperature and the rate of airflow on the beta index as well as the energy utilization index are discussed, and the optimal conditions are obtained. The reasonable airflow distribution achieved using 3D CFD calculations and the parameter settings provided in this paper can help reduce the energy consumption of data centers by improving the efficiency of the air conditioning.

  15. URBAN FEATURES AND ENERGY CONSUMPTION AT LOCAL LEVEL

    Directory of Open Access Journals (Sweden)

    Ali Soltani

    2012-12-01

    Full Text Available There has been a growing interest in discovering the human effects on the environment and energy consumption in recent decades. It is estimated that the share of energy consumed in transportation and housing systems are around 20 and 30 percent of total energy consumption respectively. Furthermore, the residential greenhouse emissions depend on urban form and structure. This paper explores the effects of urban features on residential energy consumption at neighborhood level using data collected through household questionnaire (n=140. Two residential districts in metropolitan Shiraz, south of Iran, were selected as case study areas. Different features of two areas were compared including building density, typology, housing location, parcel size, floor area and construction materials. Ordinary linear regression was used to discover the impact of explanatory variables on energy consumption. It was found that some physical variables such as parcel size, setback and number of floors played significant roles in explaining the variances exist in energy use level. The results can be used by governmental agencies to modify land use policies and subdivision rules in hope of saving energy and achieving a sustainable community.

  16. Upgrading existing evaporators to reduce energy consumption

    Energy Technology Data Exchange (ETDEWEB)

    1977-01-01

    This manual is intended to assist the evaporator engineer who will be performing the technical and economic analyses to determine the most suitable evaporator upgrading technique for his particular plant. Information is included on potentials for upgrading evaporators; correctable operating factors; heat recovery and other improvements in energy use with minor capital investments; upgrading through major capital investments; guidelines for formulating an upgrading program; and new technologies encompassing advanced designs, use of solar and low-grade heat sources, and heat transfer enhancement. A 36 item bibliography is included. (LCL)

  17. A survey of energy drink consumption patterns among college students

    Directory of Open Access Journals (Sweden)

    Carpenter-Aeby Tracy

    2007-10-01

    Full Text Available Abstract Background Energy drink consumption has continued to gain in popularity since the 1997 debut of Red Bull, the current leader in the energy drink market. Although energy drinks are targeted to young adult consumers, there has been little research regarding energy drink consumption patterns among college students in the United States. The purpose of this study was to determine energy drink consumption patterns among college students, prevalence and frequency of energy drink use for six situations, namely for insufficient sleep, to increase energy (in general, while studying, driving long periods of time, drinking with alcohol while partying, and to treat a hangover, and prevalence of adverse side effects and energy drink use dose effects among college energy drink users. Methods Based on the responses from a 32 member college student focus group and a field test, a 19 item survey was used to assess energy drink consumption patterns of 496 randomly surveyed college students attending a state university in the Central Atlantic region of the United States. Results Fifty one percent of participants (n = 253 reported consuming greater than one energy drink each month in an average month for the current semester (defined as energy drink user. The majority of users consumed energy drinks for insufficient sleep (67%, to increase energy (65%, and to drink with alcohol while partying (54%. The majority of users consumed one energy drink to treat most situations although using three or more was a common practice to drink with alcohol while partying (49%. Weekly jolt and crash episodes were experienced by 29% of users, 22% reported ever having headaches, and 19% heart palpitations from consuming energy drinks. There was a significant dose effect only for jolt and crash episodes. Conclusion Using energy drinks is a popular practice among college students for a variety of situations. Although for the majority of situations assessed, users consumed one

  18. Energy transport in cooling device by magnetic fluid

    Science.gov (United States)

    Yamaguchi, Hiroshi; Iwamoto, Yuhiro

    2017-06-01

    Temperature sensitive magnetic fluid has a great potential with high performance heat transport ability as well as long distance energy (heat) transporting. In the present study experimental set-up was newly designed and constructed in order to measure basic heat transport characteristics under various magnetic field conditions. Angular dependence for the device (heat transfer section) was also taken into consideration for a sake of practical applications. The energy transfer characteristic (heat transport capability) in the magnetically-driven heat transport (cooling) device using the binary TSMF was fully investigated with the set-up. The obtained results indicate that boiling of the organic mixture (before the magnetic fluid itself reaching boiling point) effectively enhances the heat transfer as well as boosting the flow to circulate in the closed loop by itself. A long-distance heat transport of 5 m is experimentally confirmed, transferring the thermal energy of 35.8 W, even when the device (circulation loop) is horizontally placed. The highlighted results reveal that the proposed cooling device is innovative in a sense of transporting substantial amount of thermal energy (heat) as well as a long distance heat transport. The development of the magnetically-driven heat transport device has a great potential to be replaced for the conventional heat pipe in application of thermal engineering.

  19. Energy consumption by gender in some European countries

    Energy Technology Data Exchange (ETDEWEB)

    Raety, R.; Carlsson-Kanyama, A. [Swedish Defence Research Agency, FOI, Stockholm (Sweden)

    2010-01-15

    Household total energy use has been estimated in numerous studies in recent decades and differences have mainly been explained by levels of income/expenditure. Studies of gender consumption patterns show that men eat more meat than women and drive longer distances, potentially leading to higher total energy use by men. In this study we calculated the total energy use for male and female consumption patterns in four European countries (Germany, Norway, Greece and Sweden) by studying single households. Significant differences in total energy use were found in two countries, Greece and Sweden. The largest differences found between men and women were for travel and eating out, alcohol and tobacco, where men used much more energy than women. We suggest that these findings are policy relevant for the EU, which aims to mainstream gender issues into all activities and to lower its total energy use. (author)

  20. Understanding energy consumption of sensor enabled applications on mobile phones.

    Science.gov (United States)

    Crk, Igor; Albinali, Fahd; Gniady, Chris; Hartman, John

    2009-01-01

    Recent research in ubiquitous and mobile computing uses mobile phones and wearable accelerometers to monitor individuals' physical activities for personalized and proactive health care. The goal of this project is to measure and reduce the energy demand placed on mobile phones that monitor individuals' physical activities for extended periods of time with limited access to battery recharging and mobile phone reception. Many issues must be addressed before mobile phones become a viable platform for remote health monitoring, including: security, reliability, privacy, and, most importantly, energy. Mobile phones are battery-operated, making energy a critical resource that must be carefully managed to ensure the longest running time before the battery is depleted. In a sense, all other issues are secondary, since the mobile phone will simply not function without energy. In this project, we therefore focus on understanding the energy consumption of a mobile phone that runs MIT wockets, physical activity monitoring applications, and consider ways to reduce its energy consumption.

  1. Study on thermal environment and energy consumption in underground shopping centers. Chikagai no netsu kankyo to energy shohi ni kansuru chosa kenkyu

    Energy Technology Data Exchange (ETDEWEB)

    Miura, H. (Waseda Univ., Tokyo (Japan). Graduate School); Ojima, T. (Waseda Univ., Tokyo (Japan))

    1991-12-30

    In this study, the actual condition of the energy consumption has been surveyed to compare the environmental loads in underground shopping centers with those in buildings on the ground, aiming at clarifying the actual thermal environment in underground shopping centers located in the Kanto area and the features of the thermal environment therein. The energy consumption was calculated by primary energy conversion on the basis of the average data obtained for the past three years. The survey of energy consumption in 32 underground shopping centers in Japan shows that all such places, commonly from Hokkaido to Kyushu, were the spaces consuming a large amount of energy. In the underground shopping centers, total energy was consumed four times as large as that in ordinary offices, energy for cooling energy consumption larger by 4 times, by 6 times for air cooling and six times, and energy for heating more than four times. They required energy twice to three times as large as that in department stores. The reason for it is considered that in underground, not only the 24-hour ventilation and air condition are required because of the public environment but external and internal heat loads are dealt with. 4 refs., 16 figs., 9 tabs.

  2. Predictive models of energy consumption in multi-family housing in College Station, Texas

    Science.gov (United States)

    Ali, Hikmat Hummad

    Patterns of energy consumption in apartment buildings are different than those in single-family houses. Apartment buildings have different physical characteristics, and their inhabitants have different demographic attributes. This study develops models that predict energy usage in apartment buildings in College Station. This is accomplished by analyzing and identifying the predictive variables that affect energy usage, studying the consumption patterns, and creating formulas based on combinations of these variables. According to the hypotheses and the specific research context, a cross-sectional design strategy is adopted. This choice implies analyses across variations within a sample of fourplex apartments in College Station. The data available for analysis include the monthly billing data along with the physical characteristics of the building, climate data for College Station, and occupant demographic characteristics. A simple random sampling procedure is adopted. The sample size of 176 apartments is drawn from the population in such a way that every possible sample has the same chance of being selected. Statistical methods used to interpret the data include univariate analysis (mean, standard deviation, range, and distribution of data), correlation analysis, regression analysis, and ANOVA (analyses of variance). The results show there are significant differences in cooling efficiency and actual energy consumption among different building types, but there are no significant differences in heating consumption. There are no significant differences in actual energy consumption between student and non-student groups or among ethnic groups. The findings indicate that there are significant differences in actual energy consumption among marital status groups and educational level groups. The multiple regression procedures show there is a significant relationship between normalized annual consumption and the combined variables of floor area, marital status, dead band

  3. Estimating the Energy Consumption of Emerging Random Access Memory Technologies

    OpenAIRE

    Moreau, Magnus

    2013-01-01

    In this work, a model for estimating the energy consumption of different types ofrandom access memory(RAM) technologies, likely to be commercially available by2017, has been developed. The goal for this model has been to evaluate whichof the memory technologies that will be the most energy efficient in 2017. Thiswas done by building the model on the required energies to read or write a bit forthe different technologies. The memory technologies that have been modelled are:Dynamic RAM (DRAM), S...

  4. Specific energy consumption values for various refrigerated food cold stores

    OpenAIRE

    Evans, JA; Foster, AM; Huet, JM; Reinholdt, L.; Fikiin, K; Zilio, C; Houska, M; Landfeld, A; Bond, C.; Scheurs, M; Van Sambeeck, TWM

    2013-01-01

    Two benchmarking surveys were created to collect data on the performance of chilled, frozen and mixed (chilled and frozen stores operated from a single refrigeration system) food cold stores with the aim of identifying the major factors influencing energy consumption. The volume of the cold store was found to have the greatest relationship with energy use with none of the other factors collected having any significant impact on energy use. For chilled cold stores, 93% of the variation in ener...

  5. Effect of electricity tariffs and cooling technologies on dairy farm electricity consumption, related costs and greenhouse gas emissions

    NARCIS (Netherlands)

    Upton, J.R.; Shalloo, L.; Murphy, M.; Groot Koerkamp, P.W.G.; Boer, de I.J.M.

    2014-01-01

    The aim of this study was to provide insight into the variations in dairy farm electricity costs across five electricity tariffs. The effect of four milk cooling scenarios is also simulated to illustrate the effect of technologies on the electricity consumption, related costs and CO2 emissions of a

  6. Effect of electricity tariffs and cooling technologies on dairy farm electricity consumption, related costs and greenhouse gas emissions

    NARCIS (Netherlands)

    Upton, J.R.; Shalloo, L.; Murphy, M.; Groot Koerkamp, P.W.G.; Boer, de I.J.M.

    2014-01-01

    The aim of this study was to provide insight into the variations in dairy farm electricity costs across five electricity tariffs. The effect of four milk cooling scenarios is also simulated to illustrate the effect of technologies on the electricity consumption, related costs and CO2 emissions of a

  7. Energy consumption of buildings depends on the daylight

    Directory of Open Access Journals (Sweden)

    Piotrowska Ewa

    2017-01-01

    Full Text Available In order to reduce energy consumption in heated buildings and thus fossil fuels, there is a need for proper modernization of existing buildings and new construction with reduced energy demand. The size and the insulation of windows have a decisive influence on the amount of heat loss. The study looks into the impact of decreased power consumption through optimal use of sunlight through the selection of the size of windows, type of windows, and adjusting the light intensity using an automatic control of lighting according to the amount of sunlight reaching the room. The research related to the differences between the six types of windows in relations to the energy consumption of the building.

  8. Data Acquisition and Transmission System for Building Energy Consumption Monitoring

    Directory of Open Access Journals (Sweden)

    Liang Zhao

    2013-01-01

    Full Text Available Building energy consumption monitoring and management system have been developed widely in China in order to gain the real-time data of energy consumption in buildings for analyzing it in the next state work. This paper describes a low-cost and small-sized collector based on the STM32 microcontroller, which can be placed in a building easily to implement the work of data acquisition, storage, and transmission. The collector gathers the electricity, water, heat, and energy consumption data through the RS485 field bus and stores the data into an SD card with mass storage, finally, using Internet to finish the communication and transmission to data server through TCP protocol. The collector has been used in application for two years, and the results show that the system is reliable and stable.

  9. Energy consumption and energy saving potentials in piglet production; Energieverbrauch und energetische Einsparpotenziale in der Ferkelerzeugung

    Energy Technology Data Exchange (ETDEWEB)

    Neiber, Josef; Neser, Stefan [Bayerische Landesanstalt fuer Landwirtschaft (LFL), Freising (DE). Inst. fuer Landtechnik und Tierhaltung (ILT)

    2010-07-01

    For agricultural farms, a considerable share of variable costs is due to the energy consumption for agricultural production processes. In particular, piglet production and nursery have a high thermal and electric energy demand. For the planning and the redevelopment of pig housing systems, a good knowledge of the energy demand of different consumers is of great importance. With this knowledge, it is possible to derive measures for improving energy efficiency and reducing energy consumption. (orig.)

  10. Residential energy-consumption analysis utilizing the DOE-1 computer program

    Energy Technology Data Exchange (ETDEWEB)

    Arentsen, S K

    1979-04-01

    The DOE-1 computer program is used to examine energy consumption in a typical middle-class household in Cincinnati, Ohio. The program is used to compare energy consumption under different structural and environmental conditions, including various levels of insulation in the walls and ceiling, double and single glazing of windows, and thermostat setback schedules. In addition, the DOE-1 program is used to model the house under three energy distribution systems: a unit heater, a single-zone fan system with optional subzone reheat; and a unitary heat pump. A plant equipment simulation is performed to model the heating and cooling plant currently installed in the house. A simple economic analysis of life-cycle costs for the house is done utilizing the economic simulation portion of DOE-1. Utility bills over the past six years are analyzed to gain an actual energy-use profile for the house to compare with computer results. Results indicate that a 35% savings in heating load may be obtained with addition of proper amounts of insulation as compared with the house with no insulation. The installation of double glazing on windows may save close to 6% on heating load. Thermostat setbacks may result in savings of around 25% on energy consumed for heating. Similar results are achieved with regard to cooling load. Comparison of actual energy consumed by the household (from utility bills) with the computer results shows a 4.25% difference in values between the two. This small percent difference certainly strengthens the case for future use of computer programs in comparing construction alternatives and predicting building energy consumption.

  11. China's Export Expansion, Export Structure and Energy Consumption

    Institute of Scientific and Technical Information of China (English)

    Lan Yisheng; Ning Xuemin

    2011-01-01

    Since the reform and opening up, China's export trade has maintained a rapid growth; meanwhile, China's energy consumption has been increasing sharply. "High export and high energy consumption" has become the feature of China's trade and economic development. In this paper, based on the input-output analysis approach, the authors have conducted an empirical study on the export trade and energy consumption of 21 trade industrial sectors. The results show that, China is a big net exporter of embodied energy. Assuming that the export growth rate of embodied energy maintains to be about 23.6%, the average annual growth rate of the past 32 years, and based on the input-output data of 2005, by 2030 China's net export of embodied energy would be over eight times more than the aggregate energy production, which is obviously infeasible. As a country of very low per capita en- ergy, China must change its export pattern, encourage or restrain the export of different industrial sectors according to their energy consumption intensity, and promote structural change of energy- efficient exported products, so as to achieve the sustainable development. Accordingly, the authors put forward some suggestions.

  12. Energy consumption, pollutant emissions and economic growth in South Africa

    Energy Technology Data Exchange (ETDEWEB)

    Menyah, Kojo [London Metropolitan Business School, London Metropolitan University (United Kingdom); Wolde-Rufael, Yemane [Independent Researcher (United Kingdom)

    2010-11-15

    This paper examines the long-run and the causal relationship between economic growth, pollutant emissions and energy consumption for South Africa for the period 1965-2006 in a multivariate framework which includes labour and capital as additional variables. Using the bound test approach to cointegration, we found a short-run as well as a long-run relationship among the variables with a positive and a statistically significant relationship between pollutant emissions and economic growth. Further, applying a modified version of the Granger causality test we also found a unidirectional causality running from pollutant emissions to economic growth; from energy consumption to economic growth and from energy consumption to CO{sub 2} emissions all without a feedback. The econometric evidence suggests that South Africa has to sacrifice economic growth or reduce its energy consumption per unit of output or both in order to reduce pollutant emissions. In the long-run however, it is possible to meet the energy needs of the country and at the same time reduce CO{sub 2} emissions by developing energy alternatives to coal, the main source of CO{sub 2} emissions. However, the econometric results upon which the policy suggestions are made should be interpreted with care, as they may not be sufficiently robust enough to categorically warrant the choice of an unpalatable policy option by South Africa. (author)

  13. Solow meets Leontief. Economic growth and energy consumption

    Energy Technology Data Exchange (ETDEWEB)

    Arbex, Marcelo; Perobelli, Fernando S. [Department of Economics, University of Windsor, Windsor, ON (Canada)

    2010-01-15

    This paper proposes a methodology that integrates a growth model with an input-output model to analyze the impacts of economic growth on the consumption of energy. The integration between the models is carried out by calibrating the growth module, which incorporates energetic inputs (renewable and nonrenewable) in the production function, and implementing shocks by the supply side (capital, labor, renewable and nonrenewable energy) in the input-output model. This allows us to verify the pattern of energy consumption for each sector in the input-output matrix. We apply this methodology to study the energy consumption of eleven economic sectors in Brazil, using data from the Brazilian National Accounts and Input-Output Matrix (IBGE) and the National Energy Report (BEN). We conduct experiments involving changes in technological progress growth rate, extraction and regeneration rates of both renewable and nonrenewable resources and population growth to analyze the impact of changes in the parameters of the model on the sectoral output growth rate and, consequently, on the consumption of energy in each economic sector. (author)

  14. Energy-drink consumption in college students and associated factors.

    Science.gov (United States)

    Attila, Sema; Çakir, Banu

    2011-03-01

    To investigate the frequency of energy-drink consumption and associated factors in a group of college students. A cross-sectional study was conducted in Hacettepe University (Ankara, Turkey) and included 439 students pursuing a career in medicine, sports, and arts. Only fourth-year students were approached. Data were collected using a self-administered standard questionnaire. In bivariate analyses, frequency of energy-drink consumption was higher in students of arts and sports and in those who did not have breakfast on a regular basis, ever smoked cigarettes, drank alcoholic beverages, and regularly engaged in sports compared with their counterparts. Many students who had "ever" tried an energy drink did so the first time because they wondered about its taste. Of regular users of energy drinks, reasons for using such drinks varied across the three selected groups of students and included obtaining getting energy, staying awake, boosting performance while doing sports, or mixing with alcoholic beverages. About 40% of all current users of energy drinks reported that they mixed those with alcoholic beverages. In multivariate analyses, statistically significant predictors of energy-drink consumption were faculty type, presence of any health insurance, use of alcoholic beverages, and monthly income, controlling for gender. Most students could not correctly define the ingredients of energy drinks or their potential hazardous health effects, and they could not distinguish energy and sports drinks when they were requested to select them from a list of commercial names of various drinks. Consumption of energy drinks, despite the variation in the reason for choosing such drinks, is quite common in college students. Awareness of university students of the ingredients and potential health hazards of energy drinks, in particular in mixing with alcoholic beverages, should be increased. Copyright © 2011. Published by Elsevier Inc.

  15. STOCHASTIC COOLING OF HIGH-ENERGY BUNCHED BEAMS

    Energy Technology Data Exchange (ETDEWEB)

    BLASKIEWICZ,M.; BRENNAN, J.M.

    2007-06-25

    Stochastic cooling of 100 GeV/nucleon bunched beams has been achieved in the Relativistic Heavy Ion Collider (RHIC). The physics and technology of the longitudinal cooling system are discussed, and plans for a transverse cooling system are outlined.

  16. A simple forecasting model for industrial electric energy consumption

    Energy Technology Data Exchange (ETDEWEB)

    Al-Shehri, Abdallah [King Fahd Univ. of Petroleum and Minerals, Electrical Engineering Dept., Dhaharan (Saudi Arabia)

    2000-07-01

    A single-equation model is developed and employed for forecasting industrial electric energy consumption in the Saudi Consolidated Electric Company in the Eastern Province (SCECO-East) of Saudi Arabia. SCECO-East's industrial loads are composed mainly of oil-related and petrochemical industries. Even though industrial loads are generally characterised by their steadiness, the harsh weather conditions of the Eastern Province cause great variations in the industrial electric energy consumption at SCECO-East. The developed model reflects these variations. MATLAB is used to solve the model. (Author)

  17. Effects of Nuclear Energy on Sustainable Development and Energy Security: Sodium-Cooled Fast Reactor Case

    Directory of Open Access Journals (Sweden)

    Sungjoo Lee

    2016-09-01

    Full Text Available We propose a stepwise method of selecting appropriate indicators to measure effects of a specific nuclear energy option on sustainable development and energy security, and also to compare an energy option with another. Focusing on the sodium-cooled fast reactor, one of the highlighted Generation IV reactors, we measure and compare its effects with the standard pressurized water reactor-based nuclear power, and then with coal power. Collecting 36 indicators, five experts select seven key indicators to meet data availability, nuclear energy relevancy, comparability among energy options, and fit with Korean energy policy objectives. The results show that sodium-cooled fast reactors is a better alternative than existing nuclear power as well as coal electricity generation across social, economic and environmental dimensions. Our method makes comparison between energy alternatives easier, thereby clarifying consequences of different energy policy decisions.

  18. Energy production and consumption in the Yemen Arab Republic

    Energy Technology Data Exchange (ETDEWEB)

    Saqqaf, A.

    The energy sector reflects the major changes in the socio-economic structure and massive private and government investments that have given North Yemen a 6% real growth rate since 1970. The author surveys the energy sector over the past decade, and uses an earlier energy balance to forecast to the end of this decade. The survey, which focuses on consumption and supply, considers various potential sources of energy, including renewable forms and discusses new developments in oil exploration and refining capacity. The most significant development is not the dramatic rise in energy consumption, but in the discovery and exploitation of oil which allowed the Yemen Arab Republic to join the league of oil-producing nations. 1 figure, 2 tables.

  19. Questionnaire survey, Indoor climate measurements and Energy consumption

    DEFF Research Database (Denmark)

    Knudsen, Henrik Nellemose; Thomsen, Kirsten Engelund; Mørck, Ove

    2012-01-01

    to be designed and constructed with a heating demand corresponding to the Danish low-energy standard referred to as "low-energy class 1" in a new settlement called Stenløse Syd. This means that the energy consumption is to be 50% lower than the requirement in BR08 (Danish Building Regulations 2008). 66 flats....... This report presents part of the results of an evaluation of the project that was performed in the settlement. The evaluation consisted of a questionnaire survey of occupant experiences and satisfaction in 35 single-family houses, measurements of energy consumption in 22 selected single-family houses and 58......The municipality of Egedal decided in 2006 to make use of the possibility in the Danish Planning Law for a municipality to tighten the energy requirements in the local plan for a new settlement to be erected in the municipality. During the years 2007-2011 a total of 442 dwellings were...

  20. Water withdrawal and consumption reduction analysis for electrical energy generation system

    Science.gov (United States)

    Nouri, Narjes

    There is an increasing concern over shrinking water resources. Water use in the energy sector primarily occurs in electricity generation. Anticipating scarcer supplies, the value of water is undoubtedly on the rise and design, implementation, and utilization of water saving mechanisms in energy generation systems are becoming inevitable. Most power plants generate power by boiling water to produce steam to spin electricity-generating turbines. Large quantities of water are often used to cool the steam in these plants. As a consequence, most fossil-based power plants in addition to consuming water, impact the water resources by raising the temperature of water withdrawn for cooling. A comprehensive study is conducted in this thesis to analyze and quantify water withdrawals and consumption of various electricity generation sources such as coal, natural gas, renewable sources, etc. Electricity generation for the state of California is studied and presented as California is facing a serious drought problem affecting more than 30 million people. Integrated planning for the interleaved energy and water sectors is essential for both water and energy savings. A linear model is developed to minimize the water consumption while considering several limitations and restrictions. California has planned to shut down some of its hydro and nuclear plants due to environmental concerns. Studies have been performed for various electricity generation and water saving scenarios including no-hydro and no-nuclear plant and the results are presented. Modifications to proposed different scenarios have been applied and discussed to meet the practical and reliability constraints.

  1. Analysis of federal incentives used to stimulate energy consumption

    Energy Technology Data Exchange (ETDEWEB)

    Cole, R.J.; Cone, B.W.; Emery, J.C.; Huelshoff, M.; Lenerz, D.E.; Marcus, A.; Morris, F.A.; Sheppard, W.J.; Sommers, P.

    1981-08-01

    The purpose of the analysis is to identify and quantify Federal incentives that have increased the consumption of coal, oil, natural gas, and electricity. The introductory chapter is intended as a device for presenting the policy questions about the incentives that can be used to stimulate desired levels of energy development. In the theoretical chapter federal incentives were identified for the consumption of energy as Federal government actions whose major intent or result is to stimulate energy consumption. The stimulus comes through changing values of variables included in energy demand functions, thereby inducing energy consumers to move along the function in the direction of greater quantity of energy demanded, or through inducing a shift of the function to a position where more energy will be demanded at a given price. The demand variables fall into one of six categories: price of the energy form, price of complements, price of substitutes, preferences, income, and technology. The government can provide such incentives using six different policy instruments: taxation, disbursements, requirements, nontraditional services, traditional services, and market activity. The four major energy forms were examined. Six energy-consuming sectors were examined: residential, commercial, industrial, agricultural, transportation, and public. Two types of analyses of incentive actions are presented in this volume. The generic chapter focused on actions taken in 1978 across all energy forms. The subsequent chapters traced the patterns of incentive actions, energy form by energy form, from the beginning of the 20th century, to the present. The summary chapter includes the results of the previous chapters presented by energy form, incentive type, and user group. Finally, the implications of these results for solar policy are presented in the last chapter. (MCW)

  2. Legitimacy of concerns about caffeine and energy drink consumption.

    Science.gov (United States)

    Wesensten, Nancy J

    2014-10-01

    Whether caffeine and energy drink consumption presents a critical emerging health problem is not currently known. Available evidence suggests that energy drink consumption represents a change in the ways in which individuals in the United States consume caffeine but that the amount of caffeine consumed daily has not appreciably increased. In the present review, the question of whether Americans are sleep deprived (a potential reason for using caffeine) is briefly explored. Reported rates of daily caffeine consumption (based on beverage formulation) and data obtained from both civilian and military populations in the United States are examined, the efficacy of ingredients other than caffeine in energy drinks is discussed, and the safety and side effects of caffeine are addressed, including whether evidence supports the contention that excessive caffeine/energy drink consumption induces risky behavior. The available evidence suggests that the main legitimate concern regarding caffeine and energy drink use is the potential negative impact on sleep but that, otherwise, there is no cause for concern regarding caffeine use in the general population. Published 2014. This article is a U.S. Government work and is in the public domain in the USA.

  3. Improvement of energy efficiency by optimized thermal insulation of cooling water pipes of air conditioning systems and refrigerant pipes of cooling systems; Steigerung der Energieeffizienz durch optimierte Daemmung der Kuehlwasserrohrleitungen von Klimaanlagen und Kaeltemittelrohrleitungen von Kuehlanlagen

    Energy Technology Data Exchange (ETDEWEB)

    Chmielarski, Jarema [ARMACELL SWITZERLAND AG, Pfaffnau (Switzerland)

    2011-05-31

    Higher energy efficiency is an issue also in air conditioning and refrigeration, which accounts for 14 percent of Germany's total energy consumption today (according to ASERCOM) and can be assumed to have a similar energy consumption level in other European levels. The new Energy Conservation Ordinance of October 2009 was the first that specified obligatory thermal insulation also of cooling and cold water pipes in space HVAC systems. A current study by the Armacell company showed that while this is an important first step, thicker insulation layers must be specified for the future.

  4. Experimental investigation and energy consumption analysis for subway side-platform in north cities

    Institute of Scientific and Technical Information of China (English)

    曹荣光; 由世俊; 董书芸

    2009-01-01

    The automatic platform gates system (APG) and platform screen doors system (PSD) have been applied in the subways in some cities because of its security. As for the two methods,sometimes,it is difficult to decide which one is better for a certain project. The influence of the train-induced air on subway station and the comfort level of subway station in dynamic and transient conditions was analysized based on experimental data. The comfort level,content of inspiratory particles and noise level show that the environment of subway station with APG can satisfy the requirement of the standard. The air conditioning (A/C) cooling load and ventilation energy consumption of the two kinds of subway stations was predicted with the EnergyPlus program. Because electricity consumption by ventilation equipment increases notably when PSD is used,particularly the electricity consumption by the under platform exhaust (UPE) fan,and thus,ultimately,little difference exists in the overall energy consumption with and without PSD. The APG system is economical for the subway stations of the north cities. And it can satisfy the comfort of passengers for whistle stop. It can be concluded that in north cities APG system is better than PSD system.

  5. Home energy information measuring and managing energy consumption in residential buildings

    CERN Document Server

    Green, David

    2014-01-01

    The book contains the data required to measure and manage energy consumption in residential buildings. This book describes energy information in detail so that any homeowner can measure energy use on a continuing basis, make decisions regarding how to conserve energy, implement improvements, then monitor the results of those improvements. In the past, it has been difficult to collect residential energy consumption data in real-time. This book helps overcome that challenge by teaching readers how to use self-installed data collection devices that monitor consumption of circuits or appliances, a

  6. Energy Conservation Behaviour Toolkit. Incentive Meachnisms for Effective Decrease of Energy Consumption at the Workplace

    NARCIS (Netherlands)

    Kalz, Marco; Börner, Dirk; Specht, Marcus

    2012-01-01

    Kalz, M., Börner, D., & Specht, M. (2012, 18 September). Energy Conservation Behaviour Toolkit. Incentive Mechanisms for Effective Decrease of Energy Consumption at the Workplace. Presentation at the 'Tussenbijeenkomst SURFnet Innovatieregeling Duurzaamheid & ICT', Utrecht, The Netherlands.

  7. House Owners’ Interests and Actions in Relation to Indoor Temperature, Air Quality and Energy Consumption

    DEFF Research Database (Denmark)

    Knudsen, Henrik Nellemose; Andersen, Rune K.; Hansen, Anders Rhiger

    2016-01-01

    for each other in the family. Actions are taken in relation to the temperature in the way that house owners are trying to keep different temperatures in differently heated rooms, e.g. to sleep in a cool bedroom or to save heat. Besides they wear warmer clothing, slippers or thick socks indoors during...... to indoor temperature, air quality and energy consumption by Danish house owners living in single-family detached houses with district heating. The house owners state that they are interested in, and concerned about, the indoor temperature and air quality and that it is an important element in caring...

  8. Energy Consumption and Analysis on Energy Saving Measures at SINOPEC's Large Refineries

    Institute of Scientific and Technical Information of China (English)

    Zhuang Jian; Hou Kaifeng; Yan Chun; Li Zhiqiang

    2007-01-01

    This article sums up the energy consumption of process units and the overall energy consumption of 10 Mt/a class refineries constructed or revamped in recent years.The energy saving measures adopted in design of these refineries are analyzed and discussed.Finally,this article also makes comments and puts forward recommendations on the objectives for energy conservation at refineries jn the future.

  9. Energy drink consumption and impact on caffeine risk.

    Science.gov (United States)

    Thomson, Barbara M; Campbell, Donald M; Cressey, Peter; Egan, Ursula; Horn, Beverley

    2014-01-01

    The impact of caffeine from energy drinks occurs against a background exposure from naturally occurring caffeine (coffee, tea, cocoa and foods containing these ingredients) and caffeinated beverages (kola-type soft drinks). Background caffeine exposure, excluding energy drinks, was assessed for six New Zealand population groups aged 15 years and over (n = 4503) by combining concentration data for 53 caffeine-containing foods with consumption information from the 2008/09 New Zealand Adult Nutrition Survey (ANS). Caffeine exposure for those who consumed energy drinks (n = 138) was similarly assessed, with inclusion of energy drinks. Forty-seven energy drink products were identified on the New Zealand market in 2010. Product volumes ranged from 30 to 600 ml per unit, resulting in exposures of 10-300 mg caffeine per retail unit consumed. A small percentage, 3.1%, of New Zealanders reported consuming energy drinks, with most energy drink consumers (110/138) drinking one serving per 24 h. The maximum number of energy drinks consumed per 24 h was 14 (total caffeine of 390 mg). A high degree of brand loyalty was evident. Since only a minor proportion of New Zealanders reported consuming energy drinks, a greater number of New Zealanders exceeded a potentially adverse effect level (AEL) of 3 mg kg(-1) bw day(-1) for caffeine from caffeine-containing foods than from energy drinks. Energy drink consumption is not a risk at a population level because of the low prevalence of consumption. At an individual level, however, teenagers, adults (20-64 years) and females (16-44 years) were more likely to exceed the AEL by consuming energy drinks in combination with caffeine-containing foods.

  10. A Low Power Consumption Algorithm for Efficient Energy Consumption in ZigBee Motes.

    Science.gov (United States)

    Vaquerizo-Hdez, Daniel; Muñoz, Pablo; R-Moreno, María D; F Barrero, David

    2017-09-22

    Wireless Sensor Networks (WSNs) are becoming increasingly popular since they can gather information from different locations without wires. This advantage is exploited in applications such as robotic systems, telecare, domotic or smart cities, among others. To gain independence from the electricity grid, WSNs devices are equipped with batteries, therefore their operational time is determined by the time that the batteries can power on the device. As a consequence, engineers must consider low energy consumption as a critical objective to design WSNs. Several approaches can be taken to make efficient use of energy in WSNs, for instance low-duty-cycling sensor networks (LDC-WSN). Based on the LDC-WSNs, we present LOKA, a LOw power Konsumption Algorithm to minimize WSNs energy consumption using different power modes in a sensor mote. The contribution of the work is a novel algorithm called LOKA that implements two duty-cycling mechanisms using the end-device of the ZigBee protocol (of the Application Support Sublayer) and an external microcontroller (Cortex M0+) in order to minimize the energy consumption of a delay tolerant networking. Experiments show that using LOKA, the energy required by the sensor device is reduced to half with respect to the same sensor device without using LOKA.

  11. Basic tables of the energy consumption 1985. Basistabellen energiegebruik 1985

    Energy Technology Data Exchange (ETDEWEB)

    Tiemersma, D.N.; Rouw, M.

    1991-01-01

    Reliable and useful tables of one basic year are necessary to maintain and to actualize the energy scenarios of the Energy Study Centre of the Netherlands Energy Research Foundation. Spring 1989 such basic tables were composed for the Dutch energy consumption in 1985. A basic structure has been designed to classify energy demand data. Three main sectors are distinguished: the built environment, the production system, and the transportation sector. Within each sector several subsectors can be distinguished. The energy sources considered are: coal, oil, natural gas, electric power, hot water and steam, and different gases. The energy is used for space heating, processes and electric power. In the appendix account is given of the sources of the data. The tables presented are deducted from the Dutch Energy Economy (NEH) tables and supplemented by several other sources. 25 refs., 15 tabs.

  12. Energy consumption and economic growth on the focus on nuclear energy

    Energy Technology Data Exchange (ETDEWEB)

    Ozkan, Filiz [Sakarya Univ., Sakarya (Turkey). Dept. of Financial Econometric; Pektas, Ali Osman [Bahcesehir Univ., Istanbul (Turkey). Dept. of Civil Engineering; Ozkan, Omer [Istanbul Medeniyet Univ. (Turkey). Dept. of Civil Engineering

    2017-01-15

    Since the quest for global and personal prosperity, the drive to eradicate poverty and the motivation to ensure sustainability for the world are collectively dependent on a supply of safe, emissions-free power there are many studies in literature focuses on the relationship between economic growth and energy consumption. This study tries to enlarge the dimensions of these researches by using a large dataset. The second aim of this study is to focus on Nuclear energy consumption. According to the empirical results of the study, Energy consumption is found as co-integrated with the GDP in all 55 countries. There exist bidirectional causality between nuclear, renewable energy consumption and the GDP. Additionally, the unidirectional causality extends from economic growth to hydroelectric, petroleum, coal and total energy consumption.

  13. ENERGY CONSUMPTION FORECASTING METHODOLOGY OF A SET OF OBJECTS

    OpenAIRE

    KHUDAYAROV MUZAFFAR BURHANOVICH; KHABIBULINA ALBINA TALGATOVNA; KARIMKULOV HOJIAKBAR KHOLMURADOVICH

    2016-01-01

    This article presents the methodology and questions the use of different types of models for forecasting of energy consumption a set of objects. To improve the forecasting results is carried out procedure to select the best model for each object together.

  14. A Resource Utilization Score for Software Energy Consumption

    NARCIS (Netherlands)

    Jagroep, E.A.; van der Werf, J.M.E.M.; Broekman, Jordy; Blom, Leen; van Vliet, Rob; Brinkkemper, S.

    Software as the true consumer of power and its potential contribution to reach sustainability goals is increasingly being acknowledged. Studies so far have presented successful results and methods to address the energy consumption of the software, indicating that different stakeholders striving for

  15. Developing an Analytical Framework for Argumentation on Energy Consumption Issues

    Science.gov (United States)

    Jin, Hui; Mehl, Cathy E.; Lan, Deborah H.

    2015-01-01

    In this study, we aimed to develop a framework for analyzing the argumentation practice of high school students and high school graduates. We developed the framework in a specific context--how energy consumption activities such as changing diet, converting forests into farmlands, and choosing transportation modes affect the carbon cycle. The…

  16. Evaluation of energy consumption in different drying methods

    Energy Technology Data Exchange (ETDEWEB)

    Motevali, Ali; Minaei, Saeid; Khoshtagaza, Mohammad Hadi [Department of Agricultural Machinery Engineering, Agricultural Faculty, Tarbiat Modares University, Tehran 14115-111 (Iran, Islamic Republic of)

    2011-02-15

    This study was conducted to evaluate energy consumption in various drying systems including hot-air convection, use of microwave pretreatment with convection dryer, microwave drying, vacuum drying and infrared drying. Tests were conducted using pomegranate arils under various experimental conditions as follows. In convection dryer at six temperature levels (45, 50, 55, 60, 65 and 70 C) and three air velocity levels (0.5, 1 and 1.5 m/s) at three pretreatments of control, 100 W microwave pretreatment for 20 min and 200 W microwave pretreatment for 10 min. Experiments in the microwave dryer were done at three power levels of 100, 200 and 300 W and in vacuum dryer at five temperature levels (50, 60, 70, 80, and 90 C) under 250 kPa pressure. For infrared drying, there were four air velocity levels (0.3, 0.5, 0.7 and 1 m/s) and three illumination levels (0.22, 0.31 and 0.49 W/cm{sup 2}). Experimental results showed that minimum and maximum energy consumption in pomegranate drying were associated with microwave and vacuum dryers, respectively. The use of microwave pretreatment in drying pomegranate arils in hot air dryer decreased drying time and energy consumption in comparison with pure convection drying. In infrared drying, it was found that drying time increased with air velocity which resulted in increased energy consumption. (author)

  17. Actual energy consumption in dwellings. The effect of energy performance regulations and occupant behaviour

    Energy Technology Data Exchange (ETDEWEB)

    Guerra Santin, O.

    2010-10-19

    Residential buildings have continuously improved in energy efficiency, partly as a consequence of the introduction of energy regulations in many countries. Although better thermal properties and systems efficiency have lowered energy consumption for space heating in recent decades, substantial differences in energy consumption in similar dwellings are still being observed. These differences in consumption are thought to be caused by differences in occupancy patterns, by quality of construction and by rebound effects. This research addresses the effect of energy performance regulations and occupant behavior on energy consumption for space and water heating in dwellings built after the introduction of the energy performance regulations in the Netherlands. The results of this research show that improving the energy efficiency of buildings alone is not enough to decrease that energy consumption. The large differences found in the use of dwellings indicate that, especially in energy efficient houses, occupant behavior provides an opportunity for further reductions in the energy consumption for space heating which could boost the efforts to conserve energy worldwide.

  18. Energy consumption model over parallel programs implemented on multicore architectures

    Directory of Open Access Journals (Sweden)

    Ricardo Isidro-Ramirez

    2015-06-01

    Full Text Available In High Performance Computing, energy consump-tion is becoming an important aspect to consider. Due to the high costs that represent energy production in all countries it holds an important role and it seek to find ways to save energy. It is reflected in some efforts to reduce the energy requirements of hardware components and applications. Some options have been appearing in order to scale down energy use and, con-sequently, scale up energy efficiency. One of these strategies is the multithread programming paradigm, whose purpose is to produce parallel programs able to use the full amount of computing resources available in a microprocessor. That energy saving strategy focuses on efficient use of multicore processors that are found in various computing devices, like mobile devices. Actually, as a growing trend, multicore processors are found as part of various specific purpose computers since 2003, from High Performance Computing servers to mobile devices. However, it is not clear how multiprogramming affects energy efficiency. This paper presents an analysis of different types of multicore-based architectures used in computing, and then a valid model is presented. Based on Amdahl’s Law, a model that considers different scenarios of energy use in multicore architectures it is proposed. Some interesting results were found from experiments with the developed algorithm, that it was execute of a parallel and sequential way. A lower limit of energy consumption was found in a type of multicore architecture and this behavior was observed experimentally.

  19. 10 CFR 430.23 - Test procedures for the measurement of energy and water consumption.

    Science.gov (United States)

    2010-01-01

    ... consumption. 430.23 Section 430.23 Energy DEPARTMENT OF ENERGY ENERGY CONSERVATION ENERGY CONSERVATION PROGRAM... per-cycle energy consumption for the standard cycle in kilowatt-hours per cycle, determined according... cycles per year, (ii) half the sum of the average per-cycle energy consumption for the standard cycle and...

  20. Control Strategies to Reduce the Energy Consumption of Central Domestic Hot Water Systems

    Energy Technology Data Exchange (ETDEWEB)

    Dentz, Jordan; Ansanelli, Eric; Henderson, Hugh; Varshney, Kapil

    2016-06-03

    Domestic hot water (DHW) heating is the second largest energy end use in U.S. buildings, exceeded only by space conditioning. Recirculation systems consisting of a pump and piping loop(s) are commonly used in multifamily buildings to reduce wait time for hot water at faucets; however, constant pumping increases energy consumption by exposing supply and return line piping to continuous heat loss, even during periods when there is no demand for hot water. In this study, ARIES installed and tested two types of recirculation controls in a pair of buildings in order to evaluate their energy savings potential. Demand control, temperature modulation controls, and the simultaneous operation of both were compared to the baseline case of constant recirculation. Additionally, interactive effects between DHW control fuel reductions and space conditioning (heating and cooling) were estimated in order to make more realistic predictions of the payback and financial viability of retrofitting DHW systems with these controls. Results showed that DHW fuel consumption reduced by 7% after implementing the demand control technique, 2% after implementing temperature modulation, and 15% after implementing demand control and temperature modulation techniques simultaneously; recirculation pump runtime was reduced to 14 minutes or less per day. With space heating and cooling interactions included, the estimated annual cost savings were 8%, 1%, and 14% for the respective control techniques. Possible complications in the installation, commissioning and operation of the controls were identified and solutions offered.

  1. Control Strategies to Reduce the Energy Consumption of Central Domestic Hot Water Systems

    Energy Technology Data Exchange (ETDEWEB)

    Dentz, Jordan [The Levy Partnership, Inc., New York, NY (United States). Advanced Residential Integrated Energy Solutions; Ansanelli, Eric [The Levy Partnership, Inc., New York, NY (United States). Advanced Residential Integrated Energy Solutions; Henderson, Hugh [The Levy Partnership, Inc., New York, NY (United States). Advanced Residential Integrated Energy Solutions; Varshney, Kapil [The Levy Partnership, Inc., New York, NY (United States). Advanced Residential Integrated Energy Solutions

    2016-06-23

    Domestic hot water (DHW) heating is the second largest energy end use in U.S. buildings, exceeded only by space conditioning. Recirculation systems consisting of a pump and piping loop(s) are commonly used in multifamily buildings to reduce wait time for hot water at faucets; however, constant pumping increases energy consumption by exposing supply and return line piping to continuous heat loss, even during periods when there is no demand for hot water. In this study, ARIES installed and tested two types of recirculation controls in a pair of buildings in order to evaluate their energy savings potential. Demand control, temperature modulation controls, and the simultaneous operation of both were compared to the baseline case of constant recirculation. Additionally, interactive effects between DHW control fuel reductions and space conditioning (heating and cooling) were estimated in order to make more realistic predictions of the payback and financial viability of retrofitting DHW systems with these controls. Results showed that DHW fuel consumption reduced by 7% after implementing the demand control technique, 2% after implementing temperature modulation, and 15% after implementing demand control and temperature modulation techniques simultaneously; recirculation pump runtime was reduced to 14 minutes or less per day. With space heating and cooling interactions included, the estimated annual cost savings were 8%, 1%, and 14% for the respective control techniques. Possible complications in the installation, commissioning and operation of the controls were identified and solutions offered.

  2. Building and occupant characteristics as determinants of residential energy consumption

    Energy Technology Data Exchange (ETDEWEB)

    Nieves, L.A.; Nieves, A.L.

    1981-10-01

    The major goals of the research are to gain insight into the probable effects of building energy performance standards on energy consumption; to obtain observations of actual residential energy consumption that could affirm or disaffirm comsumption estimates of the DOE 2.0A simulation model; and to investigate home owner's conservation investments and home purchase decisions. The first chapter covers the investigation of determinants of household energy consumption. The presentation begins with the underlying economic theory and its implications, and continues with a description of the data collection procedures, the formulation of variables, and then of data analysis and findings. In the second chapter the assumptions and limitations of the energy use projections generated by the DOE 2.0A model are discussed. Actual electricity data for the houses are then compared with results of the simulation. The third chapter contains information regarding households' willingness to make energy conserving investments and their ranking of various conservation features. In the final chapter conclusions and recommendations are presented with an emphasis on the policy implications of this study. (MCW)

  3. Optimal Self-Tuning PID Controller Based on Low Power Consumption for a Server Fan Cooling System

    Science.gov (United States)

    Lee, Chengming; Chen, Rongshun

    2015-01-01

    Recently, saving the cooling power in servers by controlling the fan speed has attracted considerable attention because of the increasing demand for high-density servers. This paper presents an optimal self-tuning proportional-integral-derivative (PID) controller, combining a PID neural network (PIDNN) with fan-power-based optimization in the transient-state temperature response in the time domain, for a server fan cooling system. Because the thermal model of the cooling system is nonlinear and complex, a server mockup system simulating a 1U rack server was constructed and a fan power model was created using a third-order nonlinear curve fit to determine the cooling power consumption by the fan speed control. PIDNN with a time domain criterion is used to tune all online and optimized PID gains. The proposed controller was validated through experiments of step response when the server operated from the low to high power state. The results show that up to 14% of a server’s fan cooling power can be saved if the fan control permits a slight temperature response overshoot in the electronic components, which may provide a time-saving strategy for tuning the PID controller to control the server fan speed during low fan power consumption. PMID:26007725

  4. Optimal Self-Tuning PID Controller Based on Low Power Consumption for a Server Fan Cooling System.

    Science.gov (United States)

    Lee, Chengming; Chen, Rongshun

    2015-05-20

    Recently, saving the cooling power in servers by controlling the fan speed has attracted considerable attention because of the increasing demand for high-density servers. This paper presents an optimal self-tuning proportional-integral-derivative (PID) controller, combining a PID neural network (PIDNN) with fan-power-based optimization in the transient-state temperature response in the time domain, for a server fan cooling system. Because the thermal model of the cooling system is nonlinear and complex, a server mockup system simulating a 1U rack server was constructed and a fan power model was created using a third-order nonlinear curve fit to determine the cooling power consumption by the fan speed control. PIDNN with a time domain criterion is used to tune all online and optimized PID gains. The proposed controller was validated through experiments of step response when the server operated from the low to high power state. The results show that up to 14% of a server's fan cooling power can be saved if the fan control permits a slight temperature response overshoot in the electronic components, which may provide a time-saving strategy for tuning the PID controller to control the server fan speed during low fan power consumption.

  5. Optimal Self-Tuning PID Controller Based on Low Power Consumption for a Server Fan Cooling System

    Directory of Open Access Journals (Sweden)

    Chengming Lee

    2015-05-01

    Full Text Available Recently, saving the cooling power in servers by controlling the fan speed has attracted considerable attention because of the increasing demand for high-density servers. This paper presents an optimal self-tuning proportional-integral-derivative (PID controller, combining a PID neural network (PIDNN with fan-power-based optimization in the transient-state temperature response in the time domain, for a server fan cooling system. Because the thermal model of the cooling system is nonlinear and complex, a server mockup system simulating a 1U rack server was constructed and a fan power model was created using a third-order nonlinear curve fit to determine the cooling power consumption by the fan speed control. PIDNN with a time domain criterion is used to tune all online and optimized PID gains. The proposed controller was validated through experiments of step response when the server operated from the low to high power state. The results show that up to 14% of a server’s fan cooling power can be saved if the fan control permits a slight temperature response overshoot in the electronic components, which may provide a time-saving strategy for tuning the PID controller to control the server fan speed during low fan power consumption.

  6. Technical use of solar energy: Conversion from solar to thermal energy, solar cooling and thermal energy storage

    Science.gov (United States)

    Arafa, A.; Fisch, N.; Hahne, E.; Kraus, K.; Seemann, D.; Seifert, B.; Sohns, J.; Schetter, G.; Schweigerer, W.

    1983-12-01

    Experimental and theoretical studies in the field of solar energy utilization are reviewed. Specific topics considered are: flat plate water collectors, solar absorbers, air collectors, solar absorption cooling, solar simulators, aquifiers, latent heat stores, and space heating systems.

  7. Energy Drink Consumption: Beneficial and Adverse Health Effects.

    Science.gov (United States)

    Alsunni, Ahmed Abdulrahman

    2015-10-01

    Consumption of energy drinks has been increasing dramatically in the last two decades, particularly amongst adolescents and young adults. Energy drinks are aggressively marketed with the claim that these products give an energy boost to improve physical and cognitive performance. However, studies supporting these claims are limited. In fact, several adverse health effects have been related to energy drink; this has raised the question of whether these beverages are safe. This review was carried out to identify and discuss the published articles that examined the beneficial and adverse health effects related to energy drink. It is concluded that although energy drink may have beneficial effects on physical performance, these products also have possible detrimental health consequences. Marketing of energy drinks should be limited or forbidden until independent research confirms their safety, particularly among adolescents.

  8. The unexpected energy saving of cooling water conditioning; Koelwaterconditionering spaart meer energie dan u denkt

    Energy Technology Data Exchange (ETDEWEB)

    Dijkgraaf, A. [ed.

    1996-09-01

    On the basis of the example of the dosage of chlorinated bleaching lye in cooling water it is calculated that much more energy can be saved than expected. The use of the lye improves the energy efficiency of heat exchangers. The calculation method is developed by L. Paping and is based on the idea to express the advantages (e.g. energy conservation) and the disadvantages (e.g. environmental burden) as a dimensionless indicator.

  9. Effects of Nuclear Energy on Sustainable Development and Energy Security: Sodium-Cooled Fast Reactor Case

    OpenAIRE

    Sungjoo Lee; Byungun Yoon; Juneseuk Shin

    2016-01-01

    We propose a stepwise method of selecting appropriate indicators to measure effects of a specific nuclear energy option on sustainable development and energy security, and also to compare an energy option with another. Focusing on the sodium-cooled fast reactor, one of the highlighted Generation IV reactors, we measure and compare its effects with the standard pressurized water reactor-based nuclear power, and then with coal power. Collecting 36 indicators, five experts select seven key indic...

  10. Efficiency of Energy Consumption as a Base for Sustainable Energy Sector

    OpenAIRE

    Anicetas Ignotas; Viktorija Stasytytė

    2016-01-01

    Lithuania, as many other EU countries, encounters key challenges in three energy sector fields: energy independence, energy sector competitiveness and sustainable energy sector development. Such situation is determined by historical and political conditions, as well as by limited internal energy resources. In such context an importance of energy consumption efficiency pursuing country energy sector sustainability is highlighted. By implementing the long-term goals and tasks a country may seek...

  11. Computer simulated building energy consumption for verification of energy conservation measures in network facilities

    Science.gov (United States)

    Plankey, B.

    1981-01-01

    A computer program called ECPVER (Energy Consumption Program - Verification) was developed to simulate all energy loads for any number of buildings. The program computes simulated daily, monthly, and yearly energy consumption which can be compared with actual meter readings for the same time period. Such comparison can lead to validation of the model under a variety of conditions, which allows it to be used to predict future energy saving due to energy conservation measures. Predicted energy saving can then be compared with actual saving to verify the effectiveness of those energy conservation changes. This verification procedure is planned to be an important advancement in the Deep Space Network Energy Project, which seeks to reduce energy cost and consumption at all DSN Deep Space Stations.

  12. Estimating the energy consumption impact of casual carpooling

    Energy Technology Data Exchange (ETDEWEB)

    Minett, P. [Trip Convergence Ltd, Epsom, Auckland (New Zealand); Pearce, J. [Trip Convergence Ltd, Remuera, Auckland (New Zealand)

    2011-07-01

    Some of the transportation energy consumed during peak commuter periods is wasted through slow running in congested traffic. Strategies to increase average vehicle occupancy (and reduce vehicle counts and congestion) could be expected to be at the forefront of energy conservation policies. Casual carpooling (also called 'slugging') is a system of carpooling without trip-by-trip pre-arrangement. It operates in three US cities, and has been suggested in New Zealand as a strategy for managing transportation challenges when oil prices rise. The objective of the paper is to find out if casual carpooling reduces energy consumption, and if so, how much. Energy consumption by single occupant vehicles; casual carpool vehicles; and a mix of buses and single occupant vehicles; are estimated and compared, and the impact on the rest of the traffic is calculated. The paper estimates that casual carpooling in San Francisco is conserving in the order of 1.7 to 3.5 million liters of gasoline per year, or 200-400 liters for each participant, much of which comes from the impact on the rest of the traffic. The paper concludes by calling for applied research to discover how to catalyze casual carpooling in other cities as a means of reducing transportation energy consumption. (authors)

  13. Estimating the Energy Consumption Impact of Casual Carpooling

    Directory of Open Access Journals (Sweden)

    Paul Minett

    2011-01-01

    Full Text Available Some of the transportation energy consumed during peak commuter periods is wasted through slow running in congested traffic. Strategies to increase average vehicle occupancy (and reduce vehicle counts and congestion could be expected to be at the forefront of energy conservation policies. Casual carpooling (also called “slugging” is a system of carpooling without trip-by-trip pre-arrangement. It operates in three US cities, and has been suggested in New Zealand as a strategy for managing transportation challenges when oil prices rise. The objective of the paper is to find out if casual carpooling reduces energy consumption, and if so, how much. Energy consumption by single occupant vehicles; casual carpool vehicles; and a mix of buses and single occupant vehicles; are estimated and compared, and the impact on the rest of the traffic is calculated. The paper estimates that casual carpooling in San Francisco is conserving in the order of 1.7 to 3.5 million liters of gasoline per year, or 200-400 liters for each participant, much of which comes from the impact on the rest of the traffic. The paper concludes by calling for applied research to discover how to catalyze casual carpooling in other cities as a means of reducing transportation energy consumption.

  14. Transport energy consumption achievement based on indicator analysis

    Science.gov (United States)

    Jiang, Jian

    2017-06-01

    In order to evaluate the transport sustainability level for regions, the concept of achievement efficiency in transport energy consumption is initially suggested in this paper. The research object is not only for the energy consumption by transport operation but also the whole life of the transport procedure, which is the thought of life cycle assessment. And then, on the quantitative analysis to calculate the transport energy achievement efficiency of the regions, the indicators that can represent the achievement of transport energy consumption are convincingly found out by indicator theory. Next, concentration is focused on the transport related indicators and proper indicators are picked up from the candidate indicators, which were the affecting factors to this issue. After that, using the selected indicators, we introduce the method of data envelopment analysis to do quantitative analysis, which helps to get the achievement efficiency of transport energy among cities all over the world. The analysis result shows the efficient regions and the inefficient regions respectively. Furthermore, the detailed efficiency value of each region is also laid out clearly. For the improvement, the inadequate output or input variables of the inefficient regions were listed compared with the efficient regions so that corresponding transport policy implications can be resulted for the inefficient regions to reach high level sustainability.

  15. The influence of thermal insulation position in building exterior walls on indoor thermal comfort and energy consumption of residential buildings in Chongqing

    Science.gov (United States)

    Wang, D.; Yu, W.; Zhao, X.; Dai, W.; Ruan, Y.

    2016-08-01

    This paper focused on the influence of using position of thermal insulation materials in exterior walls on the indoor thermal comfort and building energy consumption of residential building in Chongqing. In this study, four (4) typical residential building models in Chongqing were established, which have different usage of thermal insulation layer position in exterior walls. Indoor thermal comfort hours, cooling and heating energy consumption of each model were obtained by using a simulation tool, Energyplus. Based on the simulation data, the influence of thermal insulation position on indoor thermal comfort and building energy consumption in each season was analyzed. The results showed that building with internal insulation had the highest indoor thermal comfort hours and least cooling and heating energy consumption in summer and winter. In transitional season, the highest indoor thermal comfort hours are obtained when thermal insulation is located on the exterior side.

  16. A survey of energy drink and alcohol mixed with energy drink consumption.

    Science.gov (United States)

    Magnezi, Racheli; Bergman, Lisa Carroll; Grinvald-Fogel, Haya; Cohen, Herman Avner

    2015-01-01

    Energy drink consumption among youth is increasing despite recommendations by the American Academy of Pediatrics to eliminate consumption by youth. This study provides information on consumption of energy drinks and alcohol mixed with energy drinks (AmED) in a sample of Israeli youth and how consumer knowledge about the risks affects consumption rates. The study was conducted in three Tel Aviv public schools, with a total enrollment of 1,253 students in grades 8 through 12. Among them, 802 students completed a 49-item questionnaire about energy drink and AmED consumption, for a 64 % response rate Non-responders included 451 students who were absent or refused to participate. All students in the same school were administered the questionnaire on the same day. Energy drinks are popular among youth (84.2 % have ever drunk). More tenth through twelfth grade students consumed energy drinks than eighth and ninth grade students. Students who began drinking in elementary school (36.8 %) are at elevated risk for current energy drink (P consumption (OR 1.925; 95 %CI 1.18-3.14). The association between current AmED consumption and drinking ED at a young age is important. Boys and those who start drinking early have a greater risk of both ED and AmED consumption. The characteristics of early drinkers can help increase awareness of potential at-risk youth, such as junior and senior high school students with less educated or single parents. Risks posed by early use on later energy drink and AmED consumption are concerning. We suggest that parents should limit accessibility. Increased knowledge about acceptable and actual amounts of caffeine in a single product might decrease consumption.

  17. Energy efficient refrigeration and flexible power consumption in a smart grid

    Energy Technology Data Exchange (ETDEWEB)

    Gybel Hovgaard, T.; Larsen, Lars F.S. (Danfoss Refrigeration and A/C Controls, Nordborg (Denmark)); Halvgaard, R.; Bagterp Joergensen, J. (Technical Univ. of Denmark (DTU). DTU Informatics, Kgs. Lyngby (Denmark))

    2011-05-15

    Refrigeration and heating systems consume substantial amounts of energy worldwide. However, due to the thermal capacity there is a potential for storing 'coldness' or heat in the system. This feature allows for implementation of different load shifting and shedding strategies in order to optimize the operation energywise, but without compromising the original cooling and indoor climate quality. In this work we investigate the potential of such a strategy and its ability to significantly lower the cost related to operating systems such as supermarket refrigeration and heat pumps for residential houses. With modern Economic Model Predictive Control (MPC) methods we make use of weather forecasts and predictions of varying electricity prices to apply more load to the system when the thermodynamic cycle is most efficient, and to consume larger shares of the electricity when the demand and thereby the prices are low. The ability to adjust power consumption according to the demands on the power grid is a highly wanted feature in a future Smart Grid. Efficient utilization of greater amounts of renewable energy calls for solutions to control the power consumption such that it increases when an energy surplus is available and decreases when there is a shortage. This should happen almost instantly to accommodate intermittent energy sources as e.g. wind turbines. We expect our power management solution to render systems with thermal storage capabilities suitable for flexible power consumption. The aggregation of several units will contribute significantly to the shedding of total electricity demand. Using small case studies we demonstrate the potential for utilizing daily variations to deliver a power efficient cooling or heating and for the implementation of Virtual Power Plants in Smart Grid scenarios. (Author)

  18. Oxygen Consumption Rate and Energy Expenditure in Mice: Indirect Calorimetry.

    Science.gov (United States)

    Kim, Eun Ran; Tong, Qingchun

    2017-01-01

    Global obesity epidemic demands more effective therapeutic treatments and better understanding of obesity pathophysiology. Since obesity results from energy imbalance, accurate quantification of energy intake and energy expenditure (EE) becomes an essential prerequisite to phenotype the cause for obesity development. Indirect calorimetry has long been used as one of the most established methods in EE quantification by detecting changes in levels of O2 consumption and CO2 production. In this article, we describe procedures and important considerations for an effective measurement using indirect calorimetry.

  19. Towards Flexibility Detection in Device-Level Energy Consumption

    DEFF Research Database (Denmark)

    Neupane, Bijay; Pedersen, Torben Bach; Thiesson, Bo

    2014-01-01

    The increasing drive towards green energy has boosted the installation of Renewable Energy Sources (RES). Increasing the share of RES in the power grid requires demand management by flexibility in the consumption. In this paper, we perform a state-of-the-art analysis on the flexibility...... regularities and patterns and the correlation between operating different devices. Subsequently, we show the existence of detectable time and energy flexibility in device operations. Finally, we provide various results providing a foundation for load- and flexibility-detection and -prediction at the device...

  20. Critical sustainability and energy consumption in urban transport

    Directory of Open Access Journals (Sweden)

    Jovanović Miomir

    2010-01-01

    Full Text Available Industrialized countries are exploiting the world energy resources very quickly (although they do not have enough of their own energy reserves. On the other hand, population of the Third world simply exploded during the last few decades. Hence, the real problem may occur if the Third world metropolises follow the example of the auto-dependent, low density suburban development of American cities. The effects will be disastrous: 14 times more energy consumption and 9 times higher emissions of CO2 (in the sphere of urban transportation.

  1. Towards Flexibility Detection in Device-Level Energy Consumption

    DEFF Research Database (Denmark)

    Neupane, Bijay; Pedersen, Torben Bach; Thiesson, Bo

    2014-01-01

    The increasing drive towards green energy has boosted the installation of Renewable Energy Sources (RES). Increasing the share of RES in the power grid requires demand management by flexibility in the consumption. In this paper, we perform a state-of-the-art analysis on the flexibility...... regularities and patterns and the correlation between operating different devices. Subsequently, we show the existence of detectable time and energy flexibility in device operations. Finally, we provide various results providing a foundation for load- and flexibility-detection and -prediction at the device...

  2. REDUCING ENERGY CONSUMPTION IN AGRICULTURAL PRODUCTION (POTATO EXAMPLE

    Directory of Open Access Journals (Sweden)

    Byshоv N. V.

    2016-06-01

    Full Text Available In recent years, in many countries around the world, much attention is paid to the issues of ensuring of rational use of energy resources, due to a number of objective factors, chief among which are: the lack of own energy resources to meet domestic energy needs; the sharp increase in the cost of production and the production of energy resources; further growth in energy needs; the presence of large potential opportunities to reduce unproductive losses of fuel and energy. In the world, the challenge now is to ensure a gradual but steady transfer of the economy on energy saving way of development. To achieve the goal of reducing energy costs we might use two ways: firstly, the widespread introduction of energy saving technologies, and secondly, the reduction of material production, improving its quality and service. In agriculture, the improvement of the technological process can be carried out using new tillage methods, improving the organization of production and tools. Further development of mechanization in agriculture will contribute to further growth of electrification in the agricultural sector, which will significantly reduce the use of the most expensive and limited energy resources. The article offers a technique of the estimation of the efficiency of consumption of energy in agricultural production. In order to compare the efficiency of machines in the cultivation and harvesting of potatoes, there was conducted an energy assessment of the operations of modern technology. As variables, there were investigated different operation modes of the machine: working speed and working width, depth of stroke of the working bodies. In the process of evaluating energy operations, modern technology to prepare the soil for planting potatoes was determined humidity, mechanical composition and soil type. As a main factor in the analysis of technological methods, we have taken the overall specific energy consumption and specific energy consumption for

  3. Limiting biomass consumption for heating in 100% renewable energy systems

    DEFF Research Database (Denmark)

    Mathiesen, Brian Vad; Lund, Henrik; Connolly, David

    2012-01-01

    The utilisation of biomass poses large challenges in renewable energy systems while buildings account for a substantial part of the energy supply even in 100% renewable energy systems. In this paper the focus is on how the heating sector can reduce its consumption of biomass, thus leaving biomass...... for other sectors, but while still enabling a 100% renewable energy system. The analyses of heating technologies shows that district heating (DH) systems are important in limiting the dependence on biomass and create cost effective solutions. DH systems are especially important in renewable energy systems...... with large amounts of fluctuating sources as it enables fuel efficient and low cost energy systems with thermal heat storages. DH increases the efficiency with the use of combined heat and power production (CHP), while reducing the biomass demand by enabling the use of other renewable resources such as large...

  4. Danish Sector Guide for Calculation of the Actual Energy Consumption

    DEFF Research Database (Denmark)

    Mortensen, Lone Hedegaard

    2016-01-01

    , the innovation network for sustainable construction, InnoBYG started work on a Danish sector guide for the calculation of actual energy consumption in relation to upgrading of buildings. The focus was to make a common guide for energy calculations that can be used by consultants performing calculations......Energy calculations have for a long time been a controversial topic as building owners do not necessarily achieve the promised energy savings after a building upgrade, but is this due to incorrect calculations or rather the evidence of misunderstandings in the communication? In Denmark...... of the energy calculation for building owners and developers. This paper describes the process that leads to the sector guide and briefly explains the content in both the technical guide and the communication paper. Finally the paper discusses some of the known dilemmas related to the measured energy...

  5. Process study and exergy analysis of a novel air separation process cooled by LNG cold energy

    Science.gov (United States)

    Xu, Wendong; Duan, Jiao; Mao, Wenjun

    2014-02-01

    In order to resolve the problems of the current air separation process such as the complex process, cumbersome operation and high operating costs, a novel air separation process cooled by LNG cold energy is proposed in this paper, which is based on high-efficiency heat exchanger network and chemical packing separation technology. The operating temperature range of LNG cold energy is widened from 133K-203K to 113K-283K by high-efficiency heat exchanger network and air separation pressure is declined from 0.5MPa to about 0.35MPa due to packing separation technology, thereby greatly improve the energy efficiency. Both the traditional and novel air separation processes are simulated with air handling capacity of 20t·h-1. Comparing with the traditional process, the LNG consumption is reduced by 44.2%, power consumption decrease is 211.5 kWh per hour, which means the annual benefit will be up to 1.218 million CNY. And the exergy efficiency is also improved by 42.5%.

  6. THE EFFECT OF VENTILATION AND ECONOMIZER ON ENERGY CONSUMPTIONS FOR AIR SOURCEHEAT PUMPS IN SCHOOLS

    Directory of Open Access Journals (Sweden)

    Nihal Al Raees

    2014-01-01

    Full Text Available The study discusses the applications of CO2-based demand-controlled ventilation DCV strategy integrated with the economizer for air source heat pumps in schools, investigates their impact on the annual heating, cooling and total energy consumption, also determines the potential savings achieved in different USA locations. The study includes detailed energy analysis on an existing middle school through whole building simulation energy software. The simulation model is first calibrated and checked for accuracy using actual monthly utility data. This model is then used for savings calculations resulted from a combination of air-side economizer and CO2-based DCV and with various occupancy profiles and locations. The results show that a significant saving could be obtained as compared to the actual operating strategy implemented in the existing system and this saving depends mainly on the actual occupancy profile and building locations.

  7. Energy Consumption in Rural China: Analysis of Rural Living Energy in Beijing

    Science.gov (United States)

    Yang, Yu; Yifang, Liu; Wei, Zhu

    2017-08-01

    Under the pressure of climate change and international carbon reduction targets, long-neglected rural energy consumption needs to be given high priority. China’s rural energy consumption structure is in the transition from non-commercial to commercial sources, and rural energy has become a key determinant to slow down the carbon emission growth. This paper systematically calibrates the current situation of rural energy consumption in Beijing by using the survey data of 1866 households in 13 districts and counties in Beijing based on the trend of energy supply and demand change in China. To this end, the paper combines rural policy measures to assess the pressure on coal-burning and clean energy supply trends, puts forward the rural energy structure adjustment path, with a view to promoting the use of clean energy in rural areas and reduce the environmental consequences of coal-burning.

  8. Standby energy consumption in Ukraine. Making a case for households

    Energy Technology Data Exchange (ETDEWEB)

    Martsynkevych, Vladlena

    2008-07-01

    The current research is the first study of standby energy consumption in households in Ukraine. It provides insights to the scope of the problem and the opportunities to improve the situation. Standby power refers to power consumed by appliances when they are not performing their primary function and are switched ''off''. Measurements of 50 households were performed. Standby power was measured and a questionnaire was used to find out the behavioural patterns. The combined standby power use is about 23.4 W per household, resulting in national 1.3 TW h per year and 0.8% of the national electricity consumption respectively. The CO2 emissions from standby account for 0.1% of the emissions in Ukraine per year. Different scenarios show the possibilities to reduce standby consumption and CO2 emissions from 10% to 70% under different conditions. The main determinant of household electricity consumption is the number of appliances it has. Levels of standby power use are lower in Ukraine than in developed countries. However, the tendencies are such that the penetration level is growing, and, particularly, of new appliances with standby modes. It is pointed out that there is a need for national standards enforcement, raise of public awareness and price incentives for the reduction of standby power consumption. (orig.)

  9. Benchmarking of energy consumption of continuous galvanizing lines

    Science.gov (United States)

    Gopalakrishnan, B.; Chavan, R.

    2005-11-01

    A case study revealed that more than 13,500 MMBtu of energy is wasted annually when a single galvanizing line is off-production for hardware replacement for duration of a few hours every 2 weeks. This energy if utilized for production will yield about 13,000 tons of Galvanized Sheet Steel annually from a single galvanizing line. Thus for the 57 [1] hot dip galvanizing lines in US this figure results in a production loss of 741,000 tons/year. An attempt has been made to develop a spreadsheet that will take into account all the major energy consuming equipment in a typical hot dip continuous line. It maintains a track of the current production and energy consumption. It can simulate a scenario where either the number of shutdowns or the hours per shutdown will be reduced as a consequence of better material developed by the researchers. Different charts pertaining to energy consumed by different equipment group, total cost of energy spent on natural gas and electricity, MMBtu/Ton, Tons/Year and Production time before shutdowns assists the engineers decide the best operating stretch to suite their production rate and optimize energy consumption to some extent. Validation data gathered from the three well established galvanizing lines powers this spreadsheet to forecast annual increase in production and thus helps judge the performance of the new hardware.

  10. Sustainable energy consumption and production - a global view

    Energy Technology Data Exchange (ETDEWEB)

    Hernes, H.

    1995-12-31

    The paper gives a global view of sustainable energy consumption and production both in developed and developing countries. There is a need of replacing fossil fuel sources with renewable energy at a speed parallel to the depletion of the oil and gas sources. According to the author, the actual growth in developing countries` use of oil, coal and other sources of energy has almost tripled since 1970. Future population growth alone will spur a further 70% jump in energy use in 30 years, even if per capita consumption remains at current levels. For the OECD countries, energy use rose one fifth as much as economic growth between 1973 and 1989. Countries like China and India, and other developing countries, have huge coal reserves and energy needs. Policy makers have to integrate environmental concerns in decision making over the choice between different fuels, energy technologies and stricter environmental standards. Life cycle analyses can contribute to the development of overall indicators of environmental performance of different technologies. According to the IPCC (Intergovernmental Panel on Climate Change), anthropogenic CO{sub 2} emissions must be reduced by more than 60% in order to stabilize the CO{sub 2} concentration in the atmosphere. 8 refs.

  11. Inequality across countries in energy intensities: an analysis of the role of energy transformation and final energy consumption

    OpenAIRE

    Duro Moreno, Juan Antonio; Padilla, Emilio

    2010-01-01

    This paper analyzes the role of the energy transformation index and of final energy consumption per GDP unit in the disparities in energy intensity across countries. In that vein, we use a Theil decomposition approach to analyze global primary energy intensity inequality as well as inequality across different regions of the world and inequality within these regions. The paper first demonstrates the pre-eminence of divergence in final energy consumption per GDP unit in explaining global primar...

  12. Predicting the Specific Energy Consumption of Reverse Osmosis Desalination

    Directory of Open Access Journals (Sweden)

    Ashlynn S. Stillwell

    2016-12-01

    Full Text Available Desalination is often considered an approach for mitigating water stress. Despite the abundance of saline water worldwide, additional energy consumption and increased costs present barriers to widespread deployment of desalination as a municipal water supply. Specific energy consumption (SEC is a common measure of the energy use in desalination processes, and depends on many operational and water quality factors. We completed multiple linear regression and relative importance statistical analyses of factors affecting SEC using both small-scale meta-data and municipal-scale empirical data to predict the energy consumption of desalination. Statistically significant results show water quality and initial year of operations to be significant and important factors in estimating SEC, explaining over 80% of the variation in SEC. More recent initial year of operations, lower salinity raw water, and higher salinity product water accurately predict lower values of SEC. Economic analysis revealed a weak statistical relationship between SEC and cost of water production. Analysis of associated greenhouse gas (GHG emissions revealed important considerations of both electricity source and SEC in estimating the GHG-related sustainability of desalination. Results of our statistical analyses can aid decision-makers by predicting the SEC of desalination to a reasonable degree of accuracy with limited data.

  13. Estimation of Energy Consumption and Greenhouse Gas Emissions considering Aging and Climate Change in Residential Sector

    Science.gov (United States)

    Lee, M.; Park, C.; Park, J. H.; Jung, T. Y.; Lee, D. K.

    2015-12-01

    The impacts of climate change, particularly that of rising temperatures, are being observed across the globe and are expected to further increase. To counter this phenomenon, numerous nations are focusing on the reduction of greenhouse gas (GHG) emissions. Because energy demand management is considered as a key factor in emissions reduction, it is necessary to estimate energy consumption and GHG emissions in relation to climate change. Further, because South Korea is the world's fastest nation to become aged, demographics have also become instrumental in the accurate estimation of energy demands and emissions. Therefore, the purpose of this study is to estimate energy consumption and GHG emissions in the residential sectors of South Korea with regard to climate change and aging to build more accurate strategies for energy demand management and emissions reduction goals. This study, which was stablished with 2010 and 2050 as the base and target years, respectively, was divided into a two-step process. The first step evaluated the effects of aging and climate change on energy demand, and the second estimated future energy use and GHG emissions through projected scenarios. First, aging characteristics and climate change factors were analyzed by using the logarithmic mean divisia index (LMDI) decomposition analysis and the application of historical data. In the analysis of changes in energy use, the effects of activity, structure, and intensity were considered; the degrees of contribution were derived from each effect in addition to their relations to energy demand. Second, two types of scenarios were stablished based on this analysis. The aging scenarios are business as usual and future characteristics scenarios, and were used in combination with Representative Concentration Pathway (RCP) 2.6 and 8.5. Finally, energy consumption and GHG emissions were estimated by using a combination of scenarios. The results of these scenarios show an increase in energy consumption

  14. Simulation-based coefficients for adjusting climate impact on energy consumption of commercial buildings

    Energy Technology Data Exchange (ETDEWEB)

    Wang, Na; Makhmalbaf, Atefe; Srivastava, Viraj; Hathaway, John E.

    2016-11-23

    This paper presents a new technique for and the results of normalizing building energy consumption to enable a fair comparison among various types of buildings located near different weather stations across the U.S. The method was developed for the U.S. Building Energy Asset Score, a whole-building energy efficiency rating system focusing on building envelope, mechanical systems, and lighting systems. The Asset Score is calculated based on simulated energy use under standard operating conditions. Existing weather normalization methods such as those based on heating and cooling degrees days are not robust enough to adjust all climatic factors such as humidity and solar radiation. In this work, over 1000 sets of climate coefficients were developed to separately adjust building heating, cooling, and fan energy use at each weather station in the United States. This paper also presents a robust, standardized weather station mapping based on climate similarity rather than choosing the closest weather station. This proposed simulated-based climate adjustment was validated through testing on several hundreds of thousands of modeled buildings. Results indicated the developed climate coefficients can isolate and adjust for the impacts of local climate for asset rating.

  15. Cardiovascular complications from consumption of high energy drinks: recent evidence.

    Science.gov (United States)

    Chrysant, S G; Chrysant, G S

    2015-02-01

    The energy drinks (ED) are caffeinated beverages that are popular among teenagers and young adults. They are aggressively marketed as providing alertness, energy and sex prowess. The EDs in addition to caffeine contain several plant stimulants and simple sugars, which increase their caloric content. The caffeine concentration in these drinks is high and their overconsumption could lead to insomnia, agitation, tremors and cardiovascular complications including sudden death. Alcohol is often mixed with EDs (AMEDs) in the wrong perception that the caffeine in the EDs will prevent the drowsiness and sleepiness from alcohol and allow the person to consume more alcohol. This false perception, could lead to alcohol intoxication and the taking of risky decisions, like driving under the influence of alcohol and the risk of serious physical harm to themselves and others. To prevent the problem of consumption of EDs and AMEDs, the caring physician could help by advising the parents and his young patients about the serious health risks from the consumption of these drinks. In order to grasp the extend of the problem of ED and AMED consumption, we did a Medline search of the English language literature from January 2010 to December 2013, using the terms EDs and alcohol-mixed EDs. All the findings from the recent studies regarding the cardiovascular complications from the consumption of EDs and AMEDs together with collateral literature will be discussed in this review.

  16. Optimization of a solar cooling system with interior energy storage

    Energy Technology Data Exchange (ETDEWEB)

    Sanjuan, C.; Soutullo, S.; Heras, M.R. [Department of Energy, Energy Efficiency in Buildings Unit, CIEMAT, Madrid E-28040 (Spain)

    2010-07-15

    This paper focuses on the optimization of the performance of a solar absorption cooling system composed by four units with interior energy storage. A full dynamic simulation model that includes the solar collector field, the absorption heat pump system and the building load calculation has been developed. It has been applied to optimize the coupling of a system based on this new technology of solar powered absorption heat pump, to a bioclimatic building recently constructed in the Plataforma Solar de Almeria (PSA) in Spain. The absorption heat pump system considered is composed by four heat pumps that store energy in the form of crystallized salts so that no external storage capacity is required. Each heat pump is composed of two separate barrels that can charge (store energy from the solar field) and discharge (deliver heat or cold to the building) independently. Different configurations of the four units have been analysed taking into account the storage possibilities of the system and its capacity to respond to the building loads. It has been shown how strong the influence of the control strategies in the overall performance is, and the importance of using hourly simulations models when looking for highly efficient buildings. (author)

  17. TV Energy Consumption Trends and Energy-Efficiency Improvement Options

    Energy Technology Data Exchange (ETDEWEB)

    Park, Won Young; Phadke, Amol; Shah, Nihar; Letschert, Virginie

    2011-07-01

    The SEAD initiative aims to transform the global market by increasing the penetration of highly efficient equipment and appliances. SEAD is a government initiative whose activities and projects engage the private sector to realize the large global energy savings potential from improved appliance and equipment efficiency. SEAD seeks to enable high-level global action by informing the Clean Energy Ministerial dialogue as one of the initiatives in the Global Energy Efficiency Challenge. In keeping with its goal of achieving global energy savings through efficiency, SEAD was approved as a task within the International Partnership for Energy Efficiency Cooperation (IPEEC) in January 2010. SEAD partners work together in voluntary activities to: (1) ?raise the efficiency ceiling? by pulling super-efficient appliances and equipment into the market through cooperation on measures like incentives, procurement, awards, and research and development (R&D) investments; (2) ?raise the efficiency floor? by working together to bolster national or regional policies like minimum efficiency standards; and (3) ?strengthen the efficiency foundations? of programs by coordinating technical work to support these activities. Although not all SEAD partners may decide to participate in every SEAD activity, SEAD partners have agreed to engage actively in their particular areas of interest through commitment of financing, staff, consultant experts, and other resources. In addition, all SEAD partners are committed to share information, e.g., on implementation schedules for and the technical detail of minimum efficiency standards and other efficiency programs. Information collected and created through SEAD activities will be shared among all SEAD partners and, to the extent appropriate, with the global public.As of April 2011, the governments participating in SEAD are: Australia, Brazil, Canada, the European Commission, France, Germany, India, Japan, Korea, Mexico, Russia, South Africa, Sweden

  18. Electricity Generation, Electricity Consumption, and Energy Efficiency in the United States: A Dual Climatic-Behavioral Approach

    Science.gov (United States)

    Craig, Christopher Alan

    Much of the United States (US) has seen an increase in warm days, decrease in cool days, and increase in extreme weather events. These trends are projected to continue across much of the US and in turn increase the demand for electricity and subsequent greenhouse gas emissions. Ambitious energy efficiency (EE) programs are used across the US by energy utility organizations to reduce electricity demand and emissions. This study examined the impact of climatic variability on electricity consumption, as well as how pro-conservation interventions such as EE programs and experiential learning can be utilized to mitigate residential electricity consumption and emissions. Chapter 2 of this study examined the impact of EE programs on residential electricity consumption taking into account climatic indicators across the contiguous US. A state-by-state analysis suggested that climatic indicators were more explanatory of residential consumption than energy utility organization EE efforts at the state-level. Chapter 3 examined residential electricity consumption for heating and cooling applications explained by energy utility organization EE efforts and climatic indicators in the Southeast US. Indirect spending on EE programs was significantly related to heating and cooling applications and heating degree days, a climatic indicator for number of days over a certain temperature, were significantly related to cooling equipment applications. A survey of 2,450 residential electricity consumers was analyzed. Residents who were aware of EE programs and participated in EE programs were significantly more likely than those who were not to support energy utility organization use of clean energy and government subsidies for EE programs. Chapter 4 provided case study in a Southeast US state where a pro-conservation behavioral intervention was deployed in an elementary school. This chapter utilized a longitudinal design and mixed methodology to assess the effect of curriculum

  19. Energy drink consumption and increased risk for alcohol dependence

    Science.gov (United States)

    Arria, Amelia M.; Caldeira, Kimberly M.; Kasperski, Sarah J.; Vincent, Kathryn B.; Griffiths, Roland R.; O'Grady, Kevin E.

    2010-01-01

    Background Energy drinks are highly caffeinated beverages that are increasingly consumed by young adults. Prior research has established associations between energy drink use and heavier drinking and alcohol-related problems among college students. This study investigated the extent to which energy drink use might pose additional risk for alcohol dependence over and above that from known risk factors. Methods Data were collected via personal interview from 1,097 fourth-year college students sampled from one large public university as part of an ongoing longitudinal study. Alcohol dependence was measured with DSM-IV criteria. Results After adjustment for the sampling design, 51.3%wt of students were classified as “low-frequency” energy drink users (1 to 51 days in the past year) and 10.1%wt as “high-frequency” users (≥52 days). Typical caffeine consumption varied widely depending on the brand consumed. Compared to the low-frequency group, high-frequency users drank alcohol more frequently (141.6 vs. 103.1 days) and in higher quantities (6.15 vs. 4.64 drinks/typical drinking day). High-frequency users were at significantly greater risk for alcohol dependence relative to both non-users (AOR=2.40, 95% CI=1.27-4.56, p=.007) and low-frequency users (AOR=1.86, 95% CI=1.10, 3.14, p=.020), even after holding constant demographics, typical alcohol consumption, fraternity/sorority involvement, depressive symptoms, parental history of alcohol/drug problems, and childhood conduct problems. Low-frequency energy drink users did not differ from non-users on their risk for alcohol dependence. Conclusions Weekly or daily energy drink consumption is strongly associated with alcohol dependence. Further research is warranted to understand the possible mechanisms underlying this association. College students who frequently consume energy drinks represent an important target population for alcohol prevention. PMID:21073486

  20. Thermal modeling in an engine cooling system to control coolant flow for fuel consumption improvement

    Science.gov (United States)

    Park, Sangki; Woo, Seungchul; Kim, Minho; Lee, Kihyung

    2016-09-01

    The design and evaluation of engine cooling and lubrication systems is generally based on real vehicle tests. Our goal here was to establish an engine heat balance model based on mathematical and interpretive analysis of each element of a passenger diesel engine cooling system using a 1-D numerical model. The purpose of this model is to determine ways of optimizing the cooling and lubrication components of an engine and then to apply these methods to actual cooling and lubrication systems of engines that will be developed in the future. Our model was operated under the New European Driving Cycle (NEDC) mode conditions, which represent the fuel economy evaluation mode in Europe. The flow rate of the cooling system was controlled using a control valve. Our results showed that the fuel efficiency was improved by as much as 1.23 %, cooling loss by 1.35 %, and friction loss by 2.21 % throughout NEDC modes by modification of control conditions.

  1. Energy consumption quota management of Wanda commercial buildings in China

    Science.gov (United States)

    Sun, D. B.; Xiao, H.; Wang, X.; Liu, J. J.; Wang, X.; Jin, X. Q.; Wang, J.; Xie, X. K.

    2016-08-01

    There is limited research of commercial buildings’ energy use data conducted based on practical analysis in China nowadays. Some energy consumption quota tools like Energy Star in U.S or VDI 3807 in Germany have limitation in China's building sector. This study introduces an innovative methodology of applying energy use quota model and empirical management to commercial buildings, which was in accordance of more than one hundred opened shopping centers of a real estate group in China. On the basis of statistical benchmarking, a new concept of “Modified coefficient”, which considers weather, occupancy, business layout, operation schedule and HVAC efficiency, is originally introduced in this paper. Our study shows that the average energy use quota increases from north to south. The average energy use quota of sample buildings is 159 kWh/(m2.a) of severe cold climate zone, 179 kWh/(m2.a) of cold zone, 188 kWh/(m2.a) of hot summer and cold winter zone, and 200 kWh/(m2.a) of hot summer and warm winter zone. The energy use quota model has been validated in the property management for year 2016, providing a new method of commercial building energy management to the industry. As a key result, there is 180 million energy saving potential based on energy quota management in 2016, equals to 6.2% saving rate of actual energy use in 2015.

  2. Utilization of process energy from supermarket refrigeration systems. Coupling of cooling and heating; Prozessenergienutzung von Supermarktkaelteanlagen. Kaelte-Waerme-Kopplung

    Energy Technology Data Exchange (ETDEWEB)

    Wirsching, Alexander [TEKO Gesellschaft fuer Kaeltetechnik mbH, Altenstadt (Germany). Technologie und Kommunikation

    2010-03-15

    The efficiency is defined as the relation between utility and expenditure. Thus, it is obvious for the specialist of refrigeration to tackle with the expenditure (energy consumption) since the utilization conventionally is defined as the produced/need cooling performance of a refrigeration plant. If refrigeration plants are regarded according to their function (withdrawal of heat from a refrigeration chamber and delivery to the environment), the heating system is the producer of the requirement for cooling in 'the winter' (heating season). Thus, the refrigeration plant perhaps already has a marvellous efficiency, and the separate heating system too - however in interaction. The broad view moves into the focus. The possible approaches and effects are described in the contribution under consideration using the example of a Discount supermarket with a sales area of 800 square meters and a requirement of cooling of more than 30 kW.

  3. Building environment assessment and energy consumption estimation using smart phones

    Science.gov (United States)

    Li, Xiangli; Zhang, Li; Jia, Yingqi; Wang, Zihan; Jin, Xin; Zhao, Xuefeng

    2017-04-01

    In this paper, an APP for building indoor environment evaluation and energy consumption estimation based on Android platform is proposed and established. While using the APP, the smart phone built-in sensors are called for real-time monitoring of the building environmental information such as temperature, humidity and noise, etc. the built-in algorithm is developed to calculate the heat and power consumption, and questionnaires, grading and other methods are used to feed back to the space heating system. In addition, with the application of the technology of big data and cloud technology, the data collected by users will be uploaded to the cloud. After the statistics of the uploaded data, regional difference can be obtained, thus providing a more accurate basis for macro-control and research of energy, thermal comfort, greenhouse effect.

  4. Various multistage ensembles for prediction of heating energy consumption

    Directory of Open Access Journals (Sweden)

    Radisa Jovanovic

    2015-04-01

    Full Text Available Feedforward neural network models are created for prediction of daily heating energy consumption of a NTNU university campus Gloshaugen using actual measured data for training and testing. Improvement of prediction accuracy is proposed by using neural network ensemble. Previously trained feed-forward neural networks are first separated into clusters, using k-means algorithm, and then the best network of each cluster is chosen as member of an ensemble. Two conventional averaging methods for obtaining ensemble output are applied; simple and weighted. In order to achieve better prediction results, multistage ensemble is investigated. As second level, adaptive neuro-fuzzy inference system with various clustering and membership functions are used to aggregate the selected ensemble members. Feedforward neural network in second stage is also analyzed. It is shown that using ensemble of neural networks can predict heating energy consumption with better accuracy than the best trained single neural network, while the best results are achieved with multistage ensemble.

  5. Energy consumption in air-conditioning; Improvement and Reduction

    Directory of Open Access Journals (Sweden)

    Yacoub Yousef Ahmad Alotaibi

    2015-06-01

    Full Text Available Anew technique to reduce latent heat to improve energy consumption in air-conditioning is by using Desiccant . The aim of dehumidification process is to remove the water vapor from the processed air to liquid desiccants. Dehumidification is considered as a key feature of HVAC systems for thermal comfort. Chemical dehumidification is remove the water vapour from the air by transferring it towards a desiccant material (adsorption or absorption. Results illustrate that the application of liquid desiccant in air conditioning can improve indoor air quality, reduce energy consumption and bring environmentally friendly products, also. Lewis number increased rapidly with the increase of solution concentration Therefore liquid desiccant air conditioning systems are drawing more and more attention in recent years.

  6. Green smartphone GPUs: Optimizing energy consumption using GPUFreq scaling governors

    KAUST Repository

    Ahmad, Enas M.

    2015-10-19

    Modern smartphones are limited by their short battery life. The advancement of the graphical performance is considered as one of the main reasons behind the massive battery drainage in smartphones. In this paper we present a novel implementation of the GPUFreq Scaling Governors, a Dynamic Voltage and Frequency Scaling (DVFS) model implemented in the Android Linux kernel for dynamically scaling smartphone Graphical Processing Units (GPUs). The GPUFreq governors offer users multiple variations and alternatives in controlling the power consumption and performance of their GPUs. We implemented and evaluated our model on a smartphone GPU and measured the energy performance using an external power monitor. The results show that the energy consumption of smartphone GPUs can be significantly reduced with a minor effect on the GPU performance.

  7. A Unified Monitoring Framework for Energy Consumption and Network Traffic

    Directory of Open Access Journals (Sweden)

    Florentin Clouet

    2015-08-01

    Full Text Available Providing experimenters with deep insight about the effects of their experiments is a central feature of testbeds. In this paper, we describe Kwapi, a framework designed in the context of the Grid'5000 testbed, that unifies measurements for both energy consumption and network traffic. Because all measurements are taken at the infrastructure level (using sensors in power and network equipment, using this framework has no dependencies on the experiments themselves. Initially designed for OpenStack infrastructures, the Kwapi framework allows monitoring and reporting of energy consumption of distributed platforms. In this article, we present the extension of Kwapi to network monitoring, and outline how we overcame several challenges: scaling to a testbed the size of Grid'5000 while still providing high-frequency measurements; providing long-term loss-less storage of measurements; handling operational issues when deploying such a tool on a real infrastructure.

  8. FDI, Economic Growth, Energy Consumption & Environmental Nexus in Bangladesh

    Directory of Open Access Journals (Sweden)

    Sandip SARKER

    2016-04-01

    Full Text Available This paper attempts to investigate the relationship among economic growth, energy consumption, CO2 emission, FDI and natural gas usage in Bangladesh through co-integration and Vector Error Correction model (VECM over the period 1978 to 2010. Using ADP unit root tests it is found that all the four variables are integrated in first difference. The Johansen co-integration tests indicate that there is existence of long-run relationship among the variables. The VECM long run causality model indicates that there is a long run causality running from energy consumption and natural gas usage by industrial sector to GDP as well as from CO2 emission to FDI. Likewise in the short run a causal relationships have also been found among the variables. Moreover our model is found be error free based on several statistical test. Our results provide important policy suggestions regarding our foreign direct investment, environmental issues and economic growth nexus in Bangladesh.

  9. Long Term Energy Consumption Forecasting Using Genetic Programming

    OpenAIRE

    KARABULUT, Korhan; Alkan, Ahmet; YILMAZ, Ahmet

    2008-01-01

    Managing electrical energy supply is a complex task. The most important part of electric utility resource planning is forecasting of the future load demand in the regional or national service area. This is usually achieved by constructing models on relative information, such as climate and previous load demand data. In this paper, a genetic programming approach is proposed to forecast long term electrical power consumption in the area covered by a utility situated in the southeast of Turkey. ...

  10. Contribution of Renewable Cooling to the Renewable Energy Target of the EU. Policy report

    Energy Technology Data Exchange (ETDEWEB)

    Kenkmann, T.; Buerger, V. [The Oeko-Institut, Freiburg (Germany)

    2012-06-15

    Renewable cooling technologies do not play a major role in the climate protection discussion in the European Union today. At the same time the cooling demand is expected to increase significantly in the coming decades. Renewable cooling technologies could contribute to the EU renewable energy target if an appropriate political framework for a further spread of the technologies is created. This renewable cooling policy report intends to support the dissemination of renewable cooling technologies. It provides an overview of the situation, technologies and potential for cool-ing from renewable sources and identifies key areas in which further investigation is required. The report shows that there is a great need for the creation of a political framework supporting the market diffusion of renewable cooling technologies. Firstly the question of a commonly accepted definition on renewable cooling is being addressed. Secondly renewable cooling technologies are described and the today's role of cooling in European statistics and policies is analysed. In the next step existing studies are evaluated to compare the expected development of the cooling demand in Europe to the market potential of renewable cooling. At the end of the paper a long-term vision for renewable cooling is described and first steps towards a European roadmap for renewable cooling are given.

  11. A versatile tool to energy efficiency. Pumps in cooling and air-conditioning appliances; Vielseitige Schluessel zur Energieeffizienz. Pumpen in der Kaelte- und Klimatechnik

    Energy Technology Data Exchange (ETDEWEB)

    Anon.

    2012-10-15

    Pumps are ubiquitous in refrigeration systems and air conditioning systems. Pumps are present in large numbers particularly in large buildings with correspondent cooling demand. The used pump technology has a significant impact on the energy consumption and thus also on the efficiency of the entire system. Thus a look at the various pump types and their applications as well as electricity consumption is worthwhile. The pump expert WILO SE (Dortmund, Federal Republic of Germany) explains the basic fundamentals of pump technology.

  12. Changes of temperature data for energy studies over time and their impact on energy consumption and CO2 emissions. The case of Athens and Thessaloniki – Greece

    Energy Technology Data Exchange (ETDEWEB)

    Papakostas, K.T.; Michopoulos, A.; Kyriakis, N. [Process Equipment Design Laboratory, Mechanical Engineering Department, Energy Division, Aristotle University of Thessaloniki - 54124 Thessaloniki (Greece); Mavromatis, T. [Department of Meteorology-Climatology, School of Geology, Faculty of Sciences, Aristotle University of Thessaloniki - 54124 Thessaloniki (Greece)

    2013-07-01

    In steady-state methods for estimating energy consumption of buildings, the commonly used data include the monthly average dry bulb temperatures, the heating and cooling degree-days and the dry bulb temperature bin data. This work presents average values of these data for the 1983-1992 and 1993-2002 decades, calculated for Athens and Thessaloniki, determined from hourly dry bulb temperature records of meteorological stations (National Observatory of Athens and Aristotle University of Thessaloniki). The results show that the monthly average dry bulb temperatures and the annual average cooling degree-days of the 1993-2002 decade are increased, compared to those of the 1983-1992 decade, while the corresponding annual average heating degree-days are reduced. Also, the low temperature bins frequency results decreased in the 1993-2002 decade while the high temperature ones increased, compared to the 1983-1992 decade. The effect of temperature data variations on the energy consumption and on CO2 emissions of buildings was examined by calculating the energy demands for heating and cooling and the CO2 emissions from diesel-oil and electricity use of a typical residential building-model. From the study it is concluded that the heating energy requirements during the decade 1993-2002 were decreased, as compared to the energy demands of the decade 1983-1992, while the cooling energy requirements were increased. The variations of CO2 emissions from diesel oil and electricity use were analog to the energy requirements alterations. The results indicate a warming trend, at least for the two regions examined, which affect the estimation of heating and cooling demands of buildings. It, therefore, seems obvious that periodic adaptation of the temperature data used for building energy studies is required.

  13. Dynamic simulation of energy consumption in mixed traffic flow considering highway toll station

    Science.gov (United States)

    Qian, Yong-Sheng; Zhang, Xiao-Long; Zeng, Jun-Wei; Shao, Xiao-Ming; Wang, Neng

    2015-01-01

    An improved model of energy consumption including toll station is presented in this paper. Using the model, we study the influences of mixed ratio, the idling energy consumption of vehicle, vehicle peak velocity, dwell time and random deceleration probability on energy consumption of Electronic Toll Collection or Manual Toll Collection mixed traffic flow on single lane under periodic condition. Simulating results indicate that the above five parameters are all increasing functions of total energy consumption, in which the idling energy consumption represents the major amounts with the increase of mixed ratio and occupancy rate. Thus, the existence of toll station has significant effect on the energy consumption of mixed traffic flow.

  14. Effect of thermal energy storage in energy consumption required for air conditioning system in office building under the African Mediterranean climate

    Directory of Open Access Journals (Sweden)

    Abdulgalil Mohamed M.

    2014-01-01

    Full Text Available In the African Mediterranean countries, cooling demand constitutes a large proportion of total electrical demand for office buildings during peak hours. The thermal energy storage systems can be an alternative method to be utilized to reduce and time shift the electrical load of air conditioning from on-peak to off-peak hours. In this study, the Hourly Analysis Program has been used to estimate the cooling load profile for an office building based in Tripoli weather data conditions. Preliminary study was performed in order to define the most suitable operating strategies of ice thermal storage, including partial (load leveling and demand limiting, full storage and conventional A/C system. Then, the mathematical model of heat transfer for external ice storage would be based on the operating strategy which achieves the lowest energy consumption. Results indicate that the largest rate of energy consumption occurs when the conventional system is applied to the building, while the lowest rate of energy consumption is obtained when the partial storage (demand limiting 60% is applied. Analysis of results shows that the new layer of ice formed on the surface of the existing ice lead to an increase of thermal resistance of heat transfer, which in return decreased cooling capacity.

  15. Energy consumptions in existing buildings; Les consommations d'energie des batiments existants

    Energy Technology Data Exchange (ETDEWEB)

    Nuss, St. [Ecole Nationale Superieure des Arts et Industries de Strasbourg, 78 - Saint-Remy-Les-Chevreuse (France)]|[Costic, 78 - Sainte Remy les Chevreuses (France)

    2002-05-01

    This document presents a sectoral analysis of the energy consumptions in existing French buildings: 1) - residential sector: social buildings, private dwellings; 2) - tertiary sector: office buildings, hotels, commercial buildings, school buildings, hospitals; 3) - industry; 4) - general status. (J.S.)

  16. Impact of CBR Traffic on Energy Consumption in MANET

    Science.gov (United States)

    Kabbur Mr., Shridhar; Ahammed, G. F. Ali, Dr.; Banu, Rashma, Dr.

    2017-08-01

    Mobile Ad hoc networks (MANETs) are power constrained since nodes are operated with limited battery supply. If a battery of the node drains, its ability to forward the traffic gets affected results in reduced network lifetime. There has been considerable progress in the battery technology, but not in par with the semiconductor technology. There are various techniques adopt different approach to achieve energy efficiency. The proposed approach uses a cost metric for path selection, which is a function of residual battery and current traffic load at a node. The simulation has been carried out using QualNet simulator. The performance is based on average energy consumption for varying CBR applications.

  17. Forecast errors in IEA-countries' energy consumption

    DEFF Research Database (Denmark)

    Linderoth, Hans

    2002-01-01

    Every year Policy of IEA Countries includes a forecast of the energy consumption in the member countries. Forecasts concerning the years 1985,1990 and 1995 can now be compared to actual values. The second oil crisis resulted in big positive forecast errors. The oil price drop in 1986 did not have...... the small value is often the sum of large positive and negative errors. Almost no significant correlation is found between forecast errors in the 3 years. Correspondingly, no significant correlation coefficient is found between forecasts errors in the 3 main energy sectors. Therefore, a relatively small...

  18. The water footprint of energy consumption: an assessment of water requirements of primary energy carriers

    NARCIS (Netherlands)

    Gerbens-Leenes, P.W.; Hoekstra, A.Y.; Van der Meer, T.H.

    2007-01-01

    Gerbens-Leenes, P.W., Hoekstra, A.Y., Van der Meer, T.H., 2007. The water footprint of energy consumption: an assessment of water requirements of primary energy carriers. In: proceedings ‘First World Water Sustainability-Renewable Energy Congress and Exhibition’. 25-28 November 2007, Maastricht, the

  19. The water footprint of energy consumption: an assessment of water requirements of primary energy carriers

    NARCIS (Netherlands)

    Gerbens-Leenes, P.W.; Hoekstra, A.Y.; Van der Meer, T.H.

    2007-01-01

    Gerbens-Leenes, P.W., Hoekstra, A.Y., Van der Meer, T.H., 2007. The water footprint of energy consumption: an assessment of water requirements of primary energy carriers. In: proceedings ‘First World Water Sustainability-Renewable Energy Congress and Exhibition’. 25-28 November 2007, Maastricht, the

  20. Global Inequality in Energy Consumption from 1980 to 2010

    CERN Document Server

    Lawrence, Scott; Yakovenko, Victor M

    2013-01-01

    We study the global probability distribution of energy consumption per capita around the world using data from the U.S. Energy Information Administration (EIA) for 1980-2010. We find that the Lorenz curves have moved up during this time period, and the Gini coefficient G has decreased from 0.66 in 1980 to 0.55 in 2010, indicating a decrease in inequality. The global probability distribution of energy consumption per capita in 2010 is close to the exponential distribution with G=0.5. We attribute this result to the globalization of the world economy, which mixes the world and brings it closer to the state of maximal entropy. We argue that global energy production is a limited resource that is partitioned among the world population. The most probable partition is the one that maximizes entropy, thus resulting in the exponential distribution function. A consequence of the latter is the law of 1/3: the top 1/3 of the world population consumes 2/3 of produced energy. We also find similar results for the global pro...

  1. Global Inequality in Energy Consumption from 1980 to 2010

    Directory of Open Access Journals (Sweden)

    Scott Lawrence

    2013-12-01

    Full Text Available We study the global probability distribution of energy consumption per capita around the world using data from the U.S. Energy Information Administration (EIA for 1980–2010. We find that the Lorenz curves have moved up during this time period, and the Gini coefficient, G, has decreased from 0.66 in 1980 to 0.55 in 2010, indicating a decrease in inequality. The global probability distribution of energy consumption per capita in 2010 is close to the exponential distribution withG = 0:5. We attribute this result to the globalization of the world economy, which mixes the world and brings it closer to the state of maximal entropy. We argue that global energy production is a limited resource that is partitioned among the world population. The most probable partition is the one that maximizes entropy, thus resulting in the exponential distribution function. A consequence of the latter is the law of 1/3: the top 1/3 of the world population consumes 2/3 of produced energy. We also find similar results for the global probability distribution of CO2 emissions per capita.

  2. Standalone cool/freeze cluster driven by solar photovoltaic energy. Final report

    Energy Technology Data Exchange (ETDEWEB)

    Katic, I.; Pedersen, Per Henrik; Jacobsen, Emil

    2010-12-15

    The objective of the project is to develop and demonstrate a grid-independent cold storage system for perishable food, medicine or other goods, with a special focus on the need for such systems in developing countries with a sparse and unreliable supply of electricity. The project is directly based on the result from the international SolarChill project where a unique battery less solar driven vaccine refrigerator was developed by Vestfrost in cooperation with Danish Technological Institute (DTI). The project partners are Danish Technological Institute (Project manager), Danfoss, Grundfos, Fresvik (Norway) and Karise Klejnsmedie. The refrigeration system is set up at the solar energy test area of DTI, where a PV array with a nominal power of 800 W has been established. The batteries and charge controller are purchased from a Danish PV system retailer. The inverter is a trapezoid 50 Hz 230 Vac inverter is a robust type with high surge current. The two AC cabinets are standard low energy household freezers, whereas the DC cabinet is a special ice-lined refrigerator (fresh food/middle temperature) with high thermal capacity in its walls. The selection of large chest type freezers gives low specific energy consumption due to a high volume/surface ratio and low air infiltration. The commercial low energy cabinets are relatively inexpensive, and can operate with an extremely low consumption if the thermostat is set to cooling mode. As part of this quite extensive project, there have been a number of contacts with associated activities as well as direct requests from companies operating in 3rd world countries. The two most important cases have been a milk-cooling project in Uganda and a World Bank GEF project regarding improved storage methods for vaccines. The current design of the PV driven refrigeration system could be modified to milk cooling, and this is actually being investigated by the Danish company Karise Klejnsmedie who are specialist in stainless steel

  3. Solar Adoption and Energy Consumption in the Residential Sector

    Science.gov (United States)

    McAllister, Joseph Andrew

    This dissertation analyzes the energy consumption behavior of residential adopters of solar photovoltaic systems (solar-PV). Based on large data sets from the San Diego region that have been assembled or otherwise acquired by the author, the dissertation quantifies changes in energy consumption after solar-PV installation and determines whether certain household characteristics are correlated with such changes. In doing so, it seeks to answer two related questions: First, "Do residential solar adopters increase or decrease their electricity consumption after they install a solar-PV system?" Assuming that certain categories of residential adopters increase and others decrease, the second question is "Which residential adopters increase and which decrease their consumption and why?" The database that was used to conduct this analysis includes information about 5,243 residential systems in San Diego Gas & Electric's (SDG&E) service territory installed between January 2007 and December 2010. San Diego is a national leader in the installation of small-scale solar-electric systems, with over 12,000 systems in the region installed as of January 2012, or around 14% of the total number installed in California. The author performed detailed characterization of a significant subset of the solar installations in the San Diego region. Assembled data included technical and economic characteristics of the systems themselves; the solar companies that sold and installed them; individual customer electric utility billing data; metered PV production data for a subgroup of these solar systems; and data about the properties where the systems are located. Primarily, the author was able to conduct an electricity consumption analysis at the individual household level for 2,410 PV systems installed in SDG&E service territory between January 2007 and December 2010. This analysis was designed to detect changes in electricity consumption from the pre-solar to the post-installation period. To

  4. Three essays in energy consumption: Time series analyses

    Science.gov (United States)

    Ahn, Hee Bai

    1997-10-01

    Firstly, this dissertation investigates that which demand specification is an appropriate model for long-run energy demand between the conventional demand specification and the limited demand specification. In order to determine the components of a stable long-run demand for different sectors of the energy industry, I perform cointegration tests by using the Johansen test procedure. First, I test the conventional demand specification including prices and income as components. Second, I test a limited demand specification only income as a component. The reason for performing these tests is that we can determine that which demand specification is a good long-run predictor of energy consumption between the two demand specifications by using the cointegration tests. Secondly, for the purpose of planning and forecasting energy demand in case of cointegrated system, long-run elasticities are of particular interest. To retrieve the optimal level of energy demand in case of price shock, we need long-run elasticities rather than short-run elasticities. The energy demand study provides valuable information to the energy policy makers who are concerned about the long-run impact of taxes and tariffs. A long-run price elasticity is a primary barometer of the substitution effect between energy and non-energy inputs and long-run income elasticity is an important factor since we can measure the energy demand growing slowly or fast than in the past depending on the magnitude of long-run elasticity. The one other problem in estimating the total energy demand is that there exists an aggregation bias stemming from the process of summation in four different energy types for the total aggregation prices and total aggregation energy consumption. In order to measure the aggregation bias between the Btu aggregation method and the Divisia Index method, i.e., which methodology has less aggregation bias in the long-run, I compare the two estimation results with calculated results estimated on

  5. Integrated Urban System and Energy Consumption Model: Residential Buildings

    Directory of Open Access Journals (Sweden)

    Rocco Papa

    2014-05-01

    Full Text Available This paper describes a segment of research conducted within the project PON 04a2_E Smart Energy Master for the energetic government of the territory conducted by the Department of Civil, Architectural and Environment Engineering, University of Naples "Federico II".  In particular, this article is part of the study carried out for the definition of the comprehension/interpretation model that correlates buildings, city’s activities and users’ behaviour in order to promote energy savings. In detail, this segment of the research wants to define the residential variables to be used in the model. For this purpose a knowledge framework at international level has been defined, to estimate the energy requirements of residential buildings and the identification of a set of parameters, whose variation has a significant influence on the energy consumption of residential buildings.

  6. Design, fabrication and measurement of a novel cooling arm for fusion energy source

    CERN Document Server

    Jiang, Shui-Dong; Mei, Jia-Bin; Yang, Bin; Yang, Chun-Sheng

    2012-01-01

    The issues of energy and environment are the main constraint of sustainable development in worldwide. Nuclear energy source is one important optional choice for long term sustainable development. The nuclear energy consists of fusion energy and fission energy. Compared with fission, inertial confinement fusion (ICF) is a kind of clean fusion energy and can generate large energy and little environmental pollution. ICF mainly consists of peripheral driver unit and target. The cooling arm is an important component of the target, which cools the hohlraum to maintain the required temperature and positions the thermal-mechanical package (TMP) assembly. This paper mainly investigates the cooling arm, including the structural design, the verticality of sidewall and the mechanical properties. The TMP assembly is uniformly clamped in its radial when using (111) crystal orientation silicon to fabricate cooling arm. The finite element method is used to design the structure of cooling arm with 16 clamping arms, and the ME...

  7. Field-cycling-NMR: A new magnet design for reduced energy consumption

    Energy Technology Data Exchange (ETDEWEB)

    Plendl, Dirk; Privalov, Alexei F.; Fujara, Franz [Institut fuer Festkoerperphysik, TU Darmstadt (Germany)

    2010-07-01

    Field-cycling-NMR is an established method for the investigation of field dependent spin phenomena, like relaxation dispersion, polarization transfer, enhanced NQR etc. In contrast to normal NMR, the magnetic field in a field-cycling experiment is switched between several distinct levels within milliseconds. This can only be achieved with specially designed, low inductive magnets. Today, nearly all FC-spectrometers utilize air core coils made of copper or silver. Producing strong magnetic fields with normal-conducting magnets results in a large energy dissipation (tens of kW) so that the maximum field strength is limited by the amount of heat that can be extracted by the cooling system. We present a new magnet design for fast field-cycling-NMR which uses a magnet with an iron core for field amplification, thus generating the same field with significantly reduced energy consumption and system complexity.

  8. Optimization of Energy Saving for Petrochemistry Enterprise Recirculating Cooling Water System%石化企业循环冷却水系统节能优化

    Institute of Scientific and Technical Information of China (English)

    吴罗刚; 周勇

    2012-01-01

    对目前石化企业循环冷却水系统存在的问题,提出强化传热和循环冷却水的串级利用的方法,加强生产和水质管理,以降低循环冷却水系统能耗。%Based on the problem of the petrochemistry enterprise recirculating cooling water system, propose the method of heat transfer enhancement and recirculated cooling water cascade utilization, strengthen management, so as to reduce the recirculating cooling water system energy consumption.

  9. Thermal energy storage for sustainable energy consumption : fundamentals, case studies and design

    CERN Document Server

    Paksoy, Halime

    2007-01-01

    We all share a small planet. Our growing thirst for energy already threatens the future of our earth. Fossil fuels - energy resources of today - are not evenly distributed on the earth. 10 per cent of the world's population exploits 90 per cent of its resources. Today's energy systems rely heavily on fossil fuel resources which are diminishing ever faster. The world must prepare for a future without fossil fuels. Thermal energy storage provides us with a flexible heating and/or cooling tool to combat climate change through conserving energy and increasing energy while utilizing natural renewab

  10. Study on Relationship of Energy Consumption and Economic Growth in China

    Science.gov (United States)

    Zhang-wei, Li; Xun-gang, Zheng

    Energy is one of the most basic materials of the national economy, which plays an important role in national productin and life. The relationship between energy consumption and economic growth has been a fascinating question since energy crisis in 70s of last century. This paper analyzes the relationship between energy consumption and economic development based on the VAR model using temporal series of China from 1990 to 2009, then uses impulse response function and variance decomposition to portray the correlations between economic growth and energy consumption. The result shows that there exists a unidirectional causality from energy consumption to gross domestic product and energy consumption can observably promote the development of economy.

  11. Household direct energy consumption and CO2 emissions in European countries.

    NARCIS (Netherlands)

    Meirmans, Koen

    2013-01-01

    SUMMARY Household direct energy consumption is often regarded as a given and determined using a top-down approach. Furthermore, research regarding household energy consumption tends to focus on western countries. This research uses a bottom-up approach t

  12. Energy consumption renewable energy development and environmental impact in Algeria - Trend for 2030

    Science.gov (United States)

    Sahnoune, F.; Imessad, K.; Bouakaz, D. M.

    2017-02-01

    The study provides a detailed analysis of the energy production and consumption in Algeria and the associated CO2 emissions. Algeria is an important energy producer (oil and natural gas). The production is currently around 155 MToe. The total primary energy consumption amounted to about 58 MToe equivalent to 1.46 Toe/capita. The energy demand is still increasing, an average annual growth rate of more than 6% per year during the last decade. The growth rate for electricity production was almost twice that of the total energy consumption. In 2015, the installed capacity of the electricity generation plants reached 17.6 GW. Electricity consumption was 64.6 TWh and is expected to reach at least 75 TWh in 2020 and 130 TWh in 2030. The already high electricity demand will double by 2030. In the structure of final energy consumption, the transport sector ranks first (36%), natural gas consumption ranks second (28.5%), followed by electricity production (27.7%). By activity, the energy sector is the main source of CO2 emissions, about ¾ of the total and this sector has the most important potential for mitigation measures. CO2 emissions from this energy sector amounted to 112.2 MT CO2 as follows: 33% transport, 31% electricity production and 26% from natural gas combustion for residential use. The integration of renewable sources in the energy mix represents for Algeria a major challenge. In 2015, Algeria adopted an ambitious program for development of renewable energy. The target is to achieve 22 GW capacity of electricity from renewable by 2030 to reach a rate of 27 % of national electricity generation through renewable sources. By implementing this program, CO2 emissions of power generation will be reduced by more than 18% in 2030.

  13. Promoting renewable energy sources for heating and cooling in EU-27 countries

    Energy Technology Data Exchange (ETDEWEB)

    Cansino, Jose M., E-mail: jmcansino@us.es [Department of Economic Analysis and Political Economy, Seville University, Avda. Ramon y Cajal, no. 1, 41018 Seville (Spain); Pablo-Romero, Maria del P. [Department of Economic Analysis and Political Economy, Seville University, Avda. Ramon y Cajal, no. 1, 41018 Seville (Spain); Roman, Rocio, E-mail: rroman@us.es [Department of Economic Analysis and Political Economy, Seville University, Avda. Ramon y Cajal, no. 1, 41018 Seville (Spain); Yniguez, Rocio [Department of Economic Analysis and Political Economy, Seville University, Avda. Ramon y Cajal, no. 1, 41018 Seville (Spain)

    2011-06-15

    In addition to public policies aimed at improving the energy efficiency of buildings, EU authorities have also promoted the use of Renewable Energy Sources for heating and cooling uses (RES H and C). This paper analyses the main policy measures implemented in EU-27 countries up to 2009: i.e. subsidies, tax incentives, financial support and feed-in tariffs. Twenty-three Member States (MSs) have developed some of these policy measures. The most widespread measure is the subsidy (22 MSs have implemented these) because from a political point of view, subsidies provide a straightforward approach to promote the use of RES H and C. Secondly, tax incentives have been used for reducing investment costs and making renewable energy profitable. Thirdly, financial incentives and feed-in tariffs have been used sparingly. While financial incentives might be used more extensively for promoting RES H and C if they are accompanied by other policy measures, feed-in tariffs are not likely to be implemented significantly in the future because this measure is not designed for household heat producers. - Highlights: > Main EU policies to reduce energy consumption are focused on buildings' efficiency. > Alternative incentives to promote the use of RES H and C in EU-27 are now studied. > Subsidies are the most widespread measure. > Tax incentives are used for reducing investment costs and making RES profitable. > Financial incentives and feed-in tariffs have been used sparingly.

  14. Analysis on energy consumption index system of thermal power plant

    Science.gov (United States)

    Qian, J. B.; Zhang, N.; Li, H. F.

    2017-05-01

    Currently, the increasingly tense situation in the context of resources, energy conservation is a realistic choice to ease the energy constraint contradictions, reduce energy consumption thermal power plants has become an inevitable development direction. And combined with computer network technology to build thermal power “small index” to monitor and optimize the management system, the power plant is the application of information technology and to meet the power requirements of the product market competition. This paper, first described the research status of thermal power saving theory, then attempted to establish the small index system and build “small index” monitoring and optimization management system in thermal power plant. Finally elaborated key issues in the field of small thermal power plant technical and economic indicators to be further studied and resolved.

  15. Chemical process simulation for minimizing energy consumption in pulp mills

    Energy Technology Data Exchange (ETDEWEB)

    Cardoso, Marcelo; Oliveira, Katia Dionisio de; Costa, George Alberto Avelar [Department of Chemical Engineering/School of Engineering, Federal University of Minas Gerais (UFMG), Belo Horizonte/MG (Brazil); Passos, Maria Laura [Collaborator Researcher, Drying Center, Chemical Engineering Department, Federal University of Sao Carlos (UFSCar) (Brazil)

    2009-01-15

    Chemical process simulation has proven to be an effective tool for performing a systematic and global analysis of energy systems to identify routes for maximizing the process efficiency concerning to the heat recovery. This paper shows an application of computer simulations in a Brazilian pulp mill, using two strategies for minimizing the mill energy consumption. In the first one, the overall heat transfer coefficient has been predicted for each body of the multiple effect evaporators by using continuous on-line data from the industrial plant in the black liquor recover unit. By monitoring oscillations of this heat transfer coefficient, the suitable time for washing the evaporator heat transfer surfaces can be well determined, reducing the energy loss during black liquor evaporation. In the second strategy, the liquor combustion has been simulated as function of the black liquor solids concentration to analyze its effect on the recovery boiler efficiency improvement. (author)

  16. Energy and water consumption of Pacific Northwest irrigation systems

    Energy Technology Data Exchange (ETDEWEB)

    King, L.D.; Wensink, R.B.; Wolfe, J.W.; Shearer, M.N.

    1977-09-01

    Irrigation in the Pacific Northwest is an energy-intensive process which represents a major part of the total energy used in farm level food production. Since 1950, several major developments have precipitated pronounced increases in irrigation energy requirements. For example, the invention of efficient high-lift pumps, labor-saving equipment, new uses for irrigation sprinklers, and profitable cropping patterns have substantially escalated irrigation energy consumption in the Pacific Northwest in the past 25 years. Until recently, energy prices have remained relatively low and constant. The next 25 years will continue to experience advanced irrigation technologies. In addition to technological development, however, the cost of energy and water will certainly rise while their availabilities become increasingly constrained. The depletion of ground water in several parts of the United States could also potentially increase the irrigation burden of the Pacific Northwest. Lastly, parts of the Pacific Northwest water supply are directly convertible to energy via hydroelectric generation. This study proposes to make realistic projections relative to present and future interactions of the above components.

  17. Investigation of some pretreatments on energy and specific energy consumption drying of black mulberry

    Directory of Open Access Journals (Sweden)

    Adabi Esmaeili Mohammad

    2013-01-01

    Full Text Available Massive consumption of energy in drying industry makes it a matter of challenge regarding economical aspects and limited recourses. Several methods for drying including hot air convection, vacuum, infrared and hot air convection-infrared technologies were applied in order to estimate the consumed energy during the drying of mulberry fruit. Moreover, microwave heating, chemical (ethyl oleate and potassium, mechanical (ultrasonic and blanching (hot water pretreatments were compared. According to the Results, maximum energy consumption was recorded when no pretreatment was performed. Microwave heating in the hot air convection-infrared dryer resulted in the lowest consumption of energy. Total energy requirement decreased with the temperature in the convection dryer res. Conversely, energy increased with air velocity. The vacuum dryer consumed the highest amount of energy which was measured to be 46.95 kWh while the lowest energy was recorded with using infrared-convective dryers. Also Experimental results showed that minimum and maximum specific energy consumption in the drying of black mulberry were associated with microwave pretreatment in IR-hot air dryer and control treatment in vacuum dryer, respectively. The minimum color change (ΔE for drying of black mulberry was found in microwave pretreated samples dried with the vacuum dryer, yet maximum ΔE was observed in hot air dryer when no pretreatment was applied.

  18. Recovery Act: Federspiel Controls (now Vigilent) and State of California Department of General Services Data Center Energy Efficient Cooling Control Demonstration. Final technical project report

    Energy Technology Data Exchange (ETDEWEB)

    Federspiel, Clifford; Evers, Myah

    2011-09-30

    Eight State of California data centers were equipped with an intelligent energy management system to evaluate the effectiveness, energy savings, dollar savings and benefits that arise when powerful artificial intelligence-based technology measures, monitors and actively controls cooling operations. Control software, wireless sensors and mesh networks were used at all sites. Most sites used variable frequency drives as well. The system dynamically adjusts temperature and airflow on the fly by analyzing real-time demands, thermal behavior and historical data collected on site. Taking into account the chaotic interrelationships of hundreds to thousands of variables in a data center, the system optimizes the temperature distribution across a facility while also intelligently balancing loads, outputs, and airflow. The overall project will provide a reduction in energy consumption of more than 2.3 million kWh each year, which translates to $240,000 saved and a reduction of 1.58 million pounds of carbon emissions. Across all sites, the cooling energy consumption was reduced by 41%. The average reduction in energy savings across all the sites that use VFDs is higher at 58%. Before this case study, all eight data centers ran the cooling fans at 100% capacity all of the time. Because of the new technology, cooling fans run at the optimum fan speed maintaining stable air equilibrium while also expending the least amount of electricity. With lower fan speeds, the life of the capital investment made on cooling equipment improves, and the cooling capacity of the data center increases. This case study depicts a rare technological feat: The same process and technology worked cost effectively in eight very different environments. The results show that savings were achieved in centers with diverse specifications for the sizes, ages and types of cooling equipment. The percentage of cooling energy reduction ranged from 19% to 78% while keeping temperatures substantially within the

  19. CAUSALITY AND DYNAMICS OF ENERGY CONSUMPTION AND OUTPUT: EVIDENCE FROM NON-OECD ASIAN COUNTRIES

    OpenAIRE

    RUHUL A. SALIM; Shuddhasattwa Rafiq; A. F. M. KAMRUL HASSAN

    2008-01-01

    This article examines the short-run and long-run causal relationship between energy consumption and output in six non-OECD Asian developing countries. Standard time series econometrics is used for this purpose. Based on cointegration and vector error correction modeling, the empirical result shows a bi-directional causality between energy consumption and income in Malaysia, while a unidirectional causality from output to energy consumption in China and Thailand and energy consumption to outpu...

  20. Energy consumption during Refractance Window evaporation of selected berry juices

    Energy Technology Data Exchange (ETDEWEB)

    Nindo, C.I.; Tang, J. [Washington State University, Pullman, WA (United States). Dept. of Biological Systems Engineering; Powers, J.R. [Washington State University, Pullman, WA (United States). Dept. of Food Science and Human Nutrition; Bolland, K. [MCD Technologies, Tacoma, WA (United States)

    2004-07-01

    The Refractance Window evaporator represents a novel concept in the design of evaporation systems for small food processing plants. In this system thermal energy from circulating hot water is transmitted through a plastic sheet to evaporate water from a liquid product flowing concurrently on the top surface of the plastic. The objectives of this study were to investigate the heat transfer characteristics of this evaporator, determine its energy consumption, and capacity at different tilt angles and product flow rates. The system performance was evaluated with tap water, raspberry juice, and blueberry juice and puree as feed. With a direct steam injection heating method, the steam economy ranged from 0.64 to 0.84, while the overall heat transfer coefficient (U) was 666 W m{sup -2} {sup o}C{sup -1}. Under this condition, the highest evaporation capacity was 27.1 kg h{sup -1} m{sup -2} for blueberry juice and 31.8 kg h{sup -1} m{sup -2} for blueberry puree. The energy consumption was 2492-2719 kJ kg{sup -1} of water evaporated. Installation of a shell and tube heat exchanger with better temperature control minimized incidences of boiling and frequent discharge of condensate. The steam economy, highest evaporation rate and overall heat transfer coefficient increased to 0.99, 36.0 kg h{sup -1} m{sup -2} and 733 W m{sup -2} {sup o}C{sup -1}, respectively. [Author].

  1. Computational capacity and energy consumption of complex resistive switch networks

    Directory of Open Access Journals (Sweden)

    Jens Bürger

    2015-12-01

    Full Text Available Resistive switches are a class of emerging nanoelectronics devices that exhibit a wide variety of switching characteristics closely resembling behaviors of biological synapses. Assembled into random networks, such resistive switches produce emerging behaviors far more complex than that of individual devices. This was previously demonstrated in simulations that exploit information processing within these random networks to solve tasks that require nonlinear computation as well as memory. Physical assemblies of such networks manifest complex spatial structures and basic processing capabilities often related to biologically-inspired computing. We model and simulate random resistive switch networks and analyze their computational capacities. We provide a detailed discussion of the relevant design parameters and establish the link to the physical assemblies by relating the modeling parameters to physical parameters. More globally connected networks and an increased network switching activity are means to increase the computational capacity linearly at the expense of exponentially growing energy consumption. We discuss a new modular approach that exhibits higher computational capacities, and energy consumption growing linearly with the number of networks used. The results show how to optimize the trade-o between computational capacity and energy e ciency and are relevant for the design and fabrication of novel computing architectures that harness random assemblies of emerging nanodevices.

  2. Drivers behind energy consumption by rural households in Shanxi

    Directory of Open Access Journals (Sweden)

    Mette Wik

    2015-10-01

    Full Text Available Biomass is widely used by households for cooking and heating in rural China. Along with rapid economic growth over the last three decades, increasing rural households tend to use less biomass and more commercial energy such as coal and electricity. In this paper, we analyzed the key drivers behind energy consumption and switching by rural households based on survey data of energy consumption by rural households in ten villages of Shanxi province in China. Our econometric results show that income growth can induce less use of biomass and more use of coal and modern fuels. However, no evidence shows that even wealthy households has abandoned biomass use in Shanxi, mainly due to the “free” access to land and agricultural resources in these villages. Previous wealth of a household represented by house value can lead to more time spent on biomass collection. Access to land resources has positive effects on biomass use and collection. Other key variables include education, household size, the number of elderly members, and coal price. We also find huge differences between villages, indicating the importance of access to agricultural resources and markets.

  3. Efficient Energy Consumption Scheduling: Towards Effective Load Leveling

    Directory of Open Access Journals (Sweden)

    Yuan Hong

    2017-01-01

    Full Text Available Different agents in the smart grid infrastructure (e.g., households, buildings, communities consume energy with their own appliances, which may have adjustable usage schedules over a day, a month, a season or even a year. One of the major objectives of the smart grid is to flatten the demand load of numerous agents (viz. consumers, such that the peak load can be avoided and power supply can feed the demand load at anytime on the grid. To this end, we propose two Energy Consumption Scheduling (ECS problems for the appliances held by different agents at the demand side to effectively facilitate load leveling. Specifically, we mathematically model the ECS problems as Mixed-Integer Programming (MIP problems using the data collected from different agents (e.g., their appliances’ energy consumption in every time slot and the total number of required in-use time slots, specific preferences of the in-use time slots for their appliances. Furthermore, we propose a novel algorithm to efficiently and effectively solve the ECS problems with large-scale inputs (which are NP-hard. The experimental results demonstrate that our approach is significantly more efficient than standard benchmarks, such as CPLEX, while guaranteeing near-optimal outputs.

  4. Characterization of selected application of biomass energy technologies and a solar district heating and cooling system

    Energy Technology Data Exchange (ETDEWEB)

    D' Alessio, Dr., Gregory J.; Blaunstein, Robert P.

    1980-09-01

    The following systems are discussed: energy self-sufficient farms, wood gasification, energy from high-yield silviculture farms, and solar district heating and cooling. System descriptions and environmental data are included for each one. (MHR)

  5. Energy Consumption Analysis Based on Energy Efficiency Approach: A Case of Suburban Area

    Directory of Open Access Journals (Sweden)

    Rahman K.A

    2017-01-01

    Full Text Available Sufficient data about electricity consumption over large periods of time was accumulated and analysed in order to develop appropriate electricity-saving measures. An important first step was to analyse and identify electrical appliances that had energy saving potential. Different behavioural consumption profiles were analysed using information from two sources: 1 technical data about electricity consumption (electricity bill and 2 data about household electrical appliance usage and consumer awareness obtained from a questionnaire survey. The questionnaire consisted of four sections of questions which concerned residents’ backgrounds, residential information, consumers’ awareness about energy efficiency (EE and the energy usage of each house. The results showed that the electricity consumption profile of an individual household could be most related to the EE approach. It indicated that consumers’ behaviour (awareness and practice resulted in one of the important factors related to high electricity consumption. Another important conclusion of our questionnaire-based analysis was that the implementation of the EE approach could help the consumer to reduce their monthly energy consumption.

  6. 75 FR 66008 - Fossil Fuel-Generated Energy Consumption Reduction for New Federal Buildings and Major...

    Science.gov (United States)

    2010-10-27

    ... Parts 433 and 435 RIN 1904-AB96 Fossil Fuel-Generated Energy Consumption Reduction for New Federal... proposed rulemaking (NOPR) regarding the fossil fuel- generated energy consumption ] requirements for new... regarding the fossil fuel-generated energy consumption requirements for new Federal buildings and...

  7. 16 CFR 305.5 - Determinations of estimated annual energy consumption, estimated annual operating cost, and...

    Science.gov (United States)

    2010-01-01

    ... consumption, estimated annual operating cost, and energy efficiency rating, and of water use rate. 305.5... RULE CONCERNING DISCLOSURES REGARDING ENERGY CONSUMPTION AND WATER USE OF CERTAIN HOME APPLIANCES AND... § 305.5 Determinations of estimated annual energy consumption, estimated annual operating cost, and...

  8. On-site energy consumption and selected emissions at softwood sawmills in the southwestern United States

    Science.gov (United States)

    Dan Loeffler; Nathaniel Anderson; Todd A. Morgan; Colin B. Sorenson

    2016-01-01

    Presently there is a lack of information describing US southwestern energy consumption and emissions generated from the sawmilling industry. This article uses a mail survey of softwood sawmills in the states of Arizona, Colorado, and New Mexico to develop a profile of on-site energy consumption and selected emissions for the industry. Energy consumption is...

  9. Forecast errors in IEA-countries' energy consumption

    DEFF Research Database (Denmark)

    Linderoth, Hans

    2002-01-01

    Every year Policy of IEA Countries includes a forecast of the energy consumption in the member countries. Forecasts concerning the years 1985,1990 and 1995 can now be compared to actual values. The second oil crisis resulted in big positive forecast errors. The oil price drop in 1986 did not have...... a similar opposite effect. A correction for economic growth reduces forecast errors during the second oil crisis but not elsewhere. Industry has a relatively big positive error while transportation has a negative forecast error. Even when the forecast error is small, the results are not so "nice" because...

  10. Wavelet modulation: An alternative modulation with low energy consumption

    Science.gov (United States)

    Chafii, Marwa; Palicot, Jacques; Gribonval, Rémi

    2017-02-01

    This paper presents wavelet modulation, based on the discrete wavelet transform, as an alternative modulation with low energy consumption. The transmitted signal has low envelope variations, which induces a good efficiency for the power amplifier. Wavelet modulation is analyzed and compared for different wavelet families with orthogonal frequency division multiplexing (OFDM) in terms of peak-to-average power ratio (PAPR), power spectral density (PSD) properties, and the impact of the power amplifier on the spectral regrowth. The performance in terms of bit error rate and complexity of implementation are also evaluated, and several trade-offs are characterized. xml:lang="fr"

  11. Applying Smart Grid Technology For Reducing Electric Energy Consumption

    Energy Technology Data Exchange (ETDEWEB)

    Hoffman, Roy

    2010-09-15

    In recent years the term 'Smart Grid' has become a widely used buzz word with respect to the operation of Electric Power Systems. One analysis has suggested that a Smart Grid could potentially reduce annual energy consumption in the USA by 56 to 203 billion kWh in 2030, corresponding to a 1.2 to 4.3% reduction in projected retail electricity sales in 2030. This paper discusses some of the smart grid technologies pertaining to the operation of electric power distribution networks.

  12. Analyses on Energy Saving Potential Based on Large-scale Public Buildings Energy Consumption

    Directory of Open Access Journals (Sweden)

    Xuping Chen

    2012-08-01

    Full Text Available To analyze large-scale public buildings’ energy-saving potential is one of the methods to realize scientific energy control management and service. This method aims at a typical public building’s powerconsumed system. Through analyzing and comparing the consumption data, it succeeds in analyzing the use efficiency of building power, consumption level and economic effects of the energy utilization. More over, this method has a quantity analysis on the power-consumed unit’s building usage, so that it is able to find the unit’s energy-saving potential. Its bases of all analyses are building energy balance and analyzing theory of energy cost, analyzing theory of engineering economy and environment and rational distribution theory of energy utilization system.

  13. Energy Consumption, Trade and GDP: A Case Study of South Asian Countries

    OpenAIRE

    Shakeel, Muhammad; Iqbal, Mazhar; Majeed, Muhammad Tariq

    2013-01-01

    Using panel co-integration approach over the period 1980-2009 for South Asian economies, this study investigates the dynamic linkages between energy consumption, trade and GDP. The results show that, in the short run, feedback relationship holds between energy consumption and GDP and between energy consumption and exports. In the long run, the feedback relation holds between energy and GDP while unidirectional causality holds from export to energy. Thus, feedback hypothesis between energy and...

  14. Analysis of Energy Consumption and Energy Conservation Measures for RFCCU at Shengli Petrochemical Company

    Institute of Scientific and Technical Information of China (English)

    Li Ning; Xu Zhenling

    2006-01-01

    This article introduces a string of energy conservation measures adopted over the past several years by the RFCC unit at Shengli Petrochemical Complex, including the optimization of feedstock properties, the adoption of high-efficiency atomizing nozzles, the revamp of CO boiler, the atomization by means of dry gas, the post-burning of flue gas as well as the application of frequency converting machines and pumps, resulting in ideal effects. The energy consumption of the RFCC unit was gradually decreased to 2984.25 MJ/t from the original level of 3716.99 MJ/t. After comparing basic energy consumption values with actual consumption values, the authors have set forward measures for further energy conservation, such as the recovery of low-temperature excess heat contained in oil/gas streams exiting from the fractionation tower top, addition of the fourth cyclone, delivery of hot oil slurry, and heat tracing with hot water.

  15. Comfort, Indoor Air Quality, and Energy Consumption in Low Energy Homes

    Energy Technology Data Exchange (ETDEWEB)

    Engelmann, P.; Roth, K.; Tiefenbeck, V.

    2013-01-01

    This report documents the results of an in-depth evaluation of energy consumption and thermal comfort for two potential net zero-energy homes (NZEHs) in Massachusetts, as well as an indoor air quality (IAQ) evaluation performed in conjunction with Lawrence Berkeley National Laboratory (LBNL).

  16. Comfort, Indoor Air Quality, and Energy Consumption in Low Energy Homes

    Energy Technology Data Exchange (ETDEWEB)

    Englemann, P. [Fraunhofer Center for Sustainable Energy Systems, Cambridge, MA (United States); Roth, K. [Fraunhofer Center for Sustainable Energy Systems, Cambridge, MA (United States); Tiefenbeck, V. [Fraunhofer Center for Sustainable Energy Systems, Cambridge, MA (United States)

    2013-01-01

    This report documents the results of an in-depth evaluation of energy consumption and thermal comfort for two potential net zero-energy homes (NZEHs) in Massachusetts, as well as an indoor air quality (IAQ) evaluation performed in conjunction with Lawrence Berkeley National Laboratory (LBNL).

  17. Cool Headed Individuals Are Better Survivors: Non-Consumptive and Consumptive Effects of a Generalist Predator on a Sap Feeding Insect.

    Directory of Open Access Journals (Sweden)

    Orsolya Beleznai

    Full Text Available Non-consumptive effects (NCEs of predators are part of the complex interactions among insect natural enemies and prey. NCEs have been shown to significantly affect prey foraging and feeding. Leafhopper's (Auchenorrhyncha lengthy phloem feeding bouts may play a role in pathogen transmission in vector species and also exposes them to predation risk. However, NCEs on leafhoppers have been scarcely studied, and we lack basic information about how anti-predator behaviour influences foraging and feeding in these species. Here we report a study on non-consumptive and consumptive predator-prey interactions in a naturally co-occurring spider-leafhopper system. In mesocosm arenas we studied movement patterns during foraging and feeding of the leafhopper Psammotettix alienus in the presence of the spider predator Tibellus oblongus. Leafhoppers delayed feeding and fed much less often when the spider was present. Foraging movement pattern changed under predation risk: movements became more frequent and brief. There was considerable individual variation in foraging movement activity. Those individuals that increased movement activity in the presence of predators exposed themselves to higher predation risk. However, surviving individuals exhibited a 'cool headed' reaction to spider presence by moving less than leafhoppers in control trials. No leafhoppers were preyed upon while feeding. We consider delayed feeding as a "paradoxical" antipredator tactic, since it is not necessarily an optimal strategy against a sit-and-wait generalist predator.

  18. Cool Headed Individuals Are Better Survivors: Non-Consumptive and Consumptive Effects of a Generalist Predator on a Sap Feeding Insect.

    Science.gov (United States)

    Beleznai, Orsolya; Tholt, Gergely; Tóth, Zoltán; Horváth, Vivien; Marczali, Zsolt; Samu, Ferenc

    2015-01-01

    Non-consumptive effects (NCEs) of predators are part of the complex interactions among insect natural enemies and prey. NCEs have been shown to significantly affect prey foraging and feeding. Leafhopper's (Auchenorrhyncha) lengthy phloem feeding bouts may play a role in pathogen transmission in vector species and also exposes them to predation risk. However, NCEs on leafhoppers have been scarcely studied, and we lack basic information about how anti-predator behaviour influences foraging and feeding in these species. Here we report a study on non-consumptive and consumptive predator-prey interactions in a naturally co-occurring spider-leafhopper system. In mesocosm arenas we studied movement patterns during foraging and feeding of the leafhopper Psammotettix alienus in the presence of the spider predator Tibellus oblongus. Leafhoppers delayed feeding and fed much less often when the spider was present. Foraging movement pattern changed under predation risk: movements became more frequent and brief. There was considerable individual variation in foraging movement activity. Those individuals that increased movement activity in the presence of predators exposed themselves to higher predation risk. However, surviving individuals exhibited a 'cool headed' reaction to spider presence by moving less than leafhoppers in control trials. No leafhoppers were preyed upon while feeding. We consider delayed feeding as a "paradoxical" antipredator tactic, since it is not necessarily an optimal strategy against a sit-and-wait generalist predator.

  19. A Study on the Impact of Household Occupants’ Behavior on Energy Consumption Using an Integrated Computer Model

    Directory of Open Access Journals (Sweden)

    Yaolin eLin

    2015-09-01

    Full Text Available In this paper, several models are integrated into a thermal model to study the impact of occupants’ behaviors on the building energy consumption. An air flow model is developed to simulate ventilation related to the occupant’s patterns of window opening and closing. An electric consumption model is developed to simulate the usage pattern and the electricity input to household electric appliances. The thermostat setpoint temperature and window shading schemes are varied with different occupants’ behavior norms and are included in the model. The simulation was applied to a typical household located in the city of Oshawa in Ontario, Canada. The results show that the window opening has the greatest impact on the energy consumption during the heating season, and the shading scheme has the greatest impact on the A/C energy consumption during the cooling season. The electricity consumption of the A/C can be significantly reduced by appropriately applying the shading and opening schemes and resetting the thermostat setpoint temperature to a slightly higher degree. Keeping the windows closed and allowing the solar radiation to be transmitted through the window in winter help reduce the energy usage to heat the house.

  20. New ideas for energy utilisation in combined heat and power with cooling: Pt. 1. Principles

    Energy Technology Data Exchange (ETDEWEB)

    Lazzarin, R.M. [Universita di Pavoda, VIcenza (Italy). Istituto di Ingegneria; Gasparella, A. [Universita di Pavoda, Vicenza (Italy). Dottorato di Ricerca in Energetica

    1997-04-01

    New ideas are needed to reduce installed cooling capacities and growing ventilation costs and to improve control in the various zones of CHP plants with cooling. Above all the thermal energy available in summer from electricity cogeneration must be exploited. Unconventional cooling systems, such as evaporative or chemical dehumidification, allow one to achieve some of the objectives. Chemical dehumidification, both by adsorption and absorption, particularly permits new plant lay-outs, leading to the complete elimination of traditional cooling equipment with direct air treatment and very high potential energy savings. (author)

  1. Analytical Treatment of Forecasts of Electric Energy Consumption in Latvia

    Science.gov (United States)

    Balodis, M.; Gavars, V.; Andersons, J.

    2014-06-01

    In the paper, the changes in electric energy consumption are analyzed as associated with structural changes in the Latvian economy of postsocialistic period. To the analysis, a particular approach is applied, which consists in comparison of the basic and specific electricity consumption indices in West-, Central-, and East-European states for the time span of 1990-2010, with differences and tendencies of changes revealed. Tendencies of the type are determined for the electric energy consumption in Latvia, and recommendations are given for the use of such indices in the relevant forecasts. Rakstā apskatītas elektroenerģijas patēriņa izmaiņas, kas saistītas ar Latvijas postsociālisma perioda ekonomikas strukturālām izmaiņām. Rakstā dota Latvijas galveno elektroenerģijas patēriņa indikatoru analīze, lietojot īpašu pieeju - Rietumeiropas, Centrāleiropas un Austrumeiropas valstu indikatoru salīdzinājumu. Analizēts periods no 1990. gada līdz 2010. gadam. Salīdzināti Eiropas valstu grupu īpatnējie elektroenerģijas patēriņa indikatori un noskaidrotas to atšķirības un izmaiņu tendences. Noteiktas elektroenerģijas patēriņa izmaiņu tendences Latvijā. Dotas rekomendācijas par šo indikatoru izmantošanu elektroenerģijas patēriņa prognozēšanā. 07.05.2014.

  2. The measurement of energy consumption by exercise bikes

    Science.gov (United States)

    Jwo, Ching-Song; Chien, Chao-Chun; Jeng, Lung-Yue

    2006-11-01

    This paper is intended as an investigation is that to measure the amount of energy consumption can be consumed by riding bikes and also could recycle the consuming energy during exercising. Exercisers ride the bicycle inputting the driving force through a compressor of refrigeration system, which can circulate the refrigerant in the system and calculate the calorific capacity from the spread of the condenser. In addition, we can make up chiller water in the evaporator. Experiments were performed to prove the hypotheses. Therefore, this experiment has designed the sports goods which reach the purpose of doing exercise, measuring accurately the consuming calorific capacity and having the function of making chiller water. After exercising, you can drink the water producing during exercise and apply on the system of air conditioner, which attains two objectives.

  3. Baseline projections of transportation energy consumption by mode: 1981 update

    Energy Technology Data Exchange (ETDEWEB)

    Millar, M; Bunch, J; Vyas, A; Kaplan, M; Knorr, R; Mendiratta, V; Saricks, C

    1982-04-01

    A comprehensive set of activity and energy-demand projections for each of the major transportation modes and submodes is presented. Projections are developed for a business-as-usual scenario, which provides a benchmark for assessing the effects of potential conservation strategies. This baseline scenario assumes a continuation of present trends, including fuel-efficiency improvements likely to result from current efforts of vehicle manufacturers. Because of anticipated changes in fuel efficiency, fuel price, modal shifts, and a lower-than-historic rate of economic growth, projected growth rates in transportation activity and energy consumption depart from historic patterns. The text discusses the factors responsible for this departure, documents the assumptions and methodologies used to develop the modal projections, and compares the projections with other efforts.

  4. CFD Simulation and Optimisation of a Low Energy Ventilation and Cooling System

    Directory of Open Access Journals (Sweden)

    John Kaiser Calautit

    2015-04-01

    Full Text Available Mechanical Heating Ventilation and Air-Conditioning (HVAC systems account for 60% of the total energy consumption of buildings. As a sector, buildings contributes about 40% of the total global energy demand. By using passive technology coupled with natural ventilation from wind towers, significant amounts of energy can be saved, reducing the emissions of greenhouse gases. In this study, the development of Computational Fluid Dynamics (CFD analysis in aiding the development of wind towers was explored. Initial concepts of simple wind tower mechanics to detailed design of wind towers which integrate modifications specifically to improve the efficiency of wind towers were detailed. From this, using CFD analysis, heat transfer devices were integrated into a wind tower to provide cooling for incoming air, thus negating the reliance on mechanical HVAC systems. A commercial CFD code Fluent was used in this study to simulate the airflow inside the wind tower model with the heat transfer devices. Scaled wind tunnel testing was used to validate the computational model. The airflow supply velocity was measured and compared with the numerical results and good correlation was observed. Additionally, the spacing between the heat transfer devices was varied to optimise the performance. The technology presented here is subject to a patent application (PCT/GB2014/052263.

  5. Energy efficiency enhancements for semiconductors, communications, sensors and software achieved in cool silicon cluster project

    Science.gov (United States)

    Ellinger, Frank; Mikolajick, Thomas; Fettweis, Gerhard; Hentschel, Dieter; Kolodinski, Sabine; Warnecke, Helmut; Reppe, Thomas; Tzschoppe, Christoph; Dohl, Jan; Carta, Corrado; Fritsche, David; Tretter, Gregor; Wiatr, Maciej; Detlef Kronholz, Stefan; Mikalo, Ricardo Pablo; Heinrich, Harald; Paulo, Robert; Wolf, Robert; Hübner, Johannes; Waltsgott, Johannes; Meißner, Klaus; Richter, Robert; Michler, Oliver; Bausinger, Markus; Mehlich, Heiko; Hahmann, Martin; Möller, Henning; Wiemer, Maik; Holland, Hans-Jürgen; Gärtner, Roberto; Schubert, Stefan; Richter, Alexander; Strobel, Axel; Fehske, Albrecht; Cech, Sebastian; Aßmann, Uwe; Pawlak, Andreas; Schröter, Michael; Finger, Wolfgang; Schumann, Stefan; Höppner, Sebastian; Walter, Dennis; Eisenreich, Holger; Schüffny, René

    2013-07-01

    An overview about the German cluster project Cool Silicon aiming at increasing the energy efficiency for semiconductors, communications, sensors and software is presented. Examples for achievements are: 1000 times reduced gate leakage in transistors using high-fc (HKMG) materials compared to conventional poly-gate (SiON) devices at the same technology node; 700 V transistors integrated in standard 0.35 μm CMOS; solar cell efficiencies above 19% at e-Commerce applications; processors and corresponding data links with 40% and 70% energy savings, respectively, by adaption of clock frequency and supply voltage in less than 20 ns; clock generator chip with tunable frequency from 83-666 MHz and 0.62-1.6 mW dc power; 90 Gb/s on-chip link over 6 mm and efficiency of 174 fJ/mm; dynamic biasing system doubling efficiency in power amplifiers; 60 GHz BiCMOS frontends with dc power to bandwidth ratio of 0.17 mW/MHz; driver assistance systems reducing energy consumption by 10% in cars Contribution to the Topical Issue “International Semiconductor Conference Dresden-Grenoble - ISCDG 2012”, Edited by Gérard Ghibaudo, Francis Balestra and Simon Deleonibus.

  6. Energy efficiency in a water supply system: Energy consumption and CO2 emission

    Directory of Open Access Journals (Sweden)

    Helena M. RAMOS

    2010-09-01

    Full Text Available This paper presents important fundaments associated to the water/energy consumption and enhances the importance of renewable energy sources. A model of multi-criterion optimization for energy efficiency based on water and environment management policy, the preservation of the water resources, the control of water pressure and energy consumption, through a hybrid energy solution is developed and applied to a water supply system. The methodology developed includes three solutions: (i water turbine installation in pipes where there is a need to control the pressure by pressure reducing valves, (ii the optimization of pumping operations according to the electricity tariff and the water demand and (iii the addition of a renewable energy source, a wind turbine, to supply energy to the pump-station and to sell the remaining to the national grid. The use of an integrated solution (water/energy shows to be a valuable input to benefit from available hydro energy in WSS to produce clean power and the use of wind source allows reducing the energy consumption in pump-stations, which is still mostly based on fossil fuels with high levels of CO2 emissions.

  7. Optimal Buildings’ Energy Consumption Calculus through a Distributed Experiment Execution

    Directory of Open Access Journals (Sweden)

    Pau Fonseca i Casas

    2015-01-01

    Full Text Available The calculus of building energy consumption is a demanding task because multiple factors must be considered during experimentation. Additionally, the definition of the model and the experiments is complex because the problem is multidisciplinary. When we face complex models and experiments that require a considerable amount of computational resources, the application of solutions is imperative to reduce the amount of time needed to define the model and the experiments and to obtain the answers. In this paper, we first address the definition and the implementation of an environmental model that describes the behavior of a building from a sustainability point of view and enables the use of several simulations and calculus engines in a cosimulation scenario. Second, we define a distributed experimental framework that enables us to obtain results in an accurate amount of time. This methodology has been applied to the energy consumption calculation, but it can also be applied to other modeling problems that usually require a considerable amount of resources by reducing the amount of time needed to perform modeling, implementation, verification, and experimentation.

  8. Possible technical solutions to reduce energy consumption in audio products

    Energy Technology Data Exchange (ETDEWEB)

    Nielsen, K.; Andersen, M.A.E.

    1999-07-01

    In common audio products nearly all the supplied power is dissipated as heat. The major consumers are with almost no exception the power supply and the audio amplifier. This paper is divided in two parts, concentrating on typical efficiency measures for the concepts of today and the possibly technical solutions, by which the overall efficiency can be considerably improved in the future. Traditional power supplies are made using a transformer operating on the mains frequency followed by a linear regulator. These are bulky and the efficiency is only around 40%. Using high frequency switch mode power supplies the size of the power supply can be reduced and the efficiency can be increased to 80-90%. Construction of optimal amplifiers in regard to total energy consumption over life time, can only be accomplished by considering both the general volume control distribution, and the general spectral amplitude distribution of audio signals. The traditional efficiency measure specified at the maximum efficiency level says only very little about the real energy consumption of the audio amplifier. As an example, the theoretical efficiency for at traditional class B amplifier is 78%. Using a new efficiency measure defined on the basis of the approximate volume control distribution, an 50W amplifier example shows an overall efficiency of only 1%. In the paper possible solutions and guidelines to increase the real amplifier efficiency are given. (au)

  9. An Analysis of Current Energy Consumption in China’s Agricultural Production

    Institute of Scientific and Technical Information of China (English)

    Xia; ZHANG; Zongshou; CAI; Lihong; CHEN; Dezheng; ZHANG; Zhe; ZHANG

    2015-01-01

    Energy consumption is one of the important symbols of modern agriculture,and it is also an important input in modern agricultural production. The study on the agricultural energy consumption not only has a positive significance to agricultural energy saving,emission reduction and ecological environment protection,but also can greatly reduce the cost of agricultural production and improve the economic benefit of farmers. Through the analysis of the national statistical data about energy consumption for agriculture production from 2005 to 2012 year,the results show that the amount of energy consumption for agricultural production in China has increased year by year since 2005. Because of the continued growth of the total energy consumption in China,the proportion of energy consumption for agricultural production to the total energy consumption of China has declined slightly since 2005. At present,the energy consumption structure for agricultural production in China is diesel fuel,coal,electric power,gasoline,and indirect energy consumption. With the rapid development of the agricultural technology in recent years,the total agricultural output value in China has increased greatly,the direct and indirect agricultural energy consumption per unit of agricultural output value in China has decreased year by year,and the efficiency of energy consumption for agricultural production has increased consequently.

  10. A Method for Estimating Potential Energy and Cost Savings for Cooling Existing Data Centers

    Energy Technology Data Exchange (ETDEWEB)

    Van Geet, Otto

    2017-04-24

    NREL has developed a methodology to prioritize which data center cooling systems could be upgraded for better efficiency based on estimated cost savings and economics. The best efficiency results are in cool or dry climates where 'free' economizer or evaporative cooling can provide most of the data center cooling. Locations with a high cost of energy and facilities with high power usage effectiveness (PUE) are also good candidates for data center cooling system upgrades. In one case study of a major cable provider's data centers, most of the sites studied had opportunities for cost-effective cooling system upgrades with payback period of 5 years or less. If the cable provider invested in all opportunities for upgrades with payback periods of less than 15 years, it could save 27% on annual energy costs.

  11. Impact of the temperature dependency of fiberglass insulation R-value on cooling energy use in buildings

    Energy Technology Data Exchange (ETDEWEB)

    Levinson, R.; Akbari, H.; Gartland, L.

    1996-08-01

    Building energy models usually employ a constant, room-temperature-measured value for the thermal resistance of fiberglass roof insulation. In summer, however, the mean temperature of roof insulation can rise significantly above room temperature, lowering the insulation`s thermal resistance by 10% to 20%. Though the temperature dependence of the thermal resistance of porous materials like fiberglass has been extensively studied, it is difficult to theoretically predict the variation with temperature of a particular fiberglass blanket, from first principles. Heat transfer within fiberglass is complicated by the presence of three significant mechanisms - conduction through air, conduction through the glass matrix, and radiative exchange within the matrix - and a complex, unknown internal geometry. Purely theoretical models of fiberglass heat transfer assume highly simplified matrix structures and require typically-unavailable information about the fiberglass, such as its optical properties. There is also a dearth of useful experimental data. While the thermal resistances of many individual fiberglass samples have been measured, there is only one practical published table of thermal resistance vs. both temperature and density. Data from this table was incorporated in the DOE-2 building energy model. DOE-2 was used to simulate the roof surface temperature, roof heat flux, and cooling energy consumption of a school bungalow whose temperature and energy use had been monitored in 1992. The DOE-2 predictions made with and without temperature variation of thermal conductivity were compared to measured values. Simulations were also run for a typical office building. Annual cooling energy loads and annual peak hourly cooling powers were calculated for the office building using both fixed and variable thermal conductivities, and using five different climates. The decrease in the R-value of the office building`s roof led to a 2% to 4% increase in annual cooling energy load.

  12. Fire analog: a comparison between fire plumes and energy center cooling tower plumes

    Energy Technology Data Exchange (ETDEWEB)

    Orgill, M.M.

    1977-10-01

    Thermal plumes or convection columns associated with large fires are compared to thermal plumes from cooling towers and proposed energy centers to evaluate the fire analog concept. Energy release rates of mass fires are generally larger than for single or small groups of cooling towers but are comparable to proposed large energy centers. However, significant physical differences exist between cooling tower plumes and fire plumes. Cooling tower plumes are generally dominated by ambient wind, stability and turbulence conditions. Fire plumes, depending on burning rates and other factors, can transform into convective columns which may cause the fire behavior to become more violent. This transformation can cause strong inflow winds and updrafts, turbulence and concentrated vortices. Intense convective columns may interact with ambient winds to create significant downwind effects such as wakes and Karman vortex streets. These characteristics have not been observed with cooling tower plumes to date. The differences in physical characteristics between cooling tower and fire plumes makes the fire analog concept very questionable even though the approximate energy requirements appear to be satisfied in case of large energy centers. Additional research is suggested in studying the upper-level plume characteristics of small experimental fires so this information can be correlated with similar data from cooling towers. Numerical simulation of fires and proposed multiple cooling tower systems could also provide comparative data.

  13. Questionnaire survey, Indoor climate measurements and Energy consumption

    DEFF Research Database (Denmark)

    Knudsen, Henrik Nellemose; Thomsen, Kirsten Engelund; Mørck, Ove

    2012-01-01

    to be designed and constructed with a heating demand corresponding to the Danish low-energy standard referred to as "low-energy class 1" in a new settlement called Stenløse Syd. This means that the energy consumption is to be 50% lower than the requirement in BR08 (Danish Building Regulations 2008). 66 flats...... preparation. The dense low-rise houing are to be heated by a district heating network. All dwellings were to be equipped with a mechanical ventilation system with heat recovery and an electronic system for energy monitoring and control of the heating systems. The first houses were occupied in 2008...... were to be designed and constructed with a yearly heating demand of 15 kWh/m². Furthermore, the Concerto community include a kindergarten and an activity centre for elderly people. All the single family houses were to be heated by a heat pump supported by a 3 m² thermal solar system for hot water...

  14. Energy consumption and GDP in Tunisia: Cointegration and causality analysis

    Energy Technology Data Exchange (ETDEWEB)

    Belloumi, Mounir [Institute of High Commercial Studies of Sousse, University of Sousse. B.P. 40 Street Ceiture, Sahloul III, 4054 Sousse (Tunisia)], E-mail: mounir.balloumi@gmail.com

    2009-07-15

    In this paper, the Johansen cointegration technique is used to examine the causal relationship between per capita energy consumption (PCEC) and per capita gross domestic product (PCGDP) for Tunisia during the 1971-2004 period. In order to test for Granger causality in the presence of cointegration among the variables, a vector error correction model (VECM) is used instead of a vector autoregressive (VAR) model. Our estimation results indicate that the PCGDP and PCEC for Tunisia are related by one cointegrating vector and that there is a long-run bi-directional causal relationship between the two series and a short-run unidirectional causality from energy to gross domestic product (GDP). The source of causation in the long-run is found to be the error-correction terms in both directions. Hence, an important policy implication resulting from this analysis is that energy can be considered as a limiting factor to GDP growth in Tunisia. Conclusions for Tunisia may also be relevant for a number of countries that have to go through a similar development path of increasing pressure on already scarce energy resources.

  15. Energy consumption and GDP in Tunisia Cointegration and causality analysis

    Energy Technology Data Exchange (ETDEWEB)

    Belloumi, Mounir [Institute of High Commercial Studies of Sousse, University of Sousse. B.P. 40 Street Ceiture, Sahloul III, 4054 Sousse (Tunisia)

    2009-07-15

    In this paper, the Johansen cointegration technique is used to examine the causal relationship between per capita energy consumption (PCEC) and per capita gross domestic product (PCGDP) for Tunisia during the 1971-2004 period. In order to test for Granger causality in the presence of cointegration among the variables, a vector error correction model (VECM) is used instead of a vector autoregressive (VAR) model. Our estimation results indicate that the PCGDP and PCEC for Tunisia are related by one cointegrating vector and that there is a long-run bi-directional causal relationship between the two series and a short-run unidirectional causality from energy to gross domestic product (GDP). The source of causation in the long-run is found to be the error-correction terms in both directions. Hence, an important policy implication resulting from this analysis is that energy can be considered as a limiting factor to GDP growth in Tunisia. Conclusions for Tunisia may also be relevant for a number of countries that have to go through a similar development path of increasing pressure on already scarce energy resources. (author)

  16. Total Energy. Sustainable cooling and heating in supermarkets; Total Energy. Duurzame koeling en verwarming supermarkten

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    2011-03-15

    In 8 articles attention is paid to different aspects of cooling and heating in supermarkets: new coolants in the food retail sector, the climate plan of the Dutch Food Retail Association (CBL), he Round Table discussion with between CBL and supermarket chains about research results, approach and targets, the use of CO2 refrigeration in supermarkets, leakage of coolants from refrigerators and freezers in Dutch supermarkets, the energy efficient and environment-friendly refrigerator and freezer equipment of the distribution centre of supermarket chain C1000 in Raalte, Netherlands, changes for cooling techniques in the EIA energy list (Energy investment deduction scheme) and finally education options for the refrigeration industry in the Netherlands. [Dutch] In 8 artikelen wordt aandacht geschonken aan verschillende aspecten m.b.t. koeling en verwarming in supermarkten: nieuwe koelmiddelen in de 'food retail sector, het klimaatplan van de brancheorganisatie Centraal Bureau Levensmiddelenhandel (CBL), het Rondetafel overleg met de CBL en supermarktketens over onderzoeksresultaten, aanpak en doelen, de toepassing van CO2 koeling in supermarkten, lekkage van koelmiddelen uit koel- en vriesinstallaties in Nederlandse supermarkten, de energiezuinige en milieuvriendelijke koel-vriesinstallatie van het distributiecentrum van de supermarktketen C1000 in Raalte, wijzigingen voor koeltechniek in de EIA energielijst (Energie Investeringsaftrek subsidieregeling), en tenslotte opleidingsmogelijkheden voor de koeltechnische sector in Nederland.

  17. 广州某高校建筑能耗现状及节能策略分析%Energy Consumption and Energy-saving Measures for one College in Guangzhou

    Institute of Scientific and Technical Information of China (English)

    何花

    2014-01-01

    我国高校建筑能耗在社会总能耗中占到较大比例,存在较大节能潜力。本文通过对采用区域供冷的广州某高校近三年建筑能耗进行统计,分析获得了该校建筑能耗现状及特点,并提出了相应的节能改造措施。%Building energy consumption of colleges and universities in China account for a large proportion of total energy consumption , therefore there is a great potential for energy saving.By analyzing building energy consumption of a university that utilizes district cooling in Guangzhou in the past three years , this article summarizes the status and features of its energy consumption , and proposes relevant energy -saving measurements for renovation.

  18. Energy audit in small wastewater treatment plants: methodology, energy consumption indicators, and lessons learned.

    Science.gov (United States)

    Foladori, P; Vaccari, M; Vitali, F

    2015-01-01

    Energy audits in wastewater treatment plants (WWTPs) reveal large differences in the energy consumption in the various stages, depending also on the indicators used in the audits. This work is aimed at formulating a suitable methodology to perform audits in WWTPs and identifying the most suitable key energy consumption indicators for comparison among different plants and benchmarking. Hydraulic-based stages, stages based on chemical oxygen demand, sludge-based stages and building stages were distinguished in WWTPs and analysed with different energy indicators. Detailed energy audits were carried out on five small WWTPs treating less than 10,000 population equivalent and using continuous data for 2 years. The plants have in common a low designed capacity utilization (52% on average) and equipment oversizing which leads to waste of energy in the absence of controls and inverters (a common situation in small plants). The study confirms that there are several opportunities for reducing energy consumption in small WWTPs: in addition to the pumping of influent wastewater and aeration, small plants demonstrate low energy efficiency in recirculation of settled sludge and in aerobic stabilization. Denitrification above 75% is ensured through intermittent aeration and without recirculation of mixed liquor. Automation in place of manual controls is mandatory in illumination and electrical heating.

  19. Energy flow and thermal comfort in buildings: Comparison of radiant and air-based heating & cooling systems

    DEFF Research Database (Denmark)

    Le Dréau, Jérôme

    Heating and cooling terminals can be classified in two main categories: convective terminals (e.g air conditioning, active chilled beam, fan coil) and radiant terminals. The two terminals have different modes of heat transfer: the first one is mainly based on convection, whereas the second one...... is based on both radiation and convection. This thesis focuses on characterizing the heat transfer from the terminal towards the space and on the parameters influencing the effectiveness of terminals. Therefore the comfort conditions and energy consumption of four types of terminals (active chilled beam...... the cooling need of the radiant wall compared to the active chilled beam. These conclusions are valid for multi-storey and/or highly insulated buildings (R > 5 m2.K/W). In case of single-storey building with a low level of insulation, the effectiveness of radiant terminals is lower due to the larger back...

  20. Thermal energy storage with geothermal triplet for space heating and cooling

    Science.gov (United States)

    Bloemendal, Martin; Hartog, Niels

    2017-04-01

    Many governmental organizations and private companies have set high targets in avoiding CO2 emissions and reducing energy (Kamp, 2015; Ministry-of-Economic-affairs, 2016). ATES systems use groundwater wells to overcome the discrepancy in time between the availability of heat (during summer) and the demand for heat (during winter). Aquifer Thermal Energy Storage is an increasingly popular technique; currently over 2000 ATES systems are operational in the Netherlands (Graaf et al., 2016). High temperature ATES may help to improve performance of these conventional ATES systems. ATES systems use heat pumps to get the stored heat to the required temperature for heating of around 40-50°C and to produce the cold water for cooling in summer. These heat pumps need quite a lot of power to run; on average an ATES system produces 3-4 times less CO2 emission compared to conventional. Over 60% of those emission are accounted for by the heat pump (Dekker, 2016). This heat pump power consumption can be reduced by utilizing other sources of sustainable heat and cooling capacity for storage in the subsurface. At such operating temperatures the required storage temperatures do no longer match the return temperatures in the building systems. Therefore additional components and an additional well are required to increase the groundwater temperature in summer (e.g. solar collectors) and decrease it in winter (e.g. dry coolers). To prevent "pollution" of the warm and cold well return water from the building can be stored in a third well until weather conditions are suitable for producing the required storage temperature. Simulations and an economical evaluation show great potential for this type of aquifer thermal energy storage; economic performance is better than normal ATES while the emissions are reduce by a factor ten. At larger temperature differences, also the volume of groundwater required to pump around is much less, which causes an additional energy saving. Research now

  1. Analysis and forecast of residential building energy consumption in Chongqing on carbon emissions

    Institute of Scientific and Technical Information of China (English)

    李沁; 刘猛; 钱发

    2009-01-01

    Carbon emissions mainly result from energy consumption. Carbon emissions inevitably will increase to some extent with economic expansion and rising energy consumption. We introduce a gray theory of quantitative analysis of the energy consumption of residential buildings in Chongqing,China,on the impact of carbon emission factors. Three impacts are analyzed,namely per capita residential housing area,domestic water consumption and the rate of air conditioner ownership per 100 urban households. The gray prediction model established using the Chongqing carbon emission-residential building energy consumption forecast model is sufficiently accurate to achieve a measure of feasibility and applicability.

  2. Solar heating and cooling demonstration project at the Florida solar energy center

    Science.gov (United States)

    1980-01-01

    The retrofitted solar heating and cooling system installed at the Florida Solar Energy Center is described. The system was designed to supply approximately 70 percent of the annual cooling and 100 percent of the heating load. The project provides unique high temperature, nonimaging, nontracking, evacuated tube collectors. The design of the system was kept simple and employs five hydronic loops. They are energy collection, chilled water production, space cooling, space heating and energy rejection. Information is provided on the system's acceptance test results operation, controls, hardware and installation, including detailed drawings.

  3. Evaluation of the effects of vegetation and green walls on building thermal performance and energy consumption

    Science.gov (United States)

    Susorova, Irina

    This research explored the use of vegetation in building facades as a potential solution to the problems of urban ecology and the excessive energy consumption in buildings. Vegetated facades substantially reduce building energy use, reduce the urban heat island effect, improve air quality, and increase the biodiversity of plants and animals in cities. The goal of this research was to evaluate the effects of plants on building thermal performance and energy consumption by developing a thermal model of a building facade covered with a layer of plants. The developed mathematical model accounts for thermal physical processes in a vegetated exterior wall including solar radiation, infrared radiative exchange between the facade and sky, the facade and ground, the facade and vegetation layer, convection to and from the facade, evapotranspiration from the plant layer, heat storage in the facade material, and heat conduction through the facade. The model calculates vegetated facade surface temperature and heat flux through the facade for multiple weather conditions, plant physiological characteristics, and facade parameters inputs. The model was validated with the results of a one-week long experiment measuring the thermal properties of bare and vegetated facades on the Illinois Institute of Technology campus. The experiment and subsequent sensitivity analysis demonstrated that a plant layer can effectively reduce the facade exterior surface temperature, daily temperature fluctuations, exterior wall temperature gradient, and, as a result, provide as much additional thermal insulation to the facade as a 2.5 cm layer of expanded polystyrene insulation. The vegetated facade model was also used to analyze the reduction in energy consumption in generic office and residential thermal zones for multiple parameters. The simulations showed that energy reduction could be as high as 6.2% of annual total energy use and 34.6% of cooling energy use in residential thermal zones. Overall

  4. Reduced energy consumption by using streamlined gating systems

    Institute of Scientific and Technical Information of China (English)

    Seren Skov-Hansen; Niels Skat Tiedje

    2008-01-01

    In foundries a lot of effort is done to minimize energy consumption in the production to reduce costs and hence increase the competitiveness. At the same time the foundries must live up to the increased demands for high quality castings.Traditional gating systems are known for a straight tapered down runner, a well base and 90° bends in the runner system. Previous work has shown that the traditional way of designing gating systems creates high inconsistency in flow patterns during filling. In the streamlined gating systems there are no sharp changes in direction and a large effort is done to confine and control the flow of the molten metal during mould filling. The main objective in the work presented here is to use the principles of the streamlined gating systems to reduce the weight of the gating system relative to the traditional layouts. By reducing the weight of gating system and thereby improving yield, the amount of molten iron needed is also reduced, hence reducing the energy consumption for melting.Experiments in real production lines have proven that it is possible to achieve a reduction in the poured weight by using the streamlined gating systems. In a layout for casting of three valve housings in a vertically parted mould the weight of the gating system was reduced by 1.1 kg changing from the traditional layouts to the streamlined gating systems. This weight reduction corresponds in this case to a 20% weight reduction for the gating system. Using streamlined gating systems with fan gates to give a beneficial heat distribution in the castings may be an efficient tool to eliminate the need for heat treatment. In the experiments the change in gating system from the traditional layout to the streamlined layout removed the need for heat treatment. This obviously means a huge energy saving in the foundry. The energy consumption for heat treatment of iron has been found to be 0.489 kWh/kg. The valve housing in the experiments weighs 3 kg so when the need for

  5. An Application of Non-Linear Autoregressive Neural Networks to Predict Energy Consumption in Public Buildings

    Directory of Open Access Journals (Sweden)

    Luis Gonzaga Baca Ruiz

    2016-08-01

    Full Text Available This paper addresses the problem of energy consumption prediction using neural networks over a set of public buildings. Since energy consumption in the public sector comprises a substantial share of overall consumption, the prediction of such consumption represents a decisive issue in the achievement of energy savings. In our experiments, we use the data provided by an energy consumption monitoring system in a compound of faculties and research centers at the University of Granada, and provide a methodology to predict future energy consumption using nonlinear autoregressive (NAR and the nonlinear autoregressive neural network with exogenous inputs (NARX, respectively. Results reveal that NAR and NARX neural networks are both suitable for performing energy consumption prediction, but also that exogenous data may help to improve the accuracy of predictions.

  6. A local energy consumption prediction-based clustering protocol for wireless sensor networks.

    Science.gov (United States)

    Yu, Jiguo; Feng, Li; Jia, Lili; Gu, Xin; Yu, Dongxiao

    2014-12-03

    Clustering is a fundamental and effective technique for utilizing sensor nodes' energy and extending the network lifetime for wireless sensor networks. In this paper, we propose a novel clustering protocol, LECP-CP (local energy consumption prediction-based clustering protocol), the core of which includes a novel cluster head election algorithm and an inter-cluster communication routing tree construction algorithm, both based on the predicted local energy consumption ratio of nodes. We also provide a more accurate and realistic cluster radius to minimize the energy consumption of the entire network. The global energy consumption can be optimized by the optimization of the local energy consumption, and the energy consumption among nodes can be balanced well. Simulation results validate our theoretical analysis and show that LECP-CP has high efficiency of energy utilization, good scalability and significant improvement in the network lifetime.

  7. Energy efficiency in a water supply system:Energy consumption and CO2 emission

    Institute of Scientific and Technical Information of China (English)

    Helena M.RAMOS; Filipe VIEIRA; Didia I.C.COVAS

    2010-01-01

    This paper presents important fundamentals associated with water and energy efficiency and highlights the importance of using renewable energy sources.A model of multi-criteria optimization for energy efficiency based on water and environmental management policies,including the preservation of water resources and the control of water pressure and energy consumption through a hybrid energy solution,was developed and applied to a water supply system.The methodology developed includes three solutions:(1)the use of a water turbine in pipe systems where pressures are higher than necessary and pressure-reducing valves are installed,(2)the optimization of pumping operation according to the electricity tariff and water demand,and(3)the use of other renewable energy sources,including a wind turbine,to supply energy to the pumping station,with the remaining energy being sold to the national electric grid.The use of an integrated solution(water and energy)proves to be a valuable input for creating benefits from available hydro energy in the water supply system in order to produce clean power,and the use of a wind source allows for the reduction of energy consumption in pumping stations,as well as of the CO2 emission to the atmosphere.

  8. Role of gas cooling in tomorrow`s energy services industry

    Energy Technology Data Exchange (ETDEWEB)

    Hughes, P.J.

    1997-04-01

    This article discusses the marketing approach and opportunities for suppliers and manufacturers of gas cooling equipment to partner with energy service companies (ESCOs). The author`s viewpoint is that in educating and partnering with ESCOs the gas cooling industry enables their technology to reach its potential in the projects that the ESCOs develop.

  9. Role of gas cooling in tomorrow`s energy services industry

    Energy Technology Data Exchange (ETDEWEB)

    Hughes, P.J.

    1997-04-01

    This article discusses the marketing approach and opportunities for suppliers and manufacturers of gas cooling equipment to partner with energy service companies (ESCOs). The author`s viewpoint is that in educating and partnering with ESCOs the gas cooling industry enables their technology to reach its potential in the projects that the ESCOs develop.

  10. The challenge to UK energy policy: An ageing population perspective on energy saving measures and consumption

    Energy Technology Data Exchange (ETDEWEB)

    Hamza, Neveen, E-mail: n.hamza@ncl.ac.u [School of Architecture, Planning and Landscape Newcastle University, NE1 7RU (United Kingdom); Gilroy, Rose [School of Architecture, Planning and Landscape Newcastle University, NE1 7RU (United Kingdom)

    2011-02-15

    With a focus on the residential sector, this paper explores the likelihood of the UK government meeting its energy targets. The paper contends that energy policy needs to take into account the interplay of four major factors: an ageing population of increasing diversity; a cultural inclination for older housing much of which is thermally inefficient; levels of fuel poverty; and the inexorable rise of consumer spending on leisure related services and goods. Decisions made by older households (both the poorer and the better off) may be critical to the success of energy policy. Among the better off the changing expectations of the baby boomers, with their predilection for consumption and travel, may have particular impact. The paper concludes that much of the reduction in carbon footprint made by older people's choices in heating and insulation may be offset, not only by increasing domestic thermal comfort, but also potentially by increasing consumables in the home and other consumer lifestyle choices. What could be achieved at best, may be a shift in energy mix. - Research highlights: {yields} An aging society in the UK will not lead to reduction in energy consumption. {yields} Physical ability, housing condition, cultural habits and energy poverty undermine policy. {yields} Rise of home entertainment and consumerism 'Afluenza' increase energy consumption.

  11. Low-Energy Astrophysics: Stimulating the Reduction of Energy Consumption in the Next Decade

    CERN Document Server

    Marshall, P J; Rykoff, E S; Shen, K J; Steinfadt, J D R; Fregeau, J; Chary, R-R; Sheth, K; Weiner, B; Henisey, K B; Quetin, E L; Antonucci, R; Kaplan, D; Jonsson, P; Auger, M W; Cardamone, C; Tao, T; Holz, D E; Bradac, M; Metcalfe, T S; McHugh, S; Elvis, M; Brewer, B J; Urrutia, T; Guo, F; Hovest, W; Nakajima, R; For, B -Q; Erb, D; Paneque, D

    2009-01-01

    In this paper we address the consumption of energy by astronomers while performing their professional duties. Although we find that astronomy uses a negligible fraction of the US energy budget, the rate at which energy is consumed by an average astronomer is similar to that of a typical high-flying businessperson. We review some of the ways in which astronomers are already acting to reduce their energy consumption. In the coming decades, all citizens will have to reduce their energy consumption to conserve fossil fuel reserves and to help avert a potentially catastrophic change in the Earth's climate. The challenges are the same for astronomers as they are for everyone: decreasing the distances we travel and investing in energy-efficient infrastructure. The high profile of astronomy in the media, and the great public interest in our field, can play a role in promoting energy-awareness to the wider population. Our specific recommendations are therefore to 1) reduce travel when possible, through efficient meeti...

  12. End use energy consumption data base: transportation sector

    Energy Technology Data Exchange (ETDEWEB)

    Hooker, J.N.; Rose, A.B.; Greene, D.L.

    1980-02-01

    The transportation fuel and energy use estimates developed a Oak Ridge National Laboratory (ORNL) for the End Use Energy Consumption Data Base are documented. The total data base contains estimates of energy use in the United States broken down into many categories within all sectors of the economy: agriculture, mining, construction, manufacturing, commerce, the household, electric utilities, and transportation. The transportation data provided by ORNL generally cover each of the 10 years from 1967 through 1976 (occasionally 1977 and 1978), with omissions in some models. The estimtes are broken down by mode of transport, fuel, region and State, sector of the economy providing transportation, and by the use to which it is put, and, in the case of automobile and bus travel, by the income of the traveler. Fuel types include natural gas, motor and aviation gasoline, residual and diesel oil, liuqefied propane, liquefied butane, and naphtha- and kerosene-type jet engine fuels. Electricity use is also estimated. The mode, fuel, sector, and use categories themselves subsume one, two, or three levels of subcategories, resulting in a very detailed categorization and definitive accounting.

  13. The causality between energy consumption and economic growth in Turkey

    Energy Technology Data Exchange (ETDEWEB)

    Erdal, Guelistan; Esenguen, Kemal [Department of Agricultural Economics, Faculty of Agriculture, Gaziosmanpasa University, 60240 Tokat (Turkey); Erdal, Hilmi [Department of Technical Programs, Tokat Vocational School, Gaziosmanpasa University, 60240 Tokat (Turkey)

    2008-10-15

    This paper applies the causality test to examine the causal relationship between primary energy consumption (EC) and real Gross National Product (GNP) for Turkey during 1970-2006. We employ unit root tests, the augmented Dickey-Fuller (ADF) and the Philips-Perron (PP), Johansen cointegration test, and Pair-wise Granger causality test to examine relation between EC and GNP. Our empirical results indicate that the two series are found to be non-stationary. However, first differences of these series lead to stationarity. Further, the results indicate that EC and GNP are cointegrated and there is bidirectional causality running from EC to GNP and vice versa. This means that an increase in EC directly affects economic growth and that economic growth also stimulates further EC. This bidirectional causality relationship between EC and GNP determined for Turkey at 1970-2006 period is in accordance with the ones in literature reported for similar countries. Consequently, we conclude that energy is a limiting factor to economic growth in Turkey and, hence, shocks to energy supply will have a negative impact on economic growth. (author)

  14. Forecasting Electrical Energy Consumption of Equipment Maintenance Using Neural Network and Particle Swarm Optimization

    OpenAIRE

    Xunlin Jiang; Haifeng Ling; Jun Yan; Bo Li; Zhao Li

    2013-01-01

    Accurate forecasting of electrical energy consumption of equipment maintenance plays an important role in maintenance decision making and helps greatly in sustainable energy use. The paper presents an approach for forecasting electrical energy consumption of equipment maintenance based on artificial neural network (ANN) and particle swarm optimization (PSO). A multilayer forward ANN is used for modeling relationships between the input variables and the expected electrical energy consumption, ...

  15. Structural Decomposition Analysis of China’s Industrial Energy Consumption Based on Input-Output Analysis

    Science.gov (United States)

    Huang, X. Y.; Zhou, J. Q.; Wang, Z.; Deng, L. C.; Hong, S.

    2017-05-01

    China is now at a stage of accelerated industrialization and urbanization, with energy-intensive industries contributing a large proportion of economic growth. In this study, we examined industrial energy consumption by decomposition analysis to describe the driving factors of energy consumption in China. Based on input-output (I-O) tables from the World Input-Output Database (WIOD) website and China’s energy use data from 1995 to 2011, we studied the sectorial changes of energy efficiency during the examined period. The results showed that all industries increased their energy efficiency. Energy consumption was decomposed into three factors by the logarithmic mean Divisia index (LMDI) method. The increase in production output was the leading factor that drives up China’s energy consumption. World Trade Organization accession and financial crises had great impact on the energy consumption. Based on these results, a series of energy policy suggestions for decision-makers has been proposed.

  16. Energy consumption in residential building: The effect of appliances and human behaviour

    Science.gov (United States)

    Rahman, K. A.; Hariri, Azian; Leman, A. M.; Yusof, M. Z. M.; Najib, M. N. M.

    2017-04-01

    Electricity is the predominant energy source used in these buildings. Therefore, energy management in residential buildings requires serious attention to ensure the energy consumption in residential building have been managed properly. Currently, the unstable of fuel price give the big impact to electricity price. Due to the issue, consumers require to use electricity more wisely. Using energy efficiently is one of the solution to reduce energy consumption. This paper aims to propose an initiative strategy for energy management system based on an analysis of energy consumption in residential building. The level of energy consumption among the occupants was found by obtaining electricity bills and distributing a questionnaire. A case study was carried out in selected areas in the Southern Zone of Peninsular Malaysia. The results of the study show that energy consumption was significant increased by month and the EEES as one of energy management system was suggested.

  17. Primary energy consumption in Germany 2001; Primaerenergieverbrauch in Deutschland 2001

    Energy Technology Data Exchange (ETDEWEB)

    Anon.

    2002-03-01

    According to preliminary calculations, the consumption of primary energy in Germany increased sharply in 2001 over the level the year before, i.e. 2000. It grew by 1.6% from approx. 487.2 million TCE to approx. 494.8 million TCE. This extra consumption corresponds to 7.6 million TCE. This upward development is due primarily to the much colder weather compared to 2000, as the weakness of the economy generated almost no impulses which could have increased the consumption of energy. The Federal Republic of Germany continues to be a country largely dependent on energy imports. The domestic energy generation in 2001 amounted to approx. 122.6 million TCE, which corresponds to some 25% of the overall consumption. The dependence on imports of approx. 372.2 million TCE amounted to approx. 75%. Oil, with a share of 38.4%, continues to be the main source of primary energy, followed by natural gas with 21.5%, hard coal with 13.1%, nuclear power with 12.9%, lignite with 11.2%, and the other energy sources (water and wind power, refuse) with approx. 2.8%. The energy prices, which had continuously been at a high level in the first six months of 2001, dropped below the level of the previous year in the second half of the year. The generation and consumption of electricity rose by 0.5% in 2001. Gross electricity generation of approx. 570.0 billion kWh exceeded the figure of the year before, i.e. 563.0 billion kWh, by some 7 billion kWh. Nuclear power still holds first place in electricity generation; its 171.3 billion kWh in 2001 mark the highest generation output in Germany so far, followed by lignite and hard coal. Electricity generation in wind power plants experienced a particularly steep percentage growth by approx. 20% to 11.0 billion kWh, which makes it the second most important source of renewable energy after hydroelectric power with 25.8 billion kWh. (orig.) [German] Der Primaerenergieverbrauch in Deutschland ist nach ersten Berechnungen im Jahre 2001 gegenueber dem

  18. 10 CFR Appendix C to Subpart B of... - Uniform Test Method for Measuring the Energy Consumption of Dishwashers

    Science.gov (United States)

    2010-01-01

    ... 10 Energy 3 2010-01-01 2010-01-01 false Uniform Test Method for Measuring the Energy Consumption... Subpart B of Part 430—Uniform Test Method for Measuring the Energy Consumption of Dishwashers The... completion. 4.2Machine electrical energy consumption. Measure the machine electrical energy consumption, M...

  19. Optimum strategy for energy degraders and ionization cooling

    CERN Document Server

    Farley, F J M

    2004-01-01

    Methodology for calculating the profile and emittance of a particle beam as it is slowed down in matter, including the effects of multiple scattering, axial magnetic field and lithium lens. Strategies are determined for minimum final emittance. For ionization cooling, boron carbide is superior to liquid hydrogen while a beryllium lens has merit.

  20. Wien filter for cooled low-energy radioactive ion beams

    NARCIS (Netherlands)

    Nummela, S; Dendooven, P; Heikkinen, P; Huikari, J; Nieminen, A; Jokinen, A; Rinta-Antila, S; Rubchenya, V.; Aysto, J

    2002-01-01

    A Wien filter for cooled radioactive ion beams has been designed at Ion Guide Isotope Separator On Line technique (IGISOL). The purpose of such device is to eliminate doubly charged ions from the mass separated singly charged ions, based on q = +2-->q = +1 charge exchange process in an ion cooler, T

  1. Improving the energy efficiency of refrigeration plants by decreasing the temperature difference in air-cooled condensers

    Science.gov (United States)

    Shishov, V. V.; Talyzin, M. S.

    2015-09-01

    The electric energy consumption efficiency is estimated in comparing the real refrigeration machine cycle with the theoretical inverse Carnot cycle. The potential for saving electricity in using aircooled condensers with different values of temperature difference is shown. A procedure for calculating a refrigerating system with the evaporation temperature equal to -10°C, which corresponds at this temperature level to the thermal load of a standard supermarket, is described. The calculation was carried out taking into account the annual profile of temperatures in the indicated locality and based on the possibility of adjusting the condenser capacity for maintaining constant condensation temperature. The payback period in case of using condensers with different values of temperature difference is calculated; for example, in using condensers with a temperature difference of less than 15 K, the payback period will be less than one year. Decreasing the temperature difference results, on one hand, in a larger annual consumption of electric energy by the condenser fans, and on the other hand, it results in a lower condensation pressure, which leads to a smaller annual consumption of energy by the compressor unit. As a result, the total amount of energy consumed by the refrigeration system decreases so that despite a higher cost of condensers designed to operate at lower values of temperature difference, it becomes possible to achieve the above-mentioned payback period. Additionally, the payback period in case of using an air-cooled microchannel aluminum condenser was calculated: in case of using such a condenser with a temperature difference of 8 K instead of the condenser with the temperature difference equal to 15 K, the payback period will be less than half a year. Recommendations for designing new refrigeration systems equipped with air-cooled condensers are given.

  2. DISAGGREGATE ENERGY CONSUMPTION AND TOTAL FACTOR PRODUCTIVITY: A COINTEGRATION AND CAUSALITY ANALYSIS FOR THE TURKISH ECONOMY.

    Directory of Open Access Journals (Sweden)

    Can Tansel Tugcu

    2013-01-01

    Full Text Available The aim of this study is to investigate the long and the short-run relationships between disaggregate energy consumption (i.e. alternative and nuclear, fossil and renewable and total factor productivity growth in the Turkish economy for the period 1970-2011. To this end, ARDL bounds testing approach to cointegration and the Dolado and Lütkepohl’s Granger causality analyses were employed. Results showed that disaggregate energy consumption is cointegrated to total factor productivity growth and there exists bi-directional causal relationships among the variables in consideration. Besides, findings revealed that the share of renewable energy consumption in total energy consumption is the only energy type which positively affects total factor productivity growth in the Turkish economy. This result implies that an improvement in the share of renewable energy consumption in total energy consumption is crucial for economic efficiency.

  3. [Energy consumption and GDP growth in Beijing: cointegration and causality analysis].

    Science.gov (United States)

    Chen, Cao-Cao; Zhang, Yan; Liu, Chun-Lan; Wang, Hai-Hua; Li, Zheng

    2012-06-01

    In this paper, the Johansen cointegration technique and the vector error correction model (VECM) were used to examine the causal relationship between energy consumption (LEC) and gross domestic product (LGDP) for Beijing during the period of 1980 to 2008. Results indicated that LEC and LGDP for Beijing were related by one cointegrating vector and there was a long-run unidirectional causal relationship from GDP to energy consumption. The long-term and short-term elasticity from economy to energy consumption were 0.44 and 0.12 separately. Statistic analysis showed that from 1980 to 2008 every 1% growth in GDP annually would drive energy consumption increasing rate by 0.4% correspondently. And the effect imposed from economy to energy consumption was lagging. It showed that energy consumption was not a strong exogenous variable as to economy. The finding has significant implications from the point of view of energy conservation, emission reduction and economic development.

  4. Energy Efficient Smartphones: Minimizing the Energy Consumption of Smartphone GPUs using DVFS Governors

    KAUST Repository

    Ahmad, Enas M.

    2013-05-15

    Modern smartphones are being designed with increasing processing power, memory capacity, network communication, and graphics performance. Although all of these features are enriching and expanding the experience of a smartphone user, they are significantly adding an overhead on the limited energy of the battery. This thesis aims at enhancing the energy efficiency of modern smartphones and increasing their battery life by minimizing the energy consumption of smartphones Graphical Processing Unit (GPU). Smartphone operating systems are becoming fully hardware-accelerated, which implies relying on the GPU power for rendering all application graphics. In addition, the GPUs installed in smartphones are becoming more and more powerful by the day. This raises an energy consumption concern. We present a novel implementation of GPU Scaling Governors, a Dynamic Voltage and Frequency Scaling (DVFS) scheme implemented in the Android kernel to dynamically scale the GPU. The scheme includes four main governors: Performance, Powersave, Ondmand, and Conservative. Unlike previous studies which looked into the power efficiency of mobile GPUs only through simulation and power estimations, we have implemented our approach on a real modern smartphone GPU, and acquired actual energy measurements using an external power monitor. Our results show that the energy consumption of smartphones can be reduced up to 15% using the Conservative governor in 2D rendering mode, and up to 9% in 3D rendering mode, with minimal effect on the performance.

  5. Energy drinks: what is all the hype? The dangers of energy drink consumption.

    Science.gov (United States)

    Rath, Mandy

    2012-02-01

    To describe the adverse effects associated with energy drink consumption among adolescents and young adults. Review of literature utilizing Medscape, the Internet, MD Consult, and CINAHL. The following search terms were used: Energy drinks, caffeine, guarana, taurine, ginseng, sugar, and caffeine toxicity. Search was limited to English language sources from 2005 to 2010. The popularity of energy drinks and the rapid growth of their excessive consumption among adolescents and young adults have brought about great concern in regards to overall health and well-being. Caffeine, which is readily available to minors, is the most commonly used psychoactive substance in the world and imposes a potentially harmful influence on health, academic performance, and personal adjustments. Teens and young adults account for nearly $2.3 billion of energy drink sales. Adolescents and young adults are often unaware that various products, such as energy drinks, herbal medications, and various other medications that promote alertness, contain caffeine. When these products are taken together, caffeine toxicity and severe adverse effects can occur. Practitioners need to be aware of the consequences of energy drink consumption and be prepared to provide appropriate patient education. ©2012 The Author(s) Journal compilation ©2012 American Academy of Nurse Practitioners.

  6. Car taxes and energy consumption. Impact on energy consumption from tax reductions on passenger cars; Bilafgifter og energiforbrug. Energimaessige effekter af afgiftslempelser for personbiler

    Energy Technology Data Exchange (ETDEWEB)

    Wedebye, H.; Engelund, P.; Gravesen, R.; Vestergaard, L. (Tetraplan A/S (DK))

    2008-03-15

    The report describes results from the project 'Impact on energy consumption from tax reductions on specific types of passenger cars. The aim of the project is to evaluate the possibilities for reducing energy consumption, and hereby the CO2 emissions, for transport through differentiated purchase tax on passenger cars. Two schemes have been studied, which respectively favour energy efficient cars and passenger cars converted into vans. The study includes interviews, a questionnaire and analyses of register data. (BA)

  7. Energy Performance of Water-based and Air-based Cooling Systems in Plus-energy Housing

    DEFF Research Database (Denmark)

    Andersen, Mads E.; Schøtt, Jacob; Kazanci, Ongun Berk

    2016-01-01

    Energy use in buildings accounts for a large part of the energy use globally and as a result of this, international building energy performance directives are becoming stricter. This trend has led to the development of zero-energy and plus-energy buildings. Some of these developments have led...... achieved and cooling might be needed even in residential buildings. This paper focuses on the cooling operation of a detached, single-family house, which was designed as a plus-energy house in Denmark. The simulation model of the house was created in IDA ICE and it was validated with measurement data...... energy use reductions. The coupling of radiant floor with the ground enables to obtain “free” cooling, although the brine pump power should be kept to a minimum to fully take advantage of this solution. By implementing a ground heat exchanger instead of the heat pump and use the crawl-space air as intake...

  8. Industrial relocation and energy consumption: Evidence from China

    Energy Technology Data Exchange (ETDEWEB)

    Zhao Xiaoli, E-mail: email99zxl@vip.sina.co [School of Economics and Business, North China Electric Power University, Beijing 102206 (China); Erb Institute for Global Sustainable Enterprise, University of Michigan, Ann Arbor, MI 48109 (United States); Yin Haitao, E-mail: htyin@sjtu.edu.c [Antai College of Economics and Management, Shanghai Jiao Tong University, Shanghai 200052 (China); Erb Institute for Global Sustainable Enterprise, University of Michigan, Ann Arbor, MI 48109 (United States)

    2011-05-15

    With economic development and the change of industrial structure, industrial relocation is an inevitable trend. In the process of industrial relocation, environmental externality and social cost could occur due to market failure and government failure. Little attention has been paid to this issue. In this paper, we address it with a theoretical analysis and an empirical investigation on the relationship between China's industrial relocation in the early 1990s and energy consumption which is the primary source of CO{sub 2} emission, an environmental externality that causes increasing concerns. The macro-policy analysis suggests that there would be a positive link between China's industrial relocation in the early 1990s and energy saving (and environmental externalities reduction). Using fixed-effect regression model and simulation method, we provide an empirical support to this argument. In order to further reduce environmental externalities and social cost in the process of industrial relocation, we provide policy suggestions as follows: First, strengthen the evaluation of environmental benefits/costs; Second, pay more attention to the coordinated social-economic development; Third, avoid long-lived investment in high-carbon infrastructure in areas with industries moved in; Fourth, address employment issue in the areas with industries moved out. - Research highlights: {yields} Little attention has been paid to the linkage between industrial relocation and environmental externality. {yields} Our macro-policy analysis suggests that there would be a positive link between China's industrial relocation in the early 1990s and energy saving (and environmental externalities reduction). {yields} Using fixed-effect regression model and simulation method, we find a positive link between China's industrial relocation in the early 1990s and energy saving. {yields} Policy suggestions to further reduce environmental externalities and social cost in the process

  9. Energy consumption and economic growth. New insights into the cointegration relationship

    Energy Technology Data Exchange (ETDEWEB)

    Belke, Ansgar; Dreger, Christian; Haan, Frauke de

    2010-07-01

    This paper examines the long-run relationship between energy consumption and real GDP, including energy prices, for 25 OECD countries from 1981 to 2007. The distinction between common factors and idiosyncratic components using principal component analysis allows to distinguish between developments on an international and a national level as drivers of the long-run relationship. Indeed, cointegration between the common components of the underlying variables indicates that international developments dominate the long-run relationship between energy consumption and real GDP. Furthermore, the results suggest that energy consumption is price-inelastic. Causality tests indicate the presence of a bi-directional causal relationship between energy consumption and economic growth. (orig.)

  10. THE RELATIONSHIP BETWEEN ENERGY CONSUMPTION AND ECONOMIC GROWTH: EVIDENCE FROM A STRUCTURAL BREAK ANALYSIS FOR TURKEY

    Directory of Open Access Journals (Sweden)

    Yasemin Dumrul

    2013-01-01

    Full Text Available In this study the aim was to investigate empirically the role of energy consumption in economic growth for the Turkish economy. The data used include annual energy consumption and economic growth series from 1960 to 2008. We used aggregate as well as various disaggregate data on energy consumption, including, oil, electricity, coal and renewable energy. Our contribution is that we take a structural breaks modeling approach in this paper. In the literature, the Kejriwal cointegration test has not been applied to date. The main conclusion of the study was that Turkey’s energy consumption and economic growth has a positive relationship varying quantity with structural breaks.

  11. EVALUATION OF ENERGY CONSUMPTION IN AGRO-INDUSTRIAL WASTEWATER TREATMENT PLANT

    Directory of Open Access Journals (Sweden)

    Wojciech Dąbrowski

    2016-07-01

    Full Text Available Energy consumption during waste water treatment is a very important factor affecting food industry plants. Apart from highly efficient treatment of dairy and meat sewage, a low energy consumption is required in order to lower its costs. During the research period parameters of raw and treated sewage were tested (BOD, COD, N-total, P-total. Also, the energy consumption from selected processes as well as total consumption were measured. Indicators of energy consumption per m3 and removed load were calculated. It was found that biological treatment and aeration played the main role in energy consumption in both objects. It was respectively 40 and 47% for Bielmlek and JBB plants. The second biggest energy consuming stage of treatment in both objects was sludge processing. Energy required to process excessive sludge equaled 30% of the total energy usage in both plants. Energy consumption factors related to hydraulic flow gave results in the range from 2,05 to 3,3 kWhm-3 and from 2,72 to 3,23 kWhm-3 for Bielmlek and JBB plants respectively. The research will be continued in order to optimize energy consumption while retaining high efficiency treatment in food industry WWTPs. Finally a mathematical model will be prepared for optimizing energy consumption in food industry WWTPs.

  12. Analysis of Factors Contributing to Changes in Energy Consumption in Tangshan City between 2007 and 2012

    Directory of Open Access Journals (Sweden)

    Jialing Zou

    2017-03-01

    Full Text Available The aim of this paper is to identify the correlations between energy consumption and the factors that control usage in the city of Tangshan. To do this, we first analyze the current status of Tangshan’s economic development and energy consumption, and then applied the logarithmic mean Divisia index to identify the factors affecting the changes in energy consumption of all sectors. The findings are summarized as follows: (1 secondary industry accounts for an extremely high percentage of industry in Tangshan city, much higher than the national average; from 2007 to 2012, the proportion of secondary industry increased in Tangshan city; (2 Tangshan’s energy consumption in 2013 was nearly twice that in 2005. Coal and coke coal consumption was responsible for 96.2% of total energy consumption in 2005 and 95.1% in 2013; (3 Tangshan’s energy intensity decreased from 3.00 tce/thousand Yuan in 2005 to 1.85 tce/thousand Yuan in 2013. However, the energy intensity of Tangshan was far more than the average for China, and the decline in Tangshan’s energy intensity was much slower than the average for China; (4 The technical effect plays a dominant role in decreasing energy consumption in most sectors, and the scale effect is the most important contributor to increasing energy consumption in all sectors. Input structural and final use structural effects play different roles in energy consumption in different sectors.

  13. Germany: primary energy consumption in 2002; Primaerenergieverbrauch in Deutschland 2002

    Energy Technology Data Exchange (ETDEWEB)

    Anon.

    2003-03-01

    The consumption of primary energy in Germany in 2002 has declined clearly compared to the level in the year before. It amounted to 487.8 million TCE, which is 1.9% less than the 498.5 million TCE of 2001. The development is mainly due to the economic slump and to the milder weather, with higher ambient temperatures, than in 2001. On the basis of 0.2% overall economic growth, the energy productivity of the economy improved by 0.8%. It was clearly lower than over the average of the period 1991 to 2001, where it had been 1.4%. Unlike the consumption of primary energy, gross electricity consumption increased slightly along with the gross domestic product, reaching approx. 582,0 billion kWh, which is approx. 1 billion kWh above the approx. 581.0 billion kWh of 2001. While 2001 still showed an export balance of approx. 1.3 billion kWh, 2002 shows an import balance of 0.7 billion kWh. After a clear drop in the second half of 2001, oil prices picked up in 2002, especially as a result of the threat of a war in Iraq. The world market price of (Brent) crude oil was approx. 55% higher in December 2002 than it had been in late 2001; the shift in the Euro-Dollar exchange rate in favor of the Euro reduced this impact on import prices to a level of approx. +33%. Unlike oil, the import prices of natural gas were lower than those in 2001 throughout the past year. Also the prices of imported coal dropped significantly. Electricity prices continued to rise sharply, partly also as a consequence of energy policy measures. (orig.) [German] Der Primaerenergieverbrauch in Deutschland ist im Jahre 2002 gegenueber dem Vorjahr deutlich gesunken. Er lag mit 488,5 Mio. t SKE um 1,9% niedriger als 2001 mit 497,8 Mio. t. SKE. Diese Entwicklung ist im Wesentlichen auf die schwache Konjunktur und auf die gegenueber 2001 mildere Witterung mit hoeheren Umgebungstemperaturen zurueckzufuehren. Die Energieproduktivitaet der Volkswirtschaft hat sich bei einem gesamtwirtschaftlichen Wachstum von 0,2% im

  14. Sensitivity of Mission Energy Consumption to Turboelectric Distributed Propulsion Design Assumptions on the N3-X Hybrid Wing Body Aircraft

    Science.gov (United States)

    Felder, James L.; Tong, Michael T.; Chu, Julio

    2012-01-01

    micron filaments the higher stator losses plus the added weight and power of larger cryocoolers results in a 4% increase in mission energy consumption. If liquid hydrogen is used to cool the superconductors the 40 micron fibers results in a 200% increase in hydrogen required for cooling. Each pound of hydrogen used as fuel displaces 3 pounds of jet fuel. For the N3-X on the reference mission the additional hydrogen due to the increase stator losses reduces the total fuel weight 10%. The lighter fuel load and attendant vehicle resizing reduces the total energy consumption more than the higher stator losses increase it. As a result with hydrogen cooling there is a slight reduction in mission energy consumption with increasing stator losses. This counter intuitive result highlights the need to consider the full system impact of changes rather than just at the component or subsystem level.

  15. Assessment of Energy, Environmental and Economic Performance of a Solar Desiccant Cooling System with Different Collector Types

    Directory of Open Access Journals (Sweden)

    Giovanni Angrisani

    2014-10-01

    Full Text Available Desiccant-based air handling units can achieve reductions in greenhouse gas emissions and energy savings with respect to conventional air conditioning systems. Benefits are maximized when they interact with renewable energy technologies, such as solar collectors. In this work, experimental tests and data derived from scientific and technical literature are used to implement a model of a solar desiccant cooling system, considering three different collector technologies (air, flat-plate and evacuated collectors. Simulations were then performed to compare the energy, environmental and economic performance of the system with those of a desiccant-based unit where regeneration thermal energy is supplied by a natural gas boiler, and with those of a conventional air-handling unit. The only solution that allows achieving the economic feasibility of the solar desiccant cooling unit consists of 16 m2 of evacuated solar collectors. This is able to obtain, with respect to the reference system, a reduction of primary energy consumption and of the equivalent CO2 emissions of 50.2% and 49.8%, respectively, but with a payback time of 20 years.

  16. The analysis of energy consumption of a commercial building in Tianjin, China

    Energy Technology Data Exchange (ETDEWEB)

    Zhao Jing [School of Environmental Science and Engineering, Tianjin University, Tianjin 300072 (China)], E-mail: zhaojing@tju.edu.cn; Zhu Neng [School of Environmental Science and Engineering, Tianjin University, Tianjin 300072 (China); Wu Yong [Department of Science and Technology, Ministry of Housing and Urban-Rural Development of the People' s Republic of China, Beijing 100835 (China)

    2009-06-15

    According to statistics and field investigation, the energy consumption situation and reality of commercial building is described in this paper. As the first step of large-scale public building energy efficiency supervision system encouraged by central government of China, the energy consumption of several typical commercial buildings and public buildings was analyzed in detail. The main contents of investigation are as follows: basic information of building, operational record of energy consumption equipment, energy consumption of indoor equipments, energy-efficiency assessment of energy consumption systems and equipments, investigation of behavior energy saving, etc. On this basis further analysis and diagnosis including indoor thermal and humid environment, operation state of air-conditioning water system, operation state of air-conditioning duct system and operation management of air-conditioning system were implemented. The results show that the most energy consumption of buildings in this city is commercial buildings, which can reach to about 240 W/m{sup 2} per year. Further analysis tells that air conditioning systems play the major role of building energy consumption, and building energy saving has great potential in this city. In this paper, the ways of diagnosis work for building energy consumption are also described and discussed. Reasonable test, diagnosis and analysis are meaningful for building energy efficiency retrofit and management.

  17. The analysis of energy consumption of a commercial building in Tianjin, China

    Energy Technology Data Exchange (ETDEWEB)

    Zhao, Jing; Zhu, Neng [School of Environmental Science and Engineering, Tianjin University, Tianjin 300072 (China); Wu, Yong [Department of Science and Technology, Ministry of Housing and Urban-Rural Development of the People' s Republic of China, Beijing 100835 (China)

    2009-06-15

    According to statistics and field investigation, the energy consumption situation and reality of commercial building is described in this paper. As the first step of large-scale public building energy efficiency supervision system encouraged by central government of China, the energy consumption of several typical commercial buildings and public buildings was analyzed in detail. The main contents of investigation are as follows: basic information of building, operational record of energy consumption equipment, energy consumption of indoor equipments, energy-efficiency assessment of energy consumption systems and equipments, investigation of behavior energy saving, etc. On this basis further analysis and diagnosis including indoor thermal and humid environment, operation state of air-conditioning water system, operation state of air-conditioning duct system and operation management of air-conditioning system were implemented. The results show that the most energy consumption of buildings in this city is commercial buildings, which can reach to about 240 W/m{sup 2} per year. Further analysis tells that air conditioning systems play the major role of building energy consumption, and building energy saving has great potential in this city. In this paper, the ways of diagnosis work for building energy consumption are also described and discussed. Reasonable test, diagnosis and analysis are meaningful for building energy efficiency retrofit and management. (author)

  18. Wien filter for cooled low-energy radioactive ion beams

    Energy Technology Data Exchange (ETDEWEB)

    Nummela, S. E-mail: saara.nummela@phys.jyu.fi; Dendooven, P.; Heikkinen, P.; Huikari, J.; Nieminen, A.; Jokinen, A.; Rinta-Antila, S.; Rubchenya, V.; Aeystoe, J

    2002-04-01

    A Wien filter for cooled radioactive ion beams has been designed at Ion Guide Isotope Separator On Line technique (IGISOL). The purpose of such device is to eliminate doubly charged ions from the mass separated singly charged ions, based on q=+2{yields}q=+1 charge exchange process in an ion cooler. The performance of the Wien filter has been tested off-line with a discharge ion source as well as on-line with a radioactive beam. The electron capture process of cooled q=+2 ions has been investigated in a radiofrequency quadrupole ion cooler with varying partial pressures of nitrogen. Also, the superasymmetric fission production yields of 68

  19. New heating schedule in hydrogen annealing furnace based on process simulation for less energy consumption

    Energy Technology Data Exchange (ETDEWEB)

    Saboonchi, Ahmad [Department of Mechanical Engineering, Isfahan University of Technology, Isfahan 84154 (Iran); Hassanpour, Saeid [Rayan Tahlil Sepahan Co., Isfahan Science and Technology Town, Isfahan 84155 (Iran); Abbasi, Shahram [R and D Department, Mobarakeh Steel Complex, Isfahan (Iran)

    2008-11-15

    Cold rolled steel coils are annealed in batch furnaces to obtain desirable mechanical properties. Annealing operations involve heating and cooling cycles which take long due to high weight of the coils under annealing. To reduce annealing time, a simulation code was developed that is capable of evaluating more effective schedules for annealing coils during the heating process. This code is additionally capable of accurate determination of furnace turn-off time for different coil weights and charge dimensions. After studying many heating schedules and considering heat transfer mechanism in the annealing furnace, a new schedule with the most advantages was selected as the new operation conditions in the hydrogen annealing plant. The performance of all the furnaces were adjusted to the new heating schedule after experiments had been carried out to ensure the accuracy of the code and the fitness of the new operation condition. Comparison of similar yield of cold rolled coils over two months revealed that specific energy consumption of furnaces under the new heating schedule decreased by 11%, heating cycle time by 16%, and the hydrogen consumption by 14%. (author)

  20. Simulation study on reduction of peak power demand and energy consumption in residential houses with solar thermal and PV systems; Taiyo energy riyo jutaku no fuka heijunka oyobi energy sakugen koka no simulation ni yoru kento

    Energy Technology Data Exchange (ETDEWEB)

    Endo, T. [Yokohama City Office, Yokohama (Japan); Udagawa, M. [Kogakuin Univ., Tokyo (Japan). Faculty of Engineering

    1995-11-20

    In this study, taking the all factors involved in the energy consumption in residential houses as subjects, the effectiveness of the solar PV system and solar thermal utilizing system in residential houses has been studied by simulating a model residential house considering the improvement of the residual environment in the future. Therefore, a model residual house is assumed, 18 kinds of combinations of construction style, cooling and heating type and solar energy utilizing form are assumed and year round simulation is carried out. The conclusions obtained by the simulation are as follows. The energy consumption in residential houses may decrease greatly by using a solar hot water supplying system. If combined with a solar PV system, the energy consumption in one year is about 8.7 to 9.7 MWh. The combined use of a solar thermal utilizing system and a PV system is more effective to reduce the second-time energy in comparison with the PV system only. 36% of the space heating energy consumption may be decreased by using the solar space heating system, but the decrease effect of the energy consumption of the solar space heating system is smaller than the solar hot water supplying system. 12 refs., 26 figs., 3 tabs.