WorldWideScience

Sample records for cooled plasma facing

  1. High heat flux actively cooled plasma facing components development, realization and first results in Tore Supra

    Energy Technology Data Exchange (ETDEWEB)

    Grosman, A. [Association Euratom-CEA, Centre d' Etudes de Cadarache, 13 - Saint-Paul-lez-Durance (France). Dept. de Recherches sur la Fusion Controlee

    2004-07-01

    The development, design, manufacture and testing of actively cooled high heat flux plasma facing components (PFC) has been an essential stage towards long powerful tokamak operations for Tore-Supra, it lasted about 10 years. This paper deals with the toroidal pumped limiter (TPL) that is able to sustain up to 10 MW/m{sup 2} of nominal heat flux. This device is based on hardened copper alloy heat sink structures covered by a carbon fiber composite armour, it resulted in the manufacturing of 600 elementary components, called finger elements, to achieve the 7.6 m{sup 2} TPL. This assembly has been operating in Tore-Supra since spring 2002. Some difficulties occurred during the manufacturing phase, the valuable industrial experience is summarized in the section 2. The permanent monitoring of PFC surface temperature all along the discharge is performed by a set of 6 actively cooled infrared endoscopes. The heat flux monitoring and control issue but also the progress made in our understanding of the deuterium retention in long discharges are described in the section 3. (A.C.)

  2. Damage of actively cooled plasma facing components of magnetic confinement controlled fusion machines

    Energy Technology Data Exchange (ETDEWEB)

    Chevet, G. [Association Euratom-CEA, DSM/DRFC, CEA Cadarache, Saint-Paul-Lez-Durance (France)], E-mail: gaelle.chevet@cea.fr; Schlosser, J. [Association Euratom-CEA, DSM/DRFC, CEA Cadarache, Saint-Paul-Lez-Durance (France); Martin, E.; Herb, V.; Camus, G. [Universite Bordeaux 1, UMR 5801 (CNRS-SAFRAN-CEA-UB1), Laboratoire des Composites Thermostructuraux, F-33600 Pessac (France)

    2009-03-31

    Plasma facing components (PFCs) of magnetic fusion machines have high manufactured residual stresses and have to withstand important stress ranges during operation. These actively cooled PFCs have a carbon fibre composite (CFC) armour and a copper alloy heat sink. Cracks mainly appear in the CFC near the composite/copper interface. In order to analyse damage mechanisms, it is important to well simulate the damage mechanisms both of the CFC and the CFC/Cu interface. This study focuses on the mechanical behaviour of the N11 material for which the scalar ONERA damage model was used. The damage parameters of this model were identified by similarity to a neighbour material, which was extensively analysed, according to the few characterization test results available for the N11. The finite elements calculations predict a high level of damage of the CFC at the interface zone explaining the encountered difficulties in the PFCs fabrication. These results suggest that the damage state of the CFC cells is correlated with a conductivity decrease to explain the temperature increase of the armour surface under fatigue heat load.

  3. CFC/Cu bond damage in actively cooled plasma facing components

    Energy Technology Data Exchange (ETDEWEB)

    Schlosser, J [Association Euratom-CEA, CEA/DSM/DRFC, CEA Cadarache, F-13108 Saint Paul Lez Durance (France); Martin, E [LCTS, CNRS UMR 5801, Universite Bordeaux 1, Pessac (France); Henninger, C [LMM, CNRS UMR 7607, Universite P. et M. Curie, Paris (France); Boscary, J [IPP-Euratom Association, Garching (Germany); Camus, G [LCTS, CNRS UMR 5801, Universite Bordeaux 1, Pessac (France); Escourbiac, F [Association Euratom-CEA, CEA/DSM/DRFC, CEA Cadarache, F-13108 Saint Paul Lez Durance (France); Leguillon, D [LMM, CNRS UMR 7607, Universite P. et M. Curie, Paris (France); Missirlian, M [Association Euratom-CEA, CEA/DSM/DRFC, CEA Cadarache, F-13108 Saint Paul Lez Durance (France); Mitteau, R [Association Euratom-CEA, CEA/DSM/DRFC, CEA Cadarache, F-13108 Saint Paul Lez Durance (France)

    2007-03-15

    Carbon fibre composite (CFC) armours have been successfully used for actively cooled plasma facing components (PFCs) of the Tore Supra (TS) tokamak. They were also selected for the divertor of the stellarator W7-X under construction and for the vertical target of the ITER divertor. In TS and W7-X a flat tile design for heat fluxes of 10 MW m{sup -2} has been chosen. To predict the lifetime of such PFCs, it is necessary to analyse the damage mechanisms and to model the damage propagation when the component is exposed to thermal cycling loads. Work has been performed to identify a constitutive law for the CFC and parameters to model crack propagation from the edge singularity. The aim is to predict damage rates and to propose geometric or material improvements to increase the strength and the lifetime of the interfacial bond. For ITER a tube-in-tile concept (monoblock), designed to sustain heat fluxes up to 20 MW m{sup -2}, has been developed. The optimization of the CFC/Cu bond, proposed for flat tiles, could be adopted for the monoblock concept.

  4. The heat removal capability of actively cooled plasma-facing components for the ITER divertor

    Science.gov (United States)

    Missirlian, M.; Richou, M.; Riccardi, B.; Gavila, P.; Loarer, T.; Constans, S.

    2011-12-01

    Non-destructive examination followed by high-heat-flux testing was performed for different small- and medium-scale mock-ups; this included the most recent developments related to actively cooled tungsten (W) or carbon fibre composite (CFC) armoured plasma-facing components. In particular, the heat-removal capability of these mock-ups manufactured by European companies with all the main features of the ITER divertor design was investigated both after manufacturing and after thermal cycling up to 20 MW m-2. Compliance with ITER requirements was explored in terms of bonding quality, heat flux performances and operational compatibility. The main results show an overall good heat-removal capability after the manufacturing process independent of the armour-to-heat sink bonding technology and promising behaviour with respect to thermal fatigue lifetime under heat flux up to 20 MW m-2 for the CFC-armoured tiles and 15 MW m-2 for the W-armoured tiles, respectively.

  5. Damage of actively cooled plasma facing components of magnetic confinement controlled fusion machines

    Science.gov (United States)

    Chevet, G.; Schlosser, J.; Martin, E.; Herb, V.; Camus, G.

    2009-03-01

    Plasma facing components (PFCs) of magnetic fusion machines have high manufactured residual stresses and have to withstand important stress ranges during operation. These actively cooled PFCs have a carbon fibre composite (CFC) armour and a copper alloy heat sink. Cracks mainly appear in the CFC near the composite/copper interface. In order to analyse damage mechanisms, it is important to well simulate the damage mechanisms both of the CFC and the CFC/Cu interface. This study focuses on the mechanical behaviour of the N11 material for which the scalar ONERA damage model was used. The damage parameters of this model were identified by similarity to a neighbour material, which was extensively analysed, according to the few characterization test results available for the N11. The finite elements calculations predict a high level of damage of the CFC at the interface zone explaining the encountered difficulties in the PFCs fabrication. These results suggest that the damage state of the CFC cells is correlated with a conductivity decrease to explain the temperature increase of the armour surface under fatigue heat load.

  6. New design aspects of cooling scheme for SST-1 plasma facing components

    Energy Technology Data Exchange (ETDEWEB)

    Paravastu, Yuvakiran, E-mail: pyuva@ipr.res.in; Khan, Ziauddin; Pradhan, Subrata

    2015-10-15

    Highlights: • SST-1 Tokamak PFCs were fabricated using graphite tiles embedded on CuCrZr and CuZr back plates. • PFC cooling is designed considering maximum heat load up to 0.6 MW/m{sup 2}. • Cooling scheme is such that the nucleate boiling will not occur. • The required mass flow rate and velocity for cooling water in each sub-connection are found to be 0.43 kg/s and 5.5 m/s for efficient heat extraction. • The header distribution scheme is modeled using AFT fathom which is in agreement to the required parameters with maximum 5% of deviation. - Abstract: PFC of SST-1 comprising of baffles, divertors and passive stabilizers have been designed and fabricated for a maximum heat load up to 1.0 MW/m{sup 2}. In operational condition, SST-1 divertors and passive stabilizers are expected to operate with a heat load of 0.6 and 0.25 MW/m{sup 2}, respectively. During plasma operation, the heat loads on PFC are required to be removed promptly and efficiently. Thereby the design of an efficient cooling scheme becomes extremely important for an efficient operation of PFC. PFCs are also baked up to 350 °C in order to remove absorbed moistures and other gases. 3D thermal analysis of PFC using ANSYS has been carried out to ensure its thermal stability. The cooling parameters have been calculated according to average incident flux on divertors and passive stabilizers. Engineering design demonstrated the required mass flow rate and velocity for cooling water in each sub-connection are optimized to be 0.43 kg/s and 5.5 m/s for efficient heat extraction under steady state heat load. Maximum temperature which PFC could be maintained is 355 °C and is well within threshold limits of material property degradation. The header distribution, modeled using AFT fathom, resulted for required parameters within maximum 5% of deviation.

  7. Characterization and damaging law of CFC for high heat flux actively cooled plasma facing components

    Energy Technology Data Exchange (ETDEWEB)

    Chevet, G., E-mail: gaelle.chevet@cea.fr [Association EURATOM-CEA, DSM/IRFM, CEA Cadarache, F-13108 Saint Paul lez Durance (France); Martin, E., E-mail: martin@lcts.u-bordeaux1.fr [LCTS, CNRS UMR 5801, Universite Bordeaux 1, Bordeaux (France); Boscary, J., E-mail: jean.boscary@ipp.mpg.de [Max-Planck-Institut fuer Plasmaphysik, EURATOM Association, 85748 Garching (Germany); Camus, G., E-mail: camus@lcts.u-bordeaux1.fr [LCTS, CNRS UMR 5801, Universite Bordeaux 1, Bordeaux (France); Herb, V., E-mail: herb@lcts.u-bordeaux1.fr [LCTS, CNRS UMR 5801, Universite Bordeaux 1, Bordeaux (France); Schlosser, J., E-mail: jacques.schlosser@cea.fr [Association EURATOM-CEA, DSM/IRFM, CEA Cadarache, F-13108 Saint Paul lez Durance (France); Escourbiac, F., E-mail: frederic.escourbiac@cea.fr [Association EURATOM-CEA, DSM/IRFM, CEA Cadarache, F-13108 Saint Paul lez Durance (France); Missirlian, M., E-mail: marc.missirlian@cea.fr [Association EURATOM-CEA, DSM/IRFM, CEA Cadarache, F-13108 Saint Paul lez Durance (France)

    2011-10-01

    The carbon fiber reinforced carbon composite (CFC) Sepcarb N11 has been used in the Tore Supra (TS) tokamak (Cadarache, France) as armour material for the plasma facing components. For the fabrication of the Wendelstein 7-X (W7-X) divertor (Greifswald, Germany), the NB31 material was chosen. For the fabrication of the ITER divertor, two potential CFC candidates are the NB31 and NB41 materials. In the case of Tore Supra, defects such as microcracks or debonding were found at the interface between CFC tile and copper heat sink. A mechanical characterization of the behaviour of N11 and NB31 was undertaken, allowing the identification of a damage model and finite element calculations both for flat tiles (TS and W7-X) and monoblock (ITER) armours. The mechanical responses of these CFC materials were found almost linear under on-axis tensile tests but highly nonlinear under shear tests or off-axis tensile tests. As a consequence, damage develops within the high shear-stress zones.

  8. Characterization and damaging law of CFC for high heat flux actively cooled plasma facing components

    Science.gov (United States)

    Chevet, G.; Martin, E.; Boscary, J.; Camus, G.; Herb, V.; Schlosser, J.; Escourbiac, F.; Missirlian, M.

    2011-10-01

    The carbon fiber reinforced carbon composite (CFC) Sepcarb N11 has been used in the Tore Supra (TS) tokamak (Cadarache, France) as armour material for the plasma facing components. For the fabrication of the Wendelstein 7-X (W7-X) divertor (Greifswald, Germany), the NB31 material was chosen. For the fabrication of the ITER divertor, two potential CFC candidates are the NB31 and NB41 materials. In the case of Tore Supra, defects such as microcracks or debonding were found at the interface between CFC tile and copper heat sink. A mechanical characterization of the behaviour of N11 and NB31 was undertaken, allowing the identification of a damage model and finite element calculations both for flat tiles (TS and W7-X) and monoblock (ITER) armours. The mechanical responses of these CFC materials were found almost linear under on-axis tensile tests but highly nonlinear under shear tests or off-axis tensile tests. As a consequence, damage develops within the high shear-stress zones.

  9. Damage prediction of carbon fibre composite armoured actively cooled plasma-facing components under cycling heat loads

    Energy Technology Data Exchange (ETDEWEB)

    Chevet, G; Schlosser, J; Courtois, X; Escourbiac, F; Missirlian, M [CEA, IRFM, F-13108 Saint Paul Lez Durance (France); Herb, V; Martin, E; Camus, G [LCTS, CNRS UMR 5801, Universite Bordeaux 1, Pessac (France); Braccini, M [SIMaP, CNRS UMR 5266, Grenoble (France)], E-mail: gaelle.chevet@cea.fr

    2009-12-15

    In order to predict the lifetime of carbon fibre composite (CFC) armoured plasma-facing components in magnetic fusion devices, it is necessary to analyse the damage mechanisms and to model the damage propagation under cycling heat loads. At Tore Supra studies have been launched to better understand the damage process of the armoured flat tile elements of the actively cooled toroidal pump limiter, leading to the characterization of the damageable mechanical behaviour of the used N11 CFC material and of the CFC/Cu bond. Up until now the calculations have shown damage developing in the CFC (within the zone submitted to high shear stress) and in the bond (from the free edge of the CFC/Cu interface). Damage is due to manufacturing shear stresses and does not evolve under heat due to stress relaxation. For the ITER divertor, NB31 material has been characterized and the characterization of NB41 is in progress. Finite element calculations show again the development of CFC damage in the high shear stress zones after manufacturing. Stresses also decrease under heat flux so the damage does not evolve. The characterization of the CFC/Cu bond is more complex due to the monoblock geometry, which leads to more scattered stresses. These calculations allow the fabrication difficulties to be better understood and will help to analyse future high heat flux tests on various mock-ups.

  10. Improvement of non destructive infrared test bed SATIR for examination of actively cooled tungsten armour Plasma Facing Components

    Energy Technology Data Exchange (ETDEWEB)

    Vignal, N., E-mail: nicolas.vignal@cea.fr; Desgranges, C.; Cantone, V.; Richou, M.; Courtois, X.; Missirlian, M.; Magaud, Ph.

    2013-10-15

    Highlights: • Non destructive infrared techniques for control ITER like PFCs. • Reflective surface such as W induce a measurement temperature error. • Numerical data processing by evaluation of the local emissivity. • SATIR test bed can control metallic surface with low and variable emissivity. -- Abstract: For steady state (magnetic) thermonuclear fusion devices which need large power exhaust capability and have to withstand heat fluxes in the range 10–20 MW m{sup −2}, advanced Plasma Facing Components (PFCs) have been developed. The importance of PFCs for operating tokamaks requests to verify their manufacturing quality before mounting. SATIR is an IR test bed validated and recognized as a reliable and suitable tool to detect cooling defaults on PFCs with CFC armour material. Current tokamak developments implement metallic armour materials for first wall and divertor; their low emissivity causes several difficulties for infrared thermography control. We present SATIR infrared thermography test bed improvements for W monoblocks components without defect and with calibrated defects. These results are compared to ultrasonic inspection. This study demonstrates that SATIR method is fully usable for PFCs with low emissivity armour material.

  11. Leak tightness tests on actively cooled plasma facing components: Lessons learned from Tore Supra experience and perspectives for the new fusion machines

    Energy Technology Data Exchange (ETDEWEB)

    Chantant, M., E-mail: michel.chantant@cea.fr; Lambert, R.; Gargiulo, L.; Hatchressian, J.-C.; Guilhem, D.; Samaille, F.; Soler, B.

    2015-10-15

    Highlights: • Test procedures for the qualification of the tightness of actively cooled plasma facing components were defined. • The test is performed after the component manufacturing and before its set-up in the vacuum vessel. • It allows improving the fusion machine availability. • The lessons of tests over 20 years at Tore Supra are presented. - Abstract: The fusion machines under development or construction (ITER, W7X) use several hundreds of actively cooled plasma facing components (ACPFC). They are submitted to leak tightness requirements in order to get an appropriate vacuum level in the vessel to create the plasma. During the ACPFC manufacturing and before their installation in the machine, their leak tightness performance must be measured to check that they fulfill the vacuum requirements. A relevant procedure is needed which allows to segregate potential defects. It must also be optimized in terms of test duration and costs. Tore Supra, as an actively cooled Tokamak, experienced several leaks on ACPFCs during the commissioning and during the operation of the machine. A test procedure was then defined and several test facilities were set-up. Since 1990 the tightness of all the new ACPFCs is systematically tested before their installation in Tore Supra. During the qualification test, the component is set up in a vacuum test tank, and its cooling circuits are pressurized with helium. It is submitted to 3 temperature cycles from room temperature up to the baking temperature level in Tore Supra (200 °C) and two pressurization tests are performed (6 MPa at room temperature and 4 MPa at 200 °C) at each stage. At the end of the last cycle when the ACPFC is at room temperature and pressurized with helium at 6 MPa, the measured leak rate must be lower than 5 × 10{sup −11} Pa m{sup 3} s{sup −1}, the pressure in the test tank being <5 × 10{sup −5} Pa. A large experience has been gained on ACPFCs with carbon parts on stainless steel and Cu

  12. Cool Styles for Your Face

    Institute of Scientific and Technical Information of China (English)

    2000-01-01

    GLASSES are a part of modern fashion. The right spectacle frames can not only add some demureness to you, but also perfect your face. To choose suitable frames for yourself, you must first know your own features. Comb all your hair backwards to show your entire features clearly in front of the

  13. A mature industrial solution for ITER divertor plasma facing components: hypervapotron cooling concept adapted to Tore Supra flat tile technology

    Energy Technology Data Exchange (ETDEWEB)

    Escourbiac, F.; Missirlian, M.; Schlosser, J. [Association EURATOM-CEA Cadarache, Departement de Recherches sur la Fusion Controlee, 13 - Saint Paul lez Durance (France); Bobin-Vastra, I. [AREVA Centre Technique de Framatome, 71 - Le Creusot (France); Kuznetsov, V. [Efremov Institute, Doroga na Metallostroy, St. Petersburg (Russian Federation); Schedler, B. [Plansee AG, Reutte (Austria)

    2004-07-01

    The use of flat tile technology to handle heat fluxes in the range of 20 MW/m{sup 2} with components relevant for fusion experiment applications is technically possible with the hypervapotron cooling concept. This paper deals with recent high heat flux performances operated with success on 2 identical mock-ups, based on this concept, that were tested in 2 different electron gun facilities. Each mock-up consisted of a CuCrZr heat sink armored with 25 flat tiles of the 3D carbon fibre composite material SEPcarb NS31 assembled with pure copper by active metal casting (AMC). The AMC tiles were electron beam welded on the CuCrZr bar, fins and slots on the neutral beam JET design were machined into the bar, then the bar was closed with a thick CuCrZr rear plug including hydraulic connections then the bar was electron beam welded onto the sidewalls. The testing results show that full ITER design specifications were achieved with margins, the critical heat flux limit was even higher than 30 MW/m{sup 2}. These results highlight the high potential of this technology for ITER divertor application.

  14. A new vision of plasma facing components

    Energy Technology Data Exchange (ETDEWEB)

    Nygren, Richard E., E-mail: renygre@sandia.gov [Sandia National Laboratories, Albuquerque, NM (United States); Youchison, Dennis L. [Oak Ridge National Laboratory, Oak Ridge, TN (United States); Wirth, Brian D. [University of Tennessee, Knoxville, TN (United States); Snead, Lance L.

    2016-11-01

    Highlights: • New approach recommended to develop refractory fusion plasma facing components. • Need to develop engineered materials architecture with nano-features. • Need to develop PFCs with gas jet cooling with very fine scale for jet arrays. • Emphasis on role of additive manufacturing as needed method for fabrication. - Abstract: This paper advances a vision for plasma facing components (PFCs) that includes the following points. The solution for plasma facing materials likely consists of engineered structures in which the layer of plasma facing material (PFM) is integrated with an engineered structure that cools the PFM and may also transition with graded composition. The key to achieving this PFC architecture will likely lie in advanced manufacturing methods, e.g., additive manufacturing, that can produce layers with controlled porosity and features such as micro-fibers and/or nano-particles that can collect He and transmutation products, limit tritium retention, and do all this in a way that maintains adequate robustness for a satisfactory lifetime. This vision has significant implications for how we structure a development program.

  15. THE COOLING OF CORONAL PLASMAS. IV. CATASTROPHIC COOLING OF LOOPS

    Energy Technology Data Exchange (ETDEWEB)

    Cargill, P. J. [Space and Atmospheric Physics, The Blackett Laboratory, Imperial College, London SW7 2BW (United Kingdom); Bradshaw, S. J., E-mail: p.cargill@imperial.ac.uk [Department of Physics and Astronomy, Rice University, Houston, TX 77005 (United States)

    2013-07-20

    We examine the radiative cooling of coronal loops and demonstrate that the recently identified catastrophic cooling is due to the inability of a loop to sustain radiative/enthalpy cooling below a critical temperature, which can be >1 MK in flares, 0.5-1 MK in active regions, and 0.1 MK in long tenuous loops. Catastrophic cooling is characterized by a rapid fall in coronal temperature, while the coronal density changes by a small amount. Analytic expressions for the critical temperature are derived and show good agreement with numerical results. This effect considerably limits the lifetime of coronal plasmas below the critical temperature.

  16. Microchannel cooling of face down bonded chips

    Science.gov (United States)

    Bernhardt, Anthony F.

    1993-01-01

    Microchannel cooling is applied to flip-chip bonded integrated circuits, in a manner which maintains the advantages of flip-chip bonds, while overcoming the difficulties encountered in cooling the chips. The technique is suited to either multichip integrated circuit boards in a plane, or to stacks of circuit boards in a three dimensional interconnect structure. Integrated circuit chips are mounted on a circuit board using flip-chip or control collapse bonds. A microchannel structure is essentially permanently coupled with the back of the chip. A coolant delivery manifold delivers coolant to the microchannel structure, and a seal consisting of a compressible elastomer is provided between the coolant delivery manifold and the microchannel structure. The integrated circuit chip and microchannel structure are connected together to form a replaceable integrated circuit module which can be easily decoupled from the coolant delivery manifold and the circuit board. The coolant supply manifolds may be disposed between the circuit boards in a stack and coupled to supplies of coolant through a side of the stack.

  17. Manufacturing and high heat-flux testing of brazed actively cooled mock-ups with Ti-doped graphite and CFC as plasma-facing materials

    Energy Technology Data Exchange (ETDEWEB)

    Garcia-Rosales, C; Ordas, N; Lopez-Galilea, I [CEIT and Tecnun (University of Navarra), 20018 San Sebastian (Spain); Pintsuk, G; Linke, J [Forschungszentrum Juelich GmbH, EURATOM Association, 52425 Juelich (Germany); Gualco, C; Grattarola, M; Mataloni, F [Ansaldo Ricerche S.p.A., I-16152 Genoa (Italy); Ramos Fernandez, J M; MartInez Escandell, M [Departamento de Quimica Inorganica, University of Alicante, E-03690 Alicante (Spain); Centeno, A; Blanco, C [Instituto Nacional del Carbon (CSIC), Apdo. 73, E-33080 Oviedo (Spain)], E-mail: cgrosales@ceit.es

    2009-12-15

    In the frame of the EU project ExtreMat new Ti-doped isotropic graphites and carbon fibre-reinforced carbons (CFCs) with high thermal conductivity and reduced chemical erosion were brazed to a CuCrZr heat-sink to produce flat-tile actively cooled mock-ups (MUs). Brazing was done using a low CTE interlayer to shift the stresses to the metal-metal interface. These MUs were exposed to high heat-fluxes in the electron beam facility JUDITH. Screening tests were conducted increasing the heat load stepwise up to 15 MW m{sup -2}, followed by 100 cycles at 15 MW m{sup -2}, subsequent screening up to 20 MW m{sup -2} and 100 cycles at 20 MW m{sup -2}. All MUs withstood screening at 15 MW m{sup -2} and most of them survived screening at 20 MW m{sup -2}. Ti-doped CFC MUs showed a significant improvement compared with the undoped reference CFC, surviving several cycles at 20 MW m{sup -2} on all tiles. One of the Ti-doped graphite MUs withstood 100 cycles at 20 MW m{sup -2} on one tile, representing a promising result.

  18. Damage modelling in plasma facing components

    Energy Technology Data Exchange (ETDEWEB)

    Martin, E. [Universite Bordeaux 1, UMR 5801 (CNRS-SPS-CEA-UB1), Laboratoire des Composites Thermostructuraux, F-33600 Pessac (France)], E-mail: martin@lcts.u-bordeaux1.fr; Camus, G. [Universite Bordeaux 1, UMR 5801 (CNRS-SPS-CEA-UB1), Laboratoire des Composites Thermostructuraux, F-33600 Pessac (France); Schlosser, J.; Chevet, G. [Association Euratom-CEA, DSM/DRFC, CEA Cadarache, St. Paul Lez Durance (France)

    2009-04-30

    The plasma facing components of controlled fusion devices are submitted to high heat fluxes in operating conditions (from 10 to 20 MW/m{sup 2}). These components are made of a carbon/carbon composite tile bonded to a copper alloy heat sink. Due to the thermal expansion mismatch between the composite and the copper alloy, significant stresses may develop during fabrication and under heat load inducing damage in the composite material as well as at the copper/composite interface. The present study describes a modelling approach aimed at predicting damage development in plasma facing components. For this purpose, damage laws related to the non-linear behaviour of both the composite material and the copper/composite joint have been identified. These constitutive laws were then introduced in a numerical model representative of a plasma facing component. Results show the development of damage within the assembly submitted to a heat load.

  19. Damage modelling in Plasma Facing Components

    Energy Technology Data Exchange (ETDEWEB)

    Martin, E.; Camus, G. [Bordeaux-1 Univ. des Sciences et Technologies-3, LCTS, Lab. des Composites Thermostructuraux, CNRS-UMR 5801, 33 - Pessac, (France); Schlosser, J. [Association Euratom-CEA Cadarache, 13 - Saint-Paul-lez-Durance (France). Dept. de Recherches sur la Fusion Controlee

    2007-07-01

    Full text of publication follows: The plasma facing components (PFC) of controlled fusion devices are submitted to high heat fluxes in operating conditions (10 MW/m2 for Tore Supra and up to 20 MW/m{sup 2} for ITER, Cadarache, France). Active cooling is required to maintain a reasonable surface temperature and to avoid critical heat flux and melting of the components. The PFC developed for Tore Supra are made of a carbon/carbon (C/C) composite flat tile bonded to a copper alloy heat sink. Under operating conditions, because of the thermal expansion mismatch existing between the C/C composite and the copper alloy, these components withstand significant stresses which induce damage in the C/C material as well as at the copper/composite interface. Design tools are thus required in order to analyse the initiation and the propagation of damage in thermally loaded PFC. The present study describes a modelling approach aimed at predicting damage in actively cooled PFC. For this purpose, dedicated experimental procedures have been developed and sound constitutive laws taking into account the damage related non linear behaviour of both the C/C material and the Cu-C/C joint have been established. Various tests have first been performed on C/C samples in tension and compression, within the fibre axis and off-axis, as well as in shear using a Iosipescu type device, in order to carefully analyse the non-linear mechanical behaviour of this material. A constitutive law able to handle complex multiaxial loadings, established within a classical thermodynamical framework and using scalar damage variables, was then identified. Tensile and shear tests were also performed on C/C-Cu samples in order to identify a cohesive zone model representative of the damageable behaviour of the joint. These constitutive laws were then introduced in a numerical model representative of a PFC. Obtained results have evidenced the progressive development of damage which takes place in the assembly when

  20. Neutron irradiation effects on plasma facing materials

    Science.gov (United States)

    Barabash, V.; Federici, G.; Rödig, M.; Snead, L. L.; Wu, C. H.

    2000-12-01

    This paper reviews the effects of neutron irradiation on thermal and mechanical properties and bulk tritium retention of armour materials (beryllium, tungsten and carbon). For each material, the main properties affected by neutron irradiation are described and the specific tests of neutron irradiated armour materials under thermal shock and disruption conditions are summarized. Based on current knowledge, the expected thermal and structural performance of neutron irradiated armour materials in the ITER plasma facing components are analysed.

  1. The effect of passive heating and face cooling on perceived exertion during exercise in the heat.

    Science.gov (United States)

    Armada-da-Silva, P A S; Woods, J; Jones, D A

    2004-05-01

    Increased body temperature is thought to be an important component of the higher perception of exertion that is a feature of fatigue during exercise in the heat but a causal relationship has yet to be demonstrated. We have investigated the effect of passive heating on the perception of exertion during a standard bout of exercise and also assessed the effect of cooling the head on compensating for the increased body temperature on the feelings of exertion. Ten male subjects performed a 14-min cycling exercise [average power approximately 63% of maximum power output ( W(max))] at an ambient temperature of 35 degrees C at resting rectal temperature [mean (SD): 37.49 (0.27) degrees C; control (CON) trial] on one occasion, and after sitting in a sauna to raise rectal temperature [mean (SD): 38.95(0.13) degrees C; sauna (SAU) trial]. During the exercise, subjects reported their ratings of overall perceived exertion (RPE), perceived exertion of the legs (RPE(legs)) and thermal comfort (TC). A blood sample was collected by the end of the exercise for determination of plasma glucose, lactate and prolactin and haematocrit. RPE values were significantly elevated after passive heating [mean (SE): 14.5 (0.7) units in CON and 17.2 (0.5) units in SAU, at the end of exercise; PFAN) and SAU(FAN)) that was achieved by combining face fanning and spraying the face with a mist of cooled water. Face cooling decreased RPE values after sauna to a point that no differences between the two conditions existed. RPE(legs) scores and heart rate, however, remained higher in SAU(FAN) compared with CON(FAN) ( P<0.05). We conclude that hyperthermia is a causative element of the increased perception of exertion during submaximal exercise in the heat and that the effect of increased core temperature on the feelings of exertion is modulated by face cooling.

  2. Electron Plasmas Cooled by Cyclotron-Cavity Resonance

    CERN Document Server

    Povilus, A P; Evans, L T; Evetts, N; Fajans, J; Hardy, W N; Hunter, E D; Martens, I; Robicheaux, F; Shanman, S; So, C; Wang, X; Wurtele, J S

    2016-01-01

    We observe that high-Q electromagnetic cavity resonances increase the cyclotron cooling rate of pure electron plasmas held in a Penning-Malmberg trap when the electron cyclotron frequency, controlled by tuning the magnetic field, matches the frequency of standing wave modes in the cavity. For certain modes and trapping configurations, this can increase the cooling rate by factors of ten or more. In this paper, we investigate the variation of the cooling rate and equilibrium plasma temperatures over a wide range of parameters, including the plasma density, plasma position, electron number, and magnetic field.

  3. The potential of rapid cooling spark plasma sintering for metallic materials

    Directory of Open Access Journals (Sweden)

    Faming Zhang

    2013-05-01

    Full Text Available Spark plasma sintering (SPS is a remarkable technique for consolidating a large variety of advanced materials with rapid heating rates. However, adjusting the cooling rates has so far faced limitations. This communication discusses the potentials of SPS integrated with a novel gas quenching system that can allow metallic materials to be sintered and rapidly quenched directly after the sintering step, saving energy and costs. Results on numerical simulations of rapid cooling-SPS and the mechanical properties and microstructures of Ti6Al4V alloy are discussed; exhibiting the feasibility of this rapid cooling SPS technique and the major implications for the field of SPS and metallic powder consolidation.

  4. Time-dependent Cooling in Photoionized Plasma

    Science.gov (United States)

    Gnat, Orly

    2017-02-01

    I explore the thermal evolution and ionization states in gas cooling from an initially hot state in the presence of external photoionizing radiation. I compute the equilibrium and nonequilibrium cooling efficiencies, heating rates, and ion fractions for low-density gas cooling while exposed to the ionizing metagalactic background radiation at various redshifts (z = 0 ‑ 3), for a range of temperatures (108–104 K), densities (10‑7–103 cm‑3), and metallicities (10‑3–2 times solar). The results indicate the existence of a threshold ionization parameter, above which the cooling efficiencies are very close to those in photoionization equilibrium (so that departures from equilibrium may be neglected), and below which the cooling efficiencies resemble those in collisional time-dependent gas cooling with no external radiation (and are thus independent of density).

  5. Influence of plasma loading in a hybrid muon cooling channel

    Energy Technology Data Exchange (ETDEWEB)

    Freemire, B.; Stratakis, D.; Yonehara, K.

    2015-05-03

    In a hybrid 6D cooling channel, cooling is accomplished by reducing the beam momentum through ionization energy loss in wedge absorbers and replenishing the momentum loss in the longitudinal direction with gas-filled rf cavities. While the gas acts as a buffer to prevent rf breakdown, gas ionization also occurs as the beam passes through the pressurized cavity. The resulting plasma may gain substantial energy from the rf electric field which it can transfer via collisions to the gas, an effect known as plasma loading. In this paper, we investigate the influence of plasma loading on the cooling performance of a rectilinear hybrid channel. With the aid of numerical simulations we examine the sensitivity in cooling performance and plasma loading to key parameters such as the rf gradient and gas pressure.

  6. Cool oxygen plasma oxidation of the organic matter of coal

    Energy Technology Data Exchange (ETDEWEB)

    Korobetskii, I.A.; Nazimov, S.A.; Romanchuk, V.V. [COAL-C Ltd., Kemerovo (Russian Federation)

    1997-12-31

    Oxidation of the sapropelitic coals has been carried out by cool oxygen plasma. The changes in concentration of oxygen- and hydrogen-containing groups of organic matter were observed by photoacoustic FTIR-spectroscopy during the cool oxygen plasma oxidation (COPO). The accumulation of oxygen-containing bands, such as C-O and O-H, during COPO was shown. The complete elimination of aromatic and aliphatic structure occurred in first two hours of oxidation. (orig.)

  7. Free surface stability of liquid metal plasma facing components

    Science.gov (United States)

    Fiflis, P.; Christenson, M.; Szott, M.; Kalathiparambil, K.; Ruzic, D. N.

    2016-10-01

    An outstanding concern raised over the implementation of liquid metal plasma facing components in fusion reactors is the potential for ejection of liquid metal into the fusion plasma. The influences of Rayleigh-Taylor-like and Kelvin-Helmholtz-like instabilities were experimentally observed and quantified on the thermoelectric-driven liquid-metal plasma-facing structures (TELS) chamber at the University of Illinois at Urbana-Champaign. To probe the stability boundary, plasma currents and velocities were first characterized with a flush probe array. Subsequent observations of lithium ejection under exposure in the TELS chamber exhibited a departure from previous theory based on linear perturbation analysis. The stability boundary is mapped experimentally over the range of plasma impulses of which TELS is capable to deliver, and a new theory based on a modified set of the shallow water equations is presented which accurately predicts the stability of the lithium surface under plasma exposure.

  8. Analytical method for thermal stress analysis of plasma facing materials

    Science.gov (United States)

    You, J. H.; Bolt, H.

    2001-10-01

    The thermo-mechanical response of plasma facing materials (PFMs) to heat loads from the fusion plasma is one of the crucial issues in fusion technology. In this work, a fully analytical description of the thermal stress distribution in armour tiles of plasma facing components is presented which is expected to occur under typical high heat flux (HHF) loads. The method of stress superposition is applied considering the temperature gradient and thermal expansion mismatch. Several combinations of PFMs and heat sink metals are analysed and compared. In the framework of the present theoretical model, plastic flow and the effect of residual stress can be quantitatively assessed. Possible failure features are discussed.

  9. RACLETTE: a model for evaluating the thermal response of plasma facing components to slow high power plasma transients. Part II: Analysis of ITER plasma facing components

    Science.gov (United States)

    Federici, Gianfranco; Raffray, A. René

    1997-04-01

    The transient thermal model RACLETTE (acronym of Rate Analysis Code for pLasma Energy Transfer Transient Evaluation) described in part I of this paper is applied here to analyse the heat transfer and erosion effects of various slow (100 ms-10 s) high power energy transients on the actively cooled plasma facing components (PFCs) of the International Thermonuclear Experimental Reactor (ITER). These have a strong bearing on the PFC design and need careful analysis. The relevant parameters affecting the heat transfer during the plasma excursions are established. The temperature variation with time and space is evaluated together with the extent of vaporisation and melting (the latter only for metals) for the different candidate armour materials considered for the design (i.e., Be for the primary first wall, Be and CFCs for the limiter, Be, W, and CFCs for the divertor plates) and including for certain cases low-density vapour shielding effects. The critical heat flux, the change of the coolant parameters and the possible severe degradation of the coolant heat removal capability that could result under certain conditions during these transients, for example for the limiter, are also evaluated. Based on the results, the design implications on the heat removal performance and erosion damage of the variuos ITER PFCs are critically discussed and some recommendations are made for the selection of the most adequate protection materials and optimum armour thickness.

  10. The baking analysis for vacuum vessel and plasma facing components of the KSTAR tokamak

    Energy Technology Data Exchange (ETDEWEB)

    Lee, K.H. [Chungnam National University Graduate School, Taejeon (Korea); Im, K.H.; Cho, S.Y. [Korea Basic Science Institute, Taejeon (Korea); Kim, J.B. [Hyundai Heavy Industries Co., Ltd. (Korea); Woo, H.K. [Chungnam National University, Taejeon (Korea)

    2000-11-01

    The base pressure of vacuum vessel of the KSTAR (Korea Superconducting Tokamak Advanced Research) Tokamak is to be a ultra high vacuum, 10{sup -6} {approx} 10{sup -7} Pa, to produce clean plasma with low impurity containments. for this purpose, the KSTAR vacuum vessel and plasma facing components need to be baked up to at least 250 deg.C, 350 deg.C respectively, within 24 hours by hot nitrogen gas from a separate baking/cooling line system to remove impurities from the plasma-material interaction surfaces before plasma operation. Here by applying the implicit numerical method to the heat balance equations of the system, overall temperature distributions of the KSTAR vacuum vessel and plasma facing components are obtained during the whole baking process. The model for 2-dimensional baking analysis are segmented into 9 imaginary sectors corresponding to each plasma facing component and has up-down symmetry. Under the resulting combined loads including dead weight, baking gas pressure, vacuum pressure and thermal loads, thermal stresses in the vacuum vessel during bakeout are calculated by using the ANSYS code. It is found that the vacuum vessel and its supports are structurally rigid based on the thermal stress analyses. (author). 9 refs., 11 figs., 1 tab.

  11. The baking analysis for vacuum vessel and plasma facing components of the KSTAR tokamak

    Energy Technology Data Exchange (ETDEWEB)

    Lee, K. H.; Woo, H. K. [Chungnam National Univ., Taejon (Korea, Republic of); Im, K. H.; Cho, S. Y. [korea Basic Science Institute, Taejon (Korea, Republic of); Kim, J. B. [Hyundai Heavy Industries Co., Ltd., Ulsan (Korea, Republic of)

    2000-07-01

    The base pressure of vacuum vessel of the KSTAR (Korea Superconducting Tokamak Advanced Research) Tokamak is to be a ultra high vacuum, 10{sup -6}{approx}10{sup -7}Pa, to produce clean plasma with low impurity containments. For this purpose, the KSTAR vacuum vessel and plasma facing components need to be baked up to at least 250 .deg. C, 350 .deg. C respectively, within 24 hours by hot nitrogen gas from a separate baking/cooling line system to remove impurities from the plasma-material interaction surfaces before plasma operation. Here by applying the implicit numerical method to the heat balance equations of the system, overall temperature distributions of the KSTAR vacuum vessel and plasma facing components are obtained during the whole baking process. The model for 2-dimensional baking analysis are segmented into 9 imaginary sectors corresponding to each plasma facing component and has up-down symmetry. Under the resulting combined loads including dead weight, baking gas pressure, vacuum pressure and thermal loads, thermal stresses in the vacuum vessel during bakeout are calculated by using the ANSYS code. It is found that the vacuum vessel and its supports are structurally rigid based on the thermal stress analyses.

  12. Tracer techniques for the assessment of material migration and surface modification of plasma-facing components

    Energy Technology Data Exchange (ETDEWEB)

    Rubel, M., E-mail: rubel@kth.se [Department of Fusion Plasma Physics, Royal Institute of Technology, 100 44 Stockholm (Sweden); Weckmann, A.; Ström, P.; Petersson, P.; Garcia-Carrasco, A. [Department of Fusion Plasma Physics, Royal Institute of Technology, 100 44 Stockholm (Sweden); Brezinsek, S.; Coenen, J.; Kreter, A.; Möller, S.; Wienhold, P. [Institute of Energy and Climate Research, Forschungszentrum Jülich, 52425 Jülich (Germany); Wauters, T. [LPP-ERM/KMS, Association EURATOM-Belgian State, 1000 Brussels (Belgium); Fortuna-Zaleśna, E. [Faculty of Materials Science, Warsaw University of Technology, 02-507 Warsaw (Poland)

    2015-08-15

    Highlights: • Tracer techniques were used in the TEXTOR tokamak to determine high-Z metal migration and the retention of species used for plasma edge cooling or wall cleaning under different operation conditions. • Volatile molybdenum hexa-fluoride, nitrogen-15 and oxygen-18 were used as markers in tokamak or ion cyclotron wall conditioning discharges (ICWC). • The objective was to obtain qualitative and quantitative of a global and local deposition pattern and material mixing effects. • The deposition and retention was studied on plasma-facing components, collector probes and test limiters. • Optical spectroscopy and ex-situ analysis techniques were used to determine the plasma response to tracer injection and surface composition modification. - Abstract: Tracer techniques were used in the TEXTOR tokamak to determine high-Z metal migration and the deposition of species used for plasma edge cooling or wall conditioning under different types of operation conditions. Volatile molybdenum hexa-fluoride, nitrogen-15 and oxygen-18 were used as markers in tokamak or ion cyclotron wall conditioning discharges (ICWC). The objective was to obtain qualitative and quantitative of a global and local deposition pattern and material mixing effects. The deposition and retention was studied on plasma-facing components, collector probes and test limiters. Optical spectroscopy and ex-situ analysis techniques were used to determine the plasma response to tracer injection and the modification of surface composition. Molybdenum and light isotopes were detected on all types of limiters and short-term probes retrieved from the vessel showing that both helium and nitrogen are trapped following wall conditioning and edge cooling. Only small amounts below 1 × 10{sup 19} m{sup −2} of {sup 18}O were detected on surfaces treated by oxygen-assisted ICWC.

  13. Stellar cooling bounds on new light particles: including plasma effects

    CERN Document Server

    Hardy, Edward

    2016-01-01

    Strong constraints on the coupling of new light particles to the Standard Model (SM) arise from their production in the hot cores of stars, and the effects of this on stellar cooling. The large electron density in stellar cores significantly modifies the in-medium propagation of SM states. For new light particles which have an effective in-medium mixing with the photon, such plasma effects can result in parametrically different production rates to those obtained from a naive calculation. Taking these previously-neglected contributions into account, we make updated estimates for the stellar cooling bounds on a number of light new particle candidates. In particular, we improve the bounds on light (m < keV) scalars coupling to electrons or nucleons by up to 3 orders of magnitude in the coupling squared, significantly revise the supernova cooling bounds on dark photon couplings, and qualitatively change the mass dependence of stellar bounds on new vectors.

  14. Simulations Of Laser Cooling In An Ultracold Neutral Plasma

    Science.gov (United States)

    Langin, Thomas; Strickler, Trevor; Pohl, Thomas; Vrinceanu, Daniel; Killian, Thomas

    2016-05-01

    Ultracold neutral plasmas (UNPs) generated by photoionization of laser-cooled, magneto-optically trapped neutral gases, are useful systems for studying strongly coupled plasmas. Coupling is parameterized by Γi, the ratio of the average nearest neighbor Coulomb interaction energy to the ion kinetic energy. For typical UNPs, Γi is currently limited to ~ 3 . For alkaline earth ions, higher Γi can be achieved by laser-cooling. Using Molecular Dynamics and a quantum trajectories approach, we have simulated laser-cooling of Sr+ ions interacting through a Yukawa potential. The simulations include re-pumping from two long-lived D-states, and are conducted at experimentally achievable parameters (density n = 2 e+14 m-3, size σ0 = 4 mm, Te = 19 K). Laser-cooling is shown to both reduce the temperature by a factor of 2 over relevant timescales (tens of μ s) and slow the electron thermal-pressure driven radial expansion of the UNP. We also discuss the unique aspects of laser-cooling in a highly collisional system; in particular, the effect of collisions on dark state formation due to the coupling of the P3/2 state to both the S1/2 (via the cooling transition) and the D5/2 (via a re-pump transition) states. Supported by NSF and DoE, the Air Force Office of Scientific Research, the NDSEG Program, and NIH NCRR S10RR02950, an IBM SUR Award in partnership with CISCO, Qlogic and Adaptive Computing.

  15. Counter-facing plasma guns for efficient extreme ultra-violet plasma light source

    Science.gov (United States)

    Kuroda, Yusuke; Yamamoto, Akiko; Kuwabara, Hajime; Nakajima, Mitsuo; Kawamura, Tohru; Horioka, Kazuhiko

    2013-11-01

    A plasma focus system composed of a pair of counter-facing coaxial guns was proposed as a long-pulse and/or repetitive high energy density plasma source. We applied Li as the source of plasma for improvement of the conversion efficiency, the spectral purity, and the repetition capability. For operation of the system with ideal counter-facing plasma focus mode, we changed the system from simple coaxial geometry to a multi-channel configuration. We applied a laser trigger to make synchronous multi-channel discharges with low jitter. The results indicated that the configuration is promising to make a high energy density plasma with high spectral efficiency.

  16. Engineering solutions for components facing the plasma in experimental fusion power reactors

    Energy Technology Data Exchange (ETDEWEB)

    Casini, G.; Farfaletti-Casali, F.

    1986-07-01

    An analysis is made of the engineering problems related to the structures facing the plasma in experimental tokamak-type reactors. Attention is focused on the so-called ''current first wall'', i.e. the wall side of the blanket segments facing the plasma, and on the collector plates of the impurity control system. The design of a first wall, developed at the JRC-Ispra for INTOR/NET and based on the idea of conceiving it as one of the sides, of a box which envelopes a blanket segment, is described. The progress in the structural analysis of the first wall box under operating and abnormal (plasma disruption) conditions is presented and discussed. The design of the collector plates of the single-null divertor of INTOR/NET, as developed at the JRC-Ispra, is described. This design is based on a W-Re protective layer and a water-cooled heat sink, including cooling channels iun Cu-alloys and a Cu-matrix for bonding. The results of the elastic and elasto-plastic evaluations are discussed, together with a layout of the experimental activity in progress. It is concluded that, even if the uncertainties related to the plasma-wall interaction are still relevant, the engineering solutions identified look manageable, although they require a large research and development effort.

  17. Influence of Electron Evaporative Cooling on Ultracold Plasma Expansion

    CERN Document Server

    Wilson, Truman; Roberts, Jacob

    2013-01-01

    The expansion of ultracold neutral plasmas (UCP) is driven primarily by the thermal pressure of the electron component and is therefore sensitive to the electron temperature. At lower densities (less than 10$^8$ /cm$^3$), evaporative cooling has a significant influence on the UCP expansion rate. We studied the effect of electron evaporation in this density range. Owing to the low density, the effects of three-body recombination were negligible. We modeled the expansion by taking into account the change in electron temperature owing to evaporation as well as adiabatic expansion and found good agreement with our data. We also developed a simple model for initial evaporation over a range of ultracold plasma densities, sizes, and electron temperatures to determine over what parameter range electron evaporation is expected to have a significant effect. We also report on a signal calibration technique, which relates the signal at our detector to the total number of ions and electrons in the ultracold plasma.

  18. Stability of thermal modes in cool prominence plasmas

    CERN Document Server

    Soler, Roberto; Parenti, Susanna

    2012-01-01

    Context: Magnetohydrodynamic thermal modes may play an important role in the formation, plasma condensation, and evolution of solar prominences. Unstable thermal modes due to unbalance between radiative losses and heating can lead to rapid plasma cooling and condensation. An accurate description of the radiative loss function is therefore crucial for this process. Aims: We study the stability of thermal modes in unbounded and uniform plasmas with properties akin to those in solar prominences. Effects due to partial ionization are taken into account. Three different parametrizations of the radiative loss function are used. Methods: By means of a normal mode analysis, we investigate linear nonadiabatic perturbations superimposed on the equilibrium state. We find an approximate instability criterion for thermal modes, while the exact linear growth rate is obtained by numerically solving the general dispersion relation. The stability of thermal disturbances is compared for the three different loss functions consi...

  19. Tungsten-microdiamond composites for plasma facing components

    Science.gov (United States)

    Livramento, V.; Nunes, D.; Correia, J. B.; Carvalho, P. A.; Mardolcar, U.; Mateus, R.; Hanada, K.; Shohoji, N.; Fernandes, H.; Silva, C.; Alves, E.

    2011-09-01

    Tungsten is considered as one of promising candidate materials for plasma facing component in nuclear fusion reactors due to its resistance to sputtering and high melting point. High thermal conductivity is also a prerequisite for plasma facing components under the unique service environment of fusion reactor characterised by the massive heat load, especially in the divertor area. The feasibility of mechanical alloying of nanodiamond and tungsten, and the consolidation of the composite powders with Spark Plasma Sintering (SPS) was previously demonstrated. In the present research we report on the use of microdiamond instead of nanodiamond in such composites. Microdiamond is more favourable than nanodiamond in view of phonon transport performance leading to better thermal conductivity. However, there is a trade off between densification and thermal conductivity as the SPS temperature increases tungsten carbide formation from microdiamond is accelerated inevitably while the consolidation density would rise.

  20. Analysis of singular interface stresses in dissimilar material joints for plasma facing components

    Science.gov (United States)

    You, J. H.; Bolt, H.

    2001-10-01

    Duplex joint structures are typical material combinations for the actively cooled plasma facing components of fusion devices. The structural integrity under the incident heat loads from the plasma is one of the most crucial issues in the technology of these components. The most critical domain in a duplex joint component is the free surface edge of the bond interface between heterogeneous materials. This is due to the fact that the thermal stress usually shows a singular intensification in this region. If the plasma facing armour tile consists of a brittle material, the existence of the stress singularity can be a direct cause of failure. The present work introduces a comprehensive analytical tool to estimate the impact of the stress singularity for duplex PFC design and quantifies the relative stress intensification in various materials joints by use of a model formulated by Munz and Yang. Several candidate material combinations of plasma facing armour and metallic heat sink are analysed and the results are compared with each other.

  1. Understanding plasma facing surfaces in magnetic fusion devices

    Science.gov (United States)

    Skinner, C. H.; Capece, A. M.; Koel, B. E.; Roszell, J. P.

    2013-09-01

    The plasma-material interface is recognized to be the most critical challenge in the realization of fusion energy. Liquid metals offer a self-healing, renewable interface that bypasses present issues with solid, neutron-damaged materials such as tungsten. Lithium in particular has dramatically improved plasma performance in many tokamaks through a reduction of hydrogen recycling. However the detailed chemical composition and properties of the top few nm that interact with the plasma are often obscure. Surface analysis has proven to be a key tool in semiconductor processing and a new laboratory has been established at PPPL to apply surface science techniques to plasma facing materials. We have shown that lithiated PFC surfaces in tokamaks will likely be oxidized during the intershot interval. Present work is focused on deuterium uptake of solid and liquid metals for plasma density control and sub-micron scale wetting of liquid metals on their substrates. The long-term goal is to provide a material database for designing liquid metal plasma facing components for tokamaks such as National Spherical Torus Experiment-Upgrade (NSTX-U) and Fusion Nuclear Science Facility-ST (FNSF-ST). Support was provided through DOE-PPPL Contract Number is DE-AC02-09CH11466.

  2. Candidate plasma-facing materials for EUV lithography source components

    Science.gov (United States)

    Hassanein, Ahmed; Burtseva, Tatiana; Brooks, Jeff N.; Konkashbaev, Isak K.; Rice, Bryan J.

    2003-06-01

    Material selection and lifetime issues for extreme ultraviolet (EUV) lithography are of critical importance to the success of this technology for commercial applications. This paper reviews current trends in production and use of plasma-facing electrodes, insulators, and wall materials for EUV type sources. Ideal candidate materials should be able to: withstand high thermal shock from the short pulsed plasma; withstand high thermal loads without structural failure; reduce debris generation during discharge; and be machined accurately. We reviewed the literature on current and proposed fusion plasma-facing materials as well as current experience with plasma gun and other simulation devices. Both fusion and EUV source materials involve issues of surface erosion by particle sputtering and heat-induced evaporation/melting. These materials are either bare structural materials or surface coatings. EUV materials can be divided into four categories: wall, electrode, optical, and insulator materials. For electric discharge sources, all four types are required, whereas laser-produced plasma EUV sources do not require electrode and insulator materials. Several types of candidate alloy and other materials and methods of manufacture are recommended for each component of EUV lithography light sources.

  3. Power Deposition on Tokamak Plasma-Facing Components

    CERN Document Server

    Arter, Wayne; Fishpool, Geoff

    2014-01-01

    The SMARDDA software library is used to model plasma interaction with complex engineered surfaces. A simple flux-tube model of power deposition necessitates the following of magnetic fieldlines until they meet geometry taken from a CAD (Computer Aided Design) database. Application is made to 1) models of ITER tokamak limiter geometry and 2) MASTU tokamak divertor designs, illustrating the accuracy and effectiveness of SMARDDA, even in the presence of significant nonaxisymmetric ripple field. SMARDDA's ability to exchange data with CAD databases and its speed of execution also give it the potential for use directly in the design of tokamak plasma facing components.

  4. Collaborative Research and Development on Liquid Metal Plasma Facing Components

    Science.gov (United States)

    Jaworski, M. A.; Abrams, T.; Ellis, R.; Khodak, A.; Leblanc, B.; Menard, J.; Ono, M.; Skinner, C. H.; Stotler, D. P.; Detemmerman, G.; Gleeson, M. A.; Lof, A. R.; Scholten, J.; van den Berg, M. A.; van den Meiden, H. J.; Gray, T. K.; Sabbagh, S. A.; Soukhanovskii, V. A.; Hu, J.; Wang, L.; Zuo, G.

    2012-10-01

    Liquid metal plasma facing components (PFCs) provide the potential to avoid component replacement by continually replenishing the plasma-facing surface. Data during the NSTX liquid lithium divertor (LLD) campaign indicate that impurity accumulation on the static lithium resulted in a mixed-material surface. However, no lithium ejection nor substrate influx was observed during normal operation. This motivates research on flowing systems for near-term machines. Experiments on the Magnum-PSI linear test-stand and EAST tokamak have begun to explore issues related to near-surface lithium transport, surface evolution and coating lifetime for exposures of 5-10s. Technology development for a fully-flowing liquid lithium PFC is being conducted including construction of a liquid lithium flow loop and thermal-hydraulic studies of novel, capillary-restrained lithium PFCs for possible use on EAST and NSTX-U.

  5. Baseline high heat flux and plasma facing materials for fusion

    Science.gov (United States)

    Ueda, Y.; Schmid, K.; Balden, M.; Coenen, J. W.; Loewenhoff, Th.; Ito, A.; Hasegawa, A.; Hardie, C.; Porton, M.; Gilbert, M.

    2017-09-01

    In fusion reactors, surfaces of plasma facing components (PFCs) are exposed to high heat and particle flux. Tungsten and Copper alloys are primary candidates for plasma facing materials (PFMs) and coolant tube materials, respectively, mainly due to high thermal conductivity and, in the case of tungsten, its high melting point. In this paper, recent understandings and future issues on responses of tungsten and Cu alloys to fusion environments (high particle flux (including T and He), high heat flux, and high neutron doses) are reviewed. This review paper includes; Tritium retention in tungsten (K. Schmid and M. Balden), Impact of stationary and transient heat loads on tungsten (J.W. Coenen and Th. Loewenhoff), Helium effects on surface morphology of tungsten (Y. Ueda and A. Ito), Neutron radiation effects in tungsten (A. Hasegawa), and Copper and copper alloys development for high heat flux components (C. Hardie, M. Porton, and M. Gilbert).

  6. Face-to-face interaction of multisolitons in spin-1/2 quantum plasma

    Science.gov (United States)

    Roy, Kaushik; Choudhury, Sourav; Chatterjee, Prasanta; Wong, C. S.

    2017-01-01

    We investigate the face-to-face collision between multisolitons in spin-1/2 quantum plasma. It is studied in the framework of the model proposed by Marklund et al in Phys. Rev. E 76, 067401 (2007). This study is done with the help of the extended Poincare-Lighthill-Kno (PLK) method. The extended PLK method is also used to obtain two Korteweg-de Vries (KdV) equations and the phase shifts and trajectories during the head-on collision of multisolitons. The collision-induced phase shifts (trajectory changes) are also obtained. The effects of the Zeeman energy, total mass density of the charged plasma particles, speed of the wave and the ratio of the sound speed to Alfvén speed on the phase shifts are studied. It is observed that the phase shifts are significantly affected by all these parameters.

  7. Face-to-face interaction of multisolitons in spin-1/2 quantum plasma

    Indian Academy of Sciences (India)

    KAUSHIK ROY; SOURAV CHOUDHURY; PRASANTA CHATTERJEE; C S C S WONG

    2017-01-01

    We investigate the face-to-face collision between multisolitons in spin-1/2 quantum plasma. It is studied in the framework of the model proposed by Marklund et al in {\\it Phys. Rev.} E 76, 067401 (2007). This studyis done with the help of the extended Poincare–Lighthill–Kno (PLK) method. The extended PLK method is also used to obtain two Korteweg–de Vries (KdV) equations and the phase shifts and trajectories during the head-oncollision of multisolitons. The collision-induced phase shifts (trajectory changes) are also obtained. The effects of the Zeeman energy, total mass density of the charged plasma particles, speed of the wave and the ratio of the sound speed to Alfvén speed on the phase shifts are studied. It is observed that the phase shifts are significantly affected by all these parameters.

  8. Improving cooling devices for the hot face of Peltier pellets based on phase change fluids

    Energy Technology Data Exchange (ETDEWEB)

    Esarte, J. [Centros Tecnologicos de Navarra, Poligono Industrial Noain, 31009 Navarra (Spain); Blanco, J.M.; Mendia, F. [Depto. Maquinas y Motores Termicos, Universidad del Pais Vasco/EHU, Alameda de Urquijo s/n, 48013 Bilbao (Spain); Pena, F. [Iberdrola Generacion, Bahia de Santurce, 48009 Vizcaya (Spain)

    2006-07-15

    The thermoelectricity has not suffered any important progress for the last twenty years, owed mainly to the low efficiency of the heat sinks, because the Peltier pellet provides a high calorific power across a small surface. In this paper a deep study of the fin cooling for Peltier pellets, has been carried out, by means of both an experimental model and also through computational fluid dynamics. A phase change device called thermosyphon has also been designed and optimized, which allows to uniform the heat flow, decreasing in this way the pellet thermal resistance. The work focuses on its hot face and leaves for another study the cold face optimization. (author)

  9. Counter-facing plasma guns for efficient extreme ultra-violet plasma light source

    Directory of Open Access Journals (Sweden)

    Kuroda Yusuke

    2013-11-01

    Full Text Available A plasma focus system composed of a pair of counter-facing coaxial guns was proposed as a long-pulse and/or repetitive high energy density plasma source. We applied Li as the source of plasma for improvement of the conversion efficiency, the spectral purity, and the repetition capability. For operation of the system with ideal counter-facing plasma focus mode, we changed the system from simple coaxial geometry to a multi-channel configuration. We applied a laser trigger to make synchronous multi-channel discharges with low jitter. The results indicated that the configuration is promising to make a high energy density plasma with high spectral efficiency.

  10. Influence of cooling face masks on nasal air conditioning and nasal geometry.

    Science.gov (United States)

    Lindemann, J; Hoffmann, T; Koehl, A; Walz, E M; Sommer, F

    2017-06-01

    Nasal geometries and temperature of the nasal mucosa are the primary factors affecting nasal air conditioning. Data on intranasal air conditioning after provoking the trigeminal nerve with a cold stimulus simulating the effects of an arctic condition is still missing. The objective was to investigate the influence of skin cooling face masks on nasal air conditioning, mucosal temperature and nasal geometry. Standardized in vivo measurements of intranasal air temperature, humidity and mucosal temperature were performed in 55 healthy subjects at defined detection sites before and after wearing a cooling face mask. Measurements of skin temperature, rhinomanometry and acoustic rhinometry were accomplished. After wearing the face mask the facial skin temperature was significantly reduced. Intranasal air temperature did not change. Absolute humidity and mucosal temperature increased significantly. The acoustic rhinometric results showed a significant increase of the volumes and the cross-sectional areas. There was no change in nasal airflow. Nasal mucosal temperature, humidity of inhaled air, and volume of the anterior nose increased after application of a cold face mask. The response is mediated by the trigeminal nerve. Increased mucosal temperatures as well as changes in nasal geometries seem to guarantee sufficient steady intranasal nasal air conditioning.

  11. Influence of electron evaporative cooling on ultracold plasma expansion

    Energy Technology Data Exchange (ETDEWEB)

    Wilson, Truman; Chen, Wei-Ting; Roberts, Jacob [Department of Physics, Colorado State University, Fort Collins, Colorado 80523 (United States)

    2013-07-15

    The expansion of ultracold neutral plasmas (UCP) is driven primarily by the thermal pressure of the electron component and is therefore sensitive to the electron temperature. For typical UCP spatial extents, evaporative cooling has a significant influence on the UCP expansion rate at lower densities (less than 10{sup 8}/cm{sup 3}). We studied the effect of electron evaporation in this density range. Owing to the low density, the effects of three-body recombination were negligible. We modeled the expansion by taking into account the change in electron temperature owing to evaporation as well as adiabatic expansion and found good agreement with our data. We also developed a simple model for initial evaporation over a range of ultracold plasma densities, sizes, and electron temperatures to determine over what parameter range electron evaporation is expected to have a significant effect. We also report on a signal calibration technique, which relates the signal at our detector to the total number of ions and electrons in the ultracold plasma.

  12. Development of advanced high heat flux and plasma-facing materials

    Science.gov (United States)

    Linsmeier, Ch.; Rieth, M.; Aktaa, J.; Chikada, T.; Hoffmann, A.; Hoffmann, J.; Houben, A.; Kurishita, H.; Jin, X.; Li, M.; Litnovsky, A.; Matsuo, S.; von Müller, A.; Nikolic, V.; Palacios, T.; Pippan, R.; Qu, D.; Reiser, J.; Riesch, J.; Shikama, T.; Stieglitz, R.; Weber, T.; Wurster, S.; You, J.-H.; Zhou, Z.

    2017-09-01

    Plasma-facing materials and components in a fusion reactor are the interface between the plasma and the material part. The operational conditions in this environment are probably the most challenging parameters for any material: high power loads and large particle and neutron fluxes are simultaneously impinging at their surfaces. To realize fusion in a tokamak or stellarator reactor, given the proven geometries and technological solutions, requires an improvement of the thermo-mechanical capabilities of currently available materials. In its first part this article describes the requirements and needs for new, advanced materials for the plasma-facing components. Starting points are capabilities and limitations of tungsten-based alloys and structurally stabilized materials. Furthermore, material requirements from the fusion-specific loading scenarios of a divertor in a water-cooled configuration are described, defining directions for the material development. Finally, safety requirements for a fusion reactor with its specific accident scenarios and their potential environmental impact lead to the definition of inherently passive materials, avoiding release of radioactive material through intrinsic material properties. The second part of this article demonstrates current material development lines answering the fusion-specific requirements for high heat flux materials. New composite materials, in particular fiber-reinforced and laminated structures, as well as mechanically alloyed tungsten materials, allow the extension of the thermo-mechanical operation space towards regions of extreme steady-state and transient loads. Self-passivating tungsten alloys, demonstrating favorable tungsten-like plasma-wall interaction behavior under normal operation conditions, are an intrinsic solution to otherwise catastrophic consequences of loss-of-coolant and air ingress events in a fusion reactor. Permeation barrier layers avoid the escape of tritium into structural and cooling

  13. Mixed-material coating formation on plasma-facing components

    Science.gov (United States)

    Doerner, R. P.; Grossman, A. A.; Luckhardt, S.; Seraydarian, R.; Sze, F. C.; Whyte, D. G.

    When any plasma confinement device is fabricated from more than a single material which can come into contact with either particle or heat flux, there is the potential for migration of one of these materials to the locations of other materials. This combination of materials, or mixed materials, can have substantially different properties than either of the original materials. The PISCES-B linear plasma device is examining the formation conditions and properties of mixed-material surface layers which can form on plasma-facing components. The PISCES-B device has been modified to incorporate an impurity gas (CD 4, CO, O 2, etc.) puffing system in the target interaction region. It is, therefore, possible to control the fraction of impurities in the incident plasma and to perform systematic tests on the conditions necessary to form mixed-materials surface layers. The concentration of the species in the plasma column is measured spectroscopically, as well as by a residual gas monitor on the vacuum chamber. Measurements of the rate of growth of the thickness of the mixed material layer are performed. A simple erosion model can adequately describe the growth rate of the mixed-material layer and may allow for growth rate predictions in other plasma environments. It is also important to investigate the role of redeposition of metallic impurities in the formation of mixed material layers. A beryllium evaporator has been independently installed upstream of the target-interaction region to allow seeding of the incident plasma with beryllium. The presence of beryllium on the sample surface is observed to reduce the chemical erosion of the graphite by more than the reduction of the surface carbon concentration. And finally, the hydrogen isotope retention properties of carbon-containing layers on beryllium could have serious implications for tritium accumulation in ITER.

  14. Carbon fiber composites application in ITER plasma facing components

    Science.gov (United States)

    Barabash, V.; Akiba, M.; Bonal, J. P.; Federici, G.; Matera, R.; Nakamura, K.; Pacher, H. D.; Rödig, M.; Vieider, G.; Wu, C. H.

    1998-10-01

    Carbon Fiber Composites (CFCs) are one of the candidate armour materials for the plasma facing components of the International Thermonuclear Experimental Reactor (ITER). For the present reference design, CFC has been selected as armour for the divertor target near the plasma strike point mainly because of unique resistance to high normal and off-normal heat loads. It does not melt under disruptions and might have higher erosion lifetime in comparison with other possible armour materials. Issues related to CFC application in ITER are described in this paper. They include erosion lifetime, tritium codeposition with eroded material and possible methods for the removal of the codeposited layers, neutron irradiation effect, development of joining technologies with heat sink materials, and thermomechanical performance. The status of the development of new advanced CFCs for ITER application is also described. Finally, the remaining R&D needs are critically discussed.

  15. Plasma facing components: a conceptual design strategy for the first wall in FAST tokamak

    Science.gov (United States)

    Labate, C.; Di Gironimo, G.; Renno, F.

    2015-09-01

    Satellite tokamaks are conceived with the main purpose of developing new or alternative ITER- and DEMO-relevant technologies, able to contribute in resolving the pending issues about plasma operation. In particular, a high criticality needs to be associated to the design of plasma facing components, i.e. first wall (FW) and divertor, due to physical, topological and thermo-structural reasons. In such a context, the design of the FW in FAST fusion plant, whose operational range is close to ITER’s one, takes place. According to the mission of experimental satellites, the FW design strategy, which is presented in this paper relies on a series of innovative design choices and proposals with a particular attention to the typical key points of plasma facing components design. Such an approach, taking into account a series of involved physical constraints and functional requirements to be fulfilled, marks a clear borderline with the FW solution adopted in ITER, in terms of basic ideas, manufacturing aspects, remote maintenance procedure, manifolds management, cooling cycle and support system configuration.

  16. Creation of an Ultracold Plasma by Photoionizing Laser-Cooled Cesium Atom

    Institute of Scientific and Technical Information of China (English)

    JING Qun; FENG Zhi-Gang; ZHANG Lin-Jie; LI Chang-Yong; ZHAO Jian-Ming; JIA Suo-Tang

    2008-01-01

    @@ The signals of ultracold plasma are observed by two-photon ionization of laser-cooled atom in a caesium magneto-optical trap.A simple model has been introduced to explain the creation of plasma, and the mechanism is further investigated by changing the energy of a pulsed dye laser and the number of initial cooled atoms.

  17. Overview of decade-long development of plasma-facing components at ASIPP

    Science.gov (United States)

    Luo, G.-N.; Liu, G. H.; Li, Q.; Qin, S. G.; Wang, W. J.; Shi, Y. L.; Xie, C. Y.; Chen, Z. M.; Missirlian, M.; Guilhem, D.; Richou, M.; Hirai, T.; Escourbiac, F.; Yao, D. M.; Chen, J. L.; Wang, T. J.; Bucalossi, J.; Merola, M.; Li, J. G.; EAST Team

    2017-06-01

    The first EAST (Experimental Advanced Superconducting Tokamak) plasma ignited in 2006 with non-actively cooled steel plates as the plasma-facing materials and components (PFMCs) which were then upgraded into full graphite tiles bolted onto water-cooled copper heat sinks in 2008. The first wall was changed further into molybdenum alloy in 2012, while keeping the graphite for both the upper and lower divertors. With the rapid increase in heating and current driving power in EAST, the W/Cu divertor project was launched around the end of 2012, aiming at achieving actively cooled full W/Cu-PFCs for the upper divertor, with heat removal capability up to 10 MW m-2. The W/Cu upper divertor was finished in the spring of 2014, consisting of 80 cassette bodies toroidally assembled. Commissioning of the EAST upper W/Cu divertor in 2014 was unsatisfactory and then several practical measures were implemented to improve the design, welding quality and reliability, which helped us achieve successful commissioning in the 2015 Spring Campaign. In collaboration with the IO and CEA teams, we have demonstrated our technological capability to remove heat loads of 5000 cycles at 10 MW m-2 and 1000 cycles at 20 MW m-2 for the small scale monoblock mockups, and surprisingly over 300 cycles at 20 MW m-2 for the flat-tile ones. The experience and lessons we learned from batch production and commissioning are undoubtedly valuable for ITER (International Thermonuclear Experimental Reactor) engineering validation and tungsten-related plasma physics.

  18. Graphene as a Coating for Plasma Facing Components

    Science.gov (United States)

    Navarro, Marcos; Rojas, Richard; Kulcisnki, Gerald; Lagally, Max; Santarius, John

    2016-10-01

    Graphene has been a source of interest for multiple applications because of its unusual electronic and mechanical properties. A number of experimental studies have established that defect-free graphene is an excellent chemical-barrier material, but there have been no reports of graphene proposed as a protective coating against ion and/or neutral interactions with material surfaces. In the presence of such irradiation, plasma facing components (PFC's) tend to develop ``fuzz/grass'' structures that lead to the sputtering of wall material, diminishing the lifetime of the PFC's and plasma performance. We have shown that graphene can reduce or eliminate changes on surface morphology due to energetic helium. In the case of graphene-covered tungsten, our results show that, compared to the uncovered W, graphene suppresses these morphologies that form on the surface of hot W. Using Raman spectroscopy as a diagnostic, the graphene coating shows little sign of damage after being irradiated, indicating that there is little to no sputtering of carbon impurities from the surface. We have also determined that the mass losses in W have been reduced significantly. Both decreases in impurities can lead to an improved plasma performance and longer lifetimes for PFC's. This work has been supported by GERS and TEAM-Science at the UW-Madison.

  19. Radiation damage in ceramic plasma-facing materials

    Energy Technology Data Exchange (ETDEWEB)

    Itoh, Noriaki; Morita, Kenji

    1988-07-01

    The present status of the studies of radiation damage of plasma-facing materials is reviewed. Emphasis is placed on the extent of the understanding in terms of the critical issues for materials in use as plasma interactive components. Understanding of the basic problems of radiation effects, which are important for long term development of fusion reactors, is also emphasized. It is pointed out that for low-Z materials radiation damage by fission neutrons is a good measure of the effects of radiation damage by fusion neutrons. The understanding of the fission neutron damage of major candidate materials is surveyed. Existing data on the effects of transmuted helium gas in beryllium are inferred and the data needs for the He effects on graphite are stressed. For radiation damage by plasma particles, the importance of understanding of the dynamic behaviors of the materials which are composite because of redeposition and hydrogen implantation. Some of the features of such composite materials under radiation are presented.

  20. Experimental measurements of surface damage and residual stresses in micro-engineered plasma facing materials

    Science.gov (United States)

    Rivera, David; Wirz, Richard E.; Ghoniem, Nasr M.

    2017-04-01

    The thermomechanical damage and residual stresses in plasma-facing materials operating at high heat flux are experimentally investigated. Materials with micro-surfaces are found to be more resilient, when exposed to cyclic high heat flux generated by an arc-jet plasma. An experimental facility, dedicated to High Energy Flux Testing (HEFTY), is developed for testing cyclic heat flux in excess of 10 MW/m2. We show that plastic deformation and subsequent fracture of the surface can be controlled by sample cooling. We demonstrate that W surfaces with micro-pillar type surface architecture have significantly reduced residual thermal stresses after plasma exposure, as compared to those with flat surfaces. X-ray diffraction (XRD) spectra of the W-(110) peak reveal that broadening of the Full Width at Half Maximum (FWHM) for micro-engineered samples is substantially smaller than corresponding flat surfaces. Spectral shifts of XRD signals indicate that residual stresses due to plasma exposure of micro-engineered surfaces build up in the first few cycles of exposure. Subsequent cyclic plasma heat loading is shown to anneal out most of the built-up residual stresses in micro-engineered surfaces. These findings are consistent with relaxation of residual thermal stresses in surfaces with micro-engineered features. The initial residual stress state of highly polished flat W samples is compressive (≈ -1.3 GPa). After exposure to 50 plasma cycles, the surface stress relaxes to -1.0 GPa. Micro-engineered samples exposed to the same thermal cycling show that the initial residual stress state is compressive at (- 250 MPa), and remains largely unchanged after plasma exposure.

  1. Heat flux limits on the plasma-facing components for a commercial fusion reactor

    Energy Technology Data Exchange (ETDEWEB)

    Wang, X.R.; Tillack, M.S. [Univ. of California, San Diego, La Jolla, CA (United States); Sze, D.K. [Argonne National Lab., IL (United States); Wong, C.P.C. [General Atomics, San Diego, CA (United States)

    1995-12-31

    In this work, the heat flux limits of conventional plasma-facing components (PFC) were examined. The limits are based on maximum allowable temperature and stress levels in the structures. The substrate materials considered were V, SiC composite and HT-9. The use of Cu also was considered. However, low temperature limits, activation and very limited radiation damage life time, make the using of Cu in a commercial power plant unattractive. With selected heat transfer enhancement, the heat flux allowable is about 5.3 MW/m{sup 2} for lithium-cooled V-alloy, 2.7 MW/m{sup 2} for helium-cooled SiC composite, and 2.7 MW/m{sup 2} for helium/water-cooled HT-9. Compared with the maximum heat flux attainable with Cu and cold water (13.4 MW/m{sup 2}), acceptable power plant materials place severe restrictions on heat removal. The thermal conductivity of SiC composite at 1,000 C and after irradiation is a factor of several lowered than the value the authors used. This indicates a need to examine the heat transfer problems associated with PFC, in terms of material development and enhancement in heat transfer. Physics regimes which can provide low peak and average heat flux should be pursued.

  2. Plasma acceleration and cooling by strong laser field due to the action of radiation reaction force.

    Science.gov (United States)

    Berezhiani, V I; Mahajan, S M; Yoshida, Z

    2008-12-01

    It is shown that for super intense laser pulses propagating in a hot plasma, the action of the radiation reaction force (appropriately incorporated into the equations of motion) causes strong bulk plasma motion with the kinetic energy raised even to relativistic values; the increase in bulk energy is accompanied by a corresponding cooling (intense cooling) of the plasma. The effects are demonstrated through explicit analytical calculations.

  3. HRP facility for fabrication of ITER vertical target divertor full scale plasma facing units

    Energy Technology Data Exchange (ETDEWEB)

    Visca, Eliseo, E-mail: eliseo.visca@enea.it [Unità Tecnica Fusione, ENEA C. R. Frascati, via E. Fermi 45, IT-00044 Frascati (Roma) (Italy); Roccella, S. [Unità Tecnica Fusione, ENEA C. R. Frascati, via E. Fermi 45, IT-00044 Frascati (Roma) (Italy); Candura, D.; Palermo, M. [Ansaldo Nucleare S.p.A., Corso Perrone 25, IT-16152 Genova (Italy); Rossi, P.; Pizzuto, A. [Unità Tecnica Fusione, ENEA C. R. Frascati, via E. Fermi 45, IT-00044 Frascati (Roma) (Italy); Sanguinetti, G.P. [Ansaldo Nucleare S.p.A., Corso Perrone 25, IT-16152 Genova (Italy); Mancini, A.; Verdini, L.; Cacciotti, E.; Cerri, V.; Mugnaini, G.; Reale, A.; Giacomi, G. [Unità Tecnica Fusione, ENEA C. R. Frascati, via E. Fermi 45, IT-00044 Frascati (Roma) (Italy)

    2015-10-15

    Highlights: • R&D activities for the manufacturing of ITER divertor high heat flux plasma-facing components (HHFC). • ENEA and Ansaldo have jointly manufactured several actively cooled monoblock mock-ups and prototypical components. • ENEA and ANSALDO NUCLEARE jointly participate to the European program for the qualification of the manufacturing technology for the ITER divertor IVT. • Successful manufacturing by HRP (Hot Radial Pressing) of first full-scale full-W armored IVT qualification prototype. - Abstract: ENEA and Ansaldo Nucleare S.p.A. (ANN) have being deeply involved in the European development activities for the manufacturing of the ITER Divertor Inner Vertical Target (IVT) plasma-facing components. During normal operation the heat flux deposited on the bottom segment of divertor is 5–10 MW/m{sup 2} but the capability to remove up to 20 MW/m{sup 2} during transient events of 10 s must also be demonstrated. In order to fulfill ITER requirements, ENEA has set up and widely tested a manufacturing process, named Hot Radial Pressing (HRP). The last challenge is now to fabricate full-scale prototypes of the IVT, aimed to be qualified for the next step, i.e. the series production. On the basis of the experience of manufacturing hundreds of small mock-ups, ENEA designed and installed a new suitable HRP facility. The objective of getting a final shaped plasma facing unit (PFU) that satisfies these requirements is an ambitious target because tolerances set by ITER/F4E are very tight. The setting-up of the equipment started with the fabrication of full scale and representative ‘dummies’ in which stainless steel instead of CFC or W was used for monoblocks. The results confirmed that dimensions were compliant with the required tolerances. The paper reports a brief description of the innovative HRP equipment and the dimensional check results after HRP of the first full-scale full-W PFU.

  4. Large Eddy Simulation of the Effects of Plasma Actuation Strength on Film Cooling Efficiency

    Science.gov (United States)

    Li, Guozhan; Chen, Fu; Li, Linxi; Song, Yanping

    2016-11-01

    In this article, numerical investigation of the effects of different plasma actuation strengths on the film cooling flow characteristics has been conducted using large eddy simulation (LES). For this numerical research, the plasma actuator is placed downstream of the trailing edge of the film cooling hole and a phenomenological model is employed to provide the electric field generated by it, resulting in the body forces. Our results show that as the plasma actuation strength grows larger, under the downward effect of the plasma actuation, the jet trajectory near the cooling hole stays closer to the wall and the recirculation region observably reduces in size. Meanwhile, the momentum injection effect of the plasma actuation also actively alters the distributions of the velocity components downstream of the cooling hole. Consequently, the influence of the plasma actuation strength on the Reynolds stress downstream of the cooling hole is remarkable. Furthermore, the plasma actuation weakens the strength of the kidney shaped vortex and prevents the jet from lifting off the wall. Therefore, with the increase of the strength of the plasma actuation, the coolant core stays closer to the wall and tends to split into two distinct regions. So the centerline film cooling efficiency is enhanced, and it is increased by 55% at most when the plasma actuation strength is 10.

  5. Manufacturing and testing in reactor relevant conditions of brazed plasma facing components of the ITER divertor

    Energy Technology Data Exchange (ETDEWEB)

    Bisio, M. [Ansaldo Ricerche s.p.a., C.so Perrone 25, I-16152 Genova (Italy); Branca, V. [Ansaldo Ricerche s.p.a., C.so Perrone 25, I-16152 Genova (Italy); Marco, M. Di [FN s.p.a., ss 35 bis dei Giovi km 15, I-15062 Bosco Marengo (Albania) (Italy); Federici, A. [Ansaldo Ricerche s.p.a., C.so Perrone 25, I-16152 Genova (Italy); Grattarola, M. [Ansaldo Ricerche s.p.a., C.so Perrone 25, I-16152 Genova (Italy)]. E-mail: grattarola@ansaldo.it; Gualco, G. [Ansaldo Ricerche s.p.a., C.so Perrone 25, I-16152 Genova (Italy); Guarnone, P. [Ansaldo Ricerche s.p.a., C.so Perrone 25, I-16152 Genova (Italy); Luconi, U. [Ansaldo Ricerche s.p.a., C.so Perrone 25, I-16152 Genova (Italy); Merola, M. [EFDA, Boltzmanstr. 2, D-85748 Garching (Germany); Ozzano, C. [Ansaldo Ricerche s.p.a., C.so Perrone 25, I-16152 Genova (Italy); Pasquale, G. [FN s.p.a., ss 35 bis dei Giovi km 15, I-15062 Bosco Marengo (AL) (Italy); Poggi, P. [Ansaldo Ricerche s.p.a., C.so Perrone 25, I-16152 Genova (Italy); Rizzo, S. [Ansaldo Ricerche s.p.a., C.so Perrone 25, I-16152 Genova (Italy); Varone, F. [Ansaldo Ricerche s.p.a., C.so Perrone 25, I-16152 Genova (Italy)

    2005-11-15

    A fabrication route based on brazing technology has been developed for the realization of the high heat flux components for the ITER vertical target and Dome-Liner. The divertor vertical target is armoured with carbon fiber reinforced carbon and tungsten in the lower straight part and in the upper curved part, respectively. The armour material is joined to heat sinks made of precipitation hardened copper-chromium-zirconium alloy. The plasma facing units of the dome component are based on a tungsten flat tile design with hypervapotron cooling. An innovative brazing technique based on the addition of carbon fibers to the active brazing alloy, developed by Ansaldo Ricerche for applications in the field of the energy production, has been used for the carbon fiber composite to copper joint to reduce residual stresses. The tungsten-copper joint has been realized by direct casting. A proper brazing thermal cycle has been studied to guarantee the required mechanical properties of the precipitation hardened alloy after brazing. The fabrication route of plasma facing components for the ITER vertical target and dome based on the brazing technology has been proved by means of thermal fatigue tests performed on mock-ups in reactor relevant conditions.

  6. Towards intelligent video understanding applied to plasma facing component monitoring

    Energy Technology Data Exchange (ETDEWEB)

    Martin, V.; Bremond, F. [INRIA, Pulsa team-project, Sophia Antipolis (France); Travere, J.M. [CEA IRFM, Saint Paul-lez-Durance (France); Moncada, V.; Dunand, G. [Sophia Conseil Company, Sophia Antipolis (France)

    2011-07-01

    Infrared thermography has become a routine diagnostic in many magnetic fusion devices to monitor the heat loads on the plasma facing components (PFCs) for both physics studies and machine protection. The good results of the developed systems obtained so far motivate the use of imaging diagnostics for control, especially during long pulse tokamak operation (e.g. lasting several minutes). In this paper, we promote intelligent monitoring for both real-time purposes (machine protection issues) and post event analysis purposes (PWI understanding). We propose a vision-based system able to automatically detect and classify into different pre-defined categories phenomena as localized hot spots, transient thermal events (e.g. electrical arcing), and unidentified flying objects (UFOs) as dusts from infrared imaging data of PFCs. This original vision system is made intelligent by endowing it with high-level reasoning (i.e. integration of a priori knowledge of thermal event spatial and temporal properties to guide the recognition), self-adaptability to varying conditions (e.g. different plasma scenarios), and learning capabilities (e.g. statistical modelling of thermal event behaviour based on training samples). This approach has been already successfully applied to the recognition of one critical thermal event at Tore Supra. We present here latest results of its extension for the recognition of others thermal events (e.g., B{sub 4}C flakes, impact of fast particles, UFOs) and show how extracted information can be used during plasma operation at Tore Supra to improve the real time control system, and for further analysis of PFC aging. This document is composed of an abstract followed by the slides of the presentation. (authors)

  7. Development and evaluation of plasma facing materials for future thermonuclear fusion reactors

    Energy Technology Data Exchange (ETDEWEB)

    Linke, J.; Pintsuk, G.; Roedig, M.; Schmidt, A.; Thomser, C. [Forschungszentrum Juelich GmbH, EURATOM Association, Juelich (Germany)

    2010-07-01

    and heat sink materials as well as reliable fabrication processes for actively cooled plasma facing components. The technical solutions which are considered today are mainly based on the PFMs beryllium, carbon or tungsten joined to copper alloys or stainless steel heat sinks. To test and to demonstrate the acceptability of plasma facing materials and components special high heat flux test facilities based on intense ion or electron beams are being used routinely to demonstrate the heat removal efficiency and the lifetime under fusion specific loading conditions. In addition to the above mentioned quasi-stationary heat loads, short transient thermal pulses with deposited energy densities up to several tens of MJm{sup -2} are a serious concern for next step tokamak devices. The most frequent events are so-called Edge Localized Modes (type I ELMs) and plasma disruptions. Here a considerable fraction of the plasma energy is deposited on a localized surface area in the divertor strike zone; the time scale of these events is typically in the order of 1 ms. As a consequence, thermal shock induced crack formation, vaporization, surface melting and droplet ejection as well as particle emission induced by brittle destruction processes will limit the lifetime of the components. This is also valid for instabilities in the plasma positioning (vertical displacement events) which cause irreversible damage to plasma facing components, particularly to the metallic wall armour. Moreover, dust particles (neutron activated or toxic metals or tritium enriched carbon) are a serious concern from a safety point of view. In order to investigate the thermally induced plasma wall interaction under fusion specific thermal loads, high heat flux simulation tests are performed in electron or ion beam test facilities as well as in quasi stationary plasma devices. These experiments cover thermal fatigue loads and/or thermal shock tests with relevant operational loading conditions. Furthermore, the

  8. Selection of the optimal hard facing (HF technology of damaged forging dies based on cooling time t8/5

    Directory of Open Access Journals (Sweden)

    D. Arsić

    2016-01-01

    Full Text Available In exploitation, the forging dies are exposed to heating up to very high temperatures, variable loads: compressive, impact and shear. In this paper, the reparatory hard facing of the damaged forging dies is considered. The objective was to establish the optimal reparatory technology based on cooling time t8/5 . The verification of the adopted technology was done by investigation of the hard faced layers microstructure and measurements of hardness within the welded layers’ characteristic zones. Cooling time was determined theoretically, numerically and experimentally.

  9. Hydrogen in tungsten as plasma-facing material

    Science.gov (United States)

    Roth, Joachim; Schmid, Klaus

    2011-12-01

    Materials facing plasmas in fusion experiments and future reactors are loaded with high fluxes (1020-1024 m-2 s-1) of H, D and T fuel particles at energies ranging from a few eV to keV. In this respect, the evolution of the radioactive T inventory in the first wall, the permeation of T through the armour into the coolant and the thermo-mechanical stability after long-term exposure are key parameters determining the applicability of a first wall material. Tungsten exhibits fast hydrogen diffusion, but an extremely low solubility limit. Due to the fast diffusion of hydrogen and the short ion range, most of the incident ions will quickly reach the surface and recycle into the plasma chamber. For steady-state operation the solute hydrogen for the typical fusion reactor geometry and wall conditions can reach an inventory of about 1 kg. However, in short-pulse operation typical of ITER, solute hydrogen will diffuse out after each pulse and the remaining inventory will consist of hydrogen trapped in lattice defects, such as dislocations, grain boundaries and irradiation-induced traps. In high-flux areas the hydrogen energies are too low to create displacement damage. However, under these conditions the solubility limit will be exceeded within the ion range and the formation of gas bubbles and stress-induced damage occurs. In addition, simultaneous neutron fluxes from the nuclear fusion reaction D(T,n)α will lead to damage in the materials and produce trapping sites for diffusing hydrogen atoms throughout the bulk. The formation and diffusive filling of these different traps will determine the evolution of the retained T inventory. This paper will concentrate on experimental evidence for the influence different trapping sites have on the hydrogen inventory in W as studied in ion beam experiments and low-temperature plasmas. Based on the extensive experimental data, models are validated and applied to estimate the contribution of different traps to the tritium inventory in

  10. Preparation to manufacturing of ITER plasma facing components in Russia

    Energy Technology Data Exchange (ETDEWEB)

    Mazul, I.V., E-mail: mazuliv@niiefa.spb.su [Efremov Institute, St. Petersburg, 196641 (Russian Federation); Belyakov, V.A.; Giniatulin, R.N.; Gervash, A.A.; Kuznetsov, V.E.; Makhankov, A.N. [Efremov Institute, St. Petersburg, 196641 (Russian Federation); Sizenev, V.S. [Corporation ' Kompozit' , Korolev, 141070 (Russian Federation)

    2011-10-15

    The preparation of the procurement activities for the ITER plasma-facing-components (PFC) is currently well underway. Three ITER procurement packages associated with PFCs are currently allocated to the Russian Federation (RF): delivery of the central assembly of the divertor (dome and reflector plates assemblies), delivery of 40% of the first-wall (FW) panels and high heat flux testing of divertor components during the qualification and subsequent manufacturing phases. The results of the qualification process for these tasks undertaken by RF industry are presented. Qualification mockups of the dome divertor structure were successfully manufactured in accordance with the ITER specifications and tested at heat fluxes exceeding operational ones. The maturity and reliability of the proposed design and manufacturing technologies, proposed by RF industry, was therefore demonstrated. To confirm the manufacturing readiness of technologies proposed for the fabrication of the ITER first wall, three qualification mockups were fabricated. Two were heat flux tested in two facilities abroad. In addition to launching the qualification process, the PFC team at Efremov Institute is preparing the industrial facilities for serial production of above mentioned components. A brief description of such facilities is presented in this paper, together with the manufacturing technologies to be used. Two electron beam facilities (Tsefey and IDTF) for various high heat flux testing of PFC components are also described.

  11. Comprehensive simulation of vertical plasma instability events and their serious damage to ITER plasma facing components

    Science.gov (United States)

    Hassanein, A.; Sizyuk, T.

    2008-11-01

    Safe and reliable operation is still one of the major challenges in the development of the new generation of ITER-like fusion reactors. The deposited plasma energy during major disruptions, edge-localized modes (ELMs) and vertical displacement events (VDEs) causes significant surface erosion, possible structural failure and frequent plasma contamination. While plasma disruptions and ELM will have no significant thermal effects on the structural materials or coolant channels because of their short deposition time, VDEs having longer-duration time could have a destructive impact on these components. Therefore, modelling the response of structural materials to VDE has to integrate detailed energy deposition processes, surface vaporization, phase change and melting, heat conduction to coolant channels and critical heat flux criteria at the coolant channels. The HEIGHTS 3D upgraded computer package considers all the above processes to specifically study VDE in detail. Results of benchmarking with several known laboratory experiments prove the validity of HEIGHTS implemented models. Beryllium and tungsten are both considered surface coating materials along with copper structure and coolant channels using both smooth tubes with swirl tape insert. The design requirements and implications of plasma facing components are discussed along with recommendations to mitigate and reduce the effects of plasma instabilities on reactor components.

  12. Effects of Low Energy and High Flux Helium/Hydrogen Plasma Irradiation on Tungsten as Plasma Facing Material

    Institute of Scientific and Technical Information of China (English)

    Ye Minyou

    2005-01-01

    The High-Z material tungsten (W) has been considered as a plasma facing material in the divertor region of ITER (International Thermonuclear Experimental Reactor). In ITER, the divertor is expected to operate under high particle fluxes (> 1023 m-2s-1) from the plasma as well as from intrinsic impurities with a very low energy (< 200 eV). During the past dacade, the effects of plasma irradiation on tungsten have been studied extensively as functions of the ion energy,fluence and surface temperature in the burning plasma conditions. In this paper, recent results concerning blister and bubble formations on the tungsten surface under low energy (< 100 eV) and high flux (> 1021 m-2s-1) He/H plasma irradiation are reviewed to gain a better understanding of the performance of tungsten as a plasma facing material under the burning plasma conditions.

  13. Effect of wall cooling on the stability of compressible subsonic flows over smooth humps and backward-facing steps

    Science.gov (United States)

    Al-Maaitah, Ayman A.; Nayfeh, Ali H.; Ragab, Saad A.

    1990-01-01

    The effect of wall cooling on the two-dimensional linear stability of subsonic flows over two-dimensional surface imperfections is investigated. Results are presented for flows over smooth humps and backward-facing steps with Mach numbers up to 0.8. The results show that, whereas cooling decreases the viscous instability, it increases the shear-layer instability and hence it increases the growth rates in the separation region. The coexistence of more than one instability mechanism makes a certain degree of wall cooling most effective. For the Mach numbers 0.5 and 0.8, the optimum wall temperatures are about 80 pct and 60 pct of the adiabatic wall temperature, respectively. Increasing the Mach number decreases the effectiveness of cooling slightly and reduces the optimum wall temperature.

  14. Interaction of candidate plasma facing materials with tokamak plasma in COMPASS

    Science.gov (United States)

    Matějíček, Jiří; Weinzettl, Vladimír; Macková, Anna; Malinský, Petr; Havránek, Vladimír; Naydenkova, Diana; Klevarová, Veronika; Petersson, Per; Gasior, Pawel; Hakola, Antti; Rubel, Marek; Fortuna, Elzbieta; Kolehmainen, Jukka; Tervakangas, Sanna

    2017-09-01

    The interaction of tokamak plasma with several materials considered for the plasma facing components of future fusion devices was studied in a small-size COMPASS tokamak. These included mainly tungsten as the prime candidate and chromium steel as an alternative whose suitability was to be assessed. For the experiments, thin coatings of tungsten, P92 steel and nickel on graphite substrates were prepared by arc-discharge sputtering. The samples were exposed to hydrogen and deuterium plasma discharges in the COMPASS tokamak in two modes: a) short exposure (several discharges) on a manipulator in the proximity of the separatrix, close to the central column, and b) long exposure (several months) at the central column, aligned with the other graphite tiles. During the discharges, standard plasma diagnostics were used and a local emission of spectral lines in the visible near ultraviolet regions, corresponding to the material erosion, was monitored. Before and after the plasma exposures, the sample surfaces were observed using scanning electron microscopy, the coatings thickness was measured using Rutherford backscattering spectroscopy, and the concentration profiles of hydrogen and deuterium were measured by elastic recoil detection analysis. The uniformity of the coatings and their thickness was verified before the exposure. After the exposure, no reduction of the thickness was observed, indicating the absence of 'global' erosion. Erosion was observed only in isolated spots, and attributed to unipolar arcing. Slightly larger erosion was found on the steel coatings compared to the tungsten ones. Incorporation of deuterium in a thin surface layer was observed, in dependence on the exposure mode. Additionally, boron enrichment of the long-exposure samples was observed, as a result of the tokamak chamber boronization.

  15. Cooling force on ions in a magnetized electron plasma

    CERN Document Server

    Nersisyan, H B

    2011-01-01

    Electron cooling is a well-established method to improve the phase space quality of ion beams in storage rings. In the common rest frame of the ion and the electron beam the ion is subjected to a drag force and it experiences a loss or a gain of energy which eventually reduces the energy spread of the ion beam. A calculation of this process is complicated as the electron velocity distribution is anisotropic and the cooling process takes place in a magnetic field which guides the electrons. In this paper the cooling force is calculated in a model of binary collisions (BC) between ions and magnetized electrons, in which the Coulomb interaction is treated up to second order as a perturbation to the helical motion of the electrons. The calculations are done with the help of an improved BC theory which is uniformly valid for any strength of the magnetic field and where the second-order two-body forces are treated in the interaction in Fourier space without specifying the interaction potential. The cooling force is...

  16. Enhancement of Polytechnic University of Puerto Rico's plasma machine cooling system

    Energy Technology Data Exchange (ETDEWEB)

    Leal-Escalante, D; Colmenares, F; Gonzalez-Lizardo, A; Leal-Quiros, E [Plasma Engineering Laboratory, Polytechnic University of Puerto Rico, San Juan, PR 00918 (Puerto Rico)

    2008-10-15

    The Mirror and Cusp Plasma Machine at the Polytechnic University of Puerto Rico is a unique research and development machine to create plasma. Due to the high current, high magnetic field confinement and large chamber capacity, this machine is the only plasma machine in the Caribbean to reach high plasma temperatures and densities. Certainly these parameters are achieved by a high dc power supply that produces high currents in order to create a fine magnetic field; these currents range from 300 to 800 A, and the heat dissipation created by this process limits the use of the machine. Originally the machine had a water cooling line to circulate water at room temperature, but this line was not cool enough to efficiently remove heat from the system for large periods of time. Also, the high vacuum diffusion pumps used are water-cooled. The present study was developed to design a more efficient cooling system for the Plasma Laboratory using a water-cooled chiller; the main goals are to operate at lower temperatures but at stable currents I> 600 A, and to recycle the water. Now the machine can operate for longer periods of time and on a daily basis, resulting in more efficient experiments and investigations.

  17. Performance Test of Korea Heat Load Test Facility (KoHLT-EB) for the Plasma Facing Components of Fusion Reactor

    Energy Technology Data Exchange (ETDEWEB)

    Kim, Suk-Kwon; Jin, Hyung Gon; Lee, Eo Hwak; Yoon, Jae-Sung; Lee, Dong Won [Korea Atomic Energy Research Institute, Daejeon (Korea, Republic of); Cho, Seungyon [National Fusion Research Institute, Daejeon (Korea, Republic of)

    2014-10-15

    The main components of the plasma facing components (PFCs) in the tokamak are the blanket first wall and divertor, which include the armour materials, the heat sink with the cooling mechanism, and the diagnostics devices for the temperature measurement. The Korea Heat Load Test facility by using electron beam (KoHLT-EB) has been operating for the plasma facing components to develop fusion engineering. This electron beam facility was constructed using a 300 kW electron gun and a cylindrical vacuum chamber. Performance tests were carried out for the calorimetric calibrations with Cu dummy mockup and for the heat load test of large Cu module. For the simulation of the heat load test of each mockup, the preliminary thermal-hydraulic analyses with ANSYS-CFX were performed. For the development of the plasma facing components in the fusion reactors, test mockups were fabricated and tested in the high heat flux test facility. To perform a beam profile test, an assessment of the possibility of electron beam Gaussian power density profile and the results of the absorbed power for that profile before the test starts are needed. To assess the possibility of a Gaussian profile, for the qualification test of the Gaussian heat load profile, a calorimeter mockup and large Cu module were manufactured to simulate real heat. For this high-heat flux test, the Korean high-heat flux test facility using an electron beam system was constructed. In this facility, a cyclic heat flux test will be performed to measure the surface heat flux, surface temperature profile, and cooling capacity.

  18. Qualification Program of Korea Heat Load Test Facility KoHLT-EB for ITER Plasma Facing Components

    Energy Technology Data Exchange (ETDEWEB)

    Kim, Suk-Kwon; Park, Seoung Dae; Jin, Hyung Gon; Lee, Eo Hwak; Yoon, Jae-Sung; Lee, Dong Won [Korea Atomic Energy Research Institute, Daejeon (Korea, Republic of); Cho, Seungyon [National Fusion Research Institute, Daejeon (Korea, Republic of)

    2015-10-15

    The qualification tests were performed to evaluate the high heat flux test facility for the PFCs and fusion reactor materials. For the thermal fatigue test, two types of tungsten mock-ups were fabricated. The cooling performance was tested under the similar operation condition of ITER and fusion reactor. After the completion of the preliminary mockup test and facility qualification, the high heat flux test facility will assess the performance test for the various plasma facing components in fusion reactor materials. Preliminary thermo-hydraulic and performance tests were conducted using various test mockups for the plasma facing components in the high heat flux test facilities of the world. The previous heat flux tests were performed by using the graphite heater facilities in Korea. Several facilities which equipped with an electron beam as the uniform heat source were fabricated for the tokamak PFCs in the EU, Russia and US. These heat flux test facilities are utilized for a cyclic heat flux test of the PFCs. Each facility working for their own purpose in EU FZJ, US SNL, and Russia Efremov institute. For this purpose, KoHLTEB was constructed and this facility will be used for ITER TBM performance test with the small-scale and large-scale mockups, and prototype. Also, it has been used for other fusion application for developing plasma facing component (PFC) for ITER FW, tungsten divertor, and heat transfer experiment and so on under the domestic R and D program. Korea heat load test facility by using electron beam KoHLT-EB was constructed for the high heat flux test to verify the plasma facing components, including ITER TBM first wall.

  19. Counter-facing plasma focus system as a repetitive and/or long-pulse high energy density plasma source

    Science.gov (United States)

    Aoyama, Yutaka; Nakajima, Mitsuo; Horioka, Kazuhiko

    2009-11-01

    A plasma focus system composed of a pair of counter-facing coaxial plasma guns is proposed as a long-pulse and/or repetitive high energy density plasma source. A proof-of-concept experiment demonstrated that with an assist of breakdown and outer electrode connections, current sheets evolved into a configuration for stable plasma confinement at the center of the electrodes. The current sheets could successively compress and confine the high energy density plasma every half period of the discharge current, enabling highly repetitive light emissions in extreme ultraviolet region with time durations in at least ten microseconds.

  20. A saw-tooth plasma actuator for film cooling efficiency enhancement of a shaped hole

    Science.gov (United States)

    Li, Guozhan; Yu, Jianyang; Liu, Huaping; Chen, Fu; Song, Yanping

    2017-08-01

    This paper reports the large eddy simulations of the effects of a saw-tooth plasma actuator and the laidback fan-shaped hole on the film cooling flow characteristics, and the numerical results are compared with a corresponding standard configuration (cylindrical hole without the saw-tooth plasma actuator). For this numerical research, the saw-tooth plasma actuator is installed just downstream of the cooling hole and a phenomenological plasma model is employed to provide the 3D plasma force vectors. The results show that thanks to the downward force and the momentum injection effect of the saw-tooth plasma actuator, the cold jet comes closer to the wall surface and extends further downstream. The saw-tooth plasma actuator also induces a new pair of vortex which weakens the strength of the counter-rotating vortex pair (CRVP) and entrains the coolant towards the wall, and thus the diffusion of the cold jet in the crossflow is suppressed. Furthermore, the laidback fan-shaped hole reduces the vertical jet velocity causing the disappearance of downstream spiral separation node vortices, this compensates for the deficiency of the saw-tooth plasma actuator. Both effects of the laidback fan-shaped hole and the saw-tooth plasma actuator effectively control the development of the CRVP whose size and strength are smaller than those of the anti-counter rotating vortex pair in the far field, thus the centerline and the spanwise-averaged film cooling efficiency are enhanced. The average film cooling efficiency is the biggest in the Fan-Dc = 1 case, which is 80% bigger than that in the Fan-Dc = 0 case and 288% bigger than that in the Cyl-Dc = 0 case.

  1. Data merging of infrared and ultrasonic images for plasma facing components inspection

    Energy Technology Data Exchange (ETDEWEB)

    Richou, M. [CEA, IRFM, F-13108 Saint Paul-lez-Durance (France)], E-mail: marianne.richou@cea.fr; Durocher, A. [CEA, IRFM, F-13108 Saint Paul-lez-Durance (France); Medrano, M. [Association EURATOM - CIEMAT, Avda. Complutense 22, 28040 Madrid (Spain); Martinez-Ona, R. [Tecnatom, 28703 S. Sebastian de los Reyes, Madrid (Spain); Moysan, J. [LCND, Universite de la Mediterranee, F-13625 Aix-en-Provence (France); Riccardi, B. [Fusion For Energy, 08019 Barcelona (Spain)

    2009-06-15

    For steady-state magnetic thermonuclear fusion devices which need large power exhaust capability, actively cooled plasma facing components have been developed. In order to guarantee the integrity of these components during the required lifetime, their thermal and mechanical behaviour must be assessed. Before the procurement of the ITER Divertor, the examination of the heat sink to armour joints with non-destructive techniques is an essential topic to be addressed. Defects may be localised at different bonding interfaces. In order to improve the defect detection capability of the SATIR technique, the possibility of merging the infrared thermography test data coming from SATIR results with the ultrasonic test data has been identified. The data merging of SATIR and ultrasonic results has been performed on Carbon Fiber Composite (CFC) monoblocks with calibrated defects, identified by their position and extension. These calibrated defects were realised with machining, with 'stop-off' or by a lack of CFC activation techniques, these last two representing more accurately a real defect. A batch of 56 samples was produced to simulate each possibility of combination with regards to interface location, position and extension and way of realising the defect. The use of a data merging method based on Dempster-Shafer theory improves significantly the detection sensibility and reliability of defect location and size.

  2. Energy deposition and thermal effects of runaway electrons in ITER-FEAT plasma facing components

    Energy Technology Data Exchange (ETDEWEB)

    Maddaluno, G. E-mail: maddaluno@frascati.enea.it; Maruccia, G.; Merola, M.; Rollet, S

    2003-03-01

    The profile of energy deposited by runaway electrons (RAEs) of 10 or 50 MeV in International Thermonuclear Experimental Reactor-Fusion Energy Advanced Tokamak (ITER-FEAT) plasma facing components (PFCs) and the subsequent temperature pattern have been calculated by using the Monte Carlo code FLUKA and the finite element heat conduction code ANSYS. The RAE energy deposition density was assumed to be 50 MJ/m{sup 2} and both 10 and 100 ms deposition times were considered. Five different configurations of PFCs were investigated: primary first wall armoured with Be, with and without protecting CFC poloidal limiters, both port limiter first wall options (Be flat tile and CFC monoblock), divertor baffle first wall, armoured with W. The analysis has outlined that for all the configurations but one (port limiter with Be flat tile) the heat sink and the cooling tube beneath the armour are well protected for both RAE energies and for both energy deposition times. On the other hand large melting (W, Be) or sublimation (C) of the surface layer occurs, eventually affecting the PFCs lifetime.

  3. Plasma-Facing Materials Research For Fusion Reactors At FOM Rijnhuizen

    NARCIS (Netherlands)

    Rapp, J.; De Temmerman, G.; van Rooij, G. J.; van Emmichoven, P. A. Zeijlma; Kleyn, A. W.

    2011-01-01

    In next generation magnetic fusion devices such as ITER, plasma-facing materials are exposed to unprecedented high ion, power and neutron fluxes. Those extreme conditions cannot be recreated in current fusion devices from the tokamak type. The plasma-surface interaction is still an area of great unc

  4. Plasma-facing materials research for fusion reactors at Fom Rijnhuizen

    NARCIS (Netherlands)

    Rapp, J.; De Temmerman, G.; van Rooij, G.J.; Zeijlmans van Emmichoven, P.A.; Kleijn, A.W.

    2011-01-01

    In next generation magnetic fusion devices such as ITER, plasma-facing materials are exposed to unprecedented high ion, power and neutron fluxes. Those extreme conditions cannot be recreated in current fusion devices from the tokamak type. The plasma-surface interaction is still an area of great unc

  5. Plasma-Facing Materials Research For Fusion Reactors At FOM Rijnhuizen

    NARCIS (Netherlands)

    Rapp, J.; De Temmerman, G.; van Rooij, G. J.; van Emmichoven, P. A. Zeijlma; Kleyn, A. W.

    2011-01-01

    In next generation magnetic fusion devices such as ITER, plasma-facing materials are exposed to unprecedented high ion, power and neutron fluxes. Those extreme conditions cannot be recreated in current fusion devices from the tokamak type. The plasma-surface interaction is still an area of great unc

  6. Plasma-facing materials research for fusion reactors at Fom Rijnhuizen

    NARCIS (Netherlands)

    Rapp, J.; De Temmerman, G.; van Rooij, G.J.; Zeijlmans van Emmichoven, P.A.; Kleijn, A.W.

    2011-01-01

    In next generation magnetic fusion devices such as ITER, plasma-facing materials are exposed to unprecedented high ion, power and neutron fluxes. Those extreme conditions cannot be recreated in current fusion devices from the tokamak type. The plasma-surface interaction is still an area of great unc

  7. An operational non destructive examination for ITER divertor plasma facing components

    Energy Technology Data Exchange (ETDEWEB)

    Durocher, A.; Escourbiac, F.; Farjon, J.L.; Vignal, N.; Cismondi, F. [Association Euratom-CEA Cadarache, 13 - Saint-Paul-lez-Durance (France). Dept. de Recherches sur la Fusion Controlee; Merola, M. [ITER International Team, Cadarache, 13 - St Paul Lez Durance (France); Riccardi, B. [CEFDA CSU-Garching, Garching bei Munchen (Germany)

    2007-07-01

    Full text of publication follows: To meet the power exhaust - heat flux of 20 MW/m{sup 2} - requirements of Plasma Facing Components (PFCs) during plasma operation requires control of their thermal and mechanical integrity. As heat exhaust capability and lifetime of PFCs during in-situ operation are linked to the manufacturing quality, it is an absolute requirement to develop reliable nondestructive examination methods, in particular of the CFC-CuCrZr joint, throughout the manufacturing process. Within the framework of Tokamak Tore Supra upgrade, a pioneering activity has been developed to evaluate the capability of the PFC to be efficiently cooled. In 1998 a test bed - so called SATIR - based on the heat transient method was developed by the CEA and is used today as an inspection tool in order to guarantee the PFCs performances. The technical procurement plan of ITER Divertor targets stated that all Cu cast layers on CFC armour should be subjected to 100% thermographic examination. Each ITER Party should demonstrate its technical capability to carry out the PFC with the required cooling efficiently. The ITER Divertor PFCs pose new challenges especially for the mono-block CFC thickness, and the number of full scale units to be tested which is higher than on any existing or under construction fusion machine. The SATIR method as functional inspection has been identified as the basis test to decide upon the final acceptance of the Divertor PFCs. In order to increase the detection sensitivity of SATIR test bed, several possibilities have been assessed i) the increase of the convective heat transfer coefficient, which improved in a significant way the sensitivity of SATIR diagnostic on ITER components. ii) the installation of a digital infrared camera and the improvement of the thermal signal processing, has led to a considerable increase of performances iii) an innovative process based on spatial image autocorrelation will allow to localize the interlayer defect

  8. Magnetized neutron star atmospheres: beyond cool plasma approximation

    CERN Document Server

    Suleimanov, V F; Werner, K

    2012-01-01

    All the neutron star (NS) atmosphere models published so far have been calculated in the "cold plasma approximation", which neglects the relativistic effects in the radiative processes, such as cyclotron emission/absorption at harmonics of cyclotron frequency. Here we present new NS atmosphere models which include such effects. We calculate a set of models for effective temperatures T_eff =1-3 MK and magnetic fields B \\sim 10^{10}-10^{11} G, typical for the so-called central compact objects (CCOs) in supernova remnants, for which the electron cyclotron energy E_{c,e} and its first harmonics are in the observable soft X-ray range. Although the relativistic parameters, such as kT_eff /(m_e c^2) and E_{c,e} /(m_e c^2), are very small for CCOs, the relativistic effects substantially change the emergent spectra at the cyclotron resonances, E \\approx sE_{c,e} (s=1, 2,...). Although the cyclotron absorption features can form in a cold plasma due to the quantum oscillations of the free-free opacity, the shape and dep...

  9. Laser cooled ion beams and strongly coupled plasmas for precision experiments

    Energy Technology Data Exchange (ETDEWEB)

    Bussmann, Michael

    2008-03-17

    This cumulative thesis summarizes experimental and theoretical results on cooling of ion beams using single-frequency, single-mode tabletop laser systems. It consists of two parts. One deals with experiments on laser-cooling of ion beams at relativistic energies, the other with simulations of stopping and sympathetic cooling of ions for precision in-trap experiments. In the first part, experimental results are presented on laser-cooling of relativistic C{sup 3+} ion beams at a beam energy of 122 MeV/u, performed at the Experimental Storage Ring (ESR) at GSI. The main results presented in this thesis include the first attainment of longitudinally space-charge dominated relativistic ion beams using pure laser-cooling. The second part lists theoretical results on stopping and sympathetic cooling of ions in a laser-cooled one-component plasma of singly charged {sup 24}Mg ions, which are confined in a three-dimensional harmonic trap potential. (orig.)

  10. Microscopic theory of electron absorption by plasma-facing surfaces

    Science.gov (United States)

    Bronold, F. X.; Fehske, H.

    2017-01-01

    We describe a method for calculating the probability with which the wall of a plasma absorbs an electron at low energy. The method, based on an invariant embedding principle, expresses the electron absorption probability as the probability for transmission through the wall’s long-range surface potential times the probability to stay inside the wall despite of internal backscattering. To illustrate the approach we apply it to a SiO2 surface. Besides emission of optical phonons inside the wall we take elastic scattering at imperfections of the plasma-wall interface into account and obtain absorption probabilities significantly less than unity in accordance with available electron-beam scattering data but in disagreement with the widely used perfect absorber model.

  11. Microscopic theory of electron absorption by plasma-facing surfaces

    CERN Document Server

    Bronold, Franz X

    2016-01-01

    We describe a method for calculating the probability with which the wall of a plasma absorbs an electron at low energy. The method, based on an invariant embedding principle, expresses the electron absorption probability as the probability for transmission through the wall's long-range surface potential times the probability to stay inside the wall despite of internal backscattering. To illustrate the approach we apply it to a \\SiOTwo\\ surface. Besides emission of optical phonons inside the wall we take elastic scattering at imperfections of the plasma-wall interface into account and obtain absorption probabilities significantly less than unity in accordance with available electron-beam scattering data but in disagreement with the widely used perfect absorber model.

  12. Counter-facing plasma focus system as an efficient and long-pulse EUV light source

    Science.gov (United States)

    Kuwabara, H.; Hayashi, K.; Kuroda, Y.; Nose, H.; Hotozuka, K.; Nakajima, M.; Horioka, K.

    2011-04-01

    A plasma focus system composed of a pair of counter-facing coaxial plasma guns is proposed as a long-pulse and efficient EUV light source. A proof-of-concept experiment demonstrated that with an assist of breakdown and outer electrode connections, current sheets evolved into a configuration for stable plasma confinement at the center of the electrode. The current sheets could successively compress and confine the high energy density plasma every half period of the discharge current, enabling highly repetitive light emissions in extreme ultraviolet region with time duration in at least ten microseconds for Xe plasma. Also, we confirmed operations of our system for Li plasma. We estimated the highest EUV energy in Li plasma operation at 93mJ/4π sr per 2% bandwidth per pulse.

  13. Direct observations of plasma upflows and condensation in a catastrophically cooling solar transition region loop

    Energy Technology Data Exchange (ETDEWEB)

    Orange, N. B.; Chesny, D. L.; Oluseyi, H. M.; Hesterly, K.; Patel, M.; Champey, P. [Department of Physics and Space Sciences, Florida Institute of Technology, Melbourne, FL 32901 (United States)

    2013-12-01

    Minimal observational evidence exists for fast transition region (TR) upflows in the presence of cool loops. Observations of such occurrences challenge notions of standard solar atmospheric heating models as well as their description of bright TR emission. Using the EUV Imaging Spectrometer on board Hinode, we observe fast upflows (v {sub λ} ≤ –10 km s{sup –1}) over multiple TR temperatures (5.8 ≤log T ≤ 6.0) at the footpoint sites of a cool loop (log T ≤ 6.0). Prior to cool loop energizing, asymmetric flows of +5 km s{sup –1} and –60 km s{sup –1} are observed at footpoint sites. These flows, speeds, and patterns occur simultaneously with both magnetic flux cancellation (at the site of upflows only) derived from the Solar Dynamics Observatory's Helioseismic Magnetic Imager's line-of-sight magnetogram images, and a 30% mass influx at coronal heights. The incurred non-equilibrium structure of the cool loop leads to a catastrophic cooling event, with subsequent plasma evaporation indicating that the TR is the heating site. From the magnetic flux evolution, we conclude that magnetic reconnection between the footpoint and background field is responsible for the observed fast TR plasma upflows.

  14. Dependence of LTX plasma performance on surface conditions as determined by in situ analysis of plasma facing components

    Energy Technology Data Exchange (ETDEWEB)

    Lucia, M., E-mail: mlucia@pppl.gov [Princeton Plasma Physics Laboratory (PPPL), Princeton, NJ 08543 (United States); Kaita, R.; Majeski, R. [Princeton Plasma Physics Laboratory (PPPL), Princeton, NJ 08543 (United States); Bedoya, F.; Allain, J.P. [University of Illinois at Urbana-Champaign (UIUC), Urbana, IL 61801 (United States); Abrams, T.; Bell, R.E.; Boyle, D.P.; Jaworski, M.A.; Schmitt, J.C. [Princeton Plasma Physics Laboratory (PPPL), Princeton, NJ 08543 (United States)

    2015-08-15

    The Materials Analysis and Particle Probe (MAPP) diagnostic has been implemented on the Lithium Tokamak Experiment (LTX) at PPPL, providing the first in situ X-ray photoelectron spectroscopy (XPS) surface characterization of tokamak plasma facing components (PFCs). MAPP samples were exposed to argon glow discharge conditioning (GDC), lithium evaporations, and hydrogen tokamak discharges inside LTX. Samples were analyzed with XPS, and alterations to surface conditions were correlated against observed LTX plasma performance changes. Argon GDC caused the accumulation of nm-scale metal oxide layers on the PFC surface, which appeared to bury surface carbon and oxygen contamination and thus improve plasma performance. Lithium evaporation led to the rapid formation of a lithium oxide (Li{sub 2}O) surface; plasma performance was strongly improved for sufficiently thick evaporative coatings. Results indicate that a 5 h argon GDC or a 50 nm evaporative lithium coating will both significantly improve LTX plasma performance.

  15. New electron beam facility for irradiated plasma facing materials testing in hot cell

    Energy Technology Data Exchange (ETDEWEB)

    Sakamoto, N.; Kawamura, H. [Oarai Research Establishment, Ibaraki-ken (Japan); Akiba, M. [Naka Research Establishment, Ibaraki-ken (Japan)

    1995-09-01

    Since plasma facing components such as the first wall and the divertor for the next step fusion reactors are exposed to high heat loads and high energy neutron flux generated by the plasma, it is urgent to develop of plasma facing components which can resist these. Then, we have established electron beam heat facility ({open_quotes}OHBIS{close_quotes}, Oarai Hot-cell electron Beam Irradiating System) at a hot cell in JMTR (Japan Materials Testing Reactor) hot laboratory in order to estimate thermal shock resistivity of plasma facing materials and heat removal capabilities of divertor elements under steady state heating. In this facility, irradiated plasma facing materials (beryllium, carbon based materials and so on) and divertor elements can be treated. This facility consists of an electron beam unit with the maximum beam power of 50kW and the vacuum vessel. The acceleration voltage and the maximum beam current are 30kV (constant) and 1.7A, respectively. The loading time of electron beam is more than 0.1ms. The shape of vacuum vessel is cylindrical, and the mainly dimensions are 500mm in inner diameter, 1000mm in height. The ultimate vacuum of this vessel is 1 x 10{sup -4}Pa. At present, the facility for thermal shock test has been established in a hot cell. And performance estimation on the electron beam is being conducted. Presently, the devices for heat loading tests under steady state will be added to this facility.

  16. Digital Holography for in Situ Real-Time Measurement of Plasma-Facing-Component Erosion

    Energy Technology Data Exchange (ETDEWEB)

    ThomasJr., C. E. [Third Dimension Technologies, LLC, Knoxville, TN; Granstedt, E. M. [Tri-Alpha Energy; Biewer, Theodore M [ORNL; Baylor, Larry R [ORNL; Combs, Stephen Kirk [ORNL; Meitner, Steven J [ORNL; Hillis, Donald Lee [ORNL; Majeski, R. [Princeton Plasma Physics Laboratory (PPPL); Kaita, R. [Princeton Plasma Physics Laboratory (PPPL)

    2014-01-01

    In situ, real time measurement of net plasma-facing-component (PFC) erosion/deposition in a real plasma device is challenging due to the need for good spatial and temporal resolution, sufficient sensitivity, and immunity to fringe-jump errors. Design of a high-sensitivity, potentially high-speed, dual-wavelength CO2 laser digital holography system (nominally immune to fringe jumps) for PFC erosion measurement is discussed.

  17. Ductile-Phase-Toughened Tungsten for Plasma-Facing Materials

    Science.gov (United States)

    Cunningham, Kevin Hawkins

    A variety of processing approaches were employed to fabricate ductile-phase-toughened (DPT) tungsten (W) composites. Mechanical testing and analytical modeling were used to guide composite development. This work provides a basis for further development of W composites to be used in structural divertor components of future fusion reactors. W wire was tested in tension, showing significant ductility and strength. Coatings of copper (Cu) or tungsten carbide (WC) were applied to the W wire via electrodeposition and carburization, respectively. Composites were fabricated using spark plasma sintering (SPS) to consolidate W powders together with each type of coated W wire. DPT behavior, e.g. crack arrest and crack bridging, was not observed in three-point bend testing of the sintered composites. A laminate was fabricated by hot pressing W and Cu foils together with W wires, and subsequently tested in tension. This laminate was bonded via hot pressing to thick W plate as a reinforcing layer, and the composite was tested in three-point bending. Crack arrest was observed along with some fiber pullout, but significant transverse cracking in the W plate confounded further fracture toughness analysis. The fracture toughness of thin W plate was measured in three-point bending. W plates were brazed with Cu foils to form a laminate. Crack arrest and crack bridging were observed in three-point bend tests of the laminate, and fracture resistance curves were successfully calculated for this DPT composite. An analytical model of crack bridging was developed using the basis described by Chao in previous work by the group. The model uses the specimen geometry, matrix properties, and the stress-displacement function of a ductile reinforcement ("bridging law") to calculate the fracture resistance curve (R-curve) and load-displacement curve (P-D curve) for any test specimen geometry. The code was also implemented to estimate the bridging law of an arbitrary composite using R-curve data

  18. Beryllium assessment and recommendation for application in ITER plasma facing components

    Energy Technology Data Exchange (ETDEWEB)

    Barabash, V.; Tanaka, S.; Matera, R. [ITER Joint Central Team, Muenchen (Germany)

    1998-01-01

    The design status of the ITER Plasma Facing Components (PFC) is presented. The operational conditions of the armour material for the different components are summarized. Beryllium is the reference armour material for the Primary Wall, Baffle and Limiter and the back-up material for the Divertor Dome. The activities on the selection of the Be grades and the joining technologies are reviewed. (author)

  19. Transient heat transfer characteristics of mist cooling from horizontal upward-facing surface. Suihei uemuki heimen kei deno hiteijo mist reikyaku netsu dentatsu tokusei ni kansuru kenkyu

    Energy Technology Data Exchange (ETDEWEB)

    Okubo, H.; Nishio, S. (Univ. of Tokyo, Tokyo (Japan). Inst. of Industrial Science)

    1991-07-25

    As mist cooling comprising of cooling heated surface by colliding with a group of pulverized droplet, one of sprayed cooling, is known to show heat transfer feature expressed by letter N curve like boiling one, it represents another complex phenomenone by adding some other new factors such as behavior of the collided particles, effect of air flow and others except boiling phenomenone. On the other hand, it is required to control the cooling ability with high accuracy in the field of heat treatment of steel widely applied such mist cooling. In this paper, an effect of unsteadiness of heat transfer face was examined in a plain system upper-faced holizontally by using the heat transfer face having different thickness. All specimens used in this experiment had 15mm in diameter of the heat transfer face, which were made of silver in seven kinds of thickness, and of SUS and quartz glass in four. Consequently, some informations were obtained that in unsteady region heat transfer coefficients of high temperature region could be well related with heat capacity of the face. 22 refs., 9 figs., 1 tab.

  20. Thermoelectric-Driven Liquid-Metal Plasma-Facing Structures (TELS) Final Report

    Energy Technology Data Exchange (ETDEWEB)

    Ruzic, David [Univ. of Illinois, Urbana-Champaign, IL (United States)

    2016-12-17

    The Thermoelectric-Driven Liquid-Metal Plasma-Facing Structures (TELS) project was able to establish the experimental conditions necessary for flowing liquid metal surfaces in order to be utilized as surfaces facing fusion relevant energetic plasma flux. The work has also addressed additional developments along with progressing along the timeline detailed in the proposal. A no-cost extension was requested to conduct other relevant experiment- specifically regarding the characterization droplet ejection during energetic plasma flux impact. A specially designed trench module, which could accommodate trenches with different aspect ratios was fabricated and installed in the TELS setup and plasma gun experiments were performed. Droplet ejection was characterized using high speed image acquisition and also surface mounted probes were used to characterize the plasma. The Gantt chart below had been provided with the original proposal, indicating the tasks to be performed in the third year of funding. These tasks are listed above in the progress report outline, and their progress status is detailed below.

  1. Comparison of tokamak behaviour with tungsten and low-Z plasma facing materials

    Science.gov (United States)

    Philipps, V.; Neu, R.; Rapp, J.; Samm, U.; Tokar, M.; Tanabe, T.; Rubel, M.

    2000-12-01

    Graphite wall materials are used in present day fusion devices in order to optimize plasma core performance and to enable access to a large operational space. A large physics database exists for operation with these plasma facing materials, which also indicate their use in future devices with extended burn times. The radiation from carbon impurities in the edge and divertor regions strongly helps to reduce the peak power loads on the strike areas, but carbon radiation also supports the formation of MARFE instabilities which can hinder access to high densities. The main concerns with graphite are associated with its strong chemical affinity to hydrogen, which leads to chemical erosion and to the formation of hydrogen-rich carbon layers. These layers can store a significant fraction of the total tritium fuel, which might prevent the use of these materials in future tritium devices. High-Z plasma facing materials are much more advantageous in this sense, but these advantages compete with the strong poisoning of the plasma if they enter the plasma core. New promising experiences have been obtained with high-Z wall materials in several devices, about which a survey is given in this paper and which also addresses open questions for future research and development work.

  2. Evaluation of runaway-electron effects on plasma-facing components for NET

    Science.gov (United States)

    Bolt, H.; Calén, H.

    1991-03-01

    Runaway electrons which are generated during disruptions can cause serious damage to plasma facing components in a next generation device like NET. A study was performed to quantify the response of NET plasma facing components to runaway-electron impact. For the determination of the energy deposition in the component materials Monte Carlo computations were performed. Since the subsurface metal structures can be strongly heated under runaway-electron impact from the computed results damage threshold values for the thermal excursions were derived. These damage thresholds are strongly dependent on the materials selection and the component design. For a carbonmolybdenum divertor with 10 and 20 mm carbon armour thickness and 1 degree electron incidence the damage thresholds are 100 MJ/m 2 and 220 MJ/m 2. The thresholds for a carbon-copper divertor under the same conditions are about 50% lower. On the first wall damage is anticipated for energy depositions above 180 MJ/m 2.

  3. Vertical flow in the Thermoelectric Liquid Metal Plasma Facing Structures (TELS) facility at Illinois

    Energy Technology Data Exchange (ETDEWEB)

    Xu, W. [Center for Plasma-Material Interaction, Dept. Nuclear, Plasma, and Radiological Engineering, University of Illinois at Urbana-Champaign, Urbana (United States); Fiflis, P., E-mail: fiflis1@illinois.edu [Center for Plasma-Material Interaction, Dept. Nuclear, Plasma, and Radiological Engineering, University of Illinois at Urbana-Champaign, Urbana (United States); Szott, M.; Kalathiparambil, K.; Jung, S.; Christenson, M.; Haehnlein, I.; Kapat, A. [Center for Plasma-Material Interaction, Dept. Nuclear, Plasma, and Radiological Engineering, University of Illinois at Urbana-Champaign, Urbana (United States); Andruczyk, D. [Center for Plasma-Material Interaction, Dept. Nuclear, Plasma, and Radiological Engineering, University of Illinois at Urbana-Champaign, Urbana (United States); PPPL (United States); Curreli, D.; Ruzic, D.N. [Center for Plasma-Material Interaction, Dept. Nuclear, Plasma, and Radiological Engineering, University of Illinois at Urbana-Champaign, Urbana (United States)

    2015-08-15

    Flowing liquid metal PFCs may offer a solution to the issues faced by solid divertor materials in tokamak plasmas. The Liquid–Metal Infused Trenches (LiMIT) concept of Illinois Ruzic et al. (2011) is a liquid metal plasma facing structure which employs thermoelectric magnetohydrodynamic (TEMHD) effects to self-propel lithium through a series of trenches. The combination of an incident heat flux and a magnetic field provide the driving mechanism. Tests have yielded experimental lithium velocities under different magnetic fields, which agree well with theoretical predictions Xu et al. (2013). The thermoelectric force is expected to overcome gravity and be able to drive lithium flow along an arbitrary direction and the strong surface tension of liquid lithium is believed to maintain the surface when Li flows in open trenches. This paper discusses the behavior of the LiMIT structure when inclined to an arbitrary angle with respect to the horizontal.

  4. Operational experience with a variety of plasma facing tile assemblies at JET

    Energy Technology Data Exchange (ETDEWEB)

    Edwards, P. E-mail: paul.edwards@jet.uk; Altmann, H.; Loving, A.; Pedrick, L.; Tait, J.; Way, M

    2001-10-01

    During the June 1999 JET shutdown, 3000 plasma facing Tile Assemblies were found to be loose and had to be re-torqued remotely using the Mascot force reflecting manipulator. Whilst the integrity of these Tile Assemblies has been monitored during previous man access shutdowns, with the introduction of tritium to the machine in May 1996, the majority had not been checked since March 1996. This paper reviews typical plasma facing Tile Assembly designs within the JET torus and summarises the experience gained for use in future machine applications. This includes loosening processes/mechanisms and their prevention, applications of surface coatings to avoid seizing of un-lubricated assemblies, and the use of vibration resistant thread profiles. The design of attachments to minimise combined mechanical and thermal stresses in the tiles, material selection and other engineering aspects are also discussed.

  5. Analysis of Residual Thermal Stress in CVD-W Coating as Plasma Facing Material

    Institute of Scientific and Technical Information of China (English)

    朱大焕; 王坤; 王先平; 陈俊凌; 方前锋

    2012-01-01

    Chemical vapor deposition-tungsten (CVD-W) coating covering the surface of the plasma facing component (PFC) is an effective method to implement the tungsten material as plasma facing material (PFM) in fusion devices. Residual thermal stress in CVD-W coating due to thermal mismatch between coating and substrate was successfully simulated by using a finite element method (ANSYS 10.0 code). The deposition parametric effects, i.e., coating thickness and deposition temperature, and interlayer were investigated to get a description of the residual thermal stress in the CVD-W coating-substrate system. And the influence of the substrate materials on the generation of residual thermal stress in the CVD-W coating was analyzed with respect to the CVD-W coating application as PFM. This analysis is beneficial for the preparation and application of CVD-W coating.

  6. Analysis of Residual Thermal Stress in CVD-W Coating as Plasma Facing Material

    Science.gov (United States)

    Zhu, Dahuan; Wang, Kun; Wang, Xianping; Chen, Junling; Fang, Qianfeng

    2012-07-01

    Chemical vapor deposition-tungsten (CVD-W) coating covering the surface of the plasma facing component (PFC) is an effective method to implement the tungsten material as plasma facing material (PFM) in fusion devices. Residual thermal stress in CVD-W coating due to thermal mismatch between coating and substrate was successfully simulated by using a finite element method (ANSYS 10.0 code). The deposition parametric effects, i.e., coating thickness and deposition temperature, and interlayer were investigated to get a description of the residual thermal stress in the CVD-W coating-substrate system. And the influence of the substrate materials on the generation of residual thermal stress in the CVD-W coating was analyzed with respect to the CVD-W coating application as PFM. This analysis is beneficial for the preparation and application of CVD-W coating.

  7. MHD Effect of Liquid Metal Film Flows as Plasma-Facing Components

    Institute of Scientific and Technical Information of China (English)

    ZHANG Xiujie; XU Zengyu; PAN Chuanjie

    2008-01-01

    Stability of liquid metal film flow under gradient magnetic field is investigated. Three dimensional numerical simulations on magnetohydrodynamics (MHD) effect of free surface film flow were carried out, with emphasis on the film thickness variation and its surface stability. Three different MHD phenomena of film flow were observed in the experiment, namely, retardant, rivulet and flat film flow. From our experiment and numerical simulation it can be concluded that flat film flow is a good choice for plasma-facing components (PFCs)

  8. Molecular dynamics simulations of interactions between energetic dust and plasma-facing materials

    Energy Technology Data Exchange (ETDEWEB)

    Niu, Guo-jian, E-mail: niugj@ipp.ac.cn [Institute of Plasma Physics Chinese Academy of Sciences, Hefei (China); Li, Xiao-chun; Xu, Qian; Yang, Zhong-shi [Hefei Center Physical Science and Technology, Hefei (China); Luo, Guang-nan [Institute of Plasma Physics Chinese Academy of Sciences, Hefei (China); Hefei Center Physical Science and Technology, Hefei (China); Hefei Science Center of CAS, Hefei (China)

    2015-11-15

    The interactions between dust and plasma-facing material (PFM) relate to the lifetime of PFM and impurity production. Series results have been obtained theoretically and experimentally but more detailed studies are needed. In present research, we investigate the evolution of kinetic, potential and total energy of plasma-facing material (PFM) in order to understand the dust/PFM interaction process. Three typical impacting energy are selected, i.e., 1, 10 and 100 keV/dust for low-, high- and hyper-energy impacting cases. For low impacting energy, dust particles stick on PFM surface without damaging it. Two typical time points exist and the temperature of PFM grows all the time but PFM structure experience a modifying process. Under high energy case, three typical points appear. The temperature curve fluctuates in the whole interaction process which indicates there are dust/PFM and kinetic/potential energy exchanges. In the hyper-energy case in present simulation, the violence dust/PFM interactions cause sputtering and crater investigating on energy evolution curves. We further propose the statistics of energy distribution. Results show that about half of impacting energy consumes on heating plasma-facing material meanwhile the other half on PFM structure deformation. Only a small proportion becomes kinetic energy of interstitial or sputtering atoms.

  9. Recent Advances on Hydrogenic Retention in ITER's Plasma-Facing Materials: BE, C, W.

    Energy Technology Data Exchange (ETDEWEB)

    Skinner, C H; Alimov, Kh; Bekris, N; Causey, R A; Clark, R.E.H.; Coad, J P; Davis, J W; Doerner, R P; Mayer, M; Pisarev, A; Roth, J

    2008-03-29

    Management of tritium inventory remains one of the grand challenges in the development of fusion energy and the choice of plasma-facing materials is a key factor for in-vessel tritium retention. The Atomic and Molecular Data Unit of the International Atomic Energy Agency organized a Coordinated Research Project (CRP) on the overall topic of tritium inventory in fusion reactors during the period 2001-2006. This dealt with hydrogenic retention in ITER's plasma-facing materials, Be, C, W, and in compounds (mixed materials) of these elements as well as tritium removal techniques. The results of the CRP are summarized in this article together with recommendations for ITER. Basic parameters of diffusivity, solubility and trapping in Be, C and W are reviewed. For Be, the development of open porosity can account for transient hydrogenic pumping but long term retention will be dominated by codeposition. Codeposition is also the dominant retention mechanism for carbon and remains a serious concern for both Be and C containing layers. Hydrogenic trapping in unirradiated tungsten is low but will increase with ion and neutron damage. Mixed materials will be formed in a tokamak and these can also retain significant amounts of hydrogen isotopes. Oxidative and photon-based techniques for detritiation of plasma-facing components are described.

  10. Development of ZL400 Mine Cooling Unit Using Semi-Hermetic Screw Compressor and Its Application on Local Air Conditioning in Underground Long-Wall Face

    Science.gov (United States)

    Chu, Zhaoxiang; Ji, Jianhu; Zhang, Xijun; Yan, Hongyuan; Dong, Haomin; Liu, Junjie

    2016-12-01

    Aiming at heat injuries occurring in the process of deep coal mining in China, a ZL400 mine-cooling unit employing semi-hermetic screw compressor with a cooling capacity of 400 kW is developed. This paper introduced its operating principle, structural characteristics and technical indexes. By using the self-built testing platform, some parameters for indication of its operation conditions were tested on the ground. The results show that the aforementioned cooling unit is stable in operation: cooling capacity of the unit was 420 kW underground-test conditions, while its COP (coefficient of performance) reached 3.4. To address the issue of heat injuries existing in No. 16305 U-shaped long-wall ventilation face of Jining No. 3 coal mine, a local air conditioning system was developed with ZL400 cooling unit as the system's core. The paper presented an analysis of characteristics of the air current flowing in the air-mixing and cooling mode of ZL400 cooling unit used in air intake way. Through i-d patterns we described the process of the airflow treatment, such as cooling, mixing and heating, etc. The cooling system decreased dry bulb temperature on working face by 3°C on average and 3.8°C at most, while lowered the web bulb temperature by 3.6°C on average and 4.8°C at most. At the same time, it reduced relative humidity by 5% on average and 8.6% at most. The field application of the ZL400 cooling unit had gain certain effects in air conditioning and provided support for the solution of mine heat injuries in China in terms of technology and equipment.

  11. Non-boronized compared with boronized operation of ASDEX Upgrade with full-tungsten plasma facing components

    Science.gov (United States)

    Kallenbach, A.; Dux, R.; Mayer, M.; Neu, R.; Pütterich, T.; Bobkov, V.; Fuchs, J. C.; Eich, T.; Giannone, L.; Gruber, O.; Herrmann, A.; Horton, L. D.; Maggi, C. F.; Meister, H.; Müller, H. W.; Rohde, V.; Sips, A.; Stäbler, A.; Stober, J.; ASDEX Upgrade Team

    2009-04-01

    After completion of the tungsten coating of all plasma facing components, ASDEX Upgrade has been operated without boronization for 1 1/2 experimental campaigns. This has allowed the study of fuel retention under conditions of relatively low D co-deposition with low-Z impurities as well as the operational space of a full-tungsten device for the unfavourable condition of a relatively high intrinsic impurity level. Restrictions in operation were caused by the central accumulation of tungsten in combination with density peaking, resulting in H-L backtransitions induced by too low separatrix power flux. Most important control parameters have been found to be the central heating power, as delivered predominantly by ECRH, and the ELM frequency, most easily controlled by gas puffing. Generally, ELMs exhibit a positive impact, with the effect of impurity flushing out of the pedestal region overbalancing the ELM-induced W source. The restrictions of plasma operation in the unboronized W machine occurred predominantly under low or medium power conditions. Under medium-high power conditions, stable operation with virtually no difference between boronized and unboronized discharges was achieved. Due to the reduced intrinsic radiation with boronization and the limited power handling capability of VPS coated divertor tiles (≈10 MW m-2), boronized operation at high heating powers was possible only with radiative cooling. To enable this, a previously developed feedback system using (thermo-)electric current measurements as approximate sensor for the divertor power flux was introduced into the standard AUG operation. To avoid the problems with reduced ELM frequency due to core plasma radiation, nitrogen was selected as radiating species since its radiative characteristic peaks at lower electron temperatures in comparison with Ne and Ar, favouring SOL and divertor radiative losses. Nitrogen seeding resulted not only in the desired divertor power load reduction but also in improved

  12. Investigation of tin-lithium eutectic as a liquid plasma facing material

    Science.gov (United States)

    Ruzic, David; Szott, Matthew; Christenson, Michael; Shchelkanov, Ivan; Kalathiparambil, Kishor Kumar

    2016-10-01

    Innovative materials and techniques need to be utilized to address the high heat and particle flux incident on plasma facing components in fusion reactors. A liquid metal diverter module developed at UIUC with self circulating lithium has been successfully demonstrated to be capable of handling the relevant heat flux in plasma gun based tests and on operational tokamaks. The proper geometry of the liquid lithium trenches to minimize droplet ejection during transient plasma events have also been identified. Although lithium has proven to be effective in improved plasma performance and contributes to other advantageous factors like reduction in the fuel recycling, impurity gettering and, owing to the low Z, a significantly reduced impact on plasma as compared to the solid wall materials, it still poses several drawbacks related to its high reactivity and high vapor pressure at the relevant tokamak wall temperatures. The evaporation properties of a new eutectic mixture of tin and lithium (20% Sn) shows that lithium segregates to the surface at melting temperatures and hence is an effective replacement for pure lithium. Also, the vapor from the eutectic is dominated by lithium, minimizing the entry of high Z Sn into the plasma. At UIUC experiments for the synthesis and characterization of the eutectic - measurement of the critical wetting parameters and Seebeck coefficients with respect to the trench materials have been performed to ensure lithium wetting and flow in the trenches. The results will be presented. DOE project DEFG02- 99ER54515.

  13. On thermionic emission from plasma-facing components in tokamak-relevant conditions

    Science.gov (United States)

    Komm, M.; Ratynskaia, S.; Tolias, P.; Cavalier, J.; Dejarnac, R.; Gunn, J. P.; Podolnik, A.

    2017-09-01

    The first results of particle-in-cell simulations of the electrostatic sheath and magnetic pre-sheath of thermionically emitting planar tungsten surfaces in fusion plasmas are presented. Plasma conditions during edge localized modes (ELMs) and during inter-ELM periods have been considered for various inclinations of the magnetic field and for selected surface temperatures. All runs have been performed under two assumptions for the sheath potential drop; fixed or floating. The primary focus lies on the evaluation of the escaping thermionic current and the quantification of the suppression due to the combined effects of space-charge and Larmor gyration. When applicable, the results are compared with the predictions of analytical models. The heat balance in the presence of thermionic emission as well as the contribution of the escaping thermionic current to surface cooling are also investigated. Regimes are identified where emission needs to be considered in the energy budget.

  14. Concept of a Staged FEL Enabled by Fast Synchrotron Radiation Cooling of Laser-Plasma Accelerated Beam by Solenoidal Magnetic Fields in Plasma Bubble

    CERN Document Server

    Seryi, Andrei; Andreev, Alexander; Konoplev, Ivan

    2016-01-01

    A novel method for generating GigaGauss solenoidal field in laser-plasma bubble, using screw-shaped laser pulses, has been recently presented in arXiv:1604.01259 [physics.plasm-ph]. Such magnetic fields enable fast synchrotron radiation cooling of the beam emittance of laser-plasma accelerated leptons. This recent finding opens a novel approach for design of laser-plasma FELs or colliders, where the acceleration stages are interleaved with laser-plasma emittance cooling stages. In this concept paper we present an outline of how a staged plasma-acceleration FEL could look like and discuss further studies needed to investigate the feasibility of the concept in detail.

  15. Analysis of the thermal response of plasma facing components during a runaway electron impact

    Science.gov (United States)

    Ward, Robert Cameron

    The generation of runaway electrons during a thermal plasma disruption is a concern for the safe and economical operation of a tokamak power system. Runaway electrons have high energy, 10--300 MeV, and may potentially cause extensive damage to plasma facing components through large temperature increases, melting of metallic components, surface erosion, and possible burnout of coolant tubes. The EPQ code system was developed to simulate the thermal response of plasma facing components to a runaway electron impact. The EPQ code system consists of several parts: UNIX scripts which control the operation of an electron-photon monte carlo code to calculate the interaction of the runaway electrons with the plasma facing materials; a finite difference code to calculate the thermal response, melting, and surface erosion of the materials using the modified heat conduction equation; a code to process, scale, transform, and convert the electron monte carlo data to volumetric heating rates for use in the thermal code; and several minor and auxiliary codes for the manipulation and post-processing of the data. The electron-photon monte carlo code used was the Electron-Gamma-Shower (EGS) code, developed and maintained by the National Research Center of Canada. The other codes were written in C++ for this study. The thermal code, called QTTN, solves the two-dimensional cylindrical modified heat conduction equation using the Quickest third-order accurate and stable explicit finite difference method and is capable of tracking melting or surface erosion. The EPQ code system was validated using a series of analytical solutions and simulations of experiments. QTTN and EPQ was verified and validated as able to calculate the temperature distribution, phase change, and surface erosion successfully. EPQ was then employed in a parametric study to simulate a typical runaway electron disruption impact on the FIRE design's plasma facing components. The results of the FIRE parametric study

  16. Material testing facilities and programs for plasma-facing component testing

    Science.gov (United States)

    Linsmeier, Ch.; Unterberg, B.; Coenen, J. W.; Doerner, R. P.; Greuner, H.; Kreter, A.; Linke, J.; Maier, H.

    2017-09-01

    Component development for operation in a large-scale fusion device requires thorough testing and qualification for the intended operational conditions. In particular environments are necessary which are comparable to the real operation conditions, allowing at the same time for in situ/in vacuo diagnostics and flexible operation, even beyond design limits during the testing. Various electron and neutral particle devices provide the capabilities for high heat load tests, suited for material samples and components from lab-scale dimensions up to full-size parts, containing toxic materials like beryllium, and being activated by neutron irradiation. To simulate the conditions specific to a fusion plasma both at the first wall and in the divertor of fusion devices, linear plasma devices allow for a test of erosion and hydrogen isotope recycling behavior under well-defined and controlled conditions. Finally, the complex conditions in a fusion device (including the effects caused by magnetic fields) are exploited for component and material tests by exposing test mock-ups or material samples to a fusion plasma by manipulator systems. They allow for easy exchange of test pieces in a tokamak or stellarator device, without opening the vessel. Such a chain of test devices and qualification procedures is required for the development of plasma-facing components which then can be successfully operated in future fusion power devices. The various available as well as newly planned devices and test stands, together with their specific capabilities, are presented in this manuscript. Results from experimental programs on test facilities illustrate their significance for the qualification of plasma-facing materials and components. An extended set of references provides access to the current status of material and component testing capabilities in the international fusion programs.

  17. Experimental Investigation on the Effects of DBD Plasma on the Film Cooling Effectiveness of a 30-Degree Slot

    Directory of Open Access Journals (Sweden)

    Ye Jee Kim

    2017-06-01

    Full Text Available The effects of dielectric barrier discharge (DBD plasma on the film cooling effectiveness of a 30-degree slot was experimentally investigated in a low-speed wind tunnel. The pressure sensitive paint (PSP technique was used to measure the film cooling effectiveness, and two blowing ratios (0.5 and 1.0 were tested. A sinusoidal waveform with a 1-kHz frequency was supplied to the exposed electrode. Two input voltages (6 and 7 kV and two exposed electrode locations were considered. The results showed that the film cooling effectiveness of the slot was higher for the blowing ratio of the 1.0 case than that for the blowing ratio of the 0.5 case regardless of plasma operation. The higher input voltage case (7 kV showed higher film cooling effectiveness than the lower input voltage case (6 kV. The improvement in film cooling effectiveness facilitated by the DBD plasma was more significant when the coolant had less momentum. The maximum improvement of the area averaged film cooling effectiveness was 2.3% for the case with the exposed electrode located at the slot exit and a blowing ratio of 0.5.

  18. LSP simulations of fast ions slowing down in cool magnetized plasma

    Science.gov (United States)

    Evans, Eugene S.; Cohen, Samuel A.

    2015-11-01

    In MFE devices, rapid transport of fusion products, e.g., tritons and alpha particles, from the plasma core into the scrape-off layer (SOL) could perform the dual roles of energy and ash removal. Through these two processes in the SOL, the fast particle slowing-down time will have a major effect on the energy balance of a fusion reactor and its neutron emissions, topics of great importance. In small field-reversed configuration (FRC) devices, the first-orbit trajectories of most fusion products will traverse the SOL, potentially allowing those particles to deposit their energy in the SOL and eventually be exhausted along the open field lines. However, the dynamics of the fast-ion energy loss processes under conditions expected in the FRC SOL, where the Debye length is greater than the electron gyroradius, are not fully understood. What modifications to the classical slowing down rate are necessary? Will instabilities accelerate the energy loss? We use LSP, a 3D PIC code, to examine the effects of SOL plasma parameters (density, temperature and background magnetic field strength) on the slowing down time of fast ions in a cool plasma with parameters similar to those expected in the SOL of small FRC reactors. This work supported by DOE contract DE-AC02-09CH11466.

  19. Electron cooling and finite potential drop in a magnetized plasma expansion

    Energy Technology Data Exchange (ETDEWEB)

    Martinez-Sanchez, M. [Department of Aeronautics and Astronautics, Massachusetts Institute of Technology, 77 Massachusetts Avenue, Cambridge, Massachusetts 02139 (United States); Navarro-Cavallé, J. [Escuela Técnica Superior de Ingeniería Aeronáutica y del Espacio, Universidad Politécnica de Madrid, Plaza Cardenal Cisneros 3, Madrid 28040 (Spain); Ahedo, E. [Departamento de Bioingeniería e Ingeniería Aeroespacial, Universidad Carlos III de Madrid, Avda. Universidad 30, Leganés 28911, Madrid (Spain)

    2015-05-15

    The steady, collisionless, slender flow of a magnetized plasma into a surrounding vacuum is considered. The ion component is modeled as mono-energetic, while electrons are assumed Maxwellian upstream. The magnetic field has a convergent-divergent geometry, and attention is restricted to its paraxial region, so that 2D and drift effects are ignored. By using the conservation of energy and magnetic moment of particles and the quasi-neutrality condition, the ambipolar electric field and the distribution functions of both species are calculated self-consistently, paying attention to the existence of effective potential barriers associated to magnetic mirroring. The solution is used to find the total potential drop for a set of upstream conditions, plus the axial evolution of various moments of interest (density, temperatures, and heat fluxes). The results illuminate the behavior of magnetic nozzles, plasma jets, and other configurations of interest, showing, in particular, in the divergent plasma the collisionless cooling of electrons, and the generation of collisionless electron heat fluxes.

  20. Reactor plasma facing component designs based on liquid metal concepts supported in porous systems

    Science.gov (United States)

    Tabarés, F. L.; Oyarzabal, E.; Martin-Rojo, A. B.; Tafalla, D.; de Castro, A.; Soleto, A.

    2017-01-01

    The use of liquid metals (LMs) as plasma facing components in fusion devices was proposed as early as 1970 for a field reversed concept and inertial fusion reactors. The idea was extensively developed during the APEX Project, at the turn of the century, and it is the subject at present of the biennial International Symposium on Lithium Applications (ISLA), whose fourth meeting took place in Granada, Spain at the end of September 2015. While liquid metal flowing concepts were specially addressed in USA research projects, the idea of embedding the metal in a capillary porous system (CPS) was put forwards by Russian teams in the 1990s, thus opening the possibility of static concepts. Since then, many ideas and accompanying experimental tests in fusion devices and laboratories have been produced, involving a large fraction of countries within the international fusion community. Within the EUROFusion Roadmap, these activities are encompassed into the working programs of the plasma facing components (PFC) and divertor tokamak test (DTT) packages. In this paper, a review of the state of the art in concepts based on the CPS set-up for a fusion reactor divertor target, aimed at preventing the ejection of the liquid metal by electro-magnetic (EM) forces generated under plasma operation, is described and required R+D activities on the topic, including ongoing work at CIEMAT specifically oriented to filling the remaining gaps, are stressed.

  1. Tritium inventory control during ITER operation under carbon plasma-facing components by nitrogen-based plasma chemistry: a review

    Science.gov (United States)

    Tabarés, F. L.

    2013-06-01

    In spite of being highly suited for advanced plasma performance operation of tokamaks, as demonstrated over at least two decades of fusion plasma research, carbon is not currently considered as an integrating element of the plasma-facing components (PFCs) for the active phase of ITER. The main reason preventing its use under the very challenging scenarios foreseen in this phase, with edge-localized modes delivering several tens of MW m-2 to the divertor target every second or less, is the existing concern about reaching the tritium inventory value of 1000 g used in safety assessments in a time shorter than the projected lifetime of the divertor materials eroded by the plasma, set at 3000 shots. Although several mechanisms of tritium trapping in carbon components have been identified, co-deposition of the carbon radicals arising from chemically eroded chlorofluorocarbons in remote areas appears to play a dominant role. Several possible ways to keep control of the tritium build-up during the full operation of ITER have been put forward, mostly based on the periodic removal of the co-deposits by chemical (thermo-oxidation, plasma chemistry) or physical (laser, flash lamps) methods. In this work, we review the techniques for the inhibition and removal of tritium-rich co-deposits based on the strong chemical reactivity of some N-bearing molecules with carbon. The integration of these techniques into a possible scheme for tritium inventory control in the active phase of ITER under carbon-based PFCs with minimum down-time is discussed and the existing caveats are addressed.

  2. Manufacturing and High Heat Flux Testing of Brazed Flat-Type W/CuCrZr Plasma Facing Components

    Science.gov (United States)

    Lian, Youyun; Liu, Xiang; Feng, Fan; Chen, Lei; Cheng, Zhengkui; Wang, Jin; Chen, Jiming

    2016-02-01

    Water-cooled flat-type W/CuCrZr plasma facing components with an interlayer of oxygen-free copper (OFC) have been developed by using vacuum brazing route. The OFC layer for the accommodation of thermal stresses was cast onto the surface of W at a temperature range of 1150 °C-1200 °C in a vacuum furnace. The W/OFC cast tiles were vacuum brazed to a CuCrZr heat sink at 940 °C using the silver-free filler material CuMnSiCr. The microstructure, bonding strength, and high heat flux properties of the brazed W/CuCrZr joint samples were investigated. The W/Cu joint exhibits an average tensile strength of 134 MPa, which is about the same strength as pure annealed copper. High heat flux tests were performed in the electron beam facility EMS-60. Experimental results indicated that the brazed W/CuCrZr mock-up experienced screening tests of up to 15 MW/m2 and cyclic tests of 9 MW/m2 for 1000 cycles without visible damage. supported by National Natural Science Foundation of China (No. 11205049) and the National Magnetic Confinement Fusion Science Program of China (No. 2011GB110004)

  3. Open-Mode Debonding Analysis of Curved Sandwich Panels Subjected to Heating and Cryogenic Cooling on Opposite Faces

    Science.gov (United States)

    Ko, William L.

    1999-01-01

    Increasing use of curved sandwich panels as aerospace structure components makes it vital to fully understand their thermostructural behavior and identify key factors affecting the open-mode debonding failure. Open-mode debonding analysis is performed on a family of curved honeycomb-core sandwich panels with different radii of curvature. The curved sandwich panels are either simply supported or clamped, and are subjected to uniform heating on the convex side and uniform cryogenic cooling on the concave side. The finite-element method was used to study the effects of panel curvature and boundary condition on the open-mode stress (radial tensile stress) and displacement fields in the curved sandwich panels. The critical stress point, where potential debonding failure could initiate, was found to be at the midspan (or outer span) of the inner bonding interface between the sandwich core and face sheet on the concave side, depending on the boundary condition and panel curvature. Open-mode stress increases with increasing panel curvature, reaching a maximum value at certain high curvature, and then decreases slightly as the panel curvature continues to increase and approach that of quarter circle. Changing the boundary condition from simply supported to clamped reduces the magnitudes of open-mode stresses and the associated sandwich core depth stretching.

  4. Proceedings of the 4th International Workshop on Tritium Effects in Plasma Facing Components

    Energy Technology Data Exchange (ETDEWEB)

    R. A. Causey

    1999-02-01

    The 4th International Workshop on Tritium Effects in Plasma Facing Components was held in Santa Fe, New Mexico on May 14-15, 1998. This workshop occurs every two years, and has previously been held in Livermore/California, Nagoya/Japan, and the JRC-Ispra Site in Italy. The purpose of the workshop is to gather researchers involved in the topic of tritium migration, retention, and recycling in materials used to line magnetic fusion reactor walls and provide a forum for presentation and discussions in this area. This document provides an overall summary of the workshop, the workshop agenda, a summary of the presentations, and a list of attendees.

  5. Beryllium plasma-facing components for the ITER-like wall project at JET

    Energy Technology Data Exchange (ETDEWEB)

    Rubel, M J; Sundelin, P [Alfven Laboratory, Royal Institute of Technology, Association Euratom-VR (Sweden); Bailescu, V [Nuclear Fuel Plant, Pitesti (Romania); Coad, J P; Matthews, G F; Pedrick, L; Riccardo, V; Villedieu, E [Culham Science Centre, Euratom-UKAEA Fusion Association, Abingdon (United Kingdom); Hirai, T; Linke, J [IEF-2, Forschungszentrum Juelich, Association Euratom-FZJ, Juelich (Germany); Likonen, J [VTT, Association Euratom-Tekes, 02044 VTT (Finland); Lungu, C P [NILPRP, Association Euratom-MEdC, Bucharest (Romania)], E-mail: rubel@kth.se

    2008-03-15

    ITER-Like Wall Project has been launched at the JET tokamak in order to study a tokamak operation with beryllium components on the main chamber wall and tungsten in the divertor. To perform this first comprehensive test of both materials in a thermonuclear fusion environment, a broad program has been undertaken to develop plasma-facing components and assess their performance under high power loads. The paper provides a concise report on scientific and technical issues in the development of a beryllium first wall at JET.

  6. Simulated plasma facing component measurements for an in situ surface diagnostic on Alcator C-Moda)

    Science.gov (United States)

    Hartwig, Z. S.; Whyte, D. G.

    2010-10-01

    The ideal in situ plasma facing component (PFC) diagnostic for magnetic fusion devices would perform surface element and isotope composition measurements on a shot-to-shot (˜10 min) time scale with ˜1 μm depth and ˜1 cm spatial resolution over large areas of PFCs. To this end, the experimental adaptation of the customary laboratory surface diagnostic—nuclear scattering of MeV ions—to the Alcator C-Mod tokamak is being guided by ACRONYM, a Geant4 synthetic diagnostic. The diagnostic technique and ACRONYM are described, and synthetic measurements of film thickness for boron-coated PFCs are presented.

  7. Confocal microscopy: A new tool for erosion measurements on large scale plasma facing components in tokamaks

    Energy Technology Data Exchange (ETDEWEB)

    Gauthier, E., E-mail: eric.gauthier@cea.fr [CEA/DSM/IRFM, CEA Cadarache, Saint-Paul-lez-Durance (France); Brosset, C.; Roche, H.; Tsitrone, E.; Pégourié, B.; Martinez, A. [CEA/DSM/IRFM, CEA Cadarache, Saint-Paul-lez-Durance (France); Languille, P. [PIIM, CNRS-Université de Provence, Centre de St Jérôme, 13397 Marseille, Cedex 20 (France); Courtois, X.; Lallier, Y. [CEA/DSM/IRFM, CEA Cadarache, Saint-Paul-lez-Durance (France); Salami, M. [AVANTIS CONCEPT, 75 Rue Marcelin Berthelot, 13858 Aix en Provence (France)

    2013-07-15

    A diagnostic based on confocal microscopy was developed at CEA Cadarache in order to measure erosion on large plasma facing components during shutdown in situ in Tore Supra. This paper describes the diagnostic and presents results obtained on Beryllium and Carbon Fibre Composite (CFC) materials. Erosion in the range of 800 μm was found on one sector of the Toroidal Pumped Limiter (TPL) which provides, by integration to the full limiter a net carbon erosion of about 900 g over the period 2002–2007.

  8. Reference study to characterise plasma and magnetic properties of ultra-cool atmospheres

    CERN Document Server

    Rodriguez-Barrera, M I; Stark, C R; Rice, A M

    2015-01-01

    Radio and X-ray emission from brown dwarfs suggest that an ionised gas and a magnetic field with a sufficient flux density must be present. We perform a reference study for late M-dwarfs, brown dwarfs and giant gas planet to identify which ultra-cool objects are most susceptible to plasma and magnetic processes. Only thermal ionisation is considered. We utilise the {\\sc Drift-Phoenix} model grid where the local atmospheric structure is determined by the global parameters T$_{\\rm eff}$, $\\log(g)$ and [M/H]. Our results show that it is not unreasonable to expect H$_{\\alpha}$ or radio emission to origin from Brown Dwarf atmospheres as in particular the rarefied upper parts of the atmospheres can be magnetically coupled despite having low degrees of thermal gas ionisation. Such ultra-cool atmospheres could therefore drive auroral emission without the need for a companion's wind or an outgassing moon. The minimum threshold for the magnetic flux density required for electrons and ions to be magnetised is well above...

  9. Effect of ion radiative cooling on Jeans instability of partially ionized dusty plasma with dust charge fluctuation

    Science.gov (United States)

    Sharma, Prerana; Patidar, Archana

    2017-01-01

    In this paper, the effect of ion radiative cooling on the gravitational instability of dusty plasma is studied, incorporating dust charge fluctuation with dust-neutral, neutral-ion, and ion-neutral collisions. The basic equations are linearized using normal mode analysis to obtain a general dispersion relation. The general dispersion relation is analytically and numerically discussed to explain the role of ion radiative cooling in the structure formation through gravitational instability. The Jeans collapse criteria are found to be modified due to ion and electron radiative cooling, dust charge fluctuations, and collisions effects. It is determined from the analytical and numerical calculations that the support of radiative cooling of ions drives thermal fluctuations and gives instability to the system. The electron cooling effect remains dominating over ion cooling effect, and thus, it enhances the collapse more efficiently than ion cooling effect. Although the radiative cooling is slow, it may precede the collapse in molecular cloud, which further leads to the structure formation. The present work is relevance for the structure formation in the molecular cloud.

  10. Cooling Technology of Mine Roadway Heading Face Based on Wetting Curtain%基于湿帘的掘进工作面降温技术

    Institute of Scientific and Technical Information of China (English)

    任梅青; 陈天仲

    2015-01-01

    In order to effectively solve the high temperature hot disaster problem of the deep mine head-ing face ,the wetting curtain cooling principle was applied to the research and development of a ventila-tion cooling device .T he location of the cooling device installed near the heading face could cool the air flow sent by the local fan ,could ensure the temperature of the heading face to meet the requirements of"Safety Regulations of Coal Mine" and could improve the operation environment with the expected effect .%为有效解决矿井深部掘进工作面高温热害问题 ,利用湿帘降温原理,研制生产了一种通风降温装置 ,安装在靠近掘进工作面的位置 ,可将局部通风机送入的风流降温,确保掘进工作面温度达到《煤矿安全规程》要求 ,改善掘进工作面作业环境 ,取得了预期效果.

  11. Numerical studies of fast ion slowing down rates in cool magnetized plasma using LSP

    Science.gov (United States)

    Evans, Eugene S.; Kolmes, Elijah; Cohen, Samuel A.; Rognlien, Tom; Cohen, Bruce; Meier, Eric; Welch, Dale R.

    2016-10-01

    In MFE devices, rapid transport of fusion products from the core into the scrape-off layer (SOL) could perform the dual roles of energy and ash removal. The first-orbit trajectories of most fusion products from small field-reversed configuration (FRC) devices will traverse the SOL, allowing those particles to deposit their energy in the SOL and be exhausted along the open field lines. Thus, the fast ion slowing-down time should affect the energy balance of an FRC reactor and its neutron emissions. However, the dynamics of fast ion energy loss processes under the conditions expected in the FRC SOL (with ρe fast ions in a cool plasma. As we use explicit algorithms, these simulations must spatially resolve both ρe and λDe, as well as temporally resolve both Ωe and ωpe, increasing computation time. Scaling studies of the fast ion charge (Z) and background plasma density are in good agreement with unmagnetized slowing down theory. Notably, Z-scaling represents a viable way to dramatically reduce the required CPU time for each simulation. This work was supported, in part, by DOE Contract Number DE-AC02-09CH11466.

  12. Face cooling with mist water increases cerebral blood flow during exercise: Effect of changes in facial skin blood flow

    Directory of Open Access Journals (Sweden)

    Taiki eMiyazawa

    2012-08-01

    Full Text Available Facial cooling (FC increases cerebral blood flow (CBF at rest and during exercise; however, the mechanism of this response remains unclear. The purpose of the present study was to test our hypothesis that FC causes facial vasoconstriction that diverts skin blood flow (SkBFface towards the middle cerebral artery (MCA Vmean at rest and to a greater extent during exercise. Nine healthy young subjects (20 ± 2 yrs. underwent 3 minutes of FC by fanning and spraying the face with a mist of cold water (~4˚C at rest and during steady-state exercise (heart rate of 120 bpm. We focused on the difference between the averaged data acquired from 1 min immediately before FC and last 1 min of FC. SkBFface, MCA Vmean and MAP were higher during exercise than at rest. As hypothesized, FC decreased SkBFface at rest (-32 ± 4 % and to a greater extent during exercise (-64 ± 10%, P=0.012. Although MCA Vmean was increased by FC (Rest, +1.4 ± 0.5 cm/s; Exercise, +1.4 ± 0.6 cm/s, the amount of the FC-evoked changes in MCA Vmean at rest and during exercise differed among subjects. In addition, changes in MCA Vmean with FC did not correlate with concomitant changes in SkBFface (r=0.095, P=0.709. MAP was also increased by FC (Rest, +6.2 ± 1.4 mmHg; Exercise, +4.2 ± 1.2 mmHg. These findings suggest that the FC induced increase in CBF during exercise could not be explained only by change in SkBFface.

  13. Simulation of damage to tokamaks plasma facing components during intense abnormal power deposition

    Energy Technology Data Exchange (ETDEWEB)

    Genco, F., E-mail: fgenco@purdue.edu; Hassanein, A., E-mail: hassanein@purdue.edu

    2014-04-15

    Highlights: • HEIGHTS-PIC a new technique based on particle in cell method to study disruptions events, ELMS and VDE is benchmarked in this paper with the use of the MK-200 experiments. • Disruptions simulations results for erosion and erosion rate are proposed showing good agreement with published experimental available data for such conditions. • Results are also compared with other published results produced by FOREV1/FOREV2 computer package and the original HEIGHTS computer package. • Accuracy of the simulations results is proposed with specific aim to address the use of number of super particles adopted versus computational time. - Abstract: Intense power deposition on plasma facing components (PFC) is expected in tokamaks during loss of confinement events such as disruptions, vertical displacement events (VDE), runaway electrons (RE), or during normal operating conditions such as edge-localized modes (ELM). These highly energetic events are damaging enough to hinder long term operation and may not be easily mitigated without loss of structural or functional performance of the PFC. Surface erosion, melted/ablated-vaporized material splashing, and material transport into the bulk plasma are reliability-threatening for the machine and system performance. A novel particle-in-cell (PIC) technique has been developed and integrated into the existing HEIGHTS package in order to obtain a global view of the plasma evolution upon energy impingement. This newly developed PIC technique is benchmarked against plasma gun experimental data, the original HEIGHTS computer package, and laser experiments. Benchmarking results are shown in this paper for various relevant reactor and experimental devices. The evolution of the plasma vapor cloud is followed temporally and results are explained and commented as a function of the computational time needed and the accuracy of the calculation.

  14. Interfacial microstructures and hardness distributions of vacuum plasma spraying W-coated ODS ferritic steels for fusion plasma facing applications

    Energy Technology Data Exchange (ETDEWEB)

    Noh, Sanghoon, E-mail: shnoh@kaeri.re.kr [Nuclear Materials Division, Korea Atomic Energy Research Institute, Yuseong-gu, Daejeon (Korea, Republic of); Kasada, Ryuta; Kimura, Akihiko [Institute of Advanced Energy, Kyoto University, Gokasho, Uji, Kyoto (Japan); Nagasaka, Takuya [National Institute for Fusion Science, Toki, Gifu (Japan); Sokolov, Mikhail A. [Oak Ridge National Laboratory, Oak Ridge, TN (United States); Kim, Tae Kyu [Nuclear Materials Division, Korea Atomic Energy Research Institute, Yuseong-gu, Daejeon (Korea, Republic of)

    2014-04-15

    In the present study, interfacial microstructures and hardness distributions of W-coated ODS steels as plasma facing structural materials were investigated. A vacuum plasma spraying (VPS) technique was employed to fabricate a W layer on the surface of the ODS ferritic steel substrates. The microstructural observations revealed that the VPS-W has very fine grains aligned toward the spraying direction, and a favorable interface between W and ODS ferritic steels by a mechanical inter-locking without an intermetallic layer. However, crack-type defects were found in VPS-W. Because a brittle inter-diffused layer does not exist at the joint interface, the hardness was gradually distributed in the joint region. After neutron irradiation, irradiation hardening significantly occurred in the VPS-W. However, the hardening of VPS-W was less than that of bulk W irradiated at 773 K. Thus, the VPS is considered to be one of the promising ways to join dissimilar materials between W and ODS steels, which can avoid the formation of an interfacial intermetallic layer and create favorable irradiation hardening resistance on the W coated layer.

  15. Lithium Coatings on NSTX Plasma Facing Components and Its Effects On Boundary Control, Core Plasma Performance, and Operation

    Energy Technology Data Exchange (ETDEWEB)

    H.W.Kugel, M.G.Bell, H.Schneider, J.P.Allain, R.E.Bell, R Kaita, J.Kallman, S. Kaye, B.P. LeBlanc, D. Mansfield, R.E. Nygen, R. Maingi, J. Menard, D. Mueller, M. Ono, S. Paul, S.Gerhardt, R.Raman, S.Sabbagh, C.H.Skinner, V.Soukhanovskii, J.Timberlake, L.E.Zakharov, and the NSTX Research Team

    2010-01-25

    NSTX high-power divertor plasma experiments have used in succession lithium pellet injection (LPI), evaporated lithium, and injected lithium powder to apply lithium coatings to graphite plasma facing components. In 2005, following wall conditioning and LPI, discharges exhibited edge density reduction and performance improvements. Since 2006, first one, and now two lithium evaporators have been used routinely to evaporate lithium onto the lower divertor region at total rates of 10-70 mg/min for periods 5-10 min between discharges. Prior to each discharge, the evaporators are withdrawn behind shutters. Significant improvements in the performance of NBI heated divertor discharges resulting from these lithium depositions were observed. These evaporators are now used for more than 80% of NSTX discharges. Initial work with injecting fine lithium powder into the edge of NBI heated deuterium discharges yielded comparable changes in performance. Several operational issues encountered with lithium wall conditions, and the special procedures needed for vessel entry are discussed. The next step in this work is installation of a Liquid Lithium Divertor surface on the outer part of the lower divertor.

  16. Baking and helium glow discharge cleaning of SST-1 Tokamak with graphite plasma facing components

    Science.gov (United States)

    Semwal, P.; Khan, Z.; Raval, D. C.; Dhanani, K. R.; George, S.; Paravastu, Y.; Prakash, A.; Thankey, P.; Ramesh, G.; Khan, M. S.; Saikia, P.; Pradhan, S.

    2017-04-01

    Graphite plasma facing components (PFCs) were installed inside the SST-1 vacuum vessel. Prior to installation, all the graphite tiles were baked at 1000 °C in a vacuum furnace operated below 1.0 × 10-5 mbar. However due to the porous structure of graphite, they absorb a significant amount of water vapour from air during the installation process. Rapid desorption of this water vapour requires high temperature bake-out of the PFCs at ≥ 250 °C. In SST-1 the PFCs were baked at 250 °C using hot nitrogen gas facility to remove the absorbed water vapour. Also device with large graphite surface area has the disadvantage that a large quantity of hydrogen gets trapped inside it during plasma discharges which makes density control difficult. Helium glow discharge cleaning (He-GDC) effectively removes this stored hydrogen as well as other impurities like oxygen and hydrocarbon within few nano-meters from the surface by particle induced desorption. Before plasma operation in SST-1 tokamak, both baking of PFCs and He-GDC were carried out so that these impurities were removed effectively. The mean desorption yield of hydrogen was found to be 0.24. In this paper the results of baking and He-GDC experiments of SST-1 will be presented in detail.

  17. Bulk-bronzied graphites for plasma-facing components in ITER (International Thermonuclear Experimental Reactor)

    Energy Technology Data Exchange (ETDEWEB)

    Hirooka, Y.; Conn, R.W.; Doerner, R.; Khandagle, M. (California Univ., Los Angeles, CA (USA). Inst. of Plasma and Fusion Research); Causey, R.; Wilson, K. (Sandia National Labs., Livermore, CA (USA)); Croessmann, D.; Whitley, J. (Sandia National Labs., Albuquerque, NM (USA)); Holland, D.; Smolik, G. (Idaho National Engineering Lab., Idaho Falls, ID (USA)); Matsuda, T.; Sogabe, T. (Toyo Tanso Co. Ltd., O

    1990-06-01

    Newly developed bulk-boronized graphites and boronized C-C composites with a total boron concentration ranging from 1 wt % to 30 wt % have been evaluated as plasma-facing component materials for the International Thermonuclear Experimental Reactor (ITER). Bulk-boronized graphites have been bombarded with high-flux deuterium plasmas at temperatures between 200 and 1600{degree}C. Plasma interaction induced erosion of bulk-boronized graphites is observed to be a factor of 2--3 smaller than that of pyrolytic graphite, in regimes of physical sputtering, chemical sputtering and radiation enhanced sublimation. Postbombardment thermal desorption spectroscopy indicates that bulk-boronized graphites enhance recombinative desorption of deuterium, which leads to a suppression of the formation of deuterocarbon due to chemical sputtering. The tritium inventory in graphite has been found to decrease by an order of magnitude due to 10 wt % bulk-boronization at temperatures above 1000{degree}C. The critical heat flux to induce cracking for bulk-boronized graphites has been found to be essentially the same as that for non-boronized graphites. Also, 10 wt % bulk-boronization of graphite hinders air oxidation nearly completely at 800{degree}C and reduces the steam oxidation rate by a factor of 2--3 at around 1100 and 1350{degree}C. 38 refs., 5 figs.

  18. 2D surface temperature measurement of plasma facing components with modulated active pyrometry.

    Science.gov (United States)

    Amiel, S; Loarer, T; Pocheau, C; Roche, H; Gauthier, E; Aumeunier, M-H; Le Niliot, C; Rigollet, F; Courtois, X; Jouve, M; Balorin, C; Moncada, V

    2014-10-01

    In nuclear fusion devices, such as Tore Supra, the plasma facing components (PFC) are in carbon. Such components are exposed to very high heat flux and the surface temperature measurement is mandatory for the safety of the device and also for efficient plasma scenario development. Besides this measurement is essential to evaluate these heat fluxes for a better knowledge of the physics of plasma-wall interaction, it is also required to monitor the fatigue of PFCs. Infrared system (IR) is used to manage to measure surface temperature in real time. For carbon PFCs, the emissivity is high and known (ɛ ∼ 0.8), therefore the contribution of the reflected flux from environment and collected by the IR cameras can be neglected. However, the future tokamaks such as WEST and ITER will be equipped with PFCs in metal (W and Be/W, respectively) with low and variable emissivities (ɛ ∼ 0.1-0.4). Consequently, the reflected flux will contribute significantly in the collected flux by IR camera. The modulated active pyrometry, using a bicolor camera, proposed in this paper allows a 2D surface temperature measurement independently of the reflected fluxes and the emissivity. Experimental results with Tungsten sample are reported and compared with simultaneous measurement performed with classical pyrometry (monochromatic and bichromatic) with and without reflective flux demonstrating the efficiency of this method for surface temperature measurement independently of the reflected flux and the emissivity.

  19. Plasma facing materials and components for future fusion devices—development, characterization and performance under fusion specific loading conditions

    Science.gov (United States)

    Linke, J.

    2006-04-01

    The plasma exposed components in existing and future fusion devices are strongly affected by the plasma material interaction processes. These mechanisms have a strong influence on the plasma performance; in addition they have major impact on the lifetime of the plasma facing armour and the joining interface between the plasma facing material (PFM) and the heat sink. Besides physical and chemical sputtering processes, high heat quasi-stationary fluxes during normal and intense thermal transients are of serious concern for the engineers who develop reliable wall components. In addition, the material and component degradation due to intense fluxes of energetic neutrons is another critical issue in D-T-burning fusion devices which requires extensive R&D. This paper presents an overview on the materials development and joining, the testing of PFMs and components, and the analysis of the neutron irradiation induced degradation.

  20. Liquid Metals as Plasma-facing Materials for Fusion Energy Systems: From Atoms to Tokamaks

    Energy Technology Data Exchange (ETDEWEB)

    Stone, Howard A. [Princeton Univ., NJ (United States); Koel, Bruce E. [Princeton Univ., NJ (United States); Bernasek, Steven L. [Princeton Univ., NJ (United States); Carter, Emily A. [Princeton Univ., NJ (United States); Debenedetti, Pablo G. [Princeton Univ., NJ (United States); Panagiotopoulos, Athanassios Z. [Princeton Univ., NJ (United States)

    2017-06-23

    The objective of our studies was to advance our fundamental understanding of liquid metals as plasma-facing materials for fusion energy systems, with a broad scope: from atoms to tokamaks. The flow of liquid metals offers solutions to significant problems of the plasma-facing materials for fusion energy systems. Candidate metals include lithium, tin, gallium, and their eutectic combinations. However, such liquid metal solutions can only be designed efficiently if a range of scientific and engineering issues are resolved that require advances in fundamental fluid dynamics, materials science and surface science. In our research we investigated a range of significant and timely problems relevant to current and proposed engineering designs for fusion reactors, including high-heat flux configurations that are being considered by leading fusion energy groups world-wide. Using experimental and theoretical tools spanning atomistic to continuum descriptions of liquid metals, and bridging surface chemistry, wetting/dewetting and flow, our research has advanced the science and engineering of fusion energy materials and systems. Specifically, we developed a combined experimental and theoretical program to investigate flows of liquid metals in fusion-relevant geometries, including equilibrium and stability of thin-film flows, e.g. wetting and dewetting, effects of electromagnetic and thermocapillary fields on liquid metal thin-film flows, and how chemical interactions and the properties of the surface are influenced by impurities and in turn affect the surface wetting characteristics, the surface tension, and its gradients. Because high-heat flux configurations produce evaporation and sputtering, which forces rearrangement of the liquid, and any dewetting exposes the substrate to damage from the plasma, our studies addressed such evaporatively driven liquid flows and measured and simulated properties of the different bulk phases and material interfaces. The range of our studies

  1. Evaluation of energy and particle impact on the plasma facing components in DEMO

    Energy Technology Data Exchange (ETDEWEB)

    Igitkhanov, Yuri, E-mail: juri.gitkhanov@ihm.fzk.de [Karlsruhe Institute of Technology, IHM, Karlsruhe (Germany); Bazylev, Boris [Karlsruhe Institute of Technology, IHM, Karlsruhe (Germany)

    2012-08-15

    -state operation heat transfer into the coolant must remain below the critical heat flux (CHF) to avoid the possible severe degradation of the coolant heat removal capability. From the plasma side it is particularly demanding to keep the bulk plasma contamination during the reactor long operational discharges below the fatal level. The possible damage of the FW materials due to the plasma sputtering erosion is estimated. The minimum thickness of the tungsten amour about 3 mm for W/EUROFER sandwich structure will keep the maximum EUROFER temperature below the critical limit for EUROFER steel under steady-state operation and ITER like cooling conditions.

  2. Dynamic outgassing of deuterium, helium and nitrogen from plasma-facing materials under DEMO relevant conditions

    Science.gov (United States)

    Möller, S.; Matveev, D.; Martynova, Y.; Unterberg, B.; Rasinski, M.; Wegener, T.; Kreter, A.; Linsmeier, Ch.

    2017-01-01

    In confined plasma magnetic fusion devices significant amounts of the hydrogen isotopes used for the fusion reaction can be stored in the plasma-facing materials by implantation. The desorption of this retained hydrogen was seen to follow a t α law with α  ≈  -0.7 in tokamaks. For a pulsed fusion reactor this outgassing can define the inter-pulse waiting time. This work presents new experimental data on the dynamic outgassing in ITER grade tungsten exposed under the well-defined conditions of PSI-2 to pure and mixed D2 plasmas. A peak ion flux of 1022 D+ m-2 s is applied for up to 6 h at sample temperatures of up to 900 K. Pure D2 and mixed D2  +  He, D2  +  N2 and D2  +  He  +  N2 plasmas are applied to the sample at 68 V bias. The D2, He, N outgassing at 293 K and 580 k are observed via in-vacuo quadrupole mass spectrometry covering the range of 40 s-200 000 s after exposure. The outgassing decay follows a single power law with exponents α  =  -0.7  to  -1.1 at 293 K, but at 580 K a drop from α  =  -0.25 to  -2.35 is found. For DEMO a pump-down time to 0.5 mPa in the order of 1-5 h can be expected. The outgassing is in all cases dominated by D2.

  3. Development of laser lock-in thermography for plasma facing component surface characterisation

    Energy Technology Data Exchange (ETDEWEB)

    Courtois, X., E-mail: xavier.courtois@cea.fr [CEA, IRFM, Cadarache F-13108 Saint-Paul-Lez-Durance (France); Sortais, C.; Melyukov, D. [CEA, DEN, Saclay F-91191 Gif-sur-Yvette (France); Gardarein, J.L. [IUSTI UMR-CNRS 65-95, Universite de Provence, Marseille (France); Semerok, A. [CEA, DEN, Saclay F-91191 Gif-sur-Yvette (France); Grisolia, Ch. [CEA, IRFM, Cadarache F-13108 Saint-Paul-Lez-Durance (France)

    2011-10-15

    Infrared (IR) photothermal techniques are candidates for in situ characterisation of tokamak plasma facing components (PFC) surfaces, by means of an external thermal excitation coupled with an IR temperature measurement. Among these techniques, the laser lock-in thermography (LLIT) uses a modulated laser excitation which gives 2 major advantages: enhancement of signal to noise ratio and emissivity independence, which is a plus when the components have various and unpredictable surface quality. With this method, it is possible to develop a process, which could be used remotely, either mounted onto an in situ inspection device (articulated arm) or in a PFC test bed. This paper presents the results obtained with a continuous modulated laser heat source on particular samples (W coating on CFC substrate, C layer on graphite substrate). The identification of the experimental data with a theoretical model allows a quantitative characterisation of the layers.

  4. Definition of acceptance criteria for the ITER divertor plasma-facing components through systematic experimental analysis

    Energy Technology Data Exchange (ETDEWEB)

    Escourbiac, F; Richou, M; Guigon, R; Durocher, A; Schlosser, J; Grosman, A [CEA/IRFM, F-13108, Saint-Paul-lez-Durance (France); Constans, S [AREVA-NP, Le Creusot (France); Merola, M [ITER Organization, Cadarache (France); Riccardi, B [Fusion For Energy, Barcelona (Spain)], E-mail: frederic.escourbiac@cea.fr

    2009-12-15

    Experience has shown that a critical part of the high-heat flux (HHF) plasma-facing component (PFC) is the armour to heat sink bond. An experimental study was performed in order to define acceptance criteria with regards to thermal hydraulics and fatigue performance of the International Thermonuclear Experimental Reactor (ITER) divertor PFCs. This study, which includes the manufacturing of samples with calibrated artificial defects relevant to the divertor design, is reported in this paper. In particular, it was concluded that defects detectable with non-destructive examination (NDE) techniques appeared to be acceptable during HHF experiments relevant to heat fluxes expected in the ITER divertor. On the basis of these results, a set of acceptance criteria was proposed and applied to the European vertical target medium-size qualification prototype: 98% of the inspected carbon fibre composite (CFC) monoblocks and 100% of tungsten (W) monoblock and flat tiles elements (i.e. 80% of the full units) were declared acceptable.

  5. Characterization of laser-irradiated co-deposited layers on plasma facing components from a tokamak

    Energy Technology Data Exchange (ETDEWEB)

    Gasior, P.; Badziak, J.; Czarnecka, A.; Parys, P.; Wolowski, J.; Rosinski, M. [Andrzej Soltan Inst. for Nuclear Studies, Otwock-Swierk (Poland); Rubel, Marek [Royal Inst. of Technology, Stockholm (Sweden). Alfven Laboratory; Philipps, V. [Forschungszentrum Juelich (Germany). Inst. fuer Plasmaphysik

    2006-04-15

    An experimental setup and ion diagnostic method for laser-induced fuel removal and decomposition of co-deposited layers on plasma facing components from tokamaks are described. Nd:YAG 3.5 ns pulse laser with a repetition rate of 10 Hz and single-pulse energy of up to 0.8 J at 1.06 {mu}m has been used for irradiation of a graphite limiter tile from the TEXTOR tokamak. Comparative studies have been performed for a pure graphite plate as a reference target. Energy of emitted ions has been measured using a time-of-flight method. Early results show that laser pulses efficiently ablate the co-deposit removing both fuel species and heavy components such as Si, Ni, Cr, Fe and W present in the layers. Surface topography of the irradiated targets is also presented.

  6. Active flow control over a backward-facing step using plasma actuation

    Science.gov (United States)

    Ruisi, R.; Zare-Behtash, H.; Kontis, K.; Erfani, R.

    2016-09-01

    Due to the more stringent aviation regulations on fuel consumption and noise reduction, the interest for smaller and mechanically less complex devices for flow separation control has increased. Plasma actuators are currently among the most studied typology of devices for active flow control purposes due to their small size and lightweight. In this study, a single dielectric barrier discharge (SDBD) actuator is used on a backward-facing step to assess its effects on the separated turbulent shear layer and its reattachment location. A range of actuating modulation frequencies, related to the natural frequencies of shear layer instability (flapping) and vortex shedding instability, are examined. The particle image velocimetry technique is used to analyse the flow over the step and the reattachment location. The bulk-flow experiments show negligible effects both on the shear layer and on the reattachment location for every frequency considered, and the actuator is not able to induce a sufficient velocity increase at the step separation point.

  7. Selection of materials for tokamak plasma facing elements based on a liquid tin capillary pore system

    Science.gov (United States)

    Lyublinski, I. E.; Vertkov, A. V.; Zharkov, M. Yu; Sevryukov, O. N.; Dzhumaev, P. S.; Shumskiy, V. A.; Ivannikov, A. A.

    2016-09-01

    Capillary-Pore Systems (CPS) filled by liquid metals are considered as an alternative solution of materials choice for plasma facing component of tokamak reactor. Tin is viewed as one of the candidates for CPS because it has lower corrosiveness than gallium and lower saturated vapour pressure compared to lithium. The corrosion resistance of Mo, Nb and W in pure liquid tin was investigated. The corrosion tests were carried out in the static isothermal conditions at a temperature up to 1050°C. As a result of the corrosion study, it was found that Mo does not corrode in liquid Sn, as opposed to Nb and is compatible with liquid tin in temperatures of up to approx. 1000°C. This allows considering Mo as an alloy base material of the in-vessel tokamak elements based on liquid tin capillary pore systems.

  8. Evaporation of Droplets in Plasma Spray-Physical Vapor Deposition Based on Energy Compensation Between Self-Cooling and Plasma Heat Transfer

    Science.gov (United States)

    Liu, Mei-Jun; Zhang, Meng; Zhang, Qiang; Yang, Guan-Jun; Li, Cheng-Xin; Li, Chang-Jiu

    2017-08-01

    In the plasma spray-physical vapor deposition process (PS-PVD), there is no obvious heating to the feedstock powders due to the free molecular flow condition of the open plasma jet. However, this is in contrast to recent experiments in which the molten droplets are transformed into vapor atoms in the open plasma jet. In this work, to better understand the heating process of feedstock powders in the open plasma jet of PS-PVD, an evaporation model of molten ZrO2 is established by examining the heat and mass transfer process of molten ZrO2. The results reveal that the heat flux in PS-PVD open plasma jet (about 106 W/m2) is smaller than that in the plasma torch nozzle (about 108 W/m2). However, the flying distance of molten ZrO2 in the open plasma jet is much longer than that in the plasma torch nozzle, so the heating in the open plasma jet cannot be ignored. The results of the evaporation model show that the molten ZrO2 can be partly evaporated by self-cooling, whereas the molten ZrO2 with a diameter heat transfer.

  9. Proceedings of 2nd Internaitonal workshop on tritium effects in plasma facing components

    Energy Technology Data Exchange (ETDEWEB)

    Morita, Kenji [Nagoya Univ. (Japan). School of Engineering; Noda, Nobuaki [eds.

    1994-08-01

    This workshop was held at Nagoya University on May 19 and 20, 1994. Approximately 1/3 of the lectures discussed the migration and retention of tritium in graphite and the other forms of carbon. As to this topic, most of the different aspects of the tritium reactions with carbon were generally agreed on. At the temperature lower than 800 K, tritium plasma interacts with graphite by forming a saturated layer on the surface, by forming a codeposited layer of sputtered carbon and tritium, and by allowing tritium diffusion through Pores. At the temperature higher than 800 K, the principal reaction of tritium with carbon is intergranular diffusion with high energy trapping. Because beryllium is the reference plasma-facing material for the ITER, several presentations on the reactions of tritium with beryllium were made. Also the tritium permeation through other metals was the topics. The results of TFTR D-T experiment were reported in the first talk. In this book, the gists of these lectures are collected. (K.I.).

  10. Electromagnetic and structural analyses of the vacuum vessel and plasma facing components for EAST

    Energy Technology Data Exchange (ETDEWEB)

    Xu, Weiwei, E-mail: wwxu@ipp.ac.cn; Liu, Xufeng; Song, Yuntao; Li, Jun; Lu, Mingxuan

    2013-10-15

    Highlights: • The electromagnetic and structural responses of VV and PFCs for EAST are analyzed. • A detailed finite element model of the VV including PFCs is established. • The two most dangerous scenarios, major disruptions and downward VDEs are considered. • The distribution patterns of eddy currents, EMFs and torques on PFCs are analyzed. -- Abstract: During plasma disruptions, time-varying eddy currents are induced in the vacuum vessel (VV) and Plasma Facing Components (PFCs) of EAST. Additionally, halo currents flow partly through these structures during the vertical displacement events (VDEs). Under the high magnetic field circumstances, the resulting electromagnetic forces (EMFs) and torques are large. In this paper, eddy currents and EMFs on EAST VV, PFCs and their supports are calculated by analytical and numerical methods. ANSYS software is employed to evaluate eddy currents on VV, PFCs and their structural responses. To learn the electromagnetic and structural response of the whole structure more accurately, a detailed finite element model is established. The two most dangerous scenarios, major disruptions and downward VDEs, are examined. It is found that distribution patterns of eddy currents for various PFCs differ greatly, therefore resulting in different EMFs and torques. It can be seen that for certain PFCs the transient reaction force are severe. Results obtained here may set up a preliminary foundation for the future dynamic response research of EAST VV and PFCs which will provide a theoretical basis for the future engineering design of tokamak devices.

  11. LIBS for tokamak plasma facing components characterisation: Perspectives on in situ tritium cartography

    Energy Technology Data Exchange (ETDEWEB)

    Semerok, A., E-mail: alexandre.semerok@cea.fr [CEA, DEN, DPC/SEARS/LISL, F-91191 Gif-sur-Yvette (France); Grisolia, C. [CEA, IRFM, F-13108 Saint-Paul-lez-Durance (France)

    2013-08-21

    Feasibility of in situ LIBS remote measurements with the plasma facing components (PFCs) from the European tokamaks (TORE SUPRA, CEA Cadarache, France and TEXTOR, Julich, Germany) has been studied in laboratory using Q-switched nanosecond Nd–YAG lasers. LIBS particular properties and optimal parameters were determined for in-depth PFCs characterisation. The LIBS method was in situ tested on the Joint European Torus (JET) in the UK with the EDGE LIDAR Laser System (Ruby laser, 3 J, 690 nm wavelength, 300 ps pulse duration, intensity up to 70 GW/cm{sup 2}). Several analytical spectral lines of H, CII, CrI, and BeII in plasma were observed and identified in 400–600 nm spectral range with the optimised LIBS and detection system. The LIBS in-depth cartography is in agreement with the surface properties of the tile under analysis, thus confirming feasibility of in situ LIBS. Further LIBS technique improvements required to provide tritium concentration measurements more accurately are discussed.

  12. Experimental studies of lithium-based surface chemistry for fusion plasma-facing materials applications

    Energy Technology Data Exchange (ETDEWEB)

    Allain, J.P., E-mail: allain@purdue.ed [Purdue University, West Lafayette, 400 Central Drive, IN 47907 (United States); Rokusek, D.L.; Harilal, S.S. [Purdue University, West Lafayette, 400 Central Drive, IN 47907 (United States); Nieto-Perez, M. [CICATA-IPN, Cerro Blanco 141 Cimatario, Queretaro, QRO 76090 (Mexico); Skinner, C.H.; Kugel, H.W. [Princeton Plasma Physics Laboratory, Princeton, NJ 08543 (United States); Heim, B. [Purdue University, West Lafayette, 400 Central Drive, IN 47907 (United States); Kaita, R.; Majeski, R. [Princeton Plasma Physics Laboratory, Princeton, NJ 08543 (United States)

    2009-06-15

    Lithium has enhanced the operational performance of fusion devices such as: TFTR, CDX-U, FTU, T-11 M, and NSTX. Lithium in the solid and liquid state has been studied extensively in laboratory experiments including its erosion and hydrogen-retaining properties. Reductions in physical sputtering up to 40-60% have been measured for deuterated solid and liquid lithium surfaces. Computational modeling indicates that up to a 1:1 deuterium volumetric retention in lithium is possible. This paper presents the results of systematic in situ laboratory experimental studies on the surface chemistry evolution of ATJ graphite under lithium deposition. Results are compared to post-mortem analysis of similar lithium surface coatings on graphite exposed to deuterium discharge plasmas in NSTX. Lithium coatings on plasma-facing components in NSTX have shown substantial reduction of hydrogenic recycling. Questions remain on the role lithium surface chemistry on a graphite substrate has on particle sputtering (physical and chemical) as well as hydrogen isotope recycling. This is particularly due to the lack of in situ measurements of plasma-surface interactions in tokamaks such as NSTX. Results suggest that the lithium bonding state on ATJ graphite is lithium peroxide and with sufficient exposure to ambient air conditions, lithium carbonate is generated. Correlation between both results is used to assess the role of lithium chemistry on the state of lithium bonding and implications on hydrogen pumping and lithium sputtering. In addition, reduction of factors between 10 and 30 reduction in physical sputtering from lithiated graphite compared to pure lithium or carbon is also measured.

  13. The materials irradiation experiment for testing plasma facing materials at fusion relevant conditions

    Science.gov (United States)

    Garrison, L. M.; Zenobia, S. J.; Egle, B. J.; Kulcinski, G. L.; Santarius, J. F.

    2016-08-01

    The Materials Irradiation Experiment (MITE-E) was constructed at the University of Wisconsin-Madison Inertial Electrostatic Confinement Laboratory to test materials for potential use as plasma-facing materials (PFMs) in fusion reactors. PFMs in fusion reactors will be bombarded with x-rays, neutrons, and ions of hydrogen and helium. More needs to be understood about the interactions between the plasma and the materials to validate their use for fusion reactors. The MITE-E simulates some of the fusion reactor conditions by holding samples at temperatures up to 1000 °C while irradiating them with helium or deuterium ions with energies from 10 to 150 keV. The ion gun can irradiate the samples with ion currents of 20 μA-500 μA; the typical current used is 72 μA, which is an average flux of 9 × 1014 ions/(cm2 s). The ion gun uses electrostatic lenses to extract and shape the ion beam. A variable power (1-20 W), steady-state, Nd:YAG laser provides additional heating to maintain a constant sample temperature during irradiations. The ion beam current reaching the sample is directly measured and monitored in real-time during irradiations. The ion beam profile has been investigated using a copper sample sputtering experiment. The MITE-E has successfully been used to irradiate polycrystalline and single crystal tungsten samples with helium ions and will continue to be a source of important data for plasma interactions with materials.

  14. Overview of Cooling Water System for the KSTAR 1{sup st} Plasma Experiment

    Energy Technology Data Exchange (ETDEWEB)

    Kim, Y. J.; Kim, S. T.; Im, D. S.; Joung, N. Y.; Kim, Y. S. [National Fusion Research Institute, Daejeon (Korea, Republic of)

    2009-05-15

    The KSTAR cooling water system (CWS) consists of a primary cooling water system (PCWS), a secondary cooling water system (SCWS), and a de-mineralizing and de-ionized water system (DIWS). The PCWS cooling loops have been made for the poloidal field (PF) and toroidal field (TF) magnet power supplies (MPS), vacuum vessel (VV), electron cyclotron heating (ECH), ion cyclotron heating (ICRH), vacuum pumps, diagnostics, helium facility, etc. The CWS had been done individual commissioning of each system to confirm the design specifications by the end of 2006 and had gradually begun operation for the KSTAR ancillary devices by March 2008.

  15. Modelling of Kelvin-Helmholtz instability and splashing of melt layers from plasma-facing components in tokamaks under plasma impact

    Science.gov (United States)

    Miloshevsky, G. V.; Hassanein, A.

    2010-11-01

    Plasma-facing components (PFCs) in tokamaks are exposed to high-heat loads during abnormal events such as plasma disruptions and edge-localized modes. The most significant erosion and plasma contamination problem is macroscopic melt splashes and losses from metallic divertor plates and wall materials into core plasma. The classical linear stability analysis is used to assess the initial conditions for development and growth of surface waves at the plasma-liquid metal interface. The maximum velocity difference and critical wavelengths are predicted. The effects of plasma density, surface tension and magnetic field on the stability of plasma-liquid tungsten flows are analytically investigated. The numerical modelling predicts that macroscopic motion and melt-layer losses involve the onset of disturbances on the surface of the tungsten melt layer with relatively long wavelengths compared with the melt thickness, the formation of liquid tungsten ligaments at wave crests and their elongation by the plasma stream with splitting of the bulk of the melt, and the development of extremely long, thin threads that eventually break into liquid droplets. Ejection of these droplets in the form of fine spray can lead to significant plasma contamination and enhanced erosion of PFCs. The numerical results advance the current understanding of the physics involved in the mechanism of melt-layer breakdown and droplet generation processes. These findings may also have implications for free surface liquid metal flows considered as the first wall in the design of several types of future fusion reactors.

  16. Manufacturing and characterization of PIM-W materials as plasma facing materials

    Science.gov (United States)

    Pintsuk, G.; Antusch, S.; Rieth, M.; Wirtz, M.

    2016-02-01

    Powder injection molding (PIM) was used to produce pure and particle reinforced W materials to be qualified for the use as plasma facing material. As alloying elements La2O3, Y2O3, TiC, and TaC were chosen with a particle size between 50 nm and 2.5 μm, depending on the alloying element. The fabrication of alloyed materials was done for different compositions using powder mixtures. Final sintering was performed in H2 atmosphere at 2400 °C resulting in plates of 55 × 22 × 4 mm3 with ˜98% theoretical density. The qualification of the materials was done via high heat flux testing in the electron beam facility JUDITH-1. Thereby, ELM-like 1000 thermal shock loads of 0.38 GW m-2 for 1 ms and 100 disruption like loads of 1.13 GW m-2 for 1 ms at a base temperature of 1000 °C were applied. The obtained damage characteristics, i.e. surface roughening and crack formation, were qualified versus an industrially manufactured pure reference tungsten material and linked to the material’s microstructure and mechanical properties.

  17. RACLETTE: a model for evaluating the thermal response of plasma facing components to slow high power plasma transients. Part I: Theory and description of model capabilities

    Science.gov (United States)

    Raffray, A. René; Federici, Gianfranco

    1997-04-01

    RACLETTE (Rate Analysis Code for pLasma Energy Transfer Transient Evaluation), a comprehensive but relatively simple and versatile model, was developed to help in the design analysis of plasma facing components (PFCs) under 'slow' high power transients, such as those associated with plasma vertical displacement events. The model includes all the key surface heat transfer processes such as evaporation, melting, and radiation, and their interaction with the PFC block thermal response and the coolant behaviour. This paper represents part I of two sister and complementary papers. It covers the model description, calibration and validation, and presents a number of parametric analyses shedding light on and identifying trends in the PFC armour block response to high plasma energy deposition transients. Parameters investigated include the plasma energy density and deposition time, the armour thickness and the presence of vapour shielding effects. Part II of the paper focuses on specific design analyses of ITER plasma facing components (divertor, limiter, primary first wall and baffle), including improvements in the thermal-hydraulic modeling required for better understanding the consequences of high energy deposition transients in particular for the ITER limiter case.

  18. Results of high heat flux testing of W/CuCrZr multilayer composites with percolating microstructure for plasma-facing components

    Energy Technology Data Exchange (ETDEWEB)

    Greuner, Henri, E-mail: henri.greuner@ipp.mpg.de; Zivelonghi, Alessandro; Böswirth, Bernd; You, Jeong-Ha

    2015-10-15

    Highlights: • Improvement of the performance of plasma-facing components made of W and CuCrZr. • Functionally graded composite at the interface of W and CuCrZr to mitigate the CTE. • A three-layer composite system (W volume fraction: 70/50/30%) was developed. • Design of water-cooled divertor components up to 20 MW/m{sup 2} heat load for e.g. DEMO. • HHF tests up to 20 MW/m{sup 2} were successfully performed. - Abstract: Reliable joining of tungsten to copper is a major issue in the design of water-cooled divertor components for future fusion reactors. One of the suggested advanced engineering solutions is to use functionally graded composite interlayers. Recently, the authors have developed a novel processing route for fabricating multi-layer graded W/CuCrZr composites. Previous characterization confirmed that the composite materials possess enhanced strength compared to the matrix alloy and shows reasonable ductility up to 300 °C indicating large potential to extend the operation temperature limit. Furthermore, a three-layer composite system (W volume fraction: 70/50/30%) was developed as a graded interlayer between the W armour and CuCrZr heat sink. In this study, we investigated the structural performance of the graded joint. Three water-cooled mock-ups of a flat tile type component were fabricated using electron beam welding and thermally loaded at the hydrogen neutral beam test facility GLADIS. Cycling tests at 10 MW/m{sup 2} and screening tests up to 20 MW/m{sup 2} were successfully performed and confirmed the expected thermal performance of the compound. The measured temperature values were in good agreement with the prediction of finite element analysis. Microscopic investigation confirmed the structural integrity of the newly developed functionally graded composite after these tests.

  19. Feasibility of arc-discharge and plasma-sputtering methods in cleaning plasma-facing and diagnostics components of fusion reactors

    Energy Technology Data Exchange (ETDEWEB)

    Hakola, Antti, E-mail: antti.hakola@vtt.fi [VTT Technical Research Centre of Finland, VTT (Finland); Likonen, Jari [VTT Technical Research Centre of Finland, VTT (Finland); Karhunen, Juuso; Korhonen, Juuso T. [Department of Applied Physics, Aalto University (Finland); Aints, Märt; Laan, Matti; Paris, Peeter [Department of Physics, University of Tartu (Estonia); Kolehmainen, Jukka; Koskinen, Mika; Tervakangas, Sanna [DIARC-Technology Oy, Espoo (Finland)

    2015-10-15

    Highlights: • Feasibility of the arc-discharge and plasma-sputtering techniques in removing deposited layers from ITER-relevant samples demonstrated. • Samples with the size of an A4 paper can be cleaned from 1-μm thick deposited layers in 10–20 minutes by the arc-discharge method. • The plasma-sputtering method is 5–10 times slower but the resulting surfaces are very smooth. • Arc-discharge method could be used for rapid cleaning of plasma-facing components during maintenance shutdowns of ITER, plasma sputtering is preferred for diagnostics mirrors. - Abstract: We have studied the feasibility of arc-discharge and plasma-sputtering methods in removing deposited layers from ITER-relevant test samples. Prototype devices have been designed and constructed for the experiments and the cleaning process is monitored by a spectral detection system. The present version of the arc-discharge device is capable of removing 1-μm thick layers from 350-mm{sup 2} areas in 4–8 s, but due to the increased roughness of the cleaned surfaces and signs of local melting, mirror-like surfaces cannot be treated by this technique. The plasma-sputtering approach, for its part, is some 5–10 times slower in removing the deposited layers but no changes in surface roughness or morphology of the samples could be observed after the cleaning phase. The arc-discharge technique could therefore be used for rapid cleaning of plasma-facing components during maintenance shutdowns of ITER while in the case of diagnostics mirrors plasma sputtering is preferred.

  20. Advanced tungsten materials for plasma-facing components of DEMO and fusion power plants

    Energy Technology Data Exchange (ETDEWEB)

    Neu, R., E-mail: Rudolf.Neu@ipp.mpg.de [Max-Planck-Institut für Plasmaphysik, D-85748 Garching (Germany); Fakultät für Maschinenbau, Technische Universität München, D-85748 Garching (Germany); Riesch, J. [Max-Planck-Institut für Plasmaphysik, D-85748 Garching (Germany); Coenen, J.W. [Forschungszentrum Jülich GmbH, Institut für Energie- und Klimaforschung – Plasmaphysik, D-52425 Jülich (Germany); Brinkmann, J. [Max-Planck-Institut für Plasmaphysik, D-85748 Garching (Germany); Forschungszentrum Jülich GmbH, Institut für Energie- und Klimaforschung – Plasmaphysik, D-52425 Jülich (Germany); Calvo, A. [CEIT and Tecnun (University of Navarra), E-20018 San Sebastian (Spain); Elgeti, S. [Max-Planck-Institut für Plasmaphysik, D-85748 Garching (Germany); García-Rosales, C. [CEIT and Tecnun (University of Navarra), E-20018 San Sebastian (Spain); Greuner, H.; Hoeschen, T.; Holzner, G. [Max-Planck-Institut für Plasmaphysik, D-85748 Garching (Germany); Klein, F. [Forschungszentrum Jülich GmbH, Institut für Energie- und Klimaforschung – Plasmaphysik, D-52425 Jülich (Germany); Koch, F. [Max-Planck-Institut für Plasmaphysik, D-85748 Garching (Germany); and others

    2016-11-01

    Highlights: • Development of W-fibre enhanced W-composites incorporating extrinsic toughening mechanisms. • Production of a large sample (more than 2000 long fibres) for mechanical and thermal testing. • Even in a fully embrittled state, toughening mechanisms are still effective. • Emissions of volatile W-oxides can be suppressed by alloying W with elements forming stable oxides. • WCr10Ti2 has been successfully tested under accidental conditions and high heat fluxes. - Abstract: Tungsten is the major candidate material for the armour of plasma facing components in future fusion devices. To overcome the intrinsic brittleness of tungsten, which strongly limits its operational window, a W-fibre enhanced W-composite material (W{sub f}/W) has been developed incorporating extrinsic toughening mechanisms. Small W{sub f}/W samples show a large increase in toughness. Recently, a large sample (50 mm × 50 mm × 3 mm) with more than 2000 long fibres has been successfully produced allowing further mechanical and thermal testing. It could be shown that even in a fully embrittled state, toughening mechanisms as crack bridging by intact fibres, as well as the energy dissipation by fibre-matrix interface debonding and crack deflection are still effective. A potential problem with the use of pure W in a fusion reactor is the formation of radioactive and highly volatile WO{sub 3} compounds and their potential release under accidental conditions. It has been shown that the oxidation of W can be strongly suppressed by alloying with elements forming stable oxides. WCr10Ti2 alloy has been produced on a technical scale and has been successfully tested in the high heat flux test facility GLADIS. Recently, W-Cr-Y alloys have been produced on a lab-scale. They seem to have even improved properties compared to the previously investigated W alloys.

  1. Design and operation results of nitrogen gas baking system for KSTAR plasma facing components

    Energy Technology Data Exchange (ETDEWEB)

    Kim, Sang-Tae [National Fusion Research Institute, 113 Gwahang-ro, Yuseong-gu, Daejeon 305-806 (Korea, Republic of); Kim, Young-Jin, E-mail: k43689@nfri.re.kr [National Fusion Research Institute, 113 Gwahang-ro, Yuseong-gu, Daejeon 305-806 (Korea, Republic of); Joung, Nam-Yong; Im, Dong-Seok; Kim, Kang-Pyo; Kim, Kyung-Min; Bang, Eun-Nam; Kim, Yaung-Soo [National Fusion Research Institute, 113 Gwahang-ro, Yuseong-gu, Daejeon 305-806 (Korea, Republic of); Yoo, Seong-Yeon [Chungnam National University, 99 Daehak-ro, Yuseong-gu, Daejeon 305-764 (Korea, Republic of)

    2013-11-15

    Highlights: • Vacuum pressure in a vacuum vessel arrived at 7.24 × 10{sup −8} mbar. • PFC temperature was reached maximum 250 °C by gas temperature at 300 °C. • PFC inlet gas temperature was changed 5 °C per hour during rising and falling. • PFC gas balancing was made temperature difference among them below 8.3 °C. • System has a pre-cooler and a three-way valve to save operation energy. -- Abstract: A baking system for the Korea Superconducting Tokamak Advanced Research (KSTAR) plasma facing components (PFCs) is designed and operated to achieve vacuum pressure below 5 × 10{sup −7} mbar in vacuum vessel with removing impurities. The purpose of this research is to prevent the fracture of PFC because of thermal stress during baking the PFC, and to accomplish stable operation of the baking system with the minimum life cycle cost. The uniformity of PFC temperature in each sector was investigated, when the supply gas temperature was varied by 5 °C per hour using a heater and the three-way valve at the outlet of a compressor. The alternative of the pipe expansion owing to hot gas and the cage configuration of the three-way valve were also studied. During the fourth campaign of the KSTAR in 2011, nitrogen gas temperature rose up to 300 °C, PFC temperature reached at 250 °C, the temperature difference among PFCs was maintained at below 8.3 °C, and vacuum pressure of up to 7.24 × 10{sup −8} mbar was achieved inside the vacuum vessel.

  2. Ion acoustic solitons and supersolitons in a magnetized plasma with nonthermal hot electrons and Boltzmann cool electrons

    Energy Technology Data Exchange (ETDEWEB)

    Rufai, O. R., E-mail: rajirufai@gmail.com; Bharuthram, R., E-mail: rbharuthram@uwc.ac.za [University of the Western Cape, Belville (South Africa); Singh, S. V., E-mail: satyavir@iigs.iigm.res.in; Lakhina, G. S., E-mail: lakhina@iigs.iigm.res.in [Indian Institute of Geomagnetism, New Panvel (W), Navi Mumbai (India)

    2014-08-15

    Arbitrary amplitude, ion acoustic solitons, and supersolitons are studied in a magnetized plasma with two distinct groups of electrons at different temperatures. The plasma consists of a cold ion fluid, cool Boltzmann electrons, and nonthermal energetic hot electrons. Using the Sagdeev pseudo-potential technique, the effect of nonthermal hot electrons on soliton structures with other plasma parameters is studied. Our numerical computation shows that negative potential ion-acoustic solitons and double layers can exist both in the subsonic and supersonic Mach number regimes, unlike the case of an unmagnetized plasma where they can only exist in the supersonic Mach number regime. For the first time, it is reported here that in addition to solitions and double layers, the ion-acoustic supersoliton solutions are also obtained for certain range of parameters in a magnetized three-component plasma model. The results show good agreement with Viking satellite observations of the solitary structures with density depletions in the auroral region of the Earth's magnetosphere.

  3. Development and Study of Hard-Facing Materials on the Base of Heat-Resisting High-Hardness Steels for Plasma-Jet Hard- Facing in Shielding-Doping Nitrogen Atmosphere

    Science.gov (United States)

    Malushin, N. N.; Kovalev, A. P.; Valuev, D. V.; Shats, E. A.; Borovikov, I. F.

    2016-08-01

    The authors develop hard-facing materials on the base of heat-resisting highhardness steels for plasma-jet hard-facing in nitrogen atmosphere for manufacturing parts of mining and metallurgic equipment which significantly simplify the production process and effect a saving when producing bimetallic parts and tools.

  4. Plasma-wall interactions data compendium-1. ''Hydrogen retention property, diffusion and recombination coefficients database for selected plasma-facing materials''

    Energy Technology Data Exchange (ETDEWEB)

    Iwakiri, Hirotomo [Kyushu Univ., Fukuoka (Japan). Research Inst. for Applied Mechanics; Matsuhiro, Kenjirou [Osaka Univ., Osaka (Japan); Hirooka, Yoshi [National Inst. for Fusion Science, Toki, Gifu (Japan); Yamamura, Yasunori [Okayama Univ. of Scinece, Okayama (Japan)

    2002-05-01

    A summary on the recent activities of the plasma-wall interactions database task group at the National Institute for Fusion Science is presented in this report. These activities are focused on the compilation of literature data on the key parameters related to wall recycling characteristics that affect dynamic particle balance during plasma discharges and also on-site tritium inventory. More specifically, in this task group a universal fitting formula has been proposed and successfully applied to help compile hydrogen implantation-induced retention data. Also, presented here are the data on hydrogen diffusion and surface recombination coefficients, both critical in modeling dynamic wall recycling behavior. Data compilation has been conducted on beryllium, carbon, tungsten and molybdenum, all currently used for plasma-facing components in magnetic fusion experiments. (author)

  5. Main Directions and Recent Test Modeling Results of Lithium Capillary-Pore Systems as Plasma Facing Components

    Institute of Scientific and Technical Information of China (English)

    V.A. Evtikhin; V. M. Korzhavin; I.E. Lyublinski; A.V. Vertkov; E.A. Azizov; S.V. Mirnov; V. B. Lazarev; S. M. Sotnikov; V. M. Safronov; A. S. Prokhorov

    2004-01-01

    At present the most promising principal solution of the divertor problem appears to be the use of liquid metals and primarily of lithium Capillary-Pore Systems (CPS) as of plasma facing materials. A solid CPS filled with liquid lithium will have a high resistance to surface and volume damage because of neutron radiation effects, melting, splashing and thermal stressinduced cracking in steady state and during plasma transitions to provide the normal operation of divertor target plates and first-wall protecting elements. These materials will not be the sources of impurities inducing an increase of Zeff and they will not be collected as dust in the divertor area and in ducts.Experiments with lithium CPS under simulating conditions of plasma disruption on a hydrogenplasma accelerator MK-200 [~ (10 - 15) MJ/m2, ~ 50 μs] have been performed. The formation of a shielding layer of lithium plasma and the high stability of these systems have been shown.The new lithium limiter tests on an up-graded T-11M tokamak (plasma current up to 100 kA,pulse length ~0.3 s) have been performed. Sorption and desorption of plasma-forming gas, lithium emission into discharge, lithium erosion, deposited power of the limiter are investigated in these experiments. The first results of experiments are presented.

  6. Processing and characterization of B4C/Cu graded composite as plasma facing component for fusion reactors

    Institute of Scientific and Technical Information of China (English)

    2003-01-01

    A new approach for fabricating B4C/Cu graded composite by rapid self-resistance sintering under ultra-high pressure was presented, by which a near dense B4C/Cu graded composite with a compositional spectrum of 0-100% was successfully fabricated. Plasma relevant performances ofsintered B4C/Cu composite were preliminarily characterized, it is found that its chemical sputtering yield is 70% lower than that of SMF800 nuclear graphite under 2.7 keV D+ irradiation, and almost no damages after 66 shots of in situ plasma discharge in HL-1 Tokamak facility, which indicates B4C/Cu plasma facing component has a good physical and chemical sputtering resistance performance compared with nuclear graphite.

  7. Simulation experiment of interaction of plasma facing materials and transient heat loads in ITER divertor by use of magnetized coaxial plasma gun

    Science.gov (United States)

    Nakatsuka, M.; Ando, K.; Higashi, T.; Kikuchi, Y.; Fukumoto, N.; Nagata, M.

    2009-11-01

    Interaction of plasma facing materials and transient head loads such as type I ELMs is one of the critical issues in ITER divertor. The heat load to the ITER divertor during type I ELMs is estimated to be 0.5-3 MJ/m^2 with a pulse length of 0.1-0.5 ms. We have developed a magnetized coaxial plasma gun (MCPG) for the simulation experiment of transient heat load during type I ELMs in ITER divertor. The MCPG has inner and outer electrodes made of stainless steel 304. In addition, the inner electrode is covered with molybdenum so as to suppress the release of impurities from the electrode during the discharge. The diameters of inner and outer electrodes are 0.06 m and 0.14 m, respectively. The power supply for the MCPG is a capacitor bank (7 kV, 1 mF, 25 kJ). The plasma velocity estimated by the time of flight measurement of the magnetic fields was about 50 km/s, corresponding to the ion energy of 15 eV (H) or 30 eV (D). The absorbed energy density of the plasma stream was measured a calorimeter made of graphite. It was found that the absorbed energy density was 0.9 MJ/m^2 with a pulse width of 0.5 ms at the distance of 100 mm from the inner electrode. In the conference, experimental results of plasma exposure on the plasma facing materials in ITER divertor will be shown.

  8. Heat loads on JET plasma facing components from ICRF and LH wave absorption in the SOL

    Science.gov (United States)

    Jacquet, P.; Colas, L.; Mayoral, M.-L.; Arnoux, G.; Bobkov, V.; Brix, M.; Coad, P.; Czarnecka, A.; Dodt, D.; Durodie, F.; Ekedahl, A.; Frigione, D.; Fursdon, M.; Gauthier, E.; Goniche, M.; Graham, M.; Joffrin, E.; Korotkov, A.; Lerche, E.; Mailloux, J.; Monakhov, I.; Noble, C.; Ongena, J.; Petrzilka, V.; Portafaix, C.; Rimini, F.; Sirinelli, A.; Riccardo, V.; Vizvary, Z.; Widdowson, A.; Zastrow, K.-D.; EFDA Contributors, JET

    2011-10-01

    In JET, lower hybrid (LH) and ion cyclotron resonance frequency (ICRF) wave absorption in the scrape-off layer can lead to enhanced heat fluxes on some plasma facing components (PFCs). Experiments have been carried out to characterize these heat loads in order to: (i) prepare JET operation with the Be wall which has a reduced power handling capability as compared with the carbon wall and (ii) better understand the physics driving these wave absorption phenomena and propose solutions for next generation systems to reduce them. When using ICRF, hot spots are observed on the antenna structures and on limiters close to the powered antennas and are explained by acceleration of ions in RF-rectified sheath potentials. High temperatures up to 800 °C can be reached on locations where a deposit has built up on tile surfaces. Modelling which takes into account the fast thermal response of surface layers can reproduce well the surface temperature measurements via infrared (IR) imaging, and allow evaluation of the heat fluxes local to active ICRF antennas. The flux scales linearly with the density at the antenna radius and with the antenna voltage. Strap phasing corresponding to wave spectra with lower kpar values can lead to a significant increase in hot spot intensity in agreement with antenna modelling that predicts, in that case, an increase in RF sheath rectification. LH absorption in front of the antenna through electron Landau damping of the wave with high Npar components generates hot spots precisely located on PFCs magnetically connected to the launcher. Analysis of the LH hot spot surface temperature from IR measurements allows a quantification of the power flux along the field lines: in the worst case scenario it is in the range 15-30 MW m-2. The main driving parameter is the LH power density along the horizontal rows of the launcher, the heat fluxes scaling roughly with the square of the LH power density. The local electron density in front of the grill increases

  9. Evaluation of W-Si-C thick coating as a plasma facing material

    Energy Technology Data Exchange (ETDEWEB)

    Seok, Hyun Kwang [Korea Institute of Science and Technology, Seoul 136-791 (Korea, Republic of)], E-mail: drstone@kist.re.kr; Jung, Kyung Ho; Kim, Yu Chan; Shim, Jae-Hyeok; Kim, Dong-Ik; Han, Seung-Hee [Korea Institute of Science and Technology, Seoul 136-791 (Korea, Republic of); Baik, Kyeong Ho [ChungNam National University, Deajeon 305-764 (Korea, Republic of); Cha, Pil-Ryung [School of Advanced Materials Engineering, Kooknin University, Seoul 136-702 (Korea, Republic of)

    2009-04-30

    We present tungsten alloy coating of 150-200 {mu}m thickness with improved plasma erosion resistance fabricated by plasma spraying of granular W-SiC composite powders. During increasing the SiC concentration to 8 wt%, we observed the increase in the hardness of the coating from 250 to 440 Hv. The plasma erosion depth of the coating decreased by 10 times compared with pure tungsten in the same erosion environment.

  10. Thermal conductivity reduction of tungsten plasma facing material due to helium plasma irradiation in PISCES using the improved 3-omega method

    Science.gov (United States)

    Cui, Shuang; Simmonds, Michael; Qin, Wenjing; Ren, Feng; Tynan, George R.; Doerner, Russell P.; Chen, Renkun

    2017-04-01

    The near-surface region of plasma facing material (PFM) plays an important role in thermal management of fusion reactors. In this work, we measured thermal conductivity of tungsten (W) surface layers damaged by He plasma in PISCES at UCSD. We studied the damage effect on both bulk, and thin film, W. We observed that the surface morphology of both bulk and thin film was altered after exposure to He plasma with the fluence of 1 × 1026 m-2 (bulk) and 2 × 1024 m-2 (thin film). Transmission electron microscopy (TEM) analysis reveals that the depth of the irradiation damaged layer was approximately 20 nm on the bulk W exposed to He plasma at 773 K for 2000 s. In order to measure the thermal conductivity of this exceedingly thin damaged layer in the bulk W, we adopted the well-established '3-omega' method and employed novel nanofabrication techniques to improve the measurement sensitivity. For the damaged W thin film sample, we measured the reduction in electrical conductivity and used the Wiedemann-Franz (W-F) law to extract the thermal conductivity. Results from both measurements show that thermal conductivity in the damaged layers was reduced by at least ∼80% compared to that of undamaged W. This large reduction in thermal conductivity can be attributed to the scattering of electrons, the dominant heat carriers in W, caused by defects introduced by He plasma irradiation.

  11. Progress in the engineering design and assessment of the European DEMO first wall and divertor plasma facing components

    Energy Technology Data Exchange (ETDEWEB)

    Barrett, Thomas R., E-mail: tom.barrett@ukaea.uk [CCFE, Culham Science Centre, Abingdon OX14 3DB (United Kingdom); Ellwood, G.; Pérez, G.; Kovari, M.; Fursdon, M.; Domptail, F.; Kirk, S.; McIntosh, S.C.; Roberts, S.; Zheng, S. [CCFE, Culham Science Centre, Abingdon OX14 3DB (United Kingdom); Boccaccini, L.V. [KIT, INR, Hermann-von-Helmholtz-Platz 1, 76344 Eggenstein-Leopoldshafen (Germany); You, J.-H. [Max Planck Institute for Plasma Physics, Boltzmannstr. 2, 85748 Garching (Germany); Bachmann, C. [EUROfusion, PPPT, Boltzmann Str. 2, 85748 Garching (Germany); Reiser, J.; Rieth, M. [KIT, IAM, Hermann-von-Helmholtz-Platz 1, 76344 Eggenstein-Leopoldshafen (Germany); Visca, E.; Mazzone, G. [ENEA, Unità Tecnica Fusione, ENEA C. R. Frascati, via E. Fermi 45, 00044 Frascati (Italy); Arbeiter, F. [KIT, INR, Hermann-von-Helmholtz-Platz 1, 76344 Eggenstein-Leopoldshafen (Germany); Domalapally, P.K. [Research Center Rez, Hlavní 130, 250 68 Husinec – Řež (Czech Republic)

    2016-11-01

    Highlights: • The engineering of the plasma facing components for DEMO is an extreme challenge. • PFC overall requirements, methods for assessment and designs status are described. • Viable divertor concepts for 10 MW/m{sup 2} surface heat flux appear to be within reach. • The first wall PFC concept will need to vary poloidally around the wall. • First wall coolant, structural material and PFC topology are open design choices. - Abstract: The European DEMO power reactor is currently under conceptual design within the EUROfusion Consortium. One of the most critical activities is the engineering of the plasma-facing components (PFCs) covering the plasma chamber wall, which must operate reliably in an extreme environment of neutron irradiation and surface heat and particle flux, while also allowing sufficient neutron transmission to the tritium breeding blankets. A systems approach using advanced numerical analysis is vital to realising viable solutions for these first wall and divertor PFCs. Here, we present the system requirements and describe bespoke thermo-mechanical and thermo-hydraulic assessment procedures which have been used as tools for design. The current first wall and divertor designs are overviewed along with supporting analyses. The PFC solutions employed will necessarily vary around the wall, depending on local conditions, and must be designed in an integrated manner by analysis and physical testing.

  12. Unraveling wall conditioning effects on plasma facing components in NSTX-U with the Materials Analysis Particle Probe (MAPP)

    Science.gov (United States)

    Bedoya, F.; Allain, J. P.; Kaita, R.; Skinner, C. H.; Buzi, L.; Koel, B. E.

    2016-11-01

    A novel Plasma Facing Components (PFCs) diagnostic, the Materials Analysis Particle Probe (MAPP), has been recently commissioned in the National Spherical Torus Experiment Upgrade (NSTX-U). MAPP is currently monitoring the chemical evolution of the PFCs in the NSTX-U lower divertor at 107 cm from the tokamak axis on a day-to-day basis. In this work, we summarize the methodology that was adopted to obtain qualitative and quantitative descriptions of the samples chemistry. Using this methodology, we were able to describe all the features in all our spectra to within a standard deviation of ±0.22 eV in position and ±248 s-1 eV in area. Additionally, we provide an example of this methodology with data of boronized ATJ graphite exposed to NSTX-U plasmas.

  13. Report of a technical evaluation panel on the use of beryllium for ITER plasma facing material and blanket breeder material

    Energy Technology Data Exchange (ETDEWEB)

    Ulrickson, M.A. [ed.] [Sandia National Labs., Albuquerque, NM (United States); Manly, W.D. [Oak Ridge National Lab., TN (United States); Dombrowski, D.E. [Brush Wellman, Inc., Cleveland, OH (United States)] [and others

    1995-08-01

    Beryllium because of its low atomic number and high thermal conductivity, is a candidate for both ITER first wall and divertor surfaces. This study addresses the following: why beryllium; design requirements for the ITER divertor; beryllium supply and unirradiated physical/mechanical property database; effects of irradiation on beryllium properties; tritium issues; beryllium health and safety; beryllium-coolant interactions and safety; thermal and mechanical tests; plasma erosion of beryllium; recommended beryllium grades for ITER plasma facing components; proposed manufacturing methods to produce beryllium parts for ITER; emerging beryllium materials; proposed inspection and maintenance techniques for beryllium components and coatings; time table and costs; and the importance of integrating materials and manufacturing personnel with designers.

  14. POD analysis of flow over a backward-facing step forced by right-angle-shaped plasma actuator.

    Science.gov (United States)

    Wang, Bin; Li, Huaxing

    2016-01-01

    This study aims to present flow control over the backward-facing step with specially designed right-angle-shaped plasma actuator and analyzed the influence of various scales of flow structures on the Reynolds stress through snapshot proper orthogonal decomposition (POD). 2D particle image velocimetry measurements were conducted on region (x/h = 0-2.25) and reattachment zone in the x-y plane over the backward-facing step at a Reynolds number of Re h  = 27,766 (based on step height [Formula: see text] and free stream velocity [Formula: see text]. The separated shear layer was excited by specially designed right-angle-shaped plasma actuator under the normalized excitation frequency St h  ≈ 0.345 along the 45° direction. The spatial distribution of each Reynolds stress component was reconstructed using an increasing number of POD modes. The POD analysis indicated that the flow dynamic downstream of the step was dominated by large-scale flow structures, which contributed to streamwise Reynolds stress and Reynolds shear stress. The intense Reynolds stress localized to a narrow strip within the shear layer was mainly affected by small-scale flow structures, which were responsible for the recovery of the Reynolds stress peak. With plasma excitation, a significant increase was obtained in the vertical Reynolds stress peak. Under the dimensionless frequencies St h  ≈ 0.345 and [Formula: see text] which are based on the step height and momentum thickness, the effectiveness of the flow control forced by the plasma actuator along the 45° direction was ordinary. Only the vertical Reynolds stress was significantly affected.

  15. Response of plasma facing components in Tokamaks due to intense energy deposition using Particle-In-Cell (PIC) methods

    Science.gov (United States)

    Genco, Filippo

    Damage to plasma-facing components (PFC) due to various plasma instabilities is still a major concern for the successful development of fusion energy and represents a significant research obstacle in the community. It is of great importance to fully understand the behavior and lifetime expectancy of PFC under both low energy cycles during normal events and highly energetic events as disruptions, Edge-Localized Modes (ELM), Vertical Displacement Events (VDE), and Run-away electron (RE). The consequences of these high energetic dumps with energy fluxes ranging from 10 MJ/m2 up to 200 MJ/m 2 applied in very short periods (0.1 to 5 ms) can be catastrophic both for safety and economic reasons. Those phenomena can cause a) large temperature increase in the target material b) consequent melting, evaporation and erosion losses due to the extremely high heat fluxes c) possible structural damage and permanent degradation of the entire bulk material with probable burnout of the coolant tubes; d) plasma contamination, transport of target material into the chamber far from where it was originally picked. The modeling of off-normal events such as Disruptions and ELMs requires the simultaneous solution of three main problems along time: a) the heat transfer in the plasma facing component b) the interaction of the produced vapor from the surface with the incoming plasma particles c) the transport of the radiation produced in the vapor-plasma cloud. In addition the moving boundaries problem has to be considered and solved at the material surface. Considering the carbon divertor as target, the moving boundaries are two since for the given conditions, carbon doesn't melt: the plasma front and the moving eroded material surface. The current solution methods for this problem use finite differences and moving coordinates system based on the Crank-Nicholson method and Alternating Directions Implicit Method (ADI). Currently Particle-In-Cell (PIC) methods are widely used for solving

  16. Thermal plasma processed ferro-magnetically ordered face-centered cubic iron at room temperature

    Science.gov (United States)

    Raut, Suyog A.; Kanhe, Nilesh S.; Bhoraskar, S. V.; Das, A. K.; Mathe, V. L.

    2014-10-01

    Here, we report tailor made phase of iron nanoparticles using homogeneous gas phase condensation process via thermal plasma route. It was observed that crystal lattice of nano-crystalline iron changes as a function of operating parameters of the plasma reactor. In the present investigation iron nanoparticles have been synthesized in presence of argon at operating pressures of 125-1000 Torr and fixed plasma input DC power of 6 kW. It was possible to obtain pure fcc, pure bcc as well as the mixed phases for iron nanoparticles in powder form as a function of operating pressure. The as synthesized product was characterized for understanding the structural and magnetic properties by using X-ray diffraction, vibrating sample magnetometer, and Mössbauer spectroscopy. The data reveal that fcc phase is ferromagnetically ordered with high spin state, which is unusual whereas bcc phase is found to be ferromagnetic as usual. Finally, the structural and magnetic properties are co-related.

  17. Outgassing of plasma facing antenna front for lower hybrid wave launcher

    Energy Technology Data Exchange (ETDEWEB)

    Maebara, Sunao E-mail: maebara@felsunl.tokai.jaeri.go.jp; Goniche, Marc; Kazarian, Fabienne; Seki, Masami; Ikeda, Yoshitaka; Imai, Tsuyoshi; Bibet, Philippe; Froissard, Philippe; Rey, Guy

    2000-11-01

    A 3.7 GHz mock-up antenna module using carbon fiber composite (CFC) was fabricated and tested for the development of a heat-resistive front of the lower hybrid current drive (LHCD) antenna. This module has four waveguides and a water cooling channel, the length is 206 mm. The CFC surface was coated with a thin titanium layer and was plated with copper in order to reduce RF losses, to bond rods and septum plates and to assemble them with cooling channel. The RF losses and the outgassing rates of this CFC module at high RF power were measured during long pulses. When the injected power varies between 30 and 100 kW, the RF losses measured by calorimetery, were found to be in the range of 1.0-1.2%. It is found that this experimental value is 2.5-3.0 times higher than the theoretical value of pure copper. Stationary operation of the CFC module with water cooling is performed at the RF power density of 45 MW m{sup -2} during 1000 s. The outgassing rates from the CFC module are in the range of 0.93{approx}1.3x10{sup -6} Pam{sup -3} s{sup -1} m{sup -2} at the module temperature of 120 deg. C, it is low enough for an antenna material. No significant bonding defects occurred during the steady-state operation. It is assessed that a CFC module is an attractive candidate for a heat-resistive front of LHCD antenna.

  18. Elaboration and thermomechanical characterization of W/Cu functionally graded materials produced by Spark Plasma Sintering for plasma facing components

    Energy Technology Data Exchange (ETDEWEB)

    Autissier, E., E-mail: manu.autissier@orange.fr [CEA, IRFM, F-13108 Saint-Paul-Lez-Durance (France); Richou, M. [CEA, IRFM, F-13108 Saint-Paul-Lez-Durance (France); Minier, L. [Laboratoire Interdisciplinaire Carnot de Bourgogne, UMR 6303 CNRS-UB, 9 Av. Alain Savary, BP 47870, 21078 Dijon Cedex (France); Gardarein, J.-L. [Aix Marseille Univ, IUSTI, UMR CNRS 7343, F-13453 Marseille (France); Bernard, F. [Laboratoire Interdisciplinaire Carnot de Bourgogne, UMR 6303 CNRS-UB, 9 Av. Alain Savary, BP 47870, 21078 Dijon Cedex (France)

    2015-10-15

    Highlights: • Different W-Cu powders were sintered by Spark Plasma Sintering. • The relative density increase with the temperature and Cu concentration. • Thermal conductivity of W-Cu samples has been measured in function of density. • Assembly of a three-layer W-Cu between a W block and a CuCrZr block was realized. • 40 min is the minimum time to complete bonding between W and W{sub 80}Cu{sub 20}. - Abstract: The assembly of W block with a CuCrZr block has been produced by adding compliant W-Cu layers. Firstly, three W-Cu powders (W{sub 80}Cu{sub 20}, W{sub 60}Cu{sub 40} and W{sub 40}Cu{sub 60}) were sintered by spark plasma sintering (SPS) to investigate the influences of sintering temperature and pressure on relative density and microstructure. The experimental results indicated that the relative density increases with temperature and Cu concentration, achieving a value of 94.1% for the W{sub 40}Cu{sub 60} sample sintered at 1000 °C and a value of 83.1% for the W{sub 80}Cu{sub 20} sample sintered at the same temperature. Then, a three-layer W-Cu assembly between a W block and a CuCrZr block was fabricated using similar sintering conditions to the W-Cu powders. The sintering temperature was limited at 1000 °C due to the CuCrZr melting temperature (1083 °C). The experimental results indicated that loading time, when the right sintering temperature and pressure are applied, is the most important parameter.

  19. Scale-free behavior of a 2D complex plasma during rapid cooling.

    Science.gov (United States)

    Knapek, C A; Durniak, C; Samsonov, D; Morfill, G E

    2013-01-18

    Experimental evidence is presented for a scale-free transition from an unordered to an ordered state in a 2D complex plasma that differs from the KTHNY theory of phase transitions in 2D systems. The transition is characterized by the formation and growth of ordered domains. A fractal relationship is found between the domain areas and domain boundary lengths, which can be explained by a recent theoretical model. The experimental findings are supported by a molecular dynamics simulation of a 2D particle system.

  20. Numerical Simulation of Plasma-Dynamical Processes in the Technological Inductively Coupled RF Plasmatron with Gas Cooling

    Directory of Open Access Journals (Sweden)

    Yu. M. Grishin

    2016-01-01

    Full Text Available The electrodeless inductively coupled RF plasmatron (ICP torches became widely used in various fields of engineering, science and technology. Presently, owing to development of new technologies to produce very pure substances, nanopowders, etc., there is a steadily increasing interest in the induction plasma. This generates a need for a broad range of theoretical and experimental studies to optimize the design and technological parameters of different ICP equipment.The paper presents a numerical model to calculate parameters of inductively coupled RF plasmatron with gas-cooling flow. A finite volume method is used for a numerical solution of a system of Maxwell's and heat transfer equations in the application package ANSYS CFX (14.5. The pseudo-steady approach to solving problems is used.A numerical simulation has been computed in the application package ANSYS CFX (14.5 for a specific design option of the technological ICP, which has a three-coils inductor and current amplitude in the range J к = 50-170 A (3 MHz. The pure argon flows in the ICP. The paper discusses how the value of discharge current impacts on the thermodynamic parameters (pressure, temperature and the power energy in discharge zone. It shows that the ICP can generate a plasma stream with a maximum temperature of about 10 kK and an output speed of 10-15 m/s. The work determines a length of the plasma stream with a weight average temperature of more than 4 kK. It has been found that in order to keep the quartz walls in normal thermal state, the discharge current amplitude should not exceed 150 A. The paper shows the features of the velocity field distribution in the channel of the plasma torch, namely, the formation of vortex in the position of the first coil. The results obtained are important for calculating the dynamics of heating and evaporation of quartz particles in the manufacturing processes for plasma processing of quartz concentrate into high-purity quartz and

  1. Tungsten nitride coatings obtained by HiPIMS as plasma facing materials for fusion applications

    Science.gov (United States)

    Tiron, Vasile; Velicu, Ioana-Laura; Porosnicu, Corneliu; Burducea, Ion; Dinca, Paul; Malinský, Petr

    2017-09-01

    In this work, tungsten nitride coatings with nitrogen content in the range of 19-50 at% were prepared by reactive multi-pulse high power impulse magnetron sputtering as a function of the argon and nitrogen mixture and further exposed to a deuterium plasma jet. The elemental composition, morphological properties and physical structure of the samples were investigated by Rutherford backscattering spectrometry, atomic force microscopy and X-ray diffraction. Deuterium implantation was performed using a deuterium plasma jet and its retention in nitrogen containing tungsten films was investigated using thermal desorption spectrometry. Deuterium retention and release behaviour strongly depend on the nitrogen content in the coatings and the films microstructure. All nitride coatings have a polycrystalline structure and retain a lower deuterium level than the pure tungsten sample. Nitrogen content in the films acts as a diffusion barrier for deuterium and leads to a higher desorption temperature, therefore to a higher binding energy.

  2. Thermal plasma processed ferro-magnetically ordered face-centered cubic iron at room temperature

    Energy Technology Data Exchange (ETDEWEB)

    Raut, Suyog A.; Kanhe, Nilesh S.; Bhoraskar, S. V.; Mathe, V. L., E-mail: vlmathe@physics.unipune.ac.in [Department of Physics, Savitribai Phule Pune University, Pune 411007 (India); Das, A. K. [Laser and Plasma Technology Division, Bhabha Atomic Research Centre, Trombay, Mumbai 400085 (India)

    2014-10-28

    Here, we report tailor made phase of iron nanoparticles using homogeneous gas phase condensation process via thermal plasma route. It was observed that crystal lattice of nano-crystalline iron changes as a function of operating parameters of the plasma reactor. In the present investigation iron nanoparticles have been synthesized in presence of argon at operating pressures of 125–1000 Torr and fixed plasma input DC power of 6 kW. It was possible to obtain pure fcc, pure bcc as well as the mixed phases for iron nanoparticles in powder form as a function of operating pressure. The as synthesized product was characterized for understanding the structural and magnetic properties by using X-ray diffraction, vibrating sample magnetometer, and Mössbauer spectroscopy. The data reveal that fcc phase is ferromagnetically ordered with high spin state, which is unusual whereas bcc phase is found to be ferromagnetic as usual. Finally, the structural and magnetic properties are co-related.

  3. Effect of Three Days Storage of Coated Spermatozoa at Cooling and Adding Seminal Plasma on Ram Fertility

    Directory of Open Access Journals (Sweden)

    Alireza Vaferi

    2016-08-01

    Full Text Available Introduction Artificial insemination (AI has only been used as a supplement to natural mating. AI, when used in conjunction with accurate progeny testing schemes, can substantially increase the rate of genetic progress compared with that of natural service. Moreover, the use of AI causes the limitation of the transmitted diseases. Cervical insemination with frozen-thawed ram semen has not been widely adopted, probably because of the relative poor fertility obtained. Thus using fresh and diluted semen is only approach for performing AI. AI is currently limited by the poor fertility achieved after cervical insemination with the storage of liquid semen at sub-ambient temperature. The success of this procedure in sheep is restricted by the short length of time that ram sperm can be stored in a liquid state. Moreover, the effect of cooling on sperm differs depending on species. It is also well known that ram spermatozoa are more sensitive to cold-shock stress than those of other species. Seminal plasma, as physiological secretion, is a complex mixture of secretions originating from testis, epididymis and accessory sex glands which is mixed with epididymal sperm at ejaculation; it serves as the carrier of sperm to the female genital tract. This mixture contains numerous factors such as organic and nonorganic material which play an important role in the final maturation of the spermatozoa through hormonal, enzymatic and surface-modifying events. During natural mating, a mechanism may be activated to separate spermatozoa from seminal plasma. After being ejaculated into the vagina, sperm swim through cervical mucus and enter the uterus within minutes (>30 min; cervical mucus acts as a barrier for seminal plasma. In the artificial insemination industry, seminal plasma with all the useful and harmful components is not removed from semen and is in contact with sperm throughout cooling, freezing and storage. On the other hand, it was demonstrated that the

  4. NIFS joint research meeting on plasma facing components, PSI, and heat/particle control

    Energy Technology Data Exchange (ETDEWEB)

    Yamashina, T. [Hokkaido Univ., Sapporo (Japan)

    1997-10-01

    The LHD collaboration has been started in 1996. Particle and heat control is one of the categories for the collaboration, and a few programs have been nominated in these two years. A joint research meeting on PFC, PSI, heat and particle meeting was held at NIFS on June 27, 1997, in which present status of these programs were reported. This is a collection of the notes and view graphs presented in this meeting. Brief reviews and research plan of each program are included in relation to divertor erosion and sputtering, impurity generation, hydrogen recycling, edge plasma structure, edge transport and its control, heat removal, particle exhaust, wall conditioning etc. (author)

  5. SIRHEX—A new experimental facility for high heat flux testing of plasma facing components

    Energy Technology Data Exchange (ETDEWEB)

    Kunze, André, E-mail: andre.kunze@kit.edu [Karlsruhe Institute of Technology (KIT), Institute for Neutron Physics and Reactor Technology (Germany); Ghidersa, Bradut-Eugen [Karlsruhe Institute of Technology (KIT), Institute for Neutron Physics and Reactor Technology (Germany); Bonelli, Flavia [Politecnico di Torino, Dipartimento Energia (Italy)

    2015-10-15

    Highlights: • Commercial infrared heaters have been qualified for future First Wall experiments. • In first tests surface heat flux densities up to 470 kW/m were achieved. • The homogeneity of the heat distribution stayed within ±5% of the nominal value. • With the heaters a typical ITER pulse can be reproduced. • An adequate testing strategy will be required to improve heater lifetime. - Abstract: SIRHEX (“Surface Infrared Radiation Heating Experiment”) is a small-scale experimental facility at KIT, which has been built for testing and qualifying high heat flux radiation heaters for blanket specific conditions using an instrumented water cooled target. This paper describes the SIRHEX facility and the experimental set-up for the heater tests. The results of a series of tests focused on reproducing homogeneous surface heat flux densities up to 500 kW/m{sup 2} will be presented and the impact of the heater performance on the design of the First Wall test rig will be discussed.

  6. FOREWORD: 12th International Workshop on Plasma-Facing Materials and Components for Fusion Applications 12th International Workshop on Plasma-Facing Materials and Components for Fusion Applications

    Science.gov (United States)

    Kreter, Arkadi; Linke, Jochen; Rubel, Marek

    2009-12-01

    The 12th International Workshop on Plasma-Facing Materials and Components for Fusion Applications (PFMC-12) was held in Forschungszentrum Jülich (FZJ) in Germany in May 2009. This symposium is the successor to the International Workshop on Carbon Materials for Fusion Applications series. Between 1985 and 2003, 10 'Carbon Workshops' were organized in Jülich, Stockholm and Hohenkammer. After this time, the scope of the symposium was redefined to reflect the new requirements of ITER and the ongoing evolution of the field. The workshop was first organized under its new name in 2006 in Greifswald, Germany. The main objective of this conference series is to provide a discussion forum for experts from research institutions and industry dealing with materials for plasma-facing components in present and future controlled fusion devices. The operation of ASDEX-Upgrade with tungsten-coated wall, the fast progress of the ITER-Like Wall Project at JET, the plans for the EAST tokamak to install tungsten, the start of ITER construction and a discussion about the wall material for DEMO all emphasize the importance of plasma-wall interactions and component behaviour, and give much momentum to the field. In this context, the properties and behaviour of beryllium, carbon and tungsten under plasma impact are research topics of foremost relevance and importance. Our community realizes both the enormous advantages and serious drawbacks of all the candidate materials. As a result, discussion is in progress as to whether to use carbon in ITER during the initial phase of operation or to abandon this element and use only metal components from the start. There is broad knowledge about carbon, both in terms of its excellent power-handling capabilities and the drawbacks related to chemical reactivity with fuel species and, as a consequence, about problems arising from fuel inventory and dust formation. We are learning continuously about beryllium and tungsten under fusion conditions, but our

  7. Beryllium processing technology review for applications in plasma-facing components

    Energy Technology Data Exchange (ETDEWEB)

    Castro, R.G.; Jacobson, L.A.; Stanek, P.W.

    1993-07-01

    Materials research and development activities for the International Thermonuclear Experimental Reactor (ITER), i.e., the next generation fusion reactor, are investigating beryllium as the first-wall containment material for the reactor. Important in the selection of beryllium is the ability to process, fabricate and repair beryllium first-wall components using existing technologies. Two issues that will need to be addressed during the engineering design activity will be the bonding of beryllium tiles in high-heat-flux areas of the reactor, and the in situ repair of damaged beryllium tiles. The following review summarizes the current technology associated with welding and joining of beryllium to itself and other materials, and the state-of-the-art in plasma-spray technology as an in situ repair technique for damaged beryllium tiles. In addition, a review of the current status of beryllium technology in the former Soviet Union is also included.

  8. Detection of a Cool, Accretion Shock-Generated X-ray Plasma in EX Lupi During the 2008 Optical Eruption

    CERN Document Server

    Teets, William K; Kastner, Joel H; Grosso, Nicolas; Hamaguchi, Kenji; Richmond, Michael

    2012-01-01

    EX Lupi is the prototype for a class of young, pre-main sequence stars which are observed to undergo irregular, presumably accretion-generated, optical outbursts that result in a several magnitude rise of the optical flux. EX Lupi was observed to optically erupt in 2008 January, triggering Chandra ACIS ToO observations shortly thereafter. We find very strong evidence that most of the X-ray emission in the first few months after the optical outburst is generated by accretion of circumstellar material onto the stellar photosphere. Specifically, we find a strong correlation between the decreasing optical and X-ray fluxes following the peak of the outburst in the optical, which suggests that these observed declines in both the optical and X-ray fluxes are the result of declining accretion rate. In addition, in our models of the X-ray spectrum, we find strong evidence for a ~0.4 keV plasma component, as expected for accretion shocks on low-mass, pre-main sequence stars. From 2008 March through October, this cool p...

  9. Thermal analysis on the EAST tungsten plasma facing components with shaping structure counteracting the misalignment issues

    Science.gov (United States)

    Baoguo, Wang; Dahuan, Zhu; Rui, Ding; Junling, Chen

    2017-02-01

    Tungsten monoblock type tiles with ITER dimensions along with supporting cassette components were installed at EAST’s upper diverter during 2014 and EAST’s lower diverter will also be upgraded in the future. These cassette structures pose critical issues on the high cumulative incident heat flux due to the leading edges and misalignments (0 ˜ 1.5 mm), which may result in the destruction or even melting of the tungsten tile. The present work summarizes the thermal analysis using ANSYS multiphysics software 15.0 performed on the actively cooled W tiles to evaluate the shaping effect on surface temperature. In the current heat flux conditions (Q|| ˜ 100 MW m-2), the adopted chamfer shaping (1 × 1 mm) can only reduce the maximum temperature by about 14%, but it also has a melting risk at the maximum misalignment of 1.5 mm. The candidate shaping solutions elliptical (round) edge, dome and fish-scale are analyzed for comparison and are identified not as good as the dual chamfer structure. A relatively good dual chamfer (2 × 13 mm) shaping forming a symmetrical sloping roof structure can effectively counteract the 1.5 mm misalignment, reducing the maximum temperature by up to 50%. However, in the future heat flux conditions (Q|| ˜ 287 MW m-2), it may only endure about 0.5 mm misalignment. Moreover, no proper shaping solution has been found that can avoid melting at the maximum misalignment of 1.5 mm. Thus, the engineering misalignment has to be limited to an acceptable level. Supported by the National Magnetic Confinement Fusion Science Program of China (Nos. 2013GB107004 and 2013GB105003) and National Natural Science Foundation of China (No. 11405209).

  10. Heat Transfer Analysis of Two Kinds of Mechanically Jointed GBST1308/CuCrZr Plasma Facing Components of EAST

    Institute of Scientific and Technical Information of China (English)

    CHONG Fali; CHEN Junling; LI Jiangang; ZHENG Xuebin; EAST team

    2008-01-01

    Doped graphite GBST1308,mechanically jointed to CuCrZr alloys,will be applied on EAST superconducting as plasma facing material (PFM).Two joint structures called joint-1 and joint-2 were evaluated by means of thermal response tests using electron beam facility.The experimental results showed that the temperature differences of two joints were not significant,and the maximum surface temperature was about 1055℃ at a load of 4 MW/m2,which had a good agreement with the simulated results by ANSYS code.The results indicated that the doped graphite GBST1308/CuCrZr mock-up can withstand heat flux deposition of 4 MW/m2 except at the screw-fastened region,and joint-2 could be more suitable to higher heat flux region such as divertor target.But under the higher heat flux,both joints are unacceptable,an advanced PFM and its integration with the heat sink have to be developed,for example,vacuum plasma spraying tungsten coatings on the CuCrZr might be a good choice.

  11. Erosion products of plasma facing materials formed under ITER-like transient load and deuterium retention in them

    Energy Technology Data Exchange (ETDEWEB)

    Putrik, A. B., E-mail: putrik@triniti.ru; Klimov, N. S. [State Research Center of the Russian Federation Troitsk Institute for Innovation & Fusion Research (Russian Federation); Gasparyan, Yu. M., E-mail: yura@plasma.mephi.ru; Efimov, V. S. [National Research Nuclear University Moscow Engineering Physics Institute (Russian Federation); Barsuk, V. A.; Podkovyrov, V. L., E-mail: podk@triniti.ru; Zhitlukhin, A. M., E-mail: zhitlukh@triniti.ru; Yarochevskaya, A. D.; Kovalenko, D. V., E-mail: kovalenko@triniti.ru [State Research Center of the Russian Federation Troitsk Institute for Innovation & Fusion Research (Russian Federation)

    2015-12-15

    Erosion of the plasma-facing materials in particular evaporation of the materials in a fusion reactor under intense transient events is one of the problems of the ITER. The current experimental data are insufficient to predict the properties of the erosion products, a significant part of which will be formed during transient events (edge-localized modes (ELMs) and disruptions). The paper concerns the experimental investigation of the graphite and tungsten erosion products deposited under pulsed plasma load at the QSPA-T: heat load on the target was 2.6 MJ/m{sup 2} with 0.5 ms pulse duration. The designed diagnostics for measuring the deposition rate made it possible to determine that the deposition of eroded material occurs during discharge, and the deposition rate is in the range (0.1–100) × 10{sup 19} at/(cm{sup 2} s), which is much higher than that for stationary processes. It is found that the relative atomic concentrations D/C and D/(W + C) in the erosion products deposited during the pulse process are on the same level as for the stationary processes. An exposure of erosion products to photonic energy densities typical of those expected at mitigated disruptions in the ITER (pulse duration of 0.5–1 ms, integral energy density of radiation of 0.1–0.5 MJ/m2) significantly decreases the concentration of trapped deuterium.

  12. Microstructure and performance of rare earth element-strengthened plasma-facing tungsten material

    Science.gov (United States)

    Luo, Laima; Shi, Jing; Lin, Jinshan; Zan, Xiang; Zhu, Xiaoyong; Xu, Qiu; Wu, Yucheng

    2016-09-01

    Pure W and W-(2%, 5%, 10%) Lu alloys were manufactured via mechanical alloying for 20 h and a spark plasma sintering process at 1,873 K for 2 min. The effects of Lu doping on the microstructure and performance of W were investigated using various techniques. For irradiation performance analysis, thermal desorption spectroscopy (TDS) measurements were performed from room temperature to 1,000 K via infrared irradiation with a heating rate of 1 K/s after implantations of He+ and D+ ions. TDS measurements were conducted to investigate D retention behavior. Microhardness was dramatically enhanced, and the density initially increased and then decreased with Lu content. The D retention performance followed the same trend as the density. Second-phase particles identified as Lu2O3 particles were completely distributed over the W grain boundaries and generated an effective grain refinement. Transgranular and intergranular fracture modes were observed on the fracture surface of the sintered W-Lu samples, indicating some improvement of strength and toughness. The amount and distribution of Lu substantially affected the properties of W. Among the investigated alloy compositions, W-5%Lu exhibited the best overall performance.

  13. FOREWORD: 13th International Workshop on Plasma-Facing Materials and Components for Fusion Applications/1st International Conference on Fusion Energy Materials Science 13th International Workshop on Plasma-Facing Materials and Components for Fusion Applications/1st International Conference on Fusion Energy Materials Science

    Science.gov (United States)

    Jacob, Wolfgang; Linsmeier, Christian; Rubel, Marek

    2011-12-01

    subjected to extremely high heat loads and very high particle and neutron fluxes. They must have high thermal conductivity for efficient heat transport, high cohesive energy for low erosion by particle bombardment and low atomic number to minimize plasma cooling. These contradictory requirements make the development of plasma-facing materials one of the greatest challenges ever faced by materials scientists. The erosion of plasma-facing materials is one of the main factors influencing the operational schedule of experimental fusion reactors and future power plants. A number of materials selected for current designs cannot withstand the presently foreseen plasma scenarios of a power plant for a commercially viable period of time. Therefore, further coordinated development of plasma scenarios and materials is essential for the realization of fusion as an energy source. The design and development of plasma-facing materials requires a detailed understanding of the processes that occur when a material surface is bombarded with an intense flux of heat, particles and neutrons simultaneously. These materials-related topics are the focus of this series of workshops which has established itself as a discussion forum for experts from research institutions and industry dealing with materials for plasma-facing components in present and future thermonuclear fusion devices. During the joint conference PFMC-13/FEMaS-1 recent developments and research results in the following fields were addressed: carbon, beryllium, and tungsten based materials mixed materials erosion and redeposition high heat flux component development benchmarking of radiation damage modelling synchrotron and neutron based characterization techniques application of advanced transmission electron microscopy and micro-/nano-mechanical testing. With the approaching technical realization of ITER, the ITER-related PFMC topics are naturally the main focus of research. In this respect the start of the ITER-like wall experiment

  14. 实施降温措施的采掘工作面空气处理过程分析%Analysis of the air handling processin extracting coal face with cooling system

    Institute of Scientific and Technical Information of China (English)

    杨威; 刘何清; 熊慧灵; 李伊洁

    2014-01-01

    针对高温矿井采掘工作面空冷器常见安装位置和冷风输送方式,分析了冷风流自空冷器出口后沿途发生的变化及其对应的冷风流状态参数变化过程;分析了各空冷器安装位置、送风方式下引起冷风流状态变化的原因;提出了各空冷器安装位置、送风方式下确保工作面设计状态的空冷器出口冷风参数确定路径及装机冷量的构成;定性得出将空冷器距工作面一定距离安装、采用隔湿风筒输送冷风的方式较优。得出的结论对指导高温矿井降温系统设计有一定的指导意义。%According to the common installation position and the cold air conveying mode in the extracting coal face of high temperature mine,this paper analyzes the cold air changing process when it is translated to extracting coal face.It also analyzes the changing process of colder airflow status parameters.Then,the reason of change in cold airflow status with different installation position and cold air conveying mode is analyzed in detail.In order to achieve the optimal cooling solution in different installation positions of air cooler and air supply mode,the paper has taken the following steps:firt of all,it proposes the calculation method of air cooler exit parameter under different conditions.Calculation result must ensure the temperature of extracting coal face to meet the design requirement.Secondly,every part which constitutes the cooling capacity of air cooler is introduced under different cooling schemes.Thirdly,it qualitatively analyzes the size of cooling capacity needed. Results show that it is the optimum cooling solution when air cooler is far from extracting coal face and colder air is translated by saliva isolation.It can say that the above researches help to provide a guide for high temperature mine cooling system design.

  15. High heat flux testing of divertor plasma facing materials and components using the HHF test facility at IPR

    Science.gov (United States)

    Patil, Yashashri; Khirwadkar, S. S.; Belsare, Sunil; Swamy, Rajamannar; Tripathi, Sudhir; Bhope, Kedar; Kanpara, Shailesh

    2016-02-01

    The High Heat Flux Test Facility (HHFTF) was designed and established recently at Institute for Plasma Research (IPR) in India for testing heat removal capability and operational life time of plasma facing materials and components of the ITER-like tokamak. The HHFTF is equipped with various diagnostics such as IR cameras and IR-pyrometers for surface temperature measurements, coolant water calorimetry for absorbed power measurements and thermocouples for bulk temperature measurements. The HHFTF is capable of simulating steady state heat load of several MW m-2 as well as short transient heat loads of MJ m-2. This paper presents the current status of the HHFTF at IPR and high heat flux tests performed on the curved tungsten monoblock type of test mock-ups as well as transient heat flux tests carried out on pure tungsten materials using the HHFTF. Curved tungsten monoblock type of test mock-ups were fabricated using hot radial pressing (HRP) technique. Two curved tungsten monoblock type test mock-ups successfully sustained absorbed heat flux up to 14 MW m-2 with thermal cycles of 30 s ON and 30 s OFF duration. Transient high heat flux tests or thermal shock tests were carried out on pure tungsten hot-rolled plate material (Make:PLANSEE) with incident power density of 0.49 GW m-2 for 20 milliseconds ON and 1000 milliseconds OFF time. A total of 6000 thermal shock cycles were completed on pure tungsten material. Experimental results were compared with mathematical simulations carried out using COMSOL Multiphysics for transient high heat flux tests.

  16. Surface temperature measurement of the plasma facing components with the multi-spectral infrared thermography diagnostics in tokamaks

    Science.gov (United States)

    Zhang, C.; Gauthier, E.; Pocheau, C.; Balorin, C.; Pascal, J. Y.; Jouve, M.; Aumeunier, M. H.; Courtois, X.; Loarer, Th.; Houry, M.

    2017-03-01

    For the long-pulse high-confinement discharges in tokamaks, the equilibrium of plasma requires a contact with the first wall materials. The heat flux resulting from this interaction is of the order of 10 MW/m2 for steady state conditions and up to 20 MW/m2 for transient phases. The monitoring on surface temperatures of the plasma facing components (PFCs) is a major concern to ensure safe operation and to optimize performances of experimental operations on large fusion facilities. Furthermore, this measurement is also required to study the physics associated to the plasma material interactions and the heat flux deposition process. In tokamaks, infrared (IR) thermography systems are routinely used to monitor the surface temperature of the PFCs. This measurement requires an accurate knowledge of the surface emissivity. However, and particularly for metallic materials such as tungsten, this emissivity value can vary over a wide range with both the surface condition and the temperature itself, which makes instantaneous measurement challenging. In this context, the multi-spectral infrared method appears as a very promising alternative solution. Indeed, the system has the advantage to carry out a non-intrusive measurement on thermal radiation while evaluating surface temperature without requiring a mandatory surface emissivity measurement. In this paper, a conceptual design for the multi-spectral infrared thermography is proposed. The numerical study of the multi-channel system based on the Levenberg-Marquardt (LM) nonlinear curve fitting is applied. The numerical results presented in this paper demonstrate the design allows for measurements over a large temperature range with a relative error of less than 10%. Furthermore, laboratory experiments have been performed from 200 °C to 740 °C to confirm the feasibility for temperature measurements on stainless steel and tungsten. In these experiments, the unfolding results from the multi-channel detection provide good

  17. Effect of surface segregation and mobility on erosion of plasma-facing materials in magnetic fusion systems

    Energy Technology Data Exchange (ETDEWEB)

    Sizyuk, Tatyana; Hassanein, Ahmed

    2015-03-15

    Highlights: • We integrated collisional and thermal processes to study tungsten erosion by carbon ions. • We analyzed effects of radiation enhanced diffusion and surface segregation. • Self-consistent simulations allowed explaining experimental results. • Difference in tungsten erosion at various temperatures was explained. - Abstract: The present work studies the combined effects of collisional sputtering and mixing processes of carbon impurities in tungsten plasma-facing material integrated with thermal processes including surface segregation and diffusion. We used our ITMC-DYN package, which includes description of all collisional and thermal processes, for the analysis of recent experimental results of tungsten erosion and carbon implantation at various target temperatures. Self-consistent integrated modeling predicted thermal processes effects on erosion/deposition dynamics and defined decisive parameters range and their importance. Critical parameters were estimated based on available experimental data. The integrated simulation reproduced the experimental results and predicted the transition from enhanced tungsten erosion to significant carbon coverage on the tungsten surface. These effects for wider range of system conditions with C/H ions irradiation and for reactor conditions can be predicted by including detailed modeling of chemical erosion processes in a self-consistent manner.

  18. Development and Evaluation of an Externally Air-Cooled Low-Flow torch and the Attenuation of Space Charge and Matrix Effects in Inductively Coupled Plasma Mass Spectrometry

    Energy Technology Data Exchange (ETDEWEB)

    Praphairaksit, Narong [Iowa State Univ., Ames, IA (United States)

    2000-09-12

    An externally air-cooled low-flow torch has been constructed and successfully demonstrated for applications in inductively coupled plasma mass spectrometry (ICP-MS). The torch is cooled by pressurized air flowing at ~70 L/min through a quartz air jacket onto the exterior of the outer tube. The outer gas flow rate and operating RF forward power are reduced considerably. Although plasmas can be sustained at the operating power as low as 400 W with a 2 L/min of outer gas flow, somewhat higher power and outer gas flows are advisable. A stable and analytical useful plasma can be obtained at 850 W with an outer gas flow rate of ~4 L/min. Under these conditions, the air-cooled plasma produces comparable sensitivities, doubly charged ion ratios, matrix effects and other analytical merits as those produced by a conventional torch while using significantly less argon and power requirements. Metal oxide ion ratios are slightly higher with the air-cooled plasma but can be mitigated by reducing the aerosol gas flow rate slightly with only minor sacrifice in analyte sensitivity. A methodology to alleviate the space charge and matrix effects in ICP-MS has been developed. A supplemental electron source adapted from a conventional electron impact ionizer is added to the base of the skimmer. Electrons supplied from this source downstream of the skimmer with suitable amount and energy can neutralize the positive ions in the beam extracted from the plasma and diminish the space charge repulsion between them. As a result, the overall ion transmission efficiency and consequent analyte ion sensitivities are significantly improved while other important analytical aspects, such as metal oxide ion ratio, doubly charged ion ratio and background ions remain relatively unchanged with the operation of this electron source. This technique not only improves the ion transmission efficiency but also minimizes the matrix effects drastically. The matrix-induced suppression of signal for even the most

  19. Development and Evaluation of an Externally Air-Cooled Low-Flow torch and the Attenuation of Space Charge and Matrix Effects in Inductively Coupled Plasma Mass Spectrometry

    Energy Technology Data Exchange (ETDEWEB)

    Praphairaksit, N.

    2000-09-12

    An externally air-cooled low-flow torch has been constructed and successfully demonstrated for applications in inductively coupled plasma mass spectrometry (ICP-MS). The torch is cooled by pressurized air flowing at {approximately}70 L/min through a quartz air jacket onto the exterior of the outer tube. The outer gas flow rate and operating RF forward power are reduced considerably. Although plasmas can be sustained at the operating power as low as 400 W with a 2 L/min of outer gas flow, somewhat higher power and outer gas flows are advisable. A stable and analytical useful plasma can be obtained at 850 W with an outer gas flow rate of {approximately}4 L/min. Under these conditions, the air-cooled plasma produces comparable sensitivities, doubly charged ion ratios, matrix effects and other analytical merits as those produced by a conventional torch while using significantly less argon and power requirements. Metal oxide ion ratios are slightly higher with the air-cooled plasma but can be mitigated by reducing the aerosol gas flow rate slightly with only minor sacrifice in analyte sensitivity. A methodology to alleviate the space charge and matrix effects in ICP-MS has been developed. A supplemental electron source adapted from a conventional electron impact ionizer is added to the base of the skimmer. Electrons supplied from this source downstream of the skimmer with suitable amount and energy can neutralize the positive ions in the beam extracted from the plasma and diminish the space charge repulsion between them. As a result, the overall ion transmission efficiency and consequent analyte ion sensitivities are significantly improved while other important analytical aspects, such as metal oxide ion ratio, doubly charged ion ratio and background ions remain relatively unchanged with the operation of this electron source. This technique not only improves the ion transmission efficiency but also minimizes the matrix effects drastically. The matrix-induced suppression

  20. Effects of an evaporative cooling system on plasma cortisol, IGF-I, and milk production in dairy cows in a tropical environment

    Science.gov (United States)

    Titto, Cristiane Gonçalves; Negrão, João Alberto; Titto, Evaldo Antonio Lencioni; Canaes, Taissa de Souza; Titto, Rafael Martins; Pereira, Alfredo Manuel Franco

    2013-03-01

    Access to an evaporative cooling system can increase production in dairy cows because of improved thermal comfort. This study aimed to evaluate the impact of ambient temperature on thermoregulation, plasma cortisol, insulin-like growth factor 1 (IGF-I), and productive status, and to determine the efficiency of an evaporative cooling system on physiological responses under different weather patterns. A total of 28 Holstein cows were divided into two groups, one with and the other without access to a cooling system with fans and mist in the free stall. The parameters were analyzed during morning (0700 hours) and afternoon milking (1430 hours) under five different weather patterns throughout the year (fall, winter, spring, dry summer, and rainy summer). Rectal temperature (RT), body surface temperature (BS), base of tail temperature (TT), and respiratory frequency (RF) were lower in the morning ( P < 0.01). The cooling system did not affect RT, and both the groups had values below 38.56 over the year ( P = 0.11). Cortisol and IGF-I may have been influenced by the seasons, in opposite ways. Cortisol concentrations were higher in winter ( P < 0.05) and IGF-I was higher during spring-summer ( P < 0.05). The air temperature and the temperature humidity index showed positive moderate correlations to RT, BS, TT, and RF ( P < 0.001). The ambient temperature was found to have a positive correlation with the physiological variables, independent of the cooling system, but cooled animals exhibited higher milk production during spring and summer ( P < 0.01).

  1. Developing structural, high-heat flux and plasma facing materials for a near-term DEMO fusion power plant: The EU assessment

    Energy Technology Data Exchange (ETDEWEB)

    Stork, D., E-mail: derek.stork@btinternet.com [Euratom – CCFE Association, Culham Science Centre, Abingdon, Oxfordshire OX14 3DB (United Kingdom); Agostini, P. [ENEA, Brasimone Research Centre, 40032 Cumugnano, Bologna (Italy); Boutard, J.L. [CEA, cab HC, Saclay, F-91191 Gif-sur-Yvette (France); Buckthorpe, D. [AMEC, Booths Park, Chelford Road, Knutsford, Cheshire WA16 8QZ (United Kingdom); Diegele, E. [Karlsruhe Institute for Technology, IMF-I, D-7602 Karlsruhe (Germany); Dudarev, S.L. [Euratom – CCFE Association, Culham Science Centre, Abingdon, Oxfordshire OX14 3DB (United Kingdom); English, C. [National Nuclear Laboratory, Chadwick House, Warrington Road, Birchwood Park WA3 6AE (United Kingdom); Federici, G. [EFDA Power Plant Physics and Technology, Boltzmannstr. 2, Garching 85748 (Germany); Gilbert, M.R. [Euratom – CCFE Association, Culham Science Centre, Abingdon, Oxfordshire OX14 3DB (United Kingdom); Gonzalez, S. [EFDA Power Plant Physics and Technology, Boltzmannstr. 2, Garching 85748 (Germany); Ibarra, A. [CIEMAT, Avda. Complutense 40, Madrid (Spain); Linsmeier, Ch. [Forschungszentrum Jülich GmbH, Institut für Energie- und Klimaforschung – Plasmaphysik, EURATOM Association, 52425 Jülich (Germany); Li Puma, A. [CEA, DEN, Saclay, DM2S, SERMA, F-91191 Gif-sur-Yvette (France); Marbach, G. [CEA, cab HC, Saclay, F-91191 Gif-sur-Yvette (France); Morris, P.F. [Formerly of TATA Steel Europe, Swinden Technology Centre, Moorgate, Rotherham S60 3AR (United Kingdom); Packer, L.W. [Euratom – CCFE Association, Culham Science Centre, Abingdon, Oxfordshire OX14 3DB (United Kingdom); Raj, B. [Indian National Academy of Engineering, Shaheed Jeet Singh Marg, New Delhi 110016 (India); Rieth, M. [Karlsruhe Institute for Technology, IMF-I, D-7602 Karlsruhe (Germany); and others

    2014-12-15

    The findings of the EU ‘Materials Assessment Group’ (MAG), within the 2012 EU Fusion Roadmap exercise, are discussed. MAG analysed the technological readiness of structural, plasma facing and high heat flux materials for a DEMO concept to be constructed in the early 2030s, proposing a coherent strategy for R and D up to a DEMO construction decision. A DEMO phase I with a ‘Starter Blanket’ and ‘Starter Divertor’ is foreseen: the blanket being capable of withstanding ⩾2 MW yr m{sup −2} fusion neutron fluence (∼20 dpa in the front-wall steel). A second phase ensues for DEMO with ⩾5 MW yr m{sup −2} first wall neutron fluence. Technical consequences for the materials required and the development, testing and modelling programmes, are analysed using: a systems engineering approach, considering reactor operational cycles, efficient maintenance and inspection requirements, and interaction with functional materials/coolants; and a project-based risk analysis, with R and D to mitigate risks from material shortcomings including development of specific risk mitigation materials. The DEMO balance of plant constrains the blanket and divertor coolants to remain unchanged between the two phases. The blanket coolant choices (He gas or pressurised water) put technical constraints on the blanket steels, either to have high strength at higher temperatures than current baseline variants (above 650 °C for high thermodynamic efficiency from He-gas coolant), or superior radiation-embrittlement properties at lower temperatures (∼290–320 °C), for construction of water-cooled blankets. Risk mitigation proposed would develop these options in parallel, and computational and modelling techniques to shorten the cycle-time of new steel development will be important to achieve tight R and D timescales. The superior power handling of a water-cooled divertor target suggests a substructure temperature operating window (∼200–350 °C) that could be realised, as a

  2. Developing structural, high-heat flux and plasma facing materials for a near-term DEMO fusion power plant: The EU assessment

    Science.gov (United States)

    Stork, D.; Agostini, P.; Boutard, J. L.; Buckthorpe, D.; Diegele, E.; Dudarev, S. L.; English, C.; Federici, G.; Gilbert, M. R.; Gonzalez, S.; Ibarra, A.; Linsmeier, Ch.; Li Puma, A.; Marbach, G.; Morris, P. F.; Packer, L. W.; Raj, B.; Rieth, M.; Tran, M. Q.; Ward, D. J.; Zinkle, S. J.

    2014-12-01

    The findings of the EU 'Materials Assessment Group' (MAG), within the 2012 EU Fusion Roadmap exercise, are discussed. MAG analysed the technological readiness of structural, plasma facing and high heat flux materials for a DEMO concept to be constructed in the early 2030s, proposing a coherent strategy for R&D up to a DEMO construction decision. A DEMO phase I with a 'Starter Blanket' and 'Starter Divertor' is foreseen: the blanket being capable of withstanding ⩾2 MW yr m-2 fusion neutron fluence (∼20 dpa in the front-wall steel). A second phase ensues for DEMO with ⩾5 MW yr m-2 first wall neutron fluence. Technical consequences for the materials required and the development, testing and modelling programmes, are analysed using: a systems engineering approach, considering reactor operational cycles, efficient maintenance and inspection requirements, and interaction with functional materials/coolants; and a project-based risk analysis, with R&D to mitigate risks from material shortcomings including development of specific risk mitigation materials. The DEMO balance of plant constrains the blanket and divertor coolants to remain unchanged between the two phases. The blanket coolant choices (He gas or pressurised water) put technical constraints on the blanket steels, either to have high strength at higher temperatures than current baseline variants (above 650 °C for high thermodynamic efficiency from He-gas coolant), or superior radiation-embrittlement properties at lower temperatures (∼290-320 °C), for construction of water-cooled blankets. Risk mitigation proposed would develop these options in parallel, and computational and modelling techniques to shorten the cycle-time of new steel development will be important to achieve tight R&D timescales. The superior power handling of a water-cooled divertor target suggests a substructure temperature operating window (∼200-350 °C) that could be realised, as a baseline-concept, using tungsten on a copper

  3. Optimum Conditions for the Efficacy and Safety of Cryofiltration Apheresis: An Analysis of Circuit Temperatures Depending on Plasma Flow Rate and Cooling Coil Lengths/Turns.

    Science.gov (United States)

    Nakajima, Hirofumi; Kaneko, Shuzo; Sato, Yukihiro; Takano, Tomoo; Hosino, Toshihisa

    2015-08-01

    A system providing both appropriate cooling and warming are needed for the efficacy and safety of cryofiltration (CF) plasmapheresis. We measured some points of CF circuit temperatures with varying plasma flow rates (QP  = 10-40 mL/min) and the numbers of connecting cooling coils (one or two) under the conditions of blood flow rate (QB ) 100 mL/min with 7700-mm coil length, 19 turns, and 50-mL priming volume. We measured the respective temperatures of each point of starting/returning for an extracorporeal circuit (TA /TV ), intracooling coil (TC ), and post-plasma fractionator (PF) (TPF ). The subtraction of TV from TA (ΔT) was used as an indicator of safe return. There were no significant differences in TC , TPF , or ΔT in accordance with each QP between that of one and two coils. All of the Tc values under the condition QP  ≤ 20 mL/min achieved <4°C. The TPF under the condition QP  ≥ 20 mL/min was not significantly different compared to that of QP 30 mL/min (the lowest condition). Although the ΔT increased depending on the QP increase, the ΔT under the condition QP  ≤ 15 mL/min was not significantly different from that of the control (one-way double-filtration plasmapheresis [DFPP]) group. We conclude that (i) one coil is enough for effective cooling in CF, and (ii) an ideal QP that fulfills the required conditions for both effective cooling and sufficient warming of returning fluid does not exist, but QP from 15 to 20 mL/min may be a relevant range.

  4. High Efficient Plasma Torch with Self-cooling Anode%阳极自冷却高效等离子体束流源

    Institute of Scientific and Technical Information of China (English)

    任琼英; 李露; 丁亮; 黄佳华; 唐振宇; 赵华

    2016-01-01

    We developed a plasma torch with self-cooling anode.The anode was cooled by forcing the working medium to flow through the intemal of the anode, and the temperature of working gas would simultaneously increase by absorbing heat from the high-temperature anode.The heated gas then flowed into the discharging channel, and a stable plasma jet was obtained.The new plasma torch was tested with total input power at 785 W, under atmospheric pressure without water-cooling, and it could work stably in long-standing period.The length of the jet does not change notably, and the anode keeps a temperature at about 395 ℃.A traditional torch was also tested for comparison with 815W input power without water-cooling.The temperature of the normal torch increases to 750 ℃ and shuts down after 5-minute operation in the air.The length of the plasma jet from a normal torch exhibits a quasi-period variation, observed by neck eyes clearly.The experimental results show that the self-cooling anode is an efficient way to achieve a stable plasma jet, and to increase the length, temperature and enthalpy of the jet.Self-cooling anode is a useful technique to improve the efficiency and quality of a plasma torch.%研制了一种阳极自冷却的高效层流等离子体炬.利用工质气体在阳极内部循环冷却阳极,提高气体温度;再让加热后的气体以更高的定向速度流入放电腔,得到稳定的等离子体射流.试验中等离子体炬的总功率约为785 W,在大气压环境工作,阳极无水冷,束流能够长时间稳定工作.稳态运行过程中,射流长度无明显变化,阳极温度保持在395℃.比对试验中非自冷式等离子体炬在阳极无水冷情况下,运行5min后放电中断;在运行期间射流长度出现明显的变化,阳极明显烧红,温度高达750℃.试验表明阳极自冷却能够改善射流的稳定性,提高射流的长度,温度和焓值,是一种提高等离子体炬热效率和品质的重要技术之一.

  5. Infrared surface temperature measurements for long pulse operation, and real time feedback control in Tore-Supra, an actively cooled Tokamak

    Energy Technology Data Exchange (ETDEWEB)

    Guilhem, D.; Adjeroud, B.; Balorin, C.; Buravand, Y.; Bertrand, B.; Bondil, J.L.; Desgranges, C.; Gauthier, E.; Lipa, M.; Messina, P.; Missirlian, M.; Mitteau, R.; Moulin, D.; Pocheau, C.; Portafaix, C.; Reichle, R.; Roche, H.; Saille, A.; Vallet, S

    2004-07-01

    Tore-Supra has a steady-state magnetic field using super-conducting magnets and water-cooled plasma facing components for high performances long pulse plasma discharges. When not actively cooled, plasma-facing components can only accumulate a limited amount of energy since the temperature increase continuously (T proportional to {radical}(t)) during the discharge until radiation cooling is equal to the incoming heat flux (T > 1800 K). Such an environment is found in most today Tokamaks. In the present paper we report the recent results of Tore-Supra, especially the design of the new generation of infrared endoscopes to measure the surface temperature of the plasma facing components. The Tore-Supra infrared thermography system is composed of 7 infrared endoscopes, this system is described in details in the paper, the new JET infrared thermography system is presented and some insights of the ITER set of visible/infrared endoscope is given. (authors)

  6. 长距离掘进工作面高效降温技术研究%Study on the technology of high efifciency cooling in the long distance driving face

    Institute of Scientific and Technical Information of China (English)

    杨瑞斌; 王海宾; 付永洁

    2015-01-01

    针对现有长距离掘进工作面采用空冷器降温效果不佳的问题,提出适合长距离送风的除湿降温技术,采用传热传质理论,对掘进工作面围岩内部热传导,壁面与风流的热交换,壁面与风流的质交换进行了分析,提出了除湿降温工艺,采用FLUNT软件,对高温高湿掘进面除湿降温效果进行了模拟,在南轨道运输大巷进行了工业性实验,取得了较好的除湿降温效果。%Aiming at the problem that the air cooling effect of air cooler used in the existing long distance heading face is poor, the cooling technology of the desiccant is put forward. The heat and mass transfer theory is used to analyze the thermal conduction of surrounding rock in driving roadway, the heat exchange between wall and air, and the qualitative exchange between wall and air. The technology of desiccant cooling is put forward. The effect of desiccant cooling of the high temperature and humidity in driving roadway is simulated with FLUNT. The industrial experiments were carried out in the South Rail driving roadway, and the effect of dehumidifying and cooling is achieved.

  7. Electron beam dynamics and self-cooling up to PeV level due to betatron radiation in plasma-based accelerators

    Science.gov (United States)

    Deng, Aihua; Nakajima, Kazuhisa; Liu, Jiansheng; Shen, Baifei; Zhang, Xiaomei; Yu, Yahong; Li, Wentao; Li, Ruxin; Xu, Zhizhan

    2012-08-01

    In plasma-based accelerators, electrons are accelerated by ultrahigh gradient of 1-100GV/m and undergo the focusing force with the same order as the accelerating force. Heated electrons are injected in a plasma wake and exhibit the betatron oscillation that generates synchrotron radiation. Intense betatron radiation from laser-plasma accelerators is attractive x-ray/gamma-ray sources, while it produces radiation loss and significant effects on energy spread and transverse emittance via the radiation reaction force. In this article, electron beam dynamics on transverse emittance and energy spread with considering radiation reaction effects are studied numerically. It is found that the emittance growth and the energy spread damping initially dominate and balance with radiative damping due to the betatron radiation. Afterward the emittance turns to decrease at a constant rate and leads to the equilibrium at a nanometer radian level with growth due to Coulomb scattering at PeV-level energies. A constant radiation loss rate RT=2/3 is found without regard to the electron beam and plasma conditions. Self-cooling of electron beams due to betatron radiation may guarantee TeV-range linear colliders and give hints on astrophysical ultrahigh-energy phenomena.

  8. Plasma levels of arginine, ornithine, and urea and growth performance of broilers fed supplemental L-arginine during cool temperature exposure.

    Science.gov (United States)

    Ruiz-Feria, C A; Kidd, M T; Wideman, R F

    2001-03-01

    Two experiments (Experiment 1 and 2) were conducted to evaluate growth performance, ascites mortality, and concentrations of plasma Arg, urea, and ornithine in male broilers raised in floor pens (2 x 4 factorial experiment, six pens for treatment) and exposed to cool temperatures averaging 16 C after 21 d of age. Broilers were fed low- or high-CP diets in both Experiments. In Experiment 1, Arg treatments consisted of control (no supplemental Arg); 0.15 or 0.3% supplemental Arg in the diet (low- and medium-Arg feed, respectively); and 0.3% supplemental Arg in the drinking water (Arg-water). Arginine levels were increased in Experiment 2 and consisted of the following: control (no supplemental Arg); 0.3 or 0.85% supplemental Arg in the diet (medium- and high-Arg feed, respectively); and 0.6% supplemental Arg in the drinking water (Arg-water). The water treatment followed a 3-d cyclic regimen, with supplemental Arg being provided for 24 h, followed by tap water for 48 h. When the broilers reached 37 d of age and all groups had consumed tap water for the previous 48 h, blood samples were collected from one bird per pen (Time 0, 0700 h); then supplemental Arg was provided in the Arg-water group, and additional blood samples were collected from the control and Arg-water groups at 3, 6, 12, and 36 h after Time 0. Plasma amino acids were analyzed using HPLC. Birds fed the high-CP diet were heavier at 49 d than birds fed the low-CP diet in Experiment 1, but not in Experiment 2. No differences were found in feed conversion or ascites mortality due to CP or Arg treatments in either experiment. In both experiments, plasma Arg was similar for all groups at Time 0, but increased in the Arg-water group at 3, 6, and 12 h after Arg was provided in the water. Within 12 h after returning to tap water, plasma Arg levels of the Arg-water group did not differ from the control group. Plasma urea and ornithine were parallel to plasma Arg concentrations, and the high-CP diets resulted in

  9. High energy electron cooling

    Energy Technology Data Exchange (ETDEWEB)

    Parkhomchuk, V. [Budker Institute of Nuclear Physics, Novosibirsk (Russian Federation)

    1997-09-01

    High energy electron cooling requires a very cold electron beam. The questions of using electron cooling with and without a magnetic field are presented for discussion at this workshop. The electron cooling method was suggested by G. Budker in the middle sixties. The original idea of the electron cooling was published in 1966. The design activities for the NAP-M project was started in November 1971 and the first run using a proton beam occurred in September 1973. The first experiment with both electron and proton beams was started in May 1974. In this experiment good result was achieved very close to theoretical prediction for a usual two component plasma heat exchange.

  10. Hydraulic analysis of the Wendelstein 7-X cooling loops

    Energy Technology Data Exchange (ETDEWEB)

    Smirnow, M., E-mail: michael.smirnow@ipp.mpg.de [Max-Planck-Institut für Plasmaphysik, EURATOM Association, Boltzmannstr. 2, 85748 Garching (Germany); Orozco, G.; Boscary, J. [Max-Planck-Institut für Plasmaphysik, EURATOM Association, Boltzmannstr. 2, 85748 Garching (Germany); Peacock, A. [European Commission c/o Max-Planck-Institut für Plasmaphysik, EURATOM Association, Boltzmannstr. 2, 85748 Garching (Germany)

    2013-10-15

    Highlights: • A hydraulic simulation model of the W7-X cooling loops and plasma facing components. • CFD analysis of orifice components. • Optimization and flow balancing of cooling loops. -- Abstract: Actively water cooled in vessel components (IVC) are required for the long pulse operation of the stellarator Wendelstein 7-X (W7-X). In total, the cooling pipes have a length of about 4.5 km, supplying the coolant via 304 cooling circuits for the IVC. Within each cooling loop, the IVC are organized mostly in parallel. A homogeneous flow through all branches or at least the minimum specified flow in all of the branches of a circuit is crucial for the IVC to withstand the loading conditions. A detailed hydraulic simulation model of the W7-X cooling loops was built with the commercial code Flowmaster, which is a 1-D computational fluid dynamics software. In order to handle the huge amount of pipe-work data that had to be modelled, a pre- and post-processing macro was developed to transfer the 3D Catia V5 CAD model to the 1-D piping model. Within this model, the hydraulic characteristics of different types of first wall components were simulated, and compared with their pressure drop measurements. As a result of this work, the need for optimization of some cooling loops has been identified and feasible modified solutions were selected.

  11. Evaluation of observable phase space by fast ion loss detector by calculating particle orbits in consideration of plasma facing components and three dimensional magnetic field

    Science.gov (United States)

    Shinohara, Kouji; Kim, Junghee; Kim, Jun Young; Rhee, Tongnyeol

    2016-11-01

    The orbits of lost ions can be calculated from the information obtained by a fast ion loss detector (FILD). The orbits suggest a source of the lost fast ions in a phase space. However, it is not obvious whether an observable set of orbits, or phase space, of a FILD appropriately covers the region of interest to be investigated since the observable phase space can be affected by plasma facing components (PFCs) and a magnetic configuration. A tool has been developed to evaluate the observable phase space of FILD diagnostic by calculating particle orbits by taking the PFCs and 3D magnetic field into account.

  12. Surface band bending and band alignment of plasma enhanced atomic layer deposited dielectrics on Ga- and N-face gallium nitride

    Science.gov (United States)

    Yang, Jialing; Eller, Brianna S.; Nemanich, Robert J.

    2014-09-01

    The effects of surface pretreatment, dielectric growth, and post deposition annealing on interface electronic structure and polarization charge compensation of Ga- and N-face bulk GaN were investigated. The cleaning process consisted of an ex-situ wet chemical NH4OH treatment and an in-situ elevated temperature NH3 plasma process to remove carbon contamination, reduce oxygen coverage, and potentially passivate N-vacancy related defects. After the cleaning process, carbon contamination decreased below the x-ray photoemission spectroscopy detection limit, and the oxygen coverage stabilized at ˜1 monolayer on both Ga- and N-face GaN. In addition, Ga- and N-face GaN had an upward band bending of 0.8 ± 0.1 eV and 0.6 ± 0.1 eV, respectively, which suggested the net charge of the surface states and polarization bound charge was similar on Ga- and N-face GaN. Furthermore, three dielectrics (HfO2, Al2O3, and SiO2) were prepared by plasma-enhanced atomic layer deposition on Ga- or N-face GaN and annealed in N2 ambient to investigate the effect of the polarization charge on the interface electronic structure and band offsets. The respective valence band offsets of HfO2, Al2O3, and SiO2 with respect to Ga- and N-face GaN were 1.4 ± 0.1, 2.0 ± 0.1, and 3.2 ± 0.1 eV, regardless of dielectric thickness. The corresponding conduction band offsets were 1.0 ± 0.1, 1.3 ± 0.1, and 2.3 ± 0.1 eV, respectively. Experimental band offset results were consistent with theoretical calculations based on the charge neutrality level model. The trend of band offsets for dielectric/GaN interfaces was related to the band gap and/or the electronic part of the dielectric constant. The effect of polarization charge on band offset was apparently screened by the dielectric-GaN interface states.

  13. Compatibility of lithium plasma-facing surfaces with high edge temperatures in the Lithium Tokamak Experiment (LTX)

    Science.gov (United States)

    Majeski, Dick

    2016-10-01

    High edge electron temperatures (200 eV or greater) have been measured at the wall-limited plasma boundary in the Lithium Tokamak eXperiment (LTX). High edge temperatures, with flat electron temperature profiles, are a long-predicted consequence of low recycling boundary conditions. The temperature profile in LTX, measured by Thomson scattering, varies by as little as 10% from the plasma axis to the boundary, determined by the lithium-coated high field-side wall. The hydrogen plasma density in the outer scrape-off layer is very low, 2-3 x 1017 m-3 , consistent with a low recycling metallic lithium boundary. The plasma surface interaction in LTX is characterized by a low flux of high energy protons to the lithium PFC, with an estimated Debye sheath potential approaching 1 kV. Plasma-material interactions in LTX are consequently in a novel regime, where the impacting proton energy exceeds the peak in the sputtering yield for the lithium wall. In this regime, further increases in the edge temperature will decrease, rather than increase, the sputtering yield. Despite the high edge temperature, the core impurity content is low. Zeff is 1.2 - 1.5, with a very modest contribution (Gas puffing is used to increase the plasma density. After gas injection stops, the discharge density is allowed to drop, and the edge is pumped by the low recycling lithium wall. An upgrade to LTX which includes a 35A, 20 kV neutral beam injector to provide core fueling to maintain constant density, as well as auxiliary heating, is underway. Two beam systems have been loaned to LTX by Tri Alpha Energy. Additional results from LTX, as well as progress on the upgrade - LTX- β - will be discussed. Work supported by US DOE contracts DE-AC02-09CH11466 and DE-AC05-00OR22725.

  14. Final Report for Project DE-SC0006958: "An Investigation of the Effects of magnetic Fields and Collisionality on Shock Formation in Radiatively Cooled Plasma Flows"

    Energy Technology Data Exchange (ETDEWEB)

    Bott-Suzuki, Simon

    2014-11-05

    We have developed a new experimental platform to study bow-shock formation in plasma flows generated using an inverse wire array z-pinch. We have made significant progress on the analysis of both hydrodynamic and magnetized shocks using this system. The hydrodynamic experiments show formation of a well-defined Mach cone, and highly localized shock strong associated with radiative losses and rapidly cooling over the shock. Magnetized shocks show that the balance of magnetic and ram pressures dominate the evolution of the shock region, generating a low plasma beta void around the target. Manuscripts are in preparation for publication on both these topics. We have also published the development of a novel diagnostic method which allow recovery of interferometry and self-emission data along the same line of sight. Finally, we have carried out work to integrate a kinetic routine with the 3D MHD code Gorgon, however it remains to complete this process. Both undergraduate and graduate students have been involved in both the experimental work and publications.

  15. Electron cooling

    Science.gov (United States)

    Meshkov, I.; Sidorin, A.

    2004-10-01

    The brief review of the most significant and interesting achievements in electron cooling method, which took place during last two years, is presented. The description of the electron cooling facilities-storage rings and traps being in operation or under development-is given. The applications of the electron cooling method are considered. The following modern fields of the method development are discussed: crystalline beam formation, expansion into middle and high energy electron cooling (the Fermilab Recycler Electron Cooler, the BNL cooler-recuperator, cooling with circulating electron beam, the GSI project), electron cooling in traps, antihydrogen generation, electron cooling of positrons (the LEPTA project).

  16. Crystal orientation effects on implantation of low-energy hydrogen, helium and hydrogen/helium mixtures in plasma-facing tungsten surfaces

    Science.gov (United States)

    Linn, Brian C.

    The development of plasma-facing materials (PFM) is one of the major challenges in. realizing fusion reactors. Materials deployed in PFMs must be capable of withstanding the high-flux of low-energy hydrogen and helium ions omitted from the plasma. while not hindering the plasma. Tungsten is considered a promising candidate material due to desirable material properties including its high melting temperature, good thermal conductivity and relatively low physical and chemical sputtering yields. This thesis uses molecular dynamic simulations to investigate helium and hydrogen bombardment of tungsten and the underlying physical effects (e.g. sputtering, erosion, blistering). Non-cumulative and cumulative bombardment simulations of helium, hydrogen, and hydrogen/helium bombardment of tungsten were modeled using the molecular dynamics code LAMMPS. Two orientations of monocrystalline bcc tungsten surfaces were considered, (001) and (111). Simulations were performed for temperatures ranging from 600K up to 1500K and helium / hydrogen incident energies of 20eV to 100eV . The results of these simulations showed the effect of temperature and incident particle energy on retention rates and implantation/deposition profiles in tungsten.

  17. Stochastic Cooling

    Energy Technology Data Exchange (ETDEWEB)

    Blaskiewicz, M.

    2011-01-01

    Stochastic Cooling was invented by Simon van der Meer and was demonstrated at the CERN ISR and ICE (Initial Cooling Experiment). Operational systems were developed at Fermilab and CERN. A complete theory of cooling of unbunched beams was developed, and was applied at CERN and Fermilab. Several new and existing rings employ coasting beam cooling. Bunched beam cooling was demonstrated in ICE and has been observed in several rings designed for coasting beam cooling. High energy bunched beams have proven more difficult. Signal suppression was achieved in the Tevatron, though operational cooling was not pursued at Fermilab. Longitudinal cooling was achieved in the RHIC collider. More recently a vertical cooling system in RHIC cooled both transverse dimensions via betatron coupling.

  18. A dislocation-based crystal viscoplasticity model with application to micro-engineered plasma-facing materials

    Science.gov (United States)

    Rivera, David; Huang, Yue; Po, Giacomo; Ghoniem, Nasr M.

    2017-03-01

    Materials developed with special surface architecture are shown here to be more resilient to the transient thermomechanical environments imposed by intermittent exposures to high heat flux thermal loading typical of long-pulse plasma transients. In an accompanying article, we present experimental results that show the relaxation of residual thermal stresses in micro-engineered W surfaces. A dislocation-based model is extended here within the framework of large deformation crystal plasticity. The model is applied to the deformation of single crystals, polycrystals, and micro-engineered surfaces composed of a uniform density of micro-pillars. The model is utilized to design tapered surface micro-pillar architecture, composed of a Re core and W coatings. Residual stresses generated by cyclic thermomechanical loading of these architectures show that the surface can be in a compressive stress state, following a short shakedown plasma exposure, thus mitigating surface fracture.

  19. A Quiet Sun Transition Region Energetically Isolated Jet: Evidence to Cool Plasma Injections Into The Hot Corona

    CERN Document Server

    Orange, N Brice; Oluseyi, Hakeem M

    2015-01-01

    Increasing evidence for coronal heating contributions from cooler solar atmospheric layers challenges standard solar atmospheric descriptions of bright TR emission and pervasive lower TR plasma downflows. As such, questions related to the role of dynamic transients in contributing to the total coronal energy budget are elevated. Using AIA and HMI observations in conjunction with numerical models of 3D coronal magnetic field topologies, we investigate a jet that is: erupting from a footpoint shared by heated non-potential and potential loops, energetically isolated in the TR, and occurring adjacent to a small-scale coronal filament. A non-casual relationship is established between QSTR jet dynamics and magnetic flux emergence and cancelation events, witnessed in its underlying magnetic field environment. Non-potential and potential loop demise contribute to the jet via eruptive ejections driven from cooler atmospheric layers; however, in different fashions. Small-scale flaring events from potential loop reconn...

  20. Clinical implications of basic science discoveries: janus resurrected--two faces of B cell and plasma cell biology.

    Science.gov (United States)

    Woodle, E S; Rothstein, D M

    2015-01-01

    B cells play a complex role in the immune response. In addition to giving rise to plasma cells (PCs) and promoting T cell responses via antigen presentation, they perform immunoregulatory functions. This knowledge has created concerns regarding nonspecific B cell depletional therapy because of the potential to paradoxically augment immune responses. Recent studies now indicate that PCs have immune functions beyond immunoglobulin synthesis. Evidence for a new role for PCs as potent regulatory cells (via IL-10 and IL-35 production) is discussed including the implications for PC-targeted therapies currently being developed for clinical transplantation.

  1. Estimates of RF-Induced Erosion at Antenna-Connected Beryllium Plasma-Facing Components in JET

    Energy Technology Data Exchange (ETDEWEB)

    Borodin, D. [Association EURATOM-FZJ, Julich, Germany; Groth, M. [Aalto University, Finland; Airila, M. [VTT Technical Research Centre, Finland; Colas, L. [French Atomic Energy Commission (CEA); Jacquet, P. [EURATOM / UKAEA, Abingdon, UK; Kirschner, A. [Forschungszentrum Julich, Germany; Lasa, A. [Oak Ridge National Laboratory (ORNL)

    2016-01-01

    During high-power, ion cyclotron resonance heating (ICRH), RF sheath rectification and RF induced plasma-wall interactions (RF-PWI) can potentially limit long-pulse operation. With toroidally-spaced ICRH antennas, in an ITER-like wall (ILW) environment, JET provides an ideal environment for ITER-relevant, RF-PWI studies. JET pulses combining sequential toggling of the antennas with q95 (edge safety factor) sweeping were recently used to localize RF-enhanced Be I and Be II spectral line emission at outboard poloidal (beryllium) limiters. These measurements were carried out in the early stages of JET-ILW and in ICRF-only, L-mode discharges. The appearance of enhanced emission spots was explained by their magnetic connection to regions of ICRH antennas associated with higher RF-sheath rectification [1]. The measured emission lines were the same as those already qualified in ERO modelling of inboard limiter beryllium erosion in JET limiter plasmas [2]. In the present work, we revisit this spectroscopic study with the focus on obtaining estimates of the impact of these RF-PWI on sputtering and on net erosion of the affected limiter regions. To do this, the ERO erosion and re-deposition code [2] is deployed with the detailed geometry of a JET outboard limiter. The effect of RF-PWI on sputtering is represented by varying the surface negative biasing, which affects the incidence energy and the resulting sputtering yield. The observed variations in line emission, from [1], for JET pulse 81173 of about factor 3 can be reproduced with ~ 100 200 V bias. ERO simulations show that the influence of the respective E-field on the local Be transport is localized near the surface and relatively small. Still, the distribution of the 3D plasma parameters, shadowing and other geometrical effects are quite important. The plasma parameter simulated by Edge2D-EIRENE [3] are extrapolated towards the surface and mapped in 3D. These initial modelling results are consistent with the range of

  2. Developing Structural, High-heat flux and Plasma Facing Materials for a near-term DEMO Fusion Power Plant: the EU Assessment

    CERN Document Server

    Stork, D; Boutard, J-L; Buckthorpe, D; Diegele, E; Dudarev, S L; English, C; Federici, G; Gilbert, M R; Gonzalez, S; Ibarra, A; Linsmeier, Ch; Puma, A Li; Marbach, G; Morris, P F; Packer, L W; Raj, B; Rieth, M; Tran, M Q; Ward, D J; Zinkle, S J

    2014-01-01

    The findings of the EU 'Materials Assessment Group' (MAG), within the 2012 EU Fusion Roadmap exercise, are discussed. MAG analysed the technological readiness of structural, plasma facing and high heat flux materials for a DEMO concept to be constructed in the early 2030s, proposing a coherent strategy for R&D up to a DEMO construction decision. Technical consequences for the materials required and the development, testing and modelling programmes, are analysed using: a systems engineering approach, considering reactor operational cycles, efficient maintenance and inspection requirements, and interaction with functional materials/coolants; and a project-based risk analysis, with R&D to mitigate risks from material shortcomings including development of specific risk mitigation materials.

  3. Laser-induced removal of co-deposits from graphitic plasma-facing components: Characterization of irradiated surfaces and dust particles

    Science.gov (United States)

    Gąsior, P.; Irrek, F.; Petersson, P.; Penkalla, H. J.; Rubel, M.; Schweer, B.; Sundelin, P.; Wessel, E.; Linke, J.; Philipps, V.; Emmoth, B.; Wolowski, J.; Hirai, T.

    2009-06-01

    Laser-induced fuel desorption and ablation of co-deposited layers on limiter plates from the TEXTOR tokamak have been studied. Gas phase composition was monitored in situ, whereas the ex situ studies have been focused on the examination of irradiated surfaces and broad analysis of dust generated by ablation of co-deposits. The size of the dust grains is in the range of few nanometers to hundreds of micrometers. These are fuel-rich dust particles, as determined by nuclear reaction analysis. The presence of deuterium in dust indicates that not all fuel species are transferred to the gas phase during irradiation. This also suggests that photonic removal of fuel and the ablation of co-deposit from plasma-facing components may lead to the redistribution of fuel-containing dust to surrounding areas.

  4. Waveguide cooling system

    Science.gov (United States)

    Chen, B. C. J.; Hartop, R. W.

    1981-04-01

    An improved system is described for cooling high power waveguides by the use of cooling ducts extending along the waveguide, which minimizes hot spots at the flanges where waveguide sections are connected together. The cooling duct extends along substantially the full length of the waveguide section, and each flange at the end of the section has a through hole with an inner end connected to the duct and an opposite end that can be aligned with a flange hole in another waveguide section. Earth flange is formed with a drainage groove in its face, between the through hole and the waveguide conduit to prevent leakage of cooling fluid into the waveguide. The ducts have narrowed sections immediately adjacent to the flanges to provide room for the installation of fasteners closely around the waveguide channel.

  5. 钨/铜第一壁复合材料界面行为研究%Investigation on Interface Characteristic of W/Cu Plasma Facing Component

    Institute of Scientific and Technical Information of China (English)

    种法力

    2011-01-01

    通过等离子喷涂技术在铜合金基体上制备具有不同适配层的钨涂层第一壁复合材料,并对其界面行为进行研究.结果表明,Wu/Cu、NiCrAl和Ti适配层均能明显降低W/Cu界面热应力,但其界面仍是第一壁复合材料最可能失效的位置;W/Cu适配层能有效提高此复合材料界面的结合强度,增幅高达30%.%Tungsten coating was fabricated on copper ahoy by plasma spraying and its interface characteristic was investigated The results show that the compliant layers (W/Cu, NiCrAl and Ti) are heltpful to reduce W/Cu interface thermal stress, but the most possibility failure position of W / Cu plasma facing component is still in the interface. W / Cu adaptation layer can effectively enhance the bonding strength between tungsten coating and copper substrate by 30%.

  6. High Resolution Infrared Spectra of Plasma Jet-Cooled - and Triacetylene in the C-H Stretch Region by CW Cavity Ring-Down Spectroscopy

    Science.gov (United States)

    Zhao, D.; Guss, J.; Walsh, A.; Doney, K.; Linnartz, H.

    2013-06-01

    Polyacetylenes form an important series of unsaturated hydrocarbons that are of astrophysical interest. Small polyacetylenes have been detected from infrared observations in dense atmosphere of Titan and in a protoplanetary nebula CRL 618. We present here high-resolution mid-infrared spectra of diacetylene (HC_{4}H) and triacetylene (HC_{6}H) that are recorded in a supersonically expanded pulsed planar plasma using an ultra-sensitive detection technique. This method uses an all fiber-laser-based optical parametric oscillator (OPO), in combination with continuous wave cavity ring-down spectroscopy (cw-CRDS) as a direct absorption detection tool. A hardware-based multi-trigger concept is developed to apply cw-CRDS to pulsed plasmas. Vibrationally hot but rotationally cold HC_{4}H and HC_{6}H are produced by discharging a C_{2}H_{2}/He/Ar gas mixture which is supersonically expanded into a vacuum chamber through a slit discharge nozzle. Experimental spectra are recorded at a resolution of ˜100 MHz in the 3305-3340 cm^{-1} region, which is characteristic of the C-H stretch vibrations of HC_{4}H and HC_{6}H. Jet-cooling in our experiment reduces the rotational temperature of both HC_{4}H and HC_{6}H to <20 K. In total, ˜2000 lines are measured. More than fourteen (vibrationally hot) bands for HC_{4}H and four bands for HC_{6}H are assigned based on Loomis-Wood diagrams, and nearly half of these bands are analyzed for the first time. For both molecules improved and new molecular constants of a series of vibrational levels are presented. The accurate molecular data reported here, particularly those for low-lying (bending) vibrational levels may be used to interpret the ro-vibrational transitions in the FIR and submillimeter/THz region. D. Zhao, J. Guss, A. Walsh, H. Linnartz Chem. Phys. Lett., {dx.doi.org/10.1016/j.cplett.2013.02.025}, in press, 2013.

  7. Study of the hydrogen behavior in amorphous hydrogenated materials of type a - C:H and a - SiC:H facing fusion reactor plasma; Etude du comportament de l`hydrogene dans des materiaux amorphes hydrogenes de type a - C:H et a - SiC:H devant faire face au plasma des reacteurs a fusion

    Energy Technology Data Exchange (ETDEWEB)

    Barbier, G. [Lyon-1 Univ., 69 - Villeurbanne (France). Inst. de Physique Nucleaire

    1997-04-10

    Plasma facing components of controlled fusion test devices (tokamaks) are submitted to several constraints (irradiation, high temperatures). The erosion (physical sputtering and chemical erosion) and the hydrogen recycling (retention and desorption) of these materials influence many plasma parameters and thus affect drastically the tokamak running. First, we will describe the different plasma-material interactions. It will be pointed out, how erosion and hydrogen recycling are strongly related to both chemical and physical properties of the material. In order to reduce these interactions, we have selected two amorphous hydrogenated materials (a-C:H and a-SiC:H), which are known for their good thermal and chemical qualities. Some samples have been then implanted with lithium ions at different fluences. Our materials have been then irradiated with deuterium ions at low energy. From our results, it is shown that both the lithium implantation and the use of an a - SiC:H substrate can be beneficial in enhancing the hydrogen retention. These results were completed with thermal desorption studies of these materials. It was evidenced that the hydrogen fixation was more efficient in a-SiC:H than in a-C:H substrate. Results in good agreement with those described above have been obtained by exposing a - C:H and a - SiC:H samples to the scrape off layer of the tokamak of Varennes (TdeV, Canada). A modelling of hydrogen diffusion under irradiation has been also proposed. (author) 176 refs.

  8. Study of laser-induced removal of co-deposits from tokamak plasma-facing components using ion diagnostics and optical spectroscopy

    Science.gov (United States)

    Wolowski, J.; Gasior, P.; Hoffman, J.; Kubkowska, M.; Rosinski, M.; Szymanski, Z.

    2010-10-01

    The paper presents studies of the application of ion diagnostics and optical spectroscopy for on-line measurement of the amount and characteristics of co-deposits from the laser-ablated surface of the plasma-facing components (e.g. graphite tiles). For removal of the co-deposit layer a repetitive Nd:YAG laser was used. Determination of the characteristics of ions emitted from the laser-illuminated targets was performed using ion collectors (on the basis of a time-of-flight method) and an optical spectrometer. The main ion stream parameters and spectral lines of deuterium and carbon or tungsten ions were measured depending on laser pulse parameters. The research proved that optical spectroscopy could be a convenient method for on-line observation of the co-deposited layer removal by means of laser ablation. In combination with the investigation of collected co-deposit dust, the performed study made it possible to state that laser-induced breakdown spectroscopy can be useful as a diagnostic method for the ablative co-deposited layer removal and the wall conditioning. The properties of modified surfaces of samples and collected dust (evaporated co-deposit) were determined using different measuring methods.

  9. Be/W and W/Be bilayers deposited on Si substrates with hydrogenated Fe-Cr and Fe-Cr-Al interlayers for plasma facing components

    Science.gov (United States)

    Greculeasa, S. G.; Palade, P.; Schinteie, G.; Lungu, G. A.; Porosnicu, C.; Jepu, I.; Lungu, C. P.; Kuncser, V.

    2016-12-01

    Be/W and W/Be bilayers, of interest in regard to the specific behavior of plasma facing components (PFCs) were deposited on Si substrates by thermionic vacuum arc, with Fe, Fe-Cr and Fe-Cr-Al interlayers. The interlayers, with compositions approaching the one of the reduced activation steels used in supporting PFCs, were subsequently annealed in hydrogen atmosphere. The multilayers were characterized with respect to morphologic, structural, diffusional and atomic intermixing aspects via XRD, XRR, X-ray photoemission spectroscopy and Mössbauer spectroscopy. All as-prepared samples present partially amorphous structures. A main α-Fe phase is observed, as well as (superparamagnetic) secondary Fe oxides, metallic Fe with Si, Cr, W and Be neighbors, Be-rich Fe-Be and Fe-Si phases. High amounts of tungsten and tungsten oxides were also evidenced in the Fe layer. The strong atomic intermixing of W and Be layers was indirectly supported by the unusual densities of W and Be layers and 57Fe Mössbauer spectroscopy results.

  10. Turbulence and cooling in cluster cores

    CERN Document Server

    Banerjee, Nilanjan

    2014-01-01

    We study the interplay between turbulent heating, mixing, and radiative cooling in an idealized model of cool cluster cores. Active galactic nuclei (AGN) jets are expected to drive turbulence and heat cluster cores. Cooling of the intracluster medium (ICM) and stirring by AGN jets are tightly coupled in a feedback loop. We impose the feedback loop by balancing radiative cooling with turbulent heating. In addition to heating the plasma, turbulence also mixes it, suppressing the formation of cold gas at small scales. In this regard, the effect of turbulence is analogous to thermal conduction. For uniform plasma in thermal balance (turbulent heating balancing radiative cooling), cold gas condenses only if the cooling time is shorter than the mixing time. This condition requires the turbulent kinetic energy to be $\\gtrsim$ the plasma internal energy; such high velocities in cool cores are ruled out by observations. The results with realistic magnetic fields and thermal conduction are qualitatively similar to the ...

  11. Danish Cool

    DEFF Research Database (Denmark)

    Toft, Anne Elisabeth

    2016-01-01

    Danish Cool. Keld Helmer-Petersen, Photography and the Photobook Handout exhibition text in English and Chinese by Anne Elisabeth Toft, Curator The exhibition Danish Cool. Keld Helmer-Petersen, Photography and the Photobook presents the ground-breaking work of late Danish photographer Keld Helmer...

  12. Cooled Ion Frequency Standard.

    Science.gov (United States)

    2014-09-26

    when the cooling laser is turned off, the ions are heated by: (1) background gas collisions and (2) a plasma heating process which may be " resonant ...causes heating in our Penning traps. One way resonant particle transport is mediated is by misalignm.nt between the trap’s magnetic and electric axis...using computer solutions. The trap of Fig. 1 is noteworthy because although the inner surfaces of the trap are machined with simple conical cuts, the

  13. Evaluation of helium cooling for fusion divertors

    Energy Technology Data Exchange (ETDEWEB)

    Baxi, C.B.

    1993-09-01

    The divertors of future fusion reactors will have a power throughput of several hundred MW. The peak heat flux on the diverter surface is estimated to be 5 to 15 MW/m{sup 2} at an average heat flux of 2 MW/m{sup 2}. The divertors have a requirement of both minimum temperature (100{degrees}C) and maximum temperature. The minimum temperature is dictated by the requirement to reduce the absorption of plasma, and the maximum temperature is determined by the thermo-mechanical properties of the plasma facing materials. Coolants that have been considered for fusion reactors are water, liquid metals and helium. Helium cooling has been shown to be very attractive from safety and other considerations. Helium is chemically and neutronically inert and is suitable for power conversion. The challenges associated with helium cooling are: (1) Manifold sizes; (2) Pumping power; and (3) Leak prevention. In this paper the first two of the above design issues are addressed. A variety of heat transfer enhancement techniques are considered to demonstrate that the manifold sizes and the pumping power can be reduced to acceptable levels. A helium-cooled diverter module was designed and fabricated by GA for steady-state heat flux of 10 MW/m{sup 2}. This module was recently tested at Sandia National Laboratories. At an inlet pressure of 4 MPa, the module was tested at a steady-state heat flux of 10 MW/m{sup 2}. The pumping power required was less than 1% of the power removed. These results verified the design prediction.

  14. Face pain

    Science.gov (United States)

    ... begin in other places in the body. Abscessed tooth (ongoing throbbing pain on one side of the lower face that ... face, and aggravated by eating. Call a dentist. Pain is persistent, ... by other unexplained symptoms. Call your primary provider.

  15. Experimental characterization of the ITER TF structure cooling in HELIOS test facility

    Science.gov (United States)

    Hoa, C.; Rousset, B.; Lacroix, B.; Nicollet, S.; Vallcorba, R.; Bessette, D.; Vostner, A.; Gauthier, F.

    2015-12-01

    During ITER plasma operation, large thermal loads are generated in the stainless steel Toroidal Field (TF) coil casing. To minimize the impact on the temperature of the TF Cable in Conduit Conductor (CICC), these heat loads are intercepted by case cooling channels which are implemented at the interface to the winding pack. One of the design options for the case cooling channels consists of a stainless steel pipe inserted in a rectangular groove which is machined in the casing and filled by a charged resin of high thermal conductivity. A higher number of cooling pipes is arranged at the plasma facing wall of the case, thus providing a better shielding to the TF conductor at high field. To assess the efficiency of the cooling pipes and their thermal coupling with the charged resin, experimental characterizations have been performed. First of all, the thermal resistance vs temperature of some of the individual components of a TF coil has been measured on representative samples in a cryogenic bench. Further characterizations have been performed on an integrated mock-up of the TF cooling scheme at cryogenic temperature in HELIOS test facility at CEA Grenoble. The mock-up consists of a piece of TF casing that can be heated uniformly on its surface, one cooling channel implemented in the groove which is filled with the charged resin, the filler, the ground insulation, the radial plate and one insulated CICC. The cooling pipe and the CICC are cooled by supercritical helium at 4.4 K and 5 bar; the instrumentation consists of temperature, pressure and mass flow sensors. Both stationary and transient operating modes have been investigated to assess the thermal efficiency of the case cooling design. The experimental tests are presented and the first results are discussed and analyzed in this document.

  16. Ventilative Cooling

    DEFF Research Database (Denmark)

    Heiselberg, Per Kvols; Kolokotroni, Maria

    This report, by venticool, summarises the outcome of the work of the initial working phase of IEA ECB Annex 62 Ventilative Cooling and is based on the findings in the participating countries. It presents a summary of the first official Annex 62 report that describes the state-of-the-art of ventil......This report, by venticool, summarises the outcome of the work of the initial working phase of IEA ECB Annex 62 Ventilative Cooling and is based on the findings in the participating countries. It presents a summary of the first official Annex 62 report that describes the state...

  17. Efficacy of autologous platelet-rich plasma combined with fractional ablative carbon dioxide resurfacing laser in treatment of facial atrophic acne scars: A split-face randomized clinical trial

    Directory of Open Access Journals (Sweden)

    Gita Faghihi

    2016-01-01

    Full Text Available Background: Autologous platelet-rich plasma has recently attracted significant attention throughout the medical field for its wound-healing ability. Aims: This study was conducted to investigate the potential of platelet-rich plasma combined with fractional laser therapy in the treatment of acne scarring. Methods: Sixteen patients (12 women and 4 men who underwent split-face therapy were analyzed in this study. They received ablative fractional carbon dioxide laser combined with intradermal platelet-rich plasma treatment on one half of their face and ablative fractional carbon dioxide laser with intradermal normal saline on the other half. The injections were administered immediately after laser therapy. The treatment sessions were repeated after an interval of one month. The clinical response was assessed based on patient satisfaction and the objective evaluation of serial photographs by two blinded dermatologists at baseline, 1 month after the first treatment session and 4 months after the second. The adverse effects including erythema and edema were scored by participants on days 0, 2, 4, 6, 8, 15 and 30 after each session. Results: Overall clinical improvement of acne scars was higher on the platelet-rich plasma-fractional carbon dioxide laser treated side but the difference was not statistically significant either 1 month after the first treatment session (P = 0.15 or 4 months after the second (P = 0.23. In addition, adverse effects (erythema and edema on the platelet-rich plasma-fractional carbon dioxide laser-treated side were more severe and of longer duration. Limitations: Small sample size, absence of all skin phototypes within the study group and lack of objective methods for the evaluation of response to treatment and adverse effects were the limitations. Conclusion: This study demonstrated that adding platelet-rich plasma to fractional carbon dioxide laser treatment did not produce any statistically significant synergistic effects

  18. Efficacy of autologous platelet-rich plasma combined with fractional ablative carbon dioxide resurfacing laser in treatment of facial atrophic acne scars: A split-face randomized clinical trial.

    Science.gov (United States)

    Faghihi, Gita; Keyvan, Shima; Asilian, Ali; Nouraei, Saeid; Behfar, Shadi; Nilforoushzadeh, Mohamad Ali

    2016-01-01

    Autologous platelet-rich plasma has recently attracted significant attention throughout the medical field for its wound-healing ability. This study was conducted to investigate the potential of platelet-rich plasma combined with fractional laser therapy in the treatment of acne scarring. Sixteen patients (12 women and 4 men) who underwent split-face therapy were analyzed in this study. They received ablative fractional carbon dioxide laser combined with intradermal platelet-rich plasma treatment on one half of their face and ablative fractional carbon dioxide laser with intradermal normal saline on the other half. The injections were administered immediately after laser therapy. The treatment sessions were repeated after an interval of one month. The clinical response was assessed based on patient satisfaction and the objective evaluation of serial photographs by two blinded dermatologists at baseline, 1 month after the first treatment session and 4 months after the second. The adverse effects including erythema and edema were scored by participants on days 0, 2, 4, 6, 8, 15 and 30 after each session. Overall clinical improvement of acne scars was higher on the platelet-rich plasma-fractional carbon dioxide laser treated side but the difference was not statistically significant either 1 month after the first treatment session (P = 0.15) or 4 months after the second (P = 0.23). In addition, adverse effects (erythema and edema) on the platelet-rich plasma-fractional carbon dioxide laser-treated side were more severe and of longer duration. Small sample size, absence of all skin phototypes within the study group and lack of objective methods for the evaluation of response to treatment and adverse effects were the limitations. This study demonstrated that adding platelet-rich plasma to fractional carbon dioxide laser treatment did not produce any statistically significant synergistic effects and also resulted in more severe side effects and longer downtime.

  19. Cool snacks

    DEFF Research Database (Denmark)

    Grunert, Klaus G; Brock, Steen; Brunsø, Karen

    2016-01-01

    such a product requires an interdisciplinary effort where researchers with backgrounds in psychology, anthropology, media science, philosophy, sensory science and food science join forces. We present the COOL SNACKS project, where such a blend of competences was used first to obtain thorough insight into young...

  20. Stochastic cooling

    Energy Technology Data Exchange (ETDEWEB)

    Bisognano, J.; Leemann, C.

    1982-03-01

    Stochastic cooling is the damping of betatron oscillations and momentum spread of a particle beam by a feedback system. In its simplest form, a pickup electrode detects the transverse positions or momenta of particles in a storage ring, and the signal produced is amplified and applied downstream to a kicker. The time delay of the cable and electronics is designed to match the transit time of particles along the arc of the storage ring between the pickup and kicker so that an individual particle receives the amplified version of the signal it produced at the pick-up. If there were only a single particle in the ring, it is obvious that betatron oscillations and momentum offset could be damped. However, in addition to its own signal, a particle receives signals from other beam particles. In the limit of an infinite number of particles, no damping could be achieved; we have Liouville's theorem with constant density of the phase space fluid. For a finite, albeit large number of particles, there remains a residue of the single particle damping which is of practical use in accumulating low phase space density beams of particles such as antiprotons. It was the realization of this fact that led to the invention of stochastic cooling by S. van der Meer in 1968. Since its conception, stochastic cooling has been the subject of much theoretical and experimental work. The earliest experiments were performed at the ISR in 1974, with the subsequent ICE studies firmly establishing the stochastic cooling technique. This work directly led to the design and construction of the Antiproton Accumulator at CERN and the beginnings of p anti p colliding beam physics at the SPS. Experiments in stochastic cooling have been performed at Fermilab in collaboration with LBL, and a design is currently under development for a anti p accumulator for the Tevatron.

  1. Processing of W-Cu functionally graded materials (FGM) through the powder metallurgy route: application as plasma facing components for ITER-like thermonuclear fusion reactor; Elaboration de materiaux W-Cu a gradient de proprietes fonctionnelles (FGM) par metallurgie des poudres: application en tant que composants face au plasma de machines de fusion thermonucleaire de type Iter

    Energy Technology Data Exchange (ETDEWEB)

    Raharijaona, J.J.

    2009-11-15

    The aim of this study was to study and optimize the sintering of W-Cu graded composition materials, for first wall of ITER-like thermonuclear reactor application. The graded composition in the material generates graded functional properties (Functionally Graded Materials - FGM). Rough thermomechanical calculations have shown the interest of W-Cu FGM to improve the lifetime of Plasma Facing Components (PFC). To process W-Cu FGM, powder metallurgy route was analyzed and optimized from W-CuO powder mixtures. The influence of oxide reduction on the sintering of powder mixtures was highlighted. An optimal heating treatment under He/H{sub 2} atmosphere was determined. The sintering mechanisms were deduced from the analysis of the effect of the Cu-content. Sintering of W-Cu materials with a graded composition and grain size has revealed two liquid migration steps: i) capillary migration, after the Cu-melting and, ii) expulsion of liquid, at the end of sintering, from the dense part to the porous part, due to the continuation of W-skeleton sintering. These two steps were confirmed by a model based on capillary pressure calculation. In addition, thermal conductivity measurements were conducted on sintered parts and showed values which gradually increase with the Cu-content. Hardness tests on a polished cross-section in the bulk are consistent with the composition profiles obtained and the differential grain size. (author)

  2. Pre-conceptual design activities for the materials plasma exposure experiment

    Energy Technology Data Exchange (ETDEWEB)

    Lumsdaine, Arnold, E-mail: lumsdainea@ornl.gov; Rapp, Juergen; Varma, Venugopal; Bjorholm, Thomas; Bradley, Craig; Caughman, John; Duckworth, Robert; Goulding, Richard; Graves, Van; Giuliano, Dominic; Lessard, Timothy; McGinnis, Dean; Meitner, Steven

    2016-11-01

    Highlights: • The development of long-pulse nuclear fusion devices requires testing plasma facing components at reactor relevant conditions. • The pre-conceptual design of a proposed linear plasma facility is presented. • Engineering considerations for multiple systems—plasma source and heating, magnet, vacuum, water cooling, and target, are presented. - Abstract: The development of next step fusion facilities such as DEMO or a Fusion Nuclear Science Facility (FNSF) requires first closing technology gaps in some critical areas. Understanding the material-plasma interface is necessary to enable the development of divertors for long-pulse plasma facilities. A pre-conceptual design for a proposed steady-state linear plasma device, the Materials Plasma Exposure Experiment (MPEX), is underway. A helicon plasma source along with ion cyclotron and electron Bernstein wave heating systems will produce ITER divertor relevant plasma conditions with steady-state parallel heat fluxes of up to 40 MW/m{sup 2} with ion fluxes up to 10{sup 24}/m{sup 2} s on target. Current plans are for the device to use superconducting magnets to produce 1–2 T fields. As a steady-state device, active cooling will be required for components that interact with the plasma (targets, limiters, etc.), as well as for other plasma facing components (transport regions, vacuum tanks, diagnostic ports). Design concepts for the vacuum system, the cooling system, and the plasma heating systems have been completed. The device will include the capability for handling samples that have been neutron irradiated in order to consider the multivariate effects of neutrons, plasma, and high heat-flux on the microstructure of divertor candidate materials. A vacuum cask, which can be disconnected from the high field environment in order to perform in-vacuo diagnosis of the surface evolution is also planned for the facility.

  3. A very cool cooling system

    CERN Multimedia

    Antonella Del Rosso

    2015-01-01

    The NA62 Gigatracker is a jewel of technology: its sensor, which delivers the time of the crossing particles with a precision of less than 200 picoseconds (better than similar LHC detectors), has a cooling system that might become the precursor to a completely new detector technique.   The 115 metre long vacuum tank of the NA62 experiment. The NA62 Gigatracker (GTK) is composed of a set of three innovative silicon pixel detectors, whose job is to measure the arrival time and the position of the incoming beam particles. Installed in the heart of the NA62 detector, the silicon sensors are cooled down (to about -20 degrees Celsius) by a microfluidic silicon device. “The cooling system is needed to remove the heat produced by the readout chips the silicon sensor is bonded to,” explains Alessandro Mapelli, microsystems engineer working in the Physics department. “For the NA62 Gigatracker we have designed a cooling plate on top of which both the silicon sensor and the...

  4. Cooling technique

    Energy Technology Data Exchange (ETDEWEB)

    Salamon, Todd R; Vyas, Brijesh; Kota, Krishna; Simon, Elina

    2017-01-31

    An apparatus and a method are provided. Use is made of a wick structure configured to receive a liquid and generate vapor in when such wick structure is heated by heat transferred from heat sources to be cooled off. A vapor channel is provided configured to receive the vapor generated and direct said vapor away from the wick structure. In some embodiments, heat conductors are used to transfer the heat from the heat sources to the liquid in the wick structure.

  5. Elimination of columnar microstructure in N-face InAlN, lattice-matched to GaN, grown by plasma-assisted molecular beam epitaxy in the N-rich regime

    Energy Technology Data Exchange (ETDEWEB)

    Ahmadi, Elaheh; Wienecke, Steven; Keller, Stacia; Mishra, Umesh K. [Department of Electrical and Computer Engineering, University of California, Santa Barbara, California 93106 (United States); Shivaraman, Ravi; Wu, Feng; Kaun, Stephen W.; Speck, James S. [Materials Department, University of California, Santa Barbara, California 93106 (United States)

    2014-02-17

    The microstructure of N-face InAlN layers, lattice-matched to GaN, was investigated by scanning transmission electron microscopy and atom probe tomography. These layers were grown by plasma-assisted molecular beam epitaxy (PAMBE) in the N-rich regime. Microstructural analysis shows an absence of the lateral composition modulation that was previously observed in InAlN films grown by PAMBE. A room temperature two-dimensional electron gas (2DEG) mobility of 1100 cm{sup 2}/V s and 2DEG sheet charge density of 1.9 × 10{sup 13} cm{sup −2} was measured for N-face GaN/AlN/GaN/InAlN high-electron-mobility transistors with lattice-matched InAlN back barriers.

  6. About Face

    Medline Plus

    Full Text Available Skip to Content Menu Closed (Tap to Open) Home Videos by Topic Videos by Type Search All ... What is AboutFace? Resources for Professionals Get Help Home Watch Videos by Topic Videos by Type Search ...

  7. About Face

    Medline Plus

    Full Text Available ... Home Videos by Topic Videos by Type Search All Videos PTSD Basics PTSD Treatment What is AboutFace? ... Watch Videos by Topic Videos by Type Search All Videos Learn More PTSD Basics PTSD Treatment What ...

  8. Face Forward

    Institute of Scientific and Technical Information of China (English)

    2006-01-01

    Last November, surgeons in France successfully performed the world's first face transplant surgery. Ten days later, Chen Huanran in Beijing began soliciting patients who were ready to accept a face transplant, searching for China's first such patient through an advertisement on his website and other channels. Chen, chief orthopedic surgeon at the Plastic Surgery Hospital under the Chinese Academy of Medical Sciences, has conducted more than 300 transsexual operations and was considered one of the top com...

  9. ATLAS - Liquid Cooling Systems

    CERN Multimedia

    Bonneau, P.

    1998-01-01

    Photo 1 - Cooling Unit - Side View Photo 2 - Cooling Unit - Detail Manifolds Photo 3 - Cooling Unit - Rear View Photo 4 - Cooling Unit - Detail Pump, Heater and Exchanger Photo 5 - Cooling Unit - Detail Pump and Fridge Photo 6 - Cooling Unit - Front View

  10. Basic features of low-temperature plasma formation in the course of composite coating synthesis at the active faces of complex contoured hard tools

    Science.gov (United States)

    Brzhozovsky, B. M.; Zimnyakov, D. A.; Zinina, E. P.; Martynov, V. V.; Pleshakova, E. S.; Yuvchenko, S. A.

    2016-04-01

    Basic features of combined-discharge low-temperature plasma formation around the surfaces of complex-contoured metal units are considered. It is shown that it makes the possibilities for synthesis of hardened high-durable coatings of hard tools appropriate for material processing in extreme load-temperature conditions. Experimental study of the coating formation was carried out in combination with the analysis of emission spectra of a low-temperature plasma cloud. Some practical examples of the coating applications are presented.

  11. Cool visitors

    CERN Multimedia

    2006-01-01

    Pictured, from left to right: Tim Izo (saxophone, flute, guitar), Bobby Grant (tour manager), George Pajon (guitar). What do the LHC and a world-famous hip-hop group have in common? They are cool! On Saturday, 1st July, before their appearance at the Montreux Jazz Festival, three members of the 'Black Eyed Peas' came on a surprise visit to CERN, inspired by Dan Brown's Angels and Demons. At short notice, Connie Potter (Head of the ATLAS secretariat) organized a guided tour of ATLAS and the AD 'antimatter factory'. Still curious, lead vocalist Will.I.Am met CERN physicist Rolf Landua after the concert to ask many more questions on particles, CERN, and the origin of the Universe.

  12. About Face

    Medline Plus

    Full Text Available ... PTSD (posttraumatic stress disorder). Watch the intro This is AboutFace In these videos, Veterans, family members, and ... to hear what they have to say. What is PTSD? → How does PTSD affect loved ones? → Am ...

  13. About Face

    Medline Plus

    Full Text Available ... traumatic event — like combat, an assault, or a disaster — it's normal to feel scared, keyed up, or sad at first. But if it's been months or years since the trauma and you're not feeling better, you may have PTSD (posttraumatic stress disorder). Watch the intro This is AboutFace In ...

  14. Reading faces and Facing words

    DEFF Research Database (Denmark)

    Robotham, Julia Emma; Lindegaard, Martin Weis; Delfi, Tzvetelina Shentova

    It has long been argued that perceptual processing of faces and words is largely independent, highly specialised and strongly lateralised. Studies of patients with either pure alexia or prosopagnosia have strongly contributed to this view. The aim of our study was to investigate how visual...

  15. Reading faces and Facing words

    DEFF Research Database (Denmark)

    Robotham, Julia Emma; Lindegaard, Martin Weis; Delfi, Tzvetelina Shentova

    performed within normal range on at least one test of visual categorisation, strongly suggesting that their abnormal performance with words and faces does not represent a generalised visuo-perceptual deficit. Our results suggest that posterior areas in both hemispheres may be critical for both reading...

  16. Quantified Faces

    DEFF Research Database (Denmark)

    Sørensen, Mette-Marie Zacher

    2016-01-01

    Abstract: The article presents three contemporary art projects that, in various ways, thematise questions regarding numerical representation of the human face in relation to the identification of faces, for example through the use of biometric video analysis software, or DNA technology. The Dutch...... and critically examine bias in surveillance technologies, as well as scientific investigations, regarding the stereotyping mode of the human gaze. The American artist Heather Dewey-Hagborg creates three-dimensional portraits of persons she has “identified” from their garbage. Her project from 2013 entitled....... The three works are analysed with perspectives to historical physiognomy and Francis Galton's composite portraits from the 1800s. It is argued that, rather than being a statistical compression like the historical composites, contemporary statistical visual portraits (composites) are irreversible...

  17. Scientific feedback from high heat flux actively cooled PFCs development, realization and first results in Tore Supra

    Energy Technology Data Exchange (ETDEWEB)

    Grosman, A.; Bayetti, P.; Brosset, C.; Bucalossi, J.; Cordier, J.J.; Durocher, A.; Escourbiac, F.; Ghendrih, Ph.; Guilhem, D.; Gunn, J.; Loarer, T.; Lipa, M.; Mitteau, R.; Pegourie, B.; Reichle, R.; Schlosser, J.; Tsitrone, E.; Vallet, J.C

    2004-07-01

    The implementation of actively cooled high heat flux plasma facing components (PFCs) are one of the major ingredients required for operating the Tore Supra tokamak with very long pulses. A pioneering activity has been developed in this field from the very beginning of the device operation that is today culminating with the routine operation of an actively cooled toroidal pumped limiter (TPL) capable to sustain up to 10 MW.m{sup -2} of nominal convected heat flux. A technical feedback is given from the whole development up to the industrialization and focuses on a number of critical issues, such as bonding technology analysis, manufacture processes, repair processes, destructive and non destructive testing. The actual experience in Tore Supra allows to address the question of D retention on carbon walls. Redeposition on surfaces without plasma flux is suspected to cause the final 'burial' of about the injected gas during long discharges. (authors)

  18. 新型钨基面向等离子体材料的研究进展%Development of New Tungsten-based Materials as Plasma Facing Materials

    Institute of Scientific and Technical Information of China (English)

    朱玲旭; 郭双全; 张宇; 葛昌纯

    2011-01-01

    The pure tungsten used in plasma facing materials for fusion reactors has disadvantage of difficult machining, high ductile-brittle transition temperature and low recrystallization temperature, etc. Tungsten-base material is a kind of broad application prospect of plasma facing materials, extensive research overseas and domestic. The preparation of new W-base plasma facing materials of the recent research progress is reviewed, using oxide dispersion strengthening, carbide particle dispersion enhanced, alloying enhance W-base materials and W-base composite reinforcement method. The corresponding enhancement method allows certain aspects of W-base materials performance improved, such as the flexural strength, hardness and fracture toughness, and good corrosion resistance and resistance to impact ductility, but in the thermal load, w-base materials will still fails, the relevant materials need to continue be studied about the craft and the properties.%纯钨应用于聚变堆中面向等离子体材料具有难加工、高的韧脆转变温度、低的再结晶温度等缺点,而钨基材料是一类具有广阔应用前景的面向等离子体材料,受到国内外的广泛研究.综述了采用氧化物颗粒弥散强化、碳化物颗粒弥散增强、合金化增强钨基材料和钨基复合材料等强化手段制备新型钨基面向等离子体材料的近年研究进展.采用相应的增强方法可使得钨基材料某些方面的性能得到提高,如显著提高抗弯强度、硬度和断裂韧性,具有较好的抗腐蚀性、延展性和抗冲击力等优点,但是在承受大的工作热负荷时,钨基材料仍会失效,尚需要继续进行相关材料的工艺、性能研究.

  19. Structural Analysis of LP-CM Facing Heat Flux in Tokamak and Evaluation of Stress Field and Displacement Field

    Directory of Open Access Journals (Sweden)

    Huang-bin Lin

    2012-01-01

    Full Text Available Langmuir Probes attached to plasma-facing components in a Tokamak are used to diagnose high-temperature plasma during fusion experiments. In this work, a finite element model of Langmuir Probe-Cooling Monoblock (LP-CM is established, and structural analysis of the LP-CM is carried out. The maximum von Mises stress during the 400 s incident heat flux has been given in detail, and the relationship between the sliding friction coefficient and thermal stress has been investigated systematically. A contact design is employed between Langmuir Probe and Cooling Monoblock, which is an effective method to lower the thermal stress. The thermal stress reaches the peak on the edge of the aluminium oxide ceramic interlayer. The damaged displacement field of the LP-CM has been examined fully, and the maximum global displacement is 0.444 mm.

  20. 适配层对钨铜第一壁材料热负荷性能的影响%Effects of Different Compliant Layers on the Heat Performance of W/Cu PFC (Plasma Facing Component)

    Institute of Scientific and Technical Information of China (English)

    种法力

    2010-01-01

    介绍了W/Cu PFC(Plasma Facing Components)材料制备过程,并对不同适配层第一壁材料热负荷性能进行了研究.其结果显示,虽然W-Cu混合材料、Ti和NiCrAl适配层的应用均抬高了第一壁材料的表面温度,但是承受10 MW/m2热负荷时无任何损伤,而无适配层的材料在7.5 MW/m2时表面出现微裂纹损伤,由此判断适配层的应用能够增强W/Cu PFC的热负荷性能.

  1. High confinement and high density with stationary plasma energy and strong edge radiation cooling in the upgraded Torus Experiment for Technology Oriented Research (TEXTOR-94)

    Energy Technology Data Exchange (ETDEWEB)

    Messiaen, A.M.; Ongena, J.; Unterberg, B.; Boedo, J.; Fuchs, G.; Jaspers, R.; Konen, L.; Koslowski, H.R.; Mank, G.; Rapp, J.; Samm, U.; Vandenplas, P.E.; Van Oost, G.; Van Wassenhove, G.; Waidmann, G.; Weynants, R.R.; Wolf, G.H.; Bertschinger, G.; Bonheure, G.; Brix, M.; Dumortier, P.; Durodie, F.; Finken, K.H.; Giesen, B.; Hillis, D.; Hutteman, P.; Koch, R.; Kramer-Flecken, A.; Lyssoivan, A.; Mertens, P.; Pospieszczyk, A.; Post-Zwicker, A.; Sauer, M.; Schweer, B.; Schwelberger, J.; Telesca, G.; Tokar, M.Z.; Uhlemann, R.; Vervier, M.; Winter, J. [Laboratoire de Physique des Plasmas, Laboratorium voor Plasmafysica, Association EURATOM-Belgian State, Ecole Royale Militaire-B-1000 Brussels, Koninklijke Militaire School (Belgium)]|[Institut fuer Plasmaphysik, Forschungszentrum Juelich GmbH Association Euratom-KFA, D-52425 Juelich (Germany)]|[Fusion Energy Research Program, Mechanical Engineering Division, University of California at San Diego, La Jolla, California 92093 (United States)]|[FOM Instituut voor Plasmafysica Rijnhuizen Associatie FOM-EURATOM, Nieuwegein (The Netherlands)]|[Oak Ridge National Laboratory, Oak Ridge, Tennessee 37831 (United States)

    1997-05-01

    An overview of the results obtained so far for the radiative I-mode regime on the upgraded Torus Experiment for Technology Oriented Research (TEXTOR-94) [{ital Proceedings of the 16th IEEE Symposium on Fusion Engineering} (Institute of Electrical and Electronics Engineers, Piscataway, NJ, 1995), Vol. 1, p. 470] is given. This regime is obtained under quasistationary conditions with edge neon seeding in a pumped limiter tokamak with circular cross section. It combines high confinement and high {beta} (up to a normalized beta, {beta}{sub n}=2) with low edge q values (down to q{sub a}=2.8) and high density even above the Greenwald limit together with dominant edge radiative heat exhaust, and therefore shows promise for the future of fusion research. Bulk and edge properties of these discharges are described, and a detailed account is given of the energy and particle confinement and their scaling. Energy confinement scales linearly with density as for the nonsaturated Ohmic Neo-Alcator scaling, but the usual degradation with total power remains. No deleterious effects of the neon seeding on fusion reactivity and plasma stability have been observed. {copyright} {ital 1997 American Institute of Physics.}

  2. Compositionally graded InGaN layers grown on vicinal N-face GaN substrates by plasma-assisted molecular beam epitaxy

    Science.gov (United States)

    Hestroffer, Karine; Lund, Cory; Koksaldi, Onur; Li, Haoran; Schmidt, Gordon; Trippel, Max; Veit, Peter; Bertram, Frank; Lu, Ning; Wang, Qingxiao; Christen, Jürgen; Kim, Moon J.; Mishra, Umesh K.; Keller, Stacia

    2017-05-01

    This work reports on compositionally graded (0 0 0 1 bar) N-polar InxGa1-xN layers. The InGaN grades with different final In compositions xf up to 0.25 were grown by plasma-assisted molecular beam epitaxy on vicinal GaN base layers with a miscut angle of 4° towards the m-direction. When increasing xf the surface morphology evolved from an interlacing finger structure, attributed to the Ehrlich-Schwöbel effect, towards fully strain-relaxed columnar features. Regardless of the crystal morphology and the strain state each graded sample exhibited a bright photoluminescence signal at room temperature spanning the whole visible range. Cross-sectional nanoscale cathodoluminescence evidenced a red-shift of the luminesced signal from 420 to 580 nm along the grade and also showed strong lateral emission inhomogeneities.

  3. Design of a rapidly cooled cryogenic mirror

    Science.gov (United States)

    Plummer, Ron; Hsu, Ike

    1993-01-01

    The paper discusses the design, analysis, and testing of a rapidly cooled beryllium cryogenic mirror, which is the primary mirror in the four-element optical system for the Long Wavelength Infrared Advanced Technology Seeker. The mirror is shown to meet the requirement of five minutes for cooling to cryogenic operating temperature; it also maintains its optical figure and vacuum integrity and meets the nuclear specification. Results of a detailed thermal analysis on the mirror showed that, using nitrogen gas at 80 K as coolant, the front face of the mirror can be cooled from an initial temperature of 300 K to less than 90 K within five minutes. In a vacuum chamber, using liquid nitrogen as coolant, the mirror can be cooled to 80 K within 1.5 min. The mirror is well thermally insulated, so that it can be maintained at less than its operating temperature for a long time without active cooling.

  4. FACE RECOGNITION FROM FRONT-VIEW FACE

    Institute of Scientific and Technical Information of China (English)

    WuLifang; ShenLansun

    2003-01-01

    This letter presents a face normalization algorithm based on 2-D face model to rec-ognize faces with variant postures from front-view face.A 2-D face mesh model can be extracted from faces with rotation to left or right and the corresponding front-view mesh model can be estimated according to facial symmetry.Then based on the relationship between the two mesh models,the nrmalized front-view face is formed by gray level mapping.Finally,the face recognition will be finished based on Principal Component Analysis(PCA).Experiments show that better face recognition performance is achieved in this way.

  5. FACE RECOGNITION FROM FRONT-VIEW FACE

    Institute of Scientific and Technical Information of China (English)

    Wu Lifang; Shen Lansun

    2003-01-01

    This letter presents a face normalization algorithm based on 2-D face model to recognize faces with variant postures from front-view face. A 2-D face mesh model can be extracted from faces with rotation to left or right and the corresponding front-view mesh model can be estimated according to the facial symmetry. Then based on the inner relationship between the two mesh models, the normalized front-view face is formed by gray level mapping. Finally, the face recognition will be finished based on Principal Component Analysis (PCA). Experiments show that better face recognition performance is achieved in this way.

  6. Standing Slow MHD Waves in Radiatively Cooling Coronal Loops

    CERN Document Server

    Al-Ghafri, Khalil Salim

    2015-01-01

    The standing slow magneto-acoustic oscillations in cooling coronal loops are investigated. There are two damping mechanisms which are considered to generate the standing acoustic modes in coronal magnetic loops namely thermal conduction and radiation. The background temperature is assumed to change temporally due to optically thin radiation. In particular, the background plasma is assumed to be radiatively cooling. The effects of cooling on longitudinal slow MHD modes is analytically evaluated by choosing a simple form of radiative function that ensures the temperature evolution of the background plasma due to radiation coincides with the observed cooling profile of coronal loops. The assumption of low-beta plasma leads to neglect the magnetic field perturbation and eventually reduces the MHD equations to a 1D system modelling longitudinal MHD oscillations in a cooling coronal loop. The cooling is assumed to occur on a characteristic time scale much larger than the oscillation period that subsequently enables...

  7. Evaporative Cooling of Antiprotons to Cryogenic Temperatures

    Science.gov (United States)

    Andresen, G. B.; Ashkezari, M. D.; Baquero-Ruiz, M.; Bertsche, W.; Bowe, P. D.; Butler, E.; Cesar, C. L.; Chapman, S.; Charlton, M.; Fajans, J.; Friesen, T.; Fujiwara, M. C.; Gill, D. R.; Hangst, J. S.; Hardy, W. N.; Hayano, R. S.; Hayden, M. E.; Humphries, A.; Hydomako, R.; Jonsell, S.; Kurchaninov, L.; Lambo, R.; Madsen, N.; Menary, S.; Nolan, P.; Olchanski, K.; Olin, A.; Povilus, A.; Pusa, P.; Robicheaux, F.; Sarid, E.; Silveira, D. M.; So, C.; Storey, J. W.; Thompson, R. I.; van der Werf, D. P.; Wilding, D.; Wurtele, J. S.; Yamazaki, Y.

    2010-07-01

    We report the application of evaporative cooling to clouds of trapped antiprotons, resulting in plasmas with measured temperature as low as 9 K. We have modeled the evaporation process for charged particles using appropriate rate equations. Good agreement between experiment and theory is observed, permitting prediction of cooling efficiency in future experiments. The technique opens up new possibilities for cooling of trapped ions and is of particular interest in antiproton physics, where a precise CPT test on trapped antihydrogen is a long-standing goal.

  8. Evaporative Cooling of Antiprotons to Cryogenic Temperatures

    CERN Document Server

    Andresen, G B; Baquero-Ruiz, M; Bertsche, W; Bowe, P D; Butler, E; Cesar, C L; Chapman, S; Charlton, M; Fajans, J; Friesen, T; Fujiwara, M C; Gill, D R; Hangst, J S; Hardy, W N; Hayano, R S; Hayden, M E; Humphries, A; Hydomako, R; Jonsell, S; Kurchaninov, L; Lambo, R; Madsen, N; Menary, S; Nolan, P; Olchanski, K; Olin, A; Povilus, A; Pusa, P; Robicheaux, F; Sarid, E; Silveira, D M; So, C; Storey, J W; Thompson, R I; van der Werf, D P; Wilding, D; Wurtele, J S; Yamazaki, Y

    2010-01-01

    We report the application of evaporative cooling to clouds of trapped antiprotons, resulting in plasmas with measured temperature as low as 9~K. We have modeled the evaporation process for charged particles using appropriate rate equations. Good agreement between experiment and theory is observed, permitting prediction of cooling efficiency in future experiments. The technique opens up new possibilities for cooling of trapped ions and is of particular interest in antiproton physics, where a precise CPT test on trapped antihydrogen is a long-standing goal.

  9. Famous face recognition, face matching, and extraversion.

    Science.gov (United States)

    Lander, Karen; Poyarekar, Siddhi

    2015-01-01

    It has been previously established that extraverts who are skilled at interpersonal interaction perform significantly better than introverts on a face-specific recognition memory task. In our experiment we further investigate the relationship between extraversion and face recognition, focusing on famous face recognition and face matching. Results indicate that more extraverted individuals perform significantly better on an upright famous face recognition task and show significantly larger face inversion effects. However, our results did not find an effect of extraversion on face matching or inverted famous face recognition.

  10. Face-to-face: Perceived personal relevance amplifies face processing.

    Science.gov (United States)

    Bublatzky, Florian; Pittig, Andre; Schupp, Harald T; Alpers, Georg W

    2017-05-01

    The human face conveys emotional and social information, but it is not well understood how these two aspects influence face perception. In order to model a group situation, two faces displaying happy, neutral or angry expressions were presented. Importantly, faces were either facing the observer, or they were presented in profile view directed towards, or looking away from each other. In Experiment 1 (n = 64), face pairs were rated regarding perceived relevance, wish-to-interact, and displayed interactivity, as well as valence and arousal. All variables revealed main effects of facial expression (emotional > neutral), face orientation (facing observer > towards > away) and interactions showed that evaluation of emotional faces strongly varies with their orientation. Experiment 2 (n = 33) examined the temporal dynamics of perceptual-attentional processing of these face constellations with event-related potentials. Processing of emotional and neutral faces differed significantly in N170 amplitudes, early posterior negativity (EPN), and sustained positive potentials. Importantly, selective emotional face processing varied as a function of face orientation, indicating early emotion-specific (N170, EPN) and late threat-specific effects (LPP, sustained positivity). Taken together, perceived personal relevance to the observer-conveyed by facial expression and face direction-amplifies emotional face processing within triadic group situations. © The Author (2017). Published by Oxford University Press.

  11. Hybrid radiator cooling system

    Science.gov (United States)

    France, David M.; Smith, David S.; Yu, Wenhua; Routbort, Jules L.

    2016-03-15

    A method and hybrid radiator-cooling apparatus for implementing enhanced radiator-cooling are provided. The hybrid radiator-cooling apparatus includes an air-side finned surface for air cooling; an elongated vertically extending surface extending outwardly from the air-side finned surface on a downstream air-side of the hybrid radiator; and a water supply for selectively providing evaporative cooling with water flow by gravity on the elongated vertically extending surface.

  12. Developing the Science and Technology for the Material Plasma Exposure eXperiment (MPEX)

    Science.gov (United States)

    Rapp, Juergen; Biewer, Theodore; Bigelow, Timothy; Caughman, John; Goulding, Richard; Lumsdaine, Arnold; MPEX Team Team

    2016-10-01

    The Material Plasma Exposure eXperiment (MPEX) is a device planned to address scientific and technological gaps for the development of viable plasma facing components for fusion reactor conditions (FNSF, DEMO). MPEX is designed to deliver those plasma conditions with a novel Radio Frequency plasma source able to produce high density plasmas and heat electron and ions separately with Electron Bernstein Wave (EBW) heating and Ion Cyclotron Resonance Heating (ICRH) with a total installed power of 800 kW. The science and technology for this source system is currently being tested on Proto-MPEX. This is a linear device utilizing 12 water-cooled copper coils able to achieve peak magnetic fields of 1.6T. The currently total installed heating power (for helicon, EBW and ICRH) is 330kW. An overview of the status of this development program is given with an outlook to the next steps.

  13. Flat Tile Armour Cooled by Hypervapotron Tube: a Possible Technology for ITER

    Energy Technology Data Exchange (ETDEWEB)

    Schlosser, J.; Escourbiac, F.; Bayetti, P.; Missirlian, M.; Mitteau, R. [Association Euratom CEA, DSM/DRFC/SIPP, St Paul lez Durance (France); Merola, M. [EFDA Close Support Unit, Garching (Germany); Schedler, B. [Plansee Aktiengesellschaft, Reutte (Austria). Technology Center; Bobin-Vastra, I. [Framatome-ANP, Le Creusot (France). Centre Technique

    2004-08-01

    Carbon fibre composite (CFC) flat tile armours for actively cooled plasma facing components (PFC's) are an important challenge for controlled fusion machines. Flat tile concepts, water cooled by tubes, were studied, developed, tested and finally operated with success in Tore Supra. The components were designed for 10MW/m{sup 2} and mock-ups were successfully fatigue tested at 15MW/m{sup 2}; 1000 cycles. For ITER, a tube-in-tile concept was developed and mock-ups sustained up to 25MW/m{sup 2} for 1000 cycles without failure. Recently flat tile armoured mock-ups cooled by a hypervapotron tube successfully sustained a cascade failure test under a mean heat flux of 10MW/m{sup 2} but with a doubling of the heat flux on some tiles to simulate missing tiles (500 cycles). This encouraging results lead to reconsider the limits for flat tile concept when cooled by hypervapotron (HV) tube. New tests are now scheduled to investigate these limits in regard to the ITER requirements. Experimental evidence of the concept could be gained in Tore Supra by installing a new limiter into the machine.

  14. Flat Tile Armour Cooled by Hypervapotron Tube: a Possible Technology for ITER

    Science.gov (United States)

    Schlosser, J.; Escourbiac, F.; Merola, M.; Schedler, B.; Bayetti, P.; Missirlian, M.; Mitteau, R.; Robin-Vastra, I.

    Carbon fibre composite (CFC) flat tile armours for actively cooled plasma facing components (PFC’s) are an important challenge for controlled fusion machines. Flat tile concepts, water cooled by tubes, were studied, developed, tested and finally operated with success in Tore Supra. The components were designed for 10 MW/m2 and mock-ups were successfully fatigue tested at 15 MW/m2, 1000 cycles. For ITER, a tube-in-tile concept was developed and mock-ups sustained up to 25 MW/m2 for 1000 cycles without failure. Recently flat tile armoured mock-ups cooled by a hypervapotron tube successfully sustained a cascade failure test under a mean heat flux of 10 MW/m2 but with a doubling of the heat flux on some tiles to simulate missing tiles (500 cycles). This encouraging results lead to reconsider the limits for flat tile concept when cooled by hypervapotron (HV) tube. New tests are now scheduled to investigate these limits in regard to the ITER requirements. Experimental evidence of the concept could be gained in Tore Supra by installing a new limiter into the machine.

  15. Flat tile armour cooled by hypervapotron tube: a possible technology for ITER

    Energy Technology Data Exchange (ETDEWEB)

    Schlosser, J.; Escourbiac, F.; Bayetti, P.; Missirlian, M.; Mitteau, R. [Association Euratom-CEA Cadarache, 13 - Saint-Paul-lez-Durance (France). Dept. de Recherches sur la Fusion Controlee; Merola, M. [European Fusion Development Agreement - Close Support Unit (EFDA), Garching (Germany); Schedler, B. [Plansee Aktiengesellschaft, Technology Center, Reutte/Tirol (Austria); Bobin-Vastra, I. [FRAMATOME-ANP, Centre Technique, 71 - Le Creusot (France)

    2003-07-01

    Carbon fibre composite (CFC) flat tile armours for actively cooled plasma facing components (PFC's) are an important challenge for controlled fusion machine. Flat tile concepts, water cooled by tubes, were studied, developed, tested and finally experienced with success in Tore Supra. The components were designed for 10 MW/m{sup 2} and mock-ups were successfully fatigue tested at 15 MW/m{sup 2}, 1000 cycles. For ITER, a tube-in-tile concept was developed and mock-ups sustained up to 25 MW/m{sup 2} for 1000 cycles without failure. Recently flat tile armored mock-ups cooled by Hypervapotron tube successfully sustained a cascade failure test under a mean heat flux of 10 MW/m{sup 2} but with a doubling of the heat flux on some tiles to simulate missing tiles (500 cycles). This encouraging results lead to reconsider the limits for flat tile concept when cooled by Hypervapotron tube. New tests are now scheduled to investigate these limits notably in regards to the ITER requirements. The concept could also be experimented in Tore Supra by installing a new limiter into the machine. (authors)

  16. Study of fuel consumption and cooling system in low heat rejection turbocharged diesel engines

    Energy Technology Data Exchange (ETDEWEB)

    Taymaz, I.; Gur, M.; Cally, I.; Mimaroglu, A.

    1998-07-01

    In a conventional internal combustion engine, approximately one-third of total fuel input energy is converted to useful work. Since the working gas in a practical engine cycle is not exhausted at ambient temperature, a major part of the energy is lost with the exhaust gases. In addition another major part of energy input is rejected in the form of heat via the cooling system. If the energy normally rejected to the coolant could be recovered instead on the crankshaft as useful work, then a substantial improvement in fuel economy would result. At the same time, the cooling water, antifreeze, thermostat, radiator, water pump, cooling fan, and associated hoses and clamps could be eliminated. A new trend in the field of internal combustion engines is to insulate the heat transfer surfaces such as the combustion chamber, cylinder wall, cylinder head, piston and valves by ceramic insulating materials for the improvement of engine performance and elimination of cooling system. In this study, the effect of insulated heat transfer surfaces on direct injected and turbocharged diesel engine fuel consumption and cooling system were investigated. The research engine was a four-stroke, direct injected, six cylinder, turbocharged and intercooled diesel engine. This engine was tested at different speeds and loads conditions without coating. Then, combustion chamber surfaces, cylinder head, valves and piston crown faces was coated with ceramic materials. Ceramic layers were made of CaZrO{sub 3} and MgZrO{sub 3} and plasma coated onto base of the NiCrAl bond coat. The ceramic coated research engine was tested at the same operation conditions as the standard (without coating) engine. The results indicate a reduction in fuel consumption and heat losses to engine cooling system of the ceramic coated engine.

  17. Phase change of First Wall in Water-Cooled Breeding Blankets of K-DEMO for Vertical

    Energy Technology Data Exchange (ETDEWEB)

    Kim, Geon Woo; Lee, Jeong Hun; Cho, Hyoung Kyu; Park, Goon Cherl [Seoul National University, Seoul (Korea, Republic of); Im, Ki Hak [NFRI, Daejeon (Korea, Republic of)

    2016-05-15

    The purpose of this study is to simulate thermal-hydraulic behavior of a single blanket module when plasma disruption occurs. Plasma disruptions, such as vertical displacement events (VDE), with high heat flux can cause melting and vaporization of plasma facing materials and also burnout of coolant channels. The thermal design, evaluation and validation have been performed in order to establish the conceptual design guidelines of the water-cooled breeding blanket for the K-DEMO reactor. As a part of the NFRI research, Seoul National University (SNU) is conducting transient thermal-hydraulic analysis to confirm the integrity of blanket system for plasma disruption events. Vertical displacement events (VDE) with high heat flux can cause melting and vaporization of plasma facing materials (PFCs) and also burnout of coolant channels. In order to simulate melting of first wall in blanket module when VDE occurs, one-dimensional heat conduction equations were solved numerically with modification of the specific heat of the first wall materials using effective heat capacity method. Temperature profiles in first wall for VDE are shown in fig 7 - 9. At first, temperature of tungsten rapidly raised and even exceeded its melting temperature. When VDE just ended at 0.1 second, 0.83 mm thick of tungsten melted. But the other materials including vanadium and RAFM didn't exceed their melting temperatures after 500 seconds.

  18. Liquid-Cooled Garment

    Science.gov (United States)

    1977-01-01

    A liquid-cooled bra, offshoot of Apollo moon suit technology, aids the cancer-detection technique known as infrared thermography. Water flowing through tubes in the bra cools the skin surface to improve resolution of thermograph image.

  19. Data center cooling system

    Energy Technology Data Exchange (ETDEWEB)

    Chainer, Timothy J; Dang, Hien P; Parida, Pritish R; Schultz, Mark D; Sharma, Arun

    2015-03-17

    A data center cooling system may include heat transfer equipment to cool a liquid coolant without vapor compression refrigeration, and the liquid coolant is used on a liquid cooled information technology equipment rack housed in the data center. The system may also include a controller-apparatus to regulate the liquid coolant flow to the liquid cooled information technology equipment rack through a range of liquid coolant flow values based upon information technology equipment temperature thresholds.

  20. Emittance Reduction between EBIS LINAC and Booster by Electron Beam Cooling; Is Single Pass Cooling Possible?

    Energy Technology Data Exchange (ETDEWEB)

    Hershcovitch,A.

    2008-04-01

    Electron beam cooling is examined as an option to reduce momentum of gold ions exiting the EBIS LINAC before injection into the booster. Electron beam parameters are based on experimental data (obtained at BNL) of electron beams extracted from a plasma cathode. Preliminary calculations indicate that single pass cooling is feasible; momentum spread can be reduced by more than an order of magnitude in less than one meter.

  1. Stochastic cooling in RHIC

    Energy Technology Data Exchange (ETDEWEB)

    Brennan,J.M.; Blaskiewicz, M. M.; Severino, F.

    2009-05-04

    After the success of longitudinal stochastic cooling of bunched heavy ion beam in RHIC, transverse stochastic cooling in the vertical plane of Yellow ring was installed and is being commissioned with proton beam. This report presents the status of the effort and gives an estimate, based on simulation, of the RHIC luminosity with stochastic cooling in all planes.

  2. Standing Slow MHD Waves in Radiatively Cooling Coronal Loops

    Indian Academy of Sciences (India)

    K. S. Al-Ghafri

    2015-06-01

    The standing slow magneto-acoustic oscillations in cooling coronal loops are investigated. There are two damping mechanisms which are considered to generate the standing acoustic modes in coronal magnetic loops, namely, thermal conduction and radiation. The background temperature is assumed to change temporally due to optically thin radiation. In particular, the background plasma is assumed to be radiatively cooling. The effects of cooling on longitudinal slow MHD modes is analytically evaluated by choosing a simple form of radiative function, that ensures the temperature evolution of the background plasma due to radiation, coincides with the observed cooling profile of coronal loops. The assumption of low-beta plasma leads to neglecting the magnetic field perturbation and, eventually, reduces the MHD equations to a 1D system modelling longitudinal MHD oscillations in a cooling coronal loop. The cooling is assumed to occur on a characteristic time scale, much larger than the oscillation period that subsequently enables using the WKB theory to study the properties of standing wave. The governing equation describing the time-dependent amplitude of waves is obtained and solved analytically. The analytically derived solutions are numerically evaluated to give further insight into the evolution of the standing acoustic waves. We find that the plasma cooling gives rise to a decrease in the amplitude of oscillations. In spite of the reduction in damping rate caused by rising the cooling, the damping scenario of slow standing MHD waves strongly increases in hot coronal loops.

  3. Laser cooling of solids

    OpenAIRE

    Nemova, Galina

    2009-01-01

    Parallel to advances in laser cooling of atoms and ions in dilute gas phase, which has progressed immensely, resulting in physics Nobel prizes in 1997 and 2001, major progress has recently been made in laser cooling of solids. I compare the physical nature of the laser cooling of atoms and ions with that of the laser cooling of solids. I point out all advantages of this new and very promising area of laser physics. Laser cooling of solids (optical refrigeration) at the present time can be lar...

  4. Turbine airfoil having near-wall cooling insert

    Energy Technology Data Exchange (ETDEWEB)

    Martin, Jr., Nicholas F.; Wiebe, David J.

    2017-09-12

    A turbine airfoil is provided with at least one insert positioned in a cavity in an airfoil interior. The insert extends along a span-wise extent of the turbine airfoil and includes first and second opposite faces. A first near-wall cooling channel is defined between the first face and a pressure sidewall of an airfoil outer wall. A second near-wall cooling channel is defined between the second face and a suction sidewall of the airfoil outer wall. The insert is configured to occupy an inactive volume in the airfoil interior so as to displace a coolant flow in the cavity toward the first and second near-wall cooling channels. A locating feature engages the insert with the outer wall for supporting the insert in position. The locating feature is configured to control flow of the coolant through the first or second near-wall cooling channel.

  5. European cinema: face to face with Hollywood

    NARCIS (Netherlands)

    T. Elsaesser

    2005-01-01

    In the face of renewed competition from Hollywood since the early 1980s and the challenges posed to Europe's national cinemas by the fall of the Wall in 1989, independent filmmaking in Europe has begun to re-invent itself. European Cinema: Face to Face with Hollywood re-assesses the different debate

  6. Mapping Teacher-Faces

    Science.gov (United States)

    Thompson, Greg; Cook, Ian

    2013-01-01

    This paper uses Deleuze and Guattari's concept of faciality to analyse the teacher's face. According to Deleuze and Guattari, the teacher-face is a special type of face because it is an "overcoded" face produced in specific landscapes. This paper suggests four limit-faces for teacher faciality that actualise different mixes of significance and…

  7. Solving the Cooling Flow Problem through Mechanical AGN Feedback

    CERN Document Server

    Gaspari, M; Ruszkowski, M

    2012-01-01

    Unopposed radiative cooling of plasma would lead to the cooling catastrophe, a massive inflow of condensing gas, manifest in the core of galaxies, groups and clusters. The last generation X-ray telescopes, Chandra and XMM, have radically changed our view on baryons, indicating AGN heating as the balancing counterpart of cooling. This work reviews our extensive investigation on self-regulated heating. We argue that the mechanical feedback, based on massive subrelativistic outflows, is the key to solving the cooling flow problem, i.e. dramatically quenching the cooling rates for several Gyr without destroying the cool-core structure. Using a modified version of the 3D hydrocode FLASH, we show that bipolar AGN outflows can further reproduce fundamental observed features, such as buoyant bubbles, weak shocks, metals dredge- up, and turbulence. The latter is an essential ingredient to drive nonlinear thermal instabilities, which cause the formation of extended cold gas, a residual of the quenched cooling flow and,...

  8. On "bubbly" structures in plasma facing components

    Science.gov (United States)

    Krasheninnikov, S. I.; Smirnov, R. D.

    2013-07-01

    The theoretical model of "fuzz" growth describing the main features observed in experiments is discussed. This model is based on the assumption of enhancement of plasticity of tungsten containing significant fraction of helium atoms and clusters. The results of molecular dynamics (MD) simulations support this idea and demonstrate strong reduction of the yield strength for all temperature range. The MD simulations also show that the "flow" of tungsten strongly facilitates coagulation of helium clusters, which otherwise practically immobile, and the formation of nano-bubbles.

  9. Stochastic cooling in RHIC

    Energy Technology Data Exchange (ETDEWEB)

    Brennan J. M.; Blaskiewicz, M.; Mernick, K.

    2012-05-20

    The full 6-dimensional [x,x'; y,y'; z,z'] stochastic cooling system for RHIC was completed and operational for the FY12 Uranium-Uranium collider run. Cooling enhances the integrated luminosity of the Uranium collisions by a factor of 5, primarily by reducing the transverse emittances but also by cooling in the longitudinal plane to preserve the bunch length. The components have been deployed incrementally over the past several runs, beginning with longitudinal cooling, then cooling in the vertical planes but multiplexed between the Yellow and Blue rings, next cooling both rings simultaneously in vertical (the horizontal plane was cooled by betatron coupling), and now simultaneous horizontal cooling has been commissioned. The system operated between 5 and 9 GHz and with 3 x 10{sup 8} Uranium ions per bunch and produces a cooling half-time of approximately 20 minutes. The ultimate emittance is determined by the balance between cooling and emittance growth from Intra-Beam Scattering. Specific details of the apparatus and mathematical techniques for calculating its performance have been published elsewhere. Here we report on: the method of operation, results with beam, and comparison of results to simulations.

  10. Non-destructive testing of high heat flux components of fusion devices by infrared thermography: modeling and signal processing; Controle non destructif par thermographie infrarouge des composants face au plasma des machines de fusion controlee

    Energy Technology Data Exchange (ETDEWEB)

    Cismondi, F

    2007-07-01

    In Plasma Facing Components (PFCs) the joint of the CFC armour material onto the metallic CuCrZr heat sink needs to be significant defects free. Detection of material flaws is a major issue of the PFCs acceptance protocol. A Non-Destructive Technique (NDT) based upon active infrared thermography allows testing PFCs on SATIR tests bed in Cadarache. Up to now defect detection was based on the comparison of the surface temperature evolution of the inspected component with that of a supposed 'defect-free' one (used as a reference element). This work deals with improvement of thermal signal processing coming from SATIR. In particular the contributions of the thermal modelling and statistical signal processing converge in this work. As for thermal modelling, the identification of a sensitive parameter to defect presence allows improving the quantitative estimation of defect Otherwise Finite Element (FE) modeling of SATIR allows calculating the so called deterministic numerical tile. Statistical approach via the Monte Carlo technique extends the numerical tile concept to the numerical population concept. As for signal processing, traditional statistical treatments allow a better localization of the bond defect processing thermo-signal by itself, without utilising a reference signal. Moreover the problem of detection and classification of random signals can be solved by maximizing the signal-to-noise ratio. Two filters maximizing the signal-to-noise ratio are optimized: the stochastic matched filter aims at detects detection and the constrained stochastic matched filter aims at defects classification. Performances are quantified and methods are compared via the ROC curves. (author)

  11. Cooling by Thermodynamic Induction

    Science.gov (United States)

    Patitsas, S. N.

    2017-03-01

    A method is described for cooling conductive channels to below ambient temperature. The thermodynamic induction principle dictates that the electrically biased channel will cool if the electrical conductance decreases with temperature. The extent of this cooling is calculated in detail for both cases of ballistic and conventional transport with specific calculations for carbon nanotubes and conventional metals, followed by discussions for semiconductors, graphene, and metal-insulator transition systems. A theorem is established for ballistic transport stating that net cooling is not possible. For conventional transport, net cooling is possible over a broad temperature range, with the range being size-dependent. A temperature clamping scheme for establishing a metastable nonequilibrium stationary state is detailed and followed with discussion of possible applications to on-chip thermoelectric cooling in integrated circuitry and quantum computer systems.

  12. Cooling by Thermodynamic Induction

    Science.gov (United States)

    Patitsas, S. N.

    2016-11-01

    A method is described for cooling conductive channels to below ambient temperature. The thermodynamic induction principle dictates that the electrically biased channel will cool if the electrical conductance decreases with temperature. The extent of this cooling is calculated in detail for both cases of ballistic and conventional transport with specific calculations for carbon nanotubes and conventional metals, followed by discussions for semiconductors, graphene, and metal-insulator transition systems. A theorem is established for ballistic transport stating that net cooling is not possible. For conventional transport, net cooling is possible over a broad temperature range, with the range being size-dependent. A temperature clamping scheme for establishing a metastable nonequilibrium stationary state is detailed and followed with discussion of possible applications to on-chip thermoelectric cooling in integrated circuitry and quantum computer systems.

  13. Radiant Floor Cooling Systems

    DEFF Research Database (Denmark)

    Olesen, Bjarne W.

    2008-01-01

    In many countries, hydronic radiant floor systems are widely used for heating all types of buildings such as residential, churches, gymnasiums, hospitals, hangars, storage buildings, industrial buildings, and smaller offices. However, few systems are used for cooling.This article describes a floor...... cooling system that includes such considerations as thermal comfort of the occupants, which design parameters will influence the cooling capacity and how the system should be controlled. Examples of applications are presented....

  14. Initial Cooling Experiment (ICE)

    CERN Multimedia

    Photographic Service

    1978-01-01

    In 1977, in a record-time of 9 months, the magnets of the g-2 experiment were modified and used to build a proton/antiproton storage ring: the "Initial Cooling Experiment" (ICE). It served for the verification of the cooling methods to be used for the "Antiproton Project". Stochastic cooling was proven the same year, electron cooling followed later. Also, with ICE the experimental lower limit for the antiproton lifetime was raised by 9 orders of magnitude: from 2 microseconds to 32 hours. For its previous life as g-2 storage ring, see 7405430. More on ICE: 7711282, 7809081, 7908242.

  15. Power electronics cooling apparatus

    Science.gov (United States)

    Sanger, Philip Albert; Lindberg, Frank A.; Garcen, Walter

    2000-01-01

    A semiconductor cooling arrangement wherein a semiconductor is affixed to a thermally and electrically conducting carrier such as by brazing. The coefficient of thermal expansion of the semiconductor and carrier are closely matched to one another so that during operation they will not be overstressed mechanically due to thermal cycling. Electrical connection is made to the semiconductor and carrier, and a porous metal heat exchanger is thermally connected to the carrier. The heat exchanger is positioned within an electrically insulating cooling assembly having cooling oil flowing therethrough. The arrangement is particularly well adapted for the cooling of high power switching elements in a power bridge.

  16. Study of heat fluxes on plasma facing components in a tokamak from measurements of temperature by infrared thermography; Etude des champs de flux thermique sur les composants faisant face au plasma dans un tokamak a partir de mesures de temperature par thermographie infrarouge

    Energy Technology Data Exchange (ETDEWEB)

    Daviot, R.

    2010-05-15

    The goal of this thesis is the development of a method of computation of those heat loads from measurements of temperature by infrared thermography. The research was conducted on three issues arising in current tokamaks but also future ones like ITER: the measurement of temperature on reflecting walls, the determination of thermal properties for deposits observed on the surface of tokamak components and the development of a three-dimensional, non-linear computation of heat loads. A comparison of several means of pyrometry, monochromatic, bi-chromatic and photothermal, is performed on an experiment of temperature measurement. We show that this measurement is sensitive to temperature gradients on the observed area. Layers resulting from carbon deposition by the plasma on the surface of components are modeled through a field of equivalent thermal resistance, without thermal inertia. The field of this resistance is determined, for each measurement points, from a comparison of surface temperature from infrared thermographs with the result of a simulation, which is based on a mono-dimensional linear model of components. The spatial distribution of the deposit on the component surface is obtained. Finally, a three-dimensional and non-linear computation of fields of heat fluxes, based on a finite element method, is developed here. Exact geometries of the component are used. The sensitivity of the computed heat fluxes is discussed regarding the accuracy of the temperature measurements. This computation is applied to two-dimensional temperature measurements of the JET tokamak. Several components of this tokamak are modeled, such as tiles of the divertor, upper limiter and inner and outer poloidal limiters. The distribution of heat fluxes on the surface of these components is computed and studied along the two main tokamak directions, poloidal and toroidal. Toroidal symmetry of the heat loads from one tile to another is shown. The influence of measurements spatial resolution

  17. Face-Lift

    Science.gov (United States)

    Tests and Procedures Face-lift By Mayo Clinic Staff A face-lift (rhytidectomy) is a cosmetic surgical procedure to improve the look of your face and neck. During a face-lift, facial soft tissues are lifted, excess skin is ...

  18. A Laser-Cooled Ion Source to Sympathetically Cool Positrons in the ALPHA Experiment

    Science.gov (United States)

    Sameed, Muhammed; Maxwell, Daniel; Madsen, Niels

    2016-10-01

    The ALPHA experiment at CERN studies the properties of antimatter by making precision measurements on antihydrogen. Antihydrogen atoms are produced by mixing a cloud of cold antiprotons with a dense positron plasma inside a magnetic trap. The formation of antihydrogen, of which only the coldest atoms remain trapped, depends principally on the kinetic energy of the constituent plasmas. Presently, the trapping rate is approximately two atoms in a seven minute cycle. During mixing, the antiprotons thermalize in the positron plasma prior to antihydrogen production. Colder positron temperatures would therefore result in an increased fraction of trapped antihydrogen atoms in the ALPHA mixing trap. At present, the positrons used for antihydrogen production in ALPHA reach energies of about 50 K. Much colder positron plasmas may be achieved by sympathetically cooling the positrons using laser-cooled beryllium ions. Preliminary results in the development of a low flux and low energy beryllium ion source using a pulsed ablation laser are presented. Precision ablation techniques coupled with laser-cooling can subsequently be used to effectively cool positrons. A provisional design of an ablation source is also presented for installation in the ALPHA apparatus in 2017. The authors would like to thank EPSRC for supporting this research.

  19. Elastocaloric cooling: Stretch to actively cool

    Science.gov (United States)

    Ossmer, Hinnerk; Kohl, Manfred

    2016-10-01

    The elastocaloric effect can be exploited in solid-state cooling technologies as an alternative to conventional vapour compression. Now, an elastocaloric device based on the concept of active regeneration achieves a temperature lift of 15.3 K and efficiencies competitive with other caloric-based approaches.

  20. Measure Guideline: Ventilation Cooling

    Energy Technology Data Exchange (ETDEWEB)

    Springer, D.; Dakin, B.; German, A.

    2012-04-01

    The purpose of this measure guideline on ventilation cooling is to provide information on a cost-effective solution for reducing cooling system energy and demand in homes located in hot-dry and cold-dry climates. This guideline provides a prescriptive approach that outlines qualification criteria, selection considerations, and design and installation procedures.

  1. The final cool down

    CERN Multimedia

    Thursday 29th May, the cool-down of the final sector (sector 4-5) of LHC has begun, one week after the start of the cool-down of sector 1-2. It will take five weeks for the sectors to be cooled from room temperature to 5 K and a further two weeks to complete the cool down to 1.9 K and the commissioning of cryogenic instrumentation, as well as to fine tune the cryogenic plants and the cooling loops of cryostats.Nearly a year and half has passed since sector 7-8 was cooled for the first time in January 2007. For Laurent Tavian, AT/CRG Group Leader, reaching the final phase of the cool down is an important milestone, confirming the basic design of the cryogenic system and the ability to operate complete sectors. “All the sectors have to operate at the same time otherwise we cannot inject the beam into the machine. The stability and reliability of the cryogenic system and its utilities are now very important. That will be the new challenge for the coming months,” he explains. The status of the cool down of ...

  2. Solar absorption cooling

    NARCIS (Netherlands)

    Kim, D.-S.

    2007-01-01

    As the world concerns more and more on global climate changes and depleting energy resources, solar cooling technology receives increasing interests from the public as an environment-friendly and sustainable alternative. However, making a competitive solar cooling machine for the market still

  3. Passive evaporative cooling

    NARCIS (Netherlands)

    Tzoulis, A.

    2011-01-01

    This "designers' manual" is made during the TIDO-course AR0531 Smart & Bioclimatic Design. Passive techniques for cooling are a great way to cope with the energy problem of the present day. This manual introduces passive cooling by evaporation. These methods have been used for many years in traditi

  4. Data center cooling method

    Energy Technology Data Exchange (ETDEWEB)

    Chainer, Timothy J.; Dang, Hien P.; Parida, Pritish R.; Schultz, Mark D.; Sharma, Arun

    2015-08-11

    A method aspect for removing heat from a data center may use liquid coolant cooled without vapor compression refrigeration on a liquid cooled information technology equipment rack. The method may also include regulating liquid coolant flow to the data center through a range of liquid coolant flow values with a controller-apparatus based upon information technology equipment temperature threshold of the data center.

  5. Liquid Cooled Garments

    Science.gov (United States)

    1979-01-01

    Astronauts working on the surface of the moon had to wear liquid-cooled garments under their space suits as protection from lunar temperatures which sometimes reach 250 degrees Fahrenheit. In community service projects conducted by NASA's Ames Research Center, the technology developed for astronaut needs has been adapted to portable cooling systems which will permit two youngsters to lead more normal lives.

  6. Solar absorption cooling

    NARCIS (Netherlands)

    Kim, D.-S.

    2007-01-01

    As the world concerns more and more on global climate changes and depleting energy resources, solar cooling technology receives increasing interests from the public as an environment-friendly and sustainable alternative. However, making a competitive solar cooling machine for the market still remain

  7. Coherent electron cooling

    Energy Technology Data Exchange (ETDEWEB)

    Litvinenko,V.

    2009-05-04

    Cooling intense high-energy hadron beams remains a major challenge in modern accelerator physics. Synchrotron radiation is still too feeble, while the efficiency of two other cooling methods, stochastic and electron, falls rapidly either at high bunch intensities (i.e. stochastic of protons) or at high energies (e-cooling). In this talk a specific scheme of a unique cooling technique, Coherent Electron Cooling, will be discussed. The idea of coherent electron cooling using electron beam instabilities was suggested by Derbenev in the early 1980s, but the scheme presented in this talk, with cooling times under an hour for 7 TeV protons in the LHC, would be possible only with present-day accelerator technology. This talk will discuss the principles and the main limitations of the Coherent Electron Cooling process. The talk will describe the main system components, based on a high-gain free electron laser driven by an energy recovery linac, and will present some numerical examples for ions and protons in RHIC and the LHC and for electron-hadron options for these colliders. BNL plans a demonstration of the idea in the near future.

  8. Modeling gasodynamic vortex cooling

    Science.gov (United States)

    Allahverdyan, A. E.; Fauve, S.

    2017-08-01

    We aim at studying gasodynamic vortex cooling in an analytically solvable, thermodynamically consistent model that can explain limitations on the cooling efficiency. To this end, we study an angular plus radial flow between two (coaxial) rotating permeable cylinders. Full account is taken of compressibility, viscosity, and heat conductivity. For a weak inward radial flow the model qualitatively describes the vortex cooling effect, in terms of both temperature and the decrease of the stagnation enthalpy, seen in short uniflow vortex (Ranque) tubes. The cooling does not result from external work and its efficiency is defined as the ratio of the lowest temperature reached adiabatically (for the given pressure gradient) to the lowest temperature actually reached. We show that for the vortex cooling the efficiency is strictly smaller than 1, but in another configuration with an outward radial flow, we find that the efficiency can be larger than 1. This is related to both the geometry and the finite heat conductivity.

  9. Hydronic rooftop cooling systems

    Science.gov (United States)

    Bourne, Richard C.; Lee, Brian Eric; Berman, Mark J.

    2008-01-29

    A roof top cooling unit has an evaporative cooling section that includes at least one evaporative module that pre-cools ventilation air and water; a condenser; a water reservoir and pump that captures and re-circulates water within the evaporative modules; a fan that exhausts air from the building and the evaporative modules and systems that refill and drain the water reservoir. The cooling unit also has a refrigerant section that includes a compressor, an expansion device, evaporator and condenser heat exchangers, and connecting refrigerant piping. Supply air components include a blower, an air filter, a cooling and/or heating coil to condition air for supply to the building, and optional dampers that, in designs that supply less than 100% outdoor air to the building, control the mixture of return and ventilation air.

  10. INITIAL COOLING EXPERIMENT (ICE)

    CERN Multimedia

    1979-01-01

    ICE was built in 1977, using the modified bending magnets of the g-2 muon storage ring (see 7405430). Its purpose was to verify the validity of stochastic and electron cooling for the antiproton project. Stochastic cooling proved a resounding success early in 1978 and the antiproton project could go ahead, now entirely based on stochastic cooling. Electron cooling was experimented with in 1979. The 26 kV equipment is housed in the cage to the left of the picture, adjacent to the "e-cooler" located in a straight section of the ring. With some modifications, the cooler was later transplanted into LEAR (Low Energy Antiproton Ring) and then, with further modifications, into the AD (Antiproton Decelerator), where it cools antiprotons to this day (2006). See also: 7711282, 7802099, 7809081.

  11. INITIAL COOLING EXPERIMENT (ICE)

    CERN Multimedia

    1978-01-01

    ICE was built in 1977, in a record time of 9 months, using the modified bending magnets of the g-2 muon storage ring. Its purpose was to verify the validity of stochastic and electron cooling for the antiproton project, to be launched in 1978. Already early in 1978, stochastic cooling proved a resounding success, such that the antiproton (p-pbar)project was entirely based on it. Tests of electron cooling followed later: protons of 46 MeV kinetic energy were cooled with an electron beam of 26 kV and 1.3 A. The cage seen prominently in the foreground houses the HV equipment, adjacent to the "cooler" installed in a straight section of the ring. With some modifications, the cooler was later transplanted into LEAR (Low Energy Antiproton Ring) and then, with further modifications, into the AD (Antiproton Decelerator), where it cools antiprotons to this day (2006). See also: 7711282, 7802099, 7908242.

  12. Optimization of mechanically jointed doped graphite/copper plasma facing components%核聚变掺杂石墨第一壁材料连接优化分析

    Institute of Scientific and Technical Information of China (English)

    种法力

    2012-01-01

    Two kinds of mechanically jointed graphite/copper structures were introduced, and their heat transfer performances were evaluated by means of electron beam facility and ANSYS finite element analysis. The results show that the temperature differences of two joints are not significant, and the maximum surface temperature is about 1 05S ℃ at 4 MW/m2, which has a good agreement with the numerical simulation results by ANSYS. Due to its poor heal transfer, the screw-fastened region appears the higher temperature, especially for Joint_l, it reachs about 2 000 ℃. It's indicated that Joint_2 could be more suitable to the heat flux region of less than 4 MW/nr. But under the higher heat flux, both of them are un-acceptable, an advanced plasma facing component has to be developed.%介绍核聚变实验装置掺杂石墨第一壁材料的两种机械连接方法,通过电子束热负荷实验及ANSYS有限元分析评价两种连接方式传热效果的差异.结果表明,两种连接方式传热效果相当,在4MW/m2功率密度下表面最高温度约为1055℃.ANSYS分析结果与实验结果有较高的一致性,但是由于螺钉固定区域散热较差,此处温度最高达到2000℃.对于功率密度低于4MW/m2的区域,掺杂石墨第一壁材料采用第二种方式连接较为合适;对于较高热负荷功率密度沉积的区域或者聚变实验装置,发展先进第一壁材料及连接方法十分必要.

  13. 面向等离子体钨基材料的增韧研究最新进展%Recent progress on toughening of tungsten-based materials as plasma facing materials

    Institute of Scientific and Technical Information of China (English)

    何培; 姚伟志; 吕建明; 张向东

    2016-01-01

    Pure tungsten and tungsten-based materials are promising candidates as plasma facing materials in fu-sion application due to their high melting point,good thermal conductivity,low vapor pressure,low sputter rates and low radioactivity.However,the intrinsic brittleness is considered as the main restricting factor for tungsten-based materials and draws the maj or focus of the international fusion materials community.This paper reviews recent progress of three main strategies on toughening of tungsten-based materials:alloying,dispersion strengthening and composite.Presently only Rehnium addition is known to improve tungsten fracture properties by alloying.Proper mechanical working/treatment decreases ductile-brittle transition temperature of dispersion strengthened tungsten alloys.The ductile-brittle transition temperature of tungsten foil laminates by brazing is decreased to 150 ℃.%钨及钨基材料由于其高熔点、高热导率、低蒸气压、低溅射产额及低辐照放射性等优异性能,成为具有广阔应用前景的面向等离子体材料.然而,钨基材料的本征脆性成为其作为聚变材料的主要限制因素,也成为国际聚变材料界的研究热点.本文综述了通过合金化、弥散强化以及复合材料等3种途径来增加钨基材料韧性的最新研究进展.目前合金元素中只有铼的添加能够显著改善钨的韧性;单一弥散强化方式难以有效提高钨的韧性,适当的热机械加工能够明显降低钨基材料的韧脆转变温度;通过钨箔钎焊制备出的钨层压结构复合材料的韧脆转变温度降低到了150℃.

  14. Image analysis of plasma using Labview

    CERN Document Server

    Battur, Batchimeg

    2015-01-01

    Producing and trapping of antihydrogen strongly depends on production of positron plasmas of low temperatures. Therefore the ALPHA experiment is immensely interested in reducing the temperature of positrons that are being attained in the current experiment. In recent experiments a new way of cooling of positrons has been demonstrated - sympathetic cooling. In this method the Beryllium (in our case) ions are cooled down by a laser to very low temperature and mixed with positrons. They collide with each other, resulting in cooled positrons.

  15. Silicon buried channels for pixel detector cooling

    Energy Technology Data Exchange (ETDEWEB)

    Boscardin, M., E-mail: boscardi@fbk.eu [Fondazione Bruno Kessler Trento, Via Sommarive 18, I-38123 Trento (Italy); Conci, P.; Crivellari, M.; Ronchin, S. [Fondazione Bruno Kessler Trento, Via Sommarive 18, I-38123 Trento (Italy); Bettarini, S. [Universitá di Pisa, L.go B. Pontecorvo 3, I-56127 Pisa (Italy); Istituto Nazionale di Fisica Nucleare, Sez. di Pisa, L.go B. Pontecorvo 3, I-56127 Pisa (Italy); Bosi, F. [Istituto Nazionale di Fisica Nucleare, Sez. di Pisa, L.go B. Pontecorvo 3, I-56127 Pisa (Italy)

    2013-08-01

    The support and cooling structures add important contributions to the thickness, in radiation length, of vertex detectors. In order to minimize the material budget of pixel sensors, we developed a new approach to integrate the cooling into the silicon devices. The microchannels are formed in silicon using isotropic SF{sub 6} plasma etching in a DRIE (deep reactive ion etcher) equipment. Due to their peculiar profiles, the channels can be sealed by a layer of a PECVD silicon oxide. We have realized on a silicon wafer microchannels with different geometries and hydraulic diameters. We describe the main fabrication steps of microchannels with focus on the channel definition. The experimental results are reported on the thermal characterization of several prototypes, using a mixture of glycol and water as a liquid coolant. The prototypes have shown high cooling efficiency and high-pressure breaking strength.

  16. Second sector cool down

    CERN Multimedia

    2007-01-01

    At the beginning of July, cool-down is starting in the second LHC sector, sector 4-5. The cool down of sector 4-5 may occasionally generate mist at Point 4, like that produced last January (photo) during the cool-down of sector 7-8.Things are getting colder in the LHC. Sector 7-8 has been kept at 1.9 K for three weeks with excellent stability (see Bulletin No. 16-17 of 16 April 2007). The electrical tests in this sector have got opt to a successful start. At the beginning of July the cryogenic teams started to cool a second sector, sector 4-5. At Point 4 in Echenevex, where one of the LHC’s cryogenic plants is located, preparations for the first phase of the cool-down are underway. During this phase, the sector will first be cooled to 80 K (-193°C), the temperature of liquid nitrogen. As for the first sector, 1200 tonnes of liquid nitrogen will be used for the cool-down. In fact, the nitrogen circulates only at the surface in the ...

  17. Measuring the coolness of interactive products: the COOL questionnaire

    DEFF Research Database (Denmark)

    Bruun, Anders; Raptis, Dimitrios; Kjeldskov, Jesper;

    2016-01-01

    is the COOL questionnaire. We based the creation of the questionnaire on literature suggesting that perceived coolness is decomposed to outer cool (the style of a product) and inner cool (the personality characteristics assigned to it). In this paper, we focused on inner cool, and we identified 11 inner cool......, rebelliousness and usability. These factors and their underlying 16 question items comprise the COOL questionnaire. The whole process of creating the questionnaire is presented in detail in this paper and we conclude by discussing our work against related work on coolness and HCI....

  18. Cool WISPs for stellar cooling excesses

    Energy Technology Data Exchange (ETDEWEB)

    Giannotti, Maurizio [Barry Univ., Miami Shores, FL (United States). Physical Sciences; Irastorza, Igor [Zaragoza Univ. (Spain). Dept. de Fisica Teorica; Redondo, Javier [Zaragoza Univ. (Spain). Dept. de Fisica Teorica; Max-Planck-Institut fuer Physik, Muenchen (Germany); Ringwald, Andreas [DESY Hamburg (Germany). Theory Group

    2015-12-15

    Several stellar systems (white dwarfs, red giants, horizontal branch stars and possibly the neutron star in the supernova remnant Cassiopeia A) show a preference for a mild non-standard cooling mechanism when compared with theoretical models. This exotic cooling could be provided by Weakly Interacting Slim Particles (WISPs), produced in the hot cores and abandoning the star unimpeded, contributing directly to the energy loss. Taken individually, these excesses do not show a strong statistical weight. However, if one mechanism could consistently explain several of them, the hint could be significant. We analyze the hints in terms of neutrino anomalous magnetic moments, minicharged particles, hidden photons and axion-like particles (ALPs). Among them, the ALP represents the best solution. Interestingly, the hinted ALP parameter space is accessible to the next generation proposed ALP searches, such as ALPS II and IAXO.

  19. Cool WISPs for stellar cooling excesses

    CERN Document Server

    Giannotti, Maurizio; Redondo, Javier; Ringwald, Andreas

    2015-01-01

    Several stellar systems (white dwarfs, red giants, horizontal branch stars and possibly the neutron star in the supernova remnant Cassiopeia A) show a preference for a mild non-standard cooling mechanism when compared with theoretical models. This exotic cooling could be provided by Weakly Interacting Slim Particles (WISPs), produced in the hot cores and abandoning the star unimpeded, contributing directly to the energy loss. Taken individually, these excesses do not show a strong statistical weight. However, if one mechanism could consistently explain several of them, the hint could be significant. We analyze the hints in terms of neutrino anomalous magnetic moments, minicharged particles, hidden photons and axion-like particles (ALPs). Among them, the ALP represents the best solution. Interestingly, the hinted ALP parameter space is accessible to the next generation proposed ALP searches, such as ALPS II and IAXO.

  20. Water-cooled electronics

    CERN Document Server

    Dumont, G; Righini, B

    2000-01-01

    LHC experiments demand on cooling of electronic instrumentation will be extremely high. A large number of racks will be located in underground caverns and counting rooms, where cooling by conventional climatisation would be prohibitively expensive. A series of tests on the direct water cooling of VMEbus units and of their standard power supplies is reported. A maximum dissipation of 60 W for each module and more than 1000 W delivered by the power supply to the crate have been reached. These values comply with the VMEbus specifications. (3 refs).

  1. Cooling Devices in Laser therapy.

    Science.gov (United States)

    Das, Anupam; Sarda, Aarti; De, Abhishek

    2016-01-01

    Cooling devices and methods are now integrated into most laser systems, with a view to protecting the epidermis, reducing pain and erythema and improving the efficacy of laser. On the basis of method employed, it can be divided into contact cooling and non-contact cooling. With respect to timing of irradiation of laser, the nomenclatures include pre-cooling, parallel cooling and post-cooling. The choice of the cooling device is dictated by the laser device, the physician's personal choice with respect to user-friendliness, comfort of the patient, the price and maintenance costs of the device. We hereby briefly review the various techniques of cooling, employed in laser practice.

  2. About (above) a face - a face

    OpenAIRE

    2009-01-01

    This text intents to unfold some considerations regardind the perception of the image of the Lóri’s face, from the book Uma aprendizagem ou o livro dos prazeres, published by Clarice Lispector in 1969. For that, will be studied the politicians devices who involve the apprehension of the face as a qualifying of the subject and, at the same time, its relation with the lenguage.

  3. About (above a face - a face

    Directory of Open Access Journals (Sweden)

    Diego Cervelin

    2009-07-01

    Full Text Available This text intents to unfold some considerations regardind the perception of the image of the Lóri’s face, from the book Uma aprendizagem ou o livro dos prazeres, published by Clarice Lispector in 1969. For that, will be studied the politicians devices who involve the apprehension of the face as a qualifying of the subject and, at the same time, its relation with the lenguage.

  4. LHC cooling gains ground

    CERN Multimedia

    Huillet-Miraton Catherine

    The nominal cryogenic conditions of 1.9 K have been achieved in sectors 5-6 and 7-8. This means that a quarter of the machine has reached the nominal conditions for LHC operation, having attained a temperature of below 2 K (-271°C), which is colder than interstellar space! Elsewhere, the cryogenic system in Sector 8-1 has been filled with liquid helium and cooled to 2K and will soon be available for magnet testing. Sectors 6-7 and 2-3 are being cooled down and cool-down operations have started in Sector 3-4. Finally, preparations are in hand for the cool-down of Sector 1-2 in May and of Sector 4-5, which is currently being consolidated. The LHC should be completely cold for the summer. For more information: http://lhc.web.cern.ch/lhc/Cooldown_status.htm.

  5. Why Exercise Is Cool

    Science.gov (United States)

    ... to Know About Puberty Train Your Temper Why Exercise Is Cool KidsHealth > For Kids > Why Exercise Is ... day and your body will thank you later! Exercise Makes Your Heart Happy You may know that ...

  6. Warm and Cool Dinosaurs.

    Science.gov (United States)

    Mannlein, Sally

    2001-01-01

    Presents an art activity in which first grade students draw dinosaurs in order to learn about the concept of warm and cool colors. Explains how the activity also helped the students learn about the concept of distance when drawing. (CMK)

  7. Cooling of wood briquettes

    Directory of Open Access Journals (Sweden)

    Adžić Miroljub M.

    2013-01-01

    Full Text Available This paper is concerned with the experimental research of surface temperature of wood briquettes during cooling phase along the cooling line. The cooling phase is an important part of the briquette production technology. It should be performed with care, otherwise the quality of briquettes could deteriorate and possible changes of combustion characteristics of briquettes could happen. The briquette surface temperature was measured with an IR camera and a surface temperature probe at 42 sections. It was found that the temperature of briquette surface dropped from 68 to 34°C after 7 minutes spent at the cooling line. The temperature at the center of briquette, during the 6 hour storage, decreased to 38°C.

  8. Stacking with stochastic cooling

    Energy Technology Data Exchange (ETDEWEB)

    Caspers, Fritz E-mail: Fritz.Caspers@cern.ch; Moehl, Dieter

    2004-10-11

    Accumulation of large stacks of antiprotons or ions with the aid of stochastic cooling is more delicate than cooling a constant intensity beam. Basically the difficulty stems from the fact that the optimized gain and the cooling rate are inversely proportional to the number of particles 'seen' by the cooling system. Therefore, to maintain fast stacking, the newly injected batch has to be strongly 'protected' from the Schottky noise of the stack. Vice versa the stack has to be efficiently 'shielded' against the high gain cooling system for the injected beam. In the antiproton accumulators with stacking ratios up to 10{sup 5} the problem is solved by radial separation of the injection and the stack orbits in a region of large dispersion. An array of several tapered cooling systems with a matched gain profile provides a continuous particle flux towards the high-density stack core. Shielding of the different systems from each other is obtained both through the spatial separation and via the revolution frequencies (filters). In the 'old AA', where the antiproton collection and stacking was done in one single ring, the injected beam was further shielded during cooling by means of a movable shutter. The complexity of these systems is very high. For more modest stacking ratios, one might use azimuthal rather than radial separation of stack and injected beam. Schematically half of the circumference would be used to accept and cool new beam and the remainder to house the stack. Fast gating is then required between the high gain cooling of the injected beam and the low gain stack cooling. RF-gymnastics are used to merge the pre-cooled batch with the stack, to re-create free space for the next injection, and to capture the new batch. This scheme is less demanding for the storage ring lattice, but at the expense of some reduction in stacking rate. The talk reviews the 'radial' separation schemes and also gives some

  9. Collisional Thermalization in Strongly Coupled Ultracold Neutral Plasmas

    Science.gov (United States)

    2017-01-25

    ultracold neutral plasmas, which are formed by photoionizing laser cooled atoms. These are the coldest neutral plasmas every created, and they allow...and received the “Editors’ Suggestion” distinction. We also completed numerical modeling of laser cooling a neutral plasma and construction of the...We also had to install several laser systems for driving the laser - cooling transitions in the ions and for repumping atoms out of dark states

  10. Cooling of electronic equipment

    DEFF Research Database (Denmark)

    A. Kristensen, Anders Schmidt

    2003-01-01

    Cooling of electronic equipment is studied. The design size of electronic equipment decrease causing the thermal density to increase. This affect the cooling which can cause for example failures of critical components due to overheating or thermal induced stresses. Initially a pin fin heat sink...... is considered as extruded profiles are inadequate for compact designs. An optimal pin fin shape and configuration is sought also taking manufacturing costs into consideration. Standard methods for geometrical modeling and thermal analysis are applied....

  11. Anomalous law of cooling

    OpenAIRE

    Lapas, Luciano C.; Ferreira, Rogelma M. S.; Oliveira, Fernando A.; Rubí, J. Miguel

    2014-01-01

    We analyze the temperature relaxation phenomena of systems in contact with a thermal reservoir that undergo a non-Markovian diffusion process. From a generalized Langevin equation, we show that the temperature is governed by a law of cooling of the Newton's law type in which the relaxation time depends on the velocity autocorrelation and is then characterized by the memory function. The analysis of the temperature decay reveals the existence of an anomalous cooling in which the temperature ma...

  12. Cooling tower waste reduction

    Energy Technology Data Exchange (ETDEWEB)

    Coleman, S.J.; Celeste, J.; Chine, R.; Scott, C.

    1998-05-01

    At Lawrence Livermore National Laboratory (LLNL), the two main cooling tower systems (central and northwest) were upgraded during the summer of 1997 to reduce the generation of hazardous waste. In 1996, these two tower systems generated approximately 135,400 lbs (61,400 kg) of hazardous sludge, which is more than 90 percent of the hazardous waste for the site annually. At both, wet decks (cascade reservoirs) were covered to block sunlight. Covering the cascade reservoirs reduced the amount of chemical conditioners (e.g. algaecide and biocide), required and in turn the amount of waste generated was reduced. Additionally, at the northwest cooling tower system, a sand filtration system was installed to allow cyclical filtering and backflushing, and new pumps, piping, and spray nozzles were installed to increase agitation. the appurtenance upgrade increased the efficiency of the cooling towers. The sand filtration system at the northwest cooling tower system enables operators to continuously maintain the cooling tower water quality without taking the towers out of service. Operational costs (including waste handling and disposal) and maintenance activities are compared for the cooling towers before and after upgrades. Additionally, the effectiveness of the sand filter system in conjunction with the wet deck covers (northwest cooling tower system), versus the cascade reservoir covers alone (south cooling tower south) is discussed. the overall expected return on investment is calculated to be in excess of 250 percent. this upgrade has been incorporated into the 1998 DOE complex-wide water conservation project being led by Sandia National Laboratory/Albuquerque.

  13. Cooling with Superfluid Helium

    CERN Document Server

    Lebrun, P

    2014-01-01

    The technical properties of helium II (‘superfluid’ helium) are presented in view of its applications to the cooling of superconducting devices, particularly in particle accelerators. Cooling schemes are discussed in terms of heat transfer performance and limitations. Large-capacity refrigeration techniques below 2 K are reviewed, with regard to thermodynamic cycles as well as process machinery. Examples drawn from existing or planned projects illustrate the presentation. Keywords: superfluid helium, cryogenics

  14. Laser cooling of solids

    Energy Technology Data Exchange (ETDEWEB)

    Epstein, Richard I [Los Alamos National Laboratory; Sheik-bahae, Mansoor [UNM

    2008-01-01

    We present an overview of solid-state optical refrigeration also known as laser cooling in solids by fluorescence upconversion. The idea of cooling a solid-state optical material by simply shining a laser beam onto it may sound counter intuitive but is rapidly becoming a promising technology for future cryocooler. We chart the evolution of this science in rare-earth doped solids and semiconductors.

  15. Investigation of plasma–surface interaction at plasma beam facilities

    Energy Technology Data Exchange (ETDEWEB)

    Kurnaev, V., E-mail: kurnaev@plasma.mephi.ru [National Research Nuclear University MEPhI (Moscow Engineering Physics Institute), Kashirskoe sh. 31, 115409 Moscow (Russian Federation); Vizgalov, I.; Gutorov, K. [National Research Nuclear University MEPhI (Moscow Engineering Physics Institute), Kashirskoe sh. 31, 115409 Moscow (Russian Federation); Tulenbergenov, T.; Sokolov, I.; Kolodeshnikov, A.; Ignashev, V.; Zuev, V.; Bogomolova, I. [Institute of Atomic Energy, National Nuclear Center the Republic of Kazakhstan, Street Krasnoarmejsky, 10, 071100 Kurchatov (Kazakhstan); Klimov, N. [SRC RF TRINITI, ul. Pushkovykh, vladenie 12, Troitsk, 142190 Moscow (Russian Federation)

    2015-08-15

    The new Plasma Beam Facility (PBF) has been put into operation for assistance in testing of plasma faced components at Material Science Kazakhstan Tokamak (KTM). PBF includes a powerful electron gun (up to 30 kV, 1 A) and a high vacuum chamber with longitudinal magnetic field coils (up to 0.2 T). The regime of high vacuum electron beam transportation is used for thermal tests with power density at the target surface up to 10 GW/m{sup 2}. The beam plasma discharge (BPD) regime with a gas-puff is used for generation of intensive ion fluxes up to 3 ⋅ 10{sup 22} m{sup −2} s{sup −1}. Initial tests of the KTM PBF’s capabilities were carried out: various discharge regimes, carbon deposits cleaning, simultaneous thermal and ion impacts on radiation cooled refractory targets. With a water-cooled target the KTM PBF could be used for high heat flux tests of materials (validated by the experiment with W mock-up at the PR-2 PBF)

  16. Stacking with Stochastic Cooling

    CERN Document Server

    Caspers, Friedhelm

    2004-01-01

    Accumulation of large stacks of antiprotons or ions with the aid of stochastic cooling is more delicate than cooling a constant intensity beam. Basically the difficulty stems from the fact that the optimized gain and the cooling rate are inversely proportional to the number of particles seen by the cooling system. Therefore, to maintain fast stacking, the newly injected batch has to be strongly protected from the Schottky noise of the stack. Vice versa the stack has to be efficiently shielded against the high gain cooling system for the injected beam. In the antiproton accumulators with stacking ratios up to 105, the problem is solved by radial separation of the injection and the stack orbits in a region of large dispersion. An array of several tapered cooling systems with a matched gain profile provides a continuous particle flux towards the high-density stack core. Shielding of the different systems from each other is obtained both through the spatial separation and via the revolution frequencies (filters)....

  17. Alternative Room Cooling System

    Directory of Open Access Journals (Sweden)

    Md. Fazle Rabbi

    2015-06-01

    Full Text Available The rapidly growing population results in an increasing demand for much more residential and commercial buildings, which leads to vertical growth of the buildings and needs proper ventilation of those buildings. Natural air ventilation system is not sufficient for conventional building structures. Hence fans and air-conditioners are must to meet the requirement of proper ventilation as well as space conditioning. Globally building sector consumes largest energy in heating, cooling, ventilation and space conditioning. This load can be minimized by the application of solar chimney and modification in building structure for heating, cooling, ventilation and space conditioning. Passive solar cooling is a subject of interest to provide cooling by using the sun, a powerful energy source. This is done for ensuring human comfort in hot climates. ASHRAE (American Society of Heating, Refrigerating and Air Conditioning Engineers defines Comfort as ‘that state of mind which expresses satisfaction with the thermal environment.’ The present paper describes the development of a solar passive cooling system, which can provide thermal cooling throughout the summer season in hot and humid climates. The constructed passive system works on natural convection mode of air. Such system reduces the inside temperature of up to 5°C from the atmospheric temperature. Temperature can further be reduced by the judicious use of night ventilation.

  18. Ultracold Neutral Plasmas

    CERN Document Server

    Killian, T C; Gupta, P; Laha, S; Martinez, Y N; Mickelson, P G; Nagel, S B; Saenz, A D; Simien, C E; Killian, Thomas C.

    2005-01-01

    Ultracold neutral plasmas are formed by photoionizing laser-cooled atoms near the ionization threshold. Through the application of atomic physics techniques and diagnostics, these experiments stretch the boundaries of traditional neutral plasma physics. The electron temperature in these plasmas ranges from 1-1000 K and the ion temperature is around 1 K. The density can approach $10^{11}$ cm$^{-3}$. Fundamental interest stems from the possibility of creating strongly-coupled plasmas, but recombination, collective modes, and thermalization in these systems have also been studied. Optical absorption images of a strontium plasma, using the Sr$^+$ ${^2S_{1/2}} -> {^2P_{1/2}}$ transition at 422 nm, depict the density profile of the plasma, and probe kinetics on a 50 ns time-scale. The Doppler-broadened ion absorption spectrum measures the ion velocity distribution, which gives an accurate measure of the ion dynamics in the first microsecond after photoionization.

  19. Selective brain cooling reduces water turnover in dehydrated sheep.

    Directory of Open Access Journals (Sweden)

    W Maartin Strauss

    Full Text Available In artiodactyls, arterial blood destined for the brain can be cooled through counter-current heat exchange within the cavernous sinus via a process called selective brain cooling. We test the hypothesis that selective brain cooling, which results in lowered hypothalamic temperature, contributes to water conservation in sheep. Nine Dorper sheep, instrumented to provide measurements of carotid blood and brain temperature, were dosed with deuterium oxide (D2O, exposed to heat for 8 days (40 ◦C for 6-h per day and deprived of water for the last five days (days 3 to 8. Plasma osmolality increased and the body water fraction decreased over the five days of water deprivation, with the sheep losing 16.7% of their body mass. Following water deprivation, both the mean 24h carotid blood temperature and the mean 24h brain temperature increased, but carotid blood temperature increased more than did brain temperature resulting in increased selective brain cooling. There was considerable inter-individual variation in the degree to which individual sheep used selective brain cooling. In general, sheep spent more time using selective brain cooling, and it was of greater magnitude, when dehydrated compared to when they were euhydrated. We found a significant positive correlation between selective brain cooling magnitude and osmolality (an index of hydration state. Both the magnitude of selective brain cooling and the proportion of time that sheep spent selective brain cooling were negatively correlated with water turnover. Sheep that used selective brain cooling more frequently, and with greater magnitude, lost less water than did conspecifics using selective brain cooling less efficiently. Our results show that a 50 kg sheep can save 2.6L of water per day (~60% of daily water intake when it employs selective brain cooling for 50% of the day during heat exposure. We conclude that selective brain cooling has a water conservation function in artiodactyls.

  20. Comparing Social Stories™ to Cool versus Not Cool

    Science.gov (United States)

    Leaf, Justin B.; Mitchell, Erin; Townley-Cochran, Donna; McEachin, John; Taubman, Mitchell; Leaf, Ronald

    2016-01-01

    In this study we compared the cool versus not cool procedure to Social Stories™ for teaching various social behaviors to one individual diagnosed with autism spectrum disorder. The researchers randomly assigned three social skills to the cool versus not cool procedure and three social skills to the Social Stories™ procedure. Naturalistic probes…

  1. US-Japan workshop Q-181 on high heat flux components and plasma-surface interactions for next devices: Proceedings

    Energy Technology Data Exchange (ETDEWEB)

    McGrath, R.T. [ed.] [Sandia National Labs., Albuquerque, NM (United States); Yamashina, T. [ed.] [Hokkadio Univ. (Japan)

    1994-04-01

    This report contain viewgraphs of papers from the following sessions: plasma facing components issues for future machines; recent PMI results from several tokamaks; high heat flux technology; plasma facing components design and applications; plasma facing component materials and irradiation damage; boundary layer plasma; plasma disruptions; conditioning and tritium; and erosion/redeposition.

  2. The composite face illusion.

    Science.gov (United States)

    Murphy, Jennifer; Gray, Katie L H; Cook, Richard

    2017-04-01

    Few findings in cognitive science have proved as influential as the composite face effect. When the top half of one face is aligned with the bottom half of another, and presented upright, the resulting composite arrangement induces a compelling percept of a novel facial configuration. Findings obtained using composite face procedures have contributed significantly to our understanding of holistic face processing, the detrimental effects of face inversion, the development of face perception, and aberrant face perception in clinical populations. Composite paradigms continue to advance our knowledge of face perception, as exemplified by their recent use for investigating the perceptual mechanisms underlying dynamic face processing. However, the paradigm has been the subject of intense scrutiny, particularly over the last decade, and there is a growing sense that the composite face illusion, whilst easy to illustrate, is deceptively difficult to measure and interpret. In this review, we provide a focussed overview of the existing composite face literature, and identify six priorities for future research. Addressing these gaps in our knowledge will aid the evaluation and refinement of theoretical accounts of the illusion.

  3. Measuring the coolness of interactive products: the COOL questionnaire

    DEFF Research Database (Denmark)

    Bruun, Anders; Raptis, Dimitrios; Kjeldskov, Jesper

    2016-01-01

    characteristics. These were used to create an initial pool of question items and 2236 participants were asked to assess 16 mobile devices. By performing exploratory and confirmatory factor analyses, we identified three factors that can measure the perceived inner coolness of interactive products: desirability...... is the COOL questionnaire. We based the creation of the questionnaire on literature suggesting that perceived coolness is decomposed to outer cool (the style of a product) and inner cool (the personality characteristics assigned to it). In this paper, we focused on inner cool, and we identified 11 inner cool...

  4. Suncatcher and cool pool. Project report

    Energy Technology Data Exchange (ETDEWEB)

    Hammond, J.

    1981-03-01

    The Suncatcher is a simple, conical solar concentrating device that captures light entering clerestory windows and directs it onto thermal storage elements at the back of a south facing living space. The cone shape and inclination are designed to capture low angle winter sunlight and to reflect away higher angle summer sunlight. It is found that winter radiation through a Suncatcher window is 40 to 50% higher than through an ordinary window, and that the average solar fraction is 59%. Water-filled steal culvert pipes used for thermal storage are found to undergo less stratification, and thus to be more effective, when located where sunlight strikes the bottom rather than the top. Five Suncatcher buildings are described. Designs are considered for 32/sup 0/, 40/sup 0/ and 48/sup 0/ north latitude, and as the latitude increases, the inclination angle of the cone should be lowered. The Cool Pool is an evaporating, shaded roof pond which thermosiphons cool water into water-filled columns within a building. Preliminary experiments indicate that the best shade design has unimpeded north sky view, good ventilation, complete summer shading, a low architectural profile, and low cost attic vent lowers work. Another series of experiments established the satisfactory performance of the Cool Pool on a test building using four water-filled cylinders, two cylinders, and two cylinders connected to the Cool Pool through a heat exchanger. Although an unshaded pool cools better at night than a shaded one, daytime heat gain far offsets this advantage. A vinyl waterbag heat exchanger was developed for use with the Cool Pool. (LEW)

  5. The definition of cool

    Energy Technology Data Exchange (ETDEWEB)

    Nichiporuk, A.

    2005-05-01

    A new air cooling system at Agnico-Eagle's LaRonde mine, located in the Abitibi Region of Quebec is described. The new system serves a mine operating at 7,250 plus feet level. The system is installed at the surface; it utilizes ammonia to cool water, which cools the air. The system consists of four compressors which lower the temperature of the ammonia to minus 2 degrees C. Water, which at this temperature is 14 degrees, and ammonia pass through a plate heat exchanger simultaneously, however, without coming into contact with each other. The heat transfer that occurs causes the water's temperature to drop to 2 degrees C. The total volume of water cooled is 220 litres per second. The system is capable of reducing 636,000 cfm of air from 30 degrees C to 6 degrees C, to which 214,000 cfm of non-cooled air is added. This mixture, which is maintained at approximately 8 degrees C throughout the summer season, is sent underground to the deepest parts of the mine. The system runs from June to September, depending on the weather. In the evenings, when the temperature dips to around four to five degrees C, the water is shut down and side doors are opened to prevent the water from freezing.

  6. Effect of radiative cooling on collapsing charged grains

    Indian Academy of Sciences (India)

    B P Pandey; Vinod Krishan; M Roy

    2001-01-01

    The effect of the radiative cooling of electrons on the gravitational collapse of cold dust grains with fluctuating electric charge is investigated. We find that the radiative cooling as well as the charge fluctuations, both, enhance the growth rate of the Jeans instability. However, the Jeans length, which is zero for cold grains and nonradiative plasma, becomes finite in the presence of radiative cooling of electrons and is further enhanced due to charge fluctuations of grains resulting in an increased threshold of the spatial scale for the Jeans instability.

  7. Aspects of Household Cooling Technology

    OpenAIRE

    Mrzyglod, Matthias; Holzer, Stefan

    2014-01-01

    Actually available household cooling appliances in the highest efficiency class may consume less then 10W average electrical power. To achieve such power consumptions special challenges for the cooling system had to overcome. The related cooling system design has to consider several effects, which arise from the corresponding low cooling capacity demand, start/stop cycles and additional power consumptions by control accessories. The lecture provides symptomatic aspects of cooling technology, ...

  8. Open Microwave Cavity for use in a Purcell Enhancement Cooling Scheme

    CERN Document Server

    Evetts, N; Bizzotto, D; Longuevergne, D; Hardy, W N

    2016-01-01

    A microwave cavity is described which can be used to cool lepton plasmas for potential use in synthesis of antihydrogen. The cooling scheme is an incarnation of the Purcell Effect: when plasmas are coupled to a microwave cavity, the plasma cooling rate is resonantly enhanced through increased spontaneous emission of cyclotron radiation. The cavity forms a three electrode section of a Penning-Malmberg trap and has a bulged cylindrical geometry with open ends aligned with the magnetic trapping axis. This allows plasmas to be injected and removed from the cavity without the need for moving parts while maintaining high quality factors for resonant modes. The cavity includes unique surface preparations for adjusting the cavity quality factor and achieving anti-static shielding using thin layers of nichrome and colloidal graphite respectively. Geometric design considerations for a cavity with strong cooling power and low equilibrium plasma temperatures are discussed. Cavities of this weak-bulge design will be appli...

  9. Ultracold neutral plasmas

    Science.gov (United States)

    Lyon, M.; Rolston, S. L.

    2017-01-01

    By photoionizing samples of laser-cooled atoms with laser light tuned just above the ionization limit, plasmas can be created with electron and ion temperatures below 10 K. These ultracold neutral plasmas have extended the temperature bounds of plasma physics by two orders of magnitude. Table-top experiments, using many of the tools from atomic physics, allow for the study of plasma phenomena in this new regime with independent control over the density and temperature of the plasma through the excitation process. Characteristic of these systems is an inhomogeneous density profile, inherited from the density distribution of the laser-cooled neutral atom sample. Most work has dealt with unconfined plasmas in vacuum, which expand outward at velocities of order 100 m/s, governed by electron pressure, and with lifetimes of order 100 μs, limited by stray electric fields. Using detection of charged particles and optical detection techniques, a wide variety of properties and phenomena have been observed, including expansion dynamics, collective excitations in both the electrons and ions, and collisional properties. Through three-body recombination collisions, the plasmas rapidly form Rydberg atoms, and clouds of cold Rydberg atoms have been observed to spontaneously avalanche ionize to form plasmas. Of particular interest is the possibility of the formation of strongly coupled plasmas, where Coulomb forces dominate thermal motion and correlations become important. The strongest impediment to strong coupling is disorder-induced heating, a process in which Coulomb energy from an initially disordered sample is converted into thermal energy. This restricts electrons to a weakly coupled regime and leaves the ions barely within the strongly coupled regime. This review will give an overview of the field of ultracold neutral plasmas, from its inception in 1999 to current work, including efforts to increase strong coupling and effects on plasma properties due to strong coupling.

  10. Doppler cooling a microsphere

    CERN Document Server

    Barker, P F

    2010-01-01

    Doppler cooling the center-of-mass motion of an optically levitated microsphere via the velocity dependent scattering force from narrow whispering gallery mode (WGM) resonances is described. Light that is red detuned from the WGM resonance can be used to damp the center-of-mass motion in a process analogous to the Doppler cooling of atoms. Leakage of photons out of the microsphere when the incident field is near resonant with the narrow WGM resonance acts to damp the motion of the sphere. The scattering force is not limited by saturation, but can be controlled by the incident power. Cooling times on the order of seconds are calculated for a 20 micron diameter silica microsphere trapped within optical tweezers, with a Doppler temperature limit in the microKelvin regime.

  11. Natural radiative cooling

    Energy Technology Data Exchange (ETDEWEB)

    Lazzarin, R.

    1979-01-01

    Natural radiative cooling at night was measured based on the surface-radiation spectrum after the heat balance of the surface exposed to the sun had been reradiated. A concept equivalent to the sky temperature and a concept useful for obtaining the net heat flux are discussed. The highest possible equilibrium temperature of the selective surface can be lowered; however, how to apply this practically is not yet known. A simple radiator, completely enclosed by a transparent screen, can produce a significant and inexpensive cooling effect. The results of experiments carried out in an area such as Padua, Italy, where the climate is not suitable for cooling purposes can still be predicted theoretically. The possibility of using the collector for heat collection during the day and as a radiator at night is indicated.

  12. Clean cooling; Saubere Kuehlung

    Energy Technology Data Exchange (ETDEWEB)

    Anon.

    1998-07-01

    The round hybrid cooling towers which Balcke-Duerr GmbH is currently building for the 550-MW-IGCC-power-station of a refinery project on Sardinia have to meet particularly stringent requirements as seawater is used for cooling. The advantages are: Avoidance of visible plume with minimal energy consumption, optimal plume exit velocity and discharge, greatest possible stability of the plume column, avoidance of interference and recirculation, high operating reliability of the cooling tower. (orig.) [Deutsch] Derzeit werden die Kuehltuerme fuer ein 550-MW-IGCC-Kraftwerk einer Raffinierie auf Sardinien errichtet. Die Anforderungen an die Technik sind hoch, denn gekuehlt wird mit Seewasser. Zum Einsatz kommen Hybridrundkuehltuerme der Balcke-Duerr GmbH, Ratingen. Damit setzt das Unternehmen diesen Typ erstmals ausserhalb von Deutschland ein. (orig.)

  13. Monitoring Cray Cooling Systems

    Energy Technology Data Exchange (ETDEWEB)

    Maxwell, Don E [ORNL; Ezell, Matthew A [ORNL; Becklehimer, Jeff [Cray, Inc.; Donovan, Matthew J [ORNL; Layton, Christopher C [ORNL

    2014-01-01

    While sites generally have systems in place to monitor the health of Cray computers themselves, often the cooling systems are ignored until a computer failure requires investigation into the source of the failure. The Liebert XDP units used to cool the Cray XE/XK models as well as the Cray proprietary cooling system used for the Cray XC30 models provide data useful for health monitoring. Unfortunately, this valuable information is often available only to custom solutions not accessible by a center-wide monitoring system or is simply ignored entirely. In this paper, methods and tools used to harvest the monitoring data available are discussed, and the implementation needed to integrate the data into a center-wide monitoring system at the Oak Ridge National Laboratory is provided.

  14. Research on Cooling Effectiveness in Stepped Slot Film Cooling Vane

    Institute of Scientific and Technical Information of China (English)

    LI Yulong; WU Hong; ZHOU Feng; RONG Chengjun

    2016-01-01

    As one of the most important developments in air cooling technology for hot parts of the aero-engine,film cooling technology has been widely used.Film cooling hole structure exists mainly in areas that have high temperature,uneven cooling effectiveness issues when in actual use.The first stage turbine vanes of the aero-engine consume the largest portion of cooling air,thereby the research on reducing the amount of cooling air has the greatest potential.A new stepped slot film cooling vane with a high cooling effectiveness and a high cooling uniformity was researched initially.Through numerical methods,the affecting factors of the cooling effectiveness of a vane with the stepped slot film cooling structure were researched.This paper focuses on the cooling effectiveness and the pressure loss in different blowing ratio conditions,then the most reasonable and scientific structure parameter can be obtained by analyzing the results.The results show that 1.0 mm is the optimum slot width and 10.0 is the most reasonable blowing ratio.Under this condition,the vane achieved the best cooling result and the highest cooling effectiveness,and also retained a low pressure loss.

  15. Anomalous law of cooling.

    Science.gov (United States)

    Lapas, Luciano C; Ferreira, Rogelma M S; Rubí, J Miguel; Oliveira, Fernando A

    2015-03-14

    We analyze the temperature relaxation phenomena of systems in contact with a thermal reservoir that undergoes a non-Markovian diffusion process. From a generalized Langevin equation, we show that the temperature is governed by a law of cooling of the Newton's law type in which the relaxation time depends on the velocity autocorrelation and is then characterized by the memory function. The analysis of the temperature decay reveals the existence of an anomalous cooling in which the temperature may oscillate. Despite this anomalous behavior, we show that the variation of entropy remains always positive in accordance with the second law of thermodynamics.

  16. Anomalous law of cooling

    Science.gov (United States)

    Lapas, Luciano C.; Ferreira, Rogelma M. S.; Rubí, J. Miguel; Oliveira, Fernando A.

    2015-03-01

    We analyze the temperature relaxation phenomena of systems in contact with a thermal reservoir that undergoes a non-Markovian diffusion process. From a generalized Langevin equation, we show that the temperature is governed by a law of cooling of the Newton's law type in which the relaxation time depends on the velocity autocorrelation and is then characterized by the memory function. The analysis of the temperature decay reveals the existence of an anomalous cooling in which the temperature may oscillate. Despite this anomalous behavior, we show that the variation of entropy remains always positive in accordance with the second law of thermodynamics.

  17. Superconductor rotor cooling system

    Science.gov (United States)

    Gamble, Bruce B.; Sidi-Yekhlef, Ahmed; Schwall, Robert E.; Driscoll, David I.; Shoykhet, Boris A.

    2002-01-01

    A system for cooling a superconductor device includes a cryocooler located in a stationary reference frame and a closed circulation system external to the cryocooler. The closed circulation system interfaces the stationary reference frame with a rotating reference frame in which the superconductor device is located. A method of cooling a superconductor device includes locating a cryocooler in a stationary reference frame, and transferring heat from a superconductor device located in a rotating reference frame to the cryocooler through a closed circulation system external to the cryocooler. The closed circulation system interfaces the stationary reference frame with the rotating reference frame.

  18. A Cool Emperor Penguin

    Institute of Scientific and Technical Information of China (English)

    2011-01-01

    哇,这只帝企鹅的胸前居然有个心形!It’s cool!(乐天:没错,它的胸前少了这幺撮毛,应该会感觉挺凉快的)cool在这里可不是“凉快”的意思,而是“酷.帅气”的意思。我们《英语大王》的英文名字就叫English Cool Kids哦!(乐天拿出一副墨镜戴上:

  19. Rapid cooled lens cell

    Science.gov (United States)

    Stubbs, David M.; Hsu, Ike C.

    1991-12-01

    This paper describes the optomechanical design, thermal analysis, fabrication, and test evaluation processes followed in developing a rapid cooled, infrared lens cell. Thermal analysis was the key engineering discipline exercised in the design phase. The effect of thermal stress on the lens, induced by rapid cooling of the lens cell, was investigated. Features of this lens cell that minimized the thermal stress will be discussed in a dedicated section. The results of thermal analysis on the selected lens cell design and the selection of the flow channel design in the heat exchanger will be discussed. Throughout the paper engineering drawings, illustrations, analytical results, and photographs of actual hardware are presented.

  20. Gas cooled fast reactor

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    1972-06-01

    Although most of the development work on fast breeder reactors has been devoted to the use of liquid metal cooling, interest has been expressed for a number of years in alternative breeder concepts using other coolants. One of a number of concepts in which interest has been retained is the Gas-Cooled Fast Reactor (GCFR). As presently envisioned, it would operate on the uranium-plutonium mixed oxide fuel cycle, similar to that used in the Liquid Metal Fast Breeder Reactor (LMFBR), and would use helium gas as the coolant.

  1. Quantum thermodynamic cooling cycle

    CERN Document Server

    Palao, J P; Gordon, J M; Palao, Jose P.; Kosloff, Ronnie; Gordon, Jeffrey M.

    2001-01-01

    The quantum-mechanical and thermodynamic properties of a 3-level molecular cooling cycle are derived. An inadequacy of earlier models is rectified in accounting for the spontaneous emission and absorption associated with the coupling to the coherent driving field via an environmental reservoir. This additional coupling need not be dissipative, and can provide a thermal driving force - the quantum analog of classical absorption chillers. The dependence of the maximum attainable cooling rate on temperature, at ultra-low temperatures, is determined and shown to respect the recently-established fundamental bound based on the second and third laws of thermodynamics.

  2. Oracle ADF Faces cookbook

    CERN Document Server

    Gawish, Amr

    2014-01-01

    This is a cookbook that covers more than 80 different recipes to teach you about different aspects of Oracle ADF Faces. It follows a practical approach and covers how to build your components for reuse in different applications. This book will also help you in tuning the performance of your ADF Faces application. If you are an ADF developer who wants to harness the power of Oracle ADF Faces to create exceptional user interfaces and reactive applications, this book will provide you with the recipes needed to do just that. You will not need to be familiar with Oracle ADF Faces, but you should be

  3. Generalization of affective learning about faces to perceptually similar faces.

    Science.gov (United States)

    Verosky, Sara C; Todorov, Alexander

    2010-06-01

    Different individuals have different (and different-looking) significant others, friends, and foes. The objective of this study was to investigate whether these social face environments can shape individual face preferences. First, participants learned to associate faces with positive, neutral, or negative behaviors. Then, they evaluated morphs combining novel faces with the learned faces. The morphs (65% and 80% novel faces) were within the categorical boundary of the novel faces: They were perceived as those faces in a preliminary study. Moreover, a second preliminary study showed that following the learning, the morphs' categorization as similar to the learned faces was indistinguishable from the categorization of actual novel faces. Nevertheless, in the main experiment, participants evaluated morphs of "positive" faces more positively than morphs of "negative" faces. This learning generalization effect increased as a function of the similarity of the novel faces to the learned faces. The findings suggest that general learning mechanisms based on similarity can account for idiosyncratic face preferences.

  4. Measure Guideline: Ventilation Cooling

    Energy Technology Data Exchange (ETDEWEB)

    Springer, D. [Alliance for Residential Building Innovation (ARBI), David, CA (United States); Dakin, B. [Alliance for Residential Building Innovation (ARBI), David, CA (United States); German, A. [Alliance for Residential Building Innovation (ARBI), David, CA (United States)

    2012-04-01

    The purpose of this measure guideline is to provide information on a cost-effective solution for reducing cooling system energy and demand in homes located in hot-dry and cold-dry climates. This guideline provides a prescriptive approach that outlines qualification criteria, selection considerations, and design and installation procedures.

  5. Cooling of Neutron Stars

    Directory of Open Access Journals (Sweden)

    Grigorian H.

    2010-10-01

    Full Text Available We introduce the theoretical basis for modeling the cooling evolution of compact stars starting from Boltzmann equations in curved space-time. We open a discussion on observational verification of different neutron star models by consistent statistics. Particular interest has the question of existence of quark matter deep inside of compact object, which has to have a specific influence on the cooling history of the star. Besides of consideration of several constraints and features of cooling evolution, which are susceptible of being critical for internal structure of hot compact stars we have introduced a method of extraction of the mass distribution of the neutron stars from temperature and age data. The resulting mass distribution has been compared with the one suggested by supernove simulations. This method can be considered as an additional checking tool for the consistency of theoretical modeling of neutron stars. We conclude that the cooling data allowed existence of neutron stars with quark cores even with one-flavor quark matter.

  6. Elementary stochastic cooling

    Energy Technology Data Exchange (ETDEWEB)

    Tollestrup, A.V.; Dugan, G

    1983-12-01

    Major headings in this review include: proton sources; antiproton production; antiproton sources and Liouville, the role of the Debuncher; transverse stochastic cooling, time domain; the accumulator; frequency domain; pickups and kickers; Fokker-Planck equation; calculation of constants in the Fokker-Planck equation; and beam feedback. (GHT)

  7. ELECTRON COOLING FOR RHIC.

    Energy Technology Data Exchange (ETDEWEB)

    BEN-ZVI,I.

    2001-05-13

    The Accelerator Collider Department (CAD) at Brookhaven National Laboratory is operating the Relativistic Heavy Ion Collider (RHIC), which includes the dual-ring, 3.834 km circumference superconducting collider and the venerable AGS as the last part of the RHIC injection chain. CAD is planning on a luminosity upgrade of the machine under the designation RHIC II. One important component of the RHIC II upgrade is electron cooling of RHIC gold ion beams. For this purpose, BNL and the Budker Institute of Nuclear Physics in Novosibirsk entered into a collaboration aimed initially at the development of the electron cooling conceptual design, resolution of technical issues, and finally extend the collaboration towards the construction and commissioning of the cooler. Many of the results presented in this paper are derived from the Electron Cooling for RHIC Design Report [1], produced by the, BINP team within the framework of this collaboration. BNL is also collaborating with Fermi National Laboratory, Thomas Jefferson National Accelerator Facility and the University of Indiana on various aspects of electron cooling.

  8. Pre-irradiation testing of actively cooled Be-Cu divertor modules

    Energy Technology Data Exchange (ETDEWEB)

    Linke, J.; Duwe, R.; Kuehnlein, W. [Forschungszentrum Juelich GmbH (Germany)] [and others

    1995-09-01

    A set of neutron irradiation tests is prepared on different plasma facing materials (PFM) candidates and miniaturized components for ITER. Beside beryllium the irradiation program which will be performed in the High Flux Reactor (HFR) in Petten, includes different carbon fiber composites (CFQ) and tungsten alloys. The target values for the neutron irradiation will be 0.5 dpa at temperatures of 350{degrees}C and 700{degrees}C, resp.. The post irradiation examination (PIE) will cover a wide range of mechanical tests; in addition the degradation of thermal conductivity will be investigated. To determine the high heat flux (HHF) performance of actively cooled divertor modules, electron beam tests which simulate the expected heat loads during the operation of ITER, are scheduled in the hot cell electron beam facility JUDITH. These tests on a selection of different actively cooled beryllium-copper and CFC-copper divertor modules are performed before and after neutron irradiation; the pre-irradiation testing is an essential part of the program to quantify the zero-fluence high heat flux performance and to detect defects in the modules, in particular in the brazed joints.

  9. Social judgments from faces.

    Science.gov (United States)

    Todorov, Alexander; Mende-Siedlecki, Peter; Dotsch, Ron

    2013-06-01

    People make rapid and consequential social judgments from minimal (non-emotional) facial cues. There has been rapid progress in identifying the perceptual basis of these judgments using data-driven, computational models. In contrast, our understanding of the neural underpinnings of these judgments is rather limited. Meta-analyses of neuroimaging studies find a wide range of seemingly inconsistent responses in the amygdala that co-vary with social judgments from faces. Guided by computational models of social judgments, these responses can be accounted by positing that the amygdala (and posterior face selective regions) tracks face typicality. Atypical faces, whether positively or negatively evaluated, elicit stronger responses in the amygdala. We conclude with the promise of data-driven methods for modeling neural responses to social judgments from faces.

  10. 大气等离子喷涂中等离子体温度的焓探针法测量%Temperature measurement of plasma jet by a water-cooled enthalpy probe under atmosphere pressure spraying

    Institute of Scientific and Technical Information of China (English)

    孙成琪; 高阳; 杨德明; 冯健

    2014-01-01

    采用焓探针对大气压力下热喷涂等离子体射流的焓和温度进行了测量和计算,研究了氩气流量变化、电流变化和喷涂距离对等离子射流的焓和温度分布的影响。结果表明,氩气流量不变的情况下,随着功率的增加等离子体的焓值和温度增加;电流保持不变时,随着氩气流量的增加等离子体的焓值和温度不断减小,随着距离喷嘴出口轴向距离的增加,等离子体的焓值和温度都大幅度的降低;氩气流量变化对喷枪热效率影响不大,功率增大时,喷枪热效率增加显著,喷枪热效率最高可达到60%。%The enthalpy and temperature of the thermal plasma jet was determined using enthalpy probe under the atmosphere plasma spray, several parameters such as arc current intensity, gas flow rate and working distance were considered in order to check their effect on the characteristics of the plasma jet. An increase in input power considerably increased the enthalpy and temperature of the thermal plasma jet, while the increase of Ar gas flow rate decreased the enthalpy and temperature of the plasma jet. The enthalpy and temperature of the plasma jet decreased rapidly due to the increase of the spray distance. Changes in the flow rate of Ar almost have no impact on heat efficiency of the spray gun. An increase in input power considerably increased the heat efficiency a lot, and the highest heat efficiency of the spray gun can reach to 60%.

  11. Progress on Analytical Modeling of Coherent Electron Cooling

    Energy Technology Data Exchange (ETDEWEB)

    Wang, G.; Blaskiewicz, M.; Litvinenko, V.; Webb, S.

    2010-05-23

    We report recent progresses on analytical studies of Coherent Electron Cooling. The phase space electron beam distribution obtained from the 1D FEL amplifier is applied to an infinite electron plasma model and the electron density evolution inside the kicker is derived. We also investigate the velocity modulation in the modulator and obtain a closed form solution for the current density evolution for infinite homogeneous electron plasma.

  12. Sorption cooling: a valid extension to passive cooling

    NARCIS (Netherlands)

    Doornink, D.J.; Burger, J.F.; Brake, ter H.J.M.

    2008-01-01

    Passive cooling has shown to be a very dependable cryogenic cooling method for space missions. Several missions employ passive radiators to cool down their delicate sensor systems for many years, without consuming power, without exporting vibrations or producing electromagnetic interference. So for

  13. Comments on Ionization Cooling Channel Characteristics

    CERN Document Server

    Neuffer, David

    2013-01-01

    Ionization cooling channels with a wide variety of characteristics and cooling properties are being developed. These channels can produce cooling performances that are largely consistent with the ionization cooling theory developed previously. In this paper we review ionization cooling theory, discuss its application to presently developing cooling channels, and discuss criteria for optimizing cooling.

  14. Comments on Ionization Cooling Channel Characteristics

    OpenAIRE

    Neuffer, David

    2013-01-01

    Ionization cooling channels with a wide variety of characteristics and cooling properties are being developed. These channels can produce cooling performances that are largely consistent with the ionization cooling theory developed previously. In this paper we review ionization cooling theory, discuss its application to presently developing cooling channels, and discuss criteria for optimizing cooling.

  15. STOCHASTIC COOLING FOR BUNCHED BEAMS.

    Energy Technology Data Exchange (ETDEWEB)

    BLASKIEWICZ, M.

    2005-05-16

    Problems associated with bunched beam stochastic cooling are reviewed. A longitudinal stochastic cooling system for RHIC is under construction and has been partially commissioned. The state of the system and future plans are discussed.

  16. ALP hints from cooling anomalies

    CERN Document Server

    Giannotti, Maurizio

    2015-01-01

    We review the current status of the anomalies in stellar cooling and argue that, among the new physics candidates, an axion-like particle would represent the best option to account for the hinted additional cooling.

  17. Cooling devices in laser therapy

    Directory of Open Access Journals (Sweden)

    Anupam Das

    2016-01-01

    Full Text Available Cooling devices and methods are now integrated into most laser systems, with a view to protecting the epidermis, reducing pain and erythema and improving the efficacy of laser. On the basis of method employed, it can be divided into contact cooling and non-contact cooling. With respect to timing of irradiation of laser, the nomenclatures include pre-cooling, parallel cooling and post-cooling. The choice of the cooling device is dictated by the laser device, the physician′s personal choice with respect to user-friendliness, comfort of the patient, the price and maintenance costs of the device. We hereby briefly review the various techniques of cooling, employed in laser practice.

  18. Handbook of Face Recognition

    CERN Document Server

    Li, Stan Z

    2011-01-01

    This highly anticipated new edition provides a comprehensive account of face recognition research and technology, spanning the full range of topics needed for designing operational face recognition systems. After a thorough introductory chapter, each of the following chapters focus on a specific topic, reviewing background information, up-to-date techniques, and recent results, as well as offering challenges and future directions. Features: fully updated, revised and expanded, covering the entire spectrum of concepts, methods, and algorithms for automated face detection and recognition systems

  19. Face Search at Scale.

    Science.gov (United States)

    Wang, Dayong; Otto, Charles; Jain, Anil K

    2016-06-20

    rsons of interest among the billions of shared photos on these websites. Despite significant progress in face recognition, searching a large collection of unconstrained face images remains a difficult problem. To address this challenge, we propose a face search system which combines a fast search procedure, coupled with a state-of-the-art commercial off the shelf (COTS) matcher, in a cascaded framework. Given a probe face, we first filter the large gallery of photos to find the top-k most similar faces using features learned by a convolutional neural network. The k retrieved candidates are re-ranked by combining similarities based on deep features and those output by the COTS matcher. We evaluate the proposed face search system on a gallery containing 80 million web-downloaded face images. Experimental results demonstrate that while the deep features perform worse than the COTS matcher on a mugshot dataset (93.7% vs. 98.6% TAR@FAR of 0.01%), fusing the deep features with the COTS matcher improves the overall performance (99.5% TAR@FAR of 0.01%). This shows that the learned deep features provide complementary information over representations used in state-of-the-art face matchers. On the unconstrained face image benchmarks, the performance of the learned deep features is competitive with reported accuracies. LFW database: 98.20% accuracy under the standard protocol and 88.03% TAR@FAR of 0.1% under the BLUFR protocol; IJB-A benchmark: 51.0% TAR@FAR of 0.1% (verification), rank 1 retrieval of 82.2% (closed-set search), 61.5% FNIR@FAR of 1% (open-set search). The proposed face search system offers an excellent trade-off between accuracy and scalability on galleries with millions of images. Additionally, in a face search experiment involving photos of the Tsarnaev brothers, convicted of the Boston Marathon bombing, the proposed cascade face search system could find the younger brother's (Dzhokhar Tsarnaev) photo at rank 1 in 1 second on a 5M gallery and at rank 8 in 7

  20. Self pumping magnetic cooling

    Science.gov (United States)

    Chaudhary, V.; Wang, Z.; Ray, A.; Sridhar, I.; Ramanujan, R. V.

    2017-01-01

    Efficient thermal management and heat recovery devices are of high technological significance for innovative energy conservation solutions. We describe a study of a self-pumping magnetic cooling device, which does not require external energy input, employing Mn-Zn ferrite nanoparticles suspended in water. The device performance depends strongly on magnetic field strength, nanoparticle content in the fluid and heat load temperature. Cooling (ΔT) by ~20 °C and ~28 °C was achieved by the application of 0.3 T magnetic field when the initial temperature of the heat load was 64 °C and 87 °C, respectively. These experiments results were in good agreement with simulations performed with COMSOL Multiphysics. Our system is a self-regulating device; as the heat load increases, the magnetization of the ferrofluid decreases; leading to an increase in the fluid velocity and consequently, faster heat transfer from the heat source to the heat sink.

  1. Cooled particle accelerator target

    Science.gov (United States)

    Degtiarenko, Pavel V.

    2005-06-14

    A novel particle beam target comprising: a rotating target disc mounted on a retainer and thermally coupled to a first array of spaced-apart parallel plate fins that extend radially inwardly from the retainer and mesh without physical contact with a second array of spaced-apart parallel plate fins that extend radially outwardly from and are thermally coupled to a cooling mechanism capable of removing heat from said second array of spaced-apart fins and located within the first array of spaced-apart parallel fins. Radiant thermal exchange between the two arrays of parallel plate fins provides removal of heat from the rotating disc. A method of cooling the rotating target is also described.

  2. Water Cooled Mirror Design

    Energy Technology Data Exchange (ETDEWEB)

    Dale, Gregory E. [Los Alamos National Lab. (LANL), Los Alamos, NM (United States); Holloway, Michael Andrew [Los Alamos National Lab. (LANL), Los Alamos, NM (United States); Pulliam, Elias Noel [Los Alamos National Lab. (LANL), Los Alamos, NM (United States)

    2015-03-30

    This design is intended to replace the current mirror setup being used for the NorthStar Moly 99 project in order to monitor the target coupon. The existing setup has limited movement for camera alignment and is difficult to align properly. This proposed conceptual design for a water cooled mirror will allow for greater thermal transfer between the mirror and the water block. It will also improve positioning of the mirror by using flexible vacuum hosing and a ball head joint capable of a wide range of motion. Incorporating this design into the target monitoring system will provide more efficient cooling of the mirror which will improve the amount of diffraction caused by the heating of the mirror. The process of aligning the mirror for accurate position will be greatly improved by increasing the range of motion by offering six degrees of freedom.

  3. Magnetic entropy and cooling

    DEFF Research Database (Denmark)

    Hansen, Britt Rosendahl; Kuhn, Luise Theil; Bahl, Christian Robert Haffenden

    2010-01-01

    Some manifestations of magnetism are well-known and utilized on an everyday basis, e.g. using a refrigerator magnet for hanging that important note on the refrigerator door. Others are, so far, more exotic, such as cooling by making use of the magnetocaloric eect. This eect can cause a change...... or nitrogen liquefaction or for room-temperature cooling. The magnetocaloric eect can further be used to determine phase transition boundaries, if a change in the magnetic state occurs at the boundary.In this talk, I will introduce the magnetocaloric eect (MCE) and the two equations, which characterize...... in the temperature of a magnetic material when a magnetic eld is applied or removed. For many years, experimentalists have made use of dilute paramagnetic materials to achieve milliKelvin temperatures by use of the magnetocaloric eect. Also, research is done on materials, which might be used for hydrogen, helium...

  4. Cooling Floor AC Systems

    Science.gov (United States)

    Jun, Lu; Hao, Ding; Hong, Zhang; Ce, Gao Dian

    The present HVAC equipments for the residential buildings in the Hot-summer-and-Cold-winter climate region are still at a high energy consuming level. So that the high efficiency HVAC system is an urgently need for achieving the preset government energy saving goal. With its advantage of highly sanitary, highly comfortable and uniform of temperature field, the hot-water resource floor radiation heating system has been widely accepted. This paper has put forward a new way in air-conditioning, which combines the fresh-air supply unit and such floor radiation system for the dehumidification and cooling in summer or heating in winter. By analyze its advantages and limitations, we found that this so called Cooling/ Heating Floor AC System can improve the IAQ of residential building while keep high efficiency quality. We also recommend a methodology for the HVAC system designing, which will ensure the reduction of energy cost of users.

  5. Atomic and molecular processes in fusion plasmas

    Energy Technology Data Exchange (ETDEWEB)

    Janev, R.K. [International Atomic Energy Agency, Vienna (Austria)

    1997-01-01

    The role of atomic and molecular processes in achieving and maintaining the conditions for thermonuclear burn in a magnetically confined fusion plasma is described. Emphasis is given to the energy balance and power and particle exhaust issues. The most important atomic and molecular processes which affect the radiation losses and impurity transport in the core plasma, the neutral particle transport in the plasma edge and the radiative cooling of divertor plasmas are discussed in greater detail. (author)

  6. The cool surge following flux emergence in a radiation-MHD experiment

    CERN Document Server

    Nóbrega-Siverio, D; Martínez-Sykora, J

    2016-01-01

    Cool and dense ejections, typically H$_{\\alpha}$ surges, often appear alongside EUV or X-Ray coronal jets as a result of the emergence of magnetized plasma from the solar interior. Idealized numerical experiments explain those ejections as being indirectly associated with the magnetic reconnection taking place between the emerging and preexisting systems. However, those experiments miss basic elements that can importantly affect the surge phenomenon. In this paper we study the cool surges using a realistic treatment of the radiation transfer and material plasma properties. To that end, the Bifrost code is used, which has advanced modules for the equation of state of the plasma, photospheric and chromospheric radiation transfer, heat conduction and optically thin radiative cooling. We carry out a 2.5D experiment of the emergence of magnetized plasma through (meso)granular convection cells and the low atmosphere to the corona. Through detailed Lagrange tracing, we study the formation and evolution of the cool e...

  7. Heating, ventilation and cooling

    CSIR Research Space (South Africa)

    Osburn, L

    2009-02-01

    Full Text Available content and is evaporated by the air stream with less moisture. Enthalpy wheels are more effective at transferring energy between the air streams as both sensible and latent heat is transferred. Ground-Coupled Heat Exchanger Ground-coupled heat... with high diurnal temperature variations. Evaporative Coolers Evaporative coolers work on the concept that the evaporation of water has a cooling effect on its immediate environment due to the latent heat that it absorbs in order to evaporate...

  8. AGN effect on cooling flow dynamics

    CERN Document Server

    Bibi, F Alouani; Blundell, K; Omma, H

    2007-01-01

    We analyzed the feedback of AGN jets on cooling flow clusters using three-dimensional AMR hydrodynamic simulations. We studied the interaction of the jet with the intracluster medium and creation of low X-ray emission cavities (Bubbles) in cluster plasma. The distribution of energy input by the jet into the system was quantified in its different forms, i.e. internal, kinetic and potential. We find that the energy associated with the bubbles, (pV + gamma pV/(gamma-1)), accounts for less than 10 percent of the jet energy.

  9. Electron Cooling of RHIC

    CERN Document Server

    Ben-Zvi, Ilan; Barton, Donald; Beavis, Dana; Blaskiewicz, Michael; Bluem, Hans; Brennan, Joseph M; Bruhwiler, David L; Burger, Al; Burov, Alexey; Burrill, Andrew; Calaga, Rama; Cameron, Peter; Chang, Xiangyun; Cole, Michael; Connolly, Roger; Delayen, Jean R; Derbenev, Yaroslav S; Eidelman, Yury I; Favale, Anthony; Fedotov, Alexei V; Fischer, Wolfram; Funk, L W; Gassner, David M; Hahn, Harald; Harrison, Michael; Hershcovitch, Ady; Holmes, Douglas; Hseuh Hsiao Chaun; Johnson, Peter; Kayran, Dmitry; Kewisch, Jorg; Kneisel, Peter; Koop, Ivan; Lambiase, Robert; Litvinenko, Vladimir N; MacKay, William W; Mahler, George; Malitsky, Nikolay; McIntyre, Gary; Meng, Wuzheng; Merminga, Lia; Meshkov, Igor; Mirabella, Kerry; Montag, Christoph; Nagaitsev, Sergei; Nehring, Thomas; Nicoletti, Tony; Oerter, Brian; Parkhomchuk, Vasily; Parzen, George; Pate, David; Phillips, Larry; Preble, Joseph P; Rank, Jim; Rao, Triveni; Rathke, John; Roser, Thomas; Russo, Thomas; Scaduto, Joseph; Schultheiss, Tom; Sekutowicz, Jacek; Shatunov, Yuri; Sidorin, Anatoly O; Skrinsky, Aleksander Nikolayevich; Smirnov, Alexander V; Smith, Kevin T; Todd, Alan M M; Trbojevic, Dejan; Troubnikov, Grigory; Wang, Gang; Wei, Jie; Williams, Neville; Wu, Kuo-Chen; Yakimenko, Vitaly; Zaltsman, Alex; Zhao, Yongxiang; ain, Animesh K

    2005-01-01

    We report progress on the R&D program for electron-cooling of the Relativistic Heavy Ion Collider (RHIC). This electron cooler is designed to cool 100 GeV/nucleon at storage energy using 54 MeV electrons. The electron source will be a superconducting RF photocathode gun. The accelerator will be a superconducting energy recovery linac. The frequency of the accelerator is set at 703.75 MHz. The maximum electron bunch frequency is 9.38 MHz, with bunch charge of 20 nC. The R&D program has the following components: The photoinjector and its photocathode, the superconducting linac cavity, start-to-end beam dynamics with magnetized electrons, electron cooling calculations including benchmarking experiments and development of a large superconducting solenoid. The photoinjector and linac cavity are being incorporated into an energy recovery linac aimed at demonstrating ampere class current at about 20 MeV. A Zeroth Order Design Report is in an advanced draft state, and can be found on the web at http://www.ags...

  10. Low mass integrated cooling

    CERN Document Server

    Mapelli, Alessandro

    2014-01-01

    Low mass on - detec tor cooling systems are being developed and stud ied by the Detector Technology group (PH - DT) in the CERN Physics Department in close collaboration with LHC and non - LHC experiments . Two approaches are currently being investigated. The first approach, for barrel configurations, consists in integrating the cooli ng apparatus in light mechanical structures support ing the detectors. In this case , the thermal management can be achieved either with light cooling pipes and thin plates or with a network of microchannels embedded in thin strips of silicon or polyimide . Both configuratio ns are being investigated in the context of the 2018 upgrade program of the ALICE Inner Tracking System (ITS). Moreover, it is also possible to use a s ilicon microchannel cooling device itself as structural support for the detectors and electronics. Such a configur ation has been adopted by the NA62 collaboration for the ir GigaTracKer (GTK) as well as by the LHCb collaboration for the 2018 major upgrade of...

  11. Simulation of Desiccant Cooling

    Directory of Open Access Journals (Sweden)

    Kamaruddin A.

    2017-06-01

    Full Text Available Desiccant cooling system has been an attractive topic for study lately, due to its environmentally friendly nature. It also consume less electricity and capable to be operated without refrigerant. A simulation study was conducted using 1.5 m long ducting equipped with one desiccant wheel, one sensible heat exchanger wheel, one evaporative cooling chamber and two blowers and one electric heater. The simulation study used 8.16 m/s primary air, the drying coefficient from desiccant wheel, k1=2.1 (1/s, mass transfer coefficient in evaporative cooling, k2=1.2 kg vapor/s, heat transfer coefficient in desiccant wheel, h1=4.5 W/m2 oC, and heat transfer coefficient in sensible heat exchanger wheel h2= 4.5 W/m2 oC. The simulation results show that the final temperature before entering into the air conditioning room was 25 oC and RH of 65 %, were in accordance with the Indonesian comfort index.

  12. Ultraefficient Cooling of Resonators: Beating Sideband Cooling with Quantum Control

    Science.gov (United States)

    Wang, Xiaoting; Vinjanampathy, Sai; Strauch, Frederick; Jacobs, Kurt

    2012-02-01

    There is presently a great deal of interest in cooling high-frequency micro- and nano-mechanical oscillators to their ground states. The present state of the art in cooling mechanical resonators is a version of sideband cooling, which was originally developed in the context of cooling trapped ions. Here we present a method based on quantum control that uses the same configuration as sideband cooling--coupling the resonator to be cooled to a second microwave (or optical) auxiliary resonator--but will cool significantly colder. This is achieved by applying optimal control and varying the strength of the coupling between the two resonators over a time on the order of the period of the mechanical resonator. As part of our analysis, we also obtain a method for fast, high-fidelity quantum information transfer between resonators.

  13. Cooling lubricants; Kuehlschmierstoffe

    Energy Technology Data Exchange (ETDEWEB)

    Pfeiffer, W. [Berufsgenossenschaftliches Inst. fuer Arbeitssicherheit, St. Augustin (Germany); Breuer, D. [Berufsgenossenschaftliches Inst. fuer Arbeitssicherheit, St. Augustin (Germany); Blome, H. [Berufsgenossenschaftliches Inst. fuer Arbeitssicherheit, St. Augustin (Germany); Deininger, C. [Berufsgenossenschaftliches Inst. fuer Arbeitssicherheit, St. Augustin (Germany); Hahn, J.U. [Berufsgenossenschaftliches Inst. fuer Arbeitssicherheit, St. Augustin (Germany); Kleine, H. [Berufsgenossenschaftliches Inst. fuer Arbeitssicherheit, St. Augustin (Germany); Nies, E. [Berufsgenossenschaftliches Inst. fuer Arbeitssicherheit, St. Augustin (Germany); Pflaumbaum, W. [Berufsgenossenschaftliches Inst. fuer Arbeitssicherheit, St. Augustin (Germany); Stockmann, R. [Berufsgenossenschaftliches Inst. fuer Arbeitssicherheit, St. Augustin (Germany); Willert, G. [Berufsgenossenschaftliches Inst. fuer Arbeitssicherheit, St. Augustin (Germany); Sonnenschein, G. [Maschinenbau- und Metall-Berufsgenossenschaft, Duesseldorf (Germany)

    1996-08-01

    As a rule, the base substances used are certain liquid hydrocarbons from mineral oils as well as from native and synthetic oils. Through the addition of further substances the cooling lubricant takes on the particular qualities required for the use in question. Employees working with cooling lubricants are exposed to various hazards. The assessment of the concentrations at the work station is carried out on the basis of existing technical rules for contact with hazardous substances. However, the application/implementation of compulsory investigation and supervision in accordance with these rules is made difficult by the fact that cooling lubricants are, as a rule, made up of complicated compound mixtures. In addition to protecting employees from exposure to mists and vapours from the cooling lubricants, protection for the skin is also of particular importance. Cooling lubricants should not, if at all possible, be brought into contact with the skin. Cleansing the skin and skin care is just as important as changing working clothes regularly, and hygiene and cleanliness at the workplace. Unavoidable emissions are to be immediately collected at the point where they arise or are released and safely disposed of. This means taking into account all sources of emissions. The programme presented in this report therefore gives a very detailed account of the individual protective measures and provides recommendations for the design of technical protection facilities. (orig./MG) [Deutsch] Als Basisstoffe dienen in der Regel bestimmte fluessige Kohlenwasserstoffverbindungen aus Mineraloelen sowie aus nativen oder synthetischen Oelen. Durch die Zugabe von weiteren Stoffen erlangt der Kuehlschmierstoff seine fuer den jeweiligen Anwendungsabfall geforderten Eigenschaften. Beschaeftigte, die mit Kuehlschmierstoffen umgehen, sind unterschiedliche Gefahren ausgesetzt. Die Beurteilung der Kuehlschmierstoffkonzentrationen in der Luft am Arbeitsplatz erfolgt auf der Grundlage bestehender

  14. Cooling During Exercise: An Overlooked Strategy for Enhancing Endurance Performance in the Heat.

    Science.gov (United States)

    Stevens, Christopher J; Taylor, Lee; Dascombe, Ben J

    2017-05-01

    It is well established that endurance performance is negatively affected by environmental heat stress due to a complex interaction of physical, physiological and psychological alterations. Numerous scientific investigations have attempted to improve performance in the heat with pre-cooling (cooling prior to an exercise test), and as such this has become a well-established ergogenic practice for endurance athletes. However, the use of mid-cooling (cooling during an exercise test) has received considerably less research attention in comparison, despite recent evidence to suggest that the advantage gained from mid-cooling may outweigh that of pre-cooling. A range of mid-cooling strategies are beneficial for endurance performance in the heat, including the ingestion of cold fluids and ice slurry, both with and without menthol, as well as cooling of the neck and face region via a cooling collar or water poured on the head and face. The combination of pre-cooling and mid-cooling has also been effective, but few comparisons exist between the timing and type of such interventions. Therefore, athletes should experiment with a range of suitable mid-cooling strategies for their event during mock competition scenarios, with the aim to determine their individual tolerable limits and performance benefits. Based on current evidence, the effect of mid-cooling on core temperature appears largely irrelevant to any subsequent performance improvements, while cardiovascular, skin temperature, central nervous system function and psychophysiological factors are likely involved. Research is lacking on elite athletes, and as such it is currently unclear how this population may benefit from mid-cooling.

  15. Comparison of face Recognition Algorithms on Dummy Faces

    Directory of Open Access Journals (Sweden)

    Aruni Singh

    2012-09-01

    Full Text Available In the age of rising crime face recognition is enormously important in the contexts of computer vision, psychology, surveillance, fraud detection, pattern recognition, neural network, content based video processing, etc. Face is a non intrusive strong biometrics for identification and hence criminals always try to hide their facial organs by different artificial means such as plastic surgery, disguise and dummy. The availability of a comprehensive face database is crucial to test the performance of these face recognition algorithms. However, while existing publicly-available face databases contain face images with a wide variety of poses, illumination, gestures and face occlusions but there is no dummy face database is available in public domain. The contributions of this research paper are: i Preparation of dummy face database of 110 subjects ii Comparison of some texture based, feature based and holistic face recognition algorithms on that dummy face database, iii Critical analysis of these types of algorithms on dummy face database.

  16. Is Face Distinctiveness Gender Based?

    Science.gov (United States)

    Baudouin, Jean-Yves; Gallay, Mathieu

    2006-01-01

    Two experiments were carried out to study the role of gender category in evaluations of face distinctiveness. In Experiment 1, participants had to evaluate the distinctiveness and the femininity-masculinity of real or artificial composite faces. The composite faces were created by blending either faces of the same gender (sexed composite faces,…

  17. Laser Cooling of Molecular Anions

    CERN Document Server

    Yzombard, Pauline; Gerber, Sebastian; Doser, Michael; Comparat, Daniel

    2015-01-01

    We propose a scheme for laser cooling of negatively charged molecules. We briefly summarise the requirements for such laser cooling and we identify a number of potential candidates. A detailed computation study with C$\\_2^-$, the most studied molecular anion, is carried out. Simulations of 3D laser cooling in a gas phase show that this molecule could be cooled down to below 1 mK in only a few tens of milliseconds, using standard lasers. Sisyphus cooling, where no photo-detachment process is present, as well as Doppler laser cooling of trapped C$\\_2^-$, are also simulated. This cooling scheme has an impact on the study of cold molecules, molecular anions, charged particle sources and antimatter physics.

  18. Laser cooling of molecular anions.

    Science.gov (United States)

    Yzombard, Pauline; Hamamda, Mehdi; Gerber, Sebastian; Doser, Michael; Comparat, Daniel

    2015-05-29

    We propose a scheme for laser cooling of negatively charged molecules. We briefly summarize the requirements for such laser cooling and we identify a number of potential candidates. A detailed computation study with C_{2}^{-}, the most studied molecular anion, is carried out. Simulations of 3D laser cooling in a gas phase show that this molecule could be cooled down to below 1 mK in only a few tens of milliseconds, using standard lasers. Sisyphus cooling, where no photodetachment process is present, as well as Doppler laser cooling of trapped C_{2}^{-}, are also simulated. This cooling scheme has an impact on the study of cold molecules, molecular anions, charged particle sources, and antimatter physics.

  19. Process integration: Cooling water systems design

    CSIR Research Space (South Africa)

    Gololo, KV

    2010-10-01

    Full Text Available This paper presents a technique for grassroot design of cooling water system for wastewater minimization which incorporates the performances of the cooling towers involved. The study focuses mainly on cooling systems consisting of multiple cooling...

  20. Cooling water systems design using process integration

    CSIR Research Space (South Africa)

    Gololo, KV

    2010-09-01

    Full Text Available Cooling water systems are generally designed with a set of heat exchangers arranged in parallel. This arrangement results in higher cooling water flowrate and low cooling water return temperature thus reducing cooling tower efficiency. Previous...

  1. TRNSYS simulation of a solar cooling system for the hot climate of Pakistan

    OpenAIRE

    Farid, Muhammad Asim; Kanan, Safwan; Dewsbury, Jonathan

    2016-01-01

    Cooling is a basic need for buildings in hot and sunny climates. In most countries the major source of cooling is electrical powerbased. During summer in hot climates there is an increase in electricity consumption due to cooling load. Pakistan is facing anelectricity shortage crisis, which becomes worse in summer due to the high demand for cooling. The annual average insolationfor Pakistan is 5-6 kWh/m2/day, reaching 6-8 kWh/m2/day in summer with sunshine of 10-13 hours a day, which gives su...

  2. Plasma Processing of Materials

    Science.gov (United States)

    1985-02-22

    used in France. In this case, three ’ movable electrodes arranged about the central axis with a coaxial sheath gas are employed. Initially the...Demiocratic Republic plasma furnace. chrome -magnesite; the bottom section is lined with rammed chrome -magnesite refractory. Due to the high heat loads... sheath injector design, cathode tip shape, and degree of water cooling are important parameters in providing a stable, uncontaminating, long-lifetime

  3. Solar heating and cooling.

    Science.gov (United States)

    Duffie, J A; Beckman, W A

    1976-01-16

    We have adequate theory and engineering capability to design, install, and use equipment for solar space and water heating. Energy can be delivered at costs that are competitive now with such high-cost energy sources as much fuel-generated, electrical resistance heating. The technology of heating is being improved through collector developments, improved materials, and studies of new ways to carry out the heating processes. Solar cooling is still in the experimental stage. Relatively few experiments have yielded information on solar operation of absorption coolers, on use of night sky radiation in locations with clear skies, on the combination of a solar-operated Rankine engine and a compression cooler, and on open cycle, humidification-dehumidification systems. Many more possibilities for exploration exist. Solar cooling may benefit from collector developments that permit energy delivery at higher temperatures and thus solar operation of additional kinds of cycles. Improved solar cooling capability can open up new applications of solar energy, particularly for larger buildings, and can result in markets for retrofitting existing buildings. Solar energy for buildings can, in the next decade, make a significant contribution to the national energy economy and to the pocketbooks of many individual users. very large-aggregate enterprises in manufacture, sale, and installation of solar energy equipment can result, which can involve a spectrum of large and small businesses. In our view, the technology is here or will soon be at hand; thus the basic decisions as to whether the United States uses this resource will be political in nature.

  4. Laser Cooling of Solids

    Science.gov (United States)

    2009-01-01

    observed in a range of glasses and crystals doped with Yb3+ (ZBLANP [19–22], ZBLAN [23,24], CNBZn [9,25] BIG [25, 26], KGd(WO4)2 [9], KY(WO4)2 [9], YAG [27...Yb3+-doped fluorozirconate glass ZBLAN , Phys. Rev. B 75, 144302 (2007). [40] C. W. Hoyt, Laser Cooling in Thulium-doped Solids, Ph. D. Thesis...date, optical refrigeration research has been confined to glasses and crystals doped with rare- earth elements and direct-band semiconductors such as

  5. Atomic physics experiments with cooled stored ions

    Science.gov (United States)

    Schuch, Reinhold

    2004-10-01

    This presentation contains examples of recent atomic physics experiments with stored and cooled ion beams from the CRYRING facility in Stockholm. One of these experiments uses the high luminosity of a cooled MeV proton beam in a He COLTRIMS apparatus (COLd supersonic He gas-jet Target for Recoil Ion Momentum Spectroscopy) for measuring correlation effects in transfer ionization. Another class of experiments exploits the cold electron beam available in the CRYRING electron cooler and cooled heavy-ion beams for recombination experiments. A section concerns the still rather open question of the puzzling recombination enhancement over the radiative recombination theory. Dielectronic resonances at meV-eV energy are measured with a resolution in the order of 10-3-10-2 eV with highly charged ions stored at several hundreds of MeV kinetic energy in the ring. These resonances provide a serious challenge to theories for describing correlation, relativistic, QED effects, and isotope shifts in highly ionized ions. Applications of recombination rates with complex highly charged ions for fusion and astrophysical plasmas are shown.

  6. Atomic physics experiments with cooled stored ions

    Energy Technology Data Exchange (ETDEWEB)

    Schuch, Reinhold E-mail: schuch@physto.se

    2004-10-11

    This presentation contains examples of recent atomic physics experiments with stored and cooled ion beams from the CRYRING facility in Stockholm. One of these experiments uses the high luminosity of a cooled MeV proton beam in a He COLTRIMS apparatus (COLd supersonic He gas-jet Target for Recoil Ion Momentum Spectroscopy) for measuring correlation effects in transfer ionization. Another class of experiments exploits the cold electron beam available in the CRYRING electron cooler and cooled heavy-ion beams for recombination experiments. A section concerns the still rather open question of the puzzling recombination enhancement over the radiative recombination theory. Dielectronic resonances at meV-eV energy are measured with a resolution in the order of 10{sup -3}-10{sup -2} eV with highly charged ions stored at several hundreds of MeV kinetic energy in the ring. These resonances provide a serious challenge to theories for describing correlation, relativistic, QED effects, and isotope shifts in highly ionized ions. Applications of recombination rates with complex highly charged ions for fusion and astrophysical plasmas are shown.

  7. Developing and Studying the Methods of Hard-Facing with Heat-Resisting High-Hardness Steels

    Science.gov (United States)

    Malushin, N. N.; Kovalev, A. P.; Valuev, D. V.; Shats, E. A.; Borovikov, I. F.

    2016-08-01

    The authors develop the methods of hard-facing of mining-metallurgic equipment parts with heat-resisting high-hardness steels on the base of plasma-jet hard-facing in the shielding-alloying nitrogen atmosphere.

  8. The Cool Surge Following Flux Emergence in a Radiation-MHD Experiment

    Science.gov (United States)

    Nóbrega-Siverio, D.; Moreno-Insertis, F.; Martínez-Sykora, J.

    2016-05-01

    Cool and dense ejections, typically Hα surges, often appear alongside EUV or X-ray coronal jets as a result of the emergence of magnetized plasma from the solar interior. Idealized numerical experiments explain those ejections as being indirectly associated with the magnetic reconnection taking place between the emerging and preexisting systems. However, those experiments miss basic elements that can importantly affect the surge phenomenon. In this paper we study the cool surges using a realistic treatment of the radiation transfer and material plasma properties. To that end, the Bifrost code is used, which has advanced modules for the equation of state of the plasma, photospheric and chromospheric radiation transfer, heat conduction, and optically thin radiative cooling. We carry out a 2.5D experiment of the emergence of magnetized plasma through (meso) granular convection cells and the low atmosphere to the corona. Through detailed Lagrange tracing we study the formation and evolution of the cool ejection and, in particular, the role of the entropy sources; this allows us to discern families of evolutionary patterns for the plasma elements. In the launch phase, many elements suffer accelerations well in excess of gravity; when nearing the apex of their individual trajectories, instead, the plasma elements follow quasi-parabolic trajectories with accelerations close to {g}⊙ . We show how the formation of the cool ejection is mediated by a wedge-like structure composed of two shocks, one of which leads to the detachment of the surge from the original emerged plasma dome.

  9. Facing Aggression: Cues Differ for Female versus Male Faces

    Science.gov (United States)

    Geniole, Shawn N.; Keyes, Amanda E.; Mondloch, Catherine J.; Carré, Justin M.; McCormick, Cheryl M.

    2012-01-01

    The facial width-to-height ratio (face ratio), is a sexually dimorphic metric associated with actual aggression in men and with observers' judgements of aggression in male faces. Here, we sought to determine if observers' judgements of aggression were associated with the face ratio in female faces. In three studies, participants rated photographs of female and male faces on aggression, femininity, masculinity, attractiveness, and nurturing. In Studies 1 and 2, for female and male faces, judgements of aggression were associated with the face ratio even when other cues in the face related to masculinity were controlled statistically. Nevertheless, correlations between the face ratio and judgements of aggression were smaller for female than for male faces (F1,36 = 7.43, p = 0.01). In Study 1, there was no significant relationship between judgements of femininity and of aggression in female faces. In Study 2, the association between judgements of masculinity and aggression was weaker in female faces than for male faces in Study 1. The weaker association in female faces may be because aggression and masculinity are stereotypically male traits. Thus, in Study 3, observers rated faces on nurturing (a stereotypically female trait) and on femininity. Judgements of nurturing were associated with femininity (positively) and masculinity (negatively) ratings in both female and male faces. In summary, the perception of aggression differs in female versus male faces. The sex difference was not simply because aggression is a gendered construct; the relationships between masculinity/femininity and nurturing were similar for male and female faces even though nurturing is also a gendered construct. Masculinity and femininity ratings are not associated with aggression ratings nor with the face ratio for female faces. In contrast, all four variables are highly inter-correlated in male faces, likely because these cues in male faces serve as “honest signals”. PMID:22276184

  10. Facing Sound - Voicing Art

    DEFF Research Database (Denmark)

    Lønstrup, Ansa

    2013-01-01

    This article is based on examples of contemporary audiovisual art, with a special focus on the Tony Oursler exhibition Face to Face at Aarhus Art Museum ARoS in Denmark in March-July 2012. My investigation involves a combination of qualitative interviews with visitors, observations of the audienc......´s interactions with the exhibition and the artwork in the museum space and short analyses of individual works of art based on reception aesthetics and phenomenology and inspired by newer writings on sound, voice and listening....

  11. Cooling Performance of an Impingement Cooling Device Combined with Pins

    Institute of Scientific and Technical Information of China (English)

    Dongliang QUAN; Songling LIU; Jianghai LI; Gaowen LIU

    2005-01-01

    Experimental study and one dimensional model analysis were conducted to investigate cooling performance of an integrated impingement and pin fin cooling device. A typical configuration specimen was made and tested in a large scale low speed closed-looped wind tunnel. Detailed two-dimensional contour maps of the temperature and cooling effectiveness were obtained for different pressure ratios and therefore different coolant flow-rates through the tested specimen. The experimental results showed that very high cooling effectiveness can be achieved by this cooling device with relatively small amount of coolant flow. Based on the theory of transpiration cooling in porous material, a one dimensional heat transfer model was established to analyze the effect of various parameters on cooling effectiveness. It was found from this model that the variation of heat transfer on the gas side, including heat transfer coefficient and film cooling effectiveness, of the specimen created much more effect on its cooling effectiveness than that of the coolant side. The predictions of the one-dimensional mode were compared and agreed well with the experimental data.

  12. Conjunction Faces Alter Confidence-Accuracy Relations for Old Faces

    Science.gov (United States)

    Reinitz, Mark Tippens; Loftus, Geoffrey R.

    2017-01-01

    The authors used a state-trace methodology to investigate the informational dimensions used to recognize old and conjunction faces (made by combining parts of separately studied faces). Participants in 3 experiments saw faces presented for 1 s each. They then received a recognition test; faces were presented for varying brief durations and…

  13. Pedagogical Characteristics of Online and Face-to-Face Classes

    Science.gov (United States)

    Wuensch, Karl; Aziz, Shahnaz; Ozan, Erol; Kishore, Masao; Tabrizi, M. H. Nassehzadeh

    2008-01-01

    Currently, many students have had experience with both face-to-face and online classes. We asked such students at 46 different universities in the United States to evaluate the pedagogical characteristics of their most recently completed face-to-face class and their most recently completed online class. The results show that students rate online…

  14. Bayesian Face Recognition and Perceptual Narrowing in Face-Space

    Science.gov (United States)

    Balas, Benjamin

    2012-01-01

    During the first year of life, infants' face recognition abilities are subject to "perceptual narrowing", the end result of which is that observers lose the ability to distinguish previously discriminable faces (e.g. other-race faces) from one another. Perceptual narrowing has been reported for faces of different species and different races, in…

  15. Electronic cooling using thermoelectric devices

    Energy Technology Data Exchange (ETDEWEB)

    Zebarjadi, M., E-mail: m.zebarjadi@rutgers.edu [Department of Mechanical and Aerospace Engineering, Rutgers University, Piscataway, New Jersey 08854 (United States); Institute of Advanced Materials, Devices, and Nanotechnology, Rutgers University, Piscataway, New Jersey 08854 (United States)

    2015-05-18

    Thermoelectric coolers or Peltier coolers are used to pump heat in the opposite direction of the natural heat flux. These coolers have also been proposed for electronic cooling, wherein the aim is to pump heat in the natural heat flux direction and from hot spots to the colder ambient temperature. In this manuscript, we show that for such applications, one needs to use thermoelectric materials with large thermal conductivity and large power factor, instead of the traditionally used high ZT thermoelectric materials. We further show that with the known thermoelectric materials, the active cooling cannot compete with passive cooling, and one needs to explore a new set of materials to provide a cooling solution better than a regular copper heat sink. We propose a set of materials and directions for exploring possible materials candidates suitable for electronic cooling. Finally, to achieve maximum cooling, we propose to use thermoelectric elements as fins attached to copper blocks.

  16. Optical stochastic cooling in Tevatron

    CERN Document Server

    Lebedev, V

    2012-01-01

    Intrabeam scattering is the major mechanism resulting in a growth of beam emittances and fast luminosity degradation in the Tevatron. As a result in the case of optimal collider operation only about 40% of antiprotons are used to the store end and the rest are discarded. Beam cooling is the only effective remedy to increase the particle burn rate and, consequently, the luminosity. Unfortunately neither electron nor stochastic cooling can be effective at the Tevatron energy and bunch density. Thus the optical stochastic cooling (OSC) is the only promising technology capable to cool the Tevatron beam. Possible ways of such cooling implementation in the Tevatron and advances in the OSC cooling theory are discussed in this paper. The technique looks promising and potentially can double the average Tevatron luminosity without increasing its peak value and the antiproton production.

  17. Real Time Face Quality Assessment for Face Log Generation

    DEFF Research Database (Denmark)

    Kamal, Nasrollahi; Moeslund, Thomas B.

    2009-01-01

    Summarizing a long surveillance video to just a few best quality face images of each subject, a face-log, is of great importance in surveillance systems. Face quality assessment is the back-bone for face log generation and improving the quality assessment makes the face logs more reliable....... Developing a real time face quality assessment system using the most important facial features and employing it for face logs generation are the concerns of this paper. Extensive tests using four databases are carried out to validate the usability of the system....

  18. Face recognition system and method using face pattern words and face pattern bytes

    Energy Technology Data Exchange (ETDEWEB)

    Zheng, Yufeng

    2014-12-23

    The present invention provides a novel system and method for identifying individuals and for face recognition utilizing facial features for face identification. The system and method of the invention comprise creating facial features or face patterns called face pattern words and face pattern bytes for face identification. The invention also provides for pattern recognitions for identification other than face recognition. The invention further provides a means for identifying individuals based on visible and/or thermal images of those individuals by utilizing computer software implemented by instructions on a computer or computer system and a computer readable medium containing instructions on a computer system for face recognition and identification.

  19. Multibiometrics for face recognition

    NARCIS (Netherlands)

    Veldhuis, Raymond; Deravi, Farzin; Tao, Qian

    2008-01-01

    Fusion is a popular practice to combine multiple sources of biometric information to achieve systems with greater performance and flexibility. In this paper various approaches to fusion within a multibiometrics context are considered and an application to the fusion of 2D and 3D face information is

  20. Multibiometrics for face recognition

    NARCIS (Netherlands)

    Veldhuis, Raymond N.J.; Deravi, Farzin; Tao, Q.

    Fusion is a popular practice to combine multiple sources of biometric information to achieve systems with greater performance and flexibility. In this paper various approaches to fusion within a multibiometrics context are considered and an application to the fusion of 2D and 3D face information is

  1. Two Faces of Japan.

    Science.gov (United States)

    Beasley, Conger, Jr.

    1992-01-01

    Discusses the inconsistency between Japanese exploitation of world natural resources and gestures to provide leadership in ecologically innovative technology. Explores Japanese culture, power structure, population trends, environmental ethics, industrialism, and international business practices as they relate to the philosophical face of…

  2. Bayesian Face Sketch Synthesis.

    Science.gov (United States)

    Wang, Nannan; Gao, Xinbo; Sun, Leiyu; Li, Jie

    2017-03-01

    Exemplar-based face sketch synthesis has been widely applied to both digital entertainment and law enforcement. In this paper, we propose a Bayesian framework for face sketch synthesis, which provides a systematic interpretation for understanding the common properties and intrinsic difference in different methods from the perspective of probabilistic graphical models. The proposed Bayesian framework consists of two parts: the neighbor selection model and the weight computation model. Within the proposed framework, we further propose a Bayesian face sketch synthesis method. The essential rationale behind the proposed Bayesian method is that we take the spatial neighboring constraint between adjacent image patches into consideration for both aforementioned models, while the state-of-the-art methods neglect the constraint either in the neighbor selection model or in the weight computation model. Extensive experiments on the Chinese University of Hong Kong face sketch database demonstrate that the proposed Bayesian method could achieve superior performance compared with the state-of-the-art methods in terms of both subjective perceptions and objective evaluations.

  3. Facing Up to Death

    Science.gov (United States)

    Ross, Elizabeth Kubler

    1972-01-01

    Doctor urges that Americans accept death as a part of life and suggests ways of helping dying patients and their families face reality calmly, with peace. Dying children and their siblings, as well as children's feelings about relatives' deaths, are also discussed. (PD)

  4. Autonomous Face Segmentation

    Science.gov (United States)

    1992-09-01

    and Rhea Diamond. "From Piecemeal to Configurational Repre- sentation of Faces," Science, 195:312-314 (Jan 1977). 3. Damasio , Antonio R...34Prosopagnosia," Trends in Neuroscience, 8:132-135 (1985). 4. Damasio , Antonio R. and others. "Prosopagnosia: Anatomic Basis and Behav- ioral Mechanisms

  5. PrimeFaces blueprints

    CERN Document Server

    Jonna, Sudheer

    2014-01-01

    If you are a Java developer with experience of frontend UI development, and want to take the plunge to develop stunning UI applications with the most popular JSF framework, PrimeFaces, then this book is for you. For those with entrepreneurial aspirations, this book will provide valuable insights into how to utilize successful business models.

  6. Facing Up to Death

    Science.gov (United States)

    Ross, Elizabeth Kubler

    1972-01-01

    Doctor urges that Americans accept death as a part of life and suggests ways of helping dying patients and their families face reality calmly, with peace. Dying children and their siblings, as well as children's feelings about relatives' deaths, are also discussed. (PD)

  7. Electron Cooling Experiments in CSR

    CERN Document Server

    Xiaodong, Yang

    2011-01-01

    The six species heavy ion beam was accumulated with the help of electron cooling in the main ring of Cooler Storage Ring of Heavy Ion Research Facility in Lanzhou(HIRFL-CSR), the ion beam accumulation dependence on the parameters of cooler was investigated experimentally. The 400MeV/u 12C6+ and 200MeV/u 129Xe54+ was stored and cooled in the experimental ring CSRe, the cooling force was measured in different condition.

  8. Radiative cooling for thermophotovoltaic systems

    Science.gov (United States)

    Zhou, Zhiguang; Sun, Xingshu; Bermel, Peter

    2016-09-01

    Radiative cooling has recently garnered a great deal of attention for its potential as an alternative method for photovoltaic thermal management. Here, we will consider the limits of radiative cooling for thermal management of electronics broadly, as well as a specific application to thermal power generation. We show that radiative cooling power can increase rapidly with temperature, and is particularly beneficial in systems lacking standard convective cooling. This finding indicates that systems previously operating at elevated temperatures (e.g., 80°C) can be passively cooled close to ambient under appropriate conditions with a reasonable cooling area. To examine these general principles for a previously unexplored application, we consider the problem of thermophotovoltaic (TPV) conversion of heat to electricity via thermal radiation illuminating a photovoltaic diode. Since TPV systems generally operate in vacuum, convective cooling is sharply limited, but radiative cooling can be implemented with proper choice of materials and structures. In this work, realistic simulations of system performance are performed using the rigorous coupled wave analysis (RCWA) techniques to capture thermal emitter radiation, PV diode absorption, and radiative cooling. We subsequently optimize the structural geometry within realistic design constraints to find the best configurations to minimize operating temperature. It is found that low-iron soda-lime glass can potentially cool the PV diode by a substantial amount, even to below ambient temperatures. The cooling effect can be further improved by adding 2D-periodic photonic crystal structures. We find that the improvement of efficiency can be as much as an 18% relative increase, relative to the non-radiatively cooled baseline, as well as a potentially significant improvement in PV diode lifetime.

  9. To Be Cool or Uncool?

    Institute of Scientific and Technical Information of China (English)

    袁会珍

    2007-01-01

    The western world has always been divided into two types of people-the cool and the uncool. It is a division that __1__ in school. The cool kids are good at __2__. They are __3__ with the opposite sex. They are good-looking and people want to __4__ their style. They can do their homework but they don't make a big effort. That would __5__ be cool.

  10. Electron cooling experiments in CSR

    Institute of Scientific and Technical Information of China (English)

    PARKHOMCHUK; Vasily; REVA; Vladimir

    2011-01-01

    The six species heavy ion beam was accumulated with the help of electron cooling in the main ring of Cooler Storage Ring of Heavy Ion Research Facility in Lanzhou (HIRFL-CSR). The ion beam accumulation dependence on the parameters of cooler was investigated experimentally. The 400 MeV/u 12C6+ and 200 MeV/u 129Xe54+ were stored and cooled in the experimental ring CSRe, and the cooling force was measured in different conditions.

  11. Workshop 4 Converter cooling & recuperation

    Science.gov (United States)

    Iles, Peter; Hindman, Don

    1995-01-01

    Cooling the PV converter increases the overall TPV system efficiency, and more than offsets the losses incurred in providing cooling systems. Convective air flow methods may be sufficient, and several standard water cooling systems, including thermo-syphon radiators, capillary pumps or microchannel plates, are available. Recuperation is used to increase system efficiency, rather than to increase the emitter temperature. Recuperators operating at comparable high temperatures, such as in high temperature turbines have worked effectively.

  12. Stochastic cooling technology at Fermilab

    Energy Technology Data Exchange (ETDEWEB)

    Pasquinelli, R.J. E-mail: pasquin@fnal.gov

    2004-10-11

    The first antiproton cooling systems were installed and commissioned at Fermilab in 1984-1985. In the interim period, there have been several major upgrades, system improvements, and complete reincarnation of cooling systems. This paper will present some of the technology that was pioneered at Fermilab to implement stochastic cooling systems in both the Antiproton Source and Recycler accelerators. Current performance data will also be presented.

  13. Age-Dependent Face Detection and Face Categorization Performance

    OpenAIRE

    Claus-Christian Carbon; Martina Grüter; Thomas Grüter

    2013-01-01

    Empirical studies on the development of face processing skills with age show inconsistent patterns concerning qualitative vs. quantitative changes over time or the age range for peak cognitive performance. In the present study, we tested the proficiency in face detection and face categorization with a large sample of participants (N = 312; age range: 2-88 yrs). As test objects, we used so-called Mooney faces, two-tone (black and white) images of faces lacking critical information of a local, ...

  14. Direct cooled power electronics substrate

    Science.gov (United States)

    Wiles, Randy H [Powell, TN; Wereszczak, Andrew A [Oak Ridge, TN; Ayers, Curtis W [Kingston, TN; Lowe, Kirk T [Knoxville, TN

    2010-09-14

    The disclosure describes directly cooling a three-dimensional, direct metallization (DM) layer in a power electronics device. To enable sufficient cooling, coolant flow channels are formed within the ceramic substrate. The direct metallization layer (typically copper) may be bonded to the ceramic substrate, and semiconductor chips (such as IGBT and diodes) may be soldered or sintered onto the direct metallization layer to form a power electronics module. Multiple modules may be attached to cooling headers that provide in-flow and out-flow of coolant through the channels in the ceramic substrate. The modules and cooling header assembly are preferably sized to fit inside the core of a toroidal shaped capacitor.

  15. Cooling clothing utilizing water evaporation

    DEFF Research Database (Denmark)

    Sakoi, Tomonori; Tominaga, Naoto; Melikov, Arsen Krikor

    2014-01-01

    We developed cooling clothing that utilizes water evaporation to cool the human body and has a mechanism to control the cooling intensity. Clean water was supplied to the outer surface of the T-shirt of the cooling clothing, and a small fan was used to enhance evaporation on this outer surface...... temperature ranging from 27.4 to 30.7 °C to establish a suitable water supply control method. A water supply control method that prevents water accumulation in the T-shirt and water dribbling was validated; this method is established based on the concept of the water evaporation capacity under the applied...

  16. Regeneratively Cooled Porous Media Jacket

    Science.gov (United States)

    Mungas, Greg (Inventor); Fisher, David J. (Inventor); London, Adam Pollok (Inventor); Fryer, Jack Merrill (Inventor)

    2013-01-01

    The fluid and heat transfer theory for regenerative cooling of a rocket combustion chamber with a porous media coolant jacket is presented. This model is used to design a regeneratively cooled rocket or other high temperature engine cooling jacket. Cooling jackets comprising impermeable inner and outer walls, and porous media channels are disclosed. Also disclosed are porous media coolant jackets with additional structures designed to transfer heat directly from the inner wall to the outer wall, and structures designed to direct movement of the coolant fluid from the inner wall to the outer wall. Methods of making such jackets are also disclosed.

  17. Face aftereffects predict individual differences in face recognition ability.

    Science.gov (United States)

    Dennett, Hugh W; McKone, Elinor; Edwards, Mark; Susilo, Tirta

    2012-01-01

    Face aftereffects are widely studied on the assumption that they provide a useful tool for investigating face-space coding of identity. However, a long-standing issue concerns the extent to which face aftereffects originate in face-level processes as opposed to earlier stages of visual processing. For example, some recent studies failed to find atypical face aftereffects in individuals with clinically poor face recognition. We show that in individuals within the normal range of face recognition abilities, there is an association between face memory ability and a figural face aftereffect that is argued to reflect the steepness of broadband-opponent neural response functions in underlying face-space. We further show that this correlation arises from face-level processing, by reporting results of tests of nonface memory and nonface aftereffects. We conclude that face aftereffects can tap high-level face-space, and that face-space coding differs in quality between individuals and contributes to face recognition ability.

  18. Fluid cooled electrical assembly

    Science.gov (United States)

    Rinehart, Lawrence E.; Romero, Guillermo L.

    2007-02-06

    A heat producing, fluid cooled assembly that includes a housing made of liquid-impermeable material, which defines a fluid inlet and a fluid outlet and an opening. Also included is an electrical package having a set of semiconductor electrical devices supported on a substrate and the second major surface is a heat sink adapted to express heat generated from the electrical apparatus and wherein the second major surface defines a rim that is fit to the opening. Further, the housing is constructed so that as fluid travels from the fluid inlet to the fluid outlet it is constrained to flow past the opening thereby placing the fluid in contact with the heat sink.

  19. ATLAS' major cooling project

    CERN Multimedia

    2005-01-01

    In 2005, a considerable effort has been put into commissioning the various units of ATLAS' complex cryogenic system. This is in preparation for the imminent cooling of some of the largest components of the detector in their final underground configuration. The liquid helium and nitrogen ATLAS refrigerators in USA 15. Cryogenics plays a vital role in operating massive detectors such as ATLAS. In many ways the liquefied argon, nitrogen and helium are the life-blood of the detector. ATLAS could not function without cryogens that will be constantly pumped via proximity systems to the superconducting magnets and subdetectors. In recent weeks compressors at the surface and underground refrigerators, dewars, pumps, linkages and all manner of other components related to the cryogenic system have been tested and commissioned. Fifty metres underground The helium and nitrogen refrigerators, installed inside the service cavern, are an important part of the ATLAS cryogenic system. Two independent helium refrigerators ...

  20. Air cooled absorption chillers for solar cooling applications

    Science.gov (United States)

    Biermann, W. J.; Reimann, R. C.

    1982-03-01

    The chemical composition of a 'best' absorption refrigerant system is identified, and those properties of the system necessary to design hot water operated, air cooled chilling equipment are determined. Air cooled chillers from single family residential sizes into the commercial rooftop size range are designed and operated.

  1. Human faces are slower than chimpanzee faces.

    Directory of Open Access Journals (Sweden)

    Anne M Burrows

    Full Text Available BACKGROUND: While humans (like other primates communicate with facial expressions, the evolution of speech added a new function to the facial muscles (facial expression muscles. The evolution of speech required the development of a coordinated action between visual (movement of the lips and auditory signals in a rhythmic fashion to produce "visemes" (visual movements of the lips that correspond to specific sounds. Visemes depend upon facial muscles to regulate shape of the lips, which themselves act as speech articulators. This movement necessitates a more controlled, sustained muscle contraction than that produced during spontaneous facial expressions which occur rapidly and last only a short period of time. Recently, it was found that human tongue musculature contains a higher proportion of slow-twitch myosin fibers than in rhesus macaques, which is related to the slower, more controlled movements of the human tongue in the production of speech. Are there similar unique, evolutionary physiologic biases found in human facial musculature related to the evolution of speech? METHODOLOGY/PRINICIPAL FINDINGS: Using myosin immunohistochemistry, we tested the hypothesis that human facial musculature has a higher percentage of slow-twitch myosin fibers relative to chimpanzees (Pan troglodytes and rhesus macaques (Macaca mulatta. We sampled the orbicularis oris and zygomaticus major muscles from three cadavers of each species and compared proportions of fiber-types. Results confirmed our hypothesis: humans had the highest proportion of slow-twitch myosin fibers while chimpanzees had the highest proportion of fast-twitch fibers. CONCLUSIONS/SIGNIFICANCE: These findings demonstrate that the human face is slower than that of rhesus macaques and our closest living relative, the chimpanzee. They also support the assertion that human facial musculature and speech co-evolved. Further, these results suggest a unique set of evolutionary selective pressures on

  2. A thermosyphon heat pipe cooler for high power LEDs cooling

    Science.gov (United States)

    Li, Ji; Tian, Wenkai; Lv, Lucang

    2016-08-01

    Light emitting diode (LED) cooling is facing the challenge of high heat flux more seriously with the increase of input power and diode density. The proposed unique thermosyphon heat pipe heat sink is particularly suitable for cooling of high power density LED chips and other electronics, which has a heat dissipation potential of up to 280 W within an area of 20 mm × 22 mm (>60 W/cm2) under natural air convection. Meanwhile, a thorough visualization investigation was carried out to explore the two phase flow characteristics in the proposed thermosyphon heat pipe. Implementing this novel thermosyphon heat pipe heat sink in the cooling of a commercial 100 W LED integrated chip, a very low apparent thermal resistance of 0.34 K/W was obtained under natural air convection with the aid of the enhanced boiling heat transfer at the evaporation side and the enhanced natural air convection at the condensation side.

  3. Feasibility assessment of vacuum cooling followed by immersion vacuum cooling on water-cooked pork.

    Science.gov (United States)

    Dong, Xiaoguang; Chen, Hui; Liu, Yi; Dai, Ruitong; Li, Xingmin

    2012-01-01

    Vacuum cooling followed by immersion vacuum cooling was designed to cool water-cooked pork (1.5±0.05 kg) compared with air blast cooling (4±0.5°C, 2 m/s), vacuum cooling (10 mbar) and immersion vacuum cooling. This combined cooling method was: vacuum cooling to an intermediate temperature of 25°C and then immersion vacuum cooling with water of 10°C to the final temperature of 10°C. It was found that the cooling loss of this combined cooling method was significantly lower (Pvacuum cooling. This combined cooling was faster (Pvacuum cooling in terms of cooling rate. Moreover, the pork cooled by combined cooling method had significant differences (P<0.05) in water content, color and shear force. Copyright © 2011 Elsevier Ltd. All rights reserved.

  4. Automated Face Recognition System

    Science.gov (United States)

    1992-12-01

    atestfOl.feature-vectjJ -averageljJ); for(j=l; <num-coefsj++) for(i= 5 num-train-faces;i++) sdlQjI -(btrainhil.feaure..vecU1- veagU (btraintil.feature- vecU ... vecU ])* (atest(O1.feature-vecUJ - btrain[iI.feature- vecU ]) + temp; btrain(ii.distance = sqrt ( (double) temp); I**** Store the k-nearest neighbors rank

  5. Auto Industry Faces Change

    Institute of Scientific and Technical Information of China (English)

    2006-01-01

    A number of indicators show that China's auto industry is facing a new round of large-scale restructuring. When the global auto industry was undergoing reorganization 10 years ago, China's auto industry was in its early stages, acting in a relatively closed market, and thus it missed out on that important event. However, the situation is different today. In the past decade, China's auto industry has grown at a rapid pace. While the world's major transnational companies are

  6. Newton's Law of Cooling Revisited

    Science.gov (United States)

    Vollmer, M.

    2009-01-01

    The cooling of objects is often described by a law, attributed to Newton, which states that the temperature difference of a cooling body with respect to the surroundings decreases exponentially with time. Such behaviour has been observed for many laboratory experiments, which led to a wide acceptance of this approach. However, the heat transfer…

  7. Dialogues in the COOL Project

    NARCIS (Netherlands)

    Stalpers, S.I.P.; Kroeze, C.

    2013-01-01

    The Climate Options for the Long-term (COOL) Project is a participatory integrated assessment (PIA) comprising extensive dialogues at three levels: national, European and global. The objective of the COOL Project was to ‘develop strategic notions on how to achieve drastic reductions of greenhouse ga

  8. Be Cool, Man! / Jevgeni Levik

    Index Scriptorium Estoniae

    Levik, Jevgeni

    2005-01-01

    Järg 1995. aasta kriminaalkomöödiale "Tooge jupats" ("Get Shorty") : mängufilm "Be Cool, Chili Palmer on tagasi!" ("Be Cool") : režissöör F. Gary Gray, peaosades J. Travolta ja U. Thurman : USA 2005. Lisatud J. Travolta ja U. Thurmani lühiintervjuud

  9. Temperature initiated passive cooling system

    Science.gov (United States)

    Forsberg, Charles W.

    1994-01-01

    A passive cooling system for cooling an enclosure only when the enclosure temperature exceeds a maximum standby temperature comprises a passive heat transfer loop containing heat transfer fluid having a particular thermodynamic critical point temperature just above the maximum standby temperature. An upper portion of the heat transfer loop is insulated to prevent two phase operation below the maximum standby temperature.

  10. Be Cool, Man! / Jevgeni Levik

    Index Scriptorium Estoniae

    Levik, Jevgeni

    2005-01-01

    Järg 1995. aasta kriminaalkomöödiale "Tooge jupats" ("Get Shorty") : mängufilm "Be Cool, Chili Palmer on tagasi!" ("Be Cool") : režissöör F. Gary Gray, peaosades J. Travolta ja U. Thurman : USA 2005. Lisatud J. Travolta ja U. Thurmani lühiintervjuud

  11. Dew Point Evaporative Comfort Cooling

    Science.gov (United States)

    2012-11-01

    220 Figure 140. Water-cooled chilled water plant with primary/secondary...enough to buffer the space by carrying away solar loads in unoccupied volumes, such as ceiling plenums. For rooftop installations, where ceiling...and are significant for the three-month period and generally exceed 68%. Larger chilled water plants with water-cooled condensers can operate with

  12. Triatomic molecules laser-cooled

    Science.gov (United States)

    2017-06-01

    Molecules containing three atoms have been laser-cooled to ultracold temperatures for the first time. John Doyle and colleagues at Harvard University in the US used a technique called Sisyphus cooling to chill an ensemble of about a million strontium-monohydroxide molecules to 750 μK.

  13. Decoding of faces and face components in face-sensitive human visual cortex

    Directory of Open Access Journals (Sweden)

    David F Nichols

    2010-07-01

    Full Text Available A great challenge to the field of visual neuroscience is to understand how faces are encoded and represented within the human brain. Here we show evidence from functional magnetic resonance imaging (fMRI for spatially distributed processing of the whole face and its components in face-sensitive human visual cortex. We used multi-class linear pattern classifiers constructed with a leave-one-scan-out verification procedure to discriminate brain activation patterns elicited by whole faces, the internal features alone, and the external head outline alone. Furthermore, our results suggest that whole faces are represented disproportionately in the fusiform cortex (FFA whereas the building blocks of faces are represented disproportionately in occipitotemporal cortex (OFA. Faces and face components may therefore be organized with functional clustering within both the FFA and OFA, but with specialization for face components in the OFA and the whole face in the FFA.

  14. FORMATION AND PLASMA CIRCULATION OF SOLAR PROMINENCES

    OpenAIRE

    Xia, Chun; Keppens, Rony

    2016-01-01

    Solar prominences are long-lived cool and dense plasma curtains in the hot and rarefied outer solar atmosphere or corona. The physical mechanism responsible for their formation and especially for their internal plasma circulation has been uncertain for decades. The observed ubiquitous down flows in quiescent prominences are difficult to interpret as plasma with high conductivity seems to move across horizontal magnetic field lines. Here we present three-dimensional numerical simulations of pr...

  15. Assessing the feasibility of a high-temperature, helium-cooled vacuum vessel and first wall for the Vulcan tokamak conceptual design

    Energy Technology Data Exchange (ETDEWEB)

    Barnard, H.S., E-mail: hbar@mit.edu [Plasma Science and Fusion Center, Massachusetts Institute of Technology, Cambridge, MA (United States); Hartwig, Z.S.; Olynyk, G.M.; Payne, J.E. [Plasma Science and Fusion Center, Massachusetts Institute of Technology, Cambridge, MA (United States)

    2012-03-15

    The Vulcan conceptual design (R = 1.2 m, a = 0.3 m, B{sub 0} = 7 T), a compact, steady-state tokamak for plasma-material interaction (PMI) science, must incorporate a vacuum vessel capable of operating at 1000 K in order to replicate the temperature-dependent physical chemistry that will govern PMI in a reactor. In addition, the Vulcan divertor must be capable of handling steady-state heat fluxes up to 10 MW m{sup -2} so that integrated materials testing can be performed under reactor-relevant conditions. A conceptual design scoping study has been performed to assess the challenges involved in achieving such a configuration. The Vulcan vacuum system comprises an inner, primary vacuum vessel that is thermally and mechanically isolated from the outer, secondary vacuum vessel by a 10 cm vacuum gap. The thermal isolation minimizes heat conduction between the high-temperature helium-cooled primary vessel and the water-cooled secondary vessel. The mechanical isolation allows for thermal expansion and enables vertical removal of the primary vessel for maintenance or replacement. Access to the primary vessel for diagnostics, lower hybrid waveguides, and helium coolant is achieved through {approx}1 m long intra-vessel pipes to minimize temperature gradients and is shown to be commensurate with the available port space in Vulcan. The isolated primary vacuum vessel is shown to be mechanically feasible and robust to plasma disruptions with analytic calculations and finite element analyses. Heat removal in the first wall and divertor, coupled with the ability to perform in situ maintenance and replacement of divertor components for scientific purposes, is achieved by combining existing helium-cooled techniques with innovative mechanical attachments of plasma facing components, either in plate-type helium-cooled modules or independently bolted, helium-jet impingement-cooled tiles. The vacuum vessel and first wall design enables a wide range of potential PFC materials and

  16. A novel electronic cooling concept

    Science.gov (United States)

    Ponnappan, R.; Beam, J. E.

    Advanced electrical power conditioning systems for the More Electric Aircraft Initiative involve high currents and high voltages with the attendant waste heat generation and cooling problems. The use of solid state switching devices such as MCTs for these systems will result in power dissipation of several hundred Watts per square centimeter. Conventional forced air or low velocity single phase fluid cooling is inadequate to handle the waste heat dissipation of these high power devices. More advanced and innovative methods of cooling which can use fluids available in the aircraft and also easy to package are sought. A new approach called 'venturi flow cooling concept' is described. It is shown that localized cooling up to 200 W/sq cm is possible at the venturi throat region where the MCTs can be mounted. PAO coolant with Pr = 56 at 40 C can be conveniently used in aircraft.

  17. Laser cooling to quantum degeneracy.

    Science.gov (United States)

    Stellmer, Simon; Pasquiou, Benjamin; Grimm, Rudolf; Schreck, Florian

    2013-06-28

    We report on Bose-Einstein condensation in a gas of strontium atoms, using laser cooling as the only cooling mechanism. The condensate is formed within a sample that is continuously Doppler cooled to below 1  μK on a narrow-linewidth transition. The critical phase-space density for condensation is reached in a central region of the sample, in which atoms are rendered transparent for laser cooling photons. The density in this region is enhanced by an additional dipole trap potential. Thermal equilibrium between the gas in this central region and the surrounding laser cooled part of the cloud is established by elastic collisions. Condensates of up to 10(5) atoms can be repeatedly formed on a time scale of 100 ms, with prospects for the generation of a continuous atom laser.

  18. Calculation and experimental test of the cooling factor of tungsten

    Science.gov (United States)

    Pütterich, T.; Neu, R.; Dux, R.; Whiteford, A. D.; O'Mullane, M. G.; Summers, H. P.; ASDEX Upgrade Team

    2010-02-01

    The cooling factor of W is evaluated using state of the art data for line radiation and an ionization balance which has been benchmarked with experiment. For the calculation of line radiation, level-resolved calculations were performed with the Cowan code to obtain the electronic structure and excitation cross sections (plane-wave Born approximation). The data were processed by a collisional radiative model to obtain electron density dependent emissions. These data were then combined with the radiative power derived from recombination rates and bremsstrahlung to obtain the total cooling factor. The effect of uncertainties in the recombination rates on the cooling factor was studied and was identified to be of secondary importance. The new cooling factor is benchmarked, by comparisons of the line radiation with spectral measurements as well as with a direct measurement of the cooling factor. Additionally, a less detailed calculation using a configuration averaged model was performed. It was used to benchmark the level-resolved calculations and to improve the prediction on radiation power from line radiation for ionization stages which are computationally challenging. The obtained values for the cooling factor validate older predictions from the literature. Its ingredients and the absolute value are consistent with the existing experimental results regarding the value itself, the spectral distribution of emissions and the ionization equilibrium. A table of the cooling factor versus electron temperature is provided. Finally, the cooling factor is used to investigate the operational window of a fusion reactor with W as intrinsic impurity. The minimum value of nTτE, for which a thermonuclear burn is possible, is increased by 20% for a W concentration of 3.0 × 10-5 compared with a plasma without any impurities, except for the He ash which is considered in both cases.

  19. Cooling off with physics

    Energy Technology Data Exchange (ETDEWEB)

    Clarke, Chris [Unilever R and D (United Kingdom)

    2003-08-01

    You might think of ice cream as a delicious treat to be enjoyed on a sunny summer's day. However, to the ice-cream scientists who recently gathered in Thessaloniki in Greece for the 2nd International Ice Cream Symposium, it is a complex composite material. Ice cream consists of three dispersed phases: ice crystals, which have a mean size of 50 microns, air bubbles with a diameter of about 70 microns, and fat droplets with a size of 1 micron. These phases are held together by what is called the matrix - not a sci-fi film, but a viscous solution of sugars, milk proteins and polysaccharides. The microstructure, and hence the texture that you experience when you eat ice cream, is created in a freezing process that has remained fundamentally unchanged since the first ice-cream maker was patented in the 1840s. The ingredients - water, milk protein, fat, sugar, emulsifiers, stabilizers, flavours and a lot of air - are mixed together before being pasteurized and homogenized. They are then pumped into a cylinder that is cooled from the outside with a refrigerant. As the mixture touches the cylinder wall it freezes and forms ice crystals, which are quickly scraped off by a rotating blade. The blade is attached to a beater that disperses the ice crystals into the mixture. At the same time, air is injected and broken down into small bubbles by the shear that the beater generates. As the mixture passes along the cylinder, the number of ice crystals increases and its temperature drops. As a result, the viscosity of the mixture increases, so that more energy input is needed to rotate the beater. This energy is dissipated as heat, and when the ice cream reaches about -6 deg. C the energy input through the beater equals the energy removed as heat by the refrigerant. The process therefore becomes self-limiting and it is not possible to cool the ice cream any further. However, at -6 deg. C the microstructure is unstable. The ice cream therefore has to be removed from the freezer

  20. Analytical model of transient thermal effect on convectional cooled end-pumped laser rod

    Indian Academy of Sciences (India)

    Khalid S Shibib; Mohammad A Munshid; Kadim A Hubiter

    2013-10-01

    The transient analytical solutions of temperature distribution, stress, strain and optical path difference in convectional cooled end-pumped laser rod are derived. The results are compared with other works and good agreements are found. The effects of increasing the edge cooling and face cooling are studied. It is found that an increase in the edge cooling has significant effect on reducing the maximum temperature that can be reached in the laser rod but it has no effect on the value of optical path difference. It is also found that increasing this type of cooling significantly reduces the time required to reach the thermal equilibrium with a slight increase in the max. tensile hoop stress that can be reached as the cooling increases. On the other hand, increase in face cooling reduces the response time, optical path difference and the maximum temperature that can be reached in the laser rod but a significant increase in the max. tensile hoop stress is observed. A matching between the advantages of these two type of cooling may be useful for a designer.

  1. Simulating the Cooling Flow of Cool-Core Clusters

    CERN Document Server

    Li, Yuan

    2011-01-01

    We carry out high-resolution adaptive mesh refinement simulations of a cool core cluster, resolving the flow from Mpc scales down to pc scales. We do not (yet) include any AGN heating, focusing instead on cooling in order to understand how gas gets to the supermassive black hole (SMBH) at the center of the cluster. We find that, as the gas cools, the cluster develops a very flat temperature profile, undergoing a cooling catastrophe only in the central 10-100 pc of the cluster. Outside of this region, the flow is smooth, with no local cooling instabilities, and naturally produces very little low-temperature gas (below a few keV), in agreement with observations. The gas cooling in the center of the cluster rapidly forms a thin accretion disk. The amount of cold gas produced at the very center grows rapidly until a reasonable estimate of the resulting AGN heating rate (assuming even a moderate accretion efficiency) would overwhelm cooling. We argue that this naturally produces a thermostat which links the coolin...

  2. Plasma turbulence

    Energy Technology Data Exchange (ETDEWEB)

    Horton, W. [Univ. of Texas, Austin, TX (United States). Inst. for Fusion Studies; Hu, G. [Globalstar LP, San Jose, CA (United States)

    1998-07-01

    The origin of plasma turbulence from currents and spatial gradients in plasmas is described and shown to lead to the dominant transport mechanism in many plasma regimes. A wide variety of turbulent transport mechanism exists in plasmas. In this survey the authors summarize some of the universally observed plasma transport rates.

  3. Face-space: A unifying concept in face recognition research.

    Science.gov (United States)

    Valentine, Tim; Lewis, Michael B; Hills, Peter J

    2016-10-01

    The concept of a multidimensional psychological space, in which faces can be represented according to their perceived properties, is fundamental to the modern theorist in face processing. Yet the idea was not clearly expressed until 1991. The background that led to the development of face-space is explained, and its continuing influence on theories of face processing is discussed. Research that has explored the properties of the face-space and sought to understand caricature, including facial adaptation paradigms, is reviewed. Face-space as a theoretical framework for understanding the effect of ethnicity and the development of face recognition is evaluated. Finally, two applications of face-space in the forensic setting are discussed. From initially being presented as a model to explain distinctiveness, inversion, and the effect of ethnicity, face-space has become a central pillar in many aspects of face processing. It is currently being developed to help us understand adaptation effects with faces. While being in principle a simple concept, face-space has shaped, and continues to shape, our understanding of face perception.

  4. EDITORIAL: Plasma Surface Interactions for Fusion

    Science.gov (United States)

    2006-05-01

    Because plasma-boundary physics encompasses some of the most important unresolved issues for both the International Thermonuclear Experimental Reactor (ITER) project and future fusion power reactors, there is a strong interest in the fusion community for better understanding and characterization of plasma wall interactions. Chemical and physical sputtering cause the erosion of the limiters/divertor plates and vacuum vessel walls (made of C, Be and W, for example) and degrade fusion performance by diluting the fusion fuel and excessively cooling the core, while carbon redeposition could produce long-term in-vessel tritium retention, degrading the superior thermo-mechanical properties of the carbon materials. Mixed plasma-facing materials are proposed, requiring optimization for different power and particle flux characteristics. Knowledge of material properties as well as characteristics of the plasma material interaction are prerequisites for such optimizations. Computational power will soon reach hundreds of teraflops, so that theoretical and plasma science expertise can be matched with new experimental capabilities in order to mount a strong response to these challenges. To begin to address such questions, a Workshop on New Directions for Advanced Computer Simulations and Experiments in Fusion-Related Plasma Surface Interactions for Fusion (PSIF) was held at the Oak Ridge National Laboratory from 21 to 23 March, 2005. The purpose of the workshop was to bring together researchers in fusion related plasma wall interactions in order to address these topics and to identify the most needed and promising directions for study, to exchange opinions on the present depth of knowledge of surface properties for the main fusion-related materials, e.g., C, Be and W, especially for sputtering, reflection, and deuterium (tritium) retention properties. The goal was to suggest the most important next steps needed for such basic computational and experimental work to be facilitated

  5. Electrical properties of an un-cooled microwave waveguide applicator-VSWR

    Energy Technology Data Exchange (ETDEWEB)

    Gower, S A [School of Electrical, Computer and Telecommunications Engineering, University of Wollongong, NSW (Australia)

    2003-08-21

    Work in microwave plasma generation at the University of Wollongong has resulted in a succession of plasma applicators that utilize rectangular waveguides to generate a collimated microwave plasma beam suitable for applications as diverse as spectroscopic light sources or as fusion welding tools. This paper examines in detail the electrical properties, specifically the voltage standing wave ratio, of an un-cooled rectangular waveguide applicator under various operating conditions.

  6. 46 CFR 153.432 - Cooling systems.

    Science.gov (United States)

    2010-10-01

    ... 46 Shipping 5 2010-10-01 2010-10-01 false Cooling systems. 153.432 Section 153.432 Shipping COAST... Control Systems § 153.432 Cooling systems. (a) Each cargo cooling system must have an equivalent standby... cooling system. (b) Each tankship that has a cargo tank with a required cooling system must have a manual...

  7. Convective cooling of photovoltaics

    Energy Technology Data Exchange (ETDEWEB)

    Hodge, E.; Gibbons, C. [Energy Engineering Group, Mechanical Engineering Department, Cork Institute of Technology, Bishopstown, Cork (Ireland)

    2004-07-01

    Most solar cells presently on the market are based on silicon wafers, the so-called first generation technology. As this technology has matured costs have become increasingly dominated by material costs. In the last ten years, continuous work has brought the efficiency of standard cells to the 25% region. A switch to second generation or thin film technology cells now seems imminent. Thin film technology eliminates the silicon wafer and offer the prospect of reducing material and manufacturing costs, but they exhibit lower efficiencies of around 10% for a commercial device. Third generation or tandem cells are currently at a 'proof of concept' research level, with a theoretical conversion rate of 86.8% being asserted Whatever the material construction and manufacturing method of cells, the thermal effect of overheating will prevail in the semiconductor and it is accepted that a lowered temperature will bring about an increase in conversion efficiency. The aim of this project is to improve the efficiency of PV electrical output, by convectively cooling the cells through perforations in them. As the cells heat up they lose efficiency. As the panel heats up a loss in efficiency of 0.5% per C increase in temperature has been recorded. (orig.)

  8. Central cooling: absorptive chillers

    Energy Technology Data Exchange (ETDEWEB)

    Christian, J.E.

    1977-08-01

    This technology evaluation covers commercially available single-effect, lithium-bromide absorption chillers ranging in nominal cooling capacities of 3 to 1,660 tons and double-effect lithium-bromide chillers from 385 to 1,060 tons. The nominal COP measured at operating conditions of 12 psig input steam for the single-effect machine, 85/sup 0/ entering condenser water, and 44/sup 0/F exiting chilled-water, ranges from 0.6 to 0.65. The nominal COP for the double-effect machine varies from 1.0 to 1.15 with 144 psig entering steam. Data are provided to estimate absorption-chiller performance at off-nominal operating conditions. The part-load performance curves along with cost estimating functions help the system design engineer select absorption equipment for a particular application based on life-cycle costs. Several suggestions are offered which may be useful for interfacing an absorption chiller with the remaining Integrated Community Energy System. The ammonia-water absorption chillers are not considered to be readily available technology for ICES application; therefore, performance and cost data on them are not included in this evaluation.

  9. Performance of Air-cooled Engine Cylinders Using Blower Cooling

    Science.gov (United States)

    Schey, Oscar W; Ellerbrock, Herman H , Jr

    1936-01-01

    An investigation was made to obtain information on the minimum quantity of air and power required to cool conventional air cooled cylinders at various operating conditions when using a blower. The results of these tests show that the minimum power required for satisfactory cooling with an overall blower efficiency of 100 percent varied from 2 to 6 percent of the engine power depending on the operating conditions. The shape of the jacket had a large effect on the cylinder temperatures. Increasing the air speed over the front of the cylinder by keeping the greater part of the circumference of the cylinder covered by the jacket reduced the temperatures over the entire cylinder.

  10. Magnetorotational instability in cool cores of galaxy clusters

    Science.gov (United States)

    Nipoti, Carlo; Posti, L.; Ettori, S.; Bianconi, M.

    2015-10-01

    > Clusters of galaxies are embedded in halos of optically thin, gravitationally stratified, weakly magnetized plasma at the system's virial temperature. Owing to radiative cooling and anisotropic heat conduction, such intracluster medium (ICM) is subject to local instabilities, which are combinations of the thermal, magnetothermal and heat-flux-driven buoyancy instabilities. If the ICM rotates significantly, its stability properties are substantially modified and, in particular, also the magnetorotational instability (MRI) can play an important role. We study simple models of rotating cool-core clusters and we demonstrate that the MRI can be the dominant instability over significant portions of the clusters, with possible implications for the dynamics and evolution of the cool cores. Our results give further motivation for measuring the rotation of the ICM with future X-ray missions such as ASTRO-H and ATHENA.

  11. Age-dependent face detection and face categorization performance.

    Science.gov (United States)

    Carbon, Claus-Christian; Grüter, Martina; Grüter, Thomas

    2013-01-01

    Empirical studies on the development of face processing skills with age show inconsistent patterns concerning qualitative vs. quantitative changes over time or the age range for peak cognitive performance. In the present study, we tested the proficiency in face detection and face categorization with a large sample of participants (N = 312; age range: 2-88 yrs). As test objects, we used so-called Mooney faces, two-tone (black and white) images of faces lacking critical information of a local, featural and relational nature, reflecting difficult real world face processing conditions. We found that performance in the assessment of gender and age from Mooney faces increases up to about age 15, and decreases from 65 years on. The implications of these findings are discussed in the light of classic and recent findings from face development literature.

  12. A comparative study of face processing using scrambled faces

    OpenAIRE

    Taubert, Jessica; Aagten-Murphy, David; Parr, Lisa A.

    2012-01-01

    It is a widespread assumption that all primate species process faces in the same way because the species are closely related and they engage in similar social interactions. However, this approach ignores potentially interesting and informative differences that may exist between species. This paper describes a comparative study of holistic face processing. Twelve subjects (six chimpanzees Pan troglodytes and six rhesus monkeys Macaca mulatta) were trained to discriminate whole faces (faces wit...

  13. Face-to-Face Interference in Typical and Atypical Development

    Science.gov (United States)

    Riby, Deborah M.; Doherty-Sneddon, Gwyneth; Whittle, Lisa

    2012-01-01

    Visual communication cues facilitate interpersonal communication. It is important that we look at faces to retrieve and subsequently process such cues. It is also important that we sometimes look away from faces as they increase cognitive load that may interfere with online processing. Indeed, when typically developing individuals hold face gaze…

  14. Challenges facing production grids

    Energy Technology Data Exchange (ETDEWEB)

    Pordes, Ruth; /Fermilab

    2007-06-01

    Today's global communities of users expect quality of service from distributed Grid systems equivalent to that their local data centers. This must be coupled to ubiquitous access to the ensemble of processing and storage resources across multiple Grid infrastructures. We are still facing significant challenges in meeting these expectations, especially in the underlying security, a sustainable and successful economic model, and smoothing the boundaries between administrative and technical domains. Using the Open Science Grid as an example, I examine the status and challenges of Grids operating in production today.

  15. Many Faces of Migrations

    Directory of Open Access Journals (Sweden)

    Milica Antić Gaber

    2013-12-01

    The title “Many faces of migration”, connecting contributions in this special issue, is borrowed from the already mentioned Gallup Institute’s report on global migration (Esipova, 2011. The guiding principle in the selection of the contributions has been their diversity, reflected also in the list of disciplines represented by the authors: sociology, geography, ethnology and cultural anthropology, history, art history, modern Mediterranean studies, gender studies and media studies. Such an approach necessarily leads not only to a diverse, but at least seemingly also incompatib

  16. Faced with a dilemma

    DEFF Research Database (Denmark)

    Christensen, Anne Vinggaard; Christiansen, Anne Hjøllund; Petersson, Birgit

    2013-01-01

    's legal right to choose TOP and considerations about the foetus' right to live were suppressed. Midwives experienced a dilemma when faced with aborted foetuses that looked like newborns and when aborted foetuses showed signs of life after a termination. Furthermore, they were critical of how physicians...... counsel women/couples after prenatal diagnosis. CONCLUSIONS: The midwives' practice in relation to late TOP was characterised by an acknowledgement of the growing ethical status of the foetus and the emotional reactions of the women/couples going through late TOP. Other professions as well as structural...

  17. A Massive, Cooling-Flow-Induced Starburst in the Core of a Highly Luminous Galaxy Cluster

    CERN Document Server

    McDonald, M; Benson, B A; Foley, R J; Ruel, J; Sullivan, P; Veilleux, S; Aird, K A; Ashby, M L N; Bautz, M; Bazin, G; Bleem, L E; Brodwin, M; Carlstrom, J E; Chang, C L; Cho, H M; Clocchiatti, A; Crawford, T M; Crites, A T; de Haan, T; Desai, S; Dobbs, M A; Dudley, J P; Egami, E; Forman, W R; Garmire, G P; George, E M; Gladders, M D; Gonzalez, A H; Halverson, N W; Harrington, N L; High, F W; Holder, G P; Holzapfel, W L; Hoover, S; Hrubes, J D; Jones, C; Joy, M; Keisler, R; Knox, L; Lee, A T; Leitch, E M; Lieu, J; Lueker, M; Luong-Van, D; Mantz, A; Marrone, D P; McMahon, J J; Mehl, J; Meyer, S S; Miller, E D; Mocanu, L; Mohr, J J; Montroy, T E; Murray, S S; Natoli, T; Padin, S; Plagge, T; Pryke, C; Rawle, T D; Reichardt, C L; Rest, A; Rex, M; Ruhl, J E; Saliwanchik, B R; Saro, A; Sayre, J T; Schaffer, K K; Shaw, L; Shirokoff, E; Simcoe, R; Song, J; Spieler, H G; Stalder, B; Staniszewski, Z; Stark, A A; Story, K; Stubbs, C W; Suhada, R; van Engelen, A; Vanderlinde, K; Vieira, J D; Vikhlinin, A; Williamson, R; Zahn, O; Zenteno, A

    2012-01-01

    In the cores of some galaxy clusters the hot intracluster plasma is dense enough that it should cool radiatively in the cluster's lifetime, leading to continuous "cooling flows" of gas sinking towards the cluster center, yet no such cooling flow has been observed. The low observed star formation rates and cool gas masses for these "cool core" clusters suggest that much of the cooling must be offset by astrophysical feedback to prevent the formation of a runaway cooling flow. Here we report X-ray, optical, and infrared observations of the galaxy cluster SPT-CLJ2344-4243 at z = 0.596. These observations reveal an exceptionally luminous (L_2-10 keV = 8.2 x 10^45 erg/s) galaxy cluster which hosts an extremely strong cooling flow (dM/dt = 3820 +/- 530 Msun/yr). Further, the central galaxy in this cluster appears to be experiencing a massive starburst (740 +/- 160 Msun/yr), which suggests that the feedback source responsible for preventing runaway cooling in nearby cool core clusters may not yet be fully establishe...

  18. Cooling arrangement for a tapered turbine blade

    Science.gov (United States)

    Liang, George

    2010-07-27

    A cooling arrangement (11) for a highly tapered gas turbine blade (10). The cooling arrangement (11) includes a pair of parallel triple-pass serpentine cooling circuits (80,82) formed in an inner radial portion (50) of the blade, and a respective pair of single radial channel cooling circuits (84,86) formed in an outer radial portion (52) of the blade (10), with each single radial channel receiving the cooling fluid discharged from a respective one of the triple-pass serpentine cooling circuit. The cooling arrangement advantageously provides a higher degree of cooling to the most highly stressed radially inner portion of the blade, while providing a lower degree of cooling to the less highly stressed radially outer portion of the blade. The cooling arrangement can be implemented with known casting techniques, thereby facilitating its use on highly tapered, highly twisted Row 4 industrial gas turbine blades that could not be cooled with prior art cooling arrangements.

  19. Cooling and Heating Solid Quark Stars

    CERN Document Server

    Yu, Meng

    2009-01-01

    We present here a phenomenological solid quark star pulsar model to interpret the observed thermal X-ray emission of isolated pulsars. The heat capacity for solid quark stars was found to be quite small, so that the residual internal stellar heat gained at the birth of the star could be dissipated in an extremely short timescale. However, the bombardment induced by backflowing plasma at the poles of solid quark stars would get the stars be reheated, so that long term soft X-ray emission can be sustained. Such a scenario could be used for those X-ray pulsars with significant magnetospheric activities, and their cooling processes would thus be established. Dim X-ray isolated neutron stars (XDINs) as well as compact central objects (CCOs) have been observed with dominant soft X-ray radiation combined with little magnetospheric manifestations. Such sources could be solid quark stars accreting in the propeller regime.

  20. New Approaches to Final Cooling

    CERN Document Server

    Neuffer, David

    2015-01-01

    A high-energy muon collider scenario requires a "final cooling" system that reduces transverse emittance by a factor of ~10 while allowing longitudinal emittance increase. The baseline approach has low-energy transverse cooling within high-field solenoids, with strong longitudinal heating. This approach and its recent simulation are discussed. Alternative approaches which more explicitly include emittance exchange are also presented. Round-to-flat beam transform, transverse slicing, and longitudinal bunch coalescence are possible components of the alternative approach. A more explicit understanding of solenoidal cooling beam dynamics is introduced.

  1. Cooling towers principles and practice

    CERN Document Server

    Hill, G B; Osborn, Peter D

    1990-01-01

    Cooling Towers: Principles and Practice, Third Edition, aims to provide the reader with a better understanding of the theory and practice, so that installations are correctly designed and operated. As with all branches of engineering, new technology calls for a level of technical knowledge which becomes progressively higher; this new edition seeks to ensure that the principles and practice of cooling towers are set against a background of up-to-date technology. The book is organized into three sections. Section A on cooling tower practice covers topics such as the design and operation of c

  2. CLIC inner detectors cooling simulations

    CERN Document Server

    Duarte Ramos, F.; Villarejo Bermudez, M.

    2014-01-01

    The strict requirements in terms of material budget for the inner region of the CLIC detector concepts require the use of a dry gas for the cooling of the respective sen- sors. This, in conjunction with the compactness of the inner volumes, poses several challenges for the design of a cooling system that is able to fulfil the required detec- tor specifications. This note introduces a detector cooling strategy using dry air as a coolant and shows the results of computational fluid dynamics simulations used to validate the proposed strategy.

  3. Plasma harmonics

    CERN Document Server

    Ganeev, Rashid A

    2014-01-01

    Preface; Why plasma harmonics? A very brief introduction Early stage of plasma harmonic studies - hopes and frustrations New developments in plasma harmonics studies: first successes Improvements of plasma harmonics; Theoretical basics of plasma harmonics; Basics of HHG Harmonic generation in fullerenes using few-cycle pulsesVarious approaches for description of observed peculiarities of resonant enhancement of a single harmonic in laser plasmaTwo-colour pump resonance-induced enhancement of odd and even harmonics from a tin plasmaCalculations of single harmonic generation from Mn plasma;Low-o

  4. Aging changes in the face

    Science.gov (United States)

    ... this page: //medlineplus.gov/ency/article/004004.htm Aging changes in the face To use the sharing ... face with age References Brodie SE, Francis JH. Aging and disorders of the eye. In: Fillit HM, ...

  5. Passive low energy cooling of buildings

    CERN Document Server

    Givoni, Baruch

    1994-01-01

    A practical sourcebook for building designers, providing comprehensive discussion of the impact of basic architectural choices on cooling efficiency, including the layout and orientation of the structure, window size and shading, exterior color, and even the use of plantings around the site. All major varieties of passive cooling systems are presented, with extensive analysis of performance in different types of buildings and in different climates: ventilation; radiant cooling; evaporative cooling; soil cooling; and cooling of outdoor spaces.

  6. FaceID: A face detection and recognition system

    Energy Technology Data Exchange (ETDEWEB)

    Shah, M.B.; Rao, N.S.V.; Olman, V.; Uberbacher, E.C.; Mann, R.C.

    1996-12-31

    A face detection system that automatically locates faces in gray-level images is described. Also described is a system which matches a given face image with faces in a database. Face detection in an Image is performed by template matching using templates derived from a selected set of normalized faces. Instead of using original gray level images, vertical gradient images were calculated and used to make the system more robust against variations in lighting conditions and skin color. Faces of different sizes are detected by processing the image at several scales. Further, a coarse-to-fine strategy is used to speed up the processing, and a combination of whole face and face component templates are used to ensure low false detection rates. The input to the face recognition system is a normalized vertical gradient image of a face, which is compared against a database using a set of pretrained feedforward neural networks with a winner-take-all fuser. The training is performed by using an adaptation of the backpropagation algorithm. This system has been developed and tested using images from the FERET database and a set of images obtained from Rowley, et al and Sung and Poggio.

  7. A novel thermal face recognition approach using face pattern words

    Science.gov (United States)

    Zheng, Yufeng

    2010-04-01

    A reliable thermal face recognition system can enhance the national security applications such as prevention against terrorism, surveillance, monitoring and tracking, especially at nighttime. The system can be applied at airports, customs or high-alert facilities (e.g., nuclear power plant) for 24 hours a day. In this paper, we propose a novel face recognition approach utilizing thermal (long wave infrared) face images that can automatically identify a subject at both daytime and nighttime. With a properly acquired thermal image (as a query image) in monitoring zone, the following processes will be employed: normalization and denoising, face detection, face alignment, face masking, Gabor wavelet transform, face pattern words (FPWs) creation, face identification by similarity measure (Hamming distance). If eyeglasses are present on a subject's face, an eyeglasses mask will be automatically extracted from the querying face image, and then masked with all comparing FPWs (no more transforms). A high identification rate (97.44% with Top-1 match) has been achieved upon our preliminary face dataset (of 39 subjects) from the proposed approach regardless operating time and glasses-wearing condition.e

  8. Enabling dynamics in face analysis

    NARCIS (Netherlands)

    Dibeklioğlu, H.

    2014-01-01

    Most of the approaches in automatic face analysis rely solely on static appearance. However, temporal analysis of expressions reveals interesting patterns. For a better understanding of the human face, this thesis focuses on temporal changes in the face, and dynamic patterns of expressions. In addit

  9. Forensic Face Recognition: A Survey

    NARCIS (Netherlands)

    Ali, Tauseef; Spreeuwers, Luuk; Veldhuis, Raymond; Quaglia, Adamo; Epifano, Calogera M.

    2012-01-01

    The improvements of automatic face recognition during the last 2 decades have disclosed new applications like border control and camera surveillance. A new application field is forensic face recognition. Traditionally, face recognition by human experts has been used in forensics, but now there is a

  10. Compressor bleed cooling fluid feed system

    Science.gov (United States)

    Donahoo, Eric E; Ross, Christopher W

    2014-11-25

    A compressor bleed cooling fluid feed system for a turbine engine for directing cooling fluids from a compressor to a turbine airfoil cooling system to supply cooling fluids to one or more airfoils of a rotor assembly is disclosed. The compressor bleed cooling fluid feed system may enable cooling fluids to be exhausted from a compressor exhaust plenum through a downstream compressor bleed collection chamber and into the turbine airfoil cooling system. As such, the suction created in the compressor exhaust plenum mitigates boundary layer growth along the inner surface while providing flow of cooling fluids to the turbine airfoils.

  11. Cooling Technology for Electronic Computers

    Science.gov (United States)

    Nakayama, Wataru

    The rapid growth of data processing speed in computers has been sustained by the advances in cooling technology. This article first presents a review of the published data of heat loads in recent Japanese large-scale computers. The survey indicates that, since around 1980, the high-level integration of microelectronic circuits has brought about almost four fold increase in the power dissipation from logic chips. The integration also has invited the evolutions of multichip modules and new schemes of electronic interconnections. Forced convection air-cooling and liquid cooling coupled with thermal connectors are discussed with reference to the designs employed in actual computers. More advanced cooling schemes are also discussed. Finally, the importance of thermal environmental control of computer rooms is emphasized.

  12. Cooled Ceramic Turbine Vane Project

    Data.gov (United States)

    National Aeronautics and Space Administration — N&R Engineering will investigate the feasibility of cooled ceramics, such as ceramic matrix composite (CMC) turbine blade concepts that can decrease specific...

  13. Surface-induced evaporative cooling

    Institute of Scientific and Technical Information of China (English)

    Ke Min; Yan Bo; Cheng Feng; Wang Yu-Zhu

    2009-01-01

    The effects of surface-induced evaporative cooling on an atom chip are investigated. The evolutions of temperature, number and phase-space density of the atom cloud are measured when the atom cloud is brought close to the surface. Rapid decrease of the temperature and number of the atoms is found when the atom-surface distance is < 100 μm. A gain of about a factor of five on the phase-space density is obtained. It is found that the efficiency of the surface-induced evaporative cooling depends on the atom-surface distance and the shape of the evaporative trap. When the atoms are moved very close to the surface, severe heating is observed, which dominates when the holding time is > 8 ms. It is important that the surface-induced evaporative cooling offers novel possibilities for the realization of a continuous condensation, where a spatially varying evaporative cooling is required.

  14. Turbine Blade Cooling System Optimization

    OpenAIRE

    GIRARDEAU, Julian; PAILHES, Jérôme; SEBASTIAN, Patrick; PARDO, Frédéric; Nadeau, Jean-Pierre

    2013-01-01

    The authors wish to thank turbine designers from TURBOMECA SAFRAN Group.; International audience; Designing high performance cooling systems suitable for preserving the service lifetime of nozzle guide vanes of turboshaft engines leads to significant aerodynamic losses. These losses jeopardize the performance of the whole engine. In the same time, a low efficiency cooling system may affect the costs of maintenance repair and overhaul of the engine as component life decreases. Consequently, de...

  15. DETERMINATION OF RADIATOR COOLING SURFACE

    Directory of Open Access Journals (Sweden)

    A. I. Yakubovich

    2009-01-01

    Full Text Available The paper proposes a methodology for calculation of a radiator cooling surface with due account of heat transfer non-uniformity on depth of its core. Calculation of radiator cooling surfaces of «Belarus-1221» and «Belarus-3022» tractors has been carried out in the paper. The paper also advances standard size series of radiators for powerful «Belarus» tractor type.

  16. Quantum limit of photothermal cooling

    CERN Document Server

    De Liberato, Simone; Nori, Franco

    2010-01-01

    We study the problem of cooling a mechanical oscillator using the photothermal (bolometric) force. Contrary to previous attempts to model this system, we take into account the noise effects due to the granular nature of photon absorption. This allows us to tackle the cooling problem down to the noise dominated regime and to find reasonable estimates for the lowest achievable phonon occupation in the cantilever.

  17. Cooling Shelf For Electronic Equipment

    Science.gov (United States)

    Tanzer, Herbert J.

    1989-01-01

    Heat-pipe action cools and maintains electronics at nearly constant temperature. System designed to control temperatures of spacecraft shelves or baseplates by combining honeycomb sandwich panel with reservoir of noncondensable gas and processing resulting device as variable-conductance heat pipe. Device provides flat surface for mounting heat-dissipating electronics that is effectively cooled and maintained at nearly constant temperature. Potentially useful in freeze drying, refrigeration, and air conditioning.

  18. Energy Efficient Electronics Cooling Project

    Energy Technology Data Exchange (ETDEWEB)

    Steve O' Shaughnessey; Tim Louvar; Mike Trumbower; Jessica Hunnicutt; Neil Myers

    2012-02-17

    Parker Precision Cooling Business Unit was awarded a Department of Energy grant (DE-EE0000412) to support the DOE-ITP goal of reducing industrial energy intensity and GHG emissions. The project proposed by Precision Cooling was to accelerate the development of a cooling technology for high heat generating electronics components. These components are specifically related to power electronics found in power drives focused on the inverter, converter and transformer modules. The proposed cooling system was expected to simultaneously remove heat from all three of the major modules listed above, while remaining dielectric under all operating conditions. Development of the cooling system to meet specific customer's requirements and constraints not only required a robust system design, but also new components to support long system functionality. Components requiring further development and testing during this project included pumps, fluid couplings, cold plates and condensers. All four of these major categories of components are required in every Precision Cooling system. Not only was design a key area of focus, but the process for manufacturing these components had to be determined and proven through the system development.

  19. Face Processing: Models For Recognition

    Science.gov (United States)

    Turk, Matthew A.; Pentland, Alexander P.

    1990-03-01

    The human ability to process faces is remarkable. We can identify perhaps thousands of faces learned throughout our lifetime and read facial expression to understand such subtle qualities as emotion. These skills are quite robust, despite sometimes large changes in the visual stimulus due to expression, aging, and distractions such as glasses or changes in hairstyle or facial hair. Computers which model and recognize faces will be useful in a variety of applications, including criminal identification, human-computer interface, and animation. We discuss models for representing faces and their applicability to the task of recognition, and present techniques for identifying faces and detecting eye blinks.

  20. Facing the Challenges

    DEFF Research Database (Denmark)

    He, Kai

    2014-01-01

    China's rise signifies a gradual transformation of the international system from unipolarity to a non-unipolar world. ,4s an organization of small and middle powers, ASEAN faces strategic uncertainties brought about by the power transition in the system. Deepening economic interdependence between...... ASEAN and China has amplified the economic cost for the ASEAN states to use traditional military means to deal with China s rise. Applying institutional balancing theory, this paper examines how ASEAN has adopted various institutional instruments, such as the ASEAN Regional Forum (ARF), the East Asia...... Summit (EAS), the Regional Comprehensive Economic Partnership (RCEP), and the ASEAN Community, to constrain and shape China's behaviour in the region in the post-Cold War era. It argues that due to globalization and economic interdependence, the power transition in the 21st century is different from...