WorldWideScience

Sample records for cool sub-neptune mass

  1. Understanding the mass-radius relation for sub-Neptunes: radius as a proxy for composition

    Energy Technology Data Exchange (ETDEWEB)

    Lopez, Eric D.; Fortney, Jonathan J. [Department of Astronomy and Astrophysics, University of California, Santa Cruz, CA 95064 (United States)

    2014-09-01

    Transiting planet surveys like Kepler have provided a wealth of information on the distribution of planetary radii, particularly for the new populations of super-Earth- and sub-Neptune-sized planets. In order to aid in the physical interpretation of these radii, we compute model radii for low-mass rocky planets with hydrogen-helium envelopes. We provide model radii for planets 1-20 M {sub ⊕}, with envelope fractions 0.01%-20%, levels of irradiation 0.1-1000 times Earth's, and ages from 100 Myr to 10 Gyr. In addition we provide simple analytic fits that summarize how radius depends on each of these parameters. Most importantly, we show that at fixed H/He envelope fraction, radii show little dependence on mass for planets with more than ∼1% of their mass in their envelope. Consequently, planetary radius is to a first order a proxy for planetary composition, i.e., H/He envelope fraction, for Neptune- and sub-Neptune-sized planets. We recast the observed mass-radius relationship as a mass-composition relationship and discuss it in light of traditional core accretion theory. We discuss the transition from rocky super-Earths to sub-Neptune planets with large volatile envelopes. We suggest ∼1.75 R {sub ⊕} as a physically motivated dividing line between these two populations of planets. Finally, we discuss these results in light of the observed radius occurrence distribution found by Kepler.

  2. Mass-radius relations and core-envelope decompositions of super-Earths and sub-Neptunes

    International Nuclear Information System (INIS)

    Howe, Alex R.; Burrows, Adam; Verne, Wesley

    2014-01-01

    Many exoplanets have been discovered with radii of 1-4 R ⊕ , between that of Earth and Neptune. A number of these are known to have densities consistent with solid compositions, while others are 'sub-Neptunes' likely to have significant H 2 -He envelopes. Future surveys will no doubt significantly expand these populations. In order to understand how the measured masses and radii of such planets can inform their structures and compositions, we construct models both for solid layered planets and for planets with solid cores and gaseous envelopes, exploring a range of core masses, H 2 -He envelope masses, and associated envelope entropies. For planets in the super-Earth/sub-Neptune regime for which both radius and mass are measured, we estimate how each is partitioned into a solid core and gaseous envelope, associating a specific core mass and envelope mass with a given exoplanet. We perform this decomposition for both ''Earth-like'' rock-iron cores and pure ice cores, and find that the necessary gaseous envelope masses for this important sub-class of exoplanets must range very widely from zero to many Earth masses, even for a given core mass. This result bears importantly on exoplanet formation and envelope evaporation processes.

  3. Mass-radius relations and core-envelope decompositions of super-Earths and sub-Neptunes

    Energy Technology Data Exchange (ETDEWEB)

    Howe, Alex R.; Burrows, Adam [Department of Astrophysical Sciences, Princeton University, Peyton Hall, Princeton, NJ 08544 (United States); Verne, Wesley, E-mail: arhowe@astro.princeton.edu, E-mail: burrows@astro.princeton.edu [Department of Computer Science, Princeton University, Princeton, NJ 08544 (United States)

    2014-06-01

    Many exoplanets have been discovered with radii of 1-4 R {sub ⊕}, between that of Earth and Neptune. A number of these are known to have densities consistent with solid compositions, while others are 'sub-Neptunes' likely to have significant H{sub 2}-He envelopes. Future surveys will no doubt significantly expand these populations. In order to understand how the measured masses and radii of such planets can inform their structures and compositions, we construct models both for solid layered planets and for planets with solid cores and gaseous envelopes, exploring a range of core masses, H{sub 2}-He envelope masses, and associated envelope entropies. For planets in the super-Earth/sub-Neptune regime for which both radius and mass are measured, we estimate how each is partitioned into a solid core and gaseous envelope, associating a specific core mass and envelope mass with a given exoplanet. We perform this decomposition for both ''Earth-like'' rock-iron cores and pure ice cores, and find that the necessary gaseous envelope masses for this important sub-class of exoplanets must range very widely from zero to many Earth masses, even for a given core mass. This result bears importantly on exoplanet formation and envelope evaporation processes.

  4. HOW THERMAL EVOLUTION AND MASS-LOSS SCULPT POPULATIONS OF SUPER-EARTHS AND SUB-NEPTUNES: APPLICATION TO THE KEPLER-11 SYSTEM AND BEYOND

    International Nuclear Information System (INIS)

    Lopez, Eric D.; Miller, Neil; Fortney, Jonathan J.

    2012-01-01

    We use models of thermal evolution and extreme ultraviolet (XUV) driven mass loss to explore the composition and history of low-mass, low-density transiting planets. We investigate the Kepler-11 system in detail and provide estimates of both the current and past planetary compositions. We find that an H/He envelope on Kepler-11b is highly vulnerable to mass loss. By comparing to formation models, we show that in situ formation of the system is extremely difficult. Instead we propose that it is a water-rich system of sub-Neptunes that migrated from beyond the snow line. For the broader population of observed planets, we show that there is a threshold in bulk planet density and incident flux above which no low-mass transiting planets have been observed. We suggest that this threshold is due to the instability of H/He envelopes to XUV-driven mass loss. Importantly, we find that this mass-loss threshold is well reproduced by our thermal evolution/contraction models that incorporate a standard mass-loss prescription. Treating the planets' contraction history is essential because the planets have significantly larger radii during the early era of high XUV fluxes. Over time low-mass planets with H/He envelopes can be transformed into water-dominated worlds with steam envelopes or rocky super-Earths. Finally, we use this threshold to provide likely minimum masses and radial-velocity amplitudes for the general population of Kepler candidates. Likewise, we use this threshold to provide constraints on the maximum radii of low-mass planets found by radial-velocity surveys.

  5. A resonant chain of four transiting, sub-Neptune planets.

    Science.gov (United States)

    Mills, Sean M; Fabrycky, Daniel C; Migaszewski, Cezary; Ford, Eric B; Petigura, Erik; Isaacson, Howard

    2016-05-26

    Surveys have revealed many multi-planet systems containing super-Earths and Neptunes in orbits of a few days to a few months. There is debate whether in situ assembly or inward migration is the dominant mechanism of the formation of such planetary systems. Simulations suggest that migration creates tightly packed systems with planets whose orbital periods may be expressed as ratios of small integers (resonances), often in a many-planet series (chain). In the hundreds of multi-planet systems of sub-Neptunes, more planet pairs are observed near resonances than would generally be expected, but no individual system has hitherto been identified that must have been formed by migration. Proximity to resonance enables the detection of planets perturbing each other. Here we report transit timing variations of the four planets in the Kepler-223 system, model these variations as resonant-angle librations, and compute the long-term stability of the resonant chain. The architecture of Kepler-223 is too finely tuned to have been formed by scattering, and our numerical simulations demonstrate that its properties are natural outcomes of the migration hypothesis. Similar systems could be destabilized by any of several mechanisms, contributing to the observed orbital-period distribution, where many planets are not in resonances. Planetesimal interactions in particular are thought to be responsible for establishing the current orbits of the four giant planets in the Solar System by disrupting a theoretical initial resonant chain similar to that observed in Kepler-223.

  6. HELIUM ATMOSPHERES ON WARM NEPTUNE- AND SUB-NEPTUNE-SIZED EXOPLANETS AND APPLICATIONS TO GJ 436b

    Energy Technology Data Exchange (ETDEWEB)

    Hu, Renyu; Yung, Yuk L. [Jet Propulsion Laboratory, California Institute of Technology, Pasadena, CA 91109 (United States); Seager, Sara, E-mail: renyu.hu@jpl.nasa.gov [Department of Earth, Atmospheric and Planetary Sciences, Massachusetts Institute of Technology, Cambridge, MA 02139 (United States)

    2015-07-01

    Warm Neptune- and sub-Neptune-sized exoplanets in orbits smaller than Mercury’s are thought to have experienced extensive atmospheric evolution. Here we propose that a potential outcome of this atmospheric evolution is the formation of helium-dominated atmospheres. The hydrodynamic escape rates of Neptune- and sub-Neptune-sized exoplanets are comparable to the diffusion-limited escape rate of hydrogen, and therefore the escape is heavily affected by diffusive separation between hydrogen and helium. A helium atmosphere can thus be formed—from a primordial hydrogen–helium atmosphere—via atmospheric hydrodynamic escape from the planet. The helium atmosphere has very different abundances of major carbon and oxygen species from those of a hydrogen atmosphere, leading to distinctive transmission and thermal emission spectral features. In particular, the hypothesis of a helium-dominated atmosphere can explain the thermal emission spectrum of GJ 436b, a warm Neptune-sized exoplanet, while also being consistent with the transmission spectrum. This model atmosphere contains trace amounts of hydrogen, carbon, and oxygen, with the predominance of CO over CH{sub 4} as the main form of carbon. With our atmospheric evolution model, we find that if the mass of the initial atmosphere envelope is 10{sup −3} planetary mass, hydrodynamic escape can reduce the hydrogen abundance in the atmosphere by several orders of magnitude in ∼10 billion years. Observations of exoplanet transits may thus detect signatures of helium atmospheres and probe the evolutionary history of small exoplanets.

  7. HELIUM ATMOSPHERES ON WARM NEPTUNE- AND SUB-NEPTUNE-SIZED EXOPLANETS AND APPLICATIONS TO GJ 436b

    International Nuclear Information System (INIS)

    Hu, Renyu; Yung, Yuk L.; Seager, Sara

    2015-01-01

    Warm Neptune- and sub-Neptune-sized exoplanets in orbits smaller than Mercury’s are thought to have experienced extensive atmospheric evolution. Here we propose that a potential outcome of this atmospheric evolution is the formation of helium-dominated atmospheres. The hydrodynamic escape rates of Neptune- and sub-Neptune-sized exoplanets are comparable to the diffusion-limited escape rate of hydrogen, and therefore the escape is heavily affected by diffusive separation between hydrogen and helium. A helium atmosphere can thus be formed—from a primordial hydrogen–helium atmosphere—via atmospheric hydrodynamic escape from the planet. The helium atmosphere has very different abundances of major carbon and oxygen species from those of a hydrogen atmosphere, leading to distinctive transmission and thermal emission spectral features. In particular, the hypothesis of a helium-dominated atmosphere can explain the thermal emission spectrum of GJ 436b, a warm Neptune-sized exoplanet, while also being consistent with the transmission spectrum. This model atmosphere contains trace amounts of hydrogen, carbon, and oxygen, with the predominance of CO over CH 4 as the main form of carbon. With our atmospheric evolution model, we find that if the mass of the initial atmosphere envelope is 10 −3 planetary mass, hydrodynamic escape can reduce the hydrogen abundance in the atmosphere by several orders of magnitude in ∼10 billion years. Observations of exoplanet transits may thus detect signatures of helium atmospheres and probe the evolutionary history of small exoplanets

  8. MOA-2010-BLG-328Lb: A sub-Neptune orbiting very late M dwarf?

    International Nuclear Information System (INIS)

    Furusawa, K.; Abe, F.; Itow, Y.; Masuda, K.; Matsubara, Y.; Udalski, A.; Sumi, T.; Bennett, D. P.; Bond, I. A.; Ling, C. H.; Gould, A.; Jørgensen, U. G.; Snodgrass, C.; Prester, D. Dominis; Albrow, M. D.; Botzler, C. S.; Freeman, M.; Chote, P.; Harris, P.; Fukui, A.

    2013-01-01

    We analyze the planetary microlensing event MOA-2010-BLG-328. The best fit yields host and planetary masses of M h = 0.11 ± 0.01 M ☉ and M p = 9.2 ± 2.2 M ⊕ , corresponding to a very late M dwarf and sub-Neptune-mass planet, respectively. The system lies at D L = 0.81 ± 0.10 kpc with projected separation r = 0.92 ± 0.16 AU. Because of the host's a priori unlikely close distance, as well as the unusual nature of the system, we consider the possibility that the microlens parallax signal, which determines the host mass and distance, is actually due to xallarap (source orbital motion) that is being misinterpreted as parallax. We show a result that favors the parallax solution, even given its close host distance. We show that future high-resolution astrometric measurements could decisively resolve the remaining ambiguity of these solutions

  9. MOA-2010-BLG-328Lb: A sub-Neptune orbiting very late M dwarf?

    Energy Technology Data Exchange (ETDEWEB)

    Furusawa, K.; Abe, F.; Itow, Y.; Masuda, K.; Matsubara, Y. [Solar-Terrestrial Environment Laboratory, Nagoya University, Nagoya 464-8601 (Japan); Udalski, A. [Warsaw University Observatory, Al. Ujazdowskie 4, 00-478 Warszawa (Poland); Sumi, T. [Department of Earth and Space Science, Graduate School of Science, Osaka University, 1-1 Machikaneyama-cho, Toyonaka, Osaka 560-0043 (Japan); Bennett, D. P. [Department of Physics, 225 Nieuwland Science Hall, University of Notre Dame, Notre Dame, IN 46556 (United States); Bond, I. A.; Ling, C. H. [Institute for Information and Mathematical Sciences, Massey University, Private Bag 102-904, Auckland 1330 (New Zealand); Gould, A. [Department of Astronomy, Ohio State University, 140 West 18th Avenue, Columbus, OH 43210 (United States); Jørgensen, U. G. [Niels Bohr Institutet, Københavns Universitet, Juliane Maries Vej 30, 2100 Copenhagen (Denmark); Snodgrass, C. [Max Planck Institute for Solar System Research, Max-Planck-Str. 2, D-37191 Katlenburg-Lindau (Germany); Prester, D. Dominis [Department of Physics, University of Rijeka, Omladinska 14, 51000 Rijeka (Croatia); Albrow, M. D. [Department of Physics and Astronomy, University of Canterbury, Private Bag 4800, Christchurch 8020 (New Zealand); Botzler, C. S.; Freeman, M. [Department of Physics, University of Auckland, Private Bag 92-019, Auckland 1001 (New Zealand); Chote, P.; Harris, P. [School of Chemical and Physical Sciences, Victoria University, Wellington (New Zealand); Fukui, A., E-mail: furusawa@stelab.nagoya-u.ac.jp, E-mail: liweih@astro.ucla.edu, E-mail: tim.natusch@aut.ac.nz, E-mail: rzellem@lpl.arizona.edu [Okayama Astrophysical Observatory, National Astronomical Observatory of Japan, 3037-5 Honjo, Kamogata, Asakuchi, Okayama 719-0232 (Japan); Collaboration: MOA Collaboration; OGLE Collaboration; μFUN Collaboration; MiNDSTEp Consortium; RoboNet Collaboration; PLANET Collaboration; and others

    2013-12-20

    We analyze the planetary microlensing event MOA-2010-BLG-328. The best fit yields host and planetary masses of M {sub h} = 0.11 ± 0.01 M {sub ☉} and M {sub p} = 9.2 ± 2.2 M {sub ⊕}, corresponding to a very late M dwarf and sub-Neptune-mass planet, respectively. The system lies at D {sub L} = 0.81 ± 0.10 kpc with projected separation r = 0.92 ± 0.16 AU. Because of the host's a priori unlikely close distance, as well as the unusual nature of the system, we consider the possibility that the microlens parallax signal, which determines the host mass and distance, is actually due to xallarap (source orbital motion) that is being misinterpreted as parallax. We show a result that favors the parallax solution, even given its close host distance. We show that future high-resolution astrometric measurements could decisively resolve the remaining ambiguity of these solutions.

  10. Discovery of a Transiting Adolescent Sub-Neptune Exoplanet in the Cas-Tau Association With K2

    Science.gov (United States)

    Mamajek, Eric; David, Trevor; Bieryla, Allyson; Bristow, Makennah; Ciardi, David; Cody, Ann Marie; Crossfield, Ian; Fulton, Benjamin; Jasmine Gonzales, Erica; Hillenbrand, Lynne; Hirsch, Lea; Howard, Andrew; Isaacson, Howard; Latham, David W.; Petigura, Erik; Rebull, Luisa; Schlieder, Joshua; Stauffer, John; Vanderburg, Andrew; Vasisht, Gautam

    2018-01-01

    The role of stellar age in the measured properties and occurrence rates of exoplanets is not well understood. This is in part due to a paucity of young planets and the uncertainties in age-dating for most exoplanet host stars. Exoplanets belonging to coeval stellar populations, young or old, are particularly useful as benchmarks for studies aiming to constrain the evolutionary timescales relevant for planets. Such timescales may concern orbital migration, gravitational contraction, or photo-evaporation, among other mechanisms. Here we report the serendipitous discovery of a transiting sub-Neptune from K2 photometry of a K-type star that is a new candidate member of the nearby young Cas-Tau association. The size of the planet (3.0 +/- 0.5 Earth radii) and its age (~50-90 Myr) make it an intriguing test case for photo-evaporation models, which predict enhanced atmospheric mass loss during early evolutionary stages.

  11. K2-231 b: A Sub-Neptune Exoplanet Transiting a Solar Twin in Ruprecht 147

    Science.gov (United States)

    Curtis, Jason Lee; Vanderburg, Andrew; Torres, Guillermo; Kraus, Adam L.; Huber, Daniel; Mann, Andrew W.; Rizzuto, Aaron C.; Isaacson, Howard; Howard, Andrew W.; Henze, Christopher E.; Fulton, Benjamin J.; Wright, Jason T.

    2018-04-01

    We identify a sub-Neptune exoplanet (R p = 2.5 ± 0.2 {R}\\oplus ) transiting a solar twin in the Ruprecht 147 star cluster (3 Gyr, 300 pc, [Fe/H] = +0.1 dex). The ∼81 day light curve for EPIC 219800881 (V = 12.71) from K2 Campaign 7 shows six transits with a period of 13.84 days, a depth of ∼0.06%, and a duration of ∼4 hr. Based on our analysis of high-resolution MIKE spectra, broadband optical and NIR photometry, the cluster parallax and interstellar reddening, and isochrone models from PARSEC, Dartmouth, and MIST, we estimate the following properties for the host star: M ⋆ = 1.01 ± 0.03 {M}ȯ , R ⋆ = 0.95 ± 0.03 {R}ȯ , and {T}{{eff}} = 5695 ± 50 K. This star appears to be single based on our modeling of the photometry, the low radial velocity (RV) variability measured over nearly 10 yr, and Keck/NIRC2 adaptive optics imaging and aperture-masking interferometry. Applying a probabilistic mass–radius relation, we estimate that the mass of this planet is M p = 7 + 5 – 3 {M}\\oplus , which would cause an RV semi-amplitude of K = 2 ± 1 {\\text{m s}}-1 that may be measurable with existing precise RV facilities. After statistically validating this planet with BLENDER, we now designate it K2-231b, making it the second substellar object to be discovered in Ruprecht 147 and the first planet; it joins the small but growing ranks of 22 other planets and three candidates found in open clusters.

  12. Outcomes of Grazing Impacts between Sub-Neptunes in Kepler  Multis

    Science.gov (United States)

    Hwang, Jason; Chatterjee, Sourav; Lombardi, James, Jr.; Steffen, Jason H.; Rasio, Frederic

    2018-01-01

    Studies of high-multiplicity, tightly packed planetary systems suggest that dynamical instabilities are common and affect both the orbits and planet structures, where the compact orbits and typically low densities make physical collisions likely outcomes. Since the structure of many of these planets is such that the mass is dominated by a rocky core, but the volume is dominated by a tenuous gas envelope, the sticky-sphere approximation, used in dynamical integrators, may be a poor model for these collisions. We perform five sets of collision calculations, including detailed hydrodynamics, sampling mass ratios, and core mass fractions typical in Kepler Multis. In our primary set of calculations, we use Kepler-36 as a nominal remnant system, as the two planets have a small dynamical separation and an extreme density ratio. We use an N-body code, Mercury 6.2, to integrate initially unstable systems and study the resultant collisions in detail. We use these collisions, focusing on grazing collisions, in combination with realistic planet models created using gas profiles from Modules for Experiments in Stellar Astrophysics and core profiles using equations of state from Seager et al. to perform hydrodynamic calculations, finding scatterings, mergers, and even a potential planet–planet binary. We dynamically integrate the remnant systems, examine the stability, and estimate the final densities, finding that the remnant densities are sensitive to the core masses, and collisions result in generally more stable systems. We provide prescriptions for predicting the outcomes and modeling the changes in mass and orbits following collisions for general use in dynamical integrators.

  13. Mass-loss rates of cool stars

    Science.gov (United States)

    Katrien Els Decin, Leen

    2015-08-01

    Over much of the initial mass function, stars lose a significant fraction of their mass through a stellar wind during the late stages of their evolution when being a (super)giant star. As of today, we can not yet predict the mass-loss rate during the (super)giant phase for a given star with specific stellar parameters from first principles. This uncertainty directly impacts the accuracy of current stellar evolution and population synthesis models that predict the enrichment of the interstellar medium by these stellar winds. Efforts to establish the link between the initial physical and chemical conditions at stellar birth and the mass-loss rate during the (super)giant phase have proceeded on two separate tracks: (1) more detailed studies of the chemical and morpho-kinematical structure of the stellar winds of (super)giant stars in our own Milky Way by virtue of the proximity, and (2) large scale and statistical studies of a (large) sample of stars in other galaxies (such as the LMC and SMC) and globular clusters eliminating the uncertainty on the distance estimate and providing insight into the dependence of the mass-loss rate on the metallicity. In this review, I will present recent results of both tracks, will show how recent measurements confirm (some) theoretical predictions, but also how results from the first track admonish of common misconceptions inherent in the often more simplified analysis used to analyse the large samples from track 2.

  14. Role of strangeness to the neutron star mass and cooling

    Science.gov (United States)

    Lee, Chang-Hwan; Lim, Yeunhwan; Hyun, Chang Ho; Kwak, Kyujin

    2018-01-01

    Neutron star provides unique environments for the investigation of the physics of extreme dense matter beyond normal nuclear saturation density. In such high density environments, hadrons with strange quarks are expected to play very important role in stabilizing the system. Kaons and hyperons are the lowest mass states with strangeness among meson and bayron families, respectively. In this work, we investigate the role of kaons and hyperons to the neutron star mass, and discuss their role in the neutron star cooling.

  15. Role of strangeness to the neutron star mass and cooling

    Directory of Open Access Journals (Sweden)

    Lee Chang-Hwan

    2018-01-01

    Full Text Available Neutron star provides unique environments for the investigation of the physics of extreme dense matter beyond normal nuclear saturation density. In such high density environments, hadrons with strange quarks are expected to play very important role in stabilizing the system. Kaons and hyperons are the lowest mass states with strangeness among meson and bayron families, respectively. In this work, we investigate the role of kaons and hyperons to the neutron star mass, and discuss their role in the neutron star cooling.

  16. Cooling of radioactive isotopes for Schottky mass spectrometry

    International Nuclear Information System (INIS)

    Steck, M.; Beckert, K.; Eickhoff, H.; Franzke, B.; Nolden, F.; Reich, H.; Schlitt, B.; Winkler, T.

    1999-01-01

    Nuclear masses of radioactive isotopes can be determined by measurement of their revolution frequency relative to the revolution frequency of reference ions with well-known masses. The resolution of neighboring frequency lines and the accuracy of the mass measurement is dependent on the achievable minimum longitudinal momentum spread of the ion beam. Electron cooling allows an increase of the phase space density by several orders of magnitude. For high intensity beams Coulomb scattering in the dense ion beam limits the beam quality. For low intensity beams a regime exists in which the diffusion due to intrabeam scattering is not dominating any more. The minimum momentum spread δp/p=5x10 -7 which is observed by Schottky noise analysis is considerably higher than the value expected from the longitudinal electron temperature. The measured frequency spread results from fluctuations of the magnetic field in the storage ring magnets. Systematic mass measurements have started and can be presently used for ions with half-lives of some ten seconds. For shorter-lived nuclei a stochastic precooling system is in preparation

  17. Computational Analysis of Droplet Mass and Size Effect on Mist/Air Impingement Cooling Performance

    Directory of Open Access Journals (Sweden)

    Zhenglei Yu

    2013-01-01

    Full Text Available Impingement cooling has been widely employed to cool gas turbine hot components such as combustor liners, combustor transition pieces, turbine vanes, and blades. A promising technology is proposed to enhance impingement cooling with water droplets injection. However, previous studies were conducted on blade shower head film cooling, and less attention was given to the transition piece cooling. As a continuous effort to develop a realistic mist impingement cooling scheme, this paper focuses on simulating mist impingement cooling under typical gas turbine operating conditions of high temperature and pressure in a double chamber model. Furthermore, the paper presents the effect of cooling effectiveness by changing the mass and size of the droplets. Based on the heat-mass transfer analogy, the results of these experiments prove that the mass of 3E – 3 kg/s droplets with diameters of 5–35 μm could enhance 90% cooling effectiveness and reduce 122 K of wall temperature. The results of this paper can provide guidance for corresponding experiments and serve as the qualification reference for future more complicated studies with convex surface cooling.

  18. The Cold Mass Support System and the Helium Cooling System for the MICE Focusing Solenoid

    International Nuclear Information System (INIS)

    Yang, Stephanie Q.; Green, Michael A.; Lau, Wing W.; Senanayake, Rohan S.; Witte, Holger

    2006-01-01

    The heart of the absorber focus coil (AFC) module for the muon ionization cooling experiment (MICE) is the two-coil superconducting solenoid that surrounds the muon absorber. The superconducting magnet focuses the muons that are cooled using ionization cooling, in order to improve the efficiency of cooling. The coils of the magnet may either be run in the solenoid mode (both coils operate at the same polarity) or the gradient (the coils operate at opposite polarity). The AFC magnet cold mass support system is designed to carry a longitudinal force up to 700 kN. The AFC module will be cooled using three pulse tube coolers that produce 1.5 W of cooling at 4.2 K. One of the coolers will be used to cool the liquid (hydrogen or helium) absorber used for ionization cooling. The other two coolers will cool the superconducting solenoid. This report will describe the MICE AFC magnet. The cold mass supports will be discussed. The reasons for using a pulsed tube cooler to cool this superconducting magnet will also be discussed

  19. Mass measurement of halo nuclides and beam cooling with the mass spectrometer Mistral

    International Nuclear Information System (INIS)

    Bachelet, C.

    2004-12-01

    Halo nuclides are a spectacular drip-line phenomenon and their description pushes nuclear theories to their limits. The most critical input parameter is the nuclear binding energy; a quantity that requires excellent measurement precision, since the two-neutron separation energy is small at the drip-line by definition. Moreover halo nuclides are typically very short-lived. Thus, a high accuracy instrument using a quick method of measurement is necessary. MISTRAL is such an instrument; it is a radiofrequency transmission mass spectrometer located at ISOLDE/CERN. In July 2003 we measured the mass of the Li 11 , a two-neutron halo nuclide. Our measurement improves the precision by a factor 6, with an error of 5 keV. Moreover the measurement gives a two-neutron separation energy 20% higher than the previous value. This measurement has an impact on the radius of the nucleus, and on the state of the two valence neutrons. At the same time, a measurement of the Be 11 was performed with an uncertainty of 4 keV, in excellent agreement with previous measurements. In order to measure the mass of the two-neutron halo nuclide Be 14 , an ion beam cooling system is presently under development which will increase the sensitivity of the spectrometer. The second part of this work presents the development of this beam cooler using a gas-filled Paul trap. (author)

  20. Experimental assessment of heat and mass transfer of modular nozzles of cooling towers

    Science.gov (United States)

    Merentsov, N. A.; Lebedev, V. N.; Golovanchikov, A. B.; Balashov, V. A.; Nefed'eva, E. E.

    2018-01-01

    Data of experimental study of hydrodynamics, heat and mass transfer of modular nozzles of cooling towers and some comparative characteristics of the packed device with nozzles, which have wide industrial application, are given in the article.

  1. Thermal analysis of mass concrete embedded with double-layer staggered heterogeneous cooling water pipes

    International Nuclear Information System (INIS)

    Yang Jian; Hu Yu; Zuo Zheng; Jin Feng; Li Qingbin

    2012-01-01

    Removal of hydration heat from mass concrete during construction is important for the quality and safety of concrete structures. In this study, a three-dimensional finite element program for thermal analysis of mass concrete embedded with double-layer staggered heterogeneous cooling water pipes was developed based on the equivalent equation of heat conduction including the effect of cooling water pipes and hydration heat of concrete. The cooling function of the double-layer staggered heterogeneous cooling pipes in a concrete slab was derived from the principle of equivalent cooling. To improve the applicability and precision of the equivalent heat conduction equation under small flow, the cooling function was revised according to its monotonicity and empirical formulas of single-phase forced-convection heat transfer in tube flow. Considering heat hydration of concrete at later age, a double exponential function was proposed to fit the adiabatic temperature rise curve of concrete. Subsequently, the temperature variation of concrete was obtained, and the outlet temperature of cooling water was estimated through the energy conservation principle. Comparing calculated results with actual measured data from a monolith of an arch dam in China, the numerical model was proven to be effective in sufficiently simulating accurate temperature variations of mass concrete. - Highlights: ► Three-dimensional program is developed to model temperature history of mass concrete. ► Massive concrete is embedded with double-layer heterogeneous cooling pipes. ► Double exponential function is proposed to fit the adiabatic temperature rise curve. ► Outlet temperature of cooling water is estimated. ► A comparison is made between the calculated and measured data.

  2. A novel ion cooling trap for multi-reflection time-of-flight mass spectrograph

    Energy Technology Data Exchange (ETDEWEB)

    Ito, Y., E-mail: yito@riken.jp [SLOWRI Team, Nishina Accelerator-Based Research Center, RIKEN, 2-1 Hirosawa, Wako, Saitama 351-0198 (Japan); University of Tsukuba, 1-1-1 Tennodai, Tsukuba, Ibaraki 305-8577 (Japan); Schury, P. [SLOWRI Team, Nishina Accelerator-Based Research Center, RIKEN, 2-1 Hirosawa, Wako, Saitama 351-0198 (Japan); University of Tsukuba, 1-1-1 Tennodai, Tsukuba, Ibaraki 305-8577 (Japan); New Mexico State University, Department Chemistry and Biochemistry, Las Cruces, NM 88003 (United States); Wada, M.; Naimi, S. [SLOWRI Team, Nishina Accelerator-Based Research Center, RIKEN, 2-1 Hirosawa, Wako, Saitama 351-0198 (Japan); Smorra, C. [SLOWRI Team, Nishina Accelerator-Based Research Center, RIKEN, 2-1 Hirosawa, Wako, Saitama 351-0198 (Japan); Max-Planck-Institut für Kernphysik, Saupfercheckweg 1, D-69117 Heidelberg (Germany); Sonoda, T. [SLOWRI Team, Nishina Accelerator-Based Research Center, RIKEN, 2-1 Hirosawa, Wako, Saitama 351-0198 (Japan); Mita, H. [SLOWRI Team, Nishina Accelerator-Based Research Center, RIKEN, 2-1 Hirosawa, Wako, Saitama 351-0198 (Japan); University of Tsukuba, 1-1-1 Tennodai, Tsukuba, Ibaraki 305-8577 (Japan); Takamine, A. [SLOWRI Team, Nishina Accelerator-Based Research Center, RIKEN, 2-1 Hirosawa, Wako, Saitama 351-0198 (Japan); Aoyama Gakuin University, 4-4-25 Shibuya, Shibuya-ku, Tokyo 150-8366 (Japan); Okada, K. [SLOWRI Team, Nishina Accelerator-Based Research Center, RIKEN, 2-1 Hirosawa, Wako, Saitama 351-0198 (Japan); Sophia University, 7-1 Kioi-cho, Chiyoda-ku, Tokyo 102-8554 (Japan); Ozawa, A. [University of Tsukuba, 1-1-1 Tennodai, Tsukuba, Ibaraki 305-8577 (Japan); Wollnik, H. [SLOWRI Team, Nishina Accelerator-Based Research Center, RIKEN, 2-1 Hirosawa, Wako, Saitama 351-0198 (Japan); New Mexico State University, Department Chemistry and Biochemistry, Las Cruces, NM 88003 (United States)

    2013-12-15

    Highlights: • Fast cooling time: 2 ms. • High efficiency: ≈27% for {sup 23}Na{sup +} and ≈5.1% for {sup 7}Li{sup +}. • 100% Duty cycle with double trap system. -- Abstract: A radiofrequency quadrupole ion trap system for use with a multi-reflection time-of-flight mass spectrograph (MRTOF) for short-lived nuclei has been developed. The trap system consists of two different parts, an asymmetric taper trap and a flat trap. The ions are cooled to a sufficient small bunch for precise mass measurement with MRTOF in only 2 ms cooling time in the flat trap, then orthogonally ejected to the MRTOF for mass analysis. A trapping efficiency of ≈27% for {sup 23}Na{sup +} and ≈5.1% for {sup 7}Li{sup +} has been achieved.

  3. Numerical study of coupled heat and mass transfer in geothermal water cooling tower

    International Nuclear Information System (INIS)

    Bourouni, K.; Bassem, M.M.; Chaibi, M.T.

    2008-01-01

    Cross flow mechanical cooling towers, widely spreads all over the south region of Tunisia are used for cooling geothermal water for agriculture and domestic ends. These towers are sized empirically and present several problems in regard to operation and electrical energy consumption. This work aims to study the thermal behaviour of this type of cooling towers through a developed mathematical model considering the variation of the water mass flow rate inside the tower. The analysis of the water and air temperatures distribution along the cooling tower had underlined the negative convection phenomenon at a certain height of the tower. This analysis has shown also that the difference in water temperature between the inlet and the outlet of the tower is much higher than the one of air due to the dominance of the evaporative potential compared to the convective one. In addition, the variations of the air humidity along the cooling tower and the quantity of evaporated water have been investigated. The loss of water by evaporation is found to be 5.1% of the total quantity of water feeding the cooling tower. Interesting future prospects are expected for validation of the developed model to optimize the operating of the cooling tower

  4. A cylindrical Penning trap for capture, mass selective cooling, and bunching of radioactive ion beams

    International Nuclear Information System (INIS)

    Raimbault-Hartmann, H.; Bollen, G.; Beck, D.; Koenig, M.; Kluge, H.-J.; Schwarz, S.; Schark, E.; Stein, J.; Szerypo, J.

    1997-01-01

    A Penning trap ion accumulator, cooler, and buncher for low-energy ion beams has been developed for the ISOLTRAP mass spectrometer at ISOLDE/CERN. A cylindrical electrode configuration is used for the creation of a nested trapping potential. This is required for efficient accumulation of externally produced ions and for high-mass selectivity by buffer gas cooling. The design goal of a mass resolving power of about 1 x 10 5 has been achieved. Isobar separation has been demonstrated for radioactive rare-earth ion beams delivered by the ISOLDE on-line mass separator. (orig.)

  5. A cylindrical Penning trap for capture, mass selective cooling, and bunching of radioactive ion beams

    CERN Document Server

    Raimbault-Hartmann, H; Bollen, G; König, M; Kluge, H J; Schark, E; Stein, J; Schwarz, S; Szerypo, J

    1997-01-01

    A Penning trap ion accumulator, cooler, and buncher for low energy ion beams has been developed for the ISOLTRAP mass spectrometer at ISOLDE/CERN. A cylindrical electrode configuration is used for the creation of a nested trapping potential. This is required for efficient accumulation of externally produced ions and for high mass selectivity by buffer gas cooling. The design goal of a mass resolving power of about $1\\cdot 10^{5}$ has been achieved. Isobar separation has been demonstrated for radioactive rare earth ion beams delivered by the ISOLDE on-line mass separator.

  6. Heat and Mass Transfer of Vacuum Cooling for Porous Foods-Parameter Sensitivity Analysis

    Directory of Open Access Journals (Sweden)

    Zhijun Zhang

    2014-01-01

    Full Text Available Based on the theory of heat and mass transfer, a coupled model for the porous food vacuum cooling process is constructed. Sensitivity analyses of the process to food density, thermal conductivity, specific heat, latent heat of evaporation, diameter of pores, mass transfer coefficient, viscosity of gas, and porosity were examined. The simulation results show that the food density would affect the vacuum cooling process but not the vacuum cooling end temperature. The surface temperature of food was slightly affected and the core temperature is not affected by the changed thermal conductivity. The core temperature and surface temperature are affected by the changed specific heat. The core temperature and surface temperature are affected by the changed latent heat of evaporation. The core temperature is affected by the diameter of pores. But the surface temperature is not affected obviously. The core temperature and surface temperature are not affected by the changed gas viscosity. The parameter sensitivity of mass transfer coefficient is obvious. The core temperature and surface temperature are affected by the changed mass transfer coefficient. In all the simulations, the end temperature of core and surface is not affected. The vacuum cooling process of porous medium is a process controlled by outside process.

  7. The K2-138 System: A Near-resonant Chain of Five Sub-Neptune Planets Discovered by Citizen Scientists

    DEFF Research Database (Denmark)

    Christiansen, Jessie L.; Crossfield, Ian J. M.; Barentsen, Geert

    2018-01-01

    K2-138 is a moderately bright (V = 12.2, K = 10.3) main-sequence K star observed in Campaign 12 of the NASA K2 mission. It hosts five small (1.6-3.3 R⊕) transiting planets in a compact architecture. The periods of the five planets are 2.35, 3.56, 5.40, 8.26, and 12.76 days, forming an unbroken...... chain of near 3:2 resonances. Although we do not detect the predicted 2-5 minute transit timing variations (TTVs) with the K2 timing precision, they may be observable by higher-cadence observations with, for example, Spitzer or CHEOPS. The planets are amenable to mass measurement by precision radial...... velocity measurements, and therefore K2-138 could represent a new benchmark system for comparing radial velocity and TTV masses. K2-138 is the first exoplanet discovery by citizen scientists participating in the Exoplanet Explorers project on the Zooniverse platform....

  8. Dynamical Masses of Cool White Dwarfs in Double-Degenerate Visual Binaries

    Science.gov (United States)

    Bond, Howard E.; Nelan, E. P.; Schaefer, G.

    2014-01-01

    The cool white dwarfs (WDs) WD 1639+153 and WD 1818+126 were originally resolved into close visual binaries containing two WDs each during a survey with the Hubble Space Telescope (HST) and its Fine Guidance Sensors (FGS). Follow up FGS observations of these two double-degenerate (DD) systems, along with the previously known DD G 107-70, have yielded the orbital elements of all three visual binaries. We find orbital periods of 3.88 yr, 12.19 yr, and 18.84 yr for WD 1639+153, WD 1818+126, and G 107-70, respectively. Moreover, for each of the systems we have been observing nearby field stars with FGS1r in POS mode to determine the local inertial reference frame, from which we obtain the parallax and proper motion of the DD, along with the motion of each WD about its system barycenter. This leads directly to a dynamical mass for each WD. We have also used HST STIS observations to obtain individual spectra of each of the six WDs, which provide the effective temperature and subclass of each WD. This provides insight into the cooling age of each star. From the cooling ages and dynamical masses, we obtain constraints on the initial-mass/final-mass relation for WD stars.

  9. Predicting temperature drop rate of mass concrete during an initial cooling period using genetic programming

    Science.gov (United States)

    Bhattarai, Santosh; Zhou, Yihong; Zhao, Chunju; Zhou, Huawei

    2018-02-01

    Thermal cracking on concrete dams depends upon the rate at which the concrete is cooled (temperature drop rate per day) within an initial cooling period during the construction phase. Thus, in order to control the thermal cracking of such structure, temperature development due to heat of hydration of cement should be dropped at suitable rate. In this study, an attempt have been made to formulate the relation between cooling rate of mass concrete with passage of time (age of concrete) and water cooling parameters: flow rate and inlet temperature of cooling water. Data measured at summer season (April-August from 2009 to 2012) from recently constructed high concrete dam were used to derive a prediction model with the help of Genetic Programming (GP) software “Eureqa”. Coefficient of Determination (R) and Mean Square Error (MSE) were used to evaluate the performance of the model. The value of R and MSE is 0.8855 and 0.002961 respectively. Sensitivity analysis was performed to evaluate the relative impact on the target parameter due to input parameters. Further, testing the proposed model with an independent dataset those not included during analysis, results obtained from the proposed GP model are close enough to the real field data.

  10. The results of the measurements of mass- and heat-transfer in the wet cooling tower

    International Nuclear Information System (INIS)

    Fabjan, Lj.; Gaspersic, B.

    1979-01-01

    These are the results of our investigations carried out on a packing inside a wet cooling tower for the purpose of studying the mass and heat transfer at the counterflow of water and humid air. The measurements on the experimental tower of the corresponding mathematical model reflect the average coefficient of mass and heat transfer for the unity of the active volume. Further the measurements of pressure drop at the air flow were carried out and thus the coefficient of aerodynamic losses were obtained. The results of measurements are given in the corresponding equations with the dimensionless numbers and diagrams. They will be of great use for the planning of new cooling towers. (author)

  11. Effectiveness of indirect evaporative cooling and thermal mass in a hot arid climate

    Energy Technology Data Exchange (ETDEWEB)

    Krueger, Eduardo [Programa de Pos-Graduacao em Tecnologia/Programa de Pos-Graduacao em Engenharia Civil, Departamento de Construcao Civil, Universidade Tecnologica Federal do Parana - UTFPR, Av. Sete de Setembro, 3165. Curitiba PR, CEP. 80230-901 (Brazil); Gonzalez Cruz, Eduardo [Instituto de Investigaciones de la Facultad de Arquitectura y Diseno (IFAD), Universidad del Zulia, Nucleo Tecnico de LUZ, Av. Goajira (16) con Calle 67, Maracaibo, CP 4011-A-526 (Venezuela); Givoni, Baruch [Department of Architecture, School of Arts and Architecture, UCLA, Los Angeles CA, USA, and Ben Gurion University (Israel)

    2010-06-15

    In this paper, we compare results of a long-term temperature monitoring in a building with high thermal mass to indoor temperature predictions of a second building that uses an indirect evaporative cooling system as a means of passive cooling (Vivienda Bioclimatica Prototipo -VBP-1), for the climatic conditions of Sde Boqer, Negev region of Israel (local latitude 30 52'N, longitude 34 46'E, approximately 480 m above sea level). The high-mass building was monitored from January through September 2006 and belongs to a student dormitory complex located at the Sde Boqer Campus of Ben-Gurion University. VBP-1 was designed and built in Maracaibo, Venezuela (latitude 10 34'N, longitude 71 44'W, elevation 66 m above sea level) and had its indoor air temperatures, below and above a shaded roof pond, as well as the pond temperature monitored from February to September 2006. Formulas were developed for the VBP-1, based on part of the whole monitoring period, which represent the measured daily indoor maximum, average and minimum temperatures. The formulas were then validated against measurements taken independently in different time periods. The developed formulas were here used for estimating the building's thermal and energy performance at the climate of Sde Boqer, allowing a comparison of two different strategies: indirect evaporative cooling and the use of thermal mass. (author)

  12. Numerical analysis of heat and mass transfer for water recovery in an evaporative cooling tower

    Science.gov (United States)

    Lee, Hyunsub; Son, Gihun

    2017-11-01

    Numerical analysis is performed for water recovery in an evaporative cooling tower using a condensing heat exchanger, which consists of a humid air channel and an ambient dry air channel. The humid air including water vapor produced in an evaporative cooling tower is cooled by the ambient dry air so that the water vapor is condensed and recovered to the liquid water. The conservation equations of mass, momentum, energy and vapor concentration in each fluid region and the energy equation in a solid region are simultaneously solved with the heat and mass transfer boundary conditions coupled to the effect of condensation on the channel surface of humid air. The present computation demonstrates the condensed water film distribution on the humid air channel, which is caused by the vapor mass transfer between the humid air and the colder water film surface, which is coupled to the indirect heat exchange with the ambient air. Computations are carried out to predict water recovery rate in parallel, counter and cross-flow type heat exchangers. The effects of air flow rate and channel interval on the water recovery rate are quantified.

  13. APPLICATION OF SOFT COMPUTING TECHNIQUES FOR PREDICTING COOLING TIME REQUIRED DROPPING INITIAL TEMPERATURE OF MASS CONCRETE

    Directory of Open Access Journals (Sweden)

    Santosh Bhattarai

    2017-07-01

    Full Text Available Minimizing the thermal cracks in mass concrete at an early age can be achieved by removing the hydration heat as quickly as possible within initial cooling period before the next lift is placed. Recognizing the time needed to remove hydration heat within initial cooling period helps to take an effective and efficient decision on temperature control plan in advance. Thermal properties of concrete, water cooling parameters and construction parameter are the most influencing factors involved in the process and the relationship between these parameters are non-linear in a pattern, complicated and not understood well. Some attempts had been made to understand and formulate the relationship taking account of thermal properties of concrete and cooling water parameters. Thus, in this study, an effort have been made to formulate the relationship for the same taking account of thermal properties of concrete, water cooling parameters and construction parameter, with the help of two soft computing techniques namely: Genetic programming (GP software “Eureqa” and Artificial Neural Network (ANN. Relationships were developed from the data available from recently constructed high concrete double curvature arch dam. The value of R for the relationship between the predicted and real cooling time from GP and ANN model is 0.8822 and 0.9146 respectively. Relative impact on target parameter due to input parameters was evaluated through sensitivity analysis and the results reveal that, construction parameter influence the target parameter significantly. Furthermore, during the testing phase of proposed models with an independent set of data, the absolute and relative errors were significantly low, which indicates the prediction power of the employed soft computing techniques deemed satisfactory as compared to the measured data.

  14. A Real-Time Temperature Data Transmission Approach for Intelligent Cooling Control of Mass Concrete

    Directory of Open Access Journals (Sweden)

    Peng Lin

    2014-01-01

    Full Text Available The primary aim of the study presented in this paper is to propose a real-time temperature data transmission approach for intelligent cooling control of mass concrete. A mathematical description of a digital temperature control model is introduced in detail. Based on pipe mounted and electrically linked temperature sensors, together with postdata handling hardware and software, a stable, real-time, highly effective temperature data transmission solution technique is developed and utilized within the intelligent mass concrete cooling control system. Once the user has issued the relevant command, the proposed programmable logic controllers (PLC code performs all necessary steps without further interaction. The code can control the hardware, obtain, read, and perform calculations, and display the data accurately. Hardening concrete is an aggregate of complex physicochemical processes including the liberation of heat. The proposed control system prevented unwanted structural change within the massive concrete blocks caused by these exothermic processes based on an application case study analysis. In conclusion, the proposed temperature data transmission approach has proved very useful for the temperature monitoring of a high arch dam and is able to control thermal stresses in mass concrete for similar projects involving mass concrete.

  15. Innovative low-mass cooling systems for the ALICE ITS Upgrade detector at CERN

    CERN Document Server

    Gomez Marzoa, Manuel

    The Phase-1 upgrade of the LHC to full design luminosity, planned for 2019 at CERN, requires the modernisation of the experiments around the accelerator. The Inner Tracking System (ITS), the innermost detector at the ALICE experiment, will be upgraded by replacing the current apparatus by new silicon pixels arranged in 7 cylindrical layers. Each layer is composed by multiple independent modules, named staves, which provide mechanical support and cooling to the chips. This thesis aims to develop and validate experimentally an ultra-lightweight stave cooling system for the ITS Upgrade. The moderate thermal requirements, with a nominal power density of 0.15 W/cm^2 and a maximum chip temperature of 30ºC, are counterweighted by extreme low-mass restrictions, obliging to resort to lightweight, non-metallic materials, such as carbon fibre-reinforced polymers and plastics. Novel lightweight stave concepts were developed and experimentally validated, meeting the thermal requirements with minimal material inventory. T...

  16. A versatile triple radiofrequency quadrupole system for cooling, mass separation and bunching of exotic nuclei

    Science.gov (United States)

    Haettner, Emma; Plaß, Wolfgang R.; Czok, Ulrich; Dickel, Timo; Geissel, Hans; Kinsel, Wadim; Petrick, Martin; Schäfer, Thorsten; Scheidenberger, Christoph

    2018-02-01

    The combination of in-flight separation with a gas-filled stopping cell has opened a new field for experiments with exotic nuclei. For instance, at the SHIP/SHIPTRAP facility at GSI in Darmstadt high-precision mass measurements of rare nuclei have been successfully performed. In order to extend the reach of SHIPTRAP to exotic nuclei that are produced together with high rates of unwanted reaction products, a novel compact radio frequency quadrupole (RFQ) system has been developed. It implements ion cooling, identification and separation according to mass numbers and bunching capabilities. The system has a total length of one meter only and consists of an RFQ cooler, an RFQ mass filter and an RFQ buncher. A mass resolving power (FWHM) of 240 at a transmission efficiency of 90% has been achieved. The suppression of contaminants from neighboring masses by more than four orders of magnitude has been demonstrated at rates exceeding 106 ions/s. A longitudinal emittance of 0.45 eV μs has been achieved with the RFQ buncher, which will enable improved time-of-flight mass spectrometry downstream of the device. With this triple RFQ system the measurement of e.g. N= Z nuclides in the region up to tin will become possible at SHIPTRAP. The technology is also well suited for other rare-isotope facilities with experimental setups behind a stopping cell, such as the fragment separator FRS with the FRS Ion Catcher at GSI.

  17. Heat/mass transfer on effusion plate with circular pin fins for impingement/effusion cooling system with initial crossflow

    International Nuclear Information System (INIS)

    Hong, Sung Kook; Rhee, Dong Ho; Cho, Hyung Hee

    2005-01-01

    Impingement/effusion cooling technique is used for combustor liner or turbine parts cooling in gas turbine engine. In the impingement/effusion cooling system, the crossflow generated in the cooling channel induces an adverse effect on the cooling performance, which consequently affects the durability of the cooling system. In the present study, to reduce the adverse effect of the crossflow and improve the cooling performance, circular pin fins are installed in impingement/effusion cooling system and the heat transfer characteristics are investigated. The pin fins are installed between two perforated plates and the crossflow passes between these two plates. A blowing ratio is changed from 0.5 to 1.5 for the fixed jet Reynolds number of 10,000 and five circular pin fin arrangements are considered in this study. The local heat/mass transfer coefficients on the effusion plate are measured using a naphthalene sublimation method. The results show that local distributions of heat/mass transfer coefficient are changed due to the installation of pin fins. Due to the generation of vortex and wake by the pin fin, locally low heat/mass transfer regions are reduced. Moreover, the pin fin prevents the wall jet from being swept away, resulting in the increase of heat/mass transfer. When the pin fin is installed in front of the impinging jet, the blockage effect on the crossflow enhances the heat/mass transfer. However, the pin fin installed just behind the impinging jet blocks up the wall jet, decreasing the heat/mass transfer. As the blowing ratio increases, the pin fins lead to the higher Sh value compared to the case without pin fins, inducing 16%∼22% enhancement of overall Sh value at high blowing ratio of M=1.5

  18. Research on heat and mass transfer model for passive containment cooling system

    International Nuclear Information System (INIS)

    Jiang Xiaowei; Yu Hongxing; Sun Yufa; Huang Daishun

    2013-01-01

    Different with the traditional dry style containment design without external cooling, the PCCS design increased the temperature difference between the wall and the containment atmosphere significantly, and also the absolute temperature of the containment surfaces will be lower, affecting properties relevant in the condensation process. A research on the heat and mass transfer model has been done in this paper, especially the improvement on the condensation and evaporation model in the presence of noncondensable gases. Firstly, the Peterson's diffusion layer model was proved to equivalent to the stagnant film model adopted by CONTAIN code using the Clausius-Clapeyron equation, then a factor which can be used to stagnant film model was derived from the comparison between the Y.Liao's generalized diffusion layer model and the Peterson's diffusion layer model. Finally, the model in CONTAIN code used to compute the condensation and evaporation mass flux was modified using the factor, and the Wisconsin condensation tests and Westinghouse film evaporation on heated plate tests were simulated which had proved the improved model can predict more closer value of the heat and mass transfer coefficient to experimental value than original model. (authors)

  19. Gas expulsion vs gas retention in young stellar clusters II: effects of cooling and mass segregation

    Science.gov (United States)

    Silich, Sergiy; Tenorio-Tagle, Guillermo

    2018-05-01

    Gas expulsion or gas retention is a central issue in most of the models for multiple stellar populations and light element anti-correlations in globular clusters. The success of the residual matter expulsion or its retention within young stellar clusters has also a fundamental importance in order to understand how star formation proceeds in present-day and ancient star-forming galaxies and if proto-globular clusters with multiple stellar populations are formed in the present epoch. It is usually suggested that either the residual gas is rapidly ejected from star-forming clouds by stellar winds and supernova explosions, or that the enrichment of the residual gas and the formation of the second stellar generation occur so rapidly, that the negative stellar feedback is not significant. Here we continue our study of the early development of star clusters in the extreme environments and discuss the restrictions that strong radiative cooling and stellar mass segregation provide on the gas expulsion from dense star-forming clouds. A large range of physical initial conditions in star-forming clouds which include the star-forming cloud mass, compactness, gas metallicity, star formation efficiency and effects of massive stars segregation are discussed. It is shown that in sufficiently massive and compact clusters hot shocked winds around individual massive stars may cool before merging with their neighbors. This dramatically reduces the negative stellar feedback, prevents the development of the global star cluster wind and expulsion of the residual and the processed matter into the ambient interstellar medium. The critical lines which separate the gas expulsion and the gas retention regimes are obtained.

  20. Thermal performance analysis of heat exchanger for closed wet cooling tower using heat and mass transfer analogy

    International Nuclear Information System (INIS)

    Yoo, Seong Yeon; Han, Kyu Hyun; Kim, Jin Hyuck

    2010-01-01

    In closed wet cooling towers, the heat transfer between the air and external tube surfaces can be composed of the sensible heat transfer and the latent heat transfer. The heat transfer coefficient can be obtained from the equation for external heat transfer of tube banks. According to experimental data, the mass transfer coefficient was affected by the air velocity and spray water flow rate. This study provides the correlation equation for mass transfer coefficient based on the analogy of the heat and mass transfer and the experimental data. The results from this correlation equation showed fairly good agreement with experimental data. The cooling capacity and thermal efficiency of the closed wet cooling tower were calculated from the correlation equation to analyze the performance of heat exchanger for the tower

  1. Daylighting and Cooling of Atrium Buildings in Warm Climates: Impact of the Top-Fenestration and Wall Mass Area.

    Science.gov (United States)

    Atif, Morad Rachid

    1992-01-01

    Sun-lighting and daylighting contribute greatly to the aesthetic value of an atrium. However, today's atria are often found either over-lit with extensive cooling loads, or under-lit requiring increased artificial lighting loads. The increase of the top-glazing area increases the cooling loads and decreases the lighting loads. The increase of the mass in the atrium walls decreases the maximum atrium temperature and the cooling loads. Furthermore, the mass distribution and its reflectance affect the lighting levels at the atrium floor. The purpose of this study is to investigate the simultaneous impact of the top-fenestration and the mass and reflectance of atrium walls on the cooling and daylighting performance of atria in warm climates. It attempts to determine the optimum top-fenestration for efficient daylighting and low cooling loads. The daylighting performance was evaluated through illumination measurements in physical models in a sky simulator. The cooling performance was evaluated using the software TRNSYS 13.1. Two types of top-fenestration were tested: horizontal and vertical south-facing, each with three alternate areas. The variations of the atrium walls included materials (standard frame and heavyweight concrete) and percentage and reflectance of the solid area. Two and four-story atria were considered, each with square and linear configuration. The performance was evaluated for three warm climates. The optimum top-fenestration for efficient daylighting was determined. The daylighting prediction algorithm was extended to include the effective reflectance of the atrium walls. The increase of mass in the atrium walls significantly decreased the atrium temperature range, the maximum atrium temperature, and the cooling loads. This impact decreased from horizontal to vertical south-facing top-glazing. The vertical south-facing top-glazing and, to a lesser degree, the reduction of the glazed atrium cover by 50% had more cooling benefits than increasing the

  2. Spatially resolved protein hydrogen exchange measured by subzero-cooled chip-based nanoelectrospray ionization tandem mass spectrometry

    DEFF Research Database (Denmark)

    Amon, Sabine; Trelle, Morten B; Jensen, Ole N

    2012-01-01

    . After a given period of deuteration, the exchange reaction is quenched by acidification (pH 2.5) and cooling (0 °C) and the deuterated protein (or a digest thereof) is analyzed by mass spectrometry. The unavoidable loss of deuterium (back-exchange) that occurs under quench conditions is undesired...... as it leads to loss of information. Here we describe the successful application of a chip-based nanoelectrospray ionization mass spectrometry top-down fragmentation approach based on cooling to subzero temperature (-15 °C) which reduces the back-exchange at quench conditions to very low levels. For example...

  3. Adaption of the LHC cold mass cooling system to the requirements of the Future Circular Collider (FCC)

    Science.gov (United States)

    Kotnig, C.; Tavian, L.; Brenn, G.

    2017-12-01

    The cooling of the superconducting magnet cold masses with superfluid helium (He II) is a well-established concept successfully in operation for years in the LHC. Consequently, its application for the cooling of FCC magnets is an obvious option. The 12-kW heat loads distributed over 10-km long sectors not only require an adaption of the magnet bayonet heat exchangers but also present new challenges to the cryogenic plants, the distribution system and the control strategy. This paper recalls the basic LHC cooling concept with superfluid helium and defines the main parameters for the adaption to the FCC requirements. Pressure drop and hydrostatic head are developed in the distribution and pumping systems; their impact on the magnet temperature profile and the corresponding cooling efficiency is presented and compared for different distribution and pumping schemes.

  4. Powder Injection Molding for mass production of He-cooled divertor parts

    International Nuclear Information System (INIS)

    Antusch, S.; Norajitra, P.; Piotter, V.; Ritzhaupt-Kleissl, H.-J.

    2011-01-01

    A He-cooled divertor for future fusion power plants has been developed at KIT. Tungsten and tungsten alloys are presently considered the most promising materials for functional and structural divertor components. The advantages of tungsten materials lie, e.g. in the high melting point, and low activation, the disadvantages are high hardness and brittleness. The machinig of tungsten, e.g. milling, is very complex and cost-intensive. Powder Injection Molding (PIM) is a method for cost effective mass production of near-net-shape parts with high precision. The complete W-PIM process route is outlined and, results of product examination discussed. A binary tungsten powder feedstock with a grain size distribution in the range 0.7-1.7 μm FSSS, and a solid load of 50 vol.% was developed. After heat treatment, the successfully finished samples showed promising results, i.e. 97.6% theoretical density, a grain size of approximately 5 μm, and a hardness of 457 HV0.1.

  5. Simultaneous heat and mass transfer to air from a compact heat exchanger with water spray precooling and surface deluge cooling

    International Nuclear Information System (INIS)

    Zhang, Feini; Bock, Jessica; Jacobi, Anthony M.; Wu, Hailing

    2014-01-01

    Various methods are available to enhance heat exchanger performance with evaporative cooling. In this study, evaporative mist precooling, deluge cooling, and combined cooling schemes are examined experimentally and compared to model predictions. A flexible model of a compact, finned-tube heat exchanger with a wetted surface is developed by applying the governing conservation and rate equations and invoking the heat and mass transfer analogy. The model is applicable for dry, partially wet, or fully wet surface conditions and capable of predicting local heat/mass transfer, wetness condition, and pressure drop of the heat exchanger. Experimental data are obtained from wind tunnel experiments using a louver-fin flat-tube heat exchanger with single-phase tube-side flow. Total capacity, pressure drop, and water drainage behavior under various water usage rates and air face velocities are analyzed and compared to data for dry-surface conditions. A heat exchanger partitioning method for evaporative cooling is introduced to study partially wet surface conditions, as part of a consistent and general method for interpreting wet-surface performance data. The heat exchanger is partitioned into dry and wet portions by introducing a wet surface factor. For the wet part, the enthalpy potential method is used to determine the air-side sensible heat transfer coefficient. Thermal and hydraulic performance is compared to empirical correlations. Total capacity predictions from the model agree with the experimental results with an average deviation of 12.6%. The model is also exercised for four water augmentation schemes; results support operating under a combined mist precooling and deluge cooling scheme. -- Highlights: • A new spray-cooled heat exchanger model is presented and is validated with data. • Heat duty is shown to be asymptotic with spray flow rate. • Meaningful heat transfer coefficients for partially wet conditions are obtained. • Colburn j wet is lower than j dry

  6. Ultracold molecules for the masses: Evaporative cooling and magneto-optical trapping

    Science.gov (United States)

    Stuhl, B. K.

    While cold molecule experiments are rapidly moving towards their promised benefits of precision spectroscopy, controllable chemistry, and novel condensed phases, heretofore the field has been greatly limited by a lack of methods to cool and compress chemically diverse species to temperatures below ten millikelvin. While in atomic physics these needs are fulfilled by laser cooling, magneto-optical trapping, and evaporative cooling, until now none of these techniques have been applicable to molecules. In this thesis, two major breakthroughs are reported. The first is the observation of evaporative cooling in magnetically trapped hydroxyl (OH) radicals, which potentially opens a path all the way to Bose-Einstein condensation of dipolar radicals, as well as allowing cold- and ultracold-chemistry studies of fundamental reaction mechanisms. Through the combination of an extremely high gradient magnetic quadrupole trap and the use of the OH Λ-doublet transition to enable highly selective forced evaporation, cooling by an order of magnitude in temperature was achieved and yielded a final temperature no higher than 5mK. The second breakthrough is the successful application of laser cooling and magneto-optical trapping to molecules. Motivated by a proposal in this thesis, laser cooling of molecules is now known to be technically feasible in a select but substantial pool of diatomic molecules. The demonstration of not only Doppler cooling but also two-dimensional magneto-optical trapping in yttrium (II) oxide, YO, is expected to enable rapid growth in the availability of ultracold molecules—just as the invention of the atomic magneto-optical trap stimulated atomic physics twenty-five years ago.

  7. Numerical study of a novel counter-flow heat and mass exchanger for dew point evaporative cooling

    Energy Technology Data Exchange (ETDEWEB)

    Zhao, X.; Riffat, S.B. [School of the Built Environment, University of Nottingham, University Park, Nottingham NG7 2RD (United Kingdom); Li, J.M. [Department of Thermal Engineering, Key Laboratory for Thermal Science and Power Engineering of Ministry of Education, Tsinghua University, Beijing 100084 (China)

    2008-10-15

    The paper presents numerical investigation of a novel counter-flow heat and mass exchanger used in the indirect evaporative dew point cooling systems, a potential alternative to the conventional mechanical compression air conditioning systems. Numeric simulation was carried out to optimise the geometrical sizes and operating conditions of the exchanger in order to enhance the cooling (dew point and wet bulb) effectiveness of the exchanger and maximise the energy efficiency of the dew point cooling system. The results of the simulations indicated that cooling (dew point and wet bulb) effectiveness and energy efficiency are largely dependent on the dimensions of the airflow passages, air velocity and working-to-intake-air ratio, and less dependent on the temperature of the feed water. It is recommended that exchanger intake air velocity should be controlled to a value below 0.3-0.5 m/s; height of air passage (channel) should be set to 6 mm or below and the length of the passage should be 200 time the height; the working-to-intake-air ratio should be around 0.4. Under the UK summer design condition, i.e., 28{sup o}C of dry bulb temperature, 20{sup o}C of wet bulb temperature and 16{sup o}C of dew point temperature, the exchanger can achieve wet-bulb effectiveness of up to 1.3 and dew-point effectiveness of up to 0.9. (author)

  8. The ultra low mass cooling system of the Belle II DEPFET detector

    International Nuclear Information System (INIS)

    Ruiz-Valls, P.; Marinas, C.

    2013-01-01

    The new Japanese Super Flavor Factory Belle II is designed with high precision in mind, making a good vertex resolution a necessity. In order to achieve the required resolution in the vertex reconstruction, besides highly segmented pixel detectors, the material budget has to be kept at very low levels, since more material results in multiple scattering and degrades the resolution. As a consequence, there is a direct impact on the cooling system, that has to be carefully designed, not allowing active cooling pipes inside the acceptance region. In this asymmetric e + e − experiment the angular acceptance ranges from 17° to 150°, leaving room for support structures outside this range. The Belle II vertex detector includes DEPFET technology in its vertex detector the front end electronics (FEE) of which, placed outside the acceptance, can be cooled by 2-phase CO 2 through massive support structures while the sensitive area relies on forced convection with cold nitrogen gas

  9. Heat and mass transfer across gas-filled enclosed spaces between a hot liquid surface and a cooled roof

    Energy Technology Data Exchange (ETDEWEB)

    Ralph, J C; Bennett, A W [Atomic Energy Research Establishment, Harwell, Oxfordshire (United Kingdom)

    1977-01-01

    A detailed knowledge is required of the amounts of sodium vapour which may be transported from the hot surface of a fast reactor coolant pool through the cover gas to cooler regions of the structure. Evaporation from the unbounded liquid surfaces of lakes and seas has been studied extensively but the heat and mass transfer mechanisms in gas-vapour mixtures which occur in enclosed spaces have received less attention. Recent work at Harwell has provided a theoretical model from which the heat and mass transfer in idealised plane cavities can be calculated. An experimental study is reported in this paper which seeks to verify the theoretical prediction. Heat and mass transfer measurements have been made on a system in which a heated water pool transfers heat and mass across a gas-filled space to a cooled horizontal cover plate. Several cover gases were used in the experiments and the results show that, provided the partial density of the vapour is low compared with that of the gas, the heat transfer mechanism is that of combined convection and radiation. The enhancement in heat transfer due to the presence of the vapour is broadly consistent with assumption of a direct analogy between heat and mass transfer neglecting condensation in the interspace. The mass transfer measurements, in which water condensing on the cooled roof was measured directly, showed for low roof temperatures an imbalance between the mass and heat transfer. This observation is consistent with the theoretical predictions that heat transfer in the convecting system should be independent of the amount of condensation and 'rain-back' within the cavity. The results of tests with helium showed that convection was entirely suppressed by the presence of the water vapour. This confirms the behaviour predicted for gas-vapour mixtures in which the vapour density is of the same order as the gas density. (author)

  10. Thermo Active Building Systems Using Building Mass To Heat and Cool

    DEFF Research Database (Denmark)

    Olesen, Bjarne W.

    2012-01-01

    Using the thermal storage capacity of the concrete slabs between each floor in multistory buildings to heat or cool is a trend that began in the early 1990s in Switzerland.1,2 Pipes carrying water for heating and cooling are embedded in the center of the concrete slab. In central Europe (Germany,......, Austria, Netherlands, etc.), this type of system has been installed in a significant number of new office buildings since the late 1990s. The trend is spreading to other parts of the world (the rest of Europe, North America and Asia)....

  11. Three dimensional modeling on airflow, heat and mass transfer in partially impermeable enclosure containing agricultural produce during natural convective cooling

    International Nuclear Information System (INIS)

    Chourasia, M.K.; Goswami, T.K.

    2007-01-01

    A three dimensional model was developed to simulate the transport phenomena in heat and mass generating porous medium cooled under natural convective environment. Unlike the previous works on this aspect, the present model was aimed for bulk stored agricultural produce contained in a permeable package placed on a hard surface. This situation made the bottom of the package impermeable to fluid flow as well as moisture transfer and adiabatic to heat transfer. The velocity vectors, isotherms and contours of rate of moisture loss were presented during transient cooling as well as at steady state using the commercially available computational fluid dynamics (CFD) code based on the finite volume technique. The CFD model was validated using the experimental data on the time-temperature history as well as weight loss obtained from a bag of potatoes kept in a cold store. The simulated and experimental values on temperature and moisture loss of the product were found to be in good agreement

  12. Thermo Active Building Systems – Using Building Mass To Heat and Cool

    DEFF Research Database (Denmark)

    Olesen, Bjarne W.

    2014-01-01

    , Austria, Netherlands, etc.), this type of system has been installed in a significant number of new office buildings since the late 1990s. The trend is spreading to other parts of the world (the rest of Europe, North America and Asia). Thermo active building systems (TABS) are primarily used for cooling...

  13. Experimental characterization of mass, work and heat flows in an air cooled, single cylinder engine

    International Nuclear Information System (INIS)

    Perez-Blanco, H.

    2004-01-01

    Small air cooled engines, although large in numbers, receive scant attention in the literature. Experimental data for a four stroke, air cooled, single cylinder engine are presented in this report. Air to fuel ratios, indicated and output power, exhaust composition and heat loss are determined to result in suitable thermal and mechanical efficiencies. The data obtained are discussed with the perspective obtained from other literature references. Exhaust composition figures appear reasonable, but the measurement of the transient exhaust flows is still a concern. Based on the measurements, a graph illustrating the different energy transformations in the engine is produced. Undergraduate students in the curriculum routinely use the engine and the present work allows one to conclude that the measurement approach produces reasonable results. These results could be used by engine modelers and others interested in this wide field of technology

  14. Innovative low-mass cooling systems for the ALICE ITS Upgrade detector at CERN

    OpenAIRE

    Gomez Marzoa, Manuel; Thome, John

    2016-01-01

    The Phase-1 upgrade of the LHC to full design luminosity, planned for 2019 at CERN, requires the modernisation of the experiments around the accelerator. The Inner Tracking System (ITS), the innermost detector at the ALICE experiment, will be upgraded by replacing the current apparatus by new silicon pixels arranged in 7 cylindrical layers. Each layer is composed by multiple independent modules, named staves, which provide mechanical support and cooling to the chips. This thesis aims to devel...

  15. Orbital misalignment of the Neptune-mass exoplanet GJ 436b with the spin of its cool star

    Science.gov (United States)

    Bourrier, Vincent; Lovis, Christophe; Beust, Hervé; Ehrenreich, David; Henry, Gregory W.; Astudillo-Defru, Nicola; Allart, Romain; Bonfils, Xavier; Ségransan, Damien; Delfosse, Xavier; Cegla, Heather M.; Wyttenbach, Aurélien; Heng, Kevin; Lavie, Baptiste; Pepe, Francesco

    2018-01-01

    The angle between the spin of a star and the orbital planes of its planets traces the history of the planetary system. Exoplanets orbiting close to cool stars are expected to be on circular, aligned orbits because of strong tidal interactions with the stellar convective envelope. Spin–orbit alignment can be measured when the planet transits its star, but such ground-based spectroscopic measurements are challenging for cool, slowly rotating stars. Here we report the three-dimensional characterization of the trajectory of an exoplanet around an M dwarf star, derived by mapping the spectrum of the stellar photosphere along the chord transited by the planet. We find that the eccentric orbit of the Neptune-mass exoplanet GJ 436b is nearly perpendicular to the stellar equator. Both eccentricity and misalignment, surprising around a cool star, can result from dynamical interactions (via Kozai migration) with a yet-undetected outer companion. This inward migration of GJ 436b could have triggered the atmospheric escape that now sustains its giant exosphere.

  16. Parametric evaluation of laser ablation and ionization time-of-flight mass spectrometry with ion guide cooling cell

    International Nuclear Information System (INIS)

    Peng Ding; He Jian; Yu Quan; Chen Lizhi; Hang Wei; Huang Benli

    2008-01-01

    A novel laser ablation and ionization time-of-flight mass spectrometer has been used for direct elemental analysis of alloys. The system was incorporated with an ion guide cooling cell to reduce the kinetic energy distribution for the purpose of better resolution. Parametric studies have been conducted on the system with respect to the buffer gas pressure and the distance from sample to the nozzle to obtain the maximal signal intensities. In order to obtain satisfactory relative sensitivity coefficients (RSC) for different elements, the influence of the laser irradiance, nozzle voltage, rf frequency and voltage of the hexapole were also investigated. Under the optimized conditions, the RSC of different elements were available for direct semi-quantitative analysis. The mass resolving power (FWHM) of the spectrometer was approximately 7000 (m/Δm) and the limit of detection (LOD) was 10 -6 g/g

  17. Void Measurements in the Regions of Sub-Cooled and Low-Quality Boiling. Part 1. Low Mass Velocities

    Energy Technology Data Exchange (ETDEWEB)

    Rouhani, S Z

    1966-07-15

    By the application of the ({gamma}, n) reaction to boiling heavy water, void volume fractions have been measured in a vertical annular channel with 25 mm O.D. and 12 mm I.D. at a heated length of 1090 mm. The experiments covered pressures from 10 to 50 bars, mass velocities from 50 to 1450 kg/m-sec, heat fluxes from 30 to 90 W/cm{sup 2}, sub coolings from 30 to 0 C, and steam qualities from 0 to 15 %. The results indicate noticeable effects of pressure, heat flux and even mass velocity upon the variations of void with subcooling and steam quality. A novel explanation of the mechanism of their effects has been found and proved by qualitative analysis.

  18. Mass and loss analysis of a space-type radiation cooled insulated DC transmission line

    International Nuclear Information System (INIS)

    Schwarze, g.E.

    1986-01-01

    As both the power levels and transmission distances increase such as for large future nuclear power systems, the transmission line becomes an important element in the power chain between the source and load bus. Thus, the transmission line's characteristics must be determined so that the effect of these characteristics on the total power system can be assessed. These design characteristics include the specific mass, percent power loss, size, voltage and power levels, and operating temperatures of the conductor and insulating materials. In a previous paper, the dc transmission line's characteristics of a noninsulated solid cylindrical conductor were determined. In that analysis the expression derived for the transmission line's mass only included the conductor mass and the operating temperature of the line was that of the conductor. In the analysis of this paper, a single layer of insulation is added to the solid cylindrical conductor. In this analysis the dependency of the dc transmission line's mass, loss, and size on the power and voltage levels, conductor and insulation surface temperatures, transmission distance, and conductor and insulation material properties is determined. This analysis can be extended to multi-layers of insulation but the complexity of the analysis increases as the number of layers increase

  19. Cooling the center-of-mass motion of a diamond nanocrystal in a magneto-gravitational trap

    Science.gov (United States)

    Hsu, Jen-Feng

    A magneto-gravitational trap for micro/nanometer sized diamagnetic particles, such as diamond nanocrystals, is tested and characterized. After exploring various other systems, such as a suspended graphene beam and an optical trap, this magneto-gravitational nanomechanical trapping system for diamond with nitrogen-vacancy (NV) centers presents unique advantages for experiments in fundamental quantum mechanics. Those include, for example, the generation of large quantum superposition states and tests of quantum gravity. Features are demonstrated for this system, such as stable and passive levitation from atmospheric pressure to high vacuum, low resonant frequencies and damping rates, and cooling of the center-of-mass motions to below 1 K. The construction of the trap, vacuum system, optics, and motion detection electronics are described in detail.

  20. Quasi One-Dimensional Model of Natural Draft Wet-Cooling Tower Flow, Heat and Mass Transfer

    Directory of Open Access Journals (Sweden)

    Hyhlík Tomáš

    2015-01-01

    Full Text Available The article deals with the development of CFD (Computational Fluid Dynamics model of natural draft wet-cooling tower flow, heat and mass transfer. The moist air flow is described by the system of conservation laws along with additional equations. Moist air is assumed to be homogeneous mixture of dry air and water vapour. Liquid phase in the fill zone is described by the system of ordinary differential equations. Boundary value problem for the system of conservation laws is discretized in space using Kurganov-Tadmor central scheme and in time using strong stability preserving Runge-Kutta scheme. Initial value problems in the fill zone is solved by using standard fourth order Runge-Kutta scheme. The interaction between liquid water and moist air is done by source terms in governing equations.

  1. Void Measurements in the Regions of Sub-Cooled and Low-Quality Boiling. Part 2. Higher Mass Velocities

    Energy Technology Data Exchange (ETDEWEB)

    Rouhani, S Z

    1966-07-15

    This report consists mostly of tables of experimental data obtained in void measurements. It is a continuation and the completing part of a previous report with the same title. The data are from the measurements in a vertical annular channel with 25 mm O.D. and 12 mm I.D. at a heated length of 1090 mm. These experiments covered pressures from 10 to 50 bars, mass velocities from 650 to 1450 kg/m -sec., heat fluxes from 60 to 120 W/cm{sup 2}, sub-coolings from 30 to 0 C, and steam qualities from 0 to 12 %. The tables include the inlet temperatures and measured wall super-heat.

  2. Calculation of mass flow and steam quality distribution on fuel elements of light-water cooled boiling water nuclear reactors

    International Nuclear Information System (INIS)

    Hermanns, H.J.

    1977-04-01

    By the example of light-water cooled nuclear reactors, the state of the calculation methods at disposal for calculating mass flow and steam quality distribution (sub-channel analysis) is indicated. Particular regard was paid to the transport phenomena occurring in reactor fuel elements in the range of two phase flow. Experimentally determined values were compared with recalculations of these experiments with the sub-channel code COBRA; from the results of these comparing calculations, conclusions could be drawn on the suitability of this code for defined applications. Limits of reliability could be determined to some extent. Based on the experience gained and the study of individual physical model concepts, recognized as being important, a sub-channel model was drawn up and the corresponding numerical computer code (SIEWAS) worked out. Experiments made at GE could be reproduced with the code SIEWAS with sufficient accuracy. (orig.) [de

  3. Numerical investigation of the energy performance of a guideless irregular heat and mass exchanger with corrugated heat transfer surface for dew point cooling

    International Nuclear Information System (INIS)

    Xu, Peng; Ma, Xiaoli; Diallo, Thierno M.O.; Zhao, Xudong; Fancey, Kevin; Li, Deying; Chen, Hongbing

    2016-01-01

    The paper presents an investigation into the energy performance of a novel irregular heat and mass exchanger for dew point cooling which, compared to the existing flat-plate heat exchangers, removed the use of the channel supporting guides and implemented the corrugated heat transfer surface, thus expecting to achieve the reduced air flow resistance, increased heat transfer area, and improved energy efficiency (i.e. Coefficient of Performance (COP)) of the air cooling process. CFD simulation was carried out to determine the flow resistance (K) factors of various elements within the dry and wet channels of the exchanger, while the ‘finite-element’ based ‘Newton-iteration’ numerical simulation was undertaken to investigate its cooling capacity, cooling effectiveness and COP at various geometrical and operational conditions. Compared to the existing flat-plate heat and mass exchangers with the same geometrical dimensions and operational conditions, the new irregular exchanger could achieve 32.9%–37% higher cooling capacity, dew-point and wet-bulb effectiveness, 29.7%–33.3% higher COP, and 55.8%–56.2% lower pressure drop. While undertaking dew point air cooling, the irregular heat and mass exchanger had the optimum air velocity of 1 m/s within the flow channels and working-to-intake air ratio of 0.3, which allowed the highest cooling capacity and COP to be achieved. In terms of the exchanger dimensions, the optimum height of the channel was 5 mm while its length was in the range 1–2 m. Overall, the proposed irregular heat and mass exchanger could lead to significant enhanced energy performance compared to the existing flat-plate dew point cooling heat exchanger of the same geometrical dimensions. To achieve the same amount cooling output, the irregular heat and mass exchanger had the reduced size and cost against the flat-plate ones. - Highlights: • Numerical investigation of an irregular heat and mass exchanger was undertaken. • A

  4. Cool Science: Year 2 of Using Children's Artwork about Climate Change to Engage Riders on Mass Transit

    Science.gov (United States)

    Lustick, D. S.; Lohmeier, J.; Chen, R. F.

    2014-12-01

    A team of educators and scientists from the University of Massachusetts Lowell and the University of Massachusetts Boston will report on the second year of an informal science learning research project using mass transit spaces in Lowell, MA. Cool Science (CS) conducts a statewide art competition for K-12 students in the fall challenging them to express climate science understanding through the visual arts. An inter-disciplinary panel of judges evaluates entries and identifies the top 24 works of art. The best six student works of art are then put on public display throughout the spring on the Lowell Regional Transit Authority (LRTA). Displaying student artwork in Out of Home Multi-Media (OHMM) such as bus placards and posters is intended to engage riders with opportunities to learn informally. CS aims to promote and evaluate learning about climate change science among the general public and k-12 students/teachers. The goals of CS are: 1) Engage teachers, students, and parents in a climate change science communication competition. 2) Display the winning 6 artworks from K-12 students throughout the LRTA. 3) Assess the impact of Cool Science on the teaching and learning of climate science in K-12 formal education. 4) Assess the impact of Cool Science artwork on attitudes, awareness, and understanding of climate change among adult bus riders. A naturalistic inquiry employing a mixed methodology approach best describes our research design. The evaluation focuses on providing feedback regarding the potential learning outcomes for the K-12 students who create the media for the project and the general riding public who engage with the student artwork. To identify possible outcomes, data was collected in the several forms: survey, interviews, and online analytics. We see an urgent need to improve both the public's engagement with climate change science and to the profile of climate change science in formal education settings. The Cool Science (CS) project is an opportunity

  5. Mass and energy supply of a cool coronal loop near its apex

    Science.gov (United States)

    Yan, Limei; Peter, Hardi; He, Jiansen; Xia, Lidong; Wang, Linghua

    2018-03-01

    Context. Different models for the heating of solar corona assume or predict different locations of the energy input: concentrated at the footpoints, at the apex, or uniformly distributed. The brightening of a loop could be due to the increase in electron density ne, the temperature T, or a mixture of both. Aim. We investigate possible reasons for the brightening of a cool loop at transition region temperatures through imaging and spectral observation. Methods: We observed a loop with the Interface Region Imaging Spectrograph (IRIS) and used the slit-jaw images together with spectra taken at a fixed slit position to study the evolution of plasma properties in and below the loop. We used spectra of Si IV, which forms at around 80 000 K in equilibrium, to identify plasma motions and derive electron densities from the ratio of inter-combination lines of O IV. Additional observations from the Solar Dynamics Observatory (SDO) were employed to study the response at coronal temperatures (Atmospheric Imaging Assembly, AIA) and to investigate the surface magnetic field below the loop (Helioseismic and Magnetic Imager, HMI). Results: The loop first appears at transition region temperatures and later also at coronal temperatures, indicating a heating of the plasma in the loop. The appearance of hot plasma in the loop coincides with a possible accelerating upflow seen in Si IV, with the Doppler velocity shifting continuously from -70 km s-1 to -265 km s-1. The 3D magnetic field lines extrapolated from the HMI magnetogram indicate possible magnetic reconnection between small-scale magnetic flux tubes below or near the loop apex. At the same time, an additional intensity enhancement near the loop apex is visible in the IRIS slit-jaw images at 1400 Å. These observations suggest that the loop is probably heated by the interaction between the loop and the upflows, which are accelerated by the magnetic reconnection between small-scale magnetic flux tubes at lower altitudes. Before

  6. 2MASS J06562998+3002455: Not a Cool White Dwarf Candidate, but a Population II Halo Star

    Science.gov (United States)

    de la Fuente Marcos, Raúl; de la Fuente Marcos, Carlos

    2018-06-01

    2MASS J06562998+3002455 or PSS 309-6 is a high proper-motion star that was discovered during a survey with the 2.1 m telescope at Kitt Peak National Observatory. Here, we reevaluate the status of this interesting star using Gaia DR2. Our results strongly suggest that PSS 309-6 could be a Population II star as the value of its V component is close to -220 km/s, which is typical for halo stars in the immediate solar neighborhood. Kapteyn's star is the nearest known halo star and PSS 309-6 exhibits similar kinematic and photometric signatures. Its properties also resemble those of 2MASS J15484023-3544254, which was once thought to be the nearest cool white dwarf but was later reclassified as K-type subdwarf. Although it is virtually certain that PSS 309-6 is not a nearby white dwarf but a more distant Population II subdwarf, further spectroscopic information, including radial velocity measurements, is necessary to fully characterize this probable member of the Galactic halo.

  7. First signal from a broadband cryogenic preamplifier cooled by circulating liquid nitrogen in a 7 T Fourier transform ion cyclotron resonance mass spectrometer.

    Science.gov (United States)

    Choi, Myoung Choul; Lee, Jeong Min; Lee, Se Gyu; Choi, Sang Hwan; Choi, Yeon Suk; Lee, Kyung Jae; Kim, SeungYong; Kim, Hyun Sik; Stahl, Stefan

    2012-12-18

    Despite the outstanding performance of Fourier transform ion cyclotron/mass spectrometry (FTICR/MS), the complexity of the cellular proteome or natural compounds presents considerable challenges. Sensitivity is a key performance parameter of a FTICR mass spectrometer. By improving this parameter, the dynamic range of the instrument can be increased to improve the detection signal of low-abundance compounds or fragment ion peaks. In order to improve sensitivity, a cryogenic detection system was developed by the KBSI (Korean Basic Science Institute) in collaboration with Stahl-Electronics (Mettenheim, Germany). A simple, efficient liquid circulation cooling system was designed and a cryogenic preamplifier implemented inside a FTICR mass spectrometer. This cooling system circulates a cryoliquid from a Dewar to the "liquid circulation unit" through a CF flange to cool a copper block and a cryopreamplifier; the cooling medium is subsequently exhausted into the air. The cryopreamplifier can be operated over a very wide temperature range, from room temperature to low temperature environments (4.2 K). First, ion signals detected by the cryopreamplifier using a circulating liquid nitrogen cooling system were observed and showed a signal-to-noise ratio (S/N) about 130% better than that obtained at room temperature.

  8. Cooling of low-mass carbon-oxygen dwarfs from the planetary nucleus stage through the crystallization stage

    International Nuclear Information System (INIS)

    Iben, I. Jr.; Tutukov, A.V.

    1984-01-01

    The evolution of a carbon-oxygen dwarf of mass Mroughly-equal0.6 Msun has been carried all the way from an initial nuclear burning stage, when it is the central star of a planetary nebula, to the stage of complete internal crystallization, after 10 10 yr of cooling. Shell hydrogen and helium burning, neutrino losses, and the effects of liquification and crystallization have been taken into account. We show how the luminosity-time relationship may be understood in terms of balances between competing physical processes and demonstrate that, after complete crystallization, the time scale for cooling to terrestrial-like temperatures, in our approximation, is simply the optical depth of the outer, nonisothermal layer multiplied by a dimensional constant which, in years, is of the order of unity. A luminosity function based on the results covers the range -5< or approx. =log(L/Lsun)< or approx. =4 and agrees reasonably well with the observed luminosity function extending from the brighest planetary nebula nuclei to the dimmest observed white dwarfs, except perhaps for log(L/L/sub sun/)< or approx. =-4.5. Possible reasons for the apparent discrepancy at low luminosity, apart from the extreme obstacles against discovery, are discussed, one of the simplest is that the oldest dwarfs in the solar vicinity are distributed over a distance from the galactic plane that is approx.5 times larger than is the case for the youngest dwarfs; another possibility is that the opacity in the outer layers of the oldest dwarf models has been overestimated (or underestimatedexclamation) by a factor of 5 or more

  9. Analysis of transient and hysteresis behavior of cross-flow heat exchangers under variable fluid mass flow rate for data center cooling applications

    International Nuclear Information System (INIS)

    Gao, Tianyi; Murray, Bruce; Sammakia, Bahgat

    2015-01-01

    Effective thermal management of data centers is an important aspect of reducing the energy required for the reliable operation of data processing and communications equipment. Liquid and hybrid (air/liquid) cooling approaches are becoming more widely used in today's large and complex data center facilities. Examples of these approaches include rear door heat exchangers, in-row and overhead coolers and direct liquid cooled servers. Heat exchangers are primary components of liquid and hybrid cooling systems, and the effectiveness of a heat exchanger strongly influences the thermal performance of a cooling system. Characterizing and modeling the dynamic behavior of heat exchangers is important for the design of cooling systems, especially for control strategies to improve energy efficiency. In this study, a dynamic thermal model is solved numerically in order to predict the transient response of an unmixed–unmixed crossflow heat exchanger, of the type that is widely used in data center cooling equipment. The transient response to step and ramp changes in the mass flow rate of both the hot and cold fluid is investigated. Five model parameters are varied over specific ranges to characterize the transient performance. The parameter range investigated is based on available heat exchanger data. The thermal response to the magnitude, time period and initial and final conditions of the transient input functions is studied in detail. Also, the hysteresis associated with the fluid mass flow rate variation is investigated. The modeling results and performance data are used to analyze specific dynamic performance of heat exchangers used in practical data center cooling applications. - Highlights: • The transient performance of a crossflow heat exchanger was modeled and studied. • This study provides design information for data center thermal management. • The time constant metric was used to study the impacts of many variable inputs. • The hysteresis behavior

  10. The study on water ingress mass in the steam generator heat-exchange tube rupture accident of modular high temperature gas-cooled reactor

    International Nuclear Information System (INIS)

    Wang Yan; Shi Lei; Li Fu; Zheng Yanhua

    2012-01-01

    The steam generator heat-exchange tube rupture (SGTR) accident is an important and particular accident which will result in water ingress to the primary loop of reactor. Water ingress will result in chemical reaction of graphite fuel and structure with water, which may cause overpressure due to generation of explosive gaseous in large quantity. The study on the water ingress accident is significant for the verification of the inherent characteristics of high temperature gas-cooled reactor. The previous research shows that the amount of water ingress mass is the dominant key factor on the severity of the accident consequence. The 200 MWe high temperature gas-cooled reactor (HTR-PM), which is the first modular pebble-bed high temperature gas-cooled reactor in China designed by the Institute of Nuclear and New Energy Technology of Tsinghua University, is selected to be analyzed in this paper. The different DBA accident scenarios of double-ended break of single heat-exchange tube are simulated respectively by the thermal-hydraulic analysis code RETRAN-02. The results show the water ingress mass through the broken heat-exchange tube is related to the break location. The amount of water ingress mass is affected obviously by the capacity of the emptier system. With the balance of safety and economical efficiency, the amount of water ingress mass from the secondary side of steam generator into the primary coolant loop will be reduced by increasing properly the diameter of the draining lines. (authors)

  11. Mass production and photoelectric performances of P and Al Co-doped ZnO nanocrystals under different cooling post-processes

    International Nuclear Information System (INIS)

    Deng, Ya-Juan; Lu, Yi; Liu, Jin-Ku; Yang, Xiao-Hong

    2015-01-01

    The phosphorus and aluminum co-doped in zinc oxide (ZnO) called PAZO nano-crystals (NCs) have been mass synthesized by a combustion method, which shows a preferable photocatalytic capability and conductive ability. This article focuses on the properties of PAZO NCs experienced by three cooling-down aftertreatments, which were the normalizing, quenching and annealing process, respectively. The influences of different cooling processes on the photocatalytic and conductive performances are discussed in details. From the research, we found the quenched-PAZO NCs showed the most unappealing photocatalysis and conductivity, because excessive defects as the recombination center of electron–hole pairs were generated in the quenching process. - Graphical abstract: This research focuses on the PAZO NCs experienced by different cooling-down aftertreatments, which were the normalizing, quenching and annealing process, respectively. The quenched-PAZO NCs had the most unappealing photocatalysis and conductivity, because of generating excessive defects as the recombination center of electron–hole pairs in the quenching process. - Highlights: • We presented a method to mass synthesize co-doped P and Al in ZnO nanocrystals. • The PAZO NCs have novel photoelectric performances. • The cooling post-process influence on the photoelectric properties was studied. • The excessive defects decline the photocatalytic and conductive activities

  12. RAPK-7. code for calculating mass transfer and corrosion products activation in the circulation loops of water-cooled reactors

    International Nuclear Information System (INIS)

    Mikhaylov, A.V.; Moryakov, A.V.; Nikitin, A.V.

    2012-09-01

    The RAPK-7 code was developed to simulate formation of non-irradiated and activated corrosion products, their transport and deposition on inner surfaces of primary components and in primary coolant of water-cooled reactors during their operation on power and after shutdown. The key feature of this code is its particular emphasis on the contamination of circulation loops by radioactive corrosion products of reactor which operates on variable modes. Such reactors typically are: research reactors and their experimental loops, naval nuclear power systems, etc. It's typical for such reactors to have repeated (over the campaign) and frequent variations in power (activating neutron fluxes), thermal-physical, hydrodynamic and other parameters of coolant, intensive water mass exchange between the circulation loop and the pressuriser, etc. The processes of mass-transfer are described by the RAPK-7 code with the use of models similar to those employed by the COTRAN and PACTOLE codes. The circulation circuit is broken down into computation areas. The user will then set the concentrations of water chemistry adjusting additives (alkali, boric acid, ammonia, hydrogen), as well as parameters in each area, such as wall temperature, coolant flow core temperature, pressure, flow rate, velocity, the radial component of coolant flowrate and activating neutron flux density. All the above parameters can be set as time-dependent step functions (bar charts), with independent time steps for each of them. The number of computation areas, the number of time dependencies and the level of detail in their description are limited by computer capabilities only. A 'brake' mode with a single-step change of the required set of parameters is provided to allow for jump-type events, such as replacement of contaminated components with clean ones during core refueling or repairs, emergency injection of boric acid, water mass exchange between the circulation circuit and the pressuriser, etc

  13. Mass measurement of halo nuclides and beam cooling with the mass spectrometer Mistral; Mesure de masse de noyaux a halo et refroidissement de faisceaux avec l'experience MISTRAL

    Energy Technology Data Exchange (ETDEWEB)

    Bachelet, C

    2004-12-01

    Halo nuclides are a spectacular drip-line phenomenon and their description pushes nuclear theories to their limits. The most critical input parameter is the nuclear binding energy; a quantity that requires excellent measurement precision, since the two-neutron separation energy is small at the drip-line by definition. Moreover halo nuclides are typically very short-lived. Thus, a high accuracy instrument using a quick method of measurement is necessary. MISTRAL is such an instrument; it is a radiofrequency transmission mass spectrometer located at ISOLDE/CERN. In July 2003 we measured the mass of the Li{sup 11}, a two-neutron halo nuclide. Our measurement improves the precision by a factor 6, with an error of 5 keV. Moreover the measurement gives a two-neutron separation energy 20% higher than the previous value. This measurement has an impact on the radius of the nucleus, and on the state of the two valence neutrons. At the same time, a measurement of the Be{sup 11} was performed with an uncertainty of 4 keV, in excellent agreement with previous measurements. In order to measure the mass of the two-neutron halo nuclide Be{sup 14}, an ion beam cooling system is presently under development which will increase the sensitivity of the spectrometer. The second part of this work presents the development of this beam cooler using a gas-filled Paul trap. (author)

  14. Numerical analysis of the heat and mass transfer processes in selected M-Cycle heat exchangers for the dew point evaporative cooling

    International Nuclear Information System (INIS)

    Pandelidis, Demis; Anisimov, Sergey

    2015-01-01

    Highlights: • The comparative numerical study of the eight M-Cycle heat exchangers was presented. • The mathematical model is compared against the experimental data. • The results show, that the original M-Cycle heat and mass exchanger can be improved. • The effectiveness of the heat and mass exchangers depends strongly on the inlet air parameters. - Abstract: This paper investigates a mathematical simulation of heat and mass transfer in eight different types of the Maisotsenko Cycle (M-Cycle) heat and mass exchangers (HMXs) used for indirect evaporative air cooling. A two-dimensional heat and mass transfer model is developed to perform the thermal calculations of the indirect evaporative cooling process and quantifying the overall performance. The mathematical model was validated against experimental data. A numerical simulation reveals many unique features of the considered HMXs, enabling an accurate prediction of their performance. Results of the model allow for comparison of the analyzed devices in order to improve the performance of the original HMX

  15. Mass measurement of cooled neutron-deficient bismuth projectile fragments with time-resolved Schottky mass spectrometry at the FRS-ESR facility

    Energy Technology Data Exchange (ETDEWEB)

    Litvinov, Yu.A.; Geissel, H. [Giessen Univ. (Germany); Radon, T. [Gesellschaft fuer Schwerionenforschung mbH, Darmstadt (DE)] [and others

    2005-06-01

    Masses of 582 neutron-deficient nuclides (30{<=}Z{<=}85) were measured with time-resolved Schottky mass spectrometry at the FRS-ESR facility at GSI, 117 were used for calibration. The masses of 71 nuclides were obtained for the first time. A typical mass accuracy of 30 {mu}u was achieved. These data have entered the latest atomic mass evaluation. The mass determination of about 140 additional nuclides was possible via known energies (Q-values) of {alpha}-, {beta}-, or proton decays. The obtained results are compared with the results of other measurements. (orig.)

  16. Cooling techniques

    International Nuclear Information System (INIS)

    Moeller, S.P.

    1994-01-01

    After an introduction to the general concepts of cooling of charged particle beams, some specific cooling methods are discussed, namely stochastic, electron and laser cooling. The treatment concentrates on the physical ideas of the cooling methods and only very crude derivations of cooling times are given. At the end three other proposed cooling schemes are briefly discussed. (orig.)

  17. Buffer-gas cooling of antiprotonic helium to 1.5 to 1.7 K, and antiproton-to–electron mass ratio

    CERN Document Server

    Hori, Masaki; Sótér, Anna; Barna, Daniel; Dax, Andreas; Hayano, Ryugo; Kobayashi, Takumi; Murakami, Yohei; Todoroki, Koichi; Yamada, Hiroyuki; Horváth, Dezső; Venturelli, Luca

    2016-01-01

    Charge, parity, and time reversal (CPT) symmetry implies that a particle and its antiparticle have the same mass. The antiproton-to-electron mass ratio Embedded Image can be precisely determined from the single-photon transition frequencies of antiprotonic helium. We measured 13 such frequencies with laser spectroscopy to a fractional precision of 2.5 × 10−9 to 16 × 10−9. About 2 × 109 antiprotonic helium atoms were cooled to temperatures between 1.5 and 1.7 kelvin by using buffer-gas cooling in cryogenic low-pressure helium gas; the narrow thermal distribution led to the observation of sharp spectral lines of small thermal Doppler width. The deviation between the experimental frequencies and the results of three-body quantum electrodynamics calculations was reduced by a factor of 1.4 to 10 compared with previous single-photon experiments. From this, Embedded Image was determined as 1836.1526734(15), which agrees with a recent proton-to-electron experimental value within 8 × 10−10.

  18. Discussion on amount of water ingress mass in steam generator heat-exchange tube rupture accident of high- temperature gas-cooled reactor

    International Nuclear Information System (INIS)

    Wang Yan; Zheng Yanhua; Shi Lei; Li Fu; Sun Ximing

    2009-01-01

    The steam generator heat-exchange tube rupture (SGTR) accident which will result in the water ingress to the primary circuit of reactor is an important and particular accident for high-temperature gas-cooled reactor (HTGR). The analysis of the water ingress accident is significant for verifying the inherent safety characteristics of HTGR. The amount of water ingress mass is one of the decisive factors for the seriousness of the accident consequence. The 250 MW Pebble-bed Modular High-Temperature Gas-cooled Reactor (HTR-PM) designed by Institute of Nuclear and New Energy Technology of Tsinghua University was selected as an example of analysis. The analysis results show that the amount of water ingress mass is not only affected directly with the broken position and the broken area of the tubes, but also related with the diameter of draining piping and restrictor, draining control valve, action setting of emptier system. With reasonable parameters chosen, the water in steam generator could be drained effectively, so it will prevent the primary circuit of reactor from water ingress in large quantity and reduce the radioactive isotopes ingress to the secondary circuit. (authors)

  19. Microbial analysis of meatballs cooled with vacuum and conventional cooling.

    Science.gov (United States)

    Ozturk, Hande Mutlu; Ozturk, Harun Kemal; Koçar, Gunnur

    2017-08-01

    Vacuum cooling is a rapid evaporative cooling technique and can be used for pre-cooling of leafy vegetables, mushroom, bakery, fishery, sauces, cooked food, meat and particulate foods. The aim of this study was to apply the vacuum cooling and the conventional cooling techniques for the cooling of the meatball and to show the vacuum pressure effect on the cooling time, the temperature decrease and microbial growth rate. The results of the vacuum cooling and the conventional cooling (cooling in the refrigerator) were compared with each other for different temperatures. The study shows that the conventional cooling was much slower than the vacuum cooling. Moreover, the microbial growth rate of the vacuum cooling was extremely low compared with the conventional cooling. Thus, the lowest microbial growth occurred at 0.7 kPa and the highest microbial growth was observed at 1.5 kPa for the vacuum cooling. The mass loss ratio for the conventional cooling and vacuum cooling was about 5 and 9% respectively.

  20. Cooling tower calculations

    International Nuclear Information System (INIS)

    Simonkova, J.

    1988-01-01

    The problems are summed up of the dynamic calculation of cooling towers with forced and natural air draft. The quantities and relations are given characterizing the simultaneous exchange of momentum, heat and mass in evaporative water cooling by atmospheric air in the packings of cooling towers. The method of solution is clarified in the calculation of evaporation criteria and thermal characteristics of countercurrent and cross current cooling systems. The procedure is demonstrated of the calculation of cooling towers, and correction curves and the effect assessed of the operating mode at constant air number or constant outlet air volume flow on their course in ventilator cooling towers. In cooling towers with the natural air draft the flow unevenness is assessed of water and air relative to its effect on the resulting cooling efficiency of the towers. The calculation is demonstrated of thermal and resistance response curves and cooling curves of hydraulically unevenly loaded towers owing to the water flow rate parameter graded radially by 20% along the cross-section of the packing. Flow rate unevenness of air due to wind impact on the outlet air flow from the tower significantly affects the temperatures of cooled water in natural air draft cooling towers of a design with lower demands on aerodynamics, as early as at wind velocity of 2 m.s -1 as was demonstrated on a concrete example. (author). 11 figs., 10 refs

  1. OSCIL: one-dimensional spring-mass system simulator for seismic analysis of high temperature gas cooled reactor core

    International Nuclear Information System (INIS)

    Lasker, L.

    1976-01-01

    OSCIL is a program to predict the effects of seismic input on a HTGR core. The present model is a one-dimensional array of blocks with appropriate spring constants, inter-elemental and ground damping, and clearances. It can be used more generally for systems of moving masses separated by nonlinear springs and dampers

  2. The cooling, mass and radius of the neutron star in EXO 0748-676 in quiescence with XMM-Newton

    NARCIS (Netherlands)

    Cheng, Zheng; Méndez, Mariano; Díaz-Trigo, María; Costantini, Elisa

    2017-01-01

    We analyse four XMM-Newton observations of the neutron-star low-mass X-ray binary EXO 0748-676 in quiescence. We fit the spectra with an absorbed neutron-star atmosphere model, without the need for a high-energy (power-law) component; with a 95 per cent confidence the power law contributes less than

  3. OSCIL: one-dimensional spring-mass system simulator for seismic analysis of high temperature gas cooled reactor core

    Energy Technology Data Exchange (ETDEWEB)

    Lasker, L. (ed.)

    1976-01-01

    OSCIL is a program to predict the effects of seismic input on a HTGR core. The present model is a one-dimensional array of blocks with appropriate spring constants, inter-elemental and ground damping, and clearances. It can be used more generally for systems of moving masses separated by nonlinear springs and dampers.

  4. BLACK HOLE-NEUTRON STAR MERGERS WITH A HOT NUCLEAR EQUATION OF STATE: OUTFLOW AND NEUTRINO-COOLED DISK FOR A LOW-MASS, HIGH-SPIN CASE

    International Nuclear Information System (INIS)

    Deaton, M. Brett; Duez, Matthew D.; Foucart, Francois; O'Connor, Evan; Ott, Christian D.; Scheel, Mark A.; Szilagyi, Bela; Kidder, Lawrence E.; Muhlberger, Curran D.

    2013-01-01

    Neutrino emission significantly affects the evolution of the accretion tori formed in black hole-neutron star mergers. It removes energy from the disk, alters its composition, and provides a potential power source for a gamma-ray burst. To study these effects, simulations in general relativity with a hot microphysical equation of state (EOS) and neutrino feedback are needed. We present the first such simulation, using a neutrino leakage scheme for cooling to capture the most essential effects and considering a moderate mass (1.4 M ☉ neutron star, 5.6 M ☉ black hole), high-spin (black hole J/M 2 = 0.9) system with the K 0 = 220 MeV Lattimer-Swesty EOS. We find that about 0.08 M ☉ of nuclear matter is ejected from the system, while another 0.3 M ☉ forms a hot, compact accretion disk. The primary effects of the escaping neutrinos are (1) to make the disk much denser and more compact, (2) to cause the average electron fraction Y e of the disk to rise to about 0.2 and then gradually decrease again, and (3) to gradually cool the disk. The disk is initially hot (T ∼ 6 MeV) and luminous in neutrinos (L ν ∼ 10 54 erg s –1 ), but the neutrino luminosity decreases by an order of magnitude over 50 ms of post-merger evolution

  5. Mass

    International Nuclear Information System (INIS)

    Quigg, Chris

    2007-01-01

    In the classical physics we inherited from Isaac Newton, mass does not arise, it simply is. The mass of a classical object is the sum of the masses of its parts. Albert Einstein showed that the mass of a body is a measure of its energy content, inviting us to consider the origins of mass. The protons we accelerate at Fermilab are prime examples of Einsteinian matter: nearly all of their mass arises from stored energy. Missing mass led to the discovery of the noble gases, and a new form of missing mass leads us to the notion of dark matter. Starting with a brief guided tour of the meanings of mass, the colloquium will explore the multiple origins of mass. We will see how far we have come toward understanding mass, and survey the issues that guide our research today.

  6. Development and application of MASKA-LM code for calculation of thermal hydraulics and mass transfer of lead cooled fast reactors

    International Nuclear Information System (INIS)

    Vladimir Ya Kumaev; Andrei A Lebezov; Victor V Alexeev

    2005-01-01

    Full text of publication follows: The report is devoted to the development and application of the two-dimensional MASKA-LM computer code intended for numerical calculations of lead coolant flows, temperatures and transport of impurities in BREST-type reactors of the integral design. The description of heat and mass transfer in liquid metal systems, proceeding in the coolant and at the interface 'coolant - structural materials', is a complex problem involving the joint simulation of thermal-hydraulic, physical and chemical processes in view of the real configuration of the reactor circuit. The report presents the state-of-the-art in the development of the two-dimensional code MASKA-LM and the results of trial calculations of heat and mass transfer in the primary circuit of the lead cooled reactor. The set of governing equations to be solved is based on the porous body model and describes the thermal-hydraulic processes in the reactor as a whole. The numerical method for solution of the governing equations is discussed. To check the code workability and study the technique by the way of solution of a particular task, calculations were performed in reference to the chosen version of the lead cooled BREST reactor under design. The examined domain of the reactor was simulated by a porous body with the parameters corresponding to those of the real reactor medium in terms of heat generation, resistance and the geometry of the hydraulic path of coolant. Analysis of the calculated two-dimensional fields of velocities, pressure and temperatures shows the existence of a complex coolant flow with stagnant and vortex zones. A nonuniform distribution of the coolant flow rate along the core radius was obtained. The results of calculations of the impurity transport of iron, oxygen and magnetite in the primary reactor circuit are discussed as well. The developed code MASKA-LM allows one to evaluate the issue of components of structural materials into coolant as impurities, their

  7. BLACK HOLE-NEUTRON STAR MERGERS WITH A HOT NUCLEAR EQUATION OF STATE: OUTFLOW AND NEUTRINO-COOLED DISK FOR A LOW-MASS, HIGH-SPIN CASE

    Energy Technology Data Exchange (ETDEWEB)

    Deaton, M. Brett; Duez, Matthew D. [Department of Physics and Astronomy, Washington State University, Pullman, WA 99164 (United States); Foucart, Francois; O' Connor, Evan [Canadian Institute for Theoretical Astrophysics, University of Toronto, Toronto, Ontario M5S 3H8 (Canada); Ott, Christian D.; Scheel, Mark A.; Szilagyi, Bela [TAPIR, MC 350-17, California Institute of Technology, Pasadena, CA 91125 (United States); Kidder, Lawrence E.; Muhlberger, Curran D., E-mail: mbdeaton@wsu.edu, E-mail: m.duez@wsu.edu [Center for Radiophysics and Space Research, Cornell University, Ithaca, NY 14853 (United States)

    2013-10-10

    Neutrino emission significantly affects the evolution of the accretion tori formed in black hole-neutron star mergers. It removes energy from the disk, alters its composition, and provides a potential power source for a gamma-ray burst. To study these effects, simulations in general relativity with a hot microphysical equation of state (EOS) and neutrino feedback are needed. We present the first such simulation, using a neutrino leakage scheme for cooling to capture the most essential effects and considering a moderate mass (1.4 M{sub ☉} neutron star, 5.6 M{sub ☉} black hole), high-spin (black hole J/M {sup 2} = 0.9) system with the K{sub 0} = 220 MeV Lattimer-Swesty EOS. We find that about 0.08 M{sub ☉} of nuclear matter is ejected from the system, while another 0.3 M{sub ☉} forms a hot, compact accretion disk. The primary effects of the escaping neutrinos are (1) to make the disk much denser and more compact, (2) to cause the average electron fraction Y{sub e} of the disk to rise to about 0.2 and then gradually decrease again, and (3) to gradually cool the disk. The disk is initially hot (T ∼ 6 MeV) and luminous in neutrinos (L{sub ν} ∼ 10{sup 54} erg s{sup –1}), but the neutrino luminosity decreases by an order of magnitude over 50 ms of post-merger evolution.

  8. SEARCHING FOR COOL DUST IN THE MID-TO-FAR INFRARED: THE MASS-LOSS HISTORIES OF THE HYPERGIANTS μ Cep, VY CMa, IRC+10420, AND ρ Cas

    Energy Technology Data Exchange (ETDEWEB)

    Shenoy, Dinesh; Humphreys, Roberta M.; Jones, Terry J.; Gehrz, Robert D. [Minnesota Institute for Astrophysics, School of Physics and Astronomy, University of Minnesota, 116 Church Street, SE, Minneapolis, MN 55455 (United States); Marengo, Massimo [Department of Physics, Iowa State University, Ames, IA 50011 (United States); Helton, L. Andrew [USRA-SOFIA Science Center, NASA Ames Research Center, Moffett Field, CA 94035 (United States); Hoffmann, William F.; Skemer, Andrew J.; Hinz, Philip M., E-mail: shenoy@astro.umn.edu [Department of Astronomy/Steward Observatory, University of Arizona, 933N. Cherry Avenue, Tucson, AZ 85721 (United States)

    2016-03-15

    We present mid- and far-IR imaging of four famous hypergiant stars: the red supergiants μ Cep and VY CMa, and the warm hypergiants IRC +10420 and ρ Cas. Our 11–37 μm SOFIA/FORCAST imaging probes cool dust not detected in visual and near-IR imaging studies. Adaptive optics 8–12 μm imaging of μ Cep and IRC +10420 with MMT/MIRAC reveals extended envelopes that are the likely sources of these stars’ strong silicate emission features. We find μ Cep’s mass-loss rate to have declined by about a factor of five over a 13,000 year history, ranging from 5 × 10{sup −6} down to ∼1× 10{sup −6} M{sub ⊙} yr{sup −1}. The morphology of VY CMa indicates a cooler dust component coincident with the highly asymmetric reflection nebulae seen in the visual and near-IR. The lack of cold dust at greater distances around VY CMa indicates that its mass-loss history is limited to the last ∼1200 years, with an average rate of 6 × 10{sup −4} M{sub ⊙} yr{sup −1}. We find two distinct periods in the mass-loss history of IRC +10420 with a high rate of 2 × 10{sup −3} M{sub ⊙} yr{sup −1} until approximately 2000 years ago, followed by an order of magnitude decrease in the recent past. We interpret this change as evidence of its evolution beyond the RSG stage. Our new infrared photometry of ρ Cas is consistent with emission from the expanding dust shell ejected in its 1946 eruption, with no evidence of newer dust formation from its more recent events.

  9. Laboratory Studies of Planetary Hazes: composition of cool exoplanet atmospheric aerosols with very high resolution mass spectrometry

    Science.gov (United States)

    Moran, Sarah E.; Horst, Sarah; He, Chao; Flandinet, Laurene; Moses, Julianne I.; Orthous-Daunay, Francois-Regis; Vuitton, Veronique; Wolters, Cedric; Lewis, Nikole

    2017-10-01

    We present first results of the composition of laboratory-produced exoplanet haze analogues. With the Planetary HAZE Research (PHAZER) Laboratory, we simulated nine exoplanet atmospheres of varying initial gas phase compositions representing increasing metallicities (100x, 1000x, and 10000x solar) and exposed them to three different temperature regimes (600, 400, and 300 K) with two different “instellation” sources (a plasma source and a UV lamp). The PHAZER exoplanet experiments simulate a temperature and atmospheric composition phase space relevant to the expected planetary yield of the Transiting Exoplanet Survey Satellite (TESS) mission as well as recently discovered potentially habitable zone exoplanets in the TRAPPIST-1, LHS-1140, and Proxima Centauri systems. Upon exposure to the energy sources, all of these experiments produced aerosol particles, which were collected in a dry nitrogen glove box and then analyzed with an LTQ Orbitrap XL™ Hybrid Ion Trap-Orbitrap Mass Spectrometer utilizing m/z ranging from 50 to 1000. The collected aerosol samples were found to contain complex organics. Constraining the composition of these aerosols allows us to better understand the photochemical and dynamical processes ongoing in exoplanet atmospheres. Moreover, these data can inform our telescope observations of exoplanets, which is of critical importance as we enter a new era of exoplanet atmosphere observation science with the upcoming launch of the James Webb Space Telescope. The molecular makeup of these haze particles provides key information for understanding exoplanet atmospheric spectra, and constraining the structure and behavior of clouds, hazes, and other aerosols is at the forefront of exoplanet atmosphere science.

  10. Cooling towers

    International Nuclear Information System (INIS)

    Boernke, F.

    1975-01-01

    The need for the use of cooling systems in power plant engineering is dealt with from the point of view of a non-polluting form of energy production. The various cooling system concepts up to the modern natural-draught cooling towers are illustrated by examples. (TK/AK) [de

  11. The study on the evaporation cooling efficiency and effectiveness of cooling tower of film type

    International Nuclear Information System (INIS)

    Li Yingjian; You Xinkui; Qiu Qi; Li Jiezhi

    2011-01-01

    Based on heat and mass transport mechanism of film type cooling, which was combined with an on-site test on counter flow film type cooling tower, a mathematical model on the evaporation and cooling efficiency and effectiveness has been developed. Under typical climatic conditions, air conditioning load and the operating condition, the mass and heat balances have been calculated for the air and the cooling water including the volume of evaporative cooling water. Changing rule has been measured and calculated between coefficient of performance (COP) and chiller load. The influences of air and cooling water parameters on the evaporative cooling efficiency were analyzed in cooling tower restrained by latent heat evaporative cooling, and detailed derivation and computation revealed that both the evaporative cooling efficiency and effectiveness of cooling tower are the same characteristics parameters of the thermal performance of a cooling tower under identical assumptions.

  12. Spray cooling

    International Nuclear Information System (INIS)

    Rollin, Philippe.

    1975-01-01

    Spray cooling - using water spraying in air - is surveyed as a possible system for make-up (peak clipping in open circuit) or major cooling (in closed circuit) of the cooling water of the condensers in thermal power plants. Indications are given on the experiments made in France and the systems recently developed in USA, questions relating to performance, cost and environmental effects of spray devices are then dealt with [fr

  13. Gas cooled leads

    International Nuclear Information System (INIS)

    Shutt, R.P.; Rehak, M.L.; Hornik, K.E.

    1993-01-01

    The intent of this paper is to cover as completely as possible and in sufficient detail the topics relevant to lead design. The first part identifies the problems associated with lead design, states the mathematical formulation, and shows the results of numerical and analytical solutions. The second part presents the results of a parametric study whose object is to determine the best choice for cooling method, material, and geometry. These findings axe applied in a third part to the design of high-current leads whose end temperatures are determined from the surrounding equipment. It is found that cooling method or improved heat transfer are not critical once good heat exchange is established. The range 5 5 but extends over a large of values. Mass flow needed to prevent thermal runaway varies linearly with current above a given threshold. Below that value, the mass flow is constant with current. Transient analysis shows no evidence of hysteresis. If cooling is interrupted, the mass flow needed to restore the lead to its initially cooled state grows exponentially with the time that the lead was left without cooling

  14. Ventilative Cooling

    DEFF Research Database (Denmark)

    Heiselberg, Per Kvols; Kolokotroni, Maria

    This report, by venticool, summarises the outcome of the work of the initial working phase of IEA ECB Annex 62 Ventilative Cooling and is based on the findings in the participating countries. It presents a summary of the first official Annex 62 report that describes the state-of-the-art of ventil......This report, by venticool, summarises the outcome of the work of the initial working phase of IEA ECB Annex 62 Ventilative Cooling and is based on the findings in the participating countries. It presents a summary of the first official Annex 62 report that describes the state......-of-the-art of ventilative cooling potentials and limitations, its consideration in current energy performance regulations, available building components and control strategies and analysis methods and tools. In addition, the report provides twenty six examples of operational buildings using ventilative cooling ranging from...

  15. Cooling towers

    International Nuclear Information System (INIS)

    Korik, L.; Burger, R.

    1992-01-01

    What is the effect of 0.6C (1F) temperature rise across turbines, compressors, or evaporators? Enthalpy charts indicate for every 0.6C (1F) hotter water off the cooling tower will require an additional 2 1/2% more energy cost. Therefore, running 2.2C (4F) warmer due to substandard cooling towers could result in a 10% penalty for overcoming high heads and temperatures. If it costs $1,250,000.00 a year to operate the system, $125,000.00 is the energy penalty for hotter water. This paper investigates extra fuel costs involved in maintaining design electric production with cooling water 0.6C (1F) to 3C (5.5F) hotter than design. If design KWH cannot be maintained, paper will calculate dollar loss of saleable electricity. The presentation will conclude with examining the main causes of deficient cold water production. State-of-the-art upgrading and methodology available to retrofit existing cooling towers to optimize lower cooling water temperatures will be discussed

  16. Cooling tower

    Energy Technology Data Exchange (ETDEWEB)

    Norbaeck, P; Heneby, H

    1976-01-22

    Cooling towers to be transported on road vehicles as a unit are not allowed to exceed certain dimensions. In order to improve the efficiency of such a cooling tower (of cross-flow design and box-type body) with given dimensions, it is proposed to arrange at least one of the scrubbing bodies displaceable within a module or box. Then it can be moved out of the casing into working position, thereby increasing the front surface available for the inlet of air (and with it the efficiency) by nearly a factor of two.

  17. Stochastic cooling

    International Nuclear Information System (INIS)

    Bisognano, J.; Leemann, C.

    1982-03-01

    Stochastic cooling is the damping of betatron oscillations and momentum spread of a particle beam by a feedback system. In its simplest form, a pickup electrode detects the transverse positions or momenta of particles in a storage ring, and the signal produced is amplified and applied downstream to a kicker. The time delay of the cable and electronics is designed to match the transit time of particles along the arc of the storage ring between the pickup and kicker so that an individual particle receives the amplified version of the signal it produced at the pick-up. If there were only a single particle in the ring, it is obvious that betatron oscillations and momentum offset could be damped. However, in addition to its own signal, a particle receives signals from other beam particles. In the limit of an infinite number of particles, no damping could be achieved; we have Liouville's theorem with constant density of the phase space fluid. For a finite, albeit large number of particles, there remains a residue of the single particle damping which is of practical use in accumulating low phase space density beams of particles such as antiprotons. It was the realization of this fact that led to the invention of stochastic cooling by S. van der Meer in 1968. Since its conception, stochastic cooling has been the subject of much theoretical and experimental work. The earliest experiments were performed at the ISR in 1974, with the subsequent ICE studies firmly establishing the stochastic cooling technique. This work directly led to the design and construction of the Antiproton Accumulator at CERN and the beginnings of p anti p colliding beam physics at the SPS. Experiments in stochastic cooling have been performed at Fermilab in collaboration with LBL, and a design is currently under development for a anti p accumulator for the Tevatron

  18. A very cool cooling system

    CERN Multimedia

    Antonella Del Rosso

    2015-01-01

    The NA62 Gigatracker is a jewel of technology: its sensor, which delivers the time of the crossing particles with a precision of less than 200 picoseconds (better than similar LHC detectors), has a cooling system that might become the precursor to a completely new detector technique.   The 115 metre long vacuum tank of the NA62 experiment. The NA62 Gigatracker (GTK) is composed of a set of three innovative silicon pixel detectors, whose job is to measure the arrival time and the position of the incoming beam particles. Installed in the heart of the NA62 detector, the silicon sensors are cooled down (to about -20 degrees Celsius) by a microfluidic silicon device. “The cooling system is needed to remove the heat produced by the readout chips the silicon sensor is bonded to,” explains Alessandro Mapelli, microsystems engineer working in the Physics department. “For the NA62 Gigatracker we have designed a cooling plate on top of which both the silicon sensor and the...

  19. Cooling pancakes

    International Nuclear Information System (INIS)

    Bond, J.R.; Wilson, J.R.

    1984-01-01

    In theories of galaxy formation with a damping cut-off in the density fluctuation spectrum, the first non-linear structures to form are Zeldovich pancakes in which dissipation separates gas from any collisionless dark matter then present. One-dimensional numerical simulations of the collapse, shock heating, and subsequent thermal evolution of pancakes are described. Neutrinos (or any other cool collisionless particles) are followed by direct N-body methods and the gas by Eulerian hydrodynamics with conduction as well as cooling included. It is found that the pressure is relatively uniform within the shocked region and approximately equals the instantaneous ram pressure acting at the shock front. An analytic theory based upon this result accurately describes the numerical calculations. (author)

  20. Cool Sportswear

    Science.gov (United States)

    1982-01-01

    New athletic wear design based on the circulating liquid cooling system used in the astronaut's space suits, allows athletes to perform more strenuous activity without becoming overheated. Techni-Clothes gear incorporates packets containing a heat-absorbing gel that slips into an insulated pocket of the athletic garment and is positioned near parts of the body where heat transfer is most efficient. A gel packet is good for about one hour. Easily replaced from a supply of spares in an insulated container worn on the belt. The products, targeted primarily for runners and joggers and any other athlete whose performance may be affected by hot weather, include cooling headbands, wrist bands and running shorts with gel-pack pockets.

  1. Cooling systems

    International Nuclear Information System (INIS)

    Coutant, C.C.

    1978-01-01

    Progress on the thermal effects project is reported with regard to physiology and distribution of Corbicula; power plant effects studies on burrowing mayfly populations; comparative thermal responses of largemouth bass from northern and southern populations; temperature selection by striped bass in Cherokee Reservoir; fish population studies; and predictive thermoregulation by fishes. Progress is also reported on the following; cause and ecological ramifications of threadfin shad impingement; entrainment project; aquaculture project; pathogenic amoeba project; and cooling tower drift project

  2. Penning-trap mass spectrometry of radioactive, highly charged ions. Measurements of neutron-rich Rb and Sr nuclides for nuclear astrophysics and development of a novel Penning trap for cooling highly charged ions

    International Nuclear Information System (INIS)

    Simon, Vanessa Veronique

    2012-01-01

    High-precision atomic mass measurements are vital for the description of nuclear structure, investigations of nuclear astrophysical processes, and tests of fundamental symmetries. The neutron-rich A ∼ 100 region presents challenges for modeling the astrophysical r-process because of sudden nuclear shape transitions. This thesis reports on high-precision masses of short-lived neutron-rich 94,97,98 Rb and 94,97-99 Sr isotopes using the TITAN Penning-trap mass spectrometer at TRIUMF. The isotopes were charge-bred to q = 15+; uncertainties of less than 4 keV were achieved. Results deviate by up to 11σ compared to earlier measurements and extend the region of nuclear deformation observed in the A∼100 region. A parameterized r-process model network calculation shows that mass uncertainties for the elemental abundances in this region are now negligible. Although beneficial for the measurement precision, the charge breeding process leads to an increased energy spread of the ions on the order of tens of eV/q. To eliminate this drawback, a Cooler Penning Trap (CPET) has been developed as part of this thesis. The novel multi-electrode trap structure of CPET forms nested potentials to cool HCI sympathetically using either electrons or protons to increase the overall efficiency and precision of the mass measurement. The status of the off-line setup and initial commissioning experiments are presented.

  3. Heat and mass transfer are in the interaction of multi-pulsed spray with vertical surfaces in the regime of evaporative cooling

    Science.gov (United States)

    Karpov, P. N.; Nazarov, A. D.; Serov, A. F.; Terekhov, V. I.

    2017-10-01

    Sprays with a periodic supply drop phase have great opportunities to control the processes of heat transfer. We can achieve optimal evaporative modes of cooling by changing the pulse duration and the repetition frequency while minimizing flow of the liquid phase. Experimental data of investigation of local heat transfer for poorly heated large surface obtained on the original stand with multi nozzle managed the irrigation system impact of the gas-droplet flow present in this work. Researches on the contribution to the intensification of spray options were conducted. Also the growth rate was integral and local heat. Information instantaneous distribution of the heat flux in the description of the processes have helped us. Managed to describe two basic modes of heat transfer: Mode “insular” foil cooling and thick foil with forming of streams. Capacitive sensors allow to monitor the dynamics of the foil thickness, the birth-belt flow, forming and the evolution of waves generated by “bombing” the surface with the droplets.

  4. Turbine airfoil with ambient cooling system

    Science.gov (United States)

    Campbell, Jr, Christian X.; Marra, John J.; Marsh, Jan H.

    2016-06-07

    A turbine airfoil usable in a turbine engine and having at least one ambient air cooling system is disclosed. At least a portion of the cooling system may include one or more cooling channels configured to receive ambient air at about atmospheric pressure. The ambient air cooling system may have a tip static pressure to ambient pressure ratio of at least 0.5, and in at least one embodiment, may include a tip static pressure to ambient pressure ratio of between about 0.5 and about 3.0. The cooling system may also be configured such that an under root slot chamber in the root is large to minimize supply air velocity. One or more cooling channels of the ambient air cooling system may terminate at an outlet at the tip such that the outlet is aligned with inner surfaces forming the at least one cooling channel in the airfoil to facilitate high mass flow.

  5. Hybrid cooling tower Neckarwestheim 2 cooling function, emission, plume dispersion

    International Nuclear Information System (INIS)

    Braeuning, G.; Ernst, G.; Maeule, R.; Necker, P.

    1990-01-01

    The fan-assisted hybrid cooling tower of the 1300 MW power plant Gemeinschafts-Kernkraftwerk Neckarwestheim 2 was designed and constructed based on results from theoretical and experimental studies and experiences from a smaller prototype. The wet part acts in counterflow. The dry part is arranged above the wet part. Each part contains 44 fans. Special attention was payed to the ducts which mix the dry into the wet plume. The cooling function and state, mass flow and contents of the emission were measured. The dispersion of the plume in the atmosphere was observed. The central results are presented in this paper. The cooling function corresponds to the predictions. The content of drifted cooling water in the plume is extremely low. The high velocity of the plume in the exit causes an undisturbed flow into the atmosphere. The hybrid operation reduces visible plumes strongly, especially in warmer and drier ambient air

  6. Cool snacks

    DEFF Research Database (Denmark)

    Grunert, Klaus G; Brock, Steen; Brunsø, Karen

    2016-01-01

    Young people snack and their snacking habits are not always healthy. We address the questions whether it is possible to develop a new snack product that adolescents will find attractive, even though it is based on ingredients as healthy as fruits and vegetables, and we argue that developing...... such a product requires an interdisciplinary effort where researchers with backgrounds in psychology, anthropology, media science, philosophy, sensory science and food science join forces. We present the COOL SNACKS project, where such a blend of competences was used first to obtain thorough insight into young...... people's snacking behaviour and then to develop and test new, healthier snacking solutions. These new snacking solutions were tested and found to be favourably accepted by young people. The paper therefore provides a proof of principle that the development of snacks that are both healthy and attractive...

  7. Cool visitors

    CERN Multimedia

    2006-01-01

    Pictured, from left to right: Tim Izo (saxophone, flute, guitar), Bobby Grant (tour manager), George Pajon (guitar). What do the LHC and a world-famous hip-hop group have in common? They are cool! On Saturday, 1st July, before their appearance at the Montreux Jazz Festival, three members of the 'Black Eyed Peas' came on a surprise visit to CERN, inspired by Dan Brown's Angels and Demons. At short notice, Connie Potter (Head of the ATLAS secretariat) organized a guided tour of ATLAS and the AD 'antimatter factory'. Still curious, lead vocalist Will.I.Am met CERN physicist Rolf Landua after the concert to ask many more questions on particles, CERN, and the origin of the Universe.

  8. Emergency cooling of presurized water reactor

    International Nuclear Information System (INIS)

    Sykora, D.

    1981-01-01

    The method described of emergency core cooling in the pressurized water reactor is characterized by the fact that water is transported to the disturbed primary circuit or direct to the reactor by the action of the energy and mass of the steam and/or liquid phase of the secondary circuit coolant, which during emergency core cooling becomes an emergency cooling medium. (B.S.)

  9. Divertor cooling device

    International Nuclear Information System (INIS)

    Nakayama, Tadakazu; Hayashi, Katsumi; Handa, Hiroyuki

    1993-01-01

    Cooling water for a divertor cooling system cools the divertor, thereafter, passes through pipelines connecting the exit pipelines of the divertor cooling system and the inlet pipelines of a blanket cooling system and is introduced to the blanket cooling system in a vacuum vessel. It undergoes emission of neutrons, and cooling water in the divertor cooling system containing a great amount of N-16 which is generated by radioactivation of O-16 is introduced to the blanket cooling system in the vacuum vessel by way of pipelines, and after cooling, passes through exit pipelines of the blanket cooling system and is introduced to the outside of the vacuum vessel. Radiation of N-16 in the cooling water is decayed sufficiently with passage of time during cooling of the blanket, thereby enabling to decrease the amount of shielding materials such as facilities and pipelines, and ensure spaces. (N.H.)

  10. A Warming Surface but a Cooling Top of Atmosphere Associated with Warm, Moist Air Mass Advection over the Ice and Snow Covered Arctic

    Science.gov (United States)

    Sedlar, J.

    2015-12-01

    Atmospheric advection of heat and moisture from lower latitudes to the high-latitude Arctic is a critical component of Earth's energy cycle. Large-scale advective events have been shown to make up a significant portion of the moist static energy budget of the Arctic atmosphere, even though such events are typically infrequent. The transport of heat and moisture over surfaces covered by ice and snow results in dynamic changes to the boundary layer structure, stability and turbulence, as well as to diabatic processes such as cloud distribution, microphysics and subsequent radiative effects. Recent studies have identified advection into the Arctic as a key mechanism for modulating the melt and freeze of snow and sea ice, via modification to all-sky longwave radiation. This paper examines the radiative impact during summer of such Arctic advective events at the top of the atmosphere (TOA), considering also the important role they play for the surface energy budget. Using infrared sounder measurements from the AIRS satellite, the summer frequency of significantly stable and moist advective events from 2003-2014 are characterized; justification of AIRS profiles over the Arctic are made using radiosoundings during a 3-month transect (ACSE) across the Eastern Arctic basin. One such event was observed within the East Siberian Sea in August 2014 during ACSE, providing in situ verification on the robustness and capability of AIRS to monitor advective cases. Results will highlight the important surface warming aspect of stable, moist instrusions. However a paradox emerges as such events also result in a cooling at the TOA evident on monthly mean TOA radiation. Thus such events have a climatic importance over ice and snow covered surfaces across the Arctic. ERA-Interim reanalyses are examined to provide a longer term perspective on the frequency of such events as well as providing capability to estimate meridional fluxes of moist static energy.

  11. WORKSHOP: Beam cooling

    International Nuclear Information System (INIS)

    Anon.

    1994-01-01

    Cooling - the control of unruly particles to provide well-behaved beams - has become a major new tool in accelerator physics. The main approaches of electron cooling pioneered by Gersh Budker at Novosibirsk and stochastic cooling by Simon van der Meer at CERN, are now complemented by additional ideas, such as laser cooling of ions and ionization cooling of muons

  12. Renewable Heating And Cooling

    Science.gov (United States)

    Renewable heating and cooling is a set of alternative resources and technologies that can be used in place of conventional heating and cooling technologies for common applications such as water heating, space heating, space cooling and process heat.

  13. Restaurant food cooling practices.

    Science.gov (United States)

    Brown, Laura Green; Ripley, Danny; Blade, Henry; Reimann, Dave; Everstine, Karen; Nicholas, Dave; Egan, Jessica; Koktavy, Nicole; Quilliam, Daniela N

    2012-12-01

    Improper food cooling practices are a significant cause of foodborne illness, yet little is known about restaurant food cooling practices. This study was conducted to examine food cooling practices in restaurants. Specifically, the study assesses the frequency with which restaurants meet U.S. Food and Drug Administration (FDA) recommendations aimed at reducing pathogen proliferation during food cooling. Members of the Centers for Disease Control and Prevention's Environmental Health Specialists Network collected data on food cooling practices in 420 restaurants. The data collected indicate that many restaurants are not meeting FDA recommendations concerning cooling. Although most restaurant kitchen managers report that they have formal cooling processes (86%) and provide training to food workers on proper cooling (91%), many managers said that they do not have tested and verified cooling processes (39%), do not monitor time or temperature during cooling processes (41%), or do not calibrate thermometers used for monitoring temperatures (15%). Indeed, 86% of managers reported cooling processes that did not incorporate all FDA-recommended components. Additionally, restaurants do not always follow recommendations concerning specific cooling methods, such as refrigerating cooling food at shallow depths, ventilating cooling food, providing open-air space around the tops and sides of cooling food containers, and refraining from stacking cooling food containers on top of each other. Data from this study could be used by food safety programs and the restaurant industry to target training and intervention efforts concerning cooling practices. These efforts should focus on the most frequent poor cooling practices, as identified by this study.

  14. A Secondary Flow Effect on the Heat and Mass Transfer Processes in the Finned Rod Bundles of Gas-cooled Reactors

    Directory of Open Access Journals (Sweden)

    A. A. Dunaitsev

    2017-01-01

    Full Text Available In nuclear power engineering a need to justify an operability of products and their components is of great importance. In high-temperature gas reactors, the critical element affecting the facility reliability is the fuel rod cladding, which in turn leads to the need to gain knowledge in the field of gas dynamics and heat transfer in the reactor core and to increase the detail of the calculation results. For the time being, calculations of reactor core are performed using the proven techniques of per-channel calculations, which show good representativeness and count rate. However, these techniques require additional experimental studies to describe correctly the inter-channel exchange, which, being taken into account, largely affects the pattern of the temperature fields in the region under consideration. Increasingly more relevant and demandable are numerical simulation methods of fluid and gas dynamics, as well as of heat exchange, which consist in the direct solution of the system of differential equations of mass balance, kinetic moment, and energy. Calculation of reactor cores or rod bundles according these techniques does not require additional experimental studies and allows us to obtain the local distributions of flow characteristics in the bundle and the flow characteristics that are hard to measure in the physical experiment.The article shows the calculation results and their analysis for an infinite rod lattice of the reactor core. The results were obtained by the technique of modelling one rod of a regular lattice using the periodic boundary conditions, followed by translating the results to the neighbouring rods. In channels of complex shape, there are secondary flows caused by changes in the channel geometry along the flow and directed across the main front of the flow. These secondary flows in the reactor cores with rods spaced by the winding wire lead to a redistribution of the coolant along the channel section, which in turn

  15. Cooled Water Production System,

    Science.gov (United States)

    The invention refers to the field of air conditioning and regards an apparatus for obtaining cooled water . The purpose of the invention is to develop...such a system for obtaining cooled water which would permit the maximum use of the cooling effect of the water -cooling tower.

  16. Process fluid cooling system

    International Nuclear Information System (INIS)

    Farquhar, N.G.; Schwab, J.A.

    1977-01-01

    A system of heat exchangers is disclosed for cooling process fluids. The system is particularly applicable to cooling steam generator blowdown fluid in a nuclear plant prior to chemical purification of the fluid in which it minimizes the potential of boiling of the plant cooling water which cools the blowdown fluid

  17. Hybrid radiator cooling system

    Science.gov (United States)

    France, David M.; Smith, David S.; Yu, Wenhua; Routbort, Jules L.

    2016-03-15

    A method and hybrid radiator-cooling apparatus for implementing enhanced radiator-cooling are provided. The hybrid radiator-cooling apparatus includes an air-side finned surface for air cooling; an elongated vertically extending surface extending outwardly from the air-side finned surface on a downstream air-side of the hybrid radiator; and a water supply for selectively providing evaporative cooling with water flow by gravity on the elongated vertically extending surface.

  18. Quantification of four major metabolites of embryotoxic N-methyl- and N-ethyl-2-pyrrolidone in human urine by cooled-injection gas chromatography and isotope dilution mass spectrometry.

    Science.gov (United States)

    Schindler, Birgit K; Koslitz, Stephan; Meier, Swetlana; Belov, Vladimir N; Koch, Holger M; Weiss, Tobias; Brüning, Thomas; Käfferlein, Heiko U

    2012-04-17

    N-Methyl- and N-ethyl-2-pyrollidone (NMP and NEP) are frequently used industrial solvents and were shown to be embryotoxic in animal experiments. We developed a sensitive, specific, and robust analytical method based on cooled-injection (CIS) gas chromatography and isotope dilution mass spectrometry to analyze 5-hydroxy-N-ethyl-2-pyrrolidone (5-HNEP) and 2-hydroxy-N-ethylsuccinimide (2-HESI), two newly identified presumed metabolites of NEP, and their corresponding methyl counterparts (5-HNMP, 2-HMSI) in human urine. The urine was spiked with deuterium-labeled analogues of these metabolites. The analytes were separated from urinary matrix by solid-phase extraction and silylated prior to quantification. Validation of this method was carried out by using both, spiked pooled urine samples and urine samples from 56 individuals of the general population with no known occupational exposure to NMP and NEP. Interday and intraday imprecision was better than 8% for all metabolites, while the limits of detection were between 5 and 20 μg/L depending on the analyte. The high sensitivity of the method enables us to quantify NMP and NEP metabolites at current environmental exposures by human biomonitoring.

  19. Restaurant Food Cooling Practices†

    Science.gov (United States)

    BROWN, LAURA GREEN; RIPLEY, DANNY; BLADE, HENRY; REIMANN, DAVE; EVERSTINE, KAREN; NICHOLAS, DAVE; EGAN, JESSICA; KOKTAVY, NICOLE; QUILLIAM, DANIELA N.

    2017-01-01

    Improper food cooling practices are a significant cause of foodborne illness, yet little is known about restaurant food cooling practices. This study was conducted to examine food cooling practices in restaurants. Specifically, the study assesses the frequency with which restaurants meet U.S. Food and Drug Administration (FDA) recommendations aimed at reducing pathogen proliferation during food cooling. Members of the Centers for Disease Control and Prevention’s Environmental Health Specialists Network collected data on food cooling practices in 420 restaurants. The data collected indicate that many restaurants are not meeting FDA recommendations concerning cooling. Although most restaurant kitchen managers report that they have formal cooling processes (86%) and provide training to food workers on proper cooling (91%), many managers said that they do not have tested and verified cooling processes (39%), do not monitor time or temperature during cooling processes (41%), or do not calibrate thermometers used for monitoring temperatures (15%). Indeed, 86% of managers reported cooling processes that did not incorporate all FDA-recommended components. Additionally, restaurants do not always follow recommendations concerning specific cooling methods, such as refrigerating cooling food at shallow depths, ventilating cooling food, providing open-air space around the tops and sides of cooling food containers, and refraining from stacking cooling food containers on top of each other. Data from this study could be used by food safety programs and the restaurant industry to target training and intervention efforts concerning cooling practices. These efforts should focus on the most frequent poor cooling practices, as identified by this study. PMID:23212014

  20. Cooling Performance Analysis of ThePrimary Cooling System ReactorTRIGA-2000Bandung

    Science.gov (United States)

    Irianto, I. D.; Dibyo, S.; Bakhri, S.; Sunaryo, G. R.

    2018-02-01

    The conversion of reactor fuel type will affect the heat transfer process resulting from the reactor core to the cooling system. This conversion resulted in changes to the cooling system performance and parameters of operation and design of key components of the reactor coolant system, especially the primary cooling system. The calculation of the operating parameters of the primary cooling system of the reactor TRIGA 2000 Bandung is done using ChemCad Package 6.1.4. The calculation of the operating parameters of the cooling system is based on mass and energy balance in each coolant flow path and unit components. Output calculation is the temperature, pressure and flow rate of the coolant used in the cooling process. The results of a simulation of the performance of the primary cooling system indicate that if the primary cooling system operates with a single pump or coolant mass flow rate of 60 kg/s, it will obtain the reactor inlet and outlet temperature respectively 32.2 °C and 40.2 °C. But if it operates with two pumps with a capacity of 75% or coolant mass flow rate of 90 kg/s, the obtained reactor inlet, and outlet temperature respectively 32.9 °C and 38.2 °C. Both models are qualified as a primary coolant for the primary coolant temperature is still below the permitted limit is 49.0 °C.

  1. Water cooling coil

    Energy Technology Data Exchange (ETDEWEB)

    Suzuki, S; Ito, Y; Kazawa, Y

    1975-02-05

    Object: To provide a water cooling coil in a toroidal nuclear fusion device, in which coil is formed into a small-size in section so as not to increase dimensions, weight or the like of machineries including the coil. Structure: A conductor arranged as an outermost layer of a multiple-wind water cooling coil comprises a hollow conductor, which is directly cooled by fluid, and as a consequence, a solid conductor disposed interiorly thereof is cooled indirectly.

  2. The Cool Colors Project

    Science.gov (United States)

    Gov. Arnold Schwarzenegger, second from left, a sample from the Cool Colors Project, a roof product ) (Jeff Chiu - AP) more Cool Colors make the front page of The Sacramento Bee (3rd highest circulation newspaper in California) on 14 August 2006! Read the article online or as a PDF. The Cool Colors Project

  3. The distances of nearby cool carbon stars

    International Nuclear Information System (INIS)

    Bergeat, J.; Sibille, F.; Lunel, M.

    1978-01-01

    Distance ratios are provided for 38 cool carbon stars on the basis of a previous study (Bergeat et al., 1976 a,b,c). The validation of this distance scale is obtained through an analysis of stellar velocities. A relationship is established between proper motions and the distance scale. Luminosities and radii are derived for cool carbon stars which permit a discussion of their evolutionary status. Finally, evaluations are given for the rate of mass ejection corresponding to large graphite grains. (WL) [de

  4. Heavy liquid metal cooled FBR. Results 2001

    International Nuclear Information System (INIS)

    Enuma, Yasuhiro; Soman, Yoshindo; Konomura, Mamoru; Mizuno, Tomoyasu

    2003-08-01

    In the feasibility studies of commercialization of an FBR fuel cycle system, the targets are economical competitiveness to future LWRs, efficient utilization of resources, reduction of environmental burden and enhancement of nuclear non-proliferation, besides ensuring safety. Both medium size pool-type lead-bismuth cooled reactor with primary pumps system and without primary pumps system are studied to pursue their improvement in heavy metal coolant considering design requirements form plant structures. The design of plant systems are reformed, and the conceptual design is made and the commodities are analyzed. (1) Conceptual design of lead-bismuth cooled reactor with pumping system: Electrical output 750 MWe and 4-module system. The heat-mass balance is optimized and drawings are made about plant layout, cooling system, reactor structure and cooling component structures. (2) Structural analysis of main components. (3) Conceptual design of natural circulation type lead-bismuth cooled reactor: Electrical output 550 MWe and 6-module system. The heat-mass balance is optimized and drawings are made about plant layout, cooling system, reactor structure and cooling component structures. (4) Study of R and D program. (author)

  5. Cooling water distribution system

    Science.gov (United States)

    Orr, Richard

    1994-01-01

    A passive containment cooling system for a nuclear reactor containment vessel. Disclosed is a cooling water distribution system for introducing cooling water by gravity uniformly over the outer surface of a steel containment vessel using an interconnected series of radial guide elements, a plurality of circumferential collector elements and collector boxes to collect and feed the cooling water into distribution channels extending along the curved surface of the steel containment vessel. The cooling water is uniformly distributed over the curved surface by a plurality of weirs in the distribution channels.

  6. Cooling of hypernuclear compact stars

    Science.gov (United States)

    Raduta, Adriana R.; Sedrakian, Armen; Weber, Fridolin

    2018-04-01

    We study the thermal evolution of hypernuclear compact stars constructed from covariant density functional theory of hypernuclear matter and parametrizations which produce sequences of stars containing two-solar-mass objects. For the input in the simulations, we solve the Bardeen-Cooper-Schrieffer gap equations in the hyperonic sector and obtain the gaps in the spectra of Λ, Ξ0, and Ξ- hyperons. For the models with masses M/M⊙ ≥ 1.5 the neutrino cooling is dominated by hyperonic direct Urca processes in general. In the low-mass stars the (Λp) plus leptons channel is the dominant direct Urca process, whereas for more massive stars the purely hyperonic channels (Σ-Λ) and (Ξ-Λ) are dominant. Hyperonic pairing strongly suppresses the processes on Ξ-s and to a lesser degree on Λs. We find that intermediate-mass 1.5 ≤ M/M⊙ ≤ 1.8 models have surface temperatures which lie within the range inferred from thermally emitting neutron stars, if the hyperonic pairing is taken into account. Most massive models with M/M⊙ ≃ 2 may cool very fast via the direct Urca process through the (Λp) channel because they develop inner cores where the S-wave pairing of Λs and proton is absent.

  7. Laser cooling of solids

    CERN Document Server

    Petrushkin, S V

    2009-01-01

    Laser cooling is an important emerging technology in such areas as the cooling of semiconductors. The book examines and suggests solutions for a range of problems in the development of miniature solid-state laser refrigerators, self-cooling solid-state lasers and optical echo-processors. It begins by looking at the basic theory of laser cooling before considering such topics as self-cooling of active elements of solid-state lasers, laser cooling of solid-state information media of optical echo-processors, and problems of cooling solid-state quantum processors. Laser Cooling of Solids is an important contribution to the development of compact laser-powered cryogenic refrigerators, both for the academic community and those in the microelectronics and other industries. Provides a timely review of this promising field of research and discusses the fundamentals and theory of laser cooling Particular attention is given to the physics of cooling processes and the mathematical description of these processes Reviews p...

  8. Emergency reactor cooling device

    International Nuclear Information System (INIS)

    Arakawa, Ken.

    1993-01-01

    An emergency nuclear reactor cooling device comprises a water reservoir, emergency core cooling water pipelines having one end connected to a water feeding sparger, fire extinguishing facility pipelines, cooling water pressurizing pumps, a diesel driving machine for driving the pumps and a battery. In a water reservoir, cooling water is stored by an amount required for cooling the reactor upon emergency and for fire extinguishing, and fire extinguishing facility pipelines connecting the water reservoir and the fire extinguishing facility are in communication with the emergency core cooling water pipelines connected to the water feeding sparger by system connection pipelines. Pumps are operated by a diesel power generator to introduce cooling water from the reservoir to the emergency core cooling water pipelines. Then, even in a case where AC electric power source is entirely lost and the emergency core cooling system can not be used, the diesel driving machine is operated using an exclusive battery, thereby enabling to inject cooling water from the water reservoir to a reactor pressure vessel and a reactor container by the diesel drive pump. (N.H.)

  9. Intrinsic Evaporative Cooling by Hygroscopic Earth Materials

    Directory of Open Access Journals (Sweden)

    Alexandra R. Rempel

    2016-08-01

    Full Text Available The phase change of water from liquid to vapor is one of the most energy-intensive physical processes in nature, giving it immense potential for cooling. Diverse evaporative cooling strategies have resulted worldwide, including roof ponds and sprinklers, courtyard fountains, wind catchers with qanats, irrigated green roofs, and fan-assisted evaporative coolers. These methods all require water in bulk liquid form. The evaporation of moisture that has been sorbed from the atmosphere by hygroscopic materials is equally energy-intensive, however, yet has not been examined for its cooling potential. In arid and semi-arid climates, hygroscopic earth buildings occur widely and are known to maintain comfortable indoor temperatures, but evaporation of moisture from their walls and roofs has been regarded as unimportant since water scarcity limits irrigation and rainfall; instead, their cool interiors are attributed to well-established mass effects in delaying the transmission of sensible gains. Here, we investigate the cooling accomplished by daily cycles of moisture sorption and evaporation which, requiring only ambient humidity, we designate as “intrinsic” evaporative cooling. Connecting recent soil science to heat and moisture transport studies in building materials, we use soils, adobe, cob, unfired earth bricks, rammed earth, and limestone to reveal the effects of numerous parameters (temperature and relative humidity, material orientation, thickness, moisture retention properties, vapor diffusion resistance, and liquid transport properties on the magnitude of intrinsic evaporative cooling and the stabilization of indoor relative humidity. We further synthesize these effects into concrete design guidance. Together, these results show that earth buildings in diverse climates have significant potential to cool themselves evaporatively through sorption of moisture from humid night air and evaporation during the following day’s heat. This finding

  10. Radiant Floor Cooling Systems

    DEFF Research Database (Denmark)

    Olesen, Bjarne W.

    2008-01-01

    In many countries, hydronic radiant floor systems are widely used for heating all types of buildings such as residential, churches, gymnasiums, hospitals, hangars, storage buildings, industrial buildings, and smaller offices. However, few systems are used for cooling.This article describes a floor...... cooling system that includes such considerations as thermal comfort of the occupants, which design parameters will influence the cooling capacity and how the system should be controlled. Examples of applications are presented....

  11. The cooling of particle beams

    International Nuclear Information System (INIS)

    Sessler, A.M.

    1994-10-01

    A review is given of the various methods which can be employed for cooling particle beams. These methods include radiation damping, stimulated radiation damping, ionization cooling, stochastic cooling, electron cooling, laser cooling, and laser cooling with beam coupling. Laser Cooling has provided beams of the lowest temperatures, namely 1 mK, but only for ions and only for the longitudinal temperature. Recent theoretical work has suggested how laser cooling, with the coupling of beam motion, can be used to reduce the ion beam temperature in all three directions. The majority of this paper is devoted to describing laser cooling and laser cooling with beam coupling

  12. Turbine airfoil cooling system with cooling systems using high and low pressure cooling fluids

    Science.gov (United States)

    Marsh, Jan H.; Messmann, Stephen John; Scribner, Carmen Andrew

    2017-10-25

    A turbine airfoil cooling system including a low pressure cooling system and a high pressure cooling system for a turbine airfoil of a gas turbine engine is disclosed. In at least one embodiment, the low pressure cooling system may be an ambient air cooling system, and the high pressure cooling system may be a compressor bleed air cooling system. In at least one embodiment, the compressor bleed air cooling system in communication with a high pressure subsystem that may be a snubber cooling system positioned within a snubber. A delivery system including a movable air supply tube may be used to separate the low and high pressure cooling subsystems. The delivery system may enable high pressure cooling air to be passed to the snubber cooling system separate from low pressure cooling fluid supplied by the low pressure cooling system to other portions of the turbine airfoil cooling system.

  13. Power electronics cooling apparatus

    Science.gov (United States)

    Sanger, Philip Albert; Lindberg, Frank A.; Garcen, Walter

    2000-01-01

    A semiconductor cooling arrangement wherein a semiconductor is affixed to a thermally and electrically conducting carrier such as by brazing. The coefficient of thermal expansion of the semiconductor and carrier are closely matched to one another so that during operation they will not be overstressed mechanically due to thermal cycling. Electrical connection is made to the semiconductor and carrier, and a porous metal heat exchanger is thermally connected to the carrier. The heat exchanger is positioned within an electrically insulating cooling assembly having cooling oil flowing therethrough. The arrangement is particularly well adapted for the cooling of high power switching elements in a power bridge.

  14. Semioptimal practicable algorithmic cooling

    International Nuclear Information System (INIS)

    Elias, Yuval; Mor, Tal; Weinstein, Yossi

    2011-01-01

    Algorithmic cooling (AC) of spins applies entropy manipulation algorithms in open spin systems in order to cool spins far beyond Shannon's entropy bound. Algorithmic cooling of nuclear spins was demonstrated experimentally and may contribute to nuclear magnetic resonance spectroscopy. Several cooling algorithms were suggested in recent years, including practicable algorithmic cooling (PAC) and exhaustive AC. Practicable algorithms have simple implementations, yet their level of cooling is far from optimal; exhaustive algorithms, on the other hand, cool much better, and some even reach (asymptotically) an optimal level of cooling, but they are not practicable. We introduce here semioptimal practicable AC (SOPAC), wherein a few cycles (typically two to six) are performed at each recursive level. Two classes of SOPAC algorithms are proposed and analyzed. Both attain cooling levels significantly better than PAC and are much more efficient than the exhaustive algorithms. These algorithms are shown to bridge the gap between PAC and exhaustive AC. In addition, we calculated the number of spins required by SOPAC in order to purify qubits for quantum computation. As few as 12 and 7 spins are required (in an ideal scenario) to yield a mildly pure spin (60% polarized) from initial polarizations of 1% and 10%, respectively. In the latter case, about five more spins are sufficient to produce a highly pure spin (99.99% polarized), which could be relevant for fault-tolerant quantum computing.

  15. Performance characteristics of a shower cooling tower

    International Nuclear Information System (INIS)

    Qi Xiaoni; Liu Zhenyan; Li Dandan

    2007-01-01

    This study was prompted by the need to design towers for applications in which, due to salt deposition on the packing and subsequent blockage, the use of tower packing is not practical. In contrast to conventional cooling towers, the cooling tower analyzed in this study is void of fill. By means of efficient atomization nozzles, a shower cooling tower (SCT) is possible to be applied in industry, which, in terms of water cooling, energy saving and equipment investing, is better than conventional packed cooling towers. However, no systematic thermodynamic numerical method could be found in the literature up to now. Based on the kinetic model and mass and heat transfer model, this paper has developed a one dimensional model for studying the motional process and evaporative cooling process occurring at the water droplet level in the SCT. The finite difference approach is used for three motional processes to obtain relative parameters in each different stage, and the possibility of the droplets being entrained outside the tower is fully analyzed. The accuracy of this model is checked by practical operational results from a full scale prototype in real conditions, and some exclusive factors that affect the cooling characteristics for the SCT are analyzed in detail. This study provides the theoretical foundation for practical application of the SCT in industry

  16. Cooled heavy ion beams at the ESR

    International Nuclear Information System (INIS)

    Steck, M.; Beckert, K.; Bosch, F.; Eickhoff, H.; Franzke, B.; Klepper, O.; Nolden, F.; Reich, H.; Schlitt, B.; Spaedtke, P.; Winkler, T.

    1996-01-01

    The storage ring ESR has been used in various operational modes for experiments with electron cooled heavy ion beams. Besides the standard storage mode including injection and beam accumulation the deceleration of highly charged ions has been demonstrated. Beams of highly charged ions have been injected and accumulated and finally decelerated to a minimum energy of 50 MeV/u. An ultraslow extraction method using charge changing processes is now also available for cooled beams of highly charged ions. For in ring experiments the internal gas jet and the cold electron beam of the cooling system are applied as targets. High precision mass spectrometry by Schottky noise detection has been demonstrated. Operation at transition energy has been achieved with cooled beams opening the field for experiments which require an isochronous revolution of the ions. (orig.)

  17. Cooling of electronic equipment

    DEFF Research Database (Denmark)

    A. Kristensen, Anders Schmidt

    2003-01-01

    Cooling of electronic equipment is studied. The design size of electronic equipment decrease causing the thermal density to increase. This affect the cooling which can cause for example failures of critical components due to overheating or thermal induced stresses. Initially a pin fin heat sink...

  18. Solar absorption cooling

    NARCIS (Netherlands)

    Kim, D.S.

    2007-01-01

    As the world concerns more and more on global climate changes and depleting energy resources, solar cooling technology receives increasing interests from the public as an environment-friendly and sustainable alternative. However, making a competitive solar cooling machine for the market still

  19. Gas-cooled reactors

    International Nuclear Information System (INIS)

    Vakilian, M.

    1977-05-01

    The present study is the second part of a general survey of Gas Cooled Reactors (GCRs). In this part, the course of development, overall performance and present development status of High Temperature Gas Cooled Reactors (HTCRs) and advances of HTGR systems are reviewed. (author)

  20. Coherent electron cooling

    Energy Technology Data Exchange (ETDEWEB)

    Litvinenko,V.

    2009-05-04

    Cooling intense high-energy hadron beams remains a major challenge in modern accelerator physics. Synchrotron radiation is still too feeble, while the efficiency of two other cooling methods, stochastic and electron, falls rapidly either at high bunch intensities (i.e. stochastic of protons) or at high energies (e-cooling). In this talk a specific scheme of a unique cooling technique, Coherent Electron Cooling, will be discussed. The idea of coherent electron cooling using electron beam instabilities was suggested by Derbenev in the early 1980s, but the scheme presented in this talk, with cooling times under an hour for 7 TeV protons in the LHC, would be possible only with present-day accelerator technology. This talk will discuss the principles and the main limitations of the Coherent Electron Cooling process. The talk will describe the main system components, based on a high-gain free electron laser driven by an energy recovery linac, and will present some numerical examples for ions and protons in RHIC and the LHC and for electron-hadron options for these colliders. BNL plans a demonstration of the idea in the near future.

  1. The final cool down

    CERN Multimedia

    Thursday 29th May, the cool-down of the final sector (sector 4-5) of LHC has begun, one week after the start of the cool-down of sector 1-2. It will take five weeks for the sectors to be cooled from room temperature to 5 K and a further two weeks to complete the cool down to 1.9 K and the commissioning of cryogenic instrumentation, as well as to fine tune the cryogenic plants and the cooling loops of cryostats.Nearly a year and half has passed since sector 7-8 was cooled for the first time in January 2007. For Laurent Tavian, AT/CRG Group Leader, reaching the final phase of the cool down is an important milestone, confirming the basic design of the cryogenic system and the ability to operate complete sectors. “All the sectors have to operate at the same time otherwise we cannot inject the beam into the machine. The stability and reliability of the cryogenic system and its utilities are now very important. That will be the new challenge for the coming months,” he explains. The status of the cool down of ...

  2. Collisional Cooling of Light Ions by Cotrapped Heavy Atoms.

    Science.gov (United States)

    Dutta, Sourav; Sawant, Rahul; Rangwala, S A

    2017-03-17

    We experimentally demonstrate cooling of trapped ions by collisions with cotrapped, higher-mass neutral atoms. It is shown that the lighter ^{39}K^{+} ions, created by ionizing ^{39}K atoms in a magneto-optical trap (MOT), when trapped in an ion trap and subsequently allowed to cool by collisions with ultracold, heavier ^{85}Rb atoms in a MOT, exhibit a longer trap lifetime than without the localized ^{85}Rb MOT atoms. A similar cooling of trapped ^{85}Rb^{+} ions by ultracold ^{133}Cs atoms in a MOT is also demonstrated in a different experimental configuration to validate this mechanism of ion cooling by localized and centered ultracold neutral atoms. Our results suggest that the cooling of ions by localized cold atoms holds for any mass ratio, thereby enabling studies on a wider class of atom-ion systems irrespective of their masses.

  3. A HOT URANUS ORBITING THE SUPER METAL-RICH STAR HD 77338 AND THE METALLICITY-MASS CONNECTION

    International Nuclear Information System (INIS)

    Jenkins, J. S.; Hoyer, S.; Jones, M. I.; Rojo, P.; Day-Jones, A. C.; Ruiz, M. T.; Jones, H. R. A.; Tuomi, M.; Barnes, J. R.; Pavlenko, Y. V.; Pinfield, D. J.; Murgas, F.; Ivanyuk, O.; Jordán, A.

    2013-01-01

    We announce the discovery of a low-mass planet orbiting the super metal-rich K0V star HD 77338 as part of our ongoing Calan-Hertfordshire Extrasolar Planet Search. The best-fit planet solution has an orbital period of 5.7361 ± 0.0015 days and with a radial velocity semi-amplitude of only 5.96 ± 1.74 ms –1 , we find a minimum mass of 15.9 +4.7 -5.3 M ⊕ . The best-fit eccentricity from this solution is 0.09 +0.25 -0.09 , and we find agreement for this data set using a Bayesian analysis and a periodogram analysis. We measure a metallicity for the star of +0.35 ± 0.06 dex, whereas another recent work finds +0.47 ± 0.05 dex. Thus HD 77338b is one of the most metal-rich planet-host stars known and the most metal-rich star hosting a sub-Neptune-mass planet. We searched for a transit signature of HD 77338b but none was detected. We also highlight an emerging trend where metallicity and mass seem to correlate at very low masses, a discovery that would be in agreement with the core accretion model of planet formation. The trend appears to show that for Neptune-mass planets and below, higher masses are preferred when the host star is more metal-rich. Also a lower boundary is apparent in the super metal-rich regime where there are no very low mass planets yet discovered in comparison to the sub-solar metallicity regime. A Monte Carlo analysis shows that this low-mass planet desert is statistically significant with the current sample of 36 planets at the ∼4.5σ level. In addition, results from Kepler strengthen the claim for this paucity of the lowest-mass planets in super metal-rich systems. Finally, this discovery adds to the growing population of low-mass planets around low-mass and metal-rich stars and shows that very low mass planets can now be discovered with a relatively small number of data points using stable instrumentation.

  4. Reactor core cooling device

    International Nuclear Information System (INIS)

    Kobayashi, Masahiro.

    1986-01-01

    Purpose: To safely and effectively cool down the reactor core after it has been shut down but is still hot due to after-heat. Constitution: Since the coolant extraction nozzle is situated at a location higher than the coolant injection nozzle, the coolant sprayed from the nozzle, is free from sucking immediately from the extraction nozzle and is therefore used effectively to cool the reactor core. As all the portions from the top to the bottom of the reactor are cooled simultaneously, the efficiency of the reactor cooling process is increased. Since the coolant extraction nozzle can be installed at a point considerably higher than the coolant injection nozzle, the distance from the coolant surface to the point of the coolant extraction nozzle can be made large, preventing cavitation near the coolant extraction nozzle. Therefore, without increasing the capacity of the heat exchanger, the reactor can be cooled down after a shutdown safely and efficiently. (Kawakami, Y.)

  5. Stochastic cooling at Fermilab

    International Nuclear Information System (INIS)

    Marriner, J.

    1986-08-01

    The topics discussed are the stochastic cooling systems in use at Fermilab and some of the techniques that have been employed to meet the particular requirements of the anti-proton source. Stochastic cooling at Fermilab became of paramount importance about 5 years ago when the anti-proton source group at Fermilab abandoned the electron cooling ring in favor of a high flux anti-proton source which relied solely on stochastic cooling to achieve the phase space densities necessary for colliding proton and anti-proton beams. The Fermilab systems have constituted a substantial advance in the techniques of cooling including: large pickup arrays operating at microwave frequencies, extensive use of cryogenic techniques to reduce thermal noise, super-conducting notch filters, and the development of tools for controlling and for accurately phasing the system

  6. Cooled-Spool Piston Compressor

    Science.gov (United States)

    Morris, Brian G.

    1994-01-01

    Proposed cooled-spool piston compressor driven by hydraulic power and features internal cooling of piston by flowing hydraulic fluid to limit temperature of compressed gas. Provides sufficient cooling for higher compression ratios or reactive gases. Unlike conventional piston compressors, all parts of compressed gas lie at all times within relatively short distance of cooled surface so that gas cooled more effectively.

  7. Deuterium- and 18O-content in the cooling water of power station cooling towers

    International Nuclear Information System (INIS)

    Heimbach, H.; Dongmann, G.

    1976-09-01

    The 0-18/0-16 and D/H isotope ratios of water from two different cooling towers were determined by mass spectrometry. The observed isotope fractionation corresponds to that known from natural evaporation or transpiration processes: cooling tower I: delta(D) = 46.8 per thousand, delta( 18 O) = 7.6 per thousand cooling tower II: delta(D) = 33.9 per thousand delta( 18 O) = 5.7 per thousand Evaluation of simple compartment models of a cooling tower and a distillation device suggests that there exists some isotope discrimination within the open trickling unit of a cooling tower analogous to that in a rectification column. In a real cooling tower, however, this effect is compensated largely by the recycling of the cooling water, resulting only in a small enrichment of the heavy isotopes. This can be understood as the result of three partial effects: 1) a fractionation in the vapor pressure equilibrium, 2) a kinetic effect due to diffusion of the water vapor into a turbulent atmosphere, and 3) an exchange effect which is proportional to relative humidity. This low enrichment of the heavy isotope excludes the technical use of cooling towers as isotope separation devices. (orig.) [de

  8. Contrastive analysis of cooling performance between a high-level water collecting cooling tower and a typical cooling tower

    Science.gov (United States)

    Wang, Miao; Wang, Jin; Wang, Jiajin; Shi, Cheng

    2018-02-01

    A three-dimensional (3D) numerical model is established and validated for cooling performance optimization between a high-level water collecting natural draft wet cooling tower (HNDWCT) and a usual natural draft wet cooling tower (UNDWCT) under the actual operation condition at Wanzhou power plant, Chongqing, China. User defined functions (UDFs) of source terms are composed and loaded into the spray, fill and rain zones. Considering the conditions of impact on three kinds of corrugated fills (Double-oblique wave, Two-way wave and S wave) and four kinds of fill height (1.25 m, 1.5 m, 1.75 m and 2 m), numerical simulation of cooling performance are analysed. The results demonstrate that the S wave has the highest cooling efficiency in three fills for both towers, indicating that fill characteristics are crucial to cooling performance. Moreover, the cooling performance of the HNDWCT is far superior to that of the UNDWCT with fill height increases of 1.75 m and above, because the air mass flow rate in the fill zone of the HNDWCT improves more than that in the UNDWCT, as a result of the rain zone resistance declining sharply for the HNDWCT. In addition, the mass and heat transfer capacity of the HNDWCT is better in the tower centre zone than in the outer zone near the tower wall under a uniform fill layout. This behaviour is inverted for the UNDWCT, perhaps because the high-level collection devices play the role of flow guiding in the inner zone. Therefore, when non-uniform fill layout optimization is applied to the HNDWCT, the inner zone increases in height from 1.75 m to 2 m, the outer zone reduces in height from 1.75 m to 1.5 m, and the outlet water temperature declines approximately 0.4 K compared to that of the uniform layout.

  9. Second sector cool down

    CERN Multimedia

    2007-01-01

    At the beginning of July, cool-down is starting in the second LHC sector, sector 4-5. The cool down of sector 4-5 may occasionally generate mist at Point 4, like that produced last January (photo) during the cool-down of sector 7-8.Things are getting colder in the LHC. Sector 7-8 has been kept at 1.9 K for three weeks with excellent stability (see Bulletin No. 16-17 of 16 April 2007). The electrical tests in this sector have got opt to a successful start. At the beginning of July the cryogenic teams started to cool a second sector, sector 4-5. At Point 4 in Echenevex, where one of the LHC’s cryogenic plants is located, preparations for the first phase of the cool-down are underway. During this phase, the sector will first be cooled to 80 K (-193°C), the temperature of liquid nitrogen. As for the first sector, 1200 tonnes of liquid nitrogen will be used for the cool-down. In fact, the nitrogen circulates only at the surface in the ...

  10. Dry well cooling device

    International Nuclear Information System (INIS)

    Suzuki, Hiroyuki.

    1997-01-01

    A plurality of blowing ports with introduction units are disposed to a plurality of ducts in a dry well, and a cooling unit comprising a cooler, a blower and an isolating valve is disposed outside of the dry well. Cooling air and the atmosphere in the dry well are mixed to form a cooling gas and blown into the dry well to control the temperature. Since the cooling unit is disposed outside of the dry well, the maintenance of the cooling unit can be performed even during the plant operation. In addition, since dampers opened/closed depending on the temperature of the atmosphere are disposed to the introduction units for controlling the temperature of the cooling gas, the temperature of the atmosphere in the dry well can be set to a predetermined level rapidly. Since an axial flow blower is used as the blower of the cooling unit, it can be contained in a ventilation cylinder. Then, the atmosphere in the dry well flowing in the ventilation cylinder can be prevented from leaking to the outside. (N.H.)

  11. Cooling towers: a bibliography

    International Nuclear Information System (INIS)

    Whitson, M.O.

    1981-02-01

    This bibliography cites 300 selected references containing information on various aspects of large cooling tower technology, including design, construction, operation, performance, economics, and environmental effects. The towers considered include natural-draft and mechanical-draft types employing wet, dry, or combination wet-dry cooling. A few references deal with alternative cooling methods, principally ponds or spray canals. The citations were compiled for the DOE Energy Information Data Base (EDB) covering the period January to December 1980. The references are to reports from the Department of Energy and its contractors, reports from other government or private organizations, and journal articles, books, conference papers, and monographs from US originators

  12. History of nuclear cooling

    International Nuclear Information System (INIS)

    Kuerti, M.

    1998-01-01

    The historical development of producing extreme low temperatures by magnetic techniques is overviewed. With electron spin methods, temperatures down to 1 mK can be achieved. With nuclear spins theoretically 10 -9 K can be produced. The idea of cooling with nuclear demagnetization is not new, it is a logical extension of the concept of electron cooling. Using nuclear demagnetization experiment with 3 T water cooled solenoids 3 mK could be produced. The cold record is held by Olli Lounasmaa in Helsinki with temperatures below 10 -9 K. (R.P.)

  13. Post-exercise cooling techniques in hot, humid conditions.

    Science.gov (United States)

    Barwood, Martin James; Davey, Sarah; House, James R; Tipton, Michael J

    2009-11-01

    Major sporting events are often held in hot and humid environmental conditions. Cooling techniques have been used to reduce the risk of heat illness following exercise. This study compared the efficacy of five cooling techniques, hand immersion (HI), whole body fanning (WBF), an air cooled garment (ACG), a liquid cooled garment (LCG) and a phase change garment (PCG), against a natural cooling control condition (CON) over two periods between and following exercise bouts in 31 degrees C, 70%RH air. Nine males [age 22 (3) years; height 1.80 (0.04) m; mass 69.80 (7.10) kg] exercised on a treadmill at a maximal sustainable work intensity until rectal temperature (T (re)) reached 38.5 degrees C following which they underwent a resting recovery (0-15 min; COOL 1). They then recommenced exercise until T (re) again reached 38.5 degrees C and then undertook 30 min of cooling with (0-15 min; COOL 2A), and without face fanning (15-30 min; COOL 2B). Based on mean body temperature changes (COOL 1), WBF was most effective in extracting heat: CON 99 W; WBF: 235 W; PCG: 141 W; HI: 162 W; ACG: 101 W; LCG: 49 W) as a consequence of evaporating more sweat. Therefore, WBF represents a cheap and practical means of post-exercise cooling in hot, humid conditions in a sporting setting.

  14. Gas cooled reactors

    International Nuclear Information System (INIS)

    Kojima, Masayuki.

    1985-01-01

    Purpose: To enable direct cooling of reactor cores thereby improving the cooling efficiency upon accidents. Constitution: A plurality sets of heat exchange pipe groups are disposed around the reactor core, which are connected by way of communication pipes with a feedwater recycling device comprising gas/liquid separation device, recycling pump, feedwater pump and emergency water tank. Upon occurrence of loss of primary coolants accidents, the heat exchange pipe groups directly absorb the heat from the reactor core through radiation and convection. Although the water in the heat exchange pipe groups are boiled to evaporate if the forcive circulation is interrupted by the loss of electric power source, water in the emergency tank is supplied due to the head to the heat exchange pipe groups to continue the cooling. Furthermore, since the heat exchange pipe groups surround the entire circumference of the reactor core, cooling is carried out uniformly without resulting deformation or stresses due to the thermal imbalance. (Sekiya, K.)

  15. Warm and Cool Dinosaurs.

    Science.gov (United States)

    Mannlein, Sally

    2001-01-01

    Presents an art activity in which first grade students draw dinosaurs in order to learn about the concept of warm and cool colors. Explains how the activity also helped the students learn about the concept of distance when drawing. (CMK)

  16. Cooling of wood briquettes

    Directory of Open Access Journals (Sweden)

    Adžić Miroljub M.

    2013-01-01

    Full Text Available This paper is concerned with the experimental research of surface temperature of wood briquettes during cooling phase along the cooling line. The cooling phase is an important part of the briquette production technology. It should be performed with care, otherwise the quality of briquettes could deteriorate and possible changes of combustion characteristics of briquettes could happen. The briquette surface temperature was measured with an IR camera and a surface temperature probe at 42 sections. It was found that the temperature of briquette surface dropped from 68 to 34°C after 7 minutes spent at the cooling line. The temperature at the center of briquette, during the 6 hour storage, decreased to 38°C.

  17. Stacking with stochastic cooling

    Energy Technology Data Exchange (ETDEWEB)

    Caspers, Fritz E-mail: Fritz.Caspers@cern.ch; Moehl, Dieter

    2004-10-11

    Accumulation of large stacks of antiprotons or ions with the aid of stochastic cooling is more delicate than cooling a constant intensity beam. Basically the difficulty stems from the fact that the optimized gain and the cooling rate are inversely proportional to the number of particles 'seen' by the cooling system. Therefore, to maintain fast stacking, the newly injected batch has to be strongly 'protected' from the Schottky noise of the stack. Vice versa the stack has to be efficiently 'shielded' against the high gain cooling system for the injected beam. In the antiproton accumulators with stacking ratios up to 10{sup 5} the problem is solved by radial separation of the injection and the stack orbits in a region of large dispersion. An array of several tapered cooling systems with a matched gain profile provides a continuous particle flux towards the high-density stack core. Shielding of the different systems from each other is obtained both through the spatial separation and via the revolution frequencies (filters). In the 'old AA', where the antiproton collection and stacking was done in one single ring, the injected beam was further shielded during cooling by means of a movable shutter. The complexity of these systems is very high. For more modest stacking ratios, one might use azimuthal rather than radial separation of stack and injected beam. Schematically half of the circumference would be used to accept and cool new beam and the remainder to house the stack. Fast gating is then required between the high gain cooling of the injected beam and the low gain stack cooling. RF-gymnastics are used to merge the pre-cooled batch with the stack, to re-create free space for the next injection, and to capture the new batch. This scheme is less demanding for the storage ring lattice, but at the expense of some reduction in stacking rate. The talk reviews the 'radial' separation schemes and also gives some

  18. Laser cooling of solids

    Energy Technology Data Exchange (ETDEWEB)

    Epstein, Richard I [Los Alamos National Laboratory; Sheik-bahae, Mansoor [UNM

    2008-01-01

    We present an overview of solid-state optical refrigeration also known as laser cooling in solids by fluorescence upconversion. The idea of cooling a solid-state optical material by simply shining a laser beam onto it may sound counter intuitive but is rapidly becoming a promising technology for future cryocooler. We chart the evolution of this science in rare-earth doped solids and semiconductors.

  19. Cooling with Superfluid Helium

    Energy Technology Data Exchange (ETDEWEB)

    Lebrun, P; Tavian, L [European Organization for Nuclear Research, Geneva (Switzerland)

    2014-07-01

    The technical properties of helium II (‘superfluid’ helium) are presented in view of its applications to the cooling of superconducting devices, particularly in particle accelerators. Cooling schemes are discussed in terms of heat transfer performance and limitations. Large-capacity refrigeration techniques below 2 K are reviewed, with regard to thermodynamic cycles as well as process machinery. Examples drawn from existing or planned projects illustrate the presentation. Keywords: superfluid helium, cryogenics.

  20. MULTIFUNCTIONAL SOLAR SYSTEMS FOR HEATING AND COOLING

    Directory of Open Access Journals (Sweden)

    Doroshenko A.V.

    2010-12-01

    Full Text Available The basic circuits of multifunctional solar systems of air drainage, heating (hot water supply and heating, cooling and air conditioning are developed on the basis of open absorption cycle with a direct absorbent regeneration. Basic decisions for new generation of gas-liquid solar collectors are developed. Heat-mass-transfer apparatus included in evaporative cooling system, are based on film interaction of flows of gas and liquid and in them, for the creation of nozzle, multi-channel structures from polymeric materials and porous ceramics are used. Preliminary analysis of multifunctional systems possibilities is implemented.

  1. Compressor ported shroud for foil bearing cooling

    Science.gov (United States)

    Elpern, David G [Los Angeles, CA; McCabe, Niall [Torrance, CA; Gee, Mark [South Pasadena, CA

    2011-08-02

    A compressor ported shroud takes compressed air from the shroud of the compressor before it is completely compressed and delivers it to foil bearings. The compressed air has a lower pressure and temperature than compressed outlet air. The lower temperature of the air means that less air needs to be bled off from the compressor to cool the foil bearings. This increases the overall system efficiency due to the reduced mass flow requirements of the lower temperature air. By taking the air at a lower pressure, less work is lost compressing the bearing cooling air.

  2. Cooling Duct Analysis for Transpiration/Film Cooled Liquid Propellant Rocket Engines

    Science.gov (United States)

    Micklow, Gerald J.

    1996-01-01

    The development of a low cost space transportation system requires that the propulsion system be reusable, have long life, with good performance and use low cost propellants. Improved performance can be achieved by operating the engine at higher pressure and temperature levels than previous designs. Increasing the chamber pressure and temperature, however, will increase wall heating rates. This necessitates the need for active cooling methods such as film cooling or transpiration cooling. But active cooling can reduce the net thrust of the engine and add considerably to the design complexity. Recently, a metal drawing process has been patented where it is possible to fabricate plates with very small holes with high uniformity with a closely specified porosity. Such a metal plate could be used for an inexpensive transpiration/film cooled liner to meet the demands of advanced reusable rocket engines, if coolant mass flow rates could be controlled to satisfy wall cooling requirements and performance. The present study investigates the possibility of controlling the coolant mass flow rate through the porous material by simple non-active fluid dynamic means. The coolant will be supplied to the porous material by series of constant geometry slots machined on the exterior of the engine.

  3. Comparing Social Stories™ to Cool versus Not Cool

    Science.gov (United States)

    Leaf, Justin B.; Mitchell, Erin; Townley-Cochran, Donna; McEachin, John; Taubman, Mitchell; Leaf, Ronald

    2016-01-01

    In this study we compared the cool versus not cool procedure to Social Stories™ for teaching various social behaviors to one individual diagnosed with autism spectrum disorder. The researchers randomly assigned three social skills to the cool versus not cool procedure and three social skills to the Social Stories™ procedure. Naturalistic probes…

  4. Design Of Cooling Configuration For Military Aeroengine V-Gutter

    Directory of Open Access Journals (Sweden)

    Batchu Suresh

    2017-07-01

    Full Text Available Military aircraft engines employ afterburner system for increasing the thrust required during combat and take-off flight conditions. V-gutter is employed for stabilisation of the flame during reheat. For fifth generation aero engine the gas temperature at the start of the afterburner is be-yond the allowable material limits of the V-gutter so it is required to cool the V-gutter to obtain acceptable creep life. The design of cooling configuration for the given source pressure is worked out for different rib configurations to obtain the allowable metal temperature with minimum coolant mass flow.1D network analysis is used to estimate the cooling mass flow and metal temperature for design flight condition. CFD analysis is carried out for four cooling configurations with different rib orientations. Out of four configurations one configuration is selected for the best cooling configuration.

  5. Cavity Control and Cooling of Nanoparticles in High Vacuum

    Science.gov (United States)

    Millen, James

    2016-05-01

    Levitated systems are a fascinating addition to the world of optically-controlled mechanical resonators. It is predicted that nanoparticles can be cooled to their c.o.m. ground state via the interaction with an optical cavity. By freeing the oscillator from clamping forces dissipation and decoherence is greatly reduced, leading to the potential to produce long-lived, macroscopically spread, mechanical quantum states, allowing tests of collapse models and any mass limit of quantum physics. Reaching the low pressures required to cavity-cool to the ground state has proved challenging. Our approach is to cavity cool a beam of nanoparticles in high vacuum. We can cool the c.o.m. motion of nanospheres, and control the rotation of nanorods, with the potential to produce cold, aligned nanostructures. Looking forward, we will utilize novel microcavities to enhance optomechanical cooling, preparing particles in a coherent beam ideally suited to ultra-high mass interferometry at 107 a.m.u.

  6. Cavity Cooling of Nanoparticles: Towards Matter-Wave experiments

    Science.gov (United States)

    Millen, James; Kuhn, Stefan; Arndt, Markus

    2016-05-01

    Levitated systems are a fascinating addition to the world of optically-controlled mechanical resonators. It is predicted that nanoparticles can be cooled to their c.o.m. ground state via the interaction with an optical cavity. By freeing the oscillator from clamping forces dissipation and decoherence is greatly reduced, leading to the potential to produce long-lived, macroscopically spread, mechanical quantum states, allowing tests of collapse models and any mass limit of quantum physics. Reaching the low pressures required to cavity-cool to the ground state has proved challenging. Our approach is to cavity cool a beam of nanoparticles in high vacuum. We can cool the c.o.m. motion of nanospheres a few hundred nanometers in size. Looking forward, we will utilize novel microcavities to enhance optomechanical cooling, preparing particles in a coherent beam ideally suited to ultra-high mass interferometry at 107 a.m.u.

  7. Cool down time optimization of the Stirling cooler

    Science.gov (United States)

    Xia, M.; Chen, X. P.; Y Li, H.; Gan, Z. H.

    2017-12-01

    The cooling power is one of the most important performances of a Stirling cooler. However, in some special fields, the cool down time is more important. It is a great challenge to improve the cool down time of the Stirling cooler. A new split Stirling linear cryogenic cooler SCI09H was designed in this study. A new structure of linear motor is used in the compressor, and the machine spring is used in the expander. In order to reduce the cool down time, the stainless-steel mesh of regenerator is optimized. The weight of the cooler is 1.1 kg, the cool down time to 80K is 2 minutes at 296K with a 250J thermal mass, the cooling power is 1.1W at 80K, and the input power is 50W.

  8. Laser cooling of neutral atoms

    International Nuclear Information System (INIS)

    1993-01-01

    A qualitative description of laser cooling of neutral atoms is given. Two of the most important mechanisms utilized in laser cooling, the so-called Doppler Cooling and Sisyphus Cooling, are reviewed. The minimum temperature reached by the atoms is derived using simple arguments. (Author) 7 refs

  9. Technology of power plant cooling

    International Nuclear Information System (INIS)

    Maulbetsch, J.S.; Zeren, R.W.

    1976-01-01

    The following topics are discussed: the thermodynamics of power generation and the need for cooling water; the technical, economic, and legislative constraints within which the cooling problem must be solved; alternate cooling methods currently available or under development; the water treatment requirements of cooling systems; and some alternatives for modifying the physical impact on aquatic systems

  10. Meltdown reactor core cooling facility

    International Nuclear Information System (INIS)

    Matsuoka, Tsuyoshi.

    1992-01-01

    The meltdown reactor core cooling facility comprises a meltdown reactor core cooling tank, a cooling water storage tank situates at a position higher than the meltdown reactor core cooling tank, an upper pipeline connecting the upper portions of the both of the tanks and a lower pipeline connecting the lower portions of them. Upon occurrence of reactor core meltdown, a high temperature meltdown reactor core is dropped on the cooling tank to partially melt the tank and form a hole, from which cooling water is flown out. Since the water source of the cooling water is the cooling water storage tank, a great amount of cooling water is further dropped and supplied and the reactor core is submerged and cooled by natural convection for a long period of time. Further, when the lump of the meltdown reactor core is small and the perforated hole of the meltdown reactor cooling tank is small, cooling water is boiled by the high temperature lump intruding into the meltdown reactor core cooling tank and blown out from the upper pipeline to the cooling water storage tank to supply cooling water from the lower pipeline to the meltdown reactor core cooling tank. Since it is constituted only with simple static facilities, the facility can be simplified to attain improvement of reliability. (N.H.)

  11. Mass measurement of radioactive isotopes

    CERN Document Server

    Kluge, H J; Scheidenberger, C

    2004-01-01

    The highest precision in mass measurements on short-lived radionuclides is obtained using trapping and cooling techniques. Here, the experimental storage ring (ESR) at GSI/Darmstadt and the tandem Penning trap mass spectrometer ISOLTRAP at ISOLDE/CERN play an important role. Status and recent results on mass measurements of radioactive nuclides with ESR and ISOLTRAP are summarized.

  12. THERMAL CONDUCTANCE IN AQUATIC BIRDS IN RELATION TO THE DEGREE OF WATER CONTACT, BODY-MASS, AND BODY-FAT - ENERGETIC IMPLICATIONS OF LIVING IN A STRONG COOLING ENVIRONMENT

    NARCIS (Netherlands)

    DEVRIES, J; VANEERDEN, MR

    1995-01-01

    Thermal conductance of carcasses of 14 aquatic bird species was determined by the warming constant technique. The effect on thermal conductance of body mass, age sex, fat deposits, and the degree of contact with water were studied. Only body mass and the degree of submergence in water had an effect.

  13. Cool diffusion flames of butane isomers activated by ozone in the counterflow

    KAUST Repository

    Alfazazi, Adamu; Al Omier, Abdullah Abdulaziz; Secco, Andrea; Selim, Hatem; Ju, Yiguang; Sarathy, Mani

    2018-01-01

    and sustenance of cool diffusion flames; as ozone-less cool diffusion flame of butane isomers could not be established even at high fuel mole fractions. The structure of a stable n-butane cool diffusion flame was qualitatively examined using a time of flight mass

  14. Cool WISPs for stellar cooling excesses

    Energy Technology Data Exchange (ETDEWEB)

    Giannotti, Maurizio [Physical Sciences, Barry University, 11300 NE 2nd Avenue, Miami Shores, FL 33161 (United States); Irastorza, Igor; Redondo, Javier [Departamento de Física Teórica, Universidad de Zaragoza, Pedro Cerbuna 12, E-50009, Zaragoza, España (Spain); Ringwald, Andreas, E-mail: mgiannotti@barry.edu, E-mail: igor.irastorza@cern.ch, E-mail: jredondo@unizar.es, E-mail: andreas.ringwald@desy.de [Theory group, Deutsches Elektronen-Synchrotron DESY, Notkestraße 85, D-22607 Hamburg (Germany)

    2016-05-01

    Several stellar systems (white dwarfs, red giants, horizontal branch stars and possibly the neutron star in the supernova remnant Cassiopeia A) show a mild preference for a non-standard cooling mechanism when compared with theoretical models. This exotic cooling could be provided by Weakly Interacting Slim Particles (WISPs), produced in the hot cores and abandoning the star unimpeded, contributing directly to the energy loss. Taken individually, these excesses do not show a strong statistical weight. However, if one mechanism could consistently explain several of them, the hint could be significant. We analyze the hints in terms of neutrino anomalous magnetic moments, minicharged particles, hidden photons and axion-like particles (ALPs). Among them, the ALP or a massless HP represent the best solution. Interestingly, the hinted ALP parameter space is accessible to the next generation proposed ALP searches, such as ALPS II and IAXO and the massless HP requires a multi TeV energy scale of new physics that might be accessible at the LHC.

  15. Cool WISPs for stellar cooling excesses

    International Nuclear Information System (INIS)

    Giannotti, Maurizio; Irastorza, Igor; Redondo, Javier; Ringwald, Andreas

    2016-01-01

    Several stellar systems (white dwarfs, red giants, horizontal branch stars and possibly the neutron star in the supernova remnant Cassiopeia A) show a mild preference for a non-standard cooling mechanism when compared with theoretical models. This exotic cooling could be provided by Weakly Interacting Slim Particles (WISPs), produced in the hot cores and abandoning the star unimpeded, contributing directly to the energy loss. Taken individually, these excesses do not show a strong statistical weight. However, if one mechanism could consistently explain several of them, the hint could be significant. We analyze the hints in terms of neutrino anomalous magnetic moments, minicharged particles, hidden photons and axion-like particles (ALPs). Among them, the ALP or a massless HP represent the best solution. Interestingly, the hinted ALP parameter space is accessible to the next generation proposed ALP searches, such as ALPS II and IAXO and the massless HP requires a multi TeV energy scale of new physics that might be accessible at the LHC.

  16. Gas-cooled reactors

    International Nuclear Information System (INIS)

    Schulten, R.; Trauger, D.B.

    1976-01-01

    Experience to date with operation of high-temperature gas-cooled reactors has been quite favorable. Despite problems in completion of construction and startup, three high-temperature gas-cooled reactor (HTGR) units have operated well. The Windscale Advanced Gas-Cooled Reactor (AGR) in the United Kingdom has had an excellent operating history, and initial operation of commercial AGRs shows them to be satisfactory. The latter reactors provide direct experience in scale-up from the Windscale experiment to fullscale commercial units. The Colorado Fort St. Vrain 330-MWe prototype helium-cooled HTGR is now in the approach-to-power phase while the 300-MWe Pebble Bed THTR prototype in the Federal Republic of Germany is scheduled for completion of construction by late 1978. THTR will be the first nuclear power plant which uses a dry cooling tower. Fuel reprocessing and refabrication have been developed in the laboratory and are now entering a pilot-plant scale development. Several commercial HTGR power station orders were placed in the U.S. prior to 1975 with similar plans for stations in the FRG. However, the combined effects of inflation, reduced electric power demand, regulatory uncertainties, and pricing problems led to cancellation of the 12 reactors which were in various stages of planning, design, and licensing

  17. Emergency core cooling system

    International Nuclear Information System (INIS)

    Arai, Kenji; Oikawa, Hirohide.

    1990-01-01

    The device according to this invention can ensure cooling water required for emerency core cooling upon emergence such as abnormally, for example, loss of coolant accident, without using dynamic equipments such as a centrifugal pump or large-scaled tank. The device comprises a pressure accumulation tank containing a high pressure nitrogen gas and cooling water inside, a condensate storage tank, a pressure suppression pool and a jet stream pump. In this device there are disposed a pipeline for guiding cooling water in the pressure accumulation tank as a jetting water to a jetting stream pump, a pipeline for guiding cooling water stored in the condensate storage tank and the pressure suppression pool as pumped water to the jetting pump and, further, a pipeline for guiding the discharged water from the jet stream pump which is a mixed stream of pumped water and jetting water into the reactor pressure vessel. In this constitution, a sufficient amount of water ranging from relatively high pressure to low pressure can be supplied into the reactor pressure vessel, without increasing the size of the pressure accumulation tank. (I.S.)

  18. Emergency reactor cooling circuit

    International Nuclear Information System (INIS)

    Araki, Hidefumi; Matsumoto, Tomoyuki; Kataoka, Yoshiyuki.

    1994-01-01

    Cooling water in a gravitationally dropping water reservoir is injected into a reactor pressure vessel passing through a pipeline upon occurrence of emergency. The pipeline is inclined downwardly having one end thereof being in communication with the pressure vessel. During normal operation, the cooling water in the upper portion of the inclined pipeline is heated by convection heat transfer from the communication portion with the pressure vessel. On the other hand, cooling water present at a position lower than the communication portion forms cooling water lumps. Accordingly, temperature stratification layers are formed in the inclined pipeline. Therefore, temperature rise of water in a vertical pipeline connected to the inclined pipeline is small. With such a constitution, the amount of heat lost from the pressure vessel by way of the water injection pipeline is reduced. Further, there is no worry that cooling water to be injected upon occurrence of emergency is boiled under reduced pressure in the injection pipeline to delay the depressurization of the pressure vessel. (I.N.)

  19. UHS, Ultimate Heat Sink Cooling Pond Analysis

    International Nuclear Information System (INIS)

    Codell, R.; Nuttle, W.K.

    1998-01-01

    1 - Description of program or function: Three programs model performance of an ultimate heat sink cooling pond. National Weather Service data is read and analyzed to predict periods of lowest cooling performance and highest evaporative loss. The data is compared to local site data for significant differences. Then the maximum pond temperature is predicted. Five programs model performance of an ultimate heat sink spray pond. The cooling performance, evaporative water loss, and drift water loss as a function of wind speed are estimated for a spray field. These estimates are used in conjunction with National Weather Service data to predict periods of lowest cooling performance and highest evaporative loss. This data is compared to local site data for significant differences. Then the maximum pond temperature is predicted. 2 - Method of solution: The transfer of heat and water vapor is modeled using an equilibrium temperature procedure for an UHS cooling pond. The UHS spray pond model considers heat, mass, and momentum transfer from a single water drop with the surrounding air, and modification of the surrounding air resulting from the heat, mass, and momentum transfer from many drops in different parts of a spray field. 3 - Restrictions on the complexity of the problem: The program SPRCO uses RANF, a uniform random number generator which is an intrinsic function on the CDC. All programs except COMET use the NAMELIST statement, which is non standard. Otherwise these programs conform to the ANSI Fortran 77 standard. The meteorological data scanning procedure requires tens of years of recorded data to be effective. The models and methods, provided as useful tool for UHS analyses of cooling ponds and spray ponds, are intended as guidelines only. Use of these methods does not automatically assure NRC approval, nor are they required procedures for nuclear-power-plant licensing

  20. Core cooling systems

    International Nuclear Information System (INIS)

    Hoeppner, G.

    1980-01-01

    The reactor cooling system transports the heat liberated in the reactor core to the component - heat exchanger, steam generator or turbine - where the energy is removed. This basic task can be performed with a variety of coolants circulating in appropriately designed cooling systems. The choice of any one system is governed by principles of economics and natural policies, the design is determined by the laws of nuclear physics, thermal-hydraulics and by the requirement of reliability and public safety. PWR- and BWR- reactors today generate the bulk of nuclear energy. Their primary cooling systems are discussed under the following aspects: 1. General design, nuclear physics constraints, energy transfer, hydraulics, thermodynamics. 2. Design and performance under conditions of steady state and mild transients; control systems. 3. Design and performance under conditions of severe transients and loss of coolant accidents; safety systems. (orig./RW)

  1. Reactor cooling system

    International Nuclear Information System (INIS)

    Kato, Etsuji.

    1979-01-01

    Purpose: To eliminate cleaning steps in the pipelines upon reactor shut-down by connecting a filtrating and desalting device to the cooling system to thereby always clean up the water in the pipelines. Constitution: A filtrating and desalting device is connected to the pipelines in the cooling system by way of drain valves and a check valve. Desalted water is taken out from the exit of the filtrating and desalting device and injected to one end of the cooling system pipelines by way of the drain valve and the check valve and then returned by way of another drain valve to the desalting device. Water in the pipelines is thus always desalted and the cleaning step in the pipelines is no more required in the shut-down. (Kawakami, Y.)

  2. ELECTRON COOLING FOR RHIC

    International Nuclear Information System (INIS)

    BEN-ZVI, I.; AHRENS, L.; BRENNAN, M.; HARRISON, M.; KEWISCH, J.; MACKAY, W.; PEGGS, S.; ROSER, T.; SATOGATA, T.; TRBOJEVIC, D.; YAKIMENKO, V.

    2001-01-01

    We introduce plans for electron-cooling of the Relativistic Heavy Ion Collider (RHIC). This project has a number of new features as electron coolers go: It will cool 100 GeV/nucleon ions with 50 MeV electrons; it will be the first attempt to cool a collider at storage-energy; and it will be the first cooler to use a bunched beam and a linear accelerator as the electron source. The linac will be superconducting with energy recovery. The electron source will be based on a photocathode gun. The project is carried out by the Collider-Accelerator Department at BNL in collaboration with the Budker Institute of Nuclear Physics

  3. Muon ionization cooling experiment

    CERN Multimedia

    CERN. Geneva

    2003-01-01

    A neutrino factory based on a muon storage ring is the ultimate tool for studies of neutrino oscillations, including possibly leptonic CP violation. It is also the first step towards muon colliders. The performance of this new and promising line of accelerators relies heavily on the concept of ionisation cooling of minimum ionising muons, for which much R&D is required. The concept of a muon ionisation cooling experiment has been extensively studied and first steps are now being taken towards its realisation by a joint international team of accelerator and particle physicists. The aim of the workshop is to to explore at least two versions of an experiment based on existing cooling channel designs. If such an experiment is feasible, one shall then select, on the basis of effectiveness, simplicity, availability of components and overall cost, a design for the proposed experiment, and assemble the elements necessary to the presentation of a proposal. Please see workshop website.

  4. Emergency core cooling device

    International Nuclear Information System (INIS)

    Suzaki, Kiyoshi; Inoue, Akihiro.

    1979-01-01

    Purpose: To improve core cooling effect by making the operation region for a plurality of water injection pumps more broader. Constitution: An emergency reactor core cooling device actuated upon failure of recycling pipe ways is adapted to be fed with cooling water through a thermal sleeve by way of a plurality of water injection pump from pool water in a condensate storage tank and a pressure suppression chamber as water feed source. Exhaust pipes and suction pipes of each of the pumps are connected by way of switching valves and the valves are switched so that the pumps are set to a series operation if the pressure in the pressure vessel is high and the pumps are set to a parallel operation if the pressure in the pressure vessel is low. (Furukawa, Y.)

  5. Monitoring Cray Cooling Systems

    Energy Technology Data Exchange (ETDEWEB)

    Maxwell, Don E [ORNL; Ezell, Matthew A [ORNL; Becklehimer, Jeff [Cray, Inc.; Donovan, Matthew J [ORNL; Layton, Christopher C [ORNL

    2014-01-01

    While sites generally have systems in place to monitor the health of Cray computers themselves, often the cooling systems are ignored until a computer failure requires investigation into the source of the failure. The Liebert XDP units used to cool the Cray XE/XK models as well as the Cray proprietary cooling system used for the Cray XC30 models provide data useful for health monitoring. Unfortunately, this valuable information is often available only to custom solutions not accessible by a center-wide monitoring system or is simply ignored entirely. In this paper, methods and tools used to harvest the monitoring data available are discussed, and the implementation needed to integrate the data into a center-wide monitoring system at the Oak Ridge National Laboratory is provided.

  6. Cooling nuclear reactor fuel

    International Nuclear Information System (INIS)

    Porter, W.H.L.

    1975-01-01

    Reference is made to water or water/steam cooled reactors of the fuel cluster type. In such reactors it is usual to mount the clusters in parallel spaced relationship so that coolant can pass freely between them, the coolant being passed axially from one end of the cluster in an upward direction through the cluster and being effective for cooling under normal circumstances. It has been suggested, however, that in addition to the main coolant flow an auxiliary coolant flow be provided so as to pass laterally into the cluster or be sprayed over the top of the cluster. This auxiliary supply may be continuously in use, or may be held in reserve for use in emergencies. Arrangements for providing this auxiliary cooling are described in detail. (U.K.)

  7. Stochastic cooling for beginners

    International Nuclear Information System (INIS)

    Moehl, D.

    1984-01-01

    These two lectures have been prepared to give a simple introduction to the principles. In Part I we try to explain stochastic cooling using the time-domain picture which starts from the pulse response of the system. In Part II the discussion is repeated, looking more closely at the frequency-domain response. An attempt is made to familiarize the beginners with some of the elementary cooling equations, from the 'single particle case' up to equations which describe the evolution of the particle distribution. (orig.)

  8. Sodium cooled fast reactor

    Energy Technology Data Exchange (ETDEWEB)

    Hokkyo, N; Inoue, K; Maeda, H

    1968-11-21

    In a sodium cooled fast neutron reactor, an ultrasonic generator is installed at a fuel assembly hold-down mechanism positioned above a blanket or fission gas reservoir located above the core. During operation of the reactor an ultrsonic wave of frequency 10/sup 3/ - 10/sup 4/ Hz is constantly transmitted to the core to resonantly inject the primary bubble with ultrasonic energy to thereby facilitate its growth. Hence, small bubbles grow gradually to prevent the sudden boiling of sodium if an accident occurs in the cooling system during operation of the reactor.

  9. Cooling pond fog studies

    International Nuclear Information System (INIS)

    Hicks, B.B.

    1978-01-01

    The Fog Excess Water Index (FEWI) method of fog prediction has been verified by the use of data obtained at the Dresden cooling pond during 1976 and 1977 and by a reanalysis of observations made in conjunction with a study of cooling pond simulators during 1974. For applications in which the method is applied to measurements or estimates of bulk water temperature, a critical value of about 0.7 mb appears to be most appropriate. The present analyses confirm the earlier finding that wind speed plays little part in determining the susceptibility for fog generation

  10. Characteristics of wetting temperature during spray cooling

    International Nuclear Information System (INIS)

    Mitsutake, Yuichi; Monde, Masanori; Hidaka, Shinichirou

    2006-01-01

    An experimental study has been done to elucidate the effects of mass flux and subcooling of liquid and thermal properties of solid on the wetting temperature during cooling of a hot block with spray. A water spray was impinged at one of the end surfaces of a cylindrical block initially heated at 400 or 500degC. The experimental condition was mass fluxes G=1-9 kg/m 2 s and degrees of subcooling ΔT sub =20, 50, 80 K. Three blocks of copper, brass and carbon steel were prepared. During spray cooling internal block temperature distribution and sputtering sound pressure level were recorded and the surface temperature and heat flux were evaluated with 2D inverse heat conducting analysis. Cooling process on cooling curves is divided into four regimes categorized by change in a flow situation and the sound level. The wetting temperature defined as the wall temperature at a minimum heat flux point was measured over an extensive experimental range. The wetting wall temperature was correlated well with the parameter of GΔT sub . The wetting wall temperature increases as GΔT sub increases and reaches a constant value depending on the material of the surface at higher region of GΔT sub . (author)

  11. Leco. Thermo-active Ceilings & Free Cooling. Using free cooling in combination with thermo-active ceilings for integrated heating and cooling

    OpenAIRE

    Murphy, Mark Allen

    2010-01-01

    The largest potential for decreasing green house gas emissions, and therewith mitigating the effects of global climate change, comes from improving energy efficiency. Through the integration of heating and cooling systems into building elements, such as the thermo-active ceiling, improvements in energy efficiency can be achieved. Utilizing thermal mass to buffer temperature variations and to level out peak loads reduces the instantaneous power demands and enables traditional cooling e...

  12. Leco. Thermo-active Ceilings & Free Cooling. Using free cooling in combination with thermo-active ceilings for integrated heating and cooling

    OpenAIRE

    Murphy, Mark Allen

    2010-01-01

    - The largest potential for decreasing green house gas emissions, and therewith mitigating the effects of global climate change, comes from improving energy efficiency. Through the integration of heating and cooling systems into building elements, such as the thermo-active ceiling, improvements in energy efficiency can be achieved. Utilizing thermal mass to buffer temperature variations and to level out peak loads reduces the instantaneous power demands and enables traditional cool...

  13. Mathematical model and calculation of water-cooling efficiency in a film-filled cooling tower

    Science.gov (United States)

    Laptev, A. G.; Lapteva, E. A.

    2016-10-01

    Different approaches to simulation of momentum, mass, and energy transfer in packed beds are considered. The mathematical model of heat and mass transfer in a wetted packed bed for turbulent gas flow and laminar wave counter flow of the fluid film in sprinkler units of a water-cooling tower is presented. The packed bed is represented as the set of equivalent channels with correction to twisting. The idea put forward by P. Kapitsa on representation of waves on the interphase film surface as elements of the surface roughness in interaction with the gas flow is used. The temperature and moisture content profiles are found from the solution of differential equations of heat and mass transfer written for the equivalent channel with the volume heat and mass source. The equations for calculation of the average coefficients of heat emission and mass exchange in regular and irregular beds with different contact elements, as well as the expression for calculation of the average turbulent exchange coefficient are presented. The given formulas determine these coefficients for the known hydraulic resistance of the packed bed element. The results of solution of the system of equations are presented, and the water temperature profiles are shown for different sprinkler units in industrial water-cooling towers. The comparison with experimental data on thermal efficiency of the cooling tower is made; this allows one to determine the temperature of the cooled water at the output. The technical solutions on increasing the cooling tower performance by equalization of the air velocity profile at the input and creation of an additional phase contact region using irregular elements "Inzhekhim" are considered.

  14. ISM stripping from cluster galaxies and inhomogeneities in cooling flows

    Science.gov (United States)

    Soker, Noam; Bregman, Joel N.; Sarazin, Craig L.

    1990-01-01

    Analyses of the x ray surface brightness profiles of cluster cooling flows suggest that the mass flow rate decreases towards the center of the cluster. It is often suggested that this decrease results from thermal instabilities, in which denser blobs of gas cool rapidly and drop below x ray emitting temperatures. If the seeds for the thermal instabilities are entropy perturbations, these perturbations must enter the flow already in the nonlinear regime. Otherwise, the blobs would take too long to cool. Here, researchers suggest that such nonlinear perturbations might start as blobs of interstellar gas which are stripped out of cluster galaxies. Assuming that most of the gas produced by stellar mass loss in cluster galaxies is stripped from the galaxies, the total rate of such stripping is roughly M sub Interstellar Matter (ISM) approx. 100 solar mass yr(-1). It is interesting that the typical rates of cooling in cluster cooling flows are M sub cool approx. 100 solar mass yr(-1). Thus, it is possible that a substantial portion of the cooling gas originates as blobs of interstellar gas stripped from galaxies. The magnetic fields within and outside of the low entropy perturbations can help to maintain their identities, both by suppressing thermal conduction and through the dynamical effects of magnetic tension. One significant question concerning this scenario is: Why are cooling flows seen only in a fraction of clusters, although one would expect gas stripping to be very common. It may be that the density perturbations only survive and cool efficiently in clusters with a very high intracluster gas density and with the focusing effect of a central dominant galaxy. Inhomogeneities in the intracluster medium caused by the stripping of interstellar gas from galaxies can have a number of other effects on clusters. For example, these density fluctuations may disrupt the propagation of radio jets through the intracluster gas, and this may be one mechanism for producing Wide

  15. Elementary stochastic cooling

    Energy Technology Data Exchange (ETDEWEB)

    Tollestrup, A.V.; Dugan, G

    1983-12-01

    Major headings in this review include: proton sources; antiproton production; antiproton sources and Liouville, the role of the Debuncher; transverse stochastic cooling, time domain; the accumulator; frequency domain; pickups and kickers; Fokker-Planck equation; calculation of constants in the Fokker-Planck equation; and beam feedback. (GHT)

  16. ELECTRON COOLING FOR RHIC

    International Nuclear Information System (INIS)

    Ben-Zvi, I.

    2001-01-01

    The Accelerator Collider Department (CAD) at Brookhaven National Laboratory is operating the Relativistic Heavy Ion Collider (RHIC), which includes the dual-ring, 3.834 km circumference superconducting collider and the venerable AGS as the last part of the RHIC injection chain. CAD is planning on a luminosity upgrade of the machine under the designation RHIC II. One important component of the RHIC II upgrade is electron cooling of RHIC gold ion beams. For this purpose, BNL and the Budker Institute of Nuclear Physics in Novosibirsk entered into a collaboration aimed initially at the development of the electron cooling conceptual design, resolution of technical issues, and finally extend the collaboration towards the construction and commissioning of the cooler. Many of the results presented in this paper are derived from the Electron Cooling for RHIC Design Report [1], produced by the, BINP team within the framework of this collaboration. BNL is also collaborating with Fermi National Laboratory, Thomas Jefferson National Accelerator Facility and the University of Indiana on various aspects of electron cooling

  17. ELECTRON COOLING FOR RHIC.

    Energy Technology Data Exchange (ETDEWEB)

    BEN-ZVI,I.

    2001-05-13

    The Accelerator Collider Department (CAD) at Brookhaven National Laboratory is operating the Relativistic Heavy Ion Collider (RHIC), which includes the dual-ring, 3.834 km circumference superconducting collider and the venerable AGS as the last part of the RHIC injection chain. CAD is planning on a luminosity upgrade of the machine under the designation RHIC II. One important component of the RHIC II upgrade is electron cooling of RHIC gold ion beams. For this purpose, BNL and the Budker Institute of Nuclear Physics in Novosibirsk entered into a collaboration aimed initially at the development of the electron cooling conceptual design, resolution of technical issues, and finally extend the collaboration towards the construction and commissioning of the cooler. Many of the results presented in this paper are derived from the Electron Cooling for RHIC Design Report [1], produced by the, BINP team within the framework of this collaboration. BNL is also collaborating with Fermi National Laboratory, Thomas Jefferson National Accelerator Facility and the University of Indiana on various aspects of electron cooling.

  18. Cooling tower and environment

    International Nuclear Information System (INIS)

    Becker, J.; Ederhof, A.; Gosdowski, J.; Harms, A.; Ide, G.; Klotz, B.; Kowalczyk, R.; Necker, P.; Tesche, W.

    The influence of a cooling tower on the environment, or rather the influence of the environment on the cooling tower stands presently -along with the cooling water supply - in the middle of much discussion. The literature on these questions can hardly be overlooked by the experts concerned, especially not by the power station designers and operators. The document 'Cooling Tower and Environment' is intented to give a general idea of the important publications in this field, and to inform of the present state of technology. In this, the explanations on every section make it easier to get to know the specific subject area. In addition to older standard literature, this publication contains the best-known literature of recent years up to spring 1975, including some articles written in English. Further English literature has been collected by the ZAED (KFK) and is available at the VGB-Geschaefsstelle. Furthermore, The Bundesumweltamt compiles the literature on the subject of 'Environmental protection'. On top of that, further documentation centres are listed at the end of this text. (orig.) [de

  19. Warm and Cool Cityscapes

    Science.gov (United States)

    Jubelirer, Shelly

    2012-01-01

    Painting cityscapes is a great way to teach first-grade students about warm and cool colors. Before the painting begins, the author and her class have an in-depth discussion about big cities and what types of buildings or structures that might be seen in them. They talk about large apartment and condo buildings, skyscrapers, art museums,…

  20. Measure Guideline: Ventilation Cooling

    Energy Technology Data Exchange (ETDEWEB)

    Springer, D. [Alliance for Residential Building Innovation (ARBI), David, CA (United States); Dakin, B. [Alliance for Residential Building Innovation (ARBI), David, CA (United States); German, A. [Alliance for Residential Building Innovation (ARBI), David, CA (United States)

    2012-04-01

    The purpose of this measure guideline is to provide information on a cost-effective solution for reducing cooling system energy and demand in homes located in hot-dry and cold-dry climates. This guideline provides a prescriptive approach that outlines qualification criteria, selection considerations, and design and installation procedures.

  1. Passive cooling containment study

    International Nuclear Information System (INIS)

    Shin, J.J.; Iotti, R.C.; Wright, R.F.

    1993-01-01

    Pressure and temperature transients of nuclear reactor containment following postulated loss of coolant accident with a coincident station blackout due to total loss of all alternating current power are studied analytically and experimentally for the full scale NPR (New Production Reactor). All the reactor and containment cooling under this condition would rely on the passive cooling system which removes reactor decay heat and provides emergency core and containment cooling. Containment passive cooling for this study takes place in the annulus between containment steel shell and concrete shield building by natural convection air flow and thermal radiation. Various heat transfer coefficients inside annular air space were investigated by running the modified CONTEMPT code CONTEMPT-NPR. In order to verify proper heat transfer coefficient, temperature, heat flux, and velocity profiles were measured inside annular air space of the test facility which is a 24 foot (7.3m) high, steam heated inner cylinder of three foot (.91m) diameter and five and half foot (1.7m) diameter outer cylinder. Comparison of CONTEMPT-NPR and WGOTHIC was done for reduced scale NPR

  2. High energy beam cooling

    International Nuclear Information System (INIS)

    Berger, H.; Herr, H.; Linnecar, T.; Millich, A.; Milss, F.; Rubbia, C.; Taylor, C.S.; Meer, S. van der; Zotter, B.

    1980-01-01

    The group concerned itself with the analysis of cooling systems whose purpose is to maintain the quality of the high energy beams in the SPS in spite of gas scattering, RF noise, magnet ripple and beam-beam interactions. Three types of systems were discussed. The status of these activities is discussed below. (orig.)

  3. Emergency core cooling system

    International Nuclear Information System (INIS)

    Ando, Masaki.

    1987-01-01

    Purpose: To actuate an automatic pressure down system (ADS) and a low pressure emergency core cooling system (ECCS) upon water level reduction of a nuclear reactor other than loss of coolant accidents (LOCA). Constitution: ADS in a BWR type reactor is disposed for reducing the pressure in a reactor container thereby enabling coolant injection from a low pressure ECCS upon LOCA. That is, ADS has been actuated by AND signal for a reactor water level low signal and a dry well pressure high signal. In the present invention, ADS can be actuated further also by AND signal of the reactor water level low signal, the high pressure ECCS and not-operation signal of reactor isolation cooling system. In such an emergency core cooling system thus constituted, ADS operates in the same manner as usual upon LOCA and, further, ADS is operated also upon loss of feedwater accident in the reactor pressure vessel in the case where there is a necessity for actuating the low pressure ECCS, although other high pressure ECCS and reactor isolation cooling system are not operated. Accordingly, it is possible to improve the reliability upon reactor core accident and mitigate the operator burden. (Horiuchi, T.)

  4. Emergency core cooling system

    International Nuclear Information System (INIS)

    Kato, Ken.

    1989-01-01

    In PWR type reactors, a cooling water spray portion of emergency core cooling pipelines incorporated into pipelines on high temperature side is protruded to the inside of an upper plenum. Upon rupture of primary pipelines, pressure in a pressure vessel is abruptly reduced to generate a great amount of steams in the reactor core, which are discharged at a high flow rate into the primary pipelines on high temperature side. However, since the inside of the upper plenum has a larger area and the steam flow is slow, as compared with that of the pipelines on the high temperature side, ECCS water can surely be supplied into the reactor core to promote the re-flooding of the reactor core and effectively cool the reactor. Since the nuclear reactor can effectively be cooled to enable the promotion of pressure reduction and effective supply of coolants during the period of pressure reduction upon LOCA, the capacity of the pressure accumulation vessel can be decreased. Further, the re-flooding time for the reactor is shortened to provide an effect contributing to the improvement of the safety and the reduction of the cost. (N.H.)

  5. Cooling Tower Losses in Industry

    OpenAIRE

    Barhm Mohamad

    2017-01-01

    Cooling towers are a very important part of many chemical plants. The primary task of a cooling tower is to reject heat into the atmosphere. They represent a relatively inexpensive and dependable means of removing low-grade heat from cooling water. The make-up water source is used to replenish water lost to evaporation. Hot water from heat exchangers is sent to the cooling tower. The water exits the cooling tower and is sent back to the exchangers or to other units for further cooling.

  6. Cooling concepts for HTS components

    International Nuclear Information System (INIS)

    Binneberg, A.; Buschmann, H.; Neubert, J.

    1993-01-01

    HTS components require that low-cost, reliable cooling systems be used. There are no general solutions to such systems. Any cooling concept has to be tailored to the specific requirements of a system. The following has to he taken into consideration when designing cooling concepts: - cooling temperature - constancy and controllability of the cooling temperature - cooling load and refrigerating capacity - continuous or discontinuous mode - degree of automation - full serviceability or availability before evacuation -malfunctions caused by microphonic, thermal or electromagnetic effects -stationary or mobile application - investment and operating costs (orig.)

  7. Cooling out of the blue

    International Nuclear Information System (INIS)

    Schmid, W.

    2006-01-01

    This article takes a look at solar cooling and air-conditioning, the use of which is becoming more and more popular. The article discusses how further research and development is necessary. The main challenge for professional experts is the optimal adaptation of building, building technology and solar-driven cooling systems to meet these new requirements. Various solar cooling technologies are looked at, including the use of surplus heat for the generation of cold for cooling systems. Small-scale solar cooling systems now being tested in trials are described. Various developments in Europe are discussed, as are the future chances for solar cooling in the market

  8. Heat pipe cooling of power processing magnetics

    Science.gov (United States)

    Hansen, I. G.; Chester, M.

    1979-01-01

    The constant demand for increased power and reduced mass has raised the internal temperature of conventionally cooled power magnetics toward the upper limit of acceptability. The conflicting demands of electrical isolation, mechanical integrity, and thermal conductivity preclude significant further advancements using conventional approaches. However, the size and mass of multikilowatt power processing systems may be further reduced by the incorporation of heat pipe cooling directly into the power magnetics. Additionally, by maintaining lower more constant temperatures, the life and reliability of the magnetic devices will be improved. A heat pipe cooled transformer and input filter have been developed for the 2.4 kW beam supply of a 30-cm ion thruster system. This development yielded a mass reduction of 40% (1.76 kg) and lower mean winding temperature (20 C lower). While these improvements are significant, preliminary designs predict even greater benefits to be realized at higher power. This paper presents the design details along with the results of thermal vacuum operation and the component performance in a 3 kW breadboard power processor.

  9. Magnetocaloric Effect and Thermoelectric Cooling - A Synergistic Cooling Technology

    Science.gov (United States)

    2018-01-16

    Thermoelectric Cooling - A Synergistic Cooling Technology Sb. GRANT NUMBER N00173-14-1-G016 Sc. PROGRAM ELEMENT NUMBER 82-2020-17 6. AUTHOR(S) 5d...Magnetocaloric Effect and Thermoelectric Cooling - A Synergistic Cooling Technology NRL Grant N00173-14-l-G016 CODE 8200: Spacecraft Engineering Department...82-11-0 1: Space and Space Systems Technology General Engineering & Research, L.L.C. Technical & Administrative point of contact: Dr. Robin

  10. Small high cooling power space cooler

    Energy Technology Data Exchange (ETDEWEB)

    Nguyen, T. V.; Raab, J.; Durand, D.; Tward, E. [Northrop Grumman Aerospace Systems Redondo Beach, Ca, 90278 (United States)

    2014-01-29

    The small High Efficiency pulse tube Cooler (HEC) cooler, that has been produced and flown on a number of space infrared instruments, was originally designed to provide cooling of 10 W @ 95 K. It achieved its goal with >50% margin when limited by the 180 W output ac power of its flight electronics. It has also been produced in 2 stage configurations, typically for simultaneously cooling of focal planes to temperatures as low as 35 K and optics at higher temperatures. The need for even higher cooling power in such a low mass cryocooler is motivated by the advent of large focal plane arrays. With the current availability at NGAS of much larger power cryocooler flight electronics, reliable long term operation in space with much larger cooling powers is now possible with the flight proven 4 kg HEC mechanical cooler. Even though the single stage cooler design can be re-qualified for those larger input powers without design change, we redesigned both the linear and coaxial version passive pulse tube cold heads to re-optimize them for high power cooling at temperatures above 130 K while rejecting heat to 300 K. Small changes to the regenerator packing, the re-optimization of the tuned inertance and no change to the compressor resulted in the increased performance at 150 K. The cooler operating at 290 W input power achieves 35 W@ 150 K corresponding to a specific cooling power at 150 K of 8.25 W/W and a very high specific power of 72.5 W/Kg. At these powers the cooler still maintains large stroke, thermal and current margins. In this paper we will present the measured data and the changes to this flight proven cooler that were made to achieve this increased performance.

  11. Five-minute grid of total marine bird biomass densities surveyed off central California - selected cool water temperature periods, 1980-2001 (CDAS data set AL3_MASS.shp)

    Data.gov (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — AL3_MASS is a polygon shapefile representing 5 minute x 5 minute latitude x longitude cells that house the overall total biomass densities (kg/sq km) of up to 76...

  12. Magnetic entropy and cooling

    DEFF Research Database (Denmark)

    Hansen, Britt Rosendahl; Kuhn, Luise Theil; Bahl, Christian Robert Haffenden

    2010-01-01

    Some manifestations of magnetism are well-known and utilized on an everyday basis, e.g. using a refrigerator magnet for hanging that important note on the refrigerator door. Others are, so far, more exotic, such as cooling by making use of the magnetocaloric eect. This eect can cause a change...... in the temperature of a magnetic material when a magnetic eld is applied or removed. For many years, experimentalists have made use of dilute paramagnetic materials to achieve milliKelvin temperatures by use of the magnetocaloric eect. Also, research is done on materials, which might be used for hydrogen, helium...... or nitrogen liquefaction or for room-temperature cooling. The magnetocaloric eect can further be used to determine phase transition boundaries, if a change in the magnetic state occurs at the boundary.In this talk, I will introduce the magnetocaloric eect (MCE) and the two equations, which characterize...

  13. Self pumping magnetic cooling

    International Nuclear Information System (INIS)

    Chaudhary, V; Wang, Z; Ray, A; Ramanujan, R V; Sridhar, I

    2017-01-01

    Efficient thermal management and heat recovery devices are of high technological significance for innovative energy conservation solutions. We describe a study of a self-pumping magnetic cooling device, which does not require external energy input, employing Mn–Zn ferrite nanoparticles suspended in water. The device performance depends strongly on magnetic field strength, nanoparticle content in the fluid and heat load temperature. Cooling (Δ T ) by ∼20 °C and ∼28 °C was achieved by the application of 0.3 T magnetic field when the initial temperature of the heat load was 64 °C and 87 °C, respectively. These experiments results were in good agreement with simulations performed with COMSOL Multiphysics. Our system is a self-regulating device; as the heat load increases, the magnetization of the ferrofluid decreases; leading to an increase in the fluid velocity and consequently, faster heat transfer from the heat source to the heat sink. (letter)

  14. Laser cooling at resonance

    Science.gov (United States)

    Yudkin, Yaakov; Khaykovich, Lev

    2018-05-01

    We show experimentally that three-dimensional laser cooling of lithium atoms on the D2 line is possible when the laser light is tuned exactly to resonance with the dominant atomic transition. Qualitatively, it can be understood by applying simple Doppler cooling arguments to the specific hyperfine structure of the excited state of lithium atoms, which is both dense and inverted. However, to build a quantitative theory, we must resolve to a full model which takes into account both the entire atomic structure of all 24 Zeeman sublevels and the laser light polarization. Moreover, by means of Monte Carlo simulations, we show that coherent processes play an important role in showing consistency between the theory and the experimental results.

  15. ITER cooling systems

    International Nuclear Information System (INIS)

    Natalizio, A.; Hollies, R.E.; Sochaski, R.O.; Stubley, P.H.

    1992-06-01

    The ITER reference system uses low-temperature water for heat removal and high-temperature helium for bake-out. As these systems share common equipment, bake-out cannot be performed until the cooling system is drained and dried, and the reactor cannot be started until the helium has been purged from the cooling system. This study examines the feasibility of using a single high-temperature fluid to perform both heat removal and bake-out. The high temperature required for bake-out would also be in the range for power production. The study examines cost, operational benefits, and impact on reactor safety of two options: a high-pressure water system, and a low-pressure organic system. It was concluded that the cost savings and operational benefits are significant; there are no significant adverse safety impacts from operating either the water system or the organic system; and the capital costs of both systems are comparable

  16. Cooling your home naturally

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    1994-10-01

    This fact sheet describes some alternatives to air conditioning which are common sense suggestions and low-cost retrofit options to cool a house. It first describes how to reflect heat away from roofs, walls, and windows. Blocking heat by using insulation or shading are described. The publication then discusses removing built-up heat, reducing heat-generating sources, and saving energy by selecting energy efficient retrofit appliances. A resource list is provided for further information.

  17. Cooling and dehumidifying coils

    International Nuclear Information System (INIS)

    Murthy, M.V.K.

    1988-01-01

    The operating features of cooling and dehumidifying coils and their constructional details are discussed. The heat transfer relations as applicable to the boiling refrigerant and a single phase fluid are presented. Methods of accounting for the effect of moisture condensation on the air side heat transfer coefficient and the fin effectiveness are explained. The logic flow necessary to analyze direct expansion coils and chilled water coils is discussed

  18. Solar heating and cooling.

    Science.gov (United States)

    Duffie, J A

    1976-01-01

    Solar energy is discussed as an energy resource that can be converted into useful energy forms to meet a variety of energy needs. The review briefly explains the nature of this energy resource, the kinds of applications that can be made useful, and the status of several systems to which it has been applied. More specifically, information on solar collectors, solar water heating, solar heating of buildings, solar cooling plus other applications, are included.

  19. Cooling device for reactor container

    International Nuclear Information System (INIS)

    Arai, Kenji.

    1996-01-01

    Upon assembling a static container cooling system to an emergency reactor core cooling system using dynamic pumps in a power plant, the present invention provides a cooling device of lowered center of gravity and having a good cooling effect by lowering the position of a cooling water pool of the static container cooling system. Namely, the emergency reactor core cooling system injects water to the inside of a pressure vessel using emergency cooling water stored in a suppression pool as at least one water source upon loss of reactor coolant accident. In addition, a cooling water pool incorporating a heat exchanger is disposed at the circumference of the suppression pool at the outside of the container. A dry well and the heat exchanger are connected by way of steam supply pipes, and the heat exchanger is connected with the suppression pool by way of a gas exhaustion pipe and a condensate returning pipeline. With such a constitution, the position of the heat exchanger is made higher than an ordinary water level of the suppression pool. As a result, the emergency cooling water of the suppression pool water is injected to the pressure vessel by the operation of the reactor cooling pumps upon loss of coolant accident to cool the reactor core. (I.S.)

  20. Conduction cooling: multicrate fastbus hardware

    International Nuclear Information System (INIS)

    Makowiecki, D.; Sims, W.; Larsen, R.

    1980-11-01

    Described is a new and novel approach for cooling nuclear instrumentation modules via heat conduction. The simplicity of liquid cooled crates and ease of thermal management with conduction cooled modules are described. While this system was developed primarily for the higher power levels expected with Fastbus electronics, it has many general applications

  1. Electron Cooling of RHIC

    CERN Document Server

    Ben-Zvi, Ilan; Barton, Donald; Beavis, Dana; Blaskiewicz, Michael; Bluem, Hans; Brennan, Joseph M; Bruhwiler, David L; Burger, Al; Burov, Alexey; Burrill, Andrew; Calaga, Rama; Cameron, Peter; Chang, Xiangyun; Cole, Michael; Connolly, Roger; Delayen, Jean R; Derbenev, Yaroslav S; Eidelman, Yury I; Favale, Anthony; Fedotov, Alexei V; Fischer, Wolfram; Funk, L W; Gassner, David M; Hahn, Harald; Harrison, Michael; Hershcovitch, Ady; Holmes, Douglas; Hseuh Hsiao Chaun; Johnson, Peter; Kayran, Dmitry; Kewisch, Jorg; Kneisel, Peter; Koop, Ivan; Lambiase, Robert; Litvinenko, Vladimir N; MacKay, William W; Mahler, George; Malitsky, Nikolay; McIntyre, Gary; Meng, Wuzheng; Merminga, Lia; Meshkov, Igor; Mirabella, Kerry; Montag, Christoph; Nagaitsev, Sergei; Nehring, Thomas; Nicoletti, Tony; Oerter, Brian; Parkhomchuk, Vasily; Parzen, George; Pate, David; Phillips, Larry; Preble, Joseph P; Rank, Jim; Rao, Triveni; Rathke, John; Roser, Thomas; Russo, Thomas; Scaduto, Joseph; Schultheiss, Tom; Sekutowicz, Jacek; Shatunov, Yuri; Sidorin, Anatoly O; Skrinsky, Aleksander Nikolayevich; Smirnov, Alexander V; Smith, Kevin T; Todd, Alan M M; Trbojevic, Dejan; Troubnikov, Grigory; Wang, Gang; Wei, Jie; Williams, Neville; Wu, Kuo-Chen; Yakimenko, Vitaly; Zaltsman, Alex; Zhao, Yongxiang; ain, Animesh K

    2005-01-01

    We report progress on the R&D program for electron-cooling of the Relativistic Heavy Ion Collider (RHIC). This electron cooler is designed to cool 100 GeV/nucleon at storage energy using 54 MeV electrons. The electron source will be a superconducting RF photocathode gun. The accelerator will be a superconducting energy recovery linac. The frequency of the accelerator is set at 703.75 MHz. The maximum electron bunch frequency is 9.38 MHz, with bunch charge of 20 nC. The R&D program has the following components: The photoinjector and its photocathode, the superconducting linac cavity, start-to-end beam dynamics with magnetized electrons, electron cooling calculations including benchmarking experiments and development of a large superconducting solenoid. The photoinjector and linac cavity are being incorporated into an energy recovery linac aimed at demonstrating ampere class current at about 20 MeV. A Zeroth Order Design Report is in an advanced draft state, and can be found on the web at http://www.ags...

  2. Lamination cooling system

    Science.gov (United States)

    Rippel, Wally E.; Kobayashi, Daryl M.

    2005-10-11

    An electric motor, transformer or inductor having a lamination cooling system including a stack of laminations, each defining a plurality of apertures at least partially coincident with apertures of adjacent laminations. The apertures define a plurality of cooling-fluid passageways through the lamination stack, and gaps between the adjacent laminations are sealed to prevent a liquid cooling fluid in the passageways from escaping between the laminations. The gaps are sealed by injecting a heat-cured sealant into the passageways, expelling excess sealant, and heat-curing the lamination stack. The apertures of each lamination can be coincident with the same-sized apertures of adjacent laminations to form straight passageways, or they can vary in size, shape and/or position to form non-axial passageways, angled passageways, bidirectional passageways, and manifold sections of passageways that connect a plurality of different passageway sections. Manifold members adjoin opposite ends of the lamination stack, and each is configured with one or more cavities to act as a manifold to adjacent passageway ends. Complex manifold arrangements can create bidirectional flow in a variety of patterns.

  3. ITER cooling system

    International Nuclear Information System (INIS)

    Kveton, O.K.

    1990-11-01

    The present specification of the ITER cooling system does not permit its operation with water above 150 C. However, the first wall needs to be heated to higher temperatures during conditioning at 250 C and bake-out at 350 C. In order to use the cooling water for these operations the cooling system would have to operate during conditioning at 37 Bar and during bake-out at 164 Bar. This is undesirable from the safety analysis point of view, and alternative heating methods are to be found. This review suggests that superheated steam or gas heating can be used for both baking and conditioning. The blanket design must consider the use of dual heat transfer media, allowing for change from one to another in both directions. Transfer from water to gas or steam is the most intricate and risky part of the entire heating process. Superheated steam conditioning appears unfavorable. The use of inert gas is recommended, although alternative heating fluids such as organic coolant should be investigated

  4. Reactor container cooling device

    Energy Technology Data Exchange (ETDEWEB)

    Ando, Koji; Kinoshita, Shoichiro

    1995-11-10

    The device of the present invention efficiently lowers pressure and temperature in a reactor container upon occurrence of a severe accident in a BWR-type reactor and can cool the inside of the container for a long period of time. That is, (1) pipelines on the side of an exhaustion tower of a filter portion in a filter bent device of the reactor container are in communication with pipelines on the side of a steam inlet of a static container cooling device by way of horizontal pipelines, (2) a back flow check valve is disposed to horizontal pipelines, (3) a steam discharge valve for a pressure vessel is disposed closer to the reactor container than the joint portion between the pipelines on the side of the steam inlet and the horizontal pipelines. Upon occurrence of a severe accident, when the pressure vessel should be ruptured and steams containing aerosol in the reactor core should be filled in the reactor container, the inlet valve of the static container cooling device is closed. Steams are flown into the filter bent device of the reactor container, where the aerosols can be removed. (I.S.).

  5. Emergency core cooling system

    International Nuclear Information System (INIS)

    Abe, Nobuaki.

    1993-01-01

    A reactor comprises a static emergency reactor core cooling system having an automatic depressurization system and a gravitationally dropping type water injection system and a container cooling system by an isolation condenser. A depressurization pipeline of the automatic depressurization system connected to a reactor pressure vessel branches in the midway. The branched depressurizing pipelines are extended into an upper dry well and a lower dry well, in which depressurization valves are disposed at the top end portions of the pipelines respectively. If loss-of-coolant accidents should occur, the depressurization valve of the automatic depressurization system is actuated by lowering of water level in the pressure vessel. This causes nitrogen gases in the upper and the lower dry wells to transfer together with discharged steams effectively to a suppression pool passing through a bent tube. Accordingly, the gravitationally dropping type water injection system can be actuated faster. Further, subsequent cooling for the reactor vessel can be ensured sufficiently by the isolation condenser. (I.N.)

  6. Proceedings: Cooling tower and advanced cooling systems conference

    International Nuclear Information System (INIS)

    1995-02-01

    This Cooling Tower and Advanced Cooling Systems Conference was held August 30 through September 1, 1994, in St. Petersburg, Florida. The conference was sponsored by the Electric Power Research Institute (EPRI) and hosted by Florida Power Corporation to bring together utility representatives, manufacturers, researchers, and consultants. Nineteen technical papers were presented in four sessions. These sessions were devoted to the following topics: cooling tower upgrades and retrofits, cooling tower performance, cooling tower fouling, and dry and hybrid systems. On the final day, panel discussions addressed current issues in cooling tower operation and maintenance as well as research and technology needs for power plant cooling. More than 100 people attended the conference. This report contains the technical papers presented at the conference. Of the 19 papers, five concern cooling tower upgrades and retrofits, five to cooling tower performance, four discuss cooling tower fouling, and five describe dry and hybrid cooling systems. Selected papers are indexed separately for inclusion in the Energy Science and Technology Database

  7. Two-phase cooling fluids; Les fluides frigoporteurs diphasiques

    Energy Technology Data Exchange (ETDEWEB)

    Lallemand, A. [Institut National des Sciences Appliquees (INSA), 69 - Lyon (France)

    1997-12-31

    In the framework of the diminution of heat transfer fluid consumption, the concept of indirect refrigerating circuits, using cooling intermediate fluids, is reviewed and the fluids that are currently used in these systems are described. Two-phase cooling fluids advantages over single-phase fluids are presented with their thermophysical characteristics: solid fraction, two-phase mixture enthalpy, thermal and rheological properties, determination of heat and mass transfer characteristics, and cold storage through ice slurry

  8. Energy and exergy analysis of counter flow wet cooling towers

    Directory of Open Access Journals (Sweden)

    Saravanan Mani

    2008-01-01

    Full Text Available Cooling tower is an open system direct contact heat exchanger, where it cools water by both convection and evaporation. In this paper, a mathematical model based on heat and mass transfer principle is developed to find the outlet condition of water and air. The model is solved using iterative method. Energy and exergy analysis infers that inlet air wet bulb temperature is found to be the most important parameter than inlet water temperature and also variation in dead state properties does not affect the performance of wet cooling tower. .

  9. Analysis of a solid desiccant cooling system with indirect evaporative cooling

    DEFF Research Database (Denmark)

    Bellemo, Lorenzo

    investigates the performance of a solid desiccant cooling system implementing in-direct evaporative cooling processes. The aim is to quantify the system thermal and electrical performance for varying component dimensions and operating conditions, and to identify its range of applicability. This information...... evaporative cooler. Detailed steady state numerical models are developed and implemented in MATLAB. The models need to be accurate and require low computational effort, for analysing the internal heat and mass transfer processes, as well as carrying out repetitive design and optimization simulations......-to-air heat exchanger for enhancing cooling capacity and thermal performance. The system perfor-mance is investigated considering regeneration temperatures between 50 ºC and 90 ºC, which enable low temperature heat sources, such as solar energy or waste heat, to be used. The effects of several geometrical...

  10. Cooling lubricants; Kuehlschmierstoffe

    Energy Technology Data Exchange (ETDEWEB)

    Pfeiffer, W. [Berufsgenossenschaftliches Inst. fuer Arbeitssicherheit, St. Augustin (Germany); Breuer, D. [Berufsgenossenschaftliches Inst. fuer Arbeitssicherheit, St. Augustin (Germany); Blome, H. [Berufsgenossenschaftliches Inst. fuer Arbeitssicherheit, St. Augustin (Germany); Deininger, C. [Berufsgenossenschaftliches Inst. fuer Arbeitssicherheit, St. Augustin (Germany); Hahn, J.U. [Berufsgenossenschaftliches Inst. fuer Arbeitssicherheit, St. Augustin (Germany); Kleine, H. [Berufsgenossenschaftliches Inst. fuer Arbeitssicherheit, St. Augustin (Germany); Nies, E. [Berufsgenossenschaftliches Inst. fuer Arbeitssicherheit, St. Augustin (Germany); Pflaumbaum, W. [Berufsgenossenschaftliches Inst. fuer Arbeitssicherheit, St. Augustin (Germany); Stockmann, R. [Berufsgenossenschaftliches Inst. fuer Arbeitssicherheit, St. Augustin (Germany); Willert, G. [Berufsgenossenschaftliches Inst. fuer Arbeitssicherheit, St. Augustin (Germany); Sonnenschein, G. [Maschinenbau- und Metall-Berufsgenossenschaft, Duesseldorf (Germany)

    1996-08-01

    As a rule, the base substances used are certain liquid hydrocarbons from mineral oils as well as from native and synthetic oils. Through the addition of further substances the cooling lubricant takes on the particular qualities required for the use in question. Employees working with cooling lubricants are exposed to various hazards. The assessment of the concentrations at the work station is carried out on the basis of existing technical rules for contact with hazardous substances. However, the application/implementation of compulsory investigation and supervision in accordance with these rules is made difficult by the fact that cooling lubricants are, as a rule, made up of complicated compound mixtures. In addition to protecting employees from exposure to mists and vapours from the cooling lubricants, protection for the skin is also of particular importance. Cooling lubricants should not, if at all possible, be brought into contact with the skin. Cleansing the skin and skin care is just as important as changing working clothes regularly, and hygiene and cleanliness at the workplace. Unavoidable emissions are to be immediately collected at the point where they arise or are released and safely disposed of. This means taking into account all sources of emissions. The programme presented in this report therefore gives a very detailed account of the individual protective measures and provides recommendations for the design of technical protection facilities. (orig./MG) [Deutsch] Als Basisstoffe dienen in der Regel bestimmte fluessige Kohlenwasserstoffverbindungen aus Mineraloelen sowie aus nativen oder synthetischen Oelen. Durch die Zugabe von weiteren Stoffen erlangt der Kuehlschmierstoff seine fuer den jeweiligen Anwendungsabfall geforderten Eigenschaften. Beschaeftigte, die mit Kuehlschmierstoffen umgehen, sind unterschiedliche Gefahren ausgesetzt. Die Beurteilung der Kuehlschmierstoffkonzentrationen in der Luft am Arbeitsplatz erfolgt auf der Grundlage bestehender

  11. A Massive, Cooling-Flow-Induced Starburst in the Core of a Highly Luminous Galaxy Cluster

    Science.gov (United States)

    McDonald, M.; Bayliss, M.; Benson, B. A.; Foley, R. J.; Ruel, J.; Sullivan, P.; Veilleux, S.; Aird, K. A.; Ashby, M. L. N.; Bautz, M.; hide

    2012-01-01

    In the cores of some galaxy clusters the hot intracluster plasma is dense enough that it should cool radiatively in the cluster s lifetime, leading to continuous "cooling flows" of gas sinking towards the cluster center, yet no such cooling flow has been observed. The low observed star formation rates and cool gas masses for these "cool core" clusters suggest that much of the cooling must be offset by astrophysical feedback to prevent the formation of a runaway cooling flow. Here we report X-ray, optical, and infrared observations of the galaxy cluster SPT-CLJ2344-4243 at z = 0.596. These observations reveal an exceptionally luminous (L(sub 2-10 keV) = 8.2 10(exp 45) erg/s) galaxy cluster which hosts an extremely strong cooling flow (M(sub cool) = 3820 +/- 530 Stellar Mass/yr). Further, the central galaxy in this cluster appears to be experiencing a massive starburst (740 +/- 160 Stellar Mass/ yr), which suggests that the feedback source responsible for preventing runaway cooling in nearby cool core clusters may not yet be fully established in SPT-CLJ2344-4243. This large star formation rate implies that a significant fraction of the stars in the central galaxy of this cluster may form via accretion of the intracluster medium, rather than the current picture of central galaxies assembling entirely via mergers.

  12. Cooling of molecular ion beams

    International Nuclear Information System (INIS)

    Wolf, A.; Krohn, S.; Kreckel, H.; Lammich, L.; Lange, M.; Strasser, D.; Grieser, M.; Schwalm, D.; Zajfman, D.

    2004-01-01

    An overview of the use of stored ion beams and phase space cooling (electron cooling) is given for the field of molecular physics. Emphasis is given to interactions between molecular ions and electrons studied in the electron cooler: dissociative recombination and, for internally excited molecular ions, electron-induced ro-vibrational cooling. Diagnostic methods for the transverse ion beam properties and for the internal excitation of the molecular ions are discussed, and results for phase space cooling and internal (vibrational) cooling are presented for hydrogen molecular ions

  13. Improve crossflow cooling tower operation

    International Nuclear Information System (INIS)

    Burger, R.

    1989-01-01

    This paper reports how various crossflow cooling tower elements can be upgraded. A typical retrofit example is presented. In the past decade, cooling tower technology has progressed. If a cooling tower is over ten years old, chances are the heat transfer media and mechanical equipment were designed over 30 to 40 years ago. When a chemical plant expansion is projected or a facility desires to upgrade its equipment for greater output and energy efficiency, the cooling tower is usually neglected until someone discovers that the limiting factor of production is the quality of cold water returning from the cooling tower

  14. Conjugate heat transfer investigation on the cooling performance of air cooled turbine blade with thermal barrier coating

    Science.gov (United States)

    Ji, Yongbin; Ma, Chao; Ge, Bing; Zang, Shusheng

    2016-08-01

    A hot wind tunnel of annular cascade test rig is established for measuring temperature distribution on a real gas turbine blade surface with infrared camera. Besides, conjugate heat transfer numerical simulation is performed to obtain cooling efficiency distribution on both blade substrate surface and coating surface for comparison. The effect of thermal barrier coating on the overall cooling performance for blades is compared under varied mass flow rate of coolant, and spatial difference is also discussed. Results indicate that the cooling efficiency in the leading edge and trailing edge areas of the blade is the lowest. The cooling performance is not only influenced by the internal cooling structures layout inside the blade but also by the flow condition of the mainstream in the external cascade path. Thermal barrier effects of the coating vary at different regions of the blade surface, where higher internal cooling performance exists, more effective the thermal barrier will be, which means the thermal protection effect of coatings is remarkable in these regions. At the designed mass flow ratio condition, the cooling efficiency on the pressure side varies by 0.13 for the coating surface and substrate surface, while this value is 0.09 on the suction side.

  15. Cooling device in thermonuclear device

    International Nuclear Information System (INIS)

    Honda, Tsutomu.

    1988-01-01

    Purpose: To prevent loss of cooling effect over the entire torus structure directly after accidental toubles in a cooling device of a thermonuclear device. Constitution: Coolant recycling means of a cooling device comprises two systems, which are alternately connected with in-flow pipeways and exit pipeways of adjacent modules. The modules are cooled by way of the in-flow pipeways and the exist pipeways connected to the respective modules by means of the coolant recycling means corresponding to the respective modules. So long as one of the coolant recycling means is kept operative, since every one other modules of the torus structure is still kept cooled, the heat generated from the module put therebetween, for which the coolant recycling is interrupted, is removed by means of heat conduction or radiation from the module for which the cooling is kept continued. No back-up emergency cooling system is required and it can provide high economic reliability. (Kamimura, M.)

  16. Cooling water systems design using process integration

    CSIR Research Space (South Africa)

    Gololo, KV

    2010-09-01

    Full Text Available Cooling water systems are generally designed with a set of heat exchangers arranged in parallel. This arrangement results in higher cooling water flowrate and low cooling water return temperature thus reducing cooling tower efficiency. Previous...

  17. Superconducting magnet cooling system

    Science.gov (United States)

    Vander Arend, Peter C.; Fowler, William B.

    1977-01-01

    A device is provided for cooling a conductor to the superconducting state. The conductor is positioned within an inner conduit through which is flowing a supercooled liquid coolant in physical contact with the conductor. The inner conduit is positioned within an outer conduit so that an annular open space is formed therebetween. Through the annular space is flowing coolant in the boiling liquid state. Heat generated by the conductor is transferred by convection within the supercooled liquid coolant to the inner wall of the inner conduit and then is removed by the boiling liquid coolant, making the heat removal from the conductor relatively independent of conductor length.

  18. Illumination and radiative cooling

    Energy Technology Data Exchange (ETDEWEB)

    Fan, Shanhui; Raman, Aaswath Pattabhi; Zhu, Linxiao; Rephaeli, Eden

    2018-03-20

    Aspects of the present disclosure are directed to providing and/or controlling electromagnetic radiation. As may be implemented in accordance with one or more embodiments, an apparatus includes a first structure that contains an object, and a second structure that is transparent at solar wavelengths and emissive in the atmospheric electromagnetic radiation transparency window. The second structure operates with the first structure to pass light into the first structure for illuminating the object, and to radiatively cool the object while preserving the object's color.

  19. Rotary engine cooling system

    Science.gov (United States)

    Jones, Charles (Inventor); Gigon, Richard M. (Inventor); Blum, Edward J. (Inventor)

    1985-01-01

    A rotary engine has a substantially trochoidal-shaped housing cavity in which a rotor planetates. A cooling system for the engine directs coolant along a single series path consisting of series connected groups of passages. Coolant enters near the intake port, passes downwardly and axially through the cooler regions of the engine, then passes upwardly and axially through the hotter regions. By first flowing through the coolest regions, coolant pressure is reduced, thus reducing the saturation temperature of the coolant and thereby enhancing the nucleate boiling heat transfer mechanism which predominates in the high heat flux region of the engine during high power level operation.

  20. Gas cooled HTR

    International Nuclear Information System (INIS)

    Schweiger, F.

    1985-01-01

    In the He-cooled, graphite-moderated HTR with spherical fuel elements, the steam generator is fixed outside the pressure vessel. The heat exchangers are above the reactor level. The hot gases stream from the reactor bottom over the heat exchanger, through an annular space around the heat exchanger and through feed lines in the side reflector of the reactor back to its top part. This way, in case of shutdown there is a supplementary natural draught that helps the inner natural circulation (chimney draught effect). (orig./PW)

  1. Onderzoeksrapportage duurzaam koelen : EOS Renewable Cooling

    NARCIS (Netherlands)

    Broeze, J.; Sluis, van der S.; Wissink, E.

    2010-01-01

    For reducing energy use for cooling, alternative methods (that do not rely on electricity) are needed. Renewable cooling is based on naturally available resources such as evaporative cooling, free cooling, phase change materials, ground subcooling, solar cooling, wind cooling, night radiation &

  2. Cooling power technology at a turning point

    International Nuclear Information System (INIS)

    Hese, L.H.

    1978-01-01

    From freshwater cooling and efflux condenser cooling to wet recirculation cooling, hybrid and dry cooling towers, cooling tower technology has seen a development characterized by higher cooling tower costs and reduced power plant efficiency. Therefore, all research work done at the moment concentrates on making up for the economic losses connected with improved environmental protection. (orig.) [de

  3. COMMIX analysis of AP-600 Passive Containment Cooling System

    International Nuclear Information System (INIS)

    Chang, J.F.C.; Chien, T.H.; Ding, J.; Sun, J.G.; Sha, W.T.

    1992-01-01

    COMMIX modeling and basic concepts that relate components, i.e., containment, water film cooling, and natural draft air flow systems. of the AP-600 Passive Containment Cooling System are discussed. The critical safety issues during a postulated accident have been identified as (1) maintaining the liquid film outside the steel containment vessel, (2) ensuring the natural convection in the air annulus. and (3) quantifying both heat and mass transfer accurately for the system. The lack of appropriate heat and mass transfer models in the present analysis is addressed. and additional assessment and validation of the proposed models is proposed

  4. Antarctica: Cooling or Warming?

    Science.gov (United States)

    Bunde, Armin; Ludescher, Josef; Franzke, Christian

    2013-04-01

    We consider the 14 longest instrumental monthly mean temperature records from the Antarctica and analyse their correlation properties by wavelet and detrended fluctuation analysis. We show that the stations in the western and the eastern part of the Antarctica show significant long-term memory governed by Hurst exponents close to 0.8 and 0.65, respectively. In contrast, the temperature records at the inner part of the continent (South Pole and Vostok), resemble white noise. We use linear regression to estimate the respective temperature differences in the records per decade (i) for the annual data, (ii) for the summer and (iii) for the winter season. Using a recent approach by Lennartz and Bunde [1] we estimate the respective probabilities that these temperature differences can be exceeded naturally without inferring an external (anthropogenic) trend. We find that the warming in the western part of the continent and the cooling at the South Pole is due to a gradually changes in the cold extremes. For the winter months, both cooling and warming are well outside the 95 percent confidence interval, pointing to an anthropogenic origin. In the eastern Antarctica, the temperature increases and decreases are modest and well within the 95 percent confidence interval. [1] S. Lennartz and A. Bunde, Phys. Rev. E 84, 021129 (2011)

  5. Cooled spool piston compressor

    Science.gov (United States)

    Morris, Brian G. (Inventor)

    1993-01-01

    A hydraulically powered gas compressor receives low pressure gas and outputs a high pressure gas. The housing of the compressor defines a cylinder with a center chamber having a cross-sectional area less than the cross-sectional area of a left end chamber and a right end chamber, and a spool-type piston assembly is movable within the cylinder and includes a left end closure, a right end closure, and a center body that are in sealing engagement with the respective cylinder walls as the piston reciprocates. First and second annual compression chambers are provided between the piston enclosures and center housing portion of the compressor, thereby minimizing the spacing between the core gas and a cooled surface of the compressor. Restricted flow passageways are provided in the piston closure members and a path is provided in the central body of the piston assembly, such that hydraulic fluid flows through the piston assembly to cool the piston assembly during its operation. The compressor of the present invention may be easily adapted for a particular application, and is capable of generating high gas pressures while maintaining both the compressed gas and the compressor components within acceptable temperature limits.

  6. Modelization of cooling system components

    Energy Technology Data Exchange (ETDEWEB)

    Copete, Monica; Ortega, Silvia; Vaquero, Jose Carlos; Cervantes, Eva [Westinghouse Electric (Spain)

    2010-07-01

    In the site evaluation study for licensing a new nuclear power facility, the criteria involved could be grouped in health and safety, environment, socio-economics, engineering and cost-related. These encompass different aspects such as geology, seismology, cooling system requirements, weather conditions, flooding, population, and so on. The selection of the cooling system is function of different parameters as the gross electrical output, energy consumption, available area for cooling system components, environmental conditions, water consumption, and others. Moreover, in recent years, extreme environmental conditions have been experienced and stringent water availability limits have affected water use permits. Therefore, modifications or alternatives of current cooling system designs and operation are required as well as analyses of the different possibilities of cooling systems to optimize energy production taking into account water consumption among other important variables. There are two basic cooling system configurations: - Once-through or Open-cycle; - Recirculating or Closed-cycle. In a once-through cooling system (or open-cycle), water from an external water sources passes through the steam cycle condenser and is then returned to the source at a higher temperature with some level of contaminants. To minimize the thermal impact to the water source, a cooling tower may be added in a once-through system to allow air cooling of the water (with associated losses on site due to evaporation) prior to returning the water to its source. This system has a high thermal efficiency, and its operating and capital costs are very low. So, from an economical point of view, the open-cycle is preferred to closed-cycle system, especially if there are no water limitations or environmental restrictions. In a recirculating system (or closed-cycle), cooling water exits the condenser, goes through a fixed heat sink, and is then returned to the condenser. This configuration

  7. Review of cavity optomechanical cooling

    International Nuclear Information System (INIS)

    Liu Yong-Chun; Hu Yu-Wen; Xiao Yun-Feng; Wong Chee Wei

    2013-01-01

    Quantum manipulation of macroscopic mechanical systems is of great interest in both fundamental physics and applications ranging from high-precision metrology to quantum information processing. For these purposes, a crucial step is to cool the mechanical system to its quantum ground state. In this review, we focus on the cavity optomechanical cooling, which exploits the cavity enhanced interaction between optical field and mechanical motion to reduce the thermal noise. Recent remarkable theoretical and experimental efforts in this field have taken a major step forward in preparing the motional quantum ground state of mesoscopic mechanical systems. This review first describes the quantum theory of cavity optomechanical cooling, including quantum noise approach and covariance approach; then, the up-to-date experimental progresses are introduced. Finally, new cooling approaches are discussed along the directions of cooling in the strong coupling regime and cooling beyond the resolved sideband limit. (topical review - quantum information)

  8. Electronic cooling using thermoelectric devices

    Energy Technology Data Exchange (ETDEWEB)

    Zebarjadi, M., E-mail: m.zebarjadi@rutgers.edu [Department of Mechanical and Aerospace Engineering, Rutgers University, Piscataway, New Jersey 08854 (United States); Institute of Advanced Materials, Devices, and Nanotechnology, Rutgers University, Piscataway, New Jersey 08854 (United States)

    2015-05-18

    Thermoelectric coolers or Peltier coolers are used to pump heat in the opposite direction of the natural heat flux. These coolers have also been proposed for electronic cooling, wherein the aim is to pump heat in the natural heat flux direction and from hot spots to the colder ambient temperature. In this manuscript, we show that for such applications, one needs to use thermoelectric materials with large thermal conductivity and large power factor, instead of the traditionally used high ZT thermoelectric materials. We further show that with the known thermoelectric materials, the active cooling cannot compete with passive cooling, and one needs to explore a new set of materials to provide a cooling solution better than a regular copper heat sink. We propose a set of materials and directions for exploring possible materials candidates suitable for electronic cooling. Finally, to achieve maximum cooling, we propose to use thermoelectric elements as fins attached to copper blocks.

  9. Tarp-Assisted Cooling as a Method of Whole-Body Cooling in Hyperthermic Individuals.

    Science.gov (United States)

    Hosokawa, Yuri; Adams, William M; Belval, Luke N; Vandermark, Lesley W; Casa, Douglas J

    2017-03-01

    C/min to 0.024°C/min [0.002°F/min to 0.04°F/min]). Body mass was moderately negatively correlated with the cooling rate in passive cooling (r=-0.580) but not in tarp-assisted cooling (r=-0.206). In the absence of a stationary cooling method such as cold-water immersion, tarp-assisted cooling can serve as an alternative, field-expedient method to provide on-site cooling with a satisfactory cooling rate. Copyright © 2016 American College of Emergency Physicians. Published by Elsevier Inc. All rights reserved.

  10. COOLING STAGES OF CRYOGENIC SYSTEMS

    OpenAIRE

    Троценко, А. В.

    2011-01-01

    The formalized definition for cooling stage of low temperature system is done. Based on existing information about the known cryogenic unit cycles the possible types of cooling stages are single out. From analyses of these stages their classification by various characteristics is suggested. The results of thermodynamic optimization of final throttle stage of cooling, which are used as working fluids helium, hydrogen and nitrogen, are shown.

  11. Stochastic cooling technology at Fermilab

    Energy Technology Data Exchange (ETDEWEB)

    Pasquinelli, R.J. E-mail: pasquin@fnal.gov

    2004-10-11

    The first antiproton cooling systems were installed and commissioned at Fermilab in 1984-1985. In the interim period, there have been several major upgrades, system improvements, and complete reincarnation of cooling systems. This paper will present some of the technology that was pioneered at Fermilab to implement stochastic cooling systems in both the Antiproton Source and Recycler accelerators. Current performance data will also be presented.

  12. Stochastic cooling technology at Fermilab

    Science.gov (United States)

    Pasquinelli, Ralph J.

    2004-10-01

    The first antiproton cooling systems were installed and commissioned at Fermilab in 1984-1985. In the interim period, there have been several major upgrades, system improvements, and complete reincarnation of cooling systems. This paper will present some of the technology that was pioneered at Fermilab to implement stochastic cooling systems in both the Antiproton Source and Recycler accelerators. Current performance data will also be presented.

  13. Stochastic cooling technology at Fermilab

    International Nuclear Information System (INIS)

    Pasquinelli, R.J.

    2004-01-01

    The first antiproton cooling systems were installed and commissioned at Fermilab in 1984-1985. In the interim period, there have been several major upgrades, system improvements, and complete reincarnation of cooling systems. This paper will present some of the technology that was pioneered at Fermilab to implement stochastic cooling systems in both the Antiproton Source and Recycler accelerators. Current performance data will also be presented

  14. Physical parameters of effluent from nuclear power station cooling towers; Fizicki parametri efluenata iz rashladnih tornjeva nuklearne elektrane

    Energy Technology Data Exchange (ETDEWEB)

    Vehauc, A [Institute of Nuclear Sciences VINCA, Belgrade (Yugoslavia)

    1992-07-01

    Physical parameters of the effluent dispersed from the wet cooling towers, i.e. mixture of the warm moist air with the entrained droplets are analysed. Understanding of the effluent physical parameters at the exit of cooling tower is important for prediction of the effluent dispersion in the environment. Mass and droplet diameter distributors of the drifted cooling water are measured in situ and also, drift eliminators are characterised experimentally. A new numerical method for heat and mass transfer evaluation in the cooling tower packing (fill) was developed, that leads to more accurate prediction for outlet air parameters in relation of plant power rate, cooling tower characteristics and atmospheric conditions. (author)

  15. Direct cooled power electronics substrate

    Science.gov (United States)

    Wiles, Randy H [Powell, TN; Wereszczak, Andrew A [Oak Ridge, TN; Ayers, Curtis W [Kingston, TN; Lowe, Kirk T [Knoxville, TN

    2010-09-14

    The disclosure describes directly cooling a three-dimensional, direct metallization (DM) layer in a power electronics device. To enable sufficient cooling, coolant flow channels are formed within the ceramic substrate. The direct metallization layer (typically copper) may be bonded to the ceramic substrate, and semiconductor chips (such as IGBT and diodes) may be soldered or sintered onto the direct metallization layer to form a power electronics module. Multiple modules may be attached to cooling headers that provide in-flow and out-flow of coolant through the channels in the ceramic substrate. The modules and cooling header assembly are preferably sized to fit inside the core of a toroidal shaped capacitor.

  16. Theory of tapered laser cooling

    International Nuclear Information System (INIS)

    Okamoto, Hiromi; Wei, J.

    1998-01-01

    A theory of tapered laser cooling for fast circulating ion beams in a storage ring is constructed. The authors describe the fundamentals of this new cooling scheme, emphasizing that it might be the most promising way to beam crystallization. The cooling rates are analytically evaluated to study the ideal operating condition. They discuss the physical implication of the tapering factor of cooling laser, and show how to determine its optimum value. Molecular dynamics method is employed to demonstrate the validity of the present theory

  17. Water cooled nuclear reactor

    International Nuclear Information System (INIS)

    1975-01-01

    A description is given of a cooling water intake collector for a nuclear reactor. It includes multiple sub-collectors extending out in a generally parallel manner to each other, each one having a first end and a second one separated along their length, and multiple water outlets for connecting each one to a corresponding pressure tube of the reactor. A first end tube and a second one connect the sub-collector tubes together to their first and second ends respectively. It also includes multiple collector tubes extending transversely by crossing over the sub-collector tubes and separated from each other in the direction of these tubes. Each collector tubes has a water intake for connecting to a water pump and multiple connecting tubes separated over its length and connecting each one to the corresponding sub-collector [fr

  18. Emergency core cooling systems

    International Nuclear Information System (INIS)

    Kubokoya, Takashi; Okataku, Yasukuni.

    1984-01-01

    Purpose: To maintain the fuel soundness upon loss of primary coolant accidents in a pressure tube type nuclear reactor by injecting cooling heavy water at an early stage, to suppress the temperature of fuel cans at a lower level. Constitution: When a thermometer detects the temperature rise and a pressure gauge detects that the pressure for the primary coolants is reduced slightly from that in the normal operation upon loss of coolant accidents in the vicinity of the primary coolant circuit, heavy water is caused to flow in the heavy water feed pipeway by a controller. This enables to inject the heavy water into the reactor core in a short time upon loss of the primary coolant accidents to suppress the temperature rise in the fuel can thereby maintain the fuel soundness. (Moriyama, K.)

  19. Cooling of rectangular bars

    International Nuclear Information System (INIS)

    Frainer, V.J.

    1979-01-01

    A solution of the time-transient Heat Transfer Differential Equation in rectangular coordinates is presented, leading to a model which describes the temperature drop with time in rectangular bars. It is similar to an other model for cilindrical bars which has been previously developed in the Laboratory of Mechanical Metallurgy of UFRGS. Following these models, a generalization has been made, which permits cooling time evaluation for all profiles. These results are compared with experimental laboratory data in the 1200 to 800 0 C range. Some other existing models were also studied which have the purpose of studing the same phenomenon. Their mathematical forms and their evaluated values are analyzed and compared with experimental ones. (Author) [pt

  20. ATLAS' major cooling project

    CERN Multimedia

    2005-01-01

    In 2005, a considerable effort has been put into commissioning the various units of ATLAS' complex cryogenic system. This is in preparation for the imminent cooling of some of the largest components of the detector in their final underground configuration. The liquid helium and nitrogen ATLAS refrigerators in USA 15. Cryogenics plays a vital role in operating massive detectors such as ATLAS. In many ways the liquefied argon, nitrogen and helium are the life-blood of the detector. ATLAS could not function without cryogens that will be constantly pumped via proximity systems to the superconducting magnets and subdetectors. In recent weeks compressors at the surface and underground refrigerators, dewars, pumps, linkages and all manner of other components related to the cryogenic system have been tested and commissioned. Fifty metres underground The helium and nitrogen refrigerators, installed inside the service cavern, are an important part of the ATLAS cryogenic system. Two independent helium refrigerators ...

  1. Improving the efficiency of natural draft cooling towers

    Energy Technology Data Exchange (ETDEWEB)

    Smrekar, J. [Faculty of Mechanical Engineering, Askerceva 6, SI-1000 Ljubljana (Slovenia); Oman, J. [Faculty of Mechanical Engineering, Askerceva 6, SI-1000 Ljubljana (Slovenia)]. E-mail: janez.oman@fs.uni-lj.si; Sirok, B. [Faculty of Mechanical Engineering, Askerceva 6, SI-1000 Ljubljana (Slovenia)

    2006-06-15

    This study shows how the efficiency of a natural draft cooling tower can be improved by optimising the heat transfer along the cooling tower (CT) packing using a suitable water distribution across the plane area of the cooling tower. On the basis of cooling air measurements, it is possible to distribute the water in such a way that it approaches the optimal local water/air mass flow ratio and ensures the homogeneity of the heat transfer and a reduction of entropy generation, thus minimising the amount of exergy lost. The velocity and temperature fields of the air flow were measured with the aid of a remote control mobile robot unit that was developed to enable measurements at an arbitrary point above the spray zone over the entire plane area of the cooling tower. The topological structures of the moist air velocity profiles and the temperature profiles above the spray zone were used as input data for calculation of the local entropy generation in the tower. On the basis of the measured boundary conditions, a numerical analysis of the influence of the water distribution across the cooling tower's plane area on entropy generation and exergy destruction in the cooling tower was conducted.

  2. Improving the efficiency of natural draft cooling towers

    International Nuclear Information System (INIS)

    Smrekar, J.; Oman, J.; Sirok, B.

    2006-01-01

    This study shows how the efficiency of a natural draft cooling tower can be improved by optimising the heat transfer along the cooling tower (CT) packing using a suitable water distribution across the plane area of the cooling tower. On the basis of cooling air measurements, it is possible to distribute the water in such a way that it approaches the optimal local water/air mass flow ratio and ensures the homogeneity of the heat transfer and a reduction of entropy generation, thus minimising the amount of exergy lost. The velocity and temperature fields of the air flow were measured with the aid of a remote control mobile robot unit that was developed to enable measurements at an arbitrary point above the spray zone over the entire plane area of the cooling tower. The topological structures of the moist air velocity profiles and the temperature profiles above the spray zone were used as input data for calculation of the local entropy generation in the tower. On the basis of the measured boundary conditions, a numerical analysis of the influence of the water distribution across the cooling tower's plane area on entropy generation and exergy destruction in the cooling tower was conducted

  3. Core catcher cooling for a gas-cooled fast breeder

    International Nuclear Information System (INIS)

    Dalle Donne, M.; Dorner, S.; Schretzmann, K.

    1976-01-01

    Water, molten salts, and liquid metals are under discussion as coolants for the core catcher of a gas-cooled fast breeder. The authors state that there is still no technically mature method of cooling a core melt. However, the investigations carried out so far suggest that there is a solution to this problem. (RW/AK) [de

  4. Film cooling for a closed loop cooled airfoil

    Science.gov (United States)

    Burdgick, Steven Sebastian; Yu, Yufeng Phillip; Itzel, Gary Michael

    2003-01-01

    Turbine stator vane segments have radially inner and outer walls with vanes extending therebetween. The inner and outer walls are compartmentalized and have impingement plates. Steam flowing into the outer wall plenum passes through the impingement plate for impingement cooling of the outer wall upper surface. The spent impingement steam flows into cavities of the vane having inserts for impingement cooling the walls of the vane. The steam passes into the inner wall and through the impingement plate for impingement cooling of the inner wall surface and for return through return cavities having inserts for impingement cooling of the vane surfaces. At least one film cooling hole is defined through a wall of at least one of the cavities for flow communication between an interior of the cavity and an exterior of the vane. The film cooling hole(s) are defined adjacent a potential low LCF life region, so that cooling medium that bleeds out through the film cooling hole(s) reduces a thermal gradient in a vicinity thereof, thereby the increase the LCF life of that region.

  5. Cooling of Electric Motors Used for Propulsion on SCEPTOR

    Science.gov (United States)

    Christie, Robert J.; Dubois, Arthur; Derlaga, Joseph M.

    2017-01-01

    NASA is developing a suite of hybrid-electric propulsion technologies for aircraft. These technologies have the benefit of lower emissions, diminished noise, increased efficiency, and reduced fuel burn. These will provide lower operating costs for aircraft operators. Replacing internal combustion engines with distributed electric propulsion is a keystone of this technology suite, but presents many new problems to aircraft system designers. One of the problems is how to cool these electric motors without adding significant aerodynamic drag, cooling system weight or fan power. This paper discusses the options evaluated for cooling the motors on SCEPTOR (Scalable Convergent Electric Propulsion Technology and Operations Research): a project that will demonstrate Distributed Electric Propulsion technology in flight. Options for external and internal cooling, inlet and exhaust locations, ducting and adjustable cowling, and axial and centrifugal fans were evaluated. The final design was based on a trade between effectiveness, simplicity, robustness, mass and performance over a range of ground and flight operation environments.

  6. Numerical study of a novel dew point evaporative cooling system

    Energy Technology Data Exchange (ETDEWEB)

    Riangvilaikul, B.; Kumar, S. [Energy Field of Study, School of Environment, Resources and Development, Asian Institute of Technology, P.O. Box 4, Klong Luang, Pathumthani 12120 (Thailand)

    2010-11-15

    Dew point evaporative cooling system is an alternative to vapor compression air conditioning system for sensible cooling of ventilation air. This paper presents the theoretical performance of a novel dew point evaporative cooling system operating under various inlet air conditions (covering dry, moderate and humid climate) and influence of major operating parameters (namely, velocity, system dimension and the ratio of working air to intake air). A model of the dew point evaporative cooling system has been developed to simulate the heat and mass transfer processes. The outlet air conditions and system effectiveness predicted by the model using numerical method for known inlet parameters have been validated with experimental findings and with recent literature. The model was used to optimize the system parameters and to investigate the system effectiveness operating under various inlet air conditions. (author)

  7. Topological charge using cooling and the gradient flow

    International Nuclear Information System (INIS)

    Alexandrou, C.; Athenodorou, A.; The Cyprus Institute, Nicosia; Jansen, K.

    2015-12-01

    The equivalence of cooling to the gradient flow when the cooling step n c and the continuous flow step of gradient flow τ are matched is generalized to gauge actions that include rectangular terms. By expanding the link variables up to subleading terms in perturbation theory, we relate n c and τ and show that the results for the topological charge become equivalent when rescaling τ ≅ n c /(3-15c 1 ) where c 1 is the Symanzik coefficient multiplying the rectangular term. We, subsequently, apply cooling and the gradient flow using the Wilson, the Symanzik tree-level improved and the Iwasaki gauge actions to configurations produced with N f = 2 + 1 + 1 twisted mass fermions. We compute the topological charge, its distribution and the correlators between cooling and gradient flow at three values of the lattice spacing demonstrating that the perturbative rescaling τ ≅ n c /(3-15c 1 ) leads to equivalent results.

  8. Cooling Tower Overhaul of Secondary Cooling System in HANARO

    Energy Technology Data Exchange (ETDEWEB)

    Park, Young Chul; Lee, Young Sub; Jung, Hoan Sung; Lim, In Chul [KAERI, Daejeon (Korea, Republic of)

    2007-07-01

    HANARO, an open-tank-in-pool type research reactor of 30 MWth power in Korea, has been operating normally since its initial criticality in February, 1995. For the last about ten years, A cooling tower of a secondary cooling system has been operated normally in HANARO. Last year, the cooling tower has been overhauled for preservative maintenance including fills, eliminators, wood support, water distribution system, motors, driving shafts, gear reducers, basements, blades and etc. This paper describes the results of the overhaul. As results, it is confirmed that the cooling tower maintains a good operability through a filed test. And a cooling capability will be tested when a wet bulb temperature is maintained about 28 .deg. C in summer and the reactor is operated with the full power.

  9. Onderzoeksrapportage duurzaam koelen : EOS Renewable Cooling

    OpenAIRE

    Broeze, J.; Sluis, van der, S.; Wissink, E.

    2010-01-01

    For reducing energy use for cooling, alternative methods (that do not rely on electricity) are needed. Renewable cooling is based on naturally available resources such as evaporative cooling, free cooling, phase change materials, ground subcooling, solar cooling, wind cooling, night radiation & storage. The project was aimed to create innovative combinations of these renewable cooling technologies and sophisticated control systems, to design renewable climate systems for various applicati...

  10. Data Mining of the Thermal Performance of Cool-Pipes in Massive Concrete via In Situ Monitoring

    OpenAIRE

    Zuo, Zheng; Hu, Yu; Li, Qingbin; Zhang, Liyuan

    2014-01-01

    Embedded cool-pipes are very important for massive concrete because their cooling effect can effectively avoid thermal cracks. In this study, a data mining approach to analyzing the thermal performance of cool-pipes via in situ monitoring is proposed. Delicate monitoring program is applied in a high arch dam project that provides a good and mass data source. The factors and relations related to the thermal performance of cool-pipes are obtained in a built theory thermal model. The supporting ...

  11. Boiling induced mixed convection in cooling loops

    International Nuclear Information System (INIS)

    Knebel, J.U.; Janssens-Maenhout, G.; Mueller, U.

    2000-01-01

    This article describes the SUCO program performed at the Forschungszentrum Karlsruhe. The SUCO program is a three-step series of scaled model experiments investigating the possibility of a sump cooling concept for future light water reactors. In case of a core melt accident, the sump cooling concept realises a decay heat removal system that is based on passive safety features within the containment. The article gives, first, results of the experiments in the 1:20 linearly scaled SUCOS-2D test facility. The experimental results are scaled-up to the conditions in the prototype, allowing a statement with regard to the feasibility of the sump cooling concept. Second, the real height SUCOT test facility with a volume and power scale of 1:356 that is aimed at investigating the mixed single-phase and two-phase natural circulation flow in the reactor sump, together with first measurement results, are discussed. Finally, a numerical approach to model the subcooled nucleate boiling phenomena in the test facility SUCOT is presented. Physical models describing interfacial mass, momentum and-heat transfer are developed and implemented in the commercial software package CFX4.1. The models are validated for an isothermal air-water bubbly flow experiment and a subcooled boiling experiment in vertical annular water flow. (author)

  12. Correlations for Saturation Efficiency of Evaporative Cooling Pads

    Science.gov (United States)

    Jain, J. K.; Hindoliya, D. A.

    2014-01-01

    This paper presents some experimental investigations to obtain correlations for saturation efficiency of evaporative cooling pads. Two commonly used materials namely aspen and khus fibers along with new materials namely coconut fibers and palash fibers were tested in a laboratory using suitably fabricated test setup. Simple mathematical correlations have been developed for calculating saturation efficiency of evaporating cooling pads which can be used to predict their performance at any desired mass flow rate. Performances of four different pad materials were also compared using developed correlations. An attempt was made to test two new materials (i.e. fibers of palash wood and coconut) to check their suitability as wetted media for evaporative cooling pads. It was found that Palash wood fibers offered highest saturation efficiency compared to that of other existing materials such as aspen and khus fibers at different mass flow rate of air.

  13. Efficient energy storage in liquid desiccant cooling systems

    Energy Technology Data Exchange (ETDEWEB)

    Hublitz, Astrid

    2008-07-18

    Liquid Desiccant Cooling Systems (LDCS) are open loop sorption systems for air conditioning that use a liquid desiccant such as a concentrated salt solution to dehumidify the outside air and cool it by evaporative cooling. Thermochemical energy storage in the concentrated liquid desiccant can bridge power mismatches between demand and supply. Low-flow LDCS provide high energy storage capacities but are not a state-of-the-art technology yet. The key challenge remains the uniform distribution of the liquid desiccant on the heat and mass transfer surfaces. The present research analyzes the factors of influence on the energy storage capacity by simulation of the heat and mass transfer processes and specifies performance goals for the distribution of the process media. Consequently, a distribution device for the liquid desiccant is developed that reliably meets the performance goals. (orig.)

  14. Newton's Law of Cooling Revisited

    Science.gov (United States)

    Vollmer, M.

    2009-01-01

    The cooling of objects is often described by a law, attributed to Newton, which states that the temperature difference of a cooling body with respect to the surroundings decreases exponentially with time. Such behaviour has been observed for many laboratory experiments, which led to a wide acceptance of this approach. However, the heat transfer…

  15. Be Cool, Man! / Jevgeni Levik

    Index Scriptorium Estoniae

    Levik, Jevgeni

    2005-01-01

    Järg 1995. aasta kriminaalkomöödiale "Tooge jupats" ("Get Shorty") : mängufilm "Be Cool, Chili Palmer on tagasi!" ("Be Cool") : režissöör F. Gary Gray, peaosades J. Travolta ja U. Thurman : USA 2005. Lisatud J. Travolta ja U. Thurmani lühiintervjuud

  16. Core cooling system for reactor

    International Nuclear Information System (INIS)

    Kondo, Ryoichi; Amada, Tatsuo.

    1976-01-01

    Purpose: To improve the function of residual heat dissipation from the reactor core in case of emergency by providing a secondary cooling system flow channel, through which fluid having been subjected to heat exchange with the fluid flowing in a primary cooling system flow channel flows, with a core residual heat removal system in parallel with a main cooling system provided with a steam generator. Constitution: Heat generated in the core during normal reactor operation is transferred from a primary cooling system flow channel to a secondary cooling system flow channel through a main heat exchanger and then transferred through a steam generator to a water-steam system flow channel. In the event if removal of heat from the core by the main cooling system becomes impossible due to such cause as breakage of the duct line of the primary cooling system flow channel or a trouble in a primary cooling system pump, a flow control valve is opened, and steam generator inlet and outlet valves are closed, thus increasing the flow rate in the core residual heat removal system. Thereafter, a blower is started to cause dissipation of the core residual heat from the flow channel of a system for heat dissipation to atmosphere. (Seki, T.)

  17. Theory of semiconductor laser cooling

    Science.gov (United States)

    Rupper, Greg

    Recently laser cooling of semiconductors has received renewed attention, with the hope that a semiconductor cooler might be able to achieve cryogenic temperatures. In order to study semiconductor laser cooling at cryogenic temperatures, it is crucial that the theory include both the effects of excitons and the electron-hole plasma. In this dissertation, I present a theoretical analysis of laser cooling of bulk GaAs based on a microscopic many-particle theory of absorption and luminescence of a partially ionized electron-hole plasma. This theory has been analyzed from a temperature 10K to 500K. It is shown that at high temperatures (above 300K), cooling can be modeled using older models with a few parameter changes. Below 200K, band filling effects dominate over Auger recombination. Below 30K excitonic effects are essential for laser cooling. In all cases, excitonic effects make cooling easier then predicted by a free carrier model. The initial cooling model is based on the assumption of a homogeneous undoped semiconductor. This model has been systematically modified to include effects that are present in real laser cooling experiments. The following modifications have been performed. (1) Propagation and polariton effects have been included. (2) The effect of p-doping has been included. (n-doping can be modeled in a similar fashion.) (3) In experiments, a passivation layer is required to minimize non-radiative recombination. The passivation results in a npn heterostructure. The effect of the npn heterostructure on cooling has been analyzed. (4) The effect of a Gaussian pump beam was analyzed and (5) Some of the parameters in the cooling model have a large uncertainty. The effect of modifying these parameters has been analyzed. Most of the extensions to the original theory have only had a modest effect on the overall results. However we find that the current passivation technique may not be sufficient to allow cooling. The passivation technique currently used appears

  18. Closed loop steam cooled airfoil

    Science.gov (United States)

    Widrig, Scott M.; Rudolph, Ronald J.; Wagner, Gregg P.

    2006-04-18

    An airfoil, a method of manufacturing an airfoil, and a system for cooling an airfoil is provided. The cooling system can be used with an airfoil located in the first stages of a combustion turbine within a combined cycle power generation plant and involves flowing closed loop steam through a pin array set within an airfoil. The airfoil can comprise a cavity having a cooling chamber bounded by an interior wall and an exterior wall so that steam can enter the cavity, pass through the pin array, and then return to the cavity to thereby cool the airfoil. The method of manufacturing an airfoil can include a type of lost wax investment casting process in which a pin array is cast into an airfoil to form a cooling chamber.

  19. Cooling off with physics

    Energy Technology Data Exchange (ETDEWEB)

    Clarke, Chris [Unilever R and D (United Kingdom)

    2003-08-01

    You might think of ice cream as a delicious treat to be enjoyed on a sunny summer's day. However, to the ice-cream scientists who recently gathered in Thessaloniki in Greece for the 2nd International Ice Cream Symposium, it is a complex composite material. Ice cream consists of three dispersed phases: ice crystals, which have a mean size of 50 microns, air bubbles with a diameter of about 70 microns, and fat droplets with a size of 1 micron. These phases are held together by what is called the matrix - not a sci-fi film, but a viscous solution of sugars, milk proteins and polysaccharides. The microstructure, and hence the texture that you experience when you eat ice cream, is created in a freezing process that has remained fundamentally unchanged since the first ice-cream maker was patented in the 1840s. The ingredients - water, milk protein, fat, sugar, emulsifiers, stabilizers, flavours and a lot of air - are mixed together before being pasteurized and homogenized. They are then pumped into a cylinder that is cooled from the outside with a refrigerant. As the mixture touches the cylinder wall it freezes and forms ice crystals, which are quickly scraped off by a rotating blade. The blade is attached to a beater that disperses the ice crystals into the mixture. At the same time, air is injected and broken down into small bubbles by the shear that the beater generates. As the mixture passes along the cylinder, the number of ice crystals increases and its temperature drops. As a result, the viscosity of the mixture increases, so that more energy input is needed to rotate the beater. This energy is dissipated as heat, and when the ice cream reaches about -6 deg. C the energy input through the beater equals the energy removed as heat by the refrigerant. The process therefore becomes self-limiting and it is not possible to cool the ice cream any further. However, at -6 deg. C the microstructure is unstable. The ice cream therefore has to be removed from the freezer

  20. Simulation of an active cooling system for photovoltaic modules

    International Nuclear Information System (INIS)

    Abdelhakim, Lotfi

    2016-01-01

    Photovoltaic cells are devices that convert solar radiation directly into electricity. However, solar radiation increases the photovoltaic cells temperature [1] [2]. The temperature has an influence on the degradation of the cell efficiency and the lifetime of a PV cell. This work reports on a water cooling technique for photovoltaic panel, whereby the cooling system was placed at the front surface of the cells to dissipate excess heat away and to block unwanted radiation. By using water as a cooling medium for the photovoltaic solar cells, the overheating of closed panel is greatly reduced without prejudicing luminosity. The water also acts as a filter to remove a portion of solar spectrum in the infrared band but allows transmission of the visible spectrum most useful for the PV operation. To improve the cooling system efficiency and electrical efficiency, uniform flow rate among the cooling system is required to ensure uniform distribution of the operating temperature of the PV cells. The aims of this study are to develop a 3D thermal model to simulate the cooling and heat transfer in Photovoltaic panel and to recommend a cooling technique for the PV panel. The velocity, pressure and temperature distribution of the three-dimensional flow across the cooling block were determined using the commercial package, Fluent. The second objective of this work is to study the influence of the geometrical dimensions of the panel, water mass flow rate and water inlet temperature on the flow distribution and the solar panel temperature. The results obtained by the model are compared with experimental results from testing the prototype of the cooling device.

  1. Simulation of an active cooling system for photovoltaic modules

    Energy Technology Data Exchange (ETDEWEB)

    Abdelhakim, Lotfi [Széchenyi István University of Applied Sciences, Department of Mathematics, P.O.Box 701, H-9007 Győr (Hungary)

    2016-06-08

    Photovoltaic cells are devices that convert solar radiation directly into electricity. However, solar radiation increases the photovoltaic cells temperature [1] [2]. The temperature has an influence on the degradation of the cell efficiency and the lifetime of a PV cell. This work reports on a water cooling technique for photovoltaic panel, whereby the cooling system was placed at the front surface of the cells to dissipate excess heat away and to block unwanted radiation. By using water as a cooling medium for the photovoltaic solar cells, the overheating of closed panel is greatly reduced without prejudicing luminosity. The water also acts as a filter to remove a portion of solar spectrum in the infrared band but allows transmission of the visible spectrum most useful for the PV operation. To improve the cooling system efficiency and electrical efficiency, uniform flow rate among the cooling system is required to ensure uniform distribution of the operating temperature of the PV cells. The aims of this study are to develop a 3D thermal model to simulate the cooling and heat transfer in Photovoltaic panel and to recommend a cooling technique for the PV panel. The velocity, pressure and temperature distribution of the three-dimensional flow across the cooling block were determined using the commercial package, Fluent. The second objective of this work is to study the influence of the geometrical dimensions of the panel, water mass flow rate and water inlet temperature on the flow distribution and the solar panel temperature. The results obtained by the model are compared with experimental results from testing the prototype of the cooling device.

  2. Film cooling air pocket in a closed loop cooled airfoil

    Science.gov (United States)

    Yu, Yufeng Phillip; Itzel, Gary Michael; Osgood, Sarah Jane; Bagepalli, Radhakrishna; Webbon, Waylon Willard; Burdgick, Steven Sebastian

    2002-01-01

    Turbine stator vane segments have radially inner and outer walls with vanes extending between them. The inner and outer walls are compartmentalized and have impingement plates. Steam flowing into the outer wall plenum passes through the impingement plate for impingement cooling of the outer wall upper surface. The spent impingement steam flows into cavities of the vane having inserts for impingement cooling the walls of the vane. The steam passes into the inner wall and through the impingement plate for impingement cooling of the inner wall surface and for return through return cavities having inserts for impingement cooling of the vane surfaces. To provide for air film cooing of select portions of the airfoil outer surface, at least one air pocket is defined on a wall of at least one of the cavities. Each air pocket is substantially closed with respect to the cooling medium in the cavity and cooling air pumped to the air pocket flows through outlet apertures in the wall of the airfoil to cool the same.

  3. mathematical model for direct evaporative space cooling systems

    African Journals Online (AJOL)

    eobe

    of the sensible heat of the air is transferred to the water and becomes latent heat by evaporating some of the water. The latent heat follows the water vapour and diffuses into the air. In a DEC (direct evaporative cooling), the heat and mass transferred between air and water decreases the air dry bulb temperature (DBT) and ...

  4. 46 CFR 153.432 - Cooling systems.

    Science.gov (United States)

    2010-10-01

    ... 46 Shipping 5 2010-10-01 2010-10-01 false Cooling systems. 153.432 Section 153.432 Shipping COAST... Control Systems § 153.432 Cooling systems. (a) Each cargo cooling system must have an equivalent standby... cooling system. (b) Each tankship that has a cargo tank with a required cooling system must have a manual...

  5. Huge opportunity for solar cooling

    International Nuclear Information System (INIS)

    Rowe, Daniel

    2014-01-01

    In Europe more than 400 solar cooling systems have been installed. By contrast, only a small number of solar cooling installations exist in Australia - primarily adsorption and absorption systems for commercial and hospitals - although these systems are growing. As with other renewable energy technologies, cost is a challenge. However solar cooling is currently competitive with other technologies, with some suggesting that system costs have been decreasing by about 20% per annum in recent times. Australia is also leading efforts in the development of residential solar desiccant technology, currently commercialising Australian-developed technology. Commercial and industrial enterprises are increasingly aware of the impact of demand charges, the potential to install technology as a hedge against future energy price rises and opportunities associated with increased on-site generation and reduced reliance on the grid, often necessitating on-site demand reduction and management. They are also driven by environmental and corporate social responsibility objectives as well as the opportunity for energy independence and uninterruptible operation. Interestingly, many of these interests are mirrdred at residential level, inspiring CSIRO's commercialisation of a domestic scale solar air conditioner with Australian manufacturer Brevis Climate Systems. Australia and other countries are increasingly aware of solar cooling as technology which can reduce or replace grid-powered cooling, particularly in applications where large building thermal energy requirements exist. In these applications, heating, cooling and hot water are generated and used in large amounts and the relative amounts of each can be varied dynamically, depending on building requirements. Recent demonstrations of solar cooling technology in Australia include Hunter TAFE's Solar Desiccant Cooling System - which provides heating, cooling and hot water to commercial training kitchens and classrooms - GPT

  6. Experimental and computational studies of film cooling with compound angle injection

    Energy Technology Data Exchange (ETDEWEB)

    Goldstein, R.J.; Eckert, E.R.G.; Patankar, S.V. [Univ. of Minnesota, Minneapolis, MN (United States)] [and others

    1995-10-01

    The thermal efficiency of gas turbine systems depends largely on the turbine inlet temperature. Recent decades have seen a steady rise in the inlet temperature and a resulting reduction in fuel consumption. At the same time, it has been necessary to employ intensive cooling of the hot components. Among various cooling methods, film cooling has become a standard method for cooling of the turbine airfoils and combustion chamber walls. The University of Minnesota program is a combined experimental and computational study of various film-cooling configurations. Whereas a large number of parameters influence film cooling processes, this research focuses on compound angle injection through a single row and through two rows of holes. Later work will investigate the values of contoured hole designs. An appreciation of the advantages of compound angle injection has risen recently with the demand for more effective cooling and with improved understanding of the flow; this project should continue to further this understanding. Approaches being applied include: (1) a new measurement system that extends the mass/heat transfer analogy to obtain both local film cooling and local mass (heat) transfer results in a single system, (2) direct measurement of three-dimensional turbulent transport in a highly-disturbed flow, (3) the use of compound angle and shaped holes to optimize film cooling performance, and (4) an exploration of anisotropy corrections to turbulence modeling of film cooling jets.

  7. Emergency core cooling system

    International Nuclear Information System (INIS)

    Sato, Akira; Kobayashi, Masahide.

    1983-01-01

    Purpose: To enable a stable operation of an emergency core cooling system by preventing the system from the automatic stopping at an abnormally high level of the reactor water during its operation. Constitution: A pump flow rate signal and a reactor water level signal are used and, when the reactor water level is increased to a predetermined level, the pump flow rate is controlled by the reactor water level signal instead of the flow rate signal. Specifically, when the reactor water level is gradually increased by the water injection from the pump and exceeds a setting signal for the water level, the water level deviation signal acts as a demand signal for the decrease in the flow rate of the pump and the output signal from the water level controller is also decreased depending on the control constant. At a certain point, the output signal from the water level controller becomes smaller than the output signal from the flow rate controller. Thus, the output signal from the water level controller is outputted as the output signal for the lower level preference device. In this way, the reactor water level and the pump flow rate can be controlled within a range not exceeding the predetermined pump flow rate. (Horiuchi, T.)

  8. Cooling water injection system

    International Nuclear Information System (INIS)

    Inai, Nobuhiko.

    1989-01-01

    In a BWR type reactor, ECCS system is constituted as a so-called stand-by system which is not used during usual operation and there is a significant discontinuity in relation with the usual system. It is extremely important that ECCS operates upon occurrence of accidents just as specified. In view of the above in the present invention, the stand-by system is disposed along the same line with the usual system. That is, a driving water supply pump for supplying driving water to a jet pump is driven by a driving mechanism. The driving mechanism drives continuously the driving water supply pump in a case if an expected accident such as loss of the function of the water supply pump, as well as during normal operation. That is, all of the water supply pump, jet pump, driving water supply pump and driving mechanism therefor are caused to operate also during normal operation. The operation of them are not initiated upon accident. Thus, the cooling water injection system can perform at high reliability to remarkably improve the plant safety. (K.M.)

  9. Magnet cooling economics

    International Nuclear Information System (INIS)

    Parmer, J.F.; Liggett, M.W.

    1985-01-01

    The recommendation to use superfluid helium II in superconducting magnet design has become more prevalent in recent years. Advanced fusion reactor studies such as the Mirror Advanced Reactor Study recently completed by the Lawrence Livermore National Laboratory (LLML) have based superconducting magnet design on the use of He II because of reduced magnet volume, improved stability characteristics, or increased superconductor critical current at fields above 9 Tesla. This paper reports the results of a study to determine the capital costs ($/watt) and the operating costs (watts/watt) of refrigeration systems in the 1.8K to 300K temperature range. The cost data is applied to a 1.8K magnet that is subject to neutronic heating wherein the magnet case is insulated from the winding so that the case can be cooled at a higher temperature (less costly) than the winding. The life cycle cost (capital plus operating) is reported as a function of coil temperature and insulation thickness. In some cases there is an optimum, least-cost thickness. In addition, the basic data can be used to evaluate the impact of neutron shielding effectiveness trades on the combined shield, magnet, cryorefrigerator, and operating life cycle cost

  10. Stochastic cooling in muon colliders

    International Nuclear Information System (INIS)

    Barletta, W.A.; Sessler, A.M.

    1993-09-01

    Analysis of muon production techniques for high energy colliders indicates the need for rapid and effective beam cooling in order that one achieve luminosities > 10 30 cm -2 s -1 as required for high energy physics experiments. This paper considers stochastic cooling to increase the phase space density of the muons in the collider. Even at muon energies greater than 100 GeV, the number of muons per bunch must be limited to ∼10 3 for the cooling rate to be less than the muon lifetime. With such a small number of muons per bunch, the final beam emittance implied by the luminosity requirement is well below the thermodynamic limit for beam electronics at practical temperatures. Rapid bunch stacking after the cooling process can raise the number of muons per bunch to a level consistent with both the luminosity goals and with practical temperatures for the stochastic cooling electronics. A major advantage of our stochastic cooling/stacking scheme over scenarios that employ only ionization cooling is that the power on the production target can be reduced below 1 MW

  11. Emergency cooling system for a gas-cooled nuclear reactor

    International Nuclear Information System (INIS)

    Cook, R.K.; Burylo, P.S.

    1975-01-01

    The site of the gas-cooled reactor with direct-circuit gas turbine is preferably the sea coast. An emergency cooling system with safety valve and emergency feed-water addition is designed which affects at least a part of the reactor core coolant after leaving the core. The emergency cooling system includes a water emergency cooling circuit with heat exchanger for the core coolant. The safety valve releases water or steam from the emergency coolant circuit when a certain temperature is exceeded; this is, however, replaced by the emergency feed-water. If the gas turbine exhibits a high and low pressure turbine stage, which are flowed through by coolant one behind another, a part of the coolant can be removed in front of each part turbine by two valves and be added to the haet exchanger. (RW/LH) [de

  12. The Cool 100 book

    Energy Technology Data Exchange (ETDEWEB)

    Haselip, J.; Pointing, D.

    2011-07-01

    The aim of The Cool 100 book is to document 100 inspiring, educational and practical examples of sustainable and accessible energy supply solutions created by, or suitable for, isolated communities in the cooler regions of the world. The book features the following projects, explored in detail: 1. Promoting Unst Renewable Energy (PURE) project, a pioneering project that demonstrates how wind power and hydrogen technologies can be combined to meet the energy needs of a remote industrial estate on the island of Unst in the British Isles. 2. The EDISON project, or Electric vehicles in a Distributed and Integrated market using Sustainable energy and Open Networks that explored increased renewable energy use and electric vehicle operation in Denmark, with a case study on the island of Bornholm. 3. The Sarfannguit Wireless Electricity Reading project, which has significantly improved utility metering and enabled improved energy management, reduced electricity demand, and the introduction of renewable energy technologies in the isolated villages of Greenland. 4. The Renewable Energy Croft and Hydrogen facility, which uses innovative technologies to support a gardening facility in the Outer Hebrides (Scotland), and is also a working laboratory for students of the local university to develop a hydrogen energy economy. 5. The Samsoe Renewable Energy Island in Denmark, an iconic example of how an island community can consume only green electricity by using a range of innovative technologies and behavioural changes to reduce demand and to harness green energy resources. 6. The Hydrogen Office Project which demonstrates how a commercial office in the coastal town of Methil in Scotland can be supported by a novel renewable, hydrogen and fuel cell energy system, and how the local community is engaged with the project. 7. The Northern Sustainable House in Nunavut, Canada, which explores the process and results of a project to design and implement housing for local families that

  13. CO$_2$ cooling experience (LHCb)

    CERN Document Server

    Van Lysebetten, Ann; Verlaat, Bart

    2007-01-01

    The thermal control system of the LHCb VErtex LOcator (VELO) is a two-phase C0$_2$ cooling system based on the 2-Phase Accumulator Controlled Loop (2PACL) method. Liquid carbon dioxide is mechanically pumped in a closed loop, chilled by a water-cooled freon chiller and evaporated in the VELO detector. The main goal of the system is the permanent cooling of the VELO silicon sensors and of the heat producing front-end electronics inside a vacuum environment. This paper describes the design and the performance of the system. First results obtained during commissioning are also presented.

  14. Cooling towers principles and practice

    CERN Document Server

    Hill, G B; Osborn, Peter D

    1990-01-01

    Cooling Towers: Principles and Practice, Third Edition, aims to provide the reader with a better understanding of the theory and practice, so that installations are correctly designed and operated. As with all branches of engineering, new technology calls for a level of technical knowledge which becomes progressively higher; this new edition seeks to ensure that the principles and practice of cooling towers are set against a background of up-to-date technology. The book is organized into three sections. Section A on cooling tower practice covers topics such as the design and operation of c

  15. Grain formation in the expanding gas flow around cool luminous stars

    International Nuclear Information System (INIS)

    Hasegawa, H.

    1984-01-01

    The existence of solid particles in interstellar space has been revealed by the extinction of starlight in UV, visible and IR. The important sources of interstellar grains are considered to be cool luminous mass loss stars. (author)

  16. Sympathetic cooling of ions in a hybrid atom ion trap

    Energy Technology Data Exchange (ETDEWEB)

    Hoeltkemeier, Bastian

    2016-10-27

    In this thesis the dynamics of a trapped ion immersed in a spatially localized buffer gas is investigated. For a homogeneous buffer gas, the ion's energy distribution reaches a stable equilibrium only if the mass of the buffer gas atoms is below a critical value. This limitation can be overcome by using multipole traps in combination and/or a spatially confined buffer gas. Using a generalized model for elastic collisions of the ion with the buffer gas atoms, the ion's energy distribution is numerically determined for arbitrary buffer gas distributions and trap parameters. Three regimes characterized by the respective analytic form of the ion's equilibrium energy distribution are found. One of these is a novel regime at large atom-to-ion mass ratios where the final ion temperature can tuned by adiabatically decreasing the spatial extension of the buffer gas and the effective ion trap depth (forced sympathetic cooling). The second part of the thesis presents a hybrid atom ion trap designed for sympathetic cooling of hydroxide anions. In this hybrid trap the anions are immersed in a cloud of laser cooled rubidium atoms. The translational and rovibrational temperatures of the anions is probed by photodetachment tomography and spectroscopy which shows the first ever indication of sympathetic cooling of anions by laser cooled atoms.

  17. Analysis of the evaporative towers cooling system of a coal-fired power plant

    Directory of Open Access Journals (Sweden)

    Laković Mirjana S.

    2012-01-01

    Full Text Available The paper presents a theoretical analysis of the cooling system of a 110 MW coal-fired power plant located in central Serbia, where eight evaporative towers cool down the plant. An updated research on the evaporative tower cooling system has been carried out to show the theoretical analysis of the tower heat and mass balance, taking into account the sensible and latent heat exchanged during the processes which occur inside these towers. Power plants which are using wet cooling towers for cooling condenser cooling water have higher design temperature of cooling water, thus the designed condensing pressure is higher compared to plants with a once-through cooling system. Daily and seasonal changes further deteriorate energy efficiency of these plants, so it can be concluded that these plants have up to 5% less efficiency compared to systems with once-through cooling. The whole analysis permitted to evaluate the optimal conditions, as far as the operation of the towers is concerned, and to suggest an improvement of the plant. Since plant energy efficiency improvement has become a quite common issue today, the evaluation of the cooling system operation was conducted under the hypothesis of an increase in the plant overall energy efficiency due to low cost improvement in cooling tower system.

  18. Passive low energy cooling of buildings

    CERN Document Server

    Givoni, Baruch

    1994-01-01

    A practical sourcebook for building designers, providing comprehensive discussion of the impact of basic architectural choices on cooling efficiency, including the layout and orientation of the structure, window size and shading, exterior color, and even the use of plantings around the site. All major varieties of passive cooling systems are presented, with extensive analysis of performance in different types of buildings and in different climates: ventilation; radiant cooling; evaporative cooling; soil cooling; and cooling of outdoor spaces.

  19. Measurements at cooling tower plumes. Part 3. Three-dimensional measurements at cooling tower plumes

    International Nuclear Information System (INIS)

    Fortak, H.

    An extended field experiment is described in which cooling tower plumes were studied by means of three-dimensional in situ measurements. The goal was to obtain input data for numerical models of cooling tower plumes. Of special interest were data for testing or developing assumptions for sub-grid parametrizations. Utilizing modern systems for high-resolution aerology and small aircraft, four measuring campaigns were conducted: two campaigns (1974) at the cooling towers of the RWE power station Neurath and also two (1975) at the single cooling tower of the RWE power station Meppen. Because of the broad spectrum of weather situations it can be assumed that the results are representative with regard to the interrelationship between structure of cooling tower plume and large-scale meteorological situation. A large number of flights with a powered glider crossing the plumes on orthogonal tracks was performed. All flights showed that the plume could be identified up to large downwind distances by discontinuous jumps of temperature and vapor pressure. Therefore, a definite geometry of the plume could always be defined. In all cross sections a vertical circulation could be observed. At the boundary, which could be defined by the mentioned jumps of temperature and vapor pressure, a maximum of downward vertical motion could be observed in most cases. Entrainment along the boundary of a cross section seems to be very small, except at the lower part of the plume. There, the mass entrainment is maximum and is responsible for plume rise as well as for enlargement of the cross section. The visible part of the plume (cloud) was only a small fraction of the whole plume. High-resolution aerology is necessary in order to explain the structure and behavior of such plumes. This is especially the case in investigations regarding the dynamic break-through of temperature inversions. Such cases were observed frequently under various meteorological conditions and are described

  20. Exergy analysis of a combined power and cooling cycle

    International Nuclear Information System (INIS)

    Fontalvo, Armando; Pinzon, Horacio; Duarte, Jorge; Bula, Antonio; Quiroga, Arturo Gonzalez; Padilla, Ricardo Vasquez

    2013-01-01

    This paper presents a comprehensive exergy analysis of a combined power and cooling cycle which combines a Rankine and absorption refrigeration cycle by using ammonia–water mixture as working fluid. A thermodynamic model was developed in Matlab ® to find out the effect of pressure ratio, ammonia mass fraction at the absorber and turbine efficiency on the total exergy destruction of the cycle. The contribution of each cycle component on the total exergy destruction was also determined. The results showed that total exergy destruction decreases when pressure ratio increases, and reaches a maximum at x ≈ 0.5, when ammonia mass fraction is varied at absorber. Also, it was found that the absorber, the boiler and the turbine had the major contribution to the total exergy destruction of the cycle, and the increase of the turbine efficiency reduces the total exergy destruction. The effect of rectification cooling source (external and internal) on the cycle output was investigated, and the results showed that internal rectification cooling reduces the total exergy destruction of the cycle. Finally, the effect of the presence or absence of the superheater after the rectification process was determined and it was obtained that the superheated condition reduces the exergy destruction of the cycle at high turbine efficiency values. Highlights: • A parametric exergy analysis of a combined power and cooling cycle is performed. • Two scenarios for rectifier cooling (internal and external) were studied. • Internal cooling source is more exergetic efficient than external cooling source. • The absorber and boiler have the largest total exergy destruction. • Our results show that the superheater reduces the exergy destruction of the cycle

  1. Energy Savers: Cool Summer Tips

    International Nuclear Information System (INIS)

    Miller, M.

    2001-01-01

    A tri-fold brochure addressing energy-saving tips for homeowners ranging from low- or no-cost suggestions to higher cost suggestions for longer-term savings. Cooling, windows, weatherizing, and landscaping are addressed

  2. Extended analysis of cooling curves

    International Nuclear Information System (INIS)

    Djurdjevic, M.B.; Kierkus, W.T.; Liliac, R.E.; Sokolowski, J.H.

    2002-01-01

    Thermal Analysis (TA) is the measurement of changes in a physical property of a material that is heated through a phase transformation temperature range. The temperature changes in the material are recorded as a function of the heating or cooling time in such a manner that allows for the detection of phase transformations. In order to increase accuracy, characteristic points on the cooling curve have been identified using the first derivative curve plotted versus time. In this paper, an alternative approach to the analysis of the cooling curve has been proposed. The first derivative curve has been plotted versus temperature and all characteristic points have been identified with the same accuracy achieved using the traditional method. The new cooling curve analysis also enables the Dendrite Coherency Point (DCP) to be detected using only one thermocouple. (author)

  3. Geothermal heat can cool, too

    International Nuclear Information System (INIS)

    Wellstein, J.

    2008-01-01

    This article takes a look at how geothermal energy can not only be used to supply heating energy, but also be used to provide cooling too. The article reports on a conference on heating and cooling with geothermal energy that was held in Duebendorf, Switzerland, in March 2008. The influence of climate change on needs for heating and cooling and the need for additional knowledge and data on deeper rock layers is noted. The seasonal use of geothermal systems to provide heating in winter and cooling in summer is discussed. The planning of geothermal probe fields and their simulation is addressed. As an example, the geothermal installations under the recently renewed and extended 'Dolder Grand' luxury hotel in Zurich are quoted. The new SIA 384/6 norm on geothermal probes issued by the Swiss Association of Architects SIA is briefly reviewed.

  4. Solutions for Liquid Nitrogen Pre-Cooling in Helium Refrigeration Cycles

    CERN Document Server

    Wagner, U

    2000-01-01

    Pre-cooling of helium by means of liquid nitrogen is the oldest and one of the most common process features used in helium liquefiers and refrigerators. Its two principle tasks are to allow or increase the rate of pure liquefaction, and to permit the initial cool-down of large masses to about 80 K. Several arrangements for the pre-cooling process are possible depending on the desired application. Each arrangement has its proper advantages and drawbacks. The aim of this paper is to review the possible process solutions for liquid nitrogen pre-cooling and their particularities.

  5. He-cooled divertor for DEMO. Fabrication technology for tungsten cooling fingers

    Energy Technology Data Exchange (ETDEWEB)

    Reiser, J.; Norajitra, P.; Widak, V.; Krauss, W. [Forschungszentrum Karlsruhe GmbH (Germany)

    2008-07-01

    A modular helium-cooled divertor design based on the multi-jet impingement concept (HEMJ) has been developed for the ''post-ITER'' demonstration reactor (DEMO) at the Forschungszentrum Karlsruhe [1, 2]. The main function of the divertor is to keep the plasma free from impurities by catching particles, such as fusion ash and eroded particles from the first wall. From the divertor surface, a maximum heat load of 10 MW/m{sup 2} at least has to be removed. The whole divertor is split up into a number of cassettes (48 according to the latest design studies [3]). Each cassette is cooled separately. The target plates are provided with several cooling fingers to keep the thermal stresses low. Each cooling finger consists of a tungsten tile which is brazed to a thimble-like cap made of a tungsten alloy W-1%La2O3 (WL10) underneath. The thimble has to be connected to the ODS EUROFER steel structure, which is accomplished by brazing again. The tungsten/tungsten brazing is exposed to 1200 C operation temperature while the tungsten/steel brazing joint must withstand 700 C operating temperature. Cooling of the finger is achieved by multi-jet impingement with helium. The inlet temperature of helium is 600 C and rises up to 700 C at the outlet. With this kind of cooling, a mean heat transfer coefficient of 35.000 W/(m{sup 2*}K) can be reached. This compact report will focus on the manufacturing of such a cooling finger unit at FZK. It will cover the machining of the tungsten tile as well as of the thimble and, the brazing of the parts. The major aim of this activity is, on the one hand, to obtain functioning mock-ups with high quality and high reliability, in particular in terms of minimising the surface roughness, cracks, and micro-cracks. On the other hand, effort should also be laid on realising the mass production from economic point of view. (orig.)

  6. Cooling methods for power plants

    International Nuclear Information System (INIS)

    Gaspersic, B.; Fabjan, L.; Petelin, S.

    1977-01-01

    There are some results of measurements carried out on the wet cooling tower 275 MWe at TE Sostanj and on the experimental cooling tower at Jozef Stefan Institute, as well. They are including: the measurements of the output air conditions, the measurements of the cross current of water film and vapour-air flowing through two plates, and the distribution of velocity in boundary layer measured by anemometer

  7. Induced draught circular cooling tower

    International Nuclear Information System (INIS)

    Blanquet, J.C.

    1980-01-01

    Induced draught atmospheric cooling towers are described, to wit those in which the circulation is by power fans. This technique with fans grouped together in the centre enables a single tower to be used and provides an excellent integration of the steam wreath into the atmosphere. This type of cooling tower has been chosen for fitting out two 900 MW units of the Chinon power station in France [fr

  8. DETERMINATION OF RADIATOR COOLING SURFACE

    Directory of Open Access Journals (Sweden)

    A. I. Yakubovich

    2009-01-01

    Full Text Available The paper proposes a methodology for calculation of a radiator cooling surface with due account of heat transfer non-uniformity on depth of its core. Calculation of radiator cooling surfaces of «Belarus-1221» and «Belarus-3022» tractors has been carried out in the paper. The paper also advances standard size series of radiators for powerful «Belarus» tractor type.

  9. Measurements on cooling tower plumes. Pt. 3

    International Nuclear Information System (INIS)

    Fortak, H.

    1975-11-01

    In this paper an extended field experiment is described in which cooling tower plumes were investigated by means of three-dimensional in situ measurements. The goal of this program was to obtain input data for numerical models of cooling tower plumes. Data for testing or developing assumptions for sub-grid parametrizations were of special interest. Utilizing modern systems for high-resolution aerology and small aircraft, four measuring campaigns were conducted: two campaigns (1974) at the cooling towers of the RWE power station at Neurath and also two (1975) at the single cooling tower of the RWE power station at Meppen. Because of the broad spectrum of weather situations, it can be assumed that the results are representative with regard to the interrelationship between the structure of cooling tower plumes and the large-scale meteorological situation. A large number of flights with a powered glider ASK 16 (more than 100 flight hours) crossing the plumes on orthogonal tracks was performed. All flights showed that the plume could be identified up to large downwind distances by discontinuous jumps of temperature and vapour pressure. Therefore a definite geometry of the plume could always be defined. In all cross sections a vertical circulation could be observed. At the plumes boundaries, which could be defined by the mentioned jumps of temperature and vapour pressure, a maximum of downward vertical motion was observed in most cases. Entrainment along the boundary of a cross section seems to be very small, except at the lower part of the plume. There, the mass entrainment is maximum and is responsible for plume rise as well as for enlargement of the cross section. The visible part of the plume (cloud) was only a small fraction of the whole plume. The discontinuities of temperature and vapour pressure show that the plume fills the space below the visible plume down to the ground. However, all effects decrease rapidly towards the ground. It turned out that high

  10. Heat removal in gas-cooled fuel rod clusters

    International Nuclear Information System (INIS)

    Rehme, K.

    1975-01-01

    For a thermo- and fluid-dynamic analysis of fuel rod cluster subchannels for gas-cooled breeder reactors, the following values must be verified: a) friction coefficient as flow parameter; b) Stanton number as heat transfer parameter; c) influence of spacers on friction coefficient and Stanton number; d) heat and mass exchange between subchannels with different temperatures. These parameters are established by combining results of single experiments and of integral experiments. Mention is made of further studies to be performed in order to determine the heat removal from gas-cooled fast breeder fuel elements. (HR) [de

  11. Neutron star cooling constraints for color superconductivity in hybrid stars

    International Nuclear Information System (INIS)

    Popov, S.; Grigoryan, Kh.; Blaschke, D.

    2005-01-01

    We apply the recently developed LogN-LogS test of compact star cooling theories for the first time to hybrid stars with a color superconducting quark matter core. While there is not yet a microscopically founded superconducting quark matter phase which would fulfill constraints from cooling phenomenology, we explore the hypothetical 2SC+X phase and show that the magnitude and density-dependence of the X-gap can be chosen to satisfy a set of tests: temperature-age (T-t), the brightness constraint, LogN-LogS, and the mass spectrum constraint. The latter test appears as a new conjecture from the present investigation

  12. Supercritical Helium Cooling of the LHC Beam Screens

    CERN Document Server

    Hatchadourian, E; Tavian, L

    1998-01-01

    The cold mass of the LHC superconducting magnets, operating in pressurised superfluid helium at 1.9 K, must be shielded from the dynamic heat loads induced by the circulating particle beams, by means of beam screens maintained at higher temperature. The beam screens are cooled between 5 and 20 K by forced flow of weakly supercritical helium, a solution which avoids two-phase flow in the long, narr ow cooling channels, but still presents a potential risk of thermohydraulic instabilities. This problem has been studied by theoretical modelling and experiments performed on a full-scale dedicated te st loop.

  13. Passive cooling of condensate chambers as retrofitting measure in boiling water reactors; Passive Kuehlung der Kondensationskammern in Siedewasserreaktoren als Nachruestmassnahme

    Energy Technology Data Exchange (ETDEWEB)

    Freis, Daniel; Nachtrodt, Frederik; Sporn, Michael; Tietsch, Wolfgang; Sassen, Felix [Westinghouse Electric Germany GmbH, Mannheim (Germany)

    2012-11-01

    Westinghouse Electric Germany GmbH has developed a concept for passive cooling of condensate chambers of BWR-type reactors. Due to its compactness the system is feasible as retrofitting measure. The passive condensate chamber cooling system is based on a cooling module with ascending and down pipe that are connected with the evaporation condenser to form a cooling circuit. Based on the consequent use of high-effective heat transport mechanisms, as boiling, condensation without non-condensable gases and mass transport a high cooling performance and compact construction is possible. The system is completely passive and completely diverse to existing active cooling systems. In the frame of a true-scale experiment the significant cooling performance was demonstrated. RELAP5 calculations confirmed the functionality of the cooling module.

  14. Cryogenic cooling system for HTS cable

    Energy Technology Data Exchange (ETDEWEB)

    Yoshida, Shigeru [Taiyo Nippon Sanso, Tsukuba (Japan)

    2017-06-15

    Recently, Research and development activity of HTS (High Temperature Superconducting) power application is very progressive worldwide. Especially, HTS cable system and HTSFCL (HTS Fault current limiter) system are proceeding to practical stages. In such system and equipment, cryogenic cooling system, which makes HTS equipment cooled lower than critical temperature, is one of crucial components. In this article, cryogenic cooling system for HTS application, mainly cable, is reviewed. Cryogenic cooling system can be categorized into conduction cooling system and immersion cooling system. In practical HTS power application area, immersion cooling system with sub-cooled liquid nitrogen is preferred. The immersion cooling system is besides grouped into open cycle system and closed cycle system. Turbo-Brayton refrigerator is a key component for closed cycle system. Those two cooling systems are focused in this article. And, each design and component of the cooling system is explained.

  15. Gas-cooled reactor power systems for space

    International Nuclear Information System (INIS)

    Walter, C.E.

    1987-01-01

    Efficiency and mass characteristics for four gas-cooled reactor power system configurations in the 2- to 20-MWe power range are modeled. The configurations use direct and indirect Brayton cycles with and without regeneration in the power conversion loop. The prismatic ceramic core of the reactor consists of several thousand pencil-shaped tubes made from a homogeneous mixture of moderator and fuel. The heat rejection system is found to be the major contributor to system mass, particularly at high power levels. A direct, regenerated Brayton cycle with helium working fluid permits high efficiency and low specific mass for a 10-MWe system

  16. Open air-vapor compression refrigeration system for air conditioning and hot water cooled by cool water

    International Nuclear Information System (INIS)

    Hou Shaobo; Li Huacong; Zhang Hefei

    2007-01-01

    This paper presents an open air-vapor compression refrigeration system for air conditioning and hot water cooled by cool water and proves its feasibility through performance simulation. Pinch technology is used in analysis of heat exchange in the surface heat exchanger, and the temperature difference at the pinch point is selected as 6 o C. Its refrigeration depends mainly on both air and vapor, more efficient than a conventional air cycle, and the use of turbo-machinery makes this possible. This system could use the cool in the cool water, which could not be used to cool air directly. Also, the heat rejected from this system could be used to heat cool water to 33-40 o C. The sensitivity analysis of COP to η c and η t and the simulated results T 4 , T 7 , T 8 , q 1 , q 2 and W m of the cycle are given. The simulations show that the COP of this system depends mainly on T 7 , η c and η t and varies with T 3 or T wet and that this cycle is feasible in some regions, although the COP is sensitive to the efficiencies of the axial compressor and turbine. The optimum pressure ratio in this system could be lower, and this results in a fewer number of stages of the axial compressor. Adjusting the rotation speed of the axial compressor can easily control the pressure ratio, mass flow rate and the refrigerating capacity. The adoption of this cycle will make the air conditioned room more comfortable and reduce the initial investment cost because of the obtained very low temperature air. Humid air is a perfect working fluid for central air conditioning and no cost to the user. The system is more efficient because of using cool water to cool the air before the turbine. In addition, pinch technology is a good method to analyze the wet air heat exchange with water

  17. The transfer function model for dynamic response of wet cooling coils

    International Nuclear Information System (INIS)

    Yao Ye; Liu Shiqing

    2008-01-01

    This paper mainly concerned about the dynamic response model of wet cooling coils that is developed by the Laplace transform method. The theoretic equations are firstly established based on the theory of energy conservation. Then, the transfer functions on the transient responses of wet cooling coils have been deduced using the method of Laplace transform. The transfer functions reveal the dynamic relationships between the inlet variables and the outlet ones of the cooling coils. Partial-fraction method and Newton-Raphson method are both used in the inversion of the transfer functions from the s-domain to τ-domain. To make the dynamic model of wet cooling coils more adaptive, RBFNN method is employed to determine the coefficients of heat and mass transfer. Experiments have been done and manifested that the coefficients of heat and mass transfer by RBFNN will be of great value to the validity of the transient response model of wet cooling coils in this study

  18. Emergency cooling system for a liquid metal cooled reactor

    International Nuclear Information System (INIS)

    Murata, Ryoichi; Fujiwara, Toshikatsu.

    1980-01-01

    Purpose: To suitably cool liquid metal as coolant in emergency in a liquid metal cooled reactor by providing a detector for the pressure loss of the liquid metal passing through a cooling device in a loop in which the liquid metal is flowed and communicating the detector with a coolant flow regulator. Constitution: A nuclear reactor is stopped in nuclear reaction by control element or the like in emergency. If decay heat is continuously generated for a while and secondary coolant is insufficiently cooled with water or steam flowed through a steam and water loop, a cooler is started. That is, low temperature air is supplied by a blower through an inlet damper to the cooler to cool the secondary coolant flowed into the cooler through a bypass pipe so as to finally safely stop an entire plant. Since the liquid metal is altered in its physical properties by the temperature at this time, it is detected to regulate the opening of the valve of the damper according to the detected value. (Sekiya, K.)

  19. Design and performance prediction of an adsorption heat pump with multi-cooling tubes

    Energy Technology Data Exchange (ETDEWEB)

    Wang, D.C.; Zhang, J.P. [College of Electromechanical Engineering, Qingdao University, Qingdao 266071 (China)

    2009-05-15

    Widespread application of adsorption heat pumps has been delayed not only by poor heat and mass transfer performance but also by low operating reliability because high vacuum must be maintained in the adsorption cooling system, especially in a water system. An adsorption cooling tube is a tube in which an adsorber, a condenser and an evaporator are all completely housed to construct a small scale adsorption cooling unit. In this work, an adsorption cooling tube and an adsorption heat pump with multi-cooling tubes are designed. A theoretical model is built to simulate the performance of the designed chiller. According to the results, the coefficient of performance and specific cooling power reach about 0.5 and 85 W/kg adsorbent, respectively, at the hot water temperature of 85 C. These results indicate that the designed heat pump in this work would provide a better choice if the operating reliability became crucial for an adsorption heat pump. (author)

  20. Design and performance prediction of an adsorption heat pump with multi-cooling tubes

    International Nuclear Information System (INIS)

    Wang, D.C.; Zhang, J.P.

    2009-01-01

    Widespread application of adsorption heat pumps has been delayed not only by poor heat and mass transfer performance but also by low operating reliability because high vacuum must be maintained in the adsorption cooling system, especially in a water system. An adsorption cooling tube is a tube in which an adsorber, a condenser and an evaporator are all completely housed to construct a small scale adsorption cooling unit. In this work, an adsorption cooling tube and an adsorption heat pump with multi-cooling tubes are designed. A theoretical model is built to simulate the performance of the designed chiller. According to the results, the coefficient of performance and specific cooling power reach about 0.5 and 85 W/kg adsorbent, respectively, at the hot water temperature of 85 deg. C. These results indicate that the designed heat pump in this work would provide a better choice if the operating reliability became crucial for an adsorption heat pump.

  1. Testing Numerical Models of Cool Core Galaxy Cluster Formation with X-Ray Observations

    Science.gov (United States)

    Henning, Jason W.; Gantner, Brennan; Burns, Jack O.; Hallman, Eric J.

    2009-12-01

    Using archival Chandra and ROSAT data along with numerical simulations, we compare the properties of cool core and non-cool core galaxy clusters, paying particular attention to the region beyond the cluster cores. With the use of single and double β-models, we demonstrate a statistically significant difference in the slopes of observed cluster surface brightness profiles while the cluster cores remain indistinguishable between the two cluster types. Additionally, through the use of hardness ratio profiles, we find evidence suggesting cool core clusters are cooler beyond their cores than non-cool core clusters of comparable mass and temperature, both in observed and simulated clusters. The similarities between real and simulated clusters supports a model presented in earlier work by the authors describing differing merger histories between cool core and non-cool core clusters. Discrepancies between real and simulated clusters will inform upcoming numerical models and simulations as to new ways to incorporate feedback in these systems.

  2. Experimental study of hybrid interface cooling system using air ventilation and nanofluid

    Science.gov (United States)

    Rani, M. F. H.; Razlan, Z. M.; Bakar, S. A.; Desa, H.; Wan, W. K.; Ibrahim, I.; Kamarrudin, N. S.; Bin-Abdun, Nazih A.

    2017-09-01

    The hybrid interface cooling system needs to be established to chill the battery compartment of electric car and maintained its ambient temperature inside the compartment between 25°C to 35°C. The air cooling experiment has been conducted to verify the cooling capacity, compressor displacement volume, dehumidifying value and mass flow rate of refrigerant (R-410A). At the same time, liquid cooling system is analysed theoretically by comparing the performance of two types of nanofluid, i.e., CuO + Water and Al2O3 + Water, based on the heat load generated inside the compartment. In order for the result obtained to be valid and reliable, several assumptions are considered during the experimental and theoretical analysis. Results show that the efficiency of the hybrid interface cooling system is improved as compared to the individual cooling system.

  3. Experimental feasibility study of radial injection cooling of three-pad radial air foil bearings

    Science.gov (United States)

    Shrestha, Suman K.

    referenced to the rotor surface speed for radial injection cooling. The mass flow rates for the radial injection were 0.032, 0.0432, 0.054 and 0.068 Kg/min, which result in average injection speed of 150, 200, 250 and 300% of rotor surface speed. Several thermocouples were attached at various circumferential directions of the bearing sleeve, two plenums, bearing holder and ball bearing housings to collect the temperature data of the bearing at 30krpm under 10lb of load. Both axial cooling and radial injection are effective cooling mechanism and effectiveness of both cooling methods is directly proportional to the total mass flow rates. However, axial cooling is slightly more efficient in controlling the average temperature of the bearing sleeve, but results in higher thermal gradient of the shaft along the axial direction and also higher thermal gradient of the bearing sleeve along the circumferential direction compared to the radial injection cooling. The smaller thermal gradient of the radial injection cooling is due to the direct cooling effect of the shaft by impinging jets. While the axial cooling has an effect on only the bearing, the radial injection has a cooling effect on both the bearing sleeve and shaft. It is considered the radial injection cooling needs to be further optimized in terms of number of injection holes and their locations.

  4. Atmospheric emissions from power plant cooling towers

    International Nuclear Information System (INIS)

    Micheletti, W.

    2006-01-01

    Power plant recirculated cooling systems (cooling towers) are not typically thought of as potential sources of air pollution. However, atmospheric emissions can be important considerations that may influence cooling tower design and operation. This paper discusses relevant U.S. environmental regulations for potential atmospheric pollutants from power plant cooling towers, and various methods for estimating and controlling these emissions. (orig.)

  5. Power semiconductor device adaptive cooling assembly

    NARCIS (Netherlands)

    2011-01-01

    The invention relates to a power semiconductor device (100) cooling assembly for cooling a power semiconductor device (100), wherein the assembly comprises an actively cooled heat sink (102) and a controller (208; 300), wherein the controller (208; 300) is adapted for adjusting the cooling

  6. Impingement jet cooling in gas turbines

    CERN Document Server

    Amano, R S

    2014-01-01

    Due to the requirement for enhanced cooling technologies on modern gas turbine engines, advanced research and development has had to take place in field of thermal engineering. Impingement jet cooling is one of the most effective in terms of cooling, manufacturability and cost. This is the first to book to focus on impingement cooling alone.

  7. Specific cooling capacity of liquid nitrogen

    Science.gov (United States)

    Kilgore, R. A.; Adcock, J. B.

    1977-01-01

    The assumed cooling process and the method used to calculate the specific cooling capacity of liquid nitrogen are described, and the simple equation fitted to the calculated specific cooling capacity data, together with the graphical form calculated values of the specific cooling capacity of nitrogen for stagnation temperatures from saturation to 350 K and stagnation pressures from 1 to 10 atmospheres, are given.

  8. 14 CFR 29.908 - Cooling fans.

    Science.gov (United States)

    2010-01-01

    ... 14 Aeronautics and Space 1 2010-01-01 2010-01-01 false Cooling fans. 29.908 Section 29.908... STANDARDS: TRANSPORT CATEGORY ROTORCRAFT Powerplant General § 29.908 Cooling fans. For cooling fans that are a part of a powerplant installation the following apply: (a) Category A. For cooling fans installed...

  9. A study of the passive cooling potential in simulated building in Latvian climate conditions

    Science.gov (United States)

    Prozuments, A.; Vanags, I.; Borodinecs, A.; Millers, R.; Tumanova, K.

    2017-10-01

    In this paper authors point out that overheating in buildings during summer season is a major problem in moderate and cold climates, not only in warm climate zones. Mostly caused by solar heat gains, especially in buildings with large glazed areas overheating is a common problem in recently constructed low-energy buildings. At the same time, comfort demands are increasing. While heating loads can be decreased by improving the insulation of the building envelope, cooling loads are also affecting total energy demand. Passive cooling solutions allow reduction of heat gains, and thus reducing the cooling loads. There is a significant night cooling potential with low temperatures at night during summer in moderate and cold climates. Night cooling is based on cooling of buildings thermal mass during the night and heat accumulation during the day. This approach allows to provide thermal comfort, reducing cooling loads during the day. Authors investigate thermal comfort requirements and causes for discomfort. Passive cooling methods are described. The simulation modeling is carried out to analyze impact of constructions and building orientation on energy consumption for cooling using the IDA-ICE software. Main criteria for simulation analysis are energy consumption for cooling and thermal comfort.

  10. Parametric study of closed wet cooling tower thermal performance

    Science.gov (United States)

    Qasim, S. M.; Hayder, M. J.

    2017-08-01

    The present study involves experimental and theoretical analysis to evaluate the thermal performance of modified Closed Wet Cooling Tower (CWCT). The experimental study includes: design, manufacture and testing prototype of a modified counter flow forced draft CWCT. The modification based on addition packing to the conventional CWCT. A series of experiments was carried out at different operational parameters. In view of energy analysis, the thermal performance parameters of the tower are: cooling range, tower approach, cooling capacity, thermal efficiency, heat and mass transfer coefficients. The theoretical study included develops Artificial Neural Network (ANN) models to predicting various thermal performance parameters of the tower. Utilizing experimental data for training and testing, the models simulated by multi-layer back propagation algorithm for varying all operational parameters stated in experimental test.

  11. Axions from cooling compact stars: pair-breaking processes

    Energy Technology Data Exchange (ETDEWEB)

    Keller, Jochen; Sedrakian, Armen [Frankfurt Univ. (Germany). Inst. fuer Theoretische Physik

    2013-07-01

    Once formed in a supernova explosion, a neutron star cools rapidly via neutrino emission during the first 10{sup 4}-10{sup 5} years of its life-time. Here we compute the axion emission rate from baryonic components of a star at temperatures below their respective critical temperatures T{sub c} for normal-superfluid phase transition. The axion production is driven by a charge neutral weak process, associated with Cooper pair breaking and recombination. The requirement that the axion cooling does not overshadow the neutrino cooling yields a lower bound on the axion decay constant f{sub a} > 6 x 10{sup 9} T{sup -1}{sub c9} GeV, with T{sub c9} = T{sub c}/10{sup 9} K. This translates into an upper bound on the axion mass m{sub a} < 10{sup -3} T{sub c9} eV.

  12. Axions from cooling compact stars: Pair-breaking processes

    Energy Technology Data Exchange (ETDEWEB)

    Keller, Jochen [Institute for Theoretical Physics, J.W. Goethe-University, D-60438 Frankfurt am Main (Germany); Sedrakian, Armen, E-mail: sedrakian@th.physik.uni-frankfurt.de [Institute for Theoretical Physics, J.W. Goethe-University, D-60438 Frankfurt am Main (Germany)

    2013-01-02

    Once formed in a supernova explosion, a neutron star cools rapidly via neutrino emission during the first 10{sup 4}-10{sup 5} yr of its life-time. Here we compute the axion emission rate from baryonic components of a star at temperatures below their respective critical temperatures T{sub c} for normal-superfluid phase transition. The axion production is driven by a charge neutral weak process, associated with Cooper pair breaking and recombination. The requirement that the axion cooling does not overshadow the neutrino cooling puts a lower bound on the axion decay constant f{sub a}>6 Multiplication-Sign 10{sup 9}T{sub c9}{sup -1} GeV, with T{sub c9}=T{sub c}/10{sup 9} K. This translates into an upper bound on the axion mass m{sub a}<10{sup -3}T{sub c9} eV.

  13. A Thermal Test System for Helmet Cooling Studies

    Directory of Open Access Journals (Sweden)

    Shaun Fitzgerald

    2018-02-01

    Full Text Available One of the primary causes of discomfort to both irregular and elite cyclists is heat entrapment by a helmet resulting in overheating and excessive sweating of the head. To accurately assess the cooling effectiveness of bicycle helmets, a heated plastic thermal headform has been developed. The construction consists of a 3D-printed headform of low thermal conductivity with an internal layer of high thermal mass that is heated to a constant uniform temperature by an electrical heating element. Testing is conducted in a wind tunnel where the heater power remains constant and the resulting surface temperature distribution is directly measured by 36 K-type thermocouples embedded within the surface of the head in conjunction with a thermal imaging camera. Using this new test system, four bicycle helmets were studied in order to measure their cooling abilities and to identify ‘hot spots’ where cooling performance is poor.

  14. Dry storage systems with free convection air cooling

    International Nuclear Information System (INIS)

    Kioes, S.R.

    1980-01-01

    Several design principles to remove heat from the spent fuel by free air convection are illustrated and described. The key safety considerations were felt to be: loss of coolant is impossible as the passive system uses air as a coolant; overheating is precluded because as the temperatures of the containers rises the coolant flow rate increases; mass of the storage building provides a large heat sink and therefore a rapid temperature rise is impossible; and lack of any active external support requirements makes the cooling process less likely to equipment or operator failures. An example of this type of storage already exists. The German HTGR is operated with spherical graphite fuel elements which are stored in canister and in storage cells. The concept is a double cooling system with free convection inside the cells and heat exchange via two side walls of the cell to the ambient air in the cooling ducts. Technical description of the TN 1300 cask is also presented

  15. Operational cooling tower model (CTTOOL V1.0)

    Energy Technology Data Exchange (ETDEWEB)

    Aleman, S. [Savannah River Site (SRS), Aiken, SC (United States). Savannah River National Lab. (SRNL); LocalDomainServers, L. [Savannah River Site (SRS), Aiken, SC (United States). Savannah River National Lab. (SRNL); Garrett, A. [Savannah River Site (SRS), Aiken, SC (United States). Savannah River National Lab. (SRNL)

    2015-01-01

    Mechanical draft cooling towers (MDCT’s) are widely used to remove waste heat from industrial processes, including suspected proliferators of weapons of mass destruction (WMD). The temperature of the air being exhausted from the MDCT is proportional to the amount of thermal energy being removed from the process cooling water, although ambient weather conditions and cooling water flow rate must be known or estimated to calculate the rate of thermal energy dissipation (Q). It is theoretically possible to derive MDCT air exhaust temperatures from thermal images taken from a remote sensor. A numerical model of a MDCT is required to translate the air exhaust temperature to a Q. This report describes the MDCT model developed by the Problem Centered Integrated Analysis (PCIA) program that was designed to perform those computational tasks. The PCIA program is a collaborative effort between the Savannah River National Laboratory (SRNL), the Northrop-Grumman Corporation (NG) and the Aerospace Corporation (AERO).

  16. Cool colored coating and phase change materials as complementary cooling strategies for building cooling load reduction in tropics

    International Nuclear Information System (INIS)

    Lei, Jiawei; Kumarasamy, Karthikeyan; Zingre, Kishor T.; Yang, Jinglei; Wan, Man Pun; Yang, En-Hua

    2017-01-01

    Highlights: • Cool colored coating and PCM are two complementary passive cooling strategies. • A PCM cool colored coating system is developed. • The coating reduces cooling energy by 8.5% and is effective yearly in tropical Singapore. - Abstract: Cool colored coating and phase change materials (PCM) are two passive cooling strategies often used separately in many studies and applications. This paper investigated the integration of cool colored coating and PCM for building cooling through experimental and numerical studies. Results showed that cool colored coating and PCM are two complementary passive cooling strategies that could be used concurrently in tropical climate where cool colored coating in the form of paint serves as the “first protection” to reflect solar radiation and a thin layer of PCM forms the “second protection” to absorb the conductive heat that cannot be handled by cool paint. Unlike other climate zones where PCM is only seasonally effective and cool paint is only beneficial during summer, the application of the proposed PCM cool colored coating in building envelope could be effective throughout the entire year with a monthly cooling energy saving ranging from 5 to 12% due to the uniform climatic condition all year round in tropical Singapore.

  17. New cooling regulation technology of secondary cooling station in DCS

    Energy Technology Data Exchange (ETDEWEB)

    Zhou, Xuan; Yan, Jun-wei; Zhu, Dong-sheng; Liu, Fei-long; Lei, Jun-xi [The Key Lab of Enhanced Heat Transfer and Energy Conservation of Ministry of Education, School of Chemical and Energy Engineering, South China University of Technology, Guangzhou 510641 (China); Liang, Lie-quan [The Key Lab of E-Commerce Market Application Technology of Guangdong Province, Guangdong University of Business Studies, Guangzhou 510320 (China)

    2008-07-01

    In this paper, a kind of new control technology of secondary cooling station (constant flow rate/variable temperature difference) in district cooling system (DCS) is proposed in view of serial consequences including low efficiency and high operating cost caused by low temperature of supply water in DCS. This technology has been applied in DCS of Guangzhou University City. The result has already indicated that such technology can increase the supply and return temperatures of buildings, return water temperature of primary side in the plate heat exchanger unit, moreover, the efficiency of both the chiller and the whole system are improved significantly. (author)

  18. Beam Cooling with ionisation losses

    CERN Document Server

    Rubbia, Carlo; Kadi, Y; Vlachoudis, V

    2006-01-01

    A novel type of particle "cooling", called Ionization Cooling, is applicable to slow (v of the order of 0.1c) ions stored in a small ring. The many traversals through a thin foil enhance the nuclear reaction probability, in a steady configuration in which ionisation losses are recovered at each turn by a RF-cavity. For a uniform target "foil" the longitudinal momentum spread diverges exponentially since faster (slower) particles ionise less (more) than the average. In order to "cool" also longitudinally, a chromaticity has to be introduced with a wedge shaped "foil". Multiple scattering and straggling are then "cooled" in all three dimensions, with a method similar to the one of synchrotron cooling, but valid for low energy ions. Particles then stably circulate in the beam indefinitely, until they undergo for instance nuclear processes in the thin target foil. This new method is under consideration for the nuclear production of a few MeV/A ion beams. Simple reactions, for instance Li 7 + D Li 8 + p, are more ...

  19. Newton's law of cooling revisited

    International Nuclear Information System (INIS)

    Vollmer, M

    2009-01-01

    The cooling of objects is often described by a law, attributed to Newton, which states that the temperature difference of a cooling body with respect to the surroundings decreases exponentially with time. Such behaviour has been observed for many laboratory experiments, which led to a wide acceptance of this approach. However, the heat transfer from any object to its surrounding is not only due to conduction and convection but also due to radiation. The latter does not vary linearly with temperature difference, which leads to deviations from Newton's law. This paper presents a theoretical analysis of the cooling of objects with a small Biot number. It is shown that Newton's law of cooling, i.e. simple exponential behaviour, is mostly valid if temperature differences are below a certain threshold which depends on the experimental conditions. For any larger temperature differences appreciable deviations occur which need the complete nonlinear treatment. This is demonstrated by results of some laboratory experiments which use IR imaging to measure surface temperatures of solid cooling objects with temperature differences of up to 300 K.

  20. TPX heating and cooling system

    International Nuclear Information System (INIS)

    Kungl, D.J.; Knutson, D.S.; Costello, J.; Stoenescu, S.; Yemin, L.

    1995-01-01

    TPX, while having primarily super-conducting coils that do not require water cooling, still has very significant water cooling requirements for the plasma heating systems, vacuum vessel, plasma facing components, diagnostics, and ancillary equipment. This is accentuated by the 1000-second pulse requirement. Two major design changes, which have significantly affected the TPX Heating and Cooling System, have been made since the conceptual design review in March of 1993. This paper will discuss these changes and review the current status of the conceptual design. The first change involves replacing the vacuum vessel neutron shielding configuration of lead/glass composite tile by a much simpler and more reliable borated water shield. The second change reduces the operating temperature of the vacuum vessel from 150 C to ≥50 C. With this temperature reduction, all in-vessel components and the vessel will be supplied by coolant at a common ≥50 C inlet temperature. In all, six different heating and cooling supply requirements (temperature, pressure, water quality) for the various TPX components must be met. This paper will detail these requirements and provide an overview of the Heating and Cooling System design while focusing on the ramifications of the TPX changes described above

  1. Helium-cooled nuclear reactor

    International Nuclear Information System (INIS)

    Longton, P.B.; Cowen, H.C.

    1975-01-01

    In helium cooled HTR's there is a by-pass circuit for cleaning purposes in addition to the main cooling circuit. This is to remove such impurities as hydrogen, methane, carbon monoxide and water from the coolant. In this system, part of the coolant successively flows first through an oxidation bed of copper oxide and an absorption bed of silica gel, then through activated charcoal or a molecular sieve. The hydrogen and carbon monoxide impurities are absorbed and the dry gas is returned to the main cooling circuit. To lower the hydrogen/water ratio without increasing the hydrogen fraction in the main cooling circuit, some of the hydrogen fraction converted into water is added to the cooling circuit. This is done, inter alia, by bypassing the water produced in the oxidation bed before it enters the absorption bed. The rest of the by-pass circuit, however, also includes an absorption bed with a molecular sieve. This absorbs the oxidized carbon monoxide fraction. In this way, such side effects as the formation of additional methane, carburization of the materials of the by-pass circuit or loss of graphite are avoided. (DG/RF) [de

  2. Cooling clothing utilizing water evaporation

    DEFF Research Database (Denmark)

    Sakoi, Tomonori; Tominaga, Naoto; Melikov, Arsen Krikor

    2014-01-01

    . To prevent wet discomfort, the T-shirt was made of a polyester material having a water-repellent silicon coating on the inner surface. The chest, front upper arms, and nape of the neck were adopted as the cooling areas of the human body. We conducted human subject experiments in an office with air......We developed cooling clothing that utilizes water evaporation to cool the human body and has a mechanism to control the cooling intensity. Clean water was supplied to the outer surface of the T-shirt of the cooling clothing, and a small fan was used to enhance evaporation on this outer surface...... temperature ranging from 27.4 to 30.7 °C to establish a suitable water supply control method. A water supply control method that prevents water accumulation in the T-shirt and water dribbling was validated; this method is established based on the concept of the water evaporation capacity under the applied...

  3. To cool, but not too cool: that is the question--immersion cooling for hyperthermia.

    Science.gov (United States)

    Taylor, Nigel A S; Caldwell, Joanne N; Van den Heuvel, Anne M J; Patterson, Mark J

    2008-11-01

    Patient cooling time can impact upon the prognosis of heat illness. Although ice-cold-water immersion will rapidly extract heat, access to ice or cold water may be limited in hot climates. Indeed, some have concerns regarding the sudden cold-water immersion of hyperthermic individuals, whereas others believe that cutaneous vasoconstriction may reduce convective heat transfer from the core. It was hypothesized that warmer immersion temperatures, which induce less powerful vasoconstriction, may still facilitate rapid cooling in hyperthermic individuals. Eight males participated in three trials and were heated to an esophageal temperature of 39.5 degrees C by exercising in the heat (36 degrees C, 50% relative humidity) while wearing a water-perfusion garment (40 degrees C). Subjects were cooled using each of the following methods: air (20-22 degrees C), cold-water immersion (14 degrees C), and temperate-water immersion (26 degrees C). The time to reach an esophageal temperature of 37.5 degrees C averaged 22.81 min (air), 2.16 min (cold), and 2.91 min (temperate). Whereas each of the between-trial comparisons was statistically significant (P < 0.05), cooling in temperate water took only marginally longer than that in cold water, and one cannot imagine that the 45-s cooling time difference would have any meaningful physiological or clinical implications. It is assumed that this rapid heat loss was due to a less powerful peripheral vasoconstrictor response, with central heat being more rapidly transported to the skin surface for dissipation. Although the core-to-water thermal gradient was much smaller with temperate-water cooling, greater skin and deeper tissue blood flows would support a superior convective heat delivery. Thus, a sustained physiological mechanism (blood flow) appears to have countered a less powerful thermal gradient, resulting in clinically insignificant differences in heat extraction between the cold and temperate cooling trials.

  4. Wireless sensor network adaptive cooling

    Energy Technology Data Exchange (ETDEWEB)

    Mitchell, T. [SynapSense Corp., Folsom, CA (United States)

    2009-07-01

    Options for reducing data centre cooling energy requirements and their cost savings were discussed with particular reference to a wireless control solution developed by SynapSense Corporation. The wireless sensor network reduces cooling energy use at data centres by providing improved air flow management through the installation of cold aisle containment. The use of this low cost, non-invasive wireless sensor network has reduced the cooling energy use in a data center at BC Hydro by 30 per cent. The system also reduced the server and storage fan energy by 3 per cent by maintaining inlet air temperature below ASHRAE recommended operating range. The distribution of low power, low cost wireless sensors has enabled visualization tools that are changing the way that data centres are managed. The annual savings have been estimated at 4,560,000 kWh and the annual carbon dioxide abatement is approximately 1,400 metric tons. tabs., figs.

  5. Cooled Beam Diagnostics on LEIR

    CERN Document Server

    Tranquille, G; Carli, C; Chanel, M; Prieto, V; Sautier, R; Tan, J

    2008-01-01

    Electron cooling is central in the preparation of dense bunches of lead beams for the LHC. Ion beam pulses from the LINAC3 are transformed into short highbrightness bunches using multi-turn injection, cooling and accumulation in the Low Energy Ion Ring, LEIR [1]. The cooling process must therefore be continuously monitored in order to guarantee that the lead ions have the required characteristics in terms of beam size and momentum spread. In LEIR a number of systems have been developed to perform these measurements. These include Schottky diagnostics, ionisation profile monitors and scrapers. Along with their associated acquisition and analysis software packages these instruments have proved to be invaluable for the optimisation of the electron cooler.

  6. Assessment of cooling tower impact

    International Nuclear Information System (INIS)

    1986-01-01

    This guideline describes the state of the art of the meteorological impact of wet cooling towers that are about 80 m to 170 m high, and have a waste heat power in the range of 1000 MW and 2500 MW. The physical processes occurring in the lowest layer of the atmosphere and their impact in the dispersion of cooling tower emissions are represented. On the basis of these facts, the impact on weather or climate in the vicinity of a high wet cooling tower is estimated. Thereby the results of the latest investigations (observations, measurements, and modeling) on the different locations of plants as well as their different power and construction types are taken into consideration. (orig.) [de

  7. Forced draft wet cooling systems

    International Nuclear Information System (INIS)

    Daubert, A.; Caudron, L.; Viollet, P.L.

    1975-01-01

    The disposal of the heat released from a 1000MW power plant needs a natural draft tower of about 130m of diameter at the base, and 170m height, or a cooling system with a draft forced by about forty vans, a hundred meters in diameter, and thirty meters height. The plumes from atmospheric cooling systems form, in terms of fluid mechanics, hot jets in a cross current. They consist in complex flows that must be finely investigated with experimental and computer means. The study, currently being performed at the National Hydraulics Laboratory, shows that as far as the length and height of visible plumes are concerned, the comparison is favorable to some types of forced draft cooling system, for low and medium velocities, (below 5 or 6m/s at 10m height. Beyond these velocities, the forced draft sends the plume up to smaller heights, but the plume is generally more dilute [fr

  8. Emergency cooling device for reactors

    International Nuclear Information System (INIS)

    Inoue, Hisamichi; Naito, Masanori; Sato, Chikara; Chino, Koichi.

    1975-01-01

    Object: To pour high pressure cooling water into a core, when coolant is lost in a boiling water reactor, thereby restraining the rise of fuel cladding. Structure: A control rod guiding pipe, which is moved up and down by a control rod, is mounted on the bottom of a pressure vessel, the control rod guiding pipe being communicated with a high pressure cooling water tank positioned externally of the pressure vessel, and a differential in pressure between the pressure vessel and the aforesaid tank is detected when trouble of coolant loss occurs, and the high pressure cooling water within the tank is poured into the core through the control rod guiding pipe to restrain the rise of fuel cladding. (Kamimura, M.)

  9. Emergency cooling apparatus for reactor

    International Nuclear Information System (INIS)

    Sakaguchi, S.

    1975-01-01

    A nuclear reactor is described which has the core surrounded by coolant and an inert cover gas all sealed within a container, an emergency cooling apparatus employing a detector that will detect cover gas or coolant, particularly liquid sodium, leaking from the container of the reactor, to release a heat exchange material that is inert to the coolant, which heat exchange material is cooled during operation of the reactor. The heat exchange material may be liquid niitrogen or a combination of spheres and liquid nitrogen, for example, and is introduced so as to contact the coolant that has leaked from the container quickly so as to rapidly cool the coolant to prevent or extinguish combustion. (Official Gazette)

  10. Cooling many particles at once

    International Nuclear Information System (INIS)

    Vitiello, G.; Knight, P.; Beige, A.

    2005-01-01

    Full text: We propose a mechanism for the collective cooling of a large number N of trapped particles to very low temperatures by applying red-detuned laser fields and coupling them to the quantized field inside an optical resonator. The dynamics is described by what appear to be rate equations but where some of the major quantities are coherences and not populations. It is shown that the cooperative behaviour of the system provides cooling rates of the same order of magnitude as the cavity decay rate. This constitutes a significant speed-up compared to other cooling mechanisms since this rate can, in principle, be as large as the square root of N times the single-particle cavity or laser coupling constants. (author)

  11. Deposit control in process cooling water systems

    International Nuclear Information System (INIS)

    Venkataramani, B.

    1981-01-01

    In order to achieve efficient heat transfer in cooling water systems, it is essential to control the fouling of heat exchanger surfaces. Solubilities of scale forming salts, their growth into crystals, and the nature of the surfaces play important roles in the deposition phenomenon. Condensed phosphates, organic polymers and compounds like phosphates are effective in controlling deposition of scale forming salts. The surface active agents inhibit crystal growth and modify the crystals of the scale forming salts, and thus prevent deposition of dense, uniformly structured crystalline mass on the heat transfer surface. Understanding the mechanism of biofouling is essential to control it by surface active agents. Certain measures taken in the plant, such as back flushing, to control scaling, sometimes may not be effective and can be detrimental to the system itself. (author)

  12. Permeability enhancement by shock cooling

    Science.gov (United States)

    Griffiths, Luke; Heap, Michael; Reuschlé, Thierry; Baud, Patrick; Schmittbuhl, Jean

    2015-04-01

    The permeability of an efficient reservoir, e.g. a geothermal reservoir, should be sufficient to permit the circulation of fluids. Generally speaking, permeability decreases over the life cycle of the geothermal system. As a result, is usually necessary to artificially maintain and enhance the natural permeability of these systems. One of the methods of enhancement -- studied here -- is thermal stimulation (injecting cold water at low pressure). This goal of this method is to encourage new thermal cracks within the reservoir host rocks, thereby increasing reservoir permeability. To investigate the development of thermal microcracking in the laboratory we selected two granites: a fine-grained (Garibaldi Grey granite, grain size = 0.5 mm) and a course-grained granite (Lanhelin granite, grain size = 2 mm). Both granites have an initial porosity of about 1%. Our samples were heated to a range of temperatures (100-1000 °C) and were either cooled slowly (1 °C/min) or shock cooled (100 °C/s). A systematic microstructural (2D crack area density, using standard stereological techniques, and 3D BET specific surface area measurements) and rock physical property (porosity, P-wave velocity, uniaxial compressive strength, and permeability) analysis was undertaken to understand the influence of slow and shock cooling on our reservoir granites. Microstructurally, we observe that the 2D crack surface area per unit volume and the specific surface area increase as a result of thermal stressing, and, for the same maximum temperature, crack surface area is higher in the shock cooled samples. This observation is echoed by our rock physical property measurements: we see greater changes for the shock cooled samples. We can conclude that shock cooling is an extremely efficient method of generating thermal microcracks and modifying rock physical properties. Our study highlights that thermal treatments are likely to be an efficient method for the "matrix" permeability enhancement of

  13. The atomic coilgun and single-photon cooling

    Energy Technology Data Exchange (ETDEWEB)

    Libson, Adam, E-mail: alibson@physics.utexas.edu; Bannerman, Stephen Travis; Clark, Robert J.; Mazur, Thomas R.; Raizen, Mark G. [University of Texas at Austin, Center for Nonlinear Dynamics and Department of Physics (United States)

    2012-12-15

    As the simplest atom, hydrogen has a unique role as a testing ground of fundamental physics. Precision measurements of the hydrogen atomic structure provide stringent tests of current theory, while tritium is an excellent candidate for studies of {beta}-decay and possible measurement of the neutrino rest mass. Furthermore, precision measurement of antihydrogen would allow for tests of fundamental symmetries. Methods demonstrated in our lab provide an avenue by which hydrogen isotopes can be trapped and cooled to near the recoil limit. The atomic coilgun, which we have demonstrated with metastable neon and molecular oxygen, provides a general method of stopping a supersonic beam of any paramagnetic species. This tool provides a method by which hydrogen and its isotopes can be magnetically trapped at around 100 mK using a room temperature apparatus. Another tool developed in our laboratory, single-photon cooling, allows further cooling of a trapped sample to near the recoil limit. This cooling method has already been demonstrated on a trapped sample of rubidium. We report on the progress of implementing these methods to trap and cool hydrogen isotopes, and on the prospects for using cold trapped hydrogen for precision measurements.

  14. Exergy optimization of cooling tower for HGSHP and HVAC applications

    International Nuclear Information System (INIS)

    Singh, Kuljeet; Das, Ranjan

    2017-01-01

    Highlights: • Development of new correlations for outlet parameters with all inlet parameters. • Simultaneous achievement of required heat load and minimum exergy destruction. • Multiple combinations of parameters found for same heat load at minimized exergy. • Study useful for optimum control of cooling tower under varying ambient conditions. • Generalized optimization study can be implemented for any mechanical cooling tower. - Abstract: In the present work, a constrained inverse optimization method for building cooling applications is proposed to control the mechanical draft wet cooling tower by minimizing the exergy destruction and satisfying an imposed heat load under varying environmental conditions. The optimization problem is formulated considering the cooling dominated heating, ventilation and air conditioning (HVAC) and hybrid ground source heat pump (HGSHP). As per the requirement, new second degree correlations for the tower outlet parameters (water temperature, air dry and wet-bulb temperatures) with five inlet parameters (dry-bulb temperature, relative humidity, water inlet temperature, water and air mass flow rates) are developed. The Box–Behnken design response surface method is implemented for developing the correlations. Subsequently, the constrained optimization problem is solved using augmented Lagrangian genetic algorithm. This work further developed optimum inlet parameters operating curves for the HGSHP and the HVAC systems under varying environmental conditions aimed at minimizing the exergy destruction along with the fulfillment of the required heat load.

  15. Simulated Measurements of Cooling in Muon Ionization Cooling Experiment

    Energy Technology Data Exchange (ETDEWEB)

    Mohayai, Tanaz [IIT, Chicago; Rogers, Chris [Rutherford; Snopok, Pavel [Fermilab

    2016-06-01

    Cooled muon beams set the basis for the exploration of physics of flavour at a Neutrino Factory and for multi-TeV collisions at a Muon Collider. The international Muon Ionization Cooling Experiment (MICE) measures beam emittance before and after an ionization cooling cell and aims to demonstrate emittance reduction in muon beams. In the current MICE Step IV configuration, the MICE muon beam passes through low-Z absorber material for reducing its transverse emittance through ionization energy loss. Two scintillating fiber tracking detectors, housed in spectrometer solenoid modules upstream and downstream of the absorber are used for reconstructing position and momentum of individual muons for calculating transverse emittance reduction. However, due to existence of non-linear effects in beam optics, transverse emittance growth can be observed. Therefore, it is crucial to develop algorithms that are insensitive to this apparent emittance growth. We describe a different figure of merit for measuring muon cooling which is the direct measurement of the phase space density.

  16. Beam Dynamics With Electron Cooling

    CERN Document Server

    Uesugi, T; Noda, K; Shibuya, S; Syresin, E M

    2004-01-01

    Electron cooling experiments have been carried out at HIMAC in order to develop new technologies in heavy-ion therapy and related researches. The cool-stacking method, in particular, has been studied to increase the intensity of heavy-ions. The maximum stack intensity was 2 mA, above which a fast ion losses occurred simulatneously with the vertical coherent oscillations. The instability depends on the working point, the stacked ion-density and the electron-beam density. The instability was suppressed by reducing the peak ion-density with RF-knockout heating.

  17. Magnetization effects in electron cooling

    International Nuclear Information System (INIS)

    Derbenev, Ya.S.; Skrinskii, A.N.

    A study is made of cooling in an electron beam which is accompanied by a strong magnetic field and a longitudinal temperature low compared to the transverse temperature. It is shown that the combination of two factors--magnetization and low longitudinal temperature of electrons--can sharply increase the cooling rate of a heavy-particle beam when the velocity spread is smaller than the transverse spread of electron velocities and reduce its temperature to the longitudinal temperature of the electrons, which is lower than that of the cathode by several orders of magnitude

  18. Gas-cooled nuclear reactor

    International Nuclear Information System (INIS)

    1974-01-01

    The invention aims at simplying gas-cooled nuclear reactors. For the cooling gas, the reactor is provided with a main circulation system comprising one or several energy conversion main groups such as gas turbines, and an auxiliary circulation system comprising at least one steam-generating boiler heated by the gas after its passage through the reactor core and adapted to feed a steam turbine with motive steam. The invention can be applied to reactors the main groups of which are direct-cycle gas turbines [fr

  19. Lamination cooling system formation method

    Science.gov (United States)

    Rippel, Wally E [Altadena, CA; Kobayashi, Daryl M [Monrovia, CA

    2009-05-12

    An electric motor, transformer or inductor having a cooling system. A stack of laminations have apertures at least partially coincident with apertures of adjacent laminations. The apertures define straight or angled cooling-fluid passageways through the lamination stack. Gaps between the adjacent laminations are sealed by injecting a heat-cured sealant into the passageways, expelling excess sealant, and heat-curing the lamination stack. Manifold members adjoin opposite ends of the lamination stack, and each is configured with one or more cavities to act as a manifold to adjacent passageway ends. Complex manifold arrangements can create bidirectional flow in a variety of patterns.

  20. Cooling towers in the landscape

    International Nuclear Information System (INIS)

    Boernke, F.

    1977-01-01

    The cooling tower as a large technical construction is one of the most original industrial buildings. It sticks out as an outlandish element in our building landscape, a giant which cannot be compared with the traditional forms of technical buildings. If it is constructed as a reinforced-concrete hyperboloid, its shape goes beyond all limits of building construction. Judgment of these highly individual constructions is only possible by applying a novel standard breaking completely with tradition. This new scale of height and dimension in industrial construction, and in particular the modern cooling tower, requires painstaking care and design and adaptation to the landscape around it. (orig.) [de

  1. Dynamic analysis of cooling towers

    International Nuclear Information System (INIS)

    Bittnar, Z.

    1987-01-01

    Natural draught cooling towers are shell structures subjected to random vibrations due to wind turbulence and earthquake. The need of big power plant units has initiated the design of very large cooling towers. The random response of such structures may be analysed using a spectral approach and assuming a linear behaviour of the structure. As the modal superposition method is the most suitable procedure for this purpose it is necessary to determine the natural frequencies and mode shapes with adequate accuracy. (orig./GL)

  2. Investigations on passive containment cooling

    International Nuclear Information System (INIS)

    Knebel, J.U.; Cheng, X.; Neitzel, H.J.; Erbacher, F.J.; Hofmann, F.

    1997-01-01

    The composite containment design for advanced LWRs that has been examined under the PASCO project is a promising design concept for purely passive decay heat removal after a severe accident. The passive cooling processes applied are natural convection and radiative heat transfer. Heat transfer through the latter process removes at an emission coefficient of 0.9 about 50% of the total heat removed via the steel containment, and thus is an essential factor. The heat transferring surfaces must have a high emission coefficient. The sump cooling concept examined under the SUCO project achieves a steady, natural convection-driven flow from the heat source to the heat sink. (orig./CB) [de

  3. Models of steady state cooling flows in elliptical galaxies

    International Nuclear Information System (INIS)

    Vedder, P.W.; Trester, J.J.; Canizares, C.R.

    1988-01-01

    A comprehensive set of steady state models for spherically symmetric cooling flows in early-type galaxies is presented. It is found that a reduction of the supernova (SN) rate in ellipticals produces a decrease in the X-ray luminosity of galactic cooling flows and a steepening of the surface brightness profile. The mean X-ray temperature of the cooling flow is not affected noticeably by a change in the SN rate. The external pressure around a galaxy does not markedly change the luminosity of the gas within the galaxy but does change the mean temperature of the gas. The presence of a dark matter halo in a galaxy only changes the mean X-ray temperature slightly. The addition of a distribution of mass sinks which remove material from the general accretion flow reduces L(X) very slightly, flattens the surface brightness profile, and reduces the central surface brightness level to values close to those actually observed. A reduction in the stellar mass-loss rate only slightly reduces the X-ray luminosity of the cooling flow and flattens the surface brightness by a small amount. 37 references

  4. NEW COOLING SEQUENCES FOR OLD WHITE DWARFS

    International Nuclear Information System (INIS)

    Renedo, I.; Althaus, L. G.; GarcIa-Berro, E.; Miller Bertolami, M. M.; Romero, A. D.; Corsico, A. H.; Rohrmann, R. D.

    2010-01-01

    We present full evolutionary calculations appropriate for the study of hydrogen-rich DA white dwarfs. This is done by evolving white dwarf progenitors from the zero-age main sequence, through the core hydrogen-burning phase, the helium-burning phase, and the thermally pulsing asymptotic giant branch phase to the white dwarf stage. Complete evolutionary sequences are computed for a wide range of stellar masses and for two different metallicities, Z = 0.01, which is representative of the solar neighborhood, and Z = 0.001, which is appropriate for the study of old stellar systems, like globular clusters. During the white dwarf cooling stage, we self-consistently compute the phase in which nuclear reactions are still important, the diffusive evolution of the elements in the outer layers and, finally, we also take into account all the relevant energy sources in the deep interior of the white dwarf, such as the release of latent heat and the release of gravitational energy due to carbon-oxygen phase separation upon crystallization. We also provide colors and magnitudes for these sequences, based on a new set of improved non-gray white dwarf model atmospheres, which include the most up-to-date physical inputs like the Lyα quasi-molecular opacity. The calculations are extended down to an effective temperature of 2500 K. Our calculations provide a homogeneous set of evolutionary cooling tracks appropriate for mass and age determinations of old DA white dwarfs and for white dwarf cosmochronology of the different Galactic populations.

  5. Control of cooling processes with forced-air aimed at efficiency energetic and the cooling time of horticultural products

    Energy Technology Data Exchange (ETDEWEB)

    Silva, Joao Carlos Teles Ribeiro da; Mederos, Barbara Janet Teruel [Universidade Estadual de Campinas (FEAGRI/UNICAMP), SP (Brazil). Fac. de Engenharia Agricola

    2008-07-01

    The application of cooling technologies for the conservation of horticultural products is one of the stages the Cold Chain. In Brazil particularly, as a country with tropical climate with average high temperature almost all year, the application of these technologies is very important because the shelf-life of fresh horticultural products, with quality that the market demands, is directly related to temperature. In particular, the systems of forced air cooling operate according to the flow of air predetermined in the project according to the quantity of product to cool. When actual conditions differ from considerations of the project, as to the quantity of product, a situation very common in agricultural properties and packing houses, the fan will continue providing the nominal flow rate, causing alteration of the cost-benefit relation of process. This project aims at the development of a micro-processing equipment (output current of 4 to 20 mA) to control the rotational speed of the motor of the fan systems, air forced through an inverter of frequency. The objective is development of a Man-Machine Interface, based on an algorithm, which, through the introduction of mass product data and the automatic acquisition of data from temperature of the product and the camera, is calculated the cooling time. The rotation of the engine fan will be amended automatically, to maintain air flow with a proper cost-benefit, in connection with the reduction of cooling time, energy consumption, for the increasing the shelf life of products. (author)

  6. Pilot-scale cooling tower to evaluate corrosion, scaling, and biofouling control strategies for cooling system makeup water.

    Science.gov (United States)

    Chien, S H; Hsieh, M K; Li, H; Monnell, J; Dzombak, D; Vidic, R

    2012-02-01

    Pilot-scale cooling towers can be used to evaluate corrosion, scaling, and biofouling control strategies when using particular cooling system makeup water and particular operating conditions. To study the potential for using a number of different impaired waters as makeup water, a pilot-scale system capable of generating 27,000 kJ∕h heat load and maintaining recirculating water flow with a Reynolds number of 1.92 × 10(4) was designed to study these critical processes under conditions that are similar to full-scale systems. The pilot-scale cooling tower was equipped with an automatic makeup water control system, automatic blowdown control system, semi-automatic biocide feeding system, and corrosion, scaling, and biofouling monitoring systems. Observed operational data revealed that the major operating parameters, including temperature change (6.6 °C), cycles of concentration (N = 4.6), water flow velocity (0.66 m∕s), and air mass velocity (3660 kg∕h m(2)), were controlled quite well for an extended period of time (up to 2 months). Overall, the performance of the pilot-scale cooling towers using treated municipal wastewater was shown to be suitable to study critical processes (corrosion, scaling, biofouling) and evaluate cooling water management strategies for makeup waters of complex quality.

  7. Core Seismic Tests for a Sodium-Cooled Fast Reactor

    Energy Technology Data Exchange (ETDEWEB)

    Koo, Gyeong Hoi; Lee, J. H

    2007-01-15

    This report describes the results of the comparison of the core seismic responses between the test and the analysis for the reduced core mock-up of a sodium-cooled fast reactor to verify the FAMD (Fluid Added Mass and Damping) code and SAC-CORE (Seismic Analysis Code for CORE) code, which implement the application algorithm of a consistent fluid added mass matrix including the coupling terms. It was verified that the narrow fluid gaps between the duct assemblies significantly affect the dynamic characteristics of the core duct assemblies and it becomes stronger as a number of duct increases within a certain level. As conclusion, from the comparison of the results between the tests and the analyses, it is verified that the FAMD code and the SAC-CORE code can give an accurate prediction of a complex core seismic behavior of the sodium-cooled fast reactor.

  8. Optimal design of gas adsorption refrigerators for cryogenic cooling

    Science.gov (United States)

    Chan, C. K.

    1983-01-01

    The design of gas adsorption refrigerators used for cryogenic cooling in the temperature range of 4K to 120K was examined. The functional relationships among the power requirement for the refrigerator, the system mass, the cycle time and the operating conditions were derived. It was found that the precool temperature, the temperature dependent heat capacities and thermal conductivities, and pressure and temperature variations in the compressors have important impacts on the cooling performance. Optimal designs based on a minimum power criterion were performed for four different gas adsorption refrigerators and a multistage system. It is concluded that the estimates of the power required and the system mass are within manageable limits in various spacecraft environments.

  9. The cooling time of white dwarfs produced from type Ia supernovae

    International Nuclear Information System (INIS)

    Meng Xiangcun; Yang Wuming; Li Zhongmu

    2010-01-01

    Type Ia supernovae (SNe Ia) play a key role in measuring cosmological parameters, in which the Phillips relation is adopted. However, the origin of the relation is still unclear. Several parameters are suggested, e.g. the relative content of carbon to oxygen (C/O) and the central density of the white dwarf (WD) at ignition. These parameters are mainly determined by the WD's initial mass and its cooling time, respectively. Using the progenitor model developed by Meng and Yang, we present the distributions of the initial WD mass and the cooling time. We do not find any correlation between these parameters. However, we notice that as the range of the WD's mass decreases, its average value increases with the cooling time. These results could provide a constraint when simulating the SN Ia explosion, i.e. the WDs with a high C/O ratio usually have a lower central density at ignition, while those having the highest central density at ignition generally have a lower C/O ratio. The cooling time is mainly determined by the evolutionary age of secondaries, and the scatter of the cooling time decreases with the evolutionary age. Our results may indicate that WDs with a long cooling time have more uniform properties than those with a short cooling time, which may be helpful to explain why SNe Ia in elliptical galaxies have a more uniform maximum luminosity than those in spiral galaxies. (research papers)

  10. Cooling system for auxiliary reactor component

    International Nuclear Information System (INIS)

    Fujihira, Tomoko.

    1991-01-01

    A cooling system for auxiliary reactor components comprises three systems, that is, two systems of reactor component cooling water systems (RCCW systems) and a high pressure component cooling water system (HPCCW system). Connecting pipelines having partition valves are intervened each in a cooling water supply pipeline to an emmergency component of each of the RCCW systems, a cooling water return pipeline from the emmergency component of each of the RCCW systems, a cooling water supply pipeline to each of the emmergency components of one of the RCCW system and the HPCCW system and a cooling water return pipeline from each of the emmergency components of one of the RCCW system and the HPCCW system. With such constitution, cooling water can be supplied also to the emmergency components in the stand-by system upon periodical inspection or ISI, thereby enabling to improve the backup performance of the emmergency cooling system. (I.N.)

  11. Hydroaerothermal investigations conducted in the USSR to justify the construction of large cooling towers

    International Nuclear Information System (INIS)

    Goncharov, V.V.

    1989-01-01

    The multi-purpose task of improving water cooling systems of thermal and nuclear power plants is aimed at the development of efficient designs of cooling towers and other types of industrial coolers which call for comprehensive scientific justification. Cooling towers of 60-70 thou m 3 /h capacity with a chimney height of 130 m and those of 80-100 thou m 3 /h capacity with a chimney height of 150 m were developed. For circulating water systems of large power plants the design of a counterflow chimney cooling tower of 180 thou m 3 /h capacity has been recently developed. At present the work is being conducted on developing a new three-cell cooling tower featuring high reliability, operational flexibility and cost-effectiveness of the design. This cooling tower, besides having higher operating reliability than the conventional one of circular shape, can ensure the commissioning, current repairs and overhauls of water cooling arrangements in a cell-wise sequence, i.e. without shutting down the power generating units. Laboratory and field investigations of the spray-type cooling towers having no packing (fill), studies on heat and mass exchanges processes, aerodynamics of droplet flows and new designs of sprayers made it possible to come to a conclusion that their cooling capacity can be substantially increased and brought up to the level of the cooling towers with film packings. The pilot cooling towers were designed according to the counterflow, crossflow and cross-counterflow schemes. The basic investigation method remains to be the experimental one. On the test rigs and aerodynamic models the heat and mass transfer and aerodynamic resistance coefficients are determined. These studies and subsequent calculations are based on the heat balance equation

  12. A cool present for LEIR

    CERN Multimedia

    2005-01-01

    LEIR (Low Energy Ion Ring), which will supply lead ions to the LHC experiments, has taken delivery of one of its key components, its electron cooling system. From left to right, Gérard Tranquille, Virginia Prieto and Roland Sautier, in charge of the electron cooling system for LEIR at CERN, and Christian Lacroix, in charge of installation for the LEIR machine. On 16 December, the day before CERN's annual closure, the LEIR teams received a rather impressive Christmas present. The "parcel" from Russia, measuring 7 metres in length and 4 metres in height, weighed no less than 20 tonnes! The component will, in fact, be one of the key elements of the future LEIR, namely its electron cooling system. LEIR is one of the links in the injector chain that will supply lead ions to the LHC experiments, in particular ALICE (see Bulletin No. 28/2004 of 5 July 2004), within the framework of the I-LHC Project. The electron cooling system is designed to reduce and standardise transverse ion velocity. This focuses the bea...

  13. Liquid metal cooled nuclear reactor

    International Nuclear Information System (INIS)

    Leigh, K.M.

    1980-01-01

    A liquid metal cooled nuclear reactor is described, wherein coolant is arranged to be flowed upwardly through a fuel assembly and having one or more baffles located above the coolant exit of the fuel assembly, the baffles being arranged so as to convert the upwardly directed motion of liquid metal coolant leaving the fuel assembly into a substantially horizontal motion. (author)

  14. Cool Runnings For String 2

    CERN Multimedia

    2001-01-01

    String 2 is a series of superconducting magnets that are prototypes of those which will be installed in the LHC. It was cooled down to 1.9 Kelvin on September 14th. On Thursday last week, the dipoles of String 2 were successfully taken to nominal current, 11850 A.

  15. Peltier cooling in molecular junctions

    Science.gov (United States)

    Cui, Longji; Miao, Ruijiao; Wang, Kun; Thompson, Dakotah; Zotti, Linda Angela; Cuevas, Juan Carlos; Meyhofer, Edgar; Reddy, Pramod

    2018-02-01

    The study of thermoelectricity in molecular junctions is of fundamental interest for the development of various technologies including cooling (refrigeration) and heat-to-electricity conversion1-4. Recent experimental progress in probing the thermopower (Seebeck effect) of molecular junctions5-9 has enabled studies of the relationship between thermoelectricity and molecular structure10,11. However, observations of Peltier cooling in molecular junctions—a critical step for establishing molecular-based refrigeration—have remained inaccessible. Here, we report direct experimental observations of Peltier cooling in molecular junctions. By integrating conducting-probe atomic force microscopy12,13 with custom-fabricated picowatt-resolution calorimetric microdevices, we created an experimental platform that enables the unified characterization of electrical, thermoelectric and energy dissipation characteristics of molecular junctions. Using this platform, we studied gold junctions with prototypical molecules (Au-biphenyl-4,4'-dithiol-Au, Au-terphenyl-4,4''-dithiol-Au and Au-4,4'-bipyridine-Au) and revealed the relationship between heating or cooling and charge transmission characteristics. Our experimental conclusions are supported by self-energy-corrected density functional theory calculations. We expect these advances to stimulate studies of both thermal and thermoelectric transport in molecular junctions where the possibility of extraordinarily efficient energy conversion has been theoretically predicted2-4,14.

  16. System for cooling a cabinet

    DEFF Research Database (Denmark)

    2015-01-01

    The present disclosure relates to a cooling system comprising an active magnetic regenerator having a cold side and a hot side, a hot side heat exchanger connected to the hot side of the magnetic regenerator, one or more cold side heat exchangers, and a cold store reservoir comprising a volume...

  17. Cooling system upon reactor isolation

    International Nuclear Information System (INIS)

    Yamamoto, Kohei; Oda, Shingo; Miura, Satoshi

    1992-01-01

    A water level indicator for detecting the upper limit value for a range of using a suppression pool and a thermometer for detecting the temperature of water at the cooling water inlet of an auxiliary device are disposed. When a detection signal is intaken and the water level in the suppression pool reach the upper limit value for the range of use, a secondary flow rate control value is opened and a primary flow rate control valve is closed. When the temperature of the water at the cooling water inlet of the auxiliary device reaches the upper limit value, the primary and the secondary flow rate control valves are opened. During a stand-by state, the first flow rate control valve is set open and the secondary flow rate control valve is set closed respectively. After reactor isolation, if a reactor water low level signal is received, an RCIC pump is actuated and cooling water is sent automatically under pressure from a condensate storage tank to the reactor and the auxiliary device requiring coolants by way of the primary flow rate control valve. Rated flow rate is ensured in the reactor and cooling water of an appropriate temperature can be supplied to the auxiliary device. (N.H.)

  18. Passive Cooling of Body Armor

    Science.gov (United States)

    Holtz, Ronald; Matic, Peter; Mott, David

    2013-03-01

    Warfighter performance can be adversely affected by heat load and weight of equipment. Current tactical vest designs are good insulators and lack ventilation, thus do not provide effective management of metabolic heat generated. NRL has undertaken a systematic study of tactical vest thermal management, leading to physics-based strategies that provide improved cooling without undesirable consequences such as added weight, added electrical power requirements, or compromised protection. The approach is based on evaporative cooling of sweat produced by the wearer of the vest, in an air flow provided by ambient wind or ambulatory motion of the wearer. Using an approach including thermodynamic analysis, computational fluid dynamics modeling, air flow measurements of model ventilated vest architectures, and studies of the influence of fabric aerodynamic drag characteristics, materials and geometry were identified that optimize passive cooling of tactical vests. Specific architectural features of the vest design allow for optimal ventilation patterns, and selection of fabrics for vest construction optimize evaporation rates while reducing air flow resistance. Cooling rates consistent with the theoretical and modeling predictions were verified experimentally for 3D mockups.

  19. Thermal mass impact on energy performance of a low, medium and heavy mass building in Belgrade

    Directory of Open Access Journals (Sweden)

    Anđelković Bojan V.

    2012-01-01

    Full Text Available Heavy mass materials used in building structures and architecture can significantly affect building energy performance and occupant comfort. The purpose of this study was to investigate if thermal mass can improve the internal environment of a building, resulting in lower energy requirements from the mechanical systems. The study was focused on passive building energy performance and compared annual space heating and cooling energy requirements for an office building in Belgrade with several different applications of thermal mass. A three-dimensional building model was generated to represent a typical office building. Building shape, orientation, glazing to wall ratio, envelope insulation thickness, and indoor design conditions were held constant while location and thickness of building mass (concrete was varied between cases in a series of energy simulations. The results were compared and discussed in terms of the building space heating and cooling energy and demand affected by thermal mass. The simulation results indicated that with addition of thermal mass to the building envelope and structure: 100% of all simulated cases experienced reduced annual space heating energy requirements, 67% of all simulated cases experienced reduced annual space cooling energy requirements, 83% of all simulated cases experienced reduced peak space heating demand and 50% of all simulated cases experienced reduced peak space cooling demand. The study demonstrated that there exists a potential for reducing space heating and cooling energy requirements with heavy mass construction in the analyzed climate region (Belgrade, Serbia.

  20. Cavity cooling of an optically levitated submicron particle

    Science.gov (United States)

    Kiesel, Nikolai; Blaser, Florian; Delić, Uroš; Grass, David; Kaltenbaek, Rainer; Aspelmeyer, Markus

    2013-01-01

    The coupling of a levitated submicron particle and an optical cavity field promises access to a unique parameter regime both for macroscopic quantum experiments and for high-precision force sensing. We report a demonstration of such controlled interactions by cavity cooling the center-of-mass motion of an optically trapped submicron particle. This paves the way for a light–matter interface that can enable room-temperature quantum experiments with mesoscopic mechanical systems. PMID:23940352

  1. Evaporative cooling enhanced cold storage system

    Science.gov (United States)

    Carr, P.

    1991-10-15

    The invention provides an evaporatively enhanced cold storage system wherein a warm air stream is cooled and the cooled air stream is thereafter passed into contact with a cold storage unit. Moisture is added to the cooled air stream prior to or during contact of the cooled air stream with the cold storage unit to effect enhanced cooling of the cold storage unit due to evaporation of all or a portion of the added moisture. Preferably at least a portion of the added moisture comprises water condensed during the cooling of the warm air stream. 3 figures.

  2. Proton-antiproton colliding beam electron cooling

    International Nuclear Information System (INIS)

    Derbenev, Ya.S.; Skrinskij, A.N.

    1981-01-01

    A possibility of effective cooling of high-energy pp tilde beams (E=10 2 -10 3 GeV) in the colliding mode by accompanying radiationally cooled electron beam circulating in an adjacent storage ring is studied. The cooling rate restrictions by the pp tilde beam interaction effects while colliding and the beam self-heating effect due to multiple internal scattering are considered. Some techniques permitting to avoid self-heating of a cooling electron beam or suppress its harmful effect on a heavy particle beam cooling are proposed. According to the estimations the cooling time of 10 2 -10 3 s order can be attained [ru

  3. Validation of Supersonic Film Cooling Modeling for Liquid Rocket Engine Applications

    Science.gov (United States)

    Morris, Christopher I.; Ruf, Joseph H.

    2010-01-01

    Topics include: upper stage engine key requirements and design drivers; Calspan "stage 1" results, He slot injection into hypersonic flow (air); test articles for shock generator diagram, slot injector details, and instrumentation positions; test conditions; modeling approach; 2-d grid used for film cooling simulations of test article; heat flux profiles from 2-d flat plate simulations (run #4); heat flux profiles from 2-d backward facing step simulations (run #43); isometric sketch of single coolant nozzle, and x-z grid of half-nozzle domain; comparison of 2-d and 3-d simulations of coolant nozzles (run #45); flowfield properties along coolant nozzle centerline (run #45); comparison of 3-d CFD nozzle flow calculations with experimental data; nozzle exit plane reduced to linear profile for use in 2-d film-cooling simulations (run #45); synthetic Schlieren image of coolant injection region (run #45); axial velocity profiles from 2-d film-cooling simulation (run #45); coolant mass fraction profiles from 2-d film-cooling simulation (run #45); heat flux profiles from 2-d film cooling simulations (run #45); heat flux profiles from 2-d film cooling simulations (runs #47, #45, and #47); 3-d grid used for film cooling simulations of test article; heat flux contours from 3-d film-cooling simulation (run #45); and heat flux profiles from 3-d and 2-d film cooling simulations (runs #44, #46, and #47).

  4. X-RAY BURST OSCILLATIONS: FROM FLAME SPREADING TO THE COOLING WAKE

    Energy Technology Data Exchange (ETDEWEB)

    Mahmoodifar, Simin; Strohmayer, Tod [Astrophysics Science Division and Joint Space-Science Institute, NASA’s Goddard Space Flight Center, Greenbelt, MD 20771 (United States)

    2016-02-10

    Type I X-ray bursts are thermonuclear flashes observed from the surfaces of accreting neutron stars (NSs) in low mass X-ray binaries. Oscillations have been observed during the rise and/or decay of some of these X-ray bursts. Those seen during the rise can be well explained by a spreading hot spot model, but large amplitude oscillations in the decay phase remain mysterious because of the absence of a clear-cut source of asymmetry. To date there have not been any quantitative studies that consistently track the oscillation amplitude both during the rise and decay (cooling tail) of bursts. Here we compute the light curves and amplitudes of oscillations in X-ray burst models that realistically account for both flame spreading and subsequent cooling. We present results for several such “cooling wake” models, a “canonical” cooling model where each patch on the NS surface heats and cools identically, or with a latitude-dependent cooling timescale set by the local effective gravity, and an “asymmetric” model where parts of the star cool at significantly different rates. We show that while the canonical cooling models can generate oscillations in the tails of bursts, they cannot easily produce the highest observed modulation amplitudes. Alternatively, a simple phenomenological model with asymmetric cooling can achieve higher amplitudes consistent with the observations.

  5. Use of dehumidifiers in desiccant cooling and dehumidification systems

    International Nuclear Information System (INIS)

    Van den Bulck, E.; Mitchell, J.W.; Klein, S.A.

    1986-01-01

    The use of rotary dehumidifiers in gas-fired open-cycle desiccant cooling systems is investigated by analyzing the performance of the rotary heat exchanger-rotary dehumidifier subsystem. For a given cooling load, the required regeneration heat supply can be minimized by choosing appropriate values for the regeneration air mass flow rate and the wheel rotation speed. A map is presented showing optimal values for rotational speed and regeneration flow rate as functions of the regeneration air inlet temperature and the process air inlet humidity ratio. This regeneration temperature is further optimized as a function of the process humidity ratio. In the analysis, the control strategy adjusts the process air mass flow rate to provide the required cooling load. Additional control options are considered and the sensitivity of the regeneration heat required to the wheel speed, regeneration air mass flow rate, and inlet temperature is discussed. Experimental data reported in the literature are compared with the analytical results and indicate good agreement

  6. Fundamental tests of nature with cooled and stored exotic ions

    CERN Multimedia

    CERN. Geneva

    2014-01-01

    The presentation will concentrate on recent applications with exciting results of Penning traps in atomic and nuclear physics with cooled and stored exotic ions. These are high-accuracy mass measurements of short-lived radionuclides, g-factor determinations of the bound-electron in highly-charged, hydrogen-like ions and g-factor measurements of the proton and antiproton. The experiments are dedicated, e.g., to astrophysics studies and to tests of fundamental symmetries in the case of mass measurements on radionuclides, and to the determination of fundamental constants and a CPT test in the case of the g-factor measurements.

  7. Beam cooling using a gas-filled RFQ ion guide

    CERN Document Server

    Henry, S; De Saint-Simon, M; Jacotin, M; Képinski, J F; Lunney, M D

    1999-01-01

    A radiofrequency quadrupole mass filter is being developed for use as a high-transmission beam cooler by operating it in buffer gas at high pressure. Such a device will increase the sensitivity of on-line experiments that make use of weakly produced radioactive ion beams. We present simulations and some preliminary measurements for a device designed to cool the beam for the MISTRAL RF mass spectrometer on- line at ISOLDE. The work is carried out partly within the frame of the European Community research network: EXOTRAPS. (9 refs).

  8. A combined capillary cooling system for cooling fuel cells

    Energy Technology Data Exchange (ETDEWEB)

    Silva, Ana Paula; Pelizza, Pablo Rodrigo; Galante, Renan Manozzo; Bazzo, Edson [Universidade Federal de Santa Catarina (LabCET/UFSC), Florianopolis, SC (Brazil). Dept. de Engenharia Mecanica. Lab. de Combustao e Engenharia de Sistemas Termicos], Emails: ana@labcet.ufsc.br, pablo@labcet.ufsc.br, renan@labcet.ufsc.br, ebazzo@emc.ufsc.br

    2010-07-01

    The operation temperature control has an important influence over the PEMFC (Proton Exchange Membrane Fuel Cell) performance. A two-phase heat transfer system is proposed as an alternative for cooling and thermal control of PEMFC. The proposed system consists of a CPL (Capillary Pumped Loop) connected to a set of constant conductance heat pipes. In this work ceramic wick and stainless mesh wicks have been used as capillary structure of the CPL and heat pipes, respectively. Acetone has been used as the working fluid for CPL and deionized water for the heat pipes. Experimental results of three 1/4 inch stainless steel outlet diameter heats pipes and one CPL have been carried out and presented in this paper. Further experiments are planned coupling the proposed cooling system to a module which simulates the fuel cell. (author)

  9. The first high resolution image of coronal gas in a starbursting cool core cluster

    Science.gov (United States)

    Johnson, Sean

    2017-08-01

    Galaxy clusters represent a unique laboratory for directly observing gas cooling and feedback due to their high masses and correspondingly high gas densities and temperatures. Cooling of X-ray gas observed in 1/3 of clusters, known as cool-core clusters, should fuel star formation at prodigious rates, but such high levels of star formation are rarely observed. Feedback from active galactic nuclei (AGN) is a leading explanation for the lack of star formation in most cool clusters, and AGN power is sufficient to offset gas cooling on average. Nevertheless, some cool core clusters exhibit massive starbursts indicating that our understanding of cooling and feedback is incomplete. Observations of 10^5 K coronal gas in cool core clusters through OVI emission offers a sensitive means of testing our understanding of cooling and feedback because OVI emission is a dominant coolant and sensitive tracer of shocked gas. Recently, Hayes et al. 2016 demonstrated that synthetic narrow-band imaging of OVI emission is possible through subtraction of long-pass filters with the ACS+SBC for targets at z=0.23-0.29. Here, we propose to use this exciting new technique to directly image coronal OVI emitting gas at high resolution in Abell 1835, a prototypical starbursting cool-core cluster at z=0.252. Abell 1835 hosts a strong cooling core, massive starburst, radio AGN, and at z=0.252, it offers a unique opportunity to directly image OVI at hi-res in the UV with ACS+SBC. With just 15 orbits of ACS+SBC imaging, the proposed observations will complete the existing rich multi-wavelength dataset available for Abell 1835 to provide new insights into cooling and feedback in clusters.

  10. Triangularly arranged heat exchanger bundles to restrain wind effects on natural draft dry cooling system

    International Nuclear Information System (INIS)

    Liao, H.T.; Yang, L.J.; Du, X.Z.; Yang, Y.P.

    2016-01-01

    Highlights: • Triangularly arranged heat exchanger around the dry-cooling tower is proposed. • By coupling condenser with dry cooling system, TACHE performance is obtained. • At low wind speeds, cooling performance with TACHE is inferior to that with CACHE. • Better performance can be achieved for cooling system with TACHE at high wind speeds. • TACHE can be applied to the region with the strong prevailing wind all year around. - Abstract: It has been commonly recognized that the crosswind may deteriorate the cooling performance of the natural draft dry cooling system with vertically arranged heat exchanger bundles around the circumference of dry-cooling tower. With the purpose for restraining the adverse effects of ambient winds, a novel triangular configuration of heat exchanger bundles is proposed in this work. The air-side flow and heat transfer models coupled with the circulating water heat transfer process are developed for two kinds of natural draft dry cooling systems with the conventional circularly arranged and novel triangularly arranged heat exchanger bundles, by which the flow and temperature fields, mass flow rate of cooling air, outlet water temperature of heat exchanger and turbine back pressure are obtained. Three wind directions of 0°, 90°, and 180° are investigated at various wind speeds for the natural draft dry cooling system with triangularly arranged heat exchanger bundles, which are compared with the conventional system with circularly arranged heat exchanger bundles. The results show that the thermo-flow performances of the natural draft dry cooling system with triangularly arranged heat exchanger get improved significantly at high wind speeds and in the wind direction of 180°, thus a low turbine back pressure can be achieved, which is of benefit to the energy efficiency of the power generating unit. The natural draft dry cooling system with triangularly arranged heat exchanger is recommended to apply to the regions with

  11. Revisiting the Cooling Flow Problem in Galaxies, Groups, and Clusters of Galaxies

    Science.gov (United States)

    McDonald, M.; Gaspari, M.; McNamara, B. R.; Tremblay, G. R.

    2018-05-01

    We present a study of 107 galaxies, groups, and clusters spanning ∼3 orders of magnitude in mass, ∼5 orders of magnitude in central galaxy star formation rate (SFR), ∼4 orders of magnitude in the classical cooling rate ({\\dot{M}}cool}\\equiv {M}gas}(rsample, we measure the ICM cooling rate, {\\dot{M}}cool}, using archival Chandra X-ray data and acquire the SFR and systematic uncertainty in the SFR by combining over 330 estimates from dozens of literature sources. With these data, we estimate the efficiency with which the ICM cools and forms stars, finding {ε }cool}\\equiv {SFR}/{\\dot{M}}cool}=1.4 % +/- 0.4% for systems with {\\dot{M}}cool}> 30 M ⊙ yr‑1. For these systems, we measure a slope in the SFR–{\\dot{M}}cool} relation greater than unity, suggesting that the systems with the strongest cool cores are also cooling more efficiently. We propose that this may be related to, on average, higher black hole accretion rates in the strongest cool cores, which could influence the total amount (saturating near the Eddington rate) and dominant mode (mechanical versus radiative) of feedback. For systems with {\\dot{M}}cool}< 30 M ⊙ yr‑1, we find that the SFR and {\\dot{M}}cool} are uncorrelated and show that this is consistent with star formation being fueled at a low (but dominant) level by recycled ISM gas in these systems. We find an intrinsic log-normal scatter in SFR at a fixed {\\dot{M}}cool} of 0.52 ± 0.06 dex (1σ rms), suggesting that cooling is tightly self-regulated over very long timescales but can vary dramatically on short timescales. There is weak evidence that this scatter may be related to the feedback mechanism, with the scatter being minimized (∼0.4 dex) for systems for which the mechanical feedback power is within a factor of two of the cooling luminosity.

  12. An interpretation of passive containment cooling phenomena

    Energy Technology Data Exchange (ETDEWEB)

    Chung, Bum-Jin [Ministry of Science & Technology, Kyunggi-Do (Korea, Democratic People`s Republic of); Kang, Chang-Sun, [Seoul National Univ. (Korea, Democratic People`s Republic of)

    1995-09-01

    A simplified interpretation model for the cooling capability of the Westinghouse type PCCS is proposed in this paper. The PCCS domain was phenomenologically divided into 3 regions; water entrance effect region, asymptotic region, and air entrance effect region. The phenomena in the asymptotic region is focused in this paper. Due to the very large height to thickness ratio of the water film, the length of the asymptotic region is estimated to be over 90% of the whole domain. Using the analogy between heat and mass transfer phenomena in a turbulent situation, a new dependent variable combining temperature and vapor mass fraction was defined. The similarity between the PCCS phenomena, which contains the sensible and latent heat transfer, and the buoyant air flow on a vertical heated plate is derived. The modified buoyant coefficient and thermal conductivity were defined. Using these newly defined variable and coefficients, the modified correlation for the interfacial heat fluxes and the ratios of latent heat transfer to sensible heat transfer is established. To verify the accuracy of the correlation, the results of this study were compared with the results of other numerical analyses performed for the same configuration and they are well within the range of 15% difference.

  13. Modelling of thermohydraulic emergency core cooling phenomena

    International Nuclear Information System (INIS)

    Yadigaroglu, G.; Andreani, M.; Lewis, M.J.

    1990-10-01

    The codes used in the early seventies for safety analysis and licensing were based either on the homogeneous model of two-phase flow or on the so-called separate-flow models, which are mixture models accounting, however, for the difference in average velocity between the two phases. In both cases the behavior of the mixture is prescribed a priori as a function of local parameters such as the mass flux and the quality. The modern best-estimate codes used for analyzing LWR LOCA's and transients are often based on a two-fluid or 6-equation formulation of the conservation equations. In this case the conservation equations are written separately for each phase; the mixture is allowed to evolve on its own, governed by the interfacial exchanges of mass, momentum and energy between the phases. It is generally agreed that such relatively sophisticated 6-equation formulations of two-phase flow are necessary for the correct modelling of a number of phenomena and situations arising in LWR accidental situations. They are in particular indispensible for the analysis of stratified or countercurrent flows and of situations in which large departures from thermal and velocity equilibrium exist. This report will be devoted to a discussion of the need for, the capacity and the limitations of the two-phase flow models (with emphasis on the 6-equation formulations) in modelling these two-phase flow and heat transfer phenomena and/or different core cooling situations. 18 figs., 1 tab., 72 refs

  14. Cooling towers for thermal power plants

    International Nuclear Information System (INIS)

    Chaboseau, J.

    1987-01-01

    After a brief recall on cooling towers testing and construction, this paper presents four examples of very large French nuclear power plant cooling towers, and one of an Australian thermal power plant [fr

  15. Design: More than a cool chair

    DEFF Research Database (Denmark)

    Friis, Silje Alberthe Kamille; Austin, Robert; Sullivan, Erin

    2006-01-01

    Austin, R., Friis, K., Sullivan, E. 2006. Design: More than a cool chair. Boston: Harvard Business School Publishing.......Austin, R., Friis, K., Sullivan, E. 2006. Design: More than a cool chair. Boston: Harvard Business School Publishing....

  16. A review of photovoltaic cells cooling techniques

    Science.gov (United States)

    Zubeer, Swar A.; Mohammed, H. A.; Ilkan, Mustafa

    2017-11-01

    This paper highlights different cooling techniques to reduce the operating temperature of the PV cells. This review paper focuses on the improvement of the performance of the small domestic use PV systems by keeping the temperature of the cells as low as possible and uniform. Different cooling techniques have been investigated experimentally and numerically the impact of the operating temperature of the cells on the electrical and thermal performance of the PV systems. The advantages and disadvantages of ribbed wall heat sink cooling, array air duct cooling installed beneath the PV panel, water spray cooling technique and back surface water cooling are examined in this paper to identify their effective impact on the PV panel performance. It was identified that the water spray cooling system has a proper impact on the PV panel performance. So the water cooling is one way to enhance the electrical efficiency of the PV panel.

  17. A review of photovoltaic cells cooling techniques

    Directory of Open Access Journals (Sweden)

    Zubeer Swar A.

    2017-01-01

    Full Text Available This paper highlights different cooling techniques to reduce the operating temperature of the PV cells. This review paper focuses on the improvement of the performance of the small domestic use PV systems by keeping the temperature of the cells as low as possible and uniform. Different cooling techniques have been investigated experimentally and numerically the impact of the operating temperature of the cells on the electrical and thermal performance of the PV systems. The advantages and disadvantages of ribbed wall heat sink cooling, array air duct cooling installed beneath the PV panel, water spray cooling technique and back surface water cooling are examined in this paper to identify their effective impact on the PV panel performance. It was identified that the water spray cooling system has a proper impact on the PV panel performance. So the water cooling is one way to enhance the electrical efficiency of the PV panel.

  18. Theory, technology, and technique of stochastic cooling

    International Nuclear Information System (INIS)

    Marriner, J.

    1993-10-01

    The theory and technological implementation of stochastic cooling is described. Theoretical and technological limitations are discussed. Data from existing stochastic cooling systems are shown to illustrate some useful techniques

  19. Tropical cyclone cooling combats region-wide coral bleaching.

    Science.gov (United States)

    Carrigan, Adam D; Puotinen, Marji

    2014-05-01

    Coral bleaching has become more frequent and widespread as a result of rising sea surface temperature (SST). During a regional scale SST anomaly, reef exposure to thermal stress is patchy in part due to physical factors that reduce SST to provide thermal refuge. Tropical cyclones (TCs - hurricanes, typhoons) can induce temperature drops at spatial scales comparable to that of the SST anomaly itself. Such cyclone cooling can mitigate bleaching across broad areas when well-timed and appropriately located, yet the spatial and temporal prevalence of this phenomenon has not been quantified. Here, satellite SST and historical TC data are used to reconstruct cool wakes (n=46) across the Caribbean during two active TC seasons (2005 and 2010) where high thermal stress was widespread. Upon comparison of these datasets with thermal stress data from Coral Reef Watch and published accounts of bleaching, it is evident that TC cooling reduced thermal stress at a region-wide scale. The results show that during a mass bleaching event, TC cooling reduced thermal stress below critical levels to potentially mitigate bleaching at some reefs, and interrupted natural warming cycles to slow the build-up of thermal stress at others. Furthermore, reconstructed TC wave damage zones suggest that it was rare for more reef area to be damaged by waves than was cooled (only 12% of TCs). Extending the time series back to 1985 (n = 314), we estimate that for the recent period of enhanced TC activity (1995-2010), the annual probability that cooling and thermal stress co-occur is as high as 31% at some reefs. Quantifying such probabilities across the other tropical regions where both coral reefs and TCs exist is vital for improving our understanding of how reef exposure to rising SSTs may vary, and contributes to a basis for targeting reef conservation. © 2014 John Wiley & Sons Ltd.

  20. Sideband cooling of micromechanical motion to the quantum ground state.

    Science.gov (United States)

    Teufel, J D; Donner, T; Li, Dale; Harlow, J W; Allman, M S; Cicak, K; Sirois, A J; Whittaker, J D; Lehnert, K W; Simmonds, R W

    2011-07-06

    The advent of laser cooling techniques revolutionized the study of many atomic-scale systems, fuelling progress towards quantum computing with trapped ions and generating new states of matter with Bose-Einstein condensates. Analogous cooling techniques can provide a general and flexible method of preparing macroscopic objects in their motional ground state. Cavity optomechanical or electromechanical systems achieve sideband cooling through the strong interaction between light and motion. However, entering the quantum regime--in which a system has less than a single quantum of motion--has been difficult because sideband cooling has not sufficiently overwhelmed the coupling of low-frequency mechanical systems to their hot environments. Here we demonstrate sideband cooling of an approximately 10-MHz micromechanical oscillator to the quantum ground state. This achievement required a large electromechanical interaction, which was obtained by embedding a micromechanical membrane into a superconducting microwave resonant circuit. To verify the cooling of the membrane motion to a phonon occupation of 0.34 ± 0.05 phonons, we perform a near-Heisenberg-limited position measurement within (5.1 ± 0.4)h/2π, where h is Planck's constant. Furthermore, our device exhibits strong coupling, allowing coherent exchange of microwave photons and mechanical phonons. Simultaneously achieving strong coupling, ground state preparation and efficient measurement sets the stage for rapid advances in the control and detection of non-classical states of motion, possibly even testing quantum theory itself in the unexplored region of larger size and mass. Because mechanical oscillators can couple to light of any frequency, they could also serve as a unique intermediary for transferring quantum information between microwave and optical domains.

  1. Operation of a forced two phase cooling system on a large superconducting magnet

    International Nuclear Information System (INIS)

    Green, M.A.; Burns, W.A.; Eberhard, P.H.; Gibson, G.H.; Pripstein, M.; Ross, R.R.; Smits, R.G.; Taylor, J.D.; Van Slyke, H.

    1980-05-01

    This paper describes the operation of a forced two phase cooling system on a two meter diameter superconducting solenoid. The magnet is a thin high current density superconducting solenoid which is cooled by forced two phase helium in tubes around the coil. The magnet, which is 2.18 meters in diameter and 3.4 meters long, has a cold mass of 1700 kg. The two phase cooling system contains less than 300 liters of liquid helium, most of which is contained in a control dewar. This paper describes the operating characteristics of the LBL two phase forced cooling system during cooldown and warm up. The paper presents experimental data on operations of the magnet using either a helium pump or the refrigerator compressor to circulate two phase helium through the superconducting coil cooling tubes

  2. APOKASC 2.0: Asteroseismology and Spectroscopy for Cool Stars

    Science.gov (United States)

    Pinsonneault, Marc H.; Elsworth, Yvonne P.; APOKASC

    2017-01-01

    The APOGEE survey has obtained and analyzed high resolution H band spectra of more than 10,000 cool dwarfs and giants in the original Kepler fields. The APOKASC effort combines this data with asteroseismology and star spot studies, resulting in more than 7,000 stellar mass estimates for dwarfs and giants with high quality abundances, temperatures, and surface gravities. We highlight the main results from this effort so far, which include a tight correlation between surface abundances in giants and stellar mass, precise absolute gravity calibrations, and the discovery of unexpected stellar populations, such as young alpha-enhanced stars. We discuss grid modeling estimates for stellar masses and compare the absolute asteroseismic mass scale to calibrators in star clusters and the halo Directions for future efforts are discussed.

  3. Cooling Performance of Additively Manufactured Microchannels and Film Cooling Holes

    Science.gov (United States)

    Stimpson, Curtis K.

    Additive manufacturing (AM) enables fabrication of components that cannot be made with any other manufacturing method. Significant advances in metal-based AM systems have made this technology feasible for building production parts to be used use in commercial products. In particular, the gas turbine industry benefits from AM as a manufacturing technique especially for development of components subjected to high heat flux. It has been shown that the use of microchannels in high heat flux components can lead to more efficient cooling designs than those that presently exist. The current manufacturing methods have prevented the use of microchannels in such parts, but AM now makes them manufacturable. However, before such designs can become a reality, much research must be done to characterize impacts on flow and heat transfer of AM parts. The current study considers the effect on flow and heat transfer through turbine cooling features made with AM. Specifically, the performance of microchannels and film cooling holes made with laser powder bed fusion (L-PBF) is assessed. A number of test coupons containing microchannels were built from high temperature alloy powders on a commercially available L-PBF machine. Pressure drop and heat transfer experiments characterized the flow losses and convective heat transfer of air passing through the channels at various Reynolds numbers and Mach numbers. The roughness of the channels' surfaces was characterized in terms of statistical roughness parameters; the morphology of the roughness was examined qualitatively. Magnitude and morphology of surface roughness found on AM parts is unlike any form of roughness seen in the literature. It was found that the high levels of roughness on AM surfaces result in markedly augmented pressure loss and heat transfer at all Reynolds numbers, and conventional flow and heat transfer correlations produce erroneous estimates. The physical roughness measurements made in this study were correlated to

  4. Experimental study and process parameters analysis on the vacuum cooling of iceberg lettuce

    International Nuclear Information System (INIS)

    He Suyan; Li Yunfei

    2008-01-01

    The vacuum cooling of iceberg lettuce was described in this paper. Based on the energy and mass balance, a mathematical model was developed to analyze the performance of the vacuum cooler and the evaporation-boiling phenomena during vacuum cooling of iceberg lettuce. The temporal trends of total system pressure, produce temperature such as surface temperature, center temperature, mass-average temperature, the weight loss of iceberg lettuce during vacuum cooling were predicted. Validation experimentation is achieved in the designed vacuum cooler. The experimental data were compared with the simulation results. It was found that the differences of the temperature between the simulation and the experiments were within 1 deg. C. The amount of water evaporated from the iceberg lettuce by simulation was 3.32% during the whole vacuum cooling, while the tested water loss rate was 2.97%, the maximal deviation of weight loss was within 0.59%. The simulation results agreed well with the experimental data

  5. Experimental study and process parameters analysis on the vacuum cooling of iceberg lettuce

    Energy Technology Data Exchange (ETDEWEB)

    He Suyan [School of Mechanical and Electrical Engineering, Qingdao University, Qingdao 266071 (China)], E-mail: hesuyan67829@sina.com; Li Yunfei [Department of Food Science and Engineering, School of Agriculture and Biology, Shanghai Jiao Tong University (China)

    2008-10-15

    The vacuum cooling of iceberg lettuce was described in this paper. Based on the energy and mass balance, a mathematical model was developed to analyze the performance of the vacuum cooler and the evaporation-boiling phenomena during vacuum cooling of iceberg lettuce. The temporal trends of total system pressure, produce temperature such as surface temperature, center temperature, mass-average temperature, the weight loss of iceberg lettuce during vacuum cooling were predicted. Validation experimentation is achieved in the designed vacuum cooler. The experimental data were compared with the simulation results. It was found that the differences of the temperature between the simulation and the experiments were within 1 deg. C. The amount of water evaporated from the iceberg lettuce by simulation was 3.32% during the whole vacuum cooling, while the tested water loss rate was 2.97%, the maximal deviation of weight loss was within 0.59%. The simulation results agreed well with the experimental data.

  6. Mapping the dark matter in the NGC 5044 group with ROSAT: Evidence for a nearly homogeneous cooling flow with a cooling wake

    Science.gov (United States)

    David, Laurence P.; Jones, Christine; Forman, William; Daines, Stuart

    1994-01-01

    The NGC 5044 group of galaxies was observed by the ROSAT Position Sensitive Proportional Counter (PSPC) for 30 ks during its reduced pointed phase (1991 July). Due to the relatively cool gas temperature in the group (kT = 0.98 +/- 0.02 keV) and the excellent photon statistics (65,000 net counts), we are able to determine precisely a number of fundamental properties of the group within 250 kpc of the central galaxy. In particular, we present model-independent measurements of the total gravitating mass, the temperature and abundance profiles of the gas, and the mass accretion rate. Between 60 and 250 kpc, the gas is nearly isothermal with T varies as r(exp (-0.13 +/- 0.03)). The total gravitating mass of the group can be unambiguously determined from the observed density and temperature profiles of the gas using the equation of hydrostatic equilibrium. Within 250 kpc, the gravitating mass is 1.6 x 10(exp 13) solar mass, yielding a mass-to-light ratio of 130 solar mass/solar luminosity. The baryons (gas and stars) comprise 12% of the total mass within this radius. At small radii, the temperature clearly increases outward and attains a maximum value at 60 kpc. The positive temperature gradient in the center of the group confirms the existence of a cooling flow. The cooling flow region extends well beyond the temperature maximum with a cooling radius between 100 and 150 kpc. There are two distinct regions in the cooling flow separated by the temperature maximum. In the outer region, the gas is nearly isothermal with a unifor m Fe abundance of approximately 80% solar, the flow is nearly homogeneous with dot-M= 20 to 25 solar mass/year, the X-ray contours are spherically symmetric, and rho(sub gas) varies as r(exp -1.6). In the inner region, the temperature profile has a positive gradient, the mass accretion rate decreases rapidly inward, the gas density profile is steeper, and the X-ray image shows some substrucutre. NGC 5044 is offset from the centroid of the outer X

  7. Evaporative cooling in polymer electrolyte fuel cell

    Energy Technology Data Exchange (ETDEWEB)

    Shimotori, S; Sonai, A [Toshiba Corp. Tokyo (Japan)

    1996-06-05

    The concept of the evaporative cooling for the internally humidified PEFC was confirmed by the experiment. The evaporative cooling rates at the anode and the cathode were mastered under the various temperatures and air utilizations. At a high temperature the proportion of the evaporative cooling rate to the heat generation rate got higher, the possibility of the evaporative cooling was demonstrated. 2 refs., 7 figs., 1 tab.

  8. Engineered design of SSC cooling ponds

    International Nuclear Information System (INIS)

    Bear, J.B.

    1993-05-01

    The cooling requirements of the SSC are significant and adequate cooling water systems to meet these requirements are critical to the project's successful operation. The use of adequately designed cooling ponds will provide reliable cooling for operation while also meeting environmental goals of the project to maintain streamflow and flood peaks to preconstruction levels as well as other streamflow and water quality requirements of the Texas Water Commission and the Environmental Protection Agency

  9. Helium cooling of fusion reactors

    International Nuclear Information System (INIS)

    Wong, C.P.C.; Baxi, C.; Bourque, R.; Dahms, C.; Inamati, S.; Ryder, R.; Sager, G.; Schleicher, R.

    1994-01-01

    On the basis of worldwide design experience and in coordination with the evolution of the International Thermonuclear Experimental Reactor (ITER) program, the application of helium as a coolant for fusion appears to be at the verge of a transition from conceptual design to engineering development. This paper presents a review of the use of helium as the coolant for fusion reactor blanket and divertor designs. The concept of a high-pressure helium cooling radial plate design was studied for both ITER and PULSAR. These designs can resolve many engineering issues, and can help with reaching the goals of low activation and high performance designs. The combination of helium cooling, advanced low-activation materials, and gas turbine technology may permit high thermal efficiency and reduced costs, resulting in the environmental advantages and competitive economics required to make fusion a 21st century power source. ((orig.))

  10. Ionization cooling ring for muons

    Directory of Open Access Journals (Sweden)

    R. Palmer

    2005-06-01

    Full Text Available Practical ionization cooling rings could lead to lower cost or improved performance in neutrino factory or muon collider designs. The ring modeled here uses realistic three-dimensional fields. The performance of the ring compares favorably with the linear cooling channel used in the second U.S. Neutrino Factory Study. The normalized 6D emittance of an ideal ring is decreased by a factor of approximately 240, compared with a factor of only 15 for the linear channel. We also examine such real-world effects as windows on the absorbers and rf cavities and leaving empty lattice cells for injection and extraction. For realistic conditions the ring decreases the normalized 6D emittance by a factor of 49.

  11. Information technology equipment cooling method

    Science.gov (United States)

    Schultz, Mark D.

    2015-10-20

    According to one embodiment, a system for removing heat from a rack of information technology equipment may include a sidecar indoor air to liquid heat exchanger that cools air utilized by the rack of information technology equipment to cool the rack of information technology equipment. The system may also include a liquid to liquid heat exchanger and an outdoor heat exchanger. The system may further include configurable pathways to connect and control fluid flow through the sidecar heat exchanger, the liquid to liquid heat exchanger, the rack of information technology equipment, and the outdoor heat exchanger based upon ambient temperature and/or ambient humidity to remove heat generated by the rack of information technology equipment.

  12. Integrated circuit cooled turbine blade

    Science.gov (United States)

    Lee, Ching-Pang; Jiang, Nan; Um, Jae Y.; Holloman, Harry; Koester, Steven

    2017-08-29

    A turbine rotor blade includes at least two integrated cooling circuits that are formed within the blade that include a leading edge circuit having a first cavity and a second cavity and a trailing edge circuit that includes at least a third cavity located aft of the second cavity. The trailing edge circuit flows aft with at least two substantially 180-degree turns at the tip end and the root end of the blade providing at least a penultimate cavity and a last cavity. The last cavity is located along a trailing edge of the blade. A tip axial cooling channel connects to the first cavity of the leading edge circuit and the penultimate cavity of the trailing edge circuit. At least one crossover hole connects the penultimate cavity to the last cavity substantially near the tip end of the blade.

  13. International Ventilation Cooling Application Database

    DEFF Research Database (Denmark)

    Holzer, Peter; Psomas, Theofanis Ch.; OSullivan, Paul

    2016-01-01

    The currently running International Energy Agency, Energy and Conservation in Buildings, Annex 62 Ventilative Cooling (VC) project, is coordinating research towards extended use of VC. Within this Annex 62 the joint research activity of International VC Application Database has been carried out...... and locations, using VC as a mean of indoor comfort improvement. The building-spreadsheet highlights distributions of technologies and strategies, such as the following. (Numbers in % refer to the sample of the database’s 91 buildings.) It may be concluded that Ventilative Cooling is applied in temporary......, systematically investigating the distribution of technologies and strategies within VC. The database is structured as both a ticking-list-like building-spreadsheet and a collection of building-datasheets. The content of both closely follows Annex 62 State-Of-The- Art-Report. The database has been filled, based...

  14. Renewables for Heating and Cooling

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    2007-07-01

    This timely report examines the technologies, current markets and relative costs for heat and cold production using biomass, geothermal and solar-assisted systems. It evaluates a range of national case studies and relevant policies. Should the successful and more cost-effective policies be implemented by other countries, then the relatively untapped economic potential of renewable energy heating and cooling systems could be better realised, resulting in potential doubling of the present market within the next few years.

  15. Water cooling of RF structures

    International Nuclear Information System (INIS)

    Battersby, G.; Zach, M.

    1994-06-01

    We present computer codes for heat transfer in water cooled rf cavities. RF parameters obtained by SUPERFISH or analytically are operated on by a set of codes using PLOTDATA, a command-driven program developed and distributed by TRIUMF [1]. Emphasis is on practical solutions with designer's interactive input during the computations. Results presented in summary printouts and graphs include the temperature, flow, and pressure data. (authors). 4 refs., 4 figs

  16. Gas hydrate cool storage system

    Science.gov (United States)

    Ternes, M.P.; Kedl, R.J.

    1984-09-12

    The invention presented relates to the development of a process utilizing a gas hydrate as a cool storage medium for alleviating electric load demands during peak usage periods. Several objectives of the invention are mentioned concerning the formation of the gas hydrate as storage material in a thermal energy storage system within a heat pump cycle system. The gas hydrate was formed using a refrigerant in water and an example with R-12 refrigerant is included. (BCS)

  17. Liquid-metal-cooled reactor

    International Nuclear Information System (INIS)

    Zhuchkov, I.I.; Filonov, V.S.; Zaitsev, B.I.; Artemiev, L.N.; Rakhimov, V.V.

    1976-01-01

    A liquid-metal-cooled reactor is described comprising two rotatable plugs, one of them, having at least one hole, being arranged internally of the other, a recharging mechanism with a guide tube adapted to be moved through the hole of the first plug by means of a drive, and a device for detecting stacks with leaky fuel elements, the recharging mechanism tube serving as a sampler

  18. Dew Point Evaporative Comfort Cooling

    Science.gov (United States)

    2012-11-01

    Multiple DASs were installed at Fort Carson, and the data from all the sensors were stored and partially processed on Campbell Scientific Data Loggers. The...evaporative cooling technologies would be expected to easily overcome utility- scale water withdrawal rates. As an example, an evaluation of an...Ambient pressure Outdoor Setra 276 1% of full scale Pyranometer Horizontal Campbell Scientific CS300 5% of daily total The OAT measurement has an

  19. Gas cooled traction drive inverter

    Science.gov (United States)

    Chinthavali, Madhu Sudhan

    2013-10-08

    The present invention provides a modular circuit card configuration for distributing heat among a plurality of circuit cards. Each circuit card includes a housing adapted to dissipate heat in response to gas flow over the housing. In one aspect, a gas-cooled inverter includes a plurality of inverter circuit cards, and a plurality of circuit card housings, each of which encloses one of the plurality of inverter cards.

  20. 46 CFR 119.420 - Engine cooling.

    Science.gov (United States)

    2010-10-01

    ... 46 Shipping 4 2010-10-01 2010-10-01 false Engine cooling. 119.420 Section 119.420 Shipping COAST... Machinery Requirements § 119.420 Engine cooling. (a) Except as otherwise provided in paragraph (b) of this section, all engines must be water cooled and meet the requirements of this paragraph. (1) The engine head...

  1. 46 CFR 182.420 - Engine cooling.

    Science.gov (United States)

    2010-10-01

    ... 46 Shipping 7 2010-10-01 2010-10-01 false Engine cooling. 182.420 Section 182.420 Shipping COAST...) MACHINERY INSTALLATION Specific Machinery Requirements § 182.420 Engine cooling. (a) Except as otherwise provided in paragraphs (b), (c), (d), and (e) of this section, all engines must be water cooled and meet...

  2. Early developments in solar cooling equipment

    Science.gov (United States)

    Price, J. M.

    1978-01-01

    A brief description of a development program to design, fabricate and field test a series of solar operated or driven cooling devices, undertaken by the Marshall Space Flight Center in the context of the Solar Heating and Cooling Demonstration Act of 1974, is presented. Attention is given to two basic design concepts: the Rankine cycle principle and the use of a dessicant for cooling.

  3. Desalting a process cooling water using nanofiltration

    NARCIS (Netherlands)

    Radier, R.G.J.; van Oers, C.W.; Steenbergen, A.; Wessling, Matthias

    2001-01-01

    The cooling water system of a chemical plant of Akzo Nobel is a partly open system. The site is located at the North Sea. The air in contact with the cooling water contains seawater droplets dissolving and increasing the chloride concentration. The cooling water contains chromate to protect the

  4. Hot Jupiters and cool stars

    International Nuclear Information System (INIS)

    Villaver, Eva; Mustill, Alexander J.; Livio, Mario; Siess, Lionel

    2014-01-01

    Close-in planets are in jeopardy, as their host stars evolve off the main sequence (MS) to the subgiant and red giant phases. In this paper, we explore the influences of the stellar mass (in the range 1.5-2 M ☉ ), mass-loss prescription, planet mass (from Neptune up to 10 Jupiter masses), and eccentricity on the orbital evolution of planets as their parent stars evolve to become subgiants and red giants. We find that planet engulfment along the red giant branch is not very sensitive to the stellar mass or mass-loss rates adopted in the calculations, but quite sensitive to the planetary mass. The range of initial separations for planet engulfment increases with decreasing mass-loss rates or stellar masses and increasing planetary masses. Regarding the planet's orbital eccentricity, we find that as the star evolves into the red giant phase, stellar tides start to dominate over planetary tides. As a consequence, a transient population of moderately eccentric close-in Jovian planets is created that otherwise would have been expected to be absent from MS stars. We find that very eccentric and distant planets do not experience much eccentricity decay, and that planet engulfment is primarily determined by the pericenter distance and the maximum stellar radius.

  5. Cooling device for reactor container

    International Nuclear Information System (INIS)

    Akiba, Miyuki.

    1996-01-01

    In a cooling device for a reactor container, a low pressure vessel is connected to an incondensible gas vent tube by way of an opening/closing valve. Upon occurrence of a loss of coolant accident, among steams and incondensible gases contained in the reactor container, steams are cooled and condensed in a heat exchanger. The incondensible gases are at first discharged from the heat exchanger to a suppression pool by way of the incondensible gas vent tube, but subsequently, they are stagnated in the incondensible gas vent tube to hinder heat exchanging and steam cooling and condensing effects in the heat exchanger thereby raising temperature and pressure in the reactor. However, if the opening/closing valve is opened when the incondensible gases are stagnated in the incondensible gas vent tube, since the incondensible gases stagnated in the heat exchanger are sucked and discharged to the low pressure vessel, the performance of the heat exchanger is maintained satisfactorily thereby enabling to suppress elevation of temperature and pressure in the reactor container. (N.H.)

  6. Cooling system for superconducting magnet

    Science.gov (United States)

    Gamble, Bruce B.; Sidi-Yekhlef, Ahmed

    1998-01-01

    A cooling system is configured to control the flow of a refrigerant by controlling the rate at which the refrigerant is heated, thereby providing an efficient and reliable approach to cooling a load (e.g., magnets, rotors). The cooling system includes a conduit circuit connected to the load and within which a refrigerant circulates; a heat exchanger, connected within the conduit circuit and disposed remotely from the load; a first and a second reservoir, each connected within the conduit, each holding at least a portion of the refrigerant; a heater configured to independently heat the first and second reservoirs. In a first mode, the heater heats the first reservoir, thereby causing the refrigerant to flow from the first reservoir through the load and heat exchanger, via the conduit circuit and into the second reservoir. In a second mode, the heater heats the second reservoir to cause the refrigerant to flow from the second reservoir through the load and heat exchanger via the conduit circuit and into the first reservoir.

  7. Emergency reactor core cooling facility

    International Nuclear Information System (INIS)

    Yoshikawa, Kazuhiro; Kinoshita, Shoichiro; Iwata, Yasutaka.

    1996-01-01

    The present invention provides an emergency reactor core cooling device for a BWR type nuclear power plant. Namely, D/S pit (gas/water separator storage pool) water is used as a water source for the emergency reactor core cooling facility upon occurrence of loss of coolant accidents (LOCA) by introducing the D/S pit water to the emergency reactor core cooling (ECCS) pump. As a result, the function as the ECCS facility can be eliminated from the function of the condensate storage tank which has been used as the ECCS facility. If the function is unnecessary, the level of quality control and that of earthquake resistance of the condensate storage tank can be lowered to a level of ordinary facilities to provide an effect of reducing the cost. On the other hand, since the D/S pit as the alternative water source is usually a facility at high quality control level and earthquake resistant level, there is no problem. The quality of the water in the D/S pit can be maintained constant by elevating pressure of the D/S pit water by a suppression pool cleanup (SPCU) pump to pass it through a filtration desalter thereby purifying the D/S pit water during the plant operation. (I.S.)

  8. Emergency reactor core cooling facility

    Energy Technology Data Exchange (ETDEWEB)

    Yoshikawa, Kazuhiro; Kinoshita, Shoichiro; Iwata, Yasutaka

    1996-11-01

    The present invention provides an emergency reactor core cooling device for a BWR type nuclear power plant. Namely, D/S pit (gas/water separator storage pool) water is used as a water source for the emergency reactor core cooling facility upon occurrence of loss of coolant accidents (LOCA) by introducing the D/S pit water to the emergency reactor core cooling (ECCS) pump. As a result, the function as the ECCS facility can be eliminated from the function of the condensate storage tank which has been used as the ECCS facility. If the function is unnecessary, the level of quality control and that of earthquake resistance of the condensate storage tank can be lowered to a level of ordinary facilities to provide an effect of reducing the cost. On the other hand, since the D/S pit as the alternative water source is usually a facility at high quality control level and earthquake resistant level, there is no problem. The quality of the water in the D/S pit can be maintained constant by elevating pressure of the D/S pit water by a suppression pool cleanup (SPCU) pump to pass it through a filtration desalter thereby purifying the D/S pit water during the plant operation. (I.S.)

  9. Air and water cooled modulator

    Science.gov (United States)

    Birx, Daniel L.; Arnold, Phillip A.; Ball, Don G.; Cook, Edward G.

    1995-01-01

    A compact high power magnetic compression apparatus and method for delivering high voltage pulses of short duration at a high repetition rate and high peak power output which does not require the use of environmentally unacceptable fluids such as chlorofluorocarbons either as a dielectric or as a coolant, and which discharges very little waste heat into the surrounding air. A first magnetic switch has cooling channels formed therethrough to facilitate the removal of excess heat. The first magnetic switch is mounted on a printed circuit board. A pulse transformer comprised of a plurality of discrete electrically insulated and magnetically coupled units is also mounted on said printed board and is electrically coupled to the first magnetic switch. The pulse transformer also has cooling means attached thereto for removing heat from the pulse transformer. A second magnetic switch also having cooling means for removing excess heat is electrically coupled to the pulse transformer. Thus, the present invention is able to provide high voltage pulses of short duration at a high repetition rate and high peak power output without the use of environmentally unacceptable fluids and without discharging significant waste heat into the surrounding air.

  10. Elastocaloric cooling materials and systems

    Science.gov (United States)

    Takeuchi, Ichiro

    2015-03-01

    We are actively pursuing applications of thermoelastic (elastocaloric) cooling using shape memory alloys. Latent heat associated with martensitic transformation of shape memory alloys can be used to run cooling cycles with stress-inducing mechanical drives. The coefficient of performance of thermoelastic cooling materials can be as high as 11 with the directly measured DT of around 17 °C. Depending on the stress application mode, the number of cycles to fatigue can be as large as of the order of 105. Efforts to design and develop thermoelastic alloys with long fatigue life will be discussed. The current project at the University of Maryland is focused on development of building air-conditioners, and at Maryland Energy and Sensor Technologies, smaller scale commercial applications are being pursued. This work is carried out in collaboration with Jun Cui, Yiming Wu, Suxin Qian, Yunho Hwang, Jan Muehlbauer, and Reinhard Radermacher, and it is funded by the ARPA-E BEETIT program and the State of Maryland.

  11. Emergency reactor container cooling facility

    International Nuclear Information System (INIS)

    Suzuki, Hiroaki; Matsumoto, Tomoyuki.

    1992-01-01

    The present invention concerns an emergency cooling facility for a nuclear reactor container having a pressure suppression chamber, in which water in the suppression chamber is effectively used for cooling the reactor container. That is, the lower portion of a water pool in the pressure suppression chamber and the inside of the reactor container are connected by a pipeline. The lower end of the pipeline and a pressurized incombustible gas tank disposed to the outside of the reactor container are connected by a pipeline by way of valves. Then, when the temperature of the lower end of the pressure vessel exceeds a predetermined value, the valves are opened. If the valves are opened, the incombustible gas flows into the lower end of the pipeline connecting the lower portion of the water pool in the pressure suppression chamber and the inside of the reactor container. Since the inside of the pipeline is a two phase flow comprising a mixture of a gas phase and a liquid phase, the average density is decreased. Therefore, the water level of the two phase flow is risen by the level difference between the inside and the outside of the pipeline and, finally, the two phase mixture is released into the reactor container. As a result, the reactor container can be cooled by water in the suppression chamber by a static means without requiring pumps. (I.S.)

  12. Utilization of municipal wastewater for cooling in thermoelectric power plants

    Energy Technology Data Exchange (ETDEWEB)

    Safari, Iman [Illinois Inst. of Technology, Chicago, IL (United States); Walker, Michael E. [Illinois Inst. of Technology, Chicago, IL (United States); Hsieh, Ming-Kai [Carnegie Mellon Univ., Pittsburgh, PA (United States); Dzombak, David A. [Carnegie Mellon Univ., Pittsburgh, PA (United States); Liu, Wenshi [Univ. of Pittsburgh, PA (United States); Vidic, Radisav D. [Univ. of Pittsburgh, PA (United States); Miller, David C. [National Energy Technology Lab. (NETL), Morgantown, WV (United States); Abbasian, Javad [Illinois Inst. of Technology, Chicago, IL (United States)

    2013-09-01

    A process simulation model has been developed using Aspen Plus® with the OLI (OLI System, Inc.) water chemistry model to predict water quality in the recirculating cooling loop utilizing secondary- and tertiary-treated municipal wastewater as the source of makeup water. Simulation results were compared with pilot-scale experimental data on makeup water alkalinity, loop pH, and ammonia evaporation. The effects of various parameters including makeup water quality, salt formation, NH3 and CO2 evaporation mass transfer coefficients, heat load, and operating temperatures were investigated. The results indicate that, although the simulation model can capture the general trends in the loop pH, experimental data on the rates of salt precipitation in the system are needed for more accurate prediction of the loop pH. It was also found that stripping of ammonia and carbon dioxide in the cooling tower can influence the cooling loop pH significantly. The effects of the NH3 mass transfer coefficient on cooling loop pH appear to be more significant at lower values (e.g., kNH3 < 4×10-3 m/s) when the makeup water alkalinity is low (e.g., <90 mg/L as CaCO3). The effect of the CO2 mass transfer coefficient was found to be significant only at lower alkalinity values (e.g., kCO2<4×10-6 m/s).

  13. Cool infalling gas and its interaction with the hot ISM of elliptical galaxies

    Science.gov (United States)

    Sparks, W. B.; Macchetto, F. D.

    1990-01-01

    The authors describe work leading to the suggestion that interaction between infalling cool gas and ambient hot, coronal plasma in elliptical galaxies is responsible for emission filaments, and might remove the need for large mass depositions in cooling flows. A test of the hypothesis is undertaken - the run of surface brightness with radius for the emission lines - and the prediction agrees well with the data.

  14. MEASURING THE EVOLUTIONARY RATE OF COOLING OF ZZ Ceti

    Energy Technology Data Exchange (ETDEWEB)

    Mukadam, Anjum S.; Fraser, Oliver; Riecken, T. S.; Kronberg, M. E. [Department of Astronomy, University of Washington, Seattle, WA 98195 (United States); Bischoff-Kim, Agnes [Georgia College and State University, Milledgeville, GA 31061 (United States); Corsico, A. H. [Facultad de Ciencias Astronomicas y Geofisicas, Universidad Nacional de La Plata (Argentina); Montgomery, M. H.; Winget, D. E.; Hermes, J. J.; Winget, K. I.; Falcon, Ross E.; Reaves, D. [Department of Astronomy, University of Texas at Austin, Austin, TX 78759 (United States); Kepler, S. O.; Romero, A. D. [Universidade Federal do Rio Grande do Sul, Porto Alegre 91501-970, RS (Brazil); Chandler, D. W. [Meyer Observatory, Central Texas Astronomical Society, 3409 Whispering Oaks, Temple, TX 76504 (United States); Kuehne, J. W. [McDonald Observatory, Fort Davis, TX 79734 (United States); Sullivan, D. J. [Victoria University of Wellington, P.O. Box 600, Wellington (New Zealand); Von Hippel, T. [Embry-Riddle Aeronautical University, 600 South Clyde Morris Boulevard, Daytona Beach, FL 32114 (United States); Mullally, F. [SETI Institute, NASA Ames Research Center, MS 244-30, Moffet Field, CA 94035 (United States); Shipman, H. [Delaware Asteroseismic Research Center, Mt. Cuba Observatory, Greenville, DE 19807 (United States); and others

    2013-07-01

    We have finally measured the evolutionary rate of cooling of the pulsating hydrogen atmosphere (DA) white dwarf ZZ Ceti (Ross 548), as reflected by the drift rate of the 213.13260694 s period. Using 41 yr of time-series photometry from 1970 November to 2012 January, we determine the rate of change of this period with time to be dP/dt = (5.2 {+-} 1.4) Multiplication-Sign 10{sup -15} s s{sup -1} employing the O - C method and (5.45 {+-} 0.79) Multiplication-Sign 10{sup -15} s s{sup -1} using a direct nonlinear least squares fit to the entire lightcurve. We adopt the dP/dt obtained from the nonlinear least squares program as our final determination, but augment the corresponding uncertainty to a more realistic value, ultimately arriving at the measurement of dP/dt = (5.5 {+-} 1.0) Multiplication-Sign 10{sup -15} s s{sup -1}. After correcting for proper motion, the evolutionary rate of cooling of ZZ Ceti is computed to be (3.3 {+-} 1.1) Multiplication-Sign 10{sup -15} s s{sup -1}. This value is consistent within uncertainties with the measurement of (4.19 {+-} 0.73) Multiplication-Sign 10{sup -15} s s{sup -1} for another similar pulsating DA white dwarf, G 117-B15A. Measuring the cooling rate of ZZ Ceti helps us refine our stellar structure and evolutionary models, as cooling depends mainly on the core composition and stellar mass. Calibrating white dwarf cooling curves with this measurement will reduce the theoretical uncertainties involved in white dwarf cosmochronometry. Should the 213.13 s period be trapped in the hydrogen envelope, then our determination of its drift rate compared to the expected evolutionary rate suggests an additional source of stellar cooling. Attributing the excess cooling to the emission of axions imposes a constraint on the mass of the hypothetical axion particle.

  15. Theoretical analysis of the performance of different cooling strategies with the concept of cool exergy

    DEFF Research Database (Denmark)

    Kazanci, Ongun Berk; Shukuya, Masanori; Olesen, Bjarne W.

    2016-01-01

    The whole chains of exergy flows for different cooling systems were compared. The effects of cooling demand (internal vs. external solar shading), space cooling method (floor cooling vs. air cooling with ventilation system), and the availability of a nearby natural heat sink (intake air for the v......The whole chains of exergy flows for different cooling systems were compared. The effects of cooling demand (internal vs. external solar shading), space cooling method (floor cooling vs. air cooling with ventilation system), and the availability of a nearby natural heat sink (intake air...... for the ventilation system being outdoor air vs. air from the crawl-space, and air-to-water heat pump vs. ground heat exchanger as cooling source) on system exergy performance were investigated. It is crucial to minimize the cooling demand because it is possible to use a wide range of heat sinks (ground, lake, sea......-water, etc.) and indoor terminal units, only with a minimized demand. The water-based floor cooling system performed better than the air-based cooling system; when an air-to-water heat pump was used as the cooling source, the required exergy input was 28% smaller for the floor cooling system. The auxiliary...

  16. An ion cooling and state characterization apparatus for studies of molecular ion dissociative interactions

    International Nuclear Information System (INIS)

    Deng, Shihu; Vane, C R; Bannister, M E; Havener, C C; Meyer, F W; Krause, H F; Hettich, R L; Goeringer, D E; Van Berkel, G J

    2009-01-01

    An experimental capability is being developed at the Oak Ridge National Laboratory Multi-Charged Ion Research Facility (ORNL MIRF) to enable stored cooling and state characterization of molecular ions of essentially any mass. Ions selected from a variety of available sources are injected from the side into a 1.5 meter long electrostatic mirror trap, where excited internal states are cooled by radiative cooling. An electron beam target located near the middle of the ion-trap region, coupled with neutral fragment imaging detector systems at each end of the trap, permits state-specific studies of electron-molecular ion dissociation.

  17. Mass Distribution in Galaxy Cluster Cores

    Energy Technology Data Exchange (ETDEWEB)

    Hogan, M. T.; McNamara, B. R.; Pulido, F.; Vantyghem, A. N. [Department of Physics and Astronomy, University of Waterloo, Waterloo, ON, N2L 3G1 (Canada); Nulsen, P. E. J. [Harvard-Smithsonian Center for Astrophysics, 60 Garden Street, Cambridge, MA 02138 (United States); Russell, H. R. [Institute of Astronomy, Madingley Road, Cambridge CB3 0HA (United Kingdom); Edge, A. C. [Centre for Extragalactic Astronomy, Department of Physics, Durham University, Durham DH1 3LE (United Kingdom); Main, R. A., E-mail: m4hogan@uwaterloo.ca [Canadian Institute for Theoretical Astrophysics, University of Toronto, 60 St. George Street, Toronto, ON, M5S 3H8 (Canada)

    2017-03-01

    Many processes within galaxy clusters, such as those believed to govern the onset of thermally unstable cooling and active galactic nucleus feedback, are dependent upon local dynamical timescales. However, accurate mapping of the mass distribution within individual clusters is challenging, particularly toward cluster centers where the total mass budget has substantial radially dependent contributions from the stellar ( M {sub *}), gas ( M {sub gas}), and dark matter ( M {sub DM}) components. In this paper we use a small sample of galaxy clusters with deep Chandra observations and good ancillary tracers of their gravitating mass at both large and small radii to develop a method for determining mass profiles that span a wide radial range and extend down into the central galaxy. We also consider potential observational pitfalls in understanding cooling in hot cluster atmospheres, and find tentative evidence for a relationship between the radial extent of cooling X-ray gas and nebular H α emission in cool-core clusters. At large radii the entropy profiles of our clusters agree with the baseline power law of K ∝ r {sup 1.1} expected from gravity alone. At smaller radii our entropy profiles become shallower but continue with a power law of the form K ∝ r {sup 0.67} down to our resolution limit. Among this small sample of cool-core clusters we therefore find no support for the existence of a central flat “entropy floor.”.

  18. Direct Evaporatrive Coolers of Gases and Liquids with Lowered Limit of Cooling

    Directory of Open Access Journals (Sweden)

    Doroshenko A.V.

    2015-12-01

    Full Text Available We have developed main technical solutions solution of indirect evaporative water and air coolers with reduced cooling limit. Packed part of heat-mass transfer devices is made of the film type based monoblock compositions of polymer materials. A mathematical model describing the processes of joint heat and mass transfer in evaporative coolers is executed. A comparative analysis of the possibilities of coolers designed based on experimental data on the efficiency of processes of heat and mass transfer.

  19. Performance characteristics of counter flow wet cooling towers

    International Nuclear Information System (INIS)

    Khan, Jameel-Ur-Rehman; Yaqub, M.; Zubair, Syed M.

    2003-01-01

    Cooling towers are one of the biggest heat and mass transfer devices that are in widespread use. In this paper, we use a detailed model of counter flow wet cooling towers in investigating the performance characteristics. The validity of the model is checked by experimental data reported in the literature. The thermal performance of the cooling towers is clearly explained in terms of varying air and water temperatures, as well as the driving potential for convection and evaporation heat transfer, along the height of the tower. The relative contribution of each mode of heat transfer rate to the total heat transfer rate in the cooling tower is established. It is demonstrated with an example problem that the predominant mode of heat transfer is evaporation. For example, evaporation contributes about 62.5% of the total rate of heat transfer at the bottom of the tower and almost 90% at the top of the tower. The variation of air and water temperatures along the height of the tower (process line) is explained on psychometric charts

  20. Simulation of solar-powered absorption cooling system

    Energy Technology Data Exchange (ETDEWEB)

    Atmaca, I.; Yigit, A. [Uludag Univ., Bursa (Turkey). Dept. of Mechanical Engineering

    2003-07-01

    With developing technology and the rapid increase in world population, the demand for energy is ever increasing. Conventional energy will not be enough to meet the continuously increasing need for energy in the future. In this case, renewable energy sources will become important. Solar energy is a very important energy source because of its advantages. Instead of a compressor system, which uses electricity, an absorption cooling system, using renewable energy and kinds of waste heat energy, may be used for cooling. In this study, a solar-powered, single stage, absorption cooling system, using a water-lithium bromide solution, is simulated. A modular computer program has been developed for the absorption system to simulate various cycle configurations and solar energy parameters for Antalya, Turkey. So, the effects of hot water inlet temperatures on the coefficient of performance (COP) and the surface area of the absorption cooling components are studied. In addition, reference temperatures which are the minimum allowable hot water inlet temperatures are determined and their effect on the fraction of the total load met by non-purchased energy (FNP) and the coefficient of performance are researched. Also, the effects of the collector type and storage tank mass are investigated in detail. (author)

  1. Cooling compact stars and phase transitions in dense QCD

    Energy Technology Data Exchange (ETDEWEB)

    Sedrakian, Armen [J.W. Goethe University, Institute for Theoretical Physics, Frankfurt am Main (Germany)

    2016-03-15

    We report new simulations of cooling of compact stars containing quark cores and updated fits to the Cas A fast cooling data. Our model is built on the assumption that the transient behaviour of the star in Cas A is due to a phase transition within the dense QCD matter in the core of the star. Specifically, the fast cooling is attributed to an enhancement in the neutrino emission triggered by a transition from a fully gapped, two-flavor, red-green color-superconducting quark condensate to a superconducting crystalline or an alternative gapless, color-superconducting phase. The blue-colored condensate is modeled as a Bardeen-Cooper-Schrieffer (BCS)-type color superconductor with spin-one pairing order parameter. We study the sensitivity of the fits to the phase transition temperature, the pairing gap of blue quarks and the timescale characterizing the phase transition (the latter modelled in terms of a width parameter). Relative variations in these parameter around their best-fit values larger than 10{sup -3} spoil the fit to the data. We confirm the previous finding that the cooling curves show significant variations as a function of compact star mass, which allows one to account for dispersion in the data on the surface temperatures of thermally emitting neutron stars. (orig.)

  2. Benchmark ultra-cool dwarfs in widely separated binary systems

    Directory of Open Access Journals (Sweden)

    Jones H.R.A.

    2011-07-01

    Full Text Available Ultra-cool dwarfs as wide companions to subgiants, giants, white dwarfs and main sequence stars can be very good benchmark objects, for which we can infer physical properties with minimal reference to theoretical models, through association with the primary stars. We have searched for benchmark ultra-cool dwarfs in widely separated binary systems using SDSS, UKIDSS, and 2MASS. We then estimate spectral types using SDSS spectroscopy and multi-band colors, place constraints on distance, and perform proper motions calculations for all candidates which have sufficient epoch baseline coverage. Analysis of the proper motion and distance constraints show that eight of our ultra-cool dwarfs are members of widely separated binary systems. Another L3.5 dwarf, SDSS 0832, is shown to be a companion to the bright K3 giant η Cancri. Such primaries can provide age and metallicity constraints for any companion objects, yielding excellent benchmark objects. This is the first wide ultra-cool dwarf + giant binary system identified.

  3. Interception and retention of simulated cooling tower drift by vegetation

    International Nuclear Information System (INIS)

    Taylor, F.G. Jr.; Parr, P.D.

    1978-01-01

    A key issue concerning environmental impacts from cooling tower operation is the interception of drift by vegetation and the efficiency of plants in retaining the residue scavenged from the atmosphere. Chromated drift water, typical of the cooling towers of the Department of Energy's uranium enrichment facilities at Oak Ridge, Tennessee, was prepared using radio-labelled chromium. A portable aerosol generator was used to produce a spectrum of droplets with diameters (100 to 1300 μ) characteristic of cooling towers using state-of-the-art drift eliminators. Efficiency of interception by foliage varied according to leaf morphology with yellow poplar seedlings intercepting 72% of the deposition mass in contrast to 45% by loblolly pine and 24% by fescue grass. Retention patterns of intercepted deposition consisted of a short-time component (0 to 3 days) and a long-time component (3 to 63 days). Retention times, estimated from the regression equation of the long component, indicated that drift contamination from any deposition event may persist from between 8 and 12 weeks. In field situations adjacent to cooling towers, the average annual concentration of drift on vegetation at any distance remains relatively constant, with losses from weathering being compensated by chronic deposition

  4. Experimental evaluation of cooling efficiency of the high performance cooling device

    Science.gov (United States)

    Nemec, Patrik; Malcho, Milan

    2016-06-01

    This work deal with experimental evaluation of cooling efficiency of cooling device capable transfer high heat fluxes from electric elements to the surrounding. The work contain description of cooling device, working principle of cooling device, construction of cooling device. Experimental part describe the measuring method of device cooling efficiency evaluation. The work results are presented in graphic visualization of temperature dependence of the contact area surface between cooling device evaporator and electronic components on the loaded heat of electronic components in range from 250 to 740 W and temperature dependence of the loop thermosiphon condenser surface on the loaded heat of electronic components in range from 250 to 740 W.

  5. Experimental evaluation of cooling efficiency of the high performance cooling device

    Energy Technology Data Exchange (ETDEWEB)

    Nemec, Patrik, E-mail: patrik.nemec@fstroj.uniza.sk; Malcho, Milan, E-mail: milan.malcho@fstroj.uniza.sk [University of Žilina, Faculty of Mechanical Engineering, Department of Power Engineering, Univerzitna 1, 010 26 Žilina (Slovakia)

    2016-06-30

    This work deal with experimental evaluation of cooling efficiency of cooling device capable transfer high heat fluxes from electric elements to the surrounding. The work contain description of cooling device, working principle of cooling device, construction of cooling device. Experimental part describe the measuring method of device cooling efficiency evaluation. The work results are presented in graphic visualization of temperature dependence of the contact area surface between cooling device evaporator and electronic components on the loaded heat of electronic components in range from 250 to 740 W and temperature dependence of the loop thermosiphon condenser surface on the loaded heat of electronic components in range from 250 to 740 W.

  6. Atmospheric cooling tower with reduced plume

    International Nuclear Information System (INIS)

    Gautier, D.M.; Lagoutte, A.

    1985-01-01

    The cooling tower, usable in thermal-electric power plants, has a vertical chimney having a central water tower fed with water to be cooled, a pipe network distributing water coming from the water tower and dispersing it in flows streaming down on a packing, and a basin to receive the water cooled by contact with an air flow passing through apertures at the lower part of the chimney and flowing up through the chimney. The cooling tower has inlet air pipes for the said apertures to a zone of the chimney situated beyond the streaming zone, the said pipes being arranged such their surface is swept by water to be cooled [fr

  7. Passive containment cooling water distribution device

    Science.gov (United States)

    Conway, Lawrence E.; Fanto, Susan V.

    1994-01-01

    A passive containment cooling system for a nuclear reactor containment vessel. Disclosed is a cooling water distribution system for introducing cooling water by gravity uniformly over the outer surface of a steel containment vessel using a series of radial guide elements and cascading weir boxes to collect and then distribute the cooling water into a series of distribution areas through a plurality of cascading weirs. The cooling water is then uniformly distributed over the curved surface by a plurality of weir notches in the face plate of the weir box.

  8. A study of cooling time reduction of interferometric cryogenic gravitational wave detectors using a high-emissivity coating

    Energy Technology Data Exchange (ETDEWEB)

    Sakakibara, Y.; Yamamoto, K.; Chen, D.; Tokoku, C.; Uchiyama, T.; Ohashi, M.; Kuroda, K. [Institute for Cosmic Ray Research (ICRR), University of Tokyo, 5-1-5 Kashiwanoha, Kashiwa, Chiba 277-8582 (Japan); Kimura, N.; Suzuki, T.; Koike, S. [High Energy Accelerator Research Organization (KEK), 1-1 Oho, Tsukuba, Ibaraki 305-0801 (Japan)

    2014-01-29

    In interferometric cryogenic gravitational wave detectors, there are plans to cool mirrors and their suspension systems (payloads) in order to reduce thermal noise, that is, one of the fundamental noise sources. Because of the large payload masses (several hundred kg in total) and their thermal isolation, a cooling time of several months is required. Our calculation shows that a high-emissivity coating (e.g. a diamond-like carbon (DLC) coating) can reduce the cooling time effectively by enhancing radiation heat transfer. Here, we have experimentally verified the effect of the DLC coating on the reduction of the cooling time.

  9. Production and sympathetic cooling of complex molecular ions

    Energy Technology Data Exchange (ETDEWEB)

    Zhang, Chaobo

    2008-06-24

    This thesis reports on experimental and theoretical studies of the sympathetic cooling of complex molecular ions demonstrating that this general method for cooling atomic and molecular ions is reliable and efficient. For this purpose, complex molecular ions and barium ions have been confined simultaneously in a linear Paul trap. The complex molecular ions are generated in an electrospray ionization system and transferred to the trap via a 2 m long octopole ion guide. These molecular ions are pre-cooled by room temperature helium buffer gas so that they can be captured by the trap. The atomic barium ions are loaded from a barium evaporator oven and are laser-cooled by a 493 nm cooling laser and a 650 nm repumping laser. Due to the mutual Coulomb interaction among these charged particles, the kinetic energy of the complex molecular ions can be reduced significantly. In our experiments we have demonstrated the sympathetic cooling of various molecules (CO{sub 2}, Alexa Fluor 350, glycyrrhetinic acid, cytochrome c) covering a wide mass range from a few tens to 13000 amu. In every case the molecular ions could be cooled down to millikelvin temperatures. Photo-chemical reactions of the {sup 138}Ba{sup +} ions in the ({sup 2}P{sub 1/2}) excited state with gases such as O{sub 2}, CO{sub 2}, or N{sub 2}O, could be observed. If the initial {sup 138}Ba{sup +} ion ensemble is cold, the produced {sup 138}BaO{sup +} ions are cold as well, with a similar temperature as the laser-cooled barium ions (a few tens of millikelvin). The back-reaction of {sup 138}BaO{sup +} ions with neutral CO to {sup 138}Ba{sup +} is possible and was observed in our experiments as well. A powerful molecular dynamics (MD) simulation program has been developed. With this program dynamic properties of ion ensembles, such as sympathetic interactions or heating effects, have been investigated and experimental results have been analyzed to obtain, for example, ion numbers and temperatures. Additionally, the

  10. Production and sympathetic cooling of complex molecular ions

    International Nuclear Information System (INIS)

    Zhang, Chaobo

    2008-01-01

    This thesis reports on experimental and theoretical studies of the sympathetic cooling of complex molecular ions demonstrating that this general method for cooling atomic and molecular ions is reliable and efficient. For this purpose, complex molecular ions and barium ions have been confined simultaneously in a linear Paul trap. The complex molecular ions are generated in an electrospray ionization system and transferred to the trap via a 2 m long octopole ion guide. These molecular ions are pre-cooled by room temperature helium buffer gas so that they can be captured by the trap. The atomic barium ions are loaded from a barium evaporator oven and are laser-cooled by a 493 nm cooling laser and a 650 nm repumping laser. Due to the mutual Coulomb interaction among these charged particles, the kinetic energy of the complex molecular ions can be reduced significantly. In our experiments we have demonstrated the sympathetic cooling of various molecules (CO 2 , Alexa Fluor 350, glycyrrhetinic acid, cytochrome c) covering a wide mass range from a few tens to 13000 amu. In every case the molecular ions could be cooled down to millikelvin temperatures. Photo-chemical reactions of the 138 Ba + ions in the ( 2 P 1/2 ) excited state with gases such as O 2 , CO 2 , or N 2 O, could be observed. If the initial 138 Ba + ion ensemble is cold, the produced 138 BaO + ions are cold as well, with a similar temperature as the laser-cooled barium ions (a few tens of millikelvin). The back-reaction of 138 BaO + ions with neutral CO to 138 Ba + is possible and was observed in our experiments as well. A powerful molecular dynamics (MD) simulation program has been developed. With this program dynamic properties of ion ensembles, such as sympathetic interactions or heating effects, have been investigated and experimental results have been analyzed to obtain, for example, ion numbers and temperatures. Additionally, the feasibility of nondestructive spectroscopy via an optical dipole excitation

  11. Mass discrimination

    Energy Technology Data Exchange (ETDEWEB)

    Broeckman, A. [Rijksuniversiteit Utrecht (Netherlands)

    1978-12-15

    In thermal ionization mass spectrometry the phenomenon of mass discrimination has led to the use of a correction factor for isotope ratio-measurements. The correction factor is defined as the measured ratio divided by the true or accepted value of this ratio. In fact this factor corrects for systematic errors of the whole procedure; however mass discrimination is often associated just with the mass spectrometer.

  12. Negative mass

    International Nuclear Information System (INIS)

    Hammond, Richard T

    2015-01-01

    Some physical aspects of negative mass are examined. Several unusual properties, such as the ability of negative mass to penetrate any armor, are analysed. Other surprising effects include the bizarre system of negative mass chasing positive mass, naked singularities and the violation of cosmic censorship, wormholes, and quantum mechanical results as well. In addition, a brief look into the implications for strings is given. (paper)

  13. Cooling Tower (Evaporative Cooling System) Measurement and Verification Protocol

    Energy Technology Data Exchange (ETDEWEB)

    Kurnik, Charles W. [National Renewable Energy Laboratory (NREL), Golden, CO (United States); Boyd, Brian [Pacific Northwest National Lab. (PNNL), Richland, WA (United States); Stoughton, Kate M. [Pacific Northwest National Lab. (PNNL), Richland, WA (United States); Lewis, Taylor [Colorado Energy Office, Denver, CO (United States)

    2017-12-05

    This measurement and verification (M and V) protocol provides procedures for energy service companies (ESCOs) and water efficiency service companies (WESCOs) to determine water savings resulting from water conservation measures (WCMs) in energy performance contracts associated with cooling tower efficiency projects. The water savings are determined by comparing the baseline water use to the water use after the WCM has been implemented. This protocol outlines the basic structure of the M and V plan, and details the procedures to use to determine water savings.

  14. Cool diffusion flames of butane isomers activated by ozone in the counterflow

    KAUST Repository

    Alfazazi, Adamu

    2018-02-02

    Ignition in low temperature combustion engines is governed by a coupling between low-temperature oxidation kinetics and diffusive transport. Therefore, a detailed understanding of the coupled effects of heat release, low-temperature oxidation chemistry, and molecular transport in cool flames is imperative to the advancement of new combustion concepts. This study provides an understanding of the low temperature cool flame behavior of butane isomers in the counterflow configuration through the addition of ozone. The initiation and extinction limits of butane isomers’ cool flames have been investigated under a variety of strain rates. Results revealed that, with ozone addition, establishment of butane cool diffusion flames was successful at low and moderate strain rates. iso-Butane has lower reactivity than n-butane, as shown by higher fuel mole fractions needed for cool flame initiation and lower extinction strain rate limits. Ozone addition showed a significant influence on the initiation and sustenance of cool diffusion flames; as ozone-less cool diffusion flame of butane isomers could not be established even at high fuel mole fractions. The structure of a stable n-butane cool diffusion flame was qualitatively examined using a time of flight mass spectrometer. Numerical simulations were performed using a detailed chemical kinetic model and molecular transport to simulate the extinction limits of the cool diffusion flames of the tested fuels. The model qualitatively captured experimental trends for both fuels and ozone levels, but over-predicted extinction limits of the flames. Reactions involving low-temperature species predominantly govern extinction limits of cool flames. The simulations were used to understand the effects of methyl branching on the behavior of n-butane and iso-butane cool diffusion flames.

  15. Nominal Mass?

    Science.gov (United States)

    Attygalle, Athula B; Pavlov, Julius

    2017-08-01

    The current IUPAC-recommended definition of the term "nominal mass," based on the most abundant naturally occurring stable isotope of an element, is flawed. We propose that Nominal mass should be defined as the sum of integer masses of protons and neutrons in any chemical species. In this way, all isotopes and isotopologues can be assigned a definitive identifier. Graphical Abstract ᅟ.

  16. Origin and prevention of infection with Legionella pneumophila through cooling towers and evaporative cooling towers

    International Nuclear Information System (INIS)

    Schulze-Roebbecke, R.

    1994-01-01

    Evaporative cooling towers and industrial ventilator cooling towers have repeatedly been described as the origin of Legionnaires' disease. This article describes the design and function of cooling towers and evaporative cooling towers, sums up knowledge on the colonization of such systems with Legionella pneumophila, and describes conditions permitting the transmission of Legionella. Furthermore, design, maintenance, cleaning and disinfection measures are indicated which are believed to reduce the risk of infection through industrial and evaporative cooling towers. (orig.) [de

  17. Fire analog: a comparison between fire plumes and energy center cooling tower plumes

    Energy Technology Data Exchange (ETDEWEB)

    Orgill, M.M.

    1977-10-01

    Thermal plumes or convection columns associated with large fires are compared to thermal plumes from cooling towers and proposed energy centers to evaluate the fire analog concept. Energy release rates of mass fires are generally larger than for single or small groups of cooling towers but are comparable to proposed large energy centers. However, significant physical differences exist between cooling tower plumes and fire plumes. Cooling tower plumes are generally dominated by ambient wind, stability and turbulence conditions. Fire plumes, depending on burning rates and other factors, can transform into convective columns which may cause the fire behavior to become more violent. This transformation can cause strong inflow winds and updrafts, turbulence and concentrated vortices. Intense convective columns may interact with ambient winds to create significant downwind effects such as wakes and Karman vortex streets. These characteristics have not been observed with cooling tower plumes to date. The differences in physical characteristics between cooling tower and fire plumes makes the fire analog concept very questionable even though the approximate energy requirements appear to be satisfied in case of large energy centers. Additional research is suggested in studying the upper-level plume characteristics of small experimental fires so this information can be correlated with similar data from cooling towers. Numerical simulation of fires and proposed multiple cooling tower systems could also provide comparative data.

  18. Design of evaporative-cooling roof for decreasing air temperatures in buildings in the humid tropics

    Science.gov (United States)

    Kindangen, Jefrey I.; Umboh, Markus K.

    2017-03-01

    This subject points to assess the benefits of the evaporative-cooling roof, particularly for buildings with corrugated zinc roofs. In Manado, many buildings have roofed with corrugated zinc sheets; because this material is truly practical, easy and economical application. In general, to achieve thermal comfort in buildings in a humid tropical climate, people applying cross ventilation to cool the air in the room and avoid overheating. Cross ventilation is a very popular path to achieve thermal comfort; yet, at that place are other techniques that allow reducing the problem of excessive high temperature in the room in the constructions. This study emphasizes applications of the evaporative-cooling roof. Spraying water on the surface of the ceiling has been executed on the test cell and the reuse of water after being sprayed and cooled once more by applying a heat exchanger. Initial results indicate a reliable design and successfully meet the target as an effective evaporative-cooling roof technique. Application of water spraying automatic and cooling water installations can work optimally and can be an optimal model for the cooling roof as one of the green technologies. The role of heat exchangers can lower the temperature of the water from spraying the surface of the ceiling, which has become a hot, down an average of 0.77° C. The mass flow rate of the cooling water is approximately 1.106 kg/h and the rate of heat flow is around 515 Watt, depend on the site.

  19. Modeling of existing cooling towers in ASPEN PLUS using an equilibrium stage method

    International Nuclear Information System (INIS)

    Queiroz, João A.; Rodrigues, Vitor M.S.; Matos, Henrique A.; Martins, F.G.

    2012-01-01

    Highlights: ► Simulation of cooling tower performance under different operating conditions. ► Cooling tower performance is simulated using ASPEN PLUS. ► Levenberg–Marquardt method used to adjust model parameters. ► Air and water outlet temperatures are in good accordance with experimental data. - Abstract: Simulation of cooling tower performance considering operating conditions away from design is typically based on the geometrical parameters provided by the cooling tower vendor, which are often unavailable or outdated. In this paper a different approach for cooling tower modeling based on equilibrium stages and Murphree efficiencies to describe heat and mass transfer is presented. This approach is validated with published data and with data collected from an industrial application. Cooling tower performance is simulated using ASPEN PLUS. Murphree stage efficiency values for the process simulator model were optimized by minimizing the squared difference between the experimental and calculated data using the Levenberg–Marquardt method. The minimization algorithm was implemented in Microsoft Excel with Visual Basic for Applications, integrated with the process simulator (ASPEN PLUS) using Aspen Simulation Workbook. The simulated cooling tower air and water outlet temperatures are in good accordance with experimental data when applying only the outlet water temperature to calibrate the model. The methodology is accurate for simulating cooling towers at different operational conditions.

  20. Simulations of floor cooling system capacity

    International Nuclear Information System (INIS)

    Odyjas, Andrzej; Górka, Andrzej

    2013-01-01

    Floor cooling system capacity depends on its physical and operative parameters. Using numerical simulations, it appears that cooling capacity of the system largely depends on the type of cooling loads occurring in the room. In the case of convective cooling loads capacity of the system is small. However, when radiation flux falls directly on the floor the system significantly increases productivity. The article describes the results of numerical simulations which allow to determine system capacity in steady thermal conditions, depending on the type of physical parameters of the system and the type of cooling load occurring in the room. Moreover, the paper sets out the limits of system capacity while maintaining a minimum temperature of the floor surface equal to 20 °C. The results are helpful for designing system capacity in different type of cooling loads and show maximum system capacity in acceptable thermal comfort condition. -- Highlights: ► We have developed numerical model for simulation of floor cooling system. ► We have described floor system capacity depending on its physical parameters. ► We have described floor system capacity depending on type of cooling loads. ► The most important in the obtained cooling capacities is the type of cooling loads. ► The paper sets out the possible maximum cooling floor system capacity

  1. Auxiliary cooling device for power plant

    International Nuclear Information System (INIS)

    Yamanoi, Kozo.

    1996-01-01

    An auxiliary cooling sea water pipeline for pumping up cooling sea water, an auxiliary cooling sea water pipeline and a primary side of an auxiliary cooling heat exchanger are connected between a sea water taking vessel and a sea water discharge pit. An auxiliary cooling water pump is connected to an auxiliary water cooling pipeline on the second side of the auxiliary cooling heat exchanger. The auxiliary cooling water pipeline is connected with each of auxiliary equipments of a reactor system and each of auxiliary equipments of the turbine system connected to a turbine auxiliary cooling water pipeline in parallel. During ordinary operation of the reactor, heat exchange for each of the auxiliary equipments of the reactor and heat exchange for each of the equipments of the turbine system are conducted simultaneously. Since most portions of the cooling devices of each of the auxiliary equipments of the reactor system and each of the auxiliary equipments of the turbine system can be used in common, the operation efficiency of the cooling device is improved. In addition, the space for the pipelines and the cost for the equipments can be reduced. (I.N.)

  2. Workshop on beam cooling and related topics

    International Nuclear Information System (INIS)

    Bosser, J.

    1994-01-01

    The sessions of the Workshop on Beam Cooling and Related Topics, held in Montreux from 4-8 October 1993, are reported in these Proceedings. This meeting brought together international experts in the field of accelerator beam cooling. Its purpose was to discuss the status of the different cooling techniques currently in use (stochastic, electron, ionization, heavy-ion, and laser) and their actual performances, technological implications, and future prospects. Certain theoretical principles (muon cooling, cyclotron maser cooling) were discussed and are reported on in these Proceedings. Also of interest in this Workshop was the possibility of beam crystallization in accelerators using ultimate cooling. In the first part of these Proceedings, overview talks on the various cooling techniques, their implications, present performance, and future prospects are presented. More detailed reports on all the topics are then given in the form of oral presentations or poster sessions. Finally, the chairmen and/or convenors then present summary talks. (orig.)

  3. Provisioning cooling elements for chillerless data centers

    Energy Technology Data Exchange (ETDEWEB)

    Chainer, Timothy J.; Parida, Pritish R.

    2018-02-13

    Systems and methods for cooling include one or more computing structure, an inter-structure liquid cooling system that includes valves configured to selectively provide liquid coolant to the one or more computing structures; a heat rejection system that includes one or more heat rejection units configured to cool liquid coolant; and one or more liquid-to-liquid heat exchangers that include valves configured to selectively transfer heat from liquid coolant in the inter-structure liquid cooling system to liquid coolant in the heat rejection system. Each computing structure further includes one or more liquid-cooled servers; and an intra-structure liquid cooling system that has valves configured to selectively provide liquid coolant to the one or more liquid-cooled servers.

  4. Infrared spectrum of an extremely cool white-dwarf star

    Science.gov (United States)

    Hodgkin; Oppenheimer; Hambly; Jameson; Smartt; Steele

    2000-01-06

    White dwarfs are the remnant cores of stars that initially had masses of less than 8 solar masses. They cool gradually over billions of years, and have been suggested to make up much of the 'dark matter' in the halo of the Milky Way. But extremely cool white dwarfs have proved difficult to detect, owing to both their faintness and their anticipated similarity in colour to other classes of dwarf stars. Recent improved models indicate that white dwarfs are much more blue than previously supposed, suggesting that the earlier searches may have been looking for the wrong kinds of objects. Here we report an infrared spectrum of an extremely cool white dwarf that is consistent with the new models. We determine the star's temperature to be 3,500 +/- 200 K, making it the coolest known white dwarf. The kinematics of this star indicate that it is in the halo of the Milky Way, and the density of such objects implied by the serendipitous discovery of this star is consistent with white dwarfs dominating the dark matter in the halo.

  5. Geothermal energy used in a cooling generation process

    International Nuclear Information System (INIS)

    Benzaoui, A.; El Gharbi, N.; Merabti, L.

    2006-01-01

    This paper deals with the geothermal energy recovery and use. It is available in an important water reservoir at 1800 m deep. Some drilled wells deliver each one about 200 1/s at 75-95 degree centigrade for agricultural use. It is necessarily cooled to be in irrigation conditions at 20-25 degree centigrade. Our purpose is to install the adequate sized heat exchangers to recover this important energy and to use it in different needs. Furthermore, a systematic survey is made, on the basis od Lindal Diagram, about different possibilities to use this geothermal reservoir available in arid area. Several applications are experimented and presented to farmers: air conditioning, domestic space heating, bathing, fruits and products drying, aqua fishing, etc.. In this report we present the study including scientific and technical questions (heat and mass transfer, absorption cooling generating, energy and mass balances, etc..). The available heat must be upgraded.The solar energy is used for this need. The total experimental cooled space is: 4 rooms X 210 m 3 . The coefficient of performance of the set up is 44% and could be enhanced. Inhabitants could use this fresh atmosphere to stock their products and to pay some home comfort. All calculations and theoretical simulations will be presented and commented.(Author)

  6. Solar radiation and cooling load calculation for radiant systems: Definition and evaluation of the Direct Solar Load

    DEFF Research Database (Denmark)

    Causone, Francesco; Corgnati, Stefano P.; Filippi, Marco

    2010-01-01

    The study of the influence of solar radiation on the built environment is a basic issue in building physics and currently it is extremely important because glazed envelopes are widely used in contemporary architecture. In the present study, the removal of solar heat gains by radiant cooling systems...... is investigated. Particular attention is given to the portion of solar radiation converted to cooling load, without taking part in thermal absorption phenomena due to the thermal mass of the room. This specific component of the cooling load is defined as the Direct Solar Load. A simplified procedure to correctly...... calculate the magnitude of the Direct Solar Load in cooling load calculations is proposed and it is implemented with the Heat Balance method and the Radiant Time Series method. The F ratio of the solar heat gains directly converted to cooling load, in the case of a low thermal mass radiant ceiling...

  7. Cool Uden Røg

    OpenAIRE

    Larsen, Maiken Hollænder; Pedersen, Nikoline Juul; Andersen, Sif Alberte

    2016-01-01

    This project sets out to investigate the reception of a media text by a specific audience. Particularly, how a predetermined target group, children attending 7th to 9th grade in a Danish elementary school, understand the campaign “Cool Uden Røg”, launched by Kræftens Bekæmpelse. In order to do so, a group interview with said target group, four students aged 13-15, was conducted. The empirical data gathered through the interview was then analysed using Kim Schrøder’s multidimensional reception...

  8. Process for cooling waste water

    Energy Technology Data Exchange (ETDEWEB)

    Rohner, P

    1976-12-16

    The process for avoiding thermal pollution of waters described rests on the principle of the heat conduction tube, by which heat is conducted from the liquid space into the atmosphere at a lower temperature above it. Such a tube, here called a cooling tube, consists in its simplest form of a heat conducting corrugated tube, made, for example, of copper or a copper alloy or of precious metals, which is sealed to be airtight at both ends, and after evacuation, is partially filled with a medium of low boiling point. The longer leg of the tube, which is bent at right angles, lies close below the surface of the water to be cooled and parallel to it; the shorter leg projects vertically into the atmosphere. The liquid inside the cooling tube fills the horizontal part of the tube to about halfway. A certain part of the liquid is always evaporated in this part. The vapor rising in the vertical part of the tube condenses on the internal wall cooled by the air outside, and gives off its heat to the atmosphere. The condensed medium flows back down the vertical internal wall into the initial position in a continuous cycle. A further development contains a smooth plastic inner tube in an outer corrugated tube, which is shorter than the outer tube; it ends at a distance from the caps sealing the outer tube at both ends. In this design the angle between the vertical and horizontal leg is less than 90/sup 0/. The shorter leg projects vertically from the water surface, below which the longer leg rises slightly from the knee of tube. The quantity of the liquid is gauged as a type of siphon, so that the space between the outer and inner tube at the knee of the tube remains closed by the liquid medium. The medium evaporated from the surface in the long leg of the tube therefore flows over the inner tube, which starts above the level of the medium. Thus evaporation and condensation paths are separated.

  9. Biofouling Control in Cooling Water

    Directory of Open Access Journals (Sweden)

    T. Reg Bott

    2009-01-01

    Full Text Available An important aspect of environmental engineering is the control of greenhouse gas emissions. Fossil fuel-fired power stations, for instance, represent a substantial contribution to this problem. Unless suitable steps are taken the accumulation of microbial deposits (biofouling on the cooling water side of the steam condensers can reduce their efficiency and in consequence, the overall efficiency of power production, with an attendant increase in fuel consumption and hence CO2 production. Biofouling control, therefore, is extremely important and can be exercised by chemical or physical techniques or a combination of both. The paper gives some examples of the effectiveness of different approaches to biofouling control.

  10. Information technology equipment cooling system

    Science.gov (United States)

    Schultz, Mark D.

    2014-06-10

    According to one embodiment, a system for removing heat from a rack of information technology equipment may include a sidecar indoor air to liquid heat exchanger that cools warm air generated by the rack of information technology equipment. The system may also include a liquid to liquid heat exchanger and an outdoor heat exchanger. The system may further include configurable pathways to connect and control fluid flow through the sidecar heat exchanger, the liquid to liquid heat exchanger, the rack of information technology equipment, and the outdoor heat exchanger based upon ambient temperature and/or ambient humidity to remove heat from the rack of information technology equipment.

  11. Ionization Cooling using Parametric Resonances

    Energy Technology Data Exchange (ETDEWEB)

    Johnson, Rolland P.

    2008-06-07

    Ionization Cooling using Parametric Resonances was an SBIR project begun in July 2004 and ended in January 2008 with Muons, Inc., (Dr. Rolland Johnson, PI), and Thomas Jefferson National Accelerator Facility (JLab) (Dr. Yaroslav Derbenev, Subcontract PI). The project was to develop the theory and simulations of Parametric-resonance Ionization Cooling (PIC) so that it could be used to provide the extra transverse cooling needed for muon colliders in order to relax the requirements on the proton driver, reduce the site boundary radiation, and provide a better environment for experiments. During the course of the project, the theoretical understanding of PIC was developed and a final exposition is ready for publication. Workshops were sponsored by Muons, Inc. in May and September of 2007 that were devoted to the PIC technique. One outcome of the workshops was the interesting and somewhat unexpected realization that the beam emittances using the PIC technique can get small enough that space charge forces can be important. A parallel effort to develop our G4beamline simulation program to include space charge effects was initiated to address this problem. A method of compensating for chromatic aberrations by employing synchrotron motion was developed and simulated. A method of compensating for spherical aberrations using beamline symmetry was also developed and simulated. Different optics designs have been developed using the OptiM program in preparation for applying our G4beamline simulation program, which contains all the power of the Geant4 toolkit. However, no PIC channel design that has been developed has had the desired cooling performance when subjected to the complete G4beamline simulation program. This is believed to be the consequence of the difficulties of correcting the aberrations associated with the naturally large beam angles and beam sizes of the PIC method that are exacerbated by the fringe fields of the rather complicated channel designs that have been

  12. Ionization Cooling using Parametric Resonances

    International Nuclear Information System (INIS)

    Johnson, Rolland P.

    2008-01-01

    Ionization Cooling using Parametric Resonances was an SBIR project begun in July 2004 and ended in January 2008 with Muons, Inc., (Dr. Rolland Johnson, PI), and Thomas Jefferson National Accelerator Facility (JLab) (Dr. Yaroslav Derbenev, Subcontract PI). The project was to develop the theory and simulations of Parametric-resonance Ionization Cooling (PIC) so that it could be used to provide the extra transverse cooling needed for muon colliders in order to relax the requirements on the proton driver, reduce the site boundary radiation, and provide a better environment for experiments. During the course of the project, the theoretical understanding of PIC was developed and a final exposition is ready for publication. Workshops were sponsored by Muons, Inc. in May and September of 2007 that were devoted to the PIC technique. One outcome of the workshops was the interesting and somewhat unexpected realization that the beam emittances using the PIC technique can get small enough that space charge forces can be important. A parallel effort to develop our G4beamline simulation program to include space charge effects was initiated to address this problem. A method of compensating for chromatic aberrations by employing synchrotron motion was developed and simulated. A method of compensating for spherical aberrations using beamline symmetry was also developed and simulated. Different optics designs have been developed using the OptiM program in preparation for applying our G4beamline simulation program, which contains all the power of the Geant4 toolkit. However, no PIC channel design that has been developed has had the desired cooling performance when subjected to the complete G4beamline simulation program. This is believed to be the consequence of the difficulties of correcting the aberrations associated with the naturally large beam angles and beam sizes of the PIC method that are exacerbated by the fringe fields of the rather complicated channel designs that have been

  13. Theoretical insight of adsorption cooling

    KAUST Repository

    Chakraborty, Anutosh

    2011-06-03

    This letter proposes and presents a thermodynamic formulation to calculate the energetic performances of an adsorption cooler as a function of pore widths and volumes of solid adsorbents. The simulated results in terms of the coefficient of performance are validated with experimental data. It is found from the present analysis that the performance of an adsorption cooling device is influenced mainly by the physical characteristics of solid adsorbents, and the characteristics energy between the adsorbent-adsorbate systems. The present study confirms that there exists a special type of silicagel having optimal physical characteristics that allows us to obtain the best performance.

  14. Theoretical insight of adsorption cooling

    KAUST Repository

    Chakraborty, Anutosh; Leong, Kai Choong; Thu, Kyaw; Saha, Bidyut Baran; Ng, Kim Choon

    2011-01-01

    This letter proposes and presents a thermodynamic formulation to calculate the energetic performances of an adsorption cooler as a function of pore widths and volumes of solid adsorbents. The simulated results in terms of the coefficient of performance are validated with experimental data. It is found from the present analysis that the performance of an adsorption cooling device is influenced mainly by the physical characteristics of solid adsorbents, and the characteristics energy between the adsorbent-adsorbate systems. The present study confirms that there exists a special type of silicagel having optimal physical characteristics that allows us to obtain the best performance.

  15. Hot moons and cool stars

    Directory of Open Access Journals (Sweden)

    Heller René

    2013-04-01

    Full Text Available The exquisite photometric precision of the Kepler space telescope now puts the detection of extrasolar moons at the horizon. Here, we firstly review observational and analytical techniques that have recently been proposed to find exomoons. Secondly, we discuss the prospects of characterizing potentially habitable extrasolar satellites. With moons being much more numerous than planets in the solar system and with most exoplanets found in the stellar habitable zone being gas giants, habitable moons could be as abundant as habitable planets. However, satellites orbiting planets in the habitable zones of cool stars will encounter strong tidal heating and likely appear as hot moons.

  16. Assessment of spent fuel cooling

    International Nuclear Information System (INIS)

    Ibarra, J.G.; Jones, W.R.; Lanik, G.F.

    1997-01-01

    The paper presents the methodology, the findings, and the conclusions of a study that was done by the Nuclear Regulatory Commission's Office for Analysis and Evaluation of Operational Data (AEOD) on loss of spent fuel pool cooling. The study involved an examination of spent fuel pool designs, operating experience, operating practices, and procedures. AEOD's work was augmented in the area of statistics and probabilistic risk assessment by experts from the Idaho Nuclear Engineering Laboratory. Operating experience was integrated into a probabilistic risk assessment to gain insight on the risks from spent fuel pools

  17. Liquid metal cooled nuclear reactor

    International Nuclear Information System (INIS)

    Guidez, Joel; Jarriand, Paul.

    1975-01-01

    The invention concerns a fast neutron nuclear reactor cooled by a liquid metal driven through by a primary pump of the vertical drive shaft type fitted at its lower end with a blade wheel. To each pump is associated an exchanger, annular in shape, fitted with a central bore through which passes the vertical drive shaft of the pump, its wheel being mounted under the exchanger. A collector placed under the wheel comprises an open upward suction bell for the liquid metal. A hydrostatic bearing is located above the wheel to guide the drive shaft and a non detachable diffuser into which at least one delivery pipe gives, envelopes the wheel [fr

  18. Cooling optically levitated dielectric nanoparticles via parametric feedback

    Science.gov (United States)

    Neukirch, Levi; Rodenburg, Brandon; Bhattacharya, Mishkatul; Vamivakas, Nick

    2015-05-01

    The inability to leverage resonant scattering processes involving internal degrees of freedom differentiates optical cooling experiments performed with levitated dielectric nanoparticles, from similar atomic and molecular traps. Trapping in optical cavities or the application of active feedback techniques have proven to be effective ways to circumvent this limitation. We present our nanoparticle optical cooling apparatus, which is based on parametric feedback modulation of a single-beam gradient force optical trap. This scheme allows us to achieve effective center-of-mass temperatures well below 1 kelvin for our ~ 1 ×10-18 kg particles, at modest vacuum pressures. The method provides a versatile platform, with parameter tunability not found in conventional tethered nanomechanical systems. Potential applications include investigations of nonequilibrium nanoscale thermodynamics, ultra-sensitive force metrology, and mesoscale quantum mechanics and hybrid systems. Supported by the office of Naval Research award number N000141410442.

  19. Towards new generation spectroscopic models of cool stars

    Science.gov (United States)

    Bergemann, Maria

    2018-06-01

    Abstract: Spectroscopy is a unique tool to determine the physical parameters of stars. Knowledge of stellar chemical abundances, masses, and ages is the key to understanding the evolution of their host populations. I will focus on the current outstanding problems in spectroscopy of cool stars, which are the most useful objects in studies of our local Galactic neighborhood but also very distant systems, like faint dwarf Spheroidal galaxies. Among the most debated issues is to what extent can we trust the techniques, which rely on the classical assumptions of local thermodynamic equilibrium and hydrostatic balance. I will summarise the ongoing efforts to improve the models of cool stars, with the emphasis on NLTE and 3D modelling. I will then discuss how these exciting observations impact our knowledge of abundances in the Milky Way and in dSph systems, and present outlook for the future studies.

  20. Three-dimensional laser cooling at the Doppler limit

    Science.gov (United States)

    Chang, R.; Hoendervanger, A. L.; Bouton, Q.; Fang, Y.; Klafka, T.; Audo, K.; Aspect, A.; Westbrook, C. I.; Clément, D.

    2014-12-01

    Many predictions of Doppler-cooling theory of two-level atoms have never been verified in a three-dimensional geometry, including the celebrated minimum achievable temperature ℏ Γ /2 kB , where Γ is the transition linewidth. Here we show that, despite their degenerate level structure, we can use helium-4 atoms to achieve a situation in which these predictions can be verified. We make measurements of atomic temperatures, magneto-optical trap sizes, and the sensitivity of optical molasses to a power imbalance in the laser beams, finding excellent agreement with Doppler theory. We show that the special properties of helium, particularly its small mass and narrow transition linewidth, prevent effective sub-Doppler cooling with red-detuned optical molasses. This discussion can be generalized to identify when a given species is likely to be subject to the same limitation.

  1. Analysis of the steady state hydraulic behaviour of the ITER blanket cooling system

    Energy Technology Data Exchange (ETDEWEB)

    Di Maio, P.A., E-mail: pietroalessandro.dimaio@unipa.it [Dipartimento di Energia, Ingegneria dell’Informazione e Modelli Matematici, Università di Palermo, Viale delle Scienze, 90128 Palermo (Italy); Dell’Orco, G.; Furmanek, A. [ITER Organization, Route de Vinon-sur-Verdon, CS 90 046, 13067 St Paul Lez Durance Cedex (France); Garitta, S. [Dipartimento di Energia, Ingegneria dell’Informazione e Modelli Matematici, Università di Palermo, Viale delle Scienze, 90128 Palermo (Italy); Merola, M.; Mitteau, R.; Raffray, R. [ITER Organization, Route de Vinon-sur-Verdon, CS 90 046, 13067 St Paul Lez Durance Cedex (France); Spagnuolo, G.A.; Vallone, E. [Dipartimento di Energia, Ingegneria dell’Informazione e Modelli Matematici, Università di Palermo, Viale delle Scienze, 90128 Palermo (Italy)

    2015-10-15

    Highlights: • Nominal steady state hydraulic behaviour of ITER blanket standard sector cooling system has been investigated. • Numerical simulations have been run adopting a qualified thermal-hydraulic system code. • Hydraulic characteristic functions and coolant mass flow rates, velocities and pressure drops have been assessed. • Most of the considered circuits are able to effectively cool blanket modules, meeting ITER requirements. - Abstract: The blanket system is the ITER reactor component devoted to providing a physical boundary for plasma transients and contributing to thermal and nuclear shielding of vacuum vessel, magnets and external components. It is expected to be subjected to significant heat loads under nominal conditions and its cooling system has to ensure an adequate cooling, preventing any risk of critical heat flux occurrence while complying with pressure drop limits. At the University of Palermo a study has been performed, in cooperation with the ITER Organization, to investigate the steady state hydraulic behaviour of the ITER blanket standard sector cooling system. A theoretical–computational approach based on the finite volume method has been followed, adopting the RELAP5 system code. Finite volume models of the most critical blanket cooling circuits have been set-up, realistically simulating the coolant flow domain. The steady state hydraulic behaviour of each cooling circuit has been investigated, determining its hydraulic characteristic function and assessing the spatial distribution of coolant mass flow rates, velocities and pressure drops under reference nominal conditions. Results obtained have indicated that the investigated cooling circuits are able to provide an effective cooling to blanket modules, generally meeting ITER requirements in term of pressure drop and velocity distribution, except for a couple of circuits that are being revised.

  2. Innovative technologies for Faraday shield cooling

    International Nuclear Information System (INIS)

    Rosenfeld, J.H.; Lindemuth, J.E.; North, M.T.; Goulding, R.H.

    1995-01-01

    Alternative advanced technologies are being evaluated for use in cooling the Faraday shields used for protection of ion cyclotron range of frequencies (ICR) antennae in Tokamaks. Two approaches currently under evaluation include heat pipe cooling and gas cooling. A Monel/water heat pipe cooled Faraday shield has been successfully demonstrated. Heat pipe cooling offers the advantage of reducing the amount of water discharged into the Tokamak in the event of a tube weld failure. The device was recently tested on an antenna at Oak Ridge National Laboratory. The heat pipe design uses inclined water heat pipes with warm water condensers located outside of the plasma chamber. This approach can passively remove absorbed heat fluxes in excess of 200 W/cm 2 ;. Helium-cooled Faraday shields are also being evaluated. This approach offers the advantage of no liquid discharge into the Tokamak in the event of a tube failure. Innovative internal cooling structures based on porous metal cooling are being used to develop a helium-cooled Faraday shield structure. This approach can dissipate the high heat fluxes typical of Faraday shield applications while minimizing the required helium blower power. Preliminary analysis shows that nominal helium flow and pressure drop can sufficiently cool a Faraday shield in typical applications. Plans are in progress to fabricate and test prototype hardware based on this approach

  3. Real-time Kalman filter: Cooling of an optically levitated nanoparticle

    Science.gov (United States)

    Setter, Ashley; Toroš, Marko; Ralph, Jason F.; Ulbricht, Hendrik

    2018-03-01

    We demonstrate that a Kalman filter applied to estimate the position of an optically levitated nanoparticle, and operated in real-time within a field programmable gate array, is sufficient to perform closed-loop parametric feedback cooling of the center-of-mass motion to sub-Kelvin temperatures. The translational center-of-mass motion along the optical axis of the trapped nanoparticle has been cooled by 3 orders of magnitude, from a temperature of 300 K to a temperature of 162 ±15 mK.

  4. A combined heating cooling stage for cluster thermalization in the gas phase

    International Nuclear Information System (INIS)

    Ievlev, D.N.; Kuester, A.; Enders, A.; Malinowski, N.; Schaber, H.; Kern, K.

    2003-01-01

    We report on the design and performance of a combined heating/cooling stage for the thermalization of clusters in a gas phase time-of-flight mass spectrometer. With this setup the cluster temperature can sensitively be adjusted within the range from 100 up to 800 K and higher. The unique combination of a heating stage with a subsequent cooling stage allows us to perform thermodynamic investigations on clusters at very high temperatures without quality losses in the spectra due to delayed fragmentation in the drift tube of the mass spectrometer. The performance of the setup is demonstrated by the example of (C 60 ) n clusters

  5. Real-time Kalman filter: cooling of an optically levitated nanoparticle

    OpenAIRE

    Setter, Ashley; Toros, Marko; Ralph, Jason; Ulbricht, Hendrik

    2018-01-01

    We demonstrate that a Kalman filter applied to estimate the position of an optically levitated nanoparticle, and operated in real-time within a Field Programmable Gate Array (FPGA), is sufficient to perform closed-loop parametric feedback cooling of the centre of mass motion to sub-Kelvin temperatures. The translational centre of mass motion along the optical axis of the trapped nanoparticle has been cooled by three orders of magnitude, from a temperature of 300K to a temperature of 162 +/- 1...

  6. Sodium-cooled nuclear reactor

    International Nuclear Information System (INIS)

    Hammers, H.W.

    1982-01-01

    The invention concerns a sodium-cooled nuclear reactor, whose reactor tank contains the primary circuit, shielding surrounding the reactor core and a primary/secondary heat exchanger, particularly a fast breeder reactor on the module principle. In order to achieve this module principle it is proposed to have electromagnetic circulating pumps outside the reactor tank, where the heat exchanger is accomodated in an annular case above the pumps. This case has several openings at the top end to the space above the reactor core, some smaller openings in the middle to the same space and is connected at the bottom to an annular space between the tank wall and the reactor core. As a favoured variant, it is proposed that the annular electromagnetic pumps should be arranged concentrically to the reactor tank, where there is an annual duct on the inside of the reactor tank. In this way the sodium-cooled nuclear reactor is made suitable as a module with a large number of such elements. (orig.) [de

  7. Chemical Soups Around Cool Stars

    Science.gov (United States)

    2009-01-01

    This artist's conception shows a young, hypothetical planet around a cool star. A soupy mix of potentially life-forming chemicals can be seen pooling around the base of the jagged rocks. Observations from NASA's Spitzer Space Telescope hint that planets around cool stars the so-called M-dwarfs and brown dwarfs that are widespread throughout our galaxy might possess a different mix of life-forming, or prebiotic, chemicals than our young Earth. Life on our planet is thought to have arisen out of a pond-scum-like mix of chemicals. Some of these chemicals are thought to have come from a planet-forming disk of gas and dust that swirled around our young sun. Meteorites carrying the chemicals might have crash-landed on Earth. Astronomers don't know if these same life-generating processes are taking place around stars that are cooler than our sun, but the Spitzer observations show their disk chemistry is different. Spitzer detected a prebiotic molecule, called hydrogen cyanide, in the disks around yellow stars like our sun, but found none around cooler, less massive, reddish stars. Hydrogen cyanide is a carbon-containing, or organic compound. Five hydrogen cyanide molecules can join up to make adenine a chemical element of the DNA molecule found in all living organisms on Earth.

  8. Heat pipe turbine vane cooling

    Energy Technology Data Exchange (ETDEWEB)

    Langston, L.; Faghri, A. [Univ. of Connecticut, Storrs, CT (United States)

    1995-10-01

    The applicability of using heat pipe principles to cool gas turbine vanes is addressed in this beginning program. This innovative concept involves fitting out the vane interior as a heat pipe and extending the vane into an adjacent heat sink, thus transferring the vane incident heat transfer through the heat pipe to heat sink. This design provides an extremely high heat transfer rate and an uniform temperature along the vane due to the internal change of phase of the heat pipe working fluid. Furthermore, this technology can also eliminate hot spots at the vane leading and trailing edges and increase the vane life by preventing thermal fatigue cracking. There is also the possibility of requiring no bleed air from the compressor, and therefore eliminating engine performance losses resulting from the diversion of compressor discharge air. Significant improvement in gas turbine performance can be achieved by using heat pipe technology in place of conventional air cooled vanes. A detailed numerical analysis of a heat pipe vane will be made and an experimental model will be designed in the first year of this new program.

  9. JUELICH: COSY acceleration and cooling

    International Nuclear Information System (INIS)

    Anon.

    1993-01-01

    The COSY cooler synchrotron at the KFA Forschungszentrum Jülich, inaugurated on 1 April, is now well on its way towards precision-defined high energy beams to open new fields for Jülich physics experiments. In two important goals, on 25 May the first beam cooled by electrons circulated inside the accelerator, then on 25 July physicists succeeded in accelerating the beam from the 270 MeV/c injection momentum to 600 MeV. Shortly after, this was pushed well above 1 GeV. Throughout the tuning process the number of stored particles increased steadily, finally peaking at 1.1 x 10 11 , a value compatible with the predicted limit at the injection energy. This success was the result of a painstaking search for the optimum parameter set, the commissioning crew being acutely aware that bringing such a large machine on line was a major experiment in its own right. The 3.3 GeV/c COSY machine belongs to the new class of hadron storage and cooler synchrotrons which started with CERN's LEAR low energy antiproton ring. COSY will 'sharpen' its beams to a narrow momentum spread using both electron and stochastic cooling to control the circulating particles. In addition it will provide space for internal experiments. Both features will allow for novel experimental approaches, and more than 100 physicists are eagerly waiting for the first proton reactions in their detectors

  10. Environmental effects of cooling systems

    International Nuclear Information System (INIS)

    1980-01-01

    Since the International Atomic Energy Agency published in 1974 Thermal Discharges at Nuclear Power Stations (Technical Reports Series No.155), much progress has been made in the understanding of phenomena related to thermal discharges. Many studies have been performed in Member States and from 1973 to 1978 the IAEA sponsored a co-ordinated research programme on 'Physical and Biological Effects on the Environment of Cooling Systems and Thermal Discharges from Nuclear Power Stations'. Seven laboratories from Canada, the Federal Republic of Germany, India and the United States of America were involved in this programme, and a lot of new information has been obtained during the five years' collaboration. The progress of the work was discussed at annual co-ordination meetings and the results are presented in the present report. It complements the previous report mentioned above as it deals with several questions that were not answered in 1974. With the conclusion of this co-ordinated programme, it is obvious that some problems have not yet been resolved and that more work is necessary to assess completely the impact of cooling systems on the environment. It is felt, however, that the data gathered here will bring a substantial contribution to the understanding of the subject

  11. Radiant cooling of an enclosure

    International Nuclear Information System (INIS)

    Chebihi, Abdeslam; Byun, Ki-Hong; Wen Jin; Smith, Theodore F.

    2006-01-01

    The purpose of this study is to analyze the potential for radiant cooling using the atmospheric sky window and to evaluate the desired characteristics of a radiant cooling material (RCM) applied to the ceiling window of a three-dimensional enclosure. The thermal characteristics of the system are governed by the geometry, ambient temperature, sky radiative temperature, amount of solar energy and its direction, heat transfer modes, wall radiative properties, and radiative properties of the RCMs. A semi-gray band analysis is utilized for the solar and infrared bands. The radiosity/irradiation method is used in each band to evaluate the radiant exchanges in the enclosure. The radiative properties for the RCM are varied in a parametric study to identify the desired properties of RCMs. For performance simulation of real RCMs, the radiative properties are calculated from spectral data. The desired solar property is a high reflectance for both opaque and semi-transparent RCMs. For a semi-transparent RCM, a low value of the solar transmittance is preferred. The desired infrared property is a high emittance for an opaque RCM. For a semi-transparent RCM, a high infrared transmittance is desired, and the emittance should be greater than zero

  12. Effect of Airflow Velocity on Pre-cooling Process of Pomegranate by Forced Cooling Air under Unsteady State Heat Transfer Condition

    Directory of Open Access Journals (Sweden)

    M. A Behaeen

    2018-03-01

    Full Text Available Introduction Pomegranate (Punica grantum L. is classified into the family of Punicaceae. One of the most influential factors in postharvest life and quality of horticultural products is temperature. In precooling, heat is reduced in fruit and vegetable after harvesting to prepare it quickly for transport and storage. Fikiin (1983, Dennis (1984 and Hass (1976 reported that cold air velocity is one of the effective factors in cooling vegetables and fruits. Determining the time-temperature profiles is an important step in cooling process of agricultural products. The objective of this study was the analysis of cooling rate in the center (arils and outer layer (peel of pomegranate and comparison of the two sections at different cold air velocities. These results are useful for designing and optimizing the precooling systems. Materials and Methods The pomegranate variety was Rabab (thick peel and the experiments were performed on arils (center and peel (outer layer of a pomegranate. The velocities of 0.5, 1 and 1.3 m s-1 were selected for testing. To perform the research, the cooling instrument was designed and built at Department of Biosystems Engineering of Tabriz University, Tabriz, Iran. In each experiment six pt100 temperature sensors was used in a single pomegranate. The cooling of pomegranate was continued until the central temperature reached to 10°C and then the instrument turned off. The average of air and product temperatures was 7.2 and 22.2°C, respectively. The following parameters were measured to analyze the process of precooling: a Dimensionless temperature (θ, b Cooling coefficient (C, c Lag factor (J, d Half-cooling time (H, e Seven-eighths cooling time (S, f Cooling heterogeneity, g Fruit mass loss, h Instantaneous cooling rate, and i convective heat transfer coefficient. Results and Discussion At any air velocity, with increasing the radius from center to outer layer, the lag factor decreased and cooling coefficient increased

  13. Simulation of an adsorption solar cooling system

    International Nuclear Information System (INIS)

    Hassan, H.Z.; Mohamad, A.A.; Bennacer, R.

    2011-01-01

    A more realistic theoretical simulation model for a tubular solar adsorption refrigerating system using activated carbon-methanol (AC/M) pair has been introduced. The mathematical model represents the heat and mass transfer inside the adsorption bed, the condenser, and the evaporator. The simulation technique takes into account the variations of ambient temperature and solar radiation along the day. Furthermore, the local pressure, and local thermal conductivity variations in space and time inside the tubular reactor are investigated as well. A C++ computer program is written to solve the proposed numerical model using the finite difference method. The developed program covers the operations of all the system components along the cycle time. The performance of the tubular reactor, the condenser, and the evaporator has been discussed. Time allocation chart and switching operations for the solar refrigeration system processes are illustrated as well. The case studied has a 1 m 2 surface area solar flat plate collector integrated with a 20 stainless steel tubes containing the AC/M pair and each tube has a 5 cm outer diameter. In addition, the condenser pressure is set to 54.2 kpa. It has been found that, the solar coefficient of performance and the specific cooling power of the system are 0.211 and 2.326 respectively. In addition, the pressure distribution inside the adsorption bed has been found nearly uniform and varying only with time. Furthermore, the AC/M thermal conductivity is shown to be constant in both space and time.

  14. MEANS FOR SHIELDING AND COOLING REACTORS

    Science.gov (United States)

    Wigner, E.P.; Ohlinger, L.A.; Young, G.J.; Weinberg, A.M.

    1959-02-10

    Reactors of the water-cooled type and a means for shielding such a rcactor to protect operating personnel from harmful radiation are discussed. In this reactor coolant tubes which contain the fissionable material extend vertically through a mass of moderator. Liquid coolant enters through the bottom of the coolant tubes and passes upwardly over the fissionable material. A shield tank is disposed over the top of the reactor and communicates through its bottom with the upper end of the coolant tubes. A hydrocarbon shielding fluid floats on the coolant within the shield tank. With this arrangements the upper face of the reactor can be opened to the atmosphere through the two superimposed liquid layers. A principal feature of the invention is that in the event radioactive fission products enter thc coolant stream. imposed layer of hydrocarbon reduces the intense radioactivity introduced into the layer over the reactors and permits removal of the offending fuel material by personnel shielded by the uncontaminated hydrocarbon layer.

  15. Electrochemistry of Water-Cooled Nuclear Reactors

    International Nuclear Information System (INIS)

    Dgiby Macdonald; Mirna Urquidi-Macdonald; John Mahaffy; Amit Jain Han Sang Kim; Vishisht Gupta; Jonathan Pitt

    2006-01-01

    This project developed a comprehensive mathematical and simulation model for calculating thermal hydraulic, electrochemical, and corrosion parameters, viz. temperature, fluid flow velocity, pH, corrosion potential, hydrogen injection, oxygen contamination, stress corrosion cracking, crack growth rate, and other important quantities in the coolant circuits of water-cooled nuclear power plants, including both Boiling Water Reactors (BWRs) and Pressurized Water Reactors (PWRs). The model is being used to assess the three major operational problems in Pressurized Water Reactors (PWR), which include mass transport, activity transport, and the axial offset anomaly, and provide a powerful tool for predicting the accumulation of SCC damage in BWR primary coolant circuits as a function of operating history. Another achievement of the project is the development of a simulation tool to serve both as a training tool for plant operators and as an engineering test-bed to evaluate new equipment and operating strategies (normal operation, cold shut down and others). The development and implementation of the model allows us to estimate the activity transport or ''radiation fields'' around the primary loop and the vessel, as a function of the operating parameters and the water chemistry

  16. Teaching Social Communication Skills Using a Cool versus Not Cool Procedure plus Role-Playing and a Social Skills Taxonomy

    Science.gov (United States)

    Leaf, Justin B.; Taubman, Mitchell; Milne, Christine; Dale, Stephanie; Leaf, Jeremy; Townley-Cochran, Donna; Tsuji, Kathleen; Kassardjian, Alyne; Alcalay, Aditt; Leaf, Ronald; McEachin, John

    2016-01-01

    We utilized a cool versus not cool procedure plus role-playing to teach social communication skills to three individuals diagnosed with autism spectrum disorder. The cool versus not cool procedure plus role-playing consisted of the researcher randomly demonstrating the behavior correctly (cool) two times and the behavior incorrectly (not cool) two…

  17. NEUTRINO MASS

    OpenAIRE

    Kayser, Boris

    1988-01-01

    This is a review article about the most recent developments on the field of neutrino mass. The first part of the review introduces the idea of neutrino masses and mixing angles, summarizes the most recent experimental data then discusses the experimental prospects and challenges in this area. The second part of the review discusses the implications of these results for particle physics and cosmology, including the origin of neutrino mass, the see-saw mechanism and sequential dominance, and la...

  18. Neutrino mass

    International Nuclear Information System (INIS)

    Robertson, R.G.H.

    1992-01-01

    Despite intensive experimental work since the neutrino's existence was proposed by Pauli 60 years ago, and its first observation by Reines and Cowan almost 40 years ago, the neutrino's fundamental properties remain elusive. Among those properties are the masses of the three known flavors, properties under charge conjugation, parity and time-reversal, and static and dynamic electromagnetic moments. Mass is perhaps the most fundamental, as it constrains the other properties. The present status of the search for neutrino mass is briefly reviewed

  19. Sequential cooling insert for turbine stator vane

    Science.gov (United States)

    Jones, Russel B

    2017-04-04

    A sequential flow cooling insert for a turbine stator vane of a small gas turbine engine, where the impingement cooling insert is formed as a single piece from a metal additive manufacturing process such as 3D metal printing, and where the insert includes a plurality of rows of radial extending impingement cooling air holes alternating with rows of radial extending return air holes on a pressure side wall, and where the insert includes a plurality of rows of chordwise extending second impingement cooling air holes on a suction side wall. The insert includes alternating rows of radial extending cooling air supply channels and return air channels that form a series of impingement cooling on the pressure side followed by the suction side of the insert.

  20. Time-dependent Cooling in Photoionized Plasma

    Energy Technology Data Exchange (ETDEWEB)

    Gnat, Orly, E-mail: orlyg@phys.huji.ac.il [Racah Institute of Physics, The Hebrew University, Jerusalem 91904 (Israel)

    2017-02-01

    I explore the thermal evolution and ionization states in gas cooling from an initially hot state in the presence of external photoionizing radiation. I compute the equilibrium and nonequilibrium cooling efficiencies, heating rates, and ion fractions for low-density gas cooling while exposed to the ionizing metagalactic background radiation at various redshifts ( z = 0 − 3), for a range of temperatures (10{sup 8}–10{sup 4} K), densities (10{sup −7}–10{sup 3} cm{sup −3}), and metallicities (10{sup −3}–2 times solar). The results indicate the existence of a threshold ionization parameter, above which the cooling efficiencies are very close to those in photoionization equilibrium (so that departures from equilibrium may be neglected), and below which the cooling efficiencies resemble those in collisional time-dependent gas cooling with no external radiation (and are thus independent of density).