WorldWideScience

Sample records for coolant accident results

  1. Effect of parameter variation of reactor coolant pump on loss of coolant accident consequence

    International Nuclear Information System (INIS)

    Dang Gaojian; Huang Daishun; Gao Yingxian; He Xiaoqiang

    2015-01-01

    In this paper, the analyses were carried out on Ling'ao nuclear power station phase II to study the consequence of the loss of coolant accident when the homologous characteristic curves and free volumes of the reactor coolant pump changed. Two different pumps used in the analysis were 100D (employed on Ling'ao nuclear power station phase II) and ANDRITZ. The thermal characteristics in the large break LOCA accident were analyzed using CATHRE GB and CONPATE4, and the reactor coolant system hydraulics load during blow-clown phase of LOCA accident was analyzed using ATHIS and FORCET. The calculated results show that the homologous characteristic curves have great effect on the thermal characteristics of reactor core during the reflood phase of the large break LOCA accident. The maximum cladding surface temperatures are quite different when the pump's homologous characteristic curves change. On the other hand, the pump's free volume changing results in the variation of the LOCA rarefaction wave propagation, and therefore, the reactor coolant system hydraulic load in LOCA accident would be different. (authors)

  2. Loss-of-coolant accident analysis of the Savannah River new production reactor design

    International Nuclear Information System (INIS)

    Maloney, K.J.; Pryor, R.J.

    1990-11-01

    This document contains the loss-of-coolant accident analysis of the representative design for the Savannah River heavy water new production reactor. Included in this document are descriptions of the primary system, reactor vessel, and loss-of-coolant accident computer input models, the results of the cold leg and hot leg loss-of-coolant accident analyses, and the results of sensitivity calculations for the cold leg loss-of-coolant accident. 5 refs., 50 figs., 4 tabs

  3. Conservatism of loss-of-coolant accident licensing analysis compared to experimental results and best-estimate calculation

    International Nuclear Information System (INIS)

    Winkler, F.; Friedmann, P.

    1986-01-01

    The paper compares results of loss-of-coolant accident licensing analysis with experimental results and results of best-estimate calculations. The large safety margins resulting from the more realistic best-estimate results are used to show the high conservatism inherent in the licensing process of pressurized water reactors. (orig.) [de

  4. Analysis of small break loss of coolant accident for Chinese CPR1000

    Energy Technology Data Exchange (ETDEWEB)

    Kim, Ju Youl [FNC Technology Co., Yongin (Korea, Republic of); Cilier, Anthonie [North-West University, Mahikeng (South Africa); Poc, Li-chi Cliff [Micro-Simulation Technology, Montville (United States)

    2016-05-15

    This research analyses the small break loss of coolant accident (LOCA) on a Chinese CPR1000 type reactor. LOCA accident is used as benchmark for the PCTRAN/CPR1000 code by comparing the effects and results to the Manshaan FSAR accident analysis. LOCA is a design basis accident in which a guillotine break is postulated to occur in one of the cold legs of a pressurized water reactor (PWR). Consequently, the primary system pressure would drop and almost all the reactor coolant would be discharged into the reactor containment. The drop in pressure would activate the reactor protection system and the reactor would trip. The simulation of a 3-inch small break loss of coolant accident using the PCTRAN/CPR1000 has revealed this code's effectiveness as well as weaknesses in specific simulation applications. The code has the ability to run at 16 times real time and produce very accurate results. The results are consistently producing the same trends as licensed codes used in Safety Assessment Reports. It is however able to produce these results in a fraction of the time and also provides a whole plant simulation coupling the various thermal, hydraulic, chemical and neutronic systems together with a plant specific control system.

  5. Simulation of small break loss of coolant accident using relap 5/ MOD 2 computer code

    International Nuclear Information System (INIS)

    Megahed, M.M.

    1992-01-01

    An assessment of relap 5 / MOD 2/Cycle 36.05 best estimate computer code capabilities in predicting the thermohydraulic response of a PWR following a small break loss of coolant accident is presented. The experimental data base for the evaluation is the results of Test S-N H-3 performed in the semi scale MOD-2 c Test facility which modeled a 0.5% small break loss of coolant accident with an accompanying failure of the high pressure injection emergency core cooling system. A conclusion was reached that the code is capable of making small break loss of coolant accident calculations efficiently. However, some of the small break loss of coolant accident related phenomena were not properly predicted by the code, suggesting a need for code improvement.9 fig., 3 tab

  6. Interfacing systems loss of coolant accident (ISLOCA) pressure capacity methodology and Davis-Besse results

    International Nuclear Information System (INIS)

    Wesley, D.A.

    1991-01-01

    A loss of coolant accident resulting from the overpressurization by reactor coolant fluid of a system designed for low-pressure, low-temperature service has been identified as a potential contributor to nuclear power plant risk. In this paper, the methodology developed to assess the probability of failure as a function of internal pressure is presented, and sample results developed for the controlling failure modes and locations of four fluid systems at the Davis-Besse Plant are shown. Included in this evaluation are the tanks, heat exchangers, filters, pumps, valves, and flanged connections for each system. The variability in the probability of failure is included, and the estimated leak rates or leak areas are given for the controlling modes of failure. For this evaluation, all failures are based on quasistatic pressures since the probability of dynamic effects resulting from such causes as water hammer have been initially judged to be negligible for the Davis-Besse plant ISLOCA

  7. Analysis of loss-of-coolant accidents in pressurized water reactors

    International Nuclear Information System (INIS)

    Moldaschl, H.

    1982-01-01

    Analysis of loss-of-coolant accidents in pressurized water reactors -Quantification of the influence of leak size, control assembly worth, boron concentration and initial power by a dynamic operations criterion. Neutronic and thermohydraulic behaviour of a pressurized water reactor during a loss-of-coolant accident (LOCA) is mainly influenced by -change of fuel temperature, -void in the primary coolant. They cause a local stabilization of power density, that means that also in the case of small leaks local void is the main stabilization effect. As a consequence the increase of fuel temperature remains very small even under extremely hypothetical assumptions: small leak, positive reactivity feedback (positive coolant temperature coefficient, negative density coefficient) at the beginning of the accident and all control assemblies getting stuck. Restrictions which have been valid up to now for permitted start-up conditions to fulfill inherent safety requirements can be lossened substantially by a dynamic operations criterion. Burnable poisons for compensation of reactivity theorefore can be omitted. (orig.)

  8. Prediction of thermal hydraulic parameters in the loss of coolant accident by using artificial neural networks

    International Nuclear Information System (INIS)

    Vaziri, N.; Erfani, A.; Monsefi, M.; Hajabri, A.

    2008-01-01

    In a reactor accident like loss of coolant accident , one or more signals may not be monitored by control panel for some reasons such as interruptions and so on. Therefore a fast alternative method could guarantee the safe and reliable exploration of nuclear power planets. In this study, we used artificial neural network with Elman recurrent structure to predict six thermal hydraulic signals in a loss of coolant accident after upper plenum break. In the prediction procedure, a few previous samples are fed to the artificial neural network and the output value or next time step is estimated by the network output. The Elman recurrent network is trained with the data obtained from the benchmark simulation of loss of coolant accident in VVER. The results reveal that the predicted values follow the real trends well and artificial neural network can be used as a fast alternative prediction tool in loss of coolant accident

  9. LWR and HTGR coolant dynamics: the containment of severe accidents

    International Nuclear Information System (INIS)

    Theofanous, T.G.; Gherson, P.; Nourbakhsh, H.P.; Hu, K.; Iyer, K.; Viskanta, R.; Lommers, L.

    1983-07-01

    This is the final report of a project containing three major tasks. Task I deals with the fundamental aspects of energetic fuel/coolant interactions (steam explosions) as they pertain to LWR core melt accidents. Task II deals with the applied aspects of LWR core melt accident sequences and mechanisms important to containment response, and includes consideration of energetic fuel/coolant interaction events, as well as non-explosive ones, corium material disposition and eventual coolability, and containment pressurization phenomena. Finally, Task III is concerned with HTGR loss of forced circulation accidents. This report is organized into three major parts corresponding to these three tasks respectively

  10. Peaking cladding temperature and break equivalent size of intermediate break loss of coolant accident

    International Nuclear Information System (INIS)

    Luo Bangqi

    2012-01-01

    The analysis results of intermediate break loss of coolant accident for the nuclear power plant of million kw level showed to be as following: (1) At the begin of life, the break occur simultaneity reactor shutdown with L(X)P. it's equivalent break size and peaking cladding temperature is respectively 20 cm and 849℃. (2) At the begin of life, the break occur simultaneity reactor shutdown without loop. the reactor coolant pumps will be stop after reactor shutdown 10 minutes, it's equivalent break size and peaking cladding temperature is respectively 10.5 cm and 921℃. (3) At the bur up of 31 GWd/t(EOC1). the break occur simultaneity reactor shutdown without loop, the reactor coolant pumps will be stop after reactor shutdown 20 minutes, it's equivalent break size and peaking cladding temperature is respectively 8 cm and 1145℃. The above analysis results showed that the peaking cladding temperature of intermediate break loss of coolant accident is not only related with the break equivalent size and core bur up, and is closely related with the stop time of coolant pumps because the coolant pumps would drive the coolant from safety system to produce the seal loop in break loop and affect the core coolant flow, results in the fuel cladding temperature increasing or damaging. Therefore, the break spectrum, burn up spectrum, the stop time of coolant pumps and operator action time will need to detail analysis and provide appropriate operating procedure, otherwise the peaking cladding temperature will exceed 1204℃ and threaten the safety of the reactor core when the intermediate break loss of coolant accident occur in some break equivalent size, burn up, stop pumps time and operator action not appropriate. The pressurizer pressure low signal simultaneity containment pressure higher signal were used as the operator manual close the signal of reactor coolant pumps after reactor shutdown of 20 minutes. have successful solved the operator intervention time from 10 minutes

  11. Rupture behaviour of nuclear fuel cladding during loss-of-coolant accident

    Energy Technology Data Exchange (ETDEWEB)

    Suman, Siddharth [Department of Mechanical Engineering, Indian Institute of Technology Patna, Patna 801 103 (India); Khan, Mohd Kaleem, E-mail: mkkhan@iitp.ac.in [Department of Mechanical Engineering, Indian Institute of Technology Patna, Patna 801 103 (India); Pathak, Manabendra [Department of Mechanical Engineering, Indian Institute of Technology Patna, Patna 801 103 (India); Singh, R.N.; Chakravartty, J.K. [Mechanical Metallurgy Division, Bhabha Atomic Research Centre, Trombay, Mumbai 400 085 (India)

    2016-10-15

    Highlights: • Modelling of nuclear fuel cladding during loss-of-coolant accident transient. • Phase transformation, corrosion, and creep combined to evaluate burst criterion. • Effect of oxygen concentration on burst stress and burst strain. • Effect of heating rate, internal pressure fluctuation, shear modulus incorporated. - Abstract: A burst criterion model accounting the simultaneous phenomena of corrosion, solute-strengthening effect of oxygen, oxygen concentration based non-isothermal phase transformation, and thermal creep has been developed to predict the rupture behaviour of zircaloy-4 nuclear fuel cladding during the loss-of-coolant accident transients. The present burst criterion model has been validated using experimental data obtained from single-rod transient burst tests performed in steam environment. The predictions are in good agreement with the experimental results. A detailed computational analysis has been performed to assess the role of different parameters in the rupture of zircaloy cladding during loss-of-coolant accidents. This model reveals that at low temperatures, lower heating rates produce higher burst strains as oxidation effect is nominal. For high temperatures, the lower heating rates produce less burst strains, whereas higher heating rates yield greater burst strains.

  12. Responses to Small Break Loss of Coolant Accidents for SMART

    International Nuclear Information System (INIS)

    Bae, Kyoo Hwan; Kim, Hee C.; Chang, Moon H.; Zee, Sung Q.; Kim, Si-Hwan; Lee, Un-Chul

    2004-01-01

    The SMART NSSS adopts the design characteristics of containing most of the primary circuit components, such as the reactor core, main coolant pumps (MCPs), steam generators (SGs), and N 2 gas pressurizer (PZR) in a single leak-tight Reactor Pressure Vessel (RPV) with a relatively large ratio of the primary coolant inventory to the core power compared to the conventional loop-type PWR. Due to these design characteristics, the SMART can fundamentally eliminate the possibility of Large Break Loss of Coolant Accidents (LBLOCAs), improve the natural circulation capability, and assure a sufficient time to mitigate the possibility of core uncover. Also, SMART adopts inherent safety improving features and passive engineered safety systems such as the substantially large negative moderator temperature coefficients, passive residual heat removal system, emergency core cooling system, and a steel-made leak-tight Safeguard Vessel (SV) housing the RPV. This paper presents the results of the safety analyses using a MARS/SMR code for the instantaneous guillotine ruptures of the major pipelines penetrating the RPV. The analysis results, employing conservative initial/boundary conditions and assumptions, show that the safety systems of the SMART basic design adequately remove the core decay heat without causing core uncover for all the cases of the Small Break Loss of Coolant Accidents (SBLOCAs). The sensitivity study results with variable SV conditions show that the reduced SV net free volume can shorten the time for reaching the thermal and mechanical equilibrium condition between the RPV and SV. Under these boundary conditions, the primary system inventory loss can be minimized and the core remains covered for a longer period of time without any makeup of the coolant. (authors)

  13. Accident beyond the design basis management with the coolant loss at the NPP with WWER

    International Nuclear Information System (INIS)

    Skalozubov, V.I.; Klyuchnikov, A.A.; Kolykhanov, V.N.

    2010-01-01

    The analysis of status and experience of development on modelling and accident beyond the design basis management, including the severe accidents, at the nuclear power plants is carried out. The methodical providing of manuals on the accident beyond the design basis management with the coolant loss on the basis of simulated critical system configurations providing the necessary safety function performance on reactor unit is proposed. The project of symptom-oriented manuals on accident beyond the design basis management with the coolant loss on the serial power unit with WWER-1000 on the basis of developed methodical providing and well known results of deepened safety analysis is presented.

  14. Simulation of small break loss of coolant accident in pressurized water reactor (PWR)

    International Nuclear Information System (INIS)

    Abass, N. M. N.

    2012-02-01

    A major safety concern in pressurized-water-reactor (PWR) design is the loss-of-coolant accident (LOCA),in which a break in the primary coolant circuit leads to depressurization, boiling of the coolant, consequent reduced cooling of the reactor core, and , unless remedial measures are taken, overheating of the fuel rods. This concern has led to the development of several simulators for safety analysis. This study demonstrates how the passive and active safety systems in conventional and advanced PWR behave during the small break loss of Coolant Accident (SBLOCA). The consequences of SBOLOCA have been simulated using IAEA Generic pressurized Water Reactor Simulator (GPWRS) and personal Computer Transient analyzer (PCTRAN) . The results were presented and discussed. The study has confirmed the major safety advantage of passive plants versus conventional PWRs is that the passive safety systems provide long-term core cooling and decay heat removal without the need for operator actions and without reliance on active safety-related system. (Author)

  15. Deformation, oxidation and embrittlement of PWB fuel cladding in a loss-of-coolant accident

    Energy Technology Data Exchange (ETDEWEB)

    Parsons, P.D.; Hindle, E.D.; Mann, C.A.

    1986-09-01

    The scope of this report is limited to the oxidation, embrittlement and deformation of PWB fuel in a loss of coolant accident in which the emergency core coolant systems operate in accordance with the design, ie accidents within the design basis of the plant. A brief description is given of the thermal hydraulic events during large and small breaks of the primary circuit, followed by the correct functioning and remedial action of the emergency core cooling systems. The possible damage to the fuel cladding during these events is also described. The basic process of oxidation of zircaloy-4 fuel cladding by steam, and the reaction kinetics of the oxidation are reviewed in detail. Variables having a possible influence on the oxidation kinetics are also considered. The embrittlement of zircaloy-4 cladding by oxidation is also reviewed in detail. It is related to fracture during the thermal shock of rewetting or by the ambient impact forces as a result of post-accident fuel handling. Criteria based both on total oxidation and on the detailed distribution of oxygen through the oxidised cladding wall are considered. The published computer codes for the calculation of oxygen concentration are reviewed in terms of the model employed and the limitations apparent in these models when calculating oxygen distribution in cladding in the actual conditions of a loss of coolant accident. The factors controlling the deformation and rupture of cladding in a loss of coolant accident are reviewed in detail.

  16. Loss-of-coolant accident analyses of the Advanced Neutron Source Reactor

    International Nuclear Information System (INIS)

    Chen, N.C.J.; Yoder, G.L.; Wendel, M.W.

    1991-01-01

    Currently in the conceptual design stage, the Advanced Neutron Source Reactor (ANSR) will operate at a high heat flux, a high mass flux, an a high degree of coolant subcooling. Loss-of-coolant accident (LOCA) analyses using RELAP5 have been performed as part of an early evaluation of ANSR safety issues. This paper discusses the RELAP5 ANSR conceptual design system model and preliminary LOCA simulation results. Some previous studies were conducted for the preconceptual design. 12 refs., 7 figs

  17. Analysis of molten fuel-coolant interaction during a reactivity-initiated accident experiment

    International Nuclear Information System (INIS)

    El-Genk, M.S.; Hobbins, R.R.

    1981-01-01

    The results of a reactivity-initiated accident experiment, designated RIA-ST-4, are discussed and analyzed with regard to molten fuel-coolant interaction (MFCI). In this experiment, extensive amounts of molten UO 2 fuel and zircaloy cladding were produced and fragmented upon mixing with the coolant. Coolant pressurization up to 35 MPa and coolant overheating in excess of 940 K occurred after fuel rod failure. The initial coolant conditions were similar to those in boiling water reactors during a hot startup (that is, coolant pressure of 6.45 MPa, coolant temperature of 538 K, and coolant flow rate of 85 cm 3 /s). It is concluded that the high coolant pressure recorded in the RIA-ST-4 experiment was caused by an energetic MFCI and was not due to gas release from the test rod at failure, Zr/water reaction, or to UO 2 fuel vapor pressure. The high coolant temperature indicated the presence of superheated steam, which may have formed during the expansion of the working fluid back to the initial coolant pressure; yet, the thermal-to-mechanical energy conversion ratio is estimated to be only 0.3%

  18. The deformation, oxidation and embrittlement of PWB fuel cladding in a loss-of-coolant accident

    International Nuclear Information System (INIS)

    Parsons, P.D.; Hindle, E.D.; Mann, C.A.

    1986-09-01

    The scope of this report is limited to the oxidation, embrittlement and deformation of PWB fuel in a loss of coolant accident in which the emergency core coolant systems operate in accordance with the design, ie accidents within the design basis of the plant. A brief description is given of the thermal hydraulic events during large and small breaks of the primary circuit, followed by the correct functioning and remedial action of the emergency core cooling systems. The possible damage to the fuel cladding during these events is also described. The basic process of oxidation of zircaloy-4 fuel cladding by steam, and the reaction kinetics of the oxidation are reviewed in detail. Variables having a possible influence on the oxidation kinetics are also considered. The embrittlement of zircaloy-4 cladding by oxidation is also reviewed in detail. It is related to fracture during the thermal shock of rewetting or by the ambient impact forces as a result of post-accident fuel handling. Criteria based both on total oxidation and on the detailed distribution of oxygen through the oxidised cladding wall are considered. The published computer codes for the calculation of oxygen concentration are reviewed in terms of the model employed and the limitations apparent in these models when calculating oxygen distribution in cladding in the actual conditions of a loss of coolant accident. The factors controlling the deformation and rupture of cladding in a loss of coolant accident are reviewed in detail. (author)

  19. Generic evaluation of small break loss-of-coolant accident behavior in Babcock and Wilcox designed 177-FA operating plants

    International Nuclear Information System (INIS)

    1980-01-01

    Slow system depressurization resulting from small break loss-of-coolant accidents (LOCAs) in the reactor coolant system have not, until recently, received detailed analytical study comparable to that devoted to large breaks. Following the TMI-2 accident, the staff had a series of meetings with Babcock and Wilcox (B and W) and the B and W licensees. The staff requested that B and W and the licensees: (1) systematically evaluate plant response for small break loss-of-coolant accidents; (2) address each of the concerns documented in the Michelson report; (3) validate the computer codes used against the TMI-2 accident; (4) extend the break spectrum analysis to very small breaks, giving special consideration to failure of pressurizer valves to close; (5) analyze degraded conditions where AFW is not available; (6) prepare design changes aimed at reducing the probability of loss-of-coolant accidents produced by the failure of a PORV to close; and (7) develop revised emergency procedures for small breaks. This report describes the review of the generic analyses performed by B and W based on the requests stated above

  20. Evaluation of Coolant Injection Procedure in the Severe Accident Management Strategy of APR1400

    International Nuclear Information System (INIS)

    Cho, Yongjin; Lim, Kukhee; Song, Sungchu; Lee, Sukho; Hwang, Taesuk

    2013-01-01

    A coolant injection strategy in the severe accident management guideline (SAMG) of APR1400 relates to immediate coolant injection into RCS (Reactor Coolant System) or injection following the recovery of secondary coolant inventory. This strategy could play important role in accident mitigation and radiological consequences. In this study, appropriateness of the strategy was evaluated using MELCOR1.8.6 and several sensitivity studies of the key parameters were performed. Analysis for APR1400 using MELCOR 1.8.6 was performed to evaluate the effectiveness of accident management strategies and the following conclusions were identified. Sequential operation of secondary and RCS injection may not be the best strategy and the simultaneous injection of secondary and RCS injection could be more preferable. At least, the RCS injection should start before complete drainage of water in the safety injection tank using mobile pumps. In this study, the effectiveness of timing of operator action has been examined and the amount of injection flowrate needs to be studied in the future

  1. Analysis of molten fuel behavior in coolant channel during severe accidents in KALIMER

    International Nuclear Information System (INIS)

    Suk, Soo Dong; Lee, Yong Bum; Hahn, Do Hee

    2004-11-01

    Preliminary safety analyses of the KALIMER-600 design have shown that the design has inherent safety characteristics and is capable of accommodating double fault initiators such as ATWS events without boiling coolant or melting fuel. For the future design of liquid metal reactor, however, the evaluation of the safety performance and the determination of containment requirements may require consideration of tripe-fault accident sequences of extremely low probability of occurrence that leads to fuel melting. For any postulated accident sequence which leads to core melting, in-vessel retention of the core debris will required as a design requirement for the future design of LMR. For sodium-cooled core designs with metallic fuel, one of the major phenomenological modeling uncertainties to be resolved is the potential for freezing and plugging of molten metallic fuel in above- and below-core structures and possibly in inter-subassembly spaces. In this study, scoping analyses were carried out to evaluate the penetration depths in the coolant channels by molten fuel mixture during the unprotected loss-of-flow accidents in the core of the KALIMER-600. It is assumed in the analyses that a solid fuel crust would start to form upon contact with the coolant channel structure temperature of which is below the fuel solidus. The analysis results predict that the coolant channels would be plugged by the freezing molten fuel in the inlet lower shield as well as in the outlet, fission-gas-plenum region for the KALIMER-600 design

  2. Confinement barriers for loss of coolant accidents in the SEAFP reactor plant models

    International Nuclear Information System (INIS)

    Blomquist, R.; Ebert, E.; Gay, J.M.; Mazille, F.; Natalizio, A.; Rolandsson, S.; Ross, W.E.; Shen, K.; Sjoeberg, A.

    1995-01-01

    Loss of coolant accidents may mobilise radioactivity and pressurise confinement barriers thereby making a release to the environment possible. The paper defines the radioactivity confinements and presents principal results from the underlying thermal-hydraulic analyses. (orig.)

  3. Study on severe accident induced by large break loss of coolant accident for pressureized water reactor

    International Nuclear Information System (INIS)

    Zhang Longfei; Zhang Dafa; Wang Shaoming

    2007-01-01

    Using the best estimate computer code SCDAP/RELAP5/MOD3.2 and taking US Westinghouse corporation Surry nuclear power plant as the reference object, a typical three-loop pressurized water reactor severe accident calculation model was established and 25 cm large break loss of coolant accident (LBLOCA) in cold and hot leg of primary loop induced core melt accident was analyzed. The calculated results show that core melt progression is fast and most of the core material melt and relocated to the lower plenum. The lower head of reactor pressure vessel failed at an early time and the cold leg break is more severe than the hot leg break in primary loop during LBLOCA. (authors)

  4. Review on research of small break loss of coolant accident

    International Nuclear Information System (INIS)

    Bo Jinhai; Wang Fei

    1998-01-01

    The Small Break Loss of Coolant Accident (SBLOCA) and its research art-of -work are reviewed. A typical SBLOCA process in Pressurized Water Reactor (PWR) and Boiling Water Reactor (BWR) and the influence of break size, break location and reactor coolant pump on the process are described. The existing papers are classified in two categories: experimental and numerical modeling, with the primary experimental apparatuses in the world listed and the research works on SBLOCA summarized

  5. Definition of loss-of-coolant accident radiation source

    International Nuclear Information System (INIS)

    1978-02-01

    Meaningful qualification testing of nuclear reactor components requires a knowledge of the radiation fields expected in a loss-of-coolant accident (LOCA). The overall objective of this program is to define the LOCA source terms and compare these with the output of various simulators employed for radiation qualification testing. The basis for comparison will be the energy deposition in a model reactor component. The results of the calculations are presented and some interpretation of the results given. The energy release rates and spectra were validated by comparison with other calculations using different codes since experimental data appropriate to these calculations do not exist

  6. Release of fission products during controlled loss-of-coolant accidents and hypothetical core meltdown accidents

    International Nuclear Information System (INIS)

    Albrecht, H.; Malinauskas, A.P.

    1978-01-01

    A few years ago the Projekt Nukleare Sicherheit joined the United States Nuclear Regulatory Commission in the development of a research program which was designed to investigate fission product release from light water reactor fuel under conditions ranging from spent fuel shipping cask accidents to core meltdown accidents. Three laboratories have been involved in this cooperative effort. At Argonne National Laboratory (ANL), the research effort has focused on noble gas fission product release, whereas at Oak Ridge National Laboratory (ORNL) and at Kernforschungszentrum Karlsruhe (KfK), the studies have emphasized the release of species other than the noble gases. In addition, the ORNL program has been directed toward the development of fission product source terms applicable to analyses of spent fuel shipping cask accidents and controlled loss-of-coolant accidents, and the KfK program has been aimed at providing similar source terms which are characteristic of core meltdown accidents. The ORNL results are presented for fission product release from defected fuel rods into a steam atmosphere over the temperature range 500 to 1200 0 C, and the KfK results for release during core meltdown sequences

  7. Phenomena occurring in the reactor coolant system during severe core damage accidents

    International Nuclear Information System (INIS)

    Malinauskas, A.P.

    1989-01-01

    The reactor coolant system (RCS) of a nuclear power plant consists of the reactor pressure vessel and the piping and associated components that are required for the continuous circulation of the coolant which is used to maintain thermal equilibrium throughout the system. In the event of an accident, the RCS also serves as one of several barriers to the escape of radiotoxic material into the biosphere. In contrast to normal operating conditions, severe core damage accidents are characterized by significant temporal and spatial variations in heat and mass fluxes, and by eventual geometrical changes within the RCS. Furthermore, the difficulties in describing the system in the severe accident mode are compounded by the occurrence of chemical reactions. These reactions can influence both the thermal and the mass transport behavior of the system. In addition, behavior of the reactor vessel internals and of materials released from the core region (especially the radioactive fission products) in the course of the accident likewise become of concern to the analyst. This report addresses these concerns. 9 refs., 1 tab

  8. Fuel gases generation in the primary contention during a coolant loss accident in a nuclear power plant with reactor type BWR

    International Nuclear Information System (INIS)

    Salaices, M.; Salaices, E.; Ovando, R.; Esquivias, J.

    2011-11-01

    During an accident design base of coolant loos, the hydrogen gas can accumulate inside the primary contention as a result of several generation mechanisms among those that are: 1) the reaction metal-water involving the zirconium of the fuel cladding and the reactor coolant, 2) the metals corrosion for the solutions used in the emergency cooling and dew of the contention, and 3) the radio-decomposition of the cooling solutions of post-accident emergency. In this work the contribution of each generation mechanism to the hydrogen total in the primary contention is analyzed, considering typical inventories of zirconium, zinc, aluminum and fission products in balance cycle of a reactor type BWR. In the analysis the distribution model of fission products and hydrogen production proposed in the regulator guide 1.7, Rev. 2 of the US NRC was used. The results indicate that the mechanism that more contributes to the hydrogen generation at the end of a period of 24 hours of initiate the accident is the radio-decomposition of the cooling solutions of post-accident emergency continued by the reaction metal-water involving the zirconium of the fuel cladding with the reactor coolant, and lastly the aluminum and zinc oxidation present in the primary contention. However, the reaction metal-water involving the zirconium of the fuel cladding and the reactor coolant is the mechanism that more contributes to the hydrogen generation in the first moments after the accident. This study constitutes the first part of the general analysis of the generation, transport and control of fuel gases in the primary contention during a coolant loss accident in BWRs. (Author)

  9. Radiological impact of a loss of coolant accident at Angra 2 reactor

    International Nuclear Information System (INIS)

    Dias, W.

    1992-01-01

    A loss of coolant accident is analyzed which comprises a double ended rupture of a main primary system line. The accident sequence is described and the main assumptions as to the activity release are presented. On the basis of site specific meteorological data, the atmospheric dispersion factors are calculated using the Gaussian plume diffusion model and the doses are then determined at the boundary of the low population zone. The resulting values for the effective dose equivalent are more than one order of magnitude below that due to the average background radiation received in one year. (author)

  10. Fuel assembly stress and deflection analysis for loss-of-coolant accident and seismic excitation

    International Nuclear Information System (INIS)

    DeMars, R.V.; Steinke, R.R.

    1975-01-01

    Babcock and Wilcox has evaluated the capability of the fuel assemblies to withstand the effects of a loss-of-coolant accident (LOCA) blowdown, the operational basis earthquake (OBE) and design basis earthquake (DBE), and the simultaneous occurrence of the DBE and LOCA. This method of analysis is applicable to all of B and W's nuclear steam system contracts that specify the skirt-supported pressure vessel. Loads during the saturated and subcooled phases of blowdown following a loss-of-coolant accident were calculated. The maximum loads on the fuel assemblies were found to be below allowable limits, and the maximum deflections of the fuel assemblies were found to be less than those that could prevent the insertion of control rods or the flow of coolant through the core. (U.S.)

  11. Definition of loss-of-coolant accident radiation source. [PWR; BWR

    Energy Technology Data Exchange (ETDEWEB)

    1978-02-01

    Meaningful qualification testing of nuclear reactor components requires a knowledge of the radiation fields expected in a loss-of-coolant accident (LOCA). The overall objective of this program is to define the LOCA source terms and compare these with the output of various simulators employed for radiation qualification testing. The basis for comparison will be the energy deposition in a model reactor component. The results of the calculations are presented and some interpretation of the results given. The energy release rates and spectra were validated by comparison with other calculations using different codes since experimental data appropriate to these calculations do not exist.

  12. Description of steam condensation phenomena during the loss-of-coolant accident

    International Nuclear Information System (INIS)

    McCauley, E.W.; Holman, G.S.; Aust, E.; Furst, H.; Schwan, H.; Vollbrandt, J.

    1981-01-01

    Study of results from the full scale multivent pressure suppression experiment conducted by the GKSS Laboratory has developed an improved understanding of the dynamic, oscillatory steam condensation events and related loading functions which occur during the hypothetical loss-of-coolant accident in a boiling water nuclear reactor. Due to the unique measurements systems which combines both cinematic and digital data, qualified correlation between the dynamic physical variables and the associated two-phase thermo-hydraulic phenomena has been obtained

  13. Consequences in the pumps operation during a large loss of coolant accident

    International Nuclear Information System (INIS)

    Santos, G.A. dos; Sabundjian, G.

    1991-08-01

    The event of living on or turning off the operation of the Reactor Cooling Pumps - RCPs, in the case of a Loss of Coolant Accident - LOCA, has been a reason of a lot of studies after the Three Mile Island 2 accident. Thus, it was investigated a large break LOCA in the cold leg of Angra 1, with the RELAP4/MOD5 Code during the blowdown. The attained results indicated that the best performance of the core was in the case where the RCPs had been turned off in the beginning of the transient, when compared with different operation conditions of the RCPs. (author)

  14. Phenomena occuring in the reactor coolant system during severe core damage accidents

    International Nuclear Information System (INIS)

    Malinauskas, A.P.

    1990-01-01

    The reactor coolant system (RCS) of a nuclear power plant consists of the reactor pressure vessel and the piping and associated components that are required for the continuous circulation of the coolant which is used to maintain thermal equilibrium throughout the system. This paper discusses, how in the event of an accident, the RCS also serves as one of several barriers to the escape of radiotoxic material into the biosphere. The physical and chemical processes occurring within the RCS during normal operation of the reactor are relatively uncomplicated and are reasonably well understood. When the flow of coolant is properly adjusted, the thermal energy resulting from nuclear fission (or, in the shutdown mode, from radioactive decay processes) and secondary inputs, such as pumps, are exactly balanced by thermal losses through the RCS boundaries and to the various heat sinks that are employed to effect the conversion of heat to electrical energy. Because all of the heat and mass fluxes remain sensibly constant with time, mathematical descriptions of the thermophysical processes are relatively straightforward, even for boiling water reactor (BWR) systems. Although the coolant in a BWR does undergo phase changes, the phase boundaries remain well-defined and time-invariant

  15. Theoretical study on loss of coolant accident of a research reactor

    International Nuclear Information System (INIS)

    Lee, Kwon-Yeong; Kim, Wan-Soo

    2016-01-01

    Highlights: • A theoretical model of siphon breaking phenomena was developed. • A general formula using Chisholm coefficient B was proposed. • The safety requirements regarding a loss of coolant accident of research reactors could be found out. - Abstract: Under the design conditions of a research reactor, the siphon phenomenon induced by pipe rupture can cause continuous efflux of water. In order to prevent water efflux, an additional facility is necessary. A siphon breaker is a type of safety facility that can resist the loss of coolant effectively. However, analysis of siphon breaking is complex since it comprises two-phase flow and there are many inputs to be considered. For this reason, we analyzed the experimental results to develop a theoretical model of siphon breaking phenomena. Developed model is based on fluid mechanics and Chisholm model. From Bernoulli’s equation, the velocity and quantity as well as undershooting height, water level, pressure, friction coefficient, and factors related to the two-phase flow could be calculated. The Chisholm model, which is able to analyze the two-phase flow, can predict the results in a manner similar to those obtained from a real-scale experiment, and a general formula using Chisholm coefficient B was proposed in this study. Also, we verified the theoretical model and concluded that it is possible to analyze the siphon breaking. Moreover, the design conditions that can satisfy the safety requirements regarding a loss of coolant accident of research reactors could be found out by using the theoretical model. In conclusion, we propose the theoretical model which can analyze the siphon breaking as real, and it is helpful not only to analyze but also to design the siphon breaker.

  16. Loss of coolant accident at boiling water reactors

    International Nuclear Information System (INIS)

    Ramirez G, R.

    1975-01-01

    A revision is made with regard to the methods of thermohydraulic analysis which are used at present in order to determine the efficiency of the safety systems against loss of coolant at boiling water reactors. The object is to establish a program of work in the INEN so that the personnel in charge of the safety of the nuclear plants in Mexico, be able to make in a near future, independent valuations of the safety systems which mitigate the consequences of the above mentioned accident. (author)

  17. On the transient pressure build-up in the full pressure safety shell of watercooled nuclear reactors after a loss of coolant accident

    International Nuclear Information System (INIS)

    Mansfeld, G.

    1979-08-01

    The thermo-and fluid-dynamic processes in a multichamber full pressure safety containment during a loss of coolant accident have been investigated. Comparison of the calculations carried out with the computer programs, in which ZOCO VI was used as being representative of similar programs, with the experimental results pointed out discrepancies in the determination of time dependent pressure, pressure difference and temperature curves. This led to the development of a new theoretical model and a program COFLOW which pays particular attention to the fluid dynamic processes in the initial phase of a loss of coolant accident. It can also be used to determine the maximum containment pressure towards the end of a loss of coolant accident. Comparison of the COFLOW results with experiments has shown that COFLOW provides a model and a procedure by which the physical processes in a multichamber full pressure safety containment can be simulated satisfactorily

  18. Environmental radiological consequences of a loss of coolant accident

    International Nuclear Information System (INIS)

    Guimaraes, A.C.F.

    1981-01-01

    The elaboration of a calculation model to determine safety areas, named Exclusion Zone and Low Population Zone for nuclear power plants, is dealt with. These areas are determined from a radioactive doses calculation for the population living around the NPP after occurence of a postulated ' Maximum Credible Accident' (MCA). The MCA is defined as an accident with complete loss of primary coolant and consequent fusion of a substantial portion of the reactor core. In the calculations carried out, data from NPP Angra I were used and the assumptions made were conservative, to be compatible with licensing requirements. Under the most pessimistic assumption (no filters) the values of 410m and 1000m were obtained for the Exclusion Zone and Low Population Zone radii, respectivily. (Author) [pt

  19. Fission product source from Ignalina NPP in case of loss-of-coolant accidents

    International Nuclear Information System (INIS)

    Ubonavicius, E.; Rimkevicius, S.

    2001-01-01

    The release of radioactive materials to the environment is of special importance in the case of any accident at Nuclear Power Plants (NPP). The integrated analysis of thermal-hydraulic parameters behavior and radioactive fission products (FP) transport and deposition in the compartments play an important role in the evaluation of FP release to the environment and determines the irradiation dozes of personnel and public. In this report the transport and the deposition of radioactive material in the Ignalina NPP unit 1 compartments as well as the FP source term to the environment in the case of design basis loss-of-coolant accidents are discussed. The calculation models for the evaluation of FP transport and deposition as well as the results of performed calculations of several accidents at Ignalina NPP are presented. (author)

  20. Loss-of-coolant and loss-of-flow accident in the ITER-EDA first wall/blanket cooling system

    Energy Technology Data Exchange (ETDEWEB)

    Komen, E.M.J.; Koning, H.

    1995-05-01

    This report presents the analysis of the transient thermal-hydraulic system behaviour inside the first wall/blanket cooling system and the resulting temperature response inside the first wall and blanket of the ITER-EDA (International Thermonuclear Experimental Reactor - Engineering Design Activities) reactor design during a: - Loss-of-coolant accident caused by a reputure of the pump suction pipe; - loss-of-flow accident caused by a trip of the recirculation pump. (orig.).

  1. Loss-of-coolant and loss-of-flow accident in the ITER-EDA first wall/blanket cooling system

    International Nuclear Information System (INIS)

    Komen, E.M.J.; Koning, H.

    1995-05-01

    This report presents the analysis of the transient thermal-hydraulic system behaviour inside the first wall/blanket cooling system and the resulting temperature response inside the first wall and blanket of the ITER-EDA (International Thermonuclear Experimental Reactor - Engineering Design Activities) reactor design during a: - Loss-of-coolant accident caused by a reputure of the pump suction pipe; - loss-of-flow accident caused by a trip of the recirculation pump. (orig.)

  2. Source term analysis in severe accident induced by large break loss of coolant accident coincident with ship blackout for ship reactor

    International Nuclear Information System (INIS)

    Zhang Yanzhao; Zhang Fan; Zhao Xinwen; Zheng Yingfeng

    2013-01-01

    Using MELCOR code, the accident analysis model was established for a ship reactor. The behaviors of radioactive fission products were analyzed in the case of severe accident induced by large break loss of coolant accident coincident with ship blackout. The research mainly focused on the behaviors of release, transport, retention and the final distribution of inert gas and CsI. The results show that 83.12% of inert gas releases from the core, and the most of inert gas exists in the containment. About 83.08% of CsI release from the core, 72.66% of which is detained in the debris and the primary system, and 27.34% releases into the containment. The results can give a reference for the evaluation of cabin dose and nuclear emergency management. (authors)

  3. Small break loss of coolant accident analysis of advanced PWR plant designs utilizing DVI line venturis

    International Nuclear Information System (INIS)

    Kemper, Robert M.; Gagnon, Andre F.; McNamee, Kevin; Cheung, Augustine C.

    1995-01-01

    The Westinghouse Advanced Passive and evolutionary Pressurizer Water Reactors (i.e. AP600 and APWR) incorporate direct vessel injection (DVI) of emergency core coolant as a means of minimizing the potential spilling of emergency core cooling water during a loss of coolant accident (LOCA). As a result, the most limiting small break LOCA (SBLOCA) event for these designs, with respect core inventory makeup capability, is a postulated double ended rupture of one of the DVI lines. This paper presents the results of a design optimization study that examines the installation of a venturi in the DVI line as a means of limiting the reactor coolant lost from the reactor vessel. The comparison results demonstrate that by incorporating a properly sized venturi in the DVI line, core uncovery concerns as a result of a DVI line break can be eliminated for both the AP600 and APWR plants. (author)

  4. Analysis of the core reflooding of a PWR reactor under a loss-of-coolant postulated accident

    International Nuclear Information System (INIS)

    Austregesilo Filho, H.

    1978-12-01

    The main purpose of this work is to analyse the termohydraulic behaviour of emergency cooling water, during reflooding of a PWR core submitted to a postulated loss-of-coolant accident, with the scope of giving the boundary conditions needed to verify fuel element and containment integrity. The analytical model presented was applied to the simulation of Angra I core reflooding phase, after a double-ended break between pressure vessel and discharge of one of the main coolant pumps. For this accident, with a discharge coefficient of C sub(D) = 0.4, the highest peak cladding temperature is expected. (author) [pt

  5. MABEL-2: a code to analyse cladding deformation in a loss-of-coolant accident

    International Nuclear Information System (INIS)

    Bowring, R.W.; Cooper, C.A.

    1982-04-01

    MABEL-2 has been developed to predict the extent of cladding deformation in PWR fuel rods during a loss of coolant accident. The user notes describe how to run MABEL. They include case preparation and input data, the job control language, a description of the output tables available, and aids to debugging. The input data and results for two sample cases are given. (U.K.)

  6. Simulation of a loss of coolant accident

    International Nuclear Information System (INIS)

    1987-06-01

    An essential component of nuclear safety activities is the analysis of postulated accidents which are taken as a design basis for a facility. This analysis is usually carried out by using complex computer codes to simulate the behaviour of the plant and to calculate vital plant parameters, which are then compared with the design limits. Since these simulations cannot be verified at the plant itself, computer codes must be validated by comparing the results of calculations with experimental data obtained in test facilities. With this objective in mind, the Central Research Institute for Physics (CRIP) of the Hungarian Academy of Sciences designed and constructed the PMK-NVH (Paks Model Circuit) test facility, a scaled down model of the WWER-440 Paks nuclear power plant. Hungary with the aim of strengthening the international co-operation on nuclear safety, made the PMK-NVH facility available to the IAEA to conduct a standard problem exercise. In this exercise, experimental data from the simulation of a 7.4% break loss of coolant accident were compared with analytical predictions of the behaviour of the facility calculated with computer codes. This document presents a complete overview of the Standard Problem Exercise, including description of the facility, the experiment, the codes and models used by the participants and a detailed intercomparison of calculated and experimental results. It is recognized that code assessment is a long process which involves many inter-related steps, therefore, no general conclusion on optimum code or best model was reached. However, the exercise was recognized as an important contributor to code validation

  7. Analysis of unmitigated large break loss of coolant accidents using MELCOR code

    Science.gov (United States)

    Pescarini, M.; Mascari, F.; Mostacci, D.; De Rosa, F.; Lombardo, C.; Giannetti, F.

    2017-11-01

    In the framework of severe accident research activity developed by ENEA, a MELCOR nodalization of a generic Pressurized Water Reactor of 900 MWe has been developed. The aim of this paper is to present the analysis of MELCOR code calculations concerning two independent unmitigated large break loss of coolant accident transients, occurring in the cited type of reactor. In particular, the analysis and comparison between the transients initiated by an unmitigated double-ended cold leg rupture and an unmitigated double-ended hot leg rupture in the loop 1 of the primary cooling system is presented herein. This activity has been performed focusing specifically on the in-vessel phenomenology that characterizes this kind of accidents. The analysis of the thermal-hydraulic transient phenomena and the core degradation phenomena is therefore here presented. The analysis of the calculated data shows the capability of the code to reproduce the phenomena typical of these transients and permits their phenomenological study. A first sequence of main events is here presented and shows that the cold leg break transient results faster than the hot leg break transient because of the position of the break. Further analyses are in progress to quantitatively assess the results of the code nodalization for accident management strategy definition and fission product source term evaluation.

  8. Small break LOCA [loss of coolant accident] mitigation for Bellefonte

    International Nuclear Information System (INIS)

    Bayless, P.D.; Dobbe, C.A.

    1986-01-01

    Several 5-cm (2-in.) diameter cold leg break loss coolant accidents for the Bellefonte nuclear plant were analyzed as part of the Severe Accident Sequence Analysis Program. The transients assumed various system failures, and included the S 2 D sequence. Operator actions to mitigate the S 2 D transient were also investigated. The transients were analyzed until either core damage began or long-term decay heat removal was established. The S 2 D sequence was analyzed into the core damage phase of the transient. The analyses showed that the flow from one high pressure injection pump was necessary and sufficient to prevent core damage in the absence of operator actions. Operator actions were also able to prevent core damage for the S 2 D sequence

  9. Analysis of an Advanced Test Reactor Small-Break Loss-of-Coolant Accident with an Engineered Safety Feature to Automatically Trip the Primary Coolant Pumps

    International Nuclear Information System (INIS)

    Polkinghorne, Steven T.; Davis, Cliff B.; McCracken, Richard T.

    2000-01-01

    A new engineered safety feature that automatically trips the primary coolant pumps following a low-pressure reactor scram was recently installed in the Advanced Test Reactor (ATR). The purpose of this engineered safety feature is to prevent the ATR's surge tank, which contains compressed air, from emptying during a small-break loss-of-coolant accident (SBLOCA). If the surge tank were to empty, the air introduced into the primary coolant loop could potentially cause the performance of the primary and/or emergency coolant pumps to degrade, thereby reducing core thermal margins. Safety analysis performed with the RELAP5 thermal-hydraulic code and the SINDA thermal analyzer shows that adequate thermal margins are maintained during an SBLOCA with the new engineered safety feature installed. The analysis also shows that the surge tank will not empty during an SBLOCA even if one of the primary coolant pumps fails to trip

  10. Behaviour of a pressurized-water reactor nuclear power plant during loss-of-coolant accident

    International Nuclear Information System (INIS)

    Adam, E.; Carl, H.; Kubis, K.

    1979-01-01

    Starting from the foundation of the design basis accident in a PWR-type nuclear power plant - Loss of Coolant Accident -the actual status of the processes to be expected in the reactor are described. Operating behaviour of the heat removal system and efficiency of the safety systems are evaluated. Final considerations are concerned with the overall behaviour of the plant under such conditions. Probable failures, shut down times and possibilities of repair are estimated. (author)

  11. Analysis of an AP600 intermediate-size loss-of-coolant accident

    Energy Technology Data Exchange (ETDEWEB)

    Boyack, B.E.; Lime, J.F. [Los Alamos National Lab., NM (United States)

    1995-09-01

    A postulated double-ended guillotine break of an AP600 direct-vessel-injection line has been analyzed. This event is characterized as an intermediate-break loss-of-coolant accident. Most of the insights regarding the response of the AP600 safety systems to the postulated accident are derived from calculations preformed with the TRAC-PF1/MOD2 code. However, complementary insights derived from a scaled experiment conducted in the ROSA facility, as well as insights based upon calculations by other codes, are also presented. Based upon the calculated and experimental results, the AP600 will not experience a core heat up and will reach a safe shutdown state using only safety-class equipment. Only the early part of the long-term cooling period initiated by In-containment Refueling Water Storage Tank injection was evaluated. Thus, the observation that the core is continuously cooled should be verified for the later phase of the long-term cooling period when sump injection and containment cooling processes are important.

  12. Research on loss of coolant accident of pressurized-water reactor based on PSO algorithm

    International Nuclear Information System (INIS)

    Ma Jie; Guo Lifeng; Peng Qiao

    2012-01-01

    In order to improve the diagnosis performance of Loss of Coolant Accident (LOCA), based on Back Propagation (BP) algorithm study, a fault diagnosis network is established based on Particle Swarm Optimization (PSO) algorithm in this paper. The PSO algorithm is used to train the weights and the thresholds of neural network, which can conquer part convergence problem of BP algorithm. The test results show that the diagnosis network has higher accuracy of LOCA. (authors)

  13. Zinc corrosion after loss-of-coolant accidents in pressurized water reactors – Physicochemical effects

    Energy Technology Data Exchange (ETDEWEB)

    Kryk, Holger, E-mail: h.kryk@hzdr.de [Helmholtz-Zentrum Dresden-Rossendorf, Institute of Fluid Dynamics, P.O. Box 510119, D-01314 Dresden (Germany); Hoffmann, Wolfgang [Helmholtz-Zentrum Dresden-Rossendorf, Institute of Fluid Dynamics, P.O. Box 510119, D-01314 Dresden (Germany); Kästner, Wolfgang; Alt, Sören; Seeliger, André; Renger, Stefan [Hochschule Zittau/Görlitz, Institute of Process Technology, Process Automation and Measuring Technology, Theodor-Körner-Allee 16, D-02763 Zittau (Germany)

    2014-12-15

    Highlights: • Physicochemical effects due to post-LOCA zinc corrosion in PWR were elucidated. • Decreasing solubility of corrosion products with increasing temperature was found. • Solid corrosion products may be deposited on hot surfaces and/or within hot-spots. • Corrosion products precipitating from coolant were identified as zinc borates. • Depending on coolant temperature, different types of zinc borate are formed. - Abstract: Within the framework of the reactor safety research, generic experimental investigations were carried out aiming at the physicochemical background of possible zinc corrosion product formation, which may occur inside the reactor pressure vessel during the sump circulation operation after loss-of-coolant accidents in pressurized water reactors. The contact of the boric acid containing coolant with hot-dip galvanized steel containment internals causes corrosion of the corresponding materials resulting in dissolution of the zinc coat. A retrograde solubility of zinc corrosion products with increasing temperature was observed during batch experiments of zinc corrosion in boric acid containing coolants. Thus, the formation and deposition of solid corrosion products cannot be ruled out if the coolant containing dissolved zinc is heated up during its recirculation into hot regions within the emergency cooling circuit (e.g. hot-spots in the core). Corrosion experiments at a lab-scale test facility, which included formation of corrosion products at a single heated cladding tube, proved that dissolved zinc, formed at low temperatures in boric acid solution by zinc corrosion, turns into solid deposits of zinc borates when contacting heated zircaloy surfaces during the heating of the coolant. Moreover, the temperature of formation influences the chemical composition of the zinc borates and thus the deposition and mobilization behavior of the products.

  14. Zinc corrosion after loss-of-coolant accidents in pressurized water reactors – Physicochemical effects

    International Nuclear Information System (INIS)

    Kryk, Holger; Hoffmann, Wolfgang; Kästner, Wolfgang; Alt, Sören; Seeliger, André; Renger, Stefan

    2014-01-01

    Highlights: • Physicochemical effects due to post-LOCA zinc corrosion in PWR were elucidated. • Decreasing solubility of corrosion products with increasing temperature was found. • Solid corrosion products may be deposited on hot surfaces and/or within hot-spots. • Corrosion products precipitating from coolant were identified as zinc borates. • Depending on coolant temperature, different types of zinc borate are formed. - Abstract: Within the framework of the reactor safety research, generic experimental investigations were carried out aiming at the physicochemical background of possible zinc corrosion product formation, which may occur inside the reactor pressure vessel during the sump circulation operation after loss-of-coolant accidents in pressurized water reactors. The contact of the boric acid containing coolant with hot-dip galvanized steel containment internals causes corrosion of the corresponding materials resulting in dissolution of the zinc coat. A retrograde solubility of zinc corrosion products with increasing temperature was observed during batch experiments of zinc corrosion in boric acid containing coolants. Thus, the formation and deposition of solid corrosion products cannot be ruled out if the coolant containing dissolved zinc is heated up during its recirculation into hot regions within the emergency cooling circuit (e.g. hot-spots in the core). Corrosion experiments at a lab-scale test facility, which included formation of corrosion products at a single heated cladding tube, proved that dissolved zinc, formed at low temperatures in boric acid solution by zinc corrosion, turns into solid deposits of zinc borates when contacting heated zircaloy surfaces during the heating of the coolant. Moreover, the temperature of formation influences the chemical composition of the zinc borates and thus the deposition and mobilization behavior of the products

  15. Analysis of containment pressure and temperature changes following loss of coolant accident (LOCA)

    International Nuclear Information System (INIS)

    Nguyen Van Thai; Kieu Ngoc Dung

    2015-01-01

    This paper present a preliminary thermal-hydraulics analysis of AP1000 containment following loss of coolant accident events such as double-end cold line break (DECLB) or main steam line break (MSLB) using MELCOR code. A break of this type will produce a rapid depressurization of the reactor pressure vessel (primary system) and release initially high pressure water into the containment followed by a much smaller release of highly superheated steam. The high pressure liquid water will flash and rapidly pressurize the containment building. The performance of passive containment cooling system for steam removal by condensation on large steel containment structure is a major contributing process, controlling the pressure and temperature maximum reached during the accident event. The results are analyzed, discussed and compared with the similar work done by Sandia National Laboratories. (author)

  16. Babcock and Wilcox revisions to CONTEMPT, computer program for predicting containment pressure-temperature response to a loss-of-coolant accident

    International Nuclear Information System (INIS)

    Hsii, Y.H.

    1975-01-01

    The CONTEMPT computer program predicts the pressure-temperature response of a single-volume reactor building to a loss-of-coolant accident. The analytical model used for the program is described. CONTEMPT assumes that the loss-of-coolant accident can be separated into two phases; the primary system blowdown and reactor building pressurization. The results of the blowdown analysis serve as the boundary conditions and are input to the CONTEMPT program. Thus, the containment model is only concerned with the pressure and temperature in the reactor building and the temperature distribution through the reactor building structures. The program also calculates building leakage and the effects of engineered safety features such as reactor building sprays, decay heat coolers, sump coolers, etc. 11 references. (U.S.)

  17. Study of a loss of coolant accident of a PWR reactor through a Full Scope Simulator and computational code RELAP

    International Nuclear Information System (INIS)

    Soares, Alexandre de Souza

    2014-01-01

    The present paper proposes a study of a loss of coolant accident of a PWR reactor through a Full Scope Simulator and computational code RELAP. To this end, it considered a loss of coolant accident with 160 cm 2 breaking area in cold leg of 20 circuit of the reactor cooling system of nuclear power plant Angra 2, with the reactor operating in stationary condition, to 100% power. It considered that occurred at the same time the loss of External Power Supply and the availability of emergency cooling system was not full. The results obtained are quite relevant and with the possibility of being used in the planning of future activities, given that the construction of Angra 3 is underway and resembles the Angra 2. (author)

  18. Cobalt-60 simulation of LOCA [loss of coolant accident] radiation effects

    International Nuclear Information System (INIS)

    Buckalew, W.H.

    1989-07-01

    The consequences of simulating nuclear reactor loss of coolant accident (LOCA) radiation effects with Cobalt-60 gamma ray irradiators have been investigated. Based on radiation induced damage in polymer base materials, it was demonstrated that electron/photon induced radiation damage could be related on the basis of average absorbed radiation dose. This result was used to estimate the relative effectiveness of the mixed beta/gamma LOCA and Cobalt-60 radiation environments to damage both bare and jacketed polymer base electrical insulation materials. From the results obtained, it is concluded that present simulation techniques are a conservative method for simulating LOCA radiation effects and that the practices have probably substantially overstressed both bare and jacketed materials during qualification testing. 9 refs., 8 figs., 5 tabs

  19. Investigation of loss of coolant accidents in pressurized water reactors using the ''Dynamic Best-Estimate Safety Analysis'' (DYBESA) method for considering of uncertainties in TRACE

    International Nuclear Information System (INIS)

    Sporn, Michael; Hurtado, Antonio

    2016-01-01

    Loss of coolant accident must take uncertainties with potentially strong effects on the accident sequence prediction into account. For example, uncertainties in computational model input parameters resulting from varying geometry and material data due to manufacturing tolerances or unavailable measurements should be considered. The uncertainties of physical models used by the software program are also significant. In this paper, use of the ''Dynamic Best-Estimate Safety Analysis'' (DYBESA) method to quantify the uncertainties in the TRACE thermal-hydraulic program is demonstrated. For demonstration purposes loss of coolant accidents with breaks of various types and sizes in a DN 700 reactor coolant pipe are used as an example Application.

  20. Condensing heat transfer following a loss-of-coolant accident

    International Nuclear Information System (INIS)

    Krotiuk, W.J.; Rubin, M.B.

    1978-01-01

    A new method for calculating the steam mass condensation energy removal rates on cold surfaces in contact with an air-steam mixture has been developed. This method is based on the principles of mass diffusion of steam from an area of high concentration to the condensing surface, which is an area of low steam concentration. This new method of calculating mass condensation has been programmed into the CONTEMPT-LT Mod 26 computer code, which calculates the pressure and temperature transients inside a light water reactor containment following a loss-of-coolant accident. The condensing heat transfer coefficient predicted by the mass diffusion method is compared to existing semi-empirical correlations and to the experimental results of the Carolinas Virginia Tube Reactor Containment natural decay test. Closer agreement with test results is shown in the calculation of containment pressure, temperature, and heat sink surface temperature using the mass diffusion condensation method than when using any existing semi-empirical correlation

  1. Fast instrumentation for loss of coolant accident (LOCA) experimental studies pertaining to nuclear reactors

    International Nuclear Information System (INIS)

    Venkat Raj, V.; Sreenivas Rao, G.; Belokar, D.G.; Dolas, P.K.

    1989-01-01

    The loss of coolant accident (LOCA) which involves a breach in the pressure boundary of the primary coolant system (PCS) is one of the postulated accident conditions against which the safety of the reactor system is to be ensured. Mathematical models have been developed to analyse this kind of transients. However, because of the extremely complicated nature of the phenomena involved, it is necessary to validate the analytical models with appropriate experimental data. Many parameters are to be measured during the experiments, out of which temperature, pressure, void fraction and two-phase mass flow rate are the most important parameters. Since the phenomenon is very fast, special fast response instruments are required. This paper deals with the considerations that govern the selection of appropriate instruments and the development of suitable instruments for transient two-phase flow and void fraction measurements. The requirements of the associated fast data acquisition system are also discussed. (author). 4 figs

  2. Use of flow models to analyse loss of coolant accidents

    International Nuclear Information System (INIS)

    Pinet, Bernard

    1978-01-01

    This article summarises current work on developing the use of flow models to analyse loss-of-coolant accident in pressurized-water plants. This work is being done jointly, in the context of the LOCA Technical Committee, by the CEA, EDF and FRAMATOME. The construction of the flow model is very closely based on some theoretical studies of the two-fluid model. The laws of transfer at the interface and at the wall are tested experimentally. The representativity of the model then has to be checked in experiments involving several elementary physical phenomena [fr

  3. Loss of Coolant Accident (LOCA) / Emergency Core Coolant System (ECCS Evaluation of Risk-Informed Margins Management Strategies for a Representative Pressurized Water Reactor (PWR)

    Energy Technology Data Exchange (ETDEWEB)

    Szilard, Ronaldo Henriques [Idaho National Lab. (INL), Idaho Falls, ID (United States)

    2016-09-01

    A Risk Informed Safety Margin Characterization (RISMC) toolkit and methodology are proposed for investigating nuclear power plant core, fuels design and safety analysis, including postulated Loss-of-Coolant Accident (LOCA) analysis. This toolkit, under an integrated evaluation model framework, is name LOCA toolkit for the US (LOTUS). This demonstration includes coupled analysis of core design, fuel design, thermal hydraulics and systems analysis, using advanced risk analysis tools and methods to investigate a wide range of results.

  4. Identification of Loss-of-Coolant Accidents in LWRs by Inverse Models

    International Nuclear Information System (INIS)

    Cholewa, Wojciech; Frid, Wiktor; Bednarski, Marcin

    2004-01-01

    This paper describes a novel diagnostic method based on inverse models that could be applied to identification of transients and accidents in nuclear power plants. In particular, it is shown that such models could be successfully applied to identification of loss-of-coolant accidents (LOCAs). This is demonstrated for LOCA scenarios for a boiling water reactor. Two classes of inverse models are discussed: local models valid only in a selected neighborhood of an unknown element in the data set, representing a state of a considered object, and global models, in the form of partially unilateral models, valid over the whole learning data set. An interesting and useful property of local inverse models is that they can be considered as example-based models, i.e., models that are spanned on particular sets of pattern data. It is concluded that the optimal diagnostic method should combine the advantages of both models, i.e., the high quality of results obtained from a local inverse model and the information about the confidence interval for the expected output provided by a partially unilateral model

  5. Component evaluation for intersystem loss-of-coolant accidents in advanced light water reactors

    International Nuclear Information System (INIS)

    Ware, A.G.

    1994-07-01

    Using the methodology outlined in NUREG/CR-5603 this report evaluates (on a probabilistic basis) design rules for components in ALWRs that could be subjected to intersystem loss-of-coolant accidents (ISLOCAs). The methodology is intended for piping elements, flange connections, on-line pumps and valves, and heat exchangers. The NRC has directed that the design rules be evaluated for BWR pressures of 7.04 MPa (1025 psig), PWR pressures of 15.4 MPa (2235 psig), and 177 degrees C (350 degrees F), and has established a goal of 90% probability that system rupture will not occur during an ISLOCA event. The results of the calculations in this report show that components designed for a pressure of 0.4 of the reactor coolant system operating pressure will satisfy the NRC survival goal in most cases. Specific recommendations for component strengths for BWR and PWR applications are made in the report. A peer review panel of nationally recognized experts was selected to review and critique the initial results of this program

  6. Alternative protections for loss of coolant accidents

    International Nuclear Information System (INIS)

    Estevez, E.A.

    1997-01-01

    One way to mitigate a small loss of coolant accident (LOCA) is by depressurizing the primary system, in order to turn the accident into a sequence where water is fed to a low pressure system. It can be achieved by two different ways: by incorporating a valve system (ADS - Automatic Depressurization System) to the design, which helps to diminish the pressure, obtaining a bigger LOCA, or by extracting heat from the system. Our analysis is centered in integrated reactors. The first characterization performed was on CAREM reactor. The idea was then to observe its behavior with LOCAs for different thermal power relations, water volume and rupture area. A simple depressurization model is presented, which enables us to find the parameter relationships which characterize this process, from which some particular cases will arise. ADS implementation is then analyzed, giving the criteria for the triggering time. A study on its reliability and the probability of a spurious opening is made, taking into account independent and dependent failures. An analysis on heat extraction as alternative for depressurizing is also made. Finally, the different reasons to choose between ADS or heat extraction as alternative are given, and the meaning of the parameters found are discussed. An alternative to classify LOCAs, instead of the traditional classification, by fracture size, is suggested. (author)

  7. Loss of Coolant Accidents (LOCA): Study of CAREM Reactor Response

    International Nuclear Information System (INIS)

    Gonzalez, Jose; Gimenez, Marcelo

    2000-01-01

    We analyzed the neutronic and thermohydraulic response of CAREM25 reactor and the safety systems involved in a Loss Of Coolant Accident (LOCA).This parametric analysis considers several break diameters (1/2inch, 3/4inch, 1inch, 1.1/2inch and 2inches) in the vapor zone of the Reactor Pressure Vessel.For each accidental sequence, the successful operation of the following safety systems is modeled: Second Safety System (SSS), Residual Heat Removal System (RHRS) and Safety Injection System (SIS). Availability of only one module is postulated for each system.On the other hand, the unsuccessful operation of all safety systems is postulated for each accidental sequence.In both cases the First Shutdown System (FSS) actuates, and the loss of Steam Generator secondary flow and Chemical and Control of Volume System (CCVS) unavailability are postulated.Maximum loss of coolant flow, reactor power and time for safety systems operation are analyzed, as well as its set point parameters.We verified that safety systems are dimensioned to satisfy the 48 hours cooling criteria

  8. MABEL-1. A code to analyse cladding deformation in a loss-of-coolant accident

    International Nuclear Information System (INIS)

    Bowring, R.W.; Cooper, C.A.

    1978-06-01

    The MABEL-1 code has been written to investigate the deformation, of fuel pin cladding and its effects on fuel pin temperature transients during a loss-of-coolant accident. The code considers a single fuel pin with heated fuel concentric within the cladding. The fuel pin temperature distribution is evaluated using a one-dimensional conduction model with heat transfer to the coolant represented by an input set of heat transfer coefficients. The cladding deformation is calculated using the code CANSWEL, which assumes all strain to be elastic or creep and models the creep under a multi-axial stress system by a spring/dashpot combination undergoing alternate relaxation and elastic strain. (author)

  9. SSYST-1. A computer code system to analyse the fuel rod behaviour during a loss of coolant accident

    International Nuclear Information System (INIS)

    Gulden, W.

    1977-08-01

    The modules of the SSYST program system allow the detailed analysis of an LWR fuel rod in the course of a postulated loss-of-coolant accident. They provide a tool for considering the interaction between the heat conduction in the fuel rod, heat transfer in the gap, fuel and cladding tube deformation, pressure in the coolant, as well as thermal and fluid dynamics in the cooling channel and for calculating the time and location of ballooning and rod failure, respectively. They can be used both to precalculate the behaviour of fuel rods during LWR accidents and in support of the design of experiments. Depending on the problem to be solved, the individual modules can be easily combined. (orig.) [de

  10. Safety analysis results for cryostat ingress accidents in ITER

    International Nuclear Information System (INIS)

    Merrill, B.J.; Cadwallader, L.C.; Petti, D.A.

    1996-01-01

    Accidents involving the ingress of air or water into the cryostat of the International Thermonuclear Experimental Reactor (ITER) tokamak design have been analyzed with a modified version of the MELCOR code for the ITER Non-site Specific Safety Report (NSSR-1). The air ingress accident is the result of a postulated breach of the cryostat boundary into an adjoining room. MELCOR results for this accident demonstrate that the condensed air mass and increased heat loads are not a magnet safety concern, but that the partial vacuum in the adjoining room must be accommodated in the building design. The water ingress accident is the result of a postulated magnet arc that results in melting of a Primary Heat Transport System (PHTS) coolant pipe, discharging PHTS water and PHTS water activated corrosion products and HTO into the cryostat. MELCOR results for this accident demonstrate that the condensed water mass and increased heat loads are not a magnet safety concern, that the cryostat pressure remains below design limits, and that the corrosion product and HTO releases are well within the ITER release limits

  11. Analysis of a small break loss-of-coolant accident of pressurized water reactor by APROS

    Energy Technology Data Exchange (ETDEWEB)

    Al-Falahi, A. [Helsinki Univ. of Technology, Espoo (Finland); Haennine, M. [VTT Energy, Espoo (Finland); Porkholm, K. [IVO International, Ltd., Vantaa (Finland)

    1995-09-01

    The purpose of this paper is to study the capability of APROS (Advanced PROcess Simulator) code to simulate the real plant thermal-hydraulic transient of a Small Break Loss-Of-Coolant Accident (SBLOCA) of Loss-Of-Fluid Test (LOFT) facility. The LOFT is a scaled model of a Pressurized Water Reactor (PWR). This work is a part of a larger validation of the APROS thermal-hydraulic models. The results of SBLOCA transient calculated by APROS showed a reasonable agreement with the measured data.

  12. Upper plenum dump during reflood in PWR loss-of-coolant accident

    International Nuclear Information System (INIS)

    Sudo, Yukio; Griffith, Peter.

    1981-01-01

    Upper plenum dump during reflood in a large break loww-of-coolant accident of PWR is studied with the emergency core coolant injection into the upper plenum in addition to the cold leg. Transient experiments were carried out by injecting water into the upper plenum and the simple analysis based on a one-dimensional model was done using the drift flux model in order to investigate the conditions under which water dump through the core occurs during reflood. The most significant result is an upper plenum dump occurs when the pressure (hydrostatic head) in the upper plenum is greater than that in the lower plenum. Under those circumstances the flow regime isco-current down flow in which the upper plenum is rapidly emptied. On the other hand, when the upper plenum pressure (hydrostatic head) is less than the lower plenum pressure (hydrostatic head), the co-current down flow is not realized but a counter-current flow occurs. With subcooled water injection to the upper plenum, co-current down flow is realized even when the upper plenum hydrostatic head is less than the lower plenum hydrostatic head. The importance of this effect varies according to the magnetude of water subcooling. (author)

  13. Long-term security of electrical and control engineering equipment in nuclear power stations to withstand a loss of coolant accident

    International Nuclear Information System (INIS)

    Mueller, H.

    1996-01-01

    Electrical and control engineering equipment, which has to function even after many years of operation in the event of a fault in a saturated steam atmosphere of 160 C maximum, is essential in nuclear power stations in order to control a loss of coolant accident. The nuclear power station operators have, for this purpose, developed verification strategies for groups of components, by means of which it is ensured that the electrical and control engineering components are capable of dealing with a loss of coolant accident even at the end of their planned operating life. (orig.) [de

  14. Pressure behavior in nuclear reactor containment following a loss of coolant accident

    Energy Technology Data Exchange (ETDEWEB)

    Khattab, M; Ibrahim, N A; Bedrose, C D [Reactors department, nuclear research center, atomic energy authority, Cairo, (Egypt)

    1995-10-01

    The scenarios of pressure variation following a loss of coolant accident (LOCA) inside the containment of pressurized water reactor (PWR) have been investigated. Critical mass flow rushing out from high pressure leg through pipe break is used to calculate the rate of coolant. The energy added to the containment atmosphere is determined to specify the rate of growth of pressure and temperature. The seniors of small, medium and large LOCA at 2%, 15%, and 25% flow released are investigated. Safety water spray system is initiated as the pressure reaches the containment design safety limit at about 3 bar to depressurise and to cooldown the system and thereby to reduce the concentration of radioactivity release in the containment atmosphere. The pressure response before and after operation of safety spray system is predicted in each size of LOCA using a typical design of westinghouse PWR system. The heat removal from the containment environment is rejected into the sump by drop-wise condensation mechanism. The effect of initial droplets diameters injected from the nozzles of the spray system is investigated. The results show that the droplet diameter of 3 mm gives best performance. 6 figs.

  15. Pressure behavior in nuclear reactor containment following a loss of coolant accident

    International Nuclear Information System (INIS)

    Khattab, M.; Ibrahim, N.A.; Bedrose, C.D.

    1995-01-01

    The scenarios of pressure variation following a loss of coolant accident (LOCA) inside the containment of pressurized water reactor (PWR) have been investigated. Critical mass flow rushing out from high pressure leg through pipe break is used to calculate the rate of coolant. The energy added to the containment atmosphere is determined to specify the rate of growth of pressure and temperature. The seniors of small, medium and large LOCA at 2%, 15%, and 25% flow released are investigated. Safety water spray system is initiated as the pressure reaches the containment design safety limit at about 3 bar to depressurise and to cooldown the system and thereby to reduce the concentration of radioactivity release in the containment atmosphere. The pressure response before and after operation of safety spray system is predicted in each size of LOCA using a typical design of westinghouse PWR system. The heat removal from the containment environment is rejected into the sump by drop-wise condensation mechanism. The effect of initial droplets diameters injected from the nozzles of the spray system is investigated. The results show that the droplet diameter of 3 mm gives best performance. 6 figs

  16. Analysis of the loss of coolant accident for LEU cores of Pakistan research reactor-1

    International Nuclear Information System (INIS)

    Khan, L.A.; Bokhari, I.H.; Raza, S.H.

    1993-12-01

    Response of LEU cores for PARR-1 to a Loss of Coolant Accident (LOCA) has been studied. It has been assumed that pool water drains out to double ended rupture of primary coolant pipe or complete shearing of an experimental beam tube. Results show that for an operating power level of 10 MW, both the first high power and equilibrium cores would enter into melting conditions if the pool drain time is less than 22 h and 11 h respectively. However, an Emergency Core Cooling System (ECCS) capable of spraying the core at flow rate of 8.3 m/sup 3/h, for the above mentioned duration, would keep the peak core temperature much below the critical value. Maximum operating power levels below which melting would not occur have been assessed to 3.4 MW and 4.8 MW, respectively, for the first high power and equilibrium cores. (author) 5 figs

  17. Results of Semiscale Mod-2C small-break (5%) loss-of-coolant accident. Experiments S-LH-1 and S-LH-2

    International Nuclear Information System (INIS)

    Loomis, G.G.; Streit, J.E.

    1985-11-01

    Two experiments simulating small break (5%) loss-of-coolant accidents (5% SBLOCAs) were performed in the Semiscale Mod-2C facility. These experiments were identical except for downcomer-to-upper-head bypass flow (0.9% in Experiment S-LH-1 and 3.0% in Experiment S-LH-2) and were performed at high pressure and temperature [15.6 MPa (2262 psia) system pressure; 37 K (67 0 F) core differential temperature; 595 K(610 0 F) hot leg fluid temperature]. From the experimental results, the signature response and transient mass distribution are determined for a 5% SBLOCA. The core thermal-hydraulic response is characterized, including core void distribution maps, and the effect of core bypass flow on transient severity is assessed. Comparisons are made between postexperiment RELAP5 calculations and the experimental results, and the capability of RELAP5 to calculate the phenomena is assessed. 115 figs

  18. Restructuring of an Event Tree for a Loss of Coolant Accident in a PSA model

    International Nuclear Information System (INIS)

    Lim, Ho-Gon; Han, Sang-Hoon; Park, Jin-Hee; Jang, Seong-Chul

    2015-01-01

    Conventional risk model using PSA (probabilistic Safety Assessment) for a NPP considers two types of accident initiators for internal events, LOCA (Loss of Coolant Accident) and transient event such as Loss of electric power, Loss of cooling, and so on. Traditionally, a LOCA is divided into three initiating event (IE) categories depending on the break size, small, medium, and large LOCA. In each IE group, safety functions or systems modeled in the accident sequences are considered to be applicable regardless of the break size. However, since the safety system or functions are not designed based on a break size, there exist lots of mismatch between safety system/function and an IE, which may make the risk model conservative or in some case optimistic. Present paper proposes new methodology for accident sequence analysis for LOCA. We suggest an integrated single ET construction for LOCA by incorporating a safety system/function and its applicable break spectrum into the ET. Integrated accident sequence analysis in terms of ET for LOCA was proposed in the present paper. Safety function/system can be properly assigned if its applicable range is given by break set point. Also, using simple Boolean algebra with the subset of the break spectrum, final accident sequences are expressed properly in terms of the Boolean multiplication, the occurrence frequency and the success/failure of safety system. The accident sequence results show that the accident sequence is described more detailed compared with the conventional results. Unfortunately, the quantitative results in terms of MCS (minimal Cut-Set) was not given because system fault tree was not constructed for this analysis and the break set points for all 7 point were not given as a specified numerical quantity. Further study may be needed to fix the break set point and to develop system fault tree

  19. Restructuring of an Event Tree for a Loss of Coolant Accident in a PSA model

    Energy Technology Data Exchange (ETDEWEB)

    Lim, Ho-Gon; Han, Sang-Hoon; Park, Jin-Hee; Jang, Seong-Chul [KAERI, Daejeon (Korea, Republic of)

    2015-05-15

    Conventional risk model using PSA (probabilistic Safety Assessment) for a NPP considers two types of accident initiators for internal events, LOCA (Loss of Coolant Accident) and transient event such as Loss of electric power, Loss of cooling, and so on. Traditionally, a LOCA is divided into three initiating event (IE) categories depending on the break size, small, medium, and large LOCA. In each IE group, safety functions or systems modeled in the accident sequences are considered to be applicable regardless of the break size. However, since the safety system or functions are not designed based on a break size, there exist lots of mismatch between safety system/function and an IE, which may make the risk model conservative or in some case optimistic. Present paper proposes new methodology for accident sequence analysis for LOCA. We suggest an integrated single ET construction for LOCA by incorporating a safety system/function and its applicable break spectrum into the ET. Integrated accident sequence analysis in terms of ET for LOCA was proposed in the present paper. Safety function/system can be properly assigned if its applicable range is given by break set point. Also, using simple Boolean algebra with the subset of the break spectrum, final accident sequences are expressed properly in terms of the Boolean multiplication, the occurrence frequency and the success/failure of safety system. The accident sequence results show that the accident sequence is described more detailed compared with the conventional results. Unfortunately, the quantitative results in terms of MCS (minimal Cut-Set) was not given because system fault tree was not constructed for this analysis and the break set points for all 7 point were not given as a specified numerical quantity. Further study may be needed to fix the break set point and to develop system fault tree.

  20. Analysis of the effects of the pressure wave generated in loss of coolant accidents in reactor vessels

    International Nuclear Information System (INIS)

    Valero Martinez, M.

    1980-01-01

    The increasing demands in the field of ''Nuclear Safety'', obliges to a perfect knowledge of the causes and effects of every possible accident in a nuclear power plant. In this paper will be analysed the effects of the pressure wave appearing in a LOCA (Loss of collant accident). The pressure wave could deform the following structures: core barrel wall, cover and bottom, control rods and safety coolant system. Any change of the geometry of these structures could provoke and incorrect system reaction after the accident has happened. The basis and hypothesis for the theoretical analysis will be exposed. The structures are considered to be rigid. A typical boiling water be analysed and the developed theory will be verified in comparations with experimental results and the results obtained with some others models. Due to the easy application and short calculation time of the created programmes, they are recommended for parametrical calculations in the analysis of the pressurized water reactors and boiling water reactors. (author)

  1. Validation of advanced NSSS simulator model for loss-of-coolant accidents

    Energy Technology Data Exchange (ETDEWEB)

    Kao, S.P.; Chang, S.K.; Huang, H.C. [Nuclear Training Branch, Northeast Utilities, Waterford, CT (United States)

    1995-09-01

    The replacement of the NSSS (Nuclear Steam Supply System) model on the Millstone 2 full-scope simulator has significantly increased its fidelity to simulate adverse conditions in the RCS. The new simulator NSSS model is a real-time derivative of the Nuclear Plant Analyzer by ABB. The thermal-hydraulic model is a five-equation, non-homogeneous model for water, steam, and non-condensible gases. The neutronic model is a three-dimensional nodal diffusion model. In order to certify the new NSSS model for operator training, an extensive validation effort has been performed by benchmarking the model performance against RELAP5/MOD2. This paper presents the validation results for the cases of small-and large-break loss-of-coolant accidents (LOCA). Detailed comparisons in the phenomena of reflux-condensation, phase separation, and two-phase natural circulation are discussed.

  2. Phenomena identification and ranking tables for Westinghouse AP600 small break loss-of-coolant accident, main steam line break, and steam generator tube rupture scenarios

    International Nuclear Information System (INIS)

    Wilson, G.E.; Fletcher, C.D.; Davis, C.B.

    1997-06-01

    This report revision incorporates new experimental evidence regarding AP600 behavior during small break loss-of-coolant accidents. This report documents the results of Phenomena Identification and Ranking Table (PIRT) efforts for the Westinghouse AP600 reactor. The purpose of this PIRT is to identify important phenomena so that they may be addressed in both the experimental programs and the RELAP5/MOD3 systems analysis computer code. In Revision of this report, the responses of AP600 during small break loss-of-coolant accident, main steam line break, and steam generator tube rupture accident scenarios were evaluated by a committee of thermal-hydraulic experts. Committee membership included Idaho National Engineering and Environmental Laboratory staff and recognized thermal-hydraulic experts from outside of the laboratory. Each of the accident scenarios was subdivided into separate, sequential periods or phases. Within each phase, the plant behavior is controlled by, at most, a few thermal-hydraulic processes. The committee identified the phenomena influencing those processes, and ranked ampersand influences as being of high, medium, low, or insignificant importance. The primary product of this effort is a series of tables, one for each phase of each accident scenario, describing the thermal-hydraulic phenomena judged by the committee to be important, and the relative ranking of that importance. The rationales for the phenomena selected and their rankings are provided. This document issue incorporates an update of the small break loss-of-coolant accident portion of the report. This revision is the result of the release of experimental evidence from AP600-related integral test facilities (ROSA/AP600, OSU, and SPES) and thermal-hydraulic expert review. The activities associated with this update were performed during the period from June 1995 through November 1996. 8 refs., 26 figs., 42 tabs

  3. Phenomena identification and ranking tables for Westinghouse AP600 small break loss-of-coolant accident, main steam line break, and steam generator tube rupture scenarios

    Energy Technology Data Exchange (ETDEWEB)

    Wilson, G.E.; Fletcher, C.D.; Davis, C.B. [and others

    1997-06-01

    This report revision incorporates new experimental evidence regarding AP600 behavior during small break loss-of-coolant accidents. This report documents the results of Phenomena Identification and Ranking Table (PIRT) efforts for the Westinghouse AP600 reactor. The purpose of this PIRT is to identify important phenomena so that they may be addressed in both the experimental programs and the RELAP5/MOD3 systems analysis computer code. In Revision of this report, the responses of AP600 during small break loss-of-coolant accident, main steam line break, and steam generator tube rupture accident scenarios were evaluated by a committee of thermal-hydraulic experts. Committee membership included Idaho National Engineering and Environmental Laboratory staff and recognized thermal-hydraulic experts from outside of the laboratory. Each of the accident scenarios was subdivided into separate, sequential periods or phases. Within each phase, the plant behavior is controlled by, at most, a few thermal-hydraulic processes. The committee identified the phenomena influencing those processes, and ranked & influences as being of high, medium, low, or insignificant importance. The primary product of this effort is a series of tables, one for each phase of each accident scenario, describing the thermal-hydraulic phenomena judged by the committee to be important, and the relative ranking of that importance. The rationales for the phenomena selected and their rankings are provided. This document issue incorporates an update of the small break loss-of-coolant accident portion of the report. This revision is the result of the release of experimental evidence from AP600-related integral test facilities (ROSA/AP600, OSU, and SPES) and thermal-hydraulic expert review. The activities associated with this update were performed during the period from June 1995 through November 1996. 8 refs., 26 figs., 42 tabs.

  4. Aging, Loss-of-Coolant Accident (LOCA), and high potential testing of damaged cables

    International Nuclear Information System (INIS)

    Vigil, R.A.; Jacobus, M.J.

    1994-04-01

    Experiments were conducted to assess the effects of high potential testing of cables and to assess the survivability of aged and damaged cables under Loss-of-Coolant Accident (LOCA) conditions. High potential testing at 240 Vdc/mil on undamaged cables suggested that no damage was incurred on the selected virgin cables. During aging and LOCA testing, Okonite ethylene propylene rubber (EPR) cables with a bonded jacket experienced unexpected failures. The failures appear to be primarily related to the level of thermal aging and the presence of a bonded jacket that ages more rapidly than the insulation. For Brand Rex crosslinked polyolefin (XLPO) cables, the results suggest that 7 mils of insulation remaining should give the cables a high probability of surviving accident exposure following aging. The voltage necessary to detect when 7 mils of insulation remain on unaged Brand Rex cables is approximately 35 kVdc. This voltage level would almost certainly be unacceptable to a utility for use as a damage assessment tool. However, additional tests indicated that a 35 kvdc voltage application would not damage virgin Brand Rex cables when tested in water. Although two damaged Rockbestos silicone rubber cables also failed during the accident test, no correlation between failures and level of damage was apparent

  5. Generic evaluation of feedwater transients and small break loss-of-coolant accidents in combustion engineering designed operating plants

    International Nuclear Information System (INIS)

    1980-01-01

    The purpose of this report is to summarize the results of a generic evaluation of feedwater transients, small break loss-of-coolant accidents (LOCAs), and other TMI-2-related events in the Combustion Engineering (CE)-designed operating plants and to establish or confirm the bases for their continued operation. The results of this evaluation are presented in this report in the form of a set of findings and recommendations in each of the principal review areas

  6. Pressure behaviour in a nuclear reactor containment following a loss of coolant accident

    International Nuclear Information System (INIS)

    KHattab, M.S.; Ibrahim, N.A.; Bedrose, S.D.

    1994-01-01

    The scenarios of pressure variation following a loss of coolant accident (LOCA) inside the containment of pressurized water reactor (PWR) have been investigated. Critical mass flow rushing out from high pressure leg through pipe break, is used to calculate the rate of coolant. The energy added to the containment atmosphere is determined to specify the rate of growth of pressure and temperature. The scenarios of small, medium and large LOCA at 2%, 15% and 25% flow released are investigated. Safety water spray system is initiated as the pressure reaches the containment design safety limit at about 3 bar to depressurise and to cooldown the system and thereby to reduce the concentration of radioactivity release in the containment atmosphere. The pressure response before and after operation of safety spray system is predicted in each size of LOCA using a typical design of westinghouse PWR system. The results of large LOCA showed good agreement with westinghouse calculations of the same design. The heat removal from the containment environment is rejected into the sump by drop-wise condensation mechanism. The effect of initial droplets diameters injected from the nozzles of the spray system is investigated. The results show that the droplet diameter of 3 mm gives best performance. 6 figs., 1 tab

  7. Loss of coolant accident mitigation for liquid metal cooled space reactors

    International Nuclear Information System (INIS)

    Georgevich, Vladimir; Best, Frederick; Erdman, Carl

    1989-01-01

    A loss of coolant accident (LOCA) in a liquid metal-cooled space reactor system has been considered as a possible accident scenario. Development of new concepts that will prevent core damage by LOCA caused elevated temperatures is the primary motivation of this work. Decay heat generated by the fission products in the reactor core following shutdown is sufficiently high to melt the fuel unless energy can be removed from the pins at a sufficiently rapid rate. There are two major reasons that prevent utilization of traditional emergency cooling methods. One is the absence of gravity and the other is the vacuum condition outside the reactor vessel. A concept that overcomes both problems is the Saturated Wick Evaporation Method (SWEM). This method involves placing wicking structures at specific locations in the core to act as energy sinks. One of its properties is the isothermal behaviour of the liquid in the wick. The absorption of energy by the surface at the isothermal temperature will direct the energy into an evaporation process and not in sensible heat addition. The use of this concept enables establishment of isothermal positions within the core. A computer code that evaluates the temperature distribution of the core has been developed and the results show that this design will prevent fuel meltdown. (author)

  8. An investigation of core liquid level depression in small break loss-of-coolant accidents

    International Nuclear Information System (INIS)

    Schultz, R.R.; Watkins, J.C.; Motley, F.E.; Stumpf, H.; Chen, Y.S.

    1991-08-01

    Core liquid level depression can result in partial core dryout and heatup early in a small break loss-of-coolant accident (SBLOCA) transient. Such behavior occurs when steam, trapped in the upper regions of the reactor primary system (between the loop seal and the core inventory), moves coolant out of the core region and uncovers the rod upper elevations. The net result is core liquid level depression. Core liquid level depression and subsequent core heatups are investigated using subscale data from the ROSA-IV Program's 1/48-scale Large Scale Test Facility (LSTF) and the 1/1705-scale Semiscale facility. Both facilities are Westinghouse-type, four-loop, pressurized water reactor simulators. The depression phenomena and factors which influence the minimum core level are described and illustrated using examples from the data. Analyses of the subject experiments, conducted using the TRAC-PF1/MOD1 (Version 12.7) thermal-hydraulic code, are also described and summarized. Finally, the response of a typical Westinghouse four-loop plant (RESAR-3S) was calculated to qualitatively study coal liquid level depression in a full-scale system. 31 refs., 37 figs., 6 tabs

  9. Prediction of loop seal formation and clearing during small break loss of coolant accident

    International Nuclear Information System (INIS)

    Lee, Suk Ho; Kim, Hho Jung

    1992-01-01

    Behavior of loop seal formation and clearing during small break loss of coolant accident is investigated using the RELAP5/MOD2 and /MOD3 codes with the test of SB-CL-18 of the LSTF(Large Scale Test Facility). The present study examines the thermal-hydraulic mechanisms responsible for early core uncovery includeing the manometric effect due to an asymmetric coolant holdup in the steam generator upflow and downflow side. The analysis with the RELAP5/ MOD2 demonstrates the main phenomena occuring in the depressurization transient including the loop seal formation and clearing with sufficient accuracy. Nevertheless, several differences regarding the evolution of phenomena and their timing have been pointed out in the base calculations. The RELAP5/MOD3 predicts overall phenomena, particularly the steam generator liquid holdup better than the RELAP5/MOD2. The nodalization study in the components of the steam generator U-tubes and the cross-over legs with the RELAP5/MOD3 results in good prediction of the loop seal clearing phenomena and their timing. (Author)

  10. Investigation of a hydrogen mitigation system during large break loss-of-coolant accident for a two-loop pressurized water reactor

    Energy Technology Data Exchange (ETDEWEB)

    Dehjourian, Mehdi; Rahgoshay, Mohmmad; Jahanfamia, Gholamreza [Dept. of Nuclear Engineering, Science and Research Branch, Islamic Azad University of Tehran, Tehran (Iran, Islamic Republic of); Sayareh, Reza [Faculty of Electrical and Computer Engineering, Kerman Graduate University of Technology, Kerman (Iran, Islamic Republic of); Shirani, Amir Saied [Faculty of Engineering, Shahid Beheshti University, Tehran (Iran, Islamic Republic of)

    2016-10-15

    Hydrogen release during severe accidents poses a serious threat to containment integrity. Mitigating procedures are necessary to prevent global or local explosions, especially in large steel shell containments. The management of hydrogen safety and prevention of over-pressurization could be implemented through a hydrogen reduction system and spray system. During the course of the hypothetical large break loss-of-coolant accident in a nuclear power plant, hydrogen is generated by a reaction between steam and the fuel-cladding inside the reactor pressure vessel and also core concrete interaction after ejection of melt into the cavity. The MELCOR 1.8.6 was used to assess core degradation and containment behavior during the large break loss-of-coolant accident without the actuation of the safety injection system except for accumulators in Beznau nuclear power plant. Also, hydrogen distribution in containment and performance of hydrogen reduction system were investigated.

  11. Loss-of-Coolant and Loss-of-Flow Accidents in the SEAFP first wall/blanket cooling system

    International Nuclear Information System (INIS)

    Komen, E.M.J.; Koning, H.

    1995-01-01

    This paper presents the RELAP5/MOD3 thermal-hydraulic analysis of three Loss-of-Coolant Accidents (LOCAs) and three Loss-of-Flow Accidents (LOFAs) in the first wall/blanket cooling system of the SEAFP reactor design. The analyses deal with the transient thermal-hydraulic behaviour inside the cooling systems and the temperature development inside the nuclear components. As it appears, the temperature increase in the first wall Be-coating is limited to 30 K when an emergency plasma shutdown is initiated within 10 s following pump trip. (orig.)

  12. Loss-of-coolant and loss-of-flow accidents in the SEAFP first wall/blanket cooling system

    International Nuclear Information System (INIS)

    Komen, E.M.J.; Koning, H.

    1994-07-01

    This paper presents the RELAP5/MOD3 thermal-hydraulic analysis of three Loss-of-Coolant Accidents (LOCAs) and three Loss-of-Flow Accidents (LOFAs) in the first wall/blanket cooling system of the SEAFP reactor design. The analyses deal with the transient thermal-hydraulic behaviour inside the cooling systems and the temperature development inside the nuclear components. As it appears, the temperature increase in the first wall Be-coating is limited to 30 K when an emergency plasma shutdown is initiated within 10 s following pump trip. (orig.)

  13. Development of a deformation and failure model for Zircaloy at high temperatures for light water reactor loss-of-coolant-accident investigations

    International Nuclear Information System (INIS)

    Raff, S.

    1982-11-01

    To describe Zircaloy-4 deformation and failure behaviour at high temperatures (600 to 1400 0 C), the phenomenological model NORA was developed and verified against numerous experimental results. The model can be applied to the calculation of fuel rod cladding deformation during small and large break loss-of-coolant-accidents. (orig./RW) [de

  14. Laboratory simulation of rod-to-rod mechanical interactions during postulated loss-of-coolant accidents in a PWR involving cladding oxidation

    International Nuclear Information System (INIS)

    Hindle, E.D.; Haste, T.J.; Harrison, W.R.

    1987-01-01

    Creep deformation of Zircaloy cladding in postulated PWR loss-of-coolant accidents may lead to rod-to-rod mechanical interactions. Tests have been performed in the electrically heated FOURSQUARE rig at 750 0 C and 850 0 C in steam to investigate this effect. Conservatisms inherent in a simple 'square with rounded corners' coolant channel blockage model have been quantified; about 5-10% flow area may remain even at strains which in ideal circumstances would give total blockage. Reduction of average burst strains produced by an oxide layer (up to 13 μm) has been demonstrated, resulting from strain concentration at oxide cracks. (author)

  15. Application of NUREG-1150 methods and results to accident management

    International Nuclear Information System (INIS)

    Dingman, S.; Sype, T.; Camp, A.; Maloney, K.

    1991-01-01

    The use of NUREG-1150 and similar probabilistic risk assessments in the Nuclear Regulatory Commission (NRC) and industry risk management programs is discussed. Risk management is more comprehensive than the commonly used term accident management. Accident management includes strategies to prevent vessel breach, mitigate radionuclide releases from the reactor coolant system, and mitigate radionuclide releases to the environment. Risk management also addresses prevention of accident initiators, prevention of core damage, and implementation of effective emergency response procedures. The methods and results produced in NUREG-1150 provide a framework within which current risk management strategies can be evaluated, and future risk management programs can be developed and assessed. Examples of the use of the NUREG-1150 framework for identifying and evaluating risk management options are presented. All phases of risk management are discussed, with particular attention given to the early phases of accidents. Plans and methods for evaluating accident management strategies that have been identified in the NRC accident management program are discussed

  16. Application of NUREG-1150 methods and results to accident management

    International Nuclear Information System (INIS)

    Dingman, S.; Sype, T.; Camp, A.; Maloney, K.

    1990-01-01

    The use of NUREG-1150 and similar Probabilistic Risk Assessments in NRC and industry risk management programs is discussed. ''Risk management'' is more comprehensive than the commonly used term ''accident management.'' Accident management includes strategies to prevent vessel breach, mitigate radionuclide releases from the reactor coolant system, and mitigate radionuclide releases to the environment. Risk management also addresses prevention of accident initiators, prevention of core damage, and implementation of effective emergency response procedures. The methods and results produced in NUREG-1150 provide a framework within which current risk management strategies can be evaluated, and future risk management programs can be developed and assessed. Examples of the use of the NUREG-1150 framework for identifying and evaluating risk management options are presented. All phases of risk management are discussed, with particular attention given to the early phases of accidents. Plans and methods for evaluating accident management strategies that have been identified in the NRC accident management program are discussed. 2 refs., 3 figs

  17. Loss-of-coolant accident mitigation for the Advanced Neutron Source Reactor

    International Nuclear Information System (INIS)

    Chen, N.C.J.; Wendel, M.W.; Yoder, G.L. Jr.

    1994-01-01

    A RELAP5 Advanced Neutron Source Reactor system model has been developed for the conceptual design safety analysis. Three major regions modeled are the core, the heat exchanger loops, and letdown/pressurizing system. The model has been used to examine design alternatives for mitigation of loss-of-coolant accident (LOCA) transients. The safety margins to the flow excursion limit and critical heat flux are presented. The results show that the core can survive an instantaneous double-ended guillotine of the core outlet piping break (610 mm-diameter) provided a cavitating venturi is employed. RELAP5 calculations were also used to determine the effects of using a non-instantaneous break opening times. Both break opening time and break formation characteristics were included in these parametric calculations. Accumulator optimization studies were also performed which suggest that an optimum accumulator bubble size exists which improves system performance under some break scenarios

  18. Babcock and Wilcox revisions to CONTEMPT, computer program for predicting containment pressure-temperature response to a loss-of-coolant accident

    International Nuclear Information System (INIS)

    Hsii, Y.H.

    1976-06-01

    The CONTEMPT computer program predicts the pressure-temperature response of a single-volume reactor building to a loss-of-coolant accident. The report describes the analytical model used for the program. CONTEMPT assumes that the loss-of-coolant accident can be separated into two phases; the primary system blowdown and reactor building pressurization. The results of the blowdown analysis serve as the boundary conditions and are input to the CONTEMPT program. Thus, the containment model is only concerned with the pressure and temperature in the reactor building and the temperature distribution through the reactor building structures. The user is required to input the description of the discharge of coolant, the boiling of residual water by reactor decay heat, the superheating of steam passing through the core, and metal-water reactions. The reactor building is separated into liquid and vapor regions. Each region is in thermal equilibrium itself, but the two may not be in thermal equilibrium; the liquid and gaseous regions may have different temperatures. The reactor building is represented as consisting of several heat-conducting structures whose thermal behavior can be described by the one-dimensional multi-region heat conduction equation. The program also calculates building leakage and the effects of engineered safety features such as reactor building sprays, decay heat coolers, sump coolers, etc

  19. Loss-of-coolant accident for large pipe breaks in light water reactor plants

    International Nuclear Information System (INIS)

    Keusenhoff, J.

    1980-01-01

    The importance of loss-of-coolant accidents (LOCA) and their control for nuclear reactor safety is explained. Showing the cooling circuits and emergency core cooling systems (ECCS) of both, PWR and BWR, the possible break spectrum and the general sequence of events is discussed. The governing physical phenomena for the different LOCA phases are pointed out in more detail. Special emphasis is taken on rules, regulations and failure criteria for licensing purposes. Analysis methods and codes for both, evaluation and best-estimate model are compared under deterministic and probabilistic approach, respectively. Some insight in present integral and separate effect tests demonstrates the interdependency of analysis and experiment. Results of LOCA analysis and experiments show the present state of the art. (orig.)

  20. Source term and behavioural parameters for a postulated HIFAR loss-of-coolant accident

    International Nuclear Information System (INIS)

    May, F.G.

    1987-01-01

    The fraction of the fission product inventory which might be released into the atmosphere of the HIFAR reactor containment building (RCB) during a postulated loss-of-coolant accident (LOCA) has been evaluated as a function of time, for each classification of airborne radioactivity. This appraisal will be used as the source term for a computer program, which uses realistic attenuation of the fission product aerosol in a single compartment model with a defined leakrate to predict possible radioactive releases into the environment in a hypothetical bounding case reactor accident which is rather more severe in all major aspects than any single LOCA. Also given are the parameters governing the attenuation of the aerosol and vapours in the atmosphere of the RCB so that their behaviour may be accurately modelled. The source terms for several other types of accident involving the meltdown of fuel elements have also been considered but in less detail than the LOCA case. In some of the cases, the fission products are released directly to atmosphere, so there is no attenuation of the release by deposition within the RCB

  1. Review of nuclear reactor accidents

    International Nuclear Information System (INIS)

    Connelly, J.W.; Storr, G.J.

    1989-01-01

    Two types of severe reactor accidents - loss of coolant or coolant flow and transient overpower (TOP) accidents - are described and compared. Accidents in research reactors are discussed. The 1961 SL1 accident in the US is used as an illustration as it incorporates the three features usually combined in a severe accident - a design flaw or flaws in the system, a circumvention of safety circuits or procedures, and gross operator error. The SL1 reactor, the reactivity accident and the following fuel-coolant interaction and steam explosion are reviewed. 3 figs

  2. Simulation of a loss of coolant accident with hydroaccumulator injection

    International Nuclear Information System (INIS)

    1988-10-01

    An essential component of nuclear safety activities is the analysis of postulated accidents which are taken as a design basis for a facility. This analysis is usually carried out by using complex computer codes to simulate the behaviour of the plant and to calculate vital plant parameters, which are then compared with the design limits. Since these simulations cannot be verified at the plant itself, computer codes must be validated by comparing the results of calculations with experimental data obtained in test facilities. The IAEA, having identified the need for experimental data due to the difficulties of building integral test facilities and the high costs of these experiments, has accepted the offer of the Hungarian Academy of Sciences and organized two standard problem exercises. In these exercises, experimental data from the simulation of a 7.4% break loss of coolant accident was compared with analytical prediction of the behaviour of the facility calculated with computer codes. The second standard problem exercise involved a similar test, with the exception that in this case hydroaccumulator of the safety injection system were allowed to inject water in the system as anticipated in the design of the plant. This document presents a complete overview of the Second Standard Problem Exercise, including description of the facility, the experiment, the codes and models used by the participants and a detailed intercomparison of calculated and experimental results. It is recognized that code assessment is a long process which involves many inter-related steps, therefore, no general conclusion on optimum code or best model was reached. However, the exercise was recognized as an important contributor to code validation. 22 refs, figs and tabs

  3. Analysis of fuel rod behaviour within a rod bundle of a pressurized water reactor under the conditions of a loss of coolant accident (LOCA) using probabilistic methodology

    International Nuclear Information System (INIS)

    Sengpiel, W.

    1980-12-01

    The assessment of fuel rod behaviour under PWR LOCA conditions aims at the evaluation of the peak cladding temperatures and the (final) maximum circumferential cladding strains. Moreover, the estimation of the amount of possible coolant channel blockages within a rod bundle is of special interest, as large coplanar clad strains of adjacent rods may result in strong local reductions of coolant channel areas. Coolant channel blockages of large radial extent may impair the long-term coolability of the corresponding rods. A model has been developed to describe these accident consequences using probabilistic methodology. This model is applied to study the behaviour of fuel rods under accident conditions following the double-ended pipe rupture between collant pump and pressure vessel in the primary system of a 1300 MW(el)-PWR. Specifically a rod bundle is considered consisting of 236 fuel rods, that is subjected to severe thermal and mechanical loading. The results obtained indicate that plastic clad deformations with circumferential clad strains of more than 30% cannot be excluded for hot rods of the reference bundle. However, coplanar coolant channel blockages of significant extent seem to be probable within that bundle only under certain boundary conditions which are assumed to be pessimistic. (orig./RW) [de

  4. Interfacing systems LOCAs [Loss of Coolant Accidents] at boiling water reactors

    International Nuclear Information System (INIS)

    Chu, Tsong-Lun; Fitzpatrick, R.; Stoyanov, S.

    1987-01-01

    The work presented in this paper was performed by Brookhaven National Laboratory (BNL) in support of Nuclear Regulatory Commission's (NRC) effort towards the resolution of Generic Issue 105 ''Interfacing System Loss of Coolant Accidents (LOCAs) at Boiling Water Reactors (BWRs).'' For BWRs, intersystem LOCA have typically either not been considered in probabilistic risk analyses, or if considered, were judged to contribute little to the risk estimates because of their perceived low frequency of occurrence. However, recent operating experience indicates that the pressure isolation valves (PIVs) in BWRs may not adequately protect against overpressurization of low pressure systems. The objective of this paper is to present the results of a study which analyzed interfacing system LOCA at several BWRs. The BWRs were selected to best represent a spectrum of BWRs in service using industry operating event experience and plant-specific information/configurations. The results presented here include some possible changes in test requirements/practices as well as an evaluation of their reduction potential in terms of core damage frequency

  5. Limits to fuel/coolant mixing

    International Nuclear Information System (INIS)

    Corradini, M.L.; Moses, G.A.

    1985-01-01

    The vapor explosion process involves the mixing of fuel with coolant prior to the explosion. A number of analysts have identified limits to the amount of fuel/coolant mixing that could occur within the reactor vessel following a core melt accident. Past models are reviewed and a sim plified approach is suggested to estimate the upper limit on the amount of fuel/coolant mixing pos sible. The approach uses concepts first advanced by Fauske in a different way. The results indicat that water depth is an important parameter as well as the mixing length scale D /SUB mix/ , and for large values of D /SUB mix/ the fuel mass mixed is limited to <7% of the core mass

  6. Analytical and experimental assessment of TVS-2006 fuel assembly thermal-mechanical shape deformation at temperature modeling of a loss-of-coolant accident

    International Nuclear Information System (INIS)

    Afanasiev, A.; Semishkin, V.; Makarov, V.; Matvienko, I.; Puzanov, D.

    2015-01-01

    Full or partial core drying-out takes place in loss-of-coolant accidents, which leads to worsening of heat removal from the fuel rods. Depending on the accident scenario the fuel rod cladding temperature can be in a wide range from 350 to 1200°C. It is worth mentioning, that the length of the process can considerably affect the fuel rod cladding loadcarrying capacity and the FA structure as a whole, and in the long run it defines the radiation consequences of the accident and the possibility of postaccident core disassembly at low cost. Most experiments staged of late were devoted to a study of FA behaviour in the temperature range 800-900°C of α→β phase transition that is characterized by a sharp increase in the rate of zirconium alloy creep which leads to fuel rod cladding ballooning and loss of their tightness within a short period of time. The 600-700°C temperature range turned out to be less investigated whereas this is the range where the change of zirconium alloy mechanical properties is also observed but only with the retention of α-phase. The tests of a full-scale FA dummy with the skeleton of guide tubes and spacer grids connected by friction forces, carried out at the testing facility of JSC OKB “GIDROPRESS”, were devoted to a study of FA behaviour in this temperature range. The model was heated up with hot air to 650°C for 6 hours. The tests ended with fuel rod cladding ballooning due to gauge pressure and shape deformation. No loss of fuel rod cladding integrity was observed. Therefore, a conclusion can be made that a long-time core holdup at the parameters implemented at the test facility is permitted and the deformations of the FA structure do not lead to the damage that could considerably complicate the core disassembly. The test results were used for the verification of the calculational model of FA TVS-2006 structure with a welded skeleton by ANSYS code. On the basis of the verified calculational model a calculational model was

  7. The numerical simulation of the WWER-440/V-213 reactor pressure vessel internals response to maximum hypothetical large break loss of coolant accident

    International Nuclear Information System (INIS)

    Hermansky, P.; Krajcovic, M.

    2012-01-01

    The reactor internals are designed to ensure cooling of the fuel, to ensure the movement of emergency control assemblies under all operating conditions including accidents and facilitate removal of the fuel and of the internals following an accident This paper presents results of the numerical simulation of the WWER-440/V213 reactor vessel internals dynamic response to maximum hypothetical Large-Break Loss of Coolant Accident. The purpose of this analysis is to determine the reactor vessel internals response due to rapid depressurization and to prove no such deformations occur in the reactor vessel internals which would prevent timely and proper activation of the emergency control assemblies. (Authors)

  8. A comparison of the consequences of the design basis accident of the Greek Research Reactor with those of a serious realistic accident

    International Nuclear Information System (INIS)

    Kollas, J.G.; Anoussis, J.N.

    1985-12-01

    An analysis of the radiological consequences of the design basis and the coolant flow blockage accidents of the Greek Research Reactor is presented. The results indicate that the consequences of the coolant flow blockage accident are practically trivial being 1-2 orders of magnitude lower than the corresponding consequences of the design basis accident. (author)

  9. Safeguarding of emergency core cooling in case of loss-of-coolant accidents with insulation material release

    International Nuclear Information System (INIS)

    Pointner, W.; Broecker, A.

    2012-01-01

    The report on safeguarding of emergency core cooling in case of loss-of-coolant accidents with insulation material release covers the following issues: assessment of the relevant status for PWR, evaluation of the national and international (USA, Canada, France) status, actualization of recommendations, transferability from PWR to BWR. Generic studies on the core cooling capability in case of insulation material release in BWR-type reactors were evaluated.

  10. Frontier between medium and large break loss of coolant accidents of pressurized water reactor

    Science.gov (United States)

    Kim, Taewan

    2017-10-01

    In order to provide the probabilistic safety assessment with more realistic condition to calculate the frequency of the initiating event, a study on the frontier between medium-break and large-break loss-of-coolant-accidents has been performed by using best-estimate thermal hydraulic code, TRACE. A methodology based on the combination of the essential safety features and system parameter has been applied to the Zion nuclear power plant to evaluate the validity of the frontier utilized for the probabilistic safety assessment. The peak cladding temperature has been chosen as a relevant system parameter that represents the system behavior during the transient. The results showed that the frontier should be extended from 6 in. to 10 in. based on the required safety functions and system response.

  11. Application of the Severe Accident Code ATHLET-CD. Coolant injection to primary circuit of a PWR by mobile pump system in case of SBLOCA severe accident scenario

    Energy Technology Data Exchange (ETDEWEB)

    Jobst, Matthias; Wilhelm, Polina; Kliem, Soeren; Kozmenkov, Yaroslav [Helmholtz-Zentrum Dresden-Rossendorf e.V., Dresden (Germany). Reactor Safety

    2017-06-01

    The improvement of the safety of nuclear power plants is a continuously on-going process. The analysis of transients and accidents is an important research topic, which significantly contributes to safety enhancements of existing power plants. In case of an accident with multiple failures of safety systems, core uncovery and heat-up can occur. In order to prevent the accident to turn into a severe one or to mitigate the consequences of severe accidents, different accident management measures can be applied. By means of numerical analyses performed with the compute code ATHLET-CD, the effectiveness of coolant injection with a mobile pump system into the primary circuit of a PWR was studied. According to the analyses, such a system can stop the melt progression if it is activated prior to 10 % of total core is molten.

  12. Application of the Severe Accident Code ATHLET-CD. Coolant injection to primary circuit of a PWR by mobile pump system in case of SBLOCA severe accident scenario

    International Nuclear Information System (INIS)

    Jobst, Matthias; Wilhelm, Polina; Kliem, Soeren; Kozmenkov, Yaroslav

    2017-01-01

    The improvement of the safety of nuclear power plants is a continuously on-going process. The analysis of transients and accidents is an important research topic, which significantly contributes to safety enhancements of existing power plants. In case of an accident with multiple failures of safety systems, core uncovery and heat-up can occur. In order to prevent the accident to turn into a severe one or to mitigate the consequences of severe accidents, different accident management measures can be applied. By means of numerical analyses performed with the compute code ATHLET-CD, the effectiveness of coolant injection with a mobile pump system into the primary circuit of a PWR was studied. According to the analyses, such a system can stop the melt progression if it is activated prior to 10 % of total core is molten.

  13. Comparison of the cladding deformation measured during the Power Burst Facility loss-of-coolant accident in-pile experiments with recent Oak Ridge National Laboratory out-of-pile results

    International Nuclear Information System (INIS)

    Broughton, J.M.; McCardell, R.K.; MacDonald, P.E.

    1981-01-01

    A series of four large break loss-of-coolant accident fuel behavior experiments have been performed in the Power Burst Facility. The results of these experiments are briefly reviewed and compared with results from the ORNL multirod burst test program. The effect of cladding burst temperature and prior irradiation were investigated. The cladding strain of the previously irradiated test rods was more uniformly distributed around the cladding circumference and larger than for similar unirradiated test rods. The ORNL out-of-pile single rod test results are in good agreement with the Power Burst Facility (PBF) test results with unirradiated test rods, and the ORNL out-of-pile, single-rod test results with heated shrouds and the PBF test results with previously irradiated test rods are comparable

  14. Models for coolant void reactivity evaluation in Candu Generation II and III+

    International Nuclear Information System (INIS)

    Popov, Alexi V.; Chambon, Richard P.; Le Tellier, Romain; Marleau, Guy; Hebert, Alain

    2008-01-01

    In the simulation of large-break loss-of-coolant accidents, homogenised cross-sections from trans- port calculations are used. These are usually computed in single cells or lattices representative for an infinite repeated pattern. Large coolant accidents in Candu, however, usually exhibit a checkerboard pattern of cooled and voided channels represented by lattices. It is reasonable, therefore, that homogenised cross-sections be produced in assemblies of lattices. This allows simulating the checkerboard voiding pat- tern and more realistically reproducing the lattice boundary conditions. The result is better simulation of the accident and more precise evaluation of coolant-void reactivity. For the present study, homogenised cross-sections are generated in a 2x2 heterogeneous assembly of four lattices for Generation II and III+ Candu designs. Results of reactivity calculations with the reactor code are compared to those using the traditional method. The difference is significant for Generation III+ Candu. (authors)

  15. Tools evaluation and development for loss of coolant accidents analysis in research reactors

    International Nuclear Information System (INIS)

    Maprelian, Eduardo; Cabral, Eduardo L.L.; Silva, Antonio T. e

    1999-01-01

    The loss of coolant accidents (LOCA) in pool type research reactors are normally considered as limiting in the licensing process. This paper verifies the viability of the computer code 3D-AIRLOCA to analyze LOCA in a pool type research reactor, and also develops two computer codes LOSS and TEMPLOCA. The computer code LOSS determines the time tom drawn the pool down to the level of the bottom of the core, and the computer code TEMPLOCA calculates the peak fuel element temperature during the transient. These two coders substitutes the 3D-AIRLOCA in the LOCA analysis for pool type research reactors. (author)

  16. Computer programmes of the Power Research Institute for the analysis of processes in the primary coolant circuit and in the containment of a WWER plant in a loss-of-coolant accident

    International Nuclear Information System (INIS)

    Misak, J.

    1976-01-01

    A brief description is given of computer programmes for the analysis of loss-of-coolant accidents (LOCA) in WWER type reactors. The LENKA programme is intended for the thermal and hydraulic analysis of the consequences of such accidents in the primary coolant circuit. The SICHTA programme is intended for the detailed calculation of the time dependence of the axial and radial distribution of heat in fuel rods from steady-state to the flooding of the core. CHEMLOC is intended for the analysis of the heat history of the core and the extent of chemical reactions in LOCA when the emergency core cooling system is not operating. The TRACO I is intended for the analysis of the initial stage of the transient process in a full-pressure containment after LOCA (the computation of the time and spatial dependences of pressures and temperatures). TRACO III is intended for the computation of the long-term time dependence of pressure and temperature in the full-pressure containment after LOCA. (B.S.)

  17. Break spectrum analyses for small break loss of coolant accidents in a RESAR-3S Plant

    International Nuclear Information System (INIS)

    Fletcher, C.D.; Kullberg, C.M.

    1986-03-01

    A series of thermal-hydraulic analyses were performed to investigate phenomena occurring during small break loss-of-coolant-accident (LOCA) sequences in a RESAR-3S pressurized water reactor. The analysis included simulations of plant behavior using the TRAC-PF1 and RELAP5/MOD2 computer codes. Series of calculations were performed using both codes for different break sizes. The analyses presented here also served an audit function in that the results shown here were used by the US Nuclear Regulatory Commission (NRC) as an independent confirmation of similar analyses performed by Westinghouse Electric Company using another computer code. 10 refs., 62 figs., 14 tabs

  18. Coolant processing device for nuclear reactor

    International Nuclear Information System (INIS)

    Kizawa, Hideo; Funakoshi, Toshio; Izumoji, Yoshiaki

    1981-01-01

    Purpose: To reduce an entire facility cost by concentrating and isolating tritium accumulated in coolants, removing the tritium out of the system, and returning hydrogen gas generated at a reactor accident to a recombiner in a closed loop by the switching of a valve. Constitution: Coolant from a reactor cooling system processed by a chemical volume control system facility (CVCS) and coolant drain from various devices processed by a liquid waste disposing system facility (LWDS) are fed to a tritium isolating facility, in which they are isolated into concentrated tritium water and dilute tritium water. The concentrated tritium water is removed out of the system and stored. The dilute tritium water is reused as supply water for coolant. If an accident occurs to cause hydrogen to be generated, a closed loop is formed between the containment vessel and the recombiner, the hydrogen is recombined with oxygen in the air of the closed loop to be thus returned to water. (Kamimura, M.)

  19. Generic evaluation of feedwater transients and small break loss-of-coolant accidents in GE-designed operating plants and near-term operating license applications

    International Nuclear Information System (INIS)

    1980-01-01

    The results are presented of a generic evaluation of feedwater transients, small-break loss-of-coolant accidents (LOCAs), and other TMI-2-related events for General Electric Company (GE)-designed operating plants and near-term operating license applications to confirm or establish the bases for the continued safe operation of the operating plants. The results of this evaluation are presented in this report in the form of a set of findings and recommendations in each of the principal review areas. Additional review of the accident is continuing and further information is being obtained and evaluated. Any new information will be reviewed and modifications will be made as appropriate

  20. ESBWR long term containment response to loss of coolant accidents

    International Nuclear Information System (INIS)

    Alamgir, M. D.; Marquino, W.; Diaz-Quiroz, J.; Tucker, L.

    2010-01-01

    ESBWR is a 4500 MWt generation III+ natural circulation reactor with an array of robust passive safety systems to keep the reactor safe during postulated transients and accidents. With the submittal of the latest revision of the Design Control Document (DCD) to US Nuclear Regulatory Commission, ESBWR is nearing the completion of the US certification process. This paper focuses on the bounding licensing analysis of the long-term (30-day) response of the ESBWR containment to limiting Loss of Coolant Accident (LOCA) performed with the TRACG code. It is shown that using only passive systems available during the first 72 hours after the limiting Main Steam Line Break LOCA, the predicted peak containment pressure in the ESBWR containment remain well below the design limits with good margin. After 72 hours of LOCA initiation, PCCS Vent Fans (non-safety system) become available that remove non-condensable gases from, and further enhance the effectiveness of, PCCS heat exchangers to reduce the containment pressure and temperature to values substantially below the design limits. During the post- 72 hour period, the beneficial effects of the Vent Fan operation, combined with the available operator action to refill of PCCS pools, continue to maintain the containment pressure to about 30% below the design limit at 30 days after a limiting ESBWR LOCA. (authors)

  1. Conceptual design loss-of-coolant accident analysis for the Advanced Neutron Source reactor

    International Nuclear Information System (INIS)

    Chen, N.C.J.; Wendel, M.W.; Yoder, G.L. Jr.

    1994-01-01

    A RELAP5 system model for the Advanced Neutron Source Reactor has been developed for performing conceptual safety analysis report calculations. To better represent thermal-hydraulic behavior of the core, three specific changes in the RELAP5 computer code were implemented: a turbulent forced-convection heat transfer correlation, a critical heat flux (CHF) correlation, and an interfacial drag correlation. The model consists of the core region, the heat exchanger loop region, and the pressurizing/letdown system region. Results for three loss-of-coolant accident analyses are presented: (1) an instantaneous double-ended guillotine (DEG) core outlet break with a cavitating venturi installed downstream of the core, (b) a core pressure boundary tube outer wall rupture, and (c) a DEG core inlet break with a finite break-formation time. The results show that the core can survive without exceeding the flow excursion of CHF thermal limits at a 95% probability level if the proper mitigation options are provided

  2. Two-phase coolant pump model of pressurized light water nuclear reactors

    International Nuclear Information System (INIS)

    Santos, G.A. dos; Freitas, R.L.

    1990-01-01

    The two-phase coolant pump model of pressurized light water nuclear reactors is an important point for the loss of primary coolant accident analysis. The homologous curves set up the complete performance of the pump and are input for accidents analysis thermal-hydraulic codes. This work propose a mathematical model able to predict the two-phase homologous curves where it was incorporated geometric and operational pump condition. The results were compared with the experimental tests data from literature and it has showed a good agreement. (author)

  3. Deformation of PWR cladding following a loss-of-coolant accident

    International Nuclear Information System (INIS)

    Hindle, E.D.; Mann, C.A.

    1979-07-01

    A review is presented of recent experiments to investigate the deformation behaviour of Zircaloy cladding in simulated loss-of-coolant accidents. The behaviour of Zircaloy cladding is shown to be controlled by a complex interaction of metallurgical and heat transfer variables, with the latter having a major influence. There is a significant increase in both diametral strain and the axial extent of deformation in multi-rod compared with single-rod tests. The extent to which this will occur in nuclear-heated tests is not yet known; however, it is expected that the 'smearing' of the gamma-radiation portion of decay heat in such tests will tend to reduce circumferential temperature variations. Opposing this is the influence of the colder control rods in an assembly. The resolution of this dichotomy will require a series of in-reactor multi-rod tests and attendant code development. (author)

  4. Analysis of the loss of coolant accident due to the faiture in the open position of two pressurizer relief valves, for Angra-1 nuclear power plant

    International Nuclear Information System (INIS)

    Freire, C.F.

    1981-06-01

    A study of the modeling techniques adequate for simulating the loss of coolant accident caused by stuck open pressurizer relief valves, using the RELAP4-MOD5 code, is performed and the model developed is applied to the analysis of this kind of accident for the Central Nuclear Almirante Alvaro Alberto Unit (Angra 1). The thermal hydraulic behavior of the reactor cooling system, when subjected to a loss of main feedwater followed by the failure in the open position of two pressurizer relief valves, is determined. The relief valves are assumed to fail in the totally open position, delivering the maximum massflow through the discharge line. The RELAP4-MOD5 code is shown to be adequate for this kind of analysis, and the detailed prediction of the thermal hydraulic behavior of the Reactor Coolant System is thus possible. The eficiency of the emergency core cooling system of Angra 1 is demonstrated, the fuel elements remaining covered by the coolant during all the accident, and the peak clad temperatures are kept within design limites, ensuring the integrity of the core. (Author) [pt

  5. Natural circulation in reactor coolant system

    International Nuclear Information System (INIS)

    Han, J.T.

    1987-01-01

    Reactor coolant system (RCS) natural circulation in a PWR is the buoyancy-driven coolant circulation between the core and the upper-plenum region (in-vessel circulation) with or without a countercurrent flow in the hot leg piping between the vessel and steam generators (ex-vessel circulation). This kind of multidimensional bouyancy-driven flow circulation serves as a means of transferring the heat from the core to the structures in the upper plenum, hot legs, and possibly steam generators. As a result, the RCS piping and other pressure boundaries may be heated to high temperatures at which the structural integrity is challenged. RCS natural circulation is likely to occur during the core uncovery period of the TMLB' accident in a PWR when the vessel upper plenum and hot leg are already drained and filled with steam and possibly other gaseous species. RCS natural circulation is being studied for the Surry plant during the TMLB' accident in which station blackout coincides with the loss of auxiliary feedwater and no operator actions. The effects of the multidimensional RCS natural circulation during the TMLB' accident are discussed

  6. Analysis of fuel behaviour after loss-of-coolant accident with the TESPA-code

    International Nuclear Information System (INIS)

    Keusenhoff, J.

    1981-01-01

    After a loss-of-coolant accident fuel rods go through a phase of high temperature and differential pressure before quenching and initiation of long term cooling. For licensing purpose the highest cladding temperature and the coolability of the core is of interest. The highest temperature is evaluated by a hot channel calculation with conservative assumptions. It gives little information about the status of the entire core. Therefore more detailed information is necessary. TESPA is a fast running code, which uses best-estimate assumptions, considers statistical uncertainties in the input parameters and calculates clad ballooning and rupture. The code is a usefull tool for calculation of channel blockage and cladding rupture

  7. VICTORIA: A mechanistic model of radionuclide behavior in the reactor coolant system under severe accident conditions

    International Nuclear Information System (INIS)

    Heams, T.J.; Williams, D.A.; Johns, N.A.; Mason, A.; Bixler, N.E.; Grimley, A.J.; Wheatley, C.J.; Dickson, L.W.; Osborn-Lee, I.; Domagala, P.; Zawadzki, S.; Rest, J.; Alexander, C.A.; Lee, R.Y.

    1992-12-01

    The VICTORIA model of radionuclide behavior in the reactor coolant system (RCS) of a light water reactor during a severe accident is described. It has been developed by the USNRC to define the radionuclide phenomena and processes that must be considered in systems-level models used for integrated analyses of severe accident source terms. The VICTORIA code, based upon this model, predicts fission product release from the fuel, chemical reactions involving fission products, vapor and aerosol behavior, and fission product decay heating. Also included is a detailed description of how the model is implemented in VICTORIA, the numerical algorithms used, and the correlations and thermochemical data necessary for determining a solution. A description of the code structure, input and output, and a sample problem are provided

  8. PCTRAN enhancement for large break loss of coolant accident concurrent with loss of offsite power in VVER-1000 simulation

    Energy Technology Data Exchange (ETDEWEB)

    Hadad, Kamal; Esmaeili-Sanjavanmareh, Mansour [Shiraz Univ., Shiraz (Iran, Islamic Republic of). Dept. of Nuclear Engineering

    2017-05-15

    PCTRAN capability to simulate a large break loss of coolant accident concurrent with the loss of offsite power in Bushehr Nuclear Power Plant is enhanced and investigated. Following the correction of the accident scenario for Bushehr nuclear power plant in PCTRAN, simulation results are compared with the final safety assessment report of that plant. As a result, the primary loop thermal hydraulics parameters including pressure, total flow rates, leakage flow rates and reactor power are in a good agreement with the reference data. Hot and cold leg temperature variations have the same trends as reference data but have a maximum of 80 C disagreement at the transient initiation. The reason for this disagreement is explained and its adjustment is discussed. Improvements of PCTRAN simulator are mainly due to enhancing user control for atmospheric steam dump valve, containment pressure and emergency core cooling systems which are thoroughly described in this paper.

  9. Analyzing the loss of coolant accident in PWR nuclear reactors with elevation change in cold leg by RELAP5/MOD3.2 system code

    International Nuclear Information System (INIS)

    Kheshtpaz, H.; Alison, C.

    2006-01-01

    As, the Russian designed VVER-1000 reactor of the Bushehr Nuclear Power Plant by taking into account the change from German technology to that of Russian technology, and with the design of elevation change in the cold legs has been developed; therefore safety assessment of these systems for loss of coolant accident in elevation change in the cold legs and comparison results for non change elevation in the cold legs for a typical reactor (normal design of nuclear reactors) is the main important factor to be considered for the safe operation. In this article, the main objective is the simulation of the loss of coolant accident scenario by the RELAP5/MOD3.2 code in two different cases; first, the elevation change in the cold legs, and the second, non change in it. After comparing and analyzing these two code calculations the results have been generalized for a new design feature of Bushehr reactor. The design and simulation of the elevation change in the cold legs process with RELAP5/MOD3.2 code for PWR reactor is performed for the first time in the country, where it is introducing several important results in this respect

  10. Insights into location dependent loss-of-coolant-accident (LOCA) frequency assessment for GSI-191 risk-informed applications

    Energy Technology Data Exchange (ETDEWEB)

    Fleming, K.N., E-mail: KarlFleming@comcast.net [KNF Consulting LLC, Spokane, WA (United States); Lydell, B.O.Y. [SIGMA-PHASE INC., Vail, AZ (United States)

    2016-08-15

    Highlights: • Role of operating experience in loss-of-coolant-accident (LOCA) frequency assessment. • Plant-to-plant variability in calculated LOCA frequency. • Frequency of double-ended-guillotine-break (DEGB). • Uncertainties in LOCA frequencies. • Risk management insights. - Abstract: As a tribute to the published work by S.H. Bush, S. Beliczey and H. Schulz, this paper assesses the progress with methods and techniques for quantifying the reliability of piping systems in commercial nuclear power plants on the basis of failure rate estimates derived from field experience data in combination with insights and results from probabilistic fracture mechanics analyses and expert elicitation exercises. This status assessment is made from a technical perspective obtained through development of location-specific loss-of-coolant-accident (LOCA) frequencies for input to risk-informed resolution of the generic safety issue (GSI) 191. The methods and techniques on which these GSI-191 applications are based build on a body of work developed by the authors during a period spanning more than two decades. The insights that are presented and discussed in this paper cover today’s knowledge base concerning how to utilize a risk-informed approach to the assessment of piping reliability in the context of probabilistic risk assessment (PRA) in general and the resolution of GSI-191 in particular. Specifically the paper addresses the extent to which LOCA frequencies vary from location to location within a reactor coolant system pressure boundary (RCPB) for a given plant as well as vary from plant to plant, and the reasons for these variabilities. Furthermore, the paper provides the authors’ perspectives on interpretations and applications of information extracted from an expert elicitation process to obtain LOCA frequencies as documented in NUREG-1829 and how to apply this information to GSI-191. Finally, this paper documents technical insights relative to mitigation of

  11. Insights into location dependent loss-of-coolant-accident (LOCA) frequency assessment for GSI-191 risk-informed applications

    International Nuclear Information System (INIS)

    Fleming, K.N.; Lydell, B.O.Y.

    2016-01-01

    Highlights: • Role of operating experience in loss-of-coolant-accident (LOCA) frequency assessment. • Plant-to-plant variability in calculated LOCA frequency. • Frequency of double-ended-guillotine-break (DEGB). • Uncertainties in LOCA frequencies. • Risk management insights. - Abstract: As a tribute to the published work by S.H. Bush, S. Beliczey and H. Schulz, this paper assesses the progress with methods and techniques for quantifying the reliability of piping systems in commercial nuclear power plants on the basis of failure rate estimates derived from field experience data in combination with insights and results from probabilistic fracture mechanics analyses and expert elicitation exercises. This status assessment is made from a technical perspective obtained through development of location-specific loss-of-coolant-accident (LOCA) frequencies for input to risk-informed resolution of the generic safety issue (GSI) 191. The methods and techniques on which these GSI-191 applications are based build on a body of work developed by the authors during a period spanning more than two decades. The insights that are presented and discussed in this paper cover today’s knowledge base concerning how to utilize a risk-informed approach to the assessment of piping reliability in the context of probabilistic risk assessment (PRA) in general and the resolution of GSI-191 in particular. Specifically the paper addresses the extent to which LOCA frequencies vary from location to location within a reactor coolant system pressure boundary (RCPB) for a given plant as well as vary from plant to plant, and the reasons for these variabilities. Furthermore, the paper provides the authors’ perspectives on interpretations and applications of information extracted from an expert elicitation process to obtain LOCA frequencies as documented in NUREG-1829 and how to apply this information to GSI-191. Finally, this paper documents technical insights relative to mitigation of

  12. Experimental investigations of pressure and temperature loads on a containment after a loss-of-coolant accident

    International Nuclear Information System (INIS)

    Kanzleiter, T.F.

    1976-01-01

    For the design of an LWR containment one of the important conditions to be considered is the rapid rise of internal pressure and temperature caused by a loss-of-coolant accident (LOCA) of the primary cooling system. The phenomena occurring within a containment during a LOCA are currently investigated through experiments with a model containment. The experimental results are compared with the results of model calculations to improve the calculational methods. An experimental facility was built, consisting of a primary coolant circuit and a special model containment. The model containment, built in conventional reinforced concrete, has a diameter of 12 m, a height of 12.5 m, a capacity of 580 m 3 and is designed for an internal pressure of 6 bar. The interior is divided by concrete walls and removable partitions into several compartments, which are interconnected through openings with adjustable cross sections. By exchanging the removable partitions it is possible to modify the interior of the containment and to simulate different containment shapes. For the first experiments a PWR configuration with nine compartments has been installed. The model scales of the compartment volumes and the overflow areas are about 1 : 64 compared to the 1200 MW PWR plant Biblis A. (Auth.)

  13. An assessment of the individual and social risks of Athens population resulting from a hypothetical loss-of-coolant-accident release of the Greek Research Reactor-1

    International Nuclear Information System (INIS)

    Kollas, John; Synodinou, Varvara; Varsamis, G.; Antoniades, John; Catsaros, Nicolas.

    1984-03-01

    In this report the loss-of-coolant-accident consequences for the Greek Research Reactor-1 which is located within the limits of Athens are estimated. The source term emerges from a conservative 20% coremelt with 25 isotopes taken into consideration. Individual and social risks are calculated to a distance of 20 km from the reactor site, an area covering the whole Athens region of 3,081,000 inhabitants. Latent health effects due to both initial an chronic exposure from inhalation of resuspended radionuclides and exposure to groundshine from contaminated ground are assessed. (author)

  14. RELAP5 simulation of a large break Loss of Coolant Accident (LOCA) in the hot leg of the primary system in Angra 2 nuclear power plant

    International Nuclear Information System (INIS)

    Andrade, Delvonei Alves de; Sabundjian, Gaiane

    2004-01-01

    The objective of this work is to present the simulation of a large break loss of coolant accident - LBLOCA in the hot leg of the primary loop in Angra 2, with RELAP5/MOD3.2.2g code. This accident is described in the Final Safety Report Analysis of Angra 2 - FSAR and consists basically of the hot leg total break, in loop 20 of the plant. The area considered for the rupture is 4480 cm 2 , which corresponds to 100% of the pipe flow area. Besides, this work also has the objective of verifying the efficiency of the emergency core coolant system - ECCS in case of accidents and transients. The thermal-hydraulic processes inherent to the accident phenomenology, such as hot leg vaporization and consequently core vaporization causing an inappropriate flow distribution in the reactor core, can lead to a reduction in the liquid level, until the ECCS is capable to reflood it

  15. Assumptions used for evaluating the potential radiological consequences of a less of coolant accident for pressurized water reactors - June 1974

    International Nuclear Information System (INIS)

    Anon.

    1974-01-01

    Section 50.34 of 10 CFR Part 50 requires that each applicant for a construction permit or operating license provide an analysis and evaluation of the design and performance of structures, systems, and components of the facility with the objective of assessing the risk to public health and safety resulting from operation of the facility. The design basis loss of coolant accident is one of the postulated accidents used to evaluate the adequacy of these structures, systems, and components with respect to the public health and safety. This guide gives acceptable assumptions that may be used in evaluating the radiological consequences of this accident for a pressurized water reactor. In some cases, unusual site characteristics, plant design features, or other factors may require different assumptions which will be considered on an individual case basis. The Advisory Committee on Reactor Safeguards has been consulted concerning this guide and has concurred in the regulatory position

  16. Assumptions used for evaluating the potential radiological consequences of a loss of coolant accident for boiling water reactors - June 1974

    International Nuclear Information System (INIS)

    Anon.

    1974-01-01

    Section 50.34 of 10 CFR Part 50 requires that each applicant for a construction permit or operating license provide an analysis and evaluation of the design and performance of structures, systems, and components of the facility with the objective of assessing the risk to public health and safety resulting from operation of the facility. The design basis loss of coolant accident is one of the postulated accidents used to evaluate the adequacy of these structures, systems, and components with respect to the public health and safety. This guide gives acceptable assumptions that may be used in evaluating the radiological consequences of this accident for a pressurized water reactor. In some cases, unusual site characteristics, plant design features, or other factors may require different assumptions which will be considered on an individual case basis. The Advisory Committee on Reactor Safeguards has been consulted concerning this guide and has concurred in the regulatory position

  17. Fuel rod thermal analysis of the Angra-1 reactor during a postulated loss of coolant accident

    International Nuclear Information System (INIS)

    Praes, J.G.L.

    1982-01-01

    A thermal analysis of a fuel element is performed, as subject to the most severe cooling conditions, such as those occurring during a postulated Loss of Coolant Accident in the Angra-I reactor. Our objective was to ascertain whether the cooling of the core is assured according to 10 CRF - 50. According to the stated purpose, sensitivity analyses are necessary, using the swelling and rupture models of the cladding, and at the same time, an updating of the FLECHT heat transfer correlations in the computing program used, which is TOODEE-2 e 1 Version(28), with the purpose of adequating it to the Angra-I core analysis. In addition, we did sensitivity studies on heat transfer coefficient calculations for the steam cooling model. From the results obtained we conclude that the maximum temperature values of the cladding and the oxidation rate due to the Z sub(r) H 2 O reaction were kept well below the maximum allowable limits. Thus, the cooling of the Angra-I core is assured for the assumed accident. (Author) [pt

  18. CONTEMPT: computer program for predicting containment pressure-temperature response to a loss-of-coolant accident

    International Nuclear Information System (INIS)

    Hsii, Y.H.

    1978-04-01

    The CONTEMPT code is used by Babcock and Wilcox for containment analysis following a postulated loss of coolant accident. An additional model is described which is used for the calculation of long term post reflood mass and energy releases to the containment that is used for the containment design basis LOCA calculations. These calculations maximize the rate of energy flow to the containment. The mass and energy data are given to the containment designer for use in calculating the containment building design pressure and temperature and in sizing containment heat removal equipment

  19. Analysis of forces on core structures during a loss-of-coolant accident. Final report

    International Nuclear Information System (INIS)

    Griggs, D.P.; Vilim, R.B.; Wang, C.H.; Meyer, J.E.

    1980-08-01

    There are several design requirements related to the emergency core cooling which would follow a hypothetical loss-of-coolant accident (LOCA). One of these requirements is that the core must retain a coolable geometry throughout the accident. A possible cause of core damage leading to an uncoolable geometry is the action of forces on the core and associated support structures during the very early (blowdown) stage of the LOCA. An equally unsatisfactory design result would occur if calculated deformations and failures were so extensive that the geometry used for calculating the next stages of the LOCA (refill and reflood) could not be known reasonably well. Subsidiary questions involve damage preventing the operation of control assemblies and loss of integrity of other needed safety systems. A reliable method of calculating these forces is therefore an important part of LOCA analysis. These concerns provided the motivation for the study. The general objective of the study was to review the state-of-the-art in LOCA force determination. Specific objectives were: (1) determine state-of-the-art by reviewing current (and projected near future) techniques for LOCA force determination, and (2) consider each of the major assumptions involved in force determination and make a qualitative assessment of their validity

  20. Study on primary coolant system depressurization effect factor in pressurized water reactor

    International Nuclear Information System (INIS)

    Ji Duan; Cao Xuewu

    2006-01-01

    The progression of high-pressure core melting severe accident induced by very small break loss of coolant accident plus the loss of main feed water and auxiliary feed water failure is studied, and the entry condition and modes of primary cooling system depressurization during the severe accident are also estimated. The results show that the temperature below 650 degree C is preferable depressurization input temperature allowing recovery of core cooling, and the available and effective way to depressurize reactor cooling system and to arrest very small break loss of coolant accident sequences is activating pressurizer relief valves initially, then restoring the auxiliary feedwater and opening the steam generator relief valves. It can adequately reduce the primary pressure and keep the capacity loop of long-term core cooling. (authors)

  1. A review of Zircaloy fuel cladding behavior in a loss-of-coolant accident

    International Nuclear Information System (INIS)

    Erbacher, F.J.; Leistikow, S.

    1985-09-01

    The paper reviews the state-of-the-art experimental work performed in several countries with respect to the acceptance criteria established for emergency core cooling (ECC) in a loss-of-coolant accident (LOGA) of light water reactors (LWRs). It covers in detail oxidation, embrittlement, plastic deformation and coolability of deformed rod bundles. The main test results are discussed on the basis of research work performed at the Karlsruhe Nuclear Research Center (KfK) within the framework of the Nuclear Safety Project (PNS) and reference is made to test data obtained in other countries. The conclusion reached in the paper is that the major mechanisms and consequences of oxidation, deformation and emergency core cooling are sufficiently investigated in order to provide a reliable data base for safety assessments and licensing of LWRs. All test data prove that the ECC-criteria are conservative and that the coolability of an LWR and the public safety can be maintained in a LOCA. (orig.) [de

  2. Touch-sensitive colour graphics enhance monitoring of loss-of-coolant accident tests

    International Nuclear Information System (INIS)

    Snedden, M.D.; Mead, G.L.

    1982-01-01

    A stand-alone computer-based system with an intelligent colour termimal is described for monitoring parameters during loss-of-coolant accident tests. Colour graphic displays and touch-sensitive control have been combined for effective operator interaction. Data collected by the host MODCOMP II minicomputer are dynamically updated on colour pictures generated by the terminal. Experimenters select system functions by touching simulated switches on a transparent touch-sensitive overlay, mounted directly over the face of the colour screen, eliminating the need for a keyboard. Switch labels and colours are changed on the screen by the terminal software as different functions are selected. Interaction is self-prompting and can be learned quickly. System operation for a complete set of 20 tests has demonstrated the convenience of interactive touchsensitive colour graphics

  3. The nature of reactor accidents

    International Nuclear Information System (INIS)

    Domaratzki, Z.; Campbell, F.R.; Atchison, R.J.

    1981-01-01

    Reactor accidents are events which result in the release of radioactive material from a nuclear power plant due to the failure of one or more critical components of that plant. The failures, depending on their number and type, can result in releases whose consequences range from negligible to catastrophic. By way of examples, this paper describes four specific accidents which cover this range of consequence: failure of a reactor control system, loss of coolant, loss of coolant with impaired containment, and reactor core meltdown. For each a possible sequence of events and an estimate of the expected frequency are presented

  4. Scenarios simulation of severe accident type small loss of coolant (Loca), with the code MELCOR version 2.1 for the nuclear power plant of Laguna Verde

    International Nuclear Information System (INIS)

    Cardenas V, J.; Mugica R, C. A.; Godinez S, V.

    2013-10-01

    In this work was carried out the analysis of two scenarios of the accident type with loss of coolant in a recirculation loop for a break with smaller ares to 0.1 ft 2 (4.6 cm 2 ), which is classified according to their size like small Loca. The first simulated scenario was a small Loca without action of the emergency coolant injection systems, and the second was a small Loca with only the available system LPCS. This design base accident was taken into account for its relevance with regard to the damage to the core and the hydrogen generation. Was also observed and analyzed the response of the action of the ECCS that depend of the loss of coolant reason and this in turn depends of the size and type of the pipe break. The specified scenarios were simulated by means of the use of MELCOR model for the nuclear power plant of Laguna Verde that has the Comision Nacional de Seguridad Nuclear y Salvaguardias. (Author)

  5. Analysis of Loss-of-Coolant Accidents in the NIST Research Reactor - Early Phase

    Energy Technology Data Exchange (ETDEWEB)

    Baek, Joo S.; Diamond, David

    2016-12-06

    A study of the fuel temperature during the early phase of a loss-of-coolant accident (LOCA) in the NIST research reactor (NBSR) was completed. Previous studies had been reported in the preliminary safety analysis report for the conversion of the NBSR from high-enriched uranium (HEU) fuel to low-enriched (LEU) fuel. Those studies had focused on the most vulnerable LOCA situation, namely, a double-ended guillotine break in the time period after reactor trip when water is drained from either the coolant channels inside the fuel elements or the region outside the fuel elements. The current study fills in a gap in the analysis which is the early phase of the event when there may still be water present but the reactor is at power or immediately after reactor trip and pumps have tripped. The calculations were done, for both the current HEU-fueled core and the proposed LEU core, with the TRACE thermal-hydraulic systems code. Several break locations and different break sizes were considered. In all cases the increase in the clad (or fuel meat) temperature was relatively small so that a large margin to the temperature threshold for blistering (the Safety Limit for the NBSR) remained.

  6. Heat transfer and fluid flow aspects of fuel--coolant interactions

    International Nuclear Information System (INIS)

    Corradini, M.L.

    1978-09-01

    A major portion of the safety analysis effort for the LMFBR is involved in assessing the consequences of a Hypothetical Core Disruptive Accident (HCDA). The thermal interaction of the hot fuel and the sodium coolant during the HCDA is investigated in two areas. A postulated loss of flow transient may produce a two-phase fuel at high pressures. The thermal interaction phenomena between fuel and coolant as the fuel is ejected into the upper plenum are investigated. A postulated transient overpower accident may produce molten fuel being released into sodium coolant in the core region. An energetic coolant vapor explosion for these reactor materials does not seem likely. However, experiments using other materials (e.g., Freon/water, tin/water) have demonstrated the possibility of this phenomenon

  7. Utilization of the RELAP4/MOD5/SAS code version in loss of coolant accident in the Angra 1 nuclear power station

    International Nuclear Information System (INIS)

    Sabundjian, G.; Freitas, R.L.

    1991-09-01

    A new version of computer code RELAP4/MOD5 was developed to improve the output. The new version, called RELAP4/MOD5/SAS, prints the main variables in graphical form. In order to check the program, a 36 - volume simulation of the Loss-of-Coolant Accident for Angra - I was performed and the results compared to those of a existing 44 - volume simulation showed a satisfactory agreement with a substantial reduction in computing time. (author)

  8. Technical findings related to Generic Issue 23: Reactor coolant pump seal failure

    International Nuclear Information System (INIS)

    Ruger, C.J.; Luckas, W.J. Jr.

    1989-03-01

    Reactor coolant pumps contain mechanical seals to limit the leakage of pressurized coolant from the reactor coolant system to the containment. These seals have the potential to leak, and a few have degraded and even failed resulting in a small break loss of coolant accident (LOCA). As a result, ''Reactor Coolant Pump Seal Failure,'' Generic Issue 23 was established. This report summarizes the findings of a technical investigation generated as part of the program to resolve this issue. These technical findings address the various fact-finding issue tasks developed for the action plan associated with the generic issue, namely background information on seal failure, evaluation of seal cooling, and mechanical- and maintenance-induced failure mechanisms. 46 refs., 15 figs., 14 tabs

  9. Comparison of Severe Accident Results Among SCDAP/RELAP5, MAAP, and MELCOR Codes

    International Nuclear Information System (INIS)

    Wang, T.-C.; Wang, S.-J.; Teng, J.-T.

    2005-01-01

    This paper demonstrates a large-break loss-of-coolant accident (LOCA) sequence of the Kuosheng nuclear power plant (NPP) and station blackout sequence of the Maanshan NPP with the SCDAP/RELAP5 (SR5), Modular Accident Analysis Program (MAAP), and MELCOR codes. The large-break sequence initiated with double-ended rupture of a recirculation loop. The main steam isolation valves (MSIVs) closed, the feedwater pump tripped, the reactor scrammed, and the assumed high-pressure and low-pressure spray systems of the emergency core cooling system (ECCS) were not functional. Therefore, all coolant systems to quench the core were lost. MAAP predicts a longer vessel failure time, and MELCOR predicts a shorter vessel failure time for the large-break LOCA sequence. The station blackout sequence initiated with a loss of all alternating-current (ac) power. The MSIVs closed, the feedwater pump tripped, and the reactor scrammed. The motor-driven auxiliary feedwater system and the high-pressure and low-pressure injection systems of the ECCS were lost because of the loss of all ac power. It was also assumed that the turbine-driven auxiliary feedwater pump was not functional. Therefore, the coolant system to quench the core was also lost. MAAP predicts a longer time of steam generator dryout, time interval between top of active fuel and bottom of active fuel, and vessel failure time than those of the SR5 and MELCOR predictions for the station blackout sequence. The three codes give similar results for important phenomena during the accidents, including SG dryout, core uncovery, cladding oxidation, cladding failure, molten pool formulation, debris relocation to the lower plenum, and vessel head failure. This paper successfully demonstrates the large-break LOCA sequence of the Kuosheng NPP and the station blackout sequence of the Maanshan NPP

  10. Description of steam-condensation phenomena during the loss-of-coolant accident

    International Nuclear Information System (INIS)

    McCauley, E.W.; Holman, G.S.; Aust, E.; Schwan, H.; Vollbrandt, J.; Fuerst, H.

    1980-01-01

    The development and verification of advanced computer models which describe the boiling water reactor (BWR) pressure suppression process for a hypothetical loss-of-coolant accident (LOCA) require a clear description of basic steam condensation phenomena. The GKSS Research Center, in coordination with interested institutions of West Germany and the United States, is currently conducting a test program for such basic research on a multivent BWR-related pressure suppression system. The Lawrence Livermore National Laboratory (LLNL) acts as the principal US NRC liaison for this test program, with particular emphasis on development of GKSS data for confirmatory use regarding US Mark II nuclear power plants as well as to advanced code development. The multivent test facility, placed in operation in February 1979, is a three-pipe full-scale vent system modelling main features of both the West German KWU and United States G.E. Mk II BWR pressure suppression systems. The test facility and testing programs are described

  11. Simulation of the SPE-4 small-break loss-of-coolant accident

    International Nuclear Information System (INIS)

    Cebull, P.; Hassan, Y.A.

    1993-01-01

    A small-break loss of coolant accident (SBLOCA) conducted at the PMK-2 integral test facility was analyzed using RELAP5/MOD3. 1. The experiment simulated a 7.4% break in the cold leg of a VVER-440/213-type nuclear power plant as part of the International Atomic Energy Agency's Fourth Standard Problem Exercise (SPE-4). The VVER design differs from pressurized water reactors (PWRS) of western origin, primarily in its use of horizontal steam generators, hot- and cold-leg loop seals, and safety injection tanks. Because of these differences, it will exhibit somewhat different transient behavior than most PWRS. The PMK-2 test facility, located at the KFKI Atomic Energy Research Institute (AEKI), is a scale model of the Paks nuclear power plant in Hungary with scaling factors of 1:2070 in power and volume and 1:1 in elevation. Primarily used to study SBLOCAs and natural circulation behavior of VVER reactors, it has been used in three previous SPEs

  12. Cleanup of large areas contaminated as a result of a nuclear accident

    International Nuclear Information System (INIS)

    1989-01-01

    The purposes of the report are to provide an overview of the methodology and technology available to clean up contaminated areas and to give preliminary guidance on matters related to the planning, implementation and management of such cleanups. This report provides an integrated overview of important aspects related to the cleanup of very large areas contaminated as a result of a serious nuclear accident, including information on methods and equipment available to: characterize the affected area and the radioactive fallout; stabilize or isolate the contamination; and clean up contaminated urban, rural and forested areas. The report also includes brief sections on planning and management considerations and the transport and disposal of the large volumes of wastes arising from such cleanups. For the purposes of this report, nuclear accidents which could result in the deposition of decontamination over large areas if the outer containment fails badly include: 1) An accident with a nuclear weapon involving detonation of the chemical high explosive but little, if any, nuclear fission. 2) A major loss of medium/high level liquid waste (HLLW) due to an explosion/fire at a storage site for such waste. 3) An accident at a nuclear power plant (NPP), for example a loss of coolant accident, which results in some core disruption and fuel melting. 4) An accident at an NPP involving an uncontrolled reactivity excursion resulting in the violent ejection of a reactor core material and rupture of the containment building. 117 refs, 32 figs, 12 tabs

  13. Long-term recovery of pressurized water reactors following a large break loss-of-coolant accident

    International Nuclear Information System (INIS)

    Fletcher, C.D.; Callow, R.A.

    1989-01-01

    The USNRC recently identified a possible safety concern for PWR's. Following the reflood phase of a large break loss-of-coolant accident, long-term cooling of the reactor core may not be ensured. Specifically, the concern is that, for a pump discharge cold leg break, the loop seals in the reactor coolant pump suction piping will refill with liquid and the post-reflood steam production may depress the liquid levels in the downflow sides of the loop seals. A loop seal depression would cause a corresponding depression of the core liquid levels and possibly a fuel rod heatup in the upper core region. This paper is intended as an introduction of the safety issue that: 1) describes the important aspects of the problem, 2) provides an initial analysis of the consequences, and 3) discusses ongoing work in this area. Because the elevation of the loop seals is near the mid-core elevation in plants of WE design, the concern is greatest for those plants. There is less concern for most plants of CE design, and likely no concern for plants of BW design. This issue was addressed by employing both steady-state and transient systems analysis approaches. Two approaches were used because of uncertainties regarding actual reactor coolant system behavior during the post-reflood period. The steady-state approach involved the development and application of a simple computer program to investigate reactor coolant system behavior assuming quiescent post-reflood conditions. The transient systems approach involved investigating this behavior using the RELAP5/MOD2 computer code and a comprehensive RELAP5 model of a WE PWR. The steady-state analysis indicated only a moderate fuel rod heatup is possible. The transient systems analysis indicated boiling and condensation-induced flow oscillations are sufficient to prevent fuel rod heatup. Analysis uncertainties are discussed. (orig./HP)

  14. LOFA [loss of flow accident] and LOCA [loss of coolant accident] in the TIBER-II engineering test reactor: Appendix A-4

    International Nuclear Information System (INIS)

    Sviatoslavsky, I.N.; Attaya, H.M.; Corradini, M.L.; Lomperski, S.

    1987-01-01

    This paper describes the preliminary analysis of LOFA (loss of flow accident) and LOCA (loss of coolant accident) in the TIBER-II engineering test reactor breeding shield. TIBER-II is a compact reactor with a major radius of 3 m and thus requires a thin, high efficiency shield on the inboard side. The use of tungsten in the inboard shield implies a rather high rate of afterheat upon plasma shutdown, which must be dissipated in a controlled manner to avoid the possibility of radioactivity release or threatening the investment. Because the shield is cooled with an aqueous solution, LOFA does not pose a problem as long as natural convection can be established. LOCA, however, has more serious consequences, particularly on the inboard side. Circulation of air by natural convection is proposed as a means for dissipating the inboard shield decay heat. The safety and environmental implications of such a scheme are evaluated. It is shown that the inboard shield temperature never exceeds 510 0 C following LOCA posing no hazard to reactor personnel and not threatening the investment. 7 refs., 6 figs

  15. Status Report on Spent Fuel Pools under Loss-of-Cooling and Loss-of-Coolant Accident Conditions - Final Report

    International Nuclear Information System (INIS)

    Adorni, M.; Esmaili, H.; Grant, W.; Hollands, T.; Hozer, Z.; Jaeckel, B.; Munoz, M.; Nakajima, T.; Rocchi, F.; Strucic, M.; ); Tregoures, N.; Vokac, P.; Ahn, K.I.; Bourgue, L.; Dickson, R.; Douxchamps, P.A.; Herranz, L.E.; Jernkvist, L.O.; Amri, A.; Kissane, M.P.; )

    2015-01-01

    scenarios, past accidents and precursor events; Chapter 4: Behaviour of spent fuel facilities during the Fukushima Daiichi accident; Chapter 5: Accident phenomenology; Chapter 6: Experiments with relevance to SFP cooling accidents; Chapter 7: Simulation tools; Chapter 8: Conclusions and recommendations; The present report summarizes results of experiments and computational analyses carried out to date to gain understanding of phenomena with significance to SFP cooling accidents. Considering that some knowledge gaps currently exist and that ongoing and planned research projects are expected to produce results that will hopefully narrow these gaps within the foreseeable future, it is recommended that: - a CSNI state-of-the-art report on SFP loss-of-cooling and loss-of-coolant accidents is written as the results of these research projects become available; - a follow-on activity is launched on SFP combining probability of SFP accidents, which was beyond the scope of this document, and mitigation strategies

  16. VICTORIA: A mechanistic model of radionuclide behavior in the reactor coolant system under severe accident conditions. Revision 1

    Energy Technology Data Exchange (ETDEWEB)

    Heams, T J [Science Applications International Corp., Albuquerque, NM (United States); Williams, D A; Johns, N A; Mason, A [UKAEA, Winfrith, (England); Bixler, N E; Grimley, A J [Sandia National Labs., Albuquerque, NM (United States); Wheatley, C J [UKAEA, Culcheth (England); Dickson, L W [Atomic Energy of Canada Ltd., Chalk River, ON (Canada); Osborn-Lee, I [Oak Ridge National Lab., TN (United States); Domagala, P; Zawadzki, S; Rest, J [Argonne National Lab., IL (United States); Alexander, C A [Battelle, Columbus, OH (United States); Lee, R Y [Nuclear Regulatory Commission, Washington, DC (United States)

    1992-12-01

    The VICTORIA model of radionuclide behavior in the reactor coolant system (RCS) of a light water reactor during a severe accident is described. It has been developed by the USNRC to define the radionuclide phenomena and processes that must be considered in systems-level models used for integrated analyses of severe accident source terms. The VICTORIA code, based upon this model, predicts fission product release from the fuel, chemical reactions involving fission products, vapor and aerosol behavior, and fission product decay heating. Also included is a detailed description of how the model is implemented in VICTORIA, the numerical algorithms used, and the correlations and thermochemical data necessary for determining a solution. A description of the code structure, input and output, and a sample problem are provided.

  17. Evaluation of a postulated loss of coolant accident (LOCA) due to a 160 cm2 break in a cold leg of Angra 2 nuclear power plant

    International Nuclear Information System (INIS)

    Azevedo, Carlos Vicente Goulart de; Palmieri, Elcio Tadeu; Aronne, Ivan Dionysio

    2002-01-01

    The development of a qualified full nodalization of Angra2 NPP for RELAP5/Mod 3.2.2 gamma, aiming at the evaluation of a comprehensive number of accidents and transients, thus providing suitable safety analysis support for licensing purposes, is being carried out within the framework of CNEN internal technical cooperation, involving some of its institutes (CDTN, IPEN and IEN) and the Reactors Coordination (CODRE). This work presents a simulation of a postulated Angra2 small cold leg break loss of coolant accident (SBLOCA). A 160 cm 2 break is supposed to occur at one cold leg between the main coolant pump and the reactor vessel and is described in the Angra2 Final Safety Analysis Report, section 15.6.4.1.3.4. The simulation of several types of transients and accidents is necessary to verify the adequate performance of the modeled logic and systems. In general, the analysis of such and accident allows to demonstrate the safety Injection System performance and the reliable transition between the high pressure safety injection, the accumulator injection and the residual heat removal phases. Furthermore, it is assumed that some components are out of service due to fail or repair in order to make a conservative analysis. The results showed a compatible behavior of the molded systems and that the simulated Emergency Core Cooling System was able to provide sufficient cooling to avoid any damage to the core. (author)

  18. Study of core characteristics on fuel and coolant type. Results of F/S phase-I

    International Nuclear Information System (INIS)

    Ikegami, Tetsuo; Hayashi, Hideyuki; Sasaki, Makoto; Mizuno, Tomoyasu; Yamadate, Megumi; Takaki, Naoyuki; Kurosawa, Norifumi; Sakashita, Yoshiaki; Naganuma, Masayuki

    2001-03-01

    The phase-I of the Feasibility Study of Commercialized Fast Reactor Cycle Systems (F/S) were started from July, 1999 and terminated at the end of FY2000 in order to executed examination about technology alternatives of various commercialized fast reactor (FR) recycle concepts, in response to the JNC middle long term enterprise plan. In the phase-I of this F/S, a number of conceptual candidates have been selected from the following 5 viewpoints: a) ensuring safety, b) economic competitiveness to future LWRs, c) efficient utilization of resources, d) reduction of environmental burden, e) enhancement of nuclear non-proliferation. As for this study from the above viewpoints, core characteristics of many kinds of reactors have been investigated, analyzed and examined a core / a fuel characteristic in the combinations of fuel and coolant types and power output scales. Based on these results, R and D plans of the phase-II to be performed have been proposed, and a database to select candidate reactor concepts has been prepared. The conclusions have been obtained in the phase-I are as follows: (1) Evaluation of a fuel form in every each coolant was compared. A promising fuel form was extracted as follows: an oxide and a metal fuel for sodium coolant cores, a metal and a nitride fuel for heavy metal coolant cores, an oxide and a nitride fuel for carbon dioxide coolant cores and a nitride fuel for He gas coolant cores. (2) As the general idea that performance of a core nucleus can be compatible with re-criticality evasion in sodium coolant large-sized oxide fuel cores, a axial blanket particle elimination radial heterogeneous core is one influential candidate. (3) In case of Pb-Bi coolant nature circulation medium size core with an oxide fuel, it is difficult to simultaneously achieve higher discharged burn-up and higher breeding ratio according to the viewpoints of the phase-I. (4) Core characteristics of a carbon dioxide coolant core shows to be almost equivalent to that of

  19. Cladding embrittlement during postulated loss-of-coolant accidents.

    Energy Technology Data Exchange (ETDEWEB)

    Billone, M.; Yan, Y.; Burtseva, T.; Daum, R.; Nuclear Engineering Division

    2008-07-31

    The effect of fuel burnup on the embrittlement of various cladding alloys was examined with laboratory tests conducted under conditions relevant to loss-of-coolant accidents (LOCAs). The cladding materials tested were Zircaloy-4, Zircaloy-2, ZIRLO, M5, and E110. Tests were performed with specimens sectioned from as-fabricated cladding, from prehydrided (surrogate for high-burnup) cladding, and from high-burnup fuel rods which had been irradiated in commercial reactors. The tests were designed to determine for each cladding material the ductile-to-brittle transition as a function of steam oxidation temperature, weight gain due to oxidation, hydrogen content, pre-transient cladding thickness, and pre-transient corrosion-layer thickness. For short, defueled cladding specimens oxidized at 1000-1200 C, ring compression tests were performed to determine post-quench ductility at {le} 135 C. The effect of breakaway oxidation on embrittlement was also examined for short specimens oxidized at 800-1000 C. Among other findings, embrittlement was found to be sensitive to fabrication processes--especially surface finish--but insensitive to alloy constituents for these dilute zirconium alloys used as cladding materials. It was also demonstrated that burnup effects on embrittlement are largely due to hydrogen that is absorbed in the cladding during normal operation. Some tests were also performed with longer, fueled-and-pressurized cladding segments subjected to LOCA-relevant heating and cooling rates. Recommendations are given for types of tests that would identify LOCA conditions under which embrittlement would occur.

  20. Simulation of IVR-ERVC and estimation method of coolant inflow to the cavity

    Energy Technology Data Exchange (ETDEWEB)

    Lee, Hyunjin; Namgung, Ihn [KEPCO International Nuclear Graduate School, Ulsan (Korea, Republic of)

    2014-10-15

    In this study, the temperature distribution outside of RV wall and evaporation rate due to heat from core will be investigated. Using the universal analysis program ANSYS Fluent, the natural convection in the cavity for IVR-ERVC conditions were modelled and performed for heat transfer analysis. The aim of this study is to calculate the appropriate coolant flow so that coolant level in the cavity can be maintained at prescribed level and vessel wall temperature distribution, including RV outside wall temperature are also investigated. Reactor vessel and cavity in case of ex-vessel cooling for severe accident condition were modeled with and without insulators. The heat load into reactor vessel from corium inside of reactor lower head were obtained from MELCORE analysis and used as input B.C of CFD analysis. The Temperature gradient of reactor outer surface and evaporation rate of cooling eater was obtained from the analysis. These results can be used for further analysis of reactor vessel creep behavior and the estimate the coolant flow rate into the reactor cavity.. and The result can be used to verify the natural convection phenomena in the cavity and also to set the design parameters of cavity and coolant flow rate. The vessel outer surface temperature gradient can be also used to more accurate investigation of vessel creep behavior during severe accident condition, The result can also be used set up a strategy for severe accident managements.

  1. Thermal hydraulic analysis of aggressive secondary cooldown in a small break loss of coolant accident with a total loss of high pressure safety injection

    International Nuclear Information System (INIS)

    Han, Seok Jung; Lim, Ho Gon; Yang, Joon Eon

    2003-03-01

    Recently, Probabilistic Safety Assessment (PSA) has being applied to various fields as a basic technique of Risk-Informed Applications (RIA). The present study focuses on detailed thermal hydraulic analyses for major accident sequences and success criteria to support a development of PSA model using RIA for Korea Standard Nuclear Power plant (KSNP). The primary purpose of the present study in this year is to evaluate the success cri-teria of Aggressive Secondary Cooldown (ASC) in a Small Size Loss Of Coolant Accident (SBLOCA) without HPSI and to enhance the understanding of related thermal hydraulic behavior and phenomena. An effort was made to evaluate the system success criteria and a mission time for the recovery action by an operator to prevent the core damage for that accident scenario. The accident scenario for KSNP was a 2 inch coldleg break LOCA with a total loss of High Pressure Safety Injection (HPSI) and 1/2 Low Pressure Safety Injection (LPSI) available and perform-ing ASC limited by 55.6 .deg. C/hr (100 .deg. F/hr) cooldown rate at 15 minute after reactor trip. It successively reached the LPSI condition for about 1.5hr after starting the ASC operation with the Peak Cladding Temperature (PCT) of the hottest rod below the core damage criteria of 1204.4 .deg. C (2200 .deg. F). Sensitivity studies were performed for (1) cool-ant average temperature parameters, (2) ASC operation control method, (3) operation start time, (4) 1 inch break size. The present analysis identified thermal hydraulic phenomena and parameters affecting on the behavior, which consist of coolant break flow and inventory, parameters governing secondary heat removal, ASC operation control method, and its reference temperature parameters. In the present study, more relaxed success criteria than the previous PSA for KSNP could be generated under an assumption that an operator should maintain the ade-quate ASC operation. However, it is necessary to evaluate the uncertainties arisen from the

  2. Preliminary phenomena identification and ranking tables for simplified boiling water reactor Loss-of-Coolant Accident scenarios

    International Nuclear Information System (INIS)

    Kroeger, P.G.; Rohatgi, U.S.; Jo, J.H.; Slovik, G.C.

    1998-04-01

    For three potential Loss-of-Coolant Accident (LOCA) scenarios in the General Electric Simplified Boiling Water Reactors (SBWR) a set of Phenomena Identification and Ranking Tables (PIRT) is presented. The selected LOCA scenarios are typical for the class of small and large breaks generally considered in Safety Analysis Reports. The method used to develop the PIRTs is described. Following is a discussion of the transient scenarios, the PIRTs are presented and discussed in detailed and in summarized form. A procedure for future validation of the PIRTs, to enhance their value, is outlined. 26 refs., 25 figs., 44 tabs

  3. The effect of coolant quantity on local fuel–coolant interactions in a molten pool

    International Nuclear Information System (INIS)

    Cheng, Songbai; Matsuba, Ken-ichi; Isozaki, Mikio; Kamiyama, Kenji; Suzuki, Tohru; Tobita, Yoshiharu

    2015-01-01

    Highlights: • We investigate local fuel–coolant interactions in a molten pool. • As water volume increases, limited pressurization and mechanical energy observed. • Only a part of water is evaporated and responsible for the pressurization. - Abstract: Studies on local fuel–coolant interactions (FCI) in a molten pool are important for severe accident analyses of sodium-cooled fast reactors (SFRs). Motivated by providing some evidence for understanding this interaction, in this study several experimental tests, with comparatively larger difference in coolant volumes, were conducted by delivering a given quantity of water into a simulated molten fuel pool (formed with a low-melting-point alloy). Interaction characteristics including the pressure-buildup as well as mechanical energy release and its conversion efficiency are evaluated and compared. It is found that as water quantity increases, a limited pressure-buildup and the resultant mechanical energy release are observable. The performed analyses also suggest that only a part of water is probably vaporized during local FCIs and responsible for the pressurization and mechanical energy release, especially for those cases with much larger water volumes

  4. Experiments for simulating a great leak in the primary coolant circuit of a PWR type reactor

    International Nuclear Information System (INIS)

    Liebig, E.

    1977-01-01

    A loss of coolant accident is to be simulated on a high pressure test rig. The accident is initiated by an externally induced rupture of a pair of rupture-disks installed in a coolant ejection device. Several problems of simulating leaks in the primary coolant circuit of PWR type reactors are dealt with. The selection of appropriate rupture-disks for such experiments is described

  5. Multirods burst tests under loss-of-coolant conditions

    International Nuclear Information System (INIS)

    Kawasaki, S.; Uetsuka, H.; Furuta, T.

    1983-01-01

    In order to know the upper limit of coolant flow area restriction in a fuel assembly under loss-of-coolant accidents in LWRs, burst tests of fuel bundles were performed. Each bundle consisted of 49 rods(7x7 rods), and bursts were conducted in flowing steam. In some cases, 4 rods were replaced by control rods with guide tubes in a bundle. After the burst, the ballooning behavior of each rod and the degree of coolant flow area restriction in the bundle were measured. Ballooning behavior of rods and degree of coolant flow channel restriction in bundles with control rods were not different from those without control rods. The upper limit of coolant flow channel restriction under loss-of-coolant conditions was estimated to be about 80%. (author)

  6. Nuclear Reactor RA Safety Report, Vol. 16, Maximum hypothetical accident

    International Nuclear Information System (INIS)

    1986-11-01

    Fault tree analysis of the maximum hypothetical accident covers the basic elements: accident initiation, phase development phases - scheme of possible accident flow. Cause of the accident initiation is the break of primary cooling pipe, heavy water system. Loss of primary coolant causes loss of pressure in the primary circuit at the coolant input in the reactor vessel. This initiates safety protection system which should automatically shutdown the reactor. Separate chapters are devoted to: after-heat removal, coolant and moderator loss; accident effects on the reactor core, effects in the reactor building, and release of radioactive wastes [sr

  7. Nuclear Fuel Behaviour in Loss-of-coolant Accident (LOCA) Conditions

    International Nuclear Information System (INIS)

    Pettersson, Kjell; Chung, Haijung; ); Billone, Michael; Fuketa, Toyoshi; Nagase, Fumihisa; Grandjean, Claude; Hache, George; Papin, Joelle; Heins, Lothar; Hozer, Zoltan; In de Betou, Jan; Kelppe, Seppo; Mayer, Ralph; Scott, Harold; Voglewede, John; Sonnenburg, Heinz; Sunder, Sham; Valach, Mojmir; Vrtilkova, Vera; Waeckel, Nicolas; Wiesenack, Wolfgang; Zimmermann, Martin

    2009-01-01

    The NEA Working Group on Fuel Safety (WGFS) is tasked with advancing the current understanding of fuel safety issues by assessing the technical basis for current safety criteria and their applicability to high burn-up and to new fuel designs and materials. The group aims at facilitating international convergence in this area, including as regards experimental approaches and interpretation and the use of experimental data relevant for safety. In 1986, a working group of the NEA Committee on the Safety of Nuclear Installations (CSNI) issued a state-of-the-art report on water reactor fuel behaviour in design-basis accident (DBA) conditions. The 1986 report was limited to the oxidation, embrittlement and deformation of pressurised water reactor (PWR) fuel in a loss-of-coolant accident (LOCA). Since then, considerable experimental and analytical work has been performed, which has led to a broader and deeper understanding of LOCA-related phenomena. Further, new cladding alloys have been produced, which might behave differently than the previously used Zircaloy-4, both under normal operating conditions and during transients. Compared with 20 years ago, fuel burn-up has been significantly increased, which requires extending the LOCA database in order to cover the high burnup range. There was also a clear need to address LOCA performance for reactor types other than PWRs. The present report has been prepared by the WGFS and covers the following technical aspects: - Description of different LOCA scenarios for major types of reactors: BWRs, PWRs, VVERs and to a lesser extent CANDUs. - LOCA phenomena: ballooning, burst, oxidation, fuel relocation and possible fracture at quench. - Details of high-temperature oxidation behaviour of various cladding materials. - Metallurgical phase change, effect of hydrogen and oxygen on residual cladding ductility. - Methods for LOCA testing, for example two-sided oxidation and ring compression for ductility, and integral quench test for

  8. Conception of a model for the description of the rewetting phase of reactor fuel pins following a loss-of-coolant accident

    International Nuclear Information System (INIS)

    Hinderer, B.; Schuetzle, R.

    1976-10-01

    The aim of the present paper has been the development of a model describing rewetting of fuel rods in the reflood phase after a loss of coolant accident of a reactor. Because a suitable solution to the problem could not be found an appropriate model has been implemented into an IKE computer program for transient, two-dimensional heat conductance for a cylindrical rod. Developing this model experimental results of up-to-date literature were used. Remarkable is that very small meshes are necessary around the rewetting front to calculate the rewetting velocity which is strongly dependent on the quench temperature. (orig.) [de

  9. Loss of Coolant Accident Simulation for the Top-Slot break at Cold Leg Focusing on the Loop Seal Reformation under Long Term Cooling with the ATLAS

    Energy Technology Data Exchange (ETDEWEB)

    Kim, Jong Rok; Park, Yu Sun; Bae, Byoung Uhn; Choi, Nam Hyun; Kang, Kyoung Ho; Choi, Ki Yong [KAERI, Daejeon (Korea, Republic of)

    2016-05-15

    In the present paper, loss of coolant accident for the top-slot break at cold leg was simulated with the ATLAS, which is a thermal-hydraulic integral effect test facility for evolutionary pressurized water reactors (PWRs) of an advanced power reactor of 1400 MWe (APR1400). The simulation was focused on the loop seal reformation under long term cooling condition. During a certain class of Loss of Coolant Accident (LOCA) in a PWR like an advanced power reactor of 1400 MWe (APR1400), the steam volume in the reactor vessel upper plenum and/or upper head may continue expanding until steam blows liquid out of the intermediate leg (U-shaped pump suction cold leg), called loop seal clearing (LSC), opening a path for the steam to be relieved from the break. Prediction of the LSC phenomena is difficult because they are varies for many parameters, which are break location, type, size, etc. This LSC is the major factor that affects the coolant inventory in the small break LOCA (SBLOCA) or intermediate break LOCA (IBLOCA). There is an issue about the loop seal reformation that liquid refills intermediate leg and blocks the steam path after LSC. During the SBLOCA or IBLOCA, the Emergency Core Cooling System (ECCS) is operated. For long term of the top slot small or intermediate break at cold leg, the primary steam condensation by SG heat transfer or SIP, SIT water flooding (reverse flow to loop seal) make loop seal reformation possibly. The primary pressure increase at the top core region due to the steam release blockage by loop seal reformation. And then core level decreases and partial core uncover may occur. The loss of coolant accident for the top-slot break at cold leg was simulated with the ATLAS. The loop seal clearing and loop seal reformation were occurred repeatedly.

  10. Statistical analysis of fuel failures in large break loss-of-coolant accident (LBLOCA) in EPR type nuclear power plant

    International Nuclear Information System (INIS)

    Arkoma, Asko; Hänninen, Markku; Rantamäki, Karin; Kurki, Joona; Hämäläinen, Anitta

    2015-01-01

    Highlights: • The number of failing fuel rods in a LB-LOCA in an EPR is evaluated. • 59 scenarios are simulated with the system code APROS. • 1000 rods per scenario are simulated with the fuel performance code FRAPTRAN-GENFLO. • All the rods in the reactor are simulated in the worst scenario. • Results suggest that the regulations set by the Finnish safety authority are met. - Abstract: In this paper, the number of failing fuel rods in a large break loss-of-coolant accident (LB-LOCA) in EPR-type nuclear power plant is evaluated using statistical methods. For this purpose, a statistical fuel failure analysis procedure has been developed. The developed method utilizes the results of nonparametric statistics, the Wilks’ formula in particular, and is based on the selection and variation of parameters that are important in accident conditions. The accident scenario is simulated with the coupled fuel performance – thermal hydraulics code FRAPTRAN-GENFLO using various parameter values and thermal hydraulic and power history boundary conditions between the simulations. The number of global scenarios is 59 (given by the Wilks’ formula), and 1000 rods are simulated in each scenario. The boundary conditions are obtained from a new statistical version of the system code APROS. As a result, in the worst global scenario, 1.2% of the simulated rods failed, and it can be concluded that the Finnish safety regulations are hereby met (max. 10% of the rods allowed to fail)

  11. Statistical analysis of fuel failures in large break loss-of-coolant accident (LBLOCA) in EPR type nuclear power plant

    Energy Technology Data Exchange (ETDEWEB)

    Arkoma, Asko, E-mail: asko.arkoma@vtt.fi; Hänninen, Markku; Rantamäki, Karin; Kurki, Joona; Hämäläinen, Anitta

    2015-04-15

    Highlights: • The number of failing fuel rods in a LB-LOCA in an EPR is evaluated. • 59 scenarios are simulated with the system code APROS. • 1000 rods per scenario are simulated with the fuel performance code FRAPTRAN-GENFLO. • All the rods in the reactor are simulated in the worst scenario. • Results suggest that the regulations set by the Finnish safety authority are met. - Abstract: In this paper, the number of failing fuel rods in a large break loss-of-coolant accident (LB-LOCA) in EPR-type nuclear power plant is evaluated using statistical methods. For this purpose, a statistical fuel failure analysis procedure has been developed. The developed method utilizes the results of nonparametric statistics, the Wilks’ formula in particular, and is based on the selection and variation of parameters that are important in accident conditions. The accident scenario is simulated with the coupled fuel performance – thermal hydraulics code FRAPTRAN-GENFLO using various parameter values and thermal hydraulic and power history boundary conditions between the simulations. The number of global scenarios is 59 (given by the Wilks’ formula), and 1000 rods are simulated in each scenario. The boundary conditions are obtained from a new statistical version of the system code APROS. As a result, in the worst global scenario, 1.2% of the simulated rods failed, and it can be concluded that the Finnish safety regulations are hereby met (max. 10% of the rods allowed to fail)

  12. Determination of the in-containment source term for a Large-Break Loss of Coolant Accident

    International Nuclear Information System (INIS)

    2001-04-01

    This is the report of a project that focused on one of the most important design basis accidents: the Large Break Loss Of Coolant Accident (LBLOCA) (for pressurised water reactors). The first step in the calculation of the radiological consequences of this accident is the determination of the source term inside the containment. This work deals with this part of the calculation of the LBLOCA radiological consequences for which a previous benchmark (1988) has shown wide variations in the licensing practices adopted by European countries. The calculation of this source term may naturally be split in several steps (see chapter II), corresponding to several physical stages in the release of fission products: fraction of core failure, release from the damaged fuel, airborne part of the release and the release into the reactor coolant system and the sumps, chemical behaviour of iodine in the aqueous and gas phases, natural and spray removal in the containment atmosphere. A chapter is devoted to each of these topics. In addition, two other chapters deal with the basic assumptions to define the accidental sequence and the nuclides to be considered when computing doses associated with the LBLOCA. The report describes where there is agreement between the partner organisations and where there are still differences in approach. For example, there is agreement concerning the percentage of failed fuel which could be used in future licensing assessments (however this subject is still under discussion in France, a lower value is thinkable). For existing plants, AVN (Belgium) wishes to keep the initial licensing assumptions. For the release from damaged fuel, there is not complete agreement: AVN (Belgium) wishes to maintain its present approach. IPSN (France), GRS (Germany) and NNC (UK) prefer to use their own methodologies that result in slightly different values to the proposed values for a common position. There are presently no recommendations of the release of fuel particulates

  13. Study on the quench behavior of molten fuel material jet into coolant

    International Nuclear Information System (INIS)

    Abe, Yutaka; Kizu, Tetsuya; Arai, Takahiro; Nariai, Hideki; Chitose, Keiko; Koyama, Kazuya

    2004-01-01

    In a core disruptive accident (CDA) of a Fast Breeder Reactor, the post accident heat removal (PAHR) is crucial for the accident mitigation. The molten core material should be solidified in the sodium coolant in the reactor vessel. In the present experiment, molten material jet is injected into water to experimentally obtain fragments and the visualized information of the fragmentation. The distributed particle behavior of the molten material jet is observed with high-speed video camera. The distributions of the fragmented droplet diameter from the molten material jet are evaluated by correcting the solidified particles. The experimental results of the mean fragmented droplet diameter are compared with the existing theories. Consequently, the fragmented droplet diameter is close to the value estimated based on the Kelvin-Helmholtz instability. Once the particle diameter of the fragmented molten material could be known from a hydrodynamic model, it becomes possible to estimate the mass ratio of the molten particle to the total injected mass by combining an appropriate heat transfer model. The heat transfer model used in the present study is composed of the fragmentation model based on the Kelvin-Helmholtz instability. The mass ratio of the molten fragment to total mass of the melted mixed oxide fuel in sodium coolant estimated in the present study is very small. The result means that most of the molten mixed oxide fuel material injected into the sodium coolant can be cooled down under the solidified temperature, that is so called quenched, if the amount of the coolant is sufficient. (author)

  14. Analysis of the behaviour of pressure and temperature of the containment of a PWR reactor, submitted to a postulated loss-of-coolant accident

    International Nuclear Information System (INIS)

    Silva, D.E. da; Arrieta, L.A.J.; Costa, J.R.; Camargo, C.; Santos, C.M. dos; Rochedo, E.R.R.

    1979-12-01

    The main purpose of this work is to analyse the pressure and temperature behaviour of the metalic containment of a PWR building, submitted to a postulated loss-of-coolant accident (LOCA) caused by a double-ended rupture in the main line of the primary circuit. The scope of the study was directed to verify the Final Safety Analysis Report (FSAR) results for the integrity of the metalic containment of the Angra I power plant. The highest containment pressure peak for this unit is expected for a break in the suction line of one of the main pumps of the primary coolant. Using the same input data, our results are very similar to those presented in the FSAR which shows a reasonable equivalence between the two analytical models. Using as input data the results of a previous LOCA study at CNEN, which yields to more conservative boundary conditions than those presented by the FSAR, the pressure and temperature peak values determined by our model are quite larger than those presented by the cited Safety Report. (author) [pt

  15. Reduction of the interlocking potential of sump sieves by corrosion products as consequence of loss-of-coolant accidents; Verminderung des Verblockungspotenzials von Sumpfansaugsieben durch Korrosionsprodukte nach Kuehlmittelverluststoerfaellen

    Energy Technology Data Exchange (ETDEWEB)

    Hoffmann, Wolfgang; Kryk, Holger [Helmholtz-Zentrum Dresden-Rossendorf, Dresden (Germany). Inst. fuer Fluiddynamik

    2012-11-01

    In German nuclear power plants thermal insulation fragmentation as a consequence of loss-of-coolant accidents have not been identified, but recently significant pressure increase in the sump sieves due to corrosion products have been observed. The corrosion products are released from hot-galvanized steel grids by steam jet fragmentation. It was shown that critical deposition of corrosion products can occur in the long-term process of the accident. The hazard of sieve blocking could be reduced by zinc containing chemicals or an increase of the pH value (to about 6.7). The possibility of disadvantageous consequences of resulting chemical reactions has to be investigated in the future.

  16. Thermal hydraulic analysis of aggressive secondary cooldown in a small break loss of coolant accident with a total loss of high pressure safety injection

    International Nuclear Information System (INIS)

    Han, Seok Jung; Lim, Ho Gon; Yang, Joon Eon

    2003-01-01

    To support the development of a Probabilistic Safety Assessment (PSA) model usable in Riskinformed Applications (RIA) for Korea Standard Nuclear power Plants (KSNP), we have performed a thermal hydraulic analysis of Aggressive Secondary Cooldown (ASC) in a 2-inch Small Break Loss Of Coolant Accident (SBLOCA) with a total loss of High Pressure Safety Injection (HPSI). The present study focuses on the estimation of the success criteria of ASC, and the enhanced understanding of the detailed thermal hydraulic behavior and phenomena. The results have shown that the Reactor Coolant System (RCS) pressure can be reduced to the Low Pressure Safety Injection (LPSI) operation conditions without core damage. It was also shown that more relaxed success criteria compared to those in the previous PSA models of KSNP could be used in the new PSA model. However, it was found that the results could be affected by various parameters related with ASC operation, i.e., reference temperature for the calculation of the cooldown rate and its control method

  17. A CANDU Severe Accident Analysis

    International Nuclear Information System (INIS)

    Negut, Gheorghe; Catana, Alexandru; Prisecaru, Ilie

    2006-01-01

    As interest in severe accident studies has increased in the last years, we have developed a set of simple models to analyze severe accidents for CANDU reactors that should be integrated in the EU codes. The CANDU600 reactor uses natural uranium fuel and heavy water (D2O) as both moderator and coolant, with the moderator and coolant in separate systems. We chose to analyze accident development for a LOCA with simultaneous loss of moderator cooling and the loss of emergency core cooling system (ECCS). This type of accident is likely to modify the reactor geometry and will lead to a severe accident development. When the coolant temperatures inside a pressure tube reaches 10000 deg C, a contact between pressure tube and calandria tube occurs and the residual heat is transferred to the moderator. Due to the lack of cooling, the moderator eventually begins to boil and is expelled, through the calandria vessel relief ducts, into the containment. Therefore the calandria tubes (fuel channels) will be uncovered, then will disintegrate and fall down to the calandria vessel bottom. After all the quantity of moderator is vaporized and expelled, the debris will heat up and eventually boil. The heat accumulated in the molten debris will be transferred through the calandria vessel wall to the shield tank water, which normally surrounds the calandria vessel. The phenomena described above are modelled, analyzed and compared with the existing data. The results are encouraging. (authors)

  18. Estimation of break location and size for loss of coolant accidents using neural networks

    International Nuclear Information System (INIS)

    Na, Man Gyun; Shin, Sun Ho; Jung, Dong Won; Kim, Soong Pyung; Jeong, Ji Hwan; Lee, Byung Chul

    2004-01-01

    In this work, a probabilistic neural network (PNN) that has been applied well to the classification problems is used in order to identify the break locations of loss of coolant accidents (LOCA) such as hot-leg, cold-leg and steam generator tubes. Also, a fuzzy neural network (FNN) is designed to estimate the break size. The inputs to PNN and FNN are time-integrated values obtained by integrating measurement signals during a short time interval after reactor scram. An automatic structure constructor for the fuzzy neural network automatically selects the input variables from the time-integrated values of many measured signals, and optimizes the number of rules and its related parameters. It is verified that the proposed algorithm identifies very well the break locations of LOCAs and also, estimate their break size accurately

  19. Comparison of methods for calculation of large cladding deformation in the case of a loss-of-coolant accident

    International Nuclear Information System (INIS)

    Fabian, H.; Krugmann, U.; Lassmann, K.; Schwarz, R.

    1975-06-01

    Some results of mechanical computations of cladding deformation are discussed for the case of a loss-of-coolant accident. The models for data-creation realize isothermal and transient conditions. The creep-deformation of the cladding is caused by significant temperature and pressure profiles. In all cases the constitutive creep law of Norton is used. The computations are based on three methods: 1) analytical solution (one-dimensional), 2) finite element solution (two-dimensional), 3) theory of creeping shells (two-dimensional). The differences in the solutions depend on the methods themselves and on computational differences. The influence of the large-deflection theory is discussed. In comparing the results it is evident that the differences in the methods are covered by a small variation of the creep parameters. In conclusion we propose the theory of the creeping shell for extensive computer codes. (orig.) [de

  20. Revisiting the analysis of passive plasma shutdown during an ex-vessel loss of coolant accident in ITER blanket

    International Nuclear Information System (INIS)

    Rivas, J.C.; Dies, J.; Fajarnés, X.

    2015-01-01

    Highlights: • We have repeated the safety analysis for the hypothesis of passive plasma shutdown for beryllium evaporation during an ex-vessel LOCA of ITER first wall, with AINA code. • We have performed a sensitivity analysis over some key parameters that represents uncertainties in physics and engineering, to identify cliff edge effects. • The obtained results for the 500 MW inductive scenario, with an ex-vessel LOCA affecting a third of first wall surface are similar to those of previous studies and point to the possibility of a passive plasma shutdown during this safety case, before a serious damage is inflicted to the ITER wall. • The sensitivity analysis revealed a new scenario potentially damaging for the first wall if we increase fusion power and time delay for impurity transport, and decrease fraction of affected first wall area and initial beryllium fraction in plasma. • After studying the 700 MW inductive scenario, with an ex-vessel LOCA affecting 10% of first wall surface, with 0.5% of Be in plasma and a time delay twice the energy confinement time, it was found that affected area of first wall would melt before a passive plasma shutdown occurs. - Abstract: In this contribution, the analysis of passive safety during an ex-vessel loss of coolant accident (LOCA) in the first wall/shield blanket of ITER has been studied with AINA safety code. In the past, this case has been studied using robust safety arguments, based on simple 0D models for plasma balance equations and 1D models for wall heat transfer. The conclusion was that, after first wall heating up due to the loss of all coolant, the beryllium evaporation in the wall surface would induce a growing impurity flux into core plasma that finally would end in a passive shut down of the discharge. The analysis of plasma-wall transients in this work is based in results from AINA code simulations. AINA (Analyses of IN vessel Accidents) code is a safety code developed at Fusion Energy Engineering

  1. Application of NUREG-1150 methods and results to accident management

    International Nuclear Information System (INIS)

    Dingman, S.E.; Sype, T.T.; Camp, A.L.

    1990-01-01

    The risk from five nuclear power plants was examined during the NUREG-1150 program. When the analyses of the plants were complete, an effort was undertaken to examine the implications of NUREG-1150 for accident management initiatives. The framework provided by the NUREG-1150 analysis presented a means within which current accident management strategies could be evaluated and future accident management strategies could be developed and assessed. Five separate but interrelated phases of risk management were considered: (1) prevention of accident initiators, (2) prevention of core damage, (3) implementation of an effective emergency response, (4) prevention of vessel breach and mitigation of radionuclide releases from the reactor coolant system, and (5) retention of fission products in the containment and other surrounding buildings. A risk-based methodology was developed to identify and evaluate risk management options for each of these five phases. The methodology was demonstrated through quantitative examples for the first two phases of risk management listed above. In addition, the reduction in risk for several currently implemented risk management strategies at operating plants was quantified

  2. Experimental investigation of boiling-water nuclear-reactor parallel-channel effects during a postulated loss-of-coolant accident

    International Nuclear Information System (INIS)

    Conlon, W.M.; Lahey, R.T. Jr.

    1982-12-01

    This report describes an experimental study of the influence of parallel channel effects (PCE) on the distribution of emergency core spray cooling water in a Boiling Water Nuclear Reactor (BWR) following a postulated design basis loss of coolant accident (LCA). The experiments were conducted in a scaled test section in which the reactor coolant was simulated by Freon-114 at conditions similar to those postulated to occur in the reactor vessel shortly after a LOCA. A BWR/4 was simulated by a (PCE) test section which contained three parallel heated channels to simulate fuel assemblies; a core bypass channel, and a jet pump channel. The test section also inlcuded scaled regions to simulate the lower and upper plena, downcomer, and steam separation regions of a BWR. A series of nine transient experiments were conducted, in which the lower plenum vaporization rate and heater rod power were varied while the core spray flow rate was held constant to simulate that of a BWR/4. During these experiments the flow distribution and heat transfer phenomena were observed and measured

  3. A study of the large break loss-of-coolant accident in the Angra-1 nuclear power plant

    International Nuclear Information System (INIS)

    Borges, E.M.

    1984-01-01

    The simulation of the Angra-I nuclear power plant under the condition of large break loss of coolant accident is presented, the thermal-hydraulic analysis of the primary circuit during each phase of the acident and thermal analysis of the hottest fuel rod curing reflooding are shown. Computer codes RELAP4/MOD5 (options EM and FLOOD) and TOODEE 2 are used to perform these computations. Fuel rod peak temperatures reached during the simulation are below the permissible levels. However, during the reflooding phase; the maximum oxidation of the cladding exceeds the limit of 0.17 times the original cladding thickness. (Author) [pt

  4. In-pile TREAT Test L04: simulating a lead sub-assembly in an unprotected LMFBR loss-of-coolant accident

    International Nuclear Information System (INIS)

    Tylka, J.P.; Bauer, T.H.; Wright, A.E.; Davies, A.L.; Herbert, R.; Woods, W.J.

    1983-01-01

    Test L04 in the PFR/TREAT series is the first multi-pin, in-pile simulation of a LMFBR transient undercooling/overpower (TUCOP) accident using full length prototypic fuel irradiated in a fast reactor. L04 is a gridded 7-pin bundle test performed in the ANL Mk-III integral loop in a flowing sodium environment and uses prototypic, bottom plenum, UK reactor fuel, preirradiated in the PFR to an axial peak burn-up of 4.2 a/o. The objective of L04 was the study, by simulation, of coolant voiding and fuel motion during the initiating phase of a hypothetical TUCOP accident in a large LMFBR. Test L04 is intended to study the behavior of a centrally located, lead subassembly with the highest power-to-flow ratio

  5. Analysis of multidimensional and countercurrent effects in a BWR loss-of-coolant accident

    International Nuclear Information System (INIS)

    Shiralkar, B.S.; Dix, G.E.; Alamgir, M.

    1991-01-01

    The presence of parallel enclosed channels in a boiling water reactor (BWR) provides opportunities for multiple flow regimes in cocurrent and countercurrent flow under loss-of-coolant accident (LOCA) conditions. To address and understand these phenomena, an integrated experimental and analytical study has been conducted. The primary experimental facility was the steam sector test facility (SSFT), which simulated a full scale 30deg sector of a BWR/6 reactor vessel. Both steady-state separate effects tests an integral transients with vessel vlowdown and refill were performed. The presence of multidimensional and parallel-channel effects was found to be very beneficial to BWR LOCA performance. The best estimate TRAC-BWR computer code was extended as part of this study by incorporation of a phenomenological upper plenum mixing model. TRAC-BWR was applied to the analysis of these full scale experiments. Excellent predictions of phenomena and experimental trends were achieved. (orig.)

  6. Dose to man from a hypothetical loss-of-coolant accident at the Rancho Seco Nuclear Power Plant

    International Nuclear Information System (INIS)

    Peterson, K.R.; Greenly, G.D.

    1981-02-01

    At the request of the Sacramento Municipal Utilities District, we used our computer codes, MATHEW and ADPIC, to assess the environmental impact of a loss-of-coolant accident at the Rancho Seco Nuclear Power Plant, about 40 kilometres southeast of Sacramento, California. Meteorological input was selected so that the effluent released by the accident would be transported over the Sacramento metropolitan area. With the release rates provided by the Sacramento Municipal Utilities District, we calculated the largest total dose for a 24-hour release as 70 rem about one kilometre northwest of the reactor. The largest total dose in the Sacramento metropolitan area is 780 millirem. Both doses are from iodine-131, via the forage-cow-milk pathway to an infant's thyroid. The largest dose near the nuclear plant can be minimized by replacing contaminated milk and by giving the cows dry feed. To our knowledge, there are no milk cows within the Sacramento metropolitan area

  7. Analyses for passive safety of fusion reactor during ex-vessel loss of coolant accident

    International Nuclear Information System (INIS)

    Honda, Takuro; Okazaki, Takashi; Maki, Koichi; Uda, Tatuhiko; Seki, Yasushi; Aoki, Isao; Kunugi, Tomoaki.

    1995-01-01

    Passive safety of nuclear fusion reactors during ex-vessel Loss-of-Coolant Accidents (LOCAs) in the divertor cooling system has been investigated using a hybrid code, which can treat the interaction of the plasma and plasma facing components (PFCs). The code has been modified to include the impurity emission from PFCs with a diffusion model at the edge plasma. We assumed an ex-vessel LOCA of the divertor cooling system during the ignited operation in International Thermonuclear Experimental Reactor (ITER), in which a carbon-copper brazed divertor plate was employed in the Conceptual Design Activity (CDA). When a double-ended break occurs at the cold leg of the divertor cooling system, the impurity density in the main plasma becomes about twice within 2s after the LOCA due to radiation enhanced sublimation of graphite PFCs. The copper cooling tube of the divertor begins to melt at about 3s after the LOCA, even though the plasma is passively shut down at about 4s due to the impurity accumulation. It is necessary to apply other PFC materials, which can shorten the time period for passive shutdown, or an active shutdown system to keep the reactor structures intact for such rapid transient accident. (author)

  8. Loss of coolant accident (LOCA) analysis for McMaster Nuclear Reactor through probabilistic risk assessment (PRA)

    Energy Technology Data Exchange (ETDEWEB)

    Ha, T.; Garland, W.J. [McMaster Univ., Dept. of Engineering Physics, Hamilton, Ontario (Canada)]. E-mail: hats@mcmaster.ca

    2006-07-01

    A probabilistic risk assessment (PRA) was conducted for the loss of coolant accident (LOCA) sequence in the McMaster Nuclear Reactor (MNR). A level 1 PRA was completed including event sequence modeling, system modeling, and quantification. To support the quantification of the accident sequence identified, data analysis using the Bayesian method and human reliability analysis (HRA) using the ASEP approach were performed. Since human performance in research reactors is significantly different from that in power reactors, a different time-oriented HRA model was proposed and applied for the estimation of the human error probability (HEP) of core relocation. This HEP estimate was less than that by the ASEP approach by a factor of about 2. These two HEP estimates were used for sensitivity analysis, and modeling uncertainty in the PRA models was quantified. This showed the necessity of appropriate human reliability models in PRA for research reactors. This method could be implemented for the operators' actions which require extensive manual execution with little cognitive load, as might be the case for some maintenance operations in power reactors. (author)

  9. Vent clearing during a simulated loss-of-coolant accident in a Mark I boiling-water reactor pressure-suppression system

    International Nuclear Information System (INIS)

    Pitts, J.H.; McCauley, E.W.

    1978-01-01

    In this test series, drywell pressurization rate, drywell overpressure, downcomer submergence, and overall vent system loss coefficient were varied to quantify the primary load sensitivities in the pressure suppression system. Extensive tests were conducted on a unique three-dimensional 1/5 scale model of the pressure suppression system a MARK-I BWR. They were focused on the initial or air cleaning phase of a hypothetical loss of coolant accident. As a result of the complete measurement system employed including multiple high speed cameras, the logical interrelationship between measured forces, measured pressures, and the hydrodynamic phenomena observed in high speed photographic pictures were established. The quantitative values from the 1/5 scale experiments can be applied to full scale plants using established scaling laws. (author)

  10. Regulatory analysis for the resolution of Generic Safety Issue 105: Interfacing system loss-of-coolant accident in light-water reactors

    International Nuclear Information System (INIS)

    1993-07-01

    An interfacing systems loss of coolant accident (ISLOCA) involves failure or improper operation of pressure isolation valves (PIVs) that compose the boundary between the reactor coolant system and low-pressure rated systems. Some ISLOCAs can bypass containment and result in direct release of fission products to the environment. A cost/benefit evaluation, using three PWR analyses, calculated the benefit of two potential modifications to the plants. Alternative 1 is improved plant operations to optimize the operator's performance and reduce human error probabilities. Alternative 2 adds pressure sensing devices, cabling, and instrumentation between two PIVs to provide operators with continuous monitoring of the first PIV. These two alternatives were evaluated for the base case plants (Case 1) and for each plant, assuming the plants had a particular auxiliary building design in which severe flooding would be a problem if an ISLOCA occurred. The auxiliary building design (Case 2) was selected from a survey that revealed a number of designs with features that provided less than optimal resistance to ECCS equipment loss caused by a ISLOCA-induced environment. The results were judged not to provide sufficient basis for generic requirements. It was concluded that the most viable course of action to resolve Generic Issue 105 is licensee participation in individual plant examinations (IPEs)

  11. Thermal-hydraulic analysis of loss-of-coolant accident in the JMTR

    International Nuclear Information System (INIS)

    Sakurai, Fumio; Oyamada, Rokuro

    1985-02-01

    The reevaluation of the Loss-of-Coolant Accident (LOCA) was required through the process of a safety review for the Japan Materials Testing Reactor (JMTR) core conversion from the high-enriched uranium fuel (Enrichment : 93%) to the medium-enriched uranium fuel (Enrichment : 45%). The following were concluded by thermal-hydraulic analysis of a LOCA caused by a double-ended pipe break in the JMTR primary cooling system. (1) The fuel in the core does not burn-out as long as it is covered with water. (2) A larger siphon break valve (larger than phi60mm) should be installed instead of the present one (phi25mm) on the primary cooling system in order to prevent the core from being uncovered with water in case of a LOCA caused by a double-ended pipe break. The present siphon break valve was installed to keep the core covered with water in case of a LOCA caused by a small pipe rupture. In this analysis, the Siphon Breaker Analysis Code (SBAC) was written in order to analyse the size of the siphon break valve and its accuracy was confirmed to be within 5% through a verification experiment. (author)

  12. Oxidation of SiC cladding under Loss of Coolant Accident (LOCA) conditions in LWRs

    International Nuclear Information System (INIS)

    Lee, Y.; Yue, C.; Arnold, R. P.; McKrell, T. J.; Kazimi, M. S.

    2012-01-01

    An experimental assessment of Silicon Carbide (SiC) cladding oxidation rate in steam under conditions representative of Loss of Coolant Accidents (LOCA) in light water reactors (LWRs) was conducted. SiC oxidation tests were performed with monolithic alpha phase tubular samples in a vertical quartz tube at a steam temperature of 1140 deg. C and steam velocity range of 1 to 10 m/sec, at atmospheric pressure. Linear weight loss of SiC samples due to boundary layer controlled reaction of silica scale (SiO 2 volatilization) was experimentally observed. The weight loss rate increased with increasing steam flow rate. Over the range of test conditions, SiC oxidation rates were shown to be about 3 orders of magnitude lower than the oxidation rates of zircaloy 4. A SiC volatilization correlation for developing laminar flow in a vertical channel is formulated. (authors)

  13. Effects of molten material temperatures and coolant temperatures on vapor explosion

    Institute of Scientific and Technical Information of China (English)

    LI Tianshu; YANG Yanhua; YUAN Minghao; HU Zhihua

    2007-01-01

    An observable experiment facility for low-temperature molten materials to be dropped into water was set up in this study to investigate the mechanism of the vapor explosion. The effect of the fuel and coolant interaction(FCI) on the vapor explosion during the severe accidents of a fission nuclear reactor has been studied. The experiment results showed that the molten material temperature has an important effect on the vapor explosion behavior and pressure. The increase of the coolant temperature would decrease the pressure of the vapor explosion.

  14. Transient behaviour of main coolant pump in nuclear power plants

    International Nuclear Information System (INIS)

    Delja, A.

    1986-01-01

    A basic concept of PWR reactor coolant pump thermo-hydraulic modelling in transient and accident operational condition is presented. The reactor coolant pump is a component of the nuclear steam supply system which forces the coolant through the reactor and steam generator, maintaining design heat transfer condition. The pump operating conditions have strong influence on the flow and thermal behaviour of NSSS, both in the stationary and nonstationary conditions. A mathematical model of the reactor coolant pump is formed by using dimensionless homologous relations in the four-quadrant regimes: normal pump, turbine, dissipation and reversed flow. Since in some operational regimes flow of mixture, liquid and steam may occur, the model has additional correction members for two-phase homologous relations. Modular concept has been used in developing computer program. The verification is performed on the simulation loss of offsite power transient and obtained results are presented. (author)

  15. Reactor hydrodynamics during the reflood phase of a loss-of-coolant accident

    International Nuclear Information System (INIS)

    Gay, R.R.

    1977-01-01

    The thermohydraulics of a nuclear reactor during the reflood phase of a hypothetical loss-of-coolant accident can be represented by moving control volume methodology in which six control volumes are used to represent the downcomer, lower plenum, and reactor core. The one-dimensional, homogeneous, equilibrium constitutive equations for two-phase steam/water flow are solved in each control volume and connecting junctions. One of the three core control volumes represents the quench region; it changes size and position based on the axial location of the clad quench temperature and the condensed liquid level in the flow channel. The lengths of the remaining two core control volumes are determined by the position of the quench region. Simulation of actual reflood experiments demonstrates that the methodology predicts reflood-like flow oscillations and reproduces the correct trends in experimental data. The moving control volume methodology has proven itself as a valid concept for reflood hydrodynamics, but further development of the existing EFLOD code is required for simulation of actual reflood experiments

  16. Assessment of accident energetics in LMFBR core-disruptive accidents

    International Nuclear Information System (INIS)

    Fauske, H.K.

    1977-01-01

    An assessment of accident energetics in LMFBR core-disruptive accidents is given with emphasis on the generic issues of energetic recriticality and energetic fuel-coolant interaction events. Application of a few general behavior principles to the oxide-fueled system suggests that such events are highly unlikely following a postulated core meltdown event

  17. MABEL-2D: a code to analyse cladding deformation in a loss-of-coolant accident. Part 2

    International Nuclear Information System (INIS)

    Bowring, R.W.

    1985-08-01

    The MABEL series of codes is being developed at Harwell to predict the extent of cladding deformation (ballooning) in pressurized water reactor fuel rods during a loss of coolant accident. MABEL - 2D is an updated version of MABEL - 2C. These are user notes for MABEL - 2D (which is described in a separate report AEEW - R1979). They describe the input data specification; the use of the restart facility; debug printing and quick-running sample problems. The input data are divided into rod data, thermal hydraulic data and creep data. There is an input data flow chart. The main appendix gives the detailed input data specification. (U.K.)

  18. Commissioning of the STAR test section for experimental simulation of loss of coolant accident using the EC-208 instrumented fuel assembly of the IEA-R1 reactor

    Energy Technology Data Exchange (ETDEWEB)

    Maprelian, Eduardo; Torres, Walmir M.; Prado, Adelk C.; Umbehaun, Pedro E.; Franca, Renato L.; Santos, Samuel C.; Macedo, Luiz A.; Sabundjian, Gaiane, E-mail: emaprel@ipen.br, E-mail: wmtorres@ipen.br, E-mail: acprado@ipen.br, E-mail: umbehaun@ipen.br, E-mail: rlfranca@ipen.br, E-mail: samuelcs@ipen.br, E-mail: lamacedo@ipen.br, E-mail: gdjian@ipen.br [Instituto de Pesquisas Energeticas e Nucleares (IPEN/CNEN-SP), Sao Paulo, SO (Brazil)

    2015-07-01

    The three basic safety functions of Research Reactors (RR) are the safe shutdown of the reactor, the proper cooling of the decay heat of the fuel elements and the confinement of radioactive materials. Compared to Nuclear Power Reactors, RR power release is small, yet its three safety functions must be met to ensure the integrity of the reactor. During a loss of coolant accident (LOCA) in pool type RR, partial or complete loss of pool water may occur, with consequent partial or complete uncovering of the fuel assemblies. In such an accident, the decay heat removal safety function must not be compromised. The Test Section for Experimental Simulation of Loss of Coolant Accident (STAR) is in commissioning phase. This test section will provide experimental data on partial and total uncovering of the EC-208 instrumented fuel assembly (IFA) irradiated in the IEA-R1. Experimental results will be useful in validation of computer codes for RR safety analysis, particularly on heat removal efficiency aspects (safety function) in accident conditions. STAR comprises a base on which is installed the IFA, the cylindrical stainless steel hull, the compressed air system for the test section emptying and refilling, and the instrumentation for temperature and level measurements. The commissioning tests or pre-operational check, consist of several preliminary tests to verify experimental procedures, the difficulties during assembling of STAR in the pool, the difficulties in control the emptying and refilling velocities, as well as, the repeatability capacity, tests of equipment, valves and systems and tests of instrumentation and data acquisition system. Safety, accuracy and easiness of operation will be checked. (author)

  19. A contribution to a theory of two-phase flow with phase change and addition of heat in a coolant channel of a LWR-fuel element during a loss-of-coolant accident

    International Nuclear Information System (INIS)

    Gaballah, I.

    1978-09-01

    A contribution to a theory of two-phase flow with phase change and addition of heat in a coolant channel of a LWR-fuel element during a loss-of-coolant accident. A theory was developed for the calculation of a dispersed two phase flow with heat addition in a channel with general area change. The theory was used to study different thermodynamic and gasdynamic processes, which may occur during the emergency cooling after a LOCA of a pressurized water reactor. The basic equations were formulated and solved numerically. The heat transfer mechanism was examined. Calculations have indicated that the radiative heat flux component is small compared to the convective component. A drop size spectrum was used in the calculations. Its effect on the heat transfer was investigated. It was found that the calculation with a mean drop diameter gives good results. Significant thermal non-equilibrium has been evaluated. The effect of different operating parameters on the degree of thermal non-equilibrium was studied. The flow and heat transfer in a channel with cross-sectional area change were calculated. It was shown that the channel deformation affects the state properties and the heat transfer along the channel very strongly. (orig.) 891 GL [de

  20. Vent clearing during a simulated loss-of-coolant accident in Mark I boiling-water-reactor pressure-suppression system

    International Nuclear Information System (INIS)

    Pitts, J.H.; McCauley, E.W.

    1978-01-01

    The response of the pressure-suspension containment system of Mark I boiling-water reactors to a loss-of-coolant accident (LOCA) is being studied. This response is a design basis for light-water nuclear reactors. Part of the study is being carried out on a 1 / 5 -scale experimental facility that models the pressure-suppression containment system of the Peach Bottom 2 nuclear power plant. The test series reported here focused on the initial or air-clearing phase of a hypothetical LOCA. Measured forces, measured pressures, and the hydrodynamic phenomena (observed with high-speed cameras) show a logical interrelationship

  1. Effects of a hypothetical loss-of-coolant accident on a Mark I Boiling Water Reactor pressure-suppression system

    International Nuclear Information System (INIS)

    Pitts, J.H.; McCauley, E.W.

    1977-01-01

    A loss-of-coolant accident (LOCA) in a boiling-water-reactor (BWR) power plant has never occurred. However, because this type of accident could be particularly severe, it is used as a principal theoretical basis for design. A series of consistent, versatile, and accurate air-water tests that simulate LOCA conditions has been completed on a 1 / 5 -scale Mark I BWR pressure-suppression system. Results from these tests are used to quantify the vertical-loading function and to study the associated fluid dynamics phenomena. Detailed histories of vertical loads on the wetwell are shown. In particular, variation of hydrodynamic-generated vertical loads with changes in drywell-pressurization rate, downcomer submergence, and the vent-line loss coefficient are established. Initial drywell overpressure, which partially preclears the downcomers of water, substantially reduces the peak vertical loads. Scaling relationships, developed from dimensional analysis and verified by bench-top experiments, allow the 1 / 5 -scale results to be applied to a full-scale BWR power plant. This analysis leads to dimensionless groupings that are invariant. These groupings show that, if water is used as the working fluid, the magnitude of the forces in a scaled facility is reduced by the cube of the scale factor and occurs in a time reduced by the square root of the scale factor

  2. Analyses of severe accident scenarios in RBMK-1500

    International Nuclear Information System (INIS)

    Kaliatka, A.; Rimkevicius, S.; Uspuras, E.; Urbonavicius, E.

    2006-01-01

    Even though research of severe accidents in light water reactors is performed around the world for several decades many questions remain. Research is mostly performed for vessel-type reactors. RBMK is a channel type light water reactor, which differs from the vessel-type reactors in several aspects. These differences impose some specifics in the accident phenomena and processes that occur during severe accidents. Severe accident research for RBMK reactors is taking first steps and very little information is available in the open literature. The existing severe accident analysis codes are developed for vessel-type reactors and their application to the analysis of accidents in RBMK is not straightforward. This paper presents the results of an analysis of large loss-of-coolant accident scenarios with loss of coolant injection to the core of RBMK-1500. The analysis performed considers processes in the reactor core, in the reactor cooling system and in the confinement until the fuel melting started. This paper does not aim to answer all the questions regarding severe accidents in RBMK but rather to start a discussion, identify the expected timing of the key phenomena. (orig.)

  3. Molten fuel/coolant interaction studies: some results obtained with the Windscale small shock tube rig

    International Nuclear Information System (INIS)

    Higham, E.J.; Vaughan, G.J.

    1978-02-01

    Experiments are described in which water has been brought into contact with various molten metals in a shock tube, thus simulating the fall of coolant into molten uranium dioxide in a postulated reactor accident. Impact velocities of the water on to the molten material were in the range 5 to 7 m/s. Shock-pulse pressures in the water column after impact and particle size distributions of the dispersed resolidified material that was recovered were measured. The proportion of dispersed material and the size of the shock pulse (by comparison with that expected from water hammer alone) have been used as criteria for the occurrence of a molten fuel/coolant interaction and such interactions of varying degrees of violence have been found for water/aluminium, water/bismuth, water/tin, over a range of temperatures from 350 0 C to 950 0 C, for water/boric oxide, but not for water/magnesium. (author)

  4. Break-up and quench behavior of molten material in coolant

    International Nuclear Information System (INIS)

    Abe, Y.; Kizu, T.; Arai, T.; Nariai, H.; Chitose, K.; Koyama, K.

    2003-01-01

    In a Core Disruptive Accident (CDA) of a Fast Breeder Reactor, the Post Accident Heat Removal(PAHR) is crucial for the accident mitigation. The molten core material should be solidified in the sodium coolant in the reactor vessel. The material, being fragmented while solidification and forming debris bed, will be cooled in the coolant. In the experiment, molten material jet is injected into water to experimentally obtain fragments and the visualized information of the fragmentation and boiling phenomena during PAHR in CDA. The distributed particle behavior of the molten material jet is observed with high-speed video camera. The experimental results are compared with the existing theories. Consequently, the marginal wavelength on the surface of a water jet is close to the value estimated based on the Rayleigh-Taylor instability. Moreover, the fragmented droplet diameter obtained from the interaction of molten material and water is close to the value estimated based on the Kelvin-Helmholtz instability. Once the particle diameter of the fragmented molten material could be known from a hydrodynamic model, it becomes possible to estimate the mass of the molten particle with some appropriate heat transfer model

  5. Evaluation of molten lead mixing in sodium coolant by diffusion for application to PAHR

    International Nuclear Information System (INIS)

    Chawla, T.C.; Pedersen, D.R.; Leaf, G.; Minkowycz, W.J.

    1983-01-01

    In post-accident heat removal (PAHR) applications the use of a lead slab is being considered for protecting a porous bed of steel shots in ex-vessel cavity from direct impingement of molten steel or fuel upon vessel failure following a hypothetical core dissembly accident in an LMFBR. The porous bed is provided to increase coolability of the fuel debris by the sodium coolant. The objectives of the present study are (1) to determine melting rates of lead slabs of various thicknesses in contact with sodium coolant and (2) to evaluate the extent of penetration and mixing rates of molten lead into sodium coolant by molecular diffusion alone

  6. Analysis of multi-dimensional and countercurrent effects in a BWR loss-of-coolant accident

    International Nuclear Information System (INIS)

    Shiralkar, B.S.; Dix, G.E.; Alamgir, M.

    1989-01-01

    The presence of parallel enclosed channels in a BWR provides opportunities for multiple flow regimes in co-current and countercurrent flow under Loss-of-Coolant Accident (LOCA) conditions. To address and understand these phenomena, an integrated experimental and analytical study has been conducted. The primary experimental facility was the Steam Sector Test Facility (SSTF) which simulated a full scale 30deg sector of a BWR/6 reactor vessel. Both steady-state separate effects tests and integral transients with vessel blowdown and refill were performed. The present of multi-dimensional and parallel channel effects was found to be very beneficial to BWR LOCA performance. The best estimate TRAC-BWR computer code was extended as part of this study by incorporation of a phenomenological upper plenum mixing model. TRAC-BWR was applied to the analysis of these full scale experiments. Excellent predictions of phenomena and experimental trends were achieved. (orig.)

  7. Study Of Severe Accident Phenomena In Nuclear Power Plant

    International Nuclear Information System (INIS)

    Sugiyanto; Antariksawan; Anhar, R.; Arifal

    2001-01-01

    Several phenomena that occurred in the light water reactor type of nuclear power plant during severe accident were studied. The study was carried out based on the results of severe accident researches in various countries. In general, severe accident phenomena can be classified into in-vessel phenomena, retention in the reactor coolant system, and ex-vessel phenomena. In-vessel retention has been recommended as a severe accident management strategy

  8. Nonlinear dynamic response analysis in piping system for a loss of coolant accident in primary loop of pressurized water reactor

    International Nuclear Information System (INIS)

    Zhang Xiwen; He Feng; Hao Pengfei; Wang Xuefang

    2000-01-01

    Based on the elaborate force and moment analysis with characteristics method and control-volume integrating method for the piping system of primary loop under pressurized water reactor' loss of coolant accident (LOCA) conditions, the nonlinear dynamic response of this system is calculated by the updated Lagrangian formulation (ADINA code). The piping system and virtual underpinning are specially processed, the move displacement of the broken pipe with time is accurately acquired, which is very important and useful for the design of piping system and virtual underpinning

  9. Detailed analysis of the TMI-2 accident scenario by using MARS/SCDAP

    International Nuclear Information System (INIS)

    Park, Rae Joon; Lee, Young Jin; Chung, Bub Dong

    2009-01-01

    As part of a benchmark analysis, the Three Mile Island Unit 2 (TMI-2) accident has been analyzed by using the MARS/SCDAP computer code. This analysis has been performed to estimate the efficiency of the MARS/SCDAP computer code and the predictive qualities of its models from an initiating event to a severe accident. The MARS/SCDAP results have shown that a reduction feed water to the steam generator caused the coolant to expand and initially increased the reactor coolant system (RCS) pressure. The pilot-operated relief valve (PORV) opened when the pressure reached 15.7 MPa, with a reactor scram occurring when the pressure reached 16.3 MPa. The PORV failed to close as the RCS pressure decreased, initiating a small break loss of coolant accident. The emergency core cooling was reduced by operators who thought that the pressurizer liquid level indicated a nearly full RCS, while coolant continued to be lost from the PORV. After an initial decrease in the RCS pressure, the pressurizer pressure remained at approximately 7 MPa. After a pump termination at 6,000 seconds, the liquid level in the reactor vessel decreased, which resulted in a core uncovery. Continued core degradation with a coolant boiling caused the pressurizer pressure to increase. The MARS/SCDAP results are very similar to the TMI-2 data

  10. Accident analysis of heavy water cooled thorium breeder reactor

    International Nuclear Information System (INIS)

    Yulianti, Yanti; Su’ud, Zaki; Takaki, Naoyuki

    2015-01-01

    Thorium has lately attracted considerable attention because it is accumulating as a by-product of large scale rare earth mining. The objective of research is to analyze transient behavior of a heavy water cooled thorium breeder that is designed by Tokai University and Tokyo Institute of Technology. That is oxide fueled, PWR type reactor with heavy water as primary coolant. An example of the optimized core has relatively small moderator to fuel volume ratio (MFR) of 0.6 and the characteristics of the core are burn-up of 67 GWd/t, breeding ratio of 1.08, burn-up reactivity loss during cycles of < 0.2% dk/k, and negative coolant reactivity coefficient. One of the nuclear reactor accidents types examined here is Unprotected Transient over Power (UTOP) due to withdrawing of the control rod that result in the positive reactivity insertion so that the reactor power will increase rapidly. Another accident type is Unprotected Loss of Flow (ULOF) that caused by failure of coolant pumps. To analyze the reactor accidents, neutron distribution calculation in the nuclear reactor is the most important factor. The best expression for the neutron distribution is the Boltzmann transport equation. However, solving this equation is very difficult so that the space-time diffusion equation is commonly used. Usually, space-time diffusion equation is solved by employing a point kinetics approach. However, this approach is less accurate for a spatially heterogeneous nuclear reactor and the nuclear reactor with quite large reactivity input. Direct method is therefore used to solve space-time diffusion equation which consider spatial factor in detail during nuclear reactor accident simulation. Set of equations that obtained from full implicit finite-difference method is solved by using iterative methods. The indication of UTOP accident is decreasing macroscopic absorption cross-section that results large external reactivity, and ULOF accident is indicated by decreasing coolant flow. The

  11. Accident analysis of heavy water cooled thorium breeder reactor

    Energy Technology Data Exchange (ETDEWEB)

    Yulianti, Yanti [Department of Physics, University of Lampung Jl. Sumantri Brojonegoro No.1 Bandar Lampung, Indonesia Email: y-yanti@unila.ac.id (Indonesia); Su’ud, Zaki [Department of Physics, Bandung Institute of Technology Jl. Ganesha 10 Bandung, Indonesia Email: szaki@fi.itb.ac.id (Indonesia); Takaki, Naoyuki [Department of Nuclear Safety Engineering Cooperative Major in Nuclear Energy (Graduate School) 1-28-1 Tamazutsumi,Setagayaku, Tokyo158-8557, Japan Email: ntakaki@tcu.ac.jp (Japan)

    2015-04-16

    Thorium has lately attracted considerable attention because it is accumulating as a by-product of large scale rare earth mining. The objective of research is to analyze transient behavior of a heavy water cooled thorium breeder that is designed by Tokai University and Tokyo Institute of Technology. That is oxide fueled, PWR type reactor with heavy water as primary coolant. An example of the optimized core has relatively small moderator to fuel volume ratio (MFR) of 0.6 and the characteristics of the core are burn-up of 67 GWd/t, breeding ratio of 1.08, burn-up reactivity loss during cycles of < 0.2% dk/k, and negative coolant reactivity coefficient. One of the nuclear reactor accidents types examined here is Unprotected Transient over Power (UTOP) due to withdrawing of the control rod that result in the positive reactivity insertion so that the reactor power will increase rapidly. Another accident type is Unprotected Loss of Flow (ULOF) that caused by failure of coolant pumps. To analyze the reactor accidents, neutron distribution calculation in the nuclear reactor is the most important factor. The best expression for the neutron distribution is the Boltzmann transport equation. However, solving this equation is very difficult so that the space-time diffusion equation is commonly used. Usually, space-time diffusion equation is solved by employing a point kinetics approach. However, this approach is less accurate for a spatially heterogeneous nuclear reactor and the nuclear reactor with quite large reactivity input. Direct method is therefore used to solve space-time diffusion equation which consider spatial factor in detail during nuclear reactor accident simulation. Set of equations that obtained from full implicit finite-difference method is solved by using iterative methods. The indication of UTOP accident is decreasing macroscopic absorption cross-section that results large external reactivity, and ULOF accident is indicated by decreasing coolant flow. The

  12. Utilization of DRUFAN 01/MOD 02 computer code for the depressurization phase analysis of a postulated loss of coolant accident in Angra 2/3 Nuclear Power Plants

    International Nuclear Information System (INIS)

    Austregesilo Filho, H.; Figueiredo, P.J.M.

    1985-08-01

    The DRUFAN 01/Mod 2 developed by Gesellschaft fur Reaktorsicherheit (GRS) mbh to simulate thermohydraulic behavior of the primary circuit of PWR reactors, during the despressurization phase and initial refilling phase of loss of coolant accidents by great ruptures, is presented. The program simulates the system to be analysed by control volumes-concentrated parameters model - and it is based on numerical solution of conservation equations for mass of water, mass of vapor, quantities of motion and energy, and on the control volume homogeneity hypothesis. The possibilities of thermodynamic disequilibrium, determining mass transfer between liquid and vapor phases assuming that one saturated phase, are considered. The process of computer code implantation in the Honeywell Bull 64 DPS 7 system at CNEN, the modifications done into the program and the application to the despressurization phase analysis of a loss of coolant accident at Angra-2 and Angra-3 reactors are considered. (M.C.K.) [pt

  13. Evaluation of a coolant injection into the in-vessel with a RCS depressurization by using SCDAP/RELAP5

    International Nuclear Information System (INIS)

    Rae-Joon, Park; Sang-Baik, Kim; Hee-Dong, Kim

    2007-01-01

    As part of the evaluations of a severe accident management strategy, a coolant injection in the vessel with a reactor coolant system (RCS) depressurization has been evaluated by using the SCDAP/RELAP5 computer code. Two high pressure sequences of a small break loss of coolant accident (LOCA) without safety injection (SI) and a total loss of feed water (LOFW) accident have been analyzed in optimized power reactor OPR-1000. The SCDAP/RELAP5 results have shown that only one train operation of a high pressure safety injection at 30,000 seconds with a RCS depressurization by using one condenser dump valve at 6 minutes after an entrance of the severe accident management guidance prevents a reactor vessel failure for the small break LOCA without SI. In this case, only train operation of the low pressure safety injection (LPSI) without the high pressure safety injection (HPSI) does not prevent a reactor vessel failure. Only one train operation of the HPSI at 20,208 seconds with a RCS depressurization by using two safety depressurization system valves at 40 minutes after an initial opening of the safety relief valve prevents a reactor vessel failure for the total LOFW. (authors)

  14. RETRAN analysis of inter-system LOCA within the primary coolant pump

    International Nuclear Information System (INIS)

    Gangadharan, A.; Pratt, G.F.

    1992-01-01

    One example of an inter-system loss of coolant accident is the failure of the tubing within the primary coolant pump (PCP) thermal barrier heat exchanger. Such a failure would result in the entry of primary coolant into the component cooling water (CCW) system. The primary coolant flowrate through the break would rapidly pressurize the CCW system when the relief valves are too small. The piping in the CCW system at Palisades has a low pressure rating. Failures in this system outside the containment boundary could lead to primary coolant release to the atmosphere. RETRAN-02 was used to perform a simulation of the break in the PCP integral heat exchanger. The model included a detailed nodalization of the Byron-Jackson primary coolant pump internals leading up to the CCW system relief valves. Preliminary studies show the need for increased relief capacity in the CCW system. A case was run using a larger relief valve. Critical flow in the system upstream of the relief valves maintains the pressures in those volumes above the CCW design pressure. The pressures downstream from the relief valves and outside containment will be at or below the design pressure. This paper presents the results of the transient analysis

  15. Safety regulations regarding to accident monitoring and accident sampling at Russian NPPs with VVER type reactors

    International Nuclear Information System (INIS)

    Sharafutdinov, Rachet; Lankin, Michail; Kharitonova, Nataliya

    2014-01-01

    The paper describes a tendency by development of regulatory document requirements related to accident monitoring and accident sampling at Russia's NPPs. Lessons learned from the Fukushima Daiichi accident pointed at the importance and necessary to carry out an additional safety check at Russia's nuclear power plants in the preparedness for management of severe accidents at NPPs. Planned measures for improvement of severe accidents management include development and implementation of the accident instrumentation systems, providing, monitoring, management and storage of information in a severe accident conditions. The draft of Safety Guidelines <accident monitoring system of nuclear power plants with VVER reactors' prepared by Scientific and Engineering Centre for Nuclear and Radiation Safety (SEC NRS) established the main criteria for accident monitoring instrumentation that can monitor relevant plant parameters in the reactor and inside containment during and after a severe accident in nuclear power plants. Development of these safety guidelines is in line with the recommendations of IAEA Action Plan on Nuclear Safety in response to the Fukushima Daiichi event and recommendations of the IAEA Nuclear Energy series Report <<Accident Monitoring Systems for Nuclear Power Plants' (Draft V 2.7). The paper presents the principles, which are used as the basis for selection of plant parameters for accident monitoring and for establishing of accident monitoring instrumentation. The recommendations to the accident sampling system capable to obtain the representative reactor coolant and containment air and fluid samples that support accurate analytical results for the parameters of interest are considered. The radiological and chemistry parameters to be monitored for primary coolant and sump and for containment air are specified. (author)

  16. Loss of coolant accident. Past, present and future

    International Nuclear Information System (INIS)

    Cermak, J.O.

    1978-01-01

    The history of LOCA is covered from the original design basis, failure of the largest connecting pipe with no peak clad temperature limit through to the current design basis, double ended failure of the largest pipe in the primary system with a design peak clad temperature limit of 2200 0 F. Various obstacles along the way are addressed such as, degree of analytical sophisticaton, perplexing experimental results, the infamous 1971 semiscale tests, fuel densification and changes in USNRC evaluation models. In the future, it is projected that more reliance will be put on probabilistic evaluation of the LOCA with respect to both the accident analysis, reliability of the system and the probability of the accident itself. (author)

  17. Thermal hydraulics of CANDU severe accident analysis

    International Nuclear Information System (INIS)

    Negut, Gheorghe; Catana, Alexandru; Prisecaru, Ilie; Dupleac, Daniel

    2007-01-01

    As interest in severe accident studies has increased in the last years, we have developed a set of simple models to analyze severe accidents in CANDU reactors that should be integrated in the EU codes. The CANDU600 reactor uses natural uranium fuel and heavy water (D 2 O) as both moderator and coolant, with the moderator and coolant in separate systems. We chose to analyze accident development for a LOCA with simultaneous loss of moderator cooling and the loss of emergency core cooling system (ECCS). This type of accident is likely to modify the reactor geometry and will lead to a severe accident development. When the coolant temperatures inside a pressure tube reaches 1000 deg. C, a contact between pressure tube and calandria tube occurs and the residual heat is transferred to the moderator. Due to the lack of cooling, the moderator eventually begins to boil and is expelled, through the calandria vessel relief ducts, into the containment. Therefore the calandria tubes (fuel channels) will be uncovered, then will disintegrate and fall down to the calandria vessel bottom. After all the quantity of moderator is vaporized and expelled, the debris will heat up and eventually boil. The heat accumulated in the molten debris will be transferred through the calandria vessel wall to the shield tank water, which normally surrounds the calandria vessel. The phenomena described above are modelled, analyzed and compared with the available data. The results are encouraging. (authors)

  18. HTGR-GT primary coolant transient resulting from postulated turbine deblading

    International Nuclear Information System (INIS)

    Cadwallader, G.J.; Deremer, R.K.

    1980-11-01

    The turbomachine is located within the primary coolant system of a nuclear closed cycle gas turbine plant (HTGR-GT). The deblading of the turbine can cause a rapid pressure equilibration transient that generates significant loads on other components in the system. Prediction of and design for this transient are important aspects of assuring the safety of the HTGR-GT. This paper describes the adaptation and use of the RATSAM program to analyze the rapid fluid transient throughout the primary coolant system during a spectrum of turbine deblading events. Included are discussions of (1) specific modifications and improvements to the basic RATSAM program, which is also briefly described; (2) typical results showing the expansion wave moving upstream from the debladed turbine through the primary coolant system; and (3) the effect on the transient results of different plenum volumes, flow resistances, times to deblade, and geometries that can choke the flow

  19. Severe accident progression perspectives for Mark I containments based on the IPE results

    International Nuclear Information System (INIS)

    Lin, C.C.; Lehner, J.R.; Pratt, W.T.; Drouin, M.

    1995-01-01

    Based on level 2 analyses in IPE (Individual Plant Examination) submittals accident progression, perspectives were obtained for all containment types. These perspectives consisted of insights on containment failure modes, releases therein, and factors responsible for the results. To illustrate the types of perspectives acquired on severe accident progresssion, insights obtained for (BWR) Mark I containments are discussed here. Mark I containments have high strength but small volumes and rely on pressure suppression pools to condense steam released from the reactor coolant system during an accident. Accidents causing structural failure of the drywell shortly after the core debris melts through the reactor vessel were found to be dominant contributors to risk. Importance of individual containment failure mechanisms depends on plant features and in some cases on modeling assumptions; however the following mechanisms were found important: drywell shell melt-through caused by direct contact with core debris and drywell failure caused by rapid pressure/temperature pulses at time of vessel melt-through. Drywell failure caused by gradual pressure/temperature buildup due to gases and steam released during core/concrete interactions is important in some IPEs. In other IPEs vent was an important contributor. However, accidents that bypass containment (eg interfacing systems LOCA)or involve containment isolation failure were not important contributors to the CDF in any of the IPEs for Mark I plants. These accidents are also not important to risk (even though they can involve large fission product release) because their frequencies of occurrence are so much lower than frequencies of early structural failure caused by other accidents that dominate the CDF

  20. Impact evaluation of the accident with release of a PWR coolant. Case study: Angra 3

    International Nuclear Information System (INIS)

    Aguiar, Andre Silva de; Simoes Filho, Francisco Fernando Lamego; Soares, Abner Duarte; Lapa, Celso Marcelo Franklin

    2011-01-01

    It was postulated in the cooling system, a LOCA where was lost 431 m 3 of coolant. The inventory was 1.87 x 10 10 Bq/m 3 of tritium, 2.22 x 10 7 Bp/m 3 of cobalt and 3.48 x 10 8 Bq/m 3 of cesium and was launched near tue Itaorna beach, Angra dos Reis, RJ, Brazil. By applying the model in the proposed scenery (Angra 1 and 2 functioning and Angra 3 with variation of water taking and discharge with a progressive reduction after the accident), the dilution of specific activity of the radionuclides reached inferior values after 22 hours, to the reference values. After 54 hours, the levels of radionuclides, in the indirect influence are already below the minimum values of activity detected by the laboratory of environmental monitoring of the CNAAA

  1. Analysis of severe core damage accident progression for the heavy water reactor

    International Nuclear Information System (INIS)

    Tong Lili; Yuan Kai; Yuan Jingtian; Cao Xuewu

    2010-01-01

    In this study, the severe accident progression analysis of generic Canadian deuterium uranium reactor 6 was preliminarily provided using an integrated severe accident analysis code. The selected accident sequences were multiple steam generator tube rupture and large break loss-of-coolant accidents because these led to severe core damage with an assumed unavailability for several critical safety systems. The progressions of severe accident included a set of failed safety systems normally operated at full power, and initiative events led to primary heat transport system inventory blow-down or boil off. The core heat-up and melting, steam generator response,fuel channel and calandria vessel failure were analyzed. The results showed that the progression of a severe core damage accident induced by steam generator tube rupture or large break loss-of-coolant accidents in a CANDU reactor was slow due to heat sinks in the calandria vessel and vault. (authors)

  2. A summary of the assessment of fuel behaviour, fission product release and pressure tube integrity following a postulated large loss-of-coolant accident

    International Nuclear Information System (INIS)

    Langman, V.J.; Weaver, K.R.

    1984-05-01

    The Ontario Hydro analyses of fuel and pressure tube temperatures, fuel behaviour, fission product release and pressure tube integrity for large break loss-of-coolant accidents in Bruce A or Pickering A have been critically reviewed. The determinations of maximum fuel temperatures and fission product release are very uncertain, and pressure tube integrity cannot be assured where low steam flows are predicted to persist for times on the order of minutes

  3. Rapid thermal transient in a reactor coolant channel

    International Nuclear Information System (INIS)

    Cherubini, A.

    1986-01-01

    This report deals with the problem of one-dimensional thermo-fluid-dynamics in a reactor coolant channel, with the aim of determining the evolution in time of the coolant (H*L2O), in one-and/or two-phase regimes, subjected to a great and rapid increase in heat flux (accident conditions). To this aim, the following are set out: a) the physical model used; b) the equations inherent in the above model; c) the numerical methods employed to solve them by means of a computer programme called CABO (CAnale BOllente). Next a typical problem of rapid thermal transient resolved by CABO is reported. The results obtained, expressed in form of graphs, are fully discussed. Finally comments on possible developments of CABO follow

  4. FARO test L-14 on fuel coolant interaction and quenching. Comparison report, volume 1 + 2, analysis of the results

    International Nuclear Information System (INIS)

    Annunziato, A.; Addabbo, C.; Yerkess, A.; Silverii, R.; Brewka, W.; Leva, G.

    1997-01-01

    This report provides a comparative analysis of the results from the ISP-39 exercise promoted by OECD-CSNI in the frame of the NEA activities. ISP-39 has been conceived to benchmark the predictive capabilities of computer codes used in the evaluation of fuel-coolant interaction (FCI) and quenching phenomenologies of relevance in water cooled reactors severe accidents safety analysis. The ISP-39 reference case is FARO test L-14, a non-energetic FCI test performed under realistic melt composition and prototypical accident conditions in the FARO experimental installation (Ispra, Italy). Thirteen research organizations from ten countries participated in the exercise submitting 15 prediction calculations with 8 different codes or code versions (COMETA, MC3D, IVA, IFCI, JASMINE, TEXAS, THIRMAL, VAPEX). ISP-39 was conducted as an open exercise. Conclusions are given concerning code capabilities, users effect and sensitivity analyses, numerical accuracy quantification of the predictions, code improvements, general considerations

  5. PWR pressure vessel integrity during overcooling accidents

    International Nuclear Information System (INIS)

    Cheverton, R.D.

    1981-01-01

    Pressurized water reactors are susceptible to certain types of hypothetical accidents that under some circumstances, including operation of the reactor beyond a critical time in its life, could result in failure of the pressure vessel as a result of propagation of crack-like defects in the vessel wall. The accidents of concern are those that result in thermal shock to the vessel while the vessel is subjected to internal pressure. Such accidents, referred to as pressurized thermal shock or overcooling accidents (OCA), include a steamline break, small-break LOCA, turbine trip followed by stuck-open bypass valves, the 1978 Rancho Seco and the TMI accidents and many other postulated and actual accidents. The source of cold water for the thermal shock is either emergency core coolant or the normal primary-system coolant. ORNL performed fracture-mechanics calculations for a steamline break in 1978 and for a turbine-trip case in 1980 and concluded on the basis of the results that many more such calculations would be required. To meet the expected demand in a realistic way a computer code, OCA-I, was developed that accepts primary-system temperature and pressure transients as input and then performs one-dimensional thermal and stress analyses for the wall and a corresponding fracture-mechanics analysis for a long axial flaw. The code is briefly described, and its use in both generic and specific plant analyses is discussed

  6. Analysis of the accident with the coolant discharge into the plasma vessel of the W7-X fusion experimental facility

    Energy Technology Data Exchange (ETDEWEB)

    Ušpuras, E.; Kaliatka, A.; Kaliatka, T., E-mail: tadas@mail.lei.lt

    2013-06-15

    Highlights: • The accident with water ingress into the plasma vessel in Wendelstein nuclear fusion device W7-X was analyzed. • The analysis of the processes in the plasma vessel and ventilation system was performed using thermal-hydraulic RELAP5 Mod3.3 code. • The suitability of pressure increase prevention system was assessed. • All analyses results will be used for the optimization of W7-X design and to ensure safe operation of this nuclear fusion device. -- Abstract: Fusion is the energy production technology, which could potentially solve problems with growing energy demand of population in the future. Starting 2007, Lithuanian Energy Institute (LEI) is a member of European Fusion Development Agreement (EFDA) organization. LEI is cooperating with Max Planck Institute for Plasma Physics (IPP, Germany) in the frames of EFDA project by performing safety analysis of fusion device W7-X. Wendelstein 7-X (W7-X) is an experimental stellarator facility currently being built in Greifswald, Germany, which shall demonstrate that in the future energy could be produced in such type of fusion reactors. In this paper the safety analysis of 40 mm inner diameter coolant pipe rupture in cooling circuit and discharge of steam–water mixture through the leak into plasma vessel during the W7-X no-plasma “baking” operation mode is presented. For the analysis the model of W7-X cooling system (pumps, valves, pipes, hydro-accumulators, and heat exchangers) and plasma vessel was developed by employing system thermal-hydraulic state-of-the-art RELAP5 Mod3.3 code. This paper demonstrated that the developed RELAP5 model enables to analyze the processes in divertor cooling system and plasma vessel. The results of analysis demonstrated that the proposed burst disc, connecting the plasma vessel with venting system, opens and pressure inside plasma vessel does not exceed the limiting 1.1 × 10{sup 5} Pa absolute pressure. Thus, the plasma vessel remains intact after loss-of-coolant

  7. Passive depressurization accident management strategy for boiling water reactors

    International Nuclear Information System (INIS)

    Liu, Maolong; Erkan, Nejdet; Ishiwatari, Yuki; Okamoto, Koji

    2015-01-01

    Highlights: • We proposed two passive depressurization systems for BWR severe accident management. • Sensitivity analysis of the passive depressurization systems with different leakage area. • Passive depressurization strategies can prevent direct containment heating. - Abstract: According to the current severe accident management guidance, operators are required to depressurize the reactor coolant system to prevent or mitigate the effects of direct containment heating using the safety/relief valves. During the course of a severe accident, the pressure boundary might fail prematurely, resulting in a rapid depressurization of the reactor cooling system before the startup of SRV operation. In this study, we demonstrated that a passive depressurization system could be used as a severe accident management tool under the severe accident conditions to depressurize the reactor coolant system and to prevent an additional devastating sequence of events and direct containment heating. The sensitivity analysis performed with SAMPSON code also demonstrated that the passive depressurization system with an optimized leakage area and failure condition is more efficient in managing a severe accident

  8. Passive depressurization accident management strategy for boiling water reactors

    Energy Technology Data Exchange (ETDEWEB)

    Liu, Maolong, E-mail: liuml@vis.t.u-tokyo.ac.jp [Department of Nuclear Engineering and Management, School of Engineering, The University of Tokyo (Japan); Erkan, Nejdet [Nuclear Professional School, School of Engineering, The University of Tokyo (Japan); Ishiwatari, Yuki [Department of Nuclear Engineering and Management, School of Engineering, The University of Tokyo (Japan); Hitachi-GE Nuclear Energy, Ltd. (Japan); Okamoto, Koji [Nuclear Professional School, School of Engineering, The University of Tokyo (Japan)

    2015-04-01

    Highlights: • We proposed two passive depressurization systems for BWR severe accident management. • Sensitivity analysis of the passive depressurization systems with different leakage area. • Passive depressurization strategies can prevent direct containment heating. - Abstract: According to the current severe accident management guidance, operators are required to depressurize the reactor coolant system to prevent or mitigate the effects of direct containment heating using the safety/relief valves. During the course of a severe accident, the pressure boundary might fail prematurely, resulting in a rapid depressurization of the reactor cooling system before the startup of SRV operation. In this study, we demonstrated that a passive depressurization system could be used as a severe accident management tool under the severe accident conditions to depressurize the reactor coolant system and to prevent an additional devastating sequence of events and direct containment heating. The sensitivity analysis performed with SAMPSON code also demonstrated that the passive depressurization system with an optimized leakage area and failure condition is more efficient in managing a severe accident.

  9. Axial distribution of deformation in the cladding of pressurized water reactor fuel rods in a loss-of-coolant accident

    International Nuclear Information System (INIS)

    Rose, K.M.; Mann, C.A.; Hindle, E.D.

    1979-01-01

    In the event of a loss-of-coolant accident in a pressurized water reactor, the cladding of the fuel rods would undergo a temperature excursion while being subject to tensile hoop stress. The deformation behavior of 470-mm lengths of Zircaloy-4 fuel cladding has been studied experimentally; under a range of stress levels in the high-alpha range of zirconium (600 to 850 0 C), diametral strains of up to 70% were observed over the greater part of their length. A negative-feedback mechanism is suggested, based on the reduction of secondary creep rate following cooling by enhanced heat loss at swelling areas. An approximate analysis based on this mechanism was found to be in reasonable agreement with the experimental results. A computer modeling code is being developed to predict cladding deformation under realistic conditions

  10. Axial distribution of deformation in the cladding of pressurized water reactor fuel rods in a loss-of-coolant accident

    Energy Technology Data Exchange (ETDEWEB)

    Rose, K.M.; Mann, C.A.; Hindle, E.D.

    1979-12-01

    In the event of a loss-of-coolant accident in a pressurized water reactor, the cladding of the fuel rods would undergo a temperature excursion while being subject to tensile hoop stress. The deformation behavior of 470-mm lengths of Zircaloy-4 fuel cladding has been studied experimentally; under a range of stress levels in the high-alpha range of zirconium (600 to 850/sup 0/C), diametral strains of up to 70% were observed over the greater part of their length. A negative-feedback mechanism is suggested, based on the reduction of secondary creep rate following cooling by enhanced heat loss at swelling areas. An approximate analysis based on this mechanism was found to be in reasonable agreement with the experimental results. A computer modeling code is being developed to predict cladding deformation under realistic conditions.

  11. A passively-safe fusion reactor blanket with helium coolant and steel structure

    Energy Technology Data Exchange (ETDEWEB)

    Crosswait, Kenneth Mitchell [Massachusetts Inst. of Technology (MIT), Cambridge, MA (United States)

    1994-04-01

    Helium is attractive for use as a fusion blanket coolant for a number of reasons. It is neutronically and chemically inert, nonmagnetic, and will not change phase during any off-normal or accident condition. A significant disadvantage of helium, however, is its low density and volumetric heat capacity. This disadvantage manifests itself most clearly during undercooling accident conditions such as a loss of coolant accident (LOCA) or a loss of flow accident (LOFA). This thesis describes a new helium-cooled tritium breeding blanket concept which performs significantly better during such accidents than current designs. The proposed blanket uses reduced-activation ferritic steel as a structural material and is designed for neutron wall loads exceeding 4 MW/m{sup 2}. The proposed geometry is based on the nested-shell concept developed by Wong, but some novel features are used to reduce the severity of the first wall temperature excursion. These features include the following: (1) A ``beryllium-joint`` concept is introduced, which allows solid beryllium slabs to be used as a thermal conduction path from the first wall to the cooler portions of the blanket. The joint concept allows for significant swelling of the beryllium (10 percent or more) without developing large stresses in the blanket structure. (2) Natural circulation of the coolant in the water-cooled shield is used to maintain shield temperatures below 100 degrees C, thus maintaining a heat sink close to the blanket during the accident. This ensures the long-term passive safety of the blanket.

  12. Nonstationary pressure build up in full-pressure containments after a loss-of-coolant accident

    International Nuclear Information System (INIS)

    Mansfeld, G.

    1977-01-01

    The time histories of pressure, temperature and pressure difference during the pressure build up phase of a loss-of-coolant accident (LOCA) in the primary system in full-pressure containments of water cooled nuclear power reactors are treated. These are important for the design of such containments. The experiments within the German research program RS 50 ''Druckverteilung im Containment'' offered, for the first time, the opportunity to observe experimentally fluid-dynamic processes in a multiple divided full-pressure containment, and to test at the same time, computer codes which serve to describe the physical processes during the LOCA. The comparison of the results calculated by the computer codes ZOCO VI and DDIFF with the experimental results showed apparent deviations by special arrangements of the compartments and the vent flow paths of a model containment for the calculation of time dependent pressure-, temperature- and pressure difference-histories. The deviations lead to the development of the analytical model and computer code COFLOW. This new model was primarily designed to deal with the fluid-dynamic processes in the beginning phase of the blowdown as maximal pressure differences appear. Furthermore, it can be used to determine the maximum containment pressure, as well as for long term calculations. The analytical model and computer code COFLOW shows a better correlation between theory and experiment than previous codes

  13. Compendium of ECCS [Emergency Core Cooling Systems] research for realistic LOCA [loss-of-coolant accidents] analysis: Final report

    International Nuclear Information System (INIS)

    1988-12-01

    In the United States, Emergency Core Cooling Systems (ECCS) are required for light water reactors (LWRs) to provide cooling of the reactor core in the event of a break or leak in the reactor piping or an inadvertent opening of a valve. These accidents are called loss-of-coolant accidents (LOCA), and they range from small leaks up to a postulated full break of the largest pipe in the reactor cooling system. Federal government regulations provide that LOCA analysis be performed to show that the ECCS will maintain fuel rod cladding temperatures, cladding oxidation, and hydrogen production within certain limits. The NRC and others have completed a large body of research which investigated fuel rod behavior and LOCA/ECCS performance. It is now possible to make a realistic estimate of the ECCS performance during a LOCA and to quantify the uncertainty of this calculation. The purpose of this report is to summarize this research and to serve as a general reference for the extensive research effort that has been performed. The report: (1) summarizes the understanding of LOCA phenomena in 1974; (2) reviews experimental and analytical programs developed to address the phenomena; (3) describes the best-estimate computer codes developed by the NRC; (4) discusses the salient technical aspects of the physical phenomena and our current understanding of them; (5) discusses probabilistic risk assessment results and perspectives, and (6) evaluates the impact of research results on the ECCS regulations. 736 refs., 412 figs., 66 tabs

  14. Recent results from the MIT in-core experiments on coolant chemistry

    International Nuclear Information System (INIS)

    Harling, O.K.; Kohse, G.E.; Cabello, E.C.; Bernard, J.A.

    1993-01-01

    This paper reports results from an ongoing series of in-core experiments that have been conducted at the 5-MW(thermal) MIT Research Reactor (MITR-II) for optimizing coolant chemistries in light water reactors. Four experiments are in progress, including a pressurized coolant chemistry loop (PCCL), a boiling coolant chemistry loop (BCCL), a facility for the study of irradiation-assisted stress-corrosion cracking, and one for the evaluation of in situ sensors for the monitoring of crack propagation in metal (SENSOR). The first two have now been fully operational for several years. The latter two are scheduled to begin regular operation later this year

  15. International Standard Problems and Small Break Loss-of-Coolant Accident (SBLOCA

    Directory of Open Access Journals (Sweden)

    N. Aksan

    2008-01-01

    Full Text Available Best-estimate thermal-hydraulic system codes are widely used to perform safety and licensing analyses of nuclear power plants and also used in the design of advance reactors. Evaluation of the capabilities and the performance of these codes can be accomplished by comparing the code predictions with measured experimental data obtained on different test facilities. OECD/NEA Committee on the Safety of Nuclear Installations (CSNI has promoted, over the last twenty-nine years, some forty-eight international standard problems (ISPs. These ISPs were performed in different fields as in-vessel thermal-hydraulic behaviour, fuel behaviour under accident conditions, fission product release and transport, core/concrete interactions, hydrogen distribution and mixing, containment thermal-hydraulic behaviour. 80% of these ISPs were related to the working domain of principal working group no.2 on coolant system behaviour (PWG2 and were one of the major PWG2 activities for many years. A global review and synthesis on the contribution that ISPs have made to address nuclear reactor safety issues was initiated by CSNI-PWG2 and an overview on the subject of small break LOCA ISPs is given in this paper based on a report prepared by a writing group. In addition, the relevance of small break LOCA in a PWR with relation to nuclear reactor safety and the reorientation of the reactor safety program after TMI-2 accident are shortly summarized. The experiments in four integral test facilities, LOBI, SPES, BETHSY, ROSA IV/LSTF and the recorded data during a steam generator tube rupture transient in the DOEL-2 PWR (Belgium were the basis of the five small break LOCA related ISP exercises, which deal with the phenomenon typical of small break LOCAs in Western design PWRs. Some lessons learned from these small break LOCA ISPs are identified in relation to code deficiencies and capabilities, progress in the code capabilities, possibility of scaling, and various additional aspects

  16. Reactor Coolant Pump seal issues and their applicability to new reactor designs

    International Nuclear Information System (INIS)

    Ruger, C.J.; Higgins, J.C.

    1993-01-01

    Reactor Coolant Pumps (RCPs) of various types are used to circulate the primary coolant through the reactor in most reactor designs. RCPs generally contain mechanical seals to limit the leakage of pressurized reactor coolant along the pump drive shaft into the containment. The relatively large number of RCP seal and seal auxiliary system failures experienced at US operating plants during the 1970's and early 1980's raised concerns from the US Nuclear Regulatory Commission (NRC) that gross failures may lead to reactor core uncovery and subsequent core damage. Some seal failure events resulted in a loss of primary coolant to the containment at flow rates greater than the normal makeup capacity of Pressurized Water Reactor (PWR) plants. This is an example of RCP seal failures resulting in a small Loss of Coolant Accident (LOCA). This paper discusses observed and potential causes of RCP seal failure and the recommendations for limiting the likelihood of a seal induced small LOCA. Issues arising out of the research supporting these recommendations and subsequent public comments by the utility industry on them, serve as lessons learned, which are applicable to the design of new reactor plants

  17. Reactor coolant pump seal issues and their applicability to new reactor designs

    International Nuclear Information System (INIS)

    Ruger, C.J.; Higgins, J.C.

    1993-01-01

    Reactor Coolant Pumps (RCPs) of various types are used to circulate the primary coolant through the reactor in most reactor designs. RCPs generally contain mechanical seals to limit the leakage of pressurized reactor coolant along the pump drive shaft into the containment. The relatively large number of RCP seal and seal auxiliary system failures experienced at U.S. operating plants during the 1970's and early 1980's raised concerns from the U.S. Nuclear Regulatory Commission (NRC) that gross failures may lead to reactor core uncovery and subsequent core damage. Some seal failure events resulted in a loss of primary coolant to the containment at flow rates greater than the normal makeup capacity of Pressurized Water Reactor (PWR) plants. This is an example of RCP seal failures resulting in a small Loss of Coolant Accident (LOCA). This paper discusses observed and potential causes of RCP seal failure and the recommendations for limiting the likelihood of a seal induced small LOCA. Issues arising out of the research supporting these recommendations and subsequent public comments by the utility industry on them, serve as lessons learned, which are applicable to the design of new reactor plants

  18. Analysis of risk reduction methods for interfacing system LOCAs [loss-of-coolant accidents] at PWRs

    International Nuclear Information System (INIS)

    Bozoki, G.; Kohut, P.; Fitzpatrick, R.

    1988-01-01

    The Reactor Safety Study (WASH-1400) predicted that Interfacing System Loss-of-Coolant Accidents (ISL) events were significant contributors to risk even though they were calculated to be relatively low frequency events. However, there are substantial uncertainties involved in determining the probability and consequences of the ISL sequences. For example, the assumed valve failure modes, common cause contributions and the location of the break/leak are all uncertain and can significantly influence the predicted risk from ISL events. In order to provide more realistic estimates for the core damage frequencies (CDFs) and a reduction in the magnitude of the uncertainties, a reexamination of ISL scenarios at PWRs has been performed by Brookhaven National Laboratory. The objective of this study was to investigate the vulnerability of pressurized water reactor designs to ISLs and identify any improvements that could significantly reduce the frequency/risk of these events

  19. Effect of emergency core cooling system flow reduction on channel temperature during recirculation phase of large break loss-of-coolant accident at Wolsong unit 1

    Energy Technology Data Exchange (ETDEWEB)

    Yu, Seon Oh; Cho, Yong Jin [Korea Institute of Nuclear Safety, Daejeon (Korea, Republic of); Kim, Sung Joong [Dept. of Nuclear Engineering, Hanyang University, Seoul (Korea, Republic of)

    2017-08-15

    The feasibility of cooling in a pressurized heavy water reactor after a large break loss-of-coolant accident has been analyzed using Multidimensional Analysis of Reactor Safety-KINS Standard code during the recirculation phase. Through evaluation of sensitivity of the fuel channel temperature to various effective recirculation flow areas, it is determined that proper cooling of the fuel channels in the broken loop is feasible if the effective flow area remains above approximately 70% of the nominal flow area. When the flow area is reduced by more than approximately 25% of the nominal value, however, incipience of boiling is expected, after which the thermal integrity of the fuel channel can be threatened. In addition, if a dramatic reduction of the recirculation flow occurs, excursions and frequent fluctuations of temperature in the fuel channels are likely to be unavoidable, and thus damage to the fuel channels would be anticipated. To resolve this, emergency coolant supply through the newly installed external injection path can be used as one alternative means of cooling, enabling fuel channel integrity to be maintained and permanently preventing severe accident conditions. Thus, the external injection flow required to guarantee fuel channel coolability has been estimated.

  20. Simulation of Containment Pressurization in a Large Break-Loss of Coolant Accident Using Single-Cell and Multicell Models and CONTAIN Code

    Directory of Open Access Journals (Sweden)

    Omid Noori-Kalkhoran

    2016-10-01

    Full Text Available Since the inception of nuclear power as a commercial energy source, safety has been recognized as a prime consideration in the design, construction, operation, maintenance, and decommissioning of nuclear power plants. The release of radioactivity to the environment requires the failure of multiple safety systems and the breach of three physical barriers: fuel cladding, the reactor cooling system, and containment. In this study, nuclear reactor containment pressurization has been modeled in a large break-loss of coolant accident (LB-LOCA by programming single-cell and multicell models in MATLAB. First, containment has been considered as a control volume (single-cell model. In addition, spray operation has been added to this model. In the second step, the single-cell model has been developed into a multicell model to consider the effects of the nodalization and spatial location of cells in the containment pressurization in comparison with the single-cell model. In the third step, the accident has been simulated using the CONTAIN 2.0 code. Finally, Bushehr nuclear power plant (BNPP containment has been considered as a case study. The results of BNPP containment pressurization due to LB-LOCA have been compared between models, final safety analysis report, and CONTAIN code’s results.

  1. Simulation of containment pressurization in a large break-loss of coolant accident using single-cell and multicell models and CONTAIN code

    International Nuclear Information System (INIS)

    Kalkahoran, Omid Noori; Ahangari, Rohollah; Shirani, Amir Saied

    2016-01-01

    Since the inception of nuclear power as a commercial energy source, safety has been recognized as a prime consideration in the design, construction, operation, maintenance, and decommissioning of nuclear power plants. The release of radioactivity to the environment requires the failure of multiple safety systems and the breach of three physical barriers: fuel cladding, the reactor cooling system, and containment. In this study, nuclear reactor containment pressurization has been modeled in a large break-loss of coolant accident (LB-LOCA) by programming single-cell and multicell models in MATLAB. First, containment has been considered as a control volume (single-cell model). In addition, spray operation has been added to this model. In the second step, the single-cell model has been developed into a multicell model to consider the effects of the nodalization and spatial location of cells in the containment pressurization in comparison with the single-cell model. In the third step, the accident has been simulated using the CONTAIN 2.0 code. Finally, Bushehr nuclear power plant (BNPP) containment has been considered as a case study. The results of BNPP containment pressurization due to LB-LOCA have been compared between models, final safety analysis report, and CONTAIN code's results

  2. Simulation of containment pressurization in a large break-loss of coolant accident using single-cell and multicell models and CONTAIN code

    Energy Technology Data Exchange (ETDEWEB)

    Kalkahoran, Omid Noori; Ahangari, Rohollah [Reactor Research School, Nuclear Science and Technology Research Institute, Tehran (Iran, Islamic Republic of); Shirani, Amir Saied [Faculty of Engineering, Shahid Beheshti University, Tehran (Iran, Islamic Republic of)

    2016-10-15

    Since the inception of nuclear power as a commercial energy source, safety has been recognized as a prime consideration in the design, construction, operation, maintenance, and decommissioning of nuclear power plants. The release of radioactivity to the environment requires the failure of multiple safety systems and the breach of three physical barriers: fuel cladding, the reactor cooling system, and containment. In this study, nuclear reactor containment pressurization has been modeled in a large break-loss of coolant accident (LB-LOCA) by programming single-cell and multicell models in MATLAB. First, containment has been considered as a control volume (single-cell model). In addition, spray operation has been added to this model. In the second step, the single-cell model has been developed into a multicell model to consider the effects of the nodalization and spatial location of cells in the containment pressurization in comparison with the single-cell model. In the third step, the accident has been simulated using the CONTAIN 2.0 code. Finally, Bushehr nuclear power plant (BNPP) containment has been considered as a case study. The results of BNPP containment pressurization due to LB-LOCA have been compared between models, final safety analysis report, and CONTAIN code's results.

  3. Quantifying reactor safety margins: Application of code scaling, applicability, and uncertainty evaluation methodology to a large-break, loss-of-coolant accident

    International Nuclear Information System (INIS)

    Boyack, B.; Duffey, R.; Wilson, G.; Griffith, P.; Lellouche, G.; Levy, S.; Rohatgi, U.; Wulff, W.; Zuber, N.

    1989-12-01

    The US Nuclear Regulatory Commission (NRC) has issued a revised rule for loss-of-coolant accident/emergency core cooling system (ECCS) analysis of light water reactors to allow the use of best-estimate computer codes in safety analysis as an option. A key feature of this option requires the licensee to quantify the uncertainty of the calculations and include that uncertainty when comparing the calculated results with acceptance limits provided in 10 CFR Part 50. To support the revised ECCS rule and illustrate its application, the NRC and its contractors and consultants have developed and demonstrated an uncertainty evaluation methodology called code scaling, applicability, and uncertainty (CSAU). The CSAU methodology and an example application described in this report demonstrate that uncertainties in complex phenomena can be quantified. The methodology is structured, traceable, and practical, as is needed in the regulatory arena. The methodology is systematic and comprehensive as it addresses and integrates the scenario, experiments, code, and plant to resolve questions concerned with: (a) code capability to scale-up processes from test facility to full-scale nuclear power plants; (b) code applicability to safety studies of a postulated accident scenario in a specified nuclear power plant; and (c) quantifying uncertainties of calculated results. 127 refs., 55 figs., 40 tabs

  4. Experiments for post accident hydrogen dispersion in F.M. vault using helium

    International Nuclear Information System (INIS)

    Bajaj, S.S.; Bhattacharyya, D.; Mishra, S.

    1994-01-01

    Under certain postulated accident scenarios involving a Loss of Coolant Accident (LOCA) simultaneous with impairment of Emergency Core Cooling (ECC), generation of hydrogen due to reaction between the zirconium clad and coolant is predicted in the coolant channel. The hydrogen generated in the coolant channels would eventually get released either in Fuelling Machine (FM) vault or in the pump room atmosphere depending on the location of the break. Analytical studies carried out so far to estimate the time dependent hydrogen concentration in the accident FM Vault consider the entire vault as a single volume. Tests were, therefore, planned to assess the mixing within the FM vault atmosphere with and without the availability of cooling fan units by releasing a known quantity of helium (instead of hydrogen) at selected locations and monitoring the relative concentration of helium in air at various locations. Test was conducted by releasing about 360 1 helium over a period of to 4 minutes at preselected locations and by measuring the relative concentration (leak rates indicated by helium leak detectors) at various locations in the FM vault. The results of cases with fans operating indicate repeatable and consistent trends of good mixing in the vault. For other cases (non turbulent, still condition) the results are sensitive to various factors including orientation of release. The former set of cases (turbulent. fans operating) are more relevant for postulated accident conditions. (author). 1 tab., 18 figs

  5. Identification of NPP accidents using support vector classification

    Energy Technology Data Exchange (ETDEWEB)

    Back, Ju Hyun; Yoo, Kwae Hwan; Na, Man Gyun [Chosun University, Gwangju (Korea, Republic of)

    2016-10-15

    In case of the accidents that happens in a nuclear power plants (NPPs), it is very important to identify its accidents for the operator. Therefore, in order to effectively manage the accidents, the initial short time trends of major parameters have to be observed and NPP accidents have to accurately be identified to provide its information to operators and technicians. In this regard, the objective of this study is to identify the accidents when the accidents happen in NPPs. In this study, we applied the support vector classification (SVC) model to classify the initiating events of critical accidents such as loss of coolant accidents (LOCA), total loss of feedwater (TLOFW), station blackout (SBO), and steam generator tube rupture (SGTR). Input variables were used as the initial integral value of the signal measured in the reactor coolant system (RCS), steam generator, and containment vessel after reactor trip. The proposed SVC model is verified by using the simulation data of the modular accident analysis program (MAAP4) code. In this study, the proposed SVC model is verified by using the simulation data of the modular accident analysis program (MAAP4) code. We used an initial integral value of the simulated sensor signals to identify the NPP accidents. The training data was used to train the SVC model. And, the trained model was confirmed using the test data. As a result, it was known that it can accurately classify five events.

  6. Identification of flow regimes and heat transfer modes in Angra-2 core during the simulation of the small break loss of coolant accident of 250 cm2 in the cold leg of primary loop using RELAP5 code

    International Nuclear Information System (INIS)

    Borges, Eduardo M.; Sabundjian, Gaiane

    2017-01-01

    The aim of this paper is to identify the flow regimes, the heat transfer modes, and the correlations used by RELAP5/MOD3.2. gamma code in Angra-2 during the Small-Break Loss-of-Coolant Accident (SBLOCA) with a 250cm 2 of rupture area in the cold leg of primary loop. The Chapter 15 of the Final Safety Analysis Report of Angra-2 (FSAR-A2) reports this specific kind of accident. The results from this work demonstrated the several flow regimes and heat transfer modes that can be present in the core of Angra-2 during the postulated accident. The results obtained for Angra-2 nuclear reactor core during the postulated accident were satisfactory when compared with the FSAR-A2. Additionally, the results showed the correct actuation of the ECCS guaranteeing the integrity of the reactor core. (author)

  7. Nonlinear dynamic analysis of nuclear reactor primary coolant systems

    International Nuclear Information System (INIS)

    Saffell, B.F. Jr.; Macek, R.W.; Thompson, T.R.; Lippert, R.F.

    1979-01-01

    The ADINA computer code is utilized to perform mechanical response analysis of pressurized reactor primary coolant systems subjected to postulated loss-of-coolant accident (LOCA) loadings. Specifically, three plant analyses are performed utilizing the geometric and material nonlinear analysis capabilities of ADINA. Each reactor system finite element model represents the reactor vessel and internals, piping, major components, and component supports in a single coupled model. Material and geometric nonlinear capabilities of the beam and truss elements are employed in the formulation of each finite element model. Loadings applied to each plant for LOCA dynamic analysis include steady-state pressure, dead weight, strain energy release, transient piping hydraulic forces, and reactor vessel cavity pressurization. Representative results are presented with some suggestions for consideration in future ADINA code development

  8. Advanced Neutron Source Reactor (ANSR) phenomena identification and ranking (PIR) for large break loss of coolant accidents (LBLOCA)

    International Nuclear Information System (INIS)

    Ruggles, A.E.; Cheng, L.Y.; Dimenna, R.A.; Griffith, P.; Wilson, G.E.

    1994-06-01

    A team of experts in reactor analysis conducted a phenomena identification and ranking (PIR) exercise for a large break loss-of-coolant accident (LBLOCA) in the Advanced Neutron source Reactor (ANSR). The LBLOCA transient is broken into two separate parts for the PIR exercise. The first part considers the initial depressurization of the system that follows the opening of the break. The second part of the transient includes long-term decay heat removal after the reactor is shut down and the system is depressurized. A PIR is developed for each part of the LBLOCA. The ranking results are reviewed to establish if models in the RELAP5-MOD3 thermalhydraulic code are adequate for use in ANSR LBLOCA simulations. Deficiencies in the RELAP5-MOD3 code are identified and existing data or models are recommended to improve the code for this application. Experiments were also suggested to establish models for situations judged to be beyond current knowledge. The applicability of the ANSR PIR results is reviewed for the entire set of transients important to the ANSR safety analysis

  9. One-phase and two-phase homologous curves for coolant pumps of the pressurized light water nuclear reactors

    International Nuclear Information System (INIS)

    Santos, G.A. dos.

    1990-01-01

    The two-phase coolant pump model of pressurized light water nuclear reactors is an important point for the loss of primary coolant accident analysis. The single-phase pump characteristics are an essential feature for operational transients studies, for example, the shut-down and start-up of pump. These parameters, in terms of the homologous curves, set up the complete performance of the pump and are input for transients and accidents analysis thermal-hydraulic codes. This work propose a mathematical model able to predict the single-phase and two-phase homologous curves where it was incorporated geometric and operational pump condition. The results were compared with the experimental tests data from literature and it has showed a good agreement. (author)

  10. CNE (central nuclear en Embalse): probabilistic safety study. Loss-of-coolant accidents. Analysis through events sequence

    International Nuclear Information System (INIS)

    Layral, S.I.

    1987-01-01

    The aim of this study was to perform for the Embalse nuclear power plant, a probabilistic evaluation of loss-of-coolant accidents (LOCA) to identify the risks associated with them and to determine their acceptability in accordance with norms. This study includes all ruptures in the primary system that produce the automatic activation of 'emergency core cooling system'. Three starting events were selected for the probabilistic evaluation: 100% rupture of an input collector; 5% rupture of an input collector; 1.2% rupture of an input collector. At this stage the evaluation is focussed on the identification and quantization of the main failure sequences that follow a LOCA and lead to an uncontrolled reactor state or 'core meltdown'. The most important contribution to the core meltdown due to LOCA is the failure of supplies that are required for the emergency core cooling system. (Author)

  11. Fuel-Coolant Interactions: Visualization and Mixing Measurements

    International Nuclear Information System (INIS)

    Loewen, Eric P.; Bonazza, Riccardo; Corradini, Michael L.; Johannesen, Robert E.

    2002-01-01

    Dynamic X-ray imaging of fuel-coolant interactions (FCI), including quantitative measurement of fuel-coolant volume fractions and length scales, has been accomplished with a novel imaging system at the Nuclear Safety Research Center at the University of Wisconsin, Madison. The imaging system consists of visible-light high-speed digital video, low-energy X-ray digital imaging, and high-energy X-ray digital imaging subsystems. The data provide information concerning the melt jet velocity, melt jet configuration, melt volume fractions, void fractions, and spatial and temporal quantification of premixing length scales for a model fuel-coolant system of molten lead poured into a water pool (fuel temperatures 500 to 1000 K; jet diameters 10 to 30 mm; coolant temperatures 20 to 90 deg. C). Overall results indicate that the FCI has three general regions of behavior, with the high fuel-coolant temperature region similar to what might be expected under severe accident conditions. It was observed that the melt jet leading edge has the highest void fraction and readily fragments into discrete masses, which then subsequently subdivide into smaller masses of length scales <10 mm. The intact jet penetrates <3 to 5 jet length/jet diameter before this breakup occurs into discrete masses, which continue to subdivide. Hydrodynamic instabilities can be visually identified at the leading edge and along the jet column with an interfacial region that consists of melt, vapor, and water. This interface region was observed to grow in size as the water pool temperature was increased, indicating mixing enhancement by boiling processes

  12. Safety analysis of increase in heat removal from reactor coolant system with inadvertent operation of passive residual heat removal at no load conditions

    Energy Technology Data Exchange (ETDEWEB)

    Shao, Ge; Cao, Xuewu [School of Mechanical and Engineering, Shanghai Jiao Tong University, Shanghai (China)

    2015-06-15

    The advanced passive pressurized water reactor (PWR) is being constructed in China and the passive residual heat removal (PRHR) system was designed to remove the decay heat. During accident scenarios with increase of heat removal from the primary coolant system, the actuation of the PRHR will enhance the cooldown of the primary coolant system. There is a risk of power excursion during the cooldown of the primary coolant system. Therefore, it is necessary to analyze the thermal hydraulic behavior of the reactor coolant system (RCS) at this condition. The advanced passive PWR model, including major components in the RCS, is built by SCDAP/RELAP5 code. The thermal hydraulic behavior of the core is studied for two typical accident sequences with PRHR actuation to investigate the core cooling capability with conservative assumptions, a main steam line break (MSLB) event and inadvertent opening of a steam generator (SG) safety valve event. The results show that the core is ultimately shut down by the boric acid solution delivered by Core Makeup Tank (CMT) injections. The effects of CMT boric acid concentration and the activation delay time on accident consequences are analyzed for MSLB, which shows that there is no consequential damage to the fuel or reactor coolant system in the selected conditions.

  13. Specificities of reactor coolant pumps units with lead and lead-bismuth coolant

    International Nuclear Information System (INIS)

    Beznosov, A.V.; Anotonenkov, M.A.; Bokov, P.A.; Baranova, V.S.; Kustov, M.S.

    2009-01-01

    The analysis results of impact of lead and lead-bismuth coolants specific properties on the coolants flow features in flow channels of the main and auxiliary circulating pumps are presented. Impossibility of cavitation initiation in flow channels of vane pumps pumping lead and lead-bismuth coolants was demonstrated. The experimental research results of discontinuity of heavy liquid metal coolant column were presented and conditions of gas cavitation initiation in coolant flow were discussed. Invalidity of traditional calculation methods of water and sodium coolants circulation pumps calculations for lead and lead-bismuth coolants circulation pumps was substantiated [ru

  14. Corrosion and solubility in a TSP-buffered chemical environment following a loss of coolant accident: Part 1 – Aluminum

    Energy Technology Data Exchange (ETDEWEB)

    Howe, Kerry J., E-mail: howe@unm.edu [University of New Mexico, 210 University Blvd., Albuquerque, NM 87131 (United States); Mitchell, Lana, E-mail: lmitchell@alionscience.com [University of New Mexico, 210 University Blvd., Albuquerque, NM 87131 (United States); Kim, Seung-Jun, E-mail: skim@lanl.gov [University of New Mexico, 210 University Blvd., Albuquerque, NM 87131 (United States); Blandford, Edward D., E-mail: edb@unm.edu [University of New Mexico, 210 University Blvd., Albuquerque, NM 87131 (United States); Kee, Ernest J., E-mail: erniekee@gmail.com [South Texas Project Nuclear Operating Company, P.O. Box 270, Wadsworth, TX 77483 (United States)

    2015-10-15

    Highlights: • Trisodium phosphate (TSP) causes aluminum corrosion to cease after 24 h of exposure. • Chloride, iron, and copper have a minimal effect on the rate of aluminum corrosion when TSP is present. • Zinc can reduce the rate of aluminum corrosion when TSP is present. • Aluminum occasionally precipitates at concentrations lower than the calculated solubility for Al(OH){sub 3}. • Corrosion and solubility equations can be used to calculate the solids generated during a LOCA. - Abstract: Bench experiments were conducted to investigate the effect of the presence of trisodium phosphate (TSP) on the corrosion and release of aluminum from metallic aluminum surfaces under conditions representative of the containment pool following a postulated loss of coolant accident at a nuclear power generating facility. The experiments showed that TSP is capable of passivating the aluminum surface and preventing continued corrosion after about 24 h at the conditions tested. A correlation that describes the rate of corrosion including the passivation effect was developed from the bench experiments and validated with a separate set of experiments from a different test system. The saturation concentration of aluminum was shown to be well described by the solubility of amorphous aluminum hydroxide for the majority of cases, but instances have been observed when aluminum precipitates at concentrations lower than the calculated aluminum hydroxide solubility. Based on the experimental data and previous literature, an equation was developed to calculate the saturation concentration of aluminum as a function of pH and temperature under conditions representative of a loss of coolant accident (LOCA) in a TSP-buffered pressurized water reactor (PWR) containment. The corrosion equation and precipitation equation can be used in concert with each other to calculate the quantity of solids that would form as a function of time during a LOCA if the temperature and pH profiles were known.

  15. Corrosion and solubility in a TSP-buffered chemical environment following a loss of coolant accident: Part 1 – Aluminum

    International Nuclear Information System (INIS)

    Howe, Kerry J.; Mitchell, Lana; Kim, Seung-Jun; Blandford, Edward D.; Kee, Ernest J.

    2015-01-01

    Highlights: • Trisodium phosphate (TSP) causes aluminum corrosion to cease after 24 h of exposure. • Chloride, iron, and copper have a minimal effect on the rate of aluminum corrosion when TSP is present. • Zinc can reduce the rate of aluminum corrosion when TSP is present. • Aluminum occasionally precipitates at concentrations lower than the calculated solubility for Al(OH) 3 . • Corrosion and solubility equations can be used to calculate the solids generated during a LOCA. - Abstract: Bench experiments were conducted to investigate the effect of the presence of trisodium phosphate (TSP) on the corrosion and release of aluminum from metallic aluminum surfaces under conditions representative of the containment pool following a postulated loss of coolant accident at a nuclear power generating facility. The experiments showed that TSP is capable of passivating the aluminum surface and preventing continued corrosion after about 24 h at the conditions tested. A correlation that describes the rate of corrosion including the passivation effect was developed from the bench experiments and validated with a separate set of experiments from a different test system. The saturation concentration of aluminum was shown to be well described by the solubility of amorphous aluminum hydroxide for the majority of cases, but instances have been observed when aluminum precipitates at concentrations lower than the calculated aluminum hydroxide solubility. Based on the experimental data and previous literature, an equation was developed to calculate the saturation concentration of aluminum as a function of pH and temperature under conditions representative of a loss of coolant accident (LOCA) in a TSP-buffered pressurized water reactor (PWR) containment. The corrosion equation and precipitation equation can be used in concert with each other to calculate the quantity of solids that would form as a function of time during a LOCA if the temperature and pH profiles were known

  16. Summary of treat experiments on oxide core-disruptive accidents

    International Nuclear Information System (INIS)

    Dickerman, C.E.; Rothman, A.B.; Klickman, A.E.; Spencer, B.W.; DeVolpi, A.

    1979-02-01

    A program of transient in-reactor experiments is being conducted by Argonne National Laboratory in the Transient Reactor Test (TREAT) facility to guide and support analyses of hypothetical core-disruptive accidents (HCDA) in liquid-metal fast breeder reactors (LMFBR). Test results provide data needed to establish the response of LMFBR cores to hypothetical accidents producing fuel failure, coolant boiling, and the movement of coolant, molten fuel, and molten cladding. These data include margins to fuel failure, the modes of failure and movements, and evidence for identification of the mechanisms which determine the failure and movements. A key element in the program is the fast-neutron hodoscope, which detects fuel movement as a function of time during experiments

  17. Determining the boron concentration during long-term cooling of the reactor core after large loss of coolant accident; Dolocenje koncentracij bora pri dolgotrajnoem hladjenju sredice po veliki izlivni nezgodi

    Energy Technology Data Exchange (ETDEWEB)

    Mavko, B; Ravnki, M [Institut Jozef Stefan, Ljubljana (Yugoslavia)

    1988-07-01

    Critical boron concentration before and after postulated loss of coolant accident with long-term cooling recirculation was calculated for cycle 6 of Krsko NPP. The limiting boron concentration curve of containment sump was calculated for equilibrium conditions. The results were analysed and showed that the boron concentration in refueling water storage tank and in safety injection accumulators should be increased from 2000 to 2100 ppm in 6th cycle. In the consequence corresponding chapters of the NPP Krsko technical Specifications were changed as well. (author)

  18. EAC european accident code. A modular system of computer programs to simulate LMFBR hypothetical accidents

    International Nuclear Information System (INIS)

    Wider, H.; Cametti, J.; Clusaz, A.; Devos, J.; VanGoethem, G.; Nguyen, H.; Sola, A.

    1985-01-01

    One aspect of fast reactor safety analysis consists of calculating the strongly coupled system of physical phenomena which contribute to the reactivity balance in hypothetical whole-core accidents: these phenomena are neutronics, fuel behaviour and heat transfer together with coolant thermohydraulics in single- and two-phase flow. Temperature variations in fuel, coolant and neighbouring structures induce, in fact, thermal reactivity feedbacks which are added up and put in the neutronics calculation to predict the neutron flux and the subsequent heat generation in the reactor. At this point a whole-core analysis code is necessary to examine for any hypothetical transient whether the various feedbacks result effectively in a negative balance, which is the basis condition to ensure stability and safety. The European Accident Code (EAC), developed at the Joint Research Centre of the CEC at Ispra (Italy), fulfills this objective. It is a modular informatics structure (quasi 2-D multichannel approach) aimed at collecting stand-alone computer codes of neutronics, fuel pin mechanics and hydrodynamics, developed both in national laboratories and in the JRC itself. EAC makes these modules interact with each other and produces results for these hypothetical accidents in terms of core damage and total energy release. 10 refs

  19. Accident transient processes at NPPs with the WWER type reactors

    International Nuclear Information System (INIS)

    Bukrinskij, A.M.

    1982-01-01

    Thermal-physical and nuclear-physical transient processes at NPPs with the WWER type reactors during accidents with the main technological equipment failures and the accidents with loss of coolant in the primary and secondary coolant circuits are considered. Mathematical methods used for these processes modelling is described. Examples of concrete calculations for accidents with different failures are given. Comparative analysis of the results of dynamic tests at the Novo-Voronezh-3 reactor is presented. It is concluded that the modern NPP design is impossible without application of mathematical modelling methods. The mathematical modelling of transients is also necessary for proper and safe NPP operation. Mathematical modelling of accidents at NPPs is a comparatively new method of investigation. Its success and development are completely based on the progress in modern computer development. With their improvement the mathematical models will become more complicate and adequacy of real physical process representation by their means will increase

  20. Methodology for the Assessment of Confidence in Safety Margin for Small Break Loss of Coolant Accident Sequences

    Energy Technology Data Exchange (ETDEWEB)

    Nagrale, D. B.; Prasad, M.; Rao, R. S.; Gaikwad, A.J., E-mail: avinashg@aerb.gov.in [Nuclear Safety Analysis Division, Atomic Energy Regulatory Board, Mumbai (India)

    2014-10-15

    Deterministic Safety Analysis and Probabilistic Safety Assessment (PSA) analyses are used concurrently to assess the Nuclear Power Plant (NPP) safety. The conventional deterministic analysis is conservative. The best estimate plus uncertainty analysis is increasingly being used for deterministic calculation in NPPs. The PSA methodology aims to be as realistic as possible while integrating information about accident phenomena, plant design, operating practices, component reliability and human behaviour. The peak clad temperature (PCT) distribution provides an insight into the confidence in safety margin for an initiating event. The paper deals with the concept of calculating the peak clad temperature with 95 percent confidence and 95 percent probability (PCT{sub 95/95}) in small break loss of coolant accident (SBLOCA) and methodologies for assessing safety margin. Five input parameters mainly, nominal power level, decay power, fuel clad gap conductivity, fuel thermal conductivity and discharge coefficient, were selected. A Uniform probability density function was assigned to the uncertain parameters and these uncertainties are propagated using Latin Hypercube Sampling (LHS) technique. The sampled data for 5 parameters were randomly mixed by LHS to obtain 25 input sets. A non-core damage accident sequence was selected from the SBLOCA event tree of a typical VVER study to estimate the PCTs and safety margin. A Kolmogorov– Smirnov goodness-of-fit test was carried out for PCTs. The smallest value of safety margin would indicate the robustness of the system with 95% confidence and 95% probability. Regression analysis was also carried out using 1000 sample size for the estimating PCTs. Mean, variance and finally safety margin were analysed. (author)

  1. Analysis of loss of coolant accident and emergency core cooling system

    International Nuclear Information System (INIS)

    Abe, Kiyoharu; Kobayashi, Kenji; Hayata, Kunihisa; Tasaka, Kanji; Shiba, Masayoshi

    1977-01-01

    In this paper, the analysis for the performance evaluation of emergency core cooling system is described, which is the safety protection device to the loss of coolant accidents due to the break of primary cooling pipings of light water reactors. In the LOCA analysis for the performance evaluation of ECCS, it must be shown that a reactor core keeps the form which can be cooled with the ECCS in case of LOCA, and the overheat of the core can be prevented. Namely, the shattering of fuel cladding tubes is never to occur, and for the purpose, the maximum temperature of Zircaloy 2 or 4 cladding tubes must be limited to 1200 deg C, and the relative thickness of oxide film must be below 15%. The calculation for determining the temperature of cladding tubes in case of the LOCA in BWRs and PWRs is explained. First, the primary cooling system, the ECCS and the related installations of BWRs and PWRs are outlined. The code systems for LOCA/ECCS analysis are divid ed into several steps, such as blowdown process, reflooding process and heatup calculation. The examples of the sensitivity analysis of the codes are shown. The LOCA experiments carried out so far in Japan and foreign countries and the LOCA analysis of a BWR with RELAP-4J code are described. The guidance for the performance evaluation of ECCS was established in 1975 by the Reactor Safety Deliberation Committee in Japan, and the contents are quoted. (Kako, I.)

  2. Effect of emergency core cooling system flow reduction on channel temperature during recirculation phase of large break loss-of-coolant accident at Wolsong unit 1

    Directory of Open Access Journals (Sweden)

    Seon Oh Yu

    2017-08-01

    Full Text Available The feasibility of cooling in a pressurized heavy water reactor after a large break loss-of-coolant accident has been analyzed using Multidimensional Analysis of Reactor Safety-KINS Standard code during the recirculation phase. Through evaluation of sensitivity of the fuel channel temperature to various effective recirculation flow areas, it is determined that proper cooling of the fuel channels in the broken loop is feasible if the effective flow area remains above approximately 70% of the nominal flow area. When the flow area is reduced by more than approximately 25% of the nominal value, however, incipience of boiling is expected, after which the thermal integrity of the fuel channel can be threatened. In addition, if a dramatic reduction of the recirculation flow occurs, excursions and frequent fluctuations of temperature in the fuel channels are likely to be unavoidable, and thus damage to the fuel channels would be anticipated. To resolve this, emergency coolant supply through the newly installed external injection path can be used as one alternative means of cooling, enabling fuel channel integrity to be maintained and permanently preventing severe accident conditions. Thus, the external injection flow required to guarantee fuel channel coolability has been estimated.

  3. Evaluating the consequences of loss of flow accident for a typical VVER-1000 nuclear reactor

    Energy Technology Data Exchange (ETDEWEB)

    Mirvakili, S.M.; Safaei, S. [Shiraz Univ., Shiraz (Iran, Islamic Republic of). Dept. of Nuclear Engineering, School of Mechanical Engineering; Faghihi, F. [Shiraz Univ., Shiraz (Iran, Islamic Republic of). Safety Research Center

    2010-07-01

    The loss of coolant flow in a nuclear reactor can result from a mechanical or electrical failure of the coolant pump. If the reactor is not tripped promptly, the immediate effect is a rapid increase in coolant temperature, decrease in minimum departure from nucleate boiling ratio (DNBR) and fuel damage. This study evaluated the shaft seizure of a reactor coolant pump in a VVER-1000 nuclear reactor. The locked rotor results in rapid reduction of flow through the affected reactor coolant loop and in turn leads to an increase in the primary coolant temperature and pressure. The analysis was conducted with regard for superimposing loss of power to the power plant at the initial accident moment. The required transient functions of flow, pressure and power were obtained using system transient calculations applied in COBRA-EN computer code in order to calculate the overall core thermal-hydraulic parameters such as temperature, critical heat flux and DNBR. The study showed that the critical period for the locked rotor accident is the first few seconds during which the maximum values of pressure and temperature are reached. 10 refs., 1 tab., 3 figs.

  4. Theoretical analysis of the temperature changes and resultant loss of fuel integrity in the IEA-R1 research reactor fuel elements following a loss of coalant accident

    International Nuclear Information System (INIS)

    Garone, J.G.M.

    1983-01-01

    The IEA-R1 core following a loss of coolant accident (LOCA) is analysed. THe AIRLOCA code was used to calculate fuel temperatures, heat generation due to fission product decay and convective and radiative heat transfer from the fuel elements to the surrounding air both during and following the loss of coolant. The influence of certain critical parameters, such as log time, specific power was studied in detail. Representative results are presented and suggestions made to ensure that fuel integrity is maintained following a LOCA. (Author) [pt

  5. A study of entrainment at a break and in the core during small break loss-of-coolant accidents in PWRs

    International Nuclear Information System (INIS)

    Yonomoto, Taisuke

    1996-05-01

    Objectives of the present study are to obtain a better understanding of entrainment at a break and in the core during small break loss-of-coolant-accidents (SBLOCAs) in PWRs, and to develop a means for the best evaluation of the phenomena. For the study of entrainment at a break, a theoretical model was developed, which was assessed by comparisons with several experimental data bases. By modifying a LOCA analysis code using the present model, experimental results obtained from SBLOCA experiments at a PWR large-scale simulator were reproduced very well. For the study of entrainment in the core, reflooding experiments were conducted at high pressure, from which the onset conditions were obtained. It was confirmed that the cooling behavior for a dry-out core is very simple under typical high pressure reflooding conditions for PWRs, because liquid entrainment does not occur in the core. (author)

  6. THYDE-B1/MOD2: a computer code for analysis of small-break loss-of-coolant accidents of boiling water reactors

    International Nuclear Information System (INIS)

    Nakamura, Hideo; Muramatsu, Ken; Kukita, Yutaka; Tasaka, Kanji

    1988-04-01

    THYDE-B1/MOD2 is a fast-running best estimate (BE) computer code to analyze thermal-hydraulic behaviors of the reactor cooling system of a boiling water reactor (BWR), mainly, during a small-break loss-of-coolant accident (SBLOCA) with a special emphasis on the behavior of pressure and mixture level in the pressure vessel. The coolant behavior is simulated with a volume-and-junction method based on assumptions of thermal equilibrium and homogeneous conditions for two-phase flow. A characteristic feature of this code is a three-region representation of the state of the coolant in a control volume, in which three regions consist of subcooled liquid, saturated mixture and saturated steam regions from the volume bottom. The regions are separated by two horizontal moving boundaries which are tracked by mass and energy balances for each region. With this three region node model, the interior of the pressure vessel can be represented by only two volumes: one for inside of the shroud and the other for outside, while other portions of the system are treated with homogeneous node model. This method, although it seems to be very simple, has been verified to be adequate for cases of BWR SBLOCAs in which the thermal-hydraulic behavior is relatively slow and gravity controlled. The code has been improved and modified from the last version of the code, THYDE-B1/MOD1, especially in the phase separation model which is used in the mixture level calculation in the three region node model. Then, a good predictability of the code has been indicated through the comparison of calculated results with various SBLOCA test data including ROSA-III of JAERI and FIST of the General Electric Co. This report presents the code modifications and input data requirements of the THYDE-B1/MOD2 code. (author)

  7. Dominant accident sequences in Oconee-1 pressurized water reactor

    International Nuclear Information System (INIS)

    Dearing, J.F.; Henninger, R.J.; Nassersharif, B.

    1985-04-01

    A set of dominant accident sequences in the Oconee-1 pressurized water reactor was selected using probabilistic risk analysis methods. Because some accident scenarios were similar, a subset of four accident sequences was selected to be analyzed with the Transient Reactor Analysis Code (TRAC) to further our insights into similar types of accidents. The sequences selected were loss-of-feedwater, small-small break loss-of-coolant, loss-of-feedwater-initiated transient without scram, and interfacing systems loss-of-coolant accidents. The normal plant response and the impact of equipment availability and potential operator actions were also examined. Strategies were developed for operator actions not covered in existing emergency operator guidelines and were tested using TRAC simulations to evaluate their effectiveness in preventing core uncovery and maintaining core cooling

  8. Analysis of water hammer-structure interaction in piping system for a loss of coolant accident in primary loop of pressurized water reactor

    International Nuclear Information System (INIS)

    Zhang Xiwen; Yang Jinglong; He Feng; Wang Xuefang

    2000-01-01

    The conventional analysis of water hammer and dynamics response of structure in piping system is divided into two parts, and the interaction between them is neglected. The mechanism of fluid-structure interaction under the double-end break pipe in piping system is analyzed. Using the characteristics method, the numerical simulation of water hammer-structure interaction in piping system is completed based on 14 parameters and 14 partial differential equations of fluid-piping cell. The calculated results for a loss of coolant accident (LOCA) in primary loop of pressurized water reactor show that the waveform and values of pressure and force with time in piping system are different from that of non-interaction between water hammer and structure in piping system, and the former is less than the later

  9. Identification of flow regimes and heat transfer modes in Angra-2 core during the simulation of the small break loss of coolant accident of 250 cm{sup 2} in the cold leg of primary loop using RELAP5 code

    Energy Technology Data Exchange (ETDEWEB)

    Borges, Eduardo M.; Sabundjian, Gaiane, E-mail: borges.em@hotmail.com, E-mail: gdjian@ipen.br [Instituto de Pesquisas Energeticas e Nucleares (IPEN/CNE-SP), Sao Paulo, SP (Brazil)

    2017-07-01

    The aim of this paper is to identify the flow regimes, the heat transfer modes, and the correlations used by RELAP5/MOD3.2. gamma code in Angra-2 during the Small-Break Loss-of-Coolant Accident (SBLOCA) with a 250cm{sup 2} of rupture area in the cold leg of primary loop. The Chapter 15 of the Final Safety Analysis Report of Angra-2 (FSAR-A2) reports this specific kind of accident. The results from this work demonstrated the several flow regimes and heat transfer modes that can be present in the core of Angra-2 during the postulated accident. The results obtained for Angra-2 nuclear reactor core during the postulated accident were satisfactory when compared with the FSAR-A2. Additionally, the results showed the correct actuation of the ECCS guaranteeing the integrity of the reactor core. (author)

  10. Analysis of thermo-hydraulic behavior of coolant during discharge of pressurized high-temperature water

    International Nuclear Information System (INIS)

    Suzuki, Mitsuhiro; Sobajima, Makoto; Sasaki, Shinobu; Onishi, Nobuaki; Shiba, Masayoshi

    1978-01-01

    The present report describes results of the analysis of the LOFT semiscale experiment No. 1011 using remodeled RELAP-3 code, performed at the Idaho National Engineering Laboratory to simulate a postulated loss-of-coolant accident in a pressurized water reactor. It was clarified through the analysis that coolant behavior during blowdown was influenced variously by the system components in the primary loop, comparing with coolant discharge from a pressure vessel. Good agreement was obtained between experimental and analytical results when phase separation was assumed in upper plenum and downcomer, since experimental data indicated existence of liquid level in those parts. It was also found that the use of the Wilson's equation to calculate bubble rise velocity and the use of discharge coefficient as the function of fluid quality at break location to calculate discharge flow rate resulted in good agreement with experimental data. (auth.)

  11. Probabilistic analysis of fuel pin behaviour during an eventual loss of coolant in PWR reactors

    International Nuclear Information System (INIS)

    1981-02-01

    Brief description of the development of the coolant loss incident in a pressurized water reactor and analysis of its significance for the behaviour of the fuel rods. Description of a probalistic method for estimating the effects of the accident on the fuel rods and results obtained [fr

  12. The development of severe accident analysis technology

    Energy Technology Data Exchange (ETDEWEB)

    Kim, Heuy Dong; Cho, Sung Won; Kim, Sang Baek; Park, Jong Hwa; Lee, Kyu Jung; Park, Lae Joon; Hu, Hoh; Hong, Sung Wan [Korea Atomic Energy Research Institute, Taejon (Korea, Republic of)

    1993-07-01

    The objective of the development of severe accident analysis technology is to understand the severe accident phenomena such as core melt progression and to provide a reliable analytical tool to assess severe accidents in a nuclear power plant. Furthermore, establishment of the accident management strategies for the prevention/mitigation of severe accidents is also the purpose of this research. The study may be categorized into three areas. For the first area, two specific issues were reviewed to identify the further research direction, that is the natural circulation in the reactor coolant system and the fuel-coolant interaction as an in-vessel and an ex-vessel phenomenological study. For the second area, the MELCOR and the CONTAIN codes have been upgraded, and a validation calculation of the MELCOR has been performed for the PHEBUS-B9+ experiment. Finally, the experimental program has been established for the in-vessel and the ex-vessel severe accident phenomena with the in-pile test loop in KMRR and the integral containment test facilities, respectively. (Author).

  13. Analysis of accidental loss of pool coolant due to leakage in a PWR SFP

    International Nuclear Information System (INIS)

    Wu, Xiaoli; Li, Wei; Zhang, Yapei; Tian, Wenxi; Su, Guanghui; Qiu, Suizheng

    2015-01-01

    Highlights: • Accidental loss of pool coolant due to leakage in a PWR SFP was studied using MAAP5. • The effect of emergency ventilation on the accident progression was investigated. • The effect of emergency injection on the accident progression was discussed. - Abstract: A large loss of pool coolant/water accident may be caused by extreme accidents such as the pool wall or bottom floor punctures due to a large aircraft strike. The safety of SFP under this circumstance is very important. Large amounts of radioactive materials would be easily released into the environment if a severe accident happened in the SFP, because the spent fuel pool (SFP) in a PWR nuclear power station (NPS) is often located in the fuel handing building outside the reactor containment. To gain insight into the loss of pool coolant accident progression for a pressurized water reactor (PWR) SFP, a computational model was established by using the Modular Accident Analysis Program (MAAP5). Important factors such as Zr oxidation by air, air natural circulation and thermal radiation were considered for partial and complete drainage accidents without mitigation measures. The calculation indicated that even if the residual water level was in the active fuel region, there was a chance to effectively remove the decay heat through axial heat conduction (if the pool cooling system failed) or steam cooling (if the pool cooling system was working). For sensitivity study, the effects of emergency ventilation and water injection on the accident progression were analyzed. The analysis showed that for the current configuration of high-density storage racks, it was difficult to cool the spent fuels by air natural circulation. Enlarging the space between the adjacent assemblies was a way of increasing air natural circulation flow rate and maintaining the coolability of SFP. Water injection to the bottom of the SFP helped to recover water inventory, quenching the high temperature assemblies to prevent

  14. Cooling of safety rods in the Savannah River K Reactor during the gamma heating phase of a postulated loss-of-coolant accident

    International Nuclear Information System (INIS)

    Pasamehmetoglu, K.O.; Unal, C.; Motley, F.E.; Rodriguez, S.B.

    1992-01-01

    This paper documents the heat-transfer analysis for the safety rod placed in a perforated guide tube during the gamma heating phase of a large-break loss of coolant accident in Savannah River K-reactor. The cooling mechanisms are natural convection to air and radiation to the surrounding structures. The limiting component is the guide tube. The guide tube is shown to remain coolable below its thermal limit for the anticipated reactor powers unless it is contacted by the hotter safety rod. Sample calculations are performed for various contact scenarios, and the results are reported within the paper. The results indicate that the most limiting contact scenario results when the safety rod heats up to its maximum temperature while remaining concentric in the guide tube and then contacts the guide tube. The worse contact location appears to be in line with the slugs-cladding contact and in between the rows of holes in the guide tube

  15. Analysis of a Natural Circulation in the Reactor Coolant System Following a High Pressure Severe Accident at APR1400

    International Nuclear Information System (INIS)

    Kim, Han Chul; Cho, Yong Jin; Park, Jae Hong; Cho, Song Won

    2011-01-01

    Under a high temperature and pressure condition during a severe accident, hot leg pipes or steam generator tubes could fail due to creep rupture following natural circulation in the Reactor Coolant System (RCS) unless depressurization of the system is performed at a proper time. Natural circulation in the RCS can be a multi-dimensional circulation in the reactor vessel, a partial loop circulation of two-phase flow from the core up to steam generators (SGs), or circulation in the total loop. It can delay the reactor vessel failure time by removing heat from the reactor core. This natural phenomenon can be hardly simulated with a single flow path model for the hot spots of the RCS, since it cannot deal with the counter-current flow. Thus it may estimate accident progression faster than reality, which may cause troubles for optimized implementation of severe accident management strategies. An earlier damage in the RCS other than the reactor pressure vessel may make subsequent behaviors of hydrogen or fission products in the containment quite different from the single reactor vessel failure. Therefore, a RCS model which treats natural circulation is needed to evaluate the RCS response and the safety depressurization strategy in a best-estimate way. The aim of this study is to develop a detailed model which allows natural circulation between the reactor vessel and steam generators through hot legs, based on the existing APR1400 RCS model. The station blackout sequence was selected to be the representative high-pressure scenario. Sensitivity study on the effect of node configuration of the upper plenum and addition of cross flow paths from the upper plenum to the hot legs were carried out. This model is described herein and representative calculation results are presented

  16. Long-term aging and loss-of-coolant accident (LOCA) testing of electrical cables

    International Nuclear Information System (INIS)

    Nelson, C.F.; Gauthier, G.; Carlin, F.

    1996-10-01

    Experiments were performed to assess the aging degradation and loss-of-coolant accident (LOCA) behavior of electrical cables subjected to long-term aging exposures. Four different cable types were tested in both the U.S. and France: (1) U.S. 2 conductor with ethylene propylene rubber (EPR) insulation and a Hypalon jacket. (2) U.S. 3 conductor with cross-linked polyethylene (XLPE) insulation and a Hypalon jacket. (3) French 3 conductor with EPR insulation and a Hypalon jacket. (4) French coaxial with polyethylene (PE) insulation and a PE jacket. The data represent up to 5 years of simultaneous aging where the cables were exposed to identical aging radiation doses at either 40 degrees C or 70 degrees C; however, the dose rate used for the aging irradiation was varied over a wide range (2-100 Gy/hr). Aging was followed by exposure to simulated French LOCA conditions. Several mechanical, electrical, and physical-chemical condition monitoring techniques were used to investigate the degradation behavior of the cables. All the cables, except for the French PE cable, performed acceptably during the aging and LOCA simulations. In general, cable degradation at a given dose was highest for the lowest dose rate, and the amount of degradation decreased as the dose rate was increased

  17. A Study on the Operation Strategy for Combined Accident including TLOFW accident

    International Nuclear Information System (INIS)

    Kim, Bo Gyung; Kang, Gook Young; Yoon, Ho Joon

    2014-01-01

    It is difficult for operators to recognize the necessity of a feed-and-bleed (F-B) operation when the loss of coolant accident and failure of secondary side occur. An F-B operation directly cools down the reactor coolant system (RCS) using the primary cooling system when residual heat removal by the secondary cooling system is not available. The plant is not always necessary the F-B operation when the secondary side is failed. It is not necessary to initiate an F-B operation in the case of a medium or large break because these cases correspond to low RCS pressure sequences when the secondary side is failed. If the break size is too small to sufficiently decrease the RCS pressure, the F-B operation is necessary. Therefore, in the case of a combined accident including a secondary cooling system failure, the provision of clear information will play a critical role in the operators' decision to initiate an F-B operation. This study focuses on the how we establish the operation strategy for combined accident including the failure of secondary side in consideration of plant and operating conditions. Previous studies have usually focused on accidents involving a TLOFW accident. The plant conditions to make the operators confused seriously are usually the combined accident because the ORP only focuses on a single accident and FRP is less familiar with operators. The relationship between CET and PCT under various plant conditions is important to decide the limitation of initiating the F-B operation to prevent core damage

  18. Microstructural examination of fuel rods subjected to a simulated large-break loss of coolant accident in reactor

    International Nuclear Information System (INIS)

    Garlick, A.

    1985-01-01

    A series of tests has been conducted in the National Research Universal (NRU) reactor, Chalk River, Canada, to investigate the behaviour of full-length 32-rod PWR fuel bundles during a simulated large-break loss of coolant accident (LOCA). In one of these tests (MT-3), 12 central rods were pre-pressurized in order to evaluate the ballooning and rupture of cladding in the Zircaloy high-α/α+β temperature region. All 12 rods ruptured after experiencing < 90% diametral strain but there was no suggestion of coplanar blockage. Post-irradiation examination was carried out on cross-sections of cladding from selected rods to determine the aximuthal distribution of wall thinning along the ballooned regions. These data are assessed to check whether they are consistent with a mechanism in which fuel stack eccentricity generates temperature gradients around the ballooning cladding and leads to premature rupture during a LOCA. After anodizing, the cladding microstructures were examined for the presence of prior-beta phase that would indicate the α/α+β transformation temperature (1078K) had been exceeded. These results were compared with isothermal annealing test data on unirradiated cladding from the same manufacturing batch

  19. Overview of severe accident research at JAERI

    International Nuclear Information System (INIS)

    Sugimoto, Jun

    1999-01-01

    Severe accident research at JAERI aims at the confirmation of the safety margin, the quantification of the associated risk, and the evaluation of the effectiveness of the accident management measures of the nuclear power reactors, in accordance with the government five-year nuclear safety research program. JAERI has been conducting a wide range of severe accident research activities both in experiment and analysis, such as melt coolant interactions, fission product behaviors in coolant system, containment integrity and assessment of accident management measures. Molten core/coolant interaction and in-vessel molten coolability have been investigated in ALPHA Program. MUSE experiments in ALPHA Program has been conducted for the precise energy measurement due to steam explosion in melt jet and stratified geometries. In VEGA Program, which aims at FP release from irradiated fuels at high temperature and high pressure under various atmospheric conditions, the facility construction is almost completed. In WIND Program the revaporization of aerosols due to decay heating and also the integrity of the piping from this heat source are being investigated. Code development activities are in progress for an integrated source term analysis with THALES, fission product behaviors with ART, steam explosion with JASMINE, and in-vessel debris behaviors with CAMP. The experimental analyses and reactor application have made progress by participating international standard problem and code comparison exercises, along with the use of introduced codes, such as SCDAP/RELAP5 and MELCOR. The outcome of the severe accident research will be utilized for the evaluation of more reliable severe accident scenarios, detailed implementation of the accident management measures, and also for the future reactor development, basically through the sophisticated use of verified analytical tools. (author)

  20. Requirements of coolants in nuclear reactors

    International Nuclear Information System (INIS)

    Abass, O. A. M.

    2014-11-01

    This study discussed the purposes and types of coolants in nuclear reactors to generate electricity. The major systems and components associated with nuclear reactors are cooling system. There are two major cooling systems utilized to convert the heat generated in the fuel into electrical power. The primary system transfers the heat from the fuel to the steam generator, where the secondary system begins. The steam formed in the steam generator is transferred by the secondary system to the main turbine generator, where it s converted into electricity after passing through the low pressure turbine. There are various coolants used in nuclear reactors-light water, heavy water and liquid metal. The two major types of water-cooled reactors are pressurized water reactors (PWR) and boiling water reactors (BWR) but pressurized water reactors are more in the world. Also discusses this study the reactors and impact of the major nuclear accidents, in the April 1986 disaster at the Chernobyl nuclear power plant in Ukraine was the product operators, and in the March 2011 at the Fukushima nuclear power plant in Japan was the product of earthquake of magnitude 9.0, the accidents caused the largest uncontrolled radioactive release into the environment.(Author)

  1. Analysis of Consequences in the Loss-of-Coolant Accident in Wendelstein 7-X Experimental Nuclear Fusion Facility

    Energy Technology Data Exchange (ETDEWEB)

    Uspuras, E., E-mail: algis@mail.lei.lt [Laboratory of Nuclear Installations Safety, Lithuanian Energy Institute, Kaunas (Lithuania)

    2012-09-15

    . The results of analysis demonstrated that proposed burst disk, connecting the plasma vessel with torus hall, opens and pressure inside plasma vessel do not exceed the limiting 1100 kPa absolute pressure. Thus, the plasma vessel remains intact after loss-of-coolant accident during no-plasma operation of Wendelstein 7-X experimental nuclear fusion facility. (author)

  2. γ radiation level simulation and analysis with MCNP in EPR containment during severe accident

    International Nuclear Information System (INIS)

    Zeng Jun; Liu Shuhuan; Wang Yang; Zhai Liang

    2013-01-01

    The γ dosimetry model based on the EPR core structure, material composition and the designed shielding system was established. The γ-ray dose rate distributions in EPR containment under different conditions including normal operation state, loss-of-coolant accident and core melt severe accident were simulated with MCNP5, and the calculation results under normal operation state and severe accident were compared and analyzed respectively with that of the designed limit. The study results may provide some relative data reference for EPR core accident prediction and reactor accident emergency decision making. (authors)

  3. Behavior of an improved Zr fuel cladding with oxidation resistant coating under loss-of-coolant accident conditions

    Energy Technology Data Exchange (ETDEWEB)

    Park, Dong Jun, E-mail: pdj@kaeri.re.kr; Kim, Hyun Gil; Jung, Yang Il; Park, Jung Hwan; Yang, Jae Ho; Koo, Yang Hyun

    2016-12-15

    This study investigates protective coatings for improving the high temperature oxidation resistance of Zr fuel claddings for light water nuclear reactors. FeCrAl alloy and Cr layers were deposited onto Zr plates and tubes using cold spraying. For the FeCrAl/Zr system, a Mo layer was introduced between the FeCrAl coating and the Zr matrix to prevent inter-diffusion at high temperatures. Both the FeCrAl and Cr coatings improved the oxidation resistance compared to that of the uncoated Zr alloy when exposed to a steam environment at 1200 °C. The ballooning behavior and mechanical properties of the coated cladding samples were studied under simulated loss-of-coolant accident conditions. The coated samples showed higher burst temperatures, lower circumferential strain, and smaller rupture openings compared to the uncoated Zr. Although 4-point bend tests of the coated samples showed a small increase in the maximum load, ring compression tests of a sectioned sample showed increased ductility. - Highlights: • Cr and FeCrAl were coated onto Zr fuel cladding for light water nuclear reactors. • Mo layer between FeCrAl and Zr prevented inter-diffusion at high temperatures. • Coated claddings were tested under loss-of-cooling accident conditions. • Coating improved high-temperature oxidation resistance and mechanical properties.

  4. Radiological consequence analyses of loss of coolant accidents of various break sizes of Pressurized Heavy Water Reactor

    International Nuclear Information System (INIS)

    Sanyasi Rao, V.V.S.; Hari Prasad, M.; Ghosh, A.K.

    2010-01-01

    For any advanced technology, it is essential to ensure that the consequences associated with the accident sequences arising, if any, from the operation of the plant are as low as possible and certainly below the guidelines/limits set by the regulatory bodies. Nuclear power is no exception to this. In this paper consequences of the events arising from Loss of Coolant Accident (LOCA) sequences in Pressurized Heavy Water Reactor (PHWR), are analysed. The sequences correspond to different break sizes of LOCA followed by the operation or otherwise of Emergency Core Cooling System (ECCS). Operation or otherwise of the containment safety systems has also been considered. It has been found that there are no releases to the environment when ECCS is available. The releases, when ECCS is not available, arise from the slack and the ground. The radionuclides considered include noble gases, iodine, and cesium. The hourly meteorological parameters (wind speed, wind direction, precipitation and stability category), considered for this study, correspond to those of Kakrapar site. The consequences evaluated are the thyroid dose and the bone marrow dose received by a person located at various distances from the release point. Isodose curves are generated. From these evaluations, it has been found that the doses are very low. The complementary cumulative frequency distributions (CCFD) for thyroid and bone marrow doses have also been presented for the cases analysed. (author)

  5. Accident sequences simulated at the Juragua nuclear power plant

    International Nuclear Information System (INIS)

    Carbajo, J.J.

    1998-01-01

    Different hypothetical accident sequences have been simulated at Unit 1 of the Juragua nuclear power plant in Cuba, a plant with two VVER-440 V213 units under construction. The computer code MELCOR was employed for these simulations. The sequences simulated are: (1) a design-basis accident (DBA) large loss of coolant accident (LOCA) with the emergency core coolant system (ECCS) on, (2) a station blackout (SBO), (3) a small LOCA (SLOCA) concurrent with SBO, (4) a large LOCA (LLOCA) concurrent with SBO, and (5) a LLOCA concurrent with SBO and with the containment breached at time zero. Timings of important events and source term releases have been calculated for the different sequences analyzed. Under certain weather conditions, the fission products released from the severe accident sequences may travel to southern Florida

  6. Prototypic corium oxidation and hydrogen release during the Fuel-Coolant Interaction

    Czech Academy of Sciences Publication Activity Database

    Tyrpekl, J.; Piluso, P.; Bakardjieva, Snejana; Nižňanský, D.; Rehspringer, J.L.; Bezdička, Petr; Dugne, O.

    2015-01-01

    Roč. 75, JAN (2015), s. 210-218 ISSN 0306-4549 Institutional support: RVO:61388980 Keywords : Corium * Fuel -Coolant Interaction * Hydrogen release * Material effect * Nuclear reactor severe accident Subject RIV: CA - Inorganic Chemistry Impact factor: 1.174, year: 2015

  7. Proposed model for fuel-coolant mixing during a core-melt accident

    International Nuclear Information System (INIS)

    Corradini, M.L.

    1983-01-01

    If complete failure of normal and emergency coolant flow occurs in a light water reactor, fission product decay heat would eventually cause melting of the reactor fuel and cladding. The core melt may then slump into the lower plenum and later into the reactor cavity and contact residual liquid water. A model is proposed to describe the fuel-coolant mixing process upon contact. The model is compared to intermediate scale experiments being conducted at Sandia. The modelling of this mixing process will aid in understanding three important processes: (1) fuel debris sizes upon quenching in water, (2) the hydrogen source term during fuel quench, and (3) the rate of steam production. Additional observations of Sandia data indicate that the steam explosion is affected by this mixing process

  8. Review of experimental data for modelling LWR fuel cladding behaviour under loss of coolant accident conditions

    Energy Technology Data Exchange (ETDEWEB)

    Massih, Ali R. [Quantum Technologies AB, Uppsala Science Park (Sweden)

    2007-02-15

    Extensive range of experiments has been conducted in the past to quantitatively identify and understand the behaviour of fuel rod under loss-of-coolant accident (LOCA) conditions in light water reactors (LWRs). The obtained experimental data provide the basis for the current emergency core cooling system acceptance criteria under LOCA conditions for LWRs. The results of recent experiments indicate that the cladding alloy composition and high burnup effects influence LOCA acceptance criteria margins. In this report, we review some past important and recent experimental results. We first discuss the background to acceptance criteria for LOCA, namely, clad embrittlement phenomenology, clad embrittlement criteria (limitations on maximum clad oxidation and peak clad temperature) and the experimental bases for the criteria. Two broad kinds of test have been carried out under LOCA conditions: (i) Separate effect tests to study clad oxidation, clad deformation and rupture, and zirconium alloy allotropic phase transition during LOCA. (ii) Integral LOCA tests, in which the entire LOCA sequence is simulated on a single rod or a multi-rod array in a fuel bundle, in laboratory or in a tests and results are discussed and empirical correlations deduced from these tests and quantitative models are conferred. In particular, the impact of niobium in zirconium base clad and hydrogen content of the clad on allotropic phase transformation during LOCA and also the burst stress are discussed. We review some recent LOCA integral test results with emphasis on thermal shock tests. Finally, suggestions for modelling and further evaluation of certain experimental results are made.

  9. Developments concerning reactivity accidents in PWRs

    International Nuclear Information System (INIS)

    Gouffon, A.

    1987-11-01

    After placing the development work on reactivity accidents in the various actions decided upon further to the Chernobyl accident, this note describes the first results obtained and the further developments. As a general rule, the Chernobyl accident has not provided, from a strictly technical viewpoint, any fundamentally new material which had previouly been unknown. Analysis have made it possible to more clearly establish the safety importance of certain operating rules, in particular concerning handling whithin coolant system pumps. They have not show the need to modify the design of the french PWR.s. This development work must be continued to gain a fuller understanding of the behaviour of fuel, specially after irradiation and power cycling

  10. Comparison of three small-break loss-of-coolant accident tests with different break locations using the system-integrated modular advanced reactor-integral test loop facility to estimate the safety of the smart design

    Energy Technology Data Exchange (ETDEWEB)

    Bae, Hwang; Ryu, Sung Uk; Yi, Sung Jae; Park, Hyun Sik [Korea Atomic Energy Research Institute, Daejeon (Korea, Republic of); Kim, Dong Eok [Dept. of Precision Mechanical Engineering, Kyungpook National University, Sangju (Korea, Republic of)

    2017-08-15

    Three small-break loss-of-coolant accident (SBLOCA) tests with safety injection pumps were carried out using the integral-effect test loop for SMART (System-integrated Modular Advanced ReacTor), i.e., the SMART-ITL facility. The types of break are a safety injection system line break, shutdown cooling system line break, and pressurizer safety valve line break. The thermal–hydraulic phenomena show a traditional behavior to decrease the temperature and pressure whereas the local phenomena are slightly different during the early stage of the transient after a break simulation. A safety injection using a high-pressure pump effectively cools down and recovers the inventory of a reactor coolant system. The global trends show reproducible results for an SBLOCA scenario with three different break locations. It was confirmed that the safety injection system is robustly safe enough to protect from a core uncovery.

  11. A preliminary study for the implementation of general accident management strategies

    International Nuclear Information System (INIS)

    Yang, Soo Hyung; Kim, Soo Hyung; Jeong, Young Hoon; Chang, Soon Heung

    1997-01-01

    To enhance the safety of nuclear power plants, implementation of accident management has been suggested as one of most important programs. Specially, accident management strategies are suggested as one of key elements considered in development of the accident management program. In this study, generally applicable accident management strategies to domestic nuclear power plants are identified through reviewing several accident management programs for the other countries and considering domestic conditions. Identified strategies are as follows; 1) Injection into the Reactor Coolant System, 2) Depressurize the Reactor Coolant System, 3) Depressurize the Steam Generator, 4) Injection into the Steam Generator, 5) Injection into the Containment, 6) Spray into the Containment, 7) Control Hydrogen in the Containment. In addition, the systems and instrumentation necessary for the implementation of each strategy are also investigated

  12. MAAP-CANDU simulations of LOCA/LOECI accidents at Darlington NGS

    International Nuclear Information System (INIS)

    Kwee, M.T.; Choi, M.H.; Leung, R.K.

    1996-01-01

    Severe accidents have been the subject of a great deal of analysis and research, particularly in the light water reactor community. Although severe accident analysis in Canada deuterium-uranium (CANDU) reactors has not been published abundantly, a significant body of research and analysis has been accumulated. This has occurred because CANDU has directly taken into consideration a set of severe accidents [e.g loss-of-coolant accidents (LOCAs) coincident with a loss-of-emergency-coolant injection (LOECI)] in the design basis. These accidents have served to define the design requirements that ensure the integrity of the heat transport system. The CANDU reactor design has inherent heat sinks such as the primary heat transport system, the secondary side, moderator system, and shielding system (shield tank and end shields). These heat sinks are significant and are able to moderate or terminate the progression of severe accidents that go beyond the design base cases. These types of accidents are typically analyzed at Ontario Hydro in conjunction with probabilistic safety analysis (PSA), where the severe accident consequences are analyzed by a series of conservative hand-calculation methods

  13. A study on the effect of fluidic device installed in a safety injection tank on thermal-hydraulic phenomena of large break loss of coolant accident

    International Nuclear Information System (INIS)

    Chung, Young Jong; Bae, Kyoo Hwan; Song, Jin Ho; Sim, Suk Ku; Park, Jong Kyun

    1999-03-01

    The performance of the Safety Injection Tank (SIT) with fluidic device (advanced SIT) is analyzed for the large break loss of coolant accident (LBLOCA) using RELAP5/MOD3.1-KREM. First the case is analyzed using the conventional SIT. Among various cases the case with 4-split downcomer, discharge coefficient Cd=0.6, MCP trip with reactor trip and break location of cold leg discharge side with the pressurizer is found to be the most limiting case. For the same condition, the advanced SIT results the similar PCT, however it can maintain adequately the liquid level in the downcomer. By changing the ECCS location from the current injection to the cold leg elevations, PCT is improved by 75 K. (Author). 6 refs., 4 tabs., 54 figs

  14. Calculational advance in the modeling of fuel-coolant interactions

    International Nuclear Information System (INIS)

    Bohl, W.R.

    1982-01-01

    A new technique is applied to numerically simulate a fuel-coolant interaction. The technique is based on the ability to calculate separate space- and time-dependent velocities for each of the participating components. In the limiting case of a vapor explosion, this framework allows calculation of the pre-mixing phase of film boiling and interpenetration of the working fluid by hot liquid, which is required for extrapolating from experiments to a reactor hypothetical accident. Qualitative results are compared favorably to published experimental data where an iron-alumina mixture was poured into water. Differing results are predicted with LMFBR materials

  15. Moment inertia pump analysis used in the Rsg-Gas primary coolant loop under lofa condition

    International Nuclear Information System (INIS)

    Sudarmono; Setiyanto; Dhandhang, P.; Dibyo, S.; Royadi

    1998-01-01

    The moment inertia of primary cooling system analysis under LOFA condition has been done. It is potentially one of limiting design constraints of the RSG-GAS safety because the coolant flow rate reduces very rapidly under LOFA condition due to the low inertia circulation pumps. If a loss of flow accident occurs, the mass flow will decrease rapidly and the heat transfer coefficient between cladding and coolant will also decreases. As a consequence the fuel and cladding temperature will increase. The whole core was represented by the 1/4 sector and divided into 19 subchannels and 40 axial nodes. In the present study, moment inertia of pump analysis for RSG-GAS reactor was performed with COBRA-IV-I subchannel code. As the DNB correlation, W-3 Correlation was selected for base case. The flow and power transients under pump trip accident were determined from experiments. The result above compared with the design data are 75 kg m 2 and 81 Kg m 2 respectively. The result shows that the RSG-GAS requires the inertia more than 75 kg m 2

  16. Analysis of an accident with the main circulation tube rupture at the WWER-1000

    International Nuclear Information System (INIS)

    Boyadzhiev, A.I.; Stefanova, S.J.

    1984-01-01

    In connection with the forthcoming construction of a npp with the wwer-1000 reactor the loss of coolant accident associated with the main circulation tube rupture at the inlet near the reactor is analyzed. The relap4/mod6 program is used for the analysis. The data obtained show that the coolant outflow stage continues for about 25s. On the average the pressure in the circuits varies from 16 to 10 mpa per 0.1s and then it continues to decrease slowly. The pressure in the steam generator at the secondary circuits end increases approximately up to 6.9 MPa as a result of steam generator blocking and remaining coolant heating and then somewhat decreases owing to the primary circuit cooling. By the end of the fuel and can temperatures are equalized and the heat transfer coefficient is stabilized at the level of 100 w/1 (m 2 xK). It is concluded that during a loss of coolant accident at the wwer-1000 reactor in procesess of coolant blowdown in the medium power fuel elemets neither the fuel, melting temperature (3000 k), nor the critical temperature (1000 k) of plastic deformation zirconiu can initiation are attained

  17. Analysis on the Role of RSG-GAS Pool Cooling System during Partial Loss of Heat Sink Accident

    Science.gov (United States)

    Susyadi; Endiah, P. H.; Sukmanto, D.; Andi, S. E.; Syaiful, B.; Hendro, T.; Geni, R. S.

    2018-02-01

    RSG-GAS is a 30 MW reactor that is mostly used for radioisotope production and experimental activities. Recently, it is regularly operated at half of its capacity for efficiency reason. During an accident, especially loss of heat sink, the role of its pool cooling system is very important to dump decay heat. An analysis using single failure approach and partial modeling of RELAP5 performed by S. Dibyo, 2010 shows that there is no significant increase in the coolant temperature if this system is properly functioned. However lessons learned from the Fukushima accident revealed that an accident can happen due to multiple failures. Considering ageing of the reactor, in this research the role of pool cooling system is to be investigated for a partial loss of heat sink accident which is at the same time the protection system fails to scram the reactor when being operated at 15 MW. The purpose is to clarify the transient characteristics and the final state of the coolant temperature. The method used is by simulating the system in RELAP5 code. Calculation results shows the pool cooling systems reduce coolant temperature for about 1 K as compared without activating them. The result alsoreveals that when the reactor is being operated at half of its rated power, it is still in safe condition for a partial loss of heat sink accident without scram.

  18. Severe Accident Research Program plan update

    International Nuclear Information System (INIS)

    1992-12-01

    In August 1989, the staff published NUREG-1365, ''Revised Severe Accident Research Program Plan.'' Since 1989, significant progress has been made in severe accident research to warrant an update to NUREG-1365. The staff has prepared this SARP Plan Update to: (1) Identify those issues that have been closed or are near completion, (2) Describe the progress in our understanding of important severe accident phenomena, (3) Define the long-term research that is directed at improving our understanding of severe accident phenomena and developing improved methods for assessing core melt progression, direct containment heating, and fuel-coolant interactions, and (4) Reflect the growing emphasis in two additional areas--advanced light water reactors, and support for the assessment of criteria for containment performance during severe accidents. The report describes recent major accomplishments in understanding the underlying phenomena that can occur during a severe accident. These include Mark I liner failure, severe accident scaling methodology, source term issues, core-concrete interactions, hydrogen transport and combustion, TMI-2 Vessel Investigation Project, and direct containment heating. The report also describes the major planned activities under the SARP over the next several years. These activities will focus on two phenomenological issues (core melt progression, and fuel-coolant interactions and debris coolability) that have significant uncertainties that impact our understanding and ability to predict severe accident phenomena and their effect on containment performance SARP will also focus on severe accident code development, assessment and validation. As the staff completes the research on severe accident issues that relate to current generation reactors, continued research will focus on efforts to independently evaluate the capability of new advanced light water reactor designs to withstand severe accidents

  19. Proceedings of the workshop on severe accident research, Japan (SARJ-99)

    International Nuclear Information System (INIS)

    Hashimoto, Kazuichiro

    2000-11-01

    The Workshop on Severe Accident Research, Japan (SARJ-99) was taken place at Hotel Lungwood on November 8-10, 1999, and attended by 156 participants from 12 countries. A total of 46 papers, which covered wide areas of severe accident research both in experiments and analyses, such as fuel/coolant interaction, accident analysis and modeling, in-vessel phenomena, accident management, fission product behavior, research reactors, ex-vessel phenomena, and structural integrity, were presented. The panel discussion titled 'Link of Severe Accident Research Results to Regulation: Current Status and Future Perspective' was successfully conducted, and the wide variety of opinions and views were exchanged among panelists and experts. (J.P.N.)

  20. CANSWEL-2: a computer model of the creep deformation of Zircaloy cladding under loss-of-coolant accident conditions

    International Nuclear Information System (INIS)

    Haste, T.J.

    1982-07-01

    The CANSWEL-2 code models cladding creep deformation under conditions relevant to a loss-of-coolant accident (LOCA) in a pressurised water reactor (PWR). It considers in detail the centre rod of a 3 x 3 nominally square array, taking into account azimuthal non-uniformities in cladding thickness and temperature, and the mechanical restraint imposed on contact with neighbouring rods. Any of the rods in the array may assume a non-circular shape. Models are included for primary and secondary creep, dynamic phase change and superplasticity when both alpha- and beta-phase Zircaloy are present. A simple treatment of oxidation strengthening is incorporated. Account is taken of the anisotropic creep behaviour of alpha-phase Zircaloy which leads to cladding bowing. The CANSWEL-2 model is used both as a stand-alone code and also as part of the LOCA analysis code MABEL-2. (author)

  1. Comparative study on aerosol removal by natural processes in containment in severe accident for AP1000 reactor

    International Nuclear Information System (INIS)

    Sun, Xiaohui; Cao, Xinrong; Shi, Xingwei; Yan, Jin

    2017-01-01

    Highlights: • Characteristics of aerosol distribution in containment are obtained. • Aerosol removal by natural processes is comparative studied by two methods. • Traditional rapid assessment method is conservative and can be applied in AP1000 reactor. - Abstract: Focusing on aerosol removal by naturally occurring processes in containment in severe accident for AP1000, integral severe accident code MELCOR and rapid assessment method mentioned in NUREG/CR-6189 are utilized to study aerosol removal by natural processes, respectively. Three typical severe accidents, induced by large break loss of coolant accident (LBLOCA), small break loss of coolant accident (SBLOCA) and steam generator tube rupture (SGTR), respectively, are selected for the study. The results obtained by two methods were further compared in the following several aspects: efficiency of aerosol removal by natural processes, peak time of aerosol suspended in containment atmosphere, peak amount of aerosol suspended in containment atmosphere, time when aerosol removal efficiency by natural processes is up to 99.9%. It was further concluded that results obtained by rapid assessment with shorter calculation process are more conservative. The analysis results provide reference to assessment method selection of severe accident source term for AP1000 nuclear emergency.

  2. A preliminary study for the implementation of general accident management strategies

    Energy Technology Data Exchange (ETDEWEB)

    Yang, Soo Hyung; Kim, Soo Hyung; Jeong, Young Hoon; Chang, Soon Heung [Korea Advanced Institute of Science and Technology, Taejon (Korea, Republic of)

    1998-12-31

    To enhance the safety of nuclear power plants, implementation of accident management has been suggested as one of most important programs. Specially, accident management strategies are suggested as one of key elements considered in development of the accident management program. In this study, generally applicable accident management strategies to domestic nuclear power plants are identified through reviewing several accident management programs for the other countries and considering domestic conditions. Identified strategies are as follows; 1) Injection into the Reactor Coolant System, 2) Depressurize the Reactor Coolant System, 3) Depressurize the Steam Generator, 4) Injection into the Steam Generator, 5) Injection into the Containment, 6) Spray into the Containment, 7) Control Hydrogen in the Containment. In addition, the systems and instrumentation necessary for the implementation of each strategy are also investigated. 11 refs., 3 figs., 3 tabs. (Author)

  3. A preliminary study for the implementation of general accident management strategies

    Energy Technology Data Exchange (ETDEWEB)

    Yang, Soo Hyung; Kim, Soo Hyung; Jeong, Young Hoon; Chang, Soon Heung [Korea Advanced Institute of Science and Technology, Taejon (Korea, Republic of)

    1997-12-31

    To enhance the safety of nuclear power plants, implementation of accident management has been suggested as one of most important programs. Specially, accident management strategies are suggested as one of key elements considered in development of the accident management program. In this study, generally applicable accident management strategies to domestic nuclear power plants are identified through reviewing several accident management programs for the other countries and considering domestic conditions. Identified strategies are as follows; 1) Injection into the Reactor Coolant System, 2) Depressurize the Reactor Coolant System, 3) Depressurize the Steam Generator, 4) Injection into the Steam Generator, 5) Injection into the Containment, 6) Spray into the Containment, 7) Control Hydrogen in the Containment. In addition, the systems and instrumentation necessary for the implementation of each strategy are also investigated. 11 refs., 3 figs., 3 tabs. (Author)

  4. Numerical simulation of the insulation material transport to a PWR core under loss of coolant accident conditions

    International Nuclear Information System (INIS)

    Höhne, Thomas; Grahn, Alexander; Kliem, Sören; Rohde, Ulrich; Weiss, Frank-Peter

    2013-01-01

    Highlights: ► Detailed results of a numerical simulation of the insulation material transport to a PWR core are shown. ► The spacer grid is modeled as a strainer which completely retains the insulation material carried by coolant. ► The CFD calculations showed that the fibers at the upper spacer grid plane are not uniformly distributed. ► Furthermore the pressure loss does not exceed a critical limit. ► The PWR core coolablity can be guaranteed all the time during the transient. -- Abstract: In 1992, strainers on the suction side of the ECCS pumps in Barsebäck NPP Unit 2 became partially clogged with mineral wool because after a safety valve opened the steam impinged on thermally insulated equipment and released mineral wool. This event pointed out that strainer clogging is an issue in the course of a loss-of-coolant accident. Modifications of the insulation material, the strainer area and mesh size were carried out in most of the German NPPs. Moreover, back flushing procedures to remove the mineral wool from the strainers and differential pressure measurements were implemented to assure the performance of emergency core cooling during the containment sump recirculation mode. Nevertheless, it cannot be completely ruled out, that a limited amount of small fractions of the insulation material is transported into the RPV. During a postulated cold leg LOCA with hot leg ECC injection, the fibers enter the upper plenum and can accumulate at the fuel element spacer grids, preferably at the uppermost grid level. This effect might affect the ECC flow into the core and could result in degradation of core cooling. It was the aim of the numerical simulations presented to study where and how many mineral wool fibers are deposited at the upper spacer grid. The 3D, time dependent, multi-phase flow problem was modeled applying the CFD code ANSYS CFX. The CFD calculation does not yet include steam production in the core and also does not include re-suspension of the

  5. Nuclear Reactor RA Safety Report, Vol. 12, Accidents during reactor operation

    International Nuclear Information System (INIS)

    1986-11-01

    This volume includes description and analysis of typical accidents occurred during operation of RA reactor in chronological order, as follows: contamination of primary coolant circuit; leakage of heavy water from the primary coolant loop; contamination of vertical experimental channel; air contamination in the reactor building and loss of circulation of the primary coolant; failures of the vacuum pump and spent fuel packaging device; rupture of the spent fuel element cladding; dethronement's of capsule for irradiation of fuel element; rupture of the vertical experimental channel and contamination of the surroundings; swelling of a fuel element; appearance of deposits on the surface of the fuel elements cladding. The last chapter describes similar accidents occurred on nuclear reactors in the world [sr

  6. Use of PSA and severe accident assessment results for the accident management

    International Nuclear Information System (INIS)

    Jang, S. H.; Kim, H. G.; Jang, H. S.; Moon, S. K.; Park, J. U.

    1993-12-01

    The objectives for this study are to investigate the basic principle or methodology which is applicable to accident management, by using the results of PSA and severe accident research, and also facilitate the preparation of accidents management program in the future. This study was performed as follows: derivation of measures for core damage prevention, derivation of measures for accident mitigation, application of computerized tool to assess severe accident management

  7. Use of PSA and severe accident assessment results for the accident management

    Energy Technology Data Exchange (ETDEWEB)

    Jang, S H; Kim, H G; Jang, H S; Moon, S K; Park, J U [Korea Advanced Institute of Science and Technology, Daejeon (Korea, Republic of)

    1993-12-15

    The objectives for this study are to investigate the basic principle or methodology which is applicable to accident management, by using the results of PSA and severe accident research, and also facilitate the preparation of accidents management program in the future. This study was performed as follows: derivation of measures for core damage prevention, derivation of measures for accident mitigation, application of computerized tool to assess severe accident management.

  8. Polonium release from an ATW burner system with liquid lead-bismuth coolant

    International Nuclear Information System (INIS)

    Li, N.; Yefimov, E.; Pankratov, D.

    1998-04-01

    The authors analyzed polonium release hazards in a conceptual pool-type ATW burner with liquid lead-bismuth eutectic (LBE) coolant. Simplified quantitative models are used based on experiments and real NPP experience. They found little Po contamination outside the burner under normal operating conditions with nominal leakage from the gas system. In sudden gas leak and/or coolant spill accidents, the P contamination level can reach above the regulation limit but short exposure would not lead to severe health consequences. They are evaluating and developing mitigation methods

  9. Simulation of steam explosion in stratified melt-coolant configuration

    International Nuclear Information System (INIS)

    Leskovar, Matjaž; Centrih, Vasilij; Uršič, Mitja

    2016-01-01

    Highlights: • Strong steam explosions may develop spontaneously in stratified configurations. • Considerable melt-coolant premixed layer formed in subcooled water with hot melts. • Analysis with MC3D code provided insight into stratified steam explosion phenomenon. • Up to 25% of poured melt was mixed with water and available for steam explosion. • Better instrumented experiments needed to determine dominant mixing process. - Abstract: A steam explosion is an energetic fuel coolant interaction process, which may occur during a severe reactor accident when the molten core comes into contact with the coolant water. In nuclear reactor safety analyses steam explosions are primarily considered in melt jet-coolant pool configurations where sufficiently deep coolant pool conditions provide complete jet breakup and efficient premixture formation. Stratified melt-coolant configurations, i.e. a molten melt layer below a coolant layer, were up to now believed as being unable to generate strong explosive interactions. Based on the hypothesis that there are no interfacial instabilities in a stratified configuration it was assumed that the amount of melt in the premixture is insufficient to produce strong explosions. However, the recently performed experiments in the PULiMS and SES (KTH, Sweden) facilities with oxidic corium simulants revealed that strong steam explosions may develop spontaneously also in stratified melt-coolant configurations, where with high temperature melts and subcooled water conditions a considerable melt-coolant premixed layer is formed. In the article, the performed study of steam explosions in a stratified melt-coolant configuration in PULiMS like conditions is presented. The goal of this analytical work is to supplement the experimental activities within the PULiMS research program by addressing the key questions, especially regarding the explosivity of the formed premixed layer and the mechanisms responsible for the melt-water mixing. To

  10. Comparison of three small-break loss-of-coolant accident tests with different break locations using the system-integrated modular advanced reactor-integral test loop facility to estimate the safety of the smart design

    Directory of Open Access Journals (Sweden)

    Hwang Bae

    2017-08-01

    Full Text Available Three small-break loss-of-coolant accident (SBLOCA tests with safety injection pumps were carried out using the integral-effect test loop for SMART (System-integrated Modular Advanced ReacTor, i.e., the SMART-ITL facility. The types of break are a safety injection system line break, shutdown cooling system line break, and pressurizer safety valve line break. The thermal–hydraulic phenomena show a traditional behavior to decrease the temperature and pressure whereas the local phenomena are slightly different during the early stage of the transient after a break simulation. A safety injection using a high-pressure pump effectively cools down and recovers the inventory of a reactor coolant system. The global trends show reproducible results for an SBLOCA scenario with three different break locations. It was confirmed that the safety injection system is robustly safe enough to protect from a core uncovery.

  11. Test study on safety features of station blackout accident for nuclear main pump

    International Nuclear Information System (INIS)

    Liu Xiajie; Wang Dezhong; Zhang Jige; Liu Junsheng; Yang Zhe

    2009-01-01

    The theoretical and experimental studies of reactor coolant pump accidents encountered nation-wide and world-wide were described. To investigate the transient hydrodynamic performance of reactor coolant pump (RCP) during the period of rotational inertia in the station blackout accident, some theoretical and experimental studies were carried out, and the analysis of the test results was presented. The experiment parameters, conditions and test methods were introduced. The flow-rate, rotate speed and vibrations were analyzed emphatically. The quadruplicate polynomial curve equation was used to simulate the flow-rate,rotate speed along with time. The test results indicate that the flow-rate and rotator speed decrease rapidly at the very beginning of cut power and the test results accord with the regulation of safety standard. The vibrant displacement of bearing seat is intensified at the moment of lose power, but after a certain period rotor shaft libration changes. The test and analysis results help to understand the hydrodynamic performance of nuclear primary pump under lost of power accident, and provide the basic reference for safety evaluation. (authors)

  12. Investigation of break location effects on thermal-hydraulics during intermediate break loss-of-coolant accident experiments at ROSA-III

    International Nuclear Information System (INIS)

    Koizumi, Yasuo; Tasaka, Kanji

    1986-01-01

    The rig of safety assessment (ROSA)-III facility is a volumetrically scaled (1/424) boiling water reactor (BWR/6) system with an electrically heated core designed for integral loss-of-coolant accident (LOCA) and emergency core cooling system (ECCS) tests. Break location effects on thermal-hydraulics during intermediate LOCAs were investigated by using four experiments at the ROSA-III, the 15 and 25 % main recirculation pump suction line break (MRPS-B) experiments, the 21 % single-ended jet pump drive line break (JPD-B) experiment and the 15 % main steam line break (MSL-B) experiment. Water injection from the high pressure core spray (HPCS) was not used in any of the experiments. Failure of ECCS actuation by the high containment pressure was also assumed in the tests. In the MRPS-B experiments, the discharge flow turned from low quality fluid to high quality fluid when the downcomer water level dropped to the main recirculation line outlet elevation, which suppressed coolant loss from the vessel and the core. In the JPD-B experiment, the jet pump drive nozzle was covered with low quality fluid and low quality fluid discharge continued even after the downcomer water level reached the jet pump suction elevation. Low quality fluid discharge ceased after the ADS actuation. It suggestes that the JPD-B LOCA has the possibility of causing larger and more severe core dryout and cladding temperature excursion than the MRPS-B LOCA. The MSL-B LOCA was characterized by mixture level swell in the downcomer and the core. The core mixture level swell resulted in the much later core dryout initiation than that in the MRPS-B LOCA, however, ECCS actuation was also delayed because of slow downcomer water level drop. (author)

  13. Simulation of the IAEA's fourth Standard Problem Exercise small-break loss-of-coolant accident using RELAP5/MOD.3.1

    International Nuclear Information System (INIS)

    Cebull, P.P.; Hassan, Y.A.

    1995-01-01

    A small-break loss-of-coolant accident experiment conducted at the PMK-2 integral test facility in Hungary is analyzed using the RELAP5/MOD3.1 thermal-hydraulic code. The experiment simulated a 7.4% break in the cold leg of a VVER-440/213-type nuclear power plant as part of the International Atomic Energy Agency's Fourth Standard Problem Exercise (SPE-4). Blind calculations of the exercise are presented, and the timing of various events throughout the transient is discussed. A posttest analysis is performed in which the sensitivity of the calculated results is investigated. The code RELAP5 predicts most of the transient events well, although a few problems are noted, particularly the failure of RELAP5 to predict dryout in the core even through the collapsed liquid level fell below the top of the heated portion. A discrepancy between the predicted primary mass inventory distribution and the experimental data is identified. Finally, the primary and secondary pressures calculated by RELAP5 fell too rapidly during the latter part of the transient, resulting in rather large errors in the predicted timing of some pressure-actuated events

  14. Heat and fluid flow in accident of Fukushima Daiichi Nuclear Power Plant, Unit 3. Behaviour of high pressure coolant injection system (HPCI) based on thermodynamic model

    International Nuclear Information System (INIS)

    Maruyama, Shigenao

    2014-01-01

    In order to clarify the process of Accident of Fukushima Nuclear Plants, an accident scenario of Fukushima Daiichi Nuclear Power Plant, Unit 3 is analyzed from the data open to the public. Phase equilibrium process model was introduced in which the vapor and water are at saturation point in the vessels. The present accident scenario assumes that the high pressure coolant injection system (HPCI) did not worked properly, but the steam in the reactor pressure vessel (RPV) leaked through the turbine of HPCI to the suppression chamber since 12/3/2011 12:35. It is assumed that the Tsunami flooded the torus room where the suppression chamber was placed. Proposed accident scenario agrees with the data of the plant parameters obtained just after the accident. It is estimated that the water injection by HPIC was stopped since around at 13/3 19:00 and the water level in RPV decreased since then. It is estimated that the RPV broke at 14/3 8:55 and water could injected from fire engines due to the depression due to the rupture of RPV. There was little water left in RPV at the time of the rupture. If the present scenario is correct, the behavior that operators in the plant stopped HPCI at 13/3 2:42 did not affect seriously on the RPV rupture. If HPCI was working properly until the operators stopped it, the plant parameters obtained in the accident cannot be explained. (author)

  15. Shock loading of reactor vessel following hypothetical core disruptive accident

    International Nuclear Information System (INIS)

    Srinivas, G.; Doshi, J.B.

    1990-01-01

    Hypothetical Core Disruptive Accident (HCDA) has been historically considered as the maximum credible accident in Fast Breeder Reactor systems. Environmental consequences of such an accident depends to a great extent on the ability of the reactor vessel to maintain integrity during the shock loading following an HCDA. In the present paper, a computational model of the reactor core and the surrounding coolant with a free surface is numerical technique. The equations for conservation of mass, momentum and energy along with an equation of state are considered in two dimensional cylindrical geometry. The reactor core at the end of HCDA is taken as a bubble of hot, vaporized fuel at high temperature and pressure, formed at the center of the reactor vessel and expanding against the surrounding liquid sodium coolant. The free surface of sodium at the top of the vessel and the movement of the core bubble-liquid coolant interface are tracked by Marker and Cell (MAC) procedure. The results are obtained for the transient pressure at the vessel wall and also for the loading on the roof plug by the impact of the slug of liquid sodium. The computer code developed is validated against a benchmark experiment chosen to be ISPRA experiment reported in literature. The computer code is next applied to predict the loading on the Indian Prototype Fast Breeder Reactor (PFBR) being developed at Kalpakkam

  16. Simulation of a loss of primary coolant accident due to a large break in Angra 2 Nuclear Power Plant with RELAP5/MOD3.2.2G code

    International Nuclear Information System (INIS)

    Sabunddjian, Gaiane; Andrade, Delvonei Alves de

    2003-01-01

    This work presents the simulation, with RELAP5/MOD.3.2.2G code, of the postulate accident with loss of coolant in the primary circuit for large break (LBLOCA), which is described in Chapter 15 of the Final Safety Analysis Report of Angra 2 FSAR. The accident consists basically of the total break of the cold leg (Loop 20) of Angra 2 Plant. The rupture area considered is 4418 cm 2 , which represents 100% of the primary circuit pipe flow area. The Emergency Core Cooling System (ECCS) efficiency is also verified for this accident. In this simulation, failure and repair criteria are adopted for the ECCS components, in order to verify the system operation, in carrying out its function as expected by the project to preserve the integrity of the reactor core and to guarantee its cooling. LBLOCA accidents are characterized by a fast blowdown in the primary circuit to values that the low pressure injection system is activated and then, followed by the water injection by the accumulators. The thermal-hydraulic processes inherent to the accident phenomenon, such as hot leg vaporization and consequently core vaporization causing an inappropriate flow distribution in the reactor core, can lead to a reduction in the core liquid level, until the ECCS is capable to reflood it. It is important to point out that the results do not represent an independent calculation for the licensing process, but a calculation to give support to the qualification process of Angra 2 transient basic nodalization (author)

  17. On the air coolability of TRIGA reactors following a loss-of-coolant accident

    International Nuclear Information System (INIS)

    El-Genk, Mohamed S.; Kim, Sung-Ho; Zaki, Galal M.; Foushee, Fabian; Philbin, Jeffrey S.; Schulze, James

    1986-01-01

    This paper describes the experiments on the air-coolability of a heated rod in a vertical open annulus at near atmospheric pressure. This data can be applied to the coolability of reactor fuel rods that are totally uncovered in a Loss-of-Coolant Accident (LOCA). As a prelude to measuring air coolability of specific core geometries (bundles), heat transfer data was collected for natural convection of atmospheric air in open vertical annuli with an isoflux inner wall and an insulated outer wall (diameter ratios, annulus ratio, of 1.155, 1.33, 1.63, and 12). Although the inner heated tube had the same overall dimensions as the fuel rod in the Annular Core Research Reactor (ACRR) at Sandia National Laboratories (3.81 cm o.d. and 55.5 cm long), the heated length was only 36.0 cm rather than the entire 50.5 cm for the ACRR's rods. The test assembly was operated at heat fluxes up to 1.38 W/cm 2 with a corresponding surface temperature of 852 K. The annulus data was extrapolated to an equilibrium surface temperature of 1200 K (as a coolability limit of TRIGA reactors) to provide a qualitative estimate of the coolability of multirod bundles by free convection of atmospheric air. The results suggest that for a typical pitch-to-diameter ratio of 1.12 in the ACRR the decay heat removal level is about 1.0 kW/m. This corresponds to an initial decay power following sustained operations at about 12.5 kW/m in the ACRR. However, because of the uncertainties in duplicating the actual thermal-hydraulic conditions in a multirod bundle using a single rod annulus, the actual coolability of open pool reactors could be different from those suggested in this paper. (author)

  18. Investigation of coolant mixture in pressurized water reactors at the Rossendorf mixing test facility ROCOM

    International Nuclear Information System (INIS)

    Grunwald, G.; Hoehne, T.; Prasser, H.M.; Richter, K.; Weiss, F.P.

    1999-01-01

    During the so-called boron dilution or cold water transients at pressurized water reactors too weakly borated water or too cold water, respectively, might enter the reactor core. This results in the insertion of positive reactivity and possibly leads to a power excursion. If the source of unborated or subcooled water is not located in all coolant loops but in selected ones only, the amount of reactivity insertion depends on the coolant mixing in the downcomer and lower plenum of the reactor pressure vessel (RPV). Such asymmetric disturbances of the coolant temperature or boron concentration might e.g. be the result of a failure of the chemical and volume control system (CVCS) or of a main steam line break (MSLB) that does only affect selected steam generators (SG). For the analysis of boron dilution or MSLB accidents coupled neutron kinetics/thermo-hydraulic system codes have been used. To take into account coolant mixing phenomena in these codes in a realistic manner, analytical mixing models might be included. These models must be simple and fast running on the one hand, but must well describe the real mixing conditions on the other hand. (orig.)

  19. International Standard Problems and Small Break Loss-Of-Coolant Accident (SBLOCA)

    International Nuclear Information System (INIS)

    Aksan, N.

    2008-01-01

    Best-estimate thermalhydraulic system codes are widely used to perform safety and licensing analyses of nuclear power plants and also used in the design of advance reactors. Evaluation of the capabilities and the performance of these codes can be accomplished by comparing the code predictions with measured experimental data obtained on different test facilities. In this respect, parallel to other national and international programs, OECD/Nea (OECD Nuclear Energy Agency) Committee on the Safety of Nuclear Installations (CSNI) has promoted, over the last twenty-nine years some forty-eight International Standard Problems (ISPs). These ISPs were performed in different fields as in-vessel thermalhydraulic behaviour, fuel behaviour under accident conditions, fission product release and transport, core/concrete interactions, hydrogen distribution and mixing, containment thermalhydraulic behaviour. 80% of these ISPs were related to the working domain of Principal Working Group no. 2 on Coolant System Behaviour (PWG2). The ISPs have been one of the major PWG2 activities for many years. The individual ISP comparison reports include the analysis and conclusions of the specific ISP exercises. A global review and synthesis on the contribution that ISPs have made to address nuclear reactor safety issues was initiated by CSNI-PWG2 and an overview on the subject of small break LOCA ISP's is given in this paper based on a report prepared by a CSNI-PWG2 writing group. In addition, the relevance of small break LOCA in a PWR with relation to nuclear reactor safety and the reorientation of the reactor safety program after TMI-2 accident, specifically small break LOCA, are shortly summarized. Five small break LOCA related ISP's are considered, since these were used for the assessment of the advanced best-estimate codes. The considered ISP's deal with the phenomenon typical of small break LOCAs in Western design PWRs. The experiments in four integral test facilities, LOBI, SPES, BETHSY

  20. Severe accident analysis in a two-loop PWR nuclear power plant with the ASTEC code

    International Nuclear Information System (INIS)

    Sadek, Sinisa; Amizic, Milan; Grgic, Davor

    2013-01-01

    The ASTEC/V2.0 computer code was used to simulate a hypothetical severe accident sequence in the nuclear power plant Krsko, a 2-loop pressurized water reactor (PWR) plant. ASTEC is an integral code jointly developed by Institut de Radioprotection et de Surete Nucleaire (IRSN, France) and Gesellschaft fuer Anlagen- und Reaktorsicherheit (GRS, Germany) to assess nuclear power plant behaviour during a severe accident. The analysis was conducted in 2 steps. First, the steady state calculation was performed in order to confirm the applicability of the plant model and to obtain correct initial conditions for the accident analysis. The second step was the calculation of the station blackout accident with a leakage of the primary coolant through degraded reactor coolant pump seals, which was a small LOCA without makeup capability. Two scenarios were analyzed: one with and one without the auxiliary feedwater (AFW). The latter scenario, without the AFW, resulted in earlier core damage. In both cases, the accident ended with a core melt and a reactor pressure vessel failure with significant release of hydrogen. In addition, results of the ASTEC calculation were compared with results of the RELAP5/SCDAPSIM calculation for the same transient scenario. The results comparison showed a good agreement between predictions of those 2 codes. (orig.)

  1. Contact condensation effects in the main coolant pipe

    International Nuclear Information System (INIS)

    Haefner, W.; Fischer, K.

    1990-01-01

    Contact condensation effects may occur in a pressurized water reactor (PWR) after a loss of coolant accident (LOCA) when emergency core cooling (ECC) water is injected contact with escaping steam which is generated within the core. The condensation which takes place may cause a sudden depressurization leading to the formation of water slugs. The interaction between the transient condensation and the inertia of the flow may also result in large amplitude flow and pressure oscillations. These contact condensation effects are of great importance for the mass flow distribution and the coolant water supply to the reactor core. To examine those complex processes, large computer codes are necessary. The development and verification of analytical models requires greatly simplified flow boundary conditions from experiments and a sufficiently large base of experimental data. Separate models have been developed for interfacial exchange of mass, momentum and energy with respect to the associated flow regime. Therefore, an adequate description of the condensation process requires the modeling of two different topics: the prediction of the flow regime and the calculation of the interfacial exchange. (author)

  2. Thermal hydraulic analysis of aggressive secondary cooldown in small break loss of coolant accident with total loss of high pressure safety injection

    International Nuclear Information System (INIS)

    Han, S. J.; Im, H. K.; Yang, J. U.

    2003-01-01

    Recently, Probabilistic Safety Assessment (PSA) has being applied to various fields as a basic technique of Risk-Informed Applications (RIA). To use RIA, the present study focuses on the detailed thermal hydraulic analyses for major accident sequences and success criteria to support a development of PSA model for Korea Standard Nuclear Power plant (KSNP). The primary purpose of the present study is to evaluate the success criteria of Aggressive Secondary Cooldown (ASC) in Small Break Loss Of Coolant Accident (SBLOCA) with total loss of High Pressure Safety Injection (HPSI) and to enhance the understanding of related thermal hydraulic behavior and phenomena. The accident scenario was 2 inch coldleg break LOCA without HPSI, with 1/2 Low Pressure Safety Injection (LPSI), and performing ASC limited by 55.6 .deg. C /hr (100 .deg. F/hr) cooldown rate at 15 minute after reactor trip, which successively reaches the LPSI condition for about 1.5hr after starting ASC operation with the Peak Cladding Temperature (PCT) of the hottest rod below the core damage criteria 1204.4 .deg. C (2200 .deg. F). In the present study, more relaxed success criteria than the previous PSA for KSNP could be generated under an assumption that operator should maintain the adequate ASC operation. However, it is necessary to evaluate uncertainties arisen from the related parameters of the ASC operation

  3. CONTEMPT-LT/028: a computer program for predicting containment pressure-temperature response to a loss-of-coolant accident

    International Nuclear Information System (INIS)

    Hargroves, D.W.; Metcalfe, L.J.; Wheat, L.L.; Niederauer, G.F.; Obenchain, C.F.

    1979-03-01

    CONTEMPT-LT is a digital computer program, written in FORTRAN IV, developed to describe the long-term behavior of water-cooled nuclear reactor containment systems subjected to postulated loss-of-coolant accident (LOCA) conditions. The program calculates the time variation of compartment pressures, temperatures, mass and energy inventories, heat structure temperature distributions, and energy exchange with adjacent compartments. The program is capable of describing the effects of leakage on containment response. Models are provided to describe fan cooler and cooling spray engineered safety systems. An annular fan model is also provided to model pressure control in the annular region of dual containment systems. Up to four compartments can be modeled with CONTEMPT-LT, and any compartment except the reactor system may have both a liquid pool region and an air--vapor atmosphere region above the pool. Each region is assumed to have a uniform temperature, but the temperatures of the two regions may be different

  4. Evaluation of High-Pressure RCS Natural Circulations Under Severe Accident Conditions

    International Nuclear Information System (INIS)

    Lee, Byung Chul; Bang, Young Suk; Suh, Nam Duk

    2006-01-01

    Since TMI-2 accident, the occurrence of severe accident natural circulations inside RCS during entire in-vessel core melt progressions before the reactor vessel breach had been emphasized and tried to clarify its thermal-hydraulic characteristics. As one of consolidated outcomes of these efforts, sophisticated models have been presented to explain the effects of a variety of engineering and phenomenological factors involved during severe accident mitigation on the integrity of RCS pressure boundaries, i.e. reactor pressure vessel(RPV), RCS coolant pipe and steam generator tubes. In general, natural circulation occurs due to density differences, which for single phase flow, is typically generated by temperature differences. Three natural circulation flows can be formed during severe accidents: in-vessel, hot leg countercurrent flow and flow through the coolant loops. Each of these flows may be present during high-pressure transients such as station blackout (SBO) and total loss of feedwater (TLOFW). As a part of research works in order to contribute on the completeness of severe accident management guidance (SAMG) in domestic plants by quantitatively assessing the RCS natural circulations on its integrity, this study presents basic approach for this work and some preliminary results of these efforts with development of appropriately detailed RCS model using MELCOR computer code

  5. Proceedings of the workshop on severe accident research, Japan (SARJ-99)

    Energy Technology Data Exchange (ETDEWEB)

    Hashimoto, Kazuichiro [ed.

    2000-11-01

    The Workshop on Severe Accident Research, Japan (SARJ-99) was taken place at Hotel Lungwood on November 8-10, 1999, and attended by 156 participants from 12 countries. A total of 46 papers, which covered wide areas of severe accident research both in experiments and analyses, such as fuel/coolant interaction, accident analysis and modeling, in-vessel phenomena, accident management, fission product behavior, research reactors, ex-vessel phenomena, and structural integrity, were presented. The panel discussion titled 'Link of Severe Accident Research Results to Regulation: Current Status and Future Perspective' was successfully conducted, and the wide variety of opinions and views were exchanged among panelists and experts. (J.P.N.)

  6. Zircaloy-steam reaction under a simulated loss-of-coolant accident

    International Nuclear Information System (INIS)

    Kawasaki, Satoru; Furuta, Teruo; Hashimoto, Masao

    1975-07-01

    Under a simulated loss-of-coolant condition, the reaction between zircaloy and steam and the embrittlement of the zircaloy oxidized by this reaction have been studied. The parabolic rate constant, ksub(p), in the zircaloy-steam reaction is represented as ksub(p)=3.24x10 6 exp(-40500/RT) (mg 2 /cm 4 . sec) Ring compression test was made on the steam-reacted zircaloy tubes, and following results were obtained: Embrittlement of the steam-reacted zircaloy tube increases with oxidation at each oxidation temperature. For a given quantity of the oxidation, the incursion of α-phase into β-phase is more remarkable in the specimens reacted at low temperatures than those at high temperatures. The embrittlement, however, is larger in the specimens oxidized at high temperatures than those at low temperatures. (auth.)

  7. Sensitivity analysis of local uncertainties in large break loss-of-coolant accident (LB-LOCA) thermo-mechanical simulations

    Energy Technology Data Exchange (ETDEWEB)

    Arkoma, Asko, E-mail: asko.arkoma@vtt.fi; Ikonen, Timo

    2016-08-15

    Highlights: • A sensitivity analysis using the data from EPR LB-LOCA simulations is done. • A procedure to analyze such complex data is outlined. • Both visual and quantitative methods are used. • Input factors related to core design are identified as most significant. - Abstract: In this paper, a sensitivity analysis for the data originating from a large break loss-of-coolant accident (LB-LOCA) analysis of an EPR-type nuclear power plant is presented. In the preceding LOCA analysis, the number of failing fuel rods in the accident was established (Arkoma et al., 2015). However, the underlying causes for rod failures were not addressed. It is essential to bring out which input parameters and boundary conditions have significance to the outcome of the analysis, i.e. the ballooning and burst of the rods. Due to complexity of the existing data, the first part of the analysis consists of defining the relevant input parameters for the sensitivity analysis. Then, selected sensitivity measures are calculated between the chosen input and output parameters. The ultimate goal is to develop a systematic procedure for the sensitivity analysis of statistical LOCA simulation that takes into account the various sources of uncertainties in the calculation chain. In the current analysis, the most relevant parameters with respect to the cladding integrity are the decay heat power during the transient, the thermal hydraulic conditions in the rod’s location in reactor, and the steady-state irradiation history of the rod. Meanwhile, the tolerances in fuel manufacturing parameters were found to have negligible effect on cladding deformation.

  8. Calculations for accidents in water reactors during operation at power

    International Nuclear Information System (INIS)

    Blanc, H.; Dutraive, P.; Fabrega, S.; Millot, J.P.

    1976-07-01

    The behaviour of a water reactor on an accident occurring as the reactor is normally operated at power may be calculated through the computer code detailed in this article. Reactivity accidents, loss of coolant ones and power over-running ones are reviewed. (author)

  9. Best-estimate analysis of a loss-of-coolant accident in a four-loop US PWR using TRAC-PD2

    International Nuclear Information System (INIS)

    Ireland, J.R.

    1982-01-01

    A 200-percent double-ended cold-leg break loss-of-coolant accident (LOCA) in a typical US pressurized water reactor (PWR) was simulated using the Transient Reactor Analysis Code (TRAC-PD2). The reactor system modeled represented a typical US PWR with four loops (three intact, one broken) and cold-leg emergency-core-cooling systems (ECCS). The finely noded TRAC model employed 440 three dimensional (r, THETA, z) vessel cells along with approximately 300 one-dimensional cells that modeled the primary system loops. The calculated peak-clad temperature of 950 0 K occurred during blowdown and the clad temperature excursion was terminated at 175 s, when complete core quenching occurred. Accumulator flows were initiated at 10 s, when the system pressure reached 4.08 MPa, and the refill phase ended at 36 s when the lower plenum refilled. During reflood, both bottom and falling film quench fronts were calculated

  10. Analysis of large break loss of coolant accident with simultaneous injection into cold leg and hot leg

    International Nuclear Information System (INIS)

    Luo Bangqi

    1997-01-01

    When a large break loss of coolant accident occurs, the most part of the safety injection water injected into the cold leg by the safety injection system will flow through the channel between the pressure vessel and the barrel out of the break into the containment, only a little part of the safety injection water can flow into the reactor core. If the safety injection can inject into both the cold leg and the hot leg simultaneously, the safety injection water injected from the cold leg will flow into the core more easily, because the safety injection water injected from the hot leg will carry out more heat from the upper plenum and the core, so the upper plenum and the core is depressed. In addition, a small part of the safety injection water injected from the hot leg will flow down in the core after impinging the guide tubes in the upper plenum, so the core will get more safety injection water than only cold leg injection, and the core will be much safer

  11. Overview of severe accident research at KAERI

    International Nuclear Information System (INIS)

    Kim, H.D.; Kim, S.B.; Hong, S.W.; Kim, D.H.

    2000-01-01

    The severe accident research program at Korea Atomic Energy Research Institute, within the framework of governmental 10 year long-term nuclear R and D program, aims at the development of assessment techniques and accident management strategies for the prevention and mitigation of potential risk. The research program includes experimental efforts, development of phenomena specific models and development of an integrated computer code. The results of research program is intended to be utilized for the design of the advanced light water reactor and development of accident management strategies for the operating reactors. The main focused areas of recent investigation at KAERI are experiments on in-vessel core debris retention (SONATA-IV) and fuel coolant interaction (TROI) along with the development of models and integrated computer code (MIDAS). (author)

  12. SWR-1000 concept on control of severe accidents

    International Nuclear Information System (INIS)

    Meyer, P.J.

    1998-01-01

    It is essential for the SWR-1000 probabilistic safety concept to consider the results from experiments and reliability system failure within the probabilistic safety analyses for passive systems. Active and passive safety features together reduce the probability of the occurrence of beyond design basis accidents in order to limit their consequences in accordance with the German law. As a reference case we analyzed the most probable core melt accident sequence with a very conservative assumption. An initial event, stuck open of safety and relief valves without the probability of active and passive feeding systems of the pressure vessel, was considered. Other sequences of the loss of coolant accidents lead to lower probability

  13. Development of severe accident analysis code - A study on the molten core-concrete interaction under severe accidents

    Energy Technology Data Exchange (ETDEWEB)

    Jung, Chang Hyun; Lee, Byung Chul; Huh, Chang Wook; Kim, Doh Young; Kim, Ju Yeul [Seoul National University, Seoul (Korea, Republic of)

    1996-07-01

    The purpose of this study is to understand the phenomena of the molten core/concrete interaction during the hypothetical severe accident, and to develop the model for heat transfer and physical phenomena in MCCIs. The contents of this study are analysis of mechanism in MCCIs and assessment of heat transfer models, evaluation of model in CORCON code and verification in CORCON using SWISS and SURC Experiments, and 1000 MWe PWR reactor cavity coolability, and establishment a model for prediction of the crust formation and temperature of melt-pool. The properties and flow condition of melt pool covering with the conditions of severe accident are used to evaluate the heat transfer coefficients in each reviewed model. Also, the scope and limitation of each model for application is assessed. A phenomenological analysis is performed with MELCOR 1.8.2 and MELCOR 1.8.3 And its results is compared with corresponding experimental reports of SWISS and SURC experiments. And the calculation is performed to assess the 1000 MWe PWR reactor cavity coolability. To improve the heat transfer model between melt-pool and overlying coolant and analyze the phase change of melt-pool, 2 dimensional governing equations are established using the enthalpy method and computational program is accomplished in this study. The benchmarking calculation is performed and its results are compared to the experiment which has not considered effects of the coolant boiling and the gas injection. Ultimately, the model shall be developed for considering the gas injection effect and coolant boiling effect. 66 refs., 10 tabs., 29 refs. (author)

  14. Preliminary Analysis of Severe Accident Progression Initiated from Small Break LOCA of a SMART Reactor

    International Nuclear Information System (INIS)

    Jin, Young Ho; Park, Jong Hwa; Kim, Dong Ha; Cho, Seong Won

    2010-01-01

    SMART (System integrated Modular Advanced ReacTor), is under the development at Korea Atomic Energy Research Institute (KAERI). SMART is an integral type pressurized water reactor which contains a pressurizer, 4 reactor coolant pumps (RCPs), and 8 steam generator cassettes(S/Gs) in a single reactor vessel. This reactor has substantially enhanced its safety with an integral layout of its major components, 4 trains of safety injection systems (SISs), and an adoption of 4 trains of passive residual heat removal systems (PRHRS) instead of an active auxiliary feedwater system . The thermal power is 330 MWth. During the conceptual design stage, a preliminary PSA was performed. PSA results identified that a small break loss of coolant accident (SLOCA) with all safety injections unavailable is one of important severe core damage sequences. Clear understanding of this sequence helps in the developing accident mitigation strategies. MIDAS/SMR computer code is used to simulate the severe accident progression initiated from a small break LOCA in SMART reactor. This code has capability to model a helical steam generator which is adopted in SMART reactor. The important accident progression results for SMART reactor are then compared with the typical pressurized water reactor (PWR) result

  15. Risk evaluation of accident management strategies

    International Nuclear Information System (INIS)

    Dingman, S.; Camp, A.

    1992-01-01

    The use of Probabilistic Risk Assessment (PRA) methods to evaluate accident management strategies in nuclear power plants discussed in this paper. The PRA framework allows an integrated evaluation to be performed to give the full implications of a particular strategy. The methodology is demonstrated for a particular accident management strategy, intentional depressurization of the reactor coolant system to avoid containment pressurization during the ejection of molten debris at vessel breach

  16. Studies of loss-of-coolant and loss-of-regulation accidents

    International Nuclear Information System (INIS)

    Rogers, J.T.

    1979-10-01

    Studies of a CANDU reactor during loss of coolant with delayed emergency core cooling showed that the moderator is an effective heat sink, and that in reactors with moderator dump the calandria sprays provide effective cooling. Fuel channel melting would not occur, and a coolable geometry will be maintained. Studies on film cooling and film stability on calandria tubes and on the analysis of flow reversal in vertical feeder tubes are also reported

  17. Review of progress on enhanced accident tolerant fuel

    International Nuclear Information System (INIS)

    McCoy, K.; Dunn, B.; Kochendarfer, R.

    2015-01-01

    The accident at Fukushima has resulted in renewed interest in understanding the performance of nuclear power plants under accident conditions. Part of that interest is directed toward determining how to improve the performance of fuel during an accident that involves long exposures of the fuel to high temperatures. This paper describes the method being used by AREVA to select and evaluate approaches for improving the accident tolerance of nuclear fuel. The method involves starting with a large number of approaches that might enhance accident tolerance, and reviewing how well each approach satisfies a set of engineering requirements and goals. Among the approaches investigated we have the development of fuel pellets that contain a second phase to improve thermal conductivity, the use of molybdenum alloy tubing as fuel cladding, the use of oxidation-resistant coatings to zirconium cladding, and the use of nanoparticles in the coolant to improve heat transfer

  18. Analysis of space-time core dynamics on reactor accident at Chernobyl

    International Nuclear Information System (INIS)

    Takano, Makoto; Shindo, Ryuichi; Yamashita, Kiyonobu; Sawa, Kazuhiro

    1987-05-01

    Regarding reactor accident at Chernobyl in USSR, core dynamics has been analyzed by COMIC code which solves space-time dependent diffusion equation in three-dimension taking spatial thermohydraulic effect into account. The code was originally developed for high temperature gas-cooled reactors (HTGR), however, has been modified to include light water as coolant, instead of helium, for analysis of the accident. In the analysis, emphasis is placed on spatial effects on core dynamics. The analyses are performed for the cases of modeling the core fully and partially where 6 fuel channels surround one control rod channel. The result shows that the speed of applying void reactivity averaged over the core depends on the power and coolant flow distributions. Therefore, these distributions have potential to influence on the value and the time of peak power estimated by calculation. (author)

  19. On the weighting of accident probabilities for evident emotive factors

    International Nuclear Information System (INIS)

    Dukes, J.A.

    1979-01-01

    Problems in risk management of the additive property of; accident risk costs, the special case of the infrequent disaster, and the correct amount to spend on accident prevention, are considered. The need for weighting by additional emotive factors is discussed. Such factors here considered are; the scale factor relating to the number of people who as a result of the accident are killed, the age factor which takes into account the novelty of the situation against the background of common human experience, and the comprehension factor which is a weighting associated with the extent to which the 'man in the street' may be expected to understand the mechanism of the accident. A table shows how these factors combine for a set of accident scenarios including radioactive spills and a loss of coolant reactor accident. (U.K.)

  20. Research on coolant radiochemistry

    International Nuclear Information System (INIS)

    Yeon, Jei Won; Kim, W. H.; Park, Y. J.; Im, J. K.; Jung, Y. J.; Jee, K. Y.; Choi, K. C.

    2004-04-01

    The final objective of this study is to develop the technology on the reduction of radioactive material formed in reactor coolant circuit. The contents of this study are composed of the simulation of primary cooling system, chemistry measurement technology in the high-temperature high-pressure environments, and coolant chemistry control technology. The main results are as follows; High-temperature and high-pressure loop system was designed and fabricated, which is to inducing CRUD growth condition on the surface of cladding. The high-temperature pH measurement system was established with YSZ sensing electrode and Ag/AgCl reference electrode. The performance of pH electrode was confirmed in the temperature range 200∼280 .deg. C. Coolant chemistry control technologies such as the neutron irradiation technique of boric acid solution, the evaluation on high-temperature electrochemical behavior of coolant, and the measurement of physicochemical properties of micro-particles were developed. The results of this study can be useful for the understanding of chemical phenomena occurred in reactor coolant and for the study on the reduction of radioactive material in primary coolant, which will be carried out in the next research stage

  1. Analysis of SBO accident for a swimming pool reactor

    International Nuclear Information System (INIS)

    Wang Guimin; Li Weiwei; Li Ning; Guo Wenhui

    2015-01-01

    The RELAP5/MOD3.3 code was adopted to compute the SBO accident condition of a swimming pool reactor. The coolant flow reversal process was calculated, and the influence of parameters of the flow between the core leakage and components on the flow reversal in the SBO accident condition was analyzed. The calculated results show that in the situation the reactor loses all forced flow, the residual heat of the reactor can be removed by the natural circulation flow, and the fuel subassembly will not be damaged. (authors)

  2. Results of recent LOFT experiments

    International Nuclear Information System (INIS)

    Leach, L.P.; Hanson, D.J.; Batt, D.L.

    1982-01-01

    Five experiments were performed in the Loss-of-Fluid Test (LOFT) facility during the past year. The experiments conducted spanned a wide range of potential accident scenarios, including large and small break loss-of-coolant accidents (LOCAs), control rod withdrawal accidents, uncontrolled boron dilution, and anticipated transients without scram (ATWS). This summary describes these experiments and presents results available from the experiments and experiment prediction calculations. A brief overview is given for the remaining experiment planned in the LOFT Program

  3. Preliminary accident analysis of Flexblue® underwater reactor

    Directory of Open Access Journals (Sweden)

    Haratyk Geoffrey

    2015-01-01

    Full Text Available Flexblue® is a subsea-based, transportable, small modular reactor delivering 160 MWe. Immersion provides the reactor with an infinite heat sink – the ocean – around the metallic hull. The reference design includes a loop-type PWR with two horizontal steam generators. The safety systems are designed to operate passively; safety functions are fulfilled without operator action and external electrical input. Residual heat is removed through four natural circulation loops: two primary heat exchangers immersed in safety tanks cooled by seawater and two emergency condensers immersed in seawater. In case of a primary piping break, a two-train safety injection system is actuated. Each train includes a core makeup tank, an accumulator and a safety tank at low pressure. To assess the capability of these features to remove residual heat, the reactor and its safety systems have been modelled using thermal-hydraulics code ATHLET with conservative assumptions. The results of simulated transients for three typical PWR accidents are presented: a turbine trip with station blackout, a large break loss of coolant accident and a small break loss of coolant accident. The analyses show that the safety criteria are respected and that the reactor quickly reaches a safe shutdown state without operator action and external power.

  4. Analysis of helium purification system capability during water ingress accident in RDE

    Science.gov (United States)

    Sriyono; Kusmastuti, Rahayu; Bakhri, Syaiful; Sunaryo, Geni Rina

    2018-02-01

    The water ingress accident caused by steam generator tube rupture (SGTR) in RDE (Experimental Power Reactor) must be anticipated. During the accident, steam from secondary system diffused and mixed with helium gas in the primary coolant. To avoid graphite corrosion in the core, steam will be removed by Helium purification system (HPS). There are two trains in HPS, first train for normal operation and the second for the regeneration and accident. The second train is responsible to clean the coolant during accident condition. The second train is equipped with additional component, i.e. water cooler, post accident blower, and water separator to remove this mixture gas. During water ingress, the water release from rupture tube is mixed with helium gas. The water cooler acts as a steam condenser, where the steam will be separated by water separator from the helium gas. This paper analyses capability of HPS during water ingress accident. The goal of the research is to determine the time consumed by HPS to remove the total amount of water ingress. The method used is modelling and simulation of the HPS by using ChemCAD software. The BDBA and DBA scenarios will be simulated. In BDBA scenario, up to 110 kg of water is assumed to infiltrate to primary coolant while DBA is up to 35 kg. By using ChemCAD simulation, the second train will purify steam ingress maximum in 0.5 hours. The HPS of RDE has a capability to anticipate the water ingress accident.

  5. Safety analysis of RA reactor operation, I-III, Part III - Environmental effect of the maximum credible accident

    International Nuclear Information System (INIS)

    Raisic, N.

    1963-02-01

    Maximum credible accident at the RA reactor would consider release of fission products into the environment. This would result from fuel elements failure or meltdown due to loss of coolant. The analysis presented in this report assumes that the reactor was operating at nominal power at the moment of maximum possible accident. The report includes calculations of fission products activity at the moment of accident, total activity release during the accident, concentration of radioactive material in the air in the reactor neighbourhood, and the analysis of accident environmental effects

  6. Severe accident sequence assessment for boiling water reactors: program overview

    International Nuclear Information System (INIS)

    Fontana, M.H.

    1980-10-01

    The Severe Accident Sequence Assessment (SASA) Program was started at the Oak Ridge National Laboratory (ORNL) in June 1980. This report documents the initial planning, specification of objectives, potential uses of the results, plan of attack, and preliminary results. ORNL was assigned the Brown's Ferry Unit 1 Plant with the station blackout being the initial sequence set to be addressed. This set includes: (1) loss of offsite and onsite ac power with no coolant injection; and (2) loss of offsite and onsite ac power with high pressure coolant injection (HPCI) and reactor core isolation cooling (RCIC) as long as dc power supply lasts. This report includes representative preliminary results for the former case

  7. Sodium coolant of fast reactors: Experience and problems

    International Nuclear Information System (INIS)

    Kozlov, F.A.; Volchkov, L.G.; Drobyshev, A.V.; Nikulin, M.P.; Kochetkov, L.A.; Alexeev, V.V.

    1997-01-01

    In present report the following subjects are considered: state of the coolant and sodium systems under normal operating condition as well as under decommissioning, disclosing of sodium circuits and liquidation of its consequences, cleaning from sodium and decontamination under repairing works of equipment and circuits. Cleaning of coolant and sodium systems under normal operating conditions and under accident contamination. Cleaning of the equipment under repairing works and during decommissioning from sodium and products of its interaction with water and air. Treatment of sodium waste, taking into account a possibility of sodium fires. It is shown that the state of coolant, cover gas, surfaces of constructive materials which are in contact with them, cleaning systems, formed during installation operation require development of specific technologies. Developed technologies ensured safety operation of sodium cooled installations as in normal operating conditions so in abnormal situations. R and D activities in this field and experience gained provided a solid base for coping with problems arising during decommissioning. Prospective research problems are emphasized where the future efforts should be concentrated in order to improve characteristics of sodium cooled reactors and to make their decommissioning optimal and safe. (author)

  8. Consequence analysis of core damage states following severe accidents for the CANDU reactor design

    International Nuclear Information System (INIS)

    Wahba, N.N.; Kim, Y.T.; Lie, S.G.

    1997-01-01

    The analytical methodology used to evaluate severe accident sequences is described. The relevant thermal-mechanical phenomena and the mathematical approach used in calculating the timing of the accident progression and source term estimate are summarized. The postulated sever accidents analyzed, in general, mainly differ in the timing to reach and progress through each defined c ore damage state . This paper presents the methodology and results of the timing and steam discharge calculations as well as source term estimate out of containment for accident sequences classified as potentially leading to core disassembly following a small break loss-of-coolant accident (LOCA) scenario as a specific example. (author)

  9. Severe accident sequences simulated at the Grand Gulf Nuclear Station

    International Nuclear Information System (INIS)

    Carbajo, J.J.

    1999-01-01

    Different severe accident sequences employing the MELCOR code, version 1.8.4 QK, have been simulated at the Grand Gulf Nuclear Station (Grand Gulf). The postulated severe accidents simulated are two low-pressure, short-term, station blackouts; two unmitigated small-break (SB) loss-of-coolant accidents (LOCAs) (SBLOCAs); and one unmitigated large LOCA (LLOCA). The purpose of this study was to calculate best-estimate timings of events and source terms for a wide range of severe accidents and to compare the plant response to these accidents

  10. Ex-vessel debris coolability test during severe accident (COTELS project)

    International Nuclear Information System (INIS)

    Ogasawara, H.

    1998-01-01

    The objectives of the COTELS project are for severe accident management, to investigate phenomena of ex-vessel fuel-coolant interactions after reactor pressure vessel (RPV) failure and to investigate molten core-concrete interaction when coolant is injected onto molten debris. The project has being cooperated with the National Nuclear Center in the Republic of Kazakstan from 1994 to 1997 under the sponsorship of the Ministry of International Trade and Industry of Japan. Total programs are composed with the following tests. (1) Test 01 was meant to observe flow mode of falling debris. (2) Test A was meant to investigate phenomena of fuel-coolant interactions when molten debris falls into a coolant pool. (3) Test B/C investigated fuel coolant interactions and molten core-concrete interaction when coolant is injected onto debris. Detail data evaluation is underway. The following results were thus for obtained: (1) It was confirmed in Test 01 series that about 60 kg of UO 2 mixture was completely melted and fallen as a continuous jet. (2) No energetic fuel-coolant interaction was observed both in Test A and B series. (3) Debris in which decay heat was simulated was cooled by water injection in Test C series

  11. Status and results of the theoretical and experimental investigations on the LWR fuel rod behavior under accident conditions

    International Nuclear Information System (INIS)

    Bocek, M.; Hofmann, P.; Leistikow, S.; Class, G.; Meyder, R.; Raff, S.; Erbacher, F.; Hofmann, G.; Ihle, P.; Karb, E.; Fiege, A.

    1978-09-01

    In this report the status of knowledge is described which has been gathered up to the end of 1977 of the LWR fuel rod behavior in loss-of-coolant accidents. The majority of results indicated have been derived from studies on the fuel rod behavior performed within the framework of the Nuclear Safety Project (PNS); partly, also the results of cooperating research establishments and fm international exchange of experience are referred to. The report has been subdivided into two complete parts: Part I provides a survey of the most significant results of the theoretical and experimental research projects on fuel rod behavior. Part II describes by detailed individual presentations the status as well as the results with respect to the major central subjects. (orig.) 891 RW 892 AP [de

  12. An accident diagnosis algorithm using long short-term memory

    Directory of Open Access Journals (Sweden)

    Jaemin Yang

    2018-05-01

    Full Text Available Accident diagnosis is one of the complex tasks for nuclear power plant (NPP operators. In abnormal or emergency situations, the diagnostic activity of the NPP states is burdensome though necessary. Numerous computer-based methods and operator support systems have been suggested to address this problem. Among them, the recurrent neural network (RNN has performed well at analyzing time series data. This study proposes an algorithm for accident diagnosis using long short-term memory (LSTM, which is a kind of RNN, which improves the limitation for time reflection. The algorithm consists of preprocessing, the LSTM network, and postprocessing. In the LSTM-based algorithm, preprocessed input variables are calculated to output the accident diagnosis results. The outputs are also postprocessed using softmax to determine the ranking of accident diagnosis results with probabilities. This algorithm was trained using a compact nuclear simulator for several accidents: a loss of coolant accident, a steam generator tube rupture, and a main steam line break. The trained algorithm was also tested to demonstrate the feasibility of diagnosing NPP accidents. Keywords: Accident Diagnosis, Long Short-term Memory, Recurrent Neural Network, Softmax

  13. MABEL-2: a code to analyse cladding deformation in a loss-of-coolant accident

    International Nuclear Information System (INIS)

    Bowring, R.W.; Cooper, C.A.; Haste, T.J.

    1982-04-01

    MABEL can be used to determine the cladding deformation in a PWR during a LOCA. It takes the results of calculations from other codes to define the initial fuel condition and the transient whole core thermal-hydraulic behaviour. The use of MABEL with input data appropriate to different regions of a reactor core allows an overall picture of coolant channel blockage within the core to be obtained. (U.K.)

  14. Zinc corrosion after loss-of-coolant accidents in pressurized water reactors – Thermo- and fluid-dynamic effects

    Energy Technology Data Exchange (ETDEWEB)

    Seeliger, André, E-mail: a.seeliger@hszg.de [Hochschule Zittau/Görlitz, Institute of Process Technology, Process Automation and Measuring Technology, Theodor-Körner-Allee 16, D-02763 Zittau (Germany); Alt, Sören; Kästner, Wolfgang; Renger, Stefan [Hochschule Zittau/Görlitz, Institute of Process Technology, Process Automation and Measuring Technology, Theodor-Körner-Allee 16, D-02763 Zittau (Germany); Kryk, Holger; Harm, Ulrich [Helmholtz-Zentrum Dresden-Rossendorf, Institute of Fluid Dynamics, P.O. Box 510119, D-01314 Dresden (Germany)

    2016-08-15

    Highlights: • Borated coolant supports corrosion at zinc-coated installations in PWR after LOCA. • Dissolved zinc is injected into core by ECCS during sump recirculation phase. • Corrosion products can reach and settle at further downstream components. • Corrosion products can cause head losses at spacers and influence decay heat removal. • Preventive procedures were tested at semi-technical scale facilities. - Abstract: Within the framework of the German reactor safety research, generic experimental investigations were carried out aiming at thermal-hydraulic consequences of physicochemical mechanisms, caused by dissolution of zinc in boric acid during corrosion processes at hot-dip galvanized surfaces of containment internals at lower coolant temperatures and the subsequent precipitation of solid zinc borates in PWR core regions of higher temperature. This constellation can occur during sump recirculation operation of ECCS after LOCA. Hot-dip galvanized compounds, which are installed inside a PWR containment, may act as zinc sources. Getting in contact with boric acid coolant, zinc at their surfaces is released into coolant in form of ions due to corrosion processes. As a long-term behavior resp. over a time period of several days, metal layers of zinc and zinc alloys can dissolve extensively. First fundamental studies at laboratory scale were done at the Helmholtz-Zentrum Dresden-Rossendorf (HZDR). Their experimental results were picked up for the definition of boundary conditions for experiments at semi-technical scale at the Hochschule Zittau/Görlitz (HSZG). Electrical heating rods with zircaloy cladding tubes have been used as fuel rod simulators. As near-plant core components, a 3 × 3 configuration of heating rods (HRC) and a shortened, partially heatable PWR fuel assembly dummy were applied into cooling circuits. The HRC module includes segments of spacers for a suitable representation of a heating channel geometry. Formations of different solid

  15. Accident analysis for PRC-II reactor

    International Nuclear Information System (INIS)

    Wei Yongren; Tang Gang; Wu Qing; Lu Yili; Liu Zhifeng

    1997-12-01

    The computer codes, calculation models, transient results, sensitivity research, design improvement, and safety evaluation used in accident analysis for PRC-II Reactor (The Second Pulsed Reactor in China) are introduced. PRC-II Reactor is built in big populous city, so the public pay close attention to reactor safety. Consequently, Some hypothetical accidents are analyzed. They include an uncontrolled control rod withdrawal at rated power, a pulse rod ejection at rated power, and loss of coolant accident. Calculation model which completely depict the principle and process for each accident is established and the relevant analysis code is developed. This work also includes comprehensive computing and analyzing transients for each accident of PRC-II Reactor; the influences in the reactor safety of all kind of sensitive parameters; evaluating the function of engineered safety feature. The measures to alleviate the consequence of accident are suggested and taken in the construction design of PRC-II Reactor. The properties of reactor safety are comprehensively evaluated. A new advanced calculation model (True Core Uncovered Model) of LOCA of PRC-II Reactor and the relevant code (MCRLOCA) are first put forward

  16. Experimental Setup for Reflood Quench of Accident Tolerant Fuel Claddings

    Energy Technology Data Exchange (ETDEWEB)

    Lee, Chan; Lee, Kwan Geun; In, Wang Kee [Korea Atomic Energy Research Institute, Daejeon (Korea, Republic of)

    2016-10-15

    The concept of accident tolerant fuel (ATF) is a solution to suppress the hydrogen generation in loss of coolant accident (LOCA) situation without safety injection, which was the critical incident in the severe accident in the Fukushima. The changes in fuel and cladding materials may cause a significant difference in reactor performance in long term operation. Properties in terms of material science and engineering have been tested and showed promising results. However, numerous tests are still required to ensure the design performance and safety. Thermal hydraulic tests including boiling and quenching are partly confirmed, but not yet complete. We have been establishing the experimental setup to confirm the properties in the terms of thermal hydraulics. Design considerations and preliminary tests are introduced in this paper. An experimental setup to test thermal hydraulic characteristics of new ATF claddings are established and tested. The W heater set inside the cladding is working properly, exceeding 690 W/m linear power with thermocouples and insulating ceramic sheaths inside. The coolant injection control was also working in good conditions. The setup is about to complete and going to simulate quenching behavior of the ATF in the LOCA situation.

  17. Technical committee meeting on material-coolant interactions and material movement and relocation in liquid metal fast reactors

    International Nuclear Information System (INIS)

    1994-01-01

    The Technical Committee Meeting on Material-Coolant Interactions and Material Movement and Relocation in Liquid Metal Fast Reactors was sponsored by the International Working Group on Fast Reactors (IWGFR), International Atomic Energy Agency (IAEA) and hosted by PNC, on behalf of the Japanese government. A broad range of technical subjects was discussed in the TCM, covering entire aspects of material motion and interactions relevant to the safety of LMFRs. Recent achievement and current status in research and development in this area were presented including European out-of-pile test of molten material movement and relocation; molten material-sodium interaction; molten fuel-coolant interaction; core disruptive accidents; sodium boiling; post accident material relocation, heat removal and relevant experiments already performed or planned

  18. Technical committee meeting on material-coolant interactions and material movement and relocation in liquid metal fast reactors

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    1994-07-01

    The Technical Committee Meeting on Material-Coolant Interactions and Material Movement and Relocation in Liquid Metal Fast Reactors was sponsored by the International Working Group on Fast Reactors (IWGFR), International Atomic Energy Agency (IAEA) and hosted by PNC, on behalf of the Japanese government. A broad range of technical subjects was discussed in the TCM, covering entire aspects of material motion and interactions relevant to the safety of LMFRs. Recent achievement and current status in research and development in this area were presented including European out-of-pile test of molten material movement and relocation; molten material-sodium interaction; molten fuel-coolant interaction; core disruptive accidents; sodium boiling; post accident material relocation, heat removal and relevant experiments already performed or planned.

  19. Hydride precipitation, fracture and plasticity mechanisms in pure zirconium and Zircaloy-4 at temperatures typical for the postulated loss-of-coolant accident

    International Nuclear Information System (INIS)

    Pshenichnikov, Anton; Stuckert, Juri; Walter, Mario

    2016-01-01

    Highlights: • All δ-hydrides in Zr and Zircaloy-4 have basal or pyramidal types of habit planes. • Seven orientation relationships for δ-hydrides in Zr matrix were detected. • Decohesion fracture mechanism of hydrogenated Zr was investigated by fractography. - Abstract: The results of investigations of samples of zirconium and its alloy Zircaloy-4, hydrogenated at temperatures 900–1200 K (typical temperatures for loss-of-coolant accidents) are presented. The analyses, based on a range of complementary techniques (X-ray diffraction, scanning electron microscopy, electron backscatter diffraction) reveals the direct interrelation of internal structure transformation and hydride distribution with the degradation of mechanical properties. Formation of small-scale zirconium hydrides and their bulk distribution in zirconium and Zircaloy-4 were investigated. Fractographical analysis was performed on the ruptured samples tested in a tensile machine at room temperature. The already-known hydrogen embrittlement mechanisms based on hydride formation and hydrogen-enhanced decohesion and the applicability of them in the case of zirconium and its alloys is discussed.

  20. Simulation of a loss of coolant accident with rupture in the steam generator hot collector

    International Nuclear Information System (INIS)

    1991-03-01

    The Central Research Institute for Physics of the Hungarian Academy of Sciences designed and constructed the PMK-NVH test facility, a scaled down model of the WWER-440 Paks nuclear power plant. Hungary made the PMK-NVH facility available to the IAEA. The IAEA, having identified the need for experimental data due to the difficulties of building integral test facilities and the high costs of these experiments, has accepted the offer of the Hungarian Academy of Sciences and has organized three standard problem exercises. In these exercises, experimental data from the simulation of loss of coolant accidents were compared with analytical predictions of the behaviour of the facility, calculated with computer codes. The third standard problem exercise involved a test, in which the rupture was simulated to occur at the top of the hot collector of the steam generator, therefore creating a leak from primary to secondary side. Both hydroaccumulators and high pressure injection were allowed to actuate as prescribed in the actual plant. Eighteen organizations from 15 Member States took part in the exercise presenting pre-test and some post-test analyses which were discussed in a final meeting in Vienna in August, 1990. This document presents a complete overview of the third standard problem exercise, including description of the facility, the experiment, the codes and models used by the participants and a detailed intercomparison of calculated and experimental results. It is recognized that code assessment is a long process which involves many interrelated steps; therefore, no general conclusion or optimum code or best model was reached. However, the exercise was recognized as an important contributor to code validation. 42 refs, figs and tabs

  1. Aspects of severe accidents in transmutation systems

    International Nuclear Information System (INIS)

    Wider, H.U.; Karlson, J.; Jones, A.V.

    2001-01-01

    The different types of transmutation systems under investigation include accelerator driven (ADS) and critical systems. To switch off an accelerator in case of an accident initiation is quite important for all accidents. For a fast ADS the grace times available for doing so depend strongly on the total heat capacity and the natural circulation capability of the primary coolant. Cooling with heavy metal Pb-Bi has considerable advantages in this regard compared to gas cooling. Moreover it allows passive ex-vessel cooling with natural air or water circulation. In the remote likelihood of fuel melting, oxide fuel appears to mix with the Pb-Bi coolant. Fast critical systems that are cooled by Pb-Bi will automatically shut off if the flow or heat sink is lost. Reactivity accidents can be limited by a low total control rod worth. High temperature reactors can achieve only incomplete burning of actinides. If an accelerator is added to increase burn-up, a fast spectrum region is needed, which has a low heat capacity. (author)

  2. Computer code calculations of the TMI-2 accident: initial and boundary conditions

    International Nuclear Information System (INIS)

    Behling, S.R.

    1985-05-01

    Initial and boundary conditions during the Three Mile Island Unit 2 (TMI-2) accident are described and detailed. A brief description of the TMI-2 plant configuration is given. Important contributions to the progression of the accident in the reactor coolant system are discussed. Sufficient information is provided to allow calculation of the TMI-2 accident with computer codes

  3. An on-line pressurizer surveillance system design to prevent small-break loss-of-coolant accidents through power-operated relief valves using a microcomputer

    International Nuclear Information System (INIS)

    Lee, J.H.; Chang, S.H.

    1987-01-01

    A small-break loss-of-coolant accident (LOCA) caused by a stuck-open power-operated relief valve is one of the important contributors to nuclear power plant risk. A pressurizer surveillance system was designed to use a microcomputer to prevent the malfunction of the system; the effect of this improvement has been assessed through probabilistic risk assessment. The microcomputer diagnoses the malfunction of the system by a process-checking method and automatically performs the backup action related to each malfunction. This improvement means that we can correctly diagnose ''spurious opening,'' ''failure to reclose,'' and ''small-break LOCA,'' which are difficult for operators to diagnose quickly and correctly, and by taking automatic backup action one can reduce the probability of human error

  4. Test Data for USEPR Severe Accident Code Validation

    Energy Technology Data Exchange (ETDEWEB)

    J. L. Rempe

    2007-05-01

    This document identifies data that can be used for assessing various models embodied in severe accident analysis codes. Phenomena considered in this document, which were limited to those anticipated to be of interest in assessing severe accidents in the USEPR developed by AREVA, include: • Fuel Heatup and Melt Progression • Reactor Coolant System (RCS) Thermal Hydraulics • In-Vessel Molten Pool Formation and Heat Transfer • Fuel/Coolant Interactions during Relocation • Debris Heat Loads to the Vessel • Vessel Failure • Molten Core Concrete Interaction (MCCI) and Reactor Cavity Plug Failure • Melt Spreading and Coolability • Hydrogen Control Each section of this report discusses one phenomenon of interest to the USEPR. Within each section, an effort is made to describe the phenomenon and identify what data are available modeling it. As noted in this document, models in US accident analysis codes (MAAP, MELCOR, and SCDAP/RELAP5) differ. Where possible, this report identifies previous assessments that illustrate the impact of modeling differences on predicting various phenomena. Finally, recommendations regarding the status of data available for modeling USEPR severe accident phenomena are summarized.

  5. Control assembly ejection accident analysis for WWER-440 (Armenian NPP)

    International Nuclear Information System (INIS)

    Bznuni, S.; Malakyan, Ts.; Amirjanyan, A.; Ghasabyan, L.

    2007-01-01

    Control Assembly ejection in WWER-440 initiated by the loss of integrity of the Control Assemblies drive housing has been analyzed. This event causes a very rapid reactivity insertion to the core and small break LOCA which potentially could lead to rapid power increase and redistribution of heat release in the core resulting in a fuel, cladding and coolant temperature rise; primary pressure increase, radiological consequences due to loss of primary coolant and potential loss of cladding integrity and fuel disintegration (if applicable). Methodology of the analysis is based on conservative assumptions as well as on deterministic approach for selection of functioning logic of systems and equipment's to maximize reactor core power and minimize power decreasing reactivity feedback. Computational analyses were performed by 3D kinetics PARCS-RELAP coupled code. WWER-440 fuel cross-section libraries, diffusion coefficients and kinetics parameters were calculated by HELOS code. In this paper analysis of accident for Hot Full Power was presented. Results of analysis show that ANPP WWER-440 reactor design meets acceptance criteria prescribed for RIA type design based accidents (Authors)

  6. Sensitivity and uncertainty analysis for Ignalina NPP confinement in case of loss of coolant accident

    International Nuclear Information System (INIS)

    Urbonavicius, E.; Babilas, E.; Rimkevicius, S.

    2003-01-01

    At present the best-estimate approach in the safety analysis of nuclear power plants is widely used around the world. The application of such approach requires to estimate the uncertainty of the calculated results. Various methodologies are applied in order to determine the uncertainty with the required accuracy. One of them is the statistical methodology developed at GRS mbH in Germany and integrated into the SUSA tool, which was applied for the sensitivity and uncertainty analysis of the thermal-hydraulic parameters inside the confinement (Accident Localisation System) of Ignalina NPP with RBMK-1500 reactor in case of Maximum Design Basis Accident (break of 900 mm diameter pipe). Several parameters that could potentially influence the calculated results were selected for the analysis. A set of input data with different initial values of the selected parameters was generated. In order to receive the results with 95 % probability and 95 % accuracy, 100 runs were performed with COCOSYS code developed at GRS mbH. The calculated results were processed with SUSA tool. The performed analysis showed a rather low dispersion of the results and only in the initial period of the accident. Besides, the analysis showed that there is no threat to the building structures of Ignalina NPP confinement in case of the considered accident scenario. (author)

  7. The development of a model to study the thermal behaviour of the coolant in the blind elements of a fast sodium-cooled breeder in the case of a severe hypothetical accident during the initial phase

    International Nuclear Information System (INIS)

    Genter, G.

    1981-03-01

    The enthalpy level of the coolant is studied in the interior of gaps and special elements of a fast sodium coded breeder reactor during the initial and the final stages of a hypothetical accident. For this purpose numerical models are presented to calculate the heat transport in the special element on the basis of heat conduction and axial convection. (orig./RW) [de

  8. Evaluation of Melt Behavior with initial Melt Velocity under SFR Severe Accidents

    Energy Technology Data Exchange (ETDEWEB)

    Heo, Hyo; Bang, In Cheol [UNIST, Ulsan (Korea, Republic of); Jerng, Dong Wook [Chung-Ang Univ, Seoul (Korea, Republic of)

    2015-10-15

    In the current Korean sodium-cooled fast reactor (SFR) program, early dispersion of the molten metallic fuel within a subchannel is suggested as one of the inherent safety strategies for the initiating phase of hypothetical core disruptive accident (HCDA). The safety strategy provides negative reactivity driven by the melt dispersal, so it could reduce the possibility of the recriticality event under a severe triple or more fault scenario for SFR. Since the behavior of the melt dispersion is unpredictable, it depends on the accident condition, particularly core region. While the voided coolant channel region is usually developed in the inner core, the unvoided coolant channel region is formed in the outer core. It is important to confirm the fuel dispersion with the core region, but there are not sufficient existing studies for them. From the existing studies, the coolant vapor pressure is considered as one of driving force to move the melt towards outside of the core. There is a complexity of the phenomena during intermixing of the melt with the coolant after the horizontal melt injections. It is too difficult to understand the several combined mechanisms related to the melt dispersion and the fragmentation. Thus, it could be worthwhile to study the horizontal melt injections at lower temperature as a preliminary study in order to identify the melt dispersion phenomena. For this reason, it is required to clarify whether the coolant vapor pressure is the driving force of the melt dispersion with the core region. The specific conditions to be well dispersed for the molten metallic fuel were discussed in the experiments with the simulant materials. The each melt behavior was compared to evaluate the melt dispersion under the coolant void condition and the boiling condition. As the results, the following results are remarked: 1. The upward melt dispersion did not occur for a given melt and coolant temperature in the nonboiling range. Over current range of conditions

  9. Evaluation of Melt Behavior with initial Melt Velocity under SFR Severe Accidents

    International Nuclear Information System (INIS)

    Heo, Hyo; Bang, In Cheol; Jerng, Dong Wook

    2015-01-01

    In the current Korean sodium-cooled fast reactor (SFR) program, early dispersion of the molten metallic fuel within a subchannel is suggested as one of the inherent safety strategies for the initiating phase of hypothetical core disruptive accident (HCDA). The safety strategy provides negative reactivity driven by the melt dispersal, so it could reduce the possibility of the recriticality event under a severe triple or more fault scenario for SFR. Since the behavior of the melt dispersion is unpredictable, it depends on the accident condition, particularly core region. While the voided coolant channel region is usually developed in the inner core, the unvoided coolant channel region is formed in the outer core. It is important to confirm the fuel dispersion with the core region, but there are not sufficient existing studies for them. From the existing studies, the coolant vapor pressure is considered as one of driving force to move the melt towards outside of the core. There is a complexity of the phenomena during intermixing of the melt with the coolant after the horizontal melt injections. It is too difficult to understand the several combined mechanisms related to the melt dispersion and the fragmentation. Thus, it could be worthwhile to study the horizontal melt injections at lower temperature as a preliminary study in order to identify the melt dispersion phenomena. For this reason, it is required to clarify whether the coolant vapor pressure is the driving force of the melt dispersion with the core region. The specific conditions to be well dispersed for the molten metallic fuel were discussed in the experiments with the simulant materials. The each melt behavior was compared to evaluate the melt dispersion under the coolant void condition and the boiling condition. As the results, the following results are remarked: 1. The upward melt dispersion did not occur for a given melt and coolant temperature in the nonboiling range. Over current range of conditions

  10. MELCOR assessment of sequential severe accident mitigation actions under SGTR accident

    International Nuclear Information System (INIS)

    Choi, Wonjun; Jeon, Joongoo; Kim, Nam Kyung; Kim, Sung Joong

    2017-01-01

    The representative example of the severe accident studies using the severe accident code is investigation of effectiveness of developed severe accident management (SAM) strategy considering the positive and adverse effects. In Korea, some numerical studies were performed to investigate the SAM strategy using various severe accident codes. Seo et.al performed validation of RCS depressurization strategy and investigated the effect of severe accident management guidance (SAMG) entry condition under small break loss of coolant accident (SBLOCA) without safety injection (SI), station blackout (SBO), and total loss of feed water (TLOFW) scenarios. The SGTR accident with the sequential mitigation actions according to the flow chart of SAMG was simulated by the MELCOR 1.8.6 code. Three scenariospreventing the RPV failure were investigated in terms of fission product release, hydrogen risk, and the containment pressure. Major conclusions can be summarized as follows: (1) According to the flow chart of SAMG, RPV failure can be prevented depending on the method of RCS depressurization. (2) To reduce the release of fission product during the injecting into SGs, a temporary opening of SDS before the injecting into SGs was suggested. These modified sequences of mitigation actions can reduce the release of fission product and the adverse effect of SDS.

  11. Effect of hypoiodous acid volatility on the iodine source term in reactor accidents

    Energy Technology Data Exchange (ETDEWEB)

    Routamo, T [Imatran Voima Oy, Vantaa (Finland)

    1996-12-01

    A FORTRAN code ACT WATCH has been developed to establish an improved understanding of essential radionuclide behaviour mechanisms, especially related to iodine chemistry, in reactor accidents. The accident scenarios calculated in this paper are based on the Loss of Coolant accident at the Loviisa Nuclear Power Plant. The effect of different airborne species, especially HIO, on the iodine source term has been studied. The main cause of the high HIO release in the system modelled is the increase of I{sub 2} hydrolysis rate along with the temperature increase, which accelerates HIO production. Due to the high radiation level near the reactor core, I{sub 2} is produced from I{sup -}very rapidly. High temperature in the reactor coolant causes I{sub 2} to be transformed into HIO and through the boiling of the coolant volatile I{sub 2} and HIO are transferred efficiently into the gas phase. High filtration efficiency for particulate iodine causes I{sup -} release to be much lower than those of I{sub 2} and HIO. (author) 15 figs., 1 tab., refs.

  12. Effect of hypoiodous acid volatility on the iodine source term in reactor accidents

    International Nuclear Information System (INIS)

    Routamo, T.

    1996-01-01

    A FORTRAN code ACT WATCH has been developed to establish an improved understanding of essential radionuclide behaviour mechanisms, especially related to iodine chemistry, in reactor accidents. The accident scenarios calculated in this paper are based on the Loss of Coolant accident at the Loviisa Nuclear Power Plant. The effect of different airborne species, especially HIO, on the iodine source term has been studied. The main cause of the high HIO release in the system modelled is the increase of I 2 hydrolysis rate along with the temperature increase, which accelerates HIO production. Due to the high radiation level near the reactor core, I 2 is produced from I - very rapidly. High temperature in the reactor coolant causes I 2 to be transformed into HIO and through the boiling of the coolant volatile I 2 and HIO are transferred efficiently into the gas phase. High filtration efficiency for particulate iodine causes I - release to be much lower than those of I 2 and HIO. (author) 15 figs., 1 tab., refs

  13. Analysis of material effect in molten fuel-coolant interaction, comparison of thermodynamic calculations and experimental observations

    Czech Academy of Sciences Publication Activity Database

    Tyrpekl, Václav; Piluso, P.

    2012-01-01

    Roč. 46, AUGUST (2012), s. 197-203 ISSN 0306-4549 Institutional support: RVO:61388980 Keywords : Nuclear reactor severe accident * Fuel -Coolant Interaction * Material effect * Steam explosion Subject RIV: CA - Inorganic Chemistry Impact factor: 0.800, year: 2012

  14. Research on physical and chemical parameters of coolant in Light-Water Reactors

    Energy Technology Data Exchange (ETDEWEB)

    Reis, Isabela C.; Mesquita, Amir Z., E-mail: icr@cdtn.br, E-mail: amir@cdtn.br [Centro de Desenvolvimento da Tecnologia Nuclear (CDTN/CNEM-MG), Belo Horizonte, MG (Brazil)

    2015-07-01

    The coolant radiochemical monitoring of light-water reactors, both power reactor as research reactors is one most important tasks of the system safe operation. The last years have increased the interest in the coolant chemical studying to optimize the process, to minimize the corrosion, to ensure the primary system materials integrity, and to reduce the workers exposure radiation. This paper has the objective to present the development project in Nuclear Technology Development Center (CDTN), which aims to simulate the primary water physical-chemical parameters of light-water-reactors (LWR). Among these parameters may be cited: the temperature, the pressure, the pH, the electric conductivity, and the boron concentration. It is also being studied the adverse effects that these parameters can result in the reactor integrity. The project also aims the mounting of a system to control and monitoring of temperature, electric conductivity, and pH of water in the Installation of Test in Accident Conditions (ITCA), located in the Thermal-Hydraulic Laboratory at CDTN. This facility was widely used in the years 80/90 for commissioning of several components that were installed in Angra 2 containment. In the test, the coolant must reproduce the physical and chemical conditions of the primary. It is therefore fundamental knowledge of the main control parameters of the primary cooling water from PWR reactors. Therefore, this work is contributing, with the knowledge and the reproduction with larger faithfulness of the reactors coolant in the experimental circuits. (author)

  15. Coolant system decontamination

    International Nuclear Information System (INIS)

    Anstine, L.D.; James, D.B.; Melaika, E.A.; Peterson, J.P.

    1981-01-01

    An improved method for decontaminating the coolant system of water cooled nuclear power reactors and for regenerating the decontamination solution is described. A small amount of one or more weak-acid organic complexing agents is added to the reactor coolant, and the pH is adjusted to form a decontamination solution which is circulated throughout the coolant system to dissolve metal oxides from the interior surfaces and complex the resulting metal ions and radionuclide ions. The coolant containing the complexed metal ions and radionuclide ions is passed through a strong-base anion exchange resin bed which has been presaturated with a solution containing the complexing agents in the same ratio and having the same pH as the decontamination solution. As the decontamination solution passes through the resin bed, metal-complexed anions are exchanged for the metal-ion-free anions on the bed, while metal-ion-free anions in the solution pass through the bed, thus removing the metal ions and regenerating the decontamination solution. (author)

  16. Comparative studies of the pressure - and temperature temporal behavior in the Angra I containment when submitted to the design basic accident

    International Nuclear Information System (INIS)

    Costa, J.R.

    1980-12-01

    A computer code - CONDRU 4 - was brought from Germany, that is being used for the determination of pressure - and temperature temporal behavior that occurs inside the metallic containment of PWR type reactors before the loss of coolant accident (LOCA). Simulation for Angra-1 reactor was made, considering the ocurrence of the worst postulated accident for the containment integrity. The results obtained with CONDRU 4 computer code were compared with those obtained by the CONTEMPT-LT-and COCO computer code for the same nuclear power plant. The discrepancy found among the results were due mainly to the different modes adopted in the several codes for the steam-water separation of coolant injected in the containment. (Author) [pt

  17. Investigation into the March 28, 1979 Three Mile Island accident by Office of Inspection and Enforcement (Investigative Report No. 50-320/79-10)

    International Nuclear Information System (INIS)

    1979-07-01

    On March 28, 1979, the Three Mile Island Unit 2 Nuclear Power Plant experienced the most severe accident in U.S. commercial nuclear power plant operating history. This report sets forth the facts concerning the events of the accident determined as a result of an investigation by the NRC Office of Inspection and Enforcement. The IE investigation is limited to two aspects of the accident: (1) Those related operational actions by the licensee during the period from before the initiating event until approximately 8:00 p.m., March 28, when primary coolant flow was re-established by starting a reactor coolant pump, and (2) Those steps taken by the licensee to control the release of radioactive material to the off-site environs, and to implement his emergency plan during the period from the initiation of the event to midnight, March 30. These investigation periods were selected because they include the licensee actions which most significantly affected the accident sequence and its results

  18. High enrichment to low enrichment core's conversion. Accidents analysis

    International Nuclear Information System (INIS)

    Abbate, P.; Rubio, R.; Doval, A.; Lovotti, O.

    1990-01-01

    This work analyzes the different accidents that may occur in the reactor's facility after the 20% high-enriched uranium core's conversion. The reactor (of 5 thermal Mw), built in the 50's and 60's, is of the 'swimming pool' type, with light water and fuel elements of the curve plates MTR type, enriched at 93.15 %. This analysis includes: a) accidents by reactivity insertion; b) accidents by coolant loss; c) analysis by flow loss and d) fission products release. (Author) [es

  19. Comparative design study of FR plants with various coolants. 1. Studies on Na coolant FR, Pb-Bi coolant FR, gas coolant FR

    International Nuclear Information System (INIS)

    Konomura, Mamoru; Shimakawa, Yoshio; Hori, Toru; Kawasaki, Nobuchika; Enuma, Yasuhiro; Kida, Masanori; Kasai, Shigeo; Ichimiya, Masakazu

    2001-01-01

    In Phase I of the Feasibility Studies on the Commercialized Fast Reactor (FR) Cycle System, plant designs on FR were performed with various coolants. This report describes the plant designs on FR with sodium, lead-bismuth, CO 2 gas and He gas coolants. A construction cost of 0.2 million yen/kWe was set up as a design goal. The result is as follows: The sodium reactor has a capability to obtain the goal, and lead-bismuth and gas reactors may satisfy the goal with further improvements. (author)

  20. Severe accident analysis using MARCH 1.0 code

    International Nuclear Information System (INIS)

    Guimaraes, A.C.F.

    1987-09-01

    The description and utilization of the MARCH 1.0 computer code, which aim to analyse physical phenomena associated with core meltdown accidents in PWR type reactors, are presented. The primary system is modeled as a single volume which is partitioned into a gas (steam and hydrogen) region and a water region. March predicts blowdown from the primary system in single phase. Based on results of the probabilistic safety analysis for the Zion and Indian Point Nuclear Power Plants, the S 2 HFX sequence accident for Angra-1 reactor is studied. The S 2 HFX sequence means that the loss of coolant accident occurs through small break in primary system with bot total failures of the reactor safety system and containment in yours recirculation modes, leading the core melt and the containment failure due to overpressurization. The obtained results were considered reasonable if compared with the results obtained for the Zion and Indian Point nuclear power plants. (Author) [pt

  1. Probabilistic risk assessment for a loss of coolant accident in McMaster Nuclear Reactor and application of reliability physics model for modeling human reliability

    Science.gov (United States)

    Ha, Taesung

    A probabilistic risk assessment (PRA) was conducted for a loss of coolant accident, (LOCA) in the McMaster Nuclear Reactor (MNR). A level 1 PRA was completed including event sequence modeling, system modeling, and quantification. To support the quantification of the accident sequence identified, data analysis using the Bayesian method and human reliability analysis (HRA) using the accident sequence evaluation procedure (ASEP) approach were performed. Since human performance in research reactors is significantly different from that in power reactors, a time-oriented HRA model (reliability physics model) was applied for the human error probability (HEP) estimation of the core relocation. This model is based on two competing random variables: phenomenological time and performance time. The response surface and direct Monte Carlo simulation with Latin Hypercube sampling were applied for estimating the phenomenological time, whereas the performance time was obtained from interviews with operators. An appropriate probability distribution for the phenomenological time was assigned by statistical goodness-of-fit tests. The human error probability (HEP) for the core relocation was estimated from these two competing quantities: phenomenological time and operators' performance time. The sensitivity of each probability distribution in human reliability estimation was investigated. In order to quantify the uncertainty in the predicted HEPs, a Bayesian approach was selected due to its capability of incorporating uncertainties in model itself and the parameters in that model. The HEP from the current time-oriented model was compared with that from the ASEP approach. Both results were used to evaluate the sensitivity of alternative huinan reliability modeling for the manual core relocation in the LOCA risk model. This exercise demonstrated the applicability of a reliability physics model supplemented with a. Bayesian approach for modeling human reliability and its potential

  2. EXPEL - a computing module for molten fuel/coolant interactions in fast reactor sub-assemblies

    International Nuclear Information System (INIS)

    Fishlock, T.P.

    1975-10-01

    This report describes a module for computing the effects of a molten fuel/coolant interaction in a fast reactor subassembly. The module is to be incorporated into the FRAX code which calculates the consequences of hypothetical whole core accidents. Details of the interaction are unknown and in consequence the model contains a large number of parameters which must be set by assumption. By variation of these parameters the interaction may be made mild or explosive. Results of a parametric survey are included. (author)

  3. Analysis of eventual accidents in a water experimental loop, using the Relap 4 computer code

    International Nuclear Information System (INIS)

    Fernandes Filho, T.L.

    1981-01-01

    Transients caused by accidents as (1) loss of coolant, (2) failure in the principal pump and (3) power excursions were analysed. In the accident simulation, the Relap 4/Mod 3 computer code was used. The results obtained with the steady state model showed to be consistent with the project-and operation data of the experimental loop. For all the accidents analysed that considered the performance of safety systems, the highest temperature of the heating rods in the testing section did not exceed the permissible temperature. (E.G.) [pt

  4. Investigation and evaluation for environmental impact at Fukushima Daiichi NPP accident

    International Nuclear Information System (INIS)

    2012-01-01

    In 2012, JNES investigated the weather data and the environmental monitoring data and constructed the method to specify contribution of the environmental impact from each plant based on the dose analysis result at Unit 1-3 of Fukushima Daiichi NPP accident. JNES calculated the dose rate in an accident early stage based on analysis of a monitoring data. Moreover, JNES evaluated the dose by additional release of the radioactive material in case of assuming the loss of coolant injection to a nuclear reactor by the request of NISA. (author)

  5. Tsuruga unit accident from overseas report

    International Nuclear Information System (INIS)

    Kaneki, Yuji

    1981-01-01

    In the accident in Tsuruga Nuclear Power Station, Japan Atomic Power Co., the actual damage due to radioactivity did not occur, but large social reaction arose, and it increased the anxiety of the nation about nuclear power generation and resulted in hurting the trust. The cracking and the leak of coolant in a feed water heater, the overflow of waste liquid from a filter sludge storage tank, and the leak of waste liquid from a thick waste liquid storage tank were reported in dailies far behind the occurrences, and the attitude of the company concealing the accidents was blamed primarily. The overflowed waste liquid from the filter sludge storage tank leaked into a general drainage and flowed into the sea, which must not occur in any situation. Some inquiries about this accident from abroad came to the Japan Atomic Industrial Forum Inc., but the reports about this accident in the large dailies in USA, France, West Germany and Great Britain were not those attracting concern. A daily in Australia reported the Tsuruga accident allotting considerable space. The reports in foreign dailies are cited. The report concerning the accidents of atomic energy is difficult about the method of expression, and the reporters gathering news and those offering informations must be prudent. (Kako, I.)

  6. The challenge of modeling fuel–coolant interaction: Part I – Premixing

    Energy Technology Data Exchange (ETDEWEB)

    Meignen, Renaud, E-mail: renaud.meignen@irsn.fr [Institut de Radioprotection et de Sûreté Nucléaire, IRSN/PSN-RES/SAG, BP 3, 13115 Saint-Paul-Lez-Durance Cedex (France); Picchi, Stephane; Lamome, Julien [Communication and Systèmes, 22 avenue Galilée, 92350 Le Plessis Robinson (France); Raverdy, Bruno [IRSN/PSN-RES/SAG, BP3, 92362 Fontenay aux Roses Cedex (France); Escobar, Sebastian Castrillon [Institut de Radioprotection et de Sûreté Nucléaire, IRSN/PSN-RES/SAG, BP 3, 13115 Saint-Paul-Lez-Durance Cedex (France); Nicaise, Gregory [IRSN/PSN-RES/SAG, BP3, 92362 Fontenay aux Roses Cedex (France)

    2014-12-15

    Highlights: • We present the status modeling of the fuel–coolant interaction premixing stage in the computer code MC3D. • We also propose a general state of the art, highlighting recent improvements in understanding and modeling, remaining difficulties, controversies and needs. • We highlight the need for improving the understanding of the melt fragmentation and oxidation. • The verification basis is presented. - Abstract: Fuel–coolant interaction is a complex mixing process that can occur during the course of a severe accident in a nuclear power plant involving core melting and relocation. Under certain circumstances, a steam explosion might develop during the mixing of the melt and the water and induce a loss of integrity of the containment. Even in the absence of an explosion, studying the mixing phenomenon is also of high interest due to its strong impact on the progression of the accident (debris bed formation, hydrogen production). This article is the first of two aiming at presenting both a status of research and understanding of fuel–coolant interaction and the main characteristics of the model developed in the 3-dimensional computer code MC3D. It is devoted to the premixing phase whereas the second is related to the explosion phase. A special attention is given to major difficulties, uncertainties and needs for further improvements in knowledge and modeling. We discuss more particularly the major phenomena that are melt fragmentation and film boiling heat transfer and the challenges related to modeling melt solidification and oxidation. Some highlights related to the code verification are finally given.

  7. A severe accident analysis for the system-integrated modular advanced reactor

    International Nuclear Information System (INIS)

    Jung, Gunhyo; Jae, Moosung

    2015-01-01

    The System-Integrated Modular Advanced Reactor (SMART) that has been recently designed in KOREA and has acquired standard design certification from the nuclear power regulatory body (NSSC) is an integral type reactor with 330MW thermal power. It is a small sized reactor in which the core, steam generator, pressurizer, and reactor coolant pump that are in existing pressurized light water reactors are designed to be within a pressure vessel without any separate pipe connection. In addition, this reactor has much different design characteristics from existing pressurized light water reactors such as the adoption of a passive residual heat removal system and a cavity flooding system. Therefore, the safety of the SMART against severe accidents should be checked through severe accident analysis reflecting the design characteristics of the SMART. For severe accident analysis, an analysis model has been developed reflecting the design information presented in the standard design safety analysis report. The severe accident analysis model has been developed using the MELCOR code that is widely used to evaluate pressurized LWR severe accidents. The steady state accident analysis model for the SMART has been simulated. According to the analysis results, the developed model reflecting the design of the SMART is found to be appropriate. Severe accident analysis has been performed for the representative accident scenarios that lead to core damage to check the appropriateness of the severe accident management plan for the SMART. The SMART has been shown to be safe enough to prevent severe accidents by utilizing severe accident management systems such as a containment spray system, a passive hydrogen recombiner, and a cavity flooding system. In addition, the SMART is judged to have been technically improved remarkably compared to existing PWRs. The SMART has been designed to have a larger reactor coolant inventory compared to its core's thermal power, a large surface area in

  8. Long-Term Station Blackout Accident Analyses of a PWR with RELAP5/MOD3.3

    Directory of Open Access Journals (Sweden)

    Andrej Prošek

    2013-01-01

    Full Text Available Stress tests performed in Europe after accident at Fukushima Daiichi also required evaluation of the consequences of loss of safety functions due to station blackout (SBO. Long-term SBO in a pressurized water reactor (PWR leads to severe accident sequences, assuming that existing plant means (systems, equipment, and procedures are used for accident mitigation. Therefore the main objective was to study the accident management strategies for SBO scenarios (with different reactor coolant pumps (RCPs leaks assumed to delay the time before core uncovers and significantly heats up. The most important strategies assumed were primary side depressurization and additional makeup water to reactor coolant system (RCS. For simulations of long term SBO scenarios, including early stages of severe accident sequences, the best estimate RELAP5/MOD3.3 and the verified input model of Krško two-loop PWR were used. The results suggest that for the expected magnitude of RCPs seal leak, the core uncovery during the first seven days could be prevented by using the turbine-driven auxiliary feedwater pump and manually depressurizing the RCS through the secondary side. For larger RCPs seal leaks, in general this is not the case. Nevertheless, the core uncovery can be significantly delayed by increasing RCS depressurization.

  9. Our reflections and lessons from the Fukushima Nuclear Accident

    International Nuclear Information System (INIS)

    Matsuoka, Takeshi; Sawada, Takashi; Yagawa, Genki

    2017-01-01

    In order to investigate the cause of the accident that began on March 11, 2011 at the Tokyo Electric Power Company Fukushima Daiichi Nuclear Power Station, the Science Council of Japan set an investigation committee, the 'Sub-Committee on Fukushima Nuclear Accident (SCFNA)' under the Comprehensive Synthetic Engineering Committee. The committee has published a record entitled 'Reflections and Lessons from the Fukushima Nuclear Accident, (1st report)'. There are still many items about the accident for which the details are not clear. It is important to discuss the reasons why the severe accident could not be prevented and the possibilities that there might have been other proper operations and accident management to prevent or lessen the severity of the accident than those adopted at the time. SCFNA decided to continue its investigation by setting up our working group called the 'Working Group on Fukushima Nuclear Accident'. Our working group have published 'Reflection and Lessons from the Fukushima Nuclear Accident (2nd Report)'. We investigated the issues of specific units. Unit 1 were validity of the operation of the isolation condenser, whether or not a loss of coolant accident occurred due to a failure of the cooling piping system by the seismic ground motion, and the cause of the loss of the emergency AC power supply, Unit 2 was the reason why a large amount of radioactive materials was emitted to the environment although the reactor building did not explode, Unit 3 was the reasons why the operator stopped running the high pressure coolant injection system, and Units 1 to 3 was validity of the venting operation. These items were considered to be the key issues in these units that would have prevented progression to the severe accident. (author)

  10. Considerations on the influence of fission products in whole core accidents

    International Nuclear Information System (INIS)

    Meyer Heine, A.; Pattoret, A.; Schmitz, F.

    1977-01-01

    If the hypothetical Whole Core Accidents which are taken into account in reactor safety analysis can change from one country to another, there is nevertheless a general agreement over their description and main phases. Furthermore the important parameters have also been identified by every laboratory. During the development of such core accidents the role of the fission products in essential. It is not the purpose of this paper to give an exhaustive description of the phases which can be influenced by the fission products, we will try however to focus this study on the most important ones. In a second step we will discuss the equation of state of irradiated fuels; here again one principal preoccupation being to quantify the influence of fission products on reactor accidents. It is not our purpose to enter on the fundamental aspects of the equation of state. The studies and the experimental program launched at the CEA will then be described. Special attention will be directed towards the eventual role of fission products in molten fuel-coolant interactions (MFCls) or the events leading to the initiation of whole core accidents. This paper will be limited to oxide fuels. Whether the whole core accident is initiated by a reactivity defect or a coolant coast-down, one has to deal with four great categories of phenomena. Loss of flow: the power is around the nominal value, while the coolant flow has been reduced by a factor of 5 to 10. This induces boiling and clad weakening. Will the plenum pressure lead to a clad rupture? In case of a rupture, what will be the effect on the voiding of the channel? Transient over power: influence of gases from gaseous and volatile fission products on the fuel movements? MFCIs: Influence of the fission products in the mode of contact between fuel and coolant? Influence on the fuel characteristics. Sodium vapour bubble expansion: influence of the fission products on the heat transfer and eventual condensation of the bubble?

  11. Thermal and hydraulic behaviour of CANDU cores under severe accident conditions - final report. Vol. 1

    International Nuclear Information System (INIS)

    Rogers, J.T.

    1984-06-01

    This report gives the results of a study of the thermo-hydraulic aspects of severe accident sequences in CANDU reactors. The accident sequences considered are the loss of the moderator cooling system and the loss of the moderator heat sink, each following a large loss-of-coolant accident accompanied by loss of emergency coolant injection. Factors considered include expulsion and boil-off of the moderator, uncovery, overheating and disintegration of the fuel channels, quenching of channel debris, re-heating of channel debris following complete moderator expulsion, formation and possible boiling of a molten pool of core debris and the effectiveness of the cooling of the calandria wall by the shield tank water during the accident sequences. The effects of these accident sequences on the reactor containment are also considered. Results show that there would be no gross melting of fuel during moderator expulsion from the calandria, and for a considerable time thereafter, as quenched core debris re-heats. Core melting would not begin until about 135 minutes after accident initiation in a loss of the moderator cooling system and until about 30 minutes in a loss of the moderator heat sink. Eventually, a pool of molten material would form in the bottom of the calandria, which may or may not boil, depending on property values. In all cases, the molten core would be contained within the calandria, as long as the shield tank water cooling system remains operational. Finally, in the period from 8 to 50 hours after the initiation of the accident, the molten core would re-solidify within the calandria. There would be no consequent damage to containment resulting from these accident sequences, nor would there be a significant increase in fission product releases from containment above those that would otherwise occur in a dual failure LOCA plus LOECI

  12. Analysis of a simulated small break in the semiscale system under loss-of-coolant accident conditions

    International Nuclear Information System (INIS)

    Cartmill, C.E.

    1978-01-01

    The Semiscale Mod-1 experimental program conducted by EG and G Idaho, Inc., is part of the overall U.S. Nuclear Regulatory Commission (NRC) and Department of Energy (DOE) sponsored research and development program to investigate the behavior of the pressurized water reactor (PWR) system during an hypothesized loss-of-coolant accident (LOCA). The Semiscale Mod-1 program is intended to provide transient thermal-hydraulic data from a simulated LOCA using a small-scale experimental nonnuclear system. The Semiscale Mod-1 program is a major contributor of experimental data that provide a means of evaluating the adequacy of overall system analytical models as well as the models of the individual system components. Selected experimental data produced by this program will also be used to aid other DOE and NRC sponsored experimental programs, such as the Loss-of-Fluid Test (LOFT) program in optimizing test series, selecting test parameters, and evaluating test results. The Semiscale Mod-1 tests are performed with an experimental system which simulates the principal features of a nuclear plant but which is smaller in volume. Nuclear heating is simulated in the tests by a core composed of an array of electrically heated rods. The core is contained in a pressure vessel which also includes a downcomer, lower plenum, and upper plenum. The Semiscale system piping is arranged such that the intact loop represents three loops of a four-loop nuclear plant, and the broken loop represents the fourth loop. In the present configuration the intact loop contains an active steam generator and pump, and the broken loop contains passive simulators for the steam generator and pump

  13. Influence of boron reduction strategies on PWR accident management flexibility

    International Nuclear Information System (INIS)

    Papukchiev, Angel Aleksandrov; Liu, Yubo; Schaefer, Anselm

    2007-01-01

    In conventional pressurized water reactor (PWR) designs, soluble boron is used for reactivity control over core fuel cycle. Design changes to reduce boron concentration in the reactor coolant are of general interest regarding three aspects - improved reactivity feedback properties, lower impact of boron dilution scenarios on PWR safety and eventually more flexible accident management procedures. In order to assess the potential advantages through the introduction of boron reduction strategies in current PWRs, two low boron core configurations based on fuel with increased utilization of gadolinium and erbium burnable absorbers have been developed. The new PWR designs permit to reduce the natural boron concentration in reactor coolant at begin of cycle to 518 ppm and 805 ppm. For the assessment of the potential safety advantages of these cores a hypothetical beyond design basis accident has been simulated with the system code ATHLET. The analyses showed improved inherent safety and increased accident management flexibility of the low boron cores in comparison with the standard PWR. (author)

  14. Results of the reliability investigations for the design basis accident 'Rupture of a cold primary coolant system'

    International Nuclear Information System (INIS)

    Hoertner, H.; Nieckau, E.; Spindler, H.

    1976-12-01

    This report gives a comprehensive presentation of the detailed reliability investigation carried out for the engineered safety features installed to cope with the design basis accident 'Large LOCA' of a German nuclear power plant with pressurized water reactor. The investigation is based on the engineered safety features of the Biblis Nuclear Power Plant, Unit A. The reliability investigation is carried out by means of a fault tree analysis. The influence of common-mode failures is assessed. (orig.) [de

  15. 49 CFR 233.5 - Accidents resulting from signal failure.

    Science.gov (United States)

    2010-10-01

    ... 49 Transportation 4 2010-10-01 2010-10-01 false Accidents resulting from signal failure. 233.5... ADMINISTRATION, DEPARTMENT OF TRANSPORTATION SIGNAL SYSTEMS REPORTING REQUIREMENTS § 233.5 Accidents resulting... by toll free telephone, number 800-424-0201, whenever it learns of the occurrence of an accident...

  16. Development of Methodology for Spent Fuel Pool Severe Accident Analysis Using MELCOR Program

    Energy Technology Data Exchange (ETDEWEB)

    Kim, Won-Tae; Shin, Jae-Uk [RETech. Co. LTD., Yongin (Korea, Republic of); Ahn, Kwang-Il [KAERI, Daejeon (Korea, Republic of)

    2015-05-15

    framework of the MELCOR analysis will be helpful to establish a basis for the severe accident mitigation strategy. As shown in Table 5, all postulated major scenarios were estimated resulting in the reduction of water inventory level and the mass of hydrogen generation. In the case of loss of cooling accident, time to water level reduction was obviously dependent of the decay heat load. It was revealed that the loss of inventory was dominant factor in the case of loss of coolant accident. With respect to the mass of hydrogen generation, massive amount of hydrogen was generated from the molten corium concrete reaction in MELCOR calculation. Through the MELCOR modeling developed in this study, it was found that MELCOR program has capabilities to predict entire progress of water level, fuel degradation, hydrogen generation, and concrete reaction.

  17. RELAP5/MOD2. 5 analysis of the HFBR (High Flux Beam Reactor) for a loss of power and coolant accident

    Energy Technology Data Exchange (ETDEWEB)

    Slovik, G.C.; Rohatgi, U.S.; Jo, Jae.

    1990-05-01

    A set of postulated accidents were evaluated for the High Flux Beam Reactor (HFBR) at Brookhaven National Laboratory. A loss of power accident (LOPA) and a loss of coolant accident (LOCA) were analyzed. This work was performed in response to a DOE review that wanted to update the understanding of the thermal hydraulic behavior of the HFBR during these transients. These calculations were used to determine the margins to fuel damage at the 60 MW power level. The LOPA assumes all the backup power systems fail (although this event is highly unlikely). The reactor scrams, the depressurization valve opens, and the pumps coast down. The HFBR has down flow through the core during normal operation. To avoid fuel damage, the core normally goes through an extended period of forced down flow after a scram before natural circulation is allowed. During a LOPA, the core will go into flow reversal once the buoyancy forces are larger than the friction forces produced during the pump coast down. The flow will stagnate, reverse direction, and establish a buoyancy driven (natural circulation) flow around the core. Fuel damage would probably occur if the critical heat flux (CHF) limit is reached during the flow reversal event. The RELAP5/MOD2.5 code, with an option for heavy water, was used to model the HFBR and perform the LOPA calculation. The code was used to predict the time when the buoyancy forces overcome the friction forces and produce upward directed flow in the core. The Monde CHF correlation and experimental data taken for the HFBR during the design verification phase in 1963 were used to determine the fuel damage margin. 20 refs., 40 figs., 11 tabs.

  18. RELAP5/MOD2.5 analysis of the HFBR [High Flux Beam Reactor] for a loss of power and coolant accident

    International Nuclear Information System (INIS)

    Slovik, G.C.; Rohatgi, U.S.; Jo, Jae.

    1990-05-01

    A set of postulated accidents were evaluated for the High Flux Beam Reactor (HFBR) at Brookhaven National Laboratory. A loss of power accident (LOPA) and a loss of coolant accident (LOCA) were analyzed. This work was performed in response to a DOE review that wanted to update the understanding of the thermal hydraulic behavior of the HFBR during these transients. These calculations were used to determine the margins to fuel damage at the 60 MW power level. The LOPA assumes all the backup power systems fail (although this event is highly unlikely). The reactor scrams, the depressurization valve opens, and the pumps coast down. The HFBR has down flow through the core during normal operation. To avoid fuel damage, the core normally goes through an extended period of forced down flow after a scram before natural circulation is allowed. During a LOPA, the core will go into flow reversal once the buoyancy forces are larger than the friction forces produced during the pump coast down. The flow will stagnate, reverse direction, and establish a buoyancy driven (natural circulation) flow around the core. Fuel damage would probably occur if the critical heat flux (CHF) limit is reached during the flow reversal event. The RELAP5/MOD2.5 code, with an option for heavy water, was used to model the HFBR and perform the LOPA calculation. The code was used to predict the time when the buoyancy forces overcome the friction forces and produce upward directed flow in the core. The Monde CHF correlation and experimental data taken for the HFBR during the design verification phase in 1963 were used to determine the fuel damage margin. 20 refs., 40 figs., 11 tabs

  19. Small-break loss-of-coolant accidents in the updated PIUS 600 advanced reactor design

    Energy Technology Data Exchange (ETDEWEB)

    Boyack, B.E.; Steiner, J.L.; Harmony, S.C. [Los Alamos National Lab., Albuquerque, NM (United States)] [and others

    1995-09-01

    The PIUS advanced reactor is a 640-MWe pressurized water reactor developed by Asea Brown Boveri (ABB). A unique feature of the PIUS concept is the absence of mechanical control and shutdown rods. Reactivity is normally controlled by coolant boron concentration and the temperature of the moderator coolant. ABB submitted the PIUS design to the US Nuclear Regulatory Commission (NRC) for preapplication review, and Los Alamos supported the NRC`s review effort. Baseline analyses of small-break initiators at two locations were performed with the system neutronic and thermal-hydraulic analysis code TRAC-PF1/MOD2. In addition, sensitivity studies were performed to explore the robustness of the PIUS concept to severe off-normal conditions having a very low probability of occurrence.

  20. Chemical factors affecting fission product transport in severe LMFBR accidents

    International Nuclear Information System (INIS)

    Wichner, R.P.; Jolley, R.L.; Gat, U.; Rodgers, B.R.

    1984-10-01

    This study was performed as a part of a larger evaluation effort on LMFBR accident, source-term estimation. Purpose was to provide basic chemical information regarding fission product, sodium coolant, and structural material interactions required to perform estimation of fission product transport under LMFBR accident conditions. Emphasis was placed on conditions within the reactor vessel; containment vessel conditions are discussed only briefly

  1. One leak too many (the accident at Trawsfynydd)

    International Nuclear Information System (INIS)

    Arnott, D.

    1986-01-01

    The accident at the Trawsfynydd nuclear power station in February 1986 is explained and the implications examined. In this article the leak of coolant carbon dioxide is considered as a LOCA and hence, the author suggests, should not be regarded as 'a minor incident' as described to the House of Commons. The author suggests that as the reactor has passed its design life span it is outdated, unsafe and more accidents are likely. (U.K.)

  2. Aging, condition monitoring, and loss-of-coolant accident (LOCA) tests of class 1E electrical cables

    International Nuclear Information System (INIS)

    Jacobus, M.J.

    1992-11-01

    This report describes the results of aging, condition monitoring, and accident testing of miscellaneous cable types. Three sets of cables were aged for up to 9 months under simultaneous thermal (≅100 degrees C) and radiation (≅0.10 kGy/hr) conditions. A sequential accident consisting of high dose rate irradiation (≅6 kGy/hr) and high temperature steam followed the aging. Also exposed to the accident conditions was a fourth set of cables, which were unaged. The test results indicate that, properly installed, most of the various miscellaneous cable products tested should be able to survive an accident after 60 years for total aging doses of at least 150 kGy or higher (depending on the material) and for moderate ambient temperatures on the order of 45--55 degrees C (potentially higher or lower, depending on material specific activtion energies and total radiation doses). Mechanical measurements (primarily elongation, modulus, and density) were more effective than electrical measurements for monitoring age-related degradation

  3. Large Break LOCA Accident Management Strategies for Accidents With Large Containment Leaks

    International Nuclear Information System (INIS)

    Sdouz, Gert

    2006-01-01

    The goal of this work is the investigation of the influence of different accident management strategies on the thermal-hydraulics in the containment during a Large Break Loss of Coolant Accident with a large containment leak from the beginning of the accident. The increasing relevance of terrorism suggests a closer look at this kind of severe accidents. Normally the course of severe accidents and their associated phenomena are investigated with the assumption of an intact containment from the beginning of the accident. This intact containment has the ability to retain a large part of the radioactive inventory. In these cases there is only a release via a very small leakage due to the un-tightness of the containment up to cavity bottom melt through. This paper represents the last part of a comprehensive study on the influence of accident management strategies on the source term of VVER-1000 reactors. Basically two different accident sequences were investigated: the 'Station Blackout'- sequence and the 'Large Break LOCA'. In a first step the source term calculations were performed assuming an intact containment from the beginning of the accident and no accident management action. In a further step the influence of different accident management strategies was studied. The last part of the project was a repetition of the calculations with the assumption of a damaged containment from the beginning of the accident. This paper concentrates on the last step in the case of a Large Break LOCA. To be able to compare the results with calculations performed years ago the calculations were performed using the Source Term Code Package (STCP), hydrogen explosions are not considered. In this study four different scenarios have been investigated. The main parameter was the switch on time of the spray systems. One of the results is the influence of different accident management strategies on the source term. In the comparison with the sequence with intact containment it was

  4. Analysis of loss-of-coolant accident for a fast-spectrum lithium-cooled nuclear reactor for space-power applications

    Science.gov (United States)

    Turney, G. E.; Petrik, E. J.; Kieffer, A. W.

    1972-01-01

    A two-dimensional, transient, heat-transfer analysis was made to determine the temperature response in the core of a conceptual space-power nuclear reactor following a total loss of reactor coolant. With loss of coolant from the reactor, the controlling mode of heat transfer is thermal radiation. In one of the schemes considered for removing decay heat from the core, it was assumed that the 4 pi shield which surrounds the core acts as a constant-temperature sink (temperature, 700 K) for absorption of thermal radiation from the core. Results based on this scheme of heat removal show that melting of fuel in the core is possible only when the emissivity of the heat-radiating surfaces in the core is less than about 0.40. In another scheme for removing the afterheat, the core centerline fuel pin was replaced by a redundant, constant temperature, coolant channel. Based on an emissivity of 0.20 for all material surfaces in the core, the calculated maximum fuel temperature for this scheme of heat removal was 2840 K, or about 90 K less than the melting temperature of the UN fuel.

  5. Safety analysis of RA reactor operation, I-III, Part II, Accident analysis

    International Nuclear Information System (INIS)

    Raisic, N.

    1963-02-01

    This volume covers the analyses of two types of accidents: accidents caused by uncontrolled reactivity increase, and accidents caused by decrease or loss of cooling. First type of accidents, uncontrolled reactivity insertion could occur due to removal of compensation, regulatory or safety rods, or by increase of heavy water level. Removal of irradiated samples from the core could also cause increase of reactivity. Second type of accidents could occur due to interruption of cooling, loss of water in the secondary cooling loop or loss of water in the primary coolant loop

  6. Nuclear Reactor RA Safety Report, Vol. 16, Maximum hypothetical accident; Izvestaj o sigurnosti nuklearnog reaktora RA, Knjiga 16, Maksimalni hipoteticki akcident

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    1986-11-15

    Fault tree analysis of the maximum hypothetical accident covers the basic elements: accident initiation, phase development phases - scheme of possible accident flow. Cause of the accident initiation is the break of primary cooling pipe, heavy water system. Loss of primary coolant causes loss of pressure in the primary circuit at the coolant input in the reactor vessel. This initiates safety protection system which should automatically shutdown the reactor. Separate chapters are devoted to: after-heat removal, coolant and moderator loss; accident effects on the reactor core, effects in the reactor building, and release of radioactive wastes. [Serbo-Croat] Sema granjanja za maksimalni hipoteticki akcident obuhvata osnovne elemente: pocetak akcidenta, faze razvoja akcidenta i stablo razvoja - sema potencijalnih akcidentnih tokova. Uzrok pocetka akcidenta je pucanje cevovoda primarnog rashladnog sistema jezgra, sistema teske vode. Gubitak primarnog hladioca izaziva pad pritiska u primarnom sistemu hladjenja na ulazu u reaktorski sud. Ovaj poremecaj pobudjuje sigurnosno kolo zastite koje automatski treba da prekine rad reaktora. Posebno je razmatrano generisanje zaostale snage, isticanje hladioca i moderatora, efekti akcidenta na jezgro, efekti u zgradi reaktora, oslobadjanje radioaktivnih produkata.

  7. Comparison of three small-break loss-of-coolant accident tests with different break locations using the system-integrated modular advanced reactor-integral test loop facility to estimate the safety of the smart design

    OpenAIRE

    Hwang Bae; Dong Eok Kim; Sung-Uk Ryu; Sung-Jae Yi; Hyun-Sik Park

    2017-01-01

    Three small-break loss-of-coolant accident (SBLOCA) tests with safety injection pumps were carried out using the integral-effect test loop for SMART (System-integrated Modular Advanced ReacTor), i.e., the SMART-ITL facility. The types of break are a safety injection system line break, shutdown cooling system line break, and pressurizer safety valve line break. The thermal–hydraulic phenomena show a traditional behavior to decrease the temperature and pressure whereas the local phenomena are s...

  8. Study on safety analysis of VVER-1200/V491 in scenario of Loss of Coolant Accidents along with partly failure of ECCS using RELAP5 code

    International Nuclear Information System (INIS)

    Hoang Minh Giang; Ha Thi Anh Dao; Hoang Tan Hung; Bui Thi Hoa; Nguyen Thi Tu Oanh; Dinh Anh Tuan; Pham Tuan Nam

    2017-01-01

    The advanced VVER-1200/V491 reactor designed with passive safety systems to deal with design extension conditions is primarily selected as priority candidate for Ninh Thuan 1 nuclear power plant project. So that, in order to enhance competence of nuclear safety and toward participation on review Safety Analysis Report (SAR) of Ninh Thuan nuclear Power project the study on safety analysis of VVER-1200/V491 in scenario of Loss of Coolant Accidents along with partly failure of ECCS is implemented. As requirement of the study, the input deck file of VVER-1200/V491 for RELAP5 and analysis report for some special case of LOCAs along with partly failure of ECCS are issued. (author)

  9. Study on severe accident fuel dispersion behavior in the advanced neutron source reactor at Oak Ridge National Laboratory

    Energy Technology Data Exchange (ETDEWEB)

    Kim, S.H.; Taleyarkhan, R.P.; Navarro-Valenti, S. [Oak Ridge National Lab., TN (United States)] [and others

    1995-09-01

    Core flow blockage events have been determined to represent a leading contributor to core damage initiation risk in the Advanced Neutron Source (ANS) reactor. During such an accident, insufficient cooling of the fuel in a few adjacent blocked coolant channels out of several hundred channels, could also result in core heatup and melting under full coolant flow condition in other coolant channels. Coolant inertia forces acting on the melt surface would likely break up the melt into small particles. Under thermal-hydraulic conditions of ANS coolant channel, micro-fine melt particles are expected. Hat transfer between melt particle and coolant, which affects the particle breakup characteristics, was studied. The study indicates that the thermal effect on melt fragmentation seems to be negligible because the time corresponding to the breakup due to hydrodynamic forces is much shorter than the time for the melt surface to solidify. The study included modeling and analyses to predict transient behavior and transport of debris particles throughout the coolant system. The transient model accounts for the surface forces acting on the particle that results from the pressure variation on the surface, inertia, virtual mass, viscous force due to the relative motion of the particle in the coolant, gravitation, and resistance due to inhomogenous coolant velocity radially across piping due to possible turbulent coolant motions. The results indicate that debris particles would reside longest in heat exchangers because of lower coolant velocity there. Also they are entrained and move together in a cloud.

  10. Coolant clean-up system in the primary coolant circuit for nuclear reactor

    International Nuclear Information System (INIS)

    Saito, Michio.

    1981-01-01

    Purpose: To maintain the quality of coolants at a prescribed level by distillating coolants in the primary coolant circuit for a BWR type reactor to remove impurities therefrom, taking out the condensates from the top of the distillation column and extracting impurities in a concentrated state from the bottom. Constitution: Coolant water for cooling the core is recycled by a recycling pump by way of a recycling pipeway in a reactor. The coolants extracted from an extraction pipeway connected to the recycling pipeway are fed into a distillation column, where distillation is taken place. Impurities in the coolants, that is, in-core corrosion products, fission products generated in the reactor core, etc. are separated by the distillation, concentrated and solidified in the bottom of the distillation column. While on the other hand, condensates removed with the impurities, that is, coolants cleaned-up are recycled to the coolant water for cooling the reactor core. (Moriyama, K.)

  11. Full-length fuel rod behavior under severe accident conditions

    International Nuclear Information System (INIS)

    Lombardo, N.J.; Lanning, D.D.; Panisko, F.E.

    1992-12-01

    This document presents an assessment of the severe accident phenomena observed from four Full-Length High-Temperature (FLHT) tests that were performed by the Pacific Northwest Laboratory (PNL) in the National Research Universal (NRU) reactor at Chalk River, Ontario, Canada. These tests were conducted for the US Nuclear Regulatory Commission (NRC) as part of the Severe Accident Research Program. The objectives of the test were to simulate conditions and provide information on the behavior of full-length fuel rods during hypothetical, small-break, loss-of-coolant severe accidents, in commercial light water reactors

  12. Severe Accident R and D for Enhanced CANDU-6 Reactors

    International Nuclear Information System (INIS)

    Nitheanandan, Thambiayah

    2012-01-01

    CANDU reactors possess a number of inherent of inherent and designed safety features that make them resistant to core damage accidents. The unique feature is the low temperature moderator surrounding the fuel channels, which can serve as an alternate heat sink. The fuel is surrounded by three water systems: heavy water primary coolant, heavy water moderator, and light water calandria vault and shield water. In addition, the liquid inventory in the steam generators is a fourth indirect heat sink, able to cool the primary coolant. The water inventories in the emergency core cooling system and the reserve water tank at the dome of the containment can also provide fuel cooling and water makeup to prevent severe core damage or mitigate the consequences of a severe core damage accident. An assessment of the adequacy of the existing severe accident knowledge base, to confidently perform consequence analyses for the Enhanced CANDU-6 reactor in compliance with regulatory requirements, was recently completed. The assessment relied on systematic Phenomena Identification and Ranking Tables (PIRT) studies completed domestically and internationally. The assessment recommends cost-effective R and D to mitigate the consequences of severe accidents and associated risk vulnerabilities

  13. Accident at Three Mile Island nuclear power plant and lessons learned

    International Nuclear Information System (INIS)

    Ashrafi, A.; Farnoudi, F.; Tochai, M.T.M.; Mirhabibi, N.

    1986-01-01

    On March 28, 1979, the TMI, unit 2 nuclear power plant experienced a loss of coolant accident (LOCA) which has had a major impact among the others, upon the safety of nuclear power plants. Although a small part of the reactor core melted in this accident, but due to well performance of the vital safety equipment, there was no serious radioactivity release to the environment, and the accident has had no impact on the basic safety goals. A brief scenario of the accident, its consequences and the lessons learned are discussed

  14. Premixing and steam explosion phenomena in the tests with stratified melt-coolant configuration and binary oxidic melt simulant materials

    Energy Technology Data Exchange (ETDEWEB)

    Kudinov, Pavel, E-mail: pavel@safety.sci.kth.se; Grishchenko, Dmitry, E-mail: dmitry@safety.sci.kth.se; Konovalenko, Alexander, E-mail: kono@kth.se; Karbojian, Aram, E-mail: karbojan@kth.se

    2017-04-01

    Highlights: • Steam explosion in stratified melt-coolant configuration is studied experimentally. • Different binary oxidic melt simulant materials were used. • Five spontaneous steam explosions were observed. • Instability of melt-coolant interface and formation of premixing layer was observed. • Explosion strength is influenced by melt superheat and water subcooling. - Abstract: Steam explosion phenomena in stratified melt-coolant configuration are considered in this paper. Liquid corium layer covered by water on top can be formed in severe accident scenarios with (i) vessel failure and release of corium melt into a relatively shallow water pool; (ii) with top flooding of corium melt layer. In previous assessments of potential energetics in stratified melt-coolant configuration, it was assumed that melt and coolant are separated by a stable vapor film and there is no premixing prior to the shock wave propagation. This assumption was instrumental for concluding that the amount of energy that can be released in such configuration is not of safety importance. However, several recent experiments carried out in Pouring and Under-water Liquid Melt Spreading (PULiMS) facility with up to 78 kg of binary oxidic corium simulants mixtures have resulted in spontaneous explosions with relatively high conversion ratios (order of one percent). The instability of the melt-coolant interface, melt splashes and formation of premixing layer were observed in the tests. In this work, we present results of experiments carried out more recently in steam explosion in stratified melt-coolant configuration (SES) facility in order to shed some light on the premixing phenomena and assess the influence of the test conditions on the steam explosion energetics.

  15. Study on severe accident fuel dispersion behavior in the Advanced Neutron Source reactor at Oak Ridge National Laboratory

    International Nuclear Information System (INIS)

    Kim, S.H.; Taleyarkhan, R.P.; Navarro-Valenti, S.; Georgevich, V.; Xiang, J.Y.

    1995-01-01

    Core flow blockage events are a leading contributor to core damage initiation risk in the Advanced Neutron Source (ANS) reactor. During such an accident, insufficient cooling of the fuel could result in core heatup and melting under full coolant flow condition. Coolant inertia forces acting on the melt surface would likely break up the melt into small particles. Under thermal-hydraulic conditions of ANS coolant channel, micro-fine melt particles are expected. Heat transfer between melt particle and coolant, which affects particle breakup, was studied. The study indicates that the thermal effect on melt fragmentation seems to be negligible because the time corresponding to the breakup due to hydrodynamic forces is much shorter than the time for the melt surface to solidify. The study included modeling and analyses to predict transient behavior and transport of debris particles throughout the coolant system. The transient model accounts for the surface forces acting on the particle that results from the pressure variation on the surface, inertia, virtual mass, viscous force due to relative motion of particle in the coolant, gravitation, and resistance due to inhomogenous coolant velocity radially across piping due to possible turbulent coolant motions. Results indicate that debris particles would reside longest in heat exchangers because of lower coolant velocity there. Also core debris tends to move together upon melting and entrainment

  16. Behaviour of organic iodides under pwr accident conditions

    International Nuclear Information System (INIS)

    Alm, M.

    1982-01-01

    Laboratory experiments were performed to study the behaviour of radioactive methyl iodide under PWR loss-of-coolant conditions. The pressure relief equipment consisted of an autoclave for simulating the primary circuit and of an expansion vessel for simulating the conditions after a rupture in the reactor coolant system. After pressure relief, the composition of the CH 3 sup(127/131)I-containing steam-air mixture within the expansion vessel was analysed at 80 0 C over a period of 42 days. On the basis of the values measured and of data taken from the literature, both qualitative and quantitative assessments have been made as to the behaviour of radioactive methyl iodide in the event of loss-of-coolant accidents. (author)

  17. Spatial distribution of nanoparticles in PWR nanofluid coolant subjected to local nucleate boiling

    Energy Technology Data Exchange (ETDEWEB)

    Mirghaffari, Reza; Jahanfarnia, Gholamreza [Islamic Azad Univ., Tehran (Iran, Islamic Republic of). Dept. of Nuclear Engineering

    2016-12-15

    Nanofluids have shown to be promising as an alternative for a PWR reactor coolant or as a safety system coolant to cover the core in the event of a loss of coolant accident. The nanoparticles distribution and neutronic parameters are intensively affected by the local boiling of nanofluid coolant. The main goal of this study was the physical-mathematical modeling of the nanoparticles distribution in the nucleate boiling of nanofluids within the viscous sublayer. Nanoparticles concentration, especially near the heat transfer surfaces, plays a significant role in the enhancement of thermal conductivity of nanofluids and prediction of CHF, Hide Out and Return phenomena. By solving the equation of convection-diffusion for the liquid phase near the heating surface and the bulk stream, the effect of heat flux on the distribution of nanoparticles was studied. The steady state mass conservation equations for liquids, vapors and nanoparticles were written for the flow boiling within the viscous sublayer adjacent the fuel cladding surface. The derived differential equations were discretized by the finite difference method and were solved numerically. It was found out that by increasing the surface heat flux, the concentration of nanoparticles increased.

  18. Experimental study on thermal-hydraulic behaviors of a pressure balanced coolant injection system for a passive safety light water reactor JPSR

    Energy Technology Data Exchange (ETDEWEB)

    Satoh, Takashi; Watanabe, Hironori; Araya, Fumimasa; Nakajima, Katsutoshi [Japan Atomic Energy Research Inst., Tokai, Ibaraki (Japan). Tokai Research Establishment; Iwamura, Takamichi; Murao, Yoshio

    1998-02-01

    A conceptual design study of a passive safety light water reactor JPSR has been performed at Japan Atomic Energy Research Institute JAERI. A pressure balanced coolant injection experiment has been carried out, with an objective to understand thermal-hydraulic characteristics of a passive coolant injection system which has been considered to be adopted to JPSR. This report summarizes experimental results and data recorded in experiment run performed in FY. 1993 and 1994. Preliminary experiments previously performed are also briefly described. As the results of the experiment, it was found that an initiation of coolant injection was delayed with increase in a subcooling in the pressure balance line. By inserting a separation device which divides the inside of core make-up tank (CMT) into several small compartments, a diffusion of a high temperature region formed just under the water surface was restrained and then a steam condensation was suppressed. A time interval from an uncovery of the pressure balance line to the initiation of the coolant injection was not related by a linear function with a discharge flow rate simulating a loss-of-coolant accident (LOCA) condition. The coolant was injected intermittently by actuation of a trial fabricated passive valve actuated by pressure difference for the present experiment. It was also found that the trial passive valve had difficulties in setting an actuation set point and vibrations noises and some fraction of the coolant was remained in CMT without effective use. A modification was proposed for resolving these problems by introducing an anti-closing mechanism. (author)

  19. Simulations of the design basis accident at conditions of power increase and the o transient of MSIV at overpressure conditions of the Laguna Verde Power Station

    International Nuclear Information System (INIS)

    Araiza M, E.; Nunez C, A.

    2001-01-01

    This document presents the analysis of the simulation of the loss of coolant accident at uprate power conditions, that is 2027 MWt (105% of the current rated power of 1931MWt). This power was reached allowing an increase in the turbine steam flow rate without changing the steam dome pressure value at its rated conditions (1020 psiaJ. There are also presented the results of the simulation of the main steam isolation va/ve transient at overpressure conditions 1065 psia and 1067 MWt), for Laguna Verde Nuclear Power Station. Both simulations were performed with the best estimate computer code TRA C BF1. The results obtained in the loss of coolant accident show that the emergency core coolant systems can recover the water level in the core before fuel temperature increases excessively, and that the peak pressure reached in the drywell is always below its design pressure. Therefore it is concluded that the integrity of the containment is not challenged during a loss of coolant accident at uprate power conditions.The analysis of the main steam isolation valve transients at overpressure conditions, and the analysis of the particular cases of the failure of one to six safety relief valves to open, show that the vessel peak pressures are below the design pressure and have no significant effect on vessel integrity. (Author)

  20. Atucha I nuclear power plant: Probabilistic safety study. Loss-of-coolant accidents

    International Nuclear Information System (INIS)

    Perez, S.S.

    1987-01-01

    The plant response to the group of events 'large coolant loss' in order to evaluate the associated risk is analyzed. The event that covers all events of similar sequence due to its evolution features, being also the most demanded, is selected as starting event. The representative event is the 'guillotine type rupture of cold primary branch'. An annual occurrence frequency of 10/year is assumed for this event. The safety systems, when the event occurs, must assure the reactor shutdown and the core cooling, creating a heat sink to remove the decay heat. The annual frequency of core meltdown due to great loss of coolant is obtained multiplying the annual frequency of the starting event by the probability of failure of involved safety systems. By means of failure trees, the following is obtained: a) probability of failure to demand of the boron injection shutdown system = 4 x 10 -2 ; b) probability of failure to demand of the high pressure safety injection = 3 x 10 -3 ; c) probability of emergency cooling system failure = 4.4 x 10 -2 . Therefore, the three possible sequences of core meltdown have the following frequencies: λ 1 = 4 x 10 -6 /year λ 2 = 3 x 10 -7 /year λ 3 = 4.4 x 10 -6 /year. (Author)

  1. Screening and analysis of beyond design basis accident of 49-2 SPR

    International Nuclear Information System (INIS)

    Zhang Yadong; Guo Yue; Wu Yuanyuan; Zou Yao

    2015-01-01

    The beyond design basis accident was analyzed to ensure safe operation of 49-2 Swimming Pool Reactor (SPR) after design life. Because it's difficult to use PSA method, the unconditional assumed severe accidents were adopted to obtain a conservative result. The main conclusions were obtained by analyzing anticipated transients without scram in station blackout (SBO ATWS), horizontal channel rupture, core uncovering after shutdown and emergency response capacity. The results show that the core is safe in SBO ATWS, and the fuel elements will not melt as long as the core are not exposed in 2.5 h in loss of coolant accident caused by horizontal channel rupture and other factors. The passive siphon breaker function and various ways of emergency core makeup can ensure that the core is not exposed. (authors)

  2. CANDU severe accident analysis

    International Nuclear Information System (INIS)

    Negut, Gheorghe; Catana, Alexandru; Prisecaru, Ilie; Dupleac, Daniel

    2007-01-01

    Romania is a EU member since January first 2007. This country faces now new challenges which imply also the nuclear power reactors now in operation. Romania operates since 1996 a CANDU nuclear power reactor and soon will start up a second unit. In EU PWR reactors are mostly operated, so that the Romania's reactors have to meet EU standards. Safety analysis guidelines require to model severe accidents for reactors of this type. Starting from previous studies a thermal-hydraulic model for a degraded CANDU core was developed. The initiating event is assumed to be a LOCA with simultaneous loss of moderator and coolant and the failure of emergency core cooling system (ECCS). This type of accident is likely to modify the reactor geometry and will lead to a severe accident development. When the coolant temperatures inside a pressure tube reaches 1000 deg. C, a contact between pressure tube and calandria tube occurs and the decay heat is transferred to the moderator. Due to the lack of cooling, the moderator eventually begins to boil and is expelled, through the calandria vessel relief ducts, into the containment. Therefore the calandria tubes (fuel channels) uncover, then disintegrate and fall down to the calandria vessel bottom. All the quantity of calandria moderator is vaporized and expelled, the debris will heat up and eventually boil. The heat accumulated in the molten debris will be transferred through the calandria vessel wall to the shield water tank surrounding the calandria vessel. The thermal hydraulics phenomena described above are modeled, analyzed and compared with the existing data. (authors)

  3. Primary pipe rupture accident analysis for the Clinch River Breeder Reactor

    Energy Technology Data Exchange (ETDEWEB)

    Albright, D.C.; Bari, R.A.

    1976-04-01

    In this report, the thermal transient response of the CRBR to a severe primary coolant flow perturbation, initiated by a rupture of the primary heat transport system piping, is analyzed. This hypothetical accident is studied under the further assumption that the plant protection system does function according to current design descriptions for the CRBR. Although a brief discussion of an unprotected (no scram) pipe rupture accident is presented, the major emphasis of the present report is on the protected accident.

  4. Primary pipe rupture accident analysis for the Clinch River Breeder Reactor

    International Nuclear Information System (INIS)

    Albright, D.C.; Bari, R.A.

    1976-04-01

    In this report, the thermal transient response of the CRBR to a severe primary coolant flow perturbation, initiated by a rupture of the primary heat transport system piping, is analyzed. This hypothetical accident is studied under the further assumption that the plant protection system does function according to current design descriptions for the CRBR. Although a brief discussion of an unprotected (no scram) pipe rupture accident is presented, the major emphasis of the present report is on the protected accident

  5. Scenarios simulation of severe accident type small loss of coolant (Loca), with the code MELCOR version 2.1 for the nuclear power plant of Laguna Verde; Simulacion de escenarios de accidente severo tipo perdida de refrigerante (Loca) pequeno, con el codigo MELCOR version 2.1 para la central nucleo-electrica de Laguna Verde

    Energy Technology Data Exchange (ETDEWEB)

    Cardenas V, J.; Mugica R, C. A.; Godinez S, V., E-mail: Jaime.cardenas@cnsns.gob.mx [Comision Nacional de Seguridad Nuclear y Salvaguardias, Dr. Jose Ma. Barragan No. 779, Col. Narvarte, 03020 Mexico D. F. (Mexico)

    2013-10-15

    In this work was carried out the analysis of two scenarios of the accident type with loss of coolant in a recirculation loop for a break with smaller ares to 0.1 ft{sup 2} (4.6 cm{sup 2}), which is classified according to their size like small Loca. The first simulated scenario was a small Loca without action of the emergency coolant injection systems, and the second was a small Loca with only the available system LPCS. This design base accident was taken into account for its relevance with regard to the damage to the core and the hydrogen generation. Was also observed and analyzed the response of the action of the ECCS that depend of the loss of coolant reason and this in turn depends of the size and type of the pipe break. The specified scenarios were simulated by means of the use of MELCOR model for the nuclear power plant of Laguna Verde that has the Comision Nacional de Seguridad Nuclear y Salvaguardias. (Author)

  6. Best-estimate analysis of a loss-of-coolant accident in a four-loop US PWR using TRAC-PD2

    International Nuclear Information System (INIS)

    Ireland, J.R.

    1982-01-01

    A 200% double-ended cold-leg break loss-of-coolant accident (LOCA) in a typical US pressurized water reactor (PWR) was simulated using the Transient Reactor Analysis Code (TRAC-PD2). The reactor system modeled represented a typical US PWR with four loops and cold-leg emergency-core-cooling systems (ECCS). The calculated peak cladding temperature of 950 K occurred during blowdown and the cladding temperature excursion was terminated at 175 s when complete core quenching occurred. Accumulator flows were initiated at 10 s when the system pressure reached 4.08 MPa, and the refill phase ended at 36 s when the lower plenum refilled. During reflood, both bottom and falling film quench fronts were calculated. Top quenching was caused by entrainment from the lower plenum and lower core regions. The entrained liquid was sufficient to form a small, saturated pool (0.3 m deep) above the upper core support plate. Also, some of the entrained liquid was carried out the hot legs and vaporized in the steam generators. Strong multidimensional effects were calculated in the reactor vessel, particularly with respect to rod quenching

  7. Simulation of LOF accidents with directly electrical heated UO2 pins

    International Nuclear Information System (INIS)

    Alexas, A.

    1976-01-01

    The behavior of directly electrical heated UO 2 pins has been investigated under loss of coolant conditions. Two types of hypothetical accidents have been simulated, first, a LOF accident without power excursion (LOF accident) and second, a LOF accident with subsequent power excursion (LOF-TOP accident). A high-speed film shows the sequence of events for two characteristic experiments. In consequence of the high-speed film analysis as well as the metallographical evaluation statements are given in respect to the cladding meltdown process, the fuel melt fraction and the energy input from the beginning of a power transient to the beginning of the molten fuel ejections

  8. Experimental investigation of material chemical effects on emergency core cooling pump suction filter performance after loss of coolant accident

    International Nuclear Information System (INIS)

    Park, Jong Woon; Park, Byung Gi; Kim, Chang Hyun

    2009-01-01

    Integral tests of head loss through an emergency core cooling filter screen are conducted, simulating reactor building environmental conditions for 30 days after a loss of coolant accident. A test rig with five individual loops each of whose chamber is established to test chemical product formation and measure the head loss through a sample filter. The screen area at each chamber and the amounts of reactor building materials are scaled down according to specific plant condition. A series of tests have been performed to investigate the effects of calcium-silicate, reactor building spray, existence of calcium-silicate with tri-sodium phosphate (TSP), and composition of materials. The results showed that head loss across the chemical bed with even a small amount of calcium-silicate insulation instantaneously increased as soon as TSP was added to the test solution. Also, the head loss across the filter screen is strongly affected by spray duration and the head loss increase is rapid at the early stage, because of high dissolution and precipitation of aluminum and zinc. After passivation of aluminum and zinc by corrosion, the head loss increase is much slowed down and is mainly induced by materials such as calcium, silicon, and magnesium leached from NUKON TM and concrete. Furthermore, it is newly found that the spay buffer agent, tri-sodium phosphate, to form protective coating on the aluminum surface and reduce aluminum leaching is not effective for a large amount of aluminum and a long spray.

  9. NPP Krsko containment environmental conditions during postulated accident

    International Nuclear Information System (INIS)

    Kozaric, M.; Cavlina, N.; Spalj, S.

    1989-01-01

    This paper presents NPP Krsko containment pressure and temperature increase during Loss of Coolant Accident (LOCA) and Main Steam Line Break (MSLB). Containment environmental condition calculation was performed by CONTEMPT4/MOD4 computer code. Design accident calculations were performed by RELAP4/MOD6 and RELAP5/MOD1 computer codes. Calculational abilities and application methodology of these codes are presented. The CONTEMPT code is described in more detail. The containment pressure and temperature time distribution are presented as well. (author)

  10. Thermal hydraulic And RSG-Gas Core Reactivity Characteristics Due To Cold Water Insertion Accident

    International Nuclear Information System (INIS)

    Hastuti, Endiah Puji; Suparlina, Lily; Tukiran

    2000-01-01

    Under normal operating condition,the primary coolant is circulated by 2 out of the 3 primary coolant pumps. Unnecessary operation of the reserve pump would result in a temperatur decrease of the primary coolant by less than 5 o C. the corresponding increase of reactivity amounts to Δρ ≤0,1 %. The analysis was done using silicide core configuration data with 3.55 gU /cm 3 fuel loading. The calculation model was done with and without automatic control rod. The calculation results for the worst case condition, shows that reactor reached the maximum power 28.52 MW at 81.1 seconds, after the accident occurred. The maximal fuel element, cladding and outlet coolant temperatures are 148.3 o C,142.1 o C, and 75.7 o C, respectively. Safety margins for DNBR and flow instability reached 1.25 and 4.20, respectively. Comparing to the RSG-GAS safety margin at transient condition reguirement >1.48, RSG-GAS has enough safety margin if the power trip executed at 114% of 25 MW

  11. Effects of Coolant Temperature Changes on Reactivity for Various Coolants in a Liquid Salt Cooled Very High Temperature Reactor (LS-VHTR)

    International Nuclear Information System (INIS)

    Casino, William A. Jr.

    2006-01-01

    The purpose of this study is to perform an investigation into the relative merit of various salts and salt compounds being considered for use as coolants in the liquid salt cooled very high temperature reactor platform (LS-VHTR). Most of the non-nuclear properties necessary to evaluate these salts are known, but the neutronic characteristics important to reactor core design are still in need of a more extensive examination. This report provides a two-fold approach to further this investigation. First, a list of qualifying salts is assembled based upon acceptable non-nuclear properties. Second, the effect on system reactivity for a secondary system transient or an off-normal or accident condition is examined for each of these salt choices. The specific incident to be investigated is an increase in primary coolant temperature beyond normal operating parameters. In order to perform the relative merit comparison of each candidate salt, the System Temperature Coefficient of Reactivity is calculated for each candidate salt at various state points throughout the core burn history. (author)

  12. Integral nuclear power reactor with natural coolant circulation. Investigation of passive RHR system

    International Nuclear Information System (INIS)

    Samoilov, O.B.; Kuul, V.S.; Malamud, V.A.; Tarasov, G.I.

    1996-01-01

    The development of a small power (up to 240 MWe) integral PWR for nuclear co-generation power plants has been carried out. The distinctive features of this advanced reactor are: primary circuit arrangement in a single pressure vessel; natural coolant circulation; passive safety systems with self-activated control devices; use of a second (guard) vessel housing the reactor; favourable conditions for the most severe accident management. A passive steam condensing channel has been developed which is activated by the direct action of the primary circuit pressure without an automatic controlling action or manual intervention for emergency cooling of an integral reactor with an in-built pressurizer. In an emergency situation as pressure rises in the reactor a self-activated device blows out non-condensable gases from the condenser tube bundle and returns them in the steam-condensing mode of the operation with the returing primary coolant condensate into the reactor. The thermo-physical test facility is constructed and the experimental development of the steam-condensing channels is performed aiming at the verification of mathematical models for these channels operation in integral reactors both at loss-of-heat removal and LOCA accidents. (orig.)

  13. Basic principles and results of the German risk study

    International Nuclear Information System (INIS)

    Heuser, F.W.; Bayer, A.

    1980-01-01

    In June 1976 the Federal Ministry for Research and Technology had commissioned the Gesellschaft fuer Reaktorsicherheit to write the German Risk Study, the first part of which has now been completed after three years of work and has been publicized recently. The German Risk Study is an attempt to define the societal risk posed by accidents in nuclear power plants under conditions in Germany. For this purpose, the accident rates and the resultant health hazards were determined. By adopting most of the basic premises and methods of the American Rasmussen Study, the German study is to allow a comparison to be made with the results of that study. The calculations were based on 19 sites with a total of 25 nuclear generating units presently in operation, under construction or in the licensing procedure in the Federal Republic of Germany. The technical studies were conducted on a 1300 MW PWR as the representative example. The results show that the decisive contributions are made by uncontrolled minor loss-of-coolant accidents and by failures of power supply (emergency power case). Large loss-of-coolant accidents do not play a role. The study also shows the decisive safety function of the containment. (orig.) [de

  14. Coolant leakage detection device

    International Nuclear Information System (INIS)

    Ito, Takao.

    1983-01-01

    Purpose: To surely detect the coolant leakage at a time when the leakage amount is still low in the intra-reactor inlet pipeway of FBR type reactor. Constitution: Outside of the intra-reactor inlet piping for introducing coolants at low temperature into a reactor core, an outer closure pipe is furnished. The upper end of the outer closure pipe opens above the liquid level of the coolants in the reactor, and a thermocouple is inserted to the opening of the upper end. In such a structure, if the coolants in the in-reactor piping should leak to the outer closure pipe, coolants over-flows from the opening thereof, at which the thermocouple detects the temperature of the coolants at a low temperature, thereby enabling to detect the leakage of the coolants at a time when it is still low. (Kamimura, M.)

  15. Preliminary safety analysis of the PWR with accident-tolerant fuels during severe accident conditions

    International Nuclear Information System (INIS)

    Wu, Xiaoli; Li, Wei; Wang, Yang; Zhang, Yapei; Tian, Wenxi; Su, Guanghui; Qiu, Suizheng; Liu, Tong; Deng, Yongjun; Huang, Heng

    2015-01-01

    Highlights: • Analysis of severe accident scenarios for a PWR fueled with ATF system is performed. • A large-break LOCA without ECCS is analyzed for the PWR fueled with ATF system. • Extended SBO cases are discussed for the PWR fueled with ATF system. • The accident-tolerance of ATF system for application in PWR is illustrated. - Abstract: Experience gained in decades of nuclear safety research and previous nuclear accidents direct to the investigation of passive safety system design and accident-tolerant fuel (ATF) system which is now becoming a hot research point in the nuclear energy field. The ATF system is aimed at upgrading safety characteristics of the nuclear fuel and cladding in a reactor core where active cooling has been lost, and is preferable or comparable to the current UO 2 –Zr system when the reactor is in normal operation. By virtue of advanced materials with improved properties, the ATF system will obviously slow down the progression of accidents, allowing wider margin of time for the mitigation measures to work. Specifically, the simulation and analysis of a large break loss of coolant accident (LBLOCA) without ECCS and extended station blackout (SBO) severe accident are performed for a pressurized water reactor (PWR) loaded with ATF candidates, to reflect the accident-tolerance of ATF

  16. Proceedings of the workshop on severe accident research held in Japan (SARJ-98)

    Energy Technology Data Exchange (ETDEWEB)

    Sugimoto, Jun [ed.

    1999-07-01

    The Workshop on Severe Accident Research held in Japan (SARJ-98) was taken place at Hotel Lungwood on November 4-6, 1998, and attended by 181 participants from 13 countries. The 63 papers, which cover wide areas of severe accident research both in experiments and analyses, such as in-vessel melt retention, fuel-coolant interaction, fission products behavior, structural integrity, containment behavior, computer simulations, and accident management, are indexed individually. (J.P.N.)

  17. Development of GRIF-SM: The code for analysis of beyond design basis accidents in sodium cooled reactors

    International Nuclear Information System (INIS)

    Chvetsov, I.; Kouznetsov, I.; Volkov, A.

    2000-01-01

    GRIF-SM code was developed at the IPPE fast reactor department in 1992 for the analysis of transients in sodium cooled fast reactors under severe accident conditions. This code provides solution of transient hydrodynamics and heat transfer equations taking into account possibility of coolant boiling, fuel and steel melting, reactor kinetics and reactivity feedback due to variations of the core components temperature, density and dimensions. As a result of calculation, transient distribution of the coolant velocity and density was determined as well as temperatures of the fuel pins, reactor core and primary circuit as a whole. Development of the code during further 6 years period was aimed at the modification of the models describing thermal hydraulic characteristics of the reactor, and in particular in detailed description of the sodium boiling process. The GRIF-SM code was carefully validated against FZK experimental data on steady state sodium boiling in the electrically heated tube; transient sodium boiling in the 7-pin bundle; transient sodium boiling in the 37-pin bundle under flow redaction simulating ULOF accident. To show the code capabilities some results of code application for beyond design basis accident analysis on BN-800-type reactor are presented. (author)

  18. Investigation of small break loss-of-coolant phenomena in a small scale nonnuclear test facility

    International Nuclear Information System (INIS)

    Cozzuol, J.M.; Fauble, T.J.; Harvego, E.A.

    1980-01-01

    A small-scale nonnuclear integral test facility designed to simulate a pressurized water reactor (PWR) system was used to evaluate the effects of a small break loss-of-coolant accident (LOCA) on the system thermal-hydraulic response. The experiment approximated a 2.5% (11-cm diameter) communicative break in the cold leg of a PWR, and included initial conditions which were similar to conditions in a PWR operating at full power. The 2.5% break size ensured that the nominal break flow rate was greater than the high pressure injection system (HPIS) flow rate, thus providing the potential for a continuous system depressurization. The sequence of events was similar to that used in evaluation model analysis of small break loss-of-coolant accidents, and included simulated reactor scram and loss of offsite power. Comparisions of experimental data with computer code calculations are used to demonstrate the capabilities and limitations of integral system calculations used to predict phenomena which can be important in the assessment of a small break LOCA in a PWR

  19. Analysis of pressurized water reactor accidents in reactivity disturbances. II

    International Nuclear Information System (INIS)

    Tinka, I.

    1978-01-01

    The logic structure of program FATRAP is described. The time course of reactivity temporal and spatial distributions of neutron flux density and power, characteristic temperatures of the individual reactor zones and the heat flux density from cladding to the coolant can be obtained as the main results. The basic program funcitons were tested for a point and a one-dimensional model. In the basic test the absorption rod was removed uncontrollably at a preset speed for 0.5 s with the reactivity feedback operative. A second test simulated the action of the accident protection system with a delay of 0.1 s started when the 7500 MW power had been obtained. The last test consisted in simulating a start-up accident with an initial power of 2.25 MW. For the said chosen accident models reactivity feedback is responsible for the formation of the appropriate power peak while the accident protection attendance alone can considerably reduce temperatures during the process. (J.F.)

  20. A study on safety measure of LMR coolant

    Energy Technology Data Exchange (ETDEWEB)

    Hwang, Sung Tai; Choi, Y D; Choi, J H; Kim, T J; Jeong, K C; Kwon, S W; Kim, B H; Jeong, J Y; Park, J H; Kim, K R; Jo, B R

    1997-08-01

    A study on safety measures of LMR coolant showed the results as follows: 1. Sodium fire characteristics. A. Sodium pool temp., gas temp., oxygen concentration calculated by flame combustion model were generally higher than those calculated by surface combustion model. B. Basic and detail designs for medium sodium fire test facility were carried out and medium sodium fire test facility was constructed. 2. Sodium/Cover gas purification technology. A. Construction and operation of calibration loop. B. Purification analysis and conceptual design of the packing for a cold trap. 3. Analysis of sodium-water reaction characteristics. We have investigated the characteristics analysis for micro and small leaks phenomena, development of the computer code for analysis of initial and quasi steady-state spike pressures to analyze large leak accident. Also, water mock-up test facility for the analysis of large leak accident phenomena was designed and manufactured. 4. Development of water leak detection technology. Detection signals were appeared when the hydrogen detector is operated to Ar-H{sub 2} gas system. The technology for the passive acoustic detection with respect to large leakage of water into sodium media was reviewed. And water mock-up test equipment and instrument system were designed and constructed. (author). 19 refs., 45 tabs., 52 figs.

  1. A study on safety measure of LMR coolant

    International Nuclear Information System (INIS)

    Hwang, Sung Tai; Choi, Y. D.; Choi, J. H.; Kim, T. J.; Jeong, K. C.; Kwon, S. W.; Kim, B. H.; Jeong, J. Y.; Park, J. H.; Kim, K. R.; Jo, B. R.

    1997-08-01

    A study on safety measures of LMR coolant showed the results as follows: 1. Sodium fire characteristics. A. Sodium pool temp., gas temp., oxygen concentration calculated by flame combustion model were generally higher than those calculated by surface combustion model. B. Basic and detail designs for medium sodium fire test facility were carried out and medium sodium fire test facility was constructed. 2. Sodium/Cover gas purification technology. A. Construction and operation of calibration loop. B. Purification analysis and conceptual design of the packing for a cold trap. 3. Analysis of sodium-water reaction characteristics. We have investigated the characteristics analysis for micro and small leaks phenomena, development of the computer code for analysis of initial and quasi steady-state spike pressures to analyze large leak accident. Also, water mock-up test facility for the analysis of large leak accident phenomena was designed and manufactured. 4. Development of water leak detection technology. Detection signals were appeared when the hydrogen detector is operated to Ar-H 2 gas system. The technology for the passive acoustic detection with respect to large leakage of water into sodium media was reviewed. And water mock-up test equipment and instrument system were designed and constructed. (author). 19 refs., 45 tabs., 52 figs

  2. A study of the loss of coolant accident

    International Nuclear Information System (INIS)

    Lee, Y.W.; Chung, M.K.; Kim, S.H.; Park, J.S.; Lee, C.B.; Kim, S.B.; Won, S.Y.; Cho, Y.R.

    1983-01-01

    The primary objectives of this project are: (1) To review the published information on LOCA/ECCS study (2) To investigate reflood phenomena and to provide necessary information for analytical model development (3) To modyfy and develop a reflood analysis code. To review the published information on LOCA/ECCS, heat transfer phenomena are divided into 4 regions. Heat transfer correlations published in the references are reviewed and classified according to the regions. To investigate reflood phenomena and to provide better modeling of reflood phenomena, experments have been carried out with an electrically heated 3x3 rod bundle. Heat flux and heat transfer coefficients at the hot surface have been determined from the experimental data by HTC program. The influences of the parameters such as flooding rate, coolant subcooling and power generation on the propagation of rewetting front were also investigated. Calculations obtained from REFLUX code were compared with the experimental data to help an understanding of the reflood heat transfer mechanisms, and then some modifications of the code were provided. Improvements in heat transfer correlations of transition and inverted annular film boiling region, and the logic for the selection of heat transfer regime allowed better estimate for rod temperature behavior. (Author)

  3. Strategies for reactor safety: Preventing loss of coolant accidents. Final report

    International Nuclear Information System (INIS)

    Lydell, B.O.Y.

    1997-12-01

    This final report on the NKS/RAK-1.2 summarizes the main features of the PIFRAP PC-program and its intended implementation. Regardless of the preferred technical approach to LOCA frequency estimation, the analysis approach must include recognition of the following technical issues: a) Degradation and failure mechanisms potentially affecting piping systems within the reactor coolant pressure boundary (RCPB) and the potential consequences; b) In-service inspection practices and how they influence piping reliability; and c) The service experience with piping systems. The report consists of six sections and one appendix. A Nordic perspective on LOCA and nuclear safety is given. It includes summaries of results from research in material sciences and current regulatory philosophies regarding piping reliability. A summary of the LOCA concept is applied in Nordic PSA studies. It includes a discussion on deterministic and probabilistic views on LOCA. The R and D on piping reliability by SKI and the PIFRAP model is summarized. Next, Section 6 presents conclusion and recommendations. Finally, Appendix A contains a list of abbreviations and acronyms, together with a glossary of technical terms. (EG)

  4. Power Excursion Accident Analysis of Research Water Reactor

    International Nuclear Information System (INIS)

    Khaled, S.M.; Doaa, G.M.

    2009-01-01

    A three-dimensional neutronic code POWEX-K has been developed, and it has been coupled with the sub-channel thermal-hydraulic core analysis code SV based on the Single Mass Velocity Model. This forms the integrated neutronic/thermal hydraulics code system POWEX-K/SV for the accident analysis. The Training and Research Reactors at Budapest University of Technology and Economics (BME-Reactor) has been taken as a reference reactor. The cross-section generation procedure based on WIMS. The code uses an implicit difference approach for both the diffusion equations and thermal-hydraulics modules, with reactivity feedback effects due to coolant and fuel temperatures. The code system was applied to analyzing power excursion accidents initiated by ramp reactivity insertion of 1.2 $. The results show that the reactor is inherently safe in case of such accidents i.e. no core melt is expected even if the safety rods do not fall into the core

  5. New procedure for declaring accidents resulting in bodily injuries

    CERN Document Server

    2014-01-01

    The HR Department would like to remind members of personnel that, according to Administrative Circular No. 14 (Rev. 3), entitled “Protection of members of the personnel against the financial consequences of illness, accident and incapacity for work”, accidents resulting in bodily injuries and presumed to be of an occupational nature should, under normal circumstances, be declared within 10 working days of the accident having occurred, accompanied by a medical certificate. In an effort to streamline procedures, occupational accident declarations should be made via EDH using the “declaration of occupational accident” electronic form. For the declaration of non-occupational accidents resulting in bodily injuries of members of the CERN Health Insurance Scheme (CHIS), a new paper form has been elaborated that can be downloaded from the CHIS website and is also available from the UNIQA Helpdesk in the Main Building. If you encounter technical difficulties with these new ...

  6. ADAM: An Accident Diagnostic,Analysis and Management System - Applications to Severe Accident Simulation and Management

    International Nuclear Information System (INIS)

    Zavisca, M.J.; Khatib-Rahbar, M.; Esmaili, H.; Schulz, R.

    2002-01-01

    The Accident Diagnostic, Analysis and Management (ADAM) computer code has been developed as a tool for on-line applications to accident diagnostics, simulation, management and training. ADAM's severe accident simulation capabilities incorporate a balance of mechanistic, phenomenologically based models with simple parametric approaches for elements including (but not limited to) thermal hydraulics; heat transfer; fuel heatup, meltdown, and relocation; fission product release and transport; combustible gas generation and combustion; and core-concrete interaction. The overall model is defined by a relatively coarse spatial nodalization of the reactor coolant and containment systems and is advanced explicitly in time. The result is to enable much faster than real time (i.e., 100 to 1000 times faster than real time on a personal computer) applications to on-line investigations and/or accident management training. Other features of the simulation module include provision for activation of water injection, including the Engineered Safety Features, as well as other mechanisms for the assessment of accident management and recovery strategies and the evaluation of PSA success criteria. The accident diagnostics module of ADAM uses on-line access to selected plant parameters (as measured by plant sensors) to compute the thermodynamic state of the plant, and to predict various margins to safety (e.g., times to pressure vessel saturation and steam generator dryout). Rule-based logic is employed to classify the measured data as belonging to one of a number of likely scenarios based on symptoms, and a number of 'alarms' are generated to signal the state of the reactor and containment. This paper will address the features and limitations of ADAM with particular focus on accident simulation and management. (authors)

  7. Proceedings of the workshop on severe accident research held in Japan (SARJ-97)

    Energy Technology Data Exchange (ETDEWEB)

    Sugimoto, Jun [ed.

    1998-05-01

    The Workshop on Severe Accident Research held in Japan (SARJ-97) was taken place at Pacifico Yokohama on October 6 - 8, 1997, and attended by 180 participants from 15 countries and one international organizations. The 59 papers, which cover wide areas of severe accident research both in experiments and analysis, such as in-vessel melt retention, fuel-coolant interaction, fission products behavior, structural integrity, containment behavior, computer simulations, and accident management, are indexed individually. (J.P.N.)

  8. Thermalydraulic processes in the reactor coolant system of a BWR under severe accident conditions

    International Nuclear Information System (INIS)

    Hodge, S.A.

    1990-01-01

    Boiling water reactors (BWRs) incorporate many unique structural features that make their expected response under severe accident conditions very different from that predicted in the case of pressurized water reactor accident sequences. Automatic main steam isolation valve (MIV) closure as the vessel water level approaches the top of the core would cause reactor vessel isolation while automatic recirculation pump trip would limit the in-vessel flows to those characteristic of natural circulation (as disturbed by vessel relief valve actuation). This paper provides a discussion of the BWR control blade, channel box, core plate, control rod guide tube, and reactor vessel safety relief valve (SRV) configuration and the effects of these structural components upon thermal hydraulic processes within the reactor vessel under severe accident conditions. The dominant BWR severe accident sequences as determined by probabilistic risk assessment are described and the expected timing of events for the unmitigated short-term station blackout severe accident sequence at the Peach Bottom atomic power station is presented

  9. The condensation of steam on the external surfaces of the shells of HIFAR heavy water heat exchangers during a loss-of-coolant accident

    International Nuclear Information System (INIS)

    Chapman, A.G.

    1987-03-01

    A study of steam condensation rates on the HIFAR heavy water heat exchangers was undertaken to predict thermohydraulic conditions in the HIFAR containment during a postulated loss-of-coolant accident (LOCA). The process of surface condensation from a mixture of air and steam, and methods for calculating the rate of condensation, are briefly reviewed. Suitable experimental data are used to estimate coefficients of condensation heat transfer to cool surfaces in a reactor containment during a LOCA. The relevance of the available data to a LOCA in the HIFAR materials testing reactor is examined, and two sets of data are compared. The differences between air/H 2 O and air/D 2 O mixtures are discussed. Formulae are derived for the estimation of the coefficient of heat transfer from the heat exchanger shells to the cooling water, and a method of calculating the rate of condensation per unit area of surface is developed

  10. An analysis of Three Mile Island: the accident that shouldn't have happened

    International Nuclear Information System (INIS)

    Rubinstein, E.; Mason, J.F.

    1979-01-01

    The sequence of events in the nuclear reactor accident at Three Mile Island on March 28, 1979, is reported. Three problems thought to trigger the reactor accident were a persistent leak of reactor coolant, a closing of two valves in the auxillary feedwater system, and an apparent resin blockage in the transfer line that forced water back into the condensate lines of the air pumps. Hindsight indicates that a large amount of the damage to the reactor core could have been prevented if operators had closed the electromatic relief valve to end the loss of coolant and not throttled down the high pressure injection pumps in the emergency core cooling system. Steps taken to reestablish control of the reactor core are described

  11. Permeability and compression of fibrous porous media generated from dilute suspensions of fiberglass debris during a loss of coolant accident

    International Nuclear Information System (INIS)

    Lee, Saya; Abdulsattar, Suhaeb S.; Vaghetto, Rodolfo; Hassan, Yassin A.

    2015-01-01

    Highlights: • Experimental investigation on fibrous debris buildup was conducted. • Head loss through fibrous media was recorded at different approach velocities. • A head loss model through fibrous media was proposed for high porosity (>0.99). • A compression model of fibrous media was developed. - Abstract: Permeability of fibrous porous media has been studied for decades in various engineering applications, including liquid purifications, air filters, and textiles. In nuclear engineering, fiberglass has been found to be a hazard during a Loss-of-Coolant Accident. The high energy steam jet from a break impinges on surrounding fiberglass insulation materials, producing a large amount of fibrous debris. The fibrous debris is then transported through the reactor containment and reaches the sump strainers. Accumulation of such debris on the surface of the strainers produces a fibrous bed, which is a fibrous porous medium that can undermine reactor core cooling. The present study investigated the buildup of fibrous porous media on two types of perforated plate and the pressure drop through the fibrous porous media without chemical effect. The development of the fibrous bed was visually recorded in order to correlate the pressure drop, the approach velocity, and the thickness of the fibrous porous media. The experimental results were compared to semi-theoretical models and theoretical models proposed by other researchers. Additionally, a compression model was developed to predict the thickness and the local porosity of a fibrous bed as a function of pressure

  12. Study on entry criteria for severe accident management during hot leg LBLOCAs in a PWR

    International Nuclear Information System (INIS)

    Zhang, Longfei; Zhang, Dafa; Wang, Shaoming

    2007-01-01

    The risk of Large Break Loss of Coolant Accidents (LBLOCA) has been considered an important safety issue since the beginning of the nuclear power industry. The rapid depressurization occurs in the primary coolant circuit when a large break appears in a Pressurized Water Reactors (PWR).Then the coolant temperature reaches saturation at a very low pressure. The core outlet fluid temperatures maybe not reliable indicators of the core damage states at a such lower pressure. The problem is how to decide the time for water injection in the SAM (Severe Accident Management). An alternative entry criterion is the fluid temperature just above the hot channel in which the fluid temperature showed maximum among all the channels. For that reason, a systematic study of entry criterion of SAM for different hot leg break sizes in a 3-loop PWR has been started using the detailed system thermal hydraulic and severe accident analysis code package, RELAP/SCDAPSIM. Best estimate calculations of the large break LOCA of 15 cm, 20 cm and 25 cm without accident managements and in the case of high-pressure safety injection as the accident management were performed in this paper. The analysis results showed that the core exit temperatures are not reliable indicators of the peak core temperatures and core damage states once peak core temperatures reach 1500 K, and the proposed entry criteria for SAM at the time when the core outlet temperature reaches 900 K is not effective to prevent core melt. Then other analyses were performed with a parameter of fluid temperature just above the hot channel. The latter analysis showed that earlier water injection when the fluid temperature just above the hot channel reaches 900 K is effective to prevent further core melt. Since fuel surface and hot channel have spatial distribution and depend on a period of cycle operation, a series of thermocouples are required to install just above the fuel assembly. The maximum exit temperature of 900 K that captured by

  13. HANARO secondary coolant management

    International Nuclear Information System (INIS)

    Kim, Seon Duk.

    1998-02-01

    In this report, the basic theory for management of water quality, environmental factors influencing to the coolant, chemicals and its usage for quality control of coolant are mentioned, and water balance including the loss rate by evaporation (34.3 m 3 /hr), discharge rate (12.665 m 3 /hr), concentration ratio and feed rate (54.1 m 3 /hr) are calculated at 20 MW operation. Also, the analysis data of HANSU Limited for HANARO secondary coolant (feed water and circulating coolant) - turbidity, pH, conductivity, M-alkalinity, Ca-hardness, chloride ion, total iron ion, phosphoric ion and conversion rate are reviewed. It is confirmed that the feed water has good quality and the circulating coolant has been maintained within the control specification in general, but some items exceeded the control specification occasionally. Therefore it is judged that more regular discharge of coolant is needed. (author). 6 refs., 17 tabs., 18 figs

  14. Current status of accident analysis for Korean HCCR TBS

    Energy Technology Data Exchange (ETDEWEB)

    Ahn, Mu-Young, E-mail: myahn74@nfri.re.kr [National Fusion Research Institute, Daejeon (Korea, Republic of); Jin, Hyung Gon [Korea Atomic Energy Research Institute, Daejeon (Korea, Republic of); Cho, Seungyon [National Fusion Research Institute, Daejeon (Korea, Republic of); Lee, Dong Won [Korea Atomic Energy Research Institute, Daejeon (Korea, Republic of); Ku, Duck Young; Park, Yi-Hyun; Kim, Chang-Shuk; Lee, Youngmin [National Fusion Research Institute, Daejeon (Korea, Republic of)

    2014-10-15

    Korea has decided to test Helium Cooled Ceramic Reflector (HCCR) Test Blanket Module (TBM) in ITER and design of the TBM with its ancillary systems, i.e. Test Blanket System (TBS), is under progress. Since the TBM is operated at elevated temperature with high heat load, safety consideration is essential in design procedure. In this paper, preliminary accident analysis results for the current HCCR TBS design on selected scenarios are presented as an important part of safety assessments. To simulate transient thermo-hydraulic behavior, GAMMA-FR code which has been developed in Korea for fusion applications was used. The main cooling and tritium extraction circuit systems, as well as the TBM, were simulated and the main components in the TBS were modeled as the associated heat structures. The important accident scenarios were produced and summarized in the paper considering the HCCR TBS design and ITER conditions, which cover in-vessel Loss Of Coolant Accident (LOCA), in-box LOCA, ex-vessel LOCA, Loss Of Flow Accident (LOFA), Loss Of Heat Sink Accident (LOHSA) and purge pipe rupture case. The accident analysis based on the selected scenarios was performed and it was found that the current design of the HCCR TBS meets the thermo-hydraulic safety requirements.

  15. Current status of accident analysis for Korean HCCR TBS

    International Nuclear Information System (INIS)

    Ahn, Mu-Young; Jin, Hyung Gon; Cho, Seungyon; Lee, Dong Won; Ku, Duck Young; Park, Yi-Hyun; Kim, Chang-Shuk; Lee, Youngmin

    2014-01-01

    Korea has decided to test Helium Cooled Ceramic Reflector (HCCR) Test Blanket Module (TBM) in ITER and design of the TBM with its ancillary systems, i.e. Test Blanket System (TBS), is under progress. Since the TBM is operated at elevated temperature with high heat load, safety consideration is essential in design procedure. In this paper, preliminary accident analysis results for the current HCCR TBS design on selected scenarios are presented as an important part of safety assessments. To simulate transient thermo-hydraulic behavior, GAMMA-FR code which has been developed in Korea for fusion applications was used. The main cooling and tritium extraction circuit systems, as well as the TBM, were simulated and the main components in the TBS were modeled as the associated heat structures. The important accident scenarios were produced and summarized in the paper considering the HCCR TBS design and ITER conditions, which cover in-vessel Loss Of Coolant Accident (LOCA), in-box LOCA, ex-vessel LOCA, Loss Of Flow Accident (LOFA), Loss Of Heat Sink Accident (LOHSA) and purge pipe rupture case. The accident analysis based on the selected scenarios was performed and it was found that the current design of the HCCR TBS meets the thermo-hydraulic safety requirements

  16. THYDE-B1/MOD1: a computer code for analysis of small-break loss-of-coolant accident of boiling water reactors

    International Nuclear Information System (INIS)

    Muramatsu, Ken; Akimoto, Masayuki

    1982-08-01

    THYDE-B1/MOD1 is a computer code to analyze thermo-hydraulic transients of the reactor cooling system of a BWR, mainly during a small-break loss-of-coolant accidnet (SB-LOCA) with a special emphasis on the behavior of pressure and mixture level in the pressure vessel. The coolant behavior is simulated with a volume-and-junction method based on assumptions of thermal equilibrium and homogeneous conditions for two-phase flow. A characteristic feature of this code is a three-region representation of the state of the coolant in a control volume, in which three regions, i.e., subcooled liquid, saturated mixture and saturated steam regions are allowed to exist. The regions are separated by moving boundaries, tracked by mass and energy balances for each region. The interior of the pressure vessel is represented by two volumes with three regions: one for inside of the shroud and the other for outside, while other portions of the system are treated with homogeneous model. This method, although it seems to be very simple, has been verified to be adequate for cases of BWR SB-LOCAs in which the hydraulic transient is relatively slow and the cooling of the core strongly depends on the mixture level behavior in the vessel. In order to simulate the system behavior, THYDE-B1 is provided with analytical models for reactor kinetics, heat generation and conduction in fuel rods and structures, heat transfer between coolant and solid surfaces, coolant injection systems, breaks and discharge systems, jet pumps, recirculation pumps, and so on. The verification of the code has been conducted. A good predictability of the code has been indicated through the comparison of calculated results with experimental data provided by ROSA-III small-break tests. This report presents the analytical models, solution method, and input data requirements of the THYDE-B1/MOD1 code. (author)

  17. Loss of coolant accident analysis (thermal hydraulic analysis) - Japanese industries experience

    International Nuclear Information System (INIS)

    Okabe, K.

    1995-01-01

    An overview of LOCA analysis in Japanese industry is presented. The BASH-M code, developed for large scale LOCA reflooding analysis, is given as an example of verification and improvement of US computer programs are given. The code's application to the operational safety analysis concerns the following main areas: 1D drift flux model base computer program CANAC; CANAC-based advanced training simulator; emergency operating procedures. The author considers also the code application to the following new PWR safety design concepts: use of steam generators for decay heat removal at LOCA conditions; use of horizontal type steam generator for maintaining two-phase natural circulation under the reactor coolant system submerged. 9 figs

  18. Monitoring severe accidents using AI techniques

    Energy Technology Data Exchange (ETDEWEB)

    No, Young Gyu; Ahn, Kwang Il [Korea Atomic Energy Research Institute, Daejeon (Korea, Republic of); Kim, Ju Hyun; Na, Man Gyun [Dept. of Nuclear Engineering, Chosun University, Gwangju (Korea, Republic of); Lim, Dong Hyuk [Korea Institute of Nuclear Nonproliferation and Control, Daejon (Korea, Republic of)

    2012-05-15

    After the Fukushima nuclear accident in 2011, there has been increasing concern regarding severe accidents in nuclear facilities. Severe accident scenarios are difficult for operators to monitor and identify. Therefore, accurate prediction of a severe accident is important in order to manage it appropriately in the unfavorable conditions. In this study, artificial intelligence (AI) techniques, such as support vector classification (SVC), probabilistic neural network (PNN), group method of data handling (GMDH), and fuzzy neural network (FNN), were used to monitor the major transient scenarios of a severe accident caused by three different initiating events, the hot-leg loss of coolant accident (LOCA), the cold-leg LOCA, and the steam generator tube rupture in pressurized water reactors (PWRs). The SVC and PNN models were used for the event classification. The GMDH and FNN models were employed to accurately predict the important timing representing severe accident scenarios. In addition, in order to verify the proposed algorithm, data from a number of numerical simulations were required in order to train the AI techniques due to the shortage of real LOCA data. The data was acquired by performing simulations using the MAAP4 code. The prediction accuracy of the three types of initiating events was sufficiently high to predict severe accident scenarios. Therefore, the AI techniques can be applied successfully in the identification and monitoring of severe accident scenarios in real PWRs.

  19. Monitoring severe accidents using AI techniques

    International Nuclear Information System (INIS)

    No, Young Gyu; Ahn, Kwang Il; Kim, Ju Hyun; Na, Man Gyun; Lim, Dong Hyuk

    2012-01-01

    After the Fukushima nuclear accident in 2011, there has been increasing concern regarding severe accidents in nuclear facilities. Severe accident scenarios are difficult for operators to monitor and identify. Therefore, accurate prediction of a severe accident is important in order to manage it appropriately in the unfavorable conditions. In this study, artificial intelligence (AI) techniques, such as support vector classification (SVC), probabilistic neural network (PNN), group method of data handling (GMDH), and fuzzy neural network (FNN), were used to monitor the major transient scenarios of a severe accident caused by three different initiating events, the hot-leg loss of coolant accident (LOCA), the cold-leg LOCA, and the steam generator tube rupture in pressurized water reactors (PWRs). The SVC and PNN models were used for the event classification. The GMDH and FNN models were employed to accurately predict the important timing representing severe accident scenarios. In addition, in order to verify the proposed algorithm, data from a number of numerical simulations were required in order to train the AI techniques due to the shortage of real LOCA data. The data was acquired by performing simulations using the MAAP4 code. The prediction accuracy of the three types of initiating events was sufficiently high to predict severe accident scenarios. Therefore, the AI techniques can be applied successfully in the identification and monitoring of severe accident scenarios in real PWRs.

  20. Severe Accident Management System On-line Network SAMSON

    International Nuclear Information System (INIS)

    Silverman, Eugene B.

    2004-01-01

    SAMSON is a computational tool used by accident managers in the Technical Support Centers (TSC) and Emergency Operations Facilities (EOF) in the event of a nuclear power plant accident. SAMSON examines over 150 status points monitored by nuclear power plant process computers during a severe accident and makes predictions about when core damage, support plate failure, and reactor vessel failure will occur. These predictions are based on the current state of the plant assuming that all safety equipment not already operating will fail. SAMSON uses expert systems, as well as neural networks trained with the back propagation learning algorithms to make predictions. Training on data from an accident analysis code (MAAP - Modular Accident Analysis Program) allows SAMSON to associate different states in the plant with different times to critical failures. The accidents currently recognized by SAMSON include steam generator tube ruptures (SGTRs), with breaks ranging from one tube to eight tubes, and loss of coolant accidents (LOCAs), with breaks ranging from 0.0014 square feet (1.30 cm 2 ) in size to breaks 3.0 square feet in size (2800 cm 2 ). (author)

  1. Severe accident testing of electrical penetration assemblies

    International Nuclear Information System (INIS)

    Clauss, D.B.

    1989-11-01

    This report describes the results of tests conducted on three different designs of full-size electrical penetration assemblies (EPAs) that are used in the containment buildings of nuclear power plants. The objective of the tests was to evaluate the behavior of the EPAs under simulated severe accident conditions using steam at elevated temperature and pressure. Leakage, temperature, and cable insulation resistance were monitored throughout the tests. Nuclear-qualified EPAs were produced from D. G. O'Brien, Westinghouse, and Conax. Severe-accident-sequence analysis was used to generate the severe accident conditions (SAC) for a large dry pressurized-water reactor (PWR), a boiling-water reactor (BWR) Mark I drywell, and a BWR Mark III wetwell. Based on a survey conducted by Sandia, each EPA was matched with the severe accident conditions for a specific reactor type. This included the type of containment that a particular EPA design was used in most frequently. Thus, the D. G. O'Brien EPA was chosen for the PWR SAC test, the Westinghouse was chosen for the Mark III test, and the Conax was chosen for the Mark I test. The EPAs were radiation and thermal aged to simulate the effects of a 40-year service life and loss-of-coolant accident (LOCA) before the SAC tests were conducted. The design, test preparations, conduct of the severe accident test, experimental results, posttest observations, and conclusions about the integrity and electrical performance of each EPA tested in this program are described in this report. In general, the leak integrity of the EPAs tested in this program was not compromised by severe accident loads. However, there was significant degradation in the insulation resistance of the cables, which could affect the electrical performance of equipment and devices inside containment at some point during the progression of a severe accident. 10 refs., 165 figs., 16 tabs

  2. Improving Accident Tolerance of Nuclear Fuel with Coated Mo-alloy Cladding

    OpenAIRE

    Bo Cheng; Young-Jin Kim; Peter Chou

    2016-01-01

    In severe loss of coolant accidents (LOCA), similar to those experienced at Fukushima Daiichi and Three Mile Island Unit 1, the zirconium alloy fuel cladding materials are rapidly heated due to nuclear decay heating and rapid exothermic oxidation of zirconium with steam. This heating causes the cladding to rapidly react with steam, lose strength, burst or collapse, and generate large quantities of hydrogen gas. Although maintaining core cooling remains the highest priority in accident managem...

  3. Thermal Hydraulic design parameters study for severe accidents using neural networks

    Energy Technology Data Exchange (ETDEWEB)

    Roh, Chang Hyun; Chang, Soon Heung [Korea Advanced Institute of Science and Technology, Taejon (Korea, Republic of); Chang, Keun Sun [Sunmoon University, Asan (Korea, Republic of)

    1998-12-31

    To provide the information on severe accident progression is very important for advanced or new type of nuclear power plant (NPP) design. A parametric study, therefore, was performed to investigate the effect of thermal hydraulic design parameters on severe accident progression of pressurized water reactors (PWRs). Nine parameters, which are considered important in NPP design or severe accident progression, were selected among the various thermal hydraulic design parameters. The backpropagation neural network (BPN) was used to determine parameters, which might more strongly affect the severe accident progression, among nine parameters. For training, different input patterns were generated by the latin hypercube sampling (LHS) technique and then different target patterns that contain core uncovery time and vessel failure time were obtained for Young Gwang Nuclear (YGN) Units 3 and 4 using modular accident analysis program (MAAP) 3.0B code. Three different severe accident scenarios, such as two loss of coolant accidents (LOCAs) and station blackout (SBO), were considered in this analysis. Results indicated that design parameters related to refueling water storage tank (RWST), accumulator and steam generator (S/G) have more dominant effects on the progression of severe accidents investigated, compared to the other six parameters. 9 refs., 5 tabs. (Author)

  4. Thermal Hydraulic design parameters study for severe accidents using neural networks

    Energy Technology Data Exchange (ETDEWEB)

    Roh, Chang Hyun; Chang, Soon Heung [Korea Advanced Institute of Science and Technology, Taejon (Korea, Republic of); Chang, Keun Sun [Sunmoon University, Asan (Korea, Republic of)

    1997-12-31

    To provide the information on severe accident progression is very important for advanced or new type of nuclear power plant (NPP) design. A parametric study, therefore, was performed to investigate the effect of thermal hydraulic design parameters on severe accident progression of pressurized water reactors (PWRs). Nine parameters, which are considered important in NPP design or severe accident progression, were selected among the various thermal hydraulic design parameters. The backpropagation neural network (BPN) was used to determine parameters, which might more strongly affect the severe accident progression, among nine parameters. For training, different input patterns were generated by the latin hypercube sampling (LHS) technique and then different target patterns that contain core uncovery time and vessel failure time were obtained for Young Gwang Nuclear (YGN) Units 3 and 4 using modular accident analysis program (MAAP) 3.0B code. Three different severe accident scenarios, such as two loss of coolant accidents (LOCAs) and station blackout (SBO), were considered in this analysis. Results indicated that design parameters related to refueling water storage tank (RWST), accumulator and steam generator (S/G) have more dominant effects on the progression of severe accidents investigated, compared to the other six parameters. 9 refs., 5 tabs. (Author)

  5. Containment accident analysis using CONTEMPT4/M0D2 compared with experimental data

    International Nuclear Information System (INIS)

    Metcalfe, L.J.; Hargroves, D.W.; Wells, R.A.

    1978-01-01

    CONTEMPT4/MOD2 is a new computer program developed to predict the long-term thermal hydraulic behavior of light-water reactor and experimental containment systems during postulated loss-of-coolant accident (LOCA) conditions. Improvements over previous containment codes include multicompartment capability and ice condenser analytical models. A program description and comparisons of calculated results with experimental data are presented

  6. Conceptual design of the integral test loop (I): Reactor coolant system and secondary system

    Energy Technology Data Exchange (ETDEWEB)

    Song, Chul Hwa; Lee, Seong Je; Kwon, Tae Soon; Moon, Sang Ki [Korea Atomic Energy Research Institute, Taejon (Korea)

    1999-10-01

    This report describes the conceptual design of the primary coolant system and the secondary system of the Integral Test Loop (ITL) which simulates overall thermal hydraulic phenomena of the primary system of a nuclear power plant during postulated accidents or transients. The design basis for the primary coolant system and secondary system is as follows ; Reference plant: Korean Standard Nuclear Plant (KSNP), Height ratio : 1/1, Volume ratio : 1/200, Power scale : Max. 15% of the scaled nominal power, Temperature, Pressure : Real plant conditions. The primary coolant system includes a reactor vessel, which contains a core simulator, a steam generator, a reactor coolant pump simulator, a pressurizer and piping, which consists of two hot legs, four cold legs and four intermediate legs. The secondary system consists of s steam discharge system, a feedwater supply system and a steam condensing system. This conceptual design report describes general configuration of the reference plant, and major function and operation of each system of the plant. Also described is the design philosophy of each component and system of the ITL, and specified are the design criteria and technical specifications of each component and system of the ITL in the report. 17 refs., 43 figs., 51 tabs. (Author)

  7. Development of the model for the stress calculation of fuel assembly under accident load

    International Nuclear Information System (INIS)

    Kim, Il Kon

    1993-01-01

    The finite element model for the stress calculation in guide thimbles of a fuel assembly (FA) under seismic and loss-of-coolant-accident (LOCA) load is developed. For the stress calculation of FA under accident load, at first the program MAIN is developed to select the worst bending mode shaped FA from core model. And then the model for the stress calculation of FA is developed by means of the finite element code. The calculated results of program MAIN are used as the kinematic constraints of the finite element model of a FA. Compared the calculated results of the stiffness of the finite element model of FA with the test results they have good agreements. (Author)

  8. Basic experimental study with visual observation on elimination of the re-criticality issue using the MELT-II facility. Simulated fuel-escape behavior through a coolant channel

    International Nuclear Information System (INIS)

    Matsuba, Ken-ichi; Imahori, Shinji; Isozaki, Mikio

    2004-11-01

    In a core disruptive accident of fast reactors, fuel escape from the reactor core is a key phenomenon for prevention of re-criticality with significant mechanical-energy release subsequent to formation of a large-scale fuel pool with high mobility. Therefore, it is effective to study possibility of early fuel escape through probable escape paths such as a control-rod-guide-tube space well before high-mobility-pool formation. The purpose of the present basic experimental study is to clarify the mechanism of fuel-escape under a condition expected in the reactor situation, in which some amount of coolant may be entrapped into the molten-fuel pool. The following results have been obtained through basic experiments in which molten Wood's metal (components: 60wt%Bi-20wt%Sn-20wt%In, density at the room temperature: 8700 kg/m 3 , melting point: 78.8degC) is ejected into an coolant channel filled with water. (1) In the course of melt ejection, a small quantity of coolant is forced to be entrapped into the melt pool as a result of thermal interactions leading to high-pressure rise within the coolant channel. (2) Melt ejection is accelerated by pressure build-up which results from vapor pressure of entrapped coolant within the melt pool. (3) Average melt-ejection rate tends to increase in lower coolant-subcooling conditions, in which pressure build-up within the melt pool is enhanced. These results indicate a probability of a phenomenon in which melt ejection is accelerated by entrapment of coolant within a melt pool. Through application of the mechanism of confirmed phenomenon into the reactor condition, it is suggested that fuel escape is enhanced by entrapment of coolant within a fuel pool. (author)

  9. Testing, verification and application of CONTAIN for severe accident analysis of LMFBR-containments

    International Nuclear Information System (INIS)

    Langhans, J.

    1991-01-01

    Severe accident analysis for LMFBR-containments has to consider various phenomena influencing the development of containment loads as pressure and temperatures as well as generation, transport, depletion and release of aerosols and radioactive materials. As most of the different phenomena are linked together their feedback has to be taken into account within the calculation of severe accident consequences. Otherwise no best-estimate results can be assured. Under the sponsorship of the German BMFT the US code CONTAIN is being developed, verified and applied in GRS for future fast breeder reactor concepts. In the first step of verification, the basic calculation models of a containment code have been proven: (i) flow calculation for different flow situations, (ii) heat transfer from and to structures, (iii) coolant evaporation, boiling and condensation, (iv) material properties. In the second step the proof of the interaction of coupled phenomena has been checked. The calculation of integrated containment experiments relating natural convection flow, structure heating and coolant condensation as well as parallel calculation of results obtained with an other code give detailed information on the applicability of CONTAIN. The actual verification status allows the following conclusion: a caucious analyst experienced in containment accident modelling using the proven parts of CONTAIN will obtain results which have the same accuracy as other well optimized and detailed lumped parameter containment codes can achieve. Further code development, additional verification and international exchange of experience and results will assure an adequate code for the application in safety analyses for LMFBRs. (orig.)

  10. Evaluation of containment peak pressure and structural response for a large-break loss-of-coolant accident in a VVER-440/213 NPP

    Energy Technology Data Exchange (ETDEWEB)

    Spencer, B.W.; Sienicki, J.J.; Kulak, R.F.; Pfeiffer, P.A. [Argonne National Lab., IL (United States); Voeroess, L.; Techy, Z. [VEIKI Inst. for Electric Power Research, Budapest (Hungary); Katona, T. [Paks Nuclear Power Plant (Hungary)

    1998-07-01

    A collaborative effort between US and Hungarian specialists was undertaken to investigate the response of a VVER-440/213-type NPP to a maximum design-basis accident, defined as a guillotine rupture with double-ended flow from the largest pipe (500 mm) in the reactor coolant system. Analyses were performed to evaluate the magnitude of the peak containment pressure and temperature for this event; additional analyses were performed to evaluate the ultimate strength capability of the containment. Separate cases were evaluated assuming 100% effectiveness of the bubbler-condenser pressure suppression system as well as zero effectiveness. The pipe break energy release conditions were evaluated from three sources: (1) FSAR release rate based on Soviet safety calculations, (2) RETRAN-03 analysis and (3) ATHLET analysis. The findings indicated that for 100% bubbler-condenser effectiveness the peak containment pressures were less than the containment design pressure of 0.25 MPa. For the BDBA case of zero effectiveness of the bubbler-condenser system, the peak pressures were less than the calculated containment failure pressure of 0.40 MPa absolute.

  11. Experimental analysis of upward vertical two-phase flow in four-cusp channels simulating the conditions of a typical nuclear reactor channel, degraded by a loss of coolant accident

    International Nuclear Information System (INIS)

    Assad, A.C.A.

    1984-01-01

    The present work deals with an experimental analysis of upward vertical two-phase flow in channels with circular and four-cusp cross-sections. The latter simulates the conditions of a typical nuclear reactor channel, degraded by a loss of coolant accident. Simultaneous flow of air and water has been employed to simulate adiabatic steam-water flow. The installation of air-water separators helped eliminate instabilities during pressure-drop measurements. The gamma ray attenuation was utilized for the void fraction determination. For the four-cusp geommetry, new criteria for two-phase flow regime transitions have been determined, as well as new correlatins for pressure drop and void fraction, as function of the Lockhart-Martinelli factor and vapour mass-fraction, respectively. (Author) [pt

  12. OECD/CSNI specialist meeting on fuel coolant interactions: summary and conclusions

    International Nuclear Information System (INIS)

    1997-01-01

    Research activities and interest on fuel-coolant interaction (FCI) have been increased and broadened since the last CSNI Specialist Meeting held in January 1993. Significant experimental and analytical research has been performed in many OECD countries and others. The growing international interest is, in large part, due to the emphasis on broader aspects of FCI ranging from melt quenching and coolability to energetic explosions (both in- and ex-vessel), and their relevance and applications to next-generation reactor design as well as accident management strategies. The objectives of the meeting are to review the knowledge and to obtain consensus on the phenomenology of FCI and in predicting FCI behavior in LWRs severe accidents; to identify those areas of FCI phenomena and prediction which are important for reactor safety but still poorly understood and require further study with clear methodologies; to inform the community and the regulatory agencies of the status of FCI issues, especially in the application to accident management and future reactor designs. The various sessions are: reactor applications, pre-mixing, propagation / trigger, experiments

  13. Expert software for accident identification

    International Nuclear Information System (INIS)

    Dobnikar, M.; Nemec, T.; Muehleisen, A.

    2003-01-01

    Each type of an accident in a Nuclear Power Plant (NPP) causes immediately after the start of the accident variations of physical parameters that are typical for that type of the accident thus enabling its identification. Examples of these parameter are: decrease of reactor coolant system pressure, increase of radiation level in the containment, increase of pressure in the containment. An expert software enabling a fast preliminary identification of the type of the accident in Krsko NPP has been developed. As input data selected typical parameters from Emergency Response Data System (ERDS) of the Krsko NPP are used. Based on these parameters the expert software identifies the type of the accident and also provides the user with appropriate references (past analyses and other documentation of such an accident). The expert software is to be used as a support tool by an expert team that forms in case of an emergency at Slovenian Nuclear Safety Administration (SNSA) with the task to determine the cause of the accident, its most probable scenario and the source term. The expert software should provide initial identification of the event, while the final one is still to be made after appropriate assessment of the event by the expert group considering possibility of non-typical events, multiple causes, initial conditions, influences of operators' actions etc. The expert software can be also used as an educational/training tool and even as a simple database of available accident analyses. (author)

  14. Flow boiling test of GDP replacement coolants

    International Nuclear Information System (INIS)

    Park, S.H.

    1995-01-01

    The tests were part of the CFC replacement program to identify and test alternate coolants to replace CFC-114 being used in the uranium enrichment plants at Paducah and Portsmouth. The coolants tested, C 4 F 10 and C 4 F 8 , were selected based on their compatibility with the uranium hexafluoride process gas and how well the boiling temperature and vapor pressure matched that of CFC-114. However, the heat of vaporization of both coolants is lower than that of CFC-114 requiring larger coolant mass flow than CFC-114 to remove the same amount of heat. The vapor pressure of these coolants is higher than CFC-114 within the cascade operational range, and each coolant can be used as a replacement coolant with some limitation at 3,300 hp operation. The results of the CFC-114/C 4 F 10 mixture tests show boiling heat transfer coefficient degraded to a minimum value with about 25% C 4 F 10 weight mixture in CFC-114 and the degree of degradation is about 20% from that of CFC-114 boiling heat transfer coefficient. This report consists of the final reports from Cudo Technologies, Ltd

  15. Loss of coolant acident analyses on Osiris research reactor using the RELAP5 code

    International Nuclear Information System (INIS)

    Soares, Humberto Vitor; Costa, Antonella Lombardi; Lima, Claubia Pereira Bezerra; Veloso, Maria Auxiliadora Fortini

    2011-01-01

    RELAP5/MOD 3.3 code is widely used for thermal hydraulic studies of commercial nuclear power plants. However, several current investigations have shown that RELAP5 code can also be applied for thermal hydraulic analysis of nuclear research systems with good predictions. In this paper, a nodalization of the core and the most important components of the primary cooling system of the OSIRIS reactor developed for RELAP5 thermal hydraulic code are presented as well as results of steady state and transient simulations. OSIRIS has thermal power of 70 MW and it is an open pool type research reactor moderated and cooled by water. The OSIRIS reactor characteristics have been used as a base for the development of a model for the Multipurpose Brazilian Reactor (RMB). The aim of the present work is to investigate the behavior of the core during a loss of coolant accident and the possible damage of the fuel elements due an inadequate heat removal. Although the core coolant reached the saturation point due the large break, the fuel element conditions were out of the damage zone. (author)

  16. Thermal Behavior of the Coolant in the Emergency Cooldown Tank for an Integral Reactor

    Energy Technology Data Exchange (ETDEWEB)

    Moon, Joo Hyung; Kim, Seok; Kim, Woo Shik; Jung, Seo Yoon; Kim, Young In [KAERI, Daejeon (Korea, Republic of)

    2016-05-15

    The Residual Heat Removal System (PRHRS) is one of the passive safety systems which should be activated after an accident to remove the residual heat from the core and the sensible heat of the reactor coolant system (RCS) through the steam generators until the safe shutdown conditions are reached. In the previous study presented at the last KNS Autumn Meeting, transient behavior of the RCS temperature and the cooling performance of the PRHRS were investigated numerically by using newly developed in-house code based on MATLAB software. By using the program, the steady-state and transient (quasi-steady state) characteristics during the operation of the PRHRS had been reported. In this program, the temperature of the coolant in the Emergency Cooldown Tank (ECT) was assumed to be constant at saturated state and pool boiling heat transfer mechanism was applied through the entire time domain. The coolant of the ECT reached at a saturated state in early time. It was revealed that the assumption made in the previous study was reasonable.

  17. Study on the experimental VHTR safety with analysis for a hypothetical rapid depressurization accident

    International Nuclear Information System (INIS)

    Mitake, S.; Suzuki, K.; Ohno, T.; Okada, T.

    1982-01-01

    A hypothetical rapid depressurization accident of the experimental VHTR has been analyzed, including all phenomena in the accident, from its initiating depressurization of the coolant to consequential radiological hazard. Based on reliability analysis of the engineered safety features, all possible sequences, in which the safety systems are in success or in failure, have been investigated with event tree analysis. The result shows the inherent safety characteristics of the reactor and the effectiveness of the engineered safety features. And through the analysis, it has been indicated that further investigations on some phenomena in the accident, e.g., air ingress by natural circulation flow and fission product transport in the plant, will bring forth more reasonable and sufficient safety of the reactor

  18. OECD/DOE/CEA VVER-1000 coolant transient (V1000CT) benchmark - a consistent approach for assessing coupled codes for RIA analysis

    International Nuclear Information System (INIS)

    Boyan D Ivanov; Kostadin N Ivanov; Eric Royer; Sylvie Aniel; Nikola Kolev; Pavlin Groudev

    2005-01-01

    Full text of publication follows: The Rod Ejection Accident (REA) and Main Steam Line Break (MSLB) are two of the most important Design Basis Accidents (DBA) for VVER-1000 exhibiting significant localized space-time effects. A consistent approach for assessing coupled three-dimensional (3-D) neutron kinetics/thermal hydraulics codes for these Reactivity Insertion Accidents (RIA) is to first validate the codes using the available plant test (measured) data and after that perform cross code comparative analysis for REA and MSLB scenarios. In the framework of joint effort between the Nuclear Energy Agency (NEA) of OECD, the United States Department of Energy (US DOE), and the Commissariat a l'Energie Atomique (CEA), France a coupled 3-D neutron kinetics/thermal hydraulics benchmark was defined. The benchmark is based on data from the Unit 6 of the Bulgarian Kozloduy Nuclear Power Plant (NPP). In performing this work the PSU, USA and CEA-Saclay, France have collaborated with Bulgarian organizations, in particular with the KNPP and the INRNE. The benchmark consists of two phases: Phase 1: Main Coolant Pump Switching On; Phase 2: Coolant Mixing Tests and MSLB. In addition to the measured (experiment) scenario, an extreme calculation scenario was defined for better testing 3-D neutronics/thermal-hydraulics techniques: rod ejection simulation with control rod being ejected in the core sector cooled by the switched on MCP. Since the previous coupled code benchmarks indicated that further development of the mixing computation models in the integrated codes is necessary, a coolant mixing experiment and MSLB transients are selected for simulation in Phase 2 of the benchmark. The MSLB event is characterized by a large asymmetric cooling of the core, stuck rods and a large primary coolant flow variation. Two scenarios are defined in Phase 2: the first scenario is taken from the current licensing practice and the second one is derived from the original one using aggravating

  19. Opening of through-wall cracks in BWR coolant lines due to the application of severe overloads II: a simple approach

    International Nuclear Information System (INIS)

    Smith, E.

    1984-01-01

    A simple theoretical analysis gives an estimate of the opening area associated with a through-wall crack in a pipe when this is subject to an imposed rotation at its ends. The crack-opening area is expressed in terms of the crack size, and the plastic rotation at the cracked cross-section, where plastic deformation is assumed to be confined. The results are relevant to the integrity of boiling water reactor coolant systems during accident conditions

  20. Evaluations of Mo-alloy for light water reactor fuel cladding to enhance accident tolerance

    Directory of Open Access Journals (Sweden)

    Cheng Bo

    2016-01-01

    Full Text Available Molybdenum based alloy is selected as a candidate to enhance tolerance of fuel to severe loss of coolant accidents due to its high melting temperature of ∼2600 °C and ability to maintain sufficient mechanical strength at temperatures exceeding 1200 °C. An outer layer of either a Zr-alloy or Al-containing stainless steel is designed to provide corrosion resistance under normal operation and oxidation resistance in steam exceeding 1000 °C for 24 hours under severe loss of coolant accidents. Due to its higher neutron absorption cross-sections, the Mo-alloy cladding is designed to be less than half the thickness of the current Zr-alloy cladding. A feasibility study has been undertaken to demonstrate (1 fabricability of long, thin wall Mo-alloy tubes, (2 formability of a protective outer coating, (3 weldability of Mo tube to endcaps, (4 corrosion resistance in autoclaves with simulated LWR coolant, (5 oxidation resistance to steam at 1000–1500 °C, and (6 sufficient axial and diametral strength and ductility. High purity Mo as well as Mo + La2O3 ODS alloy have been successfully fabricated into ∼2-meter long tubes for the feasibility study. Preliminary results are encouraging, and hence rodlets with Mo-alloy cladding containing fuel pellets have been under preparation for irradiation at the Advanced Test Reactor (ATR in Idaho National Laboratory. Additional efforts are underway to enhance the Mo cladding mechanical properties via process optimization. Oxidation tests to temperatures up to 1500 °C, and burst and creep tests up to 1000 °C are also underway. In addition, some Mo disks in close contact with UO2 from a previous irradiation program (to >100 GWd/MTU at the Halden Reactor have been subjected to post-irradiation examination to evaluate the chemical compatibility of Mo with irradiated UO2 and fission products. This paper will provide an update on results from the feasibility study and discuss the attributes of the

  1. Intersystem LOCA risk assessment: methodology and results

    International Nuclear Information System (INIS)

    Galyean, W.J.; Kelly, D.L.; Schroeder, J.A.; Auflick, L.J.; Blackman, H.S.; Gertman, D.I.; Hanley, L.N.

    1994-01-01

    The United States Nuclear Regulatory Commission is sponsoring a research program to develop an improved understanding of the human factors, hardware and accident consequence issues that dominate the risk from an intersystem loss-of-coolant accident (ISLOCA) at a nuclear power plant. To accomplish the goals of this program, a mehtodology has been developed for estimating ISLOCA core damage frequency and risk. The steps in this methodology are briefly described, along with the results obtained from an application of the methodology at three pressurized water reactors. Also included are the results of a screening study of boiling water reactors. ((orig.))

  2. MABEL-2: a code to analyse cladding deformation in a loss-of-coolant accident: status February 1980

    International Nuclear Information System (INIS)

    Gittus, J.H.; Haste, T.J.; Bowring, R.W.; Cooper, C.A.

    1980-02-01

    MABEL-2 calculates the deformation of a single fuel rod. This rod is surrounded by 8 other rods on a square lattice whose behaviour is specified via Input Data options. A 2-D (r,theta) conduction model is used for the fuel rod, the cladding creep is calculated from the CANSWEL-2 model and the feedback effect of clad strain on heat transfer to the coolant is obtained from subchannel analysis of the coolant passages surrounding the rod. The coding of the first version of MABEL-2 has been completed except for work to optimise the iteration convergence, minimise the running time and generally tidy up the coding. (author)

  3. Fuel behaviour in the case of severe accidents and potential ATF designs. Fuel Behavior in Severe Accidents and Potential Accident Tolerance Fuel Designs

    International Nuclear Information System (INIS)

    Cheng, Bo

    2013-01-01

    This presentation reviews the conditions of fuel rods under severe loss of coolant conditions, approaches that may increase coping time for plant operators to recover, requirements of advanced fuel cladding to increase tolerance in accident conditions, potential candidate alloys for accident-tolerant fuel cladding and a novel design of molybdenum (Mo) -based fuel cladding. The current Zr-alloy fuel cladding will lose all its mechanical strength at 750-800 deg. C, and will react rapidly with high-pressure steam, producing significant hydrogen and exothermic heat at 700-1000 deg. C. The metallurgical properties of Zr make it unlikely that modifications of the Zr-alloy will improve the behaviour of Zr-alloys at temperatures relevant to severe accidents. The Mo-based fuel cladding is designed to (1) maintain fuel rod integrity, and reduce the release rate of hydrogen and exothermic heat in accident conditions at 1200-1500 deg. C. The EPRI research has thus far completed the design concepts, demonstration of feasibility of producing very thin wall (0.2 mm) Mo tubes. The feasibility of depositing a protective coating using various techniques has also been demonstrated. Demonstration of forming composite Mo-based cladding via mechanical reduction has been planned

  4. Enhancing the moderator effectiveness as a heat sink during loss-of-coolant accidents in CANDU-PHW reactors using glass-peened surfaces

    International Nuclear Information System (INIS)

    Nitheanandan, T.; Tiede, R.W.; Sanderson, D.B.; Fong, R.W.L.; Coleman, C.E.

    1998-08-01

    The horizontal fuel channel concept is a distinguishing feature of the CANDU-PHW reactor. Each fuel channel consists of a Zr-2.5Nb pressure tube and a Zircaloy-2 calandria tube, separated by a gas filled annulus. The calandria tube is surrounded by heavy-water moderator that also provides a backup heat sink for the reactor core. This heat sink (about 10 mm away from the hot pressure tube) ensures adequate cooling of fuel in the unlikely event of a loss-of-coolant accident (LOCA). One of the ways of enhancing the use of the moderator as a heat sink is to improve the heat-transfer characteristics between the calandria tube and the moderator. This enhancement can be achieved through surface modifications to the calandria tube which have been shown to increase the tube's critical heat flux (CHF) value. An increase in CHIF could be used to reduce moderator subcooling requirements for CANDU fuel channels or increase the margin to dryout. A series of experiments was conducted to assess the benefits provided by glass-peening the outside surface of calandria tubes for postulated LOCA conditions. In particular, the ability to increase the tube's CHF, and thereby reduce moderator subcooling requirements was assessed. Results from the experiments confirm that glass-peening the outer surface of a tube increases its CHF value in pool boiling. This increase in CHF could be used to reduce moderator subcooling requirements for CANDU fuel channels by at least 5 degrees C. (author)

  5. Validation of severe accident management guidance for the wolsong plants

    International Nuclear Information System (INIS)

    Park, S. Y.; Jin, Y. H.; Kim, S. D.; Song, Y. M.

    2006-01-01

    Full text: Full text: The severe accident management(SAM) guidance has been developed for the Wolsong nuclear power plants in Korea. The Wolsong plants are 700MWe CANDU-type reactors with heavy water as the primary coolant, natural uranium-fueled pressurized, horizontal tubes, surrounded by heavy water moderator inside a horizontal calandria vessel. The guidance includes six individual accident management strategies: (1) injection into primary heat transport system (2) injection into calandria vessel (3) injection into calandria vault (4) reduction of fission product release (5) control of reactor building condition (6) reduction of reactor building hydrogen. The paper provides the approaches to validate the SAM guidance. The validation includes the evaluation of:(l) effectiveness of accident management strategies, (2) performance of mitigation systems or components, (3) calculation aids, (4) strategy control diagram, and (5) interface with emergency operation procedure and with radiation emergency plan. Several severe accident sequences with high probability is selected from the plant specific level 2 probabilistic safety analysis results for the validation of SAM guidance. Afterward, thermal hydraulic and severe accident phenomenological analyses is performed using ISAAC(Integrated Severe Accident Analysis Code for CANDU Plant) computer program. Furthermore, the experiences obtained from a table-top-drill is also discussed

  6. Experimental and analytical studies of melt jet-coolant interactions: a synthesis

    Energy Technology Data Exchange (ETDEWEB)

    Dinh, T.N.; Bui, V.A.; Nourgaliev, R.R.; Green, J.A.; Sehgal, B.R. [Royal Inst. of Tech., Stockholm (Sweden). Div. of Nuclear Power Safety

    1998-01-01

    Instability and fragmentation of a core melt jet in water have been actively studied during the past ten years. Several models, and a few computer codes, have been developed. However, there are, still, large uncertainties, both, in interpreting experimental results and in predicting reactor-scale processes. Steam explosion and debris coolability, as reactor safety issues, are related to the jet fragmentation process. A better understanding of the physics of jet instability and fragmentation is crucial for assessments of fuel-coolant interactions (FCIs). This paper presents research, conducted at the Division of Nuclear Power Safety, Royal Institute of Technology (RIT/NPS), Stockholm, concerning molten jet-coolant interactions, as a precursor for premixing. First, observations were obtained from scoping experiments with simulant fluids. Second, the linear perturbation method was extended and applied to analyze the interfacial-instability characteristics. Third, two innovative approachs to CFD modeling of jet fragmentation were developed and employed for analysis. The focus of the studies was placed on (a) identifying potential factors, which may affect the jet instability, (b) determining the scaling laws, and (c) predicting the jet behavior for severe accidents conditions. In particular, the effects of melt physical properties, and the thermal hydraulics of the mixing zone, on jet fragmentation were investigated. Finally, with the insights gained from a synthesis of the experimental results and analysis results, a new phenomenological concept, named `macrointeractions concept of jet fragmentation` is proposed. (author)

  7. Experimental and analytical studies of melt jet-coolant interactions: a synthesis

    International Nuclear Information System (INIS)

    Dinh, T.N.; Bui, V.A.; Nourgaliev, R.R.; Green, J.A.; Sehgal, B.R.

    1999-01-01

    Instability and fragmentation of a core melt jet in water have been actively studied during the past 10 years. Several models, and a few computer codes, have been developed. However, there are, still, large uncertainties, both, in interpreting experimental results and in predicting reactor-scale processes. Steam explosion and debris coolability, as reactor safety issues, are related to the jet fragmentation process. A better understanding of the physics of jet instability and fragmentation is crucial for assessments of fuel-coolant interactions (FCIs). This paper presents research, conducted at the Division of Nuclear Power Safety, Royal Institute of Technology (RIT/NPS), Stockholm, concerning molten jet-coolant interactions, as a precursor for premixing. First, observations were obtained from scoping experiments with simulant fluids. Second, the linear perturbation method was extended and applied to analyze the interfacial-instability characteristics. Third, two innovative approaches to computational fluid dynamics (CFD) modeling of jet fragmentation were developed and employed for analysis. The focus of the studies was placed on (a) identifying potential factors, which may affect the jet instability, (b) determining the scaling laws, and (c) predicting the jet behavior for severe accident conditions. In particular, the effects of melt physical properties, and the thermal hydraulics of the mixing zone, on jet fragmentation were investigated. Finally, with the insights gained from a synthesis of the experimental results and analysis results, a new phenomenological concept, named 'macrointeractions concept of jet fragmentation' is proposed. (orig.)

  8. Aerosols behavior inside a PWR during an accident

    International Nuclear Information System (INIS)

    Hervouet, C.

    1983-01-01

    During very hypothetical accidents occurring in a pressurized water ractor, radioactive aerosols can be released, during core-melt, inside the reactor containment building. A good knowledge of their behavior in the humid containment atmosphere (mass concentration and size distribution) is essential in order to evaluate their harmfulness in case of environment contamination and to design possible filtration devices. Accordingly the Safety Analysis Department of the Atomic Energy Commission uses several computer models, describing the particle formation (BOIL/MARCH), then behavior in the primary circuits (TRAP-MELT), and in the reactor containment building (AEROSOLS-PARFDISEKO-III B). On the one hand, these models have been improved, in particular the one related to the aerosol formation (nature and mass of released particles) using recent experimental results. On the other hand, sensitivity analyses have been performed with the AEROSOLS code which emphasize the particle coagulation parameters: agglomerate shape factors and collision efficiency. Finally, the different computer models have been applied to the study of aerosol behavior during a 900 MWe PWR accident: loss-of-coolant-accident (small break with failure of all safety systems) [fr

  9. Coolant cleanup method in a nuclear reactor

    International Nuclear Information System (INIS)

    Kubota, Masayoshi; Nishimura, Shigeoki; Takahashi, Sankichi; Izumi, Kenkichi; Motojima, Kenji.

    1983-01-01

    Purpose : To effectively adsorb to remove low molecular weight organic substances from iron exchange resins for use in the removal of various radioactive nucleides contained in reactor coolants. Method : Reactor coolants are recycled by a main recyling pump in a nuclear reactor and a portion of the coolants is cooled and, thereafter, purified in a coolant desalter. While on the other hand, high pressure steams generated from the reactor are passed through a turbine, cooled in a condensator, eliminated with claddings or the likes by the passage through a filtration desalter using powderous ion exchange resins and then further passed through a desalter (filled with granular ion exchange resins). For instance, an adsorption and removing device for organic substances (resulted through the decomposition of ion exchange resins) precoated with activated carbon powder or filled with granular activated carbon is disposed at the downstream for each of the desalters. In this way, the organic substances in the coolants are eliminated to prevent the reduction in the desalting performance of the ion exchange resins caused by the formation of complexes between organic substances and cobalt in the coolants, etc. In this way, the coolant cleanup performance is increased and the amount of wasted ion exchange resins can be decreased. (Horiuchi, T.)

  10. Compartmentalized safety coolant injection system

    International Nuclear Information System (INIS)

    Johnson, F.T.

    1983-01-01

    A safety coolant injection system for nuclear reactors wherein a core reflood tank is provided to afford more reliable reflooding of the reactor core in the event of a break in one of the reactor coolant supply loops. Each reactor coolant supply loop is arranged in a separate compartment in the containment structure to contain and control the flow of spilled coolant so as to permit its use during emergency core cooling procedures. A spillway allows spilled coolant in the compartment to pass into the emergency water storage tank from where it can be pumped back to the reactor vessel. (author)

  11. Verification results of methodology for determining the weighted mean coolant temperature in the primary circuit hot legs of WWER-1000 reactor plants

    International Nuclear Information System (INIS)

    Saunin, Yuri V.; Dobrotvorski, Alexander N.; Semenikhin, Alexander V.; Korolev, Alexander S.

    2017-01-01

    The JSC ''Atomtechenergo'' experts have developed a new methodology for determining the weighted mean coolant temperature in the primary circuit hot legs of WWER-1000 reactor plants. The necessity for developing the new methodology was determined by the need to decrease the calculation error of the weighted mean coolant temperature in the hot legs because of the coolant temperature stratification. The methodology development was based on the findings of experimental and calculating research executed by the authors. The methodology verification was fulfilled through comparison of calculation results obtained with and without the methodology use in various operational states and modes of several WWER-1000 power units. The obtained verification results have confirmed that the use of the new methodology provides objective error decrease in determining the weighted mean coolant temperature in the primary circuit hot legs. The decrease value depends on the stratification character which is various for different objects and conditions.

  12. Verification results of methodology for determining the weighted mean coolant temperature in the primary circuit hot legs of WWER-1000 reactor plants

    Energy Technology Data Exchange (ETDEWEB)

    Saunin, Yuri V.; Dobrotvorski, Alexander N.; Semenikhin, Alexander V.; Korolev, Alexander S. [JSC ' ' Atomtechenergo' ' , Novovoronezh (Russian Federation). Novovoronezh Filial ' ' Novovoronezhatomtechenergo' ' ; Ryasny, Sergei I. [JSC ' ' Atomtechenergo' ' , Moscow (Russian Federation)

    2017-09-15

    The JSC ''Atomtechenergo'' experts have developed a new methodology for determining the weighted mean coolant temperature in the primary circuit hot legs of WWER-1000 reactor plants. The necessity for developing the new methodology was determined by the need to decrease the calculation error of the weighted mean coolant temperature in the hot legs because of the coolant temperature stratification. The methodology development was based on the findings of experimental and calculating research executed by the authors. The methodology verification was fulfilled through comparison of calculation results obtained with and without the methodology use in various operational states and modes of several WWER-1000 power units. The obtained verification results have confirmed that the use of the new methodology provides objective error decrease in determining the weighted mean coolant temperature in the primary circuit hot legs. The decrease value depends on the stratification character which is various for different objects and conditions.

  13. Contempt-LT: a computer program for predicting containment pressure-temperature response to a loss-of-coolant accident

    International Nuclear Information System (INIS)

    Wheat, L.L.; Wagner, R.J.; Niederauer, G.F.; Obenchain, C.F.

    1975-06-01

    CONTEMPT-LT is a digital computer program, written in FORTRAN IV, developed to describe the long-term behavior of water-cooled nuclear reactor containment systems subjected to postulated loss-of-coolant accident (LOCA) conditions. The program calculates the time variation of compartment pressures, temperatures, mass and energy inventories, heat structure temperature distributions, and energy exchange with adjacent compartments. The program is capable of describing the effects of leakage on containment response. Models are provided to describe fan cooler and cooling spray engineered safety systems. Up to four compartments can be modeled with CONTEMPT-LT, and any compartment except the reactor system may have both a liquid pool region and an air-vapor atmosphere region above the pool. Each region is assumed to have a uniform temperature, but the temperatures of the two regions may be different. CONTEMPT-LT can be used to model all current boiling water reactor pressure suppression systems, including containments with either vertical or horizontal vent systems. CONTEMPT-LT can also be used to model pressurized water reactor dry containments, subatmospheric containments, and dual volume containments with an annulus region, and can be used to describe containment responses in experimental containment systems. The program user defines which compartments are used, specifies input mass and energy additions, defines heat structure and leakage systems, and describes the time advancement and output control. CONTEMPT-LT source decks are available in double precision extended-binary-coded-decimal-interchange-code (EBCDIC) versions. Sample problems have been run on the IBM360/75 computer. (U.S.)

  14. PBDOWN: A computer code for simulation of core material discharge and expansion in the upper coolant plenum in a hypothetical unprotected loss of flow accident in a LMFBR

    International Nuclear Information System (INIS)

    Royl, P.

    1985-01-01

    The report gives a description of the code PBDOWN (Pool Blow Down), its equations, input specifications and subroutines and it lists the input and output for some samples. Besides that some analysis results for the SNR-300 are discussed, that were obtained with this code. PBDOWN is an integral blow-down and expansion code, which simulates core material discharge and expansion into a sodium filled upper coolant plenum after build-up of vapour pressures in an unprotected loss of flow accident. The model includes the effect of sodium entrainment into an expending bubble of fuel or steel vapour with various assumptions for the heat transfer and vaporization of the entrained sodium droplets. The expanding vapour bubble is connected to the discharging pool via an orifice of a given size through which a time dependent ejection is simulated using quasi-stationary blow down correlations. The model allows bounding analysis of the possible influence of sodium vapour as a secondary working fluid, that is activated outside the pool on the overall expansion energy and discharge

  15. Nuclear reactor coolant channels

    International Nuclear Information System (INIS)

    Macbeth, R.V.

    1978-01-01

    Reference is made to coolant channels for pressurised water and boiling water reactors and the arrangement described aims to improve heat transfer between the fuel rods and the coolant. Baffle means extending axially within the channel are provided and disposed relative to the fuel rods so as to restrict flow oscillations occurring within the coolant from being propagated transversely to the axis of the channel. (UK)

  16. Experimental investigation of coolant and poisoned moderator mixing due to a simulated pressure tube/calandria tube fishmouth rupturing an overpoisoned guaranteed shutdown state

    International Nuclear Information System (INIS)

    Mackinnon, J.C.; Fortman, R.A.; Hadaller, G.I.

    1997-01-01

    During a guaranteed shutdown state (GSS) in a CANDU reactor, there must be sufficient negative reactivity to ensure subcriticality in the event of a process failure. In one of the acceptable states, the reactor is kept subcritical by a high concentration of a neutron-absorbing chemical (the poison gadolinium nitrate) dissolved in the moderator (i.e., the moderator is guaranteed overpoisoned). A postulated accident scenario which is considered as a part of reactor safety analysis is the rupture of a fuel channel (i.e., a pressure tube/calandria tube break) when the reactor is in a GSS. If one of the channels in the core breaks (requiring a simultaneous failure of both the pressure tube and the surrounding calandria tube), coolant from the primary heat transport system will be discharged into the moderator, causing an associated displacement of fluid through relief ducts at the top of the calandria vessel. The incoming (unpoisoned) coolant may mix quickly with the moderator, or may mix slowly while displacing poisoned moderator through the relief ducts. The effectiveness of mixing generally depends on the break location, the coolant discharge rate and the moderator circulation. If an in-core loss of coolant accident occurred while the reactor is in this overpoisoned state, it must be guaranteed that even with the dilution of the poison by the incoming coolant the reactor will remain subcritical on both a local and global basis. This paper presents an overview of an experimental program in progress at the Moderator Test Facility at Stern Laboratories to investigate coolant/poison mixing for a simulated in-core fishmouth pressure tube/calandria tube rupture. The nominal system at the same temperature as the heavily poisoned moderator, i.e., a depressurised 'cold' state. The results presented are those obtained during the commissioning of the modified Test Facility. The contents of the paper are as follows. First, the objectives of the experimental program are

  17. Numerical and experimental investigation of surface vortex formation in coolant reservoirs of reactor safety systems

    Energy Technology Data Exchange (ETDEWEB)

    Pandazis, Peter [Gesellschaft fuer Anlagen- und Reaktorsicherheit (GRS) gGmbH, Garching (Germany); Babcsany, Boglarka [Budapest Univ. of Technology and Economics (Hungary). Inst. of Nuclear Techniques

    2016-11-15

    The reliable operation of the emergency coolant pumps and passive gravitational injection systems are an important safety issue during accident scenarios with coolant loss in pressurized water reactors. Because of the pressure drop and flow disturbances surface vortices develops at the pump intakes if the water level decreasing below a critical value. The induced swirling flow and gas entrainment lead to flow limitation and to pump failures and damages. The prediction of the critical submergence to avoid surface vortex building is difficult because it depends on many geometrical and fluid dynamical parameters. An alternative and new method has been developed for the investigation of surface vortices. The method based on the combination of CFD results with the analytical vortex model of Burgers and Rott. For further investigation the small scale experiments from the Institute of Nuclear Techniques of the Budapest University of Technology and Economics are used which were inspired from flow limitation problems during the draining of the bubble condenser trays at a VVER type nuclear power plants.

  18. Corrosion and solubility in a TSP-buffered chemical environment following a loss of coolant accident: Part 2 – Zinc

    International Nuclear Information System (INIS)

    Pease, David; LaBrier, Daniel; Ali, Amir; Blandford, Edward D.; Howe, Kerry J.

    2016-01-01

    Highlights: • Zinc release is limited to less than 1 mg/L in TSP-buffered solution under a variety of conditions (pH, temperature, zinc source). • Zinc release in high-temperature non-TSP-buffered environment is approximately 25 mg/L. • Long-term zinc release is controlled by passivation (without TSP) and zinc solubility (with TSP). • Precipitation and solubility of zinc phosphate limit the release of zinc. - Abstract: Bench experiments were conducted to investigate the effect of the presence of trisodium phosphate (TSP) on the corrosion and release of zinc from metallic zinc-bearing surfaces under conditions representative of the containment pool following a postulated loss of coolant accident (LOCA) at a nuclear power generating facility. The experiments showed that in non-buffered (acidic) environments, measurable quantities of zinc are released from zinc-bearing surfaces. Precipitation and solubility of phosphate-based corrosion products, such as zinc phosphate, limit the release of zinc from zinc-bearing surfaces. These experiments have found that under a variety of conditions, including variations of temperature, pH, and across different zinc-bearing surfaces, the release of zinc into solution is limited to <1 mg/L when phosphate is present. When phosphate is not present, zinc release is instead bounded by a markedly higher saturation limit which is a strong function of the solution temperature.

  19. TRAC analysis of an 80% pump-side, cold-leg, large-break loss-of-coolant accident for the Westinghouse AP600 advanced reactor design

    International Nuclear Information System (INIS)

    Lime, J.F.; Boyack, B.E.

    1996-01-01

    An updated TRAC 80% pump-side, cold-leg, large-break (LB) loss-of-coolant accident (LOCA) has been calculated for the Westinghouse AP600 advanced reactor design. The updated calculation incorporates major code error corrections, model corrections, and plant design changes. The break size and location were calculated by Westinghouse to be the most severe LBLOCA for the AP600 design. The LBLOCA transient was calculated to 280 s, which is the time of in-containment refueling water-storage-tank injection. All fuel rods were quenched completely by 240 s. Peak cladding temperatures (PCTs) were well below the licensing limit of 1,478 K (2,200 F) but were very near the cladding oxidation temperature of 1,200 K (1,700 F). Transient event times and PCTs for the TRAC calculation were in reasonable agreement with those calculated by Westinghouse using their WCOBRA/TRAC code. However, there were significant differences in the detailed phenomena calculated by the two codes, particularly during the blowdown and refill periods. The reasons for these differences are still being investigated

  20. Failure rates in Barsebaeck-1 reactor coolant pressure boundary piping. An application of a piping failure database

    International Nuclear Information System (INIS)

    Lydell, B.

    1999-05-01

    This report documents an application of a piping failure database to estimate the frequency of leak and rupture in reactor coolant pressure boundary piping. The study used Barsebaeck-1 as reference plant. The study tried two different approaches to piping failure rate estimation: 1) PSA-style, simple estimation using Bayesian statistics, and 2) fitting of statistical distribution to failure data. A large, validated database on piping failures (like the SKI-PIPE database) supports both approaches. In addition to documenting leak and rupture frequencies, the SKI report describes the use of piping failure data to estimate frequency of medium and large loss of coolant accidents (LOCAs). This application study was co sponsored by Barsebaeck Kraft AB and SKI Research