WorldWideScience

Sample records for coolant pump testing

  1. Reactor coolant pump testing using motor current signatures analysis

    Energy Technology Data Exchange (ETDEWEB)

    Burstein, N.; Bellamy, J.

    1996-12-01

    This paper describes reactor coolant pump motor testing carried out at Florida Power Corporation`s Crystal River plant using Framatome Technologies` new EMPATH (Electric Motor Performance Analysis and Trending Hardware) system. EMPATH{trademark} uses an improved form of Motor Current Signature Analysis (MCSA), technology, originally developed at Oak Ridge National Laboratories, for detecting deterioration in the rotors of AC induction motors. Motor Current Signature Analysis (MCSA) is a monitoring tool for motor driven equipment that provides a non-intrusive means for detecting the presence of mechanical and electrical abnormalities in the motor and the driven equipment. The base technology was developed at the Oak Ridge National Laboratory as a means for determining the affects of aging and service wear specifically on motor-operated valves used in nuclear power plant safety systems, but it is applicable to a broad range of electric machinery. MCSA is based on the recognition that an electric motor (ac or dc) driving a mechanical load acts as an efficient and permanently available transducer by sensing mechanical load variations, large and small, long-term and rapid, and converting them into variations in the induced current generated in the motor windings. The motor current variations, resulting from changes in load caused by gears, pulleys, friction, bearings, and other conditions that may change over the life of the motor, are carried by the electrical cables powering the motor and are extracted at any convenient location along the motor lead. These variations modulate the 60 Hz carrier frequency and appear as sidebands in the spectral plot.

  2. Extended Life Coolant Testing

    Science.gov (United States)

    2016-06-06

    ELC – Extended Life Coolant SCA – Supplemental Coolant Additive SOW – Scope of Work SwRI – Southwest Research Institute TARDEC – Tank Automotive...ethylene or propylene glycol and 35% extended life coolant #1 (ELC1) with a balance of water. At a higher ELC1 content of 45% or 50%, the mass loss...UNCLASSIFIED TABLE OF CONTENTS EXTENDED LIFE COOLANT TESTING INTERIM REPORT TFLRF No. 478 by Gregory A. T. Hansen Edwin A

  3. Transient two-phase performance of LOFT reactor coolant pumps

    Energy Technology Data Exchange (ETDEWEB)

    Chen, T.H.; Modro, S.M.

    1983-01-01

    Performance characteristics of Loss-of-Fluid Test (LOFT) reactor coolant pumps under transient two-phase flow conditions were obtained based on the analysis of two large and small break loss-of-coolant experiments conducted at the LOFT facility. Emphasis is placed on the evaluation of the transient two-phase flow effects on the LOFT reactor coolant pump performance during the first quadrant operation. The measured pump characteristics are presented as functions of pump void fraction which was determined based on the measured density. The calculated pump characteristics such as pump head, torque (or hydraulic torque), and efficiency are also determined as functions of pump void fractions. The importance of accurate modeling of the reactor coolant pump performance under two-phase conditions is addressed. The analytical pump model, currently used in most reactor analysis codes to predict transient two-phase pump behavior, is assessed.

  4. The Performance Test for Reactor Coolant Pump (RCP) adopting Variable Restriction Orifice Type Control Valve

    Energy Technology Data Exchange (ETDEWEB)

    Kim, S.; Bae, B. U.; Cho, Y. J. and others

    2014-05-15

    The design values of the RCPTF are 17.2 MPa, 343 .deg. C, 11.7 m{sup 3}/s, and 13 MW in the maximum pressure, temperature, flow rate, and electrical power, respectively. In the RCPTF, various types of tests can be performed including a hydraulic performance test to acquire a H-Q curve as well seal transient tests, thrust bearing transient test, cost down test, NPSHR verification test, and so on. After a commissioning startup test was successfully perfomed, mechanical structures are improved including a flow stabilizer and variable restriction orifice. Two- branch pipe (Y-branch) was installed to regulate the flow rate in the range of performance tests. In the main pipe, a flow restrictor (RO: Restriction Orifice) for limiting the maximum flow rate was installed. In the branch pipe line, a globe valve and a butterfly valves for regulating the flow rate was located on the each branch line. When the pressure loss of the valve side is smaller than that of the RO side, the flow rate of valve side was increasing and the flow disturbance was occurred in the lower pipe line. Due to flow disturbnace, it is to cause an error when measuring RCP head and flow measurement of the venturi flow meter installed in the lower main pipe line, and thus leading to a decrease in measurement accuracy as a result. To increase the efficiency of the flow control availability of the test facility, the variable restriction orifice (VRO) type flow control valve was designed and manufactured. In the RCPTF in KAERI, the performance tests and various kinds of transient tests of the RCP were successfully performed. In this study, H-Q curve of the pump using the VRO revealed a similar trend to the result from two ROs. The VRO was confirmed to effectively cover the full test range of the flow rate.

  5. Expert system for online surveillance of nuclear reactor coolant pumps

    Energy Technology Data Exchange (ETDEWEB)

    Gross, K.C.; Singer, R.M.; Humenik, K.E.

    1992-12-31

    This report describes an expert system for online surveillance of nuclear reactor coolant pumps. This system provides a means for early detection of pump or sensor degradation. Degradation is determined through the use of a statistical analysis technique, sequential probability ratio test, applied to information from several sensors which are responsive to differing physical parameters. The results of sequential testing of the data provide the operator with an early warning of possible sensor or pump failure.

  6. Reactor coolant pump shaft seal behavior during blackout conditions

    Energy Technology Data Exchange (ETDEWEB)

    Mings, W.J.

    1985-01-01

    The United States Nuclear Regulatory Commission has classified the problem of reactor coolant pump seal failures as an unresolved safety issue. This decision was made in large part due to experimental results obtained from a research program developed to study shaft seal performance during station blackout and reported in this paper. Testing and analysis indicated a potential for pump seal failure under postulated blackout conditions leading to a loss of primary coolant with a concomitant danger of core uncovery. The work to date has not answered all the concerns regarding shaft seal failure but it has helped scope the problem and focus future research needed to completely resolve this issue.

  7. Rotor dynamic analysis of main coolant pump

    Energy Technology Data Exchange (ETDEWEB)

    Lee, Chong Won; Seo, Jeong Hwan; Kim, Choong Hwan; Shin, Jae Chul; Wang, Lei Tian [Korea Advanced Institute of Science and Technology, Taejon (Korea)

    1999-03-01

    A rotor dynamic analysis program DARBS/MCP, for the main coolant pump of the integral reactor, has been developed. The dynamic analysis model of the main coolant pump includes a vertical shaft, three grooved radial journal bearings and gaps that represent the structure-fluid interaction effects between the rotor and the lubricant fluid. The electromagnetic force from the motor and the hydro-dynamic force induced by impeller are the major sources of vibration that may affect the rotor system stability. DARBS/MCP is a software that is developed to effectively analyze the dynamics of MCP rotor systems effectively by applying powerful numerical algorithms such as FEM with modal truncation and {lambda}-matrix method for harmonic analysis. Main design control parameters, that have much influence to the dynamic stability, have been found by Taguchi's sensitivity analysis method. Design suggestions to improve the stability of MCP rotor system have been documented. The dynamic bearing parameters of the journal bearings used for main coolant pump have been determined by directly solving the Reynolds equation using FDM method. Fluid-structure interaction effect that occurs at the small gaps between the rotor and the stator were modeled as equivalent seals, the electromagnetic force effect was regarded as a linear negative radial spring and the impeller was modeled as a rigid disk with hydrodynamic and static radial force. Although there exist critical speeds in the range of operational speeds for type I and II rotor systems, the amplitude of vibration appears to be less than the vibration limit set by the API standards. Further more, it has been verified that the main design parameters such as the clearance and length of journal bearings, and the static radial force of impeller should be properly adjusted, in order to the improve dynamic stability of the rotor system. (author). 39 refs., 81 figs., 17 tabs.

  8. Design of Reactor Coolant Pump Seal Online Monitoring System

    Energy Technology Data Exchange (ETDEWEB)

    Ah, Sang Ha; Chang, Soon Heung [KAIST, Daejeon (Korea, Republic of); Lee, Song Kyu [Korea Power Engineering Co., Yongin (Korea, Republic of)

    2008-05-15

    As a part of a Department of Korea Power Engineering Co., (KOPEC) Project, Statistical Quality Control techniques have been applied to many aspects of industrial engineering. An application to nuclear power plant maintenance and control is also presented that can greatly improve plant safety. As a demonstration of such an approach, a specific system is analyzed: the reactor coolant pumps (RCPs) and the fouling resistance of heat exchanger. This research uses Shewart X-bar, R charts, Cumulative Sum charts (CUSUM), and Sequential Probability Ratio Test (SPRT) to analyze the process for the state of statistical control. And the Control Chart Analyzer (CCA) has been made to support these analyses that can make a decision of error in process. The analysis shows that statistical process control methods can be applied as an early warning system capable of identifying significant equipment problems well in advance of traditional control room alarm indicators. Such a system would provide operators with enough time to respond to possible emergency situations and thus improve plant safety and reliability. RCP circulates reactor coolant to transfer heat from the reactor to the steam generators. RCP seals are in the pressure part of reactor coolant system, so if it breaks, it can cause small break LOCA. And they are running on high pressure, and high temperature, so they can be easily broken. Since the reactor coolant pumps operate within the containment building, physical access to the pumps occurs only during refueling outages. Engineers depend on process variables transmitted to the control room and through the station's data historian to assess the pumps' condition during normal operation.

  9. Reactor coolant pump shaft seal behavior during station blackout

    Energy Technology Data Exchange (ETDEWEB)

    Kittmer, C.A.; Wensel, R.G.; Rhodes, D.B.; Metcalfe, R.; Cotnam, B.M.; Gentili, H.; Mings, W.J.

    1985-04-01

    A testing program designed to provide fundamental information pertaining to the behavior of reactor coolant pump (RCP) shaft seals during a postulated nuclear power plant station blackout has been completed. One seal assembly, utilizing both hydrodynamic and hydrostatic types of seals, was modeled and tested. Extrusion tests were conducted to determine if seal materials could withstand predicted temperatures and pressures. A taper-face seal model was tested for seal stability under conditions when leaking water flashes to steam across the seal face. Test information was then used as the basis for a station blackout analysis. Test results indicate a potential problem with an elastomer material used for O-rings by a pump vendor; that vendor is considering a change in material specification. Test results also indicate a need for further research on the generic issue of RCP seal integrity and its possible consideration for designation as an unresolved safety issue.

  10. Flow boiling test of GDP replacement coolants

    Energy Technology Data Exchange (ETDEWEB)

    Park, S.H. [comp.

    1995-08-01

    The tests were part of the CFC replacement program to identify and test alternate coolants to replace CFC-114 being used in the uranium enrichment plants at Paducah and Portsmouth. The coolants tested, C{sub 4}F{sub 10} and C{sub 4}F{sub 8}, were selected based on their compatibility with the uranium hexafluoride process gas and how well the boiling temperature and vapor pressure matched that of CFC-114. However, the heat of vaporization of both coolants is lower than that of CFC-114 requiring larger coolant mass flow than CFC-114 to remove the same amount of heat. The vapor pressure of these coolants is higher than CFC-114 within the cascade operational range, and each coolant can be used as a replacement coolant with some limitation at 3,300 hp operation. The results of the CFC-114/C{sub 4}F{sub 10} mixture tests show boiling heat transfer coefficient degraded to a minimum value with about 25% C{sub 4}F{sub 10} weight mixture in CFC-114 and the degree of degradation is about 20% from that of CFC-114 boiling heat transfer coefficient. This report consists of the final reports from Cudo Technologies, Ltd.

  11. Technological status of reactor coolant pumps in generation III+ pressurized nuclear reactors

    Energy Technology Data Exchange (ETDEWEB)

    Brecht, Bernhard; Bross, Stephan [KSB Aktiengesellschaft, Frankenthal (Germany)

    2016-05-15

    KSB has been developing and producing pumps for thermal power plants for nearly 90 years. Consequently, KSB also started to develop and manufacture pumps for all kinds of nuclear power plants from the very beginning of the civil use of nuclear energy. This is especially true for reactor coolant pumps for pressurized water reactors. For the generation of advanced evolutionary reactors (Generation III+ reactors), KSB developed an advanced shaft seal system which is also able to fulfill the requirements of station blackout conditions. The tests in the KSB test rigs, which were successfully completed in December 2015, proved the full functionality of the new design. For generation III+ passive plant reactors KSB developed a new reactor coolant pump type called RUV, which is based on the experience of classic reactor coolant pumps and reactor internal pumps. It is a very compact, hermetically sealed vertical pump-motor unit with a wet winding motor. A full scale prototype successfully passed the 1st stage qualification test program in October 2015.

  12. Reactor coolant pump shaft seal stability during station blackout

    Energy Technology Data Exchange (ETDEWEB)

    Rhodes, D B; Hill, R C; Wensel, R G

    1987-05-01

    Results are presented from an investigation into the behavior of Reactor Coolant Pump shaft seals during a potential station blackout (loss of all ac power) at a nuclear power plant. The investigation assumes loss of cooling to the seals and focuses on the effect of high temperature on polymer seals located in the shaft seal assemblies, and the identification of parameters having the most influence on overall hydraulic seal performance. Predicted seal failure thresholds are presented for a range of station blackout conditions and shaft seal geometries.

  13. Station blackout with reactor coolant pump seal leakage

    Energy Technology Data Exchange (ETDEWEB)

    Evinay, A. (Southern California Edison, Irvine, CA (United States))

    1993-01-01

    The U.S. Nuclear Regulatory Commission (NRC) amended its regulations in 10CFR50 with the addition of a new section, 50.63, [open quotes]Loss of All Alternating Current Power.[close quotes] The objective of these requirements is to ensure that all nuclear plants have the capability to withstand a station blackout (SBO) and maintain adequate reactor core cooling and containment integrity for a specified period of time. The NRC also issued Regulatory Guide (RG) 1.155, [open quotes]Station Blackout,[close quotes] to provide guidance for meeting the requirements of 10CFR50.63. Concurrent with RG-1.155, the Nuclear Utility Management and Resources Council (NUMARC) has developed NUMARC 87-00 to address SBO-coping duration and capabilities at light water reactors. Licensees are required to submit a topical report based on NUMARC 87-00 guidelines, to demonstrate compliance with the SBO rule. One of the key compliance criteria is the ability of the plant to maintain adequate reactor coolant system (RCS) inventory to ensure core cooling for the required coping duration, assuming a leak rate of 25 gal/min per reactor coolant pump (RCP) seal in addition to technical specification (TS) leak rate.

  14. Leak rate analysis of the Westinghouse Reactor Coolant Pump

    Energy Technology Data Exchange (ETDEWEB)

    Boardman, T.; Jeanmougin, N.; Lofaro, R.; Prevost, J.

    1985-07-01

    An independent analysis was performed by ETEC to determine what the seal leakage rates would be for the Westinghouse Reactor Coolant Pump (RCP) during a postulated station blackout resulting from loss of ac electric power. The object of the study was to determine leakage rates for the following conditions: Case 1: All three seals function. Case 2: No. 1 seal fails open while Nos. 2 and 3 seals function. Case 3: All three seals fail open. The ETEC analysis confirmed Westinghouse calculations on RCP seal performance for the conditions investigated. The leak rates predicted by ETEC were slightly lower than those predicted by Westinghouse for each of the three cases as summarized below. Case 1: ETEC predicted 19.6 gpm, Westinghouse predicted 21.1 gpm. Case 2: ETEC predicted 64.7 gpm, Westinghouse predicted 75.6 gpm. Case 3: ETEC predicted 422 gpm, Westinghouse predicted 480 gpm. 3 refs., 22 figs., 6 tabs.

  15. Development of manufacturing technology and fabrication of prototype for main coolant pump

    Energy Technology Data Exchange (ETDEWEB)

    Chung, Koon Seok; Han, C.K.; Chei, J.M.; Chung, K.S.; Youn, M.H.; Shin, S.A.; Choi, D.J.; Kim, H.C. [HALLA Industrial Co., Ltd., Pusan (Korea)

    1999-03-01

    This study presents the development of the manufacturing technology for the Main Coolant Pump of the SMART. This report contains the followings; (1) Select axial type pump for the MCP (2) MCP is drived by squirrel-cage induction motor that consisted canned motor type. (3) MCP shaft has three horizontal and one vertical support bearings. (4) Design of several part of the MCP (5) Manufacturing of the performance test motor (6) Design and manufacturing of the speed sensor (7) Procedures for three-axial and five-axial M.C.T., Tig welding and Electron Beam Welding were developed. (8) Conceptional design of the MCP test facility for the performance test under operating conditions. (9) Results of standard weld test specimens according to the ASME section IX. (author). 21 refs., 35 figs., 10 tabs.

  16. Failures of the thermal barriers of 900 MWe reactor coolant pumps

    Energy Technology Data Exchange (ETDEWEB)

    Peyrouty, P.

    1996-12-01

    This report describes the anomalies encountered in the thermal barriers of the reactor coolant pumps in French 900 MWe PWR power stations. In addition to this specific problem, it demonstrates how the fortuitous discovery of a fault during a sampling test enabled faults of a generic nature to be revealed in components which were not subject to periodic inspection, the failure of which could seriously affect safety. This example demonstrates the risk which can be associated with the deterioration in areas which are not examined periodically and for which there are no preceding signs which would make early detection of deterioration possible.

  17. New Configurations of Micro Plate-Fin Heat Sink to Reduce Coolant Pumping Power

    DEFF Research Database (Denmark)

    Kolaei, Alireza Rezania; Rosendahl, Lasse

    2012-01-01

    The thermal resistance of heat exchangers has a strong influence on the electric power produced by a thermoelectric generator (TEG). In this work, a real TEG device is applied to three configurations of micro plate-fin heat sink. The distance between certain microchannels is varied to find...... the optimum heat sink configuration. The particular focus of this study is to reduce the coolant mass flow rate by considering the thermal resistances of the heat sinks and, thereby, to reduce the coolant pumping power in the system. The threedimensional governing equations for the fluid flow and the heat...... heat sink configurations reduces the coolant pumping power in the system....

  18. Thermostat-controlled coolant pump - a new concept for fuel saving

    Energy Technology Data Exchange (ETDEWEB)

    Etemad, S. [Volvo Car Components Corp., Gothenburg (Sweden); Anderson, A. [Volvo Truck Corp., Gothenburg (Sweden)

    1999-07-01

    A new coolant pump concept has been developed for better fuel economy. The flow returning from the radiator is fed coaxially into the pump. The by-pass flow is fed tangentially into the pump, generating a pre-swirl with the same direction of rotation as the coolant pump impeller. The relative velocity between the flow and the impeller decreases. This reduces the transferred momentum from the impeller to the fluid, reducing the power consumption. The flow split between the radiator and the by-pass channel is controlled by the ordinary thermostat. Results from analysis and measurements are presented. (author)

  19. Contribution to the diagnosis of mixed friction in the bearings of a reactor coolant pump

    Energy Technology Data Exchange (ETDEWEB)

    Gaev, G.P.; Shilejko, P.G.; Kail, I.T.; Proskuryakov, K.N. (Moskovskij Ehnergeticheskij Inst. (USSR)); Hippmann, N.; Kinsky, D.; Sturm, A.; Uhlemann, S. (Ingenieurhochschule Zittau (German Democratic Republic))

    1984-10-01

    Theoretical and experimental investigations have been performed to study the vibrational behaviour of a vertical, slide-bearing, fully encapsulated reactor coolant pump at various operational conditions. Magnetical and mechanical noise is interpreted as a function of pump delivery, pressure, volume flow, and temperature, and an example of an inadmissible operational condition (mixed friction in the bearings) is diagnosed.

  20. Effects of staggered blades on the hydraulic characteristics of a 1400-MW canned nuclear coolant pump

    Directory of Open Access Journals (Sweden)

    Fang-Ming Zhou

    2016-08-01

    Full Text Available A canned nuclear coolant pump is used in an advanced third-generation pressurized water reactor. Impeller is a key component of a canned nuclear coolant pump. Usually, the blade is installed between the hub and the shroud as an entire part. The blade is divided into two parts and is staggered in the circumferential direction is an approach of blade design. To understand the effects of staggered blades on a canned nuclear coolant pump, this article numerically investigated different types of staggering. The validity of the numerical simulation was confirmed by comparing the numerical and experimental results. The performance change of a canned nuclear coolant pump with staggered blades was acquired. Hydraulic performance curves, axial force curves, static pressure distributions at the impeller outlet, and static pressure pulsations were performed to investigate the performance changes caused by the staggered blades. The results show that the staggered blade has an important influence on the performance of canned nuclear coolant pumps. A staggered blade does not improve hydraulic performance but does improve the axial force and pressure pulsation. Specifically, the staggered blades can significantly reduce the pressure pulsation amplitude on the impeller pass frequency.

  1. Behavior of primary coolant pump shaft seals during station blackout conditions

    Energy Technology Data Exchange (ETDEWEB)

    Hill, R.C.; Rhodes, D.B.

    1986-09-12

    An assessment is made of the ability of typical Reactor Coolant Pump (RCP) Shaft Seals to withstand the conditions predicted for a station blackout (loss of all alternating current power) at a nuclear power station. Several factors are identified that are key to seal stability including inlet fluid conditions, pressure downstream of the seal, and geometrical details of the seal rings. Limits for stable seal operation are determined for various combinations of these factors, and the conclusion is drawn that some RPC seals would be near the threshold of instability during a station blackout. If the threshold were exceeded, significant leakage of coolant from the primary coolant system could be expected.

  2. Parameters important to reactor coolant pump seal stability during station blackout

    Energy Technology Data Exchange (ETDEWEB)

    Hill, R.C.; Rhodes, D.B.

    1986-10-24

    An assessment is made of the ability of typical Reactor Coolant Pump (RCP) Shaft Seals to withstand the conditions predicted for a station blackout (loss of all alternating current power) at a nuclear power station. Several factors are identified that are key to seal stability including inlet fluid conditions, pressure downstream of the seal, and geometrical details of the seal rings. Limits for stable seal operation are determined for various combinations of these factors, and the conclusion is drawn that some RPC seals would be near or over the threshold of instability during a station blackout. If the threshold were exceeded, significant leakage of coolant from the primary coolant system could be expected.

  3. Conceptual design of main coolant pump for integral reactor SMART

    Energy Technology Data Exchange (ETDEWEB)

    Park, Jin Seok; Kim, Jong In; Kim, Min Hwan [Korea Atomic Energy Research Institute, Taejon (Korea)

    1999-12-01

    The conceptual design for MCP to be installed in the integral reactor SMART was carried out. Canned motor pump was adopted in the conceptual design of MCP. Three-dimensional modeling was performed to visualize the conceptual design of the MCP and to check interferences between the parts. The theoretical design procedure for the impeller was developed. The procedures for the flow field and structural analysis of impeller was also developed to assess the design validity and to verify its structural integrity. A computer program to analyze the dynamic characteristics of the rotor shaft of MCP was developed. The rotational speed sensor was designed and its performance test was conducted to verify the possibility of operation. A prototypes of the canned motor was manufactured and tested to confirm the validity of the design concept. The MCP design concept was also investigated for fabricability by establishing the manufacturing procedures. 41 refs., 96 figs., 10 tabs. (Author)

  4. Experimental studies into the dependences of the axial lead coolant pump performance on the impeller cascade parameters

    Directory of Open Access Journals (Sweden)

    A.V. Beznosov

    2017-06-01

    Full Text Available The paper presents results of experimental studies into the dependences of the axial lead coolant pump performance (delivery, head, efficiency on the impeller cascade parameters, including the number of blades, the cascade blade angle and the cascade solidity. The studies were conducted as applied to conditions of small and medium sized plants based on lead cooled fast neutron reactors with horizontal steam generators. The designs of such plants are now in the process of elaboration at Nizhny Novgorod State Technical University (NNSTU. The studies were conducted at NNSTU's FT-4 test facility at a lead coolant temperature of 440–500°C. In the process of investigations, the number of blades in the form of flat plates was 3, 4, 6 and 8, the cascade blade angle was in a range of 9–43°, and the cascade solidity (0.6–1.2 was changed by changing the blade section chord length. The shaft speed of the NNSTU's NSO-01 pump, onto which changeable impellers were installed, was changed in steps of 100 rev/min in an interval of 600–1100 rev/min. The blade diameter was about 200mm, and the maximum lead coolant flow rate in the course of the tests reached ∼2000t/h. The performance of 27 impellers was investigated. It is recommended that the investigation results should be used in design of axial HLMC pumps.

  5. Vibration signal analysis of main coolant pump flywheel based on Hilbert–Huang transform

    Directory of Open Access Journals (Sweden)

    Meiru Liu

    2015-03-01

    In this paper, we present a Hilbert–Huang transform (HHT algorithm for flywheel vibration analysis. The simulation indicated that the proposed flywheel vibration signal analysis method performs well, which means that the method can lay the foundation for the detection and diagnosis in a reactor main coolant pump.

  6. Experimental investigation of thermoelectric power generation versus coolant pumping power in a microchannel heat sink

    DEFF Research Database (Denmark)

    Kolaei, Alireza Rezania; Rosendahl, Lasse; Andreasen, Søren Juhl

    2012-01-01

    The coolant heat sinks in thermoelectric generators (TEG) play an important role in order to power generation in the energy systems. This paper explores the effective pumping power required for the TEGs cooling at five temperature difference of the hot and cold sides of the TEG. In addition......, the temperature distribution and the pressure drop in sample microchannels are considered at four sample coolant flow rates. The heat sink contains twenty plate-fin microchannels with hydraulic diameter equal to 0.93 mm. The experimental results show that there is a unique flow rate that gives maximum net...

  7. Comparative Evaluation of Coolant Mixing Experiments at the ROCOM, Vattenfall, and Gidropress Test Facilities

    Directory of Open Access Journals (Sweden)

    S. Kliem

    2007-01-01

    Full Text Available Coolant mixing is an important mitigative mechanism against reactivity accidents caused by local boron dilution. Experiments on coolant mixing were carried out at three different test facilities representing three different reactor types. These are the ROCOM test facility modelling a German KONVOI-type reactor, the Vattenfall test facility being a model of a Westinghouse three-loop PWR, and the Gidropress test facility modelling a VVER-1000 PWR. The scenario of the start-up of the first main coolant pump was investigated in all three facilities. The experiments were accompanied by velocity measurements in the downcomer for the same scenario in the ROCOM and the Vattenfall test facilities. A similar flow structure was found in these measurements in both cases. A maximum of the velocity is measured at the opposite side in regard to the position of the loop with the starting-up pump whilst a recirculation area was found just below this inlet nozzle in both facilities. The analysis of the slug mixing experiments showed also comparable flow behaviour. In accordance with the velocity measurements, the first part of the deboration is also found on the opposite side. In this region, the maximum deboration is measured in all three cases. These maximum values are in the same order of magnitude for nearly identical initial slug volumes.

  8. Deposition of hematite particles on alumina seal faceplates of nuclear reactor coolant pumps: Laboratory experiments and industrial feedback

    OpenAIRE

    Lefèvre Grégory; Živković Ljiljana S.; Jaubertie Anne

    2012-01-01

    In the primary circuit of pressurized water reactors (PWR), the dynamic sealing system in reactor coolant pumps is ensured by mechanical seals whose ceramic parts are in contact with the cooling solution. During the stretch-out phase in reactor operation, characterized by low boric acid concentration, the leak-off flow has been observed to abnormally evolve in industrial plants. The deposition of hematite particles, originating from corrosion, on alumina seals of coolant pumps is suspec...

  9. Always at the correct temperature. Thermal management with electric coolant pump; Immer richtig temperiert. Thermomanagement mit elektrischer Kuehlmittelpumpe

    Energy Technology Data Exchange (ETDEWEB)

    Genster, A.; Stephan, W. [Pierburg GmbH, Neuss (Germany)

    2004-11-01

    Through the use of the electric coolant pump it has become possible for the first time to attain a cooling performance which is adapted precisely to the engine load and which is independent of engine speed. For cooling the new BMW six cylinder in-line Otto engine with an engine power rating of 190 kW, the electric coolant pump by Pierburg requires only 200 W of electrical power from the onboard electrical system. (orig.)

  10. Development of Reactor Coolant Pump for APR1400

    Energy Technology Data Exchange (ETDEWEB)

    Bang, Sang-Youn; Chu, Sung-Min; Chang, Jin-Young [Doosan Heavy Industries and Construction, Changwon (Korea, Republic of)

    2015-10-15

    The development was focused on the performance requirements for APR1400 and to achieve the goals of the safety, reliability and adaptability for APR1400 system design. In addition, APR1400 RCP design was customized considering convenience of installation, operation and maintainability. This paper describes the details of the development process, improved design feature and type test results. Based on development of core technology of RCP, DOOSAN supplies the localized and improved APR1400 RCP to Shin-Hanul 1 and 2 Project. This would be good experience that the RCP core technology can break foreign monopoly in supplying the domestic nuclear industry. Also, there expect APR1400 RCP can be sustainable revenue models in nuclear industry. Moreover, development of RCP will be a catalyst to enhance design capacity for equipment and system of nuclear power plant as well as evaluation and verification skills of Korean nuclear industry.

  11. Study on the effect of the impeller and diffuser blade number on reactor coolant pump performances

    Science.gov (United States)

    Long, Y.; Yin, J. L.; Wang, D. Z.; Li, T. B.

    2016-05-01

    In this paper, CFD approach was employed to study how the blade number of impeller and diffuser influences reactor coolant pump performances. The three-dimensional pump internal flow channel was modelled by pro/E software, Reynolds-averaged Naiver-Stokes equations with the k-ε turbulence model were solved by the computational fluid dynamics software CFX. By post-processing on the numerical results, the performance curves of reactor coolant pump were obtained. The results are as follows, with the blade number of the impeller increasing, the head of the pump with different diffuser universally increases in the 8Q n∼1.2Q n conditions, and at different blade number of the diffuser, the head increases with the blade number of the impeller increasing. In 1.0Q n condition, when the blades number combination of impeller and diffuser chooses 4+16, 7+14 and 6+18, the head curves exist singular points. In 1.2Q n condition, the head curve still exists singular point in 6+18. With the blade number of the impeller increasing, the efficiency of the pump with different diffuser universally decreases in the 0.8Q n and 1.0Q n conditions, but in 1.2Q n condition, the efficiency of the pump with different diffuser universally increases. In 1.0Q n condition, the impellers of 4 and 5 blades are better. When the blade number combination of impeller and diffuser choose 4+11, 4+17, 4+18, 5+12, 5+17 and 5+18, the efficiencies relatively have higher values. With the blade number of the impeller increasing, the hydraulic shaft power of the pump with different diffuser universally increases in the 0.8Q n∼1.2Q n conditions, and with the blade number of the diffuser increasing, the power of different impeller overall has small fluctuation, but tends to be uniform. This means the increase of the diffuser blade number has less influence on shaft power.The influence on the head and flow by the matching relationship of the blades number between impeller and diffuser is very complicated, which

  12. Development of motors and drives for main coolant pump and CEDM

    Energy Technology Data Exchange (ETDEWEB)

    Kang, Do Hyun; Ha, Hoi Doo; Park, Jung Woo; Koo, Dae Hyun; Chang, Ki Chan; Kim, Jong Moo; Kim, Won Ho; Rim, Geun Hie; Baek, Ju Won; Park, Doh Young; Hwang, Don Ha; Jeon, Jeong Woo [Korea Electrotechnology Research Institute, Changwon (Korea)

    1999-03-01

    A canned type 170kW induction motor for the main coolant pump (MCP) of the integral reactor SMART was designed to minimize the eddy current loss in the can and the volume of motor. In order to verify the design and analysis methodology, a canned type 30kW induction motor and an inverter were developed and tested. The motor was designed to have two poles with squirrel cage solid rotor and open slot stator. The motor driver was designed as VVVF inverter to operate both at 900(r.p.m) and at 3600(r.p.m). The calculated design values showed a good agreement with the experimental results. The measured efficiencies of the canned motor and the inverter were 70(%) and 96(%), respectively. A variable reluctance type linear pulse motor (LPM) with double air-gaps for the Control Element Drive Mechanism (CEDM) to lift 100kg was designed, analyzed, manufactured and tested. A converter and a test facility were manufactured to verity the dynamic performance of the LPM. The mover of the LPM was welded with magnetic material(SUS430) and non-magnetic material(SUS304) to get flux path between inner stator and outer stator. The measured thrust force was about 20(%) less than the designed thrust force. As for the rotary stepping motors for CEDM-II, which have transverse flux pattern, three design options were proposed with thrust force density of 8kN/m{sup 2}, 14kN/m{sup 2} and 52kN/m{sup 2} respectively. (author). 31 refs., 219 figs., 60 tabs.

  13. Analysis of Pressure Pulsation Induced by Rotor-Stator Interaction in Nuclear Reactor Coolant Pump

    Directory of Open Access Journals (Sweden)

    Xu Zhang

    2017-01-01

    Full Text Available The internal flow of reactor coolant pump (RCP is much more complex than the flow of a general mixed-flow pump due to high temperature, high pressure, and large flow rate. The pressure pulsation that is induced by rotor-stator interaction (RSI has significant effects on the performance of pump; therefore, it is necessary to figure out the distribution and propagation characteristics of pressure pulsation in the pump. The study uses CFD method to calculate the behavior of the flow. Results show that the amplitudes of pressure pulsation get the maximum between the rotor and stator, and the dissipation rate of pressure pulsation in impellers passage is larger than that in guide vanes passage. The behavior is associated with the frequency of pressure wave in different regions. The flow rate distribution is influenced by the operating conditions. The study finds that, at nominal flow, the flow rate distribution in guide vanes is relatively uniform and the pressure pulsation amplitude is the smallest. Besides, the vortex shedding or backflow from the impeller blade exit has the same frequency as pressure pulsation but there are phase differences, and it has been confirmed that the absolute value of phase differences reflects the vorticity intensity.

  14. Development of an annular linear induction electromagnetic pump for the na-coolant circulation of LMFBR

    Energy Technology Data Exchange (ETDEWEB)

    Kim, Hee Reyoung; Lee, Yong Bum; Kim, Yong Kyun; Nam, Ho Yun [KAERI, Taejon (Korea, Republic of)

    1998-07-01

    The EM (ElectroMagnetic) pump operated by Lorentz force (J x B) is developed for the sodium coolant circulation of LMFBR (Liquid Metal Fast Breeder Reactors). Design and experimental characterization are carried out on the linear induction EM pump of the narrow annular channel type. The pump which obtains propulsion force resultantly by the three phase symmetric alternating input currents is analyzed by the electrical equivalent circuit method used in the analyses of the induction machines. Then, the equivalent circuit for the pump consists of equivalent variables of primary and secondary resistances and magnetizing and leakage reactances given as functions of pump geometrical and electrical variables by Laithwaithe's standard formulae. Developing pressure-flowrate relation given by pump variables is sought from the balance equation on the circuit. Developing pressure and efficiency of the pump according to the pump variables are analyzed for the pump with a flowrate of 200 l/min. It is shown that pump is mainly characterized by length of the core, diameter of the inner core and channel gap geometrically and by input frequency electrically. Optimum values of pump geometrical and operational variables are determined to maximize the developing force and overall efficiency. The pump has geometrical size of 60 cm in length, 4.27 cm in inner core diameter and electrical input of 6,428 VA and 17 Hz. Optimally designed pump is manufactured by the consideration of material and operational requirements in the chemically-active sodium environment with high temperature of 600 .deg. C. Silicon-iron steel plates with high magnetic permeability in the high temperature are stacked for generation of the high magnetic flux and alumina-dispersion-strengthened-copper bands are used as exciting coils. Each turn of coil is insulated by asbestos band to protect electrical short in the high temperature. Stainless steel which can be compatible with sodium is selected as structural

  15. Effect of the Shrink Fit and Mechanical Tolerance on Reactor Coolant Pump Flywheel Integrity Evaluation

    Energy Technology Data Exchange (ETDEWEB)

    Kim, Donghak [Korea KHNP Central Research Institute, Daejeon (Korea, Republic of)

    2015-10-15

    Reactor coolant pump (RCP) flywheel should satisfy the RCP flywheel integrity criteria of the US NRC standard review plan (SRP) 5.4.1.1 and regulatory guide (RG) 1.14. Shrink-fit and rotational stresses should be calculated to evaluate the integrity. In this paper the effects of the shrink fit and mechanical tolerance on the RCP flywheel integrity evaluation are studied. The shrink fit should be determined by the joint release speed and the stresses in the flywheel will be increased by the shrink fit. The stress at the interface between the hub and the outer wheel shows the highest value. The effect of the mechanical tolerance should be considered for the stress evaluation. And the effect of the mechanical tolerance should be not considered to determine the joint release speed.

  16. Vibration signal analysis of main coolant pump flywheel based on Hilert-Huang transform

    Energy Technology Data Exchange (ETDEWEB)

    Liu, Meiru; Xia, Hong; Sun, Lin; Li, Bin; Yang, Yang [Fundamental Science on Nuclear Safety and Simulation Technology Laboratory, College of Nuclear Science and Technology, Harbin Engineering University, Harbin (China)

    2015-03-15

    In this paper, a three-dimensional model for the dynamic analysis of a flywheel based on the finite element method is presented. The static structure analysis for the model provides stress and strain distribution cloud charts. The modal analysis provides the basis of dynamic analysis due to its ability to obtain the natural frequencies and the vibration made vectors of the first 10 orders. The results show the main faults are attrition and cracks, while also indicating the locations and patterns of faults. The harmonic response simulation was performed to gain the vibration response of the flywheel under operation. In this paper, we present a Hilberte-Huang transform (HHT) algorithm for flywheel vibration analysis. The simulation indicated that the proposed flywheel vibration signal analysis method performs well, which means that the method can lay the foundation for the detection and diagnosis in a reactor main coolant pump.

  17. Improvement of Measurement Accuracy of Coolant Flow in a Test Loop

    Energy Technology Data Exchange (ETDEWEB)

    Hong, Jintae; Kim, Jong-Bum; Joung, Chang-Young; Ahn, Sung-Ho; Heo, Sung-Ho; Jang, Seoyun [Korea Atomic Energy Research Institute, Daejeon (Korea, Republic of)

    2015-10-15

    In this study, to improve the measurement accuracy of coolant flow in a coolant flow simulator, elimination of external noise are enhanced by adding ground pattern in the control panel and earth around signal cables. In addition, a heating unit is added to strengthen the fluctuation signal by heating the coolant because the source of signals are heat energy. Experimental results using the improved system shows good agreement with the reference flow rate. The measurement error is reduced dramatically compared with the previous measurement accuracy and it will help to analyze the performance of nuclear fuels. For further works, out of pile test will be carried out by fabricating a test rig mockup and inspect the feasibility of the developed system. To verify the performance of a newly developed nuclear fuel, irradiation test needs to be carried out in the research reactor and measure the irradiation behavior such as fuel temperature, fission gas release, neutron dose, coolant temperature, and coolant flow rate. In particular, the heat generation rate of nuclear fuels can be measured indirectly by measuring temperature variation of coolant which passes by the fuel rod and its flow rate. However, it is very difficult to measure the flow rate of coolant at the fuel rod owing to the narrow gap between components of the test rig. In nuclear fields, noise analysis using thermocouples in the test rig has been applied to measure the flow velocity of coolant which circulates through the test loop.

  18. Waste Heat Recovery from the Advanced Test Reactor Secondary Coolant Loop

    Energy Technology Data Exchange (ETDEWEB)

    Donna Post Guillen

    2012-11-01

    This study investigated the feasibility of using a waste heat recovery system (WHRS) to recover heat from the Advanced Test Reactor (ATR) secondary coolant system (SCS). This heat would be used to preheat air for space heating of the reactor building, thus reducing energy consumption, carbon footprint, and energy costs. Currently, the waste heat from the reactor is rejected to the atmosphere via a four-cell, induced-draft cooling tower. Potential energy and cost savings are 929 kW and $285K/yr. The WHRS would extract a tertiary coolant stream from the SCS loop and pump it to a new plate and frame heat exchanger, from which the heat would be transferred to a glycol loop for preheating outdoor air supplied to the heating and ventilation system. The use of glycol was proposed to avoid the freezing issues that plagued and ultimately caused the failure of a WHRS installed at the ATR in the 1980s. This study assessed the potential installation of a new WHRS for technical, logistical, and economic feasibility.

  19. Fuel-Coolant Interaction visualization in TROI test facility

    Energy Technology Data Exchange (ETDEWEB)

    Na, Young Su; Hong, Seong-Ho; Song, Jin Ho; Hong, Seong-Wan [Korea Atomic Energy Research Institute, Daejeon (Korea, Republic of)

    2015-10-15

    It is necessary to observe the FCI (Fuel-Coolant Interaction) phenomena at the condition of vessel failure to IVR. We carried out a visualization test on the interaction of a corium melt and water to observe the premixing phase without a free fall of a melt jet in a gas phase before contacting the cooling water. This paper is based on the previous study presented at Ninth Korea-Japan Symposium on Nuclear Hydraulics and Safety, we added the results on sieved debris distribution. The visualization test on the FCI without a free fall of a corium melt jet in a gas phase was conducted carefully in the TROI test facility. A prototypic corium consisting of uranium oxide and zirconium oxide with a weight ratio of UO{sub 2} to ZrO{sub 2} of 80 to 20, respectively, was heated up using the induction heating method. It was observed that a corium melt jet penetrated into water with 1000 mm in depth, and it took about 0.6 seconds from opening the releasing valve, which was confirmed by the sequential variation of the temperature measured by the sacrificial thermocouples installed in the direction of a falling melt jet. The cumulative mass fraction of the debris smaller than 1.0 mm was 15%, and the mass mean diameter of the debris was 2.9 mm. This visualization test can generate the valuable information such as the behavior of the corium melt jet and the size of mixing zone for validating the computer code.

  20. Impact of mechanical- and maintenance-induced failures of main reactor coolant pump seals on plant safety

    Energy Technology Data Exchange (ETDEWEB)

    Azarm, M A; Boccio, J L; Mitra, S

    1985-12-01

    This document presents an investigation of the safety impact resulting from mechanical- and maintenance-induced reactor coolant pump (RCP) seal failures in nuclear power plants. A data survey of the pump seal failures for existing nuclear power plants in the US from several available sources was performed. The annual frequency of pump seal failures in a nuclear power plant was estimated based on the concept of hazard rate and dependency evaluation. The conditional probability of various sizes of leak rates given seal failures was then evaluated. The safety impact of RCP seal failures, in terms of contribution to plant core-melt frequency, was also evaluated for three nuclear power plants. For leak rates below the normal makeup capacity and the impact of plant safety were discussed qualitatively, whereas for leak rates beyond the normal make up capacity, formal PRA methodologies were applied. 22 refs., 17 figs., 19 tabs.

  1. SHINE Vacuum Pump Test Verification

    Energy Technology Data Exchange (ETDEWEB)

    Morgan, Gregg A; Peters, Brent

    2013-09-30

    Normetex pumps used world-wide for tritium service are no longer available. DOE and other researchers worldwide have spent significant funds characterizing this pump. Identification of alternate pumps is required for performance and compatibility with tritium gas. Many of the pumps that could be used to meet the functional performance requirements (e.g. pressure and flow conditions) of the Normetex pump have features that include the use of polymers or oils and greases that are not directly compatible with tritium service. This study assembles a test system to determine the flow characteristics for candidate alternate pumps. These tests are critical to the movement of tritium through the SHINE Tritium Purification System (TPS). The purpose of the pump testing is two-fold: (1) obtain baseline vacuum pump characteristics for an alternate (i.e. ''Normetex replacement'') pump intended for use in tritium service; and (2) verify that low pressure hydrogen gas can be transported over distances up to 300 feet by the candidate pumps. Flow rates and nominal system pressures have been identified for the SHINE Mo-99 production process Tritium Purification System (TPS). To minimize the line sizes for the transfer of low pressure tritium from the Neutron Driver Accelerator System (NDAS) to the primary processing systems in the TPS, a ''booster'' pump has been located near the accelerator in the design. A series of pump tests were performed at various configurations using hydrogen gas (no tritium) to ensure that this concept is practical and maintains adequate flow rates and required pressures. This report summarizes the results of the tests that have been performed using various pump configurations. The current design of the Tritium Purification System requires the ''booster'' pump to discharge to or to be backed by another vacuum pump. Since Normetex pumps are no longer manufactured, a commercially available Edwards

  2. CNP1000轴封式核主泵技术%Technology for CNP1000 shaft sealed reactor coolant pump

    Institute of Scientific and Technical Information of China (English)

    冯晓东; 吴大转; 杨立峰; 贾允

    2016-01-01

    CNP1000轴封式核主泵作为泵类行业的高端设备是核电站一回路系统中唯一没有实现国产化的设备,其自主设计、制造及试验是中国推进核电自主化的重点和难点。对核电泵的国内技术现状以及1000 MW轴封式核主泵结构特点进行了介绍,分别从承压边界、水力部件、转子轴系、隔热组件、轴密封、停车密封、水导轴承、推力轴承、一体化供油泵、油密封、辅助系统及其关键设备进行了设计原理和实施要求的详细说明。通过对不同类型主泵的出口限制情况和应用前景比较分析,说明了轴封主泵对外出口的优势,提出轴封主泵将在很长一段时间占据核电市场的主导地位。目前国内企业已完成了多项关键技术,如主轴密封、水力部件、全流量试验等的自主化,但是核主泵的理论基础并没有完整建立,有待进一步研究。因此,核主泵的国产化研制任务仍需较长的时间去攻克。%As high-end equipment in pump industry , CNP1000 shaft sealed reactor coolant pump ( RCP) in the primary loop system of pressurized water reactor ( PWR) in a nuclear power plant is the only equipment which cannot be manufactured domestically .Therefore, the independent design , ma-nufacturing and test of this kind of pump are important and difficult tasks in promoting the nationaliza-tion of nuclear technology in China .The domestic technological situation and structural characteristics of 1 000 MW shaft sealed RCP are introduced , and the design principle and technical implementation requirement are elaborated in terms of pressure retaining boundary , hydraulic components , pump rotor system, heat insulation subassembly , shaft seal, standstill seal, lower guide bearings, thrust bearing, integrated oil pump , oil seal, auxiliary system and key equipment in detail .Through an analysis on ex-port restriction and application prospect of various types of RCP , it is

  3. The Performance test of Mechanical Sodium Pump with Water Environment

    Energy Technology Data Exchange (ETDEWEB)

    Cho, Chungho; Kim, Jong-Man; Ko, Yung Joo; Jeong, Ji-Young; Kim, Jong-Bum [Korea Atomic Energy Research Institute, Daejeon (Korea, Republic of); Ko, Bock Seong; Park, Sang Jun; Lee, Yoon Sang [SAM JIN Industrial Co. LTD., Chunan (Korea, Republic of)

    2015-10-15

    As contrasted with PWR(Pressurized light Water Reactor) using water as a coolant, sodium is used as a coolant in SFR because of its low melting temperature, high thermal conductivity, the high boiling temperature allowing the reactors to operate at ambient pressure, and low neutron absorption cross section which is required to achieve a high neutron flux. But, sodium is violently reactive with water or oxygen like the other alkali metal. So Very strict requirements are demanded to design and fabricate of sodium experimental facilities. Furthermore, performance testing in high temperature sodium environments is more expensive and time consuming and need an extra precautions because operating and maintaining of sodium experimental facilities are very difficult. The present paper describes performance test results of mechanical sodium pump with water which has been performed with some design changes using water test facility in SAM JIN Industrial Co. To compare the hydraulic characteristic of model pump with water and sodium, the performance test of model pump were performed using vender's experimental facility for mechanical sodium pump. To accommodate non-uniform thermal expansion and to secure the operability and the safety, the gap size of some parts of original model pump was modified. Performance tests of modified mechanical sodium pump with water were successfully performed. Water is therefore often selected as a surrogate test fluid because it is not only cheap, easily available and easy to handle but also its important hydraulic properties (density and kinematic viscosity) are very similar to that of the sodium. Normal practice to thoroughly test a design or component before applied or installed in reactor is important to ensure the safety and operability in the sodium-cooled fast reactor (SFR). So, in order to estimate the hydraulic behavior of the PHTS pump of DSFR (600 MWe Demonstraion SFR), the performance tests of the model pump such as performance

  4. Deposition of hematite particles on alumina seal faceplates of nuclear reactor coolant pumps: Laboratory experiments and industrial feedback

    Directory of Open Access Journals (Sweden)

    Lefèvre Grégory

    2012-01-01

    Full Text Available In the primary circuit of pressurized water reactors (PWR, the dynamic sealing system in reactor coolant pumps is ensured by mechanical seals whose ceramic parts are in contact with the cooling solution. During the stretch-out phase in reactor operation, characterized by low boric acid concentration, the leak-off flow has been observed to abnormally evolve in industrial plants. The deposition of hematite particles, originating from corrosion, on alumina seals of coolant pumps is suspected to be the cause. As better understanding of the adhesion mechanism is the key factor in the prevention of fouling and particle removal, an experimental study was carried out using a laboratory set-up. With model materials, hematite and sintered alumina, the adhesion rate and surface potentials of the interacting solids were measured under different chemical conditions (solution pH and composition in analogy with the PWR ones. The obtained results were in good agreement with the DLVO (Derjaguin-Landau-Verwey- Overbeek theory and used as such to interpret this industrial phenomenon.

  5. Electronic Unit Pump Test Bench Development and Pump Properties Research

    Institute of Scientific and Technical Information of China (English)

    LIU Bo-lan; HUANG Ying; ZHANG Fu-jun; ZHAO Chang-lu

    2006-01-01

    A unit pump test bench is developed on an in-line pump test platform. The bench is composed of pump adapting assembly, fuel supply subsystem, lubricating subsystem and a control unit. A crank angle domain injection control method is given out and the control accuracy can be 0.1° crank degree. The bench can test bot h mechanical unit pump and electronic unit pump. A test model-PLD12 electronic unit pump is tested. Full pump delivery map and some influence factors test is d one. Experimental results show that the injection quantity is linear with the de livery angle. The quantity change rate is 15% when fuel temperature increases 30℃. The delivery quantity per cycle increases 30mg at 28V drive voltage. T he average delivery difference for two same type pumps is 5%. Test results show that the bench can be used for unit pump verification.

  6. Environmentally Friendly Coolant System

    Energy Technology Data Exchange (ETDEWEB)

    David Jackson Principal Investigator

    2011-11-08

    Energy reduction through the use of the EFCS is most improved by increasing machining productivity. Throughout testing, nearly all machining operations demonstrated less land wear on the tooling when using the EFCS which results in increased tool life. These increases in tool life advance into increased productivity. Increasing productivity reduces cycle times and therefore reduces energy consumption. The average energy savings by using the EFCS in these machining operations with these materials is 9%. The advantage for end milling stays with flood coolant by about 6.6% due to its use of a low pressure pump. Face milling and drilling are both about 17.5% less energy consumption with the EFCS than flood coolant. One additional result of using the EFCS is improved surface finish. Certain machining operations using the EFCS result in a smoother surface finish. Applications where finishing operations are required will be able to take advantage of the improved finish by reducing the time or possibly eliminating completely one or more finishing steps and thereby reduce their energy consumption. Some machining operations on specific materials do not show advantages for the EFCS when compared to flood coolants. More information about these processes will be presented later in the report. A key point to remember though, is that even with equivalent results, the EFCS is replacing petroleum based coolants whose production produces GHG emissions and create unsafe work environments.

  7. Lead Coolant Test Facility Systems Design, Thermal Hydraulic Analysis and Cost Estimate

    Energy Technology Data Exchange (ETDEWEB)

    Soli Khericha; Edwin Harvego; John Svoboda; Ryan Dalling

    2012-01-01

    The Idaho National Laboratory prepared a preliminary technical and functional requirements (T&FR), thermal hydraulic design and cost estimate for a lead coolant test facility. The purpose of this small scale facility is to simulate lead coolant fast reactor (LFR) coolant flow in an open lattice geometry core using seven electrical rods and liquid lead or lead-bismuth eutectic coolant. Based on review of current world lead or lead-bismuth test facilities and research needs listed in the Generation IV Roadmap, five broad areas of requirements were identified as listed: (1) Develop and Demonstrate Feasibility of Submerged Heat Exchanger; (2) Develop and Demonstrate Open-lattice Flow in Electrically Heated Core; (3) Develop and Demonstrate Chemistry Control; (4) Demonstrate Safe Operation; and (5) Provision for Future Testing. This paper discusses the preliminary design of systems, thermal hydraulic analysis, and simplified cost estimate. The facility thermal hydraulic design is based on the maximum simulated core power using seven electrical heater rods of 420 kW; average linear heat generation rate of 300 W/cm. The core inlet temperature for liquid lead or Pb/Bi eutectic is 4200 C. The design includes approximately seventy-five data measurements such as pressure, temperature, and flow rates. The preliminary estimated cost of construction of the facility is $3.7M (in 2006 $). It is also estimated that the facility will require two years to be constructed and ready for operation.

  8. Lead coolant test facility systems design, thermal hydraulic analysis and cost estimate

    Energy Technology Data Exchange (ETDEWEB)

    Khericha, Soli, E-mail: slk2@inel.gov [Battelle Energy Alliance, LLC, Idaho National Laboratory, Idaho Falls, ID 83415 (United States); Harvego, Edwin; Svoboda, John; Evans, Robert [Battelle Energy Alliance, LLC, Idaho National Laboratory, Idaho Falls, ID 83415 (United States); Dalling, Ryan [ExxonMobil Gas and Power Marketing, Houston, TX 77069 (United States)

    2012-01-15

    The Idaho National Laboratory prepared a preliminary technical and functional requirements (T and FR), thermal hydraulic design and cost estimate for a lead coolant test facility. The purpose of this small scale facility is to simulate lead coolant fast reactor (LFR) coolant flow in an open lattice geometry core using seven electrical rods and liquid lead or lead-bismuth eutectic coolant. Based on review of current world lead or lead-bismuth test facilities and research needs listed in the Generation IV Roadmap, five broad areas of requirements were identified as listed below: Bullet Develop and demonstrate feasibility of submerged heat exchanger. Bullet Develop and demonstrate open-lattice flow in electrically heated core. Bullet Develop and demonstrate chemistry control. Bullet Demonstrate safe operation. Bullet Provision for future testing. This paper discusses the preliminary design of systems, thermal hydraulic analysis, and simplified cost estimated. The facility thermal hydraulic design is based on the maximum simulated core power using seven electrical heater rods of 420 kW; average linear heat generation rate of 300 W/cm. The core inlet temperature for liquid lead or Pb/Bi eutectic is 4200 Degree-Sign C. The design includes approximately seventy-five data measurements such as pressure, temperature, and flow rates. The preliminary estimated cost of construction of the facility is $3.7M (in 2006 $). It is also estimated that the facility will require two years to be constructed and ready for operation.

  9. Portable Heat Pump Testing Device

    Directory of Open Access Journals (Sweden)

    Kłosowiak R.

    2015-08-01

    Full Text Available The aim of this paper is to present the design and working principle of a portable testing device for heat pumps in the energy recirculation system. The presented test stand can be used for any refrigerating/reverse flow cycle device to calculate the device energy balance. The equipment is made of two portable containers of the capacity of 250 liters to simulate the air heat source and ground heat source with a system of temperature stabilization, compressor heat pump of the coefficient of performance (COP of = 4.3, a failsafe system and a control and measurement system.

  10. Lead Coolant Test Facility Technical and Functional Requirements, Conceptual Design, Cost and Construction Schedule

    Energy Technology Data Exchange (ETDEWEB)

    Soli T. Khericha

    2006-09-01

    This report presents preliminary technical and functional requirements (T&FR), thermal hydraulic design and cost estimate for a lead coolant test facility. The purpose of this small scale facility is to simulate lead coolant fast reactor (LFR) coolant flow in an open lattice geometry core using seven electrical rods and liquid lead or lead-bismuth eutectic. Based on review of current world lead or lead-bismuth test facilities and research need listed in the Generation IV Roadmap, five broad areas of requirements of basis are identified: Develop and Demonstrate Prototype Lead/Lead-Bismuth Liquid Metal Flow Loop Develop and Demonstrate Feasibility of Submerged Heat Exchanger Develop and Demonstrate Open-lattice Flow in Electrically Heated Core Develop and Demonstrate Chemistry Control Demonstrate Safe Operation and Provision for Future Testing. These five broad areas are divided into twenty-one (21) specific requirements ranging from coolant temperature to design lifetime. An overview of project engineering requirements, design requirements, QA and environmental requirements are also presented. The purpose of this T&FRs is to focus the lead fast reactor community domestically on the requirements for the next unique state of the art test facility. The facility thermal hydraulic design is based on the maximum simulated core power using seven electrical heater rods of 420 kW; average linear heat generation rate of 300 W/cm. The core inlet temperature for liquid lead or Pb/Bi eutectic is 420oC. The design includes approximately seventy-five data measurements such as pressure, temperature, and flow rates. The preliminary estimated cost of construction of the facility is $3.7M. It is also estimated that the facility will require two years to be constructed and ready for operation.

  11. Regulatory instrument review: Aging management of LWR cables, containment and basemat, reactor coolant pumps, and motor-operated valves

    Energy Technology Data Exchange (ETDEWEB)

    Werry, E.V.; Somasundaram, S.

    1995-09-01

    The results of Stage 2 of the Regulatory Instrument Review are presented in this volume. Selected regulatory instruments, such as the Code of Federal Regulations (CFR), US Nuclear Regulatory Commission (NRC), Regulatory Guides, and ASME Codes, were investigated to determine the extent to which these regulations apply aging management to selected safety-related components in nuclear power plants. The Regulatory Instrument Review was funded by the NRC under the Nuclear Plant Aging Research (NPAR) program. Stage 2 of the review focused on four safety-related structures and components; namely, cables, containment and basemat, reactor coolant pumps, and motor-operated valves. The review suggests that the primary-emphasis of the regulatory instruments was on the design, construction, start-up, and operation of a nuclear power plant, and that aging issues were primarily addressed after an aging-related problem was recognized. This Stage 2 review confirms the results of the prior review; (see Regulatory Instrument Review: Management of Aging of LWR Major Safety-Related Components NUREG/CR-5490. The observations indicate that the regulations generally address management of age-related degradation indirectly. Specific age-related degradation phenomena frequently are dealt with in bulletins and notices or through generic issues, letters, etc. The major recommendation of this report, therefore, is that the regulatory instruments should more directly and explicitly address the aging phenomenon and the management of the age-related degradation process.

  12. Numerical Simulation of the Pressure Distribution in the Reactor Vessel Downcomer Region Fluctuated by the Reactor Coolant Pump

    Energy Technology Data Exchange (ETDEWEB)

    Jeong, Dong Hwa; Jung, Byung Ryul; Jang, Ho Cheol; Yune, Seok Jeong; Kim, Eun Kee [KEPCO EnC, Daejeon (Korea, Republic of)

    2015-10-15

    In this study the numerical simulation of the pressure distribution in the downcomer region resulting from the pressure pulsation by the Reactor Coolant Pump (RCP) is performed using the Finite Difference Method (FDM). Simulation is carried out for the cylindrical shaped 2-dimensional model equivalent to the outer surface of the Core Support Barrel (CSB) of APR1400 and a 1/2 model is adopted based on the bilateral symmetry by the inlet nozzle. The fluid temperature is 555 .deg. F and the forcing frequencies are 120Hz, 240Hz, 360Hz and 480Hz. Simulation results of the axial pressure distributions are provided as the Root Mean Square (RMS) values at the five locations of 0°, 45°, 90°, 135° and 180° in the circumferential direction from the inlet nozzle location. In the study, the numerical simulation of pressure distributions in the downcomer region induced by the RCP was performed using FDM and the results were reviewed. The interference of the waves returned from both boundaries in the axial direction and the source of the sinusoidal wave is shown on the inlet nozzle interface pressure point. It seems that the maximum pressures result from the superposition of the waves reflected from the seating surface and the waves newly arrived from the inlet nozzle interface pressure location.

  13. Comparison of three small-break loss-of-coolant accident tests with different break locations using the system-integrated modular advanced reactor-integral test loop facility to estimate the safety of the smart design

    Directory of Open Access Journals (Sweden)

    Hwang Bae

    2017-08-01

    Full Text Available Three small-break loss-of-coolant accident (SBLOCA tests with safety injection pumps were carried out using the integral-effect test loop for SMART (System-integrated Modular Advanced ReacTor, i.e., the SMART-ITL facility. The types of break are a safety injection system line break, shutdown cooling system line break, and pressurizer safety valve line break. The thermal–hydraulic phenomena show a traditional behavior to decrease the temperature and pressure whereas the local phenomena are slightly different during the early stage of the transient after a break simulation. A safety injection using a high-pressure pump effectively cools down and recovers the inventory of a reactor coolant system. The global trends show reproducible results for an SBLOCA scenario with three different break locations. It was confirmed that the safety injection system is robustly safe enough to protect from a core uncovery.

  14. Experimental investigation of material chemical effects on emergency core cooling pump suction filter performance after loss of coolant accident

    Energy Technology Data Exchange (ETDEWEB)

    Park, Jong Woon, E-mail: parkjw@dongguk.ac.k [Dongguk University, 707 Seokjang-Dong, Gyeongju, 780-714 (Korea, Republic of); Park, Byung Gi [Soonchunhyang University, Asan, Chungnam, 336-745 (Korea, Republic of); Kim, Chang Hyun [Korea Hydro and Nuclear Power Co., Ltd. 25-1, Jang-dong, Yuseong-gu, Daejeon, 305-343 (Korea, Republic of)

    2009-12-15

    Integral tests of head loss through an emergency core cooling filter screen are conducted, simulating reactor building environmental conditions for 30 days after a loss of coolant accident. A test rig with five individual loops each of whose chamber is established to test chemical product formation and measure the head loss through a sample filter. The screen area at each chamber and the amounts of reactor building materials are scaled down according to specific plant condition. A series of tests have been performed to investigate the effects of calcium-silicate, reactor building spray, existence of calcium-silicate with tri-sodium phosphate (TSP), and composition of materials. The results showed that head loss across the chemical bed with even a small amount of calcium-silicate insulation instantaneously increased as soon as TSP was added to the test solution. Also, the head loss across the filter screen is strongly affected by spray duration and the head loss increase is rapid at the early stage, because of high dissolution and precipitation of aluminum and zinc. After passivation of aluminum and zinc by corrosion, the head loss increase is much slowed down and is mainly induced by materials such as calcium, silicon, and magnesium leached from NUKON{sup TM} and concrete. Furthermore, it is newly found that the spay buffer agent, tri-sodium phosphate, to form protective coating on the aluminum surface and reduce aluminum leaching is not effective for a large amount of aluminum and a long spray.

  15. Heat Exchanger Can Assembly for Provision of Helium Coolant Streams for Cryomodule Testing below 2K

    Science.gov (United States)

    Smith, E. N.; Eichhorn, R.; Quigley, P.; Sabol, D.; Shore, C.; Widger, D.

    2017-02-01

    A series of heat exchanger can (HXC) assemblies have been designed, constructed and built to utilize existing 4.2 K liquefaction and compressor capabilities to provide helium gas coolant streams of 80 K, 4.5 K, and liquid from 1.6 to 2.0 K for operating cryomodules containing from one to six superconducting RF cavities built for an energy recovery linear accelerator. Designs for the largest assemblies required up to 100 W of cooling at 1.8 K with precise temperature control, especially during cool-down, and up to 2000 W at 80 K (with a 40 K temperature rise). A novel feature of these assemblies was the use of relatively inexpensive brazed stainless steel plate heat exchangers intended for room-temperature operation with water or oil, but which in practice worked well at cryogenic temperatures. The choice of operating temperatures/pressures were to provide single-phase helium flow for better control of coolant distribution in the 80 K and 4.5 K streams, to take advantage of locally elevated heat capacity near the critical point for the 4.5 K stream, and in the region below 2 K to get the best possible Q from the niobium cavities under test.

  16. Flow tests of a single fuel element coolant channel for a compact fast reactor for space power

    Science.gov (United States)

    Springborn, R. H.

    1971-01-01

    Water flow tests were conducted on a single-fuel-element cooling channel for a nuclear concept to be used for space power. The tests established a method for measuring coolant flow rate which is applicable to water flow testing of a complete mockup of the reference reactor. The inlet plenum-to-outlet plenum pressure drop, which approximates the overall core pressure drop, was measured and correlated with flow rate. This information can be used for reactor coolant flow and heat transfer calculations. An analytical study of the flow characteristics was also conducted.

  17. Safety analysis of the US dual coolant liquid lead lithium ITER test blanket module

    Science.gov (United States)

    Merrill, Brad; Reyes, Susana; Sawan, Mohamed; Wong, Clement

    2007-07-01

    The US is proposing a prototype of a dual coolant liquid lead-lithium DEMO blanket concept for testing in the International Thermonuclear Experimental Reactor (ITER) as an ITER test blanket module (TBM). Because safety considerations are an integral part of the design process to ensure that this TBM does not adversely impact the safety of ITER, a safety assessment has been conducted for this TBM and its ancillary systems as requested by the ITER project. Four events were selected by the ITER international team (IT) to address specific reactor safety concerns, such as vaccum vessel (VV) pressurization, confinement building pressure build-up, TBM decay heat removal capability, tritium and activation products release from the TBM system and hydrogen and heat production from chemical reactions. This paper summarizes the results of this safety assessment conducted with the MELCOR computer code.

  18. Results and Observations of the Integral Loss-of-coolant Accident Test with Surface Modified Claddings

    Energy Technology Data Exchange (ETDEWEB)

    Park, Dong Jun; Jung, Yang Il; Park, Jung Hwan; Kim, Hyun Gil; Yang, Jae Ho; Koo, Yang Hyun [Korea Atomic Energy Research Institute, Daejeon (Korea, Republic of)

    2016-10-15

    In this study, integral loss-of-coolant accident (LOCA) test was carried for comprehensive understanding of phenomena such as ballooning, burst failures, and oxidation for the ATF cladding during a LOCA scenario. In this section some of the experimental procedure and technical details of apparatus are described. Highlight data obtained from simulated LOCA test is also presented. Cracks can be initiated at this brittle burst tip and will propagate rapidly though the ballooned region. Therefore, the flexural strength of the ruptured tubes mainly depends on the thickness of the load bearing Zr metal at the opposite side to the rupture opening. To improve the reliability and safety of existing Zr alloy fuel cladding under LWR accident conditions, a high temperature oxidation resistant layer was coated onto the surface of Zr alloy samples using various coating techniques. The rupture temperature of the coated tube was higher than that of the uncoated cladding.

  19. Aging and loss-of-coolant accident (LOCA) testing of electrical connections

    Energy Technology Data Exchange (ETDEWEB)

    Nelson, C.F. [Sandia National Labs., Albuquerque, NM (United States)

    1998-01-01

    This report presents the results of an experimental program to determine the aging and loss-of-coolant accident (LOCA) behavior of electrical connections in order to obtain an initial scoping of their performance. Ten types of connections commonly used in nuclear power plants were tested. These included 3 types of conduit seals, 2 types of cable-to-device connectors, 3 types of cable-to-cable connectors, and 2 types of in-line splices. The connections were aged for 6 months under simultaneous thermal (99 C) and radiation (46 Gy/hr) conditions. A simulated LOCA consisting of sequential high dose-rate irradiation (3 kGy/hr) and high-temperature steam exposures followed the aging. Connection functionality was monitored using insulation resistance measurements during the aging and LOCA exposures. Because only 5 of the 10 connection types passed a post-LOCA, submerged dielectric withstand test, further detailed investigation of electrical connections and the effects of cable jacket integrity on the cable-connection system is warranted.

  20. Long-term aging and loss-of-coolant accident (LOCA) testing of electrical cables

    Energy Technology Data Exchange (ETDEWEB)

    Nelson, C.F.; Gauthier, G.; Carlin, F. [and others

    1996-10-01

    Experiments were performed to assess the aging degradation and loss-of-coolant accident (LOCA) behavior of electrical cables subjected to long-term aging exposures. Four different cable types were tested in both the U.S. and France: (1) U.S. 2 conductor with ethylene propylene rubber (EPR) insulation and a Hypalon jacket. (2) U.S. 3 conductor with cross-linked polyethylene (XLPE) insulation and a Hypalon jacket. (3) French 3 conductor with EPR insulation and a Hypalon jacket. (4) French coaxial with polyethylene (PE) insulation and a PE jacket. The data represent up to 5 years of simultaneous aging where the cables were exposed to identical aging radiation doses at either 40{degrees}C or 70{degrees}C; however, the dose rate used for the aging irradiation was varied over a wide range (2-100 Gy/hr). Aging was followed by exposure to simulated French LOCA conditions. Several mechanical, electrical, and physical-chemical condition monitoring techniques were used to investigate the degradation behavior of the cables. All the cables, except for the French PE cable, performed acceptably during the aging and LOCA simulations. In general, cable degradation at a given dose was highest for the lowest dose rate, and the amount of degradation decreased as the dose rate was increased.

  1. Application of the Severe Accident Code ATHLET-CD. Coolant injection to primary circuit of a PWR by mobile pump system in case of SBLOCA severe accident scenario

    Energy Technology Data Exchange (ETDEWEB)

    Jobst, Matthias; Wilhelm, Polina; Kliem, Soeren; Kozmenkov, Yaroslav [Helmholtz-Zentrum Dresden-Rossendorf e.V., Dresden (Germany). Reactor Safety

    2017-06-01

    The improvement of the safety of nuclear power plants is a continuously on-going process. The analysis of transients and accidents is an important research topic, which significantly contributes to safety enhancements of existing power plants. In case of an accident with multiple failures of safety systems, core uncovery and heat-up can occur. In order to prevent the accident to turn into a severe one or to mitigate the consequences of severe accidents, different accident management measures can be applied. By means of numerical analyses performed with the compute code ATHLET-CD, the effectiveness of coolant injection with a mobile pump system into the primary circuit of a PWR was studied. According to the analyses, such a system can stop the melt progression if it is activated prior to 10 % of total core is molten.

  2. Potential for low fracture toughness and lamellar tearing on PWR steam generator and reactor coolant pump supports. Resolution of generic technical activity A-12

    Energy Technology Data Exchange (ETDEWEB)

    Snaider, R.P.; Hodge, J.M.; Levin, H.A.; Zudans, J.J.

    1979-10-01

    This report summarizes work performed by the Nuclear Regulatory Commission staff and its contractor, Sandia Laboratories, in the resolution of Generic Technical Activity A-12, ''Potential for Low Fracture Toughness and Lamellar Tearing in PWR Steam Generator and Reactor Coolant Pump Supports.'' The report describes the technical issues, the technical studies performed by Sandia describes the technical issues, the technical studies performed by Sandia Laboratories, the NRC staff's technical positions based on these studies, and the staff's plan for implementing its technical positions. It also provides recommendations for further work. The complete technical input from Sandia Laboratories is appended to the report.

  3. UO2 and PuO2 utilization in high temperature engineering test reactor with helium coolant

    Science.gov (United States)

    Waris, Abdul; Aji, Indarta K.; Novitrian, Pramuditya, Syeilendra; Su'ud, Zaki

    2016-03-01

    High temperature engineering test reactor (HTTR) is one of high temperature gas cooled reactor (HTGR) types which has been developed by Japanese Atomic Energy Research Institute (JAERI). The HTTR is a graphite moderator, helium gas coolant, 30 MW thermal output and 950 °C outlet coolant temperature for high temperature test operation. Original HTTR uses UO2 fuel. In this study, we have evaluated the use of UO2 and PuO2 in form of mixed oxide (MOX) fuel in HTTR. The reactor cell calculation was performed by using SRAC 2002 code, with nuclear data library was derived from JENDL3.2. The result shows that HTTR can obtain its criticality condition if the enrichment of 235U in loaded fuel is 18.0% or above.

  4. Post test calculation of the experiment `small break loss-of- coolant test` SBL-22 at the Finnish integral test facility PACTEL with the thermohydraulic code ATHLET

    Energy Technology Data Exchange (ETDEWEB)

    Lischke, W.; Vandreier, B. [Univ. for Applied Sciences, Zittau/Goerlitz (Germany). Dept. of Nuclear Technology

    1997-12-31

    At the University for Applied Sciences Zittau/Goerlitz (FH) calculations for the verification of the ATHLET-code for reactors of type VVER are carried out since 1991, sponsored by the German Ministry for Education, Science and Technology (BMBF). The special features of these reactors in comparison to reactors of western countries are characterized by the duct route of reactor coolant pipes and the horizontal steam generators. Because of these special features, a check of validity of the ATHLET-models is necessary. For further verification of the ATHLET-code the post test calculation of the experiment SBL-22 (Small break loss-of-coolant test) realized at the finnish facility PACTEL was carried out. The experiment served for the examination of the natural circulation behaviour of the loop over a continuous range of primary side water inventory. 5 refs.

  5. Effect of Check Valve on Consequences of Coolant Pump Rotor Seizure Accident for EPR Reactor%止回阀对EPR反应堆主泵卡轴事故后果的影响

    Institute of Scientific and Technical Information of China (English)

    陈秋炀; 周拥辉

    2012-01-01

    分析计算欧洲先进压水堆(EPR)反应堆主泵卡轴事故,并对比在主泵出口安装止回阀和没有安装止回阀模型的卡轴事故安全分析.结果表明,在EPR主泵卡轴事故中,止回阀可增加模型堆芯进口流量约4%,有利于堆芯的冷却.止回阀可显著地提高堆芯最小偏离泡核沸腾比(DNBR),降低堆芯偏离泡核沸腾(DNB)份额,降低包壳温度约14℃.模型分析结果表明,在主泵卡轴事故工况下,主泵出口安装止回阀可更好地维持堆芯的完整性.%Counter current flow phenomenon would appear during reactor coolant pump rotor seizure accident. Present work analyzes the coolant pump rotor seizure accident for European Pressurized Reactor (EPR). The accident safety analysis results of model with check valve and without check valve are compared. It can be found that the check valve can increase the core inlet flow rate of model about 4%. The increasing of coolant flow rate is beneficial to the reactor core cooling. Check valve can increase the minimum departure from nucleate boiling ratio (DNBR), reduce the departure from nucleate boiling (DNB) fraction and the fuel rod cladding temperature about 14℃ during coolant pump rotor seizure accident. The analyses results show that the model with check valve can maintain the integrity of nuclear fuel rod effectively during reactor coolant pump rotor seizure accident.

  6. Sensitivity Analysis of Core Damage from Reactor Coolant Pump Seal Leakage during Extended Loss of All AC Power

    Energy Technology Data Exchange (ETDEWEB)

    Park, Da Hee; Kim, Min Gi; Lee, Kyung Jin; Hwang, Su hyun; Lee, Byung Chul [FNC Technology Co. Ltd., Yongin (Korea, Republic of); Yoon, Duk Joo; Lee, Seung Chan [Korea Hydro and Nuclear Power Co. Ltd., Daejeon (Korea, Republic of)

    2015-10-15

    In this study, in order to comprehend the Fukushima accident, the sensitivity analysis was performed to analyze the behavior of Reactor Coolant System (RCS) during ELAP using the RELAP5/MOD3.3 code. The Fukushima accident was caused by tsunami resulted in Station Black Out (SBO) followed by the reactor core melt-down and release of radioactive materials. After the accident, the equipment and strategies for the Extended Loss of All AC Power (ELAP) were recommended strongly. In this analysis, sensitivity studies for the RCP seal failure of the OPR1000 type NPP were performed by using RELAP5/MOD3.3 code. Six cases with different leakage rate of RCP seal were studied for ELAP with operator action or not. The main findings are summarized as follows: (1) Without the operator action, the core uncovery time is determined by the leakage rate of RCP seal. When the leakage rate per RCP seal are 5 gpm, 50 gpm, and 300 gpm respectively, the core uncovery time are 1.62 hr, 1.58 hr, and 1.29 hr respectively. Namely, If the leakage rate of RCP seal was much bigger, the uncover time of core would be shorter. (2) In case that the cooling by SG secondary side was performed using the TDAFP and SG ADV, the core uncovery time was significantly extended.

  7. Experimental and analytical investigations of primary coolant pump coastdown phenomena for the Jordan Research and Training Reactor

    Energy Technology Data Exchange (ETDEWEB)

    Alatrash, Yazan [Advanced Nuclear Engineering System Department, Korea University of Science and Technology (UST), 217 Gajeong-ro Yuseong-gu, Daejeon 305-350 (Korea, Republic of); Kang, Han-ok; Yoon, Hyun-gi; Seo, Kyoungwoo; Chi, Dae-Young [Korea Atomic Energy Institute (KAERI), 989-111 Daeduk-daero, Yuseong-gu, Daejeon 305-353 (Korea, Republic of); Yoon, Juhyeon, E-mail: yoonj@kaeri.re.kr [Korea Atomic Energy Institute (KAERI), 989-111 Daeduk-daero, Yuseong-gu, Daejeon 305-353 (Korea, Republic of); Korea University of Science and Technology (UST), Daejeon (Korea, Republic of)

    2015-05-15

    Highlights: • Core flow coastdown phenomena of a research reactor are investigated experimentally. • The experimental dataset is well predicted by a simulation software package, MMS. • The validity and consistency of the experimental dataset are confirmed. • The designed coastdown half time is confirmed to be well above the design requirement. - Abstract: Many low-power research reactors including the Jordan Research and Training Reactor (JRTR) are designed to have a downward core flow during a normal operation mode for many convenient operating features. This design feature requires maintaining the downward core flow for a short period of time right after a loss of off-site power (LOOP) accident to guarantee nuclear fuel integrity. In the JRTR, a big flywheel is installed on a primary cooling system (PCS) pump shaft to passively provide the inertial downward core flow at an initial stage of the LOOP accident. The inertial pumping capability during the coastdown period is experimentally investigated to confirm whether the coastdown half time requirement given by safety analyses is being satisfied. The validity and consistency of the experimental dataset are evaluated using a simulation software package, modular modeling system (MMS). In the MMS simulation model, all of the design data that affect the pump coastdown behavior are reflected. The experimental dataset is well predicted by the MMS model, and is confirmed to be valid and consistent. The designed coastdown half time is confirmed to be well above the value required by safety analysis results. (wwwyoon@gmail.com)

  8. Crack growth tests on a ferritic reactor pressure vessel steel under the simultaneous influence of simulated BWR coolant and irradiation

    Energy Technology Data Exchange (ETDEWEB)

    Hoffmann, H. [VGB PowerTech e.V., Essen (Germany); Huettner, F. [Hamburgische Electricitaets-Werke AG, Hamburg (Germany); Ilg, U. [EnBW Kraftwerke AG, Philippsburg (Germany); Wachter, O. [E.ON Kernkraft GmbH, Hannover(Germany); Widera, M. [RWE Power AG, Essen (Germany); Brozova, A.; Ernestova, M.; Kysela, J.; Vsolak, R. [Nuclear Research Institute Rez plc (Czech Republic)

    2004-07-01

    Crack growth tests under constant load with initial in-situ cycling were performed on the low alloy reactor pressure vessel (RPV) steel 22 NiMoCr 3 7 (A 508 Cl. 2) with the goal to determine crack growth rates of irradiated and non-irradiated steel under the simultaneous influence of simulated BWR coolant and irradiation. The tests were performed under conditions as near as possible to operational conditions in a commercial BWR reactor. The research results are summarized and are compared with international data. (orig.)

  9. AZ-101 Mixer Pump Test Qualification Test Procedures (QTP)

    Energy Technology Data Exchange (ETDEWEB)

    THOMAS, W.K.

    2000-01-10

    Describes the Qualification test procedure for the AZ-101 Mixer Pump Data Acquisition System (DAS). The purpose of this Qualification Test Procedure (QTP) is to confirm that the AZ-101 Mixer Pump System has been properly programmed and hardware configured correctly. This QTP will test the software setpoints for the alarms and also check the wiring configuration from the SIMcart to the HMI. An Acceptance Test Procedure (ATP), similar to this QTP will be performed to test field devices and connections from the field.

  10. 基于相依竞争失效模型的主泵多状态可靠性分析%Multi-state Reliability for Coolant Pump Based on Dependent Competitive Failure Model

    Institute of Scientific and Technical Information of China (English)

    尚彦龙; 蔡琦; 赵新文; 陈玲

    2013-01-01

    基于核动力主泵运行环境和性能退化机理,考虑自身振动和外部冲击对其性能退化的影响,建立了主泵冲击与退化相依竞争失效过程的可靠度模型。采用该模型计算了考虑性能退化的主泵在振动和外部冲击条件下的退化状态概率和可靠度,为基于使用环境的核动力主泵的多状态可靠性分析提供了一种有效的分析途径。分析结果可为设计变更和维修优化提供决策依据。%By taking into account the effect of degradation due to internal vibration and external shocks , and based on service environment and degradation mechanism of nuclear power plant coolant pump ,a multi-state reliability model of coolant pump was proposed for the system that involves competitive failure process between shocks and degradation .Using this model ,degradation state probability and system reliability were obtained under the consideration of internal vibration and external shocks for the degraded coolant pump .It provided an effective method to reliability analysis for coolant pump in nuclear power plant based on operating environment .The results can provide a decision making basis for design changing and maintenance optimization .

  11. Design and test of a pump failure anticipator

    Science.gov (United States)

    Frarey, J. L.; Wilson, D. S.; Burchill, R. F.

    1975-01-01

    Tests were conducted on two different types of pumps in order to refine the concept and to finalize design details of a positive displacement internal gear pump and a shroudless centrifugal pump. A concept and a system that could be used with pumps to allow a rapid judgement to be made of the suitability of the pump for futher service is developed. Test results and detailed data analysis are included.

  12. Decant pump assembly and controls qualification testing - test report

    Energy Technology Data Exchange (ETDEWEB)

    Staehr, T.W., Westinghouse Hanford

    1996-05-02

    This report summarizes the results of the qualification testing of the supernate decant pump and controls system to be used for in-tank sludge washing in aging waste tank AZ-101. The test was successful and all components are qualified for installation and use in the tank.

  13. Pump/Control System Minimum Operating Cost Testing

    Science.gov (United States)

    1977-01-01

    A preliminary evaluation of pump performance was initiated to determine the efficiencies of an arbitrary group of small pumps. Trends in factors affecting energy usage in typical prime movers which might be used in liquid transport solar systems were assessed. Comparisons of centrifugal pump efficiencies were made from one manufacturer to another. Tests were also made on two positive-displacement pumps and comparisons with centrifugal pumps were observed.

  14. ROSA-III base test series for a large break loss-of-coolant accident in a boiling water reactor

    Energy Technology Data Exchange (ETDEWEB)

    Tasaka, K.; Abe, N.; Anoda, Y.; Koizumi, Y.; Shiba, M.

    1982-05-01

    The rig of safety assessment (ROSA)-III facility is a volumetrically scaled (1/424) boiling water reactor (BWR) system with an electrically heated core designed for integral loss-of-coolant accident (LOCA) and emergency core cooling system (ECCS) tests. It is confirmed from the experimental results obtained so far that the ROSA-III test facility can simulate major aspects of a BWR LOCA, such as boiling transition by lowering of the mixture level in the core, rewetting by the lower plenum flashing, and final quenching by the ECCS. The overall agreement between the calculated results by the RELAP5/ MOD0 code and the experimental results is good; however, the calculated lower plenum flashing rewetted the whole core and the calculated cladding temperature considerably underpredicts the measured value at the upper part of the core.

  15. Multidepth pumping tests in deep aquifers.

    Science.gov (United States)

    Alam, N; Olsthoorn, T N

    2014-09-01

    Multidepth pumping tests (MDPTs), in which different sections of a screen are pumped in sequence, are not being used by hydrogeologists, despite the capability of such tests to resolve uncertainties in the estimation of aquifer characteristics. MDPTs can be used to discern the effects of partial penetration and vertical anisotropy. This article demonstrates the use of MDPTs for a deep and vertically anisotropic aquifer, based on a real and unique series of pumping tests conducted in the Indus Basin. Traditional single-layer methods, which incorporate partial penetration and vertical scaling, were employed to evaluate these tests. However, the drawdowns of the 19 piezometers at different depths for which times series data were available could not be matched, presumably because of the layered structure of the aquifer. Numerical (MODFLOW) and multilayer analytical (Hemker and Maas 1987; Hemker 1999) approaches were used to assess the benefits of using MDPTs in the analysis of deep layered and anisotropic aquifers. The multilayer analytical solution results are consistent with the measured and numerically computed drawdowns. The original step-drawdown data were used to verify the model independently. The results of statistical analyses indicate that the parameters for a three-layer system are uniquely estimated. A sensitivity analysis showed that aquifer depths greater than 900 m do not affect the drawdown. The multilayer analytical solution was implemented in MATLAB and can be found in the online version of this article. This multilayer analytical approach was implemented in MLU by Hemker and Randall (2013) for up to 40 layers. The results of this study will be useful in groundwater management, exploration, and optimal well depth estimation for the Indus Basin aquifer and other vertically heterogeneous aquifers.

  16. Recirculation pump discharge line break tests at ROSA-III for a boiling water reactor

    Energy Technology Data Exchange (ETDEWEB)

    Suzuki, M.; Anoda, Y.; Kumamaru, H.; Nakamura, H.; Shiba, M.; Tasaka, K.

    1985-08-01

    Three loss-of-coolant accident (LOCA) tests were conducted at the Rig of Safety Assessment (ROSA)-III test facility, which simulates boiling water reactor (BWR)/6-251 with a volumetric scaling factor of 1/424. The fundamental features of the recirculation pump discharge line break LOCA and the effects of break areas on the features are investigated. It has been confirmed experimentally that the LOCA phenomena in the discharge line break are analogous to those in the suction line break with the same effective choking flow area, which is a sum of the least choking flow areas along the break flow paths and controls the system pressure responses. In general, the maximum effective choking flow area is (A /SUB j/ + A /SUB p/ ) for discharge line breaks and (A /SUB j/ + A /SUB o/ ) for suction line breaks, where A /SUB j/ , A /SUB p/ , and A /SUB o/ are the flow areas of the jet pump drive nozzles, the main recirculation pump discharge nozzle, and the break, respectively. The similarity between the ROSA-III test and a BWR LOCA has been confirmed in the key phenomena by the analyses using the RELAP5/MOD1 code. An atypical behavior is observed in the fuel rod surface temperature transient in the early phase of blowdown due to the limitation of the ROSA-III initial core power.

  17. System of Thermal Balance Maintenance in Modern Test Benches for Centrifugal Pumps

    Directory of Open Access Journals (Sweden)

    A. I. Petrov

    2015-01-01

    Full Text Available The article “Systems of the heat balance maintenance in modern test benches for centrifugal pumps” makes the case to include cooling systems of a working fluid (heat setting in test bench for impeller pumps. It briefly summarizes an experience of bench building to test centrifugal pumps, developed at the BMSTU Department E-10 over the last 10 years. The article gives the formulas and the algorithm to calculate the heat capacity of different types of impeller pumps when tested at the bench as ell as to determine the heating time of the liquid in the bench without external cooling. Based on analysis of the power balance of a centrifugal pump, it is shown that about 90% of the pump unit-consumed electric power in terminals is used for heating up the working fluid in the loop of the test bench. The article gives examples of elementary heat calculation of the pump operation within the test bench. It presents the main types of systems to maintain thermal balance, their advantages, disadvantages and possible applications. The cooling system schemes for open and closed version of the benches both with built-in and with an independent cooling circuit are analysed. The paper separately considers options of such systems for large benches using the cooling tower as a cooling device in the loop, and to test the pumps using the hydraulic fluids other than water, including those at high temperatures of working fluids; in the latter case a diagram of dual-circuit cooling system "liquid-liquid-air" is shown. The paper depicts a necessity to use ethylene glycol coolant in the two-loop cooling bench. It provides an example of combining the functions of cooling and filtration in a single cooling circuit. Criteria for effectiveness of these systems are stated. Possible ways for developing systems to maintain a thermal balance, modern methods of regulation and control are described. In particular, the paper shows the efficiency of frequency control of the

  18. Experimental investigations of flow distribution in coolant system of Helium-Cooled-Pebble-Bed Test Blanket Module

    Energy Technology Data Exchange (ETDEWEB)

    Ilić, M.; Schlindwein, G., E-mail: georg.schlindwein@kit.edu; Meyder, R.; Kuhn, T.; Albrecht, O.; Zinn, K.

    2016-02-15

    Highlights: • Experimental investigations of flow distribution in HCPB TBM are presented. • Flow rates in channels close to the first wall are lower than nominal ones. • Flow distribution in central chambers of manifold 2 is close to the nominal one. • Flow distribution in the whole manifold 3 agrees well with the nominal one. - Abstract: This paper deals with investigations of flow distribution in the coolant system of the Helium-Cooled-Pebble-Bed Test Blanket Module (HCPB TBM) for ITER. The investigations have been performed by manufacturing and testing of an experimental facility named GRICAMAN. The facility involves the upper poloidal half of HCPB TBM bounded at outlets of the first wall channels, at outlet of by-pass pipe and at outlets of cooling channels in breeding units. In this way, the focus is placed on the flow distribution in two mid manifolds of the 4-manifold system: (i) manifold 2 to which outlets of the first wall channels and inlet of by-pass pipe are attached and (ii) manifold 3 which supplies channels in breeding units with helium coolant. These two manifolds are connected with cooling channels in vertical/horizontal grids and caps. The experimental facility has been built keeping the internal structure of manifold 2 and manifold 3 exactly as designed in HCPB TBM. The cooling channels in stiffening grids, caps and breeding units are substituted by so-called equivalent channels which provide the same hydraulic resistance and inlet/outlet conditions, but have significantly simpler geometry than the real channels. Using the conditions of flow similarity, the air pressurized at 0.3 MPa and at ambient temperature has been used as working fluid instead of HCPB TBM helium coolant at 8 MPa and an average temperature of 370 °C. The flow distribution has been determined by flow rate measurements at each of 28 equivalent channels, while the pressure distribution has been obtained measuring differential pressure at more than 250 positions. The

  19. Status of the FARO/KROTOS melt-coolant interactions tests

    Energy Technology Data Exchange (ETDEWEB)

    Magallon, D.; Huhtiniemi, I.; Annunziato, A.; Yerkess, A.; Hohmann, Y.H. [European Commission, Joint Research Centre Safety Technology Institute, Ispra (Austria)

    1996-03-01

    Results of FARO test L-19 are reported. It involved 155 kg of 80 w% UO{sub 2}+20 w% ZrO{sub 2} at 3073 K quenched in 338-kg, 1-m-depth water at saturation at 5.0 MPa (i.e., 537 K). The test is compared with two former tests (L-06 and L-08) performed in similar conditions (1-m-depth water) but with reduced quantities of test (18 and 44 kg, respectively) and with test L-14, performed with a similar quantity of melt (125 kg) but in 2-m-depth water. No fundamental differences with the former tests have been observed. Particularly, the quenching rate per unit melt mass was of the same order (0.5 MW). On the contrary, the portion of melt which remained as a cake on the bottom was larger (50% against a maximum of 30% in the previous tests). The possible reasons for these discrepancies are discussed. Recalculations of test L-19 by using COMETA and TEXAS are also reported and commented. Results from a new set of KROTOS tests conducted with Al{sub 2}O{sub 2} to investigate further the differences already observed with corium melt are presented and discussed. In these tests the effect of men superheat, water subcooling and ambient pressure on Al{sub 2}O{sub 3}/water system behaviour have been tested. In contrast with corium experiments, the results demonstrated that spontaneous explosions occur in the Al{sub 2}O{sub 3}/water system over all the range of parameters tested in highly subcooled conditions. Some TEXAS results for the latest KROTOS Al{sub 2}O{sub 3} test, in which a violent steam explosion did occur, are presented and compared with experiment. During some KROTOS experiments there are large deformations of the bottom plate and hold-down bolts. Use is made of the 2-D axisymmetric code SEURBNUK-EURDYN to analyse these deformations of the test section and some results are presented.

  20. Test report - 241-AN-274 Caustic Pump Control Building

    Energy Technology Data Exchange (ETDEWEB)

    Paintner, G.P.

    1995-05-01

    This Acceptance Test Report documents the test results of test procedure WHC-SD-WM-ATP-135 `Acceptance Test Procedure for the 241-AN- 274 Caustic Pump Control Building.` The objective of the test was to verify that the 241-AN-274 Caustic Pump Control Building functions properly based on design specifications per applicable H-2-85573 drawings and associated ECN`s. The objective of the test was met.

  1. Computing Flows Of Coolants In Turbomachines

    Science.gov (United States)

    Meitner, P. L.

    1994-01-01

    Coolant Passage Flow (CPF) computer code developed to predict accurately coolant flow and heat transfer inside turbomachinery cooling passages (either radial or axial blading). Computes flow in one-inlet/one-outlet passage of any shape. Calculates rate of flow of coolant, temperature, pressure, velocity, and heat-transfer coefficients along passage. Integrates one-dimensional momentum and energy equations along defined flow path, taking into account change in area, addition or subtraction of mass, pumping, friction, and transfer of heat. Written in FORTRAN IV.

  2. East Mesa geothermal pump test facility (EMPTF). Final report

    Energy Technology Data Exchange (ETDEWEB)

    Olander, R.G.; Roberts, G.K.

    1984-11-28

    The design, fabrication and installation of a geothermal pump test facility (EMPFT) at the DOE geothermal site at East Mesa, California which is capable of testing 70 to 750 horsepower downwell pumps in a controlled geothermal environment were completed. The facility consists of a skid-mounted brine control module, a 160 foot below test well section, a hydraulic turbine for power recovery, a gantry-mounted hoist for pump handling and a 3-phase, 480 VAC, 1200 amp power supply to handle pump electric requirements. Geothermal brine is supplied to the EMPTF from one of the facility wells at East Mesa. The EMPTF is designed with a great amount of flexibility. The 20-inch diameter test well can accommodate a wide variety of pumps. The controls are interactive and can be adjusted to obtain a full complement of pump operation data, or set to maintain constant conditions to allow long-term testing with a minimum of operator support. The hydraulic turbine allows the EMPTF user to recover approximately 46% of the input pump power to help defray the operating cost of the unit. The hoist is provided for material handling and pump servicing and reduces the equipment that the user must supply for pump installation, inspection and removal.

  3. East Mesa geothermal pump test facility (EMPTF). Final report

    Energy Technology Data Exchange (ETDEWEB)

    Olander, R.G.; Roberts, G.K.

    1984-11-28

    Barber-Nichols has completed the design, fabrication and installation of a geothermal pump test facility at the DOE geothermal site at East Mesa, California which is capable of testing 70 to 750 horsepower downwell pumps in a controlled geothermal environment. The facility consists of a skid-mounted brine control module, a 160 foot below ground test well section, a hydraulic turbine for power recovery, a gantry-mounted hoist for pump handling and a 3-phase, 480 VAC, 1200 amp power supply to handle pump electric requirements. Geothermal brine is supplied to the EMPTF from one of the facility wells at East Mesa. The EMPTF is designed with a great amount of flexibility to attract the largest number of potential users. The 20-inch diameter test well can accommodate a wide variety of pumps. The controls are interactive and can be adjusted to obtain a full complement of pump operation data, or set to maintain constant conditions to allow long-term testing with a minimum of operator support. The hydraulic turbine allows the EMPTF user to recover approximately 46% of the input pump power to help defray the operating cost of the unit. The hoist is provided for material handling and pump servicing and reduces the equipment that the user must supply for pump installation, inspection and removal.

  4. LWR fuel rod behavior during reactor tests under loss-of-coolant conditions: Results of the FR2 in-pile tests

    Energy Technology Data Exchange (ETDEWEB)

    Karb, E.H.; Sepold, L.; Hofmann, P.; Petersen, C.; Schanz, G.; Zimmermann, H. (Kernforschungszentrum Karlsruhe G.m.b.H. (Germany, F.R.))

    1982-05-01

    Results of the FR2 in-pile tests on fuel rod behavior under loss-of-coolant accident (LOCA) conditions are presented. To investigate the possible influence of a nuclear environment on fuel rod failure mechanisms, unirradiated as well as irradiated (2500 to 35,000 MWd/tsub(U)) PWR-type test fuel rods were exposed to temperature transients simulating the second heatup phase of a LOCA. Loaded by internal overpressure, the cladding ballooned and ruptured. The burst data do not indicate major differences from results obtained out-of-pile with electrically heated fuel rod simulators, and do not show an influence of burnup. The fuel pellets in previously irradiated rods, already cracked during normal operation, crumbled completely in the regions with large cladding deformation. Post-test examinations revealed cladding mechanical behavior and oxidation to be comparable to out-of-pile results, with relatively little fission gas release during the transient.

  5. Acceptance test report: Field test of mixer pump for 241-AN-107 caustic addition project

    Energy Technology Data Exchange (ETDEWEB)

    Leshikar, G.A.

    1997-05-16

    The field acceptance test of a 75 HP mixer pump (Hazleton serial number N-20801) installed in Tank 241-AN-107 was conducted from October 1995 thru February 1996. The objectives defined in the acceptance test were successfully met, with two exceptions recorded. The acceptance test encompassed field verification of mixer pump turntable rotation set-up and operation, verification that the pump instrumentation functions within established limits, facilitation of baseline data collection from the mixer pump mounted ultrasonic instrumentation, verification of mixer pump water flush system operation and validation of a procedure for its operation, and several brief test runs (bump) of the mixer pump.

  6. Design and fabrication of magnetic coolant filter

    Science.gov (United States)

    Prashanth, B. N.

    2017-07-01

    lose its strength even number of years of use. Dirty coolant is fed from the machines in to the reservoir of the coolant filter either by a pump or taken by the gravity and flows under the tray. This attracts the ferrous particles and builds up a cake of ferrous material and finally taken away by the scraper. The moving permanent magnets mounted on the shaft attracts ferrous chips and slide them on to plate and then to the discharge end or sludge bin. The coolant separated from chips flow back to the coolant tank. Well in this fast changing growth of metal working operation the recycling of cutting fluids become very important for the management of coolant. With the help of this developed model of magnetic coolant separator we can get highly efficient way of filtration guarantying fine finish, dimensional accuracy and increased tool life. The most significant role of this filter is that, it will reduce the waste disposal of coolant and a net profit for the production industries.

  7. Measurement and Evaluation of Heating Performance of Heat Pump Systems Using Wasted Heat from Electric Devices for an Electric Bus

    OpenAIRE

    Moo-Yeon Lee; Jong-Phil Won; Chung-Won Cho; Ho-Seong Lee

    2012-01-01

    The objective of this study is to investigate heating performance characteristics of a coolant source heat pump using the wasted heat from electric devices for an electric bus. The heat pump, using R-134a, is designed for heating a passengers’ compartment by using discharged energy from the coolant of electric devices, such as motors and inverters of the electric bus. The heating performance of the heat pump was tested by varying the operating parameters, such as outdoor temperature and volum...

  8. Model tests on a semi-axial pump turbine

    Energy Technology Data Exchange (ETDEWEB)

    Strohmer, F.; Horacek, G.

    1984-03-01

    Due to their good hydraulic characteristic semi-axial pump turbines are used in the medium head range of pumped storage plants. This paper describes model tests performed on a semiaxial pump turbine model and shows the results of these tests. The aim of the model tests was the optimization of the hydraulic water passage, the measurement of the hydraulic characteristics over the whole operating range, the investigation of the cavitation behaviour, the investigation of the hydraulic forces and torques as well as the proof of the values guaranteed to the customer.

  9. Development and test of a plastic deep-well pump

    Science.gov (United States)

    Zhang, Q. H.; Gao, X. F.; Xu, Y.; Shi, W. D.; Lu, W. G.; Liu, W.

    2013-12-01

    To develop a plastic deep-well pump, three methods are proposed on structural and forming technique. First, the major hydraulic components are constructed by plastics, and the connection component is constructed by steel. Thus the pump structure is more concise and slim, greatly reducing its weight and easing its transportation, installation, and maintenance. Second, the impeller is designed by maximum diameter method. Using same pump casing, the stage head is greatly increased. Third, a sealing is formed by impeller front end face and steel end face, and two slots are designed on the impeller front end face, thus when the two end faces approach, a lubricating pair is formed, leading to an effective sealing. With above methods, the pump's axial length is greatly reduced, and its stage head is larger and more efficient. Especially, the pump's axial force is effectively balanced. To examine the above proposals, a prototype pump is constructed, and its testing results show that the pump efficiency exceeds the national standard by 6%, and the stage head is improved by 41%, meanwhile, its structure is more concise and ease of transportation. Development of this pump would provide useful experiences for further popularity of plastic deep-well pumps.

  10. Custom Unit Pump Design and Testing for the EVA PLSS

    Science.gov (United States)

    Schuller, Michael; Kurwitz, Cable; Goldman, Jeff; Morris, Kim; Trevino, Luis

    2009-01-01

    This paper describes the effort by the Texas Engineering Experiment Station (TEES) and Honeywell for NASA to design and test a pre-flight prototype pump for use in the Extra-vehicular activity (EVA) portable life support subsystem (PLSS). Major design decisions were driven by the need to reduce the pump s mass, power, and volume compared to the existing PLSS pump. In addition, the pump must accommodate a much wider range of abnormal conditions than the existing pump, including vapor/gas bubbles and increased pressure drop when employed to cool two suits simultaneously. A positive displacement, external gear type pump was selected because it offers the most compact and highest efficiency solution over the required range of flow rates and pressure drops. An additional benefit of selecting a gear pump design is that it is self priming and capable of ingesting non-condensable gas without becoming air locked. The chosen pump design consists of a 28 V DC, brushless, sealless, permanent magnet motor driven, external gear pump that utilizes a Honeywell development that eliminates the need for magnetic coupling. Although the planned flight unit will use a sensorless motor with custom designed controller, the pre-flight prototype to be provided for this project incorporates Hall effect sensors, allowing an interface with a readily available commercial motor controller. This design approach reduced the cost of this project and gives NASA more flexibility in future PLSS laboratory testing. The pump design was based on existing Honeywell designs, but incorporated features specifically for the PLSS application, including all of the key features of the flight pump. Testing at TEES verified that the pump meets the design requirements for range of flow rates, pressure drop, power consumption, working fluid temperature, operating time, gas ingestion , and restart capability under both ambient and vacuum conditions. The pump operated between 40 and 240 lbm/hr flowrate, 35 to 100 F

  11. Testing of an Annular Linear Induction Pump for the Fission Surface Power Technology Demonstration Unit

    Science.gov (United States)

    Polzin, K. A.; Pearson, J. B.; Webster, K.; Godfoy, T. J.; Bossard, J. A.

    2013-01-01

    decision makers to consider FSP as a viable option for potential future flight development. The pump must be compatible with the liquid NaK coolant and have adequate performance to enable a viable flight system. Idaho National Laboratory (INL) was tasked with the design and fabrication of an ALIP suitable for the FSP reference mission. Under the program, a quarter-scale FSP technology demonstration is under construction to test the end-to-end conversion of simulated nuclear thermal power to usable electrical power intended to raise the entire FSP system to Technology Readiness Level 6. An ALIP for this TDU was fabricated under the direction of the INL and shipped to NASA Marshall Space Flight Center (MSFC) for testing at representative operating conditions. This pump was designed to meet the requirements of the TDU experiment. The ALIP test circuit (ATC) at MSFC, previously used to conduct performance evaluation on another ALIP6 was used to test the present TDU pump for the FSP Technology Development program.

  12. LMFBR with booster pump in pumping loop

    Science.gov (United States)

    Rubinstein, H.J.

    1975-10-14

    A loop coolant circulation system is described for a liquid metal fast breeder reactor (LMFBR) utilizing a low head, high specific speed booster pump in the hot leg of the coolant loop with the main pump located in the cold leg of the loop, thereby providing the advantages of operating the main pump in the hot leg with the reliability of cold leg pump operation.

  13. Machine coolant waste reduction by optimizing coolant life. Project summary

    Energy Technology Data Exchange (ETDEWEB)

    Pallansch, J.

    1995-08-01

    The project was designed to study the following: A specific water-soluble coolant (Blasocut 2000 Universal) in use with a variety of machines, tools, and materials; Coolant maintenance practices associated with three types of machines; Health effects of use and handling of recycled coolant; Handling practices for chips and waste coolant; Chip/coolant separation; and Oil/water separation.

  14. Procurement specification high vacuum test chamber and pumping system

    Energy Technology Data Exchange (ETDEWEB)

    Cormick, J. E.

    1976-05-31

    The specification establishes requirements for a high-vacuum test chamber, associated vacuum pumps, valves, controls, and instrumentation that shall be designed and fabricated for use as a test chamber for testing a closed loop Brayton Isotope Power System (BIPS) Ground Demonstration System (GDS). The vacuum system shall include all instrumentation required for pressure measurement and control of the vacuum pumping system. A general outline of the BIPS-GDS in the vacuum chamber and the preliminary piping and instrumentation interface to the vacuum chamber are shown.

  15. Solid Rocket Booster Hydraulic Pump Port Cap Joint Load Testing

    Science.gov (United States)

    Gamwell, W. R.; Murphy, N. C.

    2004-01-01

    The solid rocket booster uses hydraulic pumps fabricated from cast C355 aluminum alloy, with 17-4 PH stainless steel pump port caps. Corrosion-resistant steel, MS51830 CA204L self-locking screw thread inserts are installed into C355 pump housings, with A286 stainless steel fasteners installed into the insert to secure the pump port cap to the housing. In the past, pump port cap fasteners were installed to a torque of 33 Nm (300 in-lb). However, the structural analyses used a significantly higher nut factor than indicated during tests conducted by Boeing Space Systems. When the torque values were reassessed using Boeing's nut factor, the fastener preload had a factor of safety of less than 1, with potential for overloading the joint. This paper describes how behavior was determined for a preloaded joint with a steel bolt threaded into steel inserts in aluminum parts. Finite element models were compared with test results. For all initial bolt preloads, bolt loads increased as external applied loads increased. For higher initial bolt preloads, less load was transferred into the bolt, due to external applied loading. Lower torque limits were established for pump port cap fasteners and additional limits were placed on insert axial deformation under operating conditions after seating the insert with an initial preload.

  16. 1000 MW核主泵导叶体型线检测新方法%New method for measuring vane profile of diffuser of 1 000 MW reactor coolant pump

    Institute of Scientific and Technical Information of China (English)

    刘祥松; 卜延鹏; 邱国帆; 冯晓东

    2014-01-01

    To check the vane profile of the diffuser of a 1 000 MW reactor coolant pump (RCP), which is machined by using numerical control machining technique,a set of approaches for measuring and assessing vane profile of a through-flow-component are proposed.Through adopting a reverse engi-neering analysis software PolyWorks together with a three coordinates measuring machine,the three co-ordinates of vane pressure and suction sides of the diffuser are measured and the root mean square of deviation of the measured profile from the designed one is figured out.Based on a statistic and theoreti-cal analysis on the measured profile data of the vane pressure and suction sides near the vane leading and trailing edges,a formula for estimating deviation angel of pressure or suction side profile Δβis put forward.Moreover,a correlation for deviation angle between two vanes Δφ,and a correction formula for deviation of individual vane profile K are established.This set of methods can accurately and effec-tively inspect the vane profiles of a hydraulic machine and assure each profile to have the same wrap angle.Based on the measurement and evaluation of vane profiles of the diffuser of the RCP for Fuqing and Fangjiashan Nuclear Plant,all the deviation errors are allowable.As a result,the tested perfor-mance of the RCP shows that the flow rate and head deviate from the design specifications by ±2.5%and ±1 .5%,respectively.%为了检测核主泵水力部件数控加工完成后叶片型线的偏离程度,提出了一套水力部件的检测和评定方法.采用逆向工程点云分析软件(PolyWorks)与三维扫描设备相结合,测量导叶体模型叶片与产品叶片进出口压力、吸力面三坐标,同时计算叶片型线偏离的均方根偏差.通过对叶片进出口型线测量数据的统计处理和理论分析,提出叶片进出口型线偏离角度Δβ的计算公式、叶片间叶距角Δφ的偏离公式以及部分叶片型线偏离的修正

  17. Commissioning of the STAR test section for experimental simulation of loss of coolant accident using the EC-208 instrumented fuel assembly of the IEA-R1 reactor

    Energy Technology Data Exchange (ETDEWEB)

    Maprelian, Eduardo; Torres, Walmir M.; Prado, Adelk C.; Umbehaun, Pedro E.; Franca, Renato L.; Santos, Samuel C.; Macedo, Luiz A.; Sabundjian, Gaiane, E-mail: emaprel@ipen.br, E-mail: wmtorres@ipen.br, E-mail: acprado@ipen.br, E-mail: umbehaun@ipen.br, E-mail: rlfranca@ipen.br, E-mail: samuelcs@ipen.br, E-mail: lamacedo@ipen.br, E-mail: gdjian@ipen.br [Instituto de Pesquisas Energeticas e Nucleares (IPEN/CNEN-SP), Sao Paulo, SO (Brazil)

    2015-07-01

    The three basic safety functions of Research Reactors (RR) are the safe shutdown of the reactor, the proper cooling of the decay heat of the fuel elements and the confinement of radioactive materials. Compared to Nuclear Power Reactors, RR power release is small, yet its three safety functions must be met to ensure the integrity of the reactor. During a loss of coolant accident (LOCA) in pool type RR, partial or complete loss of pool water may occur, with consequent partial or complete uncovering of the fuel assemblies. In such an accident, the decay heat removal safety function must not be compromised. The Test Section for Experimental Simulation of Loss of Coolant Accident (STAR) is in commissioning phase. This test section will provide experimental data on partial and total uncovering of the EC-208 instrumented fuel assembly (IFA) irradiated in the IEA-R1. Experimental results will be useful in validation of computer codes for RR safety analysis, particularly on heat removal efficiency aspects (safety function) in accident conditions. STAR comprises a base on which is installed the IFA, the cylindrical stainless steel hull, the compressed air system for the test section emptying and refilling, and the instrumentation for temperature and level measurements. The commissioning tests or pre-operational check, consist of several preliminary tests to verify experimental procedures, the difficulties during assembling of STAR in the pool, the difficulties in control the emptying and refilling velocities, as well as, the repeatability capacity, tests of equipment, valves and systems and tests of instrumentation and data acquisition system. Safety, accuracy and easiness of operation will be checked. (author)

  18. Evaluation and testing of metering pumps for high-level nuclear waste slurries

    Energy Technology Data Exchange (ETDEWEB)

    Peterson, M.E.; Perez, J.M. Jr.; Blair, H.T.

    1986-06-01

    The metering pump system that delivers high-level liquid wastes (HLLW) slurry to a melter is an integral subsystem of the vitrification process. The process of selecting a pump for this application began with a technical review of pumps typically used for slurry applications. The design and operating characteristics of numerous pumps were evaluated against established criteria. Two pumps, an air-displacement slurry (ADS) pump and an air-lift pump, were selected for further development. In the development activity, from FY 1983 to FY 1985, the two pumps were subjected to long-term tests using simulated melter feed slurries to evaluate the pumps' performances. Throughout this period, the designs of both pumps were modified to better adapt them for this application. Final reference designs were developed for both the air-displacement slurry pump and the air-lift pump. Successful operation of the final reference designs has demonstrated the feasibility of both pumps. A fully remote design of the ADS pump has been developed and is currently undergoing testing at the West Valley Demonstration Project. Five designs of the ADS pump were tested and evaluated. The initial four designs proved the operating concept of the ADS pump. Weaknesses in the ADS pump system were identified and eliminated in later designs. A full-scale air-lift pump was designed and tested as a final demonstration of the air-lift pump's capabilities.

  19. PNEUMATIC PUMP TEST FOR DESIGN OF SOIL VACUUM EXTRACTION

    Science.gov (United States)

    In-situ pneumatic pumping tests were performed to estimate the pneumatic permeability at a site containing soils contaminated with aviation gasoline. Determination of pneumatic permeability was necessary to evaluate soil-air discharge or pore volume exchange rates. Pressure propa...

  20. 振动诊断在核电厂主泵检修指导中的应用%The Vibration Diagnosis Application in NPP Reactor Coolant Pump Maintenance Guidance

    Institute of Scientific and Technical Information of China (English)

    欧阳钦; 周正平

    2015-01-01

    利用主泵振动监测系统得出的振动信号,文章结合田湾核电站俄供ГЦНА-1391型主泵结构特点,对主泵径向止推轴承轴向振动缓慢升高的原因进行了分析,判断其上幅面板可能存在缺陷,提出了大修期间的检修建议和备件准备.在其后大修中进行检查,验证了振动分析的可靠性,为后续分析诊断提供了经验.%According to vibration signal of reactor coolant pump(RCP) vibration monitoring system and structure characteristics of Tianwan nuclear power plant Russia Г Ц Н А -1391 type RCP, the cause of slowly rise of the RCP radial thrust bearing axial vibration is analyzed, and conclusion that upper panel may be flawed is drawn. Suggestions and preparations of spare parts are put forward to the overhaul maintenance. The reliability of vibration analysis is verified, and which provides the experience for subsequent analysis.

  1. Monitoring of aquifer pump tests with Magnetic Resonance Sounding (MRS)

    DEFF Research Database (Denmark)

    Herckenrath, Daan; Auken, Esben; Bauer-Gottwein, Peter

    2009-01-01

    Magnetic Resonance Sounding (MRS) can provide valuable data to constrain and calibrate groundwater flow and transport models. With this non-invasive geophysical technique, field measurements of water content and hydraulic conductivities can be obtained. We developed a hydrogeophyiscal forward met...... to pump tests in which a partially penetrating pumping well is used, because the limited drawdown around the extraction well causes smaller changes in received signal compared to a fully penetrating well....... method, which calculates the MRS-signal generated by an aquifer pump test. A synthetic MRS-dataset was subsequently used to determine the hydrogeological parameters in an inverse parameter estimation approach. This was done for a pump test with a partially and fully penetrating well. With the MRS data we...... were able to retrieve the hydrogeological parameters of the aquifer. However, the differences in MRS signal in time, when the instrument is positioned on top of the extraction well, were small compared to the electromagnetic noise. This could especially limit the applicability of the MRS technique...

  2. Test report for run-in acceptance testing of hydrogen mitigation retrieval Pump-3

    Energy Technology Data Exchange (ETDEWEB)

    Berglin, B.G.

    1997-08-15

    This report will provide the findings of the demonstration test conducted on the Double-Shell Tank (DST) 241-SY-101 HMR Pump-3 in accordance with WHC-SDWM-TP-434 ``Test plan for run-in acceptance testing of hydrogen mitigation/retrieval pump-3`` at the 400 Area Maintenance and Storage Facility (MASF) building from 7 June 1996 through 30 July 1996 per work package 4A-96-92/W. The DST 241-SY-101 hydrogen mitigation retrieval Pump-3 is a 200-HP submersible electric driven pump that has been modified for use in the DST 241-SY-101 containing mixed waste located in the 200W area. The pump has a motor driven rotation mechanism that allows the pump column to rotate through 355{degree}. Prior to operation, pre-operational checks were performed which included loop calibration grooming and alignment of instruments, learning how plumb HMR-3 assembly hung in a vertical position and bump test of the motor to determine rotation direction. The pump was tested in the MASF Large Diameter Cleaning Vessel (LDCV) with process water at controlled temperatures and levels. In addition, the water temperature of the cooling water to the motor oil heat exchanger was recorded during testing. A 480-volt source powered a Variable Frequency Drive (VFD). The VFD powered the pump at various frequencies and voltages to control speed and power output of the pump. A second VFD powered the oil cooling pump. A third VFD was not available to operate the rotational drive motor during the 72 hour test, so it was demonstrated as operational before and after the test. A Mini Acquisition and Control System (Mini-DACS) controls pump functions and monitoring of the pump parameters. The Mini-DACS consists of three computers, software and some Programmable Logic Controllers (PLC). Startup and shutdown of either the pump motor or the oil cooling pump can be accomplished by the Mini-DACS. When the pump was in operation, the Mini-DACS monitors automatically collects data electronically. However, some required data

  3. Corrosion of magnesium alloys in commercial engine coolants

    Energy Technology Data Exchange (ETDEWEB)

    Song, G.; StJohn, D.H. [CRC for Cast Metals Manufacturing (CAST), Division of Materials, School of Engineering, The University of Queensland, Brisbane, QLD 4072 (Australia)

    2005-01-01

    A number of magnesium alloys show promise as engine block materials. However, a critical issue for the automotive industry is corrosion of the engine block by the coolant and this could limit the use of magnesium engine blocks. This work assesses the corrosion performance of conventional magnesium alloy AZ91D and a recently developed engine block magnesium alloy AM-SC1 in several commercial coolants. Immersion testing, hydrogen evolution measurement, galvanic current monitoring and the standard ASTM D1384 test were employed to reveal the corrosion performance of the magnesium alloys subjected to the coolants. The results show that the tested commercial coolants are corrosive to the magnesium alloys in terms of general and galvanic corrosion. The two magnesium alloys exhibited slightly different corrosion resistance to the coolants with AZ91D being more corrosion resistant than AM-SC1. The corrosivity varied from coolant to coolant. Generally speaking, an organic-acid based long life coolant was less corrosive to the magnesium alloys than a traditional coolant. Among the studied commercial coolants, Toyota long life coolant appeared to be the most promising one. In addition, it was found that potassium fluoride effectively inhibited corrosion of the magnesium alloys in the studied commercial coolants. Both general and galvanic corrosion rates were significantly decreased by addition of KF, and there were no evident side effects on the other engine block materials, such as copper, solder, brass, steel and aluminium alloys, in terms of their corrosion performance. The ASTM D 1384 test further confirmed these results and suggested that Toyota long life coolant with 1%wt KF addition is a promising coolant for magnesium engine blocks. (Abstract Copyright [2005], Wiley Periodicals, Inc.)

  4. Transient Hydraulic Characteristics of Nuclear Reactor Coolant Pump in Variable Flow Transient Process%核主泵变流量过渡过程瞬态水力特性研究

    Institute of Scientific and Technical Information of China (English)

    王秀礼; 袁寿其; 朱荣生; 付强; 俞志君

    2013-01-01

    For the study on the transient hydraulic characteristics and internal flow mechanism of the nuclear reactor coolant pump in the transient process from design operation conditions to off-design conditions,the variable flow transient characteristics of centrifugal pump impeller passageway were simulated by using CFX software.The results show that during the variable flow transition,the distribution of pressure pulsation of the nuclear reactor coolant pump along the circumference direction is nonuniform.The pressure pulsation trends to rise gradually to reach the maximum value and then fall,basically following a sine-shape changing law.The times of transient pressure fluctuation change are equal to the times of rotor-stator interference between the vane and the guide vane.The closer monitoring point to the intersection surface between the vane and the guide blade is,the greater the pressure fluctuation is.Because of the attack angle,the speed of the impeller passageway first falls and then rises.The guide vane not only transfers the kinetic energy to pressure energy,but also effectively reduces the pressure pulsation amplitude.During the transition to small flow,flow reducing causes the secondary backflow to occur near the outlet of impeller and in turn leads the amplitude of flow velocity variation in the flow channel of impeller to increase with flow decrease.%为研究核主泵从设计工况向非设计工况过渡过程的瞬态水力特性及内部流动机理,应用计算流体力学软件CFX对核主泵叶轮流道内的变流量瞬态流动特性进行数值模拟计算.研究结果表明:变流量过渡时,核主泵的压力脉动沿圆周方向分布并不均匀,其变化趋势是逐渐上升到最大值后又降低,基本呈正弦变化规律,瞬态压力波动变化次数等于叶片与导叶片数之间的动静干涉次数,监测点越靠近叶片与导叶交界面,压力波动越大;由于冲角的存在造成叶轮流道内的速度呈先下降后

  5. A review of thermal response test analysis using pumping test concepts.

    Science.gov (United States)

    Raymond, Jasmin; Therrien, René; Gosselin, Louis; Lefebvre, René

    2011-01-01

    The design of ground-coupled heat pump systems requires knowledge of the thermal properties of the subsurface and boreholes. These properties can be measured with in situ thermal response tests (TRT), where a heat transfer fluid flowing in a ground heat exchanger is heated with an electric element and the resulting temperature perturbation is monitored. These tests are analogous to standard pumping tests conducted in hydrogeology, because a system that is initially assumed at equilibrium is perturbed and the response is monitored in time, to assess the system's properties with inverse modeling. Although pumping test analysis is a mature topic in hydrogeology, the current analysis of temperature measurements in the context of TRTs is comparatively a new topic and it could benefit from the application of concepts related to pumping tests. The purpose of this work is to review the methodology of TRTs and improve their analysis using pumping test concepts, such as the well function, the superposition principle, and the radius of influence. The improvements are demonstrated with three TRTs. The first test was conducted in unsaturated waste rock at an active mine and the other two tests aimed at evaluating the performance of thermally enhanced pipe installed in a fully saturated sedimentary rock formation. The concepts borrowed from pumping tests allowed the planning of the duration of the TRTs and the analysis of variable heat injection rate tests accounting for external heat transfer and temperature recovery, which reduces the uncertainty in the estimation of thermal properties.

  6. Performance Testing of a Liquid Metal Pump for In-Space Power Systems

    Science.gov (United States)

    Polzin, Kurt

    2011-01-01

    Fission surface power (FSP) systems could be used to provide power on the surface of the moon, Mars, or other planets and moons of our solar system. Fission power systems could provide excellent performance at any location, including those near the poles or other permanently shaded regions, and offer the capability to provide on demand power at any time, even at large distances from the sun. Fission-based systems also offer the potential for outposts, crew and science instruments to operate in a power-rich environment. NASA has been exploring technologies with the goal of reducing the cost and technical risk of employing FSP systems. A reference 40 kWe option has been devised that is cost-competitive with alternatives while providing more power for less mass anywhere on the lunar surface. The reference FSP system is also readily extensible for use on Mars, where it would be capable of operating through global dust storms and providing year-round power at any Martian latitude. Detailed development of the FSP concept and the reference mission are documented in various other reports. The development discussed in this paper prepares the way for testing of the Technology Demonstration Unit (TDU), which is a 10 kWe end-to-end test of FSP technologies intended to raise the entire FSP system to technology readiness level (TRL) 6. The Early Flight Fission Test Facility (EFF-TF) was established by NASA s Marshall Space Flight Center (MSFC) to provide a capability for performing hardware-directed activities to support multiple in-space nuclear reactor concepts by using a nonnuclear test methodology. This includes fabrication and testing at both the module/component level and at near prototypic reactor components and configurations allowing for realistic thermal-hydraulic evaluations of systems. The liquid-metal pump associated with the FSP system must be compatible with the liquid NaK coolant and have adequate performance to enable a viable flight system. Idaho National

  7. Optimized Coolant-Flow Diverter For Increased Bearing Life

    Science.gov (United States)

    Subbaraman, Maria R.; Butner, Myles F.

    1995-01-01

    Coolant-flow diverter for rolling-element bearings in cryogenic turbopump designed to enhance cooling power of flow in contact with bearings and thereby reduce bearing wear. Delivers jets of coolant as close as possible to hot spots at points of contact between balls and race. Also imparts swirl that enhances beneficial pumping effect. Used with success in end ball bearing of high-pressure-oxidizer turbopump.

  8. Pump, and earth-testable spacecraft capillary heat transport loop using augmentation pump and check valves

    Science.gov (United States)

    Baker, David (Inventor)

    1998-01-01

    A spacecraft includes heat-generating payload equipment, and a heat transport system with a cold plate thermally coupled to the equipment and a capillary-wick evaporator, for evaporating coolant liquid to cool the equipment. The coolant vapor is coupled to a condenser and in a loop back to the evaporator. A heated coolant reservoir is coupled to the loop for pressure control. If the wick is not wetted, heat transfer will not begin or continue. A pair of check valves are coupled in the loop, and the heater is cycled for augmentation pumping of coolant to and from the reservoir. This augmentation pumping, in conjunction with the check valves, wets the wick. The wick liquid storage capacity allows the augmentation pump to provide continuous pulsed liquid flow to assure continuous vapor transport and a continuously operating heat transport system. The check valves are of the ball type to assure maximum reliability. However, any type of check valve can be used, including designs which are preloaded in the closed position. The check valve may use any ball or poppet material which resists corrosion. For optimum performance during testing on Earth, the ball or poppet would have neutral buoyancy or be configured in a closed position when the heat transport system is not operating. The ball may be porous to allow passage of coolant vapor.

  9. Test Report for Acceptance Test Procedure for Pumping and Instrumentation Control Skid ''K''

    CERN Document Server

    Johns, B R

    1999-01-01

    This is a Test Report for Acceptance Test Procedure (ATP) HNF-4276. This test report provides the results of the inspection and testing of the new Pumping and Instrumentation Control (PIC) skid designed as ''K''. The ATP was successfully completed. A copy of the completed ATP is in the Appendix of this document.

  10. Test Report for Acceptance Test Procedure for Pumping Instrumentation and Control Skid N

    Energy Technology Data Exchange (ETDEWEB)

    KOCH, M.R.

    2000-02-03

    This is a Test Report for Acceptance Test Procedure (ATP) RPP-5489. This test report provides the results of the inspection and testing of the new Pumping Instrumentation and Control (PIC) skid designed as ''N''. The ATP was successfully completed. A copy of the completed ATP is in the Appendix of this document.

  11. Test Report for Acceptance Test Procedure for Pumping Instrumentation and Control Skid L

    Energy Technology Data Exchange (ETDEWEB)

    KOCH, M.R.

    1999-11-09

    This is a Test Report for Acceptance Test Procedure (ATP) RPP-5055. This test report provides the results of the inspection and testing of the new Pumping Instrumentation and Control (PIC) skid designed as ''L''. The ATP was successfully completed. A copy of the completed ATP is in the Appendix of this document.

  12. Information fusion in regularized inversion of tomographic pumping tests

    Science.gov (United States)

    Bohling, G.C.; ,

    2008-01-01

    In this chapter we investigate a simple approach to incorporating geophysical information into the analysis of tomographic pumping tests for characterization of the hydraulic conductivity (K) field in an aquifer. A number of authors have suggested a tomographic approach to the analysis of hydraulic tests in aquifers - essentially simultaneous analysis of multiple tests or stresses on the flow system - in order to improve the resolution of the estimated parameter fields. However, even with a large amount of hydraulic data in hand, the inverse problem is still plagued by non-uniqueness and ill-conditioning and the parameter space for the inversion needs to be constrained in some sensible fashion in order to obtain plausible estimates of aquifer properties. For seismic and radar tomography problems, the parameter space is often constrained through the application of regularization terms that impose penalties on deviations of the estimated parameters from a prior or background model, with the tradeoff between data fit and model norm explored through systematic analysis of results for different levels of weighting on the regularization terms. In this study we apply systematic regularized inversion to analysis of tomographic pumping tests in an alluvial aquifer, taking advantage of the steady-shape flow regime exhibited in these tests to expedite the inversion process. In addition, we explore the possibility of incorporating geophysical information into the inversion through a regularization term relating the estimated K distribution to ground penetrating radar velocity and attenuation distributions through a smoothing spline model. ?? 2008 Springer-Verlag Berlin Heidelberg.

  13. Corrosion and solubility in a TSP-buffered chemical environment following a loss of coolant accident: Part 4 – Integrated chemical effects testing

    Energy Technology Data Exchange (ETDEWEB)

    Ali, Amir; LaBrier, Daniel [Department of Nuclear Engineering, University of New Mexico (United States); Blandford, Edward, E-mail: edb@unm.edu [Department of Nuclear Engineering, University of New Mexico (United States); Howe, Kerry [Department of Civil Engineering, University of New Mexico (United States)

    2016-04-15

    Highlights: • Integrated test explored the material release of a postulated large break LOCA. • Aluminum concentration was very low (<0.1 mg/L) throughout the test duration. • Zinc concentration was low (<1 mg/L) in TSP-buffered system. • Calcium release showed two distinguished release zones: prompt and meta-stable. • Copper and iron has no distinguishable concentration up to first 24 h of testing. - Abstract: This paper presents the results of an integrated chemical effects experiment executed under conditions representative of the containment pool following a postulated loss of coolant accident (LOCA) at the Vogtle nuclear power plant, operated by the Southern Nuclear Operating Company (SNOC). This test was conducted for closure of a series of bench scale experiments conducted to investigate the effect of the presence of trisodium phosphate (TSP) on the corrosion and release of aluminum (Howe et al., 2015) and zinc (Pease et al., 2015) from metallic surfaces, and calcium from NUKON fiberglass insulation (Olson et al., 2015) . The integrated test was performed in the Corrosion/Chemical Head Loss Experimental (CHLE) facility with representative amounts of zinc, aluminum, carbon steel, copper, NUKON fiberglass, and latent debris. The test was conducted using borated TSP-buffered solution under a post-LOCA prototypical temperature profile lasting for 30 days. The results presented in this article demonstrate trends for zinc, aluminum, and calcium release that are consistent with separate bench scale testing and previous integrated tests under TSP conditions. The release rate and maximum concentrations of the released materials were slightly different than the separate effect testing as a result of different experimental conditions (temperature, surface area-to-water volume ratio) and/or the presence of other metals and chemicals in the integrated test. Samples of metal coupons and fiberglass were selected for analysis using Scanning Electron Microscopy

  14. Heat Pump Water Heater Durabliltiy Testing - Phase II

    Energy Technology Data Exchange (ETDEWEB)

    Baxter, VAND.

    2004-05-29

    Ten heat pump water heaters (HPWH) were placed in an environmentally controlled test facility and run through a durability test program of approximately 7300 duty cycles (actual cycles accumulated ranged from 6640 to 8324 for the ten units). Five of the units were upgraded integral types (HPWH mounted on storage tank, no pump) from the same manufacturer as those tested in our first durability program in 2001 (Baxter and Linkous, 2002). The other five were ''add-on'' type units (HPWH with circulation pump plumbed to a separate storage tank) from another manufacturer. This durability test was designed to represent approximately 7-10 years of normal operation to meet the hot water needs of a residence. The integral units operated without incident apart from two control board failures. Both of these were caused by inadvertent exposure to very hot and humid (>135 F dry bulb and >120 F dew point) conditions that occurred due to a test loop failure. It is not likely that any residential water heater would be installed where such conditions were expected so these failures are not considered a long-term reliability concern. Two of the integral HPWHs featured a condensate management system (CMS) option that effectively eliminated any need for an evaporator condensate drain, but imposed significant efficiency penalties when operating in high humidity ambient conditions. The add-on units experienced no operational failures (breakdowns with loss of hot water production) during the course of the testing. However, their control systems exhibited some performance degradation under the high temperature, high humidity test conditions--HPWHs would shut off with tank water temperatures 15-20 F lower than when operating under moderate ambient conditions. One unit developed a refrigerant leak during the test program and lost about 50% of its charge resulting in reduced efficiency. Efficiency measurements on all the integral units and four of the add-on units showed

  15. Test Rig Design For Compact Variable Displacement Vane Pump

    OpenAIRE

    Chawla, Pratik; Jenkins, Ryan; Ivantysynova, Monika

    2015-01-01

    Variable displacement vane pumps (VDVP) are one type of positive displacement pumps used in automatic transmission vehicles for lubricating the gears, cooling the transmission and actuating the clutches. Though fixed displacement pumps are widely used, they output a constant effective flow at a given speed. Depending on pump sizing considerations, the pump can be oversized at high speeds because flow demand of the transmission is independent of engine speed. The excess flow returns to the tan...

  16. PUMPS

    Science.gov (United States)

    Thornton, J.D.

    1959-03-24

    A pump is described for conveving liquids, particure it is not advisable he apparatus. The to be submerged in the liquid to be pumped, a conduit extending from the high-velocity nozzle of the injector,and means for applying a pulsating prcesure to the surface of the liquid in the conduit, whereby the surface oscillates between positions in the conduit. During the positive half- cycle of an applied pulse liquid is forced through the high velocity nozzle or jet of the injector and operates in the manner of the well known water injector and pumps liquid from the main intake to the outlet of the injector. During the negative half-cycle of the pulse liquid flows in reverse through the jet but no reverse pumping action takes place.

  17. Test Report for Acceptance Test Procedure for Pumping Instrumentation and Control Skid P

    Energy Technology Data Exchange (ETDEWEB)

    KOCH, M.R.

    2000-03-29

    This Acceptance Test Report (ATR) provides the test results for the inspection and testing of the new Pumping Instrumentation and Control (PIC) skid designed as ''P''. The ATR summaries the results and provides a copy of the ATP and inspections in the Appendix.

  18. Test Report for Acceptance Test Procedure for Pumping Instrumentation and Control Skid Q

    Energy Technology Data Exchange (ETDEWEB)

    KOCH, M.R.

    2000-05-11

    This Acceptance Test Report (ATR) provides the test results for the inspection and testing of the new Pumping Instrumentation and Control (PIC) skid designed as ''Q''. The ATR summaries the results and provides a copy of the ATP and inspections in the Appendix.

  19. 77 FR 8178 - Test Procedures for Central Air Conditioners and Heat Pumps: Public Meeting

    Science.gov (United States)

    2012-02-14

    ...; ] DEPARTMENT OF ENERGY 10 CFR Part 430 Test Procedures for Central Air Conditioners and Heat Pumps: Public... discuss methodologies and gather comments on testing residential central air conditioners and heat pumps... residential central air conditioners and heat pumps that are single phase with rated cooling capacities less...

  20. ROSA-III double-ended break test series for a loss-of-coolant accident in a boiling water reactor

    Energy Technology Data Exchange (ETDEWEB)

    Tasaka, K.; Anoda, Y.; Koizumi, Y.; Kumamaru, H.; Nakamura, H.; Shiba, M.; Suzuki, M.; Yonomoto, T.

    1985-01-01

    The Rig of Safety Assessment (ROSA) III facility is a volumetrically scaled (1/424) boiling water reactor (BWR) system with an electrically heated core designed for integral loss-of-coolant accident (LOCA) and emergency-core-cooling-system (ECCS) tests. Experimental results obtained so far confirm that the severest single failure assumption in ECCS is the high-pressure core spray system failure even in a large-break LOCA in a BWR. The measured peak cladding temperature was well below the present safety criterion of 1473 K, even with the single failure assumption in ECCS, and the effectiveness of ECCS for core cooling during a double-ended-break LOCA has been confirmed. The overall agreement between the results calculated by the RELAP4/MOD6/U4/J3 computer code and the experimental results is good. The similarity between the ROSA-III test and a BWR LOCA has been confirmed through the comparison of calculated results for the ROSA-III facility and a BWR system.

  1. Position of guide vane trailing edge of nuclear reactor coolant pump under gas-liquid two phase condition%气液两相条件下核主泵导叶出口边安放位置

    Institute of Scientific and Technical Information of China (English)

    朱荣生; 习毅; 袁寿其; 付强; 龙云

    2013-01-01

    为了研究气液两相条件下,不同导叶出口边安放位置对核主泵内部压力脉动、含气率脉动的影响,并最终找出最佳的导叶出口边安放位置,采用三维数值模拟软件CFX模拟泵内部的瞬态流场,在泵壳内壁面和出口不同位置设置监测点,以了解各模型内部不同时刻、不同位置的压力、含气率分布.对比不同模型相同点的压力脉动、含气率脉动的时域、频域图可以发现:导叶出口边在泵壳中心平面(C-C平面)时,泵壳壁面上各点所受压力较小且较平稳,即压力脉动引起的振动、噪声较小,从安全性方面考虑,此时导叶出口边安放位置最佳;泵壳壁面上的压力脉动主要受叶轮的转动影响;除了类似隔舌处外,叶轮的转动对泵壳壁面和出口含气率脉动的影响不大,沿着液体绕流方向泵壳内壁面上的含气率逐渐增大,到出口达到最大.%To study the influence of different positions of guide vane trailing edge on the pressure fluctuation and gas fraction fluctuation in volute wall of nuclear reactor coolant pump under gas-liquid phase condition,and find a best position of guide vane trailing edge,the three-dimensional numerical software CFX was used to simulate the internal transient flow field of pump,with monitoring points set in different positions,in the hope of learning pressures and gas fraction distributions at different times and different positions within each model pump.By comparing pressure fluctuations,frequency domains and time domains at the same position of each model,it was found that the pressure is lower and steadier when the guide vane trailing edge is in the center plane of volute.In another word,the vibration and noise caused by pressure fluctuation were lower; it is the best position for safety.At the same time,it was also found that the fluctuation frequency of volute wall was influenced by impeller rotation frequency.Except similar tongue,impeller rotation

  2. A large scale cryopanel test arrangement for tritium pumping

    Energy Technology Data Exchange (ETDEWEB)

    Day, Chr. E-mail: christian.day@itp.fzk.de; Brennan, D.; Jensen, H.S.; Mack, A

    2003-09-01

    A cryosorption panel test arrangement will be installed in the cryogenic forevacuum system of the Active Gas Handling System (AGHS) at Joint European Torus (JET). The panel is of International Thermonuclear Experimental Reactor (ITER) relevant design in terms of geometry and dimension, coating and sorbent material. The central objective of this task is to study, for the first time in such an in-depth and parametric way, the interaction of tritium and tritiated gas mixtures with the panel, with respect to pumping performance, desorption characteristics and structural influences. This paper describes the motivation for this task and outlines the experimental aims and how they are planned to be achieved. It presents the actual status and gives a description of the test arrangement design. The paper demonstrates how the AGHS is used as a unique benchmark test bed for an ITER component to qualify ITER tritium technology.

  3. On-line PWR RHR pump performance testing following motor and impeller replacement

    Energy Technology Data Exchange (ETDEWEB)

    DiMarzo, J.T.

    1996-12-01

    On-line maintenance and replacement of safety-related pumps requires the performance of an inservice test to determine and confirm the operational readiness of the pumps. In 1995, major maintenance was performed on two Pressurized Water Reactor (PWR) Residual Heat Removal (RHR) Pumps. A refurbished spare motor was overhauled with a new mechanical seal, new motor bearings and equipped with pump`s `B` impeller. The spare was installed into the `B` train. The motor had never been run in the system before. A pump performance test was developed to verify it`s operational readiness and determine the in-situ pump performance curve. Since the unit was operating, emphasis was placed on conducting a highly accurate pump performance test that would ensure that it satisfied the NSSS vendors accident analysis minimum acceptance curve. The design of the RHR System allowed testing of one train while the other was aligned for normal operation. A test flow path was established from the Refueling Water Storage Tank (RWST) through the pump (under test) and back to the RWST. This allowed staff to conduct a full flow range pump performance test. Each train was analyzed and an expression developed that included an error vector term for the TDH (ft), pressure (psig), and flow rate (gpm) using the variance error vector methodology. This method allowed the engineers to select a test instrumentation system that would yield accurate readings and minimal measurement errors, for data taken in the measurement of TDH (P,Q) versus Pump Flow Rate (Q). Test results for the `B` Train showed performance well in excess of the minimum required. The motor that was originally in the `B` train was similarly overhauled and equipped with `A` pump`s original impeller, re-installed in the `A` train, and tested. Analysis of the `A` train results indicate that the RHR pump`s performance was also well in excess of the vendors requirements.

  4. Safety assessment of the SMART design during SBLOCA tests using the high pressure safety injection pump of the SMART-ITL facility

    Energy Technology Data Exchange (ETDEWEB)

    Bae, Hwang; Ryu, Sung Uk; Jeon, Byong-Guk; Yang, Jin-Hwa; Yoon, Eun-Koo; Shin, Yong-Cheol; Min, Kyoung-Ho; Park, Jong-Kuk; Choi, Nam-Hyun; Bang, Yun-Gon; Seo, Chan-Jong; Yi, Sung-Jae; Park, Hyun-Sik [Korea Atomic Energy Research Institute, Daejeon (Korea, Republic of)

    2016-10-15

    SMART is a small-sized integral pressurized light water reactor designed by the Korea Atomic Energy Research Institute (KAERI) from 1997 and received standard design approval (SDA) by the Korean regulatory body in July 2012. Single reactor pressure vessel contains all of the main components including a pressurizer (PZR), steam generators (SG) and reactor coolant pumps (RCP) without any large-size pipes. Several tests to verify a safety and performance of SMART design were carried out. This paper introduces a comparison with three SBLOCA tests. Overall thermal-hydraulic phenomena were observed and showed a traditional trend to decrease a system pressure and temperature. A collapsed water level of the hot side indicated that the safety injection system was successfully operated to recover the reactor coolant system (RCS) and protect the core uncover. An SBLOCA test simulating a guillotine break on the SIS, SCS, and PSV was performed. It was enough to keep a steady-state condition before the SBLOCA test begins. An actuation signal as the boundary condition was properly simulated during the transient test. The scenarios of the SBLOCA in the SMART design were reproduced well using the SMART-ITL facility. The safety injection is effective to protect the core uncover as well as to cool down the RCS. All of the measured parameters show reasonable behaviors.

  5. The Phillips Laboratory capillary pumped loop test facility

    Science.gov (United States)

    Gluck, Donald F.; Kaylor, Marc C.

    1996-03-01

    An ammonia capillary pumped loop (CPL) test facility has been designed, fabricated, subject to acceptance tests, and assembled at Phillips Laboratory. Its intent is to support a wide range of Air Force programs, bringing CPL technology to flight readiness for operational systems. The facility provides a high degree of modularity and flexibility with several heating and cooling options, and capability for elevation (+/- 15 in.), tilt (+/-60°) and transport length variation. It has a 182 by 44 by 84 inch envelope, an expected heat load capability of 2500 W, and a temperature range of 0 to 50 °C. The evaporator section has two plates with four capillary pumps (CPs) each, with a starter pump on one plate. The CPs are 5/8 in., with TAG aluminum 6063-T6 casing and UHMW polyethylene wicks. The active lengths are 15 and 30 inch with both 10 and 15 micron wicks. The individual CPs have thermal and hydraulic isolation capability, and are removable. The transport section consists of stainless steel lines in a serpentine configuration, a 216 in3 free volume reservoir, and a mechanical pump. The vapor transport line contains a capillary device (which can be bypassed) for vapor blockage during startup. The condenser consists of two separately valved, parallel cold plates each with a downstream noncondensible gas trap. Cooling of up to 1500 W at -50 °C is provided by an FTS Systems chiller using Flourinert FC-72. An enclosure/exhaust system is provided for safety and emergency venting of ammonia. An ammonia charge station performs or supports the functions of proof pressure, flushing with ammonia, purging with gaseous nitrogen, evacuation of all or part of the CPL to 20 microns, and charging. Instrumentation consists of over 116 thermocouples, five of which are internal; one absolute and six differential pressure transducers; eleven watt transducers, and a reservoir load cell. The data acquisition system consists of a temperature scanner, Bernoulli drive, and two Macintosh

  6. 75 FR 48997 - NUREG-1946, “Inservice Testing of Pumps and Valves, and Inservice Examination and Testing of...

    Science.gov (United States)

    2010-08-12

    ... COMMISSION NUREG-1946, ``Inservice Testing of Pumps and Valves, and Inservice Examination and Testing of... Testing of Pumps and Valves, and Inservice Examination and Testing of Dynamic Restraints (Snubbers) at...-4209, 301-415-4737, or by e-mail to pdr.resource@nrc.gov . The NUREG-1946, ``Inservice Testing of...

  7. The cryogenic pumping section of KATRIN and the test experiment TRAP

    CERN Document Server

    Eichelhardt, F

    2011-01-01

    The Karlsruhe Tritium Neutrino experiment (KATRIN) employs a Cryogenic Pumping Section (CPS) at ~ 4.5 K to suppress the tritium penetration into the spectrometers. A test experiment (TRAP - Tritium Argon frost Pump) has been set up to investigate the tritium pumping performance of the CPS.

  8. ENVIRONMENTALLY REDUCING OF COOLANTS IN METAL CUTTING

    Directory of Open Access Journals (Sweden)

    Veijo KAUPPINEN

    2012-11-01

    Full Text Available Strained environment is a global problem. In metal industries the use of coolant has become more problematic in terms of both employee health and environmental pollution. It is said that the use of coolant forms approximately 8 - 16 % of the total production costs.The traditional methods that use coolants are now obviously becoming obsolete. Hence, it is clear that using a dry cutting system has great implications for resource preservation and waste reduction. For this purpose, a new cooling system is designed for dry cutting. This paper presents the new eco-friendly cooling innovation and the benefits gained by using this method. The new cooling system relies on a unit for ionising ejected air. In order to compare the performance of using this system, cutting experiments were carried out. A series of tests were performed on a horizontal turning machine and on a horizontal machining centre.

  9. Use of microPCM fluids as enhanced liquid coolants in automotive EV and HEV vehicles. Final report

    Energy Technology Data Exchange (ETDEWEB)

    Mulligan, James C.; Gould, Richard D.

    2001-10-31

    Proof-of-concept experiments using a specific microPCM fluid that potentially can have an impact on the thermal management of automotive EV and HEV systems have been conducted. Samples of nominally 20-micron diameter microencapsulated octacosane and glycol/water coolant were prepared for testing. The melting/freezing characteristics of the fluid, as well as the viscosity, were determined. A bench scale pumped-loop thermal system was used to determine heat transfer coefficients and wall temperatures in the source heat exchanged. Comparisons were made which illustrate the enhancements of thermal performance, reductions of pumping power, and increases of heat transfer which occur with the microPCM fluid.

  10. Long and short term pump testing for landfill gas wells

    Energy Technology Data Exchange (ETDEWEB)

    Stevens, D.W.; Fleming, I.R. [Saskatchewan Univ., Saskatoon, SK (Canada). Dept. of Civil and Geological Engineering

    2009-07-01

    A study was conducted to evaluate vertical well designs drilled into existing landfills as part of a landfill gas collection retrofitting project. Well designs and construction techniques were compared in relation to pneumatic efficiency and the capacity of each well. The aim of the study was to devise a method of evaluating well efficiency and long-term performance. Short-term, single well step-drawdown tests were conducted. Long-term pumping from the entire well field was conducted using different flow rate control approaches. Flow rates were measured at several different system pressures. Data were then compared with drawdown flow rate data from the short-term tests. The study proved that the single well short-term tests accurately predicted the long-term performance of the well field. The study also demonstrated that there was no apparent relationship between well productivity and the length of the screened zone, the diameter of the well, or the diameter of the borehole. No relationship was observed between well performance and the capital costs of individual wells.

  11. Residential gas-fired sorption heat pumps. Test and technology evaluation

    Energy Technology Data Exchange (ETDEWEB)

    Naeslund, M.

    2008-12-15

    Heat pumps may be the next step in gas-fired residential space heating. Together with solar energy it is an option to combine natural gas and renewable energy. Heat pumps for residential space heating are likely to be based on the absorption or adsorption process, i.e. sorption heat pumps. Manufacturers claim that the efficiency could reach 140-160%. The annual efficiency will be lower but it is clear that gas-fired heat pumps can involve an efficiency and technology step equal to the transition from non-condensing gas boilers with atmospheric burners to condensing boilers. This report contains a review of the current sorption gas-fired heat pumps for residential space heating and also the visible development trends. A prototype heat pump has been laboratory tested. Field test results from Germany and the Netherlands are also used for a technology evaluation. The tested heat pump unit combines a small heat pump and a supplementary condensing gas boiler. Field tests show an average annual efficiency of 120% for this prototype design. The manufacturer abandoned the tested design during the project period and the current development concentrates on a heat pump design only comprising the heat pump, although larger. The heat pump development at three manufacturers in Germany indicates a commercial stage around 2010-2011. A fairly high electricity consumption compared to traditional condensing boilers was observed in the tested heat pump. Based on current prices for natural gas and electricity the cost savings were estimated to 12% and 27% for heat pumps with 120% and 150% annual efficiency respectively. There is currently no widespread performance testing procedure useful for annual efficiency calculations of gas-fired heat pumps. The situation seems to be clearer for electric compression heat pumps regarding proposed testing and calculation procedures. A German environmental label exists and gasfired sorption heat pumps are also slightly treated in the Eco-design work

  12. 蒸汽发生器下封头对核主泵入口流场影响%Influence of steam generator channel head on reactor coolant pump inflow field

    Institute of Scientific and Technical Information of China (English)

    侯向陶; 王鹏飞; 许忠斌; 阮晓东

    2016-01-01

    为了研究 AP1000蒸汽发生器(SG)下封头对反应堆冷却剂泵(RCP)入口流场的影响,将SG 下封头与 RCP 统一建模,采用 CFD 方法对其耦合模型进行全三维流场计算,分别研究了在稳态和瞬态情况下 SG 下封头对 RCP 入口流场的影响.稳态计算时,将均匀入流下缩尺泵的数值计算结果与试验结果进行对比,以验证数值计算方法的正确性;瞬态计算时,进行了时间步长无关性验证,以准确分析压力脉动特性.结果表明:在 SG 下封头的影响下,RCP 入口处产生了周向不均匀的轴向速度并且形成了2个回转方向相反的旋涡;瞬态下,核主泵入口处形成了2个低压区,与均匀入流情况相比,监测点的压力系数标准差增幅达53%~90%;SG 下封头使 RCP 入流产生预旋,且与叶轮形成较大的冲角,使得 RCP 扬程、效率分别下降了1.5%~7.7%,2.6%~4.1%.%To study the effect of AP1000 steam generator (SG)channel head on reactor coolant pump (RCP)inflow field,through modeling integrally the channel head of SG and RCP,the three-dimen-sional flow field of the above coupling models were simulated by the CFD method and the influence of SG channel head on RCP inflow field was studied on steady and transient conditions.On the steady condition,the accuracy of the numerical model was verified through comparing numerical simulation results with experimental results of the scaled RCP under uniform inflow.On the transient condition, time step independence was verified to study accurately the pressure fluctuation characteristics.Results show that at RCP inlet,SG channel head causes non-uniform circumferential axial velocity and two vor-tices which rotate in the opposite direction.On the transient condition,there are two-low pressure re-gions at RCP inlet and standard deviation of monitor points′pressure coefficient is increased by 53% -90%,compared with the condition of

  13. Kinematic modeling, analysis and test on a quiet spherical pump

    Science.gov (United States)

    Guan, Dong; Wu, Jiu Hui; Jing, Li; Hilton, Harry H.; Lu, Kuan

    2016-11-01

    In this paper, design and modeling of a novel spherical pump are undertaken. Both sound and vibration properties of the pump are studied experimentally. The working mechanism of the pump is analyzed firstly, and then structural design and kinematic theory are modeled by using two different coordinate systems. Nonlinear kinematic constraint equations are developed using a generalized computational method for spatial kinematic analysis. These equations are solved to yield the displacement, angular velocity and acceleration properties of motion parts with different structural parameters. Sound and vibration characteristics of the spherical pump and traditional solenoid pumps are studied experimentally at different rotating speeds of 1000, 1500, 2000, 2500 and 3000 rev/min. Results indicate that sound pressure levels of the proposed spherical are reduced to 40.7 dB(A), which are 11.1 dB(A) lower than the traditional solenoid pump's 51.8 dB(A) at the rated operating conditions. The sound spectra are analyzed in detail in order to investigate the causes, which are structural pattern and working mechanisms. The proposed spherical pump has many advantages and can be utilized as a substitute for other pumps in some special fields, such as hospital facilities and household appliances.

  14. Monitoring of aquifer pump tests with Magnetic Resonance Sounding (MRS): a synthetic case study

    DEFF Research Database (Denmark)

    Herckenrath, Daan; Auken, E.; Bauer-Gottwein, Peter

    2011-01-01

    calculates the MRS-signal generated by an aquifer pump test. A synthetic MRS-dataset was subsequently used to determine the hydrogeological parameters in an inverse parameter estimation approach. This was done for a virtual pump test with a partially and a fully penetrating well. With the MRS data we were...... able to retrieve the hydrogeological parameters of the aquifer. However, the differences in MRS signal in time were small compared to the electromagnetic noise. This limits the applicability of the MRS technique for pump tests in which a partially penetrating pumping well is used, as the limited...... drawdown around the extraction well causes smaller changes in received signal....

  15. Estimation of the coolant flow through a natural circulation BWR fuel channel applying and equivalent electrical model

    Energy Technology Data Exchange (ETDEWEB)

    Valle H, J.; Morales S, J. B. [UNAM, DEPFI, Laboratorio de Analisis de Ingenieria de Reactores Nucleares, Campus Morelos en IMTA, Jiutepec, Morelos (Mexico); Espinosa P, G., E-mail: julfi_ig@yahoo.com.m [Universidad Autonoma Metropolitana, Unidad Iztapalapa, Av. San Rafael Atlixco No. 186, Col. Vicentina, 09340 Mexico D. F. (Mexico)

    2010-10-15

    This work presents the design and implementation of an advanced controller for a reduced order model of a BWR reactor core cooled by natural circulating water, which allows real time estimates of coolant flows through fuel assemblies about standard neutron flux strings. Nuclear power plants with boiling water reactors control individual fuel assembly coolant flows by forced circulation using external or internal water pumps and different core support plate orifices. These two elements reduce flow dependency on local channel pressure drops. In BWR reactors using only natural circulation coolant flows, these two elements are not available and therefore individual channel coolant flows are highly dependent in local conditions, such as power distributions and local pressure drops. Therefore it is expected that grater uncertainties in these variables be used during safety, fuel management and other analysis, which in turns may lead to increased operation penalties, such as tighter operating limits. The objective of this work is to asses by computer simulations means to reduce uncertainties in the measurement of fuel assembly coolant flows and eventually the associated penalties. During coolant phase transitions, pressure drops and local power may alter local natural circulation through fuel assemblies and flow estimates can be helped or not by control rod moves. This work presents the construction of an optimal controller for a core flow estimator based on a reduced order model of the coolant going though the reactor vessel components and nuclear core. This model is to be driven by plant signals from standard BWR instrumentation in order to estimate the coolant flows in selected fuel assemblies about a LPRM string. For this purpose an equivalent electrical model has been mathematically developed and numerically tested. The power-flow maps of typical BRW are used as steady state references for this equivalent model. Once these were fully reproduced for steady state

  16. Test of an improved gas engine-driven heat pump

    Energy Technology Data Exchange (ETDEWEB)

    Chen, F.C.; Mei, V.C.; Domitrovic, R.

    1998-01-01

    A new generation of natural gas engine-driven heat pump (GEHP) was introduced to the marketplace recently. While the units installed have performed exceptionally well and earned rave reviews for comfort and savings on utility bills, the higher initial cost and relatively long payback time have affected the wide commercialization of this advanced technology. According to a study done for the southeastern US in the Atlanta metropolitan area, the annual operating cost of the GEHP is less than that of a baseline system consisting of a 92% efficiency gas furnace and a SEER 12 air conditioner. The estimated payback time is around 10 years to cover the difference in initial equipment price between the new and the baseline system. It has been projected that a liquid overfeed (LOF) recuperative cycle concept can simplify the hardware design of a GEHP, resulting in reduced cost and improved performance. Laboratory tests have shown that LOF would improve the energy efficiency of a vapor compression unit by 10%. In addition, LOF will reduce the compressor pressure ratio and thereby improve equipment reliability. Based on the assumed performance improvements and cost reduction, a simple payback calculation indicates LOF can reduce the payback time for an improved GEHP considerably in the Atlanta metropolitan area. Laboratory testing of an improved GEHP has been carried out at Oak Ridge National Laboratory. This paper reports on the equipment design modifications required to implement LOF and the results of performance tests at steady-state conditions. The preliminary cooling test results have indicated that the LOF in conjunction with orifice-type expander can be applied to GEHP for cost and performance enhancements. The improvements in energy efficiency will be dependent upon several controlling parameters including the proper refrigeration charge, the selected ambient temperature, and the system operating condition.

  17. Automated analysis of pumping tests; Analise automatizada de testes de bombeamento

    Energy Technology Data Exchange (ETDEWEB)

    Sugahara, Luiz Alberto Nozaki

    1996-01-01

    An automated procedure for analysis of pumping test data performed in groundwater wells is described. A computer software was developed to be used under the Windows operational system. The software allows the choice of 3 mathematical models for representing the aquifer behavior, which are: Confined aquifer (Theis model); Leaky aquifer (Hantush model); unconfined aquifer (Boulton model). The analysis of pumping test data using the proper aquifer model, allows for the determination of the model parameters such as transmissivity, storage coefficient, leakage coefficient and delay index. The computer program can be used for the analysis of data obtained from both pumping tests, with one or more pumping rates, and recovery tests. In the multiple rate case, a de superposition procedure has been implemented in order to obtain the equivalent aquifer response for the first flow rate, which is used in obtaining an initial estimate of the model parameters. Such initial estimate is required in the non-linear regression analysis method. The solutions to the partial differential equations describing the aquifer behavior were obtained in Laplace space, followed by numerical inversion of the transformed solution using the Stehfest algorithm. The data analysis procedure is based on a non-linear regression method by matching the field data to the theoretical response of a selected aquifer model, for a given type of test. A least squared regression analysis method was implemented using either Gauss-Newton or Levenberg-Marquardt procedures for minimization of a objective function. The computer software can also be applied to multiple rate test data in order to determine the non-linear well coefficient, allowing for the computation of the well inflow performance curve. (author)

  18. Experimental test on impeller clocking effect in a multistage centrifugal pump

    Directory of Open Access Journals (Sweden)

    Minggao Tan

    2016-04-01

    Full Text Available In this article, the effects of clocking effect on performance and vibration intensity of a five-stage centrifugal pump were investigated by experimental tests. The vibration characteristics of five positions in the pump were measured, including axial direction of the pump and horizontal and vertical directions of pump inlet and outlet. There are eight clocking schemes between the impellers in the test, which are arranged by orthogonal experimental design. The test results show that the clocking effect of impellers has little effect on the head and efficiency of the five-stage pump in the whole flow rate. Compared with the results of 0° stagger angle clocking scheme between each impeller, in the whole flow rate, the pulsation of pump head and efficiency is just 1.5% and 1.3%, respectively, under other clocking schemes of impellers. Instead, the impeller clocking has a significant effect on the vibration characteristics of the model pump. The maximum vibration intensity of the five-stage pump locates in the vertical direction of pump inlet within the whole flow rate. Under the best clocking scheme of impellers, the maximum vibration intensity of the pump can decrease by 23.1% and the mean vibration intensity can decrease by 17.3%.

  19. SAFETY ANALYSIS FOR TANK 241-AZ-101 MIXER PUMP PROCESS TEST

    Energy Technology Data Exchange (ETDEWEB)

    HAMMOND DM; HARRIS JP; MOUETTE P

    1997-06-09

    This document contains the completed safety analysis which establishes the safety envelope for performing the mixer pump process test in Tank 241-AZ-101. This process test is described in TF-210-OTP-001. All equipment necessary for the mixer pump test has been installed by Project W-151. The purpose of this document is to describe and analyze the mixer pump test for Aging Waste Facility (AWF) Tank 241-AZ-101 and to address the 'yes/maybe' responses marked for evaluation questions identified in Unreviewed Safety Question Evaluation (USQE) TF-94-0266. The scope of this document is limited to the performance of the mixer pump test for Tank 241-AZ-101. Unreviewed Safety Question Determination (USQD) TF-96-0018 verified that the installation of two mixer pumps into Tank 241-AZ-101 was within the current Tank Waste Remediation System (TWRS) Authorization Basis. USQDs TF-96-0461, TF-96-0448, and TF-96-0805 verified that the installation of the in-tank video camera, thermocouples, and Ultrasonic Interface Level Analyzer (URSILLA), respectively, were within the current TWRS Authorization Basis. USQD TF-96-1041 verified that the checkout testing of the installed equipment was within the current TWRS Authorization Basis. Installation of the pumps and equipment has been completed. An evaluation of safety considerations associated with operation of the mixer pumps for the mixer pump test is provided in this document. This document augments the existing AWF authorization basis as defined in the Interim Safety Basis (Stahl 1997), and as such, will use the existing Interim Operational Safety Requirements (IOSRs) of Heubach 1996 to adequately control the mixer pump test. The hazard and accident analysis is limited to the scope and impact of the mixer pump test, and therefore does not address hazards already addressed by the current AWF authorization basis. This document does not evaluate removal of the mixer pumps. Safety considerations for removal of the pumps will be

  20. MATLAB/Simulink Framework for Modeling Complex Coolant Flow Configurations of Advanced Automotive Thermal Management Systems

    Energy Technology Data Exchange (ETDEWEB)

    Titov, Gene; Lustbader, Jason; Leighton, Daniel; Kiss, Tibor

    2016-04-05

    The National Renewable Energy Laboratory's (NREL's) CoolSim MATLAB/Simulink modeling framework was extended by including a newly developed coolant loop solution method aimed at reducing the simulation effort for arbitrarily complex thermal management systems. The new approach does not require the user to identify specific coolant loops and their flow. The user only needs to connect the fluid network elements in a manner consistent with the desired schematic. Using the new solution method, a model of NREL's advanced combined coolant loop system for electric vehicles was created that reflected the test system architecture. This system was built using components provided by the MAHLE Group and included both air conditioning and heat pump modes. Validation with test bench data and verification with the previous solution method were performed for 10 operating points spanning a range of ambient temperatures between -2 degrees C and 43 degrees C. The largest root mean square difference between pressure, temperature, energy and mass flow rate data and simulation results was less than 7%.

  1. Test Research on Special Sucker Rod for Screw Pump

    Institute of Scientific and Technical Information of China (English)

    Zhang Mingyi; Chen Mingzhan; Li Zhi

    2006-01-01

    @@ According to the statistics of straight thread sucker rods' application in screw pump in Daqing Oilfield before2000, the proportion of sucker rods' yearly breakaway reached to 41.6%, taking up 70% of the total wells that were checked. Thus it can be seen that the rods breakaway problem was becoming the main barrier restricting screw pump large-scale population and application. Since then,the development work on the special sucker rods for screw pump had been carried on. Through the analysis on the failure position and failure form of the sucker rods',the following conclusions arepresented:

  2. Thermal-Hydraulic Integral Effect Test with ATLAS for an Intermediate Break Loss of Coolant Accident at a Pressurizer Surge Line

    Energy Technology Data Exchange (ETDEWEB)

    Kang, Kyoung Ho; Seok Cho; Park, Hyun Sik; Choi, Nam Hyun; Park, Yu Sun; Kim, Jong Rok; Bae, Byoung Uhn; Kim, Yeon Sik; Kim, Kyung Doo; Choi, Ki Yong; Song, Chul Hwa [Korea Atomic Energy Research Institute, Daejeon (Korea, Republic of)

    2013-10-15

    The main objectives of this test were not only to provide physical insight into the system response of the APR1400 during the pressurizer surge line break accident but also to produce an integral effect test data to validate the SPACE code. In order to simulate a double-ended guillotine break of a pressurizer surge line in the APR1400, the IB-SUR-01R test was performed with ATLAS. The major thermal-hydraulic phenomena such as the system pressures, the collapsed water levels, and the break flow rate were presented and discussed. Despite the core was uncovered, no excursion in the cladding temperature was observed. The pressurizer surge line break can be classified as a hot leg break from a break location point of view. Compared with a cold leg break, coolability in the core may be better in case of a hot leg break due to the enhanced flow in the core region. This integral effect test data will be used to evaluate the prediction capability of existing safety analysis codes of the MARS and the RELAP5 as well as the SPACE code. Furthermore, this data can be utilized to identify any code deficiency for an IBLOCA simulation, especially for DVI-adapted plants. Redefinition of break size for design basis accident (DBA) based on risk information is being extensively investigated due to the potential for safety benefits and unnecessary burden reduction from current LBLOCA (large break loss of coolant accident)-based ECC (Emergency Core Cooling) Acceptance Criteria. As a transition break size (TBS), the rupture of medium-size pipe is considered to be more important than ever in risk-informed regulation (RIR)-relevant safety analysis. As plants age, are up-rated, and continue to seek improved operating efficiencies, the small break and intermediate break LOCA (IBLOCA) can become a concern. In particular, IBLOCA with DVI (Direct Vessel Injection) features will be addressed to support redefinition of a design-basis LOCA. With an aim of expanding code validation to address small

  3. Heat-Powered Pump for Liquid Metals

    Science.gov (United States)

    Campana, R. J.

    1986-01-01

    Proposed thermoelectromagnetic pump for liquid metal powered by waste heat; needs no battery, generator, or other external energy source. Pump turns part of heat in liquid metal into pumping energy. In combination with primary pump or on its own, thermoelectric pump circulates coolant between reactor and radiator. As long as there is decay heat to be removed, unit performs function.

  4. Heat-Powered Pump for Liquid Metals

    Science.gov (United States)

    Campana, R. J.

    1986-01-01

    Proposed thermoelectromagnetic pump for liquid metal powered by waste heat; needs no battery, generator, or other external energy source. Pump turns part of heat in liquid metal into pumping energy. In combination with primary pump or on its own, thermoelectric pump circulates coolant between reactor and radiator. As long as there is decay heat to be removed, unit performs function.

  5. Seismic activity during the 1968 test pumping at the Rocky Mountain Arsenal disposal well

    Science.gov (United States)

    Hoover, Donald B.; Dietrich, J.A.

    1969-01-01

    During the 1968 pumping tests at the Rocky Mountain Arsenal disposal welt, the U.S. Geological Survey was responsible for monitoring earthquakes occurring in the area of the arsenal and making chemical analysis of the fluids removed, three criteria were established to suspend the pumping if anomalous earthquake activity occurred during the pumping test. These criteria were based on the frequency, magnitude, and location of the local earthquakes. The pumping program consisted of four tests which occurred between September 3 and October 26, 1968. During periods of pumping, earthquake activity remained within acceptable limits and no suspensions of the pumping were required. After each of the two major pumping periods an increase in the frequency of small earthquakes occurred. During the first of these two periods of high seismic activity the Geological Survey recommended a delay in the start of the next phase of the pumping until the activity subsided. Most of the earthquakes during 1968 occurred northwest of the arsenal; however, in the 2? month period after the start of the test, a larger percent of the earthquakes occurred on the arsenal than in the previous 8-month period. The temperature in the cooled zone at the bottom of the well was 12?F warmer 2 weeks after pumping stopped than it was in January 1968. Preliminary chemical analyses indicate that very little mixing between waste fluids and connate water bas occurred.

  6. Acceptance Test Procedure for New Pumping and Instrumentation Control Skid sup L sup

    CERN Document Server

    Koch, M R

    1999-01-01

    This Acceptance Test Procedure (ATP) provides for the inspection and testing of the new Pumping and Instrumentation Control (PIC) skid designed as ''L''. The ATP will be performed after the construction of the PIC skid in the shop.

  7. Proceedings of the symposium on inservice testing of pumps and valves

    Energy Technology Data Exchange (ETDEWEB)

    1990-10-01

    The 1990 Symposium on Inservice Testing of Pumps and Valves, jointly sponsored by the Board on Nuclear Codes and Standards of the American Society of Mechanical Engineers and by the Nuclear Regulatory Commission, provided a forum for the discussion of current programs and methods for inservice testing at nuclear power plants. The symposium also provided an opportunity to discuss the need to improve inservice testing in order to ensure the reliable performance of pumps and valves. The participation of industry representatives, regulators, and consultants resulted in the discussion of a broad spectrum of ideas and perspectives regarding the improvement of inservice testing of pumps and valves at nuclear power plants.

  8. Estimating Parameters of Aquifer Heterogeneity Using Pumping Tests - a Paradigm for Field Applications

    Science.gov (United States)

    Zech, Alraune; Arnold, Sven; Schneider, Christoph; Attinger, Sabine

    2013-04-01

    The vast majority of natural aquifers are characterized by heterogeneity which can be statistically represented by parameters such as geometric mean, correlation lengths and variance of hydraulic conductivity. Head measurements of pumping tests are commonly used to estimate the hydraulic properties of porous media. Zech et al. 2012, WRR introduced the effective well flow method allowing a direct parameter estimation from steady state pumping test drawdowns. However, in contrast to simulated pumping tests, the number and spatial distribution of piezometers is limited for on-site pumping tests. We analyze the capability of the effective well flow method to provide accurate and confident parameter estimates of a heterogeneous aquifer under limited availability of head measurements. We use simulated pumping tests to systematically reduce sampling size while also determining the accuracy and uncertainty of estimates at each level of data availability. The same analytical solution is then applied to estimate the statistical parameters of a fluvial heterogeneous aquifer at the test site Horkheimer Insel, Germany. We thereby close the gap between theoretical and practical application of an analytical solution describing three-dimensional steady state well flow. Our findings indicate how accuracy and uncertainty of estimated parameters, like mean conductivities and correlation lengths correlate to number and spatial distribution of head measurements. The results provide valuable implications regarding the conceptual design of ground water pumping tests and the predictive power of established pumping test sites.

  9. The Start-up Test of Mechanical Sodium Pump installed in STELLA-1

    Energy Technology Data Exchange (ETDEWEB)

    Cho, Chungho; Kim, Jong-Man; Ko, Yung Joo; Kim, Byeongyeon; Cho, Youngil; Jung, Min-Hwan; Gam, Da-Young; Lee, Yong Bum; Jeong, Ji-Young; Kim, Jong-Bum [Korea Atomic Energy Research Institute, Daejeon (Korea, Republic of)

    2015-10-15

    Testing at the high temperature sodium environments is more expensive and time consuming because of difficulties of operating and maintaining of sodium experimental facilities. Consequent upon those problems, water is often selected as a surrogate test fluid because its important hydraulic properties such as a density and a kinematic viscosity are not only very similar to that of the sodium but also it is cheap, easily available and easy to handle. SFR NSSS System Design Division of Korea Atomic Energy Research Institute (KAERI) is performing a development and demonstration of sodium technology using various sodium experimental facilities, especially STELLA-1. STELLA-1 (Sodium inTegral Effect test Loop for safety simuLation and Assessment) is a large-scale separated effect test facility for demonstrating the thermal-hydraulic performances of major components such as a Sodium-to-Sodium heat exchanger (DHX), Sodium-to-Air heat exchanger (AHX) of the decay heat removal system, and mechanical sodium pump of the primary heat transport system (PHTS). The result of start-up test, most of the instruments and components except for flow control valve are functionally work. Also, we confirmed that performance test of mechanical sodium pump is unable at the high flow rate with lower RPM because pressure drops of pump performance test loop are bigger than the pump head of some cases. To confirm the safety and operability of major components in the sodium-cooled fast reactor (SFR), demonstration of component performance should be carried out before its installation in reactor. So, in order to estimate the hydraulic behavior of the mechanical sodium pump, the performance tests of the model pump with water environment was carried out using a pump vender's experimental facility. Also, to compare the hydraulic characteristic of model pump with water and sodium, the performance test of model pump with sodium environment were performed using STELLA-1. The present paper describes

  10. Mitigation of Tank 241-SY-101 by pump mixing: Results of testing phases A and B

    Energy Technology Data Exchange (ETDEWEB)

    Allemann, R.T.; Antoniak, Z.I.; Chvala, W.D.; Friley, J.R.; Gregory, W.B.; Hudson, J.D.; Michener, T.E.; Panisko, F.E.; Stewart, C.W.; Wise, B.M. [Pacific Northwest Lab., Richland, WA (United States); Efferding, L.E.; Fadeff, J.G.; Irwin, J.J.; Kirch, N.W. [Westinghouse Hanford Co., Richland, WA (United States)

    1994-03-01

    A spare mixing pump from the Hanford Grout Program was installed in Hanford double-shell waste Tank 241-SY-101 on July 3, 1993, after being modified to take advantage of waste stratification. It was anticipated that pump mixing would prevent large episodic flammable gas releases that had been occurring about every 100-150 days. A cautious initial test plan, called Phase A, was run to find how the pump and tank would behave in response to very brief and gentle pump operation. No large gas releases were triggered, and the pump performed well except for two incidents of nozzle plugging. On October 21, 1993, the next test series, Phase B, began, and the pump was applied more aggressively to mix the tank contents and mitigate uncontrolled gas releases. Orienting the pump in new directions released large volumes of gas and reduced the waste level to a near-record low. Results of the entire period from pump installation to the end of Phase B on December 17, 1993, are presented in detail in this document. Though long-term effects require further evaluation, we conclude from these data that the jet mixer pump is an effective means of controlling flammable gas release and that it has met the success criteria for mitigation in this tank.

  11. A single well pumping and recovery test to measure in situ acrotelm transmissivity in raised bogs

    NARCIS (Netherlands)

    Schaaf, van der S.

    2004-01-01

    A quasi-steady-state single pit pumping and recovery test to measure in situ the transmissivity of the highly permeable upper layer of raised bogs, the acrotelm, is described and discussed. The basic concept is the expanding depression cone during both pumping and recovery. It is shown that applying

  12. Nuclear Technology. Course 30: Mechanical Inspection. Module 30-2, Pump Functional Testing.

    Science.gov (United States)

    Wasel, Ed; Espy, John

    This second in a series of eight modules for a course titled Mechanical Inspection describes typical pump functional tests which are performed after pump installation and prior to release of the plant for unrestricted power operation. The module follows a typical format that includes the following sections: (1) introduction, (2) module…

  13. Investigations of the VVER-1000 coolant transient benchmark phase 1 with the coupled code system RELAP5/PARCS

    Energy Technology Data Exchange (ETDEWEB)

    Sanchez-Espinoza, Victor Hugo

    2008-07-15

    As part of the reactor dynamics activities of FZK/IRS, the qualification of best-estimate coupled code systems for reactor safety evaluations is a key step toward improving their prediction capability and acceptability. The VVER-1000 Coolant Transient Benchmark Phase 1 represents an excellent opportunity to validate the simulation capability of the coupled code system RELAP5/PACRS regarding both the thermal hydraulic plant response (RELAP5) using measured data obtained during commissioning tests at the Kozloduy nuclear power plant unit 6 and the neutron kinetics models of PARCS for hexagonal geometries. The Phase 1 is devoted to the analysis of the switching on of one main coolant pump while the other three pumps are in operation. It includes the following exercises: (a) investigation of the integral plant response using a best-estimate thermal hydraulic system code with a point kinetics model (b) analysis of the core response for given initial and transient thermal hydraulic boundary conditions using a coupled code system with 3D-neutron kinetics model and (c) investigation of the integral plant response using a best-estimate coupled code system with 3D-neutron kinetics. Already before the test, complex flow conditions exist within the RPV e.g. coolant mixing in the upper plenum caused by the reverse flow through the loop-3 with the stopped pump. The test is initiated by switching on the main coolant pump of loop-3 that leads to a reversal of the flow through the respective piping. After about 13 s the mass flow rate through this loop reaches values comparable with the one of the other loops. During this time period, the increased primary coolant flow causes a reduction of the core averaged coolant temperature and thus an increase of the core power. Later on, the power stabilizes at a level higher than the initial power. In this analysis, special attention is paid on the prediction of the spatial asymmetrical core cooling during the test and its effects on the

  14. TESTING OF REFRIGERANT MIXTURES IN RESIDENTIAL HEAT PUMPS

    Science.gov (United States)

    The report gives results of an investigation of four possibilities for replacing Hydrochlorofluorocarbon-22 (HCFC-22) with the non-ozone-depleting new refrigerants R-407D and R-407C in residential heat pumps. The first and simplest scenario was a retrofit with no hardware modific...

  15. Lab tests of a thermomechanical pump for shoot. [Superfluid Helium On-Orbit Transfer

    Science.gov (United States)

    Dipirro, Michael J.; Boyle, Robert F.

    1988-01-01

    Laboratory tests of a thermomechanical (TM) pump utilizing a commercially available porous disk have been conducted. Various size disks, heater configurations, and outlet flow impedances have been used to characterize scale models of the pump proposed for the Superfluid Helium On-Orbit Transfer (SHOOT) Flight Experiment. The results yield the scalability of the TM pump to larger diameters, and hence larger pumping rates, the dependence of flow rate on back pressure and heater power, and the limits of pumping speed due to internal losses within the porous disk due to mutual and superfluid friction. Analysis indicates that for low back pressures the flow rate is limited by the superfluid friction rather than the mutual friction. For the porous plug used in the early tests this amounts to a practical limit of 4.4 liters per hour per square centimeter. For a baselined flight plug area of 180 sq cm this yields 790 liters per hour.

  16. Analytical and Semi-Analytical Tools for the Design of Oscillatory Pumping Tests.

    Science.gov (United States)

    Cardiff, Michael; Barrash, Warren

    2015-01-01

    Oscillatory pumping tests-in which flow is varied in a periodic fashion-provide a method for understanding aquifer heterogeneity that is complementary to strategies such as slug testing and constant-rate pumping tests. During oscillatory testing, pressure data collected at non-pumping wells can be processed to extract metrics, such as signal amplitude and phase lag, from a time series. These metrics are robust against common sensor problems (including drift and noise) and have been shown to provide information about aquifer heterogeneity. Field implementations of oscillatory pumping tests for characterization, however, are not common and thus there are few guidelines for their design and implementation. Here, we use available analytical solutions from the literature to develop design guidelines for oscillatory pumping tests, while considering practical field constraints. We present two key analytical results for design and analysis of oscillatory pumping tests. First, we provide methods for choosing testing frequencies and flow rates which maximize the signal amplitude that can be expected at a distance from an oscillating pumping well, given design constraints such as maximum/minimum oscillator frequency and maximum volume cycled. Preliminary data from field testing helps to validate the methodology. Second, we develop a semi-analytical method for computing the sensitivity of oscillatory signals to spatially distributed aquifer flow parameters. This method can be quickly applied to understand the "sensed" extent of an aquifer at a given testing frequency. Both results can be applied given only bulk aquifer parameter estimates, and can help to optimize design of oscillatory pumping test campaigns.

  17. Investigation on the Reciprocity Principle with In-Situ Pumping Test in Confined Aquifer

    Science.gov (United States)

    Chen, Yong-Lin; Lin, Hong-Ru; Huang, Shao-Yang; Yeh, Tian-Chyi J.; Wen, Jet-Chau

    2016-04-01

    In this study, the pumping test of reciprocity between wells is developed for 11 wells located on campus of NYUST. The reciprocity analysis is conducted with the heterogeneous hydraulic properties distributions of the site. The mathematical theory of reciprocity implies that choose one as stimulation point and the other as observed response point in two known points at the same random field. Repeat the above action, the response behavior should have the reciprocity between the two points. However, the lack of literature with the field experiment to prove that reciprocity principle. Therefore, this study is expected to investigate the reciprocity of drawdown with the pumping test which will have heterogeneous hydraulic properties distributions obtained by inverse process. In general, there are two ways to investigate the reciprocity of pumping tests of two wells. One way is to evaluate the drawdown reciprocity of two sequential wells. From the evaluation the reciprocity of the drawdown behavior during the sequential pumping wells, the reciprocity of the drawdown behavior is investigated. The other one is to estimate cross-correlation between the drawdown behavior of the sequential pumping wells and heterogeneous hydraulic properties distributions. The reciprocity of between the drawdown and the heterogeneous hydraulic properties distributions is therefore can be investigated. This study proved the reciprocity of drawdown with the sequential pumping test and heterogeneous hydraulic properties distributions obtained by inverse method. Meanwhile, we proved the reciprocity is existed during the pumping test in the confined aquifer. Keywords: Reciprocity, Cross-correlation, Confined aquifer, Stimulation, Response

  18. What we learn from surveillance testing of standby turbine driven and motor driven pumps

    Energy Technology Data Exchange (ETDEWEB)

    Christie, B.

    1996-12-01

    This paper describes a comparison of the performance information collected by the author and the respective system engineers from five standby turbine driven pumps at four commercial nuclear electric generating units in the United States and from two standby motor driven pumps at two of these generating units. Information was collected from surveillance testing and from Non-Test actuations. Most of the performance information (97%) came from surveillance testing. {open_quotes}Conditional Probabilities{close_quotes} of the pumps ability to respond to a random demand were calculated for each of the seven standby pumps and compared to the historical record of the Non-Test actuations. It appears that the Conditional Probabilities are comparable to the rate of success for Non-Test actuations. The Conditional Probabilities of the standby motor driven pumps (approximately 99%) are better than the Conditional Probabilities of the standby turbine driven pumps (82%-96% range). Recommendations were made to improve the Conditional Probabilities of the standby turbine driven pumps.

  19. Recovery studies for plutonium machining oil coolant

    Energy Technology Data Exchange (ETDEWEB)

    Navratil, J. D.; Baldwin, C. E.

    1977-04-27

    Lathe coolant oil, contaminated with plutonium and having a carbon tetrachloride diluent, is generated in plutonium machining areas at Rocky Flats. A research program was initiated to determine the nature of plutonium in this mixture of oil and carbon tetrachloride. Appropriate methods then could be developed to remove the plutonium and to recycle the oil and carbon tetrachloride. Studies showed that the mixtures of spent oil and carbon tetrachloride contained particulate plutonium and plutonium species that are soluble in water or in oil and carbon tetrachloride. The particulate plutonium was removed by filtration; the nonfilterable plutonium was removed by adsorption on various materials. Laboratory-scale tests indicated the lathe-coolant oil mixture could be separated by distilling the carbon tetrachloride to yield recyclable products.

  20. Development, testing, and certification of Calmac Mfg. Corp. solar collector and solar operated pump

    Science.gov (United States)

    Parker, J. C.

    1979-01-01

    Development of a rubber tube solar collector and solar operated pump for use with solar heating and cooling systems is discussed. The development hardware, problems encountered during fabrication and testing, and certification statements of performance are included.

  1. A procedure for automated analysis of brief pumping tests of domestic wells.

    Science.gov (United States)

    Klusman, Kate

    2004-01-01

    A new computer program has been developed to automate analysis of brief single-well pumping tests. Adapted from a procedure developed by Picking (1994) that does not require measurement of the pumping rate, this new program is menu-driven and eliminates one significant source of imprecision in Picking's original method, namely, selection of "well function of u" values by interpolation in a lookup table. This new program has been applied to tests of 25 domestic wells penetrating bedrock, each pumped for <2 min.

  2. Determination of aquifer parameters using geoelectrical sounding and pumping test data in Khanewal District, Pakistan

    Directory of Open Access Journals (Sweden)

    Akhter Gulraiz

    2016-01-01

    Full Text Available In order to determine the groundwater resources and potentials of the Khanewal District of Pakistan, a geophysical method in combination with pumping test data were used. An analytical relationship between the aquifer parameters interpreted from surface geoelectrical method and pumping test was established in order to estimate aquifer parameters from surface measurements where no pumping tests exist. For the said purpose, 48 geoelectric investigations were carried out using Schlumberger vertical electrical sounding (VES. Seven of the soundings were conducted where pumping tests had been carried out at borehole sites. The vertical electrical sounding stations were interpreted, and resistivities and thickness parameters were calculated. The values of transmissivity and hydraulic conductivity were calculated using the Dar Zarrouk parameter. Transmissivity values obtained from pumping test data and the VES method range between 954 – 4263 m2/day and 200 – 5600 m2/day respectively. Hydraulic conductivity values determined from pumping test data and geoelectrical technique range between 15.9 – 60.9 m/day and 29.76 - 72.3 m/day respectively. The low values of transmissivity and hydraulic conductivity indicate clay or shale while high values are due to the presence of sand or gravel. A comparison of the transmissivity values obtained from pumping test data and surface geoelectrical method shows a positive correlation (R2 =0.90. Similarly, the regression between hydraulic conductivity determined from the pumping test data and the geoelectrical method is also positively correlated (R2 =0.96. The results provide a quick and useful estimation of aquifer properties and potentials.

  3. Determination of aquifer parameters using geoelectrical sounding and pumping test data in Khanewal District, Pakistan

    Science.gov (United States)

    Akhter, Gulraiz; Hasan, M.

    2016-01-01

    In order to determine the groundwater resources and potentials of the Khanewal District of Pakistan, a geophysical method in combination with pumping test data were used. An analytical relationship between the aquifer parameters interpreted from surface geoelectrical method and pumping test was established in order to estimate aquifer parameters from surface measurements where no pumping tests exist. For the said purpose, 48 geoelectric investigations were carried out using Schlumberger vertical electrical sounding (VES). Seven of the soundings were conducted where pumping tests had been carried out at borehole sites. The vertical electrical sounding stations were interpreted, and resistivities and thickness parameters were calculated. The values of transmissivity and hydraulic conductivity were calculated using the Dar Zarrouk parameter. Transmissivity values obtained from pumping test data and the VES method range between 954 - 4263 m2/day and 200 - 5600 m2/day respectively. Hydraulic conductivity values determined from pumping test data and geoelectrical technique range between 15.9 - 60.9 m/day and 29.76 - 72.3 m/day respectively. The low values of transmissivity and hydraulic conductivity indicate clay or shale while high values are due to the presence of sand or gravel. A comparison of the transmissivity values obtained from pumping test data and surface geoelectrical method shows a positive correlation (R2 =0.90). Similarly, the regression between hydraulic conductivity determined from the pumping test data and the geoelectrical method is also positively correlated (R2 =0.96). The results provide a quick and useful estimation of aquifer properties and potentials.

  4. Project W-314 specific test and evaluation plan for 241-AY-01A pump pit upgrade

    Energy Technology Data Exchange (ETDEWEB)

    Hays, W.H.

    1998-05-19

    This Specific Test and Evaluation Plan (STEP) defines the test and evaluation activities encompassing the upgrade of the 241-AY-0IA Pump Pit for the W-314 Project. The purpose of this Specific Test and Evaluation Plan (STEP) is to provide a detailed written plan for the systematic testing of modifications made to the 241-AY-01A Pump Pit by the W-314 Project. The STEP develops the outline for test procedures that verify the system`s performance to the established Project design criteria. The STEP is a lower tier document based on the W-314 Test and Evaluation Plan (TEP).

  5. Project W-314 specific test and evaluation plan for 241-AY-02A pump pit upgrade

    Energy Technology Data Exchange (ETDEWEB)

    Hays, W.H.

    1998-05-19

    This Specific Test and Evaluation Plan (STEP) defines the test and evaluation activities encompassing the upgrade of the 241-AY-02A Pump Pit for the W-314 Project. The purpose of this Specific Test and Evaluation Plan (STEP) is to provide a detailed written plan for the systematic testing of modifications made to the 241-AY-02A Pump Pit by the W-314 Project. The STEP develops the outline for test procedures that verify the system`s performance to the established Project design criteria. The STEP is a lower tier document based on the W-314 Test and Evaluation Plan (TEP).

  6. Advances in Forecasting and Prevention of Resonances Between Coolant Acoustical Oscillations and Fuel Rod Vibrations

    Energy Technology Data Exchange (ETDEWEB)

    Proskuryakov, Konstantin Nicolaevich [NPP, NPEI, 14, Krasnokazarmennaya str. Moscow, 111250 (Russian Federation)

    2009-06-15

    would be important for NPP life time management purposes. In a similar way it is possible to lead estimation of EFCPO, Q - factors of coolant acoustic oscillatory circuit and PBF for any of updating NPP with PWR including NPP with supercritical parameters. Certainly, the quantitative characteristics of EFCPO, Q - factors and PBF will be various for each class of the nuclear reactor. Paper shows what operating control influences are necessary to remove EFCPO from area of resonant interaction with vibrations FR, FA etc. It is offered to use instrumentation and control systems to prevent operating of NPP at capacity level which provides increasing in amplitudes of pulsations of pressure. The increase in demand of the safety of NPP requires further increase of adequacy between a model and an object. The integrated PSB-VVER test facility is the 1:300 replica of the prototype reactor VVER with respect to power capacity and volume. The height evaluations of the test facility are the same as those of the original. The maximum power of heat released by an assembly of fuel rod simulators is 10 MW. PSB-VVER consists of four loops closed to the reactor model; the latter consists of a down comer section with the lower mixing chamber, a model of the reactor core (a channel with fuel rod simulators), a bypass of the reactor core model, and the upper mixing chamber. Each loop contains a reactor coolant pump, a steam generator, and a cold and hot pipeline. The test facility also includes a pressurizer and an ECCS consisting of three subsystems: a passive one, which incorporates four hydro accumulators and two active ones (a high-pressure ECCS and a low pressure ECCS). Test facility description, scheme and the measuring system are presented. Using such systems the transient processes have been investigated in accident with loss of coolant from the primary cooling system. The basic mathematical models for calculation of EFCPO are achieved. These models are intended for both one-phase and

  7. Design and testing of micro fluidic chemical analysis chip integrated with micro valveless pump

    Institute of Scientific and Technical Information of China (English)

    FU; Xin; XIE; Haibo; YANG; Huayong; JIA; Zhijian; FANG; Qun

    2005-01-01

    A new structure and working principle of the chip integrated with micro valveless pump for capillary electrophoresis was proposed in this paper. The micro valveless pump with plane structure has advantages of simple structure, and the process technology is compatible with existing micro chips for capillary electrophoresis. Based upon the mathematical model, simulation study of micro pump was carried out to investigate the influence of structural parameters on flow characteristics, and the performance of the integrated micro pump was also tested with different control parameters. The simulation results agree with the experimental results. Three samples, which are amino acid, fluorescein and buffer solution, have been examined with this chip. The results of the primary experiments showed that the micro valveless pump was promising in the integration and automatization of miniature integrated fluidic systems.

  8. The status of failure and reliability testing of artificial blood pumps.

    Science.gov (United States)

    Patel, Sonna M; Throckmorton, Amy L; Untaroiu, Alexandrina; Allaire, Paul E; Wood, Houston G; Olsen, Don B

    2005-01-01

    Artificial blood pumps are today's most promising bridge-to-transplant, bridge-to-recovery, and destination therapy solutions for patients with congestive heart failure. There is a critical need for increased reliability and safety as the next generation of artificial blood pumps approach final development for long-term destination therapy. To date, extensive failure and reliability studies of these devices are considered intellectual property and thus remain unpublished. Presently, the Novacor N100PC, Thoratec VAD, and HeartMate LVAS (IP and XVE) comprise the only four artificial blood pumps commercially available for the treatment of congestive heart failure in the United States. The CardioWest TAH recently received premarket approval from the US Food and Drug Administration. With investigational device exemptions, the AB-180, AbioCor, LionHeart, DeBakey, and Flowmaker are approved for clinical testing. Other blood pumps, such as the American BioMed-Baylor TAH, CorAide, Cleveland Clinic-Nimbus TAH, HeartMate III, Hemadyne, and MagScrew TAH are currently in various stages of mock loop and animal testing, as indicated in published literature. This article extensively reviews in vitro testing, in vivo testing, and the early clinical testing of artificial blood pumps in the United States, as it relates to failure and reliability. This detailed literature review has not been published before and provides a thorough documentation of available data and testing procedures regarding failure and reliability of these various pumps.

  9. Performance Testing of a Prototypic Annular Linear Induction Pump for Fission Surface Power

    Science.gov (United States)

    Polzin, K. A.; Pearson, J. B.; Schoenfeld, M. P.; Webster, K.; Houts, M. G.; Godfroy, T. J.; Bossard, J. A.

    2010-01-01

    Results of performance testing of an annular linear induction pump are presented. The pump electromagnetically pumps liquid metal (NaK) through a circuit specially designed to allow for quantification of the performance. Testing was conducted over a range of conditions, including frequencies of 33, 36, 39, and 60 Hz, liquid metal temperatures from 25 to 525 C, and input voltages from 5 to 120 V. Pump performance spanned a range of flow rates from roughly 0.16 to 5.7 L/s (2.5 to 90 gpm), and pressure head <1 to 90 kPa (<0.145 to 13 psi). The maximum efficiency measured during testing was slightly greater than 6%. The efficiency was fairly insensitive to input frequency from 33 to 39 Hz, and was markedly lower at 60 Hz. In addition, the efficiency decreased as the NaK temperature was raised. While the pump was powered, the fluid responded immediately to changes in the input power level, but when power was removed altogether, there was a brief slow-down period before the fluid would come to rest. The performance of the pump operating on a variable frequency drive providing 60 Hz power compared favorably with the same pump operating on 60 Hz power drawn directly from the electrical grid.

  10. Design development and testing of a solar PV pump based drip system for orchards

    Energy Technology Data Exchange (ETDEWEB)

    Pande, P.C.; Singh, A.K.; Ansari, S.; Vyas, S.K.; Dave, B.K. [Central Arid Zone Research Inst., Jodhpur (India)

    2003-03-01

    A Solar Photovoltaic (PV) pump operated drip irrigation system has been designed and developed for growing orchards in arid region considering different design parameters like pumps size, water requirements, the diurnal variation in the pressure of the pump due to change in irradiance and pressure compensation in the drippers. The system comprising a PV pump with 900 W{sub p} PV array and 800 W dc motor-pump mono-block, microfilter, main and sub-mains and three open-able low-pressure compensating drippers on each plant was field tested. The emission uniformity was observed to be 92-94% with discharge of 3.8 l/h in the pressure range of 70-100 kPa provided by the pump and thus the system could irrigate some 1 ha area within 2 h. Based on the performance of the PV pump and the drip system, it was inferred that about 5 ha area of orchard could be covered. The projected benefit-cost ratio for growing pomegranate orchards with such a system was evaluated to be above 2 even with the costly PV pump and therefore the system was considered to be an appropriate technology for the development of arid region. (Author)

  11. Mitigation of tank 241-SY-101 by pump mixing: Results of full-scale testing

    Energy Technology Data Exchange (ETDEWEB)

    Stewart, C.W.; Hudson, J.D.; Friley, J.R.; Panisko, F.E.; Antoniak, Z.I.; Irwin, J.J.; Fadeff, J.G.; Efferding, L.F.; Michener, T.E.; Kirch, N.W. [and others

    1994-06-01

    The Full-Scale Mixer Pump Test Program was performed in Hanford Tank 241-SY-101 from February 4 to April 13, 1994, to confirm the long-term operational strategy for flammable gas mitigation and to demonstrate that mixing can control the gas release and waste level. Since its installation on July 3, 1993, the current pump, operating only a few hours per week, has proved capable of mixing the waste sufficiently to release gas continuously instead of in large episodic events. The results of Full-Scale Testing demonstrated that the pump can control gas release and waste level for long-term mitigation, and the four test sequences formed the basis for the long-term operating schedule. The last test sequence, jet penetration tests, showed that the current pump jet creates flow near the tank wall and that it can excavate portions of the bottom sludge layer if run at maximum power. Pump mixing has altered the {open_quote}normal{close_quote} configuration of the waste; most of the original nonconvective sludge has been mixed with the supernatant liquid into a mobile convective slurry that has since been maintained by gentle pump operation and does not readily return to sludge.

  12. Testing of a centrifugal blood pump with a high efficiency hybrid magnetic bearing.

    Science.gov (United States)

    Locke, Dennis H; Swanson, Erik S; Walton, James F; Willis, John P; Heshmat, Hooshang

    2003-01-01

    The purpose of this article is to present test results for a second generation, high efficiency, nonpulsatile centrifugal blood pump that is being developed for use as a left ventricular assist device (LVAD). The LVAD pump uses a hybrid passive-active magnetic bearing support system that exhibits extremely low power loss, low vibration, and high reliability under transient conditions and varying pump orientations. A unique feature of the second generation design configuration is the very simple and direct flow path for both main and washing blood flows. The pump was tested in both vertical and horizontal orientations using a standard flow loop to demonstrate the performance and durability of the second generation LVAD. Steady state and transient orientation pump operating characteristics including pressure, flow, speed, temperatures, vibration, and rotor orientation were measured. During the tests, pump performance was mapped at several operating conditions including points above and below the nominal design of 5 L/min at 100 mm Hg pressure rise. Flow rates from 2 to 7 L/min and pressure rises from 50 to 150 mm Hg were measured. Pump speeds were varied during these tests from 2,500 to 3,500 rpm. The nominal design flow of 5 L/min at 100 mm Hg pressure rise was successfully achieved at the design speed of 3,000 rpm. After LVAD performance testing, both 28 day continuous duty and 5 day transient orientation durability tests were completed without incident. A hydrodynamic backup bearing design feasibility study was also conducted. Results from this design study indicate that an integral hydrodynamic backup bearing may be readily incorporated into the second generation LVAD and other magnetically levitated pump rotors.

  13. Analysis of pumping tests: Significance of well diameter, partial penetration, and noise

    Science.gov (United States)

    Heidari, M.; Ghiassi, K.; Mehnert, E.

    1999-01-01

    The nonlinear least squares (NLS) method was applied to pumping and recovery aquifer test data in confined and unconfined aquifers with finite diameter and partially penetrating pumping wells, and with partially penetrating piezometers or observation wells. It was demonstrated that noiseless and moderately noisy drawdown data from observation points located less than two saturated thicknesses of the aquifer from the pumping well produced an exact or acceptable set of parameters when the diameter of the pumping well was included in the analysis. The accuracy of the estimated parameters, particularly that of specific storage, decreased with increases in the noise level in the observed drawdown data. With consideration of the well radii, the noiseless drawdown data from the pumping well in an unconfined aquifer produced good estimates of horizontal and vertical hydraulic conductivities and specific yield, but the estimated specific storage was unacceptable. When noisy data from the pumping well were used, an acceptable set of parameters was not obtained. Further experiments with noisy drawdown data in an unconfined aquifer revealed that when the well diameter was included in the analysis, hydraulic conductivity, specific yield and vertical hydraulic conductivity may be estimated rather effectively from piezometers located over a range of distances from the pumping well. Estimation of specific storage became less reliable for piezemeters located at distances greater than the initial saturated thickness of the aquifer. Application of the NLS to field pumping and recovery data from a confined aquifer showed that the estimated parameters from the two tests were in good agreement only when the well diameter was included in the analysis. Without consideration of well radii, the estimated values of hydraulic conductivity from the pumping and recovery tests were off by a factor of four.The nonlinear least squares method was applied to pumping and recovery aquifer test data in

  14. Computation of Space Shuttle high-pressure cryogenic turbopump ball bearing two-phase coolant flow

    Science.gov (United States)

    Chen, Yen-Sen

    1990-01-01

    A homogeneous two-phase fluid flow model, implemented in a three-dimensional Navier-Stokes solver using computational fluid dynamics methodology is described. The application of the model to the analysis of the pump-end bearing coolant flow of the high-pressure oxygen turbopump of the Space Shuttle main engine is studied. Results indicate large boiling zones and hot spots near the ball/race contact points. The extent of the phase change of the liquid oxygen coolant flow due to the frictional and viscous heat fluxes near the contact areas has been investigated for the given inlet conditions of the coolant.

  15. Performance of Helical Coil Heat Recovery Exchanger using Nanofluid as Coolant

    Directory of Open Access Journals (Sweden)

    Navid Bozorgan

    2015-07-01

    Full Text Available Nanofluids are expected to be a promising coolant condidate in chemical processes for heat transfer system size reduction. This paper focuses on reducing the number of turns in a helical coil heat recovery exchanger with a given heat exchange capacity in a biomass heating plant using γ-Al2O3/n-decane nanofluid as coolant. The nanofluid flows through the tubes and the hot n-hexane flows through the shell. The numerical results show that using nanofluid as coolant in a helical coil heat exchanger can reduce the manufacturing cost of the heat exchanger and pumping power by reducing the number of turns of the coil.

  16. Rotating and positive-displacement pumps for low-thrust rocket engines. Volume 2: Fabrication and testing

    Science.gov (United States)

    Csomor, A.

    1974-01-01

    Rotating and positive displacement pumps of various types were studied for pumping liquid fluorine for low thrust high performance rocket engines. Included in the analysis were: centrifugal, pitot, Barske, Tesla, drag, gear, vane, axial piston, radial piston, diaphragm and helirotor pump concepts. The centrifugal and gear pumps were carried through detail design and fabrication. After preliminary testing in Freon 12, the centrifugal pump was selected for further testing and development. It was tested in Freon 12 to obtain the hydrodynamic performance. Tests were also conducted in liquid fluorine to demonstrate chemical compatibility.

  17. Tank 241-AZ-101 Mixer Pump Test Vapor Sampling and Analysis Plan

    Energy Technology Data Exchange (ETDEWEB)

    TEMPLETON, A.M.

    2000-04-10

    This sampling and analysis plan (SAP) identifies characterization objectives pertaining to sample collection, laboratory analytical evaluation, and reporting requirements for vapor samples obtained during the operation of mixer pumps in tank 241-AZ-101. The primary purpose of the mixer pump test (MPT) is to demonstrate that the two 300 horsepower mixer pumps installed in tank 241-AZ-101 can mobilize the settled sludge so that it can be retrieved for treatment and vitrification. Sampling will be performed in accordance with Tank 241-AZ-101 Mixer Pump Test Data Quality Objective (Banning 1999) and Data Quality Objectives for Regulatory Requirements for Hazardous and Radioactive Air Emissions Sampling and Analysis (Mulkey 1999). The sampling will verify if current air emission estimates used in the permit application are correct and provide information for future air permit applications.

  18. Tank 241-AZ-101 Mixer Pump Test Vapor Sampling and Analysis Plan

    Energy Technology Data Exchange (ETDEWEB)

    TEMPLETON, A.M.

    2000-03-06

    This sampling and analysis plan (SAP) identifies characterization objectives pertaining to sample collection, laboratory analytical evaluation, and reporting requirements for vapor samples obtained during the operation of mixer pumps in tank 241-AZ-101. The primary purpose of the mixer pump test (MPT) is to demonstrate that the two 300 horsepower mixer pumps installed in tank 241-AZ-101 can mobilize the settled sludge so that it can be retrieved for treatment and vitrification. Sampling will be performed in accordance with Tank 241-AZ-101 Mixer Pump Test Data Quality Objective (Banning 1999) and Data Quality Objectives for Regulatory Requirements for Hazardous and Radioactive Air Emissions Sampling and Analysis (Mulkey 1999). The sampling will verify if current air emission estimates used in the permit application are correct and provide information for future air permit applications.

  19. Tank 241-AZ-101 Mixer Pump Test Vapor Sampling and Analysis Plan

    Energy Technology Data Exchange (ETDEWEB)

    TEMPLETON, A.M.

    2000-01-31

    This sampling and analysis plan (SAP) identifies characterization objectives pertaining to sample collection, laboratory analytical evaluation, and reporting requirements for vapor samples obtained during the operation of mixer pumps in tank 241-AZ-101. The primary purpose of the mixer pump test (MPT) is to demonstrate that the two 300 horsepower mixer pumps installed in tank 241-AZ-101 can mobilize the settled sludge so that it can be retrieved for treatment and vitrification Sampling will be performed in accordance with Tank 241-AZ-101 Mixer Pump Test Data Quality Objective (Banning 1999) and Data Quality Objectives for Regulatory Requirements for Hazardous and Radioactive Air Emissions Sampling and Analysis (Mulkey 1999). The sampling will verify if current air emission estimates used in the permit application are correct and provide information for future air permit applications.

  20. Steady-state testing of an advanced solar-assisted heat pump

    Energy Technology Data Exchange (ETDEWEB)

    Catan, M.A.

    1982-06-01

    A prototype water-to-air solar assisted heat pump (SAHP) has been tested under steady state conditions. The results of the tests indicate that the nominal goal for the hardware portion of the contract was achieved and surpassed. The tests show some areas of potential improvement, which are discussed.

  1. Bond Graph Modeling and Validation of an Energy Regenerative System for Emulsion Pump Tests

    Directory of Open Access Journals (Sweden)

    Yilei Li

    2014-01-01

    Full Text Available The test system for emulsion pump is facing serious challenges due to its huge energy consumption and waste nowadays. To settle this energy issue, a novel energy regenerative system (ERS for emulsion pump tests is briefly introduced at first. Modeling such an ERS of multienergy domains needs a unified and systematic approach. Bond graph modeling is well suited for this task. The bond graph model of this ERS is developed by first considering the separate components before assembling them together and so is the state-space equation. Both numerical simulation and experiments are carried out to validate the bond graph model of this ERS. Moreover the simulation and experiments results show that this ERS not only satisfies the test requirements, but also could save at least 25% of energy consumption as compared to the original test system, demonstrating that it is a promising method of energy regeneration for emulsion pump tests.

  2. Pumping tests of well Campbell et al. No. 2, Gila Hot Springs, Grant County, New Mexico

    Energy Technology Data Exchange (ETDEWEB)

    Schwab, G.E.; Summers, W.K.; Colpitts, R.M. Jr.; Teuten, C.E.; Young, W.K.

    1982-03-01

    Well Campbell et al. No. 2 near Gila Hot Springs in southwestern New Mexico (Section 5, Township 13 South, Range 13 West) was pumped for a five-step test and a 48-hour constant-rate test during October 1981. Measurements included depth to water in the pumping well and two observation wells, and discharge rates at the pumping well and two springs. The water level in the pumping well responded during both tests. However, water-level changes in the observation wells were too small for analytical use and discharge rates from the springs showed no change. Chemical analyses of water samples collected from two springs and the pumping well show very similar water chemistries. Estimates of hydraulic properties show transmissivity from 12,000 to 14,000 gpd/ft and a storativity of 0.05. Combining these parameters with well data gives the first-year optimum discharge rate as 50 gpm with 20 feet of drawdown. Pumping this well at 50 gpm for forty years should produce only small water-level changes in wells a few hundred feet away. It would diminish the flow of the springs, and for planning purposes the combined discharge of the springs and well should be considered constant.

  3. Estimating parameters of aquifer heterogeneity using pumping tests - implications for field applications

    Science.gov (United States)

    Zech, Alraune; Arnold, Sven; Schneider, Christoph; Attinger, Sabine

    2015-09-01

    The knowledge of subsurface heterogeneity is a prerequisite to describe flow and transport in porous media. Of particular interest are the variance and the correlation scale of hydraulic conductivity. In this study, we present how these aquifer parameters can be inferred using empirical steady state pumping test data. We refer to a previously developed analytical solution of "effective well flow" and examine its applicability to pumping test data as under field conditions. It is examined how the accuracy and confidence of parameter estimates of variance and correlation length depend on the number and location of head measurements. Simulations of steady state pumping tests in a confined virtual aquifer are used to systematically reduce sampling size while determining the rating of the estimates at each level of data density. The method was then applied to estimate the statistical parameters of a fluvial heterogeneous aquifer at the test site Horkheimer Insel, Germany. We conclude that the "effective well flow" solution is a simple alternative to laboratory investigations to estimate the statistical heterogeneity parameter using steady state pumping tests. However, the accuracy and uncertainty of the estimates depend on the design of the field study. In this regard, our results can help to improve the conceptual design of pumping tests with regard to the parameter of interest.

  4. Molten Fuel-Coolant Interactions induced by coolant injection into molten fuel

    Energy Technology Data Exchange (ETDEWEB)

    Park, H.S.; Yamano, Norihiko; Maruyama, Yu; Moriyama, Kiyofumi; Yang, Y.; Sugimoto, Jun [Severe Accident Research Laboratory, Japan Atomic Energy Research Institute, Tokai, Ibaraki (Japan)

    1999-07-01

    To investigate Molten Fuel-Coolant Interactions (MFCIs) in various contact geometries, an experimental program, called MUSE (MUlti-configurations in Steam Explosions), has been initiated under the ALPHA program at JAERI in Japan. The first series of MUSE test has been focused on the coolant injection (CI) and stratified modes of FCIs using water as coolant and molten thermite as molten fuel. The effects of water jet subcooling, jet dynamics, jet shape and system constraint on FCIs energetic in these modes were experimentally investigated by precisely measuring their mechanical energy release in the MUSE facility. It was observed that measured mechanical energy increased with increasing of jet subcooling in a weakly constraint system but decreased in a strongly constraint system. FCI energetic also increased with increasing of water jet velocity. These results suggested that the penetration and dispersion phenomena of a water jet inside a melt determined the mixing conditions of FCIs in these contact modes and consequently played important roles on FCI energetics. To understand fundamental physics of these phenomena and possible mixing conditions in the MUSE tests, a set of visualization tests with several pairs of jet-pool liquids in non-boiling and isothermal conditions were carried out. Numerical simulations of a water jet penetrating into a water pool at non-boiling conditions showed similar behaviors to those observed in the visualization tests. (author)

  5. MATLAB/Simulink Framework for Modeling Complex Coolant Flow Configurations of Advanced Automotive Thermal Management Systems: Preprint

    Energy Technology Data Exchange (ETDEWEB)

    Titov, Eugene; Lustbader, Jason; Leighton, Daniel; Kiss, Tibor

    2016-03-22

    The National Renewable Energy Laboratory's (NREL's) CoolSim MATLAB/Simulink modeling framework was extended by including a newly developed coolant loop solution method aimed at reducing the simulation effort for arbitrarily complex thermal management systems. The new approach does not require the user to identify specific coolant loops and their flow. The user only needs to connect the fluid network elements in a manner consistent with the desired schematic. Using the new solution method, a model of NREL's advanced combined coolant loop system for electric vehicles was created that reflected the test system architecture. This system was built using components provided by the MAHLE Group and included both air conditioning and heat pump modes. Validation with test bench data and verification with the previous solution method were performed for 10 operating points spanning a range of ambient temperatures between -2 degrees C and 43 degrees C. The largest root mean square difference between pressure, temperature, energy and mass flow rate data and simulation results was less than 7%.

  6. Jet pump-drive system for heat removal

    Science.gov (United States)

    French, James R. (Inventor)

    1987-01-01

    The invention does away with the necessity of moving parts such as a check valve in a nuclear reactor cooling system. Instead, a jet pump, in combination with a TEMP, is employed to assure safe cooling of a nuclear reactor after shutdown. A main flow exists for a reactor coolant. A point of withdrawal is provided for a secondary flow. A TEMP, responsive to the heat from said coolant in the secondary flow path, automatically pumps said withdrawn coolant to a higher pressure and thus higher velocity compared to the main flow. The high velocity coolant is applied as a driver flow for the jet pump which has a main flow chamber located in the main flow circulation pump. Upon nuclear shutdown and loss of power for the main reactor pumping system, the TEMP/jet pump combination continues to boost the coolant flow in the direction it is already circulating. During the decay time for the nuclear reactor, the jet pump keeps running until the coolant temperature drops to a lower and safe temperature where the heat is no longer a problem. At this lower temperature, the TEMP/jet pump combination ceases its circulation boosting operation. When the nuclear reactor is restarted and the coolant again exceeds the lower temperature setting, the TEMP/jet pump automatically resumes operation. The TEMP/jet pump combination is thus automatic, self-regulating and provides an emergency pumping system free of moving parts.

  7. Evaluation of pumping induced flow in observation wells during aquifer testing.

    Science.gov (United States)

    Székely, Ferenc

    2013-01-01

    The vertical variation of drawdown around pumping wells generates an induced flow in the observation wells. A set of governing equations is presented to couple the drawdown variation and the vertical flux distribution in observation wells. A numerical example is performed to justify the governing equations and to verify the solution methods used by the simulation software WT. The example analyzes the effect of skin loss, wellbore storage, and vertical segmentation on the drawdown and induced flow in observation well during pumping. The evaluation of the Fairborn pumping test involves a vertically homogeneous and anisotropic water table aquifer, uniform well-face drawdown conditions in the pumping well and simulation of the drawdown evolution in the observation well with and without the effect of induced flow. The computer calibrations resulted in small differences between the measured and simulated drawdown curves.

  8. SERVICE TEST OF CONTROLLER, DIFFERENTIAL PRESSURE, PIPELINE PUMP UNIT

    Science.gov (United States)

    Nineteen test items were operated for a total of 1,182 hours at Fort Lee, Virginia and at Hachinoehe POL Storage Area, Hachinohe, Japan, and were...satisfactory with respect to familiarization and training, maintenance and safety. The test items were suitable with respect to compatibility with...related equipment. The test items were unsatisfactory with respect to operational performance, durability and reliability.

  9. Operational test for photovoltaic pumping systems; Procedimento para averiguacao operacional de sistemas fotovoltaicos de bombeamento

    Energy Technology Data Exchange (ETDEWEB)

    Fedrizzi, Maria Cristina; Brito, Alaan Ubaiara; Zilles, Roberto [Universidade de Sao Paulo (USP), SP (Brazil). Inst. de Eletrotecnica e Energia. Lab. de Sistemas Fotovoltaicos], e-mail: fedrizzi@iee.usp.br, e-mail: alaan@iee.usp.br, e-mail: zilles@iee.usp.br

    2004-07-01

    This paper presents an operational test for photovoltaic pumping systems daily production, m{sup 3}/dia. The procedure does not involve expensive instrumentation and is easy to be applied in the field as acceptance and qualification tools. In this way, the paper presents the boundary conditions for operational test accomplishment that allows its application. (author)

  10. Water Flow Testing and Unsteady Pressure Analysis of a Two-Bladed Liquid Oxidizer Pump Inducer

    Science.gov (United States)

    Schwarz, Jordan B.; Mulder, Andrew; Zoladz, Thomas

    2011-01-01

    The unsteady fluid dynamic performance of a cavitating two-bladed oxidizer turbopump inducer was characterized through sub-scale water flow testing. While testing a novel inlet duct design that included a cavitation suppression groove, unusual high-frequency pressure oscillations were observed. With potential implications for inducer blade loads, these high-frequency components were analyzed extensively in order to understand their origins and impacts to blade loading. Water flow testing provides a technique to determine pump performance without the costs and hazards associated with handling cryogenic propellants. Water has a similar density and Reynolds number to liquid oxygen. In a 70%-scale water flow test, the inducer-only pump performance was evaluated. Over a range of flow rates, the pump inlet pressure was gradually reduced, causing the flow to cavitate near the pump inducer. A nominal, smooth inducer inlet was tested, followed by an inlet duct with a circumferential groove designed to suppress cavitation. A subsequent 52%-scale water flow test in another facility evaluated the combined inducer-impeller pump performance. With the nominal inlet design, the inducer showed traditional cavitation and surge characteristics. Significant bearing loads were created by large side loads on the inducer during synchronous cavitation. The grooved inlet successfully mitigated these loads by greatly reducing synchronous cavitation, however high-frequency pressure oscillations were observed over a range of frequencies. Analytical signal processing techniques showed these oscillations to be created by a rotating, multi-celled train of pressure pulses, and subsequent CFD analysis suggested that such pulses could be created by the interaction of rotating inducer blades with fluid trapped in a cavitation suppression groove. Despite their relatively low amplitude, these high-frequency pressure oscillations posed a design concern due to their sensitivity to flow conditions and

  11. Scale Effect Features During Simulation Tests of 3D Printer-Made Vane Pump Models

    Directory of Open Access Journals (Sweden)

    A. I. Petrov

    2015-01-01

    Full Text Available The article "Scale effect features during simulation tests of 3D printer-made vane pump models" discusses the influence of scale effect on translation of pump parameters from models, made with 3D-prototyping methods, to full-scale pumps. Widely spread now 3D-printer production of pump model parts or entire layouts can be considered to be the main direction of vane pumps modeling. This is due to the widespread development of pumps in different CAD-systems and the significant cost reduction in manufacturing such layouts, as compared to casting and other traditional methods.The phenomenon of scale effect in vane hydraulic machines, i.e. violation of similarity conditions when translating pump parameters from model to full-scale pumps is studied in detail in the theory of similarity. However, as the experience in the 3d-printer manufacturing of models and their testing gains it becomes clear that accounting large-scale effect for such models has a number of differences from the conventional techniques. The reason for this is the features of micro and macro geometry of parts made in different kinds of 3D-printers (extrusive, and powder sintering methods, ultraviolet light, etc..The article considers the converting features of external and internal mechanical losses, leakages, and hydraulic losses, as well as the specifics of the balance tests for such models. It also presents the basic conversion formulas describing the factors affecting the value of these losses. It shows photographs of part surfaces of models, manufactured by 3D-printer and subjected to subsequent machining. The paper shows results of translation from several pump models (layouts to the full-scale ones, using the techniques described, and it also shows that the error in translation efficiency does not exceed 1.15%. The conclusion emphasizes the importance of the balance tests of models to accumulate statistical data on the scale effect for pump layouts made by different 3D

  12. Test results for the Oasis 3C high performance water-pumping windmill

    Energy Technology Data Exchange (ETDEWEB)

    Eggleston, D.M. [DME Engineering, Midland, TX (United States)

    1997-12-31

    The WINDTech International, L.L.C. Oasis 3C, a 3 m diameter, high-performance water-pumping windmill, was tested at the DME Engineering Wind Test Site just south of Midland, Texas from August through December, 1996. This machine utilizes a 3:1 gearbox with rotating counterweights, similar to a conventional oilfield pumping unit, driven by a multibladed rotor. The rotating counterweight system balances most of the pumping loads and reduces gear loads and starting torque by a factor of at least two and often by a factor of four or more. The torque reduction substantially extends gear and bearing life, and reduces wind speeds required for starting by 30 to 50% or more. The O3C was tested pumping from a quiescent fluid depth of 12.2 m (40 ft) from a 28.3 m (93 ft)-deep well, with additional pumping depth simulated using a pressure regulator valve system. A 9.53 cm (3.75 in.) diameter Harbison-Fischer seal-less single-acting piston pump was used to eliminate pump seal friction as a variable, and standard O3C stroke lengths of 30.5 and 15.2 cm (12 and 6 inches) were used. The regulator spring was set to give a maximum stroke rate of 33 strokes per minute. The water pumped was returned to the well after flowing through a settling tank. The tests were performed in accordance with AWEA WECS testing standards. Instrumentation provided 16 channels of data to accurately measure machine performance, including starting wind speeds, flow rates, O3C azimuth, tail furl angle, wind direction tracking errors, RPM, sucker rod loads, and other variables. The most significant performance data is summarized herein. A mathematical model of machine performance was developed that fairly accurately predicts performance for each of three test conditions. The results verify that the O3C is capable of pumping water at wind speeds from 30% to more than 50% lower than comparable un-counterbalanced units.

  13. Large-Scale Pumping Test Recommendations for the 200-ZP-1 Operable Unit

    Energy Technology Data Exchange (ETDEWEB)

    Spane, Frank A.

    2010-09-08

    CH2M Hill Plateau Remediation Company (CHPRC) is currently assessing aquifer characterization needs to optimize pump-and-treat remedial strategies (e.g., extraction well pumping rates, pumping schedule/design) in the 200-ZP-1 operable unit (OU), and in particular for the immediate area of the 241 TX-TY Tank Farm. Specifically, CHPRC is focusing on hydrologic characterization opportunities that may be available for newly constructed and planned ZP-1 extraction wells. These new extraction wells will be used to further refine the 3-dimensional subsurface contaminant distribution within this area and will be used in concert with other existing pump-and-treat wells to remediate the existing carbon tetrachloride contaminant plume. Currently, 14 extraction wells are actively used in the Interim Record of Decision ZP-1 pump-and-treat system for the purpose of remediating the existing carbon tetrachloride contamination in groundwater within this general area. As many as 20 new extraction wells and 17 injection wells may be installed to support final pump-and-treat operations within the OU area. It should be noted that although the report specifically refers to the 200-ZP-1 OU, the large-scale test recommendations are also applicable to the adjacent 200-UP-1 OU area. This is because of the similar hydrogeologic conditions exhibited within these two adjoining OU locations.

  14. A new model of centrifugal blood pump for cardiopulmonary bypass: design improvement, performance, and hemolysis tests.

    Science.gov (United States)

    Leme, Juliana; Fonseca, Jeison; Bock, Eduardo; da Silva, Cibele; da Silva, Bruno Utiyama; Dos Santos, Alex Eugênio; Dinkhuysen, Jarbas; Andrade, Aron; Biscegli, José F

    2011-05-01

    A new model of blood pump for cardiopulmonary bypass (CPB) application has been developed and evaluated in our laboratories. Inside the pump housing is a spiral impeller that is conically shaped and has threads on its surface. Worm gears provide an axial motion of the blood column. Rotational motion of the conical shape generates a centrifugal pumping effect and improves pumping performance. One annular magnet with six poles is inside the impeller, providing magnetic coupling to a brushless direct current motor. In order to study the pumping performance, a mock loop system was assembled. Mock loop was composed of Tygon tubes (Saint-Gobain Corporation, Courbevoie, France), oxygenator, digital flowmeter, pressure monitor, electronic driver, and adjustable clamp for flow control. Experiments were performed on six prototypes with small differences in their design. Each prototype was tested and flow and pressure data were obtained for rotational speed of 1000, 1500, 2000, 2500, and 3000 rpm. Hemolysis was studied using pumps with different internal gap sizes (1.35, 1.45, 1.55, and 1.7 mm). Hemolysis tests simulated CPB application with flow rate of 5 L/min against total pressure head of 350 mm Hg. The results from six prototypes were satisfactory, compared to the results from the literature. However, prototype #6 showed the best results. Best hemolysis results were observed with a gap of 1.45 mm, and showed a normalized index of hemolysis of 0.013 g/100 L. When combined, axial and centrifugal pumping principles produce better hydrodynamic performance without increasing hemolysis.

  15. Application of damage function analysis to reactor coolant circuits

    Energy Technology Data Exchange (ETDEWEB)

    MacDonald, D.D. [Center for Electrochemical Science and Technology, Pennsylvania State Univ., University Park, PA (United States)

    2002-07-01

    The application of deterministic models for simulating stress corrosion cracking phenomena in Boiling Water Reactor primary coolant circuits is described. The first generation code, DAMAGE-PREDICTOR, has been used to model the radiolysis of the coolant, to estimate the electrochemical corrosion potential (ECP), and to calculate the crack growth rate (CGR) at fixed state points during reactor operation in about a dozen plants worldwide. This code has been validated in ''double-blind'' comparisons between the calculated and measured hydrogen concentration, oxygen concentration, and ECP in the recirculation system of the Leibstadt BWR in Switzerland, as well as through less formal comparisons with data from other plants. Second generation codes have now been developed, including REMAIN for simulating BWRs with internal coolant pumps and the ALERT series for modeling reactors with external pumps. One of this series, ALERT, yields the integrated damage function (IDF), which is the crack length versus time, on a component-by-component basis for a specified future operating scenario. This code therefore allows one to explore proposed future operating protocols, with the objective of identifying those that are most cost-effective and which minimizes the risk of failure of components in the coolant circuit by stress corrosion cracking. The application of this code is illustrated by exploring the benefits of partial hydrogen water chemistry (HWC) for an actual reactor, in which hydrogen is added to the feedwater over only limited periods during operation. The simulations show that the benefits, in terms of reduction in the IDFs for various components, are sensitive to when HWC was initiated in the plant life and to the length of time over which it is applied. (author)

  16. Conditioning geostatistical simulations of a bedrock fluvial aquifer using single well pumping tests

    Science.gov (United States)

    Niazi, A.; Bentley, L. R.; Hayashi, M.

    2015-12-01

    Geostatistical simulation is a powerful tool to explore the uncertainty associated with heterogeneity in groundwater and reservoir studies. Nonetheless, conditioning simulations merely with lithological information does not utilize all of the available information and so some workers additionally condition simulations with flow data. In this study, we introduce an approach to condition geostatistical simulations of the Paskapoo Formation, which is a paleo-fluvial system consisting of sandstone channels embedded in mudstone. The conditioning data consist of two-hour single well pumping tests extracted from the public water well database in Alberta, Canada. In this approach, lithologic models of an entire watershed are simulated and conditioned with hard lithological data using transition probability geostatistics (TPROGS). Then, a segment of the simulation around a pumping well was used to populate a flow model (FEFLOW) with either sand or mudstone. The values of the hydraulic conductivity and specific storage of sand and mudstone were then adjusted to minimize the difference between simulated and actual pumping test data using the parameter estimation program PEST. If the simulated data do not adequately match the measured data, the lithologic model is updated by locally deforming the lithology distribution using the probability perturbation method (PPM) and the model parameters are again updated with PEST. This procedure is repeated until the simulated and measured data agree within a pre-determined tolerance. The procedure is repeated for each pumping well that has pumping test data. The method constrains the lithological simulations and provides estimates of hydraulic conductivity and specific storage that are consistent with the pumping test data. Eventually, the simulations will be combined in watershed scale groundwater models.

  17. A Simple Data Analysis Method for a Pumping Test with Skin and Wellbore Storage Effects

    Directory of Open Access Journals (Sweden)

    Chia-Shyun Chen and Chuan-Gui Lan

    2009-01-01

    Full Text Available In a pumping test conducted in a con fined aquifer in northern Taiwan, drawdown in the observation well was subject to wellbore storage of its own and the combined effect of wellbore storage and skin of the nearby pumping well. For such a complicated pumping test condition, the appropriate well hydraulics solutions are complicated in mathematics and involve five unknown a priori parameters; namely, the aquifer transmissivity, the aquifer storage coefficient, the skin factor of the pumping well, and the wellbore storage co efficients of the pumping and observation wells. The conventional trial-and-er ror procedure for a simul taneous determination of these five parameters is not easy to apply. Here, a simple data analysis method is de veloped, which takes advantage of the late-time characteristics of drawdown data and the late-time asymptotic behavior of the appropriate wellhy draulics solutions. As a re sult, some currently available graphic techniques are proven us ful for the determination of these parameters. Validity of this approach is verified by the excellent agree ment between the calculated drawdown using the appropriate well hydraulics solutions with the parameter estimates obtained from the field drawdown data.

  18. Performance test of electromagnetic pump on heavy liquid metal in PREKY-I facility

    Science.gov (United States)

    li, X. L.; Ma, X. D.; Zhu, Z. Q.; Li, Y.; Lv, K. F.

    2016-05-01

    Pump is a key sub-system which drives the heavy liquid metal circulation in experimental loops. In the paper, the hydraulic and mechanical performances of an electromagnetic pump (EMP) were tested in the liquid metal test facility named PREKY-I. The test results showed that the EMP worked at good state when the working current was up to 170 ampere. In this condition, the flow rate was 5m3/h, and pressure head 7.5bar, when the outlet temperature was kept at 380°C during the test. The performance was close to the expected design parameters. The EMP had run continuously for 200 hours with stable performance. From the test results, the EMP could be used in KYLIN-II loop, which is the upgrade liquid metal test loop of PREKY-I.

  19. Integrity of the reactor coolant boundary of the European pressurized water reactor (EPR)

    Energy Technology Data Exchange (ETDEWEB)

    Goetsch, D.; Bieniussa, K.; Schulz, H.; Jalouneix, J.

    1997-04-01

    This paper is an abstract of the work performed in the frame of the development of the IPSN/GRS approach in view of the EPR conceptual safety features. EPR is a pressurized water reactor which will be based on the experience gained by utilities and designers in France and in Germany. The reactor coolant boundary of a PWR includes the reactor pressure vessel (RPV), those parts of the steam generators (SGs) which contain primary coolant, the pressurizer (PSR), the reactor coolant pumps (RCPs), the main coolant lines (MCLs) with their branches as well as the other connecting pipes and all branching pipes including the second isolation valves. The present work covering the integrity of the reactor coolant boundary is mainly restricted to the integrity of the main coolant lines (MCLs) and reflects the design requirements for the main components of the reactor coolant boundary. In the following the conceptual aspects, i.e. design, manufacture, construction and operation, will be assessed. A main aspect is the definition of break postulates regarding overall safety implications.

  20. Fire Pumps: Time to Change NFPA 25 Weekly Churn Testing

    Science.gov (United States)

    Saidi, John F.; Davis, Richard J.

    2010-01-01

    APPA, through its Code Advocacy Task Force (CATF), is active with code organizations such as the National Fire Protection Association (NFPA). This article reviews some of the recent work on NFPA 25, Standard for the Inspection, Testing, and Maintenance of Water-Based Fire Protection Systems, by the CATF and some members of the NFPA 25 Technical…

  1. CATHARE Multi-1D Modeling of Coolant Mixing in VVER-1000 for RIA Analysis

    Directory of Open Access Journals (Sweden)

    I. Spasov

    2010-01-01

    Full Text Available The paper presents validation results for multichannel vessel thermal-hydraulic models in CATHARE used in coupled 3D neutronic/thermal hydraulic calculations. The mixing is modeled with cross flows governed by local pressure drops. The test cases are from the OECD VVER-1000 coolant transient benchmark (V1000CT and include asymmetric vessel flow transients and main steam line break (MSLB transients. Plant data from flow mixing experiments are available for comparison. Sufficient mesh refinement with up to 24 sectors in the vessel is considered for acceptable resolution. The results demonstrate the applicability of such validated thermal-hydraulic models to MSLB scenarios involving thermal mixing, azimuthal flow rotation, and primary pump trip. An acceptable trade-off between accuracy and computational efficiency can be obtained.

  2. A Microcomputer Program for Evaluating Pumping Test Results for Confined Aquifers.

    Science.gov (United States)

    Smith, Stephen M.

    1986-01-01

    Describes an interactive, self-prompting BASIC program that can be incorporated in introductory and intermediate hydrology courses. Exlains how the program can be used to evaluate pumping test data and also to calculate transmissivity and storativity values of confined aquifers. The program is written for the IBM PC. (ML)

  3. A Microcomputer Program for Evaluating Pumping Test Results for Confined Aquifers.

    Science.gov (United States)

    Smith, Stephen M.

    1986-01-01

    Describes an interactive, self-prompting BASIC program that can be incorporated in introductory and intermediate hydrology courses. Exlains how the program can be used to evaluate pumping test data and also to calculate transmissivity and storativity values of confined aquifers. The program is written for the IBM PC. (ML)

  4. Review of Test Procedure for Determining HSPFs of Residential Variable-Speed Heat Pumps

    Energy Technology Data Exchange (ETDEWEB)

    Rice, C. Keith [Oak Ridge National Lab. (ORNL), Oak Ridge, TN (United States); Munk, Jeffrey D. [Oak Ridge National Lab. (ORNL), Oak Ridge, TN (United States); Shrestha, Som S. [Oak Ridge National Lab. (ORNL), Oak Ridge, TN (United States)

    2015-08-01

    This report reviews the suitability of the existing Heating Seasonal Performance Factor (HSPF) ratings and testing requirements for the current generation of variable-speed (VS) air-source heat pumps. Recent field test results indicate larger discrepancies between rated HSPF and field-observed HSPF for VS models than for single-speed models in the same houses. These findings suggest that the heating season test and ratings procedure should be revisited for VS heat pumps. The ratings and testing procedures are described in ANSI/AHRI 210/240 (2008) for single-speed, two-capacity, and variable-speed units. Analysis of manufacturer and independent test performance data on VS units reveals why the current VS testing/ratings procedure results in overly optimistic HSPF ratings for some VS units relative to other types of heat pumps. This is due to a combination of extrapolation of low speed test data beyond the originally anticipated ambient temperature operating range and the constraints of unit controls, which prevent low speed operation over the range of ambient temperatures assumed in the procedure for low speed. As a result, the HSPFs of such units are being overpredicted relative to those for single- and two-capacity designs. This overprediction has been found to be significantly reduced by use in the HSPF ratings procedure of an alternative higher-load heating load line, described in a companion report (Rice et al., 2015).

  5. A practical approach for implementing risk-based inservice testing of pumps at nuclear power plants

    Energy Technology Data Exchange (ETDEWEB)

    Hartley, R.S. [Idaho National Engineering Lab., Idaho Falls, ID (United States); Maret, D.; Seniuk, P.; Smith, L.

    1996-12-01

    The American Society of Mechanical Engineers (ASME) Center for Research and Technology Development`s (CRTD) Research Task Force on Risk-Based Inservice Testing has developed guidelines for risk-based inservice testing (IST) of pumps and valves. These guidelines are intended to help the ASME Operation and Maintenance (OM) Committee to enhance plant safety while focussing appropriate testing resources on critical components. This paper describes a practical approach for implementing those guidelines for pumps at nuclear power plants. The approach, as described in this paper, relies on input, direction, and assistance from several entities such as the ASME Code Committees, United States Nuclear Regulatory Commission (NRC), and the National Laboratories, as well as industry groups and personnel with applicable expertise. Key parts of the risk-based IST process that are addressed here include: identification of important failure modes, identification of significant failure causes, assessing the effectiveness of testing and maintenance activities, development of alternative testing and maintenance strategies, and assessing the effectiveness of alternative testing strategies with present ASME Code requirements. Finally, the paper suggests a method of implementing this process into the ASME OM Code for pump testing.

  6. Multiphysics Modeling of an Annular Linear Induction Pump With Applications to Space Nuclear Power Systems

    Science.gov (United States)

    Kilbane, J.; Polzin, K. A.

    2014-01-01

    An annular linear induction pump (ALIP) that could be used for circulating liquid-metal coolant in a fission surface power reactor system is modeled in the present work using the computational COMSOL Multiphysics package. The pump is modeled using a two-dimensional, axisymmetric geometry and solved under conditions similar to those used during experimental pump testing. Real, nonlinear, temperature-dependent material properties can be incorporated into the model for both the electrically-conducting working fluid in the pump (NaK-78) and structural components of the pump. The intricate three-phase coil configuration of the pump is implemented in the model to produce an axially-traveling magnetic wave that is qualitatively similar to the measured magnetic wave. The model qualitatively captures the expected feature of a peak in efficiency as a function of flow rate.

  7. Finalize field testing of cold climate heat pump (CCHP) based on tandem vapor injection compressors

    Energy Technology Data Exchange (ETDEWEB)

    Shen, Bo [Oak Ridge National Lab. (ORNL), Oak Ridge, TN (United States); Baxter, Van D. [Oak Ridge National Lab. (ORNL), Oak Ridge, TN (United States); Abdelaziz, Omar [Oak Ridge National Lab. (ORNL), Oak Ridge, TN (United States); Rice, C. Keith [Oak Ridge National Lab. (ORNL), Oak Ridge, TN (United States)

    2017-03-01

    This report describes the system diagram and control algorithm of a prototype air-source cold climate heat pump (CCHP) using tandem vapor injection (VI) compressors. The prototype was installed in Fairbanks, Alaska and underwent field testing starting in 09/2016. The field testing results of the past six months, including compressor run time fractions, measured COPs and heating capacities, etc., are presented as a function of the ambient temperature. Two lessons learned are also reported.

  8. Fuels, Lubricants, and Coolants. FOS: Fundamentals of Service.

    Science.gov (United States)

    John Deere Co., Moline, IL.

    This manual on fuels, lubricants, and coolants is one of a series of power mechanics tests and visual aids on automotive and off-the-road agricultural and construction equipment. Materials present basic information with illustrations for use by vocational students and teachers as well as shop servicemen and laymen. Focusing on fuels, the first of…

  9. Existing and Past Methods of Test and Rating Standards Related to Integrated Heat Pump Technologies

    Energy Technology Data Exchange (ETDEWEB)

    Reedy, Wayne R. [Sentech, Inc.

    2010-07-01

    This report evaluates existing and past US methods of test and rating standards related to electrically operated air, water, and ground source air conditioners and heat pumps, 65,000 Btu/hr and under in capacity, that potentiality incorporate a potable water heating function. Two AHRI (formerly ARI) standards and three DOE waivers were identified as directly related. Six other AHRI standards related to the test and rating of base units were identified as of interest, as they would form the basis of any new comprehensive test procedure. Numerous other AHRI and ASHRAE component test standards were also identified as perhaps being of help in developing a comprehensive test procedure.

  10. Loss of Coolant Accident Analysis Methodology for SMART-P

    Energy Technology Data Exchange (ETDEWEB)

    Bae, K. H.; Lee, G. H.; Yang, S. H.; Yoon, H. Y.; Kim, S. H.; Kim, H. C

    2006-02-15

    The analysis methodology on the Loss-of-coolant accidents (LOCA's) for SMART-P is described in this report. SMART-P is an advanced integral type PWR producing a maximum thermal power of 65.5 MW with metallic fuel. LOCA's are hypothetical accidents that would result from the loss of reactor coolant, at a rate in excess of the capability of the reactor coolant makeup system, from breaks in pipes in the reactor coolant pressure boundary up to and including a break equivalent in size to the double-ended rupture of the largest pipe in the reactor coolant system. Since SMART-P contains the major primary circuit components in a single Reactor Pressure Vessel (RPV), the possibility of a large break LOCA (LBLOCA) is inherently eliminated and only the small break LOCA is postulated. This report describes the outline and acceptance criteria of small break LOCA (SBLOCA) for SMART-P and documents the conservative analytical model and method and the analysis results using the TASS/SMR code. This analysis method is applied in the SBLOCA analysis performed for the ECCS performance evaluation which is described in the section 6.3.3 of the safety analysis report. The prediction results of SBLOCA analysis model of SMART-P for the break flow, system's pressure and temperature distributions, reactor coolant distribution, single and two-phase natural circulation phenomena, and the time of major sequence of events, etc. should be compared and verified with the applicable separate and integral effects test results. Also, it is required to set-up the feasible acceptance criteria applicable to the metallic fueled integral reactor of SMART-P. The analysis methodology for the SBLOCA described in this report will be further developed and validated as the design and licensing status of SMART-P evolves.

  11. Investigation of the 4-Quadrant behaviour of a mixed flow diffuser pump with CFD-methods and test rig evaluation

    Science.gov (United States)

    Höller, S.; Benigni, H.; Jaberg, H.

    2016-11-01

    The complete pump characteristics including its 4-quadrant behaviour are of essential interest for off-design operations such as a pump trip. At this exceptional load case the pump enters the dissipation mode and moves further into the turbine mode while the direction of rotation and the flow direction will change. The time-consuming and expensive experimental investigation of the 4-quadrant behaviour requires a specific test rig, allowing the flow direction as well as the rotational direction of the investigated pump to be reverted. By measuring the pump performance (head and efficiency) at variable positive and negative discharge and rotation the complete pump characteristics are evaluated. Nowadays CFD- analysis allows for the reliable prediction of the hydraulic performance of a pump near the design point. However, abnormal operating conditions lead to complex and unsteady flow phenomena inside the pump. Besides steady-state calculations in the normal operating conditions quite comprehensive transient CFD-investigations are required to simulate the whole pump characteristics accurately. The present study focuses on the comparison of the results obtained on the test rig and by numerical methods and shows a remarkably good agreement between them. It can be shown that it is possible to reliably simulate the 4-quadrant behaviour of a mixed flow diffuser pump based on CFD-methods. Furthermore an exemplary waterhammer calculation shows the successful application of the numerically calculated 4- quadrant behaviour.

  12. Lithium as a blanket coolant

    Energy Technology Data Exchange (ETDEWEB)

    Wells, W.M.

    1977-01-01

    Recent re-assessment of tokamak reactors which move towards smaller size and lower required field strength (higher beta)/sup 2/ change the picture as regards the magnitude of MHD effects on flow resistance for lithium coolant. Perhaps the most important consequence of this as regards use of this coolant is that of clear acceptability of such effects when the flow is predominantly transverse to the magnetic field. This permits defining a blanket that consists entirely of round tubes containing the circulated lithium with voids between the tubes. Required thermal-hydraulic calculations are then on bases which are well established, especially in view of recent results dealing with perturbations of ducts and magnetic fields. Mitigation of MHD effects is feasible through tapering of tube wall thickness or use of insulated layers, but their use was not mandatory for the assumed conditions. Blanket configurations utilizing flowing lithium in round tubes immersed in static lithium may be suitable, but calculational methods do not now exist for this situation. Use of boiling potassium or cesium appears to be prohibitive in terms of vapor flow area when temperature levels are consistent with stainless steel. Liquid sodium, in addition to not being a breeding material, requires higher velocity than lithium for the same heat removal.

  13. Improved characterization of small "u" for Jacob pumping test analysis methods.

    Science.gov (United States)

    Alexander, Scott C; Saar, Martin O

    2012-01-01

    Numerous refinements have been proposed to traditional pumping test analyses, yet many hydrogeologists continue to use the Jacob method due to its simplicity. Recent research favors hydraulic tomography and inverse numerical modeling of pumping test data. However, at sites with few wells, or relatively short screens, the data requirements of these methods may be impractical within physical and fiscal constraints. Alternatively, an improved understanding of the assumptions and limitations of Theis and, due to their widespread usage, Jacob analyses, leads to improved interpretations in data-poor environments. A fundamental requirement of Jacob is a "small" value of u = f(r(2)/t), with radial distance, r, and pumping time, t. However, selection of a too stringent (i.e., too low) maximum permissible u-value, u(max), results in rejection of usable data from wells beyond a maximum radius, r(max). Conversely, data from small radii, less than r(min), where turbulent- and vertical-flow components arise, can result in acceptance of inappropriate data. Usage of drawdown data from wells too close to the pumping well, and exclusion of data from wells deemed too far, can cause unrealistic aquifer transmissivity, permeability, and storativity determinations. Here, data from an extensive well field in a glacial-outwash aquifer in north-central Minnesota, USA, are used to develop a new estimate for u(max). Traditionally quoted values for u(max) range from 0.01 to 0.05. Our proposed value for Jacob distance-drawdown analyses is significantly higher with u(max) up to 0.2, resulting in larger allowable r(max)-values and a higher likelihood of inclusion of additional wells in such pumping test analyses.

  14. Research on the performance of low-lift diving tubular pumping system by CFD and Test

    Science.gov (United States)

    Xia, Chenzhi; Cheng, Li; Liu, Chao; Zhou, Jiren; Tang, Fangping; Jin, Yan

    2016-11-01

    Post-diving tubular pump is always used in large-discharge & low-head irrigation or storm drainage pumping station, its impeller and motor share the same shaft. Considering diving tubular pump system's excellent hydraulic performance, compact structure, good noise resistance and low operating cost, it is used in Chinese pump stations. To study the hydraulic performance and pressure fluctuation of inlet and outlet passage in diving tubular pump system, both of steady and unsteady full flow fields are numerically simulated at three flow rate conditions by using CFD commercial software. The asymmetry of the longitudinal structure of inlet passage affects the flow pattern on outlet. Especially at small flow rate condition, structural asymmetry will result in the uneven velocity distribution on the outlet of passage inlet. The axial velocity distribution uniformity increases as the flow rate increases on the inlet of passage inlet, and there is a positive correlation between hydraulic loss in the passage inlet and flow rate's quadratic. The axial velocity distribution uniformity on the outlet of passage inlet is 90% at design flow rate condition. The predicted result shows the same trend with test result, and the range of high efficiency area between predicted result and test result is almost identical. The dominant frequency of pressure pulsation is low frequency in inlet passage at design condition. The dominant frequency is high frequency in inlet passage at small and large flow rate condition. At large flow rate condition, the flow pattern is significantly affected by the rotation of impeller in inlet passage. At off-design condition, the pressure pulsation is strong at outlet passage. At design condition, the dominant frequency is 35.57Hz, which is double rotation frequency.

  15. Effects of the investigation scale on pumping test results in heterogeneous porous aquifers

    Science.gov (United States)

    Schad, Hermann; Teutsch, Georg

    1994-07-01

    At the environmental field site Horkheimer Insel numerous pumping tests were performed at different investigation scales. The measured time-drawdown curves exhibit a characteristic segmentation into two or three drawdown phases. Since the site is highly heterogeneous it was intended to take advantage of the non-stationarity of the flow field during pumping tests in order to determine the effective length scale of the subsurface heterogeneity structure. The time-drawdown curves were evaluated using the Theis' analytical solution, which, however, yields different aquifer parameters for the different drawdown phases. Because this solution does not satisfy the properties of the test site aquifer totally, some of the inferred parameter distributions are regarded as suitable only for a relative comparison rather than representing 'true' effective parameters. Based on a definition of spatial and temporal scale, a statistical description along with a qualitative interpretation of the parameter distributions determined is provided. The results indicate that the effective length scale of the heterogeneity structure can be estimated from pumping test data. However, it is believed that for a quantitative interpretation of the field data, the application of numerical methods is necessary.

  16. Design of a laboratory hydraulic device for testing of hydraulic pumps

    Directory of Open Access Journals (Sweden)

    Pavel Máchal

    2013-01-01

    Full Text Available The present contribution deals with solves problem of research of testing device to monitor of hydrostatic pumps durability about dynamic loading under laboratory conditions. When carrying out the design of testing device are based on load characteristics of tractor hydraulic circuit, the individual characteristics of hydraulic components and performed calculations. Load characteristics on the tractors CASE IH Magnum 310, JOHN DEERE 8100, ZETOR FORTERRA 114 41 and Fendt 926 Vario were measured. Design of a hydraulic laboratory device is based on the need for testing new types of hydraulic pumps or various types of hydraulic fluids. When creating of hydraulic device we focused on testing hydraulic pumps used in agricultural and forestry tractors. Proportional pressure control valve is an active member of the hydraulic device, which provides change of a continuous control signal into relative pressure of operating fluid. The advantage of a designed hydraulic system is possibility of simulation of dynamic operating loading, which is obtained by measurement under real conditions, and thereby creates laboratory conditions as close to real conditions as possible. The laboratory device is constructed at the Department of Transport and Handling, Faculty of Engineering, Slovak University of Agriculture in Nitra.

  17. Special ESP configurations designed to test and produce Yemen oil field. [Electric-Submersible Pump

    Energy Technology Data Exchange (ETDEWEB)

    Wilkie, D.I. (Canadian Occidental Petroleum Ltd., Calgary, Alberta (Canada))

    1993-09-27

    Innovative electric-submersible-pump (ESP) configurations were used in the exploration phase of a Yemen oil field discovered by Canadian Occidental Petroleum Ltd. Because of subnormal reservoir pressure, CanOxy developed the field with ESPs and had to install surface components that could operate at the high, 130 F., ambient temperatures common in Yemen. The field is in a remote area that has seen very little development. The reservoirs produce a medium-to-heavy crude with a low gas/oil ratio, typically less than 20 scf/bbl. Problems faced in evaluating the field included drilling through unconsolidated sands with high flow capacity and subnormal reservoir pressure. CanOxy had to develop the technology to test the wells during the exploration phase, and intends to use new, or at least uncommon technology, for producing the wells. The paper describes testing the wells, the electric generators and variable speed drives, and the use of these pumps on production wells.

  18. Design, development and test of a capillary pump loop heat pipe

    Science.gov (United States)

    Kroliczek, E. J.; Ku, J.; Ollendorf, S.

    1984-01-01

    The development of a capillary pump loop (CPL) heat pipe, including computer modeling and breadboard testing, is presented. The computer model is a SINDA-type thermal analyzer, combined with a pressure analyzer, which predicts the transients of the CPL heat pipe during operation. The breadboard is an aluminum/ammonia transport system which contains multiple parallel evaporator and condenser zones within a single loop. Test results have demonstrated the practicality and reliability of such a design, including heat load sharing among evaporators, liquid inventory/temperature control feature, and priming under load. Transport capability for this system is 65 KW-M with individual evaporator pumps managing up to 1.7 KW at a heat flux of 15 W/sq cm. The prediction of the computer model for heat transport capabilities is in good agreement with experimental results.

  19. Technology of high temperature organic coolant

    Energy Technology Data Exchange (ETDEWEB)

    Makin, R.S.; Vorobei, M.P.; Kuprienko, V.A.; Starkov, V.A.; Tsykanov, V.A.; Checketkin, Y.V. [Research Institute of Atomic Reactors, Ulyanovsk (Russian Federation)

    1993-12-31

    Research has been performed on the problems related to the use of high temperature organic coolants in small and medium nuclear power plants. The work performed and also the experience of operating the ARBUS reactor confirmed the inherent safety features, reliability, and enhanced safety margins of the plants with this type of coolants. The advantages of this system and research highlights are presented.

  20. Two phase capillary pumped heat transfer in the Instrument Thermal Test Bed

    Science.gov (United States)

    Didion, Jeffrey R.; Martins, Mario S.

    1992-01-01

    An experimental study of the thermal performance of two evaporators installed in the Instrument Thermal Test Bed (ITTB) was conducted. The ITTB was operated as a capillary pumped loop (CPL) with a transport length of approximately 12 meters. Empirical determinations of a general start up procedure, overall heat transfer coefficient, and minimum operating power were accomplished for each evaporator. Additionally, a detailed thermal model was developed for the High Power Spacecraft Thermal Management (HPSTM) evaporator and validated.

  1. Operational Test Report (OTR) for U-102 Pumping and Instrumentation and Control (PIC) Skid

    Energy Technology Data Exchange (ETDEWEB)

    KOCH, M.R.

    2000-02-28

    Attached is the completed Operation Test Procedure (OTP-200-004, Rev. A-19 and Rev. A-20). OTP includes a print out of the Programmable Logic Controller (PLC) Ladder Diagram. Ladder Diagram was designed for installation in the PLC used to monitor and control pumping activity for Tank Farm 241-U-102. The completed OTP and OTR are referenced in the IS PIC Skid Configuration Drawing (H-2-829998).

  2. Operational Test Report (OTR) for U-103 Pumping and Instrumentation and Control (PIC) Skid

    Energy Technology Data Exchange (ETDEWEB)

    KOCH, M.R.

    2000-02-28

    Attached is the completed Operation Test Procedure (OTP-200-004, Rev. A-16). OTP includes a print out of the Programmable Logic Controller (PLC) Ladder Diagram. Ladder Diagram was designed for installation in the PLC used to monitor and control pumping activity for Tank Farm 241-U-103. The completed OTP and OTR are referenced in the 25 PIC Skid Configuration Drawing (H-2-829998).

  3. Operational Test Report (OTR) for U-105 Pumping and Instrumentation and Control (PIC) Skid

    Energy Technology Data Exchange (ETDEWEB)

    KOCH, M.R.

    2000-02-28

    Attached is the completed Operation Test Procedure (OTP-200-004, Rev. A-18). OTP includes a print out of the Programmable Logic Controller (PLC) Ladder Diagram. Ladder Diagram was designed for installation in the PLC used to monitor and control pumping activity for Tank Farm 241-U-105. The completed OTP and OTR are referenced in the IS PIC Skid Configuration Drawing (H-2-829998).

  4. AZ-101 Mixer Pump Demonstration and Tests Data Management Analysis Plan

    Energy Technology Data Exchange (ETDEWEB)

    DOUGLAS, D.G.

    2000-02-22

    This document provides a plan for the analysis of the data collected during the AZ-101 Mixer Pump Demonstration and Tests. This document was prepared after a review of the AZ-101 Mixer Pump Test Plan (Revision 4) [1] and other materials. The plan emphasizes a structured and well-ordered approach towards handling and examining the data. This plan presumes that the data will be collected and organized into a unified body of data, well annotated and bearing the date and time of each record. The analysis of this data will follow a methodical series of steps that are focused on well-defined objectives. Section 2 of this plan describes how the data analysis will proceed from the real-time monitoring of some of the key sensor data to the final analysis of the three-dimensional distribution of suspended solids. This section also identifies the various sensors or sensor systems and associates them with the various functions they serve during the test program. Section 3 provides an overview of the objectives of the AZ-101 test program and describes the data that will be analyzed to support that test. The objectives are: (1) to demonstrate that the mixer pumps can be operated within the operating requirements; (2) to demonstrate that the mixer pumps can mobilize the sludge in sufficient quantities to provide feed to the private contractor facility, and (3) to determine if the in-tank instrumentation is sufficient to monitor sludge mobilization and mixer pump operation. Section 3 also describes the interim analysis that organizes the data during the test, so the analysis can be more readily accomplished. Section 4 describes the spatial orientation of the various sensors in the tank. This section is useful in visualizing the relationship of the Sensors in terms of their location in the tank and how the data from these sensors may be related to the data from other sensors. Section 5 provides a summary of the various analyses that will be performed on the data during the test

  5. A study of pumps for the Hot Dry Rock Geothermal Energy extraction experiment (LTFT (Long Term Flow Test))

    Energy Technology Data Exchange (ETDEWEB)

    Tatro, C.A.

    1986-10-01

    A set of specifications for the hot dry rock (HDR) Phase II circulation pumping system is developed from a review of basic fluid pumping mechanics, a technical history of the HDR Phase I and Phase II pumping systems, a presentation of the results from experiment 2067 (the Initial Closed-Loop Flow Test or ICFT), and consideration of available on-site electrical power limitations at the experiment site. For the Phase II energy extraction experiment (the Long Term Flow Test or LTFT) it is necessary to provide a continuous, low maintenance, and highly efficient pumping capability for a period of twelve months at variable flowrates up to 420 gpm and at surface injection pressures up to 5000 psi. The pumping system must successfully withstand attacks by corrosive and embrittling gases, erosive chemicals and suspended solids, and fluid pressure and temperature fluctuations. In light of presently available pumping hardware and electric power supply limitations, it is recommended that positive displacement multiplex plunger pumps, driven by variable speed control electric motors, be used to provide the necessary continuous surface injection pressures and flowrates for LTFT. The decision of whether to purchase the required circulation pumping hardware or to obtain contractor provided pumping services has not been made.

  6. 10 CFR 431.107 - Uniform test method for the measurement of energy efficiency of commercial heat pump water...

    Science.gov (United States)

    2010-01-01

    ... 10 Energy 3 2010-01-01 2010-01-01 false Uniform test method for the measurement of energy efficiency of commercial heat pump water heaters. 431.107 Section 431.107 Energy DEPARTMENT OF ENERGY ENERGY... method for the measurement of energy efficiency of commercial heat pump water heaters. Energy...

  7. EVALUATION OF AQUIFER CHARACTERISTICS IN ECHI, DELTA STATE, NIGERIA USING WELL LOGGING AND PUMPING TEST METHOD

    Directory of Open Access Journals (Sweden)

    Ochuko Anomohanran

    2013-01-01

    Full Text Available This study was carried out to evaluate the aquifer characteristics of groundwater at Echi, Delta State, Nigeria. This was carried out by conducting electrical resistivity and spontaneous potential loggings in a drilled well at the study location. Pumping test using a one kilowatt pumping machine was carried out in the well. The logs were interpreted while the record of the pumping test was analysed using the Jacob straight line method. The result showed that five lithologic formations which are lateritic sand, clay, fine sand, medium grain sand and coarse sand exist in the area and that groundwater exist in the third, fourth and fifth formations. The analysis of the log record showed that the water quality increased with respect to the depth of the well. The value of the conductivity of the aquifer obtained from the analysis of the log record was 5.8×10-3 mS/m while the transmissivity was obtained as 86.0 m2/day. The specific capacity of the aquifer was obtained as 0.258. These values obtained from the test well revealed that the aquifer contained good quality water suitable for drinking and other purposes.

  8. Pollution Analysis of New Synthetic Biodegradable Fluid During Durab Ility Test of Hydrostatic Pump

    Directory of Open Access Journals (Sweden)

    Tulík Juraj

    2014-03-01

    Full Text Available This paper deals with the pollution evaluation of a biodegradable fluid, which was used as a working medium during the laboratory durability test of a hydrostatic pump. There was used a new synthetic biodegradable fluid MOL Farm UTTO Synt., developed and produced by MOL Group, Hungary. The fluid should have been practically used as a universal, common gear-hydraulic filling in agricultural machines. During the test, the pollution of used fluid was evaluated on the basis of cleanliness code, filtration of solid particles and ferrography. Based on results of cleanliness code, we could monitor the course of hydrostatic pump wear. After test completion, the fluid was subjected to filtration of solid particles and ferrography, where clusters of small particles and larger particles were detected. On the basis of their surface and shape, they were included in particles of adhesive wear. By the comparison method it was found that they are bronze particles located in the bearings of the hydrostatic pump used.

  9. Technical note: Analytical drawdown solution for steady-state pumping tests in two-dimensional isotropic heterogeneous aquifers

    Science.gov (United States)

    Zech, Alraune; Attinger, Sabine

    2016-05-01

    A new method is presented which allows interpreting steady-state pumping tests in heterogeneous isotropic transmissivity fields. In contrast to mean uniform flow, pumping test drawdowns in heterogeneous media cannot be described by a single effective or equivalent value of hydraulic transmissivity. An effective description of transmissivity is required, being a function of the radial distance to the well and including the parameters of log-transmissivity: mean, variance, and correlation length. Such a model is provided by the upscaling procedure radial coarse graining, which describes the transition of near-well to far-field transmissivity effectively. Based on this approach, an analytical solution for a steady-state pumping test drawdown is deduced. The so-called effective well flow solution is derived for two cases: the ensemble mean of pumping tests and the drawdown within an individual heterogeneous transmissivity field. The analytical form of the solution allows inversely estimating the parameters of aquifer heterogeneity. For comparison with the effective well flow solution, virtual pumping tests are performed and analysed for both cases, the ensemble mean drawdown and pumping tests at individual transmissivity fields. Interpretation of ensemble mean drawdowns showed proof of the upscaling method. The effective well flow solution reproduces the drawdown for two-dimensional pumping tests in heterogeneous media in contrast to Thiem's solution for homogeneous media. Multiple pumping tests conducted at different locations within an individual transmissivity field are analysed, making use of the effective well flow solution to show that all statistical parameters of aquifer heterogeneity can be inferred under field conditions. Thus, the presented method is a promising tool with which to estimate parameters of aquifer heterogeneity, in particular variance and horizontal correlation length of log-transmissivity fields from steady-state pumping test measurements.

  10. Selection of an Alternate Biocide for the ISS Internal Thermal Control System Coolant, Phase 2

    Science.gov (United States)

    Wilson, Mark E.; Cole, Harold; Weir, Natalee; Oehler, Bill; Steele, John; Varsik, Jerry; Lukens, Clark

    2004-01-01

    The ISS (International Space Station) ITCS (Internal Thermal Control System) includes two internal coolant loops that utilize an aqueous based coolant for heat transfer. A silver salt biocide had previously been utilized as an additive in the coolant formulation to control the growth and proliferation of microorganisms within the coolant loops. Ground-based and in-flight testing demonstrated that the silver salt was rapidly depleted, and did not act as an effective long-term biocide. Efforts to select an optimal alternate biocide for the ITCS coolant application have been underway and are now in the final stages. An extensive evaluation of biocides was conducted to down-select to several candidates for test trials and was reported on previously. Criteria for that down-select included: the need for safe, non-intrusive implementation and operation in a functioning system; the ability to control existing planktonic and biofilm residing microorganisms; a negligible impact on system-wetted materials of construction; and a negligible reactivity with existing coolant additives. Candidate testing to provide data for the selection of an optimal alternate biocide is now in the final stages. That testing has included rapid biocide effectiveness screening using Biolog MT2 plates to determine minimum inhibitory concentration (amount that will inhibit visible growth of microorganisms), time kill studies to determine the exposure time required to completely eliminate organism growth, materials compatibility exposure evaluations, coolant compatibility studies, and bench-top simulated coolant testing. This paper reports the current status of the effort to select an alternate biocide for the ISS ITCS coolant. The results of various test results to select the optimal candidate are presented.

  11. High-Temperature Salt Pump Review and Guidelines - Phase I Report

    Energy Technology Data Exchange (ETDEWEB)

    Robb, Kevin R. [Oak Ridge National Lab. (ORNL), Oak Ridge, TN (United States); Jain, Prashant K. [Oak Ridge National Lab. (ORNL), Oak Ridge, TN (United States); Hazelwood, Thomas J. [Oak Ridge National Lab. (ORNL), Oak Ridge, TN (United States)

    2016-05-01

    Fluoride salt cooled high-temperature reactor (FHR) concepts include pumps for forced circulation of the primary and secondary coolants. As part of a cooperative research and development agreement between the Shanghai Institute of Applied Physics and the Oak Ridge National Laboratory (ORNL), a research project was initiated to aid in the development of pumps for high-temperature salts. The objectives of the task included characterization of the behavior of an existing ORNL LSTL pump; design and test a modified impeller and volute for improved pump characteristics; and finally, provide lessons learned, recommendations, and guidelines for salt pump development and design. The pump included on the liquid salt test loop (LSTL) at ORNL served as a case study. This report summarizes the progress to date. The report is organized as follows. First, there is a review, focused on pumps, of the significant amount of work on salts at ORNL during the 1950s 1970s. The existing pump on the LSTL is then described. Plans for hot and cold testing of the pump are then discussed, including the design for a cold shakedown test stand and the required LSTL modifications for hot testing. Initial hydraulic and vibration modeling of the LSTL pump is documented. Later, test data from the LSTL will be used to validate the modeling approaches, which could then be used for future pump design efforts. Some initial insights and test data from the pump are then provided. Finally, some preliminary design goals and requirements for a future LSTL pump are provided as examples of salt pump design considerations.

  12. Testing a Quantum Heat Pump with a Two-Level Spin

    Science.gov (United States)

    Correa, Luis; Mehboudi, Mohammad

    2016-04-01

    Once in its non-equilibrium steady state, a nanoscale system coupled to several heat baths may be thought-of as a quantum heat pump. Depending on the direction of its stationary heat flows it may function as e.g. a refrigerator or a heat transformer. These continuous heat devices can be arbitrarily complex multipartite systems, and yet their working principle is always the same: They are made up of several elementary three-level stages operating in parallel. As a result, it is possible to devise external black-box testing strategies to learn about their functionality and performance regardless of any internal details. In particular, one such heat pump can be tested by coupling a two-level spin to one of its contact transitions. The steady state of this external probe contains information about the presence of heat leaks and internal dissipation in the device, and also, about the direction of its steady-state heat currents. Provided that the irreversibility of the heat pump is low, one can further estimate its coefficient of performance. These techniques may find applications in the emerging field of quantum thermal engineering, as they facilitate the diagnosis and design optimization of complex thermodynamic cycles.

  13. Heat transfer performance characteristics of hybrid nanofluids as coolant in louvered fin automotive radiator

    Science.gov (United States)

    Sahoo, Rashmi R.; Sarkar, Jahar

    2016-12-01

    Present study deals with the enhancement of convective heat transfer performance of EG brine based various hybrid nanofluids i.e. Ag, Cu, SiC, CuO and TiO2 in 0-1% volume fraction of Al2O3 nanofluid, as coolants for louvered fin automobile radiator. The effects of nanoparticles combination and operating parameters on thermo physical properties, heat transfer, effectiveness, pumping power and performance index of hybrid nanofluids have been evaluated. Comparison of studied hybrid nanofluids based on radiator size and pumping power has been made as well. Among all studied hybrid nanofluids, 1% Ag hybrid nanofluid (0.5% Ag and 0.5% Al2O3) yields highest effectiveness and heat transfer rate as well as pumping power. However, SiC + Al2O3 dispersed hybrid nanofluid yields maximum performance index and hence this can be recommended for best coolant. For the same radiator size and heat transfer rate, pumping power increases by using Ag hybrid nanofluids leading to increase in engine thermal efficiency and hence reduction in engine fuel consumption. For same coolant flow rate and heat transfer rate, the radiator size reduces and pumping power increases by using Ag hybrid nanofluids leading to reduction in radiator size, weight and cost.

  14. Heat transfer performance characteristics of hybrid nanofluids as coolant in louvered fin automotive radiator

    Science.gov (United States)

    Sahoo, Rashmi R.; Sarkar, Jahar

    2017-06-01

    Present study deals with the enhancement of convective heat transfer performance of EG brine based various hybrid nanofluids i.e. Ag, Cu, SiC, CuO and TiO2 in 0-1% volume fraction of Al2O3 nanofluid, as coolants for louvered fin automobile radiator. The effects of nanoparticles combination and operating parameters on thermo physical properties, heat transfer, effectiveness, pumping power and performance index of hybrid nanofluids have been evaluated. Comparison of studied hybrid nanofluids based on radiator size and pumping power has been made as well. Among all studied hybrid nanofluids, 1% Ag hybrid nanofluid (0.5% Ag and 0.5% Al2O3) yields highest effectiveness and heat transfer rate as well as pumping power. However, SiC + Al2O3 dispersed hybrid nanofluid yields maximum performance index and hence this can be recommended for best coolant. For the same radiator size and heat transfer rate, pumping power increases by using Ag hybrid nanofluids leading to increase in engine thermal efficiency and hence reduction in engine fuel consumption. For same coolant flow rate and heat transfer rate, the radiator size reduces and pumping power increases by using Ag hybrid nanofluids leading to reduction in radiator size, weight and cost.

  15. Analysis and testing of high entrainment single nozzle jet pumps with variable mixing tubes

    Science.gov (United States)

    Hickman, K. E.; Hill, P. G.; Gilbert, G. B.

    1972-01-01

    An analytical model was developed to predict the performance characteristics of axisymmetric single-nozzle jet pumps with variable area mixing tubes. The primary flow may be subsonic or supersonic. The computer program uses integral techniques to calculate the velocity profiles and the wall static pressures that result from the mixing of the supersonic primary jet and the subsonic secondary flow. An experimental program was conducted to measure mixing tube wall static pressure variations, velocity profiles, and temperature profiles in a variable area mixing tube with a supersonic primary jet. Static pressure variations were measured at four different secondary flow rates. These test results were used to evaluate the analytical model. The analytical results compared well to the experimental data. Therefore, the analysis is believed to be ready for use to relate jet pump performance characteristics to mixing tube design.

  16. Performance tests of air source heat pumps under frosting conditions. Quality of results

    Science.gov (United States)

    Fahlen, P.

    This report focuses on the analysis of uncertainties in research regarding air-source heat pumps. The principles recommended by the Western European Calibration Conference (WECC) are applied and the generated information is condensed in the form of uncertainty budgets. The ensuring discussion, and the Measurement Assurance Program that was applied during the research work are also relevant to general testing of cooling coils, e.g. for air source heat pumps. The general conclusion of the analysis is that the method of determining frost mass by continuous weighing and frost density by inference from pressure drop considerations, which is presented in the report, has the potential to produce results with an accuracy on a par with the best previously used techniques to investigate frosting and defrosting phenomena. Furthermore, the methodology has the distinct advantage of yielding online measuring possibilities and being much less time consuming than traditional techniques.

  17. Regeneration tests of a room temperature magnetic refrigerator and heat pump

    CERN Document Server

    Brown, G V

    2014-01-01

    A magnetic heat pump apparatus consisting of a solid magnetic refrigerant, gadolinium, and a liquid regenerator column of ethanol and water has been tested. Utilizing a 7T field, it produced a maximum temperature span of 80 K, and in separate tests, a lowest temperature of 241 K and a highest temperature of 328 K. Thermocouples, placed at intervals along the regenerator tube, permitted measurement of the temperature distribution in the regenerator fluid. No attempt was made to extract refrigeration from the device, but analysis of the temperature distributions shows that 34 watts of refrigeration was produced.

  18. Effect Analysis of Geometric Parameters on Stainless Steel Stamping Multistage Pump by Experimental Test and Numerical Calculation

    Directory of Open Access Journals (Sweden)

    Chuan Wang

    2013-01-01

    Full Text Available In order to improve the efficiency of stainless steel stamping multistage pump, quadratic regression orthogonal test, hydraulic design, and computational fluid dynamics (CFD are used to analyze the effect of pump geometric parameters. Sixteen impellers are designed based on the quadratic regression orthogonal test, which have three factors including impeller outlet slope, impeller blade outlet stagger angle, and impeller blade outlet width. Through quadratic regression equation, the function relationship between efficiency values and three factors is established. The optimal combination of geometric parameters is found through the analysis of the regression equation. To further study the influence of blade thickness on the performance of multistage pump, numerical simulations of multistage pump with different blade thicknesses are carried out. The influence law of blade thickness on pump performance is built from the external characteristics and internal flow field. In conclusion, with the increase of blade thickness, the best efficiency point of the pump shifts to the small flow rate direction, and the vortex regions inside the pump at rated flow gradually increase, which is the main reason that pump efficiency decreases along with the increase of the blade thickness at rated flow.

  19. A Step Towards Electric Propulsion Testing Standards: Pressure Measurements and Effective Pumping Speeds

    Science.gov (United States)

    Dankanich, John W.; Swiatek, Michael W.; Yim, John T.

    2012-01-01

    The electric propulsion community has been implored to establish and implement a set of universally applicable test standards during the research, development, and qualification of electric propulsion systems. Existing practices are fallible and result in testing variations which leads to suspicious results, large margins in application, or aversion to mission infusion. Performance measurements and life testing under appropriate conditions can be costly and lengthy. Measurement practices must be consistent, accurate, and repeatable. Additionally, the measurements must be universally transportable across facilities throughout the development, qualification, spacecraft integration and on-orbit performance. A preliminary step to progress towards universally applicable testing standards is outlined for facility pressure measurements and effective pumping speed calculations. The standard has been applied to multiple facilities at the NASA Glenn Research Center. Test results and analyses of universality of measurements are presented herein.

  20. Transient drawdown solution for a constant pumping test in finite two-zone confined aquifers

    Directory of Open Access Journals (Sweden)

    C.-T. Wang

    2011-10-01

    Full Text Available The drawdown solution has been widely used to analyze pumping test data for the determination of aquifer parameters when coupled with an optimization scheme. The solution can also be used to predict the drawdown due to pumping and design the dewatering system. The drawdown solution for flow toward a finite-radius well with a skin zone in a confined aquifer of infinite extent in radial direction had been developed before. To our best knowledge, the drawdown solution in confined aquifers of finite extent so far has never before been presented in the groundwater literature. This article presents a mathematical model for describing the drawdown distribution due to a constant-flux pumping from a finite-radius well with a skin zone in confined aquifers of finite extent. The analytical solution of the model is developed by applying the methods of Laplace transforms and Bromwich contour integral. This solution can be used to investigate the effects of finite boundary and conductivity ratio on the drawdown distribution. In addition, the inverse relationship between Laplace- and time-domain variables is used to develop the large time solution which can reduce to the Thiem solution if there is no skin zone.

  1. Transient drawdown solution for a constant pumping test in finite two-zone confined aquifers

    Directory of Open Access Journals (Sweden)

    C.-T. Wang

    2012-02-01

    Full Text Available The drawdown solution has been widely used to analyze pumping test data for the determination of aquifer parameters when coupled with an optimization scheme. The solution can also be used to predict the drawdown due to pumping and design the dewatering system. The drawdown solution for flow toward a finite-radius well with a skin zone in a confined aquifer of infinite extent in radial direction had been developed before. To our best knowledge, the drawdown solution in confined aquifers of finite extent with a skin zone so far has never before been presented in the groundwater literature. This article presents a mathematical model for describing the drawdown distribution due to a constant-flux pumping from a finite-radius well with a skin zone in confined aquifers of finite extent. The analytical solution of the model is developed by applying the methods of Laplace transforms, Bromwich contour integral, and residue theorem. This solution can be used to investigate the effects of finite boundary and conductivity ratio on the drawdown distribution. In addition, the inverse relationship between Laplace- and time-domain variables is used to develop the large time solution which can reduce to the Thiem solution if there is no skin zone.

  2. Quasi-steady state conditions in heterogeneous aquifers during pumping tests

    Science.gov (United States)

    Zha, Yuanyuan; Yeh, Tian-Chyi J.; Shi, Liangsheng; Huang, Shao-Yang; Wang, Wenke; Wen, Jet-Chau

    2017-08-01

    Classical Thiem's well hydraulic theory, other aquifer test analyses, and flow modeling efforts often assume the existence of ;quasi-steady; state conditions. That is, while drawdowns due to pumping continue to grow, the hydraulic gradient in the vicinity of the pumping well does not change significantly. These conditions have built upon two-dimensional and equivalent homogeneous conceptual models, but few field data have been available to affirm the existence of these conditions. Moreover, effects of heterogeneity and three-dimensional flow on this quasi-steady state concept have not been thoroughly investigated and discussed before. In this study, we first present a quantitative definition of quasi-steady state (or steady-shape conditions) and steady state conditions based on the analytical solution of two- or three-dimensional flow induced by pumping in unbounded, homogeneous aquifers. Afterward, we use a stochastic analysis to investigate the influence of heterogeneity on the quasi-steady state concept in heterogeneous aquifers. The results of the analysis indicate that the time to reach an approximate quasi-steady state in a heterogeneous aquifer could be quite different from that estimated based on a homogeneous model. We find that heterogeneity of aquifer properties, especially hydraulic conductivity, impedes the development of the quasi-steady state condition before the flow reaching steady state. Finally, 280 drawdown-time data from the hydraulic tomographic survey conducted at a field site corroborate our finding that the quasi-steady state condition likely would not take place in heterogeneous aquifers unless pumping tests last a long period. Research significance (1) Approximate quasi-steady and steady state conditions are defined for two- or three-dimensional flow induced by pumping in unbounded, equivalent homogeneous aquifers. (2) Analysis demonstrates effects of boundary condition, well screen interval, and heterogeneity of parameters on the

  3. Optimization Design of a Double-Channel Pump by Means of Orthogonal Test, CFD, and Experimental Analysis

    Directory of Open Access Journals (Sweden)

    Binjuan Zhao

    2014-07-01

    Full Text Available A new approach to optimizing a double-channel pump was presented, based on combined use of orthogonal test, computational fluid dynamics (CFD, and experimental analysis. First, a preliminary pump was designed according to design specifications, implementing the traditional design method. Later, a standard L9 (34 orthogonal table including 9 representative design schemes was implemented to find the best parameter combination for the impeller of the pump. Reynolds averaged Navier-Stokes equations accompanied by Smith modified k-ε turbulence model were solved to obtain the inner flow fields of the pump as well as its hydraulic performance for each design scheme. The optimized design scheme was obtained after range analysis. Finally, CFD analyses and experiments were carried out to evaluate the optimized design. The results show that the characteristics of the optimized pump were obviously improved, and the simulated pump head and efficiency increased by 3.622% and 9.379%, respectively. This research not only provides an effective way to improve the hydraulic design of double-channel pumps, but also has certain reference value in multiobjectiveoptimization design of other pumps.

  4. Joint Estimation of Hydraulic and Poroelastic Parameters from a Pumping Test.

    Science.gov (United States)

    Berg, Steven J; Illman, Walter A; Mok, Chin Man W

    2015-01-01

    The coupling of hydraulic and poroelastic processes is critical in predicting processes involving the deformation of the geologic medium in response to fluid extraction or injection. Numerical models that consider the coupling of hydraulic and poroelastic processes require the knowledge of relevant parameters for both aquifer and aquitard units. In this study, we jointly estimated hydraulic and poroelastic parameters from pumping test data exhibiting "reverse water level fluctuations," known as the Noordbergum effect, in aquitards adjacent to a pumped aquifer. The joint estimation was performed by coupling BIOT2, a finite element, two-dimensional, axisymmetric, groundwater model that considers poroelastic effects with the parameter estimation code PEST. We first tested our approach using a synthetic data set with known parameters. Results of the synthetic case showed that for a simple layered system, it was possible to reproduce accurately both the hydraulic and poroelastic properties for each layer. We next applied the approach to pumping test data collected at the North Campus Research Site (NCRS) on the University of Waterloo (UW) campus. Based on the detailed knowledge of stratigraphy, a five-layer system was modeled. Parameter estimation was performed by: (1) matching drawdown data individually from each observation port and (2) matching drawdown data from all ports at a single well simultaneously. The estimated hydraulic parameters were compared to those obtained by other means at the site yielding good agreement. However, the estimated shear modulus was higher than the static shear modulus, but was within the range of dynamic shear modulus reported in the literature, potentially suggesting a loading rate effect.

  5. Dynamic heat-pump test - Validation of a model and development of a testing process; Dynamischer Waermepumpentest. Validierung des Modellansatzes und Entwicklung einer Pruefprozedur: Phase 2

    Energy Technology Data Exchange (ETDEWEB)

    Hubacher, B.; Ehrbach, M.

    2001-07-01

    This final report for the Swiss Federal Office of Energy (SFOE) describes the development of a test procedure for the determination of losses caused by the switching on and off of heat pumps. The first part of the work described concerns the validation of an algorithm developed in an earlier phase of the project using experimental methods. Tests performed in a twin climatic chamber on a 10 kW heat pump are described. The resulting equations for the temperature and time-dependent functions used in determining the performance-reduction for the heat pump caused by on-off cycling are described. The second part of the work is also described that involved the development of procedures for determining the constants for the adaptation of the equations to the testing procedures. Details are given on the appropriate test procedures to be used at the Swiss heat pump testing centre at Toess.

  6. Examples, clarifications, and guidance on preparing requests for relief from pump and valve inservice testing requirements

    Energy Technology Data Exchange (ETDEWEB)

    Ransom, C.B.; Hartley, R.S. [Lockheed Idaho Technologies Co., Idaho Falls, ID (United States)

    1996-02-01

    In this report, the Idaho National Engineering Laboratory reviewers discuss related to requests for relief from the American Society of Mechanical Engineers code requirements for inservice testing (IST) of safety-related pumps and valves at commercial nuclear power plants. This report compiles information and examples that may be useful to licensees in developing relief requests submitted to US Nuclear Regulatory Commission (NRC) for their consideration and provides insights and recommendations on related IST issues. The report also gives specific guidance on relief requests acceptable and not acceptable to the NRC and advises licensees in the use of this information for application at their facilities.

  7. Effect of coolant inhibitors on AZ91D

    Institute of Scientific and Technical Information of China (English)

    I.M. Baghni; WU Yinshun; ZHANG Wei; LI Jiuqing

    2004-01-01

    The inhibition effects of sodium vanadate along with inorganic coolant inhibitors were examined on corrosion of AZ91D in ASTM D1384-80 corrosive water by polarization measurements. The galvanic corrosion of AZ91D coupled to 3003, 6063, and 356 Al alloys were also tested. An effective combination of inhibitors containing (but not limited to) sodium vanadate, silicate, and nitrate was proposed for inhibition of AZ91D and prevention of galvanic corrosion.

  8. Heat Radiators for Electromagnetic Pumps

    Science.gov (United States)

    Campana, R. J.

    1986-01-01

    Report proposes use of carbon/carbon composite radiators in electromagnetic coolant pumps of nuclear reactors on spacecraft. Carbon/carbon composite materials function well at temperatures in excess of 2,200 K. Aluminum has melting temperature of only 880 K.

  9. Use of a PKZh-902 instrument for monitoring solid phases in an organic coolant

    Energy Technology Data Exchange (ETDEWEB)

    Gavrillin, A.I.; Gagarin, S.I.; Sokolov, V.E.; Zabelin, A.I.

    1986-11-01

    Preliminary tests have been performed with a PKZh-902 in checking feed and circulating coolant, and also in evaluating the performance of the cleaning devices. The test program involved determining the stability of the esnsor materials in ditolymethane, examining the effects of radioactive products and those of the optical characteristics of impurities in the first-loop coolant on the readings and errors of measurement, and checking the scope for using the instrument for continuous monitoring of particle concentrations. Results confirm that the PKZh-902 enables one to monitor the composition and concentration of the solid dispersed phase reliably and with adequate accuracy in the feed coolant. The use for monitoring the loop coolant requires additonal research.

  10. Test bench for operational investigation of photovoltaic pumping systems; Bancada de ensaio para averiguacao operacional de sistemas fotovoltaicos de bombeamento

    Energy Technology Data Exchange (ETDEWEB)

    Brito, Alaan Ubaiara; Fedrizzi, Maria Cristina; Zilles, Roberto [Universidade de Sao Paulo (IEE/USP), SP (Brazil). Inst. de Eletrotecnica e Energia], Emails: alaan@iee.usp.br, fedrizzi@iee.usp.br, zilles@iee.usp.br

    2006-07-01

    From the daily water demand, total head and the daily average irradiation, is possible to determine the size of the PV generator for pumping systems. However, once the equipment is acquired some tests are recommended, specially to verify its performance. One of the most relevant parameters to qualify a pumping system is the daily water delivered (m{sup 3}/day) as a function of daily solar irradiation (Wh/m{sup 2}). Facilities that fit different boundaries conditions, as for example constant total head (m) are not easily available, and just few laboratories have this capability. In this way a simple instrumentation with the capability to determine the daily performance of PV pumping systems is presented. The proposed test tools use a hydraulic circuit with two pumps, one connected to the PV system and the other to the electric grid. The total head is maintained constant by the variable speed drive connected to the grid. (author)

  11. Natural convection heat transfer characteristics of the molten metal pool with solidification by boiling coolant

    Energy Technology Data Exchange (ETDEWEB)

    Cho, Jae Seon; Suh, Kune Yull; Chung, Chang Hyun [Seoul National University, Seoul (Korea, Republic of); Paark, Rae Joon; Kim, Sang Baik [Korea Atomic Energy Research Institute, Taejon (Korea, Republic of)

    1997-12-31

    This paper presents results of experimental studies on the heat transfer and solidification of the molten metal pool with overlying coolant with boiling. The metal pool is heated from the bottom surface and coolant is injected onto the molten metal pool. Ad a result, the crust, which is a solidified layer, may form at the top of the molten metal pool. Heat transfer is accomplished by a conjugate mechanism, which consists of the natural convection of the molten metal pool, the conduction in the crust layer and the convective boiling heat transfer in the coolant. This work examines the crust formation and the heat transfer rate on the molten metal pool with boiling coolant. The simulant molten pool material is tin (Sn) with the melting temperature of 232 deg C. Demineralized water is used as the working coolant. The crust layer thickness was ostensibly varied by the heated bottom surface temperature of the test section, but not much affected by the coolant injection rate. The correlation between the Nusselt number and the Rayleigh number in the molten metal pool region of this study is compared against the crust formation experiment without coolant boiling and the literature correlations. The present experimental results are higher than those from the experiment without coolant boiling, but show general agreement with the Eckert correlation, with some deviations in the high and low ends of the Rayleigh number. This discrepancy is currently attributed to concurrent rapid boiling of the coolant on top of the metal layer. 10 refs., 4 figs., 1 tab. (Author)

  12. Testing a Quantum Heat Pump with a Two-Level Spin

    Directory of Open Access Journals (Sweden)

    Luis A. Correa

    2016-04-01

    Full Text Available Once in its non-equilibrium steady state, a nanoscale system coupled to several heat baths may be thought of as a “quantum heat pump”. Depending on the direction of its stationary heat flows, it may function as, e.g., a refrigerator or a heat transformer. These continuous heat devices can be arbitrarily complex multipartite systems, and yet, their working principle is always the same: they are made up of several elementary three-level stages operating in parallel. As a result, it is possible to devise external “black-box” testing strategies to learn about their functionality and performance regardless of any internal details. In particular, one such heat pump can be tested by coupling a two-level spin to one of its “contact transitions”. The steady state of this external probe contains information about the presence of heat leaks and internal dissipation in the device and, also, about the direction of its steady-state heat currents. Provided that the irreversibility of the heat pump is low, one can further estimate its coefficient of performance. These techniques may find applications in the emerging field of quantum thermal engineering, as they facilitate the diagnosis and design optimization of complex thermodynamic cycles.

  13. Turbulent Dispersion of Film Coolant and Hot Streaks in a Turbine Vane Cascade

    Science.gov (United States)

    2015-01-18

    configuration due to the large amounts of turning in the test section geometry and measurement techniques such as hot wire anemometry or temperature probe...Approved for Public Release; Distribution Unlimited Final Report: Turbulent Dispersion of Film Coolant and Hot Streaks in a Turbine Vane Cascade The...reviewed journals: Final Report: Turbulent Dispersion of Film Coolant and Hot Streaks in a Turbine Vane Cascade Report Title Magnetic resonance

  14. Investigation of sewer exfiltration using integral pumping tests and wastewater indicators

    Science.gov (United States)

    Leschik, Sebastian; Musolff, Andreas; Martienssen, Marion; Krieg, Ronald; Bayer-Raich, Marti; Reinstorf, Frido; Strauch, Gerhard; Schirmer, Mario

    2009-11-01

    Leaky sewers affect urban groundwater by the exfiltration of untreated wastewater. However, the impact of sewer exfiltration on the groundwater is poorly understood. Most studies on sewer exfiltration focus on water exfiltration, but not on the impact on groundwater quality. In this paper we present a new monitoring approach to estimate mass flow rates Mex of different wastewater indicators (WWIs) from leaky sewers by applying integral pumping tests (IPTs). The problem of detecting and assessing heterogeneous concentrations in the vicinity of leaky sewers can be overcome with the IPT approach by the investigation of large groundwater volumes up- and downstream of leaky sewers. The increase in concentrations downstream of a leaky sewer section can be used to calculate Mex with a numerical groundwater model. The new monitoring approach was first applied using four IPT wells in Leipzig (Germany). Over a pumping period of five days we sampled five inorganic WWIs: B , Cl -, K +, NO 3-, NH 4+ and three xenobiotics: bisphenol-a, caffeine and tonalide. The resulting concentration-time series indicated an influence of wastewater at one IPT well downstream of the leaky sewer. We defined ranges of Mex by implementing the uncertainty of chemical analyses. The results showed a Mex of 0-10.9 g m - 1 d - 1 . The combination of Mex with wastewater concentrations from the target sewer yielded an exfiltration rate Qex of 28.0-63.9 L m - 1 d - 1 for the conservative ion Cl -. Most non-conservative WWIs showed reduced mass flow rates in the groundwater downstream of the leaky sewer that indicate a mass depletion during their passage from the sewer to the pumping well. Application of the IPT methodology at other field sites is possible. The IPT monitoring approach provides reliable Mex values that can help to assess the impact of leaky sewers on groundwater.

  15. Water coolant supply in relation to different ultrasonic scaler systems, tips and coolant settings

    NARCIS (Netherlands)

    Koster, T.J.G.; Timmerman, M.F.; Feilzer, A.J.; van der Velden, U.; van der Weijden, F.A.

    2009-01-01

    Objective: This study evaluated "in vitro" the consistency of the water coolant supply for five ultrasonic scaler systems in relation to the tip type and different coolant settings. Material and Methods: The systems were: EMS PM-400, EMS PM-600, Satelec P-max, Dürr Vector and Dentsply Cavitron. For

  16. Measurement and Evaluation of Heating Performance of Heat Pump Systems Using Wasted Heat from Electric Devices for an Electric Bus

    Directory of Open Access Journals (Sweden)

    Moo-Yeon Lee

    2012-03-01

    Full Text Available The objective of this study is to investigate heating performance characteristics of a coolant source heat pump using the wasted heat from electric devices for an electric bus. The heat pump, using R-134a, is designed for heating a passengers’ compartment by using discharged energy from the coolant of electric devices, such as motors and inverters of the electric bus. The heating performance of the heat pump was tested by varying the operating parameters, such as outdoor temperature and volume flow rate of the coolant water of the electrical devices. Heating capacity, compressor work, and heating COP were measured; their behaviors with regard to the parameters were observed. Experimental results showed that heating COP increased with decrease of outdoor temperature, from 20.0 °C to 0 °C, and it observed to be 3.0 in the case of 0 °C outdoor temperature. The observed characteristics of the heating COP suggest that the heat pump is applicable as the cabin heater of an electric vehicle, which is limited by short driving range.

  17. Monitoring of small heat pumps using standardised tests in 2009; Monitoring von Klein-Waermepumpen mittels Normpruefungen 2009 - Schlussbericht

    Energy Technology Data Exchange (ETDEWEB)

    Eschmann, M.

    2010-02-15

    This final report for the Swiss Federal Office of Energy (SFOE) reports on the monitoring in 2009 of small heat pumps with heating powers up to 100 kW using standardised tests. The authors note that, in 2009, more heat pump tests were carried out than in the years before as a result of improved facilities and procedures. Also, after initial improvement in previous years, Coefficient of Performance (COP) values have deteriorated. This is, according to the authors, due to lower prices on the market. This means that heat pumps are built cost-optimised and are not developed to reach the maximum energetic efficiency. The tests carried out are listed and the results obtained are presented in graphical form and commented on. The EHPA/DACH quality label and the required COP values are reviewed.

  18. Design and performance test of miniature capillary pumped loop for electronics cooling

    Institute of Scientific and Technical Information of China (English)

    万珍平; 皮丕辉; 付永清; 汤勇

    2008-01-01

    Considering two characteristics of compact heat dissipation room and high heat flux, a novel miniature capillary pumped loop (MCPL) for electronics cooling was proposed. MCPL consists of evaporator, condenser, vapor and liquid line dissipates heat by boiling and condensation of working fluids with no extra power consumption. Working fluid circulation is ensured by vapor pressure and capillary head. Saturated wick screens vapor and liquid, and ensures one-way flow of working fluid with no extra valve. In order to promote heat dissipation capacity of MCPL, the intensified boiling and condensation structures are embedded into evaporator and condenser respectively, which are useful to increasing boiling and condensation efficiency. Startup and run characteristics are tested by experiments in the condition of different power inputs and working fluids. MCPL is capable of dissipating 80 W of thermal energy and keeping the bottom substrate temperature of evaporator at 80 ℃.

  19. Performing Pumping Test Data Analysis Applying Cooper-Jacob’s Method for Estimating of the Aquifer Parameters

    Directory of Open Access Journals (Sweden)

    Dana Khider Mawlood

    2016-06-01

    Full Text Available Single well test is more common than aquifer test with having observation well, since the advantage of single well test is that the pumping test can be conducted on the production well with the absence of observation well. A kind of single well test, which is step-drawdown test used to determine the efficiency and specific capacity of the well, however in case of single well test it is possible to estimate Transmissivity, but the other parameter which is Storativity is overestimated, so the aim of this study is to analyze four pumping test data located in KAWRGOSK area by using cooper-Jacob’s (1946 time drawdown approximation of Theis method to estimate the aquifer parameters, also in order to determine the reasons which are affecting the reliability of the Storativity value and obtain the important aspect behind that in practice.

  20. Technology of high-temperature organic coolant

    Energy Technology Data Exchange (ETDEWEB)

    Vorobei, M.P.; Makin, R.S.; Kuprienko, V.A. [and others

    1993-12-31

    A wide range of studies were carried out in RIAR on the problems connected with the use of high-temperature organic coolant at nuclear power plants. The work performed and successful experience gained in persistent operation of the ARBUS reactor confirmed the inherent safety characteristics, high operational reliability, as well as improved safety of stations with similar reactors. A large scope of studies were carried out at the ARBUS pilot reactor and loop with the organic coolant of the MIR reactor and a wide range of problems were solved. The studies are described.

  1. On-Line Coolant Chemistry Analysis

    Energy Technology Data Exchange (ETDEWEB)

    LM Bachman

    2006-07-19

    Impurities in the gas coolant of the space nuclear power plant (SNPP) can provide valuable indications of problems in the reactor and an overall view of system health. By monitoring the types and amounts of these impurities, much can be implied regarding the status of the reactor plant. However, a preliminary understanding of the expected impurities is important before evaluating prospective detection and monitoring systems. Currently, a spectroscopy system is judged to hold the greatest promise for monitoring the impurities of interest in the coolant because it minimizes the number of entry and exit points to the plant and provides the ability to detect impurities down to the 1 ppm level.

  2. Application of integral pumping tests to investigate the influence of a losing stream on groundwater quality

    Science.gov (United States)

    Leschik, S.; Musolff, A.; Krieg, R.; Martienssen, M.; Bayer-Raich, M.; Reinstorf, F.; Strauch, G.; Schirmer, M.

    2009-10-01

    Losing streams that are influenced by wastewater treatment plant effluents and combined sewer overflows (CSOs) can be a source of groundwater contamination. Released micropollutants such as pharmaceuticals, endocrine disrupters and other ecotoxicologically relevant substances as well as inorganic wastewater constituents can reach the groundwater, where they may deteriorate groundwater quality. This paper presents a method to quantify exfiltration mass flow rates per stream length unit Mex of wastewater constituents from losing streams by the operation of integral pumping tests (IPTs) up- and downstream of a target section. Due to the large sampled water volume during IPTs the results are more reliable than those from conventional point sampling. We applied the method at a test site in Leipzig (Germany). Wastewater constituents K+ and NO3- showed Mex values of 1241 to 4315 and 749 to 924 mg mstream-1 d-1, respectively, while Cl- (16.8 to 47.3 g mstream-1 d-1) and SO42- (20.3 to 32.2 g mstream-1 d-1) revealed the highest observed Mex values at the test site. The micropollutants caffeine and technical-nonylphenol were dominated by elimination processes in the groundwater between upstream and downstream wells. Additional concentration measurements in the stream and a connected sewer at the test site were performed to identify relevant processes that influence the concentrations at the IPT wells.

  3. Study on testing method of Roots pump%罗茨真空泵试验方法的研究

    Institute of Scientific and Technical Information of China (English)

    王西龙; 罗根松; 朱赛赛; 王玲玲

    2011-01-01

    The pumping speed and ultimate pressure is the basic performance of a Roots pump, but both rely on the type and performance of its backing pump to a great extent. It implies that the two parameters cannot represent the essential characteristics of Roots pumps. What represent the essential characteristics of Roots pumps include the zero flow compression ratio, maximum permissible differential pressure and the differential pressure of overflow valve, leakage rate and noise, and all of them are irrelevant to the hacking pump but closely relevant to the vacuum conditions, evacuating capacity and operating conditions of Roots pumps. The testing methods and relevant devices of Roots pumps' characteristic properties are investigated and, as a result, some penetrating and distinctive ideas dissimilar to existing domestic/foreign standards are put forward.%罗茨泵的抽气速率和极限压力是泵的主要性能,但它在很大程度上要依赖于前级泵的型式和性能,因此它并不是罗茨泵本身特有的性能.能代表罗茨泵特征性能,而又与前级泵无关的是零流量压缩比、最大允许压差与溢流阀压差、漏率和噪声,它们与罗茨泵的真空状态、抽气性能和运行质量有着极其密切的关系.文中对特征性能的试验方法和装置进行了分析和研究,提出了有异于国内外现行标准的,更精粹、独特的见解.

  4. Application of Integral Pumping Tests to estimate the influence of losing streams on groundwater quality

    Science.gov (United States)

    Leschik, S.; Musolff, A.; Reinstorf, F.; Strauch, G.; Schirmer, M.

    2009-05-01

    Urban streams receive effluents of wastewater treatment plants and untreated wastewater during combined sewer overflow events. In the case of losing streams substances, which originate from wastewater, can reach the groundwater and deteriorate its quality. The estimation of mass flow rates Mex from losing streams to the groundwater is important to support groundwater management strategies, but is a challenging task. Variable inflow of wastewater with time-dependent concentrations of wastewater constituents causes a variable water composition in urban streams. Heterogeneities in the structure of the streambed and the connected aquifer lead, in combination with this variable water composition, to heterogeneous concentration patterns of wastewater constituents in the vicinity of urban streams. Groundwater investigation methods based on conventional point sampling may yield unreliable results under these conditions. Integral Pumping Tests (IPT) can overcome the problem of heterogeneous concentrations in an aquifer by increasing the sampled volume. Long-time pumping (several days) and simultaneous sampling yields reliable average concentrations Cav and mass flow rates Mcp for virtual control planes perpendicular to the natural flow direction. We applied the IPT method in order to estimate Mex of a stream section in Leipzig (Germany). The investigated stream is strongly influenced by combined sewer overflow events. Four pumping wells were installed up- and downstream of the stream section and operated for a period of five days. The study was focused on four inorganic (potassium, chloride, nitrate and sulfate) and two organic (caffeine and technical-nonylphenol) wastewater constituents with different transport properties. The obtained concentration-time series were used in combination with a numerical flow model to estimate Mcp of the respective wells. The difference of the Mcp's between up- and downstream wells yields Mex of wastewater constituents that increase

  5. Mathematical Model-Based Temperature Preparation of Liquid-Propellant Components Cooled by Liquid Nitrogen in the Heat Exchanger with a Coolant

    Directory of Open Access Journals (Sweden)

    S. K. Pavlov

    2014-01-01

    Full Text Available Before fuelling the tanks of missiles, boosters, and spacecraft with liquid-propellant components (LPC their temperature preparation is needed. The missile-system ground equipment performs this operation during prelaunch processing of space-purpose missiles (SPM. Usually, the fuel cooling is necessary to increase its density and provide heat compensation during prelaunch operation of SPM. The fuel temperature control systems (FTCS using different principles of operation and types of coolants are applied for fuel cooling.To determine parameters of LPC cooling process through the fuel heat exchange in the heat exchanger with coolant, which is cooled by liquid nitrogen upon contact heat exchange in the coolant reservoir, a mathematical model of this process and a design technique are necessary. Both allow us to determine design parameters of the cooling system and the required liquid nitrogen reserve to cool LPC to the appropriate temperature.The article presents an overview of foreign and domestic publications on cooling processes research and implementation using cryogenic products such as liquid nitrogen. The article draws a conclusion that it is necessary to determine the parameters of LPC cooling process through the fuel heat exchange in the heat exchanger with coolant, which is liquid nitrogen-cooled upon contact heat exchange in the coolant reservoir allowing to define rational propellant cooling conditions to the specified temperature.The mathematical model describes the set task on the assumption that a heat exchange between the LPC and the coolant in the heat exchanger and with the environment through the walls of tanks and pipelines of circulation loops is quasi-stationary.The obtained curves allow us to calculate temperature changes of LPC and coolant, cooling time and liquid nitrogen consumption, depending on the process parameters such as a flow rate of liquid nitrogen, initial coolant temperature, pump characteristics, thermal

  6. Development and testing of mini heat pump for low-energy houses. Final report; Udvikling og test af minivarmepumpe til lavenergihuse. Slutrapport

    Energy Technology Data Exchange (ETDEWEB)

    Pedersen, Per Henrik; Madsen, Claus; Frederiksen, Klaus; Andreasen, Marcin Blazniak (Teknologisk Institut, Koele- og Varmepumpeteknik, Taastrup (Denmark))

    2010-11-15

    New residential houses are better insulated, and this reduces the need for heat during the winter period. In addition to this many new houses have floor heating systems. This combination is favourable for small heat pumps which can produce heat to central water systems with low water temperatures in the area 25 to 35 C. 4 prototypes of mini heat pumps of the brine/water type was build and tested in the refrigeration laboratory at the Danish Technological Institute (DTI). The prototypes are using a variable speed compressor (Danfoss SLV12) which originally is developed for plug-in supermarket cabinets. The heating capacity of the prototypes can vary between 1.0 and 2.1 kW. The refrigerant charge is 150 grams of R290 (propane). Two prototypes are charged with 375 grams of R134a. Tests were conducted following EN14511 at 0/+35 C and COP was measured to between 3.2 and 3.6 depending of the compressor speed and the type of plate heat exchangers used. This is quite good for such small machines. One of the prototypes was installed in the Energy Flex House which is a new highly insulated test house build at the DTI. The house was equipped with two heat pumps: 1. An exhaust air heat pump taking energy from exhaust air and producing hot tap water and heating the intake air; 2. A mini heat pump for floor heating taking energy from ground source outside the house. A family with four persons lives in the house. During the cold winter 2009/2010 the mini heat pump showed good performance and the COP varies between 2.0 and 4.0. The lower value was caused by a fault in the floor heating hoses, which made it necessary to increase the temperature of the central heating water, which decreased the efficiency of the heat pump during the coldest winter period. The floor heating system has been repaired, and a new prototype heat pump with a slightly bigger compressor has been installed for the heating season 2010/2011. A heat pump manufacturer is now producing this combination of exhaust

  7. Flow to partially penetrating wells in unconfined heterogeneous aquifers: Mean head and interpretation of pumping tests

    Science.gov (United States)

    Dagan, G.; Lessoff, S. C.

    2011-06-01

    A partially penetrating well of length Lw and radius Rw starts to pump at constant discharge Qw at t = 0 from an unconfined aquifer of thickness D. The aquifer is of random and stationary conductivity characterized by KG (geometric mean), σY2 (log conductivity variance), and I and Iv (the horizontal and vertical integral scales). The flow problem is solved under a few simplifying assumptions commonly adopted in the literature for homogeneous media: Rw/Lw ≪ 1, linearization of the free surface condition, and constant drainable porosity n. Additionally, it is assumed that Rw/I and the associated water table equation. The main result of the analysis is that the flow domain can be divided into three zones for : (1) the neighborhood of the well R ≪ I, where = (Qw/LwKA)h0(R, z, tKefuv/nD), with h0 being the zero-order solution pertaining to a homogeneous and isotropic aquifer, KA being the conductivity arithmetic mean, and Kefuv being the effective vertical conductivity in mean uniform flow, (2) an exterior zone R ⪆ I in which ?H? = (Qw/LwKefuh)h0(R?, z, tKefuv/nD), with Kefuh being the horizontal effective conductivity, and (3) an intermediate zone in which the solution requires a few numerical quadratures, not carried out here. The application to pumping tests reveals that identification of the aquifer parameters for homogeneous and anisotropic aquifers by commonly used methods can be applied for the drawdown measured in an observation well of length Low?Iv (to ensure exchange of space and ensemble head averages) in the second zone in order to identify Kefuh, Kefuv, and n. In contrast, the use of the drawdown in the well (first zone) leads to an overestimation of Kefuh by the factor KA/Kefuh.

  8. NGNP Reactor Coolant Chemistry Control Study

    Energy Technology Data Exchange (ETDEWEB)

    Brian Castle

    2010-11-01

    The main focus of this paper is to identify the most desirable ranges of impurity levels in the primary coolant to optimize component life in the primary circuit of the Next Generation Nuclear Plant (NGNP), which will either be a prismatic block or pebble bed reactor.

  9. Joint inversion of hydraulic head and self-potential data associated with harmonic pumping tests

    Science.gov (United States)

    Soueid Ahmed, A.; Jardani, A.; Revil, A.; Dupont, J. P.

    2016-09-01

    Harmonic pumping tests consist in stimulating an aquifer by the means of hydraulic stimulations at some discrete frequencies. The inverse problem consisting in retrieving the hydraulic properties is inherently ill posed and is usually underdetermined when considering the number of well head data available in field conditions. To better constrain this inverse problem, we add self-potential data recorded at the ground surface to the head data. The self-potential method is a passive geophysical method. Its signals are generated by the groundwater flow through an electrokinetic coupling. We showed using a 3-D saturated unconfined synthetic aquifer that the self-potential method significantly improves the results of the harmonic hydraulic tomography. The hydroelectric forward problem is obtained by solving first the Richards equation, describing the groundwater flow, and then using the result in an electrical Poisson equation describing the self-potential problem. The joint inversion problem is solved using a reduction model based on the principal component geostatistical approach. In this method, the large prior covariance matrix is truncated and replaced by its low-rank approximation, allowing thus for notable computational time and storage savings. Three test cases are studied, to assess the validity of our approach. In the first test, we show that when the number of harmonic stimulations is low, combining the harmonic hydraulic and self-potential data does not improve the inversion results. In the second test where enough harmonic stimulations are performed, a significant improvement of the hydraulic parameters is observed. In the last synthetic test, we show that the electrical conductivity field required to invert the self-potential data can be determined with enough accuracy using an electrical resistivity tomography survey using the same electrodes configuration as used for the self-potential investigation.

  10. Heat pump field test in Maastricht, Netherlands. Praktijkproef met een warmtepomp in Limburg

    Energy Technology Data Exchange (ETDEWEB)

    Bassols, J. (Colibri Engineering Bureau (Netherlands)); Hamers, W.J.H. (NOVEM, Sittard (Netherlands)); Paulussen, M.J.M. (MEGA Limburg, Maastricht (Netherlands))

    1993-06-01

    A newly developed absorption heat pump has been fitted to an existing heating installation of the provincial government building in Maastricht, Netherlands. Major adjustments of the existing installation were necessary before the heat pump could be fitted in hydraulically. It is expected that considerable energy savings and reductions of NO-x and CO[sub 2] emissions can be realized.

  11. An Improved Design for Air Removal from Aerospace Fluid Loop Coolant Systems

    Science.gov (United States)

    Ritchie, Stephen M. C.; Holladay, Jon B.; Holt, J. Mike; Clark, Dallas W.

    2003-01-01

    Aerospace applications with requirements for large capacity heat removal (launch vehicles, platforms, payloads, etc.) typically utilize a liquid coolant fluid as a transport media to increase efficiency and flexibility in the vehicle design. An issue with these systems however, is susceptibility to the presence of noncondensable gas (NCG) or air. The presence of air in a coolant loop can have numerous negative consequences, including loss of centrifugal pump prime, interference with sensor readings, inhibition of heat transfer, and coolant blockage to remote systems. Hardware ground processing to remove this air is also cumbersome and time consuming which continuously drives recurring costs. Current systems for maintaining the system free of air are tailored and have demonstrated only moderate success. An obvious solution to these problems is the development and advancement of a passive gas removal device, or gas trap, that would be installed in the flight cooling system simplifying the initial coolant fill procedure and also maintaining the system during operations. The proposed device would utilize commercially available membranes thus increasing reliability and reducing cost while also addressing both current and anticipated applications. In addition, it maintains current pressure drop, water loss, and size restrictions while increasing tolerance for pressure increases due to gas build-up in the trap.

  12. Application of integral pumping tests to investigate the influence of a losing stream on groundwater quality

    Directory of Open Access Journals (Sweden)

    S. Leschik

    2009-06-01

    Full Text Available Losing streams that are influenced by wastewater treatment plant effluents and combined sewer overflows (CSO's can be a source of groundwater contamination. Released micropollutants such as pharmaceuticals, endocrine disrupters and other ecotoxicologically relevant substances as well as inorganic wastewater constituents can reach the groundwater, where they may deteriorate groundwater quality. This paper presents a method to quantify exfiltration mass flow rates Mex of wastewater constituents from losing streams by the operation of integral pumping tests (IPT's up- and downstream of a target section. Due to the large sampled water volume during IPT's the results are more reliable than those from conventional point sampling. We applied the method at a test site in Leipzig (Germany. Wastewater constituents K+ and NO3 showed Mex values of 1241 to 4315 and 749 to 924 mg m−1stream d−1, respectively, while Cl (16.8 to 47.3 g m−1stream d−1 and SO42− (20.3 to 32.2 g m−1stream d−1 revealed the highest observed Mex values at the test site. The micropollutants caffeine and technical-nonylphenol were dominated by elimination processes in the groundwater between upstream and downstream wells. Additional concentration measurements in the stream and a connected sewer at the test site were performed to identify relevant processes that influence the concentrations at the IPT wells.

  13. Application of integral pumping tests to investigate the influence of a losing stream on groundwater quality

    Directory of Open Access Journals (Sweden)

    S. Leschik

    2009-10-01

    Full Text Available Losing streams that are influenced by wastewater treatment plant effluents and combined sewer overflows (CSOs can be a source of groundwater contamination. Released micropollutants such as pharmaceuticals, endocrine disrupters and other ecotoxicologically relevant substances as well as inorganic wastewater constituents can reach the groundwater, where they may deteriorate groundwater quality. This paper presents a method to quantify exfiltration mass flow rates per stream length unit Mex of wastewater constituents from losing streams by the operation of integral pumping tests (IPTs up- and downstream of a target section. Due to the large sampled water volume during IPTs the results are more reliable than those from conventional point sampling. We applied the method at a test site in Leipzig (Germany. Wastewater constituents K+ and NO3 showed Mex values of 1241 to 4315 and 749 to 924 mg mstream−1 d−1, respectively, while Cl (16.8 to 47.3 g mstream−1 d−1 and SO42− (20.3 to 32.2 g mstream−1 d−1 revealed the highest observed Mex values at the test site. The micropollutants caffeine and technical-nonylphenol were dominated by elimination processes in the groundwater between upstream and downstream wells. Additional concentration measurements in the stream and a connected sewer at the test site were performed to identify relevant processes that influence the concentrations at the IPT wells.

  14. Study and Test of Cold Storage Heat Recovery Heat Pump Coupled Solar Drying Device

    Directory of Open Access Journals (Sweden)

    Min Li

    2013-05-01

    Full Text Available In this study, we design the recovery of a heat pump combined solar drying device. Then, with this device, drying experiments of aquatic product, tilapia, were conducted, indicating that the newly designed device functions are well in temperature adjusting and controlling performance and showing that drying time is closely related to energy consumption and drying conditions. Heat recovery heat pump combined solar energy drier can improve the drying quality of aquatic products, but also can greatly reduce the drying energy consumption, which provides theoretical support to the design and processing of heat recovery heat pump of refrigeration system coupled solar drying device.

  15. Design, development and testing of a solar-powered multi-family residential size prototype turbocompressor heat pump

    Energy Technology Data Exchange (ETDEWEB)

    None

    1981-03-01

    A program described to design, fabricate, and conduct preliminary testing of a prototype solar-powered Rankine cycle turbocompressor heat pump module for a multi-family residential building is presented. A solar system designed to use the turbocompressor heat pump module including all of the subsystems required and the various system operating modes is described in Section I. Section II includes the preliminary design analyses conducted to select the heat pump module components and operating features, working fluid, configuration, size and performance goals, and estimated performance levels in the cooling and heating modes. Section III provides a detailed description of the other subsystems and components required for a complete solar installation. Using realistic performance and cost characteristics for all subsystems, the seasonal performance of the UTC heat pump is described in various US locations. In addition, the estimated energy savings and an assessment of the economic viability of the solar system is presented in Section III. The detailed design of the heat pump module and the arrangement of components and controls selected to conduct the laboratory performance tests are described in Section IV. Section V provides a description of the special laboratory test facility, including the subsystems to simulate the collectors and storage tanks for building load and ambient conditions and the instrumentation, monitoring, and data acquisition equipment. The test results and sample computer analyses and comparisons with predicted performance levels are presented in Section VI. Various appendices provide supplementary and background information concerning working fluid selection (A), configuration selection (B), capacity control concepts (C), building models (D), computer programs used to determine component and system performance and total system economics (E), and weather data (F).

  16. Testing eccentricity pumping mechanisms to model eccentric long period sdB binaries with MESA

    CERN Document Server

    Vos, Joris; Marchant, Pablo; Van Winckel, Hans

    2015-01-01

    Hot subdwarf-B stars in long-period binaries are found to be on eccentric orbits, even though current binary-evolution theory predicts those objects to be circularised before the onset of Roche-lobe overflow (RLOF). We aim to find binary-evolution mechanisms that can explain these eccentric long-period orbits, and reproduce the currently observed period-eccentricity diagram. Three different processes are considered; tidally-enhanced wind mass-loss, phase-dependent RLOF on eccentric orbits and the interaction between a circumbinary disk and the binary. The binary module of the stellar-evolution code MESA (Modules for Experiments in Stellar Astrophysics) is extended to include the eccentricity-pumping processes. The effects of different input parameters on the final period and eccentricity of a binary-evolution model are tested with MESA. The end products of models with only tidally-enhanced wind mass-loss can indeed be eccentric, but these models need to lose too much mass, and invariably end up with a helium ...

  17. Study and Test of Cold Storage Heat Recovery Heat Pump Coupled Solar Drying Device

    OpenAIRE

    Min Li; Xiao-Qiang Jiang; Bao-Chuan Wu

    2013-01-01

    In this study, we design the recovery of a heat pump combined solar drying device. Then, with this device, drying experiments of aquatic product, tilapia, were conducted, indicating that the newly designed device functions are well in temperature adjusting and controlling performance and showing that drying time is closely related to energy consumption and drying conditions. Heat recovery heat pump combined solar energy drier can improve the drying quality of aquatic products, but also can gr...

  18. Enhancing resistance to burnout via coolant chemistry

    Energy Technology Data Exchange (ETDEWEB)

    Tu, J. P.; Dinh, T. N.; Theofanous, T. G. [Univ. of California, Santa Barbara (United States)

    2003-07-01

    Boiling Crisis (BC) on horizontal, upwards-facing copper and steel surfaces under the influence of various coolant chemistries relevant to reactor containment waters is considered. In addition to Boric Acid (BA) and TriSodium Phosphate (TSP), pure De-Ionized Water (DIW) and Tap Water (TW) are included in experiments carried out in the BETA facility. The results are related to a companion paper on the large scale ULPU facility.

  19. Use of ethanolamine for alkalization of secondary coolant. First experience at VVER reactor

    Energy Technology Data Exchange (ETDEWEB)

    Smiesko, I. [NPP Jaslovske Bohunice (Slovakia); Bystriansky, J. [TEDIS-KOR, Dobra (Czech Republic); Szalo, A. [NPPRI Trnava (Slovakia)

    2002-07-01

    The paper summarises preparatory work and results of six-week plant trial aimed at use of ethanolamine for alkalization of secondary coolant. Operational data in pre-test and test period are given and outage inspection results are commented. Future plans are outlined. (authors)

  20. Use of expert judgment in the development and evaluation of risk-based inservice testing strategies for pumps and valves

    Energy Technology Data Exchange (ETDEWEB)

    McAllister, W.J.; Perdue, R.K.; Balkey, K.R.; Closky, N.B. [and others

    1996-12-01

    This paper describes a rigorous approach for quantitatively evaluating inservice testing effectiveness that evolved from two pilot plant studies. These studies prototyped methodologies for designing and selecting inservice testing (IST) strategies in a manner structured to insure that the targeted components will perform their required safety functions while minimizing life cycle inservice testing costs. The paper concentrates on the use of expert judgment in developing test effectiveness measures that move risk-based methods beyond ranking to optimization of plant IST programs. Selected results for check valves and pumps are shown to illustrate the practical significance of the approach.

  1. Exploring new coolants for nuclear breeder reactors

    Energy Technology Data Exchange (ETDEWEB)

    Lafuente, A., E-mail: anlafuente@etsii.upm.e [ETSII-UPM, c/Jose Gutierrez Abascal, 2, 28006 Madrid (Spain); Piera, M. [ETSII:UNED, c/Juan del Rosal, 12, 28040 Madrid (Spain)

    2010-06-15

    Breeder reactors are considered a unique tool for fully exploiting natural nuclear resources. In current Light Water Reactors (LWR), only 0.5% of the primary energy contained in the nuclei removed from a mine is converted into useful heat. The rest remains in the depleted uranium or spent fuel. The need to improve resource-efficiency has stimulated interest in Fast-Reactor-based fuel cycles, which can exploit a much higher fraction of the energy content of mined uranium by burning U-238, mainly after conversion into Pu-239. Thorium fuel cycles also offer several potential advantages over a uranium fuel cycle. The coolant initially selected for most of the FBR programs launched in the 1960s was sodium, which is still considered the best candidate for these reactors. However, Na-cooled FBRs have a positive void reactivity coefficient. Among other factors, this fundamental drawback has resulted in the canceled deployment of these reactors. Therefore, it seems reasonable to explore new options for breeder coolants. In this paper, a proposal is presented for a new molten salt (F{sub 2}Be) coolant that could overcome the safety issues related to the positive void reactivity coefficient of molten metal coolants. Although it is a very innovative proposal that would require an extensive R and D program, this paper presents the very appealing properties of this salt when using a specific type of fuel that is similar to that of pebble bed reactors. The F{sub 2}Be concept was studied over a typical MOX composition and extended to a thorium-based cycle. The general analysis took into account the requirements for criticality (opening the option of hybrid subcritical systems); the requirements for breeding; and the safety requirement of having a negative coolant void reactivity coefficient. A design window was found in the definition of a F{sub 2}Be cooled reactor where the safety requirement was met, unlike for molten metal-cooled reactors, which always have positive void

  2. Exploring new coolants for nuclear breeder reactors

    Energy Technology Data Exchange (ETDEWEB)

    Lafuente, A. [ETSI Industriales-Universidad Politecnica de Madrid, C/Jose Gutierrez Abascal, 2. 28006 Madrid (Spain)

    2010-07-01

    Breeder reactors are considered the unique tool for fully exploiting the natural nuclear resources. In current LWR, only a 0.5% of the primary energy contained in the nuclei removed from the mine is converted into useful heat, with the rest remaining in the depleted uranium or in the spent fuel. The objective of resource-efficiency stimulated the interest in Fast- Reactor-based fuel cycles which can exploit a much higher fraction of the energy content of the mined uranium by burning U-238, mainly after conversion into Pu-239. Thorium fuel cycles would also offers several potential advantages over a uranium fuel cycle. The coolant initially chosen for most of the FBR programs launched in the 60's was sodium, which still is considered the best candidate for these reactors. However, Na-cooled FBR have a positive void reactivity coefficient, which has been among others, a fundamental drawback that has cancelled the deployment of these reactors. Therefore, it seems reasonable to explore totally new options on coolants for breeders. In this paper, a proposal is presented on a new molten salt (F{sub 2}Be) coolant that could overcome the safety issues related to the positive void reactivity coefficient of molten metal coolants. Although it is a very innovative proposal that would need an extensive R and D programme, this paper presents the very appealing properties of this salt, in the case of using a specific type of fuel, similar to that of pebble bed reactors. The concept will be studied over a typical MOX composition and extended to a Thorium-based cycle. The general analysis takes into account requirements for criticality (opening the option of hybrid subcritical systems); requirements for breeding; and the safety requirement of having a negative coolant void reactivity coefficient. A design window is found in the definition of a F{sub 2}Be cooled reactor where the safety requirement is met, unlike for molten metal cooled reactors which always have positive void

  3. Performance Test and Flow Measurement of Contra-Rotating Axial Flow Pump

    Institute of Scientific and Technical Information of China (English)

    Akinori Furukawa; Toru Shigemitsu; Satoshi Watanabe

    2007-01-01

    An application of contra-rotating rotors has been proposed against a demand for developing higher specific speed axial flow pump. In the present paper, the advantage and disadvantage of using contra-rotating rotors are described in comparison with conventional type of rotor-stator, based on theoretical and experimental investigations. The advantages are as follows: (1) The pump is inherently designed as smaller sized and at lower rotational speed. (2) A stable head-characteristic curve for flow rate with negative slope appears. (3)As the rear rotor rotational speed is varied as independent control of front rotor, the wider range of high performance operation is obtained by rear rotor speed control in addition to front rotor speed control. The disadvantages are as follows: (1) The structure of double shaft system becomes complex. (2) The pump performance is inferior at over flow rate as the rear rotor loading is weakened. (3) The blade rows interaction from rear rotor to front rotor more strongly appears. Then the rear rotor design is a key to achieve higher pump performance. Some methods to overcome these disadvantages will be discussed in more details toward wider usage of contra-rotating axial flow pump in various industrial fields.

  4. 液压泵试验台系统设计%Research of Test System of Hydraulic Pump

    Institute of Scientific and Technical Information of China (English)

    阳宝元; 黄志坚; 何曼

    2015-01-01

    One test system of hydraulic pump which includes hydraulic system, electronic control system and computer control system is de-signed, and some critical types of components are selected. The whole system is simple, practical which can reliably and quickly test perfor-mance parameters of hydraulic pump.%设计了一种液压泵试验台系统,包括液压系统、电控系统和计算机测控系统,对系统的相关元件进行了选型,整个系统简单实用,能可靠、快捷地对液压泵的性能参数进行测试。

  5. Human Factors Process Task Analysis: Liquid Oxygen Pump Acceptance Test Procedure at the Advanced Technology Development Center

    Science.gov (United States)

    Diorio, Kimberly A.; Voska, Ned (Technical Monitor)

    2002-01-01

    This viewgraph presentation provides information on Human Factors Process Failure Modes and Effects Analysis (HF PFMEA). HF PFMEA includes the following 10 steps: Describe mission; Define System; Identify human-machine; List human actions; Identify potential errors; Identify factors that effect error; Determine likelihood of error; Determine potential effects of errors; Evaluate risk; Generate solutions (manage error). The presentation also describes how this analysis was applied to a liquid oxygen pump acceptance test.

  6. Measurement of Coolant in a Flat Heat Pipe Using Neutron Radiography

    Science.gov (United States)

    Mizuta, Kei; Saito, Yasushi; Goshima, Takashi; Tsutsui, Toshio

    A newly developed flat heat pipe FGHPTM (Morex Kiire Co.) was experimentally investigated by using neutron radiography. The test sample of the FGHP heat spreader was 65 × 65 × 2 mm3 composed of several etched copper plates and pure water was used as the coolant. Neutron radiography was performed at the E-2 port of the Kyoto University Research Reactor (KUR). The coolant distributions in the wick area of the FGHP and its heat transfer characteristics were measured at heating conditions. Experimental results show that the coolant distributions depend slightly on its installation posture and that the liquid thickness in the wick region remains constant with increasing heat input to the FGHP. In addition, it is found that the wick surface does not dry out even in the vertical posture at present experimental conditions.

  7. Simulating the corrosion of zirconium alloys in the water coolant of VVER reactors

    Science.gov (United States)

    Kritskii, V. G.; Berezina, I. G.; Motkova, E. A.

    2013-07-01

    A model for predicting the corrosion of cladding zirconium alloys depending on their composition and operating conditions is proposed. Laws of thermodynamics and chemical kinetics of the reactions through which the multicomponent zirconium alloy is oxidized in the reactor coolant constitute the physicochemical heart of the model. The developed version of the model is verified against the results obtained from tests of fuel rod claddings made of commercial-grade and experimental zirconium alloys carried out by different researchers under autoclave and reactor conditions. It is shown that the proposed model adequately describes the corrosion of alloys in coolants used at nuclear power stations. It is determined that, owing to boiling of coolant and its acidification in a VVER-1200 reactor, Zr-1% Nb alloys with additions of iron and oxygen must be more resistant to corrosion than the commercial-grade alloy E110.

  8. Experimental simulation of low rate primary coolant leaks. For the case of vessel head penetrations affected by through wall cracking

    Energy Technology Data Exchange (ETDEWEB)

    You, D.; Feron, D. [CEA-Saclay - DEN/DPC/SCCME, 91 - Gif-sur-Yvette (France); Turluer, G. [CEA-Fontenay-aux-Roses - IPSN/DES/SAMS, 92 - Fontenay-aux-Roses (France)

    2002-07-01

    An experimental simulation of primary coolant leaks was carried out to determine how the composition of the leaking liquid would change. The experiment used the EVA experimental setup, specially designed for quantitatively investigating concentration phenomena driven by evaporation. The test showed that the final composition, obtained from a solution representative of the primary coolant at the beginning of the cycle, is highly concentrated and slightly acid. The experimental results are compared with those obtained using the MULTEQ software. (authors)

  9. Membrane systems and their use in nuclear power plants. Treatment of primary coolant

    Energy Technology Data Exchange (ETDEWEB)

    Kus, Pavel; Bartova, Sarka; Skala, Martin; Vonkova, Katerina [Research Centre Rez, Husinec-Rez (Czech Republic). Technological Circuits Innovation Dept.; Zach, Vaclav; Kopa, Roman [CEZ a.s., Temelin (Czech Republic). Nuclear Power Plant Temelin

    2016-03-15

    In nuclear power plants, drained primary coolant containing boric acid is currently treated in the system of evaporators and by ion exchangers. Replacement of the system of evaporators by membrane system (MS) will result in lower operating cost mainly due to lower operation temperature. In membrane systems the feed primary coolant is separated into two output streams: retentate and permeate. Retentate stream consists of the concentrated boric acid solution together with other components, while permeate stream consists of purified water. Results are presented achieved by testing a pilot-plant unit of reverse osmosis in nuclear power plant (NPP) Temelin.

  10. Numerical and experimental investigation of surface vortex formation in coolant reservoirs of reactor safety systems

    Energy Technology Data Exchange (ETDEWEB)

    Pandazis, Peter [Gesellschaft fuer Anlagen- und Reaktorsicherheit (GRS) gGmbH, Garching (Germany); Babcsany, Boglarka [Budapest Univ. of Technology and Economics (Hungary). Inst. of Nuclear Techniques

    2016-11-15

    The reliable operation of the emergency coolant pumps and passive gravitational injection systems are an important safety issue during accident scenarios with coolant loss in pressurized water reactors. Because of the pressure drop and flow disturbances surface vortices develops at the pump intakes if the water level decreasing below a critical value. The induced swirling flow and gas entrainment lead to flow limitation and to pump failures and damages. The prediction of the critical submergence to avoid surface vortex building is difficult because it depends on many geometrical and fluid dynamical parameters. An alternative and new method has been developed for the investigation of surface vortices. The method based on the combination of CFD results with the analytical vortex model of Burgers and Rott. For further investigation the small scale experiments from the Institute of Nuclear Techniques of the Budapest University of Technology and Economics are used which were inspired from flow limitation problems during the draining of the bubble condenser trays at a VVER type nuclear power plants.

  11. Central Control of Heat Pump for Smart Grid Purposes Tested on Single Family Houses

    DEFF Research Database (Denmark)

    Pedersen, Tom S.; Andersen, Palle; Nielsen, Kirsten M.

    2013-01-01

    A challenge in Denmark in the near future is to balance the electrical grid due to a large increase in the renewable energy production mainly from wind turbines. In this work a central control system using heat pumps in single family houses to help balancing the grid is investigated. The central...

  12. Test investigation on hydraulic losses in the discharge passage of an axial-flow pump

    Institute of Scientific and Technical Information of China (English)

    QIU Baoyun; CAO Haihong; JIANG Wei; GAO Zhaohui; WANG Fei

    2007-01-01

    In a discharge passage with a guide blade dis- charge circulation and secondary flow because of bend pipe, the flow in a 1-channel discharge passage of an axial flow pump is a complicated spiral flow. For a 2-channel passage, the discharge in the left channel is bigger than that in the fight, and the passage hydraulic losses are abnormal. In this study, the section current energy of the passage is accurately mea- sured and determined with a 5-hole probe. The hydraulic loss characteristics are determined and analyzed. The methods deducing the hydraulic losses are investigated. The results indicate that the passage hydraulic losses are not proportional to the flow discharge. Compared with a circular pipe, the hydraulic losses of a divergent discharge passage are smaller and the pump assembly efficiency is 10%-30% higher. As for the 1-channel passage, the axial-flow pump outlet circulation is usually too big; the passage hydraulic losses are also big, but a small circulation can slightly reduce hydraulic losses. As for the 2-channel passage, discharges in the two channels are not equal and the hydraulic losses increase. The outlet guide blade with a small discharge circulation or without circulation could reduce discharge passage hydraulic losses and increase pump assembly efficiency by 6%-11%.

  13. Central Control of Heat Pump for Smart Grid Purposes Tested on Single Family Houses

    DEFF Research Database (Denmark)

    Pedersen, Tom S.; Andersen, Palle; Nielsen, Kirsten M.

    2013-01-01

    A challenge in Denmark in the near future is to balance the electrical grid due to a large increase in the renewable energy production mainly from wind turbines. In this work a central control system using heat pumps in single family houses to help balancing the grid is investigated. The central...

  14. Cryogenic-coolant He-4-superconductor interaction

    Science.gov (United States)

    Caspi, S.; Lee, J. Y.; Kim, Y. I.; Allen, R. J.; Frederking, T. H. K.

    1978-01-01

    The thermodynamic and thermal interaction between a type 2 composite alloy and cryo-coolant He4 was studied with emphasis on post quench phenomena of formvar coated conductors. The latter were investigated using a heater simulation technique. Overall heat transfer coefficients were evaluated for the quench onset point. Heat flux densities were determined for phenomena of thermal switching between a peak and a recovery value. The study covered near saturated liquid, pressurized He4, both above and below the lambda transition, and above and below the thermodynamic critical pressure. In addition, friction coefficients for relative motion between formvar insulated conductors were determined.

  15. Thin-Film Evaporative Cooling for Side-Pumped Laser

    Science.gov (United States)

    Stewart, Brian K. (Inventor)

    2010-01-01

    A system and method are provided for cooling a crystal rod of a side-pumped laser. A transparent housing receives the crystal rod therethrough so that an annular gap is defined between the housing and the radial surface of the crystal rod. A fluid coolant is injected into the annular gap such the annular gap is partially filled with the fluid coolant while the radial surface of the crystal rod is wetted as a thin film all along the axial length thereof.

  16. Development and testing of a high-pressure downhole pump for jet-assist drilling. Topical report, Phase II

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    1997-10-01

    The goal of jet-assisted drilling is to increase the rate of penetration (ROP) in deeper gas and oil wells, where the rocks become harder and more difficult to drill. Increasing the ROP can result in fewer drilling days, and therefore, lower drilling cost. In late 1993, FlowDril and the Gas Research Institute (GRI) began a three-year development of a down hole pump (DHP{reg_sign}) capable of producing 30,000 psi out pressure to provide the high-pressure flow for high-pressure jet-assist of the drill bit. The U.S. Department of Energy (DOE) through its Morgantown, WV (DOE-Morgantown) field office, joined with GRI and FlowDril to develop and test a second prototype designed for drilling in 7-7/8 inch holes. This project, {open_quotes}Development and Testing of a High-Pressure Down Hole Pump for Jet-Assist Drilling,{close_quotes} is for the development and testing of the second prototype. It was planned in two phases. Phase I included an update of a market analysis, a design, fabrication, and an initial laboratory test of the second prototype. Phase II is continued iterative laboratory and field developmental testing. This report summarizes the results of Phase II. In the downhole pump approach shown in the following figure, conventional drill pipe and drill collars are used, with the DHP as the last component of the bottom hole assembly next to the bit. The DHP is a reciprocating double ended, intensifier style positive displacement, high-pressure pump. The drive fluid and the high-pressure output fluid are both derived from the same source, the abrasive drilling mud pumped downhole through the drill string. Approximately seven percent of the stream is pressurized to 30,000 psi and directed through a high-pressure nozzle on the drill bit to produce the high speed jet and assist the mechanical action of the bit to make it drill faster.

  17. SIMMER-III Analyses of Local Fuel-Coolant Interactions in a Simulated Molten Fuel Pool: Effect of Coolant Quantity

    Directory of Open Access Journals (Sweden)

    Songbai Cheng

    2015-01-01

    Full Text Available Studies on local fuel-coolant interactions (FCI in a molten pool are important for the analyses of severe accidents that could occur for sodium-cooled fast reactors (SFRs. To clarify the mechanisms underlying this interaction, in recent years, several experimental tests, with comparatively larger difference in coolant volumes, were conducted at the Japan Atomic Energy Agency by delivering a given quantity of water into a molten pool formed with a low-melting-point alloy. In this study, to further understand this interaction, interaction characteristics including the pressure buildup as well as mechanical energy release and its conversion efficiency are investigated using the SIMMER-III, an advanced fast reactor safety analysis code. It is found that the SIMMER-III code not only reasonably simulates the transient pressure and temperature variations during local FCIs, but also supports the limited tendency of pressurization and resultant mechanical energy release as observed from experiments when the volume of water delivered into the pool increases. The performed analyses also suggest that the most probable reason leading to such limited tendency should be primarily due to an isolation effect of vapor bubbles generated at the water-melt interface.

  18. Improvements of primary coolant shutdown chemistry and reactor coolant system cleanup

    Energy Technology Data Exchange (ETDEWEB)

    Gaudard, G.; Gilles, B.; Mesnage, F. [EDF/GDL (France); Cattant, F. [EDF R and D (France)

    2002-07-01

    In the framework of a radiation exposure management program entitled <>, EDF aims at decreasing the mass dosimetry of nuclear power plants workers. So, the annual dose per unit, which has improved from 2.44 m.Sv in 1991 to 1.08 in 2000, should target 0.8 mSv in the year 2005 term in order to meet the results of the best nuclear operators. One of the guidelines for irradiation source term reduction is the optimization of operation parameters, including reactor coolant system (RCS) chemistry in operation, RCS shutdown chemistry and RCS cleanup improvement. This paper presents the EDF strategy for the shutdown and start up RCS chemistry optimization. All the shutdown modes have been reviewed and for each of them, the chemical specifications will be fine tuned. A survey of some US PWRs shutdown practices has been conducted for an acid and reducing shutdown chemistry implementation test at one EDF unit. This survey shows that deviating from the EPRI recommended practice for acid and reducing shutdown chemistry is possible and that critical path impact can be minimized. The paper also presents some investigations about soluble and insoluble species behavior and characterization; the study focuses here on {sup 110m}Ag, {sup 122}Sb, {sup 124}Sb and iodine contamination. Concerning RCS cleanup improvement, the paper presents two studies. The first one highlights some limited design modifications that are either underway or planned, for an increased flow rate during the most critical periods of the shutdown. The second one focuses on the strategy EDF envisions for filters and resins selection criteria. Matching the study on contaminants behavior with the study of filters and resins selection criteria should allow improving the cleanup efficiency. (authors)

  19. Pump and probe damage testing for investigation of transient material modifications associated with laser damage in optical materials

    Energy Technology Data Exchange (ETDEWEB)

    Negres, R A; Feit, M D; DeMange, P; Bude, J D; Demos, S G

    2007-10-18

    Laser-induced breakdown in the bulk of transparent dielectric materials is associated with the generation of extreme localized conditions of temperatures and pressures. In this work, we perform pump and probe damage testing experiments to investigate the evolution of transient absorption by the host material arising from modifications following confined laser energy deposition in fused silica and DKDP materials. Specifically, we measure the size of the damage sites observed in the region of spatial overlap between the pump and probe pulses versus probe time delay and energy. Results of this proof-of-principle experimental work confirm that material modifications under extreme conditions created during a damage event include transient optical absorption. In addition, we found that the relaxation times of the induced absorption are very distinct for DKDP and SiO{sub 2} even under identical excitation conditions, on the order of 100 ns and 100 {micro}s, respectively.

  20. A Liquid-Liquid Thermoelectric Heat Exchanger as a Heat Pump for Testing Phase Change Material Heat Exchangers

    Science.gov (United States)

    Sheth, Rubik B.; Makinen, Janice; Le, Hung V.

    2016-01-01

    The primary objective of the Phase Change HX payload on the International Space Station (ISS) is to test and demonstrate the viability and performance of Phase Change Material Heat Exchangers (PCM HX). The system was required to pump a working fluid through a PCM HX to promote the phase change material to freeze and thaw as expected on Orion's Multipurpose Crew Vehicle. Due to limitations on ISS's Internal Thermal Control System, a heat pump was needed on the Phase Change HX payload to help with reducing the working fluid's temperature to below 0degC (32degF). This paper will review the design and development of a TEC based liquid-liquid heat exchanger as a way to vary to fluid temperature for the freeze and thaw phase of the PCM HX. Specifically, the paper will review the design of custom coldplates and sizing for the required heat removal of the HX.

  1. Modeling of melt-coolant mixing by bottom injection

    Energy Technology Data Exchange (ETDEWEB)

    Kazachkov, I.V.; Paladino, D.; Sehgal, B.R. [Royal Inst. of Tech., Div. of Nuclear Power Safety, Stockholm (Sweden)

    2001-07-01

    In this paper, the flow characteristics during the coolant injection, with submerged nozzles, at the bottom of a molten pool are studied. The flow pattern developed by the rising coolant is considered for the case of complete coolant vaporization, and the pool-coolant phase distributions are assessed by a modeling approach delivered from literature for a heterogeneous turbulent jet. To calculate the basic characteristics of such flow, integral relationships are proposed for the two-phase boundary layer. The results of numerical computations and approximate solution are compared with the experimental data obtained in the low temperature experiments, conducted in the DECOBI (debris coolability by bottom injection) facility. (authors)

  2. Efficiency of water coolant for DEMO divertor

    Energy Technology Data Exchange (ETDEWEB)

    Fetzer, Renate, E-mail: renate.fetzer@kit.edu; Igitkhanov, Yuri; Bazylev, Boris

    2015-10-15

    Up to now, water-cooled divertor concepts have been developed for limited incident fluxes without taking into account transient power loadings. In this paper we analyzed the efficiency of water as a coolant for the particular PFC tungsten monoblock shield with a cooling tube made from Cu alloy (Cu OFHC) as a laminate adjacent to W and a low activation martensitic steel (Eurofer) as inner tube contacting the coolant. Thermal analysis is carried out by using the code MEMOS, which simulates W armour damage under the repetitive ELM heat loads. We consider cooling conditions which allow one to keep relatively high material temperatures (in the range 300–600 °C) thus minimizing Eurofer embrittlement under neutron irradiation. Expected DEMO I and DEMO II heat loads including type I ELMs are found to cause melting of the W surface during unmitigated ELMs. By mitigation of the ELMs melting of W is avoided. DEMO I operation under these conditions is save for cooling at water pressure 15.5 MPa and temperature 325 °C, while for DEMO II with mitigated ELMs the critical heat flux is exceeded and safe operation is not provided.

  3. A short-term rating method for heat pump heating systems; phase 5: test of the fault diagnosis systems; Kurztestmethode fuer Waermepumpenanlagen; Phase 5: Test der Fehlerdiagnosesysteme

    Energy Technology Data Exchange (ETDEWEB)

    Zogg, D.; Esfandiar, S.

    2001-07-01

    This final report for the Swiss Federal Office of Energy (SFOE) describes the testing phase of a project that developed systems for the operational monitoring and optimisation of heat pump installations along with a diagnosis system for faults. The heat pump is considered as a sub-system. The report describes two monitoring systems and a simulation model that are used to monitor the state of the heat pump both during commissioning as well as during operation. The aim is also to detect faults as early as possible during the whole of the operational life of the installation. A state-orientated approach is propagated as being cheaper than fixed service intervals or repairing after breakdown and standstill. The development of the two monitoring systems called 'HeatWatch' and 'FuzzyWatch' is described. The effort needed for the parametrisation and training of these systems is discussed. The testing of the systems on two test beds using real-life measured values for a single-family home and further simulation data is described and the results listed. The authors state that the monitoring systems can also be used for refrigeration and air-conditioning systems.

  4. An Analytical Solution of Hydraulic Head due to an Oscillatory Pumping Test in a Confined, Unconfined or Leaky Aquifer

    Science.gov (United States)

    Huang, C. S.; Yeh, H. D.

    2014-12-01

    This study builds a mathematical model for three-dimensional (3D) transient hydraulic head induced by an oscillatory pumping test in a confined, unconfined or leaky aquifer. The aquifers are of a rectangular shape where the four sides are under the Robin conditions. The 3D flow governing equation with a line sink term representing a vertical well is employed. The sink term has a cosine function for the oscillatory pumping. A general equation describing the head on the top of the three kinds of aquifers is considered. The analytical head solution of the model is derived by the direct Fourier method and the double-integral transform and in terms of a double series with fast convergence. With the aid of the solution, we have found that the vertical component of flow vanishes when Kv d2/(KhD2) > 1 where Kh and Kv are aquifer's hydraulic conductivities, respectively, D is aquifer's thickness, and d is a distance measured from the pumping well. Under the condition, temporal head distributions predicted by the present solution agree with those predicted by solutions developed based on two-dimensional flow by most previous researches.

  5. Climate Adaptivity and Field Test of the Space Heating Used Air-Source Transcritical CO2 Heat Pump

    Science.gov (United States)

    Song, Yulong; Ye, Zuliang; Cao, Feng

    2017-08-01

    In this study, an innovation of air-sourced transcritical CO2 heat pump which was employed in the space heating application was presented and discussed in order to solve the problem that the heating performances of the transcritical CO2 heat pump water heater deteriorated sharply with the augment in water feed temperature. An R134a cycle was adopted as a subcooling device in the proposed system. The prototype of the presented system was installed and supplied hot water for three places in northern China in winter. The field test results showed that the acceptable return water temperature can be increased up to 55°C, while the supply water temperature was raised rapidly by the presented prototype to up to 70°C directly, which was obviously appropriate to the various conditions of heating radiator in space heating application. Additionally, though the heating capacity and power dissipation decreased with the decline in ambient temperature or the augment in water temperature, the presented heat pump system performed efficiently whatever the climate and water feed temperature were. The real time COP of the presented system was generally more than 1.8 in the whole heating season, while the seasonal performance coefficient (SPC) was also appreciable, which signified that the economic efficiency of the presented system was more excellent than other space heating approaches such as fuel, gas, coal or electric boiler. As a result, the novel system will be a promising project to solve the energy issues in future space heating application.

  6. 2PSD110X型单体泵试验台设计%Test bench design of 2PSD110X individual fuel injection pump test bench

    Institute of Scientific and Technical Information of China (English)

    戴俊; 张士强

    2012-01-01

    随着柴油机应用的日益广泛,喷油泵的调整试验工作日益被人们所重视.2PSD110X型单体泵试验台是适应单体泵技术发展要求而研制成的.2PSD110X型单体泵试验台主要由嵌入式CPU工作站、变频调速系统、机械传动系统、燃油供应系统、压缩机冷却系统、喷油量计量系统及辅助装置等组成.操作及控制部分采用先进的微电软、硬件技术,量油装置采用新型的质量式量油装置,大幅提高了燃油量测量的准确性.%Along with diesel engine application day by day widespread,injection pump' s tune-up test work is taken day by day by the people. The 2PSD110X monomer pump test platform adapts the monomer pump technological development request. The 2PSD110X monomer pump test platform mainly is composed by the embedded CPU workstation, the frequency conversion velocity modulation system, the mechanical drive system, the fuel supply system, the compressor cooling system, the distributive value measuring system and the auxiliary unit and so on. The operation and the control section use the advanced micro electricity soft and hard technology, the measureing oil installment uses the new quality formula weight oil installment, enhanced the fuel hold-up survey accuracy largely.

  7. Hydraulic development of high specific-speed pump-turbines by means of an inverse design method, numerical flow-simulation (CFD) and model testing

    Science.gov (United States)

    Kerschberger, P.; Gehrer, A.

    2010-08-01

    In recent years an increased interest in pump-turbines has been recognized in the market. The rapid availability of pumped storage schemes and the benefits to the power system by peak lopping, providing reserve and rapid response for frequency control are becoming of growing advantage. In that context it is requested to develop pump-turbines that reliably stand dynamic operation modes, fast changes of the discharge rate by adjusting the variable diffuser vanes as well as fast changes from pump to turbine operation. Within the present study various flow patterns linked to the operation of a pump-turbine system are discussed. In that context pump and turbine mode are presented separately and different load cases at both operation modes are shown. In order to achieve modern, competitive pump-turbine designs it is further explained which design challenges should be considered during the geometry definition of a pump-turbine impeller. Within the present study a runner-blade profile for a low head pump-turbine has been developed. For the initial hydraulic runner-blade design, an inverse design method has been applied. Within this design procedure, a first blade geometry is generated by imposing the pressure loading-distribution and by means of an inverse 3D potential-flow-solution. The hydraulic behavior of both, pump-mode and turbine-mode is then evaluated by solving the full 3D Navier-Stokes equations in combination with a robust turbulence model. Based on this initial design the blade profile has been further optimized and redesigned considering various hydraulic pump-turbine requirements. Finally, the progress in hydraulic design is demonstrated by model test results which show a significant improvement in hydraulic performance compared to an existing reference design.

  8. Hydraulic development of high specific-speed pump-turbines by means of an inverse design method, numerical flow-simulation (CFD) and model testing

    Energy Technology Data Exchange (ETDEWEB)

    Kerschberger, P; Gehrer, A, E-mail: peter.kerschberger@andritz.co [Andritz Hydro Graz A-8045 Graz, Reichsstrasse 68B (Austria)

    2010-08-15

    In recent years an increased interest in pump-turbines has been recognized in the market. The rapid availability of pumped storage schemes and the benefits to the power system by peak lopping, providing reserve and rapid response for frequency control are becoming of growing advantage. In that context it is requested to develop pump-turbines that reliably stand dynamic operation modes, fast changes of the discharge rate by adjusting the variable diffuser vanes as well as fast changes from pump to turbine operation. Within the present study various flow patterns linked to the operation of a pump-turbine system are discussed. In that context pump and turbine mode are presented separately and different load cases at both operation modes are shown. In order to achieve modern, competitive pump-turbine designs it is further explained which design challenges should be considered during the geometry definition of a pump-turbine impeller. Within the present study a runner-blade profile for a low head pump-turbine has been developed. For the initial hydraulic runner-blade design, an inverse design method has been applied. Within this design procedure, a first blade geometry is generated by imposing the pressure loading-distribution and by means of an inverse 3D potential-flow-solution. The hydraulic behavior of both, pump-mode and turbine-mode is then evaluated by solving the full 3D Navier-Stokes equations in combination with a robust turbulence model. Based on this initial design the blade profile has been further optimized and redesigned considering various hydraulic pump-turbine requirements. Finally, the progress in hydraulic design is demonstrated by model test results which show a significant improvement in hydraulic performance compared to an existing reference design.

  9. Additional requirements for leak-before-break application to primary coolant piping in Belgium

    Energy Technology Data Exchange (ETDEWEB)

    Roussel, G. [AIB Vincotte Nuclear, Brussels (Belgium)

    1997-04-01

    Leak-Before-Break (LBB) technology has not been applied in the first design of the seven Pressurized Water Reactors the Belgian utility is currently operating. The design basis of these plants required to consider the dynamic effects associated with the ruptures to be postulated in the high energy piping. The application of the LBB technology to the existing plants has been recently approved by the Belgian Safety Authorities but with a limitation to the primary coolant loop. LBB analysis has been initiated for the Doel 3 and Tihange 2 plants to allow the withdrawal of some of the reactor coolant pump snubbers at both plants and not reinstall some of the restraints after steam generator replacement at Doel 3. LBB analysis was also found beneficial to demonstrate the acceptability of the primary components and piping to the new conditions resulting from power uprating and stretch-out operation. LBB analysis has been subsequently performed on the primary coolant loop of the Tihange I plant and is currently being performed for the Doel 4 plant. Application of the LBB to the primary coolant loop is based in Belgium on the U.S. Nuclear Regulatory Commission requirements. However the Belgian Safety Authorities required some additional analyses and put some restrictions on the benefits of the LBB analysis to maintain the global safety of the plant at a sufficient level. This paper develops the main steps of the safety evaluation performed by the Belgian Safety Authorities for accepting the application of the LBB technology to existing plants and summarizes the requirements asked for in addition to the U.S. Nuclear Regulatory Commission rules.

  10. Research on physical and chemical parameters of coolant in Light-Water Reactors

    Energy Technology Data Exchange (ETDEWEB)

    Reis, Isabela C.; Mesquita, Amir Z., E-mail: icr@cdtn.br, E-mail: amir@cdtn.br [Centro de Desenvolvimento da Tecnologia Nuclear (CDTN/CNEM-MG), Belo Horizonte, MG (Brazil)

    2015-07-01

    The coolant radiochemical monitoring of light-water reactors, both power reactor as research reactors is one most important tasks of the system safe operation. The last years have increased the interest in the coolant chemical studying to optimize the process, to minimize the corrosion, to ensure the primary system materials integrity, and to reduce the workers exposure radiation. This paper has the objective to present the development project in Nuclear Technology Development Center (CDTN), which aims to simulate the primary water physical-chemical parameters of light-water-reactors (LWR). Among these parameters may be cited: the temperature, the pressure, the pH, the electric conductivity, and the boron concentration. It is also being studied the adverse effects that these parameters can result in the reactor integrity. The project also aims the mounting of a system to control and monitoring of temperature, electric conductivity, and pH of water in the Installation of Test in Accident Conditions (ITCA), located in the Thermal-Hydraulic Laboratory at CDTN. This facility was widely used in the years 80/90 for commissioning of several components that were installed in Angra 2 containment. In the test, the coolant must reproduce the physical and chemical conditions of the primary. It is therefore fundamental knowledge of the main control parameters of the primary cooling water from PWR reactors. Therefore, this work is contributing, with the knowledge and the reproduction with larger faithfulness of the reactors coolant in the experimental circuits. (author)

  11. Coolant rate distribution in horizontal steam generator under natural circulation

    Energy Technology Data Exchange (ETDEWEB)

    Blagovechtchenski, A.; Leontieva, V.; Mitrioukhin, A. [St. Petersburg State Technical Univ. (Russian Federation)

    1997-12-31

    In the presentation the major factors determining the conditions of NCC (Natural Coolant Circulation) in the primary circuit and in particular conditions of coolant rate distribution on the horizontal tubes of PGV-1000 in NPP with VVER-1000 under NCC are considered. 5 refs.

  12. 反应堆一回路系统优化设计方案的可行性验证%Feasibility Test for Reactor Coolant System Optimized Design Scheme

    Institute of Scientific and Technical Information of China (English)

    陈磊; 阎昌琪; 王建军

    2014-01-01

    采用优选运行参数和结构参数的方法,可达到降低核动力装置尺寸的目的。在优化设计方案投入制造前,有必要研究其在设计基准事故下的响应特性,以检验优化方案的可行性。采用 REL A P5/M OD3.2程序研究现有一回路系统优化方案在完全失去厂外电、主给水丧失和小破口失水事故下的响应特性,并将安全设计准则参数与母型对比。结果表明:针对所研究的3种设计基准事故,优化方案各主要安全准则参数满足设计要求;优化方案可成功抵御这3类设计基准事故。%The size of a nuclear component could be reduced by optimum selections of the operational and structural parameters .Before an optimized design scheme is manu‐factured ,it is necessary to obtain its transient behaviors and verify its feasibility under design basis accidents .In this work ,the RELAP5/MOD3.2 code was employed to simulate the transient characteristics of a proposed optimized scheme under the complete loss of off‐site power ,loss of feedwater and small break loss of coolant accidents ,and the safety criteria were compared with the prototype reactor design . The simulation results indicate that the safety criteria of the optimized scheme satisfy the design requirements ,and the safety of the optimized scheme can be guaranteed in those three accidents .

  13. Coolant mixing in pressurized water reactors

    Energy Technology Data Exchange (ETDEWEB)

    Hoehne, T.; Grunwald, G.

    1998-10-01

    The behavior of PWRs during cold water or boron dilution transients is strongly influenced by the distribution of coolant temperature and boron concentration at the core inlet. This distribution is the needed input to 3-dimensional neutron kinetics to calculate the power distribution in the core. It mainly depends on how the plugs of cold or unborated water formed in a single loop are mixed in the downcomer and in the lower plenum. To simulate such mixture phenomena requires the application of 3-dimensional CFD (computational fluid dynamics) codes. The results of the simulation have to be validated against mixture experiments at scaled facilities. Therefore, in the framework of a research project funded by BMBF, the institute creates a 1:5 mixture facility representing first the geometry of a German pressurized water reactor and later the European Pressurized Water Reactor (EPR) geometry. The calculations are based on the CFD Code CFX-4. (orig.)

  14. Power module assemblies with staggered coolant channels

    Science.gov (United States)

    Herron, Nicholas Hayden; Mann, Brooks S; Korich, Mark D

    2013-07-16

    A manifold is provided for supporting a power module assembly with a plurality of power modules. The manifold includes a first manifold section. The first face of the first manifold section is configured to receive the first power module, and the second face of the first manifold section defines a first cavity with a first baseplate thermally coupled to the first power module. The first face of the second manifold section is configured to receive the second power module, and the second face of the second manifold section defines a second cavity with a second baseplate thermally coupled to the second power module. The second face of the first manifold section and the second face of the second manifold section are coupled together such that the first cavity and the second cavity form a coolant channel. The first cavity is at least partially staggered with respect to second cavity.

  15. Assessment of the heat carrier movement in the primary coolant circuit by its own momentum

    Energy Technology Data Exchange (ETDEWEB)

    Kadalev, Stoyan, E-mail: kadalev@inrne.bas.bg

    2014-10-15

    Highlights: • We model the heat carrier flow alteration after the circulation pump(s) stop. • The general mathematical model used is described in details. • The model is adapted and applied to a particular example research reactor. • Assessment is presented in detail, step by step with references. • The information provided is enough to apply calculations to another facility. - Abstract: In the presented paper is considered the approach to an assessment of the heat carrier flow alteration in the primary water–water reactor coolant circuit after the circulation pump(s) stop. This topic is highly relevant trough advanced and increased nuclear safety requirements because such a process is observed in case of black-out accident or damaged pump(s). The general mathematical model used is described; enabling preparation of this evaluation adapted and applied to a particular example facility namely a pool type research reactor. The factors influencing to the heat carrier movement by its own momentum are examined. The evaluation measures and includes the factors influencing the heat carrier flow rate from the moment the pump(s) stops down to a negligible value. Assessment is presented in detail, step by step and where needed with references to specific data and/or formulae from reference books to allow repetition of the calculations and/or apply to another facility. The calculations are presented utilizing all necessary data according to the design and technological documentation. No account is given to the pressure of the natural circulation caused by the residual heat generation in the fuel after the reactor scram system extinction of the fission reaction.

  16. In vitro detection of cardiotoxins or neurotoxins affecting ion channels or pumps using beating cardiomyocytes as alternative for animal testing.

    Science.gov (United States)

    Nicolas, Jonathan; Hendriksen, Peter J M; de Haan, Laura H J; Koning, Rosella; Rietjens, Ivonne M C M; Bovee, Toine F H

    2015-03-01

    The present study investigated if and to what extent murine stem cell-derived beating cardiomyocytes within embryoid bodies can be used as a broad screening in vitro assay for neurotoxicity testing, replacing for example in vivo tests for marine neurotoxins. Effect of nine model compounds, acting on either the Na(+), K(+), or Ca(2+) channels or the Na(+)/K(+) ATP-ase pump, on the beating was assessed. Diphenhydramine, veratridine, isradipine, verapamil and ouabain induced specific beating arrests that were reversible and none of the concentrations tested induced cytotoxicity. Three K(+) channel blockers, amiodarone, clofilium and sematilide, and the Na(+)/K(+) ATPase pump inhibitor digoxin had no specific effect on the beating. In addition, two marine neurotoxins i.e. saxitoxin and tetrodotoxin elicited specific beating arrests in cardiomyocytes. Comparison of the results obtained with cardiomyocytes to those obtained with the neuroblastoma neuro-2a assay revealed that the cardiomyocytes were generally somewhat more sensitive for the model compounds affecting Na(+) and Ca(2+) channels, but less sensitive for the compounds affecting K(+) channels. The stem cell-derived cardiomyocytes were not as sensitive as the neuroblastoma neuro-2a assay for saxitoxin and tetrodotoxin. It is concluded that the murine stem cell-derived beating cardiomyocytes provide a sensitive model for detection of specific neurotoxins and that the neuroblastoma neuro-2a assay may be a more promising cell-based assay for the screening of marine biotoxins. Copyright © 2014 Elsevier Ltd. All rights reserved.

  17. Modeling Results For the ITER Cryogenic Fore Pump. Final Report

    Energy Technology Data Exchange (ETDEWEB)

    Pfotenhauer, John M. [University of Wisconsin, Madison, WI (United States); Zhang, Dongsheng [University of Wisconsin, Madison, WI (United States)

    2014-03-31

    A numerical model characterizing the operation of a cryogenic fore-pump (CFP) for ITER has been developed at the University of Wisconsin – Madison during the period from March 15, 2011 through June 30, 2014. The purpose of the ITER-CFP is to separate hydrogen isotopes from helium gas, both making up the exhaust components from the ITER reactor. The model explicitly determines the amount of hydrogen that is captured by the supercritical-helium-cooled pump as a function of the inlet temperature of the supercritical helium, its flow rate, and the inlet conditions of the hydrogen gas flow. Furthermore the model computes the location and amount of hydrogen captured in the pump as a function of time. Throughout the model’s development, and as a calibration check for its results, it has been extensively compared with the measurements of a CFP prototype tested at Oak Ridge National Lab. The results of the model demonstrate that the quantity of captured hydrogen is very sensitive to the inlet temperature of the helium coolant on the outside of the cryopump. Furthermore, the model can be utilized to refine those tests, and suggests methods that could be incorporated in the testing to enhance the usefulness of the measured data.

  18. A numerical investigation of pumping-test responses from contiguous aquifers

    Science.gov (United States)

    Rafini, Silvain; Chesnaux, Romain; Ferroud, Anouck

    2017-03-01

    Adequate groundwater management requires models capable of representing the heterogeneous nature of aquifers. A key point is the theoretical knowledge of flow behaviour in various heterogeneous archetypal conditions, using analytically or numerically based models. This study numerically investigates transient pressure transfers between linearly contiguous homogeneous domains with non-equal hydraulic properties, optionally separated by a conductive fault. Responses to pumping are analysed in terms of time-variant flow dimension, n. Two radial stages are predicted (n: 2 - 2) with a positive or negative vertical offset depending of the transmissivity ratio between domains. A transitional n = 4 segment occurs when the non-pumped domain is more transmissive (n: 2 - 4 - 2), and a fractional flow segment occurs when the interface is a fault (n: 2 - 4 - 1.5 - 2). The hydrodynamics are generally governed by the transmissivity ratio; the storativity ratio impact is limited. The drawdown log-derivative late stabilization, recorded at any well, does not tend to reflect the local transmissivity but rather the higher transmissivity region, possibly distant and blind, as it predominantly supplies groundwater to the well. This study provides insights on the behaviour of non-uniform aquifers and on theoretical responses that can aid practitioners to detect such conditions in nature.

  19. Combining situated Cognitive Engineering with a novel testing method in a case study comparing two infusion pump interfaces.

    Science.gov (United States)

    Schnittker, R; Schmettow, M; Verhoeven, F; Schraagen, J M C

    2016-07-01

    We validated the usability of a new infusion pump interface designed with a situated Cognitive Engineering approach by comparing it to a reference interface using a novel testing method employing repeated measurements and process measures, in addition to traditional outcome measures. The sample consisted of 25 nurses who performed eight critical tasks three times. Performance measures consisted of number and type of errors, deviations from a pre-established normative path solution, task completion times, number of keystrokes, mental effort and preferences in use. Results showed that interaction with the new interface resulted in 18% fewer errors, 90% fewer normative path deviations, 42% lower task completion times, 40% fewer keystrokes, 39% lower mental effort and 76% more subjective preferences in use. These outcomes suggest that within the scope of this case study, combining the situated Cognitive Engineering approach with a novel testing method addresses various shortcomings of earlier testing methods. Copyright © 2016 Elsevier Ltd and The Ergonomics Society. All rights reserved.

  20. Research on Power Recycling Test Method of Integrative Hydraulic Pump and Motor%联体泵马达功率回收试验方法研究

    Institute of Scientific and Technical Information of China (English)

    郭刘洋; 刘俊; 唐守生; 郭杨浏

    2013-01-01

    The experimental method for the integrative hydraulic pump and motor was researched. The power recycling theory of hydraulic pump was analyzed. According to character of the integrative hydraulic pump and motor,the test method for the integrative hydraulic pump and motor power recycling was defined. The formula to calculate volumetric efficiency was deduced. The power recycling test result is assist to analyze volumetric efficiency,meanwhile,to verify the fundamental performance of the integrative hydraulic pump and motor. Additionally,the test result proves that the integrative hydraulic pump and motor power recycling test method is feasible.%  针对联体泵马达的试验方法进行研究,分析液压泵的功率回收试验原理,根据联体泵马达的结构特点,确定了联体泵马达功率回收试验方法,并推导出容积效率计算公式;通过功率回收试验,对联体泵马达的容积效率进行了测试,验证了泵马达的基本性能,也证实了功率回收方法的有效性和可行性。

  1. Barriers to the Application of High-Temperature Coolants in Hybrid Electric Vehicles

    Energy Technology Data Exchange (ETDEWEB)

    Staunton, Robert H [ORNL; Hsu, John S [ORNL; Starke, Michael R [ORNL

    2006-09-01

    This study was performed by the Oak Ridge National Laboratory (ORNL) to identify practical approaches, technical barriers, and cost impacts to achieving high-temperature coolant operation for certain traction drive subassemblies and components of hybrid electric vehicles (HEV). HEVs are unique in their need for the cooling of certain dedicated-traction drive subassemblies/components that include the electric motor(s), generators(s), inverter, dc converter (where applicable), and dc-link capacitors. The new coolant system under study would abandon the dedicated 65 C coolant loop, such as used in the Prius, and instead rely on the 105 C engine cooling loop. This assessment is important because automotive manufacturers are interested in utilizing the existing water/glycol engine cooling loop to cool the HEV subassemblies in order to eliminate an additional coolant loop with its associated reliability, space, and cost requirements. In addition, the cooling of power electronic devices, traction motors, and generators is critical in meeting the U.S. Department of Energy (DOE) FreedomCAR and Vehicle Technology (FCVT) goals for power rating, volume, weight, efficiency, reliability, and cost. All of these have been addressed in this study. Because there is high interest by the original equipment manufacturers (OEMs) in reducing manufacturing cost to enhance their competitive standing, the approach taken in this analysis was designed to be a positive 'can-do' approach that would be most successful in demonstrating the potential or opportunity of relying entirely on a high-temperature coolant system. Nevertheless, it proved to be clearly evident that a few formidable technical and cost barriers exist and no effective approach for mitigating the barriers was evident in the near term. Based on comprehensive thermal tests of the Prius reported by ORNL in 2005 [1], the continuous ratings at base speed (1200 rpm) with different coolant temperatures were projected from

  2. Barriers to the Application of High-Temperature Coolants in Hybrid Electric Vehicles

    Energy Technology Data Exchange (ETDEWEB)

    Hsu, J.S.; Staunton, M.R.; Starke, M.R.

    2006-09-30

    This study was performed by the Oak Ridge National Laboratory (ORNL) to identify practical approaches, technical barriers, and cost impacts to achieving high-temperature coolant operation for certain traction drive subassemblies and components of hybrid electric vehicles (HEV). HEVs are unique in their need for the cooling of certain dedicated-traction drive subassemblies/components that include the electric motor(s), generators(s), inverter, dc converter (where applicable), and dc-link capacitors. The new coolant system under study would abandon the dedicated 65 C coolant loop, such as used in the Prius, and instead rely on the 105 C engine cooling loop. This assessment is important because automotive manufacturers are interested in utilizing the existing water/glycol engine cooling loop to cool the HEV subassemblies in order to eliminate an additional coolant loop with its associated reliability, space, and cost requirements. In addition, the cooling of power electronic devices, traction motors, and generators is critical in meeting the U.S. Department of Energy (DOE) FreedomCAR and Vehicle Technology (FCVT) goals for power rating, volume, weight, efficiency, reliability, and cost. All of these have been addressed in this study. Because there is high interest by the original equipment manufacturers (OEMs) in reducing manufacturing cost to enhance their competitive standing, the approach taken in this analysis was designed to be a positive 'can-do' approach that would be most successful in demonstrating the potential or opportunity of relying entirely on a high-temperature coolant system. Nevertheless, it proved to be clearly evident that a few formidable technical and cost barriers exist and no effective approach for mitigating the barriers was evident in the near term. Based on comprehensive thermal tests of the Prius reported by ORNL in 2005 [1], the continuous ratings at base speed (1200 rpm) with different coolant temperatures were projected from

  3. Pumping tests in heterogeneous aquifers: An analytical study of what can be obtained from their interpretation using Jacob's Method

    Science.gov (United States)

    SáNchez-Vila, Xavier; Meier, Peter M.; Carrera, Jesús

    1999-04-01

    Interpretation of pumping tests to estimate hydraulic parameter values is typically based on the assumption of aquifer homogeneity. The applicability of the traditional methods of interpretation in real aquifers can be questioned, since the evaluation of the drawdown curves observed at different locations in a single test may not result in one consistent set of hydraulic parameters. Thus most hydrogeologists tend to look at estimated transmissivities (T) as some average property of the medium, while estimated storativities (S) are disregarded in some cases, particularly when they are obtained from data measured at the pumping well. An analytical study of drawdown under radially convergent flow toward a single point in heterogeneous aquifers shows that large time drawdown values form a straight line on a drawdown versus log time plot. Jacob's method consists of obtaining estimates for T and S from the slope and intercept of this line. We find that even in a heterogeneous field, these estimates provide valuable information about the aquifer. Estimated T values for different observation points tend to converge to a single value, which corresponds to the effective T derived under parallel flow conditions. Estimated storativities, however, display higher variability, but the geometric mean of the Sest values can be used as an unbiased estimator of the actual S. Thus it appears that although Jacob's method was originally derived for homogeneous media, it can provide valuable information in real aquifers.

  4. Optimization and testing of the Beck Engineering free-piston cryogenic pump for LNG systems on heavy vehicles. Final technical report

    Energy Technology Data Exchange (ETDEWEB)

    Beck, Douglas S.

    2003-01-10

    Task 7 was completed by reaching Milestone 7: Test free piston cryogenic pump (FPCP) in Integrated LNG System. Task 4: Alternative Pump Design was also completed. The type of performance of the prototype LNG system is consistent with requirements of fuel systems for heavy vehicles; however, the maximum flow capacity of the prototype LNG system is significantly less than the total flow requirement. The flow capacity of the prototype LNG system is determined by a cavitation limit for the FPCP.

  5. Results of heating mode performance tests of a solar-assisted heat pump. Final report

    Energy Technology Data Exchange (ETDEWEB)

    Jones, C.B.; Smetana, F.O.

    1979-04-01

    The performance of a heat pump, utilizing 8.16 square meters of low-cost solar collectors as the evaporator in a Freon-114 refrigeration cycle, was determined under actual insolation conditions during the summer and fall of 1976. C.O.P.'s (coefficient of performance) greater than 3 were obtained with condensing temperatures around 78 C and evaporating temperatures around 27 C. Ambient temperatures were about 3 C above evaporating temperatures. Similar performance levels were obtained at other insolation and temperature conditions. Experience with the system has identified some component and system changes which should increase the obtainable C.O.P. to about 4.0. These are described along with the system's design rationale. The accumulated data are presented as an appendix.

  6. Results of heating mode performance tests of a solar-assisted heat pump

    Science.gov (United States)

    Jones, C. B.; Smetana, F. O.

    1979-01-01

    The performance of a heat pump, utilizing 8.16 square meters of low-cost solar collectors as the evaporator in a Freon-114 refrigeration cycle, was determined under actual insolation conditions during the summer and fall of 1976. C.O.P.'s (coefficient of performance) greater than 3 were obtained with condensing temperatures around 78 C and evaporating temperatures around 27 C. Ambient temperatures were about 3 C above evaporating temperatures. Similar performance levels were obtained at other insolation and temperature conditions. Experience with the system has identified some component and system changes which should increase the obtainable C.O.P. to about 4.0. These are described along with the system's design rationale. The accumulated data are presented as an appendix.

  7. 叶片泵/轴向柱塞泵的压力与流量性能测试%Pressure-flow Test Experiment of Vane Pump and Axial Piston Pump

    Institute of Scientific and Technical Information of China (English)

    张志森

    2015-01-01

    Pressure⁃flow test experiments for vane pump and axial piston pump on the hydraulic experiment platform were made. The equations for flow rate, volumetric efficiency and overall efficiency of hydraulic pump were built. The flow rate data of the throttle valve when hydraulic pump in different outlet pressure were collected, the pressure⁃flow characteristic curves were drawn by using MATLAB software, and contrastive analysis to pressure⁃flow characteristic of two kinds of pump was made.%对液压实验平台液压泵站上的叶片泵/轴向柱塞泵进行压力-流量测试实验,建立液压泵的流量、容积效率及总效率方程,采集液压泵在不同出口压力下通过其节流阀的流量大小,并应用MATLAB软件绘制出压力-流量特性曲线,对比分析两种液压泵在实验测试过程中,其压力-流量特性变化情况。

  8. Proceedings of the Third NRC/ASME Symposium on Valve and Pump Testing. Session 1A--Session 2C: Volume 1

    Energy Technology Data Exchange (ETDEWEB)

    1994-07-01

    The 1994 Symposium on Valve and Pump Testing, jointly sponsored by the Board of Nuclear Codes and Standards of the American Society of Mechanical Engineers and by the Nuclear Regulatory Commission, provides a forum for the discussion of current programs and methods for inservice testing and motor-operated valve testing at nuclear power plants. The symposium also provides an opportunity to discuss the need to improve that testing in order to help ensure the reliable performance of pumps and valves. The participation of industry representatives, regulators, and consultants results in the discussion of a broad spectrum of ideas and perspectives regarding the improvement of inservice testing of pumps and valves at nuclear power plants. This document, Volume 1, covers sessions 1A through session 2C. The individual papers have been cataloged separately.

  9. Proceedings of the Third NRC/ASME Symposium on Valve and Pump Testing. Volume 2, Session 3A--Session 4B

    Energy Technology Data Exchange (ETDEWEB)

    1994-07-01

    The 1994 Symposium on Valve and Pump Testing, jointly sponsored by the Board of Nuclear Codes and Standards of the American Society of Mechanical Engineers and by the Nuclear Regulatory Commission, provides a forum for the discussion of current programs and methods for inservice testing and motor-operated valve testing at nuclear power plants. The symposium also provides an opportunity to discuss the need to improve that testing in order to help ensure the reliable performance of pumps and valves. The participation of industry representatives, regulators, and consultants results in the discussion of a broad spectrum of ideas and perspectives regarding the improvement of inservice testing of pumps and valves at nuclear power plants. Individual papers have been cataloged separately.

  10. 浅谈钻孔抽水试验的设计与实施%On design and implementation of borehole pumping test

    Institute of Scientific and Technical Information of China (English)

    罗岚

    2012-01-01

      钻孔抽水试验时,试抽出的钻孔涌水量远远超出预测且降深也无法满足规程要求时,只有根据试抽水的结果,重新设计抽水试验方案,重新选择井管的内径、抽水设备以及参数,风、测管的口径和下入深度等。本文通过一个钻孔抽水试验的经过,说明按规程选择以上各参数的方法及意义。%  During borehole pumping test, if the pumped-out water yield is far more than the expected and the dropdown cannot meet the requirement, the only way is to redesign pumping test scheme according to trial pumping result, in-cluding re-choosing inner diameter of well pipe, pumping equipment and parameters, wind pipe and gauging pipe size and landing depth. This paper, based on a borehole pumping test process, told the method of choosing abovementioned each parameter according to standards and the implications.

  11. Procedure qualification of CNP650 PWR primary coolant pipeline by manual welding%CNP650型压水堆主管道手工焊接工艺评定

    Institute of Scientific and Technical Information of China (English)

    刘先文

    2012-01-01

    The primary coolant pipe of CNP650 pressurized water reactor is the enterclose of coolant of reactor core,which is the pressure pipe of large diameter and thickness connected with RPV(reactor pressure vessel) and SG(steam generator) and RCP(reactor coolant pump).The welding construction of primary coolant pipe is the pivotal path of the installation of main equipment of nuclear island and the key and difficult point of the construction of nuclear power plant.The data sheet and welding experience of the WPQ is very important for ensuring the success of the first welding construction.The process control of the manual WPQ of CNP650 nuclear power plant of QinShan Nuclear Power Phase II Expansion Project included the simulation condition of the site and the management of welding process and physical and chemical testing and welding deformation, in order to get the deposited metal fitting for the requirements of the NDE and physical and chemical properties of the technical specification.The process control is the prerequisite of the welding construction of primary coolant pipe.%CNP650型压水堆的主管道作为反应堆压力容器堆芯冷却剂的通道,是连接反应堆压力容器、主泵和蒸汽发生器的大型厚壁承压管道.主管道焊接施工是核岛主设备安装的关键路径,是核电建设的重点与难点.焊接工艺评定所提供的数据与焊接经验,对确保主管道焊接施工一次成功,起着非常重要的作用.泰山核电二期扩建工程CNP650型核电站主管道手工焊接工艺评定从模拟现场焊接施工的条件、焊接过程管理、理化试验、焊接变形等方面进行控制,以获得符合技术规范对熔敷金属无损检测、理化性能的要求.焊接工艺评定过程控制为主管道焊接施工提供先决条件.

  12. ISS Internal Active Thermal Control System (IATCS) Coolant Remediation Project

    Science.gov (United States)

    Morrison, Russell H.; Holt, Mike

    2005-01-01

    The IATCS coolant has experienced a number of anomalies in the time since the US Lab was first activated on Flight 5A in February 2001. These have included: 1) a decrease in coolant pH, 2) increases in inorganic carbon, 3) a reduction in phosphate buffer concentration, 4) an increase in dissolved nickel and precipitation of nickel salts, and 5) increases in microbial concentration. These anomalies represent some risk to the system, have been implicated in some hardware failures and are suspect in others. The ISS program has conducted extensive investigations of the causes and effects of these anomalies and has developed a comprehensive program to remediate the coolant chemistry of the on-orbit system as well as provide a robust and compatible coolant solution for the hardware yet to be delivered. The remediation steps include changes in the coolant chemistry specification, development of a suite of new antimicrobial additives, and development of devices for the removal of nickel and phosphate ions from the coolant. This paper presents an overview of the anomalies, their known and suspected system effects, their causes, and the actions being taken to remediate the coolant.

  13. SUBSTATIONS OF DISTRICT HEATING SYSTEMS WITH PULSE COOLANT CIRCULATION

    Directory of Open Access Journals (Sweden)

    Andrey N. Makeev

    2017-01-01

    Full Text Available Abstract. Objectives The aim of the study is to generalise the results of the application of technologies and means for organising pulse coolant flow within a district heating system in order to increase its energy efficiency based on the organisation of local hydraulic shocks and the subsequent use of their energy to ensure the purification of heat energy equipment, intensify the heat transfer process and realise the possibility of transforming the available head from one hydraulic circuit to another. Methods Substations connecting the thermal power installations of consumers with heat networks via dependent and independent schemes are analytically generalised. The use of pulse coolant circulation is proposed as a means of overcoming identified shortcomings. Results Principal schemes of substations with pulse coolant circulation for dependent and independent connection of thermal power installations are detailed. A detailed description of their operation is given. The advantages of using pulse coolant circulation in substations are shown. The materials reflecting the results of the technical implementation and practical introduction of this technology are presented. Conclusion Theoretical analysis of the operation of the basic schemes of substations with pulse coolant circulation and the results of their practical application, as well as the materials of scientific works devoted to the use of the energy of a hydraulic impact and the study of the effect of pulse coolant flow on thermal and hydrodynamic processes, have yielded a combination of factors reflecting technical and economic rationality of application of pulse coolant circulation. 

  14. Steam as turbine blade coolant: Experimental data generation

    Energy Technology Data Exchange (ETDEWEB)

    Wilmsen, B.; Engeda, A.; Lloyd, J.R. [Michigan State Univ., East Lansing, MI (United States)

    1995-10-01

    Steam as a coolant is a possible option to cool blades in high temperature gas turbines. However, to quantify steam as a coolant, there exists practically no experimental data. This work deals with an attempt to generate such data and with the design of an experimental setup used for the purpose. Initially, in order to guide the direction of experiments, a preliminary theoretical and empirical prediction of the expected experimental data is performed and is presented here. This initial analysis also compares the coolant properties of steam and air.

  15. A study on safety measure of LMR coolant

    Energy Technology Data Exchange (ETDEWEB)

    Hwang, Sung Tai; Choi, Y. D.; Choi, J. H.; Kim, T. J.; Jeong, K. C.; Kwon, S. W.; Kim, B. H.; Jeong, J. Y.; Park, J. H.; Kim, K. R.; Jo, B. R.

    1997-08-01

    A study on safety measures of LMR coolant showed the results as follows: 1. Sodium fire characteristics. A. Sodium pool temp., gas temp., oxygen concentration calculated by flame combustion model were generally higher than those calculated by surface combustion model. B. Basic and detail designs for medium sodium fire test facility were carried out and medium sodium fire test facility was constructed. 2. Sodium/Cover gas purification technology. A. Construction and operation of calibration loop. B. Purification analysis and conceptual design of the packing for a cold trap. 3. Analysis of sodium-water reaction characteristics. We have investigated the characteristics analysis for micro and small leaks phenomena, development of the computer code for analysis of initial and quasi steady-state spike pressures to analyze large leak accident. Also, water mock-up test facility for the analysis of large leak accident phenomena was designed and manufactured. 4. Development of water leak detection technology. Detection signals were appeared when the hydrogen detector is operated to Ar-H{sub 2} gas system. The technology for the passive acoustic detection with respect to large leakage of water into sodium media was reviewed. And water mock-up test equipment and instrument system were designed and constructed. (author). 19 refs., 45 tabs., 52 figs.

  16. Experimental studies into the fluid dynamic performance of the coolant flow in the mixed core of the Temelin NPP VVER-1000 reactor

    Directory of Open Access Journals (Sweden)

    S.M. Dmitriev

    2015-11-01

    Full Text Available The paper presents the results of studies into the interassembly coolant interaction in the Temelin nuclear power plant (NPP VVER-1000 reactor core. An aerodynamic test bench was used to study the coolant flow processes in a TVSA-type fuel assembly bundle. To obtain more detailed information on the coolant flow dynamics, a VVER-1000 reactor core fragment was selected as the test model, which comprised two segments of a TVSA-12 PLUS fuel assembly and one segment of a TVSA-T assembly with stiffening angles and an interassembly gap. The studies into the coolant fluid dynamics consisted in measuring the velocity vector both in representative TVSA regions and inside the interassembly gap using a five-channel pneumometric probe. An analysis into the spatial distribution of the absolute flow velocity projections made it possible to detail the TVSA spacer, mixing and combined spacer grid flow pattern, identify the regions with the maximum transverse coolant flow, and determine the depth of the coolant flow disturbance propagation and redistribution in adjacent TVSA assemblies. The results of the studies into the interassembly coolant interaction among the adjacent TVSA assemblies are used at OKBM Afrikantov to update the VVER-1000 core thermal-hydraulic analysis procedures and have been added to the database for verification of computational fluid dynamics (CFD codes and for detailed cellwise analyses of the VVER-100 reactor cores.

  17. Study and development of an air conditioning system operating on a magnetic heat pump cycle (design and testing of flow directors)

    Science.gov (United States)

    Wang, Pao-Lien

    1992-01-01

    This report describes the fabrication, design of flow director, fluid flow direction analysis and testing of flow director of a magnetic heat pump. The objectives of the project are: (1) to fabricate a demonstration magnetic heat pump prototype with flow directors installed; and (2) analysis and testing of flow director and to make sure working fluid loops flow through correct directions with minor mixing. The prototype was fabricated and tested at the Development Testing Laboratory of Kennedy Space Center. The magnetic heat pump uses rear earth metal plates rotate in and out of a magnetic field in a clear plastic housing with water flowing through the rotor plates to provide temperature lift. Obtaining the proper water flow direction has been a problem. Flow directors were installed as flow barriers between separating point of two parallel loops. Function of flow directors were proven to be excellent both analytically and experimentally.

  18. Modern coolant additives. Environmental friendly and light metal compatible coolant additives for modern combustion engines; Moderne Kuehlmittelzusaetze. Umwelt- und leichtmetallvertraegliche Kuehlmittelzusaetze fuer moderne Verbrennungskraftmaschinen. Abschlussbericht. Vorhaben Nr. 777

    Energy Technology Data Exchange (ETDEWEB)

    Gugau, M.; Kaiser, M.

    2004-01-31

    The authors of the contribution under consideration report on the influence of the enhanced thermal stress on the impact of environmental friendly and light metal compatible coolant additives. The application and advancement of new research methods under mechanism-oriented objective led to a validation of a new guideline to the examination of the suitability of coolant additives for the coolant of internal combustion engines. Moreover, the authors create a knowledge base, on which a purposeful development can take place from suitable formulations of inhibitor for magnesium. For aluminium with silicate containing corrosion anti-freezes a close relationship between the surface temperature and the impoverishment of silicate exists. During the excess of limit temperatures, cooling agent-specific damage features arise reproducibly. The comparison of the different methods for the investigation of cavitation showed that one cannot dispense with both methods in order to evaluate a demand of insulating cavitation and a cavitative / corrosive complex regarding to the development of a test guideline. By the comprehensive electro-chemical and cavitative investigations for the magnesium alloy AZ91hp, a broad knowledge base could be formed, on which a purposeful development and evaluation of inhibitors under the use can take place from different glycols.

  19. Generic study on the relation between contamination if primary coolants and occupational radiation exposure in nuclear power plants with PWR. Final report; Generische Studie zum Zusammenhang zwischen Kontamination von Primaerkreislaufmedien und beruflicher Strahlenexposition bei Kernkraftwerken mit Druckwasserreaktor. Abschlussbericht

    Energy Technology Data Exchange (ETDEWEB)

    Artmann, Andreas; Bruhn, Gerd; Schneider, Sebastian [Gesellschaft fuer Anlagen- und Reaktorsicherheit, Koeln (Germany); Strub, Erik [Koeln Univ. (Germany)

    2016-01-15

    A generic model for the primary cooling system contamination in pressurized water reactors and the resulting radiological consequences has been developed. The functional capability was demonstrated by means of three examples concerning manipulation procedures during revision outages. Activities at the main reactor coolant pumps were studied and the influence of the coolant contamination on the resulting dose rates and collective doses were calculated. The effect of a Co-90 hot spot in a more remote area on the radiation exposure during the specific action at the reactor pumps was considered.

  20. Calculations of Nonlinear Wave-Packet Interferometry Signals in the Pump-Probe Limit as Tests for Vibrational Control over Electronic Excitation Transfer

    CERN Document Server

    Biggs, Jason D

    2009-01-01

    The preceding paper describes a strategy for externally influencing the course of short-time electronic excitation transfer (EET) in molecular dimers and observing the process by nonlinear wave-packet interferometry (nl-WPI). Within a sample of isotropically oriented dimers having a specified internal geometry, a vibrational mode internal to the acceptor chromophore can be preferentially driven by electronically nonresonant impulsive stimulated Raman (or resonant infrared) excitation with a short polarized control pulse. A subsequent electronically resonant polarized pump then preferentially excites the donor, and EET ensues. Here we test both the control strategy and its spectroscopic investigation-with some sacrifice of amplitude-level detail-by calculating the pump-probe difference signal. That signal is the limiting case of the control-influenced nl-WPI signal in which the two pulses in the pump pulse-pair coincide, as do the two pulses in the probe pulse-pair. We present calculated pump-probe difference ...

  1. Corrosion problems with aqueous coolants, final report

    Energy Technology Data Exchange (ETDEWEB)

    Diegle, R B; Beavers, J A; Clifford, J E

    1980-04-11

    The results of a one year program to characterize corrosion of solar collector alloys in aqueous heat-transfer media are summarized. The program involved a literature review and a laboratory investigation of corrosion in uninhibited solutions. It consisted of three separate tasks, as follows: review of the state-of-the-art of solar collector corrosion processes; study of corrosion in multimetallic systems; and determination of interaction between different waters and chemical antifreeze additives. Task 1 involved a comprehensive review of published literature concerning corrosion under solar collector operating conditions. The reivew also incorporated data from related technologies, specifically, from research performed on automotive cooling systems, cooling towers, and heat exchangers. Task 2 consisted of determining the corrosion behavior of candidate alloys of construction for solar collectors in different types of aqueous coolants containing various concentrations of corrosive ionic species. Task 3 involved measuring the degradation rates of glycol-based heat-transfer media, and also evaluating the effects of degradation on the corrosion behavior of metallic collector materials.

  2. Lubricant-coolant fluid for machining metals

    Energy Technology Data Exchange (ETDEWEB)

    Berlin, A.A.; Epshtein, V.R.; Pastunov, V.A.; Sherle, A.I.; Shpin' kov, V.A.; Sladkova, T.A.

    1981-03-10

    For improving the antiwear and anticorrosion properties, the lubricant-coolant fluid (LCF) based on water, triethanolamine, and NaNO/sub 2/ contains additionally the sodium salt of an acid ester of maleic acid and substituted oligooxyethylenes (NMO) with the following proportions of the components: triethanolamine 0.3-0.5%, NaNO/sub 2/ 0.3-0.5%, NMO 0.5-2.0%, and water the remainder. In the case of using the proposed LCF on high-speed machine tools, it can contain additionally a foam suppressor in an amount of 0.005-0.1%. For preventing microbiological contamination of the LCF, bactericides of the type furacillin, formalin, vazin (transliteration), and others in an amount of 0.005-0.1% can be added to its composition. Introduction of the NMO additive ensures high wetting and lubricating characteristics in the LCF, which is characterized by stability during storage and service and good anticorrosion properties. Use of the proposed LCF makes it possible to increase the life of the cutting tool by a factor of 2.2 in machining Steel 40Kh and by a factor of 1.3 in machining corroding steel by comparison with the prototype; at the same time the service life of the LCF is increased twofold. The LCF can be used in machining parts of alloyed construction and corrosionresistant steels with cutting-edge and abrasive tools.

  3. A Model for Molten Fuel-Coolant Interaction during Melt Slumping in a Nuclear Reactor

    Energy Technology Data Exchange (ETDEWEB)

    Sohal, Manohar Singh; Siefken, Larry James

    1999-10-01

    This paper describes a simple fuel melt slumping model to replace the current parametric model in SCDAP/RELAP5. Specifically, a fuel-coolant interaction (FCI) model is developed to analyze the slumping molten fuel, molten fuel breakup, heat transfer to coolant, relocation of the molten droplets, size of a partially solidified particles that settle to the bottom of the lower plenum, and melt-plenum interaction, if any. Considering our objectives, the molten fuel jet breakup model, and fuel droplets Lagrangian model as included in a code TEXAS-V with Eulerian thermal hydraulics for water and steam from SCDAP/RELAP5 were used. The model was assessed with experimental data from MAGICO-2000 tests performed at University of California at Santa Barbara, and FARO Test L-08 performed at Joint Research Center, Ispra, Italy. The comparison was found satisfactory.

  4. PIV measurements of coolant flow field in a diesel engine cylinder head

    Science.gov (United States)

    Ma, Hongwei; Zhang, Zhenyang; Xue, Cheng; Huang, Yunlong

    2015-04-01

    This paper presents experimental measurements of coolant flow field in the water jacket of a diesel engine cylinder head. The test was conducted at three different flow rates using a 2-D PIV system. Appropriate tracing particles were selected and delivery device was designed and manufactured before the test. The flow parameters, such as velocity, vorticity and turbulence, were used to analyze the flow field. The effects of vortex which was located between the intake valve and the exhaust valve were discussed. The experimental results showed an asymmetric distribution of velocity in the water jacket. This led to an asymmetric thermal distribution, which would shorten the service life of the cylinder head. The structure optimization to the water jacket of cylinder head was proposed in this paper. The experimental system, especially the 2-D PIV system, is a great help to study the coolant flow structure and analyze cooling mechanism in the diesel engine cylinder head.

  5. Detection of pump degradation

    Energy Technology Data Exchange (ETDEWEB)

    Greene, R.H.; Casada, D.A.; Ayers, C.W. [and others

    1995-08-01

    This Phase II Nuclear Plant Aging Research study examines the methods of detecting pump degradation that are currently employed in domestic and overseas nuclear facilities. This report evaluates the criteria mandated by required pump testing at U.S. nuclear power plants and compares them to those features characteristic of state-of-the-art diagnostic programs and practices currently implemented by other major industries. Since the working condition of the pump driver is crucial to pump operability, a brief review of new applications of motor diagnostics is provided that highlights recent developments in this technology. The routine collection and analysis of spectral data is superior to all other technologies in its ability to accurately detect numerous types and causes of pump degradation. Existing ASME Code testing criteria do not require the evaluation of pump vibration spectra but instead overall vibration amplitude. The mechanical information discernible from vibration amplitude analysis is limited, and several cases of pump failure were not detected in their early stages by vibration monitoring. Since spectral analysis can provide a wealth of pertinent information concerning the mechanical condition of rotating machinery, its incorporation into ASME testing criteria could merit a relaxation in the monthly-to-quarterly testing schedules that seek to verify and assure pump operability. Pump drivers are not included in the current battery of testing. Operational problems thought to be caused by pump degradation were found to be the result of motor degradation. Recent advances in nonintrusive monitoring techniques have made motor diagnostics a viable technology for assessing motor operability. Motor current/power analysis can detect rotor bar degradation and ascertain ranges of hydraulically unstable operation for a particular pump and motor set. The concept of using motor current or power fluctuations as an indicator of pump hydraulic load stability is presented.

  6. Heat pump concepts for nZEB Technology developments, design tools and testing of heat pump systems for nZEB in the USA: Country report IEA HPT Annex 40 Task 2, Task 3 and Task 4 of the USA

    Energy Technology Data Exchange (ETDEWEB)

    Baxter, Van D. [Oak Ridge National Lab. (ORNL), Oak Ridge, TN (United States); Payne, W. Vance [National Inst. of Standards and Technology (NIST), Gaithersburg, MD (United States); Ling, Jiazhen [Univ. of Maryland, College Park, MD (United States); Radermacher, Reinhard [Univ. of Maryland, College Park, MD (United States)

    2015-12-01

    The IEA HPT Annex 40 "Heat pump concepts for Nearly Zero Energy Buildings" deals with the application of heat pumps as a core component of the HVAC system for Nearly or Net Zero energy buildings (nZEB). This report covers Task 2 on the system comparison and optimisation and Task 3 dedicated to the development of adapted technologies for nZEB and field monitoring results of heat pump systems in nZEB. In the US team three institutions are involved and have worked on the following projects: The Oak Ridge National Laboratory (ORNL) will summarize development activities through the field demonstration stage for several integrated heat pump (IHP) systems electric ground-source (GS-IHP) and air-source (AS-IHP) versions and an engine driven AS-IHP version. The first commercial GS-IHP product was just introduced to the market in December 2012. This work is a contribution to Task 3 of the Annex. The University of Maryland will contribute a software development project to Task 2 of the Annex. The software ThermCom evaluates occupied space thermal comfort conditions accounting for all radiative and convective heat transfer effects as well as local air properties. The National Institute of Standards and Technology (NIST) is working on a field study effort on the NIST Net Zero Energy Residential Test Facility (NZERTF). This residential building was constructed on the NIST campus and officially opened in summer 2013. During the first year, between July 2013 and June 2014, baseline performance of the NZERTF was monitored under a simulated occupancy protocol. The house was equipped with an air-to-air heat pump which included a dedicated dehumidification operating mode. Outdoor conditions, internal loads and modes of heat pump operation were monitored. Field study results with respect to heat pump operation will be reported and recommendations on heat pump optimization for a net zero energy building will be provided. This work is a contribution to Task 3 of the Annex.

  7. Steam as turbine blade coolant: Experimental data generation

    Energy Technology Data Exchange (ETDEWEB)

    Wilmsen, B.; Engeda, A.; Lloyd, J.R. [Michigan State Univ., East Lansing, MI (United States). Dept. of Mechanical Engineering

    1995-12-31

    Steam as a coolant is a possible option to cool blades in high temperature gas turbines; however there is practically no experimental data. This work deals with an attempt to generate such data and with the design of an experimental setup used for the purpose. Initially, in order to guide the direction of experiments, a preliminary theoretical and empirical prediction of the expected experimental data is performed and is presented here. This initial analysis also compares the coolant properties of steam and air.

  8. Analysis of Coolant Options for Advanced Metal Cooled Nuclear Reactors

    Science.gov (United States)

    2006-12-01

    1992) PFR UK 250 MWe - 14 Shut Down (1994) Rapsodie France 40 MWe - 40 Shut Down (1983) Phenix France 233 MWe - 22 In Operation BOR-60 Russia...107years.98 • Problems with radioactive waste management and coolant disposal during decommissioning .99 O th er • Lead is abundantly available in...is high due to Bi-210, half-life 3.6 106years.102 • Problems with radioactive waste management and coolant disposal during decommissioning . 103 O

  9. Cladding embrittlement during postulated loss-of-coolant accidents.

    Energy Technology Data Exchange (ETDEWEB)

    Billone, M.; Yan, Y.; Burtseva, T.; Daum, R.; Nuclear Engineering Division

    2008-07-31

    The effect of fuel burnup on the embrittlement of various cladding alloys was examined with laboratory tests conducted under conditions relevant to loss-of-coolant accidents (LOCAs). The cladding materials tested were Zircaloy-4, Zircaloy-2, ZIRLO, M5, and E110. Tests were performed with specimens sectioned from as-fabricated cladding, from prehydrided (surrogate for high-burnup) cladding, and from high-burnup fuel rods which had been irradiated in commercial reactors. The tests were designed to determine for each cladding material the ductile-to-brittle transition as a function of steam oxidation temperature, weight gain due to oxidation, hydrogen content, pre-transient cladding thickness, and pre-transient corrosion-layer thickness. For short, defueled cladding specimens oxidized at 1000-1200 C, ring compression tests were performed to determine post-quench ductility at {le} 135 C. The effect of breakaway oxidation on embrittlement was also examined for short specimens oxidized at 800-1000 C. Among other findings, embrittlement was found to be sensitive to fabrication processes--especially surface finish--but insensitive to alloy constituents for these dilute zirconium alloys used as cladding materials. It was also demonstrated that burnup effects on embrittlement are largely due to hydrogen that is absorbed in the cladding during normal operation. Some tests were also performed with longer, fueled-and-pressurized cladding segments subjected to LOCA-relevant heating and cooling rates. Recommendations are given for types of tests that would identify LOCA conditions under which embrittlement would occur.

  10. 液压泵性能测试实验台设计%Design of Performance Test Bench for Hydraulic Pump

    Institute of Scientific and Technical Information of China (English)

    郑明辉; 江吉彬; 郭熛

    2011-01-01

    Hydraulic pump as hydraulic system's power part, is one of important parts of engineering machinery product. The hydraulic pump performance test bench is the necessary device for hydraulic pump product quality examination which is the main safe guard of pump product quality. A hydraulic pump performance test bench was designed. The composition, working principle and char acteristics of the hydraulic system were introduced. Data test and analysis were carried on.%液压泵作为液压系统的动力元件,是工程机械产品的重要部件之一.液压泵性能测试实验台是进行液压泵产品质量检测的必要设备,是泵产品质量监控的主要保障.设计了液压泵性能测试实验台,介绍液压系统组成、工作原理和特点,并进行了数据测试及分析.

  11. Test Results of a 1.2 kg/s Centrifugal Liquid Helium Pump for the ATLAS Superconducting Toroid Magnet System

    CERN Document Server

    Pengo, R; Passardi, Giorgio; Pirotte, O; ten Kate, H H J

    2002-01-01

    The toroid superconducting magnet of ATLAS-LHC experiment at CERN will be indirectly cooled by means of forced flow of liquid helium at about 4.5 K. A centrifugal pump will be used, providing a mass flow of 1.2 kg/s and a differential pressure of 40 kPa (ca. 400 mbar) at about 4300 rpm. Two pumps are foreseen, one for redundancy, in order to feed in parallel the cooling circuits of the Barrel and the two End-Caps toroid magnets. The paper describes the tests carried out at CERN to measure the characteristic curves, i.e. the head versus the mass flow at different rotational speeds, as well as the pump total efficiency. The pump is of the "fullemission" type, i.e. with curved blades and it is equipped with an exchangeable inducer. A dedicated pump test facility has been constructed at CERN, which includes a Coriolis-type liquid helium mass flow meter. This facility is connected to the helium refrigerator used for the tests at CERN of the racetrack magnets of the Barrel and of the End-Cap toroids.

  12. Tests of Shaft Seal Systems of Circulation Pumps during Station Blackout

    Energy Technology Data Exchange (ETDEWEB)

    Beisiegel, A.; Foppe, F.; Wich, M.

    2014-07-01

    AREVA GmbH operates a unique Thermal-hydraulic plat form in Germany, France and USA. It is recognised as a test body according to ISO 17025. The Deutsche Akkreditierungsstelle GmbH (DAkkS - German Society for Accreditation) has also certified the Thermal-hydraulic platform as an independent inspection body Type C according to ISO 17020. A part of this platform is the Component Laboratory located in Karlstein, Germany which is in operation since more than 50 years. The testing activities cover a wide range as: Critical Heat Flux Tests, Valve Testing and Environmental Qualification for safety related components. Since 2011 the Component Qualification Karlstein extended their testing scope for different types of Shaft Seal Systems. (Author)

  13. Centrifugal pumps

    CERN Document Server

    Anderson, HH

    1981-01-01

    Centrifugal Pumps describes the whole range of the centrifugal pump (mixed flow and axial flow pumps are dealt with more briefly), with emphasis on the development of the boiler feed pump. Organized into 46 chapters, this book discusses the general hydrodynamic principles, performance, dimensions, type number, flow, and efficiency of centrifugal pumps. This text also explains the pumps performance; entry conditions and cavitation; speed and dimensions for a given duty; and losses. Some chapters further describe centrifugal pump mechanical design, installation, monitoring, and maintenance. The

  14. Development and testing of a high-pressure downhole pump for jet-assist drilling. Final report

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    1996-07-01

    The goal of jet-assist drilling is to increase the rate of penetration (ROP) in deeper gas and oil wells, where the rocks become harder and more difficult to drill. Increasing the ROP can result in fewer drilling days, and therefore, less drilling cost. In late 1993, FlowDril and the Gas Research Institute (GRI) began a three-year development of a down hole pump (DHP{trademark}) capable of producing 30,000 psi out pressure to provide the high-pressure flow for high-pressure jet-assist of the drill bit. The US Department of Energy (DOE) through its Morgantown, WV (DOE-Morgantown) field office, joined with GRI and FlowDril to develop and test a second prototype designed for drilling in 7-7/8 inch holes. This project, `Development and Testing of a High-Pressure Down Hole Pump for Jet-Assist Drilling,` is for the development and testing of the second prototype. It was planned in two phases. Phase I included an update of a market analysis, a design, fabrication, and an initial laboratory test of the second prototype. Phase II is continued iterative laboratory and field developmental testing. This report summarizes the results of Phase I. The project was originally proposed to extend the DHP and jet-assist drilling technology to drilling slimholes. Results of the market analysis for DHP jet-assisted slimhole drilling indicated that the slimhole market would be small (about 1/20th) compared to 7-7/8 inch hole size. The best U.S. land market locations for use of the DHP were identified as East Texas RR District 3, Oklahoma, and East Texas RR District 6. For gas drilling alone, areas with the largest market potential were East Texas RR District 6, Oklahoma and Wyoming. As a consequence of the market size for 7-7/8 inch holes, associated savings to the industry, and a desire to promote earlier commercialization of the DHP jet-assisted drilling technology, this project was re-directed from slimhole applications to development of a second prototype DHP for 7-7/8 inch hole size.

  15. Pumping life

    DEFF Research Database (Denmark)

    Sitsel, Oleg; Dach, Ingrid; Hoffmann, Robert Daniel

    2012-01-01

    of membrane proteins: P-type ATPase pumps. This article takes the reader on a tour from Aarhus to Copenhagen, from bacteria to plants and humans, and from ions over protein structures to diseases caused by malfunctioning pump proteins. The magazine Nature once titled work published from PUMPKIN ‘Pumping ions......’. Here we illustrate that the pumping of ions means nothing less than the pumping of life....

  16. Methodology for determining of the weighted mean coolant temperature in the primary circuit hot legs of WWER-1000 reactor plants

    Energy Technology Data Exchange (ETDEWEB)

    Saunin, Yuri V.; Dobrotvorski, Alexander N.; Semenikhin, Alexander V. [JSC ' Atomtechenergo' , Filial ' Novovoronezhatomtechenergo' , Novovorenezh (Russian Federation); Ryasny, Sergei I. [JSC ' Atomtechenergo' , Mytishi (Russian Federation)

    2016-09-15

    At WWER-1000 NPPs, as well as at PWR NPPs, there is a problem of determining the correct weighted mean coolant temperature in the primary circuit hot legs based on the measuring channels information. The problem is caused by the coolant temperature stratification. The technical documentation for engineering support and maintenance of I and C systems does not provide any regulatory guidelines to consider this effect. Therefore, it is very important to represent a new methodology for determining the weighted mean coolant temperature in the primary circuit hot legs of the WWER-1000 reactor plants. The given paper presents the basic preconditions and approaches applied during the methodology development. They were worked out on the basis of the executed numerical and experimental research taking into account the analysis of the extensive material obtained by the authors from full-scale tests during the commissioning of WWER-1000 power units, as well as operational data obtained from several power units with different fuel loadings.

  17. RSES heat pump technician certification

    Energy Technology Data Exchange (ETDEWEB)

    Zeiner, J.

    1996-06-01

    In 1987 the National Heat Pump certification test was developed by the Refrigeration Service Engineers Society (RSES), and in 1994, the program was more specifically named Heat Pump Service Technician Certification. This report describes the benefits of certification.

  18. Theoretical Analysis and Bench Tests of a Control-Surface Booster Employing a Variable Displacement Hydraulic Pump

    Science.gov (United States)

    Mathews, Charles W.; Kleckner, Harold F.

    1947-01-01

    The NACA is conducting a general investigation of servo-mechanisms for use in powering aircraft control surfaces. This paper presents a theoretical analysis and the results of bench tests of a control-booster system which employs a variable displacement hydraulic pump. The booster is intended for use in a flight investigation to determine the effects of various booster parameters on the handling qualities of airplanes. Such a flight investigation would aid in formulating specific requirements concerning the design of control boosters in general. Results of the theoretical analysis and the bench tests indicate that the subject booster is representative of types which show promise of satisfactory performance. The bench tests showed that the following desirable features were inherent in this booster system: (1) No lost motion or play in any part of the system; (2) no detectable lag between motion of the contra1 stick and control surface; and (3) Good agreement between control displacements and stick-force variations with no hysteresis in the stick-force characteristics. The final design configuration of this booster system showed no tendency to oscillate, overshoot, or have other undesirable transient characteristics common to boosters.

  19. Extension of Surveillance Test Interval of Safety Injection Pump for APR-1400 Reactors to Improve Reliability and Availability of the Pump

    Energy Technology Data Exchange (ETDEWEB)

    Osama, A. Rezk; Jung, J. C.; Lee, Yong-Kwan [KEPCO International Nuclear Graduate School, Ulsan (Korea, Republic of)

    2015-10-15

    The safety features function to localize, control, mitigate, and terminate such incidents and to hold exposure levels below applicable limits. The safety injection system is comprised of four independent mechanical trains without any tie line among the injection paths and two electrical divisions. Each train has one active Safety Injection Pump (SIP) and one passive Safety Injection Tank (SIT) equipped with a Fluidic Device (FD), each train provides 50% of the minimum injection flow rate for breaks larger than the size of a direct vessel injection line. For breaks equal to or smaller than the size of a direct vessel injection line, each train has 100% of the required capacity. The low pressure injection pumps with common header installed in the conventional design are eliminated, and the functions for safety injection and shutdown cooling are separated. The arrangement of safety injection system for APR-1400 as shown in figure (1). The results obtained in this work show that STI extensions for the SIS feasible without any unacceptable increase in the plant total risk, STI extensions are acceptable for safety injection system to provide plant operational flexibility in the performance of both corrective and preventive maintenance for the safety injection system.

  20. Performance of water and diluted ethylene glycol as coolants for electronic cooling

    Directory of Open Access Journals (Sweden)

    M. Gayatri,

    2015-05-01

    Full Text Available As the number of transistors increases with new generation of microprocessor chips, the power draw and heat load to dissipate during operation increases. As a result of increasing the heat loads and heat fluxes the Conventional cooling technologies such as fan, heat sinks are unable to absorb and heat transfer excess heat dissipated by these new microprocessor. So, new technologies are needed to improve the heat removal capacity. In the present work single phase liquid cooling system with mini channel is analyzed and experimentally investigated. Mini channels are chosen as to provide higher heat transfer co-efficient than conventional channel. Copper pipes of 0.36 mm diameter are taken to fabricate heat sink and heat exchanger. A pump is used to circulate the fluid through heat sink and heat exchanger. A solid heated aluminium block to simulate heat generated electronic component is used and electrical input is supplied to the heated aluminium block and cooling system is placed over the heated block. The performance of the cooling system is analyzed from the experimental data obtained. It is experimentally observed that the mini channel liquid cooling system with water as a coolant has better performance than diluted ethylene glycol as coolant at different flow rates. The surface temperature of the heated aluminium block with convective heat transfer co-efficient is observed

  1. Metal hydride heat pump engineering demonstration and evaluation model

    Science.gov (United States)

    Lynch, Franklin E.

    1993-01-01

    Future generations of portable life support systems (PLSS's) for space suites (extravehicular mobility units or EMU's) may require regenerable nonventing thermal sinks (RNTS's). For purposes of mobility, a PLSS must be as light and compact as possible. Previous venting PLSS's have employed water sublimators to reject metabolic and equipment heat from EMU's. It is desirable for long-duration future space missions to minimize the use of water and other consumables that need to be periodically resupplied. The emission of water vapor also interferes with some types of instrumentation that might be used in future space exploration. The test article is a type of RNTS based on a metal hydride heat pump (MHHP). The task of reservicing EMU's after use must be made less demanding in terms of time, procedures, and equipment. The capability for quick turnaround post-EVA servicing (30 minutes) is a challenging requirement for many of the RNTS options. The MHHP is a very simple option that can be regenerated in the airlock within the 30 minute limit by the application of a heating source and a cooling sink. In addition, advanced PLSS's must provide a greater degree of automatic control, relieving astronauts of the need to manually adjust temperatures in their liquid cooled ventilation garments (LCVG's). The MHHP includes automatic coolant controls with the ability to follow thermal load swings from minimum to maximum in seconds. The MHHP includes a coolant loop subsystem with pump and controls, regeneration equipment for post-EVA servicing, and a PC-based data acquisition and control system (DACS).

  2. FILM-30: A Heat Transfer Properties Code for Water Coolant

    Energy Technology Data Exchange (ETDEWEB)

    MARSHALL, THERON D.

    2001-02-01

    A FORTRAN computer code has been written to calculate the heat transfer properties at the wetted perimeter of a coolant channel when provided the bulk water conditions. This computer code is titled FILM-30 and the code calculates its heat transfer properties by using the following correlations: (1) Sieder-Tate: forced convection, (2) Bergles-Rohsenow: onset to nucleate boiling, (3) Bergles-Rohsenow: partially developed nucleate boiling, (4) Araki: fully developed nucleate boiling, (5) Tong-75: critical heat flux (CHF), and (6) Marshall-98: transition boiling. FILM-30 produces output files that provide the heat flux and heat transfer coefficient at the wetted perimeter as a function of temperature. To validate FILM-30, the calculated heat transfer properties were used in finite element analyses to predict internal temperatures for a water-cooled copper mockup under one-sided heating from a rastered electron beam. These predicted temperatures were compared with the measured temperatures from the author's 1994 and 1998 heat transfer experiments. There was excellent agreement between the predicted and experimentally measured temperatures, which confirmed the accuracy of FILM-30 within the experimental range of the tests. FILM-30 can accurately predict the CHF and transition boiling regimes, which is an important advantage over current heat transfer codes. Consequently, FILM-30 is ideal for predicting heat transfer properties for applications that feature high heat fluxes produced by one-sided heating.

  3. Extended Cold Testing of a Russian Pulsating Mixer Pump at the Oak Ridge National Laboratory, Oak Ridge, Tennessee

    Energy Technology Data Exchange (ETDEWEB)

    Lewis, BE

    2002-12-23

    The effectiveness of a mixer is dependent on the size of the tank to be mixed, the characteristics of the waste, and the operating conditions. Waste tanks throughout the U.S. Department of Energy Complex require mixing and mobilization systems capable of (1) breaking up and suspending materials that are difficult to mix and pump, without introducing additional liquids into the tank; (2) complementing and augmenting the performance of other remotely operated and/or robotic waste retrieval systems; and (3) operating in tanks with various quantities of waste. The Oak Ridge Russian pulsating mixer pump (PMP) system was designed with the flexibility to permit deployment in a variety of cylindrical tanks. The PMP was installed at the Tanks Technology Cold Test Facility at the Oak Ridge National Laboratory (ORNL) to assess the performance of the system over an extended range of operating conditions, including supply pressures up to 175 psig. Previously conducted cold tests proved the applicability of the PMP for deployment in ORNL gunite tank TH-4. The previous testing and hot demonstrations had been limited to operating at air supply pressures of <100 psig. The extended cold testing of the Russian PMP system showed that the system was capable of mobilizing waste simulants in tanks in excess of 20-ft diam. The waste simulant used in these tests was medium-grain quartz sand. The system was successfully installed, checked out, and operated for 406 pulse discharge cycles. Only minor problems (i.e., a sticking air distributor valve and a few system lockups) were noted. Some improvements to the design of the air distributor valve may be needed to improve reliability. The air supply requirements of the PMP during the discharge cycle necessitated the operation of the system in single pulse discharge cycles to allow time for the air supply reservoir to recharge to the required pressure. During the test program, the system was operated with sand depths of 2, 4, and 4.5 in.; at

  4. Experiment data report for Semiscale Mod-1 tests S-05-2A and S-05-2B (alternate ECC injection tests)

    Energy Technology Data Exchange (ETDEWEB)

    Patton, Jr., M. L.; Collins, B. L.; Sackett, K. E.

    1977-04-01

    Recorded test data are presented for Tests S-05-2A and S-05-2B of the Semiscale Mod-1 alternate ECC injection test series. These tests are among several Semiscale Mod-1 experiments conducted to investigate the thermal and hydraulic phenomena accompanying a hypothesized loss-of-coolant accident in a pressurized water reactor (PWR) system. Tests S-05-2A and S-05-2B were conducted from initial conditions of 2263 psia and 543/sup 0/F and 2272 psia and 542/sup 0/F, respectively, to investigate the response of the Semiscale Mod-1 system to a depressurization and reflood transient following a simulated double-ended offset shear of the cold leg broken loop piping. During the tests, cooling water was injected into the intact loop pump suction and broken loop cold leg to simulate emergency core coolant injection in a PWR with flow rates based on system volume scaling. For Test S-05-2A the intact loop pump speed was held constant throughout the test at the initial blowdown value. During Test S-05-2B the pump speed was reduced and stopped according to a predetermined coastdown schedule.

  5. Human Factors Process Task Analysis Liquid Oxygen Pump Acceptance Test Procedure for the Advanced Technology Development Center

    Science.gov (United States)

    Diorio, Kimberly A.

    2002-01-01

    A process task analysis effort was undertaken by Dynacs Inc. commencing in June 2002 under contract from NASA YA-D6. Funding was provided through NASA's Ames Research Center (ARC), Code M/HQ, and Industrial Engineering and Safety (IES). The John F. Kennedy Space Center (KSC) Engineering Development Contract (EDC) Task Order was 5SMA768. The scope of the effort was to conduct a Human Factors Process Failure Modes and Effects Analysis (HF PFMEA) of a hazardous activity and provide recommendations to eliminate or reduce the effects of errors caused by human factors. The Liquid Oxygen (LOX) Pump Acceptance Test Procedure (ATP) was selected for this analysis. The HF PFMEA table (see appendix A) provides an analysis of six major categories evaluated for this study. These categories include Personnel Certification, Test Procedure Format, Test Procedure Safety Controls, Test Article Data, Instrumentation, and Voice Communication. For each specific requirement listed in appendix A, the following topics were addressed: Requirement, Potential Human Error, Performance-Shaping Factors, Potential Effects of the Error, Barriers and Controls, Risk Priority Numbers, and Recommended Actions. This report summarizes findings and gives recommendations as determined by the data contained in appendix A. It also includes a discussion of technology barriers and challenges to performing task analyses, as well as lessons learned. The HF PFMEA table in appendix A recommends the use of accepted and required safety criteria in order to reduce the risk of human error. The items with the highest risk priority numbers should receive the greatest amount of consideration. Implementation of the recommendations will result in a safer operation for all personnel.

  6. Human Factors Process Task Analysis Liquid Oxygen Pump Acceptance Test Procedure for the Advanced Technology Development Center

    Science.gov (United States)

    Diorio, Kimberly A.

    2002-01-01

    A process task analysis effort was undertaken by Dynacs Inc. commencing in June 2002 under contract from NASA YA-D6. Funding was provided through NASA's Ames Research Center (ARC), Code M/HQ, and Industrial Engineering and Safety (IES). The John F. Kennedy Space Center (KSC) Engineering Development Contract (EDC) Task Order was 5SMA768. The scope of the effort was to conduct a Human Factors Process Failure Modes and Effects Analysis (HF PFMEA) of a hazardous activity and provide recommendations to eliminate or reduce the effects of errors caused by human factors. The Liquid Oxygen (LOX) Pump Acceptance Test Procedure (ATP) was selected for this analysis. The HF PFMEA table (see appendix A) provides an analysis of six major categories evaluated for this study. These categories include Personnel Certification, Test Procedure Format, Test Procedure Safety Controls, Test Article Data, Instrumentation, and Voice Communication. For each specific requirement listed in appendix A, the following topics were addressed: Requirement, Potential Human Error, Performance-Shaping Factors, Potential Effects of the Error, Barriers and Controls, Risk Priority Numbers, and Recommended Actions. This report summarizes findings and gives recommendations as determined by the data contained in appendix A. It also includes a discussion of technology barriers and challenges to performing task analyses, as well as lessons learned. The HF PFMEA table in appendix A recommends the use of accepted and required safety criteria in order to reduce the risk of human error. The items with the highest risk priority numbers should receive the greatest amount of consideration. Implementation of the recommendations will result in a safer operation for all personnel.

  7. Phased Array Ultrasonic Examination of Reactor Coolant System (Carbon Steel-to-CASS) Dissimilar Metal Weld Mockup Specimen

    Energy Technology Data Exchange (ETDEWEB)

    Crawford, S. L. [Pacific Northwest National Lab. (PNNL), Richland, WA (United States); Cinson, A. D. [US Nuclear Regulatory Commission (NRC), Washington, DC (United States); Diaz, A. A. [Pacific Northwest National Lab. (PNNL), Richland, WA (United States); Anderson, M. T. [Pacific Northwest National Lab. (PNNL), Richland, WA (United States)

    2015-11-23

    In the summer of 2009, Pacific Northwest National Laboratory (PNNL) staff traveled to the Electric Power Research Institute (EPRI) NDE Center in Charlotte, North Carolina, to conduct phased-array ultrasonic testing on a large bore, reactor coolant pump nozzle-to-safe-end mockup. This mockup was fabricated by FlawTech, Inc. and the configuration originated from the Port St. Lucie nuclear power plant. These plants are Combustion Engineering-designed reactors. This mockup consists of a carbon steel elbow with stainless steel cladding joined to a cast austenitic stainless steel (CASS) safe-end with a dissimilar metal weld and is owned by Florida Power & Light. The objective of this study, and the data acquisition exercise held at the EPRI NDE Center, were focused on evaluating the capabilities of advanced, low-frequency phased-array ultrasonic testing (PA-UT) examination techniques for detection and characterization of implanted circumferential flaws and machined reflectors in a thick-section CASS dissimilar metal weld component. This work was limited to PA-UT assessments using 500 kHz and 800 kHz probes on circumferential flaws only, and evaluated detection and characterization of these flaws and machined reflectors from the CASS safe-end side only. All data were obtained using spatially encoded, manual scanning techniques. The effects of such factors as line-scan versus raster-scan examination approaches were evaluated, and PA-UT detection and characterization performance as a function of inspection frequency/wavelength, were also assessed. A comparative assessment of the data is provided, using length-sizing root-mean-square-error and position/localization results (flaw start/stop information) as the key criteria for flaw characterization performance. In addition, flaw signal-to-noise ratio was identified as the key criterion for detection performance.

  8. Testing and Discussion of Infusion Pump Based on Open Consumables%开放耗材输液泵的流速测试和讨论

    Institute of Scientific and Technical Information of China (English)

    张飚瑞

    2013-01-01

    Infusion pumps are commonly used in clinical,especially the open consumable infusion pumps,the consumable part of which adopting the gravity sets.However,dedicated infusing outfit is necessary for infusion pumps,so as to ensure the accuracy of the flow rate.Three kinds of infusion pipe were tested in 2 sets of infusion pump,and the results and relevant problems about flow rate of infusion pump are discussed in this paper.%输液泵在临床领域普遍使用,目前临床上使用的多是开放耗材输液泵,其耗材使用的都是重力输液器,而输液泵应该有专用的输液器,这样才能保证流速的精度.本文选取了3种不同的输液管路在2台输液泵上做测试,就测试结果和输液泵流速的相关问题进行讨论.

  9. 低冲次抽油机设计与现场试验%Disign and Test of Low Stroke Pumping Unit

    Institute of Scientific and Technical Information of China (English)

    程晓泽

    2011-01-01

    针对目前国内外油田低产井开采数量不断增加的现状,为满足采油生产的需要,研制了低冲次抽油机,实现了低冲次采油.给出了低冲次抽油机的结构设计、工作原理、技术参数和低冲次抽油机参数设计计算方法.对现场应用的低冲次抽油机进行了试验和测试,与常规抽油机相比节电效果明显.%Low-yield oil wells at home and abroad increasing number of the status quo, to meet the needs of oil production, development of the low stroke frequency pumping unit to achieve a low stroke frequency oil production. The low stroke pumping unit of structural design, working principle, technical parameters and low stroke pumping parameter design method is discussed. On-site application of low stroke pumping unit is tested and detection. Compared with the conventional pumping unit power saving effect is obvious.

  10. EXPERIMENTAL STUDY OF LOCAL HYDRODYNAMICS AND MASS EXCHANGE PROCESSES OF COOLANT IN FUEL ASSEMBLIES OF PRESSURIZED WATER REACTORS

    Directory of Open Access Journals (Sweden)

    S. M. Dmitriev

    2016-01-01

    Full Text Available The results of experimental studies of local hydrodynamics and mass exchange of coolant flow behind spacer and mixing grids of different structural versions that were developed for fuel assemblies of domestic and foreign nuclear reactors are presented in the article. In order to carry out the study the models of the following fuel assemblies have been fabricated: FA for VVER and VBER, FA-KVADRAT for PWR-reactor and FA for KLT-40C reactor. All the models have been fabricated with a full geometrical similarity with full-scale fuel assemblies. The study was carried out by simulating the flow of coolant in a core by air on an aerodynamic test rig. In order to measure local hydrodynamic characteristics of coolant flow five-channel Pitot probes were used that enable to measure the velocity vector in a point by its three components. The tracerpropane method was used for studying mass transfer processes. Flow hydrodynamics was studied by measuring cross-section velocities of coolant flow and coolant rates according to the model cells. The investigation of mass exchange processes consisted of a study of concentration distribution for tracer in experimental model, in determination of attenuation lengths of mass transfer processes behind mixing grids, in calculating of inter-cellar mass exchange coefficient. The database on coolant flow in fuel assemblies for different types of reactors had been accumulated that formed the basis of the engineering substantiation of reactor cores designs. The recommendations on choice of optimal versions of mixing grids have been taken into consideration by implementers of the JSC “OKBM Afrikantov” when creating commissioned fuel assemblies. The results of the study are used for verification of CFD-codes and CFD programs of detailed cell-by-cell calculation of reactor cores in order to decrease conservatism for substantiation of thermal-mechanical reliability.

  11. Design and field testing of Savonius wind pump in East Africa

    Energy Technology Data Exchange (ETDEWEB)

    Rabah, K.V.O.; Osawa, B.M. [University of Nairobi (Kenya). Dept. of Physics

    1996-04-01

    This paper describes improvements in the wind-scoop geometry and efficiency of a double-stack Savonius rotor, developed through a series of wind tunnel and field tests in East Africa. On an aerodynamic performance basis, the Savonius rotor cannot generally compete with other types of wind turbines. Unlike its counter-parts that operate by rotating around a horizontal axis, it rotates around a vertical axis. This has the unfortunate effect of lowering its efficiency, but it has several compensating factors. Its main advantages are that it has better starting torque performance with operating characteristics independent of the wind direction. In addition, it is simple in structure and the fabrication technology required is less sophisticated when compared to similar types of windmills. This makes it a suitable system for small scale applications in wind energy conversion; especially in remote rural regions in developing countries. (author)

  12. Effects of LWR coolant environments on fatigue design curves of carbon and low-alloy steels

    Energy Technology Data Exchange (ETDEWEB)

    Chopra, O.K.; Shack, W.J. [Argonne National Lab., IL (United States)

    1998-03-01

    The ASME Boiler and Pressure Vessel Code provides rules for the construction of nuclear power plant components. Figures I-9.1 through I-9.6 of Appendix I to Section III of the code specify fatigue design curves for structural materials. While effects of reactor coolant environments are not explicitly addressed by the design curves, test data indicate that the Code fatigue curves may not always be adequate in coolant environments. This report summarizes work performed by Argonne National Laboratory on fatigue of carbon and low-alloy steels in light water reactor (LWR) environments. The existing fatigue S-N data have been evaluated to establish the effects of various material and loading variables such as steel type, dissolved oxygen level, strain range, strain rate, temperature, orientation, and sulfur content on the fatigue life of these steels. Statistical models have been developed for estimating the fatigue S-N curves as a function of material, loading, and environmental variables. The results have been used to estimate the probability of fatigue cracking of reactor components. The different methods for incorporating the effects of LWR coolant environments on the ASME Code fatigue design curves are presented.

  13. Use of Nitrogen Trifluoride To Purify Molten Salt Reactor Coolant and Heat Transfer Fluoride Salts

    Energy Technology Data Exchange (ETDEWEB)

    Scheele, Randall D.; Casella, Andrew M.; McNamara, Bruce K.

    2017-05-02

    Abstract: The molten salt cooled nuclear reactor is included as one of the Generation IV reactor types. One of the challenges with the implementation of this reactor is purifying and maintaining the purity of the various molten fluoride salts that will be used as coolants. The method used for Oak Ridge National Laboratory’s molten salt experimental test reactor was to treat the coolant with a mixture of H2 and HF at 600°C. In this article we evaluate thermal NF3 treatment for purifying molten fluoride salt coolant candidates based on NF3’s 1) past use to purify fluoride salts, 2) other industrial uses, 3) commercial availability, 4) operational, chemical, and health hazards, 5) environmental effects and environmental risk management methods, 6) corrosive properties, and 7) thermodynamic potential to eliminate impurities that could arise due to exposure to water and oxygen. Our evaluation indicates that nitrogen trifluoride is a viable and safer alternative to the previous method.

  14. Magnetocaloric pump

    Science.gov (United States)

    Brown, G. V.

    1973-01-01

    Very cold liquids and gases such as helium, neon, and nitrogen can be pumped by using magnetocaloric effect. Adiabatic magnetization and demagnetization are used to alternately heat and cool slug of pumped fluid contained in closed chamber.

  15. In vivo experimental testing of the FW axial blood pump for left ventricular support in Fu Wai Hospital.

    Science.gov (United States)

    Zhang, Yan; Hu, Sheng-Shou; Zhou, Jian-Ye; Sun, Han-Song; Tang, Yue; Zhang, Hao; Zheng, Zhe; Li, Guo-Rong; Zhu, Xiao-Dong; Gui, Xin-Min

    2009-01-01

    A fully implantable, axial flow blood pump has been developed in Fu Wai Hospital aiming for clinical use. This ventricular assist device (VAD), which was developed after numerous CFD analyses for the flow characteristics of the pump, is 58.5-mm long, 30-mm wide (including DC motor), and weighs 240 g. The pump can deliver 5 L/min for pressures of 100 mm Hg over 8,000 rpm. In this study, short-term hemocompatibility effects of the axial left ventricular assist device (LVAD) (FW blood pump) were evaluated in four healthy sheep. The device was implanted into the left ventricular apex of beating hearts. The outflow graft of each device was anastomosed to the descending aorta. The hemolysis, which was evaluated in vivo by free hemoglobin value, was below 30 mg/dL. Evaluation of serum biochemical data showed that implantation of the FW blood pump in sheep with normal hearts did not impair end organ function. Gross and microscopic sections of kidney, liver, and lung revealed no evidence of microemboli. Performance of the pump in vivo was considered sufficient for a LVAD, although further design improvement is necessary in terms of hemolysis and antithrombosis to improve biocompatibility of the pump.

  16. Fracture mechanics evaluation for at typical PWR primary coolant pipe

    Energy Technology Data Exchange (ETDEWEB)

    Tanaka, T. [Kansai Electric Power Company, Osaka (Japan); Shimizu, S.; Ogata, Y. [Mitsubishi Heavy Industries, Ltd., Kobe (Japan)

    1997-04-01

    For the primary coolant piping of PWRs in Japan, cast duplex stainless steel which is excellent in terms of strength, corrosion resistance, and weldability has conventionally been used. The cast duplex stainless steel contains the ferrite phase in the austenite matrix and thermal aging after long term service is known to change its material characteristics. It is considered appropriate to apply the methodology of elastic plastic fracture mechanics for an evaluation of the integrity of the primary coolant piping after thermal aging. Therefore we evaluated the integrity of the primary coolant piping for an initial PWR plant in Japan by means of elastic plastic fracture mechanics. The evaluation results show that the crack will not grow into an unstable fracture and the integrity of the piping will be secured, even when such through wall crack length is assumed to equal the fatigue crack growth length for a service period of up to 60 years.

  17. Influence of coolant motion on structure of hardened steel element

    Directory of Open Access Journals (Sweden)

    A. Kulawik

    2008-08-01

    Full Text Available Presented paper is focused on volumetric hardening process using liquid low melting point metal as a coolant. Effect of convective motion of the coolant on material structure after hardening is investigated. Comparison with results obtained for model neglecting motion of liquid is executed. Mathematical and numerical model based on Finite Element Metod is described. Characteristic Based Split (CBS method is used to uncouple velocities and pressure and finally to solve Navier-Stokes equation. Petrov-Galerkin formulation is employed to stabilize convective term in heat transport equation. Phase transformations model is created on the basis of Johnson-Mehl and Avrami laws. Continuous cooling diagram (CTPc for C45 steel is exploited in presented model of phase transformations. Temporary temperatures, phases participation, thermal and structural strains in hardening element and coolant velocities are shown and discussed.

  18. Actively controlling coolant-cooled cold plate configuration

    Energy Technology Data Exchange (ETDEWEB)

    Chainer, Timothy J.; Parida, Pritish R.

    2015-07-28

    A method is provided to facilitate active control of thermal and fluid dynamic performance of a coolant-cooled cold plate. The method includes: monitoring a variable associated with at least one of the coolant-cooled cold plate or one or more electronic components being cooled by the cold plate; and dynamically varying, based on the monitored variable, a physical configuration of the cold plate. By dynamically varying the physical configuration, the thermal and fluid dynamic performance of the cold plate are adjusted to, for example, optimally cool the one or more electronic components, and at the same time, reduce cooling power consumption used in cooling the electronic component(s). The physical configuration can be adjusted by providing one or more adjustable plates within the coolant-cooled cold plate, the positioning of which may be adjusted based on the monitored variable.

  19. Experimental study of high temperature particle dropping in coolant liquid

    Institute of Scientific and Technical Information of China (English)

    LI Tianshu; YANG Yanhua; LI Xiaoyan; HU Zhihua

    2007-01-01

    A series of experiments of the premixing stage of fuel-coolant interactions (FCI), namely the particles falling into water, were carried out. The force on the particles during the course of falling has been studied. The dropping character of hot particle was influenced by three main parameters, i.e., particle temperature, particle diameter and coolant subcooling that varied over a wide range. A high-speed camera recorded the falling speed of the particle and the moving curves were obtained. The experimental results showed that for the film boiling on the surface of particle and water, the temperature increase of either particle or coolant would slow down the particle falling velocity. The falling velocity of particle in small diameter is lower than that of the bigger particle. The present work can provide an experimental foundation for further investigation of high-speed transient evaporation heat transfer.

  20. Fuel cell cooling system using a non-dielectric coolant

    Energy Technology Data Exchange (ETDEWEB)

    Grevstad, P.E.; Gelting, R.L.

    1976-07-13

    A cooler for removing waste heat from a stack of fuel cells uses a non-dielectric coolant which is carried in a plurality of tubes passing through one or more separator plates in the stack. Preferably the coolant is water so that heat removal is by evaporation of the water within the tubes by boiling. The tubes are electrically insulated from the cells by a coating of dielectric material such as polytetrafluoroethylene. In one embodiment of the invention the cooler tubes are connected to the stack coolant supply conduits by dielectric hoses having a high length to diameter ratio to provide a several hundred thousand ohm impedance path in case of a flaw in the protective dielectric coating, in order that a short circuit of the stack does not occur.

  1. Heat pumps

    CERN Document Server

    Macmichael, DBA

    1988-01-01

    A fully revised and extended account of the design, manufacture and use of heat pumps in both industrial and domestic applications. Topics covered include a detailed description of the various heat pump cycles, the components of a heat pump system - drive, compressor, heat exchangers etc., and the more practical considerations to be taken into account in their selection.

  2. A laboratory validation study of the time-lapse oscillatory pumping test for leakage detection in geological repositories

    Science.gov (United States)

    Sun, Alexander Y.; Lu, Jiemin; Islam, Akand

    2017-05-01

    Geologic repositories are extensively used for disposing byproducts in mineral and energy industries. The safety and reliability of these repositories are a primary concern to environmental regulators and the public. Time-lapse oscillatory pumping test (OPT) has been introduced recently as a pressure-based technique for detecting potential leakage in geologic repositories. By routinely conducting OPT at a number of pulsing frequencies, an operator may identify the potential repository anomalies in the frequency domain, alleviating the ambiguity caused by reservoir noise and improving the signal-to-noise ratio. Building on previous theoretical and field studies, this work performed a series of laboratory experiments to validate the concept of time-lapse OPT using a custom made, stainless steel tank under relatively high pressures. The experimental configuration simulates a miniature geologic storage repository consisting of three layers (i.e., injection zone, caprock, and above-zone aquifer). Results show that leakage in the injection zone led to deviations in the power spectrum of observed pressure data, and the amplitude of which also increases with decreasing pulsing frequencies. The experimental results are further analyzed by developing a 3D flow model, using which the model parameters are estimated through frequency domain inversion.

  3. TESTING THE INTERACTION OF HEART LEFT VENTRICLE AND CONTINUOUS-FLOW PUMP ON A MOCK CIRCULATION MODEL UNDER NORMAL AND PATHOLOGICAL CONDITIONS

    Directory of Open Access Journals (Sweden)

    G. P. Itkin

    2015-01-01

    Full Text Available Introduction. The preliminary study of new developed pumps for circulatory support on the hydrodynamic circulation model is an important step in the process of their designing. Hydrodynamic circulation models that can closely imitate cardio – vascular system are important to defi ne the range of effective functioning of the pumps under normal and heart disease conditions which is of great importance for defi ning the mode of these pumps in real clinical conditions.The aim of study is to create a new hydrodynamic circulation model of the systemic circulation to study the processes of interaction of heart left ventricle and continuous – fl ow pumps.Materials and methods. The main components of the mock circulation model (arterial and venous blocks are designed as closed reservoirs with an air bag providing the necessary elasticity value of these reservoirs. The heart left ventricle was simulated with an artifi cial heart ventricle with a pneumatic drive Sinus-IS which allows to change its options in a wide range. As a test pump we used the fi rst native implantable axial pump VISH – 1. In the course of research we made the registration and recording of the basic hemodynamic parameters (pressure, fl ow with a multichannel module Pumpax for the measurement of pressure parameters.Results. The designed circulation model allows to adequately reproduce the main hemodynamic parameters of the circulatory system in normal (arterial pressure – 110/77 mmHg, left atrium pressure – 7 mmHg and cardiac output – 4.2 l/min and heart failure conditions (arterial pressure – 79/53 mmHg, left atrium pressure – 15 mmHg and cardiac output – 3.1 l/min. On the circulation model the interaction of heart left ventricle and continuous-fl ow pump in heart failure simulation was studied. The dynamics of the main circulation fi gures is shown under conditions of changing of the pump rotor speed. Meanwhile, the conditions of the closing of

  4. Liquid metal reactor development. Development of LMR coolant technology

    Energy Technology Data Exchange (ETDEWEB)

    Nam, H. Y.; Choi, S. K.; Hwang, J. s.; Lee, Y. B.; Choi, B. H.; Kim, J. M.; Kim, Y. G.; Kim, M. J.; Lee, S. D.; Kang, Y. H.; Maeng, Y. Y.; Kim, T. R.; Park, J. H.; Park, S. J.; Cha, J. H.; Kim, D. H.; Oh, S. K.; Park, C. G.; Hong, S. H.; Lee, K. H.; Chun, M. H.; Moon, H. T.; Chang, S. H.; Lee, D. N.

    1997-07-15

    Following studies have been performed during last three years as the 1.2 phase study of the mid and long term nuclear technology development plan. First, the small scale experiments using the sodium have been performed such as the basic turbulent mixing experiment which is related to the design of a compact reactor, the flow reversal characteristics experiment by natural circulation which is necessary for the analysis of local flow reversal when the electromagnetic pump is installed, the feasibility test of the decay heat removal by wall cooling and the operation of electromagnetic pump. Second, the technology of operation mechanism of sodium facility is developed and the technical analysis and fundamental experiments of sodium measuring technology has been performed such as differential pressure measuring experiment, local flow rate measuring experimenter, sodium void fraction measuring experiment, under sodium facility, the free surface movement experiment and the side orifice pressure drop experiment. A new bounded convection scheme was introduced to the ELBO3D thermo-hydraulic computer code designed for analysis of experimental result. A three dimensional computer code was developed for the analysis of free surface movement and the analysis model of transmission of sodium void fraction was developed. Fourth, the small scale key components are developed. The submersible-in-pool type electromagnetic pump which can be used as primary pump in the liquid metal reactor is developed. The SASS which uses the Curie-point electromagnet and the mock-up of Pantograph type IVTM were manufactured and their feasibility was evaluated. Fifth, the high temperature characteristics experiment of stainless steel which is used as a major material for liquid metal reactor and the material characteristics experiment of magnet coil were performed. (author). 126 refs., 98 tabs., 296 figs.

  5. Comparison of solar powered water pumping systems which use diaphragm pumps

    Science.gov (United States)

    Four solar photovoltaic (PV) powered diaphragm pumps were tested at different simulated pumping depths at the USDA-ARS Conservation and Production Research Laboratory near Bushland, Texas. Two of the pumps were designed for intermediate pumping depths (30 to 70 meters), and the other two pumps were...

  6. Heat pumps

    CERN Document Server

    Brodowicz, Kazimierz; Wyszynski, M L; Wyszynski

    2013-01-01

    Heat pumps and related technology are in widespread use in industrial processes and installations. This book presents a unified, comprehensive and systematic treatment of the design and operation of both compression and sorption heat pumps. Heat pump thermodynamics, the choice of working fluid and the characteristics of low temperature heat sources and their application to heat pumps are covered in detail.Economic aspects are discussed and the extensive use of the exergy concept in evaluating performance of heat pumps is a unique feature of the book. The thermodynamic and chemical properties o

  7. BW1100型泥浆泵的研制%Design and Testing of BW1100 Mud Pump

    Institute of Scientific and Technical Information of China (English)

    甄玉娜; 王均

    2001-01-01

    为车装水文水井钻机设计大流量、高压力、小体积、小质量的新型泥浆泵,解决其泥浆泵配套难的问题。%A new type of mud pump with high flow, high pressure, compactness and light weight is designed for truck mounted water well drill rig, tackling the difficulty in mud pump matching.

  8. Cold Testing of a Russian Pulsating Mixer Pump at the Oak Ridge National Laboratory, Oak Ridge, Tennessee

    Energy Technology Data Exchange (ETDEWEB)

    Lewis, BE

    2002-01-29

    Russian pulsating mixer pump (PMP) technology was identified in FY 1996 during technical exchanges between the U.S. Department of Energy (DOE) Tanks Focus Area Retrieval and Closure program, the DOE Environmental Management International Programs, and delegates from Russia as a technology that could be implemented in tank waste retrieval operations in the United States. The PMP is basically a jet mixer powered by a pressure/vacuum supply system. A prototype PMP was provided by the Russian Mining and Chemical Combine and evaluated as a potential retrieval tool in FY 1997 at Pacific Northwest National Laboratory (PNNL). Based on this evaluation, Oak Ridge National Laboratory (ORNL) and DOE staff determined that a modified PMP would meet project needs for bulk mobilization of sludge from one or more of the Gunite and Associated Tanks (GAAT) at ORNL. In FY 1998, PMP technology was selected for deployment in one of the GAAT to mobilize settled solids. Deployment of the PMP was expected to reduce operation and maintenance costs required to utilize more expensive retrieval systems. The following series of cold tests and inspections were conducted on one of the three PMP units provided to verify the acceptability and readiness of the mixing system for operation in the GAATs at ORNL: (1) Inspections and measurements designed to evaluate the integrity of the equipment: Fabrication shop inspections, Equipment inspections, Vibration/oscillation measurements, Hydrostatic pressure tests. (2) Functionality of the system components: Tank riser interface functionality, Decontamination spray ring (DSR) functionality, Valves, actuator, sensors, and control system functionality, Support fixture tests; and Contamination control assessment. (3) Mixing and operational performance of the PMP system: DSR performance, PMP debris tolerance, PMP performance with water only, PMP cleaning radius determination, and PMP performance with sludge surrogates. The results from these tests indicate

  9. Definition of loss-of-coolant accident radiation source. [PWR; BWR

    Energy Technology Data Exchange (ETDEWEB)

    1978-02-01

    Meaningful qualification testing of nuclear reactor components requires a knowledge of the radiation fields expected in a loss-of-coolant accident (LOCA). The overall objective of this program is to define the LOCA source terms and compare these with the output of various simulators employed for radiation qualification testing. The basis for comparison will be the energy deposition in a model reactor component. The results of the calculations are presented and some interpretation of the results given. The energy release rates and spectra were validated by comparison with other calculations using different codes since experimental data appropriate to these calculations do not exist.

  10. Flow Characteristics of the PHTS Mechanical Pump in PGSFR

    Energy Technology Data Exchange (ETDEWEB)

    Yoon, Jung; Lee, Tae-Hoo [Korea Atomic Energy Research Institute, Daejeon (Korea, Republic of); Park, Hwi-Seob [CD-adapco, Seoul (Korea, Republic of)

    2014-10-15

    The PHTS (Primary Heat Transfer System) mechanical pump is one of the most important parts in the PGSFR. The objective of the PHTS pump is to circulate a sodium coolant to transfer the heat generated in the core to the IHTS (Intermediate Heat Transfer System). Therefore, it is important to verify the performance of the PHTS pump under various flow conditions. The flow inside the pump is a very complex multi-dimensional phenomenon that depends on the rotation speed of the pump, and the geometry of the impeller and diffuser. In particular, the pump performance and flow characteristics can be evaluated using a homologous curve represented by normalized variables of the head and torque. Using a homologous curve obtained by a real pump or model pump reduced by the same specific speed is reasonable, but the detailed design procedure about the prototype PHTS pump has not been completed at this point. In this study, the flow characteristics and homologous curve of the PHTS pump are evaluated by CFD. The flow characteristic of the PHTS pump is evaluated by the CFD. The head and torque are calculated at several flow rates and rotation speeds, and these values are substituted with normalized pump parameters. Also, the homologous head and torque curve is plotted using normalized pump parameters. This curve is used as the input of the safety analysis.

  11. Assessment of Feasibility of the Beneficial Use of Waste Heat from the Advanced Test Reactor

    Energy Technology Data Exchange (ETDEWEB)

    Donna P. Guillen

    2012-07-01

    This report investigates the feasibility of using waste heat from the Advanced Test Reactor (ATR). A proposed glycol waste heat recovery system was assessed for technical and economic feasibility. The system under consideration would use waste heat from the ATR secondary coolant system to preheat air for space heating of TRA-670. A tertiary coolant stream would be extracted from the secondary coolant system loop and pumped to a new plate and frame heat exchanger, where heat would be transferred to a glycol loop for preheating outdoor air in the heating and ventilation system. Historical data from Advanced Test Reactor operations over the past 10 years indicates that heat from the reactor coolant was available (when needed for heating) for 43.5% of the year on average. Potential energy cost savings by using the waste heat to preheat intake air is $242K/yr. Technical, safety, and logistics considerations of the glycol waste heat recovery system are outlined. Other opportunities for using waste heat and reducing water usage at ATR are considered.

  12. Test Results From a Pair of 1-kWe Dual-Opposed Free-Piston Stirling Power Convertors Integrated With a Pumped NaK Loop

    Science.gov (United States)

    Geng, Steven M.; Briggs, Maxwell H.; Penswick, L. Barry; Pearson, J. Boise; Godfroy, Thomas J.

    2011-01-01

    As a step towards development of Stirling power conversion for potential use in Fission Surface Power (FSP) systems, a pair of commercially available 1-kW-class free-piston Stirling convertors were modified to operate with a NaK (sodium (Na) and potassium (K)) liquid metal pumped loop for thermal energy input. This was the first-ever attempt at powering a free-piston Stirling engine with a pumped liquid metal heat source and is a major FSP project milestone towards demonstrating technical feasibility. The convertors were successfully tested at the Marshall Space Flight Center (MSFC) from June 6 through July 14, 2009. The convertors were operated for a total test time of 66 hr and 16 min. The tests included (a) performance mapping the convertors over various hot- and cold-end temperatures, piston amplitudes, and NaK flow rates and (b) transient test conditions to simulate various startup (i.e., low-, medium-, and high-temperature startups) and fault scenarios (i.e., loss of heat source, loss of NaK pump, convertor stall, etc.). This report documents the results of this testing

  13. AUTOMOTIVE AND HEAVY-DUTY ENGINE COOLANT RECYCLING BY DISTILLATION

    Science.gov (United States)

    This evaluation addresses the product quality, waste reduction, and economic issues involved in recycling automotive and heavy-duty engine coolants for a facility such as the New Jersey Department of Transportation garage in Ewing, New Jersey. he specific recycling evaluated is b...

  14. EVALUATION OF FILTRATION AND DISTILLATION METHODS FOR RECYCLING AUTOMOTIVE COOLANT.

    Science.gov (United States)

    This evaluation addresses the product quality, waste reduction, and economic issues involved in recycling automotive and heavy-duty engine coolants at a New Jersey Department of Transportation garage. The specific recycling units evaluated are based on the technologies of filtrat...

  15. Integral coolant channels supply made by melt-out method

    Science.gov (United States)

    Escher, W. J. D.

    1964-01-01

    Melt-out method of constructing strong, pressure-tight fluid coolant channels for chambers is accomplished by cementing pins to the surface and by depositing a melt-out material on the surface followed by two layers of epoxy-resin impregnated glass fibers. The structure is heated to melt out the low-melting alloy.

  16. EVALUATION OF FILTRATION AND DISTILLATION METHODS FOR RECYCLING AUTOMOTIVE COOLANT.

    Science.gov (United States)

    This evaluation addresses the product quality, waste reduction, and economic issues involved in recycling automotive and heavy-duty engine coolants at a New Jersey Department of Transportation garage. The specific recycling units evaluated are based on the technologies of filtrat...

  17. AUTOMOTIVE AND HEAVY-DUTY ENGINE COOLANT RECYCLING BY DISTILLATION

    Science.gov (United States)

    This evaluation addresses the product quality, waste reduction, and economic issues involved in recycling automotive and heavy-duty engine coolants for a facility such as the New Jersey Department of Transportation garage in Ewing, New Jersey. he specific recycling evaluated is b...

  18. Design for Hydrostatic Bearing of Vertical Type Pump

    Energy Technology Data Exchange (ETDEWEB)

    Kim, Kang Soo; Kim, Sung Kyun; Koo, Gyeong Hoi; Park, Keun Bae [Korea Atomic Energy Research Institute, Daejeon (Korea, Republic of)

    2015-10-15

    The primary pump of PGSFR(Prototype Gen IV Sodium Fast Reactor) performs an important safety function of circulating the coolant across the core to remove the nuclear heat under all operating conditions of the reactor. Design and selection of materials and manufacturing technology for sodium pumps differ to a large extent from conventional pumps because these pumps operate relatively at high temperatures and have high reliability. In order to provide guide to the shaft at the bottom part, there is a hydrostatic bearing above the impeller level. In this paper, the FEM(Finite Element Method) analysis was performed to evaluate the unbalance force for the rotary shaft for the design of the hydrostatic bearing and the design methodology and procedures for the hydrostatic bearing are established. The hydrostatic bearing of the primary pump of PGSFR is designed. Thus, the design methodology and procedure for the hydrostatic bearing of the vertical type pump are established.

  19. Summary of Test Results From a 1 kW(sub e)-Class Free-Piston Stirling Power Convertor Integrated With a Pumped NaK Loop

    Science.gov (United States)

    Briggs, Maxwell H.; Geng, Steven M.; Pearson, J. Boise; Godfroy, Thomas J.

    2010-01-01

    As a step towards development of Stirling power conversion for potential use in Fission Surface Power (FSP) systems, a pair of commercially available 1 kW class free-piston Stirling convertors was modified to operate with a NaK liquid metal pumped loop for thermal energy input. This was the first-ever attempt at powering a free-piston Stirling engine with a pumped liquid metal heat source and is a major FSP project milestone towards demonstrating technical feasibility. The tests included performance mapping the convertors over various hot and cold-end temperatures, piston amplitudes and NaK flow rates; and transient test conditions to simulate various start-up and fault scenarios. Performance maps of the convertors generated using the pumped NaK loop for thermal input show increases in power output over those measured during baseline testing using electric heating. Transient testing showed that the Stirling convertors can be successfully started in a variety of different scenarios and that the convertors can recover from a variety of fault scenarios.

  20. Summary of Test Results From a 1 kWe-Class Free-Piston Stirling Power Convertor Integrated With a Pumped NaK Loop

    Science.gov (United States)

    Briggs, Maxwell H.; Geng, Steven M.; Pearson, J. Boise; Godfroy, Thomas J.

    2010-01-01

    As a step towards development of Stirling power conversion for potential use in Fission Surface Power (FSP) systems, a pair of commercially available 1 kW class free-piston Stirling convertors was modified to operate with a NaK liquid metal pumped loop for thermal energy input. This was the first-ever attempt at powering a free-piston Stirling engine with a pumped liquid metal heat source and is a major FSP project milestone towards demonstrating technical feasibility. The tests included performance mapping the convertors over various hot and cold-end temperatures, piston amplitudes and NaK flow rates; and transient test conditions to simulate various start-up and fault scenarios. Performance maps of the convertors generated using the pumped NaK loop for thermal input show increases in power output over those measured during baseline testing using electric heating. Transient testing showed that the Stirling convertors can be successfully started in a variety of different scenarios and that the convertors can recover from a variety of fault scenarios.

  1. The CentriMag centrifugal blood pump as a benchmark for in vitro testing of hemocompatibility in implantable ventricular assist devices.

    Science.gov (United States)

    Chan, Chris H H; Pieper, Ina Laura; Hambly, Rebecca; Radley, Gemma; Jones, Alyssa; Friedmann, Yasmin; Hawkins, Karl M; Westaby, Stephen; Foster, Graham; Thornton, Catherine A

    2015-02-01

    Implantable ventricular assist devices (VADs) have proven efficient in advanced heart failure patients as a bridge-to-transplant or destination therapy. However, VAD usage often leads to infection, bleeding, and thrombosis, side effects attributable to the damage to blood cells and plasma proteins. Measuring hemolysis alone does not provide sufficient information to understand total blood damage, and research exploring the impact of currently available pumps on a wider range of blood cell types and plasma proteins such as von Willebrand factor (vWF) is required to further our understanding of safer pump design. The extracorporeal CentriMag (Thoratec Corporation, Pleasanton, CA, USA) has a hemolysis profile within published standards of normalized index of hemolysis levels of less than 0.01 g/100 L at 100 mm Hg but the effect on leukocytes, vWF multimers, and platelets is unknown. Here, the CentriMag was tested using bovine blood (n = 15) under constant hemodynamic conditions in comparison with a static control for total blood cell counts, hemolysis, leukocyte death, vWF multimers, microparticles, platelet activation, and apoptosis. The CentriMag decreased the levels of healthy leukocytes (P pump which could be used as a standard in blood damage assays to inform the design of new implantable blood pumps.

  2. An investigation of FeCrAl cladding behavior under normal operating and loss of coolant conditions

    Science.gov (United States)

    Gamble, K. A.; Barani, T.; Pizzocri, D.; Hales, J. D.; Terrani, K. A.; Pastore, G.

    2017-08-01

    Iron-chromium-aluminum (FeCrAl) alloys are candidates to be used as nuclear fuel cladding for increased accident tolerance. An analysis of the response of FeCrAl under normal operating and loss of coolant conditions has been performed using fuel performance modeling. In particular, recent information on FeCrAl material properties and phenomena from separate effects tests has been implemented in the BISON fuel performance code and analyses of integral fuel rod behavior with FeCrAl cladding have been performed. BISON simulations included both light water reactor normal operation and loss-of-coolant accidental transients. In order to model fuel rod behavior during accidents, a cladding failure criterion is desirable. For FeCrAl alloys, a failure criterion is developed using recent burst experiments under loss of coolant like conditions. The added material models are utilized to perform comparative studies with Zircaloy-4 under normal operating conditions and oxidizing and non-oxidizing out-of-pile loss of coolant conditions. The results indicate that for all conditions studied, FeCrAl behaves similarly to Zircaloy-4 with the exception of improved oxidation performance. Further experiments are required to confirm these observations.

  3. Performance testing of pumps in the framework of deep geothermic drilling for power generation; Leistungspumpversuche im Rahmen von tiefen Geothermiebohrungen zur Stromerzeugung

    Energy Technology Data Exchange (ETDEWEB)

    Kibellus, Berthold [H. Anger' s Soehne Bohr- und Brunnenbaugesellschaft mbH, Hessisch Lichtenau (Germany)

    2010-07-01

    The energy content of the hot water is the key element of a geothermal power system. If either the water volume or the temperature are lower than expected, a project may fail because it is considered inefficient. Pump tests with volume flows up to 150 l/s, temperatures up to 150 degC, high steam volumes and injection temperatures of only 30 degC are therefore of utmost importance for the technical and safety-relevant design and operation of geothermal plants. The performance characteristic of the pump test mustprovide accurate data within a relatively short time in order to get correct information on the reproducible future operation of the plant.

  4. Centrifugal pumps

    CERN Document Server

    Gülich, Johann Friedrich

    2014-01-01

    This book gives an unparalleled, up-to-date, in-depth treatment of all kinds of flow phenomena encountered in centrifugal pumps including the complex interactions of fluid flow with vibrations and wear of materials. The scope includes all aspects of hydraulic design, 3D-flow phenomena and partload operation, cavitation, numerical flow calculations, hydraulic forces, pressure pulsations, noise, pump vibrations (notably bearing housing vibration diagnostics and remedies), pipe vibrations, pump characteristics and pump operation, design of intake structures, the effects of highly viscous flows, pumping of gas-liquid mixtures, hydraulic transport of solids, fatigue damage to impellers or diffusers, material selection under the aspects of fatigue, corrosion, erosion-corrosion or hydro-abrasive wear, pump selection, and hydraulic quality criteria. As a novelty, the 3rd ed. brings a fully analytical design method for radial impellers, which eliminates the arbitrary choices inherent to former design procedures. The d...

  5. Liquid metal reactor development -Studies on safety measure of LMR coolant

    Energy Technology Data Exchange (ETDEWEB)

    Hwang, Sung Tae; Choi, Yoon Dong; Park, Jin Hoh; Kwon, Sun Kil; Choi, Jong Hyun; Cho, Byung Ryul; Kim, Tae Joon; Kwon, Sang Woon; Jung, Kyung Chae; Kim, Byung Hoh; Hong, Soon Bok; Jung, Ji Yung [Korea Atomic Energy Research Institute, Taejon (Korea, Republic of)

    1995-07-01

    A study on the safety measures of LMR coolant showed the results as follows; 1. LMR coolant safety measure. A. Analysis and improvement of sodium fire code. B. Analysis of sodium fire phenomena. 2. Sodium fire aerosol characteristics. It was carried out conceptual design and basic design for sodium fire facility of medium size composed of sodium supply tank, sodium reactor vessel, sodium fire aerosol filter system and scrubbing column, and drain tank etc. 3. Sodium purification technology. A. Construction of calibration loop. (1) Design of sodium loop for the calibration of the equipment. (2) Construction of sodium loop including test equipments and other components. B. Na-analysis technology. (1) Oxygen concentration determination by the wet method. (2) Cover gas purification preliminary experiment. 4. The characteristics of sodium-water reaction. A. Analysis of the micro and small leak phenomena. (1) Manufacture of the micro-leak test apparatus. B. Analysis of large leak events. (1) Development of preliminary code for analysis of initial spike pressure. (2) Sample calculation and comparison with previous works. C. Development of test facility for large leak event evaluation. (1) Conceptional and basic design for the water and sodium-water test facility. D. Technology development for water leak detection system. (1) Investigations for the characteristics of active acoustic detection system. (2) Testing of the characteristics of hydrogen leak detection system. 171 figs, 29 tabs, 3 refs. (Author).

  6. Directly connected heat exchanger tube section and coolant-cooled structure

    Energy Technology Data Exchange (ETDEWEB)

    Chainer, Timothy J.; Coico, Patrick A.; Graybill, David P.; Iyengar, Madhusudan K.; Kamath, Vinod; Kochuparambil, Bejoy J.; Schmidt, Roger R.; Steinke, Mark E.

    2015-09-15

    A method is provided for fabricating a cooling apparatus for cooling an electronics rack, which includes an air-to-liquid heat exchanger, one or more coolant-cooled structures, and a tube. The heat exchanger is associated with the electronics rack and disposed to cool air passing through the rack, includes a plurality of coolant-carrying tube sections, each tube section having a coolant inlet and outlet, one of which is coupled in fluid communication with a coolant loop to facilitate flow of coolant through the tube section. The coolant-cooled structure(s) is in thermal contact with an electronic component(s) of the rack, and facilitates transfer of heat from the component(s) to the coolant. The tube connects in fluid communication one coolant-cooled structure and the other of the coolant inlet or outlet of the one tube section, and facilitates flow of coolant directly between that coolant-carrying tube section of the heat exchanger and the coolant-cooled structure.

  7. Numerical study identifying the factors causing the significant underestimation of the specific discharge estimated using the modified integral pumping test method in a laboratory experiment.

    Science.gov (United States)

    Sun, Kerang

    2015-09-01

    A three-dimensional finite element model is constructed to simulate the experimental conditions presented in a paper published in this journal [Goltz et al., 2009. Validation of two innovative methods to measure contaminant mass flux in groundwater. Journal of Contaminant Hydrology 106 (2009) 51-61] where the modified integral pumping test (MIPT) method was found to significantly underestimate the specific discharge in an artificial aquifer. The numerical model closely replicates the experimental configuration with explicit representation of the pumping well column and skin, allowing for the model to simulate the wellbore flow in the pumping well as an integral part of the porous media flow in the aquifer using the equivalent hydraulic conductivity approach. The equivalent hydraulic conductivity is used to account for head losses due to friction within the wellbore of the pumping well. Applying the MIPT method on the model simulated piezometric heads resulted in a specific discharge that underestimates the true specific discharge in the experimental aquifer by 18.8%, compared with the 57% underestimation of mass flux by the experiment reported by Goltz et al. (2009). Alternative simulation shows that the numerical model is capable of approximately replicating the experiment results when the equivalent hydraulic conductivity is reduced by an order of magnitude, suggesting that the accuracy of the MIPT estimation could be improved by expanding the physical meaning of the equivalent hydraulic conductivity to account for other factors such as orifice losses in addition to frictional losses within the wellbore. Numerical experiments also show that when applying the MIPT method to estimate hydraulic parameters, use of depth-integrated piezometric head instead of the head near the pump intake can reduce the estimation error resulting from well losses, but not the error associated with the well not being fully screened.

  8. Analysis of a small break loss-of-coolant accident of pressurized water reactor by APROS

    Energy Technology Data Exchange (ETDEWEB)

    Al-Falahi, A. [Helsinki Univ. of Technology, Espoo (Finland); Haennine, M. [VTT Energy, Espoo (Finland); Porkholm, K. [IVO International, Ltd., Vantaa (Finland)

    1995-09-01

    The purpose of this paper is to study the capability of APROS (Advanced PROcess Simulator) code to simulate the real plant thermal-hydraulic transient of a Small Break Loss-Of-Coolant Accident (SBLOCA) of Loss-Of-Fluid Test (LOFT) facility. The LOFT is a scaled model of a Pressurized Water Reactor (PWR). This work is a part of a larger validation of the APROS thermal-hydraulic models. The results of SBLOCA transient calculated by APROS showed a reasonable agreement with the measured data.

  9. Capabilities and Testing of the Fission Surface Power Primary Test Circuit (FSP-PTC)

    Science.gov (United States)

    Garber, Anne E.

    2007-01-01

    An actively pumped alkali metal flow circuit, designed and fabricated at the NASA Marshall Space Flight Center, is currently undergoing testing in the Early Flight Fission Test Facility (EFF-TF). Sodium potassium (NaK), which was used in the SNAP-10A fission reactor, was selected as the primary coolant. Basic circuit components include: simulated reactor core, NaK to gas heat exchanger, electromagnetic (EM) liquid metal pump, liquid metal flowmeter, load/drain reservoir, expansion reservoir, test section, and instrumentation. Operation of the circuit is based around a 37-pin partial-array core (pin and flow path dimensions are the same as those in a full core), designed to operate at 33 kWt. NaK flow rates of greater than 1 kg/sec may be achieved, depending upon the power applied to the EM pump. The heat exchanger provides for the removal of thermal energy from the circuit, simulating the presence of an energy conversion system. The presence of the test section increases the versatility of the circuit. A second liquid metal pump, an energy conversion system, and highly instrumented thermal simulators are all being considered for inclusion within the test section. This paper summarizes the capabilities and ongoing testing of the Fission Surface Power Primary Test Circuit (FSP-PTC).

  10. A Double-Porosity Model for Pumping Test in a Fractured Formation of a Large Dip Angle

    Science.gov (United States)

    Ho, Shin-Wei; Chen, chia-shyun

    2016-04-01

    A Cenozoic sandstone fractured formation is found to have a dip angle, θ, as large as 47 degree. Assuming the dip angle creates a uniform regional flow in the fractured formation, the flow field due to pumping is no longer radially symmetric with respect to the pumping. Instead, a capture zone will appear in the neighborhood of the pumping well. A double porosity model is developed for the problem of interest, where the matrix flow is taken into account by the distributed parameter approach. Neglecting fracture storage, there are three hydrogeological parameters in the model; namely, fracture transmissivity Tf, matrix hydraulic conductivity Km, and matrix storage coefficient Sm. A Laplace-domain solution is determined, and its large time asymptotic solution analytically inverted, which indicates that the drawdown variation of large times exhibits a straight line in a semilog plot. When the dip angle is known, the slope of this straight line can be used to determine Tf, and the intercept of the logarithmic time axis can be used to estimate Sm. The remaining Km can be uniquely determined by the curve-matching method for drawdown of small and intermediate times without difficulty. The larger the dip angle, the closer the stagnation point to the pumping well, and the smaller the capture zone. An overestimate of Tf by a factor of cosθ results if the dip angle effect is neglected. However, neglecting the dip angle has less effect on the estimates of Km and Sm.

  11. 980nm diode laser pump modules operating at high temperature

    Science.gov (United States)

    Campbell, Jenna; Semenic, Tadej; Leisher, Paul; Bhunia, Avijit; Mashanovitch, Milan; Renner, Daniel

    2016-03-01

    Existing thermal management technologies for diode laser pumps place a significant load on the size, weight and power consumption of High Power Solid State and Fiber Laser systems, thus making current laser systems very large, heavy, and inefficient in many important practical applications. This problem is being addressed by the team formed by Freedom Photonics and Teledyne Scientific through the development of novel high power laser chip array architectures that can operate with high efficiency when cooled with coolants at temperatures higher than 50 degrees Celsius and also the development of an advanced thermal management system for efficient heat extraction from the laser chip array. This paper will present experimental results for the optical, electrical and thermal characteristics of 980 nm diode laser pump modules operating effectively with liquid coolant at temperatures above 50 degrees Celsius, showing a very small change in performance as the operating temperature increases from 20 to 50 degrees Celsius. These pump modules can achieve output power of many Watts per array lasing element with an operating Wall-Plug-Efficiency (WPE) of >55% at elevated coolant temperatures. The paper will also discuss the technical approach that has enabled this high level of pump module performance and opportunities for further improvement.

  12. Pumping characteristics of roots blower pumps for light element gases

    Energy Technology Data Exchange (ETDEWEB)

    Hiroki, Seiji; Abe, Tetsuya; Tanzawa, Sadamitsu; Nakamura, Jun-ichi; Ohbayashi, Tetsuro [Japan Atomic Energy Research Inst., Naka, Ibaraki (Japan). Naka Fusion Research Establishment

    2002-07-01

    The pumping speed and compression ratio of the two-stage roots blower pumping system were measured for light element gases (H{sub 2}, D{sub 2} and He) and for N{sub 2}, in order to assess validity of the ITER torus roughing system as an ITER R and D task (T234). The pumping system of an Edwards EH1200 (nominal pumping speed of 1200 m{sup 3}/s), two EH250s (ibid. 250 m{sup 3}/s) and a backing pump (ibid. 100 m{sup 3}/s) in series connection was tested under PNEUROP standards. The maximum pumping speeds of the two-stage system for D{sub 2} and N{sub 2} were 1200 and 1300 m{sup 3}/h, respectively at 60 Hz, which satisfied the nominal pumping speed. These experimental data support the design validity of the ITER torus roughing system. (author)

  13. Ferroelectric Pump

    Science.gov (United States)

    Jalink, Antony, Jr. (Inventor); Hellbaum, Richard F. (Inventor); Rohrbach, Wayne W. (Inventor)

    2000-01-01

    A ferroelectric pump has one or more variable volume pumping chambers internal to a housing. Each chamber has at least one wall comprising a dome shaped internally prestressed ferroelectric actuator having a curvature and a dome height that varies with an electric voltage applied between an inside and outside surface of the actuator. A pumped medium flows into and out of each pumping chamber in response to displacement of the ferroelectric actuator. The ferroelectric actuator is mounted within each wall and isolates each ferroelectric actuator from the pumped medium, supplies a path for voltage to be applied to each ferroelectric actuator, and provides for positive containment of each ferroelectric actuator while allowing displacement of the entirety of each ferroelectric actuator in response to the applied voltage.

  14. Design and Performance Test of Jet Pump for Marine Steam Turbine%船用汽轮机注油器设计与试验研究

    Institute of Scientific and Technical Information of China (English)

    王晗; 徐鹏

    2016-01-01

    The performances of jet pump in marine turbine are calculated in this paper with the method of numerical simulation. The test facilities are built to validate the performance of pump. The results show that the performance is fully satisfied with the demand and the off-design condition is excellent. All above work is the solid base of marine steam turbine development.%通过数值仿真对所设计船用汽轮机注油器进行了数值仿真,并详细分析了其变工况性能,并搭建试验台进行了性能验证,结果表明性能满足设计使用要求,并具有良好的变工况性能,为汽轮发电机组的研制创造了坚实的基础。

  15. Hybrid method for numerical modelling of LWR coolant chemistry

    Science.gov (United States)

    Swiatla-Wojcik, Dorota

    2016-10-01

    A comprehensive approach is proposed to model radiation chemistry of the cooling water under exposure to neutron and gamma radiation at 300 °C. It covers diffusion-kinetic processes in radiation tracks and secondary reactions in the bulk coolant. Steady-state concentrations of the radiolytic products have been assessed based on the simulated time dependent concentration profiles. The principal reactions contributing to the formation of H2, O2 and H2O2 were indicated. Simulation was carried out depending on the amount of extra hydrogen dissolved in the coolant to reduce concentration of corrosive agents. High sensitivity to the rate of reaction H+H2O=OH+H2 is shown and discussed.

  16. Prototypic Thermal-Hydraulic Experiment in NRU to Simulate Loss-of-Coolant Accidents

    Energy Technology Data Exchange (ETDEWEB)

    Mohr, C. L.; Hesson, G. M.; Russcher, G. E.; Marsh, R. K.; King, L. L.; Wildung, N. J.; Rausch, W. N.; Bennett, W. D.

    1981-04-01

    Quick-look test results are reported for the initial test series of the Loss-of-Coolant Accident (LOCA) Simulation in the National Research Universal {NRU) test program, conducted by Pacific Northwest Laboratory (PNL) for the U.S. Nuclear Regulatory Commission (NRC). This test was devoted to evaluating the thermal-hydraulic characteristics of a full-length light water reactor (LWR) fuel bundle during the heatup, reflood, and quench phases of a LOCA. Experimental results from 28 tests cover reflood rates of 0.74 in./sec to 11 in./sec and delay times to initiate reflood of 3 sec to 66 sec. The results indicate that current analysis methods can predict peak temperatures within 10% and measured quench times for the bundle were significantly less than predicted. For reflood rates of 1 in./sec where long quench times were predicted (>2000 sec}, measured quench times of 200 sec were found.

  17. Prototypic Thermal-Hydraulic Experiment in NRU to Simulate Loss-of-Coolant Accidents

    Energy Technology Data Exchange (ETDEWEB)

    Mohr, C. L.; Hesson, G. M.; Russcher, G. E.; Marsh, R. K.; King, L. L.; Wildung, N. J.; Rausch, W. N.; Bennett, W. D.

    1981-04-01

    Quick-look test results are reported for the initial test series of the Loss-of-Coolant Accident (LOCA) Simulation in the National Research Universal {NRU) test program, conducted by Pacific Northwest Laboratory (PNL) for the U.S. Nuclear Regulatory Commission (NRC). This test was devoted to evaluating the thermal-hydraulic characteristics of a full-length light water reactor (LWR) fuel bundle during the heatup, reflood, and quench phases of a LOCA. Experimental results from 28 tests cover reflood rates of 0.74 in./sec to 11 in./sec and delay times to initiate reflood of 3 sec to 66 sec. The results indicate that current analysis methods can predict peak temperatures within 10% and measured quench times for the bundle were significantly less than predicted. For reflood rates of 1 in./sec where long quench times were predicted (>2000 sec}, measured quench times of 200 sec were found.

  18. Crack stability analysis of low alloy steel primary coolant pipe

    Energy Technology Data Exchange (ETDEWEB)

    Tanaka, T.; Kameyama, M. [Kansai Electric Power Company, Osaka (Japan); Urabe, Y. [Mitsubishi Heavy Industries, Ltd., Takasago (Japan)] [and others

    1997-04-01

    At present, cast duplex stainless steel has been used for the primary coolant piping of PWRs in Japan and joints of dissimilar material have been applied for welding to reactor vessels and steam generators. For the primary coolant piping of the next APWR plants, application of low alloy steel that results in designing main loops with the same material is being studied. It means that there is no need to weld low alloy steel with stainless steel and that makes it possible to reduce the welding length. Attenuation of Ultra Sonic Wave Intensity is lower for low alloy steel than for stainless steel and they have advantageous inspection characteristics. In addition to that, the thermal expansion rate is smaller for low alloy steel than for stainless steel. In consideration of the above features of low alloy steel, the overall reliability of primary coolant piping is expected to be improved. Therefore, for the evaluation of crack stability of low alloy steel piping to be applied for primary loops, elastic-plastic future mechanics analysis was performed by means of a three-dimensioned FEM. The evaluation results for the low alloy steel pipings show that cracks will not grow into unstable fractures under maximum design load conditions, even when such a circumferential crack is assumed to be 6 times the size of the wall thickness.

  19. 电动机直驱抽油机的研制及试验%Development and Test of Electric Motor Direct Drive Pumping Unit

    Institute of Scientific and Technical Information of China (English)

    崔俊国; 肖文生; 董维彬; 汪志刚

    2012-01-01

    为提高抽油机系统效率,节约电能,满足油田新的开采需求,研制了电动机直驱抽油机。该抽油机将永磁同步电动机悬挂式安装,电动机输出轴与天轮总成轴通过花键联轴器直接连接,省去了减速器和换向机构;特殊胶带绕过天轮总成和导轮总成,一端连接悬挂器,另一端连接配重箱。永磁同步电动机在通入低频电流后,转子做低速正、反转运动,直接通过特殊胶带带动抽油杆做往复直线运动,举升井内液体。现场试验结果表明,电动机直驱抽油机启动电流小,冲程冲次无级可调,有助于提高泵效,比常规游梁式抽油机节电20%左右。%To improve the efficiency of pumping unit system, save electricity and meet the new needs of oiltields production, the electric motor direct drive pumping unit was developed. The unit conducts a hanging-type installment of the permanent magnet synchro-nous motor whose output shaft is directly connected with top sheave shaft by spline coupling, thus omitting gear reducer and reverse mechanism. The special belt goes around top sheave assembly and guide wheel assembly, with one end connected to the hanger and the other to the weight box. When low frequency electric current goes through the permanent magnet synchronous motor, the rotor conducts low-velocity direct/reverse rotating motion, directly drive the sucker rod move upward and downward to lift the liquid in the well. The field test shows that the startup current of the pumping unit is small, its stroke and pumping speed is adjustable and the polished rod moves regularly, which helps improve pump efficiency. Compared with conventional beam pumping unit, it can save electricity by 20%.

  20. Hydraulic testing of intravascular axial flow blood pump designs with a protective cage of filaments for mechanical cavopulmonary assist.

    Science.gov (United States)

    Kapadia, Jugal Y; Pierce, Kathryn C; Poupore, Amy K; Throckmorton, Amy L

    2010-01-01

    To provide hemodynamic support to patients with a failing single ventricle, we are developing a percutaneously inserted, magnetically levitated axial flow blood pump designed to augment pressure in the cavopulmonary circulation. The device is designed to serve as a bridge-to-transplant, bridge-to-recovery, bridge-to-hemodynamic stability, or bridge-to-surgical reconstruction. This study evaluated the hydraulic performance of three blood pump prototypes (a four-bladed impeller, a three-bladed impeller, and a three-bladed impeller with a four-bladed diffuser) whose designs evolved from previous design optimization phases. Each prototype included the same geometric protective cage of filaments, which stabilize the rotor within the housing and protect the housing wall from the rotating blades. All prototypes delivered pressure rises over a range of flow rates and rotational speeds that would be sufficient to augment hemodynamic conditions in the cavopulmonary circulation. The four-bladed impeller outperformed the two remaining prototypes by >40%; this design was able to generate a pressure rise of 4-28 mm Hg for flow rates of 0.5-10 L/min at rotational speeds of 4,000-7,000 RPM. Successful development of this blood pump will provide clinicians with a feasible therapeutic option for mechanically supporting the failing Fontan.

  1. Design of coolant distribution system (CDS) for ITER PF AC/DC converter

    Energy Technology Data Exchange (ETDEWEB)

    Guo, Bin [Institute of Plasma Physics, Chinese Academy of Sciences, Hefei 230031 (China); Song, Zhiquan, E-mail: zhquansong@ipp.ac.cn [Institute of Plasma Physics, Chinese Academy of Sciences, Hefei 230031 (China); Fu, Peng; Xu, Xuesong; Li, Chuan [Institute of Plasma Physics, Chinese Academy of Sciences, Hefei 230031 (China); Wang, Min; Dong, Lin [China International Nuclear Fusion Energy Program Execution Center, Beijing 100862 (China)

    2016-10-15

    Highlights: • System process and arrangement has been proposed to meet the multiple requirements from the converter system. • Thermal hydraulic analysis model has been developed to size and predict the system operation behavior. • Prototype test has been performed to validate the proposed design methodology. - Abstract: The Poloidal Field (PF) converter unit, playing an essential role in the plasma shape and position control in vertical and horizontal direction, which is an important part of ITER power supply system. As an important subsystem of the converter unit, the coolant distribution system has the function to distribute the cooling water from ITER component cooling water system (CCWS) to its main components at the required flow rate, pressure and temperature. This paper presents the thermal hydraulic design of coolant distribution system for the ITER PF converter unit. Different operational requirements of the PF converter unit regarding flow rate, temperature and pressure have been analyzed to design the system process and arrangement. A thermal-hydraulic analysis model has been built to size the system and predict the flow rate and temperature distribution of the system under the normal operation. Based on the system thermal-hydraulic analysis results, the system pressure profile has been plotted to evaluate the pressure behavior along each client flow path. A CDS prototype for the ITER PF converter has been constructed and some experiments have been performed on it. A good agreement of the flow distribution and temperature behavior between the simulated and test results validate the proposed design methodology.

  2. LOSS-OF-COOLANT ACIDENT SIMULATIONS IN THE NATIONAL RESEARCH UNIVERSAL REACTOR

    Energy Technology Data Exchange (ETDEWEB)

    Bennett, W D; Goodman, R L; Heaberlin, S W; Hesson, G M; Nealley, C; Kirg, L L; Marshall, R K; McNair, G W; Meitzler, W D; Neally, G W; Parchen, L J; Pilger, J P; Rausch, W N; Russcher, G E; Schreiber, R E; Wildung, N J

    1981-02-01

    Pressurized water reactor loss-of-coolant accident (LOCA) phenomena are being simulated with a series of experiments in the U-2 loop of the National Research Universal Reactor at Chalk River, Ontario, Canada. The first of these experiments includes up to 45 parametric thermal-hydraulic tests to establish the relationship among the reflood delay time of emergency coolant, the reflooding rate, and the resultant fuel rod cladding peak temperature. Subsequent experiments establish the fuel rod failure characteristics at selected peak cladding temperatures. Fuel rod cladding pressurization simulates high burnup fission gas pressure levels of modern PWRs. This document contains both an experiment overview of the LOCA simulation program and a review of the safety analyses performed by Pacific Northwest Laboratory (PNL) to define the expected operating conditions as well as to evaluate the worst case operating conditions. The primary intent of this document is to supply safety information required by the Chalk River Nuclear Laboratories (CRNL), to establish readiness to proceed from one test phase to the next and to establish the overall safety of the experiment. A hazards review summarizes safety issues, normal operation and three worst case accidents that have been addressed during the development of the experiment plan.

  3. Rotating and positive-displacement pumps for low-thrust rocket engines. Volume 1: Pump Evaluation and design. [of centrifugal pumps

    Science.gov (United States)

    Macgregor, C.; Csomor, A.

    1974-01-01

    Rotating and positive displacement pumps of various types were studied for pumping liquid fluorine for low-thrust, high-performance rocket engines. Included in the analysis were: centrifugal, pitot, Barske, Tesla, drag, gear, vane, axial piston, radial piston, diaphragm, and helirotor pump concepts. The centrifugal pump and the gear pump were selected and these were carried through detailed design and fabrication. Mechanical difficulties were encountered with the gear pump during the preliminary tests in Freon-12. Further testing and development was therefore limited to the centrifugal pump. Tests on the centrifugal pump were conducted in Freon-12 to determine the hydrodynamic performance and in liquid fluorine to demonstrate chemical compatibility.

  4. A Magnetically Coupled Cryogenic Pump

    Science.gov (United States)

    Hatfield, Walter; Jumper, Kevin

    2011-01-01

    Historically, cryogenic pumps used for propellant loading at Kennedy Space Center (KSC) and other NASA Centers have a bellows mechanical seal and oil bath ball bearings, both of which can be problematic and require high maintenance. Because of the extremely low temperatures, the mechanical seals are made of special materials and design, have wearing surfaces, are subject to improper installation, and commonly are a potential leak path. The ball bearings are non-precision bearings [ABEC-1 (Annular Bearing Engineering Council)] and are lubricated using LOX compatible oil. This oil is compatible with the propellant to prevent explosions, but does not have good lubricating properties. Due to the poor lubricity, it has been a goal of the KSC cryogenics community for the last 15 years to develop a magnetically coupled pump, which would eliminate these two potential issues. A number of projects have been attempted, but none of the pumps was a success. An off-the-shelf magnetically coupled pump (typically used with corrosive fluids) was procured that has been used for hypergolic service at KSC. The KSC Cryogenics Test Lab (CTL) operated the pump in cryogenic LN2 as received to determine a baseline for modifications required. The pump bushing, bearings, and thrust rings failed, and the pump would not flow liquid (this is a typical failure mode that was experienced in the previous attempts). Using the knowledge gained over the years designing and building cryogenic pumps, the CTL determined alternative materials that would be suitable for use under the pump design conditions. The CTL procured alternative materials for the bearings (bronze, aluminum bronze, and glass filled PTFE) and machined new bearing bushings, sleeves, and thrust rings. The designed clearances among the bushings, sleeves, thrust rings, case, and case cover were altered once again using experience gained from previous cryogenic pump rebuilds and designs. The alternative material parts were assembled into

  5. Penis Pump

    Science.gov (United States)

    ... claim that they can be used to increase penis size, but there's no evidence that they work for ... circumstances, using a penis pump might help your penis maintain its natural size and shape after prostate surgery or if you ...

  6. Zinc corrosion after loss-of-coolant accidents in pressurized water reactors – Thermo- and fluid-dynamic effects

    Energy Technology Data Exchange (ETDEWEB)

    Seeliger, André, E-mail: a.seeliger@hszg.de [Hochschule Zittau/Görlitz, Institute of Process Technology, Process Automation and Measuring Technology, Theodor-Körner-Allee 16, D-02763 Zittau (Germany); Alt, Sören; Kästner, Wolfgang; Renger, Stefan [Hochschule Zittau/Görlitz, Institute of Process Technology, Process Automation and Measuring Technology, Theodor-Körner-Allee 16, D-02763 Zittau (Germany); Kryk, Holger; Harm, Ulrich [Helmholtz-Zentrum Dresden-Rossendorf, Institute of Fluid Dynamics, P.O. Box 510119, D-01314 Dresden (Germany)

    2016-08-15

    Highlights: • Borated coolant supports corrosion at zinc-coated installations in PWR after LOCA. • Dissolved zinc is injected into core by ECCS during sump recirculation phase. • Corrosion products can reach and settle at further downstream components. • Corrosion products can cause head losses at spacers and influence decay heat removal. • Preventive procedures were tested at semi-technical scale facilities. - Abstract: Within the framework of the German reactor safety research, generic experimental investigations were carried out aiming at thermal-hydraulic consequences of physicochemical mechanisms, caused by dissolution of zinc in boric acid during corrosion processes at hot-dip galvanized surfaces of containment internals at lower coolant temperatures and the subsequent precipitation of solid zinc borates in PWR core regions of higher temperature. This constellation can occur during sump recirculation operation of ECCS after LOCA. Hot-dip galvanized compounds, which are installed inside a PWR containment, may act as zinc sources. Getting in contact with boric acid coolant, zinc at their surfaces is released into coolant in form of ions due to corrosion processes. As a long-term behavior resp. over a time period of several days, metal layers of zinc and zinc alloys can dissolve extensively. First fundamental studies at laboratory scale were done at the Helmholtz-Zentrum Dresden-Rossendorf (HZDR). Their experimental results were picked up for the definition of boundary conditions for experiments at semi-technical scale at the Hochschule Zittau/Görlitz (HSZG). Electrical heating rods with zircaloy cladding tubes have been used as fuel rod simulators. As near-plant core components, a 3 × 3 configuration of heating rods (HRC) and a shortened, partially heatable PWR fuel assembly dummy were applied into cooling circuits. The HRC module includes segments of spacers for a suitable representation of a heating channel geometry. Formations of different solid

  7. Proper Sizing of Circulation Pumps

    DEFF Research Database (Denmark)

    Tommerup, Henrik M.; Nørgaard, Jørgen

    2007-01-01

    , but the results can be applied to Europe in general. Despite the small sample of houses involved in the test, 15 houses, some rather safe conclusions can be drawn from the results, which showed that newly developed pumps with power consumption around 5-8 W, can perform the task of circulating the water...... sufficiently to keep the houses satisfactorily warm during the heating season of the test. The old replaced pumps used 5-10 times more power. In Europe alone, a gradual replacement of the present vastly oversized pumps with such small but sufficient pumps can save the construction of 17 large power plants...... as well as their pollution during operation. Policy measures are proposed of how to ensure that in the future only such energy saving pumps are installed. Furthermore, on the basis of the historic experiences with circulation pumps some con¬clusions are drawn on how to investigate, develop and market new...

  8. Testing system of automobile fuel pump performance based on PLC%基于PLC的汽车电子燃油泵性能检测系统

    Institute of Scientific and Technical Information of China (English)

    山海峰; 刘涵; 郭吉丰

    2013-01-01

    针对目前无刷电机式汽车电子燃油泵性能检测系统的缺失以及生产过程中燃油泵驱动控制器的质量检验问题,分析了燃油泵运行环境及目前测试方法的不足,以西门子S7-200系列PLC、触摸屏、各种传感器及测试治具为核心部件,运用VB6.0进行了上位机测试软件以及梯形图PLC软件的编写,构建了基于PLC的燃油泵性能在线自动检测系统;在现有已知参数燃油泵的基础上对测试系统进行了验证,得出了系统测试精度以及测试过程中发现的一些常见燃油泵质量问题.研究结果表明,设计的基于PLC的燃油泵自动检测测试系统具有成本较低、测试可靠、使用寿命长、操作方便等特点,对无刷式燃油泵的设计有一定的指导作用.%In order to solve the problems of the weakness of current designed brushless fuel pump detection system and the detection of quality in production process, the test system was investigated. After the analysis of the working principle and test method of fuel pump, the sys tem was established, which was based on Siemens PLC , touch win, pressure sensor, flow sensor and so on, and the VB6.0 was used to de sign the computer software, ladder diagram to PLC program. The known parameters fuel pump was evaluated on the test system, the precision and test error of system were determined. The experimental results show that the designed test system has the advantages of high precision, long life, easy to operate, conduce to the design of brushless fuel pump.

  9. Investigation on two-phase critical flow for loss-of-coolant accident of pressurized water reactor

    Institute of Scientific and Technical Information of China (English)

    1996-01-01

    The previous investigations were mainly conducted under the condition of low pressure,however,the steam-water specific volume and the interphase evaporation rate in high pressure are much different from those in low pressure,Therefore,the new experimental and theoretical investigation are performed in Xi'an Jiaotong University.The investigation results could be directly applied to the analysis of loss-of -coolant accident for pressurized water reacor.The system transition characteristics of cold leg and hot leg break loss-of -coolant tests are described for convective circulation test loop.Two types of loss-of-coolant accident are identified for :hot leg” break,while three types for “cold leg”break and the effect parameters on the break geometries.Tests indicate that the mass flow rate with convergent-divergent nozzle reaches the maximum value among the different break sections at the same inlet fluid condition because the fluid separation does not occur.A wall surface cavity nucleation model is developed for prediction of the critical mass flow rate with water flowing in convergentdivergent nozzles.

  10. Cavitation and two-phase flow characteristics of SRPR (Savannah River Plant Reactor) pump. Final report

    Energy Technology Data Exchange (ETDEWEB)

    1991-07-01

    The possible head degradation of the SRPR pumps may be attributable to two independent phenomena, one due to the inception of cavitation and the other due to the two-phase flow phenomena. The head degradation due to the appearance of cavitation on the pump blade is hardly likely in the conventional pressurized water reactor (PWR) since the coolant circulating line is highly pressurized so that the cavitation is difficult to occur even at LOCA (loss of coolant accident) conditions. On the other hand, the suction pressure of SRPR pump is order-of-magnitude smaller than that of PWR so that the cavitation phenomena, may prevail, should LOCA occur, depending on the extent of LOCA condition. In this study, therefore, both cavitation phenomena and two-phase flow phenomena were investigated for the SRPR pump by using various analytical tools and the numerical results are presented herein.

  11. Method for Reducing Pumping Damage to Blood

    Science.gov (United States)

    Bozeman, Richard J., Jr. (Inventor); Akkerman, James W. (Inventor); Aber, Gregory S. (Inventor); VanDamm, George Arthur (Inventor); Bacak, James W. (Inventor); Svejkovsky, Robert J. (Inventor); Benkowski, Robert J. (Inventor)

    1997-01-01

    Methods are provided for minimizing damage to blood in a blood pump wherein the blood pump comprises a plurality of pump components that may affect blood damage such as clearance between pump blades and housing, number of impeller blades, rounded or flat blade edges, variations in entrance angles of blades, impeller length, and the like. The process comprises selecting a plurality of pump components believed to affect blood damage such as those listed herein before. Construction variations for each of the plurality of pump components are then selected. The pump components and variations are preferably listed in a matrix for easy visual comparison of test results. Blood is circulated through a pump configuration to test each variation of each pump component. After each test, total blood damage is determined for the blood pump. Preferably each pump component variation is tested at least three times to provide statistical results and check consistency of results. The least hemolytic variation for each pump component is preferably selected as an optimized component. If no statistical difference as to blood damage is produced for a variation of a pump component, then the variation that provides preferred hydrodynamic performance is selected. To compare the variation of pump components such as impeller and stator blade geometries, the preferred embodiment of the invention uses a stereolithography technique for realizing complex shapes within a short time period.

  12. The aerodynamic effects of wheelspace coolant injection into the mainstream flow of a high pressure gas turbine

    Science.gov (United States)

    McLean, Christopher Elliot

    Modern gas turbine engines operate with mainstream gas temperatures exceeding 1450°C in the high-pressure turbine stage. Unlike turbine blades, rotor disks and other internal components are not designed to withstand the extreme temperatures found in mainstream flow. In modern gas turbines, cooling air is pumped into the wheelspace cavities to prevent mainstream gas ingestion and then exits through a seal between the rotor and the nozzle guide vane (NGV) thereby mixing with the mainstream flow. The primary purpose for the wheelspace cooling air is the cooling of the turbine wheelspace. However, secondary effects arise from the mixing of the spent cooling air with the mainstream flow. The exiting cooling air is mixed with the hot mainstream flow effecting the aerodynamic and performance characteristics of the turbine stage. The physics underlying this mixing process and its effects on stage performance are not yet fully understood. The relative aerodynamic and performance effects associated with rotor - NGV gap coolant injections were investigated in the Axial Flow Turbine Research Facility (AFTRF) of the Center for Gas Turbines and Power of The Pennsylvania State University. This study quantifies the secondary effects of the coolant injection on the aerodynamic and performance character of the turbines main stream flow for root injection, radial cooling, and impingement cooling. Measurement and analysis of the cooling effects were performed in both stationary and rotational frames of reference. The AFTRF is unique in its ability to perform long duration cooling measurements in the stationary and rotating frames. The effects of wheelspace coolant mixing with the mainstream flow on total-to-total efficiency, energy transport, three dimensional velocity field, and loading coefficient were investigated. Overall, it was found that a small quantity (1%) of cooling air can have significant effects on the performance character and exit conditions of the high pressure stage

  13. Effect of Coolant Temperature and Mass Flow on Film Cooling of Turbine Blades

    Science.gov (United States)

    Garg, Vijay K.; Gaugler, Raymond E.

    1997-01-01

    A three-dimensional Navier Stokes code has been used to study the effect of coolant temperature, and coolant to mainstream mass flow ratio on the adiabatic effectiveness of a film-cooled turbine blade. The blade chosen is the VKI rotor with six rows of cooling holes including three rows on the shower head. The mainstream is akin to that under real engine conditions with stagnation temperature = 1900 K and stagnation pressure = 3 MPa. Generally, the adiabatic effectiveness is lower for a higher coolant temperature due to nonlinear effects via the compressibility of air. However, over the suction side of shower-head holes, the effectiveness is higher for a higher coolant temperature than that for a lower coolant temperature when the coolant to mainstream mass flow ratio is 5% or more. For a fixed coolant temperature, the effectiveness passes through a minima on the suction side of shower-head holes as the coolant to mainstream mass flow, ratio increases, while on the pressure side of shower-head holes, the effectiveness decreases with increase in coolant mass flow due to coolant jet lift-off. In all cases, the adiabatic effectiveness is highly three-dimensional.

  14. New Pump and Treat Facility Remedial Action Work Plan For Test Area North Final Groundwater Remediation, Operable Unit 1-07B

    Energy Technology Data Exchange (ETDEWEB)

    Nelson, L. O.

    2007-06-12

    This remedial action work plan identifies the approach and requirements for implementing the medial zone remedial action for Test Area North, Operable Unit 1-07B, at the Idaho National Laboratory. This plan details the management approach for the construction and operation of the New Pump and Treat Facility (NPTF). As identified in the remediatial design/remedial action scope of work, a separate remedial design/remedial action work plan will be prepared for each remedial component of the Operable Unit 1-07B remedial action.

  15. Qualification Testing of Laser Diode Pump Arrays for a Space-Based 2-micron Coherent Doppler Lidar

    Science.gov (United States)

    Amzajerdian, Farzin; Meadows, Byron L.; Baker, Nathaniel R.; Barnes, Bruce W.; Singh, Upendra N.; Kavaya, Michael J.

    2007-01-01

    The 2-micron thulium and holmium-based lasers being considered as the transmitter source for space-based coherent Doppler lidar require high power laser diode pump arrays operating in a long pulse regime of about 1 msec. Operating laser diode arrays over such long pulses drastically impact their useful lifetime due to the excessive localized heating and substantial pulse-to-pulse thermal cycling of their active regions. This paper describes the long pulse performance of laser diode arrays and their critical thermal characteristics. A viable approach is then offered that allows for determining the optimum operational parameters leading to the maximum attainable lifetime.

  16. Investigating hydrodynamic characteristics and peculiarities of the coolant flow behind a spacer grid of a fuel rod assembly of the floating nuclear power unit

    Science.gov (United States)

    Dmitriev, S. M.; Doronkov, D. V.; Legchanov, M. A.; Pronin, A. N.; Solncev, D. N.; Sorokin, V. D.; Hrobostov, A. E.

    2016-05-01

    The results of experimental investigations of local hydrodynamics of a coolant flow in fuel rod assembly (FA) of KLT-40C reactor behind a plate spacer grid have been presented. The investigations were carried out on an aerodynamic rig using the gas-phase diffusive tracer test. An analysis of spatial distribution of absolute flow velocity projections and distribution of tracer concentration allowed specifying a coolant flow pattern behind the plate spacer grid of the FA. On the basis of obtained experimental data the recommendations were provided to specify procedures for determining the coolant flow rates for the programs of cell-wise calculation of a core zone of KLT-40C reactor. Investigation results were accepted for the practical use in JSC "OKBM Afrikantov" to assess heat engineering reliability of cores of KLT-40C reactor and were included in a database for verification of CFD programs (CFD-codes).

  17. Lunar Base Heat Pump

    Science.gov (United States)

    Walker, D.; Fischbach, D.; Tetreault, R.

    1996-01-01

    The objective of this project was to investigate the feasibility of constructing a heat pump suitable for use as a heat rejection device in applications such as a lunar base. In this situation, direct heat rejection through the use of radiators is not possible at a temperature suitable for lde support systems. Initial analysis of a heat pump of this type called for a temperature lift of approximately 378 deg. K, which is considerably higher than is commonly called for in HVAC and refrigeration applications where heat pumps are most often employed. Also because of the variation of the rejection temperature (from 100 to 381 deg. K), extreme flexibility in the configuration and operation of the heat pump is required. A three-stage compression cycle using a refrigerant such as CFC-11 or HCFC-123 was formulated with operation possible with one, two or three stages of compression. Also, to meet the redundancy requirements, compression was divided up over multiple compressors in each stage. A control scheme was devised that allowed these multiple compressors to be operated as required so that the heat pump could perform with variable heat loads and rejection conditions. A prototype heat pump was designed and constructed to investigate the key elements of the high-lift heat pump concept. Control software was written and implemented in the prototype to allow fully automatic operation. The heat pump was capable of operation over a wide range of rejection temperatures and cooling loads, while maintaining cooling water temperature well within the required specification of 40 deg. C +/- 1.7 deg. C. This performance was verified through testing.

  18. LOX/LH2 vane pump for auxiliary propulsion systems

    Science.gov (United States)

    Hemminger, J. A.; Ulbricht, T. E.

    1985-01-01

    Positive displacement pumps offer potential efficiency advantages over centrifugal pumps for future low thrust space missions. Low flow rate applications, such as space station auxiliary propulsion or dedicated low thrust orbiter transfer vehicles, are typical of missions where low flow and high head rise challenge centrifugal pumps. The positive displacement vane pump for pumping of LOX and LH2 is investigated. This effort has included: (1) a testing program in which pump performance was investigated for differing pump clearances and for differing pump materials while pumping LN2, LOX, and LH2; and (2) an analysis effort, in which a comprehensive pump performance analysis computer code was developed and exercised. An overview of the theoretical framework of the performance analysis computer code is presented, along with a summary of analysis results. Experimental results are presented for pump operating in liquid nitrogen. Included are data on the effects on pump performance of pump clearance, speed, and pressure rise. Pump suction performance is also presented.

  19. In-vessel ITER tubing failure rates for selected materials and coolants

    Energy Technology Data Exchange (ETDEWEB)

    Marshall, T.D. [Rensselaer Polytechnic Institute, Troy, NY (United States); Cadwallader, L.C. [EG& G Idaho Inc., Idaho Falls, ID (United States)

    1994-03-01

    Several materials have been suggested for fabrication of ITER in-vessel coolant tubing: beryllium, copper, Inconel, niobium, stainless steel, titanium, and vanadium. This report generates failure rates for the materials to identify the best performer from an operational safety and availability perspective. Coolant types considered in this report are helium gas, liquid lithium, liquid sodium, and water. Failure rates for the materials are generated by including the influence of ITER`s operating environment and anticipated tubing failure mechanisms with industrial operating experience failure rates. The analyses define tubing failure mechanisms for ITER as: intergranular attack, flow erosion, helium induced swelling, hydrogen damage, neutron irradiation embrittlement, cyclic fatigue, and thermal cycling. K-factors, multipliers, are developed to model each failure mechanism and are applied to industrial operating experience failure rates to generate tubing failure rates for ITER. The generated failure rates identify the best performer by its expected reliability. With an average leakage failure rate of 3.1e-10(m-hr){sup {minus}1}and an average rupture failure rate of 3.1e-11(m-hr){sup {minus}1}, titanium proved to be the best performer of the tubing materials. The failure rates generated in this report are intended to serve as comparison references for design safety and optimization studies. Actual material testing and analyses are required to validate the failure rates.

  20. Initial Testing of the Stainless Steel NaK-Cooled Circuit (SNaKC)

    Science.gov (United States)

    Garber, Anne; Godfroy, Thomas

    2007-01-01

    An actively pumped alkali metal flow circuit, designed and fabricated at the NASA Marshall Space Flight Center, is currently undergoing testing in the Early Flight Fission Test Facility (EFF-TF). Sodium potassium (NaK) was selected as the primary coolant. Basic circuit components include: simulated reactor core, NaK to gas heat exchanger, electromagnetic liquid metal pump, liquid metal flowmeter, load/drain reservoir, expansion reservoir, test section, and instrumentation. Operation of the circuit is based around the 37-pin partial-array core (pin and flow path dimensions are the same as those in a full core), designed to operate at 33 kWt. This presentation addresses the construction, fill and initial testing of the Stainless Steel NaK-Cooled Circuit (SNaKC).

  1. System Study: High-Pressure Coolant Injection 1998-2014

    Energy Technology Data Exchange (ETDEWEB)

    Schroeder, John Alton [Idaho National Lab. (INL), Idaho Falls, ID (United States). Risk Assessment and Management Services Dept.

    2015-12-01

    This report presents an unreliability evaluation of the high-pressure coolant injection system (HPCI) at 25 U.S. commercial boiling water reactors. Demand, run hours, and failure data from fiscal year 1998 through 2014 for selected components were obtained from the Institute of Nuclear Power Operations (INPO) Consolidated Events Database (ICES). The unreliability results are trended for the most recent 10 year period, while yearly estimates for system unreliability are provided for the entire active period. No statistically significant increasing or decreasing trends were identified in the HPCI results.

  2. System Study: High-Pressure Coolant Injection 1998–2013

    Energy Technology Data Exchange (ETDEWEB)

    Schroeder, John Alton [Idaho National Lab. (INL), Idaho Falls, ID (United States). Risk Assessment and Management Services Dept.

    2015-01-31

    This report presents an unreliability evaluation of the high-pressure coolant injection system (HPCI) at 25 U.S. commercial boiling water reactors. Demand, run hours, and failure data from fiscal year 1998 through 2013 for selected components were obtained from the Institute of Nuclear Power Operations (INPO) Consolidated Events Database (ICES). The unreliability results are trended for the most recent 10-year period, while yearly estimates for system unreliability are provided for the entire active period. No statistically significant increasing or decreasing trends were identified in the HPCI results.

  3. 液压泵性能检测实验台设计及检测分析%Design of Performance Test System for Hydraulic Pump

    Institute of Scientific and Technical Information of China (English)

    武金良; 赵坚; 于浩

    2016-01-01

    液压泵是液压系统中的动力元件,其性能的优劣直接影响到液压系统的工作。因此,对其进行性能检测十分必要。引入绿色设计理念,设计了液压泵性能检测系统,并进行了实测验证,保证了系统检测数据的精度,提高了检测效率。%The hydraulic pump is the drive component of the hydraulic system, its performance will directly affect the normal work of hydraulic system. Therefore, it is very necessary to test its performance. The concept of green design was introduced, the hy⁃draulic pump performance test system was designed, and the verification was completed. So the accuracy of the system is guaranteed, and its detecting efficiency is improved obviously.

  4. Using earth-tide induced water pressure changes to measure in situ permeability: A comparison with long-term pumping tests

    Science.gov (United States)

    Allègre, Vincent; Brodsky, Emily E.; Xue, Lian; Nale, Stephanie M.; Parker, Beth L.; Cherry, John A.

    2016-04-01

    Good constraints on hydrogeological properties are an important first step in any quantitative model of groundwater flow. Field estimation of permeability is difficult as it varies over orders of magnitude in natural systems and is scale-dependent. Here we directly compare permeabilities inferred from tidal responses with conventional large-scale, long-term pumping tests at the same site. Tidally induced water pressure changes recorded in wells are used to infer permeability at ten locations in a densely fractured sandstone unit. Each location is either an open-hole well or a port in a multilevel monitoring well. Tidal response is compared at each location to the results of two conventional, long-term and large scale pumping tests performed at the same site. We obtained consistent values between the methods for a range of site-specific permeabilities varying from ˜10-15 m2 to 10-13 m2 for both open wells with large open intervals and multilevel monitoring well. We conclude that the tidal analysis is able to capture passive and accurate estimates of permeability.

  5. Simulation of 3D Flow in Turbine Blade Rows including the Effects of Coolant Ejection

    Institute of Scientific and Technical Information of China (English)

    Jian-Jun LIU; Bai-Tao AN; Yun-Tao ZENG

    2008-01-01

    This paper describes the numerical simulation of three-dimensional viscous flows in air-cooled turbine blade rows with the effects of coolant ejection. A TVD Navier-Stokes flow solver incorporated with Baldwin-Lomax turbulence model and multi-grid convergence acceleration algorithm are used for the simulation. The influences of coolant ejection on the main flow are accounted by volumetric coolant source terms. Numerical results for a four-stage turbine are presented and discussed.

  6. Experimental Investigation of Coolant Boiling in a Half-Heated Circular Tube - Final CRADA Report

    Energy Technology Data Exchange (ETDEWEB)

    Yu, Wenhua [Argonne National Lab. (ANL), Argonne, IL (United States); Singh, Dileep [Argonne National Lab. (ANL), Argonne, IL (United States); France, David M. [Argonne National Lab. (ANL), Argonne, IL (United States)

    2016-11-01

    Coolant subcooled boiling in the cylinder head regions of heavy-duty vehicle engines is unavoidable at high thermal loads due to high metal temperatures. However, theoretical, numerical, and experimental studies of coolant subcooled flow boiling under these specific application conditions are generally lacking in the engineering literature. The objective of this project was to provide such much-needed information, including the coolant subcooled flow boiling characteristics and the corresponding heat transfer coefficients, through experimental investigations.

  7. Experiment data report for LOFT nonnuclear test L1-3

    Energy Technology Data Exchange (ETDEWEB)

    Millar, G. M.

    1977-04-01

    Test L1-3 was the third in a series of five nonnuclear isothermal blowdown tests conducted by the Loss of Fluid Test (LOFT) Program. For this test the LOFT Facility was configured to simulate a loss-of-coolant accident in a large pressurized water reactor resulting from a 200 percent double-ended shear break in a cold leg of the primary coolant system. A hydraulic core simulator assembly was installed in place of the nuclear core. The initial conditions in the primary coolant system intact loop were: temperature at 540/sup 0/F, pressure at 2256 psig, and loop flow at 2.34 x 10/sup 6/ lbm/hr. During system depressurization, emergency core cooling water was specified to be injected into the lower plenum of the reactor vessel using an accumulator, a low-pressure injection system pump, and a high-pressure injection system pump to provide data on the effects of emergency core cooling on the system thermal-hydraulic response. Injection into the lower plenum was initiated from the high- and low-pressure injection systems. Injection from the accumulator, however, was not initiated because a valve was inadvertently left closed. The experiment, therefore, was not completely successful in that one of the objectives outlined in the experiment operating specification for this test was not accomplished. Test L1-3 was repeated at Test L1-3A to meet the experimental requirements. Despite these difficulties, Test L1-3 did provide very valuable data to verify experiment repeatability.

  8. A simplified heat pump model for use in solar plus heat pump system simulation studies

    OpenAIRE

    Perers, Bengt; Anderssen, Elsa; Nordman, Roger; Kovacs, Peter

    2012-01-01

    Solar plus heat pump systems are often very complex in design, with sometimes special heat pump arrangements and control. Therefore detailed heat pump models can give very slow system simulations and still not so accurate results compared to real heat pump performance in a system. The idea here is to start from a standard measured performance map of test points for a heat pump according to EN 14825 and then determine characteristic parameters for a simplified correlation based model of the he...

  9. Reverse osmosis for the recovery of boric acid from the primary coolant at nuclear power plants

    Energy Technology Data Exchange (ETDEWEB)

    Bártová, Šárka, E-mail: sarka.bartova@cvrez.cz [Research Centre Řež Ltd., Husinec-Řež 130, 250 68 Řež (Czech Republic); Kůs, Pavel [Research Centre Řež Ltd., Husinec-Řež 130, 250 68 Řež (Czech Republic); Skala, Martin [Research Centre Řež Ltd., Husinec-Řež 130, 250 68 Řež (Czech Republic); University of Chemical Technology, Prague, Department of Chemical Engineering, Technická 5, Prague 166 28 (Czech Republic); Vonková, Kateřina [Research Centre Řež Ltd., Husinec-Řež 130, 250 68 Řež (Czech Republic)

    2016-04-15

    Highlights: • RO membranes tested for boric acid recovery from primary coolant of nuclear power plants. • Scanning electron microscopy was used for the characterization of the membranes. • Lab scale experiments performed under various operation conditions. • We proposed configuration of and operation conditions for RO unit in nuclear power plant. - Abstract: At nuclear power plants (NPP), evaporators are used for the treatment of primary coolant and other liquid radioactive waste containing H{sub 3}BO{sub 3}. Because the operation of evaporators is expensive, a number of more cost-effective alternatives has been considered, one of which is reverse osmosis. We tested reverse osmosis modules from several manufactures on a batch laboratory apparatus. SEM images of the tested membranes were taken to distinguish the differences between the membranes. Water permeability through membranes was evaluated from the experiments with pure water. The experiments were performed with feed solutions containing various concentrations of H{sub 3}BO{sub 3} in a range commonly occurring in radioactive waste. The pH of the feed solutions ranged from 5.2 to 11.2. Our results confirmed that the pH of the feed solution plays the most important role in membrane separation efficiency of H{sub 3}BO{sub 3}. Certain modifications to the pH of the feed solution were needed to enable the tested membranes to concentrate the H{sub 3}BO{sub 3} in the retentate stream, separate from the pure water in the permeate stream. On this basis, we propose the configuration of and operational conditions for a reverse osmosis unit at NPP.

  10. A MODEL FOR PREDICTING FISSION PRODUCT ACTIVITIES IN REACTOR COOLANT: APPLICATION OF MODEL FOR ESTIMATING I-129 LEVELS IN RADIOACTIVE WASTE

    Energy Technology Data Exchange (ETDEWEB)

    Lewis, B.J.; Husain, A.

    2003-02-27

    A general model was developed to estimate the activities of fission products in reactor coolant and hence to predict a value for the I-129/Cs-137 scaling factor; the latter can be applied along with measured Cs-137 activities to estimate I-129 levels in reactor waste. The model accounts for fission product release from both defective fuel rods and uranium contamination present on in-core reactor surfaces. For simplicity, only the key release mechanisms were modeled. A mass balance, considering the two fuel source terms and a loss term due to coolant cleanup was solved to estimate fission product activity in the primary heat transport system coolant. Steady state assumptions were made to solve for the activity of shortlived fission products. Solutions for long-lived fission products are time-dependent. Data for short-lived radioiodines I-131, I-132, I-133, I-134 and I-135 were analyzed to estimate model parameters for I-129. The estimated parameter values were then used to determine I-1 29 coolant activities. Because of the chemical affinity between iodine and cesium, estimates of Cs-137 coolant concentrations were also based on parameter values similar to those for the radioiodines; this assumption was tested by comparing measured and predicted Cs-137 coolant concentrations. Application of the derived model to Douglas Point and Darlington Nuclear Generating Station plant data yielded estimates for I-129/I-131 and I-129/Cs-137 which are consistent with values reported for pressurized water reactors (PWRs) and boiling water reactors (BWRs). The estimated magnitude for the I-129/Cs-137 ratio was 10-8 - 10-7.

  11. Assessment of Candidate Molten Salt Coolants for the Advanced High Temperature Reactor (AHTR)

    Energy Technology Data Exchange (ETDEWEB)

    Williams, D.F.

    2006-03-24

    exhibit better heat transfer and nuclear performance metrics. Lighter salts also tend to have more favorable (larger) moderating ratios, and thus should have a more favorable coolant-voiding behavior in-core. Heavy (high-Z) salts tend to have lower heat capacities and thermal conductivities and more significant activation and transmutation products. However, all of the salts are relatively good heat-transfer agents. A detailed discussion of each property and the combination of properties that served as a heat-transfer metric is presented in the body of this report. In addition to neutronic metrics, such as moderating ratio and neutron absorption, the activation properties of the salts were investigated (Table C). Again, lighter salts tend to have more favorable activation properties compared to salts with high atomic-number constituents. A simple model for estimating the reactivity coefficients associated with a reduction of salt content in the core (voiding or thermal expansion) was also developed, and the primary parameters were investigated. It appears that reasonable design flexibility exists to select a safe combination of fuel-element design and salt coolant for most of the candidate salts. Materials compatibility is an overriding consideration for high-temperature reactors; therefore the question was posed whether any one of the candidate salts was inherently, or significantly, more corrosive than another. This is a very complex subject, and it was not possible to exclude any fluoride salts based on the corrosion database. The corrosion database clearly indicates superior container alloys, but the effect of salt identity is masked by many factors which are likely more important (impurities, redox condition) in the testing evidence than salt identity. Despite this uncertainty, some reasonable preferences can be recommended, and these are indicated in the conclusions. The reasoning to support these conclusions is established in the body of this report.

  12. A Preliminary Study of Banana Stem Juice as a Plant-Based Coagulant for Treatment of Spent Coolant Wastewater

    Directory of Open Access Journals (Sweden)

    Habsah Alwi

    2013-01-01

    Full Text Available The effectiveness of banana stem juice as a natural coagulant for treatment of spent coolant wastewater was investigated . Three main parameters were studied, namely, chemical oxygen demand (COD, suspended solids (SSs, and turbidity of effluent. Coagulation experiments using jar test were performed with a flocculation system where the effects of spent coolant wastewater pH as well as banana stem juice dosage on coagulation effectiveness were examined. The highest recorded COD, SS, and turbidity removal percentages by banana stem juice were 80.1%, 88.6%, and 98.5%, respectively, observed for effluent at pH 7 using 90 mL dosage. The inulin concentration in the banana stem was examined to be 1.22016 mg/mL. It could be concluded that banana stem juice showed tremendous potential as a natural coagulant for water treatment purposes and could be applied in the pretreatment stage of Malaysian spent coolant wastewater prior to secondary treatment.

  13. Aqueous Nanofluid as a Two-Phase Coolant for PWR

    Directory of Open Access Journals (Sweden)

    Pavel N. Alekseev

    2012-01-01

    Full Text Available Density fluctuations in liquid water consist of two topological kinds of instant molecular clusters. The dense ones have helical hydrogen bonds and the nondense ones are tetrahedral clusters with ice-like hydrogen bonds of water molecules. Helical ordering of protons in the dense water clusters can participate in coherent vibrations. The ramified interface of such incompatible structural elements induces clustering impurities in any aqueous solution. These additives can enhance a heat transfer of water as a two-phase coolant for PWR due to natural forming of nanoparticles with a thermal conductivity higher than water. The aqueous nanofluid as a new condensed matter has a great potential for cooling applications. It is a mixture of liquid water and dispersed phase of extremely fine quasi-solid particles usually less than 50 nm in size with the high thermal conductivity. An alternative approach is the formation of gaseous (oxygen or hydrogen nanoparticles in density fluctuations of water. It is possible to obtain stable nanobubbles that can considerably exceed the molecular solubility of oxygen (hydrogen in water. Such a nanofluid can convert the liquid water in the nonstoichiometric state and change its reduction-oxidation (RedOx potential similarly to adding oxidants (or antioxidants for applying 2D water chemistry to aqueous coolant.

  14. Fitness for service assessment of coolant channels of Indian PHWRs

    Science.gov (United States)

    Sinha, R. K.; Sinha, S. K.; Madhusoodanan, K.

    2008-12-01

    A typical coolant channel assembly of pressurised heavy water reactors mainly consists of pressure tube, calandria tube, garter spring spacers, all made of zirconium alloys and end fittings made of SS 403. The pressure tube is rolled at both its ends to the end fittings and is located concentrically inside the calandria tube with the help of garter spring spacers. Pressure tube houses the fuel bundles, which are cooled by means of pressurised heavy water. It, thus, operates under the environment of high pressure and temperature (typically 10 MPa and 573 K), and fast neutron flux (typically 3 × 10 17 n/m 2 s, E > 1 MeV neutrons). Under this operating environment, the material of the pressure tube undergoes degradation over a period of time, and eventually needs to be assessed for fitness for continued operation, without jeopardising the safety of the reactor. The other components of the coolant channel assembly, which are inaccessible for any in-service inspection, are assessed for their fitness, whenever a pressure tube is removed for either surveillance purpose or any other reasons. This paper, while describing the latest developments taking place to address the issue of fitness for service of the Zr-2.5 wt% Nb pressure tubes, also dwells briefly upon the developments taken place, to address the issues of life management and extension of zircaloy-2 pressure tubes in the earlier generation of Indian pressurised heavy water reactors.

  15. Fitness for service assessment of coolant channels of Indian PHWRs

    Energy Technology Data Exchange (ETDEWEB)

    Sinha, R.K.; Sinha, S.K. [Reactor Design and Development Group, Bhabha Atomic Research Centre, Mumbai 400 085 (India); Madhusoodanan, K. [Reactor Design and Development Group, Bhabha Atomic Research Centre, Mumbai 400 085 (India)], E-mail: kmadhu@barc.gov.in

    2008-12-15

    A typical coolant channel assembly of pressurised heavy water reactors mainly consists of pressure tube, calandria tube, garter spring spacers, all made of zirconium alloys and end fittings made of SS 403. The pressure tube is rolled at both its ends to the end fittings and is located concentrically inside the calandria tube with the help of garter spring spacers. Pressure tube houses the fuel bundles, which are cooled by means of pressurised heavy water. It, thus, operates under the environment of high pressure and temperature (typically 10 MPa and 573 K), and fast neutron flux (typically 3 x 10{sup 17} n/m{sup 2} s, E > 1 MeV neutrons). Under this operating environment, the material of the pressure tube undergoes degradation over a period of time, and eventually needs to be assessed for fitness for continued operation, without jeopardising the safety of the reactor. The other components of the coolant channel assembly, which are inaccessible for any in-service inspection, are assessed for their fitness, whenever a pressure tube is removed for either surveillance purpose or any other reasons. This paper, while describing the latest developments taking place to address the issue of fitness for service of the Zr-2.5 wt% Nb pressure tubes, also dwells briefly upon the developments taken place, to address the issues of life management and extension of zircaloy-2 pressure tubes in the earlier generation of Indian pressurised heavy water reactors.

  16. Pressurized Vessel Slurry Pumping

    Energy Technology Data Exchange (ETDEWEB)

    Pound, C.R.

    2001-09-17

    This report summarizes testing of an alternate ''pressurized vessel slurry pumping'' apparatus. The principle is similar to rural domestic water systems and ''acid eggs'' used in chemical laboratories in that material is extruded by displacement with compressed air.

  17. Study of Compatibility of Stainless Steel Weld Joints with Liquid Sodium-Potassium Coolants for Fission Surface Power Reactors for Lunar and Space Applications

    Energy Technology Data Exchange (ETDEWEB)

    Grossbeck, Martin [Univ. of Tennessee, Knoxville, TN (United States); Qualls, Louis [Oak Ridge National Lab. (ORNL), Oak Ridge, TN (United States)

    2015-07-31

    To make a manned mission to the surface of the moon or to Mars with any significant residence time, the power requirements will make a nuclear reactor the most feasible source of energy. To prepare for such a mission, NASA has teamed with the DOE to develop Fission Surface Power technology with the goal of developing viable options. The Fission Surface Power System (FSPS) recommended as the initial baseline design includes a liquid metal reactor and primary coolant system that transfers heat to two intermediate liquid metal heat transfer loops. Each intermediate loop transfers heat to two Stirling heat exchangers that each power two Stirling converters. Both the primary and the intermediate loops will use sodium-potassium (NaK) as the liquid metal coolant, and the primary loop will operate at temperatures exceeding 600°C. The alloy selected for the heat exchangers and piping is AISI Type 316L stainless steel. The extensive experience with NaK in breeder reactor programs and with earlier space reactors for unmanned missions lends considerable confidence in using NaK as a coolant in contact with stainless steel alloys. However, the microstructure, chemical segregation, and stress state of a weld leads to the potential for corrosion and cracking. Such failures have been experienced in NaK systems that have operated for times less than the eight year goal for the FSPS. For this reason, it was necessary to evaluate candidate weld techniques and expose welds to high-temperature, flowing NaK in a closed, closely controlled system. The goal of this project was to determine the optimum weld configuration for a NaK system that will withstand service for eight years under FSPS conditions. Since the most difficult weld to make and to evaluate is the tube to tube sheet weld in the intermediate heat exchangers, it was the focus of this research. A pumped loop of flowing NaK was fabricated for exposure of candidate weld specimens at temperatures of 600°C, the expected

  18. The stress analysis of a heavy liquid metal pump impeller

    Science.gov (United States)

    Ma, X. D.; Li, X. L.; Zhu, Z. Q.; Li, C. J.; Gao, S.

    2016-05-01

    Lead-based coolant reactor is a promising Generation-IV reactor. In the lead-based coolant reactor, the coolant is liquid lead or lead-bismuth eutectic. The main pump in the reactor is a very important device. It supplies force for the coolant circulation. The liquid metal has a very large density which is about ten times of the water. Also, the viscosity of the coolant is small which is about one sixth of the water. When the pump transports heavy liquid, the blade loading is heavy. The large force can cause the failure of the blade when the fatigue stress exceeds the allowable stress. The impeller fraction is a very serious accident which is strictly prohibited in the nuclear reactor. In this paper, the numerical method is used to simulate the flow field of a heavy liquid metal pump. The SST k-w turbulent model is used in the calculation to get a more precise flow structure. The hydraulic force is obtained with the one way fluid solid coupling. The maximum stress in the impeller is analyzed. The stress in the liquid metal pump is compared with that in the water pump. The calculation results show that the maximum stress of the impeller blade increases with increase of flow rate. In the design of the impeller blade thickness, the impeller strength in large operating condition should be considered. The maximum stress of the impeller blade located in the middle and near the hub of the leading edge. In this position, the blade is easy to fracture. The maximum deformation of the impeller firstly increase with increase of flow rate and then decrease with increase of flow rate. The maximum deformation exists in the middle of the leading edge when in small flow rate and in the out radius of the impeller when in large flow rate. Comparing the stress of the impeller when transporting water and LBE, the maximum stress is almost one-tenth of that in the LBE impeller which is the same ratio of the density. The static stress in different medium is proportional to the pressure

  19. Pulsed differential pumping system

    Energy Technology Data Exchange (ETDEWEB)

    Antipov, G.N.; Bagautdinov, F.A.; Rybalov, S.V.

    1985-06-01

    A pulsed differential pumping system is described for extracting an electron beam from a shaping region at a pressure of 10/sup -5/ torr into a volume with a pressure of 10-100 torr. A fast valve is used with appropriate geometrical parameters to reduce the length of the outlet channel considerable while increasing its diameter. Test results are given. The pumping system has two sections which communicate one with the other and with the volume at the elevated pressure which is produced by gasdynamic nozzles.

  20. Pumps; Pumpen

    Energy Technology Data Exchange (ETDEWEB)

    Bauer, H. [Gesellschaft fuer Praktische Energiekunde e.V., Muenchen (Germany). Forschungsstelle fuer Energiewirtschaft; Hellriegel, E. [Gesellschaft fuer Praktische Energiekunde e.V., Muenchen (Germany). Forschungsstelle fuer Energiewirtschaft; Pfitzner, G. [Gesellschaft fuer Praktische Energiekunde e.V., Muenchen (Germany). Forschungsstelle fuer Energiewirtschaft

    1994-11-01

    The technical features of commercial pump types are described with regard to their technical, energy-related and economic parameters, and characteristic data are presented in the form of data sheets. This is to provide a basis for a comparative assessment of different technologies and technical variants. The chapter `System specifications` describes the various fields of application of pumps and the resulting specific requirements. The design and function of the different pump types are described in `Technical description`. `System and plant description dscribes the design and adaptation of pumps, i.e. the adaptation of the plant data to the system requirements. `Data compilation` provides a survey of the types and systematics of the compiled data as well as a decision aid for selecting the pumps best suited to the various applications. The `Data sheet` section describes the structure and handling of the data sheets as well as the data contained therein. The data sheets are contained in the apapendix of this report. The section `General analysis` compares typical technical, energy-related and economic characteristics of the different pump types. This is to enable a rough comparison of pump types and to facilitate decisions. The chapter `Example` illustrates the use of the data sheets by means of a selected example. (orig./GL) [Deutsch] Die vorliegende Arbeit hat zum Ziel, Technik seriengefertigter und marktgaengiger Pumpen in typisierter Form hinsichtlich ihrer technischen, energetischen und wirtschaftlichen Parameter zu beschreiben und ihre charakteristischen Kennwerte in Datenblaettern abzubilden. Damit wird ein grundlegendes Instrument fuer die vergleichende Beurteilung unterschiedlicher Techniken bzw. Technikvarianten hinsichtlich energetischer und wirtschaftlicher Kriterien geschaffen. Im Abschnitt `Systemanforderungen` erfolgt die Beschreibung der einzelnen Anwendungsbereiche fuer Pumpen mit den speziellen daraus resultierenden Anforderungen. Der Aufbau und

  1. Results of a multi-site field treatability test for bioslurping: A comparison of LNAPL rates using vacuum-enhanced recovery (bioslurping), passive skimming, and pump drawdown recovery techniques. Field test report

    Energy Technology Data Exchange (ETDEWEB)

    Kittel, J.A.; Leeson, A.; Hinchee, R.E.; Miller, R.E.; Haas, P.E.

    1995-12-31

    Bioslurping is a new dynamic technology designed to efficiently recover free-floating petroleum hydrocarbons (free product) from the subsurface while simultaneously enhancing natural biodegradation of petroleum hydrocarbons in the vadose zone. Bioslurping is a vacuum-enhanced fluids pumping technology that simultaneously extracts groundwater, free product, and soil gas in the same process stream. The U.S. Air Force has initiated a multi-site program to evaluate the widespread application of bioslurping at free product-contaminated Air Force sites. The Air Force Bioslurper Initiative is designed to access the field application of the bioslurping technology at 36 Air Force sites. The field studies are designed to evaluate the efficacy of bioslurping for the recovery of free-floating fuel (free product) and to evaluate the potential for bioventing to enhance natural biodegradation of petroleum contaminants. The technical approach for conducting the bioslurper pilot tests includes assessing the geologic and hydrologic characteristics of each site, free-product baildown testing in site monitoring wells, soil gas analysis, and a bioslurper pump test. Bioslurping free-product recovery efficiency is compared to conventional skimming and dual-pump free-product recovery technologies, and bioventing potential is assessed via in situ respiration testing. The Air Force field program was initiated in July 1994. At the time of this writing, seven field tests have been completed. At each site bioslurping has yielded the highest LNAPL recovery rate. This paper presents a summary of LNAPL recovery data to date. Operational issues such as permitting and treatment of vapor and wastewater discharge will be discussed.

  2. Design of the Multi-functional Test Facility for Investigation of a New Screw Aeration Pump Used in Wastewater Treatment%污水处理用螺旋曝气多功能试验装置的设计

    Institute of Scientific and Technical Information of China (English)

    程旭; 刘进立; 马润梅; 何建设; 王奎升

    2012-01-01

    Screw aeration pump, working based on the mechanism of labyrinth screw pump, is a new type of aeration pump used in waste water treatment. In order to experimentally investigate the effects of the pump parameters on its aeration performance, a test facility has been specially designed for these experiments. Apart from having the basic measurement functions of a conventional test rig for testing an aeration pump performance,the designed test facility takes some special structures,such as replaceable suction pipe,replaceable rotor and stator with different thread shapes and dimensions, and visual discharge pipe for visualization of gas-water mixing field. So some comparative experiments focusing on the aeration pump performance under many conditions can be implemented on the test rig, which can supply accurate and reliable experimental data for systematically study of the screw pump.%螺旋曝气装置是一种基于迷宫螺旋泵工作原理的新型污水处理曝气装置.为研究装置参数对其曝气性能的影响,设计了螺旋曝气试验装置.该试验装置除具有常规曝气泵试验装置的基本测试功能外,还具有特殊设计,即可更换吸入管路,可更换不同形状、不同尺寸螺纹的转子、定子及气液混合流场可视化等,可以实现多种条件下螺旋曝气泵曝气性能对比试验,为系统研究螺旋曝气泵提供可靠的试验数据.

  3. New Pump and Treat Facility Remedial Action Work Plan for Test Area North (TAN) Final Groundwater Remediation, Operable Unit 1-07B

    Energy Technology Data Exchange (ETDEWEB)

    D. Vandel

    2003-09-01

    This remedial action work plan identifies the approach and requirements for implementing the medical zone remedial action for Test Area North, Operable Unit 1-07B, at the Idaho National Engineering and Environmental Laboratory (INEEL). This plan details management approach for the construction and operation of the New Pump and Treat Facility. As identified in the remedial design/remedial action scope of work, a separate remedial design/remedial action work plan will be prepared for each remedial component of the Operable Unit 1-07B remedial action. This work plan was originally prepared as an early implementation of the final Phase C remediation. At that time, The Phase C implementation strategy was to use this document as the overall Phase C Work Plan and was to be revised to include the remedial actions for the other remedial zones (hotspot and distal zones). After the completion of Record of Decision Amendment: Technical Support Facility Injection Well (TSF-05) and Surrounding Groundwater Contamination (TSF-23) and Miscellaneous No Action Sites, Final Remedial Action, it was determined that each remedial zone would have it own stand-alone remedial action work plan. Revision 1 of this document converts this document to a stand-alone remedial action plan specific to the implementation of the New Pump and Treat Facility used for plume remediation within the medical zone of the OU 1-07B contaminated plume.

  4. High Efficiency Water Heating Technology Development Final Report. Part I, Lab/Field Performance Evaluation and Accelerated Life Testing of a Hybrid Electric Heat Pump Water Heater (HPWH)

    Energy Technology Data Exchange (ETDEWEB)

    Baxter, Van D. [Oak Ridge National Lab. (ORNL), Oak Ridge, TN (United States); Murphy, Richard W. [Oak Ridge National Lab. (ORNL), Oak Ridge, TN (United States); Rice, C. Keith [Oak Ridge National Lab. (ORNL), Oak Ridge, TN (United States); Linkous, Randall Lee [Oak Ridge National Lab. (ORNL), Oak Ridge, TN (United States)

    2016-04-01

    DOE has supported efforts for many years with the objective of getting a water heater that uses heat pump technology (aka a heat pump water heater or HPWH) successfully on the residential equipment market. The most recent previous effort (1999-2002) produced a product that performed very well in ORNL-led accelerated durability and field tests. The commercial partner for this effort, Enviromaster International (EMI), introduced the product to the market under the trade name Watter$aver in 2002 but ceased production in 2005 due to low sales. A combination of high sales price and lack of any significant infrastructure for service after the sale were the principal reasons for the failure of this effort. What was needed for market success was a commercial partner with the manufacturing and market distribution capability necessary to allow economies of scale to lead to a viable unit price together with a strong customer service infrastructure. General Electric certainly meets these requirements, and knowing of ORNL s expertise in this area, approached ORNL with the proposal to partner in a CRADA to produce a high efficiency electric water heater. A CRADA with GE was initiated early in Fiscal Year, 2008. GE initially named its product the Hybrid Electric Water Heater (HEWH).

  5. Types of Breast Pumps

    Science.gov (United States)

    ... Devices Consumer Products Breast Pumps Types of Breast Pumps Share Tweet Linkedin Pin it More sharing options ... used for feeding a baby. Types of Breast Pumps There are three basic types of breast pumps: ...

  6. Sub-scale Waterflow Cavitation and Dynamic Transfer Function Testing of an Oxidizer Turbo-Pump Combined Inducer and Impeller

    Science.gov (United States)

    Karon, D. M.; Patel, S. K.; Zoladz, T. F.

    2016-01-01

    In 2009 and 2010, Concepts NREC prepared for and performed a series of tests on a 52% scale of a version of the Pratt & Whitney Rocketdyne J-2X Oxidizer Turbopump under a Phase III SBIR with NASA MSFC. The test article was a combined inducer and impeller, tested as a unit. This paper presents an overview of the test rig and facility, instrumentation, signal conditioning, data acquisition systems, testing approach, measurement developments, and lessons learned. Results from these tests were presented in the form of two papers at the previous JANNAF joint propulsion conference, in December of 2011.

  7. Nuclear power plant safety related pump issues

    Energy Technology Data Exchange (ETDEWEB)

    Colaccino, J.

    1996-12-01

    This paper summarizes of a number of pump issues raised since the Third NRC/ASME Symposium on Valve and Pump Testing in 1994. General issues discussed include revision of NRC Inspection Procedure 73756, issuance of NRC Information Notice 95-08 on ultrasonic flow meter uncertainties, relief requests for tests that are determined by the licensee to be impractical, and items in the ASME OM-1995 Code, Subsection ISTB, for pumps. The paper also discusses current pump vibration issues encountered in relief requests and plant inspections - which include smooth running pumps, absolute vibration limits, and vertical centrifugal pump vibration measurement requirements. Two pump scope issues involving boiling water reactor waterlog and reactor core isolation cooling pumps are also discussed. Where appropriate, NRC guidance is discussed.

  8. Dosimetric impact evaluation of primary coolant chemistry of the internal tritium breeding cycle of a fusion reactor DEMO

    Energy Technology Data Exchange (ETDEWEB)

    Velarde, M. [Instituto de Fusion Nuclear (DENIM), ETSII, Universidad Politecnica Madrid UPM, J. Gutierrez Abascal 2, Madrid 28006 (Spain); Sedano, L. A. [Asociacion Euratom-Ciematpara Fusion, Av. Complutense 22, 28040 Madrid (Spain); Perlado, J. M. [Instituto de Fusion Nuclear (DENIM), ETSII, Universidad Politecnica Madrid UPM, J. Gutierrez Abascal 2, Madrid 28006 (Spain)

    2008-07-15

    Tritium will be responsible for a large fraction of the environmental impact of the first generation of DT fusion reactors. Today, the efforts of conceptual development of the tritium cycle for DEMO are mainly centred in the so called Inner Breeding Tritium Cycle, conceived as guarantee of reactor fuel self-sufficiency. The EU Fusion Programme develops for the short term of fusion power technology two breeding blanket conceptual designs both helium cooled. One uses Li-ceramic material (HCPB, Helium-Cooled Pebble Bed) and the other a liquid metal eutectic alloy (Pb15.7Li) (HCLL, Helium-Cooled Lithium Lead). Both are Li-6 enriched materials. At a proper scale designs will be tested as Test Blanket Modules in ITER. The tritium cycles linked to both blanket concepts are similar, with some different characteristics. The tritium is recovered from the He purge gas in the case of HCPB, and directly from the breeding alloy through a carrier gas in HCLL. For a 3 GWth self-sufficient fusion reactor the tritium breeding need is few hundred grams of tritium per day. Safety and environmental impact are today the top priority design criteria. Dose impact limits should determine the key margins and parameters in its conception. Today, transfer from the cycle to the environment is conservatively assumed to be operating in a 1-enclosure scheme through the tritium plant power conversion system (intermediate heat exchangers and helium blowers). Tritium loss is caused by HT and T{sub 2} permeation and simultaneous primary coolant leakage through steam generators. Primary coolant chemistry appears to be the most natural way to control tritium permeation from the breeder into primary coolant and from primary coolant through SG by H{sub 2} tritium flux isotopic swamping or steel (EUROFER/INCOLOY) oxidation. A primary coolant chemistry optimization is proposed. Dynamic flow process diagrams of tritium fluxes are developed ad-hoc and coupled with tritiated effluents dose impact evaluations

  9. An experimental study of the corrosion and precipitation of aluminum in the presence of trisodium phosphate buffer following a loss of coolant accident (LOCA) scenario

    Energy Technology Data Exchange (ETDEWEB)

    Kim, Seung Jun [Department of Nuclear Engineering, University of New Mexico (United States); Howe, Kerry J. [Department of Civil Engineering, University of New Mexico (United States); Leavitt, Janet J. [Department of Civil Engineering, University of New Mexico (United States); Alion Science and Technology (United States); Hammond, Kyle; Mitchell, Lana [Department of Civil Engineering, University of New Mexico (United States); Kee, Ernie [South Texas Project Nuclear Operating Company (STPNOC) (United States); Blandford, Edward D., E-mail: edb@unm.edu [Department of Nuclear Engineering, University of New Mexico (United States)

    2015-02-15

    Highlights: • Experimental head loss testing was conducted by aggressively promoting corrosion in loss of coolant accidents. • Blender-processed debris beds have higher head loss but tend to be less reproducible than NEI-processed debris beds. • Precipitation was observed from aluminum concentration and turbidity measurements. • Precipitation results were compared to predictions from Visual MINTEQ. - Abstract: This paper presents the results of an integrated chemical effects experiment of head loss across the sump pump screen with fibrous debris bed over a non-prototypical 10-day post-LOCA incident window. The corrosion head loss experiments (CHLE) is a reduced scaled integral effects testing facility built at the University of New Mexico (UNM) to investigate potential chemical effects on head loss across prepared fibrous debris beds. The results in this paper come from two integral effect tests performed at UNM in order to determine the chemical effects on head loss induced by a zinc source effect and an aluminum precipitation effect (T3: without Zn source case, T4: with Zn source case in containment). The tests were performed with a large surface area of aluminum coupons in the testing facility for an extended period of elevated temperature to accelerate corrosion above that expected under prototypical conditions. These conditions were sufficient to force aluminum precipitation to occur and induce the onset of chemical effects on debris bed head loss. The head loss behavior on two different types of fiber debris beds (blender-processed and NEI-processed debris bed) was evaluated in this study. It was found that the blender-processed bed is much more sensitive in filtering than the NEI-processed bed and consequently had a much higher head loss value across the beds. Aluminum precipitation was observed, with aluminum concentration and turbidity measurements, to form starting on day 7 in Test T3 and on day 6 in Test T4. The onset of aluminum precipitation

  10. System approach in the investigation of coolant parametrical oscillations in passive safety injection systems (PSIS)

    Energy Technology Data Exchange (ETDEWEB)

    Proskouriakov, K.N. [Moskovskij Ehnergeticheskij Inst., Moscow (Russian Federation)

    2001-07-01

    The use of thermal-hydraulic computer codes is an important part of the work programme for activities in the field of nuclear power plants (NPP) Safety Research as it will enable to define better the test configuration and parameter range extensions and to extrapolate the results of the small scale experiments towards full scale reactor applications. The CATHARE2, RELAP5, the WCOBRA/TRAC, and APROS codes are the estimate thermal hydraulic codes for the evaluation of large and small break loss of coolant accidents (LOCA). The relatively good agreement experimental data with the calculations have been presented. There was shown also some big mistakes in predicting distribution of flow when two phase are present. Model of parametrical oscillation (P.O.) worked out gives explanation for flow oscillations and indicates that the phenomenon of P.O. appears under certain combination of thermal-hydraulic parameters and structure of heat-removal system. (orig.)

  11. Development of Air Source Heat Pump Water Heater Performance Test Rig%空气源热泵热水器性能测试系统实验台的研制

    Institute of Scientific and Technical Information of China (English)

    刘笑笑; 丁强

    2015-01-01

    为了满足空气源热泵热水器性能测试的需要,基于对空气源热泵热水器原理、工作特点、热工测试技术、工业控制技术、上位机编写技术等基础,严格参照空气源热泵热水器的相关国家标准设计了一套空气源热泵热水器性能测试系统。该系统不仅能自动计算出被测空气源热泵热水器的性能参数,且具有良好的人机交互界面、可操作性强、性能可靠等优点。%In order to meet the needs of the air source heat pump water heater performance test,according to the work-ing principle of the air source heat pump water heater,working characteristics,thermal testing technology,industrial control technology,computer technology and other related technology,strictly according to the air source heat pump water heater national standards to design a set of water heater performance of air source heat pump test system,it can calculate the performance parameters of the tested air source heat pump water heater automatical y.

  12. 适用于动静压试验的综合液压源的设计%A Multifunctional Pump Station Designed for Dynamic and Static Pressure Hydraulic Tests

    Institute of Scientific and Technical Information of China (English)

    孔炫畅

    2015-01-01

    分析了液压元件动静压试验的测试需求,据此进行了液压泵站的设计。液压泵站液压能由电动泵和手动泵提供,满足不同性质的液压实验需求。实践证明,对于实验类型较多,特别是静压实验较多的场合,综合液压源与常规液压源相比,具有明显优势。%Based on the dynamic and static pressure test requirement of hydraulic components, the pump station is designed. The hydraulic power of the pump station is provided by its motor pump and hand pump in accordance with different hydraulic tests. It is proved in practice that the pump station is more adequate than normal hydraulic power source to tests which need the hydraulic pressure to be hold for a long time, such as a leak test.

  13. Water Pump Development for the EVA PLSS

    Science.gov (United States)

    Schuller, Michael; Kurwitz, Cable; Goldman, Jeff; Morris, Kim; Trevino, Luis

    2009-01-01

    This paper describes the effort by the Texas Engineering Experiment Station (TEES) and Honeywell for NASA to design, fabricate, and test a preflight prototype pump for use in the Extravehicular activity (EVA) portable life support subsystem (PLSS). Major design decisions were driven by the need to reduce the pump s mass, power, and volume compared to the existing PLSS pump. In addition, the pump will accommodate a much wider range of abnormal conditions than the existing pump, including vapor/gas bubbles and increased pressure drop when employed to cool two suits simultaneously. A positive displacement, external gear type pump was selected because it offers the most compact and highest efficiency solution over the required range of flow rates and pressure drops. An additional benefit of selecting a gear pump design is that it is self priming and capable of ingesting noncondensable gas without becoming "air locked." The chosen pump design consists of a 28 V DC, brushless, sealless, permanent magnet motor driven, external gear pump that utilizes a Honeywell development that eliminates the need for magnetic coupling. Although the planned flight unit will use a sensorless motor with custom designed controller, the preflight prototype to be provided for this project incorporates Hall effect sensors, allowing an interface with a readily available commercial motor controller. This design approach reduced the cost of this project and gives NASA more flexibility in future PLSS laboratory testing. The pump design was based on existing Honeywell designs, but incorporated features specifically for the PLSS application, including all of the key features of the flight pump. Testing at TEES will simulate the vacuum environment in which the flight pump will operate. Testing will verify that the pump meets design requirements for range of flow rates, pressure rise, power consumption, working fluid temperature, operating time, and restart capability. Pump testing is currently

  14. Dynamic Analysis of Coolant Channel and Its Internals of Indian 540 MWe PHWR Reactor

    Directory of Open Access Journals (Sweden)

    N. Dharmaraju

    2008-01-01

    Full Text Available The horizontal coolant channel is one of the important parts of primary heat transport system in PHWR type of reactors. There are in all 392 channels in the core of Indian 540 MWe reactor. Each channel houses 13 natural uranium fuel bundles and shielding and sealing plugs one each on either side of the channel. The heavy water coolant flows through the coolant channel and carries the nuclear heat to outside the core for steam generation and power production in the turbo-generator. India has commissioned one 540 MWe PHWR reactor in September 2005 and another similar unit will be going into operation very shortly. For a complete dynamic study of the channel and its internals under the influence of high coolant flow, experimental and modeling studies have been carried out. A good correlation has been achieved between the results of experimental and analytical models. The operating life of a typical coolant channel typically ranges from 10 to 15 full-power years. Towards the end of its operating life, its health monitoring becomes an important activity. Vibration diagnosis plays an important role as a tool for life management of coolant. Through the study of dynamic characteristics of the coolant channel under simulated loading condition, an attempt has been made to develop a diagnostics to monitor the health of the coolant channel over its operating life. A study has been also carried out to characterize the fuel vibration under different flow condition.

  15. Nonflammable coolants for space vehicle environmental control systems Compatibility of component materials with selected dielectric fluids.

    Science.gov (United States)

    Howard, R. T.; Korpolinski, T. S.; Mace, E. W.

    1971-01-01

    This paper summarizes a 4-year effort to evaluate and implement a nonflammable substitute coolant for application in the Saturn instrument unit (IU) environmental control system (ECS). Discussed are candidate material evaluations, detailed investigations of the properties of the coolant selected, and a summary of the implementation into a flight vehicle.

  16. A simplified heat pump model for use in solar plus heat pump system simulation studies

    DEFF Research Database (Denmark)

    Perers, Bengt; Andersen, Elsa; Nordman, Roger

    2012-01-01

    Solar plus heat pump systems are often very complex in design, with sometimes special heat pump arrangements and control. Therefore detailed heat pump models can give very slow system simulations and still not so accurate results compared to real heat pump performance in a system. The idea here...... is to start from a standard measured performance map of test points for a heat pump according to EN 14825 and then determine characteristic parameters for a simplified correlation based model of the heat pump. By plotting heat pump test data in different ways including power input and output form and not only...... as COP, a simplified relation could be seen. By using the same methodology as in the EN 12975 QDT part in the collector test standard it could be shown that a very simple model could describe the heat pump test data very accurately, by identifying 4 parameters in the correlation equation found....

  17. A simplified heat pump model for use in solar plus heat pump system simulation studies

    DEFF Research Database (Denmark)

    Perers, Bengt; Andersen, Elsa; Nordman, Roger

    2012-01-01

    Solar plus heat pump systems are often very complex in design, with sometimes special heat pump arrangements and control. Therefore detailed heat pump models can give very slow system simulations and still not so accurate results compared to real heat pump performance in a system. The idea here...... is to start from a standard measured performance map of test points for a heat pump according to EN 14825 and then determine characteristic parameters for a simplified correlation based model of the heat pump. By plotting heat pump test data in different ways including power input and output form and not only...... as COP, a simplified relation could be seen. By using the same methodology as in the EN 12975 QDT part in the collector test standard it could be shown that a very simple model could describe the heat pump test data very accurately, by identifying 4 parameters in the correlation equation found....

  18. Experimental simulation of asymmetric heat up of coolant channel under small break LOCA condition for PHWR

    Energy Technology Data Exchange (ETDEWEB)

    Yadav, Ashwini K., E-mail: ashwinikumaryadav@gmail.com [Department of Mechanical and Industrial Engineering, Indian Institute of Technology, Roorkee 247667 (India); Majumdar, P., E-mail: pmajum@barc.gov.in [Reactor Safety Division, Bhabha Atomic Research Centre, Mumbai 400085 (India); Kumar, Ravi, E-mail: ravikfme@iitr.ernet.in [Department of Mechanical and Industrial Engineering, Indian Institute of Technology, Roorkee 247667 (India); Chatterjee, B., E-mail: barun@barc.gov.in [Reactor Safety Division, Bhabha Atomic Research Centre, Mumbai 400085 (India); Gupta, Akhilesh, E-mail: akhilfme@iitr.ernet.in [Department of Mechanical and Industrial Engineering, Indian Institute of Technology, Roorkee 247667 (India); Mukhopadhyay, D., E-mail: dmukho@barc.gov.in [Reactor Safety Division, Bhabha Atomic Research Centre, Mumbai 400085 (India)

    2013-02-15

    Highlights: ► Circumferential temperature gradient of PT for asymmetric heat-up was 440 °C. ► At 2 MPa ballooning initiated at 450 °C and with strain rate of 0.0277%/s. ► At 4 MPa ballooning initiated at 390 °C and with strain rate of 0.0305%/s. ► At 4 MPa, PT ruptured under uneven strain and steep temperature gradient. ► Integrity of PT depends on internal pressure and magnitude of decay power. -- Abstract: During postulated small break loss of coolant accident (SBLOCA) for Pressurised Heavy Water Reactors (PHWRs) as well as for postulated SBLOCA coincident with loss of ECCS, a stratified flow condition can arise in the coolant channels as the gravitational force dominates over the low inertial flow arising from small break flow. A Station Blackout condition without operator intervention can also lead to stratified flow condition during a slow channel boil-off condition. For all these conditions the pressure remains high and under stratified flow condition, the horizontal fuel bundles experience different heat transfer environments with respect to the stratified flow level. This causes the bundle upper portion to get heated up higher as compared to the submerged portion. This kind of asymmetrical heating of the bundle is having a direct bearing on the circumferential temperature gradient of pressure tube (PT) component of the coolant channel. The integrity of the PT is important under normal conditions as well as at different accident loading conditions as this component houses the fuel bundles and serves as a coolant pressure boundary of the reactors. An assessment of PT is required with respect to different accident loading conditions. The present investigation aims to study thermo-mechanical behaviour of PT (Zr, 2.5 wt% Nb) under a stratified flow condition under different internal pressures. The component is subjected to an asymmetrical heat-up conditions as expected during the said situation under different pressure conditions which varies from 2

  19. Actively controlling coolant-cooled cold plate configuration

    Energy Technology Data Exchange (ETDEWEB)

    Chainer, Timothy J.; Parida, Pritish R.

    2016-04-26

    Cooling apparatuses are provided to facilitate active control of thermal and fluid dynamic performance of a coolant-cooled cold plate. The cooling apparatus includes the cold plate and a controller. The cold plate couples to one or more electronic components to be cooled, and includes an adjustable physical configuration. The controller dynamically varies the adjustable physical configuration of the cold plate based on a monitored variable associated with the cold plate or the electronic component(s) being cooled by the cold plate. By dynamically varying the physical configuration, the thermal and fluid dynamic performance of the cold plate are adjusted to, for example, optimally cool the electronic component(s), and at the same time, reduce cooling power consumption used in cooling the electronic component(s). The physical configuration can be adjusted by providing one or more adjustable plates within the cold plate, the positioning of which may be adjusted based on the monitored variable.

  20. SIMMER-III applications to fuel-coolant interactions

    Energy Technology Data Exchange (ETDEWEB)

    Morita, K.; Kondo, Sa.; Tobita, Y.; Brear, D.J. [Power Reactor and Nuclear Fuel Development Corp., Oarai, Ibaraki (Japan). Oarai Engineering Center

    1998-01-01

    The main purpose of the SIMMER-III code is to provide a numerical simulation of complex multiphase, multicomponent flow problems essential to investigate core disruptive accidents in liquid-metal fast reactors (LMFRs). However, the code is designed to be sufficiently flexible to be applied to a variety of multiphase flows, in addition to LMFR safety issues. In the present study, some typical experiments relating to fuel-coolant interactions (FCIs) have been analyzed by SIMMER-III to demonstrate that the code is applicable to such complex and highly transient multiphase flow situations. It is shown that SIMMER-III can reproduce the premixing phase both in water and sodium systems as well as the propagation of steam explosion. It is thus demonstrated the code is basically capable of simulating integral multiphase thermal-hydraulic problems included in FCI experiments. (author)

  1. Fusion Blanket Coolant Section Criteria, Methodology, and Results

    Energy Technology Data Exchange (ETDEWEB)

    DeMuth, J. A. [Lawrence Livermore National Lab. (LLNL), Livermore, CA (United States); Meier, W. R. [Lawrence Livermore National Lab. (LLNL), Livermore, CA (United States); Jolodosky, A. [Lawrence Livermore National Lab. (LLNL), Livermore, CA (United States); Frantoni, M. [Lawrence Livermore National Lab. (LLNL), Livermore, CA (United States); Reyes, S. [Lawrence Livermore National Lab. (LLNL), Livermore, CA (United States)

    2015-10-02

    The focus of this LDRD was to explore potential Li alloys that would meet the tritium breeding and blanket cooling requirements but with reduced chemical reactivity, while maintaining the other attractive features of pure Li breeder/coolant. In other fusion approaches (magnetic fusion energy or MFE), 17Li- 83Pb alloy is used leveraging Pb’s ability to maintain high TBR while lowering the levels of lithium in the system. Unfortunately this alloy has a number of potential draw-backs. Due to the high Pb content, this alloy suffers from very high average density, low tritium solubility, low system energy, and produces undesirable activation products in particular polonium. The criteria considered in the selection of a tritium breeding alloy are described in the following section.

  2. Annual Performance of a Two-Speed, Dedicated Dehumidification Heat Pump in the NIST Net-Zero Energy Residential Test Facility.

    Science.gov (United States)

    Payne, W Vance

    2016-01-01

    A 2715 ft(2) (252 m(2)), two story, residential home of the style typical of the Gaithersburg, Maryland area was constructed in 2012 to demonstrate technologies for net-zero energy (NZE) homes (or ZEH). The NIST Net-Zero Energy Residential Test Facility (NZERTF) functions as a laboratory to support the development and adoption of cost-effective NZE designs, technologies, construction methods, and building codes. The primary design goal was to meet the comfort and functional needs of the simulated occupants. The first annual test period began on July 1, 2013 and ended June 30, 2014. During the first year of operation, the home's annual energy consumption was 13039 kWh (4.8 kWh ft(-2), 51.7 kWh m(-2)), and the 10.2 kW solar photovoltaic system generated an excess of 484 kWh. During this period the heating and air conditioning of the home was performed by a novel air-source heat pump that utilized a reheat heat exchanger to allow hot compressor discharge gas to reheat the supply air during a dedicated dehumidification mode. During dedicated dehumidification, room temperature air was supplied to the living space until the relative humidity setpoint of 50% was satisfied. The heat pump consumed a total of 6225 kWh (2.3 kWh ft(-2,) 24.7 kWh m(-2)) of electrical energy for cooling, heating, and dehumidification. Annual cooling efficiency was 10.1 Btu W(-1)h(-1) (2.95 W W(-1)), relative to the rated SEER of the heat pump of 15.8 Btu W(-1)h(-1) (4.63 W W(-1)). Annual heating efficiency was 7.10 Btu W(-1)h(-1) (2.09 W W(-1)), compared with the unit's rated HSPF of 9.05 Btu W(-1)h(-1) (2.65 W W(-1)). These field measured efficiency numbers include dedicated dehumidification operation and standby energy use for the year. Annual sensible heat ratio was approximately 70%. Standby energy consumption was 5.2 % and 3.5 % of the total electrical energy used for cooling and heating, respectively.

  3. Diesel engine coolant analysis, new application for established instrumentation

    Energy Technology Data Exchange (ETDEWEB)

    Anderson, D.P.; Lukas, M.; Lynch, B.K. [Spectro Incorporated, Littleton, MA (United States)

    1997-12-31

    Rotating disk electrode (RDE) arc emission spectrometers are user` many commercial, industrial and military laboratories throughout the world to analyze millions of oil and fuel samples each year. In fact, RDE spectrometers have been used exclusively for oil and fuel analysis for so long that it has nearly been forgotten by most practitioners that when RDE spectrometers were first introduced more than 40 years ago, they were routinely used for aqueous samples as well. This presentation reviews early methods of aqueous sample analysis using RDE technology. This presentation also describes recent work to calibrate an RDE spectrometer for both water samples and for engine coolant samples which are a mixture of approximately 50 % water and 50 % ethylene or propylene glycol. Limits of detection determined for aqueous standards are comparable to limits of detection for oil standards. Repeatability of aqueous samples is comparable to the repeatability achieved for oil samples. A comparison of results for coolant samples measured by both inductively coupled plasma (ICP) and rotating disk electrode (RDE) spectrometers is presented. Not surprisingly, RDE results are significantly higher for samples containing particles larger than a few micrometers. Although limits of detection for aqueous samples are not as low as can be achieved using the more modern ICP spectrometric method or the more cumbersome atomic absorption (AA) method, this presentation suggests that RDE spectrometers may be appropriate for certain types of aqueous samples in situations where the more sensitive ICP or AA spectrometers and the laboratory environment and skilled personnel needed for them to operate are not conveniently available. (orig.) 4 refs.

  4. Design&Manufacturing of Hydraulic Pump Test-bed with Power Recovery%功率回收型液压泵试验台的设计与制造

    Institute of Scientific and Technical Information of China (English)

    王文凯; 宫景瑞; 刘玉峰; 马忠

    2015-01-01

    一般来说,液压泵出厂试验、型式试验及寿命试验使用的试验设备,其驱动功率是由被试泵所能产生和达到的功率所决定的.在进行试验项目测试时,泵所产生的压力能不是来做功,而是要经过节流或溢流加载的方式转换成热能或其他形式来把它消耗掉.在液压试验台的设计和制造中,能否对这部分能量进行回收和利用,而不是任其被动消耗,这是该文要讨论和解决的问题.%As a rule, The test equipment which be used in hydraulic pump's factory test, type test and life test, It's driving power is deter-mined by the peak energy of tested Pump. In test run, the pump's pressure energy is not for working, but for transforming into heat energy or other forms by throttling or overflow loading. There is a problem in design and fabrication of hydraulic pump test-bedthat is whether this part of the energy can be reclaimed and reused rather than consumed passively. This paper will discuss and solve this problem.

  5. Review of experimental data for modelling LWR fuel cladding behaviour under loss of coolant accident conditions

    Energy Technology Data Exchange (ETDEWEB)

    Massih, Ali R. [Quantum Technologies AB, Uppsala Science Park (Sweden)

    2007-02-15

    Extensive range of experiments has been conducted in the past to quantitatively identify and understand the behaviour of fuel rod under loss-of-coolant accident (LOCA) conditions in light water reactors (LWRs). The obtained experimental data provide the basis for the current emergency core cooling system acceptance criteria under LOCA conditions for LWRs. The results of recent experiments indicate that the cladding alloy composition and high burnup effects influence LOCA acceptance criteria margins. In this report, we review some past important and recent experimental results. We first discuss the background to acceptance criteria for LOCA, namely, clad embrittlement phenomenology, clad embrittlement criteria (limitations on maximum clad oxidation and peak clad temperature) and the experimental bases for the criteria. Two broad kinds of test have been carried out under LOCA conditions: (i) Separate effect tests to study clad oxidation, clad deformation and rupture, and zirconium alloy allotropic phase transition during LOCA. (ii) Integral LOCA tests, in which the entire LOCA sequence is simulated on a single rod or a multi-rod array in a fuel bundle, in laboratory or in a tests and results are discussed and empirical correlations deduced from these tests and quantitative models are conferred. In particular, the impact of niobium in zirconium base clad and hydrogen content of the clad on allotropic phase transformation during LOCA and also the burst stress are discussed. We review some recent LOCA integral test results with emphasis on thermal shock tests. Finally, suggestions for modelling and further evaluation of certain experimental results are made.

  6. 声发射技术在抽杆疲劳实验中的应用%Application of acoustic emission (AE) technique in crack monitor during fatigue test of pump rods

    Institute of Scientific and Technical Information of China (English)

    夏永发; 李海玲

    2007-01-01

    The acoustic emission(AE)real time monitoring of fatigue damage of pump rods samples during fatigue test was introduced.Under severe environmental noise caused by vibration,the real time monitoring of the fatigue crack initiation and expansion was realized successfully by using the parameters analysis method combined by AE Hits and Amplitude.The characters of the methods are simple and real time,which can provide a more accurate and impersonal basis for judging whether the fatigue test piece has been destroyed,thus can provide a scientific assistant method for accurately determining the life of pump rod.

  7. Test of a cryogenic set-up for a 10 meter long liquid nitrogen cooled superconducting power cable

    DEFF Research Database (Denmark)

    Træholt, Chresten; Rasmussen, Carsten; Kühle (fratrådt), Anders Van Der Aa;

    2000-01-01

    High temperature superconducting power cables may be cooled by a forced flow of sub-cooled liquid nitrogen. One way to do this is to circulate the liquid nitrogen (LN2) by means of a mechanical pump through the core of the cable and through a sub-cooler.Besides the cooling station, the cryogenics...... cable. We report on our experimental set-up for testing a 10 meter long high temperature superconducting cable with a critical current of 3.2 kA at 77K. The set-up consists of a custom designed cable end termination, current lead, coolant feed-through, liquid nitrogen closed loop circulation system...

  8. Experimental Study on Series Operation of Sliding Vane Pump and Centrifugal Pump

    Directory of Open Access Journals (Sweden)

    Tao Li

    2013-01-01

    Full Text Available A platform for sliding vane pump and centrifugal pump tests is installed to study the series operation of them under different characteristics of pipeline. Firstly, the sliding vane pump and the centrifugal pump work independently, and the performance is recorded. Then, the two types of pumps are combined together, with the sliding vane pump acting as the feeding pump. Comparison is made between the performance of the independently working pump and the performance of series operation pump. Results show that the system flow rate is determined by the sliding vane pump. In order to ensure the stability of the series operation pumping system, the energy consumption required by the pipeline under the system flow should be greater than the pressure energy centrifugal pump can generate. Otherwise, the centrifugal pump can not operate stably, with reflux, swirl, gas-liquid two-phase flow in the runner and strong vibration and noise. The sliding vane pump can be in serial operation with the centrifugal pump under limited conditions.

  9. Assessment and Accommodation of Thermal Expansion of the Internal Active Thermal Control System Coolant During Launch to On-Orbit Activation of International Space Station Elements

    Science.gov (United States)

    Edwards, Darryl; Ungar, Eugene K.; Holt, James M.

    2002-01-01

    The International Space Station (ISS) employs an Internal Active Thermal Control System (IATCS) comprised of several single-phase water coolant loops. These coolant loops are distributed throughout the ISS pressurized elements. The primary element coolant loops (i.e. U.S. Laboratory module) contain a fluid accumulator to accomodate thermal expansion of the system. Other element coolant loops are parasitic (i.e. Airlock), have no accumulator, and require an alternative approach to insure that the system maximum design pressure (MDP) is not exceeded during the Launch to Activation (LTA) phase. During this time the element loops is a stand alone closed system. The solution approach for accomodating thermal expansion was affected by interactions of system components and their particular limitations. The mathematical solution approach was challenged by the presence of certain unknown or not readily obtainable physical and thermodynamic characteristics of some system components and processes. The purpose of this paper is to provide a brief description of a few of the solutions that evolved over time, a novel mathematical solution to eliminate some of the unknowns or derive the unknowns experimentally, and the testing and methods undertaken.

  10. Surface Treatment to Improve Corrosion Resistance in Lead-Alloy Coolants

    Energy Technology Data Exchange (ETDEWEB)

    Todd R. Allen; Kumar Sridharan; McLean T. Machut; Lizhen Tan

    2007-08-29

    One of the six proposed advanced reactor designs of the Generation IV Initiative, the Leadcooled Fast Reactor (LFR) possesses many characteristics that make it a desirable candidate for future nuclear energy production and responsible actinide management. These characteristics include favorable heat transfer, fluid dynamics, and neutronic performance compared to other candidate coolants. However, the use of a heavy liquid metal coolant presents a challenge for reactor designers in regards to reliable structural and fuel cladding materials in both a highly corrosive high temperature liquid metal and an intense radiation fieldi. Flow corrosion studies at the University of Wisconsin have examined the corrosion performance of candidate materials for application in the LFR concept as well as the viability of various surface treatments to improve the materials’ compatibility. To date this research has included several focus areas, which include the formulation of an understanding of corrosion mechanisms and the examination of the effects of chemical and mechanical surface modifications on the materials’ performance in liquid lead-bismuth by experimental testing in Los Alamos National Laboratory’s DELTA Loop, as well as comparison of experimental findings to numerical and physical models for long term corrosion prediction. This report will first review the literature and introduce the experiments and data that will be used to benchmark theoretical calculations. The experimental results will be followed by a brief review of the underlying theory and methodology for the physical and theoretical models. Finally, the results of theoretical calculations as well as experimentally obtained benchmarks and comparisons to the literature are presented.

  11. Hydrodynamics of heavy liquid metal coolant processes and filtering apparatus

    Energy Technology Data Exchange (ETDEWEB)

    Albert K Papovyants; Yuri I Orlov; Pyotr N Martynov; Yuri D Boltoev [Institute for Physics and Power Engineering named after A.I. Leypunsky Bondarenko sq. 1, 249033, Obninsk, Kaluga region (Russian Federation)

    2005-07-01

    Full text of publication follows: To optimize the design of filters for cleaning heavy liquid metal coolant (HLMC) from suspended impurities and choose appropriate filter material, the contribution is considered of different mechanisms of delivery and retention of these impurities from the coolant flow, which is governed by its specificity as a thermodynamically instable disperse system to a large extent. It is shown that the buildup of deposits in the filter is favored by the hydrodynamic regime with minimum filtration rates being due to the predominance in the suspension of the fine-dispersed solid phase (oxides Fe{sub 3}O{sub 4}, Cr{sub 2}O{sub 3} and so on). With concentrating the last mentioned phase in filter material pores or stagnant zones, coagulation structuration is possible, which is accompanied by sharp local increase in the viscosity and strength of the solid phase medium being built from liquid metal, i.e. slag sedimentary deposits. In rather extended pores, disintegration of such structures is possible, which is accompanied by sedimentation of large particles produced due to sticking together at coagulation. The analytical solution of the problem of particle sedimentation due to diffusion indicated that in the case under consideration, this mechanism takes place for particles less than {approx} 0,05 {mu}m in size, which is specified by the fact that the time of their delivery to the filter material surface is longer than that of the coolant being in the filter. The London-Van-der-Waals molecular forces play a crucial role in the stage of retention of a separate particle. The constant of the molecular interaction between a spherical particle and the flat surface has been estimated for the chosen value of the gap between the contacting bodies, being dependent on the wetting angle. The sufficient condition for d{sub p}-diameter particle capture by the adhesion force field (with a gap of H {approx_equal} 30 nm) is that it be brought by the appropriate

  12. Estimating the hydrogeological parameters of an unconfined aquifer with the time-lapse resistivity-imaging method during pumping tests: Case studies at the Pengtsuo and Dajou sites, Taiwan

    Science.gov (United States)

    Chang, Ping-Yu; Chang, Lian-Cheng; Hsu, Shao-Yiu; Tsai, Jui-Pin; Chen, Wen-Fu

    2017-09-01

    We conducted time-lapse resistivity imaging during pumping tests at the Pengtsuo and Dajou test sites in Taiwan in order to examine the feasibility of estimating hydrogeological parameters with resistivity variations. Core logs reveal that the subsurface consists mainly of at least 100-m-thick gravel and sand at the two test sites. The resistivity differences between the pumping stages and pre-pumping background are well correlated to water level changes that are due to the dewatering of pumping activity. Therefore, it is possible to use the geometry of resistivity anomalies to estimate the hydraulic conductivity of the unconfined aquifer using the distance-drawdown equation for pumping tests in unsaturated aquifers. For each site, we used the contours of resistivity variations and recorded water levels in the pumping well to depict the bottom of the drawdown cone. The estimated hydraulic conductivity and specific yield, respectively, are 1.33 × 10- 4 m/s and 0.12 at the Pengtsuo site, and are 2.50 × 10- 4 m/s and 0.22 at the Dajou site. These values are consistent with the parameters that engineers from Taiwan Sugar Company calculated previously regarding groundwater-level variations in multiple wells (9.65 × 10- 5 m/s and 0.13 at Pengtsuo, and 1.00 × 10- 3 m/s and 0.19 at Dajou). This consistency suggests that resistivity imaging can perhaps serve as an alternative way to yield information about hydrogeological parameters.

  13. Experience report of the testing of an air source heat pump at the Faculty of Mechanical and Energy Engineering of the Leipzig University of Applied Science; Erfahrungsbericht aus der Betriebsfuehrung einer Luftwaermepumpe an der Fakultaet ME der HTWK Leipzig

    Energy Technology Data Exchange (ETDEWEB)

    Mueller, R.; Rackwitz, A. [HTWK Leipzig, Markkleeberg (Germany). Fakultaet ME

    2009-07-01

    Because the demand of fuels (for example coal and oil) and the energy costs rise continuously and the nuclear phaseout is resolved, it is advisable to analyse different alternatives of the generation and supply of electrical energy and thermoelectricity with renewable forms of energy. The technical optimize and a economic operation of the different alternatives are most important points of tests. This was the reason why at the Faculty of Mechanical and Energy Engineering of the Leipzig University of Applied Science a test rig ''renewable forms of energy'' was built up step by step in the last eleven years, which includes different test facilities, for example two photovoltaic systems with different tracking systems, two wind-mills and an air-water-heat-pump. The new air-water-heat-pump has a rated power-input of 2,74 kW{sub el} and should support the central heating in the new laboratory- and college-building in the next years. At first the heat-pump is tested to analyse the econo