#### Sample records for converter theory model

1. Modeling of asymmetrical boost converters

Directory of Open Access Journals (Sweden)

Eliana Isabel Arango Zuluaga

2014-01-01

Full Text Available The asymmetrical interleaved dual boost (AIDB is a fifth-order DC/DC converter designed to interface photovoltaic (PV panels. The AIDB produces small current harmonics to the PV panels, reducing the power losses caused by the converter operation. Moreover, the AIDB provides a large voltage conversion ratio, which is required to step-up the PV voltage to the large dc-link voltage used in grid-connected inverters. To reject irradiance and load disturbances, the AIDB must be operated in a closed-loop and a dynamic model is required. Given that the AIDB converter operates in Discontinuous Conduction Mode (DCM, classical modeling approaches based on Continuous Conduction Mode (CCM are not valid. Moreover, classical DCM modeling techniques are not suitable for the AIDB converter. Therefore, this paper develops a novel mathematical model for the AIDB converter, which is suitable for control-pur-poses. The proposed model is based on the calculation of a diode current that is typically disregarded. Moreover, because the traditional correction to the second duty cycle reported in literature is not effective, a new equation is designed. The model accuracy is contrasted with circuital simulations in time and frequency domains, obtaining satisfactory results. Finally, the usefulness of the model in control applications is illustrated with an application example.

2. Modeling and Simulation of Matrix Converter

DEFF Research Database (Denmark)

Liu, Fu-rong; Klumpner, Christian; Blaabjerg, Frede

2005-01-01

This paper discusses the modeling and simulation of matrix converter. Two models of matrix converter are presented: one is based on indirect space vector modulation and the other is based on power balance equation. The basis of these two models is• given and the process on modeling is introduced...

3. Model theory

CERN Document Server

Chang, CC

2012-01-01

Model theory deals with a branch of mathematical logic showing connections between a formal language and its interpretations or models. This is the first and most successful textbook in logical model theory. Extensively updated and corrected in 1990 to accommodate developments in model theoretic methods - including classification theory and nonstandard analysis - the third edition added entirely new sections, exercises, and references. Each chapter introduces an individual method and discusses specific applications. Basic methods of constructing models include constants, elementary chains, Sko

4. Model theory

CERN Document Server

Hodges, Wilfrid

1993-01-01

An up-to-date and integrated introduction to model theory, designed to be used for graduate courses (for students who are familiar with first-order logic), and as a reference for more experienced logicians and mathematicians.

5. Mathematical modeling of the flash converting process

Energy Technology Data Exchange (ETDEWEB)

Sohn, H.Y.; Perez-Tello, M.; Riihilahti, K.M. [Utah Univ., Salt Lake City, UT (United States)

1996-12-31

An axisymmetric mathematical model for the Kennecott-Outokumpu flash converting process for converting solid copper matte to copper is presented. The model is an adaptation of the comprehensive mathematical model formerly developed at the University of Utah for the flash smelting of copper concentrates. The model incorporates the transport of momentum, heat, mass, and reaction kinetics between gas and particles in a particle-laden turbulent gas jet. The standard k-{epsilon} model is used to describe gas-phase turbulence in an Eulerian framework. The particle-phase is treated from a Lagrangian viewpoint which is coupled to the gas-phase via the source terms in the Eulerian gas-phase governing equations. Matte particles were represented as Cu{sub 2}S yFeS, and assumed to undergo homogeneous oxidation to Cu{sub 2}O, Fe{sub 3}O{sub 4}, and SO{sub 2}. A reaction kinetics mechanism involving both external mass transfer of oxygen gas to the particle surface and diffusion of oxygen through the porous oxide layer is proposed to estimate the particle oxidation rate Predictions of the mathematical model were compared with the experimental data collected in a bench-scale flash converting facility. Good agreement between the model predictions and the measurements was obtained. The model was used to study the effect of different gas-injection configurations on the overall fluid dynamics in a commercial size flash converting shaft. (author)

6. Mathematical modeling of the flash converting process

Energy Technology Data Exchange (ETDEWEB)

Sohn, H Y; Perez-Tello, M; Riihilahti, K M [Utah Univ., Salt Lake City, UT (United States)

1997-12-31

An axisymmetric mathematical model for the Kennecott-Outokumpu flash converting process for converting solid copper matte to copper is presented. The model is an adaptation of the comprehensive mathematical model formerly developed at the University of Utah for the flash smelting of copper concentrates. The model incorporates the transport of momentum, heat, mass, and reaction kinetics between gas and particles in a particle-laden turbulent gas jet. The standard k-{epsilon} model is used to describe gas-phase turbulence in an Eulerian framework. The particle-phase is treated from a Lagrangian viewpoint which is coupled to the gas-phase via the source terms in the Eulerian gas-phase governing equations. Matte particles were represented as Cu{sub 2}S yFeS, and assumed to undergo homogeneous oxidation to Cu{sub 2}O, Fe{sub 3}O{sub 4}, and SO{sub 2}. A reaction kinetics mechanism involving both external mass transfer of oxygen gas to the particle surface and diffusion of oxygen through the porous oxide layer is proposed to estimate the particle oxidation rate Predictions of the mathematical model were compared with the experimental data collected in a bench-scale flash converting facility. Good agreement between the model predictions and the measurements was obtained. The model was used to study the effect of different gas-injection configurations on the overall fluid dynamics in a commercial size flash converting shaft. (author)

7. MOCCASIN: converting MATLAB ODE models to SBML.

Science.gov (United States)

Gómez, Harold F; Hucka, Michael; Keating, Sarah M; Nudelman, German; Iber, Dagmar; Sealfon, Stuart C

2016-06-15

MATLAB is popular in biological research for creating and simulating models that use ordinary differential equations (ODEs). However, sharing or using these models outside of MATLAB is often problematic. A community standard such as Systems Biology Markup Language (SBML) can serve as a neutral exchange format, but translating models from MATLAB to SBML can be challenging-especially for legacy models not written with translation in mind. We developed MOCCASIN (Model ODE Converter for Creating Automated SBML INteroperability) to help. MOCCASIN can convert ODE-based MATLAB models of biochemical reaction networks into the SBML format. MOCCASIN is available under the terms of the LGPL 2.1 license (http://www.gnu.org/licenses/lgpl-2.1.html). Source code, binaries and test cases can be freely obtained from https://github.com/sbmlteam/moccasin : mhucka@caltech.edu More information is available at https://github.com/sbmlteam/moccasin. © The Author 2016. Published by Oxford University Press.

8. MAGIC: Model and Graphic Information Converter

Science.gov (United States)

Herbert, W. C.

2009-01-01

MAGIC is a software tool capable of converting highly detailed 3D models from an open, standard format, VRML 2.0/97, into the proprietary DTS file format used by the Torque Game Engine from GarageGames. MAGIC is used to convert 3D simulations from authoritative sources into the data needed to run the simulations in NASA's Distributed Observer Network. The Distributed Observer Network (DON) is a simulation presentation tool built by NASA to facilitate the simulation sharing requirements of the Data Presentation and Visualization effort within the Constellation Program. DON is built on top of the Torque Game Engine (TGE) and has chosen TGE's Dynamix Three Space (DTS) file format to represent 3D objects within simulations.

9. Design, modeling and testing of data converters

CERN Document Server

Kiaei, Sayfe; Xu, Fang

2014-01-01

This book presents the a scientific discussion of the state-of-the-art techniques and designs for modeling, testing and for the performance analysis of data converters. The focus is put on sustainable data conversion. Sustainability has become a public issue that industries and users can not ignore. Devising environmentally friendly solutions for data conversion designing, modeling and testing is nowadays a requirement that researchers and practitioners must consider in their activities. This book presents the outcome of the IWADC workshop 2011, held in Orvieto, Italy.

10. The Forms of Value: Problems of Convertibility in Field Theory

Directory of Open Access Journals (Sweden)

Göran Bolin

2012-01-01

Full Text Available Media production in late capitalism is often measured in terms of economic value. If value is defined as the worth of a thing, a standard or measure, being the result of social praxis and negotiation between producers and consumers in various combinations, it follows that this worth can be of other kinds than the mere economic. This is, for example, the reasoning behind field theory (Bourdieu, where the generation of field-specific capital (value is deeply dependent on the belief shared by the competing agents within the field. The full extent of the consequences of such a theory of convertibility between fields of cultural production, centred on different forms of value, is, however yet to be explored. This is the task of this article. It especially focuses on how value is constructed differently depending on the relations of the valuing subject to the production process, something that becomes highly relevant in digital media environments, where users are increasingly drawn into the production process.

11. Generalized model of a bidirectional DC-DC converter

Science.gov (United States)

Hinov, Nikolay; Arnaudov, Dimitar; Penev, Dimitar

2017-12-01

The following paperwork presents models of bidirectional converters. A classic bidirectional converter and a new bidirectional circuit based on a ZCS resonant converter are investigated and compared. The developed models of these converters allow comparison between their characteristics showing their advantages and disadvantages. The models allow precise models of energy storage elements to be implemented as well, which is useful for examination of energy storage systems.

12. Optimizing design of converters using power cycling lifetime models

DEFF Research Database (Denmark)

Nielsen, Rasmus Ørndrup; Munk-Nielsen, Stig

2015-01-01

Converter power cycling lifetime depends heavily on converter operation point. A lifetime model of a single power module switched mode power supply with wide input voltage range is shown. A lifetime model is created using a power loss model, a thermal model and a model for power cycling capability...... with a given mission profile. A method to improve the expected lifetime of the converter is presented, taking into account switching frequency, input voltage and transformer turns ratio....

13. On theory and simulation of heaving-buoy wave-energy converters with control

Energy Technology Data Exchange (ETDEWEB)

Eidsmoen, H.

1995-12-01

Heaving-buoy wave-energy converters with control were studied. The buoy is small compared to the wavelength. The resonance bandwidth is then narrow and the energy conversion in irregular waves can be significantly increased if the oscillatory motion of the device can be actively controlled, and the power output from the converter will vary less with time than the wave power transport. A system of two concentric cylinders of the same radius, oscillating in heave only, is analysed in the frequency-domain. The mathematical model can be used to study a tight-moored buoy, as well as a buoy reacting against a submerged body. The knowledge of the frequency-domain hydrodynamic parameters is used to develop frequency-domain and time-domain mathematical models of heaving-buoy wave energy converters. The main emphasis is on using control to maximize the energy production and to protect the machinery of the wave-energy converter in very large waves. Three different methods are used to study control. (1) In the frequency-domain explicit analytical expressions for the optimum oscillation are found, assuming a continuous sinusoidal control force, and from these expressions the optimum time-domain oscillation can be determined. (2) The second method uses optimal control theory, using a control variable as the instrument for the optimisation. Unlike the first method, this method can include non-linearities. But this method gives numerical time series for the state variables and the control variable rather than analytical expressions for the optimum oscillation. (3) The third method is time-domain simulation. Non-linear forces are included, but the method only gives the response of the system to a given incident wave. How the different methods can be used to develop real-time control is discussed. Simulations are performed for a tight-moored heaving-buoy converter with a high-pressure hydraulic system for energy production and motion control. 147 refs., 38 figs., 22 tabs.

14. Accurate Sliding-Mode Control System Modeling for Buck Converters

DEFF Research Database (Denmark)

Høyerby, Mikkel Christian Wendelboe; Andersen, Michael Andreas E.

2007-01-01

This paper shows that classical sliding mode theory fails to correctly predict the output impedance of the highly useful sliding mode PID compensated buck converter. The reason for this is identified as the assumption of the sliding variable being held at zero during sliding mode, effectively...... approach also predicts the self-oscillating switching action of the sliding-mode control system correctly. Analytical findings are verified by simulation as well as experimentally in a 10-30V/3A buck converter....

15. Modeling the bremsstrahlung emission from converters

CERN Document Server

Mirea, M; Clapier, F; Hassaïne, M; Ibrahim, F; Müller, A C; Pauwels, N; Proust, J; Verney, D; Antoni, R; Bourgeois, L; Kandri-Rody, S

2001-01-01

The bremsstrahlung angular and energy theoretical distributions delivered from W and UCx thick converters are reported. This study is focussed on initial kinetic energies of the electron beam included in the range 30-60 MeV, suitable for the production of large radiative yields able to induce the $^{238}$U fission. These results offer the possibility to evaluate the required shielding for a neutron rich nuclei source.

16. Small-signal model for the series resonant converter

Science.gov (United States)

King, R. J.; Stuart, T. A.

1985-01-01

The results of a previous discrete-time model of the series resonant dc-dc converter are reviewed and from these a small signal dynamic model is derived. This model is valid for low frequencies and is based on the modulation of the diode conduction angle for control. The basic converter is modeled separately from its output filter to facilitate the use of these results for design purposes. Experimental results are presented.

17. Modeling the full-bridge series-resonant power converter

Science.gov (United States)

King, R. J.; Stuart, T. A.

1982-01-01

A steady state model is derived for the full-bridge series-resonant power converter. Normalized parametric curves for various currents and voltages are then plotted versus the triggering angle of the switching devices. The calculations are compared with experimental measurements made on a 50 kHz converter and a discussion of certain operating problems is presented.

18. Power electronic converters modeling and control with case studies

CERN Document Server

Bacha, Seddik; Bratcu, Antoneta Iuliana

2014-01-01

Modern power electronic converters are involved in a very broad spectrum of applications: switched-mode power supplies, electrical-machine-motion-control, active power filters, distributed power generation, flexible AC transmission systems, renewable energy conversion systems and vehicular technology, among them. Power Electronics Converters Modeling and Control teaches the reader how to analyze and model the behavior of converters and so to improve their design and control. Dealing with a set of confirmed algorithms specifically developed for use with power converters, this text is in two parts: models and control methods. The first is a detailed exposition of the most usual power converter models: ·        switched and averaged models; ·        small/large-signal models; and ·        time/frequency models. The second focuses on three groups of control methods: ·        linear control approaches normally associated with power converters; ·        resonant controllers b...

19. Modeling and Simulation of a Wave Energy Converter INWAVE

Directory of Open Access Journals (Sweden)

Seung Kwan Song

2017-01-01

Full Text Available INGINE Inc. developed its own wave energy converter (WEC named INWAVE and has currently installed three prototype modules in Jeju Island, Korea. This device is an on-shore-type WEC that consists of a buoy, pulleys fixed to the sea-floor and a power take off module (PTO. Three ropes are moored tightly on the bottom of the buoy and connected to the PTO via the pulleys, which are moving back and forth according to the motion of the buoy. Since the device can harness wave energy from all six degrees of movement of the buoy, it is possible to extract energy efficiently even under low energy density conditions provided in the coastal areas. In the PTO module, the ratchet gears convert the reciprocating movement of the rope drum into a uni-directional rotation and determine the transmission of power from the relation of the angular velocities between the rope drum and the generator. In this process, the discontinuity of the power transmission occurs and causes the modeling divergence. Therefore, we introduce the concept of the virtual torsion spring in order to prevent the impact error in the ratchet gear module, thereby completing the PTO modeling. In this paper, we deal with dynamic analysis in the time domain, based on Newtonian mechanics and linear wave theory. We derive the combined dynamics of the buoy and PTO modules via geometric relation between the buoy and mooring ropes, then suggest the ratchet gear mechanism with the virtual torsion spring element to reduce the dynamic errors during the phase transitions. Time domain simulation is carried out under irregular waves that reflect the actual wave states of the installation area, and we evaluate the theoretical performance using the capture width ratio.

20. Model Predictive Control of a Wave Energy Converter

DEFF Research Database (Denmark)

Andersen, Palle; Pedersen, Tom Søndergård; Nielsen, Kirsten Mølgaard

2015-01-01

In this paper reactive control and Model Predictive Control (MPC) for a Wave Energy Converter (WEC) are compared. The analysis is based on a WEC from Wave Star A/S designed as a point absorber. The model predictive controller uses wave models based on the dominating sea states combined with a model...... connecting undisturbed wave sequences to sequences of torque. Losses in the conversion from mechanical to electrical power are taken into account in two ways. Conventional reactive controllers are tuned for each sea state with the assumption that the converter has the same efficiency back and forth. MPC...

1. Modeling and Control of Primary Parallel Isolated Boost Converter

DEFF Research Database (Denmark)

Mira Albert, Maria del Carmen; Hernandez Botella, Juan Carlos; Sen, Gökhan

2012-01-01

In this paper state space modeling and closed loop controlled operation have been presented for primary parallel isolated boost converter (PPIBC) topology as a battery charging unit. Parasitic resistances have been included to have an accurate dynamic model. The accuracy of the model has been...

2. Model theory and modules

CERN Document Server

Prest, M

1988-01-01

In recent years the interplay between model theory and other branches of mathematics has led to many deep and intriguing results. In this, the first book on the topic, the theme is the interplay between model theory and the theory of modules. The book is intended to be a self-contained introduction to the subject and introduces the requisite model theory and module theory as it is needed. Dr Prest develops the basic ideas concerning what can be said about modules using the information which may be expressed in a first-order language. Later chapters discuss stability-theoretic aspects of module

3. Direct switching control of DC-DC power electronic converters using hybrid system theory

Energy Technology Data Exchange (ETDEWEB)

Zhao, J.; Lin, F. [Wayne State Univ., Detroit, MI (United States). Dept. of Electrical and Computer Engineering; Wang, C. [Wayne State Univ., Detroit, MI (United States). Dept. of Electrical and Computer Engineering; Wayne State Univ., Detroit, MI (United States). Div. of Engineering Technology

2010-07-01

A direct switching control (DSC) scheme for power electronics converters was described. The system was designed for use in both traditional and renewable energy applications as well as in electric drive vehicles. The proposed control scheme was based on a detailed hybrid system converter model that used model predictive control (MPC), piecewise affine (PWA) approximations and constrained optimal control methods. A DC-DC converter was modelled as a hybrid machine. Switching among different modes of the DC-DC converter were modelled as discrete events controlled by the hybrid controller. The modelling scheme was applied to a Buck converter. The DSC was used to control the switch of the power converter based on a hybrid machine model. Results of the study showed that the method can be used to regulate output voltage and inductor currents. The method also provides fast transient responses and effectively regulates both currents and voltage. The controller can be used to provide immediate responses to dynamic disturbances and output voltage fluctuations. 23 refs., 7 figs.

4. Model predictive control for Z-source power converter

DEFF Research Database (Denmark)

Mo, W.; Loh, P.C.; Blaabjerg, Frede

2011-01-01

This paper presents Model Predictive Control (MPC) of impedance-source (commonly known as Z-source) power converter. Output voltage control and current control for Z-source inverter are analyzed and simulated. With MPC's ability of multi- system variables regulation, load current and voltage...

5. The Model and Quadratic Stability Problem of Buck Converter in DCM

Directory of Open Access Journals (Sweden)

Li Xiaojing

2016-01-01

Full Text Available Quadratic stability is an important performance for control systems. At first, the model of Buck Converter in DCM is built based on the theories of hybrid systems and switched linear systems primarily. Then quadratic stability of SLS and hybrid feedback switching rule are introduced. The problem of Buck Converter’s quadratic stability is researched afterwards. In the end, the simulation analysis and verification are provided. Both experimental verification and theoretical analysis results indicate that the output of Buck Converter in DCM has an excellent performance via quadratic stability control and switching rules.

6. A Model Predictive Control-Based Power Converter System for Oscillating Water Column Wave Energy Converters

Directory of Open Access Journals (Sweden)

Gimara Rajapakse

2017-10-01

Full Text Available Despite the predictability and availability at large scale, wave energy conversion (WEC has still not become a mainstream renewable energy technology. One of the main reasons is the large variations in the extracted power which could lead to instabilities in the power grid. In addition, maintaining the speed of the turbine within optimal range under changing wave conditions is another control challenge, especially in oscillating water column (OWC type WEC systems. As a solution to the first issue, this paper proposes the direct connection of a battery bank into the dc-link of the back-to-back power converter system, thereby smoothening the power delivered to the grid. For the second issue, model predictive controllers (MPCs are developed for the rectifier and the inverter of the back-to-back converter system aiming to maintain the turbine speed within its optimum range. In addition, MPC controllers are designed to control the battery current as well, in both charging and discharging conditions. Operations of the proposed battery direct integration scheme and control solutions are verified through computer simulations. Simulation results show that the proposed integrated energy storage and control solutions are capable of delivering smooth power to the grid while maintaining the turbine speed within its optimum range under varying wave conditions.

7. Modeling and analysis of fractional order DC-DC converter.

Science.gov (United States)

Radwan, Ahmed G; Emira, Ahmed A; AbdelAty, Amr M; Azar, Ahmad Taher

2017-07-11

Due to the non-idealities of commercial inductors, the demand for a better model that accurately describe their dynamic response is elevated. So, the fractional order models of Buck, Boost and Buck-Boost DC-DC converters are presented in this paper. The detailed analysis is made for the two most common modes of converter operation: Continuous Conduction Mode (CCM) and Discontinuous Conduction Mode (DCM). Closed form time domain expressions are derived for inductor currents, voltage gain, average current, conduction time and power efficiency where the effect of the fractional order inductor is found to be strongly present. For example, the peak inductor current at steady state increases with decreasing the inductor order. Advanced Design Systems (ADS) circuit simulations are used to verify the derived formulas, where the fractional order inductor is simulated using Valsa Constant Phase Element (CPE) approximation and Generalized Impedance Converter (GIC). Different simulation results are introduced with good matching to the theoretical formulas for the three DC-DC converter topologies under different fractional orders. A comprehensive comparison with the recently published literature is presented to show the advantages and disadvantages of each approach. Copyright © 2017 ISA. Published by Elsevier Ltd. All rights reserved.

8. Bi-Frequency Modulated Quasi-Resonant Converters: Theory and Applications

Science.gov (United States)

Zhang, Yuefeng

1995-01-01

To avoid the variable frequency operation of quasi -resonant converters, many soft-switching PWM converters have been proposed, all of them require an auxiliary switch, which will increase the cost and complexity of the power supply system. In this thesis, a new kind of technique for quasi -resonant converters has been proposed, which is called the bi-frequency modulation technique. By operating the quasi-resonant converters at two switching frequencies, this technique enables quasi-resonant converters to achieve the soft-switching, at fixed switching frequencies, without an auxiliary switch. The steady-state analysis of four commonly used quasi-resonant converters, namely, ZVS buck, ZCS buck, ZVS boost, and ZCS boost converter has been presented. Using the concepts of equivalent sources, equivalent sinks, and resonant tank, the large signal models of these four quasi -resonant converters were developed. Based on these models, the steady-state control characteristics of BFM ZVS buck, BFM ZCS buck, BFM ZVS boost, and BFM ZCS boost converter have been derived. The functional block and design consideration of the bi-frequency controller were presented, and one of the implementations of the bi-frequency controller was given. A complete design example has been presented. Both computer simulations and experimental results have verified that the bi-frequency modulated quasi-resonant converters can achieve soft-switching, at fixed switching frequencies, without an auxiliary switch. One of the application of bi-frequency modulation technique is for EMI reduction. The basic principle of using BFM technique for EMI reduction was introduced. Based on the spectral analysis, the EMI performances of the PWM, variable-frequency, and bi-frequency modulated control signals was evaluated, and the BFM control signals show the lowest EMI emission. The bi-frequency modulated technique has also been applied to the power factor correction. A BFM zero -current switching boost converter has

9. Application of Theory of Hybrid Systems to Control the Switching of Buck Converter

KAUST Repository

Benmiloud, Mohammed

2013-08-01

The field of power electronics poses challenging control problems that can’t be treated in a complete manner using traditional modeling. In this paper, the buck converter operating in Continuous Conduction Mode (CCM) is represented analytically by hybrid automaton model and graphically representation is also given. The hybrid trajectory and the model behavior are presented. The control problem of buck switching converters is transformed to a guard selection problem. The guard selection calculation formulas of buck converter are derived from the basic circuit laws. The stability of the switching is established analytically by the use of multiple Lyapunov functions to ensure the convergence and Poincare map to assess the local stability of the limit cycle. Numerical results clearly bring out the advantages and effectiveness of the proposed control law under varying line voltage and load conditions. Simulation studies are carried out in Matlab/Simulink/Stateflow.

10. Application of Theory of Hybrid Systems to Control the Switching of Buck Converter

KAUST Repository

Benmiloud, Mohammed; Benalia, Atallah; Laleg-Kirati, Taous-Meriem

2013-01-01

The field of power electronics poses challenging control problems that can’t be treated in a complete manner using traditional modeling. In this paper, the buck converter operating in Continuous Conduction Mode (CCM) is represented analytically by hybrid automaton model and graphically representation is also given. The hybrid trajectory and the model behavior are presented. The control problem of buck switching converters is transformed to a guard selection problem. The guard selection calculation formulas of buck converter are derived from the basic circuit laws. The stability of the switching is established analytically by the use of multiple Lyapunov functions to ensure the convergence and Poincare map to assess the local stability of the limit cycle. Numerical results clearly bring out the advantages and effectiveness of the proposed control law under varying line voltage and load conditions. Simulation studies are carried out in Matlab/Simulink/Stateflow.

11. Isothermal CFD-model of Peirce-Smith converting process

Energy Technology Data Exchange (ETDEWEB)

Vaarno, J.; Pitkaelae, J.; Ahokainen, T.; Jokilaakso, A.

1997-12-31

The Peirce-Smith converter has been a dominating copper and nickel matte refining process since 1905. Due to extremely difficult process conditions, very little measured data has been available for studying interactions of the gas injection and molten sulphide matte. Detailed information on fluid dynamics of the gas injection is needed in solving gas injection related problems like refractory wear, accretion growth and tuyere blockage as well as optimising the efficiency of momentum and mass transfer created by the gas jets. A commercial CFD-code PHOENICS was used to solve isothermal flow field of gas and liquid in a Peirce-Smith converter. An Euler-Euler based algorithm was chosen for modelling fluid dynamics and evaluating controlling forces of a submerged gas injection generally. Predictions were made with a {kappa}-{epsilon} turbulence model in the body fitted co-ordinate system. The model has been verified with a 1/4 scale water model, and a parametric study with the mathematical model of submerged gas injection was made for the PS-process and the ladle injection processes. Limits of the modelling technique used were recognised, but calculated results indicates that the present model predicts the general flow field with reasonable accuracy and it can be used as input for more detailed mathematical models of gas plumes. Predicted bubble distribution, pattern of the flow field and magnitude of flow velocities were also used to evaluate scaling factors of physical models and general flow conditions of an industrial PS-converter. (orig.) 28 refs.

12. Converting biomolecular modelling data based on an XML representation.

Science.gov (United States)

Sun, Yudong; McKeever, Steve

2008-08-25

Biomolecular modelling has provided computational simulation based methods for investigating biological processes from quantum chemical to cellular levels. Modelling such microscopic processes requires atomic description of a biological system and conducts in fine timesteps. Consequently the simulations are extremely computationally demanding. To tackle this limitation, different biomolecular models have to be integrated in order to achieve high-performance simulations. The integration of diverse biomolecular models needs to convert molecular data between different data representations of different models. This data conversion is often non-trivial, requires extensive human input and is inevitably error prone. In this paper we present an automated data conversion method for biomolecular simulations between molecular dynamics and quantum mechanics/molecular mechanics models. Our approach is developed around an XML data representation called BioSimML (Biomolecular Simulation Markup Language). BioSimML provides a domain specific data representation for biomolecular modelling which can effciently support data interoperability between different biomolecular simulation models and data formats.

13. Loss Model and Efficiency Analysis of Tram Auxiliary Converter Based on a SiC Device

Directory of Open Access Journals (Sweden)

Hao Liu

2017-12-01

Full Text Available Currently, the auxiliary converter in the auxiliary power supply system of a modern tram adopts Si IGBT as its switching device and with the 1700 V/225 A SiC MOSFET module commercially available from Cree, an auxiliary converter using all SiC devices is now possible. A SiC auxiliary converter prototype is developed during this study. The author(s derive the loss calculation formula of the SiC auxiliary converter according to the system topology and principle and each part loss in this system can be calculated based on the device datasheet. Then, the static and dynamic characteristics of the SiC MOSFET module used in the system are tested, which aids in fully understanding the performance of the SiC devices and provides data support for the establishment of the PLECS loss simulation model. Additionally, according to the actual circuit parameters, the PLECS loss simulation model is set up. This simulation model can simulate the actual operating conditions of the auxiliary converter system and calculate the loss of each switching device. Finally, the loss of the SiC auxiliary converter prototype is measured and through comparison it is found that the loss calculation theory and PLECS loss simulation model is valuable. Furthermore, the thermal images of the system can prove the conclusion about loss distribution to some extent. Moreover, these two methods have the advantages of less variables and fast calculation for high power applications. The loss models may aid in optimizing the switching frequency and improving the efficiency of the system.

14. Model Predictive Control of Buoy Type Wave Energy Converter

DEFF Research Database (Denmark)

Soltani, Mohsen N.; Sichani, Mahdi T.; Mirzaei, Mahmood

2014-01-01

by forcing this condition. In the paper the theoretical framework for this principal is shown. The optimal controller requires information of the sea state for infinite horizon which is not applicable. Model Predictive Controllers (MPC) can have finite horizon which crosses out this requirement....... This approach is then taken into account and an MPC controller is designed for a model wave energy converter and implemented on a numerical example. Further, the power outtake of this controller is compared to the optimal controller as an indicator of the performance of the designed controller....

15. Calculational models of close-spaced thermionic converters

International Nuclear Information System (INIS)

McVey, J.B.

1983-01-01

Two new calculational models have been developed in conjunction with the SAVTEC experimental program. These models have been used to analyze data from experimental close-spaced converters, providing values for spacing, electrode work functions, and converter efficiency. They have also been used to make performance predictions for such converters over a wide range of conditions. Both models are intended for use in the collisionless (Knudsen) regime. They differ from each other in that the simpler one uses a Langmuir-type formulation which only considers electrons emitted from the emitter. This approach is implemented in the LVD (Langmuir Vacuum Diode) computer program, which has the virtue of being both simple and fast. The more complex model also includes both Saha-Langmuir emission of positive cesium ions from the emitter and collector back emission. Computer implementation is by the KMD1 (Knudsen Mode Diode) program. The KMD1 model derives the particle distribution functions from the Vlasov equation. From these the particle densities are found for various interelectrode motive shapes. Substituting the particle densities into Poisson's equation gives a second order differential equation for potential. This equation can be integrated once analytically. The second integration, which gives the interelectrode motive, is performed numerically by the KMD1 program. This is complicated by the fact that the integrand is often singular at one end point of the integration interval. The program performs a transformation on the integrand to make it finite over the entire interval. Once the motive has been computed, the output voltage, current density, power density, and efficiency are found. The program is presently unable to operate when the ion richness ratio β is between about .8 and 1.0, due to the occurrence of oscillatory motives

16. Performance improvement of sensorless vector control for matrix converter drives using PQR power theory

DEFF Research Database (Denmark)

Lee, Kyo Beum; Blaabjerg, Frede

2007-01-01

This paper presents a new method to improve sensorless performance of matrix converter drives using PQR power transformation. The non-linearity of matrix converter drives such as commutation delay, turn-on and turn-off time of switching device, and on-state switching device voltage drop is modelled...... using PQR transformation and compensated using a reference current control scheme. To eliminate the input current distortion due to the input voltage unbalance, a simple method using PQR transformation is also proposed. The proposed compensation method is applied for high performance induction motor...

17. Reference Model 6 (RM6): Oscillating Wave Energy Converter.

Energy Technology Data Exchange (ETDEWEB)

Bull, Diana L; Smith, Chris; Jenne, Dale Scott; Jacob, Paul; Copping, Andrea; Willits, Steve; Fontaine, Arnold; Brefort, Dorian; Gordon, Margaret Ellen; Copeland, Robert; Jepsen, Richard Alan

2014-10-01

This report is an addendum to SAND2013-9040: Methodology for Design and Economic Analysis of Marine Energy Conversion (MEC) Technologies. This report describes an Oscillating Water Column Wave Energy Converter reference model design in a complementary manner to Reference Models 1-4 contained in the above report. In this report, a conceptual design for an Oscillating Water Column Wave Energy Converter (WEC) device appropriate for the modeled reference resource site was identified, and a detailed backward bent duct buoy (BBDB) device design was developed using a combination of numerical modeling tools and scaled physical models. Our team used the methodology in SAND2013-9040 for the economic analysis that included costs for designing, manufacturing, deploying, and operating commercial-scale MEC arrays, up to 100 devices. The methodology was applied to identify key cost drivers and to estimate levelized cost of energy (LCOE) for this RM6 Oscillating Water Column device in dollars per kilowatt-hour ($/kWh). Although many costs were difficult to estimate at this time due to the lack of operational experience, the main contribution of this work was to disseminate a detailed set of methodologies and models that allow for an initial cost analysis of this emerging technology. This project is sponsored by the U.S. Department of Energy's (DOE) Wind and Water Power Technologies Program Office (WWPTO), within the Office of Energy Efficiency & Renewable Energy (EERE). Sandia National Laboratories, the lead in this effort, collaborated with partners from National Laboratories, industry, and universities to design and test this reference model. 18. Theory of two-photon interactions with broadband down-converted light and entangled photons International Nuclear Information System (INIS) Dayan, Barak 2007-01-01 When two-photon interactions are induced by down-converted light with a bandwidth that exceeds the pump bandwidth, they can obtain a behavior that is pulselike temporally, yet spectrally narrow. At low photon fluxes this behavior reflects the time and energy entanglement between the down-converted photons. However, two-photon interactions such as two-photon absorption (TPA) and sum-frequency generation (SFG) can exhibit such a behavior even at high power levels, as long as the final state (i.e., the atomic level in TPA, or the generated light in SFG) is narrow-band enough. This behavior does not depend on the squeezing properties of the light, is insensitive to linear losses, and has potential applications. In this paper we describe analytically this behavior for traveling-wave down conversion with continuous or pulsed pumping, both for high- and low-power regimes. For this we derive a quantum-mechanical expression for the down-converted amplitude generated by an arbitrary pump, and formulate operators that represent various two-photon interactions induced by broadband light. This model is in excellent agreement with experimental results of TPA and SFG with high-power down-converted light and with entangled photons [Dayan et al., Phys. Rev. Lett. 93, 023005 (2004); 94, 043602 (2005); Pe'er et al., ibid. 94, 073601 (2005) 19. Converting Biomolecular Modelling Data Based on an XML Representation Directory of Open Access Journals (Sweden) Sun Yudong 2008-06-01 Full Text Available Biomolecular modelling has provided computational simulation based methods for investigating biological processes from quantum chemical to cellular levels. Modelling such microscopic processes requires atomic description of a biological system and conducts in fine timesteps. Consequently the simulations are extremely computationally demanding. To tackle this limitation, different biomolecular models have to be integrated in order to achieve high-performance simulations. The integration of diverse biomolecular models needs to convert molecular data between different data representations of different models. This data conversion is often non-trivial, requires extensive human input and is inevitably error prone. In this paper we present an automated data conversion method for biomolecular simulations between molecular dynamics and quantum mechanics/molecular mechanics models. Our approach is developed around an XML data representation called BioSimML (Biomolecular Simulation Markup Language. BioSimML provides a domain specific data representation for biomolecular modelling which can effciently support data interoperability between different biomolecular simulation models and data formats. 20. A Multicell Converter Model of DBD Plasma Discharges International Nuclear Information System (INIS) Flores-Fuentes, A. A.; Piedad-Beneitez, A. de la; Pena-Eguiluz, R.; Mercado-Cabrera, A.; Valencia A, R.; Barocio, S. R.; Lopez-Callejas, R.; Godoy-Cabrera, O. G.; Benitez-Read, J. S.; Pacheco-Sotelo, J. O. 2006-01-01 A compact Matlab model of plasma discharges in a DBD reactor consisting of two parallel electrode plates with a small gap and a thin dielectric sheet between them is reported. Its DBD plasma is modelled as a voltage controlled current-source switched on when the voltage across the gap exceeds the breakdown voltage. A three cell voltage-source inverter, configured in half-bridge, has been used as a power supply. This configuration has an excellent performance when operating as an open-loop. The distribution of total energy between a large number of low power converters proofs to be advantageous, allowing an efficient high power drive. Simulation results show that the current source and its output current tend to follow an exponential behaviour. A phenomenological characteristic of the voltage-current behaviour of DBD is then described by power laws with different voltage exponent function values 1. Reference Model 5 (RM5): Oscillating Surge Wave Energy Converter Energy Technology Data Exchange (ETDEWEB) Yu, Y. H. [National Renewable Energy Lab. (NREL), Golden, CO (United States); Jenne, D. S. [National Renewable Energy Lab. (NREL), Golden, CO (United States); Thresher, R. [National Renewable Energy Lab. (NREL), Golden, CO (United States); Copping, A. [Pacific Northwest National Lab. (PNNL), Richland, WA (United States); Geerlofs, S. [Pacific Northwest National Lab. (PNNL), Richland, WA (United States); Hanna, L. A. [Pacific Northwest National Lab. (PNNL), Richland, WA (United States) 2015-01-01 This report is an addendum to SAND2013-9040: Methodology for Design and Economic Analysis of Marine Energy Conversion (MEC) Technologies. This report describes an Oscillating Water Column Wave Energy Converter (OSWEC) reference model design in a complementary manner to Reference Models 1-4 contained in the above report. A conceptual design for a taut moored oscillating surge wave energy converter was developed. The design had an annual electrical power of 108 kilowatts (kW), rated power of 360 kW, and intended deployment at water depths between 50 m and 100 m. The study includes structural analysis, power output estimation, a hydraulic power conversion chain system, and mooring designs. The results were used to estimate device capital cost and annual operation and maintenance costs. The device performance and costs were used for the economic analysis, following the methodology presented in SAND2013-9040 that included costs for designing, manufacturing, deploying, and operating commercial-scale MEC arrays up to 100 devices. The levelized cost of energy estimated for the Reference Model 5 OSWEC, presented in this report, was for a single device and arrays of 10, 50, and 100 units, and it enabled the economic analysis to account for cost reductions associated with economies of scale. The baseline commercial levelized cost of energy estimate for the Reference Model 5 device in an array comprised of 10 units is$1.44/kilowatt-hour (kWh), and the value drops to approximately 0.69/kWh for an array of 100 units. 2. Theory and modeling group Science.gov (United States) Holman, Gordon D. 1989-01-01 The primary purpose of the Theory and Modeling Group meeting was to identify scientists engaged or interested in theoretical work pertinent to the Max '91 program, and to encourage theorists to pursue modeling which is directly relevant to data which can be expected to result from the program. A list of participants and their institutions is presented. Two solar flare paradigms were discussed during the meeting -- the importance of magnetic reconnection in flares and the applicability of numerical simulation results to solar flare studies. 3. Mathematical Modeling and Digital Control of A Hybrid Switching Buck Converter Directory of Open Access Journals (Sweden) Muhammad Umar Abbasi 2017-06-01 Full Text Available The aim of this paper is to describe mathematical modeling and digital control of a hybrid switching buck converter. This converter belongs to a class of so called hybrid switching converters and contains a resonant capacitor, resonant inductor and a diode in addition to original buck converter components. The dc gain of this converter is shown to be independent of resonant branch parameters. Moreover the dc conversion ratio is derived for both ideal case and including main inductor dc resistance. Small signal model of the converter is derived and is shown to be similar to conventional buck converter. Simulation results in SIMPLIS Software as well as experimental results of digital control using an 8 bit STM microcontroller are presented. The potential advantages and applications of this converter are discussed. 4. Sound transmission in narrow pipes with superimposed uniform mean flow and acoustic modelling of automobile catalytic converters Science.gov (United States) Dokumaci, E. 1995-05-01 The theory of Zwikker and Kosten for axisymmetric wave propagation in circular pipes has been extended to include the effect of uniform mean flow. This formulation can be used in acoustical modelling of both the honeycomb pipes in monolithic catalytic converters and the standard pipes in internal combustion engine exhaust lines. The effects of mean flow on the propagation constants are shown. Two-port elements for acoustic modelling of the honeycomb structure of monolithic catalytic converters are developed and applied to the prediction of the transmission loss characteristics. 5. A Hamiltonian viewpoint in the modeling of switching power converters : A systematic modeling procedure of a large class of switching power converters using the Hamiltonian approach NARCIS (Netherlands) Escobar, Gerardo; Schaft, Arjan J. van der; Ortega, Romeo 1999-01-01 In this paper we show how, using the Hamiltonian formalism, we can systematically derive mathematical models that describe the behaviour of a large class of switching power converters, including the "Boost", "Buck", "Buck-Boost", "Čuk" and "Flyback" converters. We follow the approach earlier 6. Model and control of the isolated multi-modular converter DEFF Research Database (Denmark) Verdugo, Cristian; Candela, Jose Ignacio; Blaabjerg, Frede 2017-01-01 Multi-modular converters have proven to be one of the most suitable topology to be used in high and power applications. The modularity of these configurations offer several advantages, such as: high quality voltage, redundancy and high efficiency. In these converters, the series connection...... voltages. However, increasing the number of conversion stages, increase also the losses and the implementation costs. In order to overcome these drawbacks, a new configuration of multi-modular converter is proposed in this paper. The proposed converter provides isolation with one conversion stage by means...... of using low frequency transformers in each module. The main principle behind this concept, the control structure and simulation results are presented to validate the proposed configuration.... 7. Coupling modeling and analysis of a wind energy converter Directory of Open Access Journals (Sweden) Jie-jie Li 2016-06-01 Full Text Available In this article, the numerical simulation of a 2.0-MW wind energy converter coupling is achieved by three-dimensional computer-aided design modeling technique and finite element method. The static performances and the buckling characteristics of the diaphragm coupling are investigated. The diaphragm coupling is divided into three substructures, namely, torque input end, the middle section, and the torque output end. Considering the assembly and contact conditions, the simulation analysis for stress responses of the diaphragm coupling is carried out. The buckling factor and buckling mode of the diaphragms are obtained, and the geometric parameters of the diaphragms are optimized according to their buckling characteristics. The relationship between the pretightening force of the bolts, which tighten the friction flange and the friction plate, and the sliding torque is given by an empirical formula. The reasonable ranges of the pretightening force and tighten torque of the bolts are recommended. The fatigue analysis of the diaphragms is completed, and the results show that the diaphragms are competent to the designed life of the diaphragm coupling. 8. Analysis and Modeling of Integrated Magnetics for LLC resonant Converters DEFF Research Database (Denmark) Li, Mingxiao; Ouyang, Ziwei; Zhao, Bin 2017-01-01 Shunt-inserted transformers are widely used toobtain high leakage inductance. This paper investigates thismethod in depth to make it applicable to integrate resonantinductor for the LLC resonant converters. The analysis andmodel of magnetizing inductance and leakage inductance forshunt...... transformers can provide a significantdifference. The way to obtain the desirable magnetizing andleakage inductance value for LLC resonant converters issimplified by the creation of air gaps together with a magneticshunt. The calculation and relation are validated by finiteelement analysis (FEA) simulations... 9. Experimental Validation of a Theory for a Variable Resonant Frequency Wave Energy Converter (VRFWEC) Science.gov (United States) Park, Minok; Virey, Louis; Chen, Zhongfei; Mäkiharju, Simo 2016-11-01 A point absorber wave energy converter designed to adapt to changes in wave frequency and be highly resilient to harsh conditions, was tested in a wave tank for wave periods from 0.8 s to 2.5 s. The VRFWEC consists of a closed cylindrical floater containing an internal mass moving vertically and connected to the floater through a spring system. The internal mass and equivalent spring constant are adjustable and enable to match the resonance frequency of the device to the exciting wave frequency, hence optimizing the performance. In a full scale device, a Permanent Magnet Linear Generator will convert the relative motion between the internal mass and the floater into electricity. For a PMLG as described in Yeung et al. (OMAE2012), the electromagnetic force proved to cause dominantly linear damping. Thus, for the present preliminary study it was possible to replace the generator with a linear damper. While the full scale device with 2.2 m diameter is expected to generate O(50 kW), the prototype could generate O(1 W). For the initial experiments the prototype was restricted to heave motion and data compared to predictions from a newly developed theoretical model (Chen, 2016). 10. Modeling generalized interline power-flow controller (GIPFC using 48-pulse voltage source converters Directory of Open Access Journals (Sweden) Amir Ghorbani 2018-05-01 Full Text Available Generalized interline power-flow controller (GIPFC is one of the voltage-source controller (VSC-based flexible AC transmission system (FACTS controllers that can independently regulate the power-flow over each transmission line of a multiline system. This paper presents the modeling and performance analysis of GIPFC based on 48-pulsed voltage-source converters. This paper deals with a cascaded multilevel converter model, which is a 48-pulse (three levels voltage source converter. The voltage source converter described in this paper is a harmonic neutralized, 48-pulse GTO converter. The GIPFC controller is based on d-q orthogonal coordinates. The algorithm is verified using simulations in MATLAB/Simulink environment. Comparisons between unified power flow controller (UPFC and GIPFC are also included. Keywords: Generalized interline power-flow controller (GIPFC, Voltage source converter (VCS, 48-pulse GTO converter 11. AN EDUCATIONAL THEORY MODEL--(SIGGS), AN INTEGRATION OF SET THEORY, INFORMATION THEORY, AND GRAPH THEORY WITH GENERAL SYSTEMS THEORY. Science.gov (United States) MACCIA, ELIZABETH S.; AND OTHERS AN ANNOTATED BIBLIOGRAPHY OF 20 ITEMS AND A DISCUSSION OF ITS SIGNIFICANCE WAS PRESENTED TO DESCRIBE CURRENT UTILIZATION OF SUBJECT THEORIES IN THE CONSTRUCTION OF AN EDUCATIONAL THEORY. ALSO, A THEORY MODEL WAS USED TO DEMONSTRATE CONSTRUCTION OF A SCIENTIFIC EDUCATIONAL THEORY. THE THEORY MODEL INCORPORATED SET THEORY (S), INFORMATION THEORY… 12. Hydrodynamic Modelling and Layout Optimisation of Wave Energy Converter Arrays DEFF Research Database (Denmark) Ruiz, Pau Mercadé 2017-01-01 in various positions and orientations are finally investigated. This thesis intends in this way to offer a practical approach to the analysis of wave energy converters when they operate together as an array and the optimal design of array layouts. The topics covered by the text include propagation of waves... 13. Precise Model Analysis for 3-phase High Power Converter using the Harmonic State Space Modeling DEFF Research Database (Denmark) Kwon, Jun Bum; Wang, Xiongfei; Blaabjerg, Frede 2015-01-01 This paper presents about the generalized multi-frequency modeling and analysis methodology, which can be used in control loop design and stability analysis. In terms of the switching frequency of high power converter, there can be harmonics interruption if the voltage source converter has a low...... switching frequency ratio or multi-sampling frequency. The range of the control bandwidth can include the switching component. Thus, the systems become unstable. This paper applies the Harmonic State Space (HSS) Modeling method in order to find out the transfer function for each harmonics terms... 14. A Bond Graph Approach for the Modeling and Simulation of a Buck Converter Directory of Open Access Journals (Sweden) Rached Zrafi 2018-01-01 Full Text Available This paper deals with the modeling of bond graph buck converter systems. The bond graph formalism, which represents a heterogeneous formalism for physical modeling, is used to design a sub-model of a power MOSFET and PiN diode switchers. These bond graph models are based on the device’s electrical elements. The application of these models to a bond graph buck converter permit us to obtain an invariant causal structure when the switch devices change state. This paper shows the usefulness of the bond graph device’s modeling to simulate an implicit bond graph buck converter. 15. Reliability modeling and analysis for a novel design of modular converter system of wind turbines International Nuclear Information System (INIS) Zhang, Cai Wen; Zhang, Tieling; Chen, Nan; Jin, Tongdan 2013-01-01 Converters play a vital role in wind turbines. The concept of modularity is gaining in popularity in converter design for modern wind turbines in order to achieve high reliability as well as cost-effectiveness. In this study, we are concerned with a novel topology of modular converter invented by Hjort, Modular converter system with interchangeable converter modules. World Intellectual Property Organization, Pub. No. WO29027520 A2; 5 March 2009, in this architecture, the converter comprises a number of identical and interchangeable basic modules. Each module can operate in either AC/DC or DC/AC mode, depending on whether it functions on the generator or the grid side. Moreover, each module can be reconfigured from one side to the other, depending on the system’s operational requirements. This is a shining example of full-modular design. This paper aims to model and analyze the reliability of such a modular converter. A Markov modeling approach is applied to the system reliability analysis. In particular, six feasible converter system models based on Hjort’s architecture are investigated. Through numerical analyses and comparison, we provide insights and guidance for converter designers in their decision-making. 16. A novel modular multilevel converter modelling technique based on semi-analytical models for HVDC application Directory of Open Access Journals (Sweden) Ahmed Zama 2016-12-01 Full Text Available Thanks to scalability, performance and efficiency, the Modular Multilevel Converter (MMC, since its invention, becomes an attractive topology in industrial applications such as high voltage direct current (HVDC transmission system. However, modelling challenges related to the high number of switching elements in the MMC are highlighted when such systems are integrated into large simulated networks for stability or protection algorithms testing. In this work, a novel dynamic models for MMC is proposed. The proposed models are intended to simplify modeling challenges related to the high number of switching elements in the MMC. The models can be easily used to simulate the converter for stability analysis or protection algorithms for HVDC grids. 17. Mathematical modeling of a photovoltaic-laser energy converter for iodine laser radiation Science.gov (United States) Walker, Gilbert H.; Heinbockel, John H. 1987-01-01 Space-based laser power systems will require converters to change laser radiation into electricity. Vertical junction photovoltaic converters are promising devices for this use. A promising laser for the laser power station is the t-C4F9I laser which emits radiation at a wavelength of 1.315 microns. This paper describes the results of mathematical modeling of a photovoltaic-laser energy converter for use with this laser. The material for this photovoltaic converter is Ga(53)In(47)As which has a bandgap energy of 0.94 eV, slightly below the energy of the laser photons (0.943 eV). Results of a study optimizing the converter parameters are presented. Calculated efficiency for a 1000 vertical junction converter is 42.5 percent at a power density of 1 x 10 to the 3d power w/sq cm. 18. Power converter topologies for wind energy conversion systems: Integrated modeling, control strategy and performance simulation Energy Technology Data Exchange (ETDEWEB) Melicio, R.; Catalao, J.P.S. [Department of Electromechanical Engineering, University of Beira Interior, R. Fonte do Lameiro, 6201-001 Covilha (Portugal); Mendes, V.M.F. [Department of Electrical Engineering and Automation, Instituto Superior de Engenharia de Lisboa, R. Conselheiro Emidio Navarro, 1950-062 Lisbon (Portugal) 2010-10-15 This paper presents new integrated model for variable-speed wind energy conversion systems, considering a more accurate dynamic of the wind turbine, rotor, generator, power converter and filter. Pulse width modulation by space vector modulation associated with sliding mode is used for controlling the power converters. Also, power factor control is introduced at the output of the power converters. Comprehensive performance simulation studies are carried out with matrix, two-level and multilevel power converter topologies in order to adequately assert the system performance. Conclusions are duly drawn. (author) 19. A Hamiltonian viewpoint in the modelling of switching power converters, Special Issue on Hybrid Systems NARCIS (Netherlands) Escobar, Gerardo; van der Schaft, Arjan; Ortega, Romeo 1999-01-01 In this paper we show how, using the Hamiltonian formalism, we can systematically derive mathematical models that describe the behaviour of a large class of switching power converters, including the “Boost”, “Buck”, “Buck-Boost”, “ uk” and “Flyback” converters. We follow the approach proposed by van 20. Guest Editorial Special Section on Systems of Power Converters: Design, Modeling, Control, and Implementation DEFF Research Database (Denmark) Liu, Wenxin; Guerrero, Josep M.; Kim, Jang Mok 2017-01-01 In this Special Section on Systems of Power Converters: Design, Modeling, Control, and Implementation, we have 11 high-quality papers approved for publication that cover the following three topics. 1) Converter Design and Operation. 2) Subsystem-Level Applications. 3) System-Level Applications... 1. Modeling and Simulation of PMSG Wind Turbine with Boost Converter Working under Discontinuous Conduction Mode DEFF Research Database (Denmark) Qin, Nan; Xu, Zhao 2008-01-01 in the discontinuous conducting mode (DCM). The new wind turbine model with the variable speed control of the PMSG based on duty cycle control of the boost converter has been developed in Matlab Simulink. Simulation studies show that DCM working mode of the boost converter provides more flexibility in controlling... 2. Modelling, Simulation and Construction of a DC/DC Boost Power Converter: A School Experimental System Science.gov (United States) Silva-Ortigoza, R.; Silva-Ortigoza, G.; Hernandez-Guzman, V. M.; Saldana-Gonzalez, G.; Marcelino-Aranda, M.; Marciano-Melchor, M. 2012-01-01 We introduce a dc/dc boost power converter as a didactic prototype intended to support courses on electric circuit analysis experimentally. The corresponding mathematical model is obtained, the converter is designed and an experimental setup is described, constructed and tested. Simplicity of construction as well as low cost of components renders… 3. Modelling, simulation and construction of a dc/dc boost power converter: a school experimental system International Nuclear Information System (INIS) Silva-Ortigoza, R; Marciano-Melchor, M; Silva-Ortigoza, G; Hernández-Guzmán, V M; Saldaña-González, G; Marcelino-Aranda, M 2012-01-01 We introduce a dc/dc boost power converter as a didactic prototype intended to support courses on electric circuit analysis experimentally. The corresponding mathematical model is obtained, the converter is designed and an experimental setup is described, constructed and tested. Simplicity of construction as well as low cost of components renders the feasible introduction of this equipment in undergraduate laboratories. (paper) 4. Hydroelectromechanical modelling of a piezoelectric wave energy converter Science.gov (United States) Renzi, E. 2016-11-01 We investigate the hydroelectromechanical-coupled dynamics of a piezoelectric wave energy converter. The converter is made of a flexible bimorph plate, clamped at its ends and forced to motion by incident ocean surface waves. The piezoceramic layers are connected in series and transform the elastic motion of the plate into useful electricity by means of the piezoelectric effect. By using a distributed-parameter analytical approach, we couple the linear piezoelectric constitutive equations for the plate with the potential-flow equations for the surface water waves. The resulting system of governing partial differential equations yields a new hydroelectromechanical dispersion relation, whose complex roots are determined with a numerical approach. The effect of the piezoelectric coupling in the hydroelastic domain generates a system of short- and long-crested weakly damped progressive waves travelling along the plate. We show that the short-crested flexural wave component gives a dominant contribution to the generated power. We determine the hydroelectromechanical resonant periods of the device, at which the power output is significant. 5. Lectures on algebraic model theory CERN Document Server Hart, Bradd 2001-01-01 In recent years, model theory has had remarkable success in solving important problems as well as in shedding new light on our understanding of them. The three lectures collected here present recent developments in three such areas: Anand Pillay on differential fields, Patrick Speissegger on o-minimality and Matthias Clasen and Matthew Valeriote on tame congruence theory. 6. Model integration and a theory of models OpenAIRE Dolk, Daniel R.; Kottemann, Jeffrey E. 1993-01-01 Model integration extends the scope of model management to include the dimension of manipulation as well. This invariably leads to comparisons with database theory. Model integration is viewed from four perspectives: Organizational, definitional, procedural, and implementational. Strategic modeling is discussed as the organizational motivation for model integration. Schema and process integration are examined as the logical and manipulation counterparts of model integr... 7. A suitable model plant for control of the set fuel cell-DC/DC converter Energy Technology Data Exchange (ETDEWEB) Andujar, J.M.; Segura, F.; Vasallo, M.J. [Departamento de Ingenieria Electronica, Sistemas Informaticos y Automatica, E.P.S. La Rabida, Universidad de Huelva, Ctra. Huelva - Palos de la Frontera, S/N, 21819 La Rabida - Palos de la Frontera Huelva (Spain) 2008-04-15 In this work a state and transfer function model of the set made up of a proton exchange membrane (PEM) fuel cell and a DC/DC converter is developed. The set is modelled as a plant controlled by the converter duty cycle. In addition to allow setting the plant operating point at any point of its characteristic curve (two interesting points are maximum efficiency and maximum power points), this approach also allows the connection of the fuel cell to other energy generation and storage devices, given that, as they all usually share a single DC bus, a thorough control of the interconnected devices is required. First, the state and transfer function models of the fuel cell and the converter are obtained. Then, both models are related in order to achieve the fuel cell+DC/DC converter set (plant) model. The results of the theoretical developments are validated by simulation on a real fuel cell model. (author) 8. Analytical Model for LLC Resonant Converter With Variable Duty-Cycle Control DEFF Research Database (Denmark) Shen, Yanfeng; Wang, Huai; Blaabjerg, Frede 2016-01-01 are identified and discussed. The proposed model enables a better understanding of the operation characteristics and fast parameter design of the LLC converter, which otherwise cannot be achieved by the existing simulation based methods and numerical models. The results obtained from the proposed model......In LLC resonant converters, the variable duty-cycle control is usually combined with a variable frequency control to widen the gain range, improve the light-load efficiency, or suppress the inrush current during start-up. However, a proper analytical model for the variable duty-cycle controlled LLC...... converter is still not available due to the complexity of operation modes and the nonlinearity of steady-state equations. This paper makes the efforts to develop an analytical model for the LLC converter with variable duty-cycle control. All possible operation models and critical operation characteristics... 9. Analytical and computational modelling for wave energy systems: the example of oscillating wave surge converters Science.gov (United States) Dias, Frédéric; Renzi, Emiliano; Gallagher, Sarah; Sarkar, Dripta; Wei, Yanji; Abadie, Thomas; Cummins, Cathal; Rafiee, Ashkan 2017-08-01 The development of new wave energy converters has shed light on a number of unanswered questions in fluid mechanics, but has also identified a number of new issues of importance for their future deployment. The main concerns relevant to the practical use of wave energy converters are sustainability, survivability, and maintainability. Of course, it is also necessary to maximize the capture per unit area of the structure as well as to minimize the cost. In this review, we consider some of the questions related to the topics of sustainability, survivability, and maintenance access, with respect to sea conditions, for generic wave energy converters with an emphasis on the oscillating wave surge converter. New analytical models that have been developed are a topic of particular discussion. It is also shown how existing numerical models have been pushed to their limits to provide answers to open questions relating to the operation and characteristics of wave energy converters. 10. Analytical and computational modelling for wave energy systems: the example of oscillating wave surge converters. Science.gov (United States) Dias, Frédéric; Renzi, Emiliano; Gallagher, Sarah; Sarkar, Dripta; Wei, Yanji; Abadie, Thomas; Cummins, Cathal; Rafiee, Ashkan 2017-01-01 The development of new wave energy converters has shed light on a number of unanswered questions in fluid mechanics, but has also identified a number of new issues of importance for their future deployment. The main concerns relevant to the practical use of wave energy converters are sustainability, survivability, and maintainability. Of course, it is also necessary to maximize the capture per unit area of the structure as well as to minimize the cost. In this review, we consider some of the questions related to the topics of sustainability, survivability, and maintenance access, with respect to sea conditions, for generic wave energy converters with an emphasis on the oscillating wave surge converter. New analytical models that have been developed are a topic of particular discussion. It is also shown how existing numerical models have been pushed to their limits to provide answers to open questions relating to the operation and characteristics of wave energy converters. 11. Warped models in string theory International Nuclear Information System (INIS) Acharya, B.S.; Benini, F.; Valandro, R. 2006-12-01 Warped models, originating with the ideas of Randall and Sundrum, provide a fascinating extension of the standard model with interesting consequences for the LHC. We investigate in detail how string theory realises such models, with emphasis on fermion localisation and the computation of Yukawa couplings. We find, in contrast to the 5d models, that fermions can be localised anywhere in the extra dimension, and that there are new mechanisms to generate exponential hierarchies amongst the Yukawa couplings. We also suggest a way to distinguish these string theory models with data from the LHC. (author) 12. Design of six pulse bridge multiplication converter model for current harmonic elimination of three phase ac-dc converter International Nuclear Information System (INIS) Soomro, M.A.; Helepoto, I.A. 2014-01-01 The recent development of semiconductor technology and wide spread use of power electronic devices in power system have open the era of the power system harmonics due to increasing penetration of non-linear loads. Harmonics are widely admitted as most important issues of power quality which must be eliminated to maintain power system reliability. The tolerable THD (Total Harmonic Distortion) values must be bounded in well-defined limits recognized by IEEE-519 standard. In this work, in order to eliminate the current harmonics produced by non-linear loads, six pulse multiplication converter technique in conjunction with STSSHPE (Single Tuned Shunt Harmonic Passive Filter) is proposed. The proposed model has the capacity of harmonic cancellation of the dominant 3rd order harmonics. Besides that, the 5th and 7th order harmonics are also reduced to a diminishing level. The hardware model has been experimentally tested by PQA (Power Quality Analyzer) and simulation model is designed using MATLAB software. The acquired results have been measured by considering THD values in terms of current and voltage. Furthermore, they have been compared against IEEE-519 performance standards. The prosed model, successfully bounds the total harmonic distortion under defined limits by IEEE-519 standard. (author) 13. Modeling and Simulation of Buck-Boost Converter with Voltage Feedback Control Directory of Open Access Journals (Sweden) Zhou Xuelian 2015-01-01 Full Text Available In order to design the control system, it is necessary to have an exact model of buck-boost converter. This paper put forward the transfer function model of buck-boost converter by the state-space average method. The open-loop transfer function model of uncompensated system is deduced according to the mathematic model of the buck-boost converter, the controller is designed according to frequency domain. The phase and magnitude margin of the open-loop system of the buck-boost converter with compensator have both been increased. After compensating, this control system has the advantages of small overshoot and short settling time. It can also improve control system’s real time property and anti-interference ability. 14. Modeling and Control of a Dual-Input Isolated Full-Bridge Boost Converter DEFF Research Database (Denmark) Zhang, Zhe; Thomsen, Ole Cornelius; Andersen, Michael A. E. 2012-01-01 In this paper, a steady-state model, a large-signal (LS) model and an ac small-signal (SS) model for a recently proposed dual-input transformer-isolated boost converter are derived respectively by the switching flow-graph (SFG) nonlinear modeling technique. Based upon the converter’s model... 15. Validation of Hydrodynamic Numerical Model of a Pitching Wave Energy Converter DEFF Research Database (Denmark) López, Maria del Pilar Heras; Thomas, Sarah; Kramer, Morten Mejlhede 2017-01-01 Validation of numerical model is essential in the development of new technologies. Commercial software and codes available simulating wave energy converters (WECs) have not been proved to work for all the available and upcoming technologies yet. The present paper presents the first stages...... of the validation process of a hydrodynamic numerical model for a pitching wave energy converter. The development of dry tests, wave flume and wave basin experiments are going to be explained, lessons learned shared and results presented.... 16. LPV model for PV cell and fractional control of DC/DC converter for photovoltaic systems OpenAIRE Martínez González, Rubén; Bolea Monte, Yolanda; Grau Saldes, Antoni; Martínez García, Herminio 2011-01-01 This paper deals with the fractional modelling of a DC-DC converter, suitable in solar-powered electrical generation systems, and the design of a fractional controller for the aforementioned switching converter. A new model for PV cells is proposed in order to obtain a linear equation for V-I characteristic via scheduling dependence of temperature and irradiance. Due to the fractional nature of the ultracapacitors this kind of controller gives a suitable and good performance. Peer Reviewed 17. LPV model for PV cells and fractional control of DC/DC converter for photovoltaic systems OpenAIRE Martínez González, Rubén; Bolea Monte, Yolanda; Grau Saldes, Antoni; Martínez García, Herminio 2011-01-01 This paper deals with the fractional modelling of a DC-DC converter, suitable in solar-powered electrical generation systems, and the design of a fractional controller for the aforementioned switching converter. A new model for PV cells is proposed in order to obtain a linear equation for VI characteristic via scheduling dependence of temperature and irradiance. Due to the fractional nature of the ultracapacitors this kind of controller gives a suitable and good performance. Peer Rev... 18. Model Theory in Algebra, Analysis and Arithmetic CERN Document Server Dries, Lou; Macpherson, H Dugald; Pillay, Anand; Toffalori, Carlo; Wilkie, Alex J 2014-01-01 Presenting recent developments and applications, the book focuses on four main topics in current model theory: 1) the model theory of valued fields; 2) undecidability in arithmetic; 3) NIP theories; and 4) the model theory of real and complex exponentiation. Young researchers in model theory will particularly benefit from the book, as will more senior researchers in other branches of mathematics. 19. Expectancy Theory Modeling Science.gov (United States) 1982-08-01 accomplish the task, (2) the instrumentality of task performance for job outcomes, and (3) the instrumentality of outcomes for need satisfaction . We...in this discussion: effort, performance , outcomes, and needs. In order to present briefly the conventional approach to the Vroom models, another...Presumably, this is the final event in the sequence of effort, performance , outcome, and need satisfaction . The actual research reported in expectancy 20. Modeling and sizing the coil in boost converters dedicated to photovoltaic sources Science.gov (United States) Atik, Lotfi; Fares, Mohammed Amine; Zaraket, Jean; Bachir, Ghalem; Aillerie, Michel 2018-05-01 The coil is a very important element in a wide range of power electrical systems as such as those used in converter or inverter dedicated to extract and to adapt the value and the shape of the intensity and the voltage delivered by renewable energy sources. Thus, knowing its behavior in converters is paramount to obtain a maximum conversion efficiency and reliability. In this context, this paper presents a global study of a DC/DC boost converter dedicated to photovoltaic sources based on the modeling of the behavior of the coil or the inductance as a function of the switching frequency. 1. Modeling, Analysis and Control of Different DC-DC Converter Topologies for Photo Voltaic Emulator Directory of Open Access Journals (Sweden) Mohammad Tauquir Iqbal 2016-05-01 Full Text Available This paper presents the modeling, analysis and control of different DC-DC converter topologies to emulate the photovoltaic (PV system. A PV emulator is basically a DC-DC converter having same electrical characteristics that of solar PV panel. The emulator helps to achieve real characteristics of PV system in a better way in an environment where using actual PV systems can produce inconsistent results due to variation in weather conditions. The paper describes different types of DC-DC converters like buck, Resonant and Quasi Resonant Converter. The complete system is modelled in MATLAB® Simulink SimPowerSystem software package. The Simulation results obtained from the MATLAB® Simulink SimPowerSystem software package for different topologies under steady and dynamic conditions are analyzed and presented. An evaluation table is also presented at the end of the paper, presenting the effectiveness of each topology. 2. Space vector-based modeling and control of a modular multilevel converter in HVDC applications DEFF Research Database (Denmark) Bonavoglia, M.; Casadei, G.; Zarri, L. 2013-01-01 Modular multilevel converter (MMC) is an emerging multilevel topology for high-voltage applications that has been developed in recent years. In this paper, the modeling and the control of MMCs are restated in terms of space vectors, which may allow a deeper understanding of the converter behavior....... As a result, a control scheme for three-phase MMCs based on the previous theoretical analysis is presented. Numerical simulations are used to test its feasibility.......Modular multilevel converter (MMC) is an emerging multilevel topology for high-voltage applications that has been developed in recent years. In this paper, the modeling and the control of MMCs are restated in terms of space vectors, which may allow a deeper understanding of the converter behavior... 3. The J3 SCR model applied to resonant converter simulation Science.gov (United States) Avant, R. L.; Lee, F. C. Y. 1985-01-01 The J3 SCR model is a continuous topology computer model for the SCR. Its circuit analog and parameter estimation procedure are uniformly applicable to popular computer-aided design and analysis programs such as SPICE2 and SCEPTRE. The circuit analog is based on the intrinsic three pn junction structure of the SCR. The parameter estimation procedure requires only manufacturer's specification sheet quantities as a data base. 4. Model Predictive Control of Buoy Type Wave Energy Converter DEFF Research Database (Denmark) Soltani, Mohsen; Sichani, Mahdi Teimouri; Mirzaei, Mahmood 2014-01-01 by forcing this condition. In the paper the theoretical framework for this principal is shown. The optimal controller requires information of the sea state for infinite horizon which is not applicable. Model Predictive Controllers (MPC) can have finite horizon which crosses out this requirement....... This approach is then taken into account and an MPC controller is designed for a model WEC and implemented on a numerical example. Further, the power outtake of this controller is compared to the optimal controller as an indicator of the performance of the designed controller.... 5. Three-dimensional models of conventional and vertical junction laser-photovoltaic energy converters Science.gov (United States) Heinbockel, John H.; Walker, Gilbert H. 1988-01-01 Three-dimensional models of both conventional planar junction and vertical junction photovoltaic energy converters have been constructed. The models are a set of linear partial differential equations and take into account many photoconverter design parameters. The model is applied to Si photoconverters; however, the model may be used with other semiconductors. When used with a Nd laser, the conversion efficiency of the Si vertical junction photoconverter is 47 percent, whereas the efficiency for the conventional planar Si photoconverter is only 17 percent. A parametric study of the Si vertical junction photoconverter is then done in order to describe the optimum converter for use with the 1.06-micron Nd laser. The efficiency of this optimized vertical junction converter is 44 percent at 1 kW/sq cm. 6. Minisuperspace models in histories theory International Nuclear Information System (INIS) Anastopoulos, Charis; Savvidou, Ntina 2005-01-01 We study the Robertson-Walker minisuperspace model in histories theory, motivated by the results that emerged from the histories approach to general relativity. We examine, in particular, the issue of time reparametrization in such systems. The model is quantized using an adaptation of reduced state space quantization. We finally discuss the classical limit, the implementation of initial cosmological conditions and estimation of probabilities in the histories context 7. Wave Tank Testing and Model Validation of an Autonomous Wave Energy Converter Directory of Open Access Journals (Sweden) Bret Bosma 2015-08-01 Full Text Available A key component in bringing ocean wave energy converters from concept to commercialization is the building and testing of scaled prototypes to provide model validation. A one quarter scale prototype of an autonomous two body heaving point absorber was modeled, built, and tested for this work. Wave tank testing results are compared with two hydrodynamic and system models—implemented in both ANSYS AQWA and MATLAB/Simulink—and show model validation over certain regions of operation. This work will serve as a guide for future developers of wave energy converter devices, providing insight in taking their design from concept to prototype stage. 8. Informational model verification of ZVS Buck quasi-resonant DC-DC converter Science.gov (United States) Vakovsky, Dimiter; Hinov, Nikolay 2016-12-01 The aim of the paper is to create a polymorphic informational model of a ZVS Buck quasi-resonant DC-DC converter for the modeling purposes of the object. For the creation of the model is applied flexible open standards for setting, storing, publishing and exchange of data in distributed information environment. The created model is useful for creation of many and different by type variants with different configuration of the composing elements and different inner model of the examined object. 9. Converting boundary representation solid models to half-space representation models for Monte Carlo analysis International Nuclear Information System (INIS) Davis, J. E.; Eddy, M. J.; Sutton, T. M.; Altomari, T. J. 2007-01-01 Solid modeling computer software systems provide for the design of three-dimensional solid models used in the design and analysis of physical components. The current state-of-the-art in solid modeling representation uses a boundary representation format in which geometry and topology are used to form three-dimensional boundaries of the solid. The geometry representation used in these systems is cubic B-spline curves and surfaces - a network of cubic B-spline functions in three-dimensional Cartesian coordinate space. Many Monte Carlo codes, however, use a geometry representation in which geometry units are specified by intersections and unions of half-spaces. This paper describes an algorithm for converting from a boundary representation to a half-space representation. (authors) 10. Impact of lifetime model selections on the reliability prediction of IGBT modules in modular multilevel converters DEFF Research Database (Denmark) Zhang, Yi; Wang, Huai; Wang, Zhongxu 2017-01-01 , this paper benchmarks the most commonly-employed lifetime models of power semiconductor devices for offshore Modular Multilevel Converters (MMC) based wind farms. The benchmarking reveals that the lifetime model selection has a significant impact on the lifetime estimation. The use of analytical lifetime... 11. Simplified Thermal Modeling for IGBT Modules with Periodic Power Loss Profiles in Modular Multilevel Converters DEFF Research Database (Denmark) Zhang, Yi; Wang, Huai; Wang, Zhongxu 2018-01-01 One of the future challenges in Modular Multilevel Converters (MMCs) is how to size key components with compromised costs and design margins while fulfilling specific reliability targets. It demands better thermal modeling compared to the state-of-the-art in terms of both accuracy and simplicity....... Different from two-level power converters, MMCs have inherent dc-bias in arm currents and the power device conduction time is affected by operational parameters. A time-wise thermal modeling for the power devices in MMCs is, therefore, an iteration process and time-consuming. This paper thus proposes... 12. Model based design of efficient power take-off systems for wave energy converters DEFF Research Database (Denmark) Hansen, Rico Hjerm; Andersen, Torben Ole; Pedersen, Henrik C. 2011-01-01 The Power Take-Off (PTO) is the core of a Wave Energy Converter (WECs), being the technology converting wave induced oscillations from mechanical energy to electricity. The induced oscillations are characterized by being slow with varying frequency and amplitude. Resultantly, fluid power is often...... an essential part of the PTO, being the only technology having the required force densities. The focus of this paper is to show the achievable efficiency of a PTO system based on a conventional hydro-static transmission topology. The design is performed using a model based approach. Generic component models... 13. Pelamis wave energy converter. Verification of full-scale control using a 7th scale model Energy Technology Data Exchange (ETDEWEB) NONE 2005-07-01 The Pelamis Wave Energy Converter is a new concept for converting wave energy for several applications including generation of electric power. The machine is flexibly moored and swings to meet the water waves head-on. The system is semi-submerged and consists of cylindrical sections linked by hinges. The mechanical operation is described in outline. A one-seventh scale model was built and tested and the outcome was sufficiently successful to warrant the building of a full-scale prototype. In addition, a one-twentieth scale model was built and has contributed much to the research programme. The work is supported financially by the DTI. 14. Modelling of the Overtopping Flow on the Wave Dragon Wave Energy Converter DEFF Research Database (Denmark) Parmeggiani, Stefano; Pecher, Arthur; Kofoed, Jens Peter 2010-01-01 The Wave Dragon is a floating slack-moored Wave Energy Converter of the overtopping type, which is facing now the last phase of development before the commercial exploitation: the deployment of a full-scale demonstrator. In this phase a modelling tool allowing for accurate predictions of the perf......The Wave Dragon is a floating slack-moored Wave Energy Converter of the overtopping type, which is facing now the last phase of development before the commercial exploitation: the deployment of a full-scale demonstrator. In this phase a modelling tool allowing for accurate predictions... 15. Loss Modelling and Experimental Verification of A 98.8% Efficiency Bidirectional Isolated DC-DC Converter Directory of Open Access Journals (Sweden) Ramachandran Rakesh 2017-01-01 In this paper, design and implementation of an ultra-high efficiency isolated bi-directional dc-dc converter utilizing GaN devices is presented. Loss modelling of the GaN converter is also included in this paper. The converter has achieved a maximum measured efficiency of 98.8% in both directions of power flow, using the same power components. Hardware prototype of the converter along with the measured efficiency curve is also presented in this paper. 16. Valuing Convertible Bonds Based on LSRQM Method Directory of Open Access Journals (Sweden) Jian Liu 2014-01-01 Full Text Available Convertible bonds are one of the essential financial products for corporate finance, while the pricing theory is the key problem to the theoretical research of convertible bonds. This paper demonstrates how to price convertible bonds with call and put provisions using Least-Squares Randomized Quasi-Monte Carlo (LSRQM method. We consider the financial market with stochastic interest rates and credit risk and present a detailed description on calculating steps of convertible bonds value. The empirical results show that the model fits well the market prices of convertible bonds in China’s market and the LSRQM method is effective. 17. Theory of the synchronous motion of an array of floating flap gates oscillating wave surge converter Science.gov (United States) Michele, Simone; Sammarco, Paolo; d'Errico, Michele 2016-08-01 We consider a finite array of floating flap gates oscillating wave surge converter (OWSC) in water of constant depth. The diffraction and radiation potentials are solved in terms of elliptical coordinates and Mathieu functions. Generated power and capture width ratio of a single gate excited by incoming waves are given in terms of the radiated wave amplitude in the far field. Similar to the case of axially symmetric absorbers, the maximum power extracted is shown to be directly proportional to the incident wave characteristics: energy flux, angle of incidence and wavelength. Accordingly, the capture width ratio is directly proportional to the wavelength, thus giving a design estimate of the maximum efficiency of the system. We then compare the array and the single gate in terms of energy production. For regular waves, we show that excitation of the out-of-phase natural modes of the array increases the power output, while in the case of random seas we show that the array and the single gate achieve the same efficiency. 18. Harmonic Analyzing of the Double PWM Converter in DFIG Based on Mathematical Model Directory of Open Access Journals (Sweden) Jing Liu 2017-12-01 Full Text Available Harmonic pollution of double fed induction generators (DFIGs has become a vital concern for its undesirable effects on power quality issues of wind generation systems and grid-connected system, and the double pulse width modulation (PWMconverter is one of the main harmonic sources in DFIGs. Thus the harmonic analysis of the converter in DFIGs is a necessary step to evaluate their harmonic pollution of DFIGs. This paper proposes a detailed harmonic modeling method to discuss the main harmonic components in a converter. In general the harmonic modeling could be divided into the low-order harmonic part (up to 30th order and the high-order harmonic part (greater than order 30 parts in general. The low-order harmonics are produced by the circuit topology and control algorithm, and the harmonic component will be different if the control strategy changes. The high-order harmonics are produced by the modulation of the switching function to the dc variable. In this paper, the low-order harmonic modeling is established according to the directions of power flow under the vector control (VC, and the high-order harmonic modeling is established by the switching function of space vector PWM and dc currents. Meanwhile, the simulations of harmonic a components in a converter are accomplished in a real time digital simulation system. The results indicate that the proposed modeling could effectively show the harmonics distribution of the converter in DFIGs. 19. Foundations of compositional model theory Czech Academy of Sciences Publication Activity Database Jiroušek, Radim 2011-01-01 Roč. 40, č. 6 (2011), s. 623-678 ISSN 0308-1079 R&D Projects: GA MŠk 1M0572; GA ČR GA201/09/1891; GA ČR GEICC/08/E010 Institutional research plan: CEZ:AV0Z10750506 Keywords : multidimensional probability distribution * conditional independence * graphical Markov model * composition of distributions Subject RIV: IN - Informatics, Computer Science Impact factor: 0.667, year: 2011 http://library.utia.cas.cz/separaty/2011/MTR/jirousek-foundations of compositional model theory.pdf 20. Modelling performance of a small array of Wave Energy Converters: Comparison of Spectral and Boussinesq models International Nuclear Information System (INIS) Greenwood, Charles; Christie, David; Venugopal, Vengatesan; Morrison, James; Vogler, Arne 2016-01-01 This paper presents results from numerical simulations of three Oscillating Wave Surge Converters (OWSC) using two different computational models, Boussinesq wave (BW) and Spectral wave (SW) of the commercial software suite MIKE. The simulation of a shallow water wave farm applies alternative methods for implementing a frequency dependent absorption in both the BW and SW models, where energy extraction is based on experimental data from a scaled Oyster device. The effects of including wave diffraction within the SW model is tested by using diffraction smoothing steps and various directional wave conditions. The results of this study reveal important information on the models realms of validity that is heavily dependent on the incident sea state and the removal of diffraction for the SW model. This yields an increase in simulation accuracy for far-field disturbances when diffraction is entirely removed. This highlights specific conditions where the BW and SW model may thrive but also regions where reduced performance is observed. The results presented in this paper have not been validated with real sea site wave device array performance, however, the methodology described would be useful to device developers to arrive at preliminary decisions on array configurations and to minimise negative environmental impacts. 1. Device model for pixelless infrared image up-converters based on polycrystalline graphene heterostructures Science.gov (United States) Ryzhii, V.; Shur, M. S.; Ryzhii, M.; Karasik, V. E.; Otsuji, T. 2018-01-01 We developed a device model for pixelless converters of far/mid-infrared radiation (FIR/MIR) images into near-infrared/visible (NIR/VIR) images. These converters use polycrystalline graphene layers (PGLs) immersed in the van der Waals materials integrated with a light emitting diode (LED). The PGL serves as an element of the PGL infrared photodetector (PGLIP) sensitive to the incoming FIR/MIR due to the interband absorption. The spatially non-uniform photocurrent generated in the PGLIP repeats (mimics) the non-uniform distribution (image) created by the incident FIR/MIR. The injection of the nonuniform photocurrent into the LED active layer results in the nonuniform NIR/VIR image reproducing the FIR/MIR image. The PGL and the entire layer structure are not deliberately partitioned into pixels. We analyze the characteristics of such pixelless PGLIP-LED up-converters and show that their image contrast transfer function and the up-conversion efficiency depend on the PGL lateral resistivity. The up-converter exhibits high photoconductive gain and conversion efficiency when the lateral resistivity is sufficiently high. Several teams have successfully demonstrated the large area PGLs with the resistivities varying in a wide range. Such layers can be used in the pixelless PGLIP-LED image up-converters. The PGLIP-LED image up-converters can substantially surpass the image up-converters based on the quantum-well infrared photodetector integrated with the LED. These advantages are due to the use of the interband FIR/NIR absorption and a high photoconductive gain in the GLIPs. 2. A Linearized Large Signal Model of an LCL-Type Resonant Converter Directory of Open Access Journals (Sweden) Hong-Yu Li 2015-03-01 Full Text Available In this work, an LCL-type resonant dc/dc converter with a capacitive output filter is modeled in two stages. In the first high-frequency ac stage, all ac signals are decomposed into two orthogonal vectors in a synchronous rotating d–q frame using multi-frequency modeling. In the dc stage, all dc quantities are represented by their average values with average state-space modeling. A nonlinear two-stage model is then created by means of a non-linear link. By aligning the transformer voltage on the d-axis, the nonlinear link can be eliminated, and the whole converter can be modeled by a single set of linear state-space equations. Furthermore, a feedback control scheme can be formed according to the steady-state solutions. Simulation and experimental results have proven that the resulted model is good for fast simulation and state variable estimation. 3. Rectifier Current Control for an LLC Resonant Converter Based on a Simplified Linearized Model OpenAIRE Zhijian Fang; Junhua Wang; Shanxu Duan; Liangle Xiao; Guozheng Hu; Qisheng Liu 2018-01-01 In this paper, a rectifier current control for an LLC resonant converter is proposed, based on a simplified, two-order, linearized model that adds a rectifier current feedback inner loop to improve dynamic performance. Compared to the traditional large-signal model with seven resonant states, this paper utilizes a rectifier current state to represent the characteristics of the resonant states, simplifying the LLC resonant model from seven orders to two orders. Then, the rectifier current feed... 4. Model Predictive Current Control for High-Power Grid-Connected Converters with Output LCL Filter DEFF Research Database (Denmark) Delpino, Hernan Anres Miranda; Teodorescu, Remus; Rodriguez, Pedro 2009-01-01 A model predictive control strategy for a highpower, grid connected 3-level neutral clamped point converter is presented. Power losses constraints set a limit on commutation losses so reduced switching frequency is required, thus producing low frequency current harmonics. To reduce these harmonics... 5. International Energy Agency Ocean Energy Systems Task 10 Wave Energy Converter Modeling Verification and Validation DEFF Research Database (Denmark) Wendt, Fabian F.; Yu, Yi-Hsiang; Nielsen, Kim 2017-01-01 This is the first joint reference paper for the Ocean Energy Systems (OES) Task 10 Wave Energy Converter modeling verification and validation group. The group is established under the OES Energy Technology Network program under the International Energy Agency. OES was founded in 2001 and Task 10 ... 6. Frequency-Domain Hydrodynamic Modelling of Dense and Sparse Arrays of Wave Energy Converters NARCIS (Netherlands) Wei, Yanji; Barradas Berglind, Jose de Jesus; Yu, Zhiheng; van Rooij, Marijn; Prins, Wouter; Jayawardhana, Bayu; Vakis, Antonis I. 2018-01-01 In this work, we develop a frequency-domain model to study the hydrodynamic behaviour of a floater blanket (FB), i.e., an array of floater elements individually connected to power take-off (PTO) systems, which constitutes the core technology of the novel Ocean Grazer (OG) wave energy converter 7. A Frequency-Domain Model for a Novel Wave Energy Converter NARCIS (Netherlands) Wei, Yanji; Yu, Zhiheng; Barradas Berglind, Jose de Jesus; van Rooij, Marijn; Prins, Wouter; Jayawardhana, Bayu; Vakis, Antonis I. In this work, we develop a frequency-domain model for the novel Ocean Grazer (OG) wave energy converter (WEC), with the intention to study the hydrodynamic behavior of its array of floater elements individually connected to power take-off (PTO) systems. To investigate these hydrodynamic 8. Reliability Models Applied to a System of Power Converters in Particle Accelerators OpenAIRE Siemaszko, D; Speiser, M; Pittet, S 2012-01-01 Several reliability models are studied when applied to a power system containing a large number of power converters. A methodology is proposed and illustrated in the case study of a novel linear particle accelerator designed for reaching high energies. The proposed methods result in the prediction of both reliability and availability of the considered system for optimisation purposes. 9. Model based feasibility study on bidirectional check valves in wave energy converters DEFF Research Database (Denmark) Hansen, Anders Hedegaard; Pedersen, Henrik C.; Andersen, Torben Ole 2014-01-01 Discrete fluid power force systems have been proposed as the primary stage for Wave Energy Converters (WEC’s) when converting ocean waves into electricity, this to improve the overall efficiency of wave energy devices. This paper presents a model based feasibility study of using bidirectional check....../Off and bidirectional check valves. Based on the analysis it is found that the energy production may be slightly improved by using bidirectional check valves as compared to on/off valves, due to a decrease in switching losses. Furthermore a reduction in high flow peaks are realised. The downside being increased... 10. Superfield theory and supermatrix model International Nuclear Information System (INIS) Park, Jeong-Hyuck 2003-01-01 We study the noncommutative superspace of arbitrary dimensions in a systematic way. Superfield theories on a noncommutative superspace can be formulated in two folds, through the star product formalism and in terms of the supermatrices. We elaborate the duality between them by constructing the isomorphism explicitly and relating the superspace integrations of the star product lagrangian or the superpotential to the traces of the supermatrices. We show there exists an interesting fine tuned commutative limit where the duality can be still maintained. Namely on the commutative superspace too, there exists a supermatrix model description for the superfield theory. We interpret the result in the context of the wave particle duality. The dual particles for the superfields in even and odd spacetime dimensions are D-instantons and D0-branes respectively to be consistent with the T-duality. (author) 11. Comparison of LTI and LTP Models for Stability Analysis of Grid Converters DEFF Research Database (Denmark) Kwon, Jun Bum; Wang, Xiongfei; Blaabjerg, Frede 2016-01-01 The stability analysis of grid-connected converters have attracted increasing attentions, due to the oscillations arising in wind power plants, micro-grids, and other emerging power electronics based power systems. The modeling tool of converters thus becomes essential to faithfully reveal...... oscillations without any hidden regions. This paper presents a detailed comparison of two linearized modeling methods, which are, respectively, developed in the Linear Time-Invariant (LTI) and the Linear Time-Periodic (LTP) frameworks. The LTP model can consider the effect of frequency-coupling dynamics, which...... are occurred by the time-varying behavior, while the conventional LTI model can not capture this behavior. The advantages and limits of two models are then illustrated with examples. The compared results are verified in the frequency domain and time domain as well.... 12. Harmonic Interaction Analysis in Grid Connected Converter using Harmonic State Space (HSS) Modeling DEFF Research Database (Denmark) Kwon, Jun Bum; Wang, Xiongfei; Bak, Claus Leth 2015-01-01 -model, are introduced to analyze these problems. However, it is found that Linear Time Invariant (LTI) base model analysis makes it difficult to analyze these phenomenon because of time varying system operation trajectories, varying output impedance seen by grid connected systems and neglected switching component......An increasing number of power electronics based Distributed Generation (DG) systems and loads generate coupled harmonic as well as non-characteristic harmonic with each other. Several methods like impedance based analysis, which is derived from conventional small signal- and average...... during the modeling process. This paper investigates grid connected converter by means of Harmonic State Space (HSS) small signal model, which is modeled from Linear Time varying Periodically (LTP) system. Further, a grid connected converter harmonic matrix is investigated to analyze the harmonic... 13. An improved algorithm to convert CAD model to MCNP geometry model based on STEP file International Nuclear Information System (INIS) Zhou, Qingguo; Yang, Jiaming; Wu, Jiong; Tian, Yanshan; Wang, Junqiong; Jiang, Hai; Li, Kuan-Ching 2015-01-01 Highlights: • Fully exploits common features of cells, making the processing efficient. • Accurately provide the cell position. • Flexible to add new parameters in the structure. • Application of novel structure in INP file processing, conveniently evaluate cell location. - Abstract: MCNP (Monte Carlo N-Particle Transport Code) is a general-purpose Monte Carlo N-Particle code that can be used for neutron, photon, electron, or coupled neutron/photon/electron transport. Its input file, the INP file, has the characteristics of complicated form and is error-prone when describing geometric models. Due to this, a conversion algorithm that can solve the problem by converting general geometric model to MCNP model during MCNP aided modeling is highly needed. In this paper, we revised and incorporated a number of improvements over our previous work (Yang et al., 2013), which was proposed and targeted after STEP file and INP file were analyzed. Results of experiments show that the revised algorithm is more applicable and efficient than previous work, with the optimized extraction of geometry and topology information of the STEP file, as well as the production efficiency of output INP file. This proposed research is promising, and serves as valuable reference for the majority of researchers involved with MCNP-related researches 14. Electrothermal model of choking-coils for the analysis of dc-dc converters Energy Technology Data Exchange (ETDEWEB) Gorecki, Krzysztof, E-mail: gorecki@am.gdynia.pl [Gdynia Maritime University, Department of Marine Electronics, Morska 83, Gdynia (Poland); Detka, Kalina [Pomeranian Higher School in Gdynia, Opata Hackiego 8-10, Gdynia (Poland) 2012-09-01 The paper concerns modelling the choking-coil for the needs of the electrothermal analysis of dc-dc converters. A new electrothermal model of the choking-coil is proposed. This model is dedicated for SPICE software and it takes into account nonlinearity of the dependences of the inductance on the current, selfheating and mutual thermal interactions between the core and the winding. The structure of this model is described in detail and its correctness is experimentally verified for the choking-coils with the ferrite and powder cores. Both the characteristics of the choking-coils and the buck converter with these choking-coils were considered. The satisfying agreement between the results of calculations and measurements is obtained. 15. Electrothermal model of choking-coils for the analysis of dc–dc converters International Nuclear Information System (INIS) Górecki, Krzysztof; Detka, Kalina 2012-01-01 The paper concerns modelling the choking-coil for the needs of the electrothermal analysis of dc–dc converters. A new electrothermal model of the choking-coil is proposed. This model is dedicated for SPICE software and it takes into account nonlinearity of the dependences of the inductance on the current, selfheating and mutual thermal interactions between the core and the winding. The structure of this model is described in detail and its correctness is experimentally verified for the choking-coils with the ferrite and powder cores. Both the characteristics of the choking-coils and the buck converter with these choking-coils were considered. The satisfying agreement between the results of calculations and measurements is obtained. 16. A Markovian Approach Applied to Reliability Modeling of Bidirectional DC-DC Converters Used in PHEVs and Smart Grids Directory of Open Access Journals (Sweden) M. Khalilzadeh 2016-12-01 Full Text Available In this paper, a stochastic approach is proposed for reliability assessment of bidirectional DC-DC converters, including the fault-tolerant ones. This type of converters can be used in a smart DC grid, feeding DC loads such as home appliances and plug-in hybrid electric vehicles (PHEVs. The reliability of bidirectional DC-DC converters is of such an importance, due to the key role of the expected increasingly utilization of DC grids in modern Smart Grid. Markov processes are suggested for reliability modeling and consequently calculating the expected effective lifetime of bidirectional converters. A three-leg bidirectional interleaved converter using data of Toyota Prius 2012 hybrid electric vehicle is used as a case study. Besides, the influence of environment and ambient temperature on converter lifetime is studied. The impact of modeling the reliability of the converter and adding reliability constraints on the technical design procedure of the converter is also investigated. In order to investigate the effect of leg increase on the lifetime of the converter, single leg to five-leg interleave DC-DC converters are studied considering economical aspect and the results are extrapolated for six and seven-leg converters. The proposed method could be generalized so that the number of legs and input and output capacitors could be an arbitrary number. 17. A method of Modelling and Simulating the Back-to-Back Modular Multilevel Converter HVDC Transmission System Science.gov (United States) Wang, Lei; Fan, Youping; Zhang, Dai; Ge, Mengxin; Zou, Xianbin; Li, Jingjiao 2017-09-01 This paper proposes a method to simulate a back-to-back modular multilevel converter (MMC) HVDC transmission system. In this paper we utilize an equivalent networks to simulate the dynamic power system. Moreover, to account for the performance of converter station, core components of model of the converter station gives a basic model of simulation. The proposed method is applied to an equivalent real power system. 18. Modeling and reliability analysis of three phase z-source AC-AC converter Directory of Open Access Journals (Sweden) Prasad Hanuman 2017-12-01 Full Text Available This paper presents the small signal modeling using the state space averaging technique and reliability analysis of a three-phase z-source ac-ac converter. By controlling the shoot-through duty ratio, it can operate in buck-boost mode and maintain desired output voltage during voltage sag and surge condition. It has faster dynamic response and higher efficiency as compared to the traditional voltage regulator. Small signal analysis derives different control transfer functions and this leads to design a suitable controller for a closed loop system during supply voltage variation. The closed loop system of the converter with a PID controller eliminates the transients in output voltage and provides steady state regulated output. The proposed model designed in the RT-LAB and executed in a field programming gate array (FPGA-based real-time digital simulator at a fixedtime step of 10 μs and a constant switching frequency of 10 kHz. The simulator was developed using very high speed integrated circuit hardware description language (VHDL, making it versatile and moveable. Hardware-in-the-loop (HIL simulation results are presented to justify the MATLAB simulation results during supply voltage variation of the three phase z-source ac-ac converter. The reliability analysis has been applied to the converter to find out the failure rate of its different components. 19. Models in cooperative game theory CERN Document Server Branzei, Rodica; Tijs, Stef 2008-01-01 This book investigates models in cooperative game theory in which the players have the possibility to cooperate partially. In a crisp game the agents are either fully involved or not involved at all in cooperation with some other agents, while in a fuzzy game players are allowed to cooperate with infinite many different participation levels, varying from non-cooperation to full cooperation. A multi-choice game describes the intermediate case in which each player may have a fixed number of activity levels. Different set and one-point solution concepts for these games are presented. The properties of these solution concepts and their interrelations on several classes of crisp, fuzzy, and multi-choice games are studied. Applications of the investigated models to many economic situations are indicated as well. The second edition is highly enlarged and contains new results and additional sections in the different chapters as well as one new chapter. 20. Thermodynamic Modeling and Optimization of the Copper Flash Converting Process Using the Equilibrium Constant Method Science.gov (United States) Li, Ming-zhou; Zhou, Jie-min; Tong, Chang-ren; Zhang, Wen-hai; Chen, Zhuo; Wang, Jin-liang 2018-05-01 Based on the principle of multiphase equilibrium, a mathematical model of the copper flash converting process was established by the equilibrium constant method, and a computational system was developed with the use of MetCal software platform. The mathematical model was validated by comparing simulated outputs, industrial data, and published data. To obtain high-quality blister copper, a low copper content in slag, and increased impurity removal rate, the model was then applied to investigate the effects of the operational parameters [oxygen/feed ratio (R OF), flux rate (R F), and converting temperature (T)] on the product weights, compositions, and the distribution behaviors of impurity elements. The optimized results showed that R OF, R F, and T should be controlled at approximately 156 Nm3/t, within 3.0 pct, and at approximately 1523 K (1250 °C), respectively. 1. Reliability-cost models for the power switching devices of wind power converters DEFF Research Database (Denmark) Ma, Ke; Blaabjerg, Frede 2012-01-01 In order to satisfy the growing reliability requirements for the wind power converters with more cost-effective solution, the target of this paper is to establish a new reliability-cost model which can connect the relationship between reliability performances and corresponding semiconductor cost...... temperature mean value Tm and fluctuation amplitude ΔTj of power devices, are presented. With the proposed reliability-cost model, it is possible to enable future reliability-oriented design of the power switching devices for wind power converters, and also an evaluation benchmark for different wind power...... for power switching devices. First the conduction loss, switching loss as well as thermal impedance models of power switching devices (IGBT module) are related to the semiconductor chip number information respectively. Afterwards simplified analytical solutions, which can directly extract the junction... 2. Rectifier Current Control for an LLC Resonant Converter Based on a Simplified Linearized Model Directory of Open Access Journals (Sweden) Zhijian Fang 2018-03-01 Full Text Available In this paper, a rectifier current control for an LLC resonant converter is proposed, based on a simplified, two-order, linearized model that adds a rectifier current feedback inner loop to improve dynamic performance. Compared to the traditional large-signal model with seven resonant states, this paper utilizes a rectifier current state to represent the characteristics of the resonant states, simplifying the LLC resonant model from seven orders to two orders. Then, the rectifier current feedback inner loop is proposed to increase the control system damping, improving dynamic performance. The modeling and design methodology for the LLC resonant converter are also presented in this paper. A frequency analysis is conducted to verify the accuracy of the simplified model. Finally, a 200 W LLC resonant converter prototype is built to verify the effectiveness of the proposed control strategy. Compared to a traditional single-loop controller, the settling time and voltage droop were reduced from 10.8 ms to 8.6 ms and from 6.8 V to 4.8 V, respectively, using the proposed control strategy. 3. Field theory and the Standard Model Energy Technology Data Exchange (ETDEWEB) Dudas, E [Orsay, LPT (France) 2014-07-01 This brief introduction to Quantum Field Theory and the Standard Model contains the basic building blocks of perturbation theory in quantum field theory, an elementary introduction to gauge theories and the basic classical and quantum features of the electroweak sector of the Standard Model. Some details are given for the theoretical bias concerning the Higgs mass limits, as well as on obscure features of the Standard Model which motivate new physics constructions. 4. Lattice models and conformal field theories International Nuclear Information System (INIS) Saleur, H. 1988-01-01 Theoretical studies concerning the connection between critical physical systems and the conformal theories are reviewed. The conformal theory associated to a critical (integrable) lattice model is derived. The obtention of the central charge, critical exponents and torus partition function, using renormalization group arguments, is shown. The quantum group structure, in the integrable lattice models, and the theory of Visaro algebra representations are discussed. The relations between off-critical integrable models and conformal theories, in finite geometries, are studied 5. Experimental Modeling of the Overtopping Flow on the Wave Dragon Wave Energy Converter DEFF Research Database (Denmark) Parmeggiani, Stefano; Kofoed, Jens Peter; Friis-Madsen, Erik 2011-01-01 The Wave Dragon Wave Energy Converter is currently facing a precommercial phase. At this stage of development a reliable overtopping model is highly required, in order to predict the performance of the device at possible deployment locations. A model formulation derived for an overtopping device...... with general geometry has been used so far. The paper presents an updated formulation drawn through the tank testing of a scaled model the Wave Dragon. The sensitivity analysis of the main features influencing the overtopping flow led to an updated model formulation which can be specifically suited...... for the Wave Dragon.... 6. Unified Impedance Model of Grid-Connected Voltage-Source Converters DEFF Research Database (Denmark) Wang, Xiongfei; Harnefors, Lennart; Blaabjerg, Frede 2018-01-01 This paper proposes a unified impedance model of grid-connected voltage-source converters for analyzing dynamic influences of the Phase-Locked Loop (PLL) and current control. The mathematical relations between the impedance models in the different domains are first explicitly revealed by means...... of complex transfer functions and complex space vectors. A stationary (αβ-) frame impedance model is then proposed, which not only predicts the stability impact of the PLL, but reveals also its frequency coupling effect explicitly. Furthermore, the impedance shaping effect of the PLL on the current control...... results and theoretical analysis confirm the effectiveness of the stationary-frame impedance model.... 7. Instrumentation of the model in scaled 1:10 to prototype of the AquaBuOY wave energy converter DEFF Research Database (Denmark) Margheritini, Lucia; Frigaard, Peter The objective of this report is to provide guidelines for the instrumentation of a model in scale 1:10 to prototype of the AquaBuOY wave energy converter. The model will be located in Nissum Bredning area: this is an important waterway already used by Aalborg University for real sea tests of wave...... energy converters.... 8. FPGA implementation of optimal and approximate model predictive control for a buck-boost DC-DC converter NARCIS (Netherlands) Spinu, V.; Oliveri, A.; Lazar, M.; Storace, M. 2012-01-01 This paper proposes a method for FPGA implementation of explicit, piecewise af¿ne (PWA) model predictive control (MPC) laws for non-inverting buck-boost DC-DC converters. A novel approach to obtain a PWA model of the power converter is proposed and two explicit MPC laws are derived, i.e., one based 9. Halo modelling in chameleon theories Energy Technology Data Exchange (ETDEWEB) Lombriser, Lucas; Koyama, Kazuya [Institute of Cosmology and Gravitation, University of Portsmouth, Dennis Sciama Building, Burnaby Road, Portsmouth, PO1 3FX (United Kingdom); Li, Baojiu, E-mail: lucas.lombriser@port.ac.uk, E-mail: kazuya.koyama@port.ac.uk, E-mail: baojiu.li@durham.ac.uk [Institute for Computational Cosmology, Ogden Centre for Fundamental Physics, Department of Physics, University of Durham, Science Laboratories, South Road, Durham, DH1 3LE (United Kingdom) 2014-03-01 We analyse modelling techniques for the large-scale structure formed in scalar-tensor theories of constant Brans-Dicke parameter which match the concordance model background expansion history and produce a chameleon suppression of the gravitational modification in high-density regions. Thereby, we use a mass and environment dependent chameleon spherical collapse model, the Sheth-Tormen halo mass function and linear halo bias, the Navarro-Frenk-White halo density profile, and the halo model. Furthermore, using the spherical collapse model, we extrapolate a chameleon mass-concentration scaling relation from a ΛCDM prescription calibrated to N-body simulations. We also provide constraints on the model parameters to ensure viability on local scales. We test our description of the halo mass function and nonlinear matter power spectrum against the respective observables extracted from large-volume and high-resolution N-body simulations in the limiting case of f(R) gravity, corresponding to a vanishing Brans-Dicke parameter. We find good agreement between the two; the halo model provides a good qualitative description of the shape of the relative enhancement of the f(R) matter power spectrum with respect to ΛCDM caused by the extra attractive gravitational force but fails to recover the correct amplitude. Introducing an effective linear power spectrum in the computation of the two-halo term to account for an underestimation of the chameleon suppression at intermediate scales in our approach, we accurately reproduce the measurements from the N-body simulations. 10. Halo modelling in chameleon theories International Nuclear Information System (INIS) Lombriser, Lucas; Koyama, Kazuya; Li, Baojiu 2014-01-01 We analyse modelling techniques for the large-scale structure formed in scalar-tensor theories of constant Brans-Dicke parameter which match the concordance model background expansion history and produce a chameleon suppression of the gravitational modification in high-density regions. Thereby, we use a mass and environment dependent chameleon spherical collapse model, the Sheth-Tormen halo mass function and linear halo bias, the Navarro-Frenk-White halo density profile, and the halo model. Furthermore, using the spherical collapse model, we extrapolate a chameleon mass-concentration scaling relation from a ΛCDM prescription calibrated to N-body simulations. We also provide constraints on the model parameters to ensure viability on local scales. We test our description of the halo mass function and nonlinear matter power spectrum against the respective observables extracted from large-volume and high-resolution N-body simulations in the limiting case of f(R) gravity, corresponding to a vanishing Brans-Dicke parameter. We find good agreement between the two; the halo model provides a good qualitative description of the shape of the relative enhancement of the f(R) matter power spectrum with respect to ΛCDM caused by the extra attractive gravitational force but fails to recover the correct amplitude. Introducing an effective linear power spectrum in the computation of the two-halo term to account for an underestimation of the chameleon suppression at intermediate scales in our approach, we accurately reproduce the measurements from the N-body simulations 11. Stochastic models: theory and simulation. Energy Technology Data Exchange (ETDEWEB) Field, Richard V., Jr. 2008-03-01 Many problems in applied science and engineering involve physical phenomena that behave randomly in time and/or space. Examples are diverse and include turbulent flow over an aircraft wing, Earth climatology, material microstructure, and the financial markets. Mathematical models for these random phenomena are referred to as stochastic processes and/or random fields, and Monte Carlo simulation is the only general-purpose tool for solving problems of this type. The use of Monte Carlo simulation requires methods and algorithms to generate samples of the appropriate stochastic model; these samples then become inputs and/or boundary conditions to established deterministic simulation codes. While numerous algorithms and tools currently exist to generate samples of simple random variables and vectors, no cohesive simulation tool yet exists for generating samples of stochastic processes and/or random fields. There are two objectives of this report. First, we provide some theoretical background on stochastic processes and random fields that can be used to model phenomena that are random in space and/or time. Second, we provide simple algorithms that can be used to generate independent samples of general stochastic models. The theory and simulation of random variables and vectors is also reviewed for completeness. 12. On forced oscillations of a simple model for a novel wave energy converter KAUST Repository Orazov, Bayram 2011-05-11 The dynamics of a simple model for an ocean wave energy converter is discussed. The model for the converter is a hybrid system consisting of a pair of harmonically excited mass-spring-dashpot systems and a set of four state-dependent switching rules. Of particular interest is the response of the model to a wide spectrum of harmonic excitations. Partially because of the piecewise-smooth dynamics of the system, the response is far more interesting than the linear components of the model would suggest. As expected with hybrid systems of this type, it is difficult to establish analytical results, and hence, with the assistance of an extensive series of numerical integrations, an atlas of qualitative results on the limit cycles and other forms of bounded oscillations exhibited by the system is presented. In addition, the presence of unstable limit cycles, the stabilization of the unforced system using low-frequency excitation, the peculiar nature of the response of the system to high-frequency excitation, and the implications of these results on the energy harvesting capabilities of the wave energy converter are discussed. © 2011 Springer Science+Business Media B.V. 13. Computational modeling of pitching cylinder-type ocean wave energy converters using 3D MPI-parallel simulations Science.gov (United States) Freniere, Cole; Pathak, Ashish; Raessi, Mehdi 2016-11-01 Ocean Wave Energy Converters (WECs) are devices that convert energy from ocean waves into electricity. To aid in the design of WECs, an advanced computational framework has been developed which has advantages over conventional methods. The computational framework simulates the performance of WECs in a virtual wave tank by solving the full Navier-Stokes equations in 3D, capturing the fluid-structure interaction, nonlinear and viscous effects. In this work, we present simulations of the performance of pitching cylinder-type WECs and compare against experimental data. WECs are simulated at both model and full scales. The results are used to determine the role of the Keulegan-Carpenter (KC) number. The KC number is representative of viscous drag behavior on a bluff body in an oscillating flow, and is considered an important indicator of the dynamics of a WEC. Studying the effects of the KC number is important for determining the validity of the Froude scaling and the inviscid potential flow theory, which are heavily relied on in the conventional approaches to modeling WECs. Support from the National Science Foundation is gratefully acknowledged. 14. Study of intermittent bifurcations and chaos in boost PFC converters by nonlinear discrete models International Nuclear Information System (INIS) Zhang Hao; Ma Xikui; Xue Bianling; Liu Weizeng 2005-01-01 This paper mainly deals with nonlinear phenomena like intermittent bifurcations and chaos in boost PFC converters under peak-current control mode. Two nonlinear models in the form of discrete maps are derived to describe precisely the nonlinear dynamics of boost PFC converters from two points of view, i.e., low- and high-frequency regimes. Based on the presented discrete models, both the evolution of intermittent behavior and the periodicity of intermittency are investigated in detail from the fast and slow-scale aspects, respectively. Numerical results show that the occurrence of intermittent bifurcations and chaos with half one line period is one of the most distinguished dynamical characteristics. Finally, we make some instructive conclusions, which prove to be helpful in improving the performances of practical circuits 15. Modeling and Control of the Distributed Power Converters in a Standalone DC Microgrid Directory of Open Access Journals (Sweden) Xiaodong Lu 2016-03-01 Full Text Available A standalone DC microgrid integrated with distributed renewable energy sources, energy storage devices and loads is analyzed. To mitigate the interaction among distributed power modules, this paper describes a modeling and control design procedure for the distributed converters. The system configuration and steady-state analysis of the standalone DC microgrid under study are discussed first. The dynamic models of the distributed converters are then developed from two aspects corresponding to their two operating modes, device-regulating mode and bus-regulating mode. Average current mode control and linear compensators are designed accordingly for each operating mode. The stability of the designed system is analyzed at last. The operation and control design of the system are verified by simulation results. 16. Structural Modeling and Analysis of a Wave Energy Converter Applying Dynamical Substructuring Method DEFF Research Database (Denmark) Zurkinden, Andrew Stephen; Damkilde, Lars; Gao, Zhen 2013-01-01 to the relative stiff behavior of the arm the calculation can be reduced to a quasi-static analysis. The hydrodynamic and the structural analyses are thus performed separately. In order to reduce the computational time of the finite element calculation the main structure is modeled as a superelement......This paper deals with structural modeling and analysis of a wave energy converter. The device, called Wavestar, is a bottom fixed structure, located in a shallow water environment at the Danish Northwest coast. The analysis is concentrated on a single float and its structural arm which connects...... the WEC to a jackup structure. The wave energy converter is characterized by having an operational and survival mode. The survival mode drastically reduces the exposure to waves and therfore to the wave loads. Structural response analysis of the Wavestar arm is carried out in this study. Due... 17. Model of converter dusts and iron-bearing slurries management in briquetting Directory of Open Access Journals (Sweden) P. Gara 2016-07-01 Full Text Available An important problem in metallurgy of iron and steel is management of hydrated, fine-grained, iron-bearing waste which can be formed as a result of gas scrubbing. The article presents a model of application of converter slurry in a closed-circuit flow system. The correct preparation of slag, namely briquetting with defined additives, allows for application of such slag in the steel-making process as the substitute for scrap metal. 18. A Reconfigurable Buck, Boost, and Buck-Boost Converter: Unified Model and Robust Controller OpenAIRE Licea, Martín Antonio Rodríguez; Pinal, Francisco Javier Perez; Gutiérrez, Alejandro Israel Barranco; Ramírez, Carlos Alonso Herrera; Perez, Jose Cruz Nuñez 2018-01-01 The need for reconfigurable, high power density, and low-cost configurations of DC-DC power electronic converters (PEC) in areas such as the transport electrification and the use of renewable energy has spread out the requirement to incorporate in a single circuit several topologies, which generally result in an increment of complexity about the modeling, control, and stability analyses. In this paper, a reconfigurable topology is presented which can be applied in alterative/changing power co... 19. Quiver gauge theories and integrable lattice models International Nuclear Information System (INIS) Yagi, Junya 2015-01-01 We discuss connections between certain classes of supersymmetric quiver gauge theories and integrable lattice models from the point of view of topological quantum field theories (TQFTs). The relevant classes include 4d N=1 theories known as brane box and brane tilling models, 3d N=2 and 2d N=(2,2) theories obtained from them by compactification, and 2d N=(0,2) theories closely related to these theories. We argue that their supersymmetric indices carry structures of TQFTs equipped with line operators, and as a consequence, are equal to the partition functions of lattice models. The integrability of these models follows from the existence of extra dimension in the TQFTs, which emerges after the theories are embedded in M-theory. The Yang-Baxter equation expresses the invariance of supersymmetric indices under Seiberg duality and its lower-dimensional analogs. 20. Selection of the ''best'' model for converting beta backscatter count readings into thickness measurements International Nuclear Information System (INIS) Smiriga, N.G. 1976-01-01 This report compares two models for converting beta backscatter count readings into thickness measurements. The necessary formulas to be used in an unweighted and weighted regression analysis are listed. The question of whether one should perform a regression analysis using the five available standard thicknesses or whether one should, in addition to these standard thicknesses, use zero as a standard thickness is decided. A weighted regression analysis is compared with an unweighted one for each model. The ''best'' model is selected, and the conclusions of the analysis are presented 1. Model Predictive Control of Grid Connected Modular Multilevel Converter for Integration of Photovoltaic Power Systems DEFF Research Database (Denmark) Hajizadeh, Amin; Shahirinia, Amir 2017-01-01 Investigation of an advanced control structure for integration of Photovoltaic Power Systems through Grid Connected-Modular Multilevel Converter (GC-MMC) is proposed in this paper. To achieve this goal, a non-linear model of MMC regarding considering of negative and positive sequence components has...... been presented. Then, due to existence of unbalance voltage faults in distribution grid, non-linarites and uncertainties in model, model predictive controller which is developed for GC-MMC. They are implemented based upon positive and negative components of voltage and current to mitigate the power... 2. Modelling and analysis of the transformer current resonance in dual active bridge converters DEFF Research Database (Denmark) Qin, Zian; Shen, Zhan; Blaabjerg, Frede 2017-01-01 Due to the parasitic capacitances of the transformer and inductor in Dual Active Bridge (DAB) converters, resonance happens in the transformer currents. This high frequency resonant current flowing into the full bridges will worsen their soft-switching performance and thereby reduce its efficiency....... In order to study the generation mechanism of this current resonance, the impedance of the transformer and inductor with parasitic components is modelled in this digest. Then, based on the impedance model, an approach is proposed to mitigate the current resonance. Finally, both the impedance model... 3. Modelling and Simulation of Packed Bed Catalytic Converter for Oxidation of Soot in Diesel Powered Vehicles Flue Gas Directory of Open Access Journals (Sweden) Mohammad Nasikin 2010-10-01 Full Text Available Diesel vehicle is used in Indonesia in very big number. This vehicle exhausts pollutants especially diesel soot that can be reduces by using a catalytic converter to convert the soot to CO2. To obtain the optimal dimension of catalytic converter it is needed a model that can represent the profile of soot weight, temperature and pressure along the catalytic converter. In this study, a model is developed for packed bed catalytic converter in an adiabatic condition based on a kinetic study that has been reported previously. Calculation of developed equations in this model uses Polymath 5.X solver with Range Kutta Method. The simulation result shows that temperature profile along catalytic converter increases with the decrease of soot weight, while pressure profile decreases. The increase of soot weight in entering gas increases the needed converter length. On the other hand, the increase of catalyst diameter does not affect to soot weight along converter and temperature profile, but results a less pressure drop. For 2.500 c diesel engine, packed bed catalytic converter with ellipse's cross sectional of 14,5X7,5 cm diagonal and 0,8 cm catalyst particle diameter, needs 4,1 cm length. 4. Power Take-Off Simulation for Scale Model Testing of Wave Energy Converters Directory of Open Access Journals (Sweden) Scott Beatty 2017-07-01 Full Text Available Small scale testing in controlled environments is a key stage in the development of potential wave energy conversion technology. Furthermore, it is well known that the physical design and operational quality of the power-take off (PTO used on the small scale model can have vast effects on the tank testing results. Passive mechanical elements such as friction brakes and air dampers or oil filled dashpots are fraught with nonlinear behaviors such as static friction, temperature dependency, and backlash, the effects of which propagate into the wave energy converter (WEC power production data, causing very high uncertainty in the extrapolation of the tank test results to the meaningful full ocean scale. The lack of quality in PTO simulators is an identified barrier to the development of WECs worldwide. A solution to this problem is to use actively controlled actuators for PTO simulation on small scale model wave energy converters. This can be done using force (or torque-controlled feedback systems with suitable instrumentation, enabling the PTO to exert any desired time and/or state dependent reaction force. In this paper, two working experimental PTO simulators on two different wave energy converters are described. The first implementation is on a 1:25 scale self-reacting point absorber wave energy converter with optimum reactive control. The real-time control system, described in detail, is implemented in LabVIEW. The second implementation is on a 1:20 scale single body point absorber under model-predictive control, implemented with a real-time controller in MATLAB/Simulink. Details on the physical hardware, software, and feedback control methods, as well as results, are described for each PTO. Lastly, both sets of real-time control code are to be web-hosted, free for download, modified and used by other researchers and WEC developers. 5. Design and Modeling of an Integrated Micro-Transformer in a Flyback Converter Directory of Open Access Journals (Sweden) M. Derkaoui 2013-11-01 Full Text Available This paper presents the design and modeling of a square micro-transformer for its integration in a flyback converter. From the specifications of the switching power supply, we determined the geometric parameters of this micro-transformer. The Ï€-electrical model of this micro-transformer highlights all parasitic effects generated by stacking of different material layers and permits to calculate the technological parameters by using the S-parameters. A good dimensioning of the geometrical parameters reduces efficiently the energy losses in the micro-transformer and permits to reach the desirable value of the converter output voltage. We have also simulated the electromagnetic effects with the help of the software FEMLAB3.1 in two cases. The first case, without ferromagnetic core, the second case with ferromagnetic core, in order to choose the micro-transformer that has better electromagnetic compatibility with the vicinity components. To validate dimensioning of the geometrical and technological parameters, we have simulated with the help of the software PSIM6.0, the equivalent electrical circuit of the converter containing the electrical circuit of the dimensioned planar micro-transformer. 6. A Reconfigurable Buck, Boost, and Buck-Boost Converter: Unified Model and Robust Controller Directory of Open Access Journals (Sweden) Martín Antonio Rodríguez Licea 2018-01-01 Full Text Available The need for reconfigurable, high power density, and low-cost configurations of DC-DC power electronic converters (PEC in areas such as the transport electrification and the use of renewable energy has spread out the requirement to incorporate in a single circuit several topologies, which generally result in an increment of complexity about the modeling, control, and stability analyses. In this paper, a reconfigurable topology is presented which can be applied in alterative/changing power conversion scenarios and consists of a reconfigurable Buck, Boost, and Buck-Boost DC-DC converter (RBBC. A unified averaged model of the RBBC is obtained, a robust controller is designed through a polytopic representation, and a Lyapunov based switched stability analysis of the closed-loop system is presented. The reported RBBC provides a wide range of voltage operation, theoretically from -∞ to ∞ volts with a single power source. Robust stability, even under arbitrarily fast (bounded parameter variations and reconfiguration changes, is reported including numerical and experimental results. The main advantages of the converter and the robust controller proposed are simple design, robustness against abrupt changes in the parameters, and low cost. 7. Modeling and Simulation of Generator Side Converter of Doubly Fed Induction Generator-Based Wind Power Generation System DEFF Research Database (Denmark) Guo, Yougui; Zeng, Ping; Blaabjerg, Frede 2010-01-01 A real wind power generation system is given in this paper. SVM control strategy and vector control is applied for generator side converter and doubly fed induction generator respectively. First the mathematical models of the wind turbine rotor, drive train, generator side converter are described... 8. Harmonic Interaction Analysis in Grid-connected Converter using Harmonic State Space (HSS) Modeling DEFF Research Database (Denmark) Kwon, Jun Bum; Wang, Xiongfei; Blaabjerg, Frede 2017-01-01 research about the harmonic interaction. However, it is found that the Linear Time Invariant (LTI) based model analysis makes it difficult to analyze these phenomena because of the time-varying properties of the power electronic based systems. This paper investigates grid-connected converter by using......An increasing number of power electronic based Distributed Generation (DG) systems and loads generate not only characteristic harmonics but also unexpected harmonics. Several methods like impedance based analysis, which are derived from the conventional average model, are introduced to perform... 9. New Pathways between Group Theory and Model Theory CERN Document Server Fuchs, László; Goldsmith, Brendan; Strüngmann, Lutz 2017-01-01 This volume focuses on group theory and model theory with a particular emphasis on the interplay of the two areas. The survey papers provide an overview of the developments across group, module, and model theory while the research papers present the most recent study in those same areas. With introductory sections that make the topics easily accessible to students, the papers in this volume will appeal to beginning graduate students and experienced researchers alike. As a whole, this book offers a cross-section view of the areas in group, module, and model theory, covering topics such as DP-minimal groups, Abelian groups, countable 1-transitive trees, and module approximations. The papers in this book are the proceedings of the conference “New Pathways between Group Theory and Model Theory,” which took place February 1-4, 2016, in Mülheim an der Ruhr, Germany, in honor of the editors’ colleague Rüdiger Göbel. This publication is dedicated to Professor Göbel, who passed away in 2014. He was one of th... 10. Fatigue and Serviceability Limit State Model Basis for Assessment of Offshore Wind Energy Converters DEFF Research Database (Denmark) Thöns, Sebastian; Faber, M. H.; Rücker, W. 2012-01-01 , a probabilistic model is derived on the basis of literature review and measurement data from a prototype Multibrid M5000 support structure. The sensitivity study is based on the calculation of a nonlinear coefficient of correlation in conjunction with predetermined designs of experiments. This is conducted......This paper develops the models for the structural performance of the loading and probabilistic characterization for the fatigue and the serviceability limit states for the support structure of offshore wind energy converters. These models and a sensitivity study are part of a risk based assessment...... as the starting point for the development of the structural performance and loading models. With these models introduced in detail, several modeling aspects for both limit states are analyzed. This includes analyses of the influence on the hot spot stresses by applying a contact formulation for the pile guide... 11. Galaxy Alignments: Theory, Modelling & Simulations Science.gov (United States) Kiessling, Alina; Cacciato, Marcello; Joachimi, Benjamin; Kirk, Donnacha; Kitching, Thomas D.; Leonard, Adrienne; Mandelbaum, Rachel; Schäfer, Björn Malte; Sifón, Cristóbal; Brown, Michael L.; Rassat, Anais 2015-11-01 The shapes of galaxies are not randomly oriented on the sky. During the galaxy formation and evolution process, environment has a strong influence, as tidal gravitational fields in the large-scale structure tend to align nearby galaxies. Additionally, events such as galaxy mergers affect the relative alignments of both the shapes and angular momenta of galaxies throughout their history. These "intrinsic galaxy alignments" are known to exist, but are still poorly understood. This review will offer a pedagogical introduction to the current theories that describe intrinsic galaxy alignments, including the apparent difference in intrinsic alignment between early- and late-type galaxies and the latest efforts to model them analytically. It will then describe the ongoing efforts to simulate intrinsic alignments using both N-body and hydrodynamic simulations. Due to the relative youth of this field, there is still much to be done to understand intrinsic galaxy alignments and this review summarises the current state of the field, providing a solid basis for future work. 12. Applications of model theory to functional analysis CERN Document Server Iovino, Jose 2014-01-01 During the last two decades, methods that originated within mathematical logic have exhibited powerful applications to Banach space theory, particularly set theory and model theory. This volume constitutes the first self-contained introduction to techniques of model theory in Banach space theory. The area of research has grown rapidly since this monograph's first appearance, but much of this material is still not readily available elsewhere. For instance, this volume offers a unified presentation of Krivine's theorem and the Krivine-Maurey theorem on stable Banach spaces, with emphasis on the 13. Model Based Optimization of Integrated Low Voltage DC-DC Converter for Energy Harvesting Applications Science.gov (United States) Jayaweera, H. M. P. C.; Muhtaroğlu, Ali 2016-11-01 A novel model based methodology is presented to determine optimal device parameters for the fully integrated ultra low voltage DC-DC converter for energy harvesting applications. The proposed model feasibly contributes to determine the maximum efficient number of charge pump stages to fulfill the voltage requirement of the energy harvester application. The proposed DC-DC converter based power consumption model enables the analytical derivation of the charge pump efficiency when utilized simultaneously with the known LC tank oscillator behavior under resonant conditions, and voltage step up characteristics of the cross-coupled charge pump topology. The verification of the model has been done using a circuit simulator. The optimized system through the established model achieves more than 40% maximum efficiency yielding 0.45 V output with single stage, 0.75 V output with two stages, and 0.9 V with three stages for 2.5 kΩ, 3.5 kΩ and 5 kΩ loads respectively using 0.2 V input. 14. Power maximization of a point absorber wave energy converter using improved model predictive control Science.gov (United States) Milani, Farideh; Moghaddam, Reihaneh Kardehi 2017-08-01 This paper considers controlling and maximizing the absorbed power of wave energy converters for irregular waves. With respect to physical constraints of the system, a model predictive control is applied. Irregular waves' behavior is predicted by Kalman filter method. Owing to the great influence of controller parameters on the absorbed power, these parameters are optimized by imperialist competitive algorithm. The results illustrate the method's efficiency in maximizing the extracted power in the presence of unknown excitation force which should be predicted by Kalman filter. 15. Large Signal Model of a Four-quadrant AC to DC Converter for Accelerator Magnets CERN Document Server De la Calle, R; Rinaldi, L; Völker, F V 2001-01-01 This paper presents the large signal model of a four-quadrant AC to DC converter, which is expected to be used in the area of particle accelerators. The system’s first stage is composed of a three-phase boost PWM (Pulse Width Modulated) rectifier with DSP (Digital Signal Processing) based power factor correction (PFC) and output voltage regulation. The second stage is a full-bridge PWM inverter that allows fast four-quadrant operation. The structure is fully reversible, and an additional resistance (brake chopper) is not needed to dissipate the energy when the beam deflection magnet acts as generator. 16. Analysis and dynamical modeling of a piston valve for a wave energy converter OpenAIRE Cruz Gispert, Albert 2014-01-01 The Ocean Grazer, a novel wave energy converter, has been proposed by the University of Groningen. The system can collect and store multiple forms of ocean energy, with a pistontype hydraulic pump as its core technology. In this work, the dynamical behavior of a piston valve for use in the piston pump system is studied. In order to gain insight into the dynamical behavior of the piston-type hydraulic pump, a simulation model is developed to describe the movement of the piston v... 17. Converter DC/AC Multilevel of Three Cells: Modeling and Simulation Directory of Open Access Journals (Sweden) Julián Peláez-Restrepo 2013-11-01 Full Text Available This paper presents a three-cell converter DC / AC. Multilevel topologies are attracting attention in the industry, obtained as a ripple on the state variables much smaller, and reduces stress on the switching devices. The topology used in this work is known in the technical literature as floating capacitor multilevel inverter, which imposes the challenge of balancing the voltage across each cell switching using floating capacitors, besides obtaining a sinusoidal signal regulated. The paper presents the averaged model of the inverter, and results obtained through simulation. 18. A Practical Core Loss Model for Filter Inductors of Power Electronic Converters DEFF Research Database (Denmark) Matsumori, Hiroaki; Shimizu, Toshihisa; Wang, Xiongfei 2018-01-01 This paper proposes a core loss model for filter inductors of power electronic converters. The model allows a computationally efficient analysis on the core loss of the inductor under the square voltage excitation and the premagnetization condition. First, the core loss of the filter inductor under...... buck chopper excitation is evaluated with the proposed model and compared with the conventional methods. The comparison shows that the proposed method results in a better core loss prediction under the premagnetized condition than that of conventional alternatives. Then, the core loss of the filter...... inductor with the pulsewidth modulated inverter excitation is evaluated, which shows that the proposed model not only accurately predicts the core loss but also identifies the hysteresis loss part. These results demonstrate that the approach can further be used for the development of magnetic materials... 19. Nonlinear model predictive control of a wave energy converter based on differential flatness parameterisation Science.gov (United States) Li, Guang 2017-01-01 This paper presents a fast constrained optimization approach, which is tailored for nonlinear model predictive control of wave energy converters (WEC). The advantage of this approach relies on its exploitation of the differential flatness of the WEC model. This can reduce the dimension of the resulting nonlinear programming problem (NLP) derived from the continuous constrained optimal control of WEC using pseudospectral method. The alleviation of computational burden using this approach helps to promote an economic implementation of nonlinear model predictive control strategy for WEC control problems. The method is applicable to nonlinear WEC models, nonconvex objective functions and nonlinear constraints, which are commonly encountered in WEC control problems. Numerical simulations demonstrate the efficacy of this approach. 20. A Unified Impedance Model of Voltage-Source Converters with Phase-Locked Loop Effect DEFF Research Database (Denmark) Wang, Xiongfei; Harnefors, Lennart; Blaabjerg, Frede 2016-01-01 This paper proposes a unified impedance model for analyzing the effect of Phase-Locked Loop (PLL) on the stability of grid-connected voltage-source converters. In the approach, the dq-frame impedance model is transformed into the stationary αβ-frame by means of complex transfer functions...... and complex space vectors, which not only predicts the stability impact of the PLL, but reveals also its frequency coupling effect in the phase domain. Thus, the impedance models previously developed in the different domains can be unified. Moreover, the impedance shaping effects of PLL are structurally...... characterized for the current control in the rotating dq-frame and the stationary αβ-frame. Case studies based on the unified impedance model are presented, which are then verified in the time-domain simulations and experiments. The results closely correlate with the impedance-based analysis.... 1. Theories, Models and Methodology in Writing Research NARCIS (Netherlands) Rijlaarsdam, Gert; Bergh, van den Huub; Couzijn, Michel 1996-01-01 Theories, Models and Methodology in Writing Research describes the current state of the art in research on written text production. The chapters in the first part offer contributions to the creation of new theories and models for writing processes. The second part examines specific elements of the 2. The Friction Theory for Viscosity Modeling DEFF Research Database (Denmark) Cisneros, Sergio; Zeberg-Mikkelsen, Claus Kjær; Stenby, Erling Halfdan 2001-01-01 , in the case when experimental information is available a more accurate modeling can be obtained by means of a simple tuning procedure. A tuned f-theory general model can deliver highly accurate viscosity modeling above the saturation pressure and good prediction of the liquid-phase viscosity at pressures......In this work the one-parameter friction theory (f-theory) general models have been extended to the viscosity prediction and modeling of characterized oils. It is demonstrated that these simple models, which take advantage of the repulsive and attractive pressure terms of cubic equations of state...... such as the SRK, PR and PRSV, can provide accurate viscosity prediction and modeling of characterized oils. In the case of light reservoir oils, whose properties are close to those of normal alkanes, the one-parameter f-theory general models can predict the viscosity of these fluids with good accuracy. Yet... 3. Asymmetrical Interleaved DC/DC Switching Converters for Photovoltaic and Fuel Cell Applications—Part 2: Control-Oriented Models Directory of Open Access Journals (Sweden) Sergio Ignacio Serna-Garces 2013-10-01 Full Text Available A previous article has presented the members of the asymmetrical interleaved dc/dc switching converters family as very appropriate candidates to interface between photovoltaic or fuel cell generators and their loads because of their reduced ripple and increased current processing capabilities. After a review of the main modeling methods suitable for high-order converters operating, as the asymmetrical interleaved converters (AIC ones, in discontinuous current conduction mode a full-order averaged model has been adapted and improved to describe the dynamic behavior of AIC. The excellent agreement between the mathematical model predictions, the switched simulations and the experimental results has allowed for satisfactory design of a linear-quadratic regulator (LQR in a fuel-cell application example, which demonstrates the usefulness of the improved control-oriented modeling approach when the switching converters operate in discontinuous conduction mode. 4. Model Testing of the Wave Energy Converter Seawave Slot-Cone Generator DEFF Research Database (Denmark) Kofoed, Jens Peter This report presents the results of a preliminary experimental study of the wave energy convert (WEC) Seawave Slot-Cone Generator (SSG). SSG is a WEC utilizing wave overtopping in multiple reservoirs. In the present SSG setup three reservoirs has been used. Model tests have been performed using...... a scale model (length scale 1:15) of a SSG device to be installed on the west coast of the island Kvitsøy near Stavanger, Norway. The tests were carried out at Dept. of Civil Engineering, Aalborg University (AAU) in the 3D deep water wave tank. The model has been subjected to regular and irregular waves...... corresponding to typical conditions off shore from the intended installation site. The overtopping rates for the individual reservoirs have been measured and the potential energy in the overtopping water has been calculated.... 5. High frequent modelling of a modular multilevel converter using passive components DEFF Research Database (Denmark) El-Khatib, Walid Ziad; Holbøll, Joachim; Rasmussen, Tonny Wederberg 2013-01-01 ). This means that a high frequency model of the converter has to be designed, which gives a better overview of the impact of high frequency transients etc. The functionality of the model is demonstrated by application to grid connections of off-shore wind power plants. Grid connection of an offshore wind power...... wind power plant employing HVDC. In the present study, a back to back HVDC transmission system is designed in PSCAD/EMTDC. Simulations and results showing the importance of high frequent modeling are presented....... plant using HVDC fundamentally changes the electrical environment for the power plant. Detailed knowledge and understanding of the characteristics and behavior of all relevant power system components under all conditions, including under transients, are required in order to develop reliable offshore... 6. Hydrogen converters International Nuclear Information System (INIS) Mondino, Angel V. 2003-01-01 The National Atomic Energy Commission of Argentina developed a process of 99 Mo production from fission, based on irradiation of uranium aluminide targets with thermal neutrons in the RA-3 reactor of the Ezeiza Atomic Centre. These targets are afterwards dissolved in an alkaline solution, with the consequent liberation of hydrogen as the main gaseous residue. This work deals with the use of a first model of metallic converter and a later prototype of glass converter at laboratory scale, adjusted to the requirements and conditions of the specific redox process. Oxidized copper wires were used, which were reduced to elementary copper at 400 C degrees and then regenerated by oxidation with hot air. Details of the bed structure and the operation conditions are also provided. The equipment required for the assembling in cells is minimal and, taking into account the operation final temperature and the purge with nitrogen, the procedure is totally safe. Finally, the results are extrapolated for the design of a converter to be used in a hot cell. (author) 7. Converting differential-equation models of biological systems to membrane computing. Science.gov (United States) Muniyandi, Ravie Chandren; Zin, Abdullah Mohd; Sanders, J W 2013-12-01 This paper presents a method to convert the deterministic, continuous representation of a biological system by ordinary differential equations into a non-deterministic, discrete membrane computation. The dynamics of the membrane computation is governed by rewrite rules operating at certain rates. That has the advantage of applying accurately to small systems, and to expressing rates of change that are determined locally, by region, but not necessary globally. Such spatial information augments the standard differentiable approach to provide a more realistic model. A biological case study of the ligand-receptor network of protein TGF-β is used to validate the effectiveness of the conversion method. It demonstrates the sense in which the behaviours and properties of the system are better preserved in the membrane computing model, suggesting that the proposed conversion method may prove useful for biological systems in particular. Copyright © 2013 Elsevier Ireland Ltd. All rights reserved. 8. Real-Time Model and Simulation Architecture for Half- and Full-Bridge Modular Multilevel Converters Science.gov (United States) Ashourloo, Mojtaba This work presents an equivalent model and simulation architecture for real-time electromagnetic transient analysis of either half-bridge or full-bridge modular multilevel converter (MMC) with 400 sub-modules (SMs) per arm. The proposed CPU/FPGA-based architecture is optimized for the parallel implementation of the presented MMC model on the FPGA and is beneficiary of a high-throughput floating-point computational engine. The developed real-time simulation architecture is capable of simulating MMCs with 400 SMs per arm at 825 nanoseconds. To address the difficulties of the sorting process implementation, a modified Odd-Even Bubble sorting is presented in this work. The comparison of the results under various test scenarios reveals that the proposed real-time simulator is representing the system responses in the same way of its corresponding off-line counterpart obtained from the PSCAD/EMTDC program. 9. Numerical Model of Dephosphorization Reaction Kinetics in Top Blown Converter Coupled with Flow Field Science.gov (United States) Liu, Wei; Yang, Shufeng; Li, Jingshe; Wang, Minghui 2017-07-01 A 3D transient numerical model of dephosphorization kinetics coupled with flow field in a top blown converter was built. Through the model the dephosphorization reaction rate influenced by the oxygen jets and the steel flow were simulated. The results show that the dephosphorization rate at the droplet metal-slag interface is two orders of magnitude faster than that at bath metal-slag interface. When the lance oxygen pressure increases from 0.7 to 0.8 MPa, the dephosphorization rate increases notably and the end content of P has a decrease of 19 %. However, when the pressure continues rising to 0.9 MPa, the dephosphorization rate has no significant increase. In addition, the lance height shows a nearly linear relation to the end P content of steel, that the lower the height, the faster the dephosphorization rate. 10. Crisis in Context Theory: An Ecological Model Science.gov (United States) Myer, Rick A.; Moore, Holly B. 2006-01-01 This article outlines a theory for understanding the impact of a crisis on individuals and organizations. Crisis in context theory (CCT) is grounded in an ecological model and based on literature in the field of crisis intervention and on personal experiences of the authors. A graphic representation denotes key components and premises of CCT,… 11. Considering linear generator copper losses on model predictive control for a point absorber wave energy converter International Nuclear Information System (INIS) Montoya Andrade, Dan-El; Villa Jaén, Antonio de la; García Santana, Agustín 2014-01-01 Highlights: • We considered the linear generator copper losses in the proposed MPC strategy. • We maximized the power transferred to the generator side power converter. • The proposed MPC increases the useful average power injected into the grid. • The stress level of the PTO system can be reduced by the proposed MPC. - Abstract: The amount of energy that a wave energy converter can extract depends strongly on the control strategy applied to the power take-off system. It is well known that, ideally, the reactive control allows for maximum energy extraction from waves. However, the reactive control is intrinsically noncausal in practice and requires some kind of causal approach to be applied. Moreover, this strategy does not consider physical constraints and this could be a problem because the system could achieve unacceptable dynamic values. These, and other control techniques have focused on the wave energy extraction problem in order to maximize the energy absorbed by the power take-off device without considering the possible losses in intermediate devices. In this sense, a reactive control that considers the linear generator copper losses has been recently proposed to increase the useful power injected into the grid. Among the control techniques that have emerged recently, the model predictive control represents a promising strategy. This approach performs an optimization process on a time prediction horizon incorporating dynamic constraints associated with the physical features of the power take-off system. This paper proposes a model predictive control technique that considers the copper losses in the control optimization process of point absorbers with direct drive linear generators. This proposal makes the most of reactive control as it considers the copper losses, and it makes the most of the model predictive control, as it considers the system constraints. This means that the useful power transferred from the linear generator to the power 12. Buck-Boost DC-DC Converter Control by Using the Extracted Model from Signal Flow Graph Method OpenAIRE Mohammadian, Leila; Babaei, Ebrahim; Bannae Sharifian, Mohammad Bagher 2015-01-01 In this paper, the signal flow graph technique and Mason gain formula are applied for extracting the model and transfer functions from control to output and from input to output of a buck-boost converter. In order to investigate a controller necessity for the converter of assumed parameters, the frequency and time domain analysis are done and the open loop system characteristics are verified and the needed closed loop controlled system specifications are determined. Finally designing a contro... 13. A hierarchical model predictive voltage control for NPC/H-bridge converters with a reduced computational burden DEFF Research Database (Denmark) Gong, Zheng; Dai, Peng; Wu, Xiaojie 2017-01-01 In recent years, voltage source multilevel converters are very popular in medium/high-voltage industrial applications, among which the NPC/H-Bridge converter is a popular solution to the medium/high-voltage drive systems. The conventional finite control set model predictive control (FCS-MPC) stra......In recent years, voltage source multilevel converters are very popular in medium/high-voltage industrial applications, among which the NPC/H-Bridge converter is a popular solution to the medium/high-voltage drive systems. The conventional finite control set model predictive control (FCS......-MPC) strategy is not practical for multilevel converters due to their substantial calculation requirements, especially under high number of voltage levels. To solve this problem, a hierarchical model predictive voltage control (HMPVC) strategy with referring to the implementation of g-h coordinate space vector...... and experiments with a down-scaled NPC/H-Bridge converter prototype under various conditions, which validate the proposed HMPVC strategy.... 14. Constraint theory multidimensional mathematical model management CERN Document Server Friedman, George J 2017-01-01 Packed with new material and research, this second edition of George Friedman’s bestselling Constraint Theory remains an invaluable reference for all engineers, mathematicians, and managers concerned with modeling. As in the first edition, this text analyzes the way Constraint Theory employs bipartite graphs and presents the process of locating the “kernel of constraint” trillions of times faster than brute-force approaches, determining model consistency and computational allowability. Unique in its abundance of topological pictures of the material, this book balances left- and right-brain perceptions to provide a thorough explanation of multidimensional mathematical models. Much of the extended material in this new edition also comes from Phan Phan’s PhD dissertation in 2011, titled “Expanding Constraint Theory to Determine Well-Posedness of Large Mathematical Models.” Praise for the first edition: "Dr. George Friedman is indisputably the father of the very powerful methods of constraint theory... 15. Thyristor voltage converter in induction electric drives with microprocessor control Energy Technology Data Exchange (ETDEWEB) Braslavsky, I.; Zuzev, A.; Shilin, S. [Electric Drive Department, Urals State Technical University, Ekaterinburg (Russian Federation) 1997-12-31 The paper consists of some results on developed pulse model of thyristor voltage converter which is one of the most mathematically complicated unit of electric drive. The model structure and model parameter calculating method are represented. The application of the model allows to analyse stability in locally by the linear pulse system theory methods with talking into consideration quantise processes within the converter. Such application provides the obtaining higher accurate results comparing with the non-linear system theory approximate methods. Logarithmic frequency characteristics are used to analyse converter dynamic features and they are represented too. (orig.) 4 refs. 16. Design, optimization and numerical modelling of a novel floating pendulum wave energy converter with tide adaptation Science.gov (United States) Yang, Jing; Zhang, Da-hai; Chen, Ying; Liang, Hui; Tan, Ming; Li, Wei; Ma, Xian-dong 2017-10-01 A novel floating pendulum wave energy converter (WEC) with the ability of tide adaptation is designed and presented in this paper. Aiming to a high efficiency, the buoy's hydrodynamic shape is optimized by enumeration and comparison. Furthermore, in order to keep the buoy's well-designed leading edge always facing the incoming wave straightly, a novel transmission mechanism is then adopted, which is called the tidal adaptation mechanism in this paper. Time domain numerical models of a floating pendulum WEC with or without tide adaptation mechanism are built to compare their performance on various water levels. When comparing these two WECs in terms of their average output based on the linear passive control strategy, the output power of WEC with the tide adaptation mechanism is much steadier with the change of the water level and always larger than that without the tide adaptation mechanism. 17. Model Predictive Control of Power Converters for Robust and Fast Operation of AC Microgrids DEFF Research Database (Denmark) Dragicevic, Tomislav 2018-01-01 the load power at the same time. Those functionalities are conventionally achieved by hierarchical linear control loops. However, they have limited transient response and high sensitivity to parameter variations. This paper aims to mitigate these problems by firstly introducing an improvement of the FCS......This paper proposes the application of a finite control set model predictive control (FCS-MPC) strategy in standalone ac microgrids (MGs). AC MGs are usually built from two or more voltage source converters (VSCs) which can regulate the voltage at the point of common coupling, while sharing......-MPC strategy for a single VSC based on tracking of derivative of the voltage reference trajectory. Using only a single step prediction horizon, the proposed strategy exhibits low computational expense but provides steady state performance comparable to PWM, while its transient response and robustness... 18. Multi-cell DC-DC converters : modelling, analysis and control International Nuclear Information System (INIS) Feki, M.; El Aroudi, A.; Robert, B.G.M. 2011-01-01 This paper is devoted to modeling of a two-cell DC/DC buck converter, to the analysis of its behavior and to the design of control methods that yield to improve its performances. Various numerical simulations and dynamical aspects of this system are illustrated in the time domain and in the parameter space. Without control, the system may present many undesirable behaviors such as sub-harmonics and chaotic oscillations. The proposed controllers are able to widen the stability range of the system. Optimum values of parameters giving rise to fast response while maintaining stable periodic behavior are given in closed form. However, it is detected that in a certain region of the parameter space, the stabilized periodic orbit may coexist with a chaotic attractor. Boundary between basins of attraction are obtained by means of numerical simulations. 19. Staircase Models from Affine Toda Field Theory CERN Document Server Dorey, P; Dorey, Patrick; Ravanini, Francesco 1993-01-01 We propose a class of purely elastic scattering theories generalising the staircase model of Al. B. Zamolodchikov, based on the affine Toda field theories for simply-laced Lie algebras g=A,D,E at suitable complex values of their coupling constants. Considering their Thermodynamic Bethe Ansatz equations, we give analytic arguments in support of a conjectured renormalisation group flow visiting the neighbourhood of each W_g minimal model in turn. 20. Reconstructing bidimensional scalar field theory models International Nuclear Information System (INIS) Flores, Gabriel H.; Svaiter, N.F. 2001-07-01 In this paper we review how to reconstruct scalar field theories in two dimensional spacetime starting from solvable Scrodinger equations. Theree different Schrodinger potentials are analyzed. We obtained two new models starting from the Morse and Scarf II hyperbolic potencials, the U (θ) θ 2 In 2 (θ 2 ) model and U (θ) = θ 2 cos 2 (In(θ 2 )) model respectively. (author) 1. A course on basic model theory CERN Document Server Sarbadhikari, Haimanti 2017-01-01 This self-contained book is an exposition of the fundamental ideas of model theory. It presents the necessary background from logic, set theory and other topics of mathematics. Only some degree of mathematical maturity and willingness to assimilate ideas from diverse areas are required. The book can be used for both teaching and self-study, ideally over two semesters. It is primarily aimed at graduate students in mathematical logic who want to specialise in model theory. However, the first two chapters constitute the first introduction to the subject and can be covered in one-semester course to senior undergraduate students in mathematical logic. The book is also suitable for researchers who wish to use model theory in their work. 2. Modeling, Development and Control of Multilevel Converters for Power System Application = Science.gov (United States) Vahedi, Hani The main goal of this project is to develop a multilevel converter topology to be useful in power system applications. Although many topologies are introduced rapidly using a bunch of switches and isolated dc sources, having a single-dc-source multilevel inverter is still a matter of controversy. In fact, each isolated dc source means a bulky transformer and a rectifier that have their own losses and costs forcing the industries to avoid entering in this topic conveniently. On the other hand, multilevel inverters topologies with single-dc-source require associated controllers to regulate the dc capacitors voltages in order to have multilevel voltage waveform at the output. Thus, a complex controller would not interest investors properly. Consequently, developing a single-dc-source multilevel inverter topology along with a light and reliable voltage control is still a challenging topic to replace the 2-level inverters in the market effectively. The first effort in this project was devoted to the PUC7 inverter to design a simple and yet efficient controller. A new modelling is performed on the PUC7 inverter and it has been simplified to first order system. Afterwards, a nonlinear cascaded controller is designed and applied to regulate the capacitor voltage at 1/3 of the DC source amplitude and to generate 7 identical voltage levels at the output supplying different type of loads such as RL or rectifier harmonic ones. In next work, the PUC5 topology is proposed as a remedy to the PUC7 that requires a complicated controller to operate properly. The capacitor voltage is regulated at half of dc source amplitude to generate 5 voltage levels at the output. Although the 7-level voltage waveform is replaced by a 5-level one in PUC5 topology, it is shown that the PUC5 needs a very simple and reliable voltage balancing technique due to having some redundant switching states. Moreover, a sensor-less voltage balancing technique is designed and implemented on the PUC5 inverter 3. Gauge theories and integrable lattice models International Nuclear Information System (INIS) Witten, E. 1989-01-01 Investigations of new knot polynomials discovered in the last few years have shown them to be intimately connected with soluble models of two dimensional lattice statistical mechanics. In this paper, these results, which in time may illuminate the whole question of why integrable lattice models exist, are reconsidered from the point of view of three dimensional gauge theory. Expectation values of Wilson lines in three dimensional Chern-Simons gauge theories can be computed by evaluating the partition functions of certain lattice models on finite graphs obtained by projecting the Wilson lines to the plane. The models in question - previously considered in both the knot theory and statistical mechanics literature - are IRF models in which the local Boltzmann weights are the matrix elements of braiding matrices in rational conformal field theories. These matrix elements, in turn, can be represented in three dimensional gauge theory in terms of the expectation value of a certain tetrahedral configuration of Wilson lines. This representation makes manifest a surprising symmetry of the braiding matrix elements in conformal field theory. (orig.) 4. Thermal Modelling and Design of On-board DC-DC Power Converter using Finite Element Method DEFF Research Database (Denmark) Staliulionis, Z.; Zhang, Z.; Pittini, R. 2014-01-01 Power electronic converters are widely used and play a pivotal role in electronics area. The temperature causes around 54 % of all power converters failures. Thermal loads are nowadays one of the bottlenecks in the power system design and the cooling efficiency of a system is primarily determined...... by numerical modelling techniques. Therefore, thermal design through thermal modelling and simulation is becoming an integral part of the design process as less expensive compared to the experimental cut-and-try approach. Here the investigation is performed using finite element method-based modelling, and also... 5. Thermal Modeling and Design of On-board DC-DC Power Converter using Finite Element Method DEFF Research Database (Denmark) Staliulionis, Zygimantas; Zhang, Zhe; Pittini, Riccardo 2014-01-01 Power electronic converters are widely used and play a pivotal role in electronics area . The temperature causes around 54 % of all power converters failures. Thermal loads are nowadays one of the bottlenecks in the power system design and the cooling efficiency of a system is primarily determined...... by numerical modeling techniques. Therefore, thermal design through thermal modeling and simulation is becoming an integral part of the design process as less expensive compared to the experimenta l cut - and - try approach. Here the investigation is performed using finite element method - based modeling... 6. Cluster model in reaction theory International Nuclear Information System (INIS) Adhikari, S.K. 1979-01-01 A recent work by Rosenberg on cluster states in reaction theory is reexamined and generalized to include energies above the threshold for breakup into four composite fragments. The problem of elastic scattering between two interacting composite fragments is reduced to an equivalent two-particle problem with an effective potential to be determined by extremum principles. For energies above the threshold for breakup into three or four composite fragments effective few-particle potentials are introduced and the problem is reduced to effective three- and four-particle problems. The equivalent three-particle equation contains effective two- and three-particle potentials. The effective potential in the equivalent four-particle equation has two-, three-, and four-body connected parts and a piece which has two independent two-body connected parts. In the equivalent three-particle problem we show how to include the effect of a weak three-body potential perturbatively. In the equivalent four-body problem an approximate simple calculational scheme is given when one neglects the four-particle potential the effect of which is presumably very small 7. Large-signal stability analysis of PWM converters Energy Technology Data Exchange (ETDEWEB) Huynh, P.T. [Philips Labs., Briarcliff Manor, NY (United States); Cho, B.H. [Seoul National Univ. (Korea, Republic of). Dept. of Electrical Engineering 1995-12-31 Investigation of the effects of existing nonlinearities on the stability of PWM converters is performed. The bilinear structure, the duty cycle saturation, and the opamp saturation are the principal nonlinearities in PWM converters. These nonlinearities are incorporated in the large-signal analytical models of PWM converters, and the basic input-output stability theory is applied to analyze their stability. Design and optimization of the small-signal loop gains to counteract the undesirable nonlinear effects are also discussed. 8. Couplings in Phase Domain Impedance Modelling of Grid-Connected Converters DEFF Research Database (Denmark) Dowlatabadi, Mohammadkazem Bakhshizadeh; Wang, Xiongfei; Blaabjerg, Frede 2016-01-01 The output impedance of a power converter plays an important role in the stability assessment of the converter. The impedance can be expressed in different frames such as the stationary frame (phase domain) or in the synchronous frame (dq domain). To treat the three-phase system like a single... 9. Multi-timescale modelling for the loading behaviours of power electronics converter DEFF Research Database (Denmark) Ma, Ke; Blaabjerg, Frede 2015-01-01 The thermal dynamics of power device, referred as “thermal cycling”, are closely related to the reliability as well as the cost of the power electronics converter. However, the device loading is disturbed by many factors of the converter system which present at various times-constants from micro... 10. Control and Modeling of Push-Pull Forward Three-Level Converter for Microgrid DEFF Research Database (Denmark) Yao, Zhilei; Xu, Jing; Guerrero, Josep M. 2015-01-01 Renewable energy sources are widely used in microgrid. Output voltage of them is often low and varies widely. Because diodes in three-level legs in traditional three-level (TL) converter are substituted by MOSFETs, the push-pull forward (PPF) TL converter is very suitable for wide and low... 11. A normalized model for the half-bridge series resonant converter Science.gov (United States) King, R.; Stuart, T. A. 1981-01-01 Closed-form steady-state equations are derived for the half-bridge series resonant converter with a rectified (dc) load. Normalized curves for various currents and voltages are then plotted as a function of the circuit parameters. Experimental results based on a 10-kHz converter are presented for comparison with the calculations. 12. Modeling and Control of DC/DC Boost Converter using K-Factor Control for MPPT of Solar PV System DEFF Research Database (Denmark) Vangari, Adithya; Haribabu, Divyanagalakshmi; Sakamuri, Jayachandra N. 2015-01-01 This paper is focused on the design of a controller for the DC/DC boost converter using K factor control, which is based on modified PI control method, for maximum power point tracking (MPPT) of solar PV system. A mathematical model for boost converter based on small signal averaging approach...... is presented. Design of the passive elements of the boost converter as per the system specifications is also illustrated. The performance of the proposed K factor control method is verified with the simulations for MPPT on solar PV system at different atmospheric conditions. A new circuit based model for solar...... PV array, which includes the effect of solar insolation and temperature on PV array output, for the application in power system transient simulations, is also presented. The performance of the PV array model is verified with simulations at different atmospheric conditions. A 160W PV module from BP... 13. Economic Modelling in Institutional Economic Theory Directory of Open Access Journals (Sweden) Wadim Strielkowski 2017-06-01 Full Text Available Our paper is centered around the formation of theory of institutional modelling that includes principles and ideas reflecting the laws of societal development within the framework of institutional economic theory. We scrutinize and discuss the scientific principles of this institutional modelling that are increasingly postulated by the classics of institutional theory and find their way into the basics of the institutional economics. We propose scientific ideas concerning the new innovative approaches to institutional modelling. These ideas have been devised and developed on the basis of the results of our own original design, as well as on the formalisation and measurements of economic institutions, their functioning and evolution. Moreover, we consider the applied aspects of the institutional theory of modelling and employ them in our research for formalizing our results and maximising the practical outcome of our paper. Our results and findings might be useful for the researchers and stakeholders searching for the systematic and comprehensive description of institutional level modelling, the principles involved in this process and the main provisions of the institutional theory of economic modelling. 14. Randomized Item Response Theory Models NARCIS (Netherlands) Fox, Gerardus J.A. 2005-01-01 The randomized response (RR) technique is often used to obtain answers on sensitive questions. A new method is developed to measure latent variables using the RR technique because direct questioning leads to biased results. Within the RR technique is the probability of the true response modeled by 15. Modeling of Mixing Behavior in a Combined Blowing Steelmaking Converter with a Filter-Based Euler-Lagrange Model Science.gov (United States) Li, Mingming; Li, Lin; Li, Qiang; Zou, Zongshu 2018-05-01 A filter-based Euler-Lagrange multiphase flow model is used to study the mixing behavior in a combined blowing steelmaking converter. The Euler-based volume of fluid approach is employed to simulate the top blowing, while the Lagrange-based discrete phase model that embeds the local volume change of rising bubbles for the bottom blowing. A filter-based turbulence method based on the local meshing resolution is proposed aiming to improve the modeling of turbulent eddy viscosities. The model validity is verified through comparison with physical experiments in terms of mixing curves and mixing times. The effects of the bottom gas flow rate on bath flow and mixing behavior are investigated and the inherent reasons for the mixing result are clarified in terms of the characteristics of bottom-blowing plumes, the interaction between plumes and top-blowing jets, and the change of bath flow structure. 16. Modelling the hydrokinetic energy resource for in-stream energy converters International Nuclear Information System (INIS) Lalander, Emilia 2010-01-01 Hydrokinetic energy, referring to the energy contained in moving water, is a renewable energy source that has gained much attention the past years. The energy is found in all moving water masses, but is only economical to convert for water masses moving with high velocity, i.e. likely around 1 m/s and above. This energy can for example be found in tidal, ocean and river currents which flow through narrow straits and channels. Along the west coast of Norway, there are many sites where kinetic energy conversion would be possible due to the strong current present. The driving force behind the currents is the tidal wave that progresses northward along the coast and increases in strength. The models that so far have been used for estimating the resource in Norway have been shown to be uncertain since they do not account for the fact that the velocities and the water levels are altered when energy is extracted. These effects can be simulated with numerical models. A channel in the Dal river, the Soederfors channel, is situated downstream a hydropower plant and was simulated with the numerical model MIKE. The water level alteration due to turbines was simulated. It was shown to be a lot less than the water level alteration caused by the level change in the downstream lake. Velocity profiles measured at several different locations were used to estimate how the power coefficient was changed. Four turbine configurations were studied and it was shown that changes in the power coefficient were prominent only for a vertical shear profile with a strong gradient. At the Div. of Electricity, studies have been conducted on how to convert hydrokinetic energy to electricity since 2003. The main idea has been to use a system that limits the need for maintenance. The concept studied is a vertical axis turbine directly coupled to a permanent magnet generator. The Soederfors channel has, due to aspects such as the flow properties and velocity, been chosen as a site for an experimental 17. Graphical Model Theory for Wireless Sensor Networks International Nuclear Information System (INIS) Davis, William B. 2002-01-01 Information processing in sensor networks, with many small processors, demands a theory of computation that allows the minimization of processing effort, and the distribution of this effort throughout the network. Graphical model theory provides a probabilistic theory of computation that explicitly addresses complexity and decentralization for optimizing network computation. The junction tree algorithm, for decentralized inference on graphical probability models, can be instantiated in a variety of applications useful for wireless sensor networks, including: sensor validation and fusion; data compression and channel coding; expert systems, with decentralized data structures, and efficient local queries; pattern classification, and machine learning. Graphical models for these applications are sketched, and a model of dynamic sensor validation and fusion is presented in more depth, to illustrate the junction tree algorithm 18. Topological quantum theories and integrable models International Nuclear Information System (INIS) Keski-Vakkuri, E.; Niemi, A.J.; Semenoff, G.; Tirkkonen, O. 1991-01-01 The path-integral generalization of the Duistermaat-Heckman integration formula is investigated for integrable models. It is shown that for models with periodic classical trajectories the path integral reduces to a form similar to the finite-dimensional Duistermaat-Heckman integration formula. This provides a relation between exactness of the stationary-phase approximation and Morse theory. It is also argued that certain integrable models can be related to topological quantum theories. Finally, it is found that in general the stationary-phase approximation presumes that the initial and final configurations are in different polarizations. This is exemplified by the quantization of the SU(2) coadjoint orbit 19. Self Modeling: Expanding the Theories of Learning Science.gov (United States) Dowrick, Peter W. 2012-01-01 Self modeling (SM) offers a unique expansion of learning theory. For several decades, a steady trickle of empirical studies has reported consistent evidence for the efficacy of SM as a procedure for positive behavior change across physical, social, educational, and diagnostic variations. SM became accepted as an extreme case of model similarity;… 20. Recent advances in Alkali Metal Thermoelectric Converter (AMTEC) electrode performance and modeling. [for space power systems Science.gov (United States) Bankston, C. P.; Williams, R. M.; Jeffries-Nakamura, B.; Loveland, M. E.; Underwood, M. L. 1988-01-01 The Alkali Metal Thermoelectric Converter (AMTEC) is a direct energy conversion device, utilizing a high sodium vapor pressure or activity ratio across a beta-double prime-alumina solid electrolyte (BASE). This paper describes progress on the remaining scientific issue which must be resolved to demonstrate AMTEC feasibility for space power systems: a stable, high power density electrode. Two electrode systems have recently been discovered at JPL that now have the potential to meet space power requirements. One of these is a very thin sputtered molybdenum film, less than 0.5 micron thick, with overlying current collection grids. This electrode has experimentally demonstrated stable performance at 0.4-0.5 W/sq cm for hundreds of hours. Recent modeling results show that at least 0.7 W/sq cm can be achieved. The model of electrode performance now includes all loss mechanisms, including charge transfer resistances at the electrode/electrolyte interface. A second electrode composition, cosputtered platinum/tungsten, has demonstrated 0.8 W/sq cm for 160 hours. Systems studies show that a stable electrode performance of 0.6 W/sq cm will enable high efficiency space power systems. 1. Security Theorems via Model Theory Directory of Open Access Journals (Sweden) Joshua Guttman 2009-11-01 Full Text Available A model-theoretic approach can establish security theorems for cryptographic protocols. Formulas expressing authentication and non-disclosure properties of protocols have a special form. They are quantified implications for all xs . (phi implies for some ys . psi. Models (interpretations for these formulas are *skeletons*, partially ordered structures consisting of a number of local protocol behaviors. *Realized* skeletons contain enough local sessions to explain all the behavior, when combined with some possible adversary behaviors. We show two results. (1 If phi is the antecedent of a security goal, then there is a skeleton A_phi such that, for every skeleton B, phi is satisfied in B iff there is a homomorphism from A_phi to B. (2 A protocol enforces for all xs . (phi implies for some ys . psi iff every realized homomorphic image of A_phi satisfies psi. Hence, to verify a security goal, one can use the Cryptographic Protocol Shapes Analyzer CPSA (TACAS, 2007 to identify minimal realized skeletons, or "shapes," that are homomorphic images of A_phi. If psi holds in each of these shapes, then the goal holds. 2. Vacation queueing models theory and applications CERN Document Server Tian, Naishuo 2006-01-01 A classical queueing model consists of three parts - arrival process, service process, and queue discipline. However, a vacation queueing model has an additional part - the vacation process which is governed by a vacation policy - that can be characterized by three aspects: 1) vacation start-up rule; 2) vacation termination rule, and 3) vacation duration distribution. Hence, vacation queueing models are an extension of classical queueing theory. Vacation Queueing Models: Theory and Applications discusses systematically and in detail the many variations of vacation policy. By allowing servers to take vacations makes the queueing models more realistic and flexible in studying real-world waiting line systems. Integrated in the book's discussion are a variety of typical vacation model applications that include call centers with multi-task employees, customized manufacturing, telecommunication networks, maintenance activities, etc. Finally, contents are presented in a "theorem and proof" format and it is invaluabl... 3. Quantum field theory and the standard model CERN Document Server Schwartz, Matthew D 2014-01-01 Providing a comprehensive introduction to quantum field theory, this textbook covers the development of particle physics from its foundations to the discovery of the Higgs boson. Its combination of clear physical explanations, with direct connections to experimental data, and mathematical rigor make the subject accessible to students with a wide variety of backgrounds and interests. Assuming only an undergraduate-level understanding of quantum mechanics, the book steadily develops the Standard Model and state-of-the-art calculation techniques. It includes multiple derivations of many important results, with modern methods such as effective field theory and the renormalization group playing a prominent role. Numerous worked examples and end-of-chapter problems enable students to reproduce classic results and to master quantum field theory as it is used today. Based on a course taught by the author over many years, this book is ideal for an introductory to advanced quantum field theory sequence or for independe... 4. Wind farm node connected DFIG/back-to-back converter coupling transient model for grid integration studies International Nuclear Information System (INIS) Ostolaza, J.X.; Etxeberria, A.; Zubia, I. 2015-01-01 Highlights: • Full-order DFIG/B2B coupling transient model to the connection of wind farm node. • Algebraic loop between stator and filter currents due to transformer is overcome. • A novel decoupling based control design of grid-side converter is presented. • 24 state-variables describe the DFIG: 15 electro-mechanical, plus 9 for control. • State machine implements the sequential control among its operational modes. - Abstract: This paper presents the explicit electromagnetic transient model of a Doubly Fed Induction Generator (DFIG), that includes its coupling with the back-to-back converter, when the generator/converter set is connected to the wind farm’s Thevenin equivalent, as seen from DFIG’s terminals. Besides that, DFIG’s grid side converter control system is defined in detail, so that expressions for the direct tuning of all compensators are provided. The overall electromechanical wind generator model includes 24 state variables: four mechanical, eleven electrical, and nine more – one for each controller – associated to the control system. The developed model is complemented with a state machine that implements the sequential control among the different stages that define its operational modes. Simulation and experimental results show that the developed model is able to predict the behaviour of the generator in short and long term scenarios. 5. RealityConvert: a tool for preparing 3D models of biochemical structures for augmented and virtual reality. Science.gov (United States) Borrel, Alexandre; Fourches, Denis 2017-12-01 There is a growing interest for the broad use of Augmented Reality (AR) and Virtual Reality (VR) in the fields of bioinformatics and cheminformatics to visualize complex biological and chemical structures. AR and VR technologies allow for stunning and immersive experiences, offering untapped opportunities for both research and education purposes. However, preparing 3D models ready to use for AR and VR is time-consuming and requires a technical expertise that severely limits the development of new contents of potential interest for structural biologists, medicinal chemists, molecular modellers and teachers. Herein we present the RealityConvert software tool and associated website, which allow users to easily convert molecular objects to high quality 3D models directly compatible for AR and VR applications. For chemical structures, in addition to the 3D model generation, RealityConvert also generates image trackers, useful to universally call and anchor that particular 3D model when used in AR applications. The ultimate goal of RealityConvert is to facilitate and boost the development and accessibility of AR and VR contents for bioinformatics and cheminformatics applications. http://www.realityconvert.com. dfourch@ncsu.edu. Supplementary data are available at Bioinformatics online. © The Author 2017. Published by Oxford University Press. All rights reserved. For Permissions, please e-mail: journals.permissions@oup.com 6. On the algebraic theory of kink sectors: Application to quantum field theory models and collision theory International Nuclear Information System (INIS) Schlingemann, D. 1996-10-01 Several two dimensional quantum field theory models have more than one vacuum state. An investigation of super selection sectors in two dimensions from an axiomatic point of view suggests that there should be also states, called soliton or kink states, which interpolate different vacua. Familiar quantum field theory models, for which the existence of kink states have been proven, are the Sine-Gordon and the φ 4 2 -model. In order to establish the existence of kink states for a larger class of models, we investigate the following question: Which are sufficient conditions a pair of vacuum states has to fulfill, such that an interpolating kink state can be constructed? We discuss the problem in the framework of algebraic quantum field theory which includes, for example, the P(φ) 2 -models. We identify a large class of vacuum states, including the vacua of the P(φ) 2 -models, the Yukawa 2 -like models and special types of Wess-Zumino models, for which there is a natural way to construct an interpolating kink state. In two space-time dimensions, massive particle states are kink states. We apply the Haag-Ruelle collision theory to kink sectors in order to analyze the asymptotic scattering states. We show that for special configurations of n kinks the scattering states describe n freely moving non interacting particles. (orig.) 7. Modeling, Simulation and Control of Matrix Convert for Variable Speed Wind Turbine System Directory of Open Access Journals (Sweden) M. Alizadeh Moghadam 2015-09-01 Full Text Available This paper presents modeling, simulation and control of matrix converter (MC for variable speed wind turbine (VSWT system including permanent magnet synchronous generator (PMSG. At a given wind velocity, the power available from a wind turbine is a function of its shaft speed. In order to track maximum power, the MC adjusts the PMSG shaft speed.The proposed control system allowing independent control maximum power point tracking (MPPT of generator side and regulate reactive power of grid side for the operation of the VSWT system. The MPPT is implemented by a new control system. This control system is based on control of zero d-axis current (ZDC. The ZDC control can be realized by transfer the three-phase stator current in the stationary reference frame into d-and q-axis components in the synchronous reference frame. Also this paper is presented, a novel control strategy to regulate the reactive power supplied by a variable speed wind energy conversion system. This control strategy is based on voltage oriented control (VOC. The simulation results based on Simulink/Matlab software show that the controllers can extract maximum power and regulate reactive power under varying wind velocities. 8. International Energy Agency Ocean Energy Systems Task 10 Wave Energy Converter Modeling Verification and Validation: Preprint Energy Technology Data Exchange (ETDEWEB) Wendt, Fabian F [National Renewable Energy Laboratory (NREL), Golden, CO (United States); Yu, Yi-Hsiang [National Renewable Energy Laboratory (NREL), Golden, CO (United States); Nielsen, Kim [Ramboll, Copenhagen (Denmark); Ruehl, Kelley [Sandia National Lab. (SNL-NM), Albuquerque, NM (United States); Bunnik, Tim [MARIN (Netherlands); Touzon, Imanol [Tecnalia (Spain); Nam, Bo Woo [KRISO (Korea, Rep. of); Kim, Jeong Seok [KRISO (Korea, Rep. of); Janson, Carl Erik [Chalmers University (Sweden); Jakobsen, Ken-Robert [EDRMedeso (Norway); Crowley, Sarah [WavEC (Portugal); Vega, Luis [Hawaii Natural Energy Institute (United States); Rajagopalan, Krishnakimar [Hawaii Natural Energy Institute (United States); Mathai, Thomas [Glosten (United States); Greaves, Deborah [Plymouth University (United Kingdom); Ransley, Edward [Plymouth University (United Kingdom); Lamont-Kane, Paul [Queen' s University Belfast (United Kingdom); Sheng, Wanan [University College Cork (Ireland); Costello, Ronan [Wave Venture (United Kingdom); Kennedy, Ben [Wave Venture (United Kingdom); Thomas, Sarah [Floating Power Plant (Denmark); Heras, Pilar [Floating Power Plant (Denmark); Bingham, Harry [Technical University of Denmark (Denmark); Kurniawan, Adi [Aalborg University (Denmark); Kramer, Morten Mejlhede [Aalborg University (Denmark); Ogden, David [INNOSEA (France); Girardin, Samuel [INNOSEA (France); Babarit, Aurelien [EC Nantes (France); Wuillaume, Pierre-Yves [EC Nantes (France); Steinke, Dean [Dynamic Systems Analysis (Canada); Roy, Andre [Dynamic Systems Analysis (Canada); Beatty, Scott [Cascadia Coast Research (Canada); Schofield, Paul [ANSYS (United States); Kim, Kyong-Hwan [KRISO (Korea, Rep. of); Jansson, Johan [KTH Royal Inst. of Technology, Stockholm (Sweden); BCAM (Spain); Hoffman, Johan [KTH Royal Inst. of Technology, Stockholm (Sweden) 2017-10-16 This is the first joint reference paper for the Ocean Energy Systems (OES) Task 10 Wave Energy Converter modeling verification and validation group. The group is established under the OES Energy Technology Network program under the International Energy Agency. OES was founded in 2001 and Task 10 was proposed by Bob Thresher (National Renewable Energy Laboratory) in 2015 and approved by the OES Executive Committee EXCO in 2016. The kickoff workshop took place in September 2016, wherein the initial baseline task was defined. Experience from similar offshore wind validation/verification projects (OC3-OC5 conducted within the International Energy Agency Wind Task 30) [1], [2] showed that a simple test case would help the initial cooperation to present results in a comparable way. A heaving sphere was chosen as the first test case. The team of project participants simulated different numerical experiments, such as heave decay tests and regular and irregular wave cases. The simulation results are presented and discussed in this paper. 9. A tool to convert CAD models for importation into Geant4 Science.gov (United States) Vuosalo, C.; Carlsmith, D.; Dasu, S.; Palladino, K.; LUX-ZEPLIN Collaboration 2017-10-01 The engineering design of a particle detector is usually performed in a Computer Aided Design (CAD) program, and simulation of the detector’s performance can be done with a Geant4-based program. However, transferring the detector design from the CAD program to Geant4 can be laborious and error-prone. SW2GDML is a tool that reads a design in the popular SOLIDWORKS CAD program and outputs Geometry Description Markup Language (GDML), used by Geant4 for importing and exporting detector geometries. Other methods for outputting CAD designs are available, such as the STEP format, and tools exist to convert these formats into GDML. However, these conversion methods produce very large and unwieldy designs composed of tessellated solids that can reduce Geant4 performance. In contrast, SW2GDML produces compact, human-readable GDML that employs standard geometric shapes rather than tessellated solids. This paper will describe the development and current capabilities of SW2GDML and plans for its enhancement. The aim of this tool is to automate importation of detector engineering models into Geant4-based simulation programs to support rapid, iterative cycles of detector design, simulation, and optimization. 10. Possibilities for converting conventional cattle production to the organic model in the Grijalva River Basin, Mexico Directory of Open Access Journals (Sweden) J. Nahed 2016-12-01 Full Text Available The possibilities for converting conventional cattle production to the organic model were evaluated in the Grijalva River Basin, Mexico, and possible interventions were identified. A multi-criteria organic livestock conversion index (OLCI with 10 indicators comprising 35 variables was used. Information was obtained through participatory workshops, direct observation, and interviews to 91 farmers of 11 different communities in the municipalities of Mazapa de Madero (n = 17, Huitiupán (n = 30, and Tacotalpa (n = 44. Results show higher OLCI values in Mazapa (56.8% and Tacotalpa (56.7% than in Huitiupán (49.0%. The production units evaluated show: (i limitations with respect to indicators ecological weed control in pastures and crops, veterinary prevention and treatment, food safety, and ecological management, and (ii strengths to reach the organic standards are: feed management, sustainable pasture management, soil fertilization, ecological pest and disease control in pastures and crops, breeds and reproduction, and animal well-being. In order to revert the future scenario of conventional livestock production and to transition to organic cattle raising, it is necessary to: (1 train and advice farmers regarding ecological production techniques and management, principally with respect to the limitations pointed out, and (2 implement a policy for development of livestock raising with specific functional and structural changes. 11. Development of a physically-based planar inductors VHDL-AMS model for integrated power converter design Science.gov (United States) Ammouri, Aymen; Ben Salah, Walid; Khachroumi, Sofiane; Ben Salah, Tarek; Kourda, Ferid; Morel, Hervé 2014-05-01 Design of integrated power converters needs prototype-less approaches. Specific simulations are required for investigation and validation process. Simulation relies on active and passive device models. Models of planar devices, for instance, are still not available in power simulator tools. There is, thus, a specific limitation during the simulation process of integrated power systems. The paper focuses on the development of a physically-based planar inductor model and its validation inside a power converter during transient switching. The planar inductor model remains a complex device to model, particularly when the skin, the proximity and the parasitic capacitances effects are taken into account. Heterogeneous simulation scheme, including circuit and device models, is successfully implemented in VHDL-AMS language and simulated in Simplorer platform. The mixed simulation results has been favorably tested and compared with practical measurements. It is found that the multi-domain simulation results and measurements data are in close agreement. 12. Modelling and simulation of current fed dc to dc converter for PHEV applications using renewable source Science.gov (United States) Milind Metha, Manish; Tutki, Sanjay; Rajan, Aju; Elangovan, D.; Arunkumar, G. 2017-11-01 With the current rate of depletion of the fossil fuel the need to switch on to the renewable energy sources is the need of the hour. Thus the need for new and efficient converters arises so as to replace the existing less efficient diesel and petroleum IC engines with renewable energy sources. The PHEVs, which have been launched in the market, and Upcoming PHEVs have converters around 380V to 400V generated with a power range between 2KW to 2.8KW. The fundamental target of this paper is to plan a productive converter keeping in mind cost and size restriction. In this paper, a two-stage dc-dc converter is proposed. The proposed converter is utilized to venture up a voltage from 24V (photovoltaic source) to a yield voltage of 400V to take care of a power demand of 2.4kW for a plug-in hybrid electric vehicle (PHEV) application considering the real time scenario of PHEV. This paper talks about in detail why the current fed converter is utilized alongside a voltage doubler thus minimizing the transformer turns thereby reducing the overall size of the final product. Simulation results along with calculation for the duty cycle of the firing sequence for different value of transformer turns are presented for a prototype unit. 13. Chapter 5: Modeling and Control of Three-Phase AC/DC Converter Including Phase-Locked Loop DEFF Research Database (Denmark) Zhou, Dao; Song, Yipeng; Blaabjerg, Frede 2018-01-01 In this chapter, a mathematical model of the power circuit of a three-phase AC/DC converter is developed in the stationary and synchronous reference frames. Then, the operation principle of the phasor locked loop is addressed to exact the angle information of the power grid to realize the accurat... 14. EFFECTS OF EARLY ANGIOTENSIN-CONVERTING ENZYME-INHIBITION IN A PIG MODEL OF MYOCARDIAL-ISCHEMIA AND REPERFUSION NARCIS (Netherlands) VANWIJNGAARDEN, J; TOBE, TJM; WEERSINK, EGL; BEL, KJ; DEGRAEFF, PA; DELANGEN, CDJ; VANGILST, WH; WESSELING, H In a blind, randomized study, the effects of perindopril, a nonsulfhydryl-containing angiotensin-converting enzyme (ACE) inhibitor, were compared with those of placebo in a closed-chest pig model of myocardial infraction. In anesthetized pigs, my ocardinal ischemia and reperfusion were induced by 15. A computational framework for converting textual clinical diagnostic criteria into the quality data model. Science.gov (United States) Hong, Na; Li, Dingcheng; Yu, Yue; Xiu, Qiongying; Liu, Hongfang; Jiang, Guoqian 2016-10-01 Constructing standard and computable clinical diagnostic criteria is an important but challenging research field in the clinical informatics community. The Quality Data Model (QDM) is emerging as a promising information model for standardizing clinical diagnostic criteria. To develop and evaluate automated methods for converting textual clinical diagnostic criteria in a structured format using QDM. We used a clinical Natural Language Processing (NLP) tool known as cTAKES to detect sentences and annotate events in diagnostic criteria. We developed a rule-based approach for assigning the QDM datatype(s) to an individual criterion, whereas we invoked a machine learning algorithm based on the Conditional Random Fields (CRFs) for annotating attributes belonging to each particular QDM datatype. We manually developed an annotated corpus as the gold standard and used standard measures (precision, recall and f-measure) for the performance evaluation. We harvested 267 individual criteria with the datatypes of Symptom and Laboratory Test from 63 textual diagnostic criteria. We manually annotated attributes and values in 142 individual Laboratory Test criteria. The average performance of our rule-based approach was 0.84 of precision, 0.86 of recall, and 0.85 of f-measure; the performance of CRFs-based classification was 0.95 of precision, 0.88 of recall and 0.91 of f-measure. We also implemented a web-based tool that automatically translates textual Laboratory Test criteria into the QDM XML template format. The results indicated that our approaches leveraging cTAKES and CRFs are effective in facilitating diagnostic criteria annotation and classification. Our NLP-based computational framework is a feasible and useful solution in developing diagnostic criteria representation and computerization. Copyright © 2016 Elsevier Inc. All rights reserved. 16. Introduction to zeolite theory and modelling NARCIS (Netherlands) Santen, van R.A.; Graaf, van de B.; Smit, B.; Bekkum, van H. 2001-01-01 A review. Some of the recent advances in zeolite theory and modeling are present. In particular the current status of computational chem. in Bronsted acid zeolite catalysis, mol. dynamics simulations of mols. adsorbed in zeolites, and novel Monte Carlo technique are discussed to simulate the 17. Prospect Theory in the Heterogeneous Agent Model Czech Academy of Sciences Publication Activity Database Polach, J.; Kukačka, Jiří (2018) ISSN 1860-711X R&D Projects: GA ČR(CZ) GBP402/12/G097 Institutional support: RVO:67985556 Keywords : Heterogeneous Agent Model * Prospect Theory * Behavioral finance * Stylized facts Subject RIV: AH - Economic s OBOR OECD: Finance Impact factor: 0.931, year: 2016 http://library.utia.cas.cz/separaty/2018/E/kukacka-0488438.pdf 18. Recursive renormalization group theory based subgrid modeling Science.gov (United States) Zhou, YE 1991-01-01 Advancing the knowledge and understanding of turbulence theory is addressed. Specific problems to be addressed will include studies of subgrid models to understand the effects of unresolved small scale dynamics on the large scale motion which, if successful, might substantially reduce the number of degrees of freedom that need to be computed in turbulence simulation. 19. Diagrammatic group theory in quark models International Nuclear Information System (INIS) Canning, G.P. 1977-05-01 A simple and systematic diagrammatic method is presented for calculating the numerical factors arising from group theory in quark models: dimensions, casimir invariants, vector coupling coefficients and especially recoupling coefficients. Some coefficients for the coupling of 3 quark objects are listed for SU(n) and SU(2n). (orig.) [de 20. Aligning Grammatical Theories and Language Processing Models Science.gov (United States) Lewis, Shevaun; Phillips, Colin 2015-01-01 We address two important questions about the relationship between theoretical linguistics and psycholinguistics. First, do grammatical theories and language processing models describe separate cognitive systems, or are they accounts of different aspects of the same system? We argue that most evidence is consistent with the one-system view. Second,… 1. Model Predictive Control of a Wave Energy Converter with Discrete Fluid Power Power Take-Off System Directory of Open Access Journals (Sweden) Anders Hedegaard Hansen 2018-03-01 Full Text Available Wave power extraction algorithms for wave energy converters are normally designed without taking system losses into account leading to suboptimal power extraction. In the current work, a model predictive power extraction algorithm is designed for a discretized power take of system. It is shown how the quantized nature of a discrete fluid power system may be included in a new model predictive control algorithm leading to a significant increase in the harvested power. A detailed investigation of the influence of the prediction horizon and the time step is reported. Furthermore, it is shown how the inclusion of a loss model may increase the energy output. Based on the presented results it is concluded that power extraction algorithms based on model predictive control principles are both feasible and favorable for use in a discrete fluid power power take-off system for point absorber wave energy converters. 2. Harmonic Instability Analysis of Single-Phase Grid Connected Converter using Harmonic State Space (HSS) modeling method DEFF Research Database (Denmark) Kwon, Jun Bum; Wang, Xiongfei; Bak, Claus Leth 2015-01-01 The increasing number of renewable energy sources at the distribution grid is becoming a major issue for utility companies, since the grid connected converters are operating at different operating points due to the probabilistic characteristics of renewable energy. Besides, typically, the harmonics...... proposes a new model of a single phase grid connected renewable energy source using the Harmonic State Space modeling approach, which is able to identify such problems and the model can be extended to be applied in the multiple connected converter analysis. The modeling results show the different harmonic...... and impedance from other renewable energy sources are not taken carefully into account in the installation and design. However, this may bring an unknown harmonic instability into the multiple power sourced system and also make the analysis difficult due to the complexity of the grid network. This paper... 3. Short-Term Wave Forecasting with AR models in Real-Time Optimal Control of Wave Energy Converters OpenAIRE Fusco, Francesco; Ringwood, John 2010-01-01 Time domain control of wave energy converters requires knowledge of future incident wave elevation in order to approach conditions for optimal energy extraction. Autoregressive models revealed to be a promising approach to the prediction of future values of the wave elevation only from its past history. Results on real wave observations from different ocean locations show that AR models allow to achieve very good predictions for more than one wave period in the future if ... 4. A dynamical theory for the Rishon model International Nuclear Information System (INIS) Harari, H.; Seiberg, N. 1980-09-01 We propose a composite model for quarks and leptons based on an exact SU(3)sub(C)xSU(3)sub(H) gauge theory and two fundamental J=1/2 fermions: a charged T-rishon and a neutral V-rishon. Quarks, leptons and W-bosons are SU(3)sub(H)-singlet composites of rishons. A dynamically broken effective SU(3)sub(C)xSU(2)sub(L)xSU(2)sub(R)xU(1)sub(B-L) gauge theory emerges at the composite level. The theory is ''natural'', anomaly-free, has no fundamental scalar particles, and describes at least three generations of quarks and leptons. Several ''technicolor'' mechanisms are automatically present. (Author) 5. Polyacetylene and relativistic field-theory models International Nuclear Information System (INIS) Bishop, A.R.; Campbell, D.K.; Fesser, K. 1981-01-01 Connections between continuum, mean-field, adiabatic Peierls-Froehlich theory in the half-filled band limit and known field theory results are discussed. Particular attention is given to the phi 4 model and to the solvable N = 2 Gross-Neveu model. The latter is equivalent to the Peierls system at a static, semi-classical level. Based on this equivalence we note the prediction of both kink and polaron solitons in models of trans-(CH)/sub x/. Polarons in cis-(CH)/sub x/ are compared with those in the trans isomer. Optical absorption from polarons is described, and general experimental consequences of polarons in (CH)/sub x/ and other conjugated polymers is discussed 6. Cannabidiol Does Not Convert to Δ9-Tetrahydrocannabinol in an In Vivo Animal Model OpenAIRE Wray, Louise; Stott, Colin; Jones, Nicholas; Wright, Stephen 2017-01-01 Abstract Introduction: Cannabidiol (CBD) can convert to Δ9-tetrahydrocannabinol (THC) in vitro with prolonged exposure to simulated gastric fluid; however, in vitro conditions may not be representative of the in vivo gut environment. Using the minipig, we investigated whether enteral CBD converts to THC in vivo. Materials and Methods: Synthetic CBD (100 mg/mL) was administered orally in a sesame oil formulation twice daily to minipigs (N=3) in 15 mg/kg doses for 5 consecutive days. Blood samp... 7. Working memory: theories, models, and controversies. Science.gov (United States) Baddeley, Alan 2012-01-01 I present an account of the origins and development of the multicomponent approach to working memory, making a distinction between the overall theoretical framework, which has remained relatively stable, and the attempts to build more specific models within this framework. I follow this with a brief discussion of alternative models and their relationship to the framework. I conclude with speculations on further developments and a comment on the value of attempting to apply models and theories beyond the laboratory studies on which they are typically based. 8. Effective field theory and the quark model International Nuclear Information System (INIS) Durand, Loyal; Ha, Phuoc; Jaczko, Gregory 2001-01-01 We analyze the connections between the quark model (QM) and the description of hadrons in the low-momentum limit of heavy-baryon effective field theory in QCD. By using a three-flavor-index representation for the effective baryon fields, we show that the 'nonrelativistic' constituent QM for baryon masses and moments is completely equivalent through O(m s ) to a parametrization of the relativistic field theory in a general spin-flavor basis. The flavor and spin variables can be identified with those of effective valence quarks. Conversely, the spin-flavor description clarifies the structure and dynamical interpretation of the chiral expansion in effective field theory, and provides a direct connection between the field theory and the semirelativistic models for hadrons used in successful dynamical calculations. This allows dynamical information to be incorporated directly into the chiral expansion. We find, for example, that the striking success of the additive QM for baryon magnetic moments is a consequence of the relative smallness of the non-additive spin-dependent corrections 9. A new family of soft transition converters: Design and dynamic model Indian Academy of Sciences (India) The soft switching converters evolved through the resonant load, reso- nant switch .... Prior to time t = to, the main switch S and the auxiliary switch Sa is in OFF state. .... of the output filter are real; closed loop compensator is easier to design. 10. Design and modelling of high gain DC-DC converters for fuel cell hybrid electric vehicles Science.gov (United States) Elangovan, D.; Karthigeyan, V.; Subhanu, B.; Ashwin, M.; Arunkumar, G. 2017-11-01 Transportation (Diesel and petrol internal combustion engine vehicles) approximately contributes to 25.5% of total CO2 emission. Thus diesel and petrol engine vehicles are the most dominant contributors of CO2 emission which leads global warming which causes climate change. The problem of CO2 emission and global warming can be reduced by focusing on renewable energy vehicles. Out of the available renewable energy sources fuel cell is the only source which has reasonable efficiency and can be used in vehicles. But the main disadvantage of fuel cell is its slow response time. So energy storage systems like batteries and super capacitors are used in parallel with the fuel cell. Fuel cell is used during steady state vehicle operation while during transient conditions like starting, acceleration and braking batteries and super capacitors can supply or absorb energy. In this paper a unidirectional fuel cell DC-DC converter and bidirectional energy storage system DC-DC converter is proposed, which can interface dc sources at different voltage levels to the dc bus and also it can independently control the power flow from each energy source to the dc bus and vice versa. The proposed converters are designed and simulated using PSIM version 9.1.1 and gate pulse pattern, input and output voltage waveforms of the converters for steady state operation are studied. 11. On the impedance modeling of switched capacitor converters with arbitrary output nodes NARCIS (Netherlands) Delos Ayllon, J.; Hendrix, M.A.M.; Lomonova, E.; Alarcon-Cot, E.; Lopez, T. 2013-01-01 Demand for high power density and miniaturization are pushing the application limits of Switched Capacitor Converters (SCCs) to new areas. Their benefit has up to now been used only in low power application ICs such as memories, or mobile phone backlighting where efficiency is not critical and 12. Characterising and modelling extended conducted electromagnetic interference in densely packed DC-DC converter CSIR Research Space (South Africa) Grobler, Inus 2013-09-01 Full Text Available . The military specified DC-DC converters are applicable, spanning from 100 W handheld power managers up to 2 kW DC-DC battery chargers. Circuit layout high frequency effects as well as high frequency impedances of the power components were characterised... 13. Converted waves in a shallow marine environment : Experimental and modeling studies NARCIS (Netherlands) El Allouche, N.; Drijkoningen, G.G.; Versteeg, W.; Ghose, R. 2011-01-01 Seismic waves converted from compressional to shear mode in the shallow subsurface can be useful not only for obtaining shear-wave velocity information but also for improved processing of deeper reflection data. These waves generated at deep seas have been used successfully in hydrocarbon 14. Observer design for DC/DC power converters with bilinear averaged model NARCIS (Netherlands) Spinu, V.; Dam, M.C.A.; Lazar, M. 2012-01-01 Increased demand for high bandwidth and high efficiency made full state-feedback control solutions very attractive to power-electronics community. However, full state measurement is economically prohibitive for a large range of applications. Moreover, state measurements in switching power converters 15. Experimental Modelling of the Overtopping Flow on the Wave Dragon Wave Energy Converter DEFF Research Database (Denmark) Parmeggiani, Stefano; Kofoed, Jens Peter The Wave Dragon is a floating slack-moored Wave Energy Converter (WEC) of the overtopping type. Oncoming waves are focused by two wing reflectors towards the ramp of the device, surge-up and overtop into a reservoir placed at a higher level than the surface of the sea. The energy production takes... 16. Modeling, Dynamics, Bifurcation Behavior and Stability Analysis of a DC-DC Boost Converter in Photovoltaic Systems Science.gov (United States) Zhioua, M.; El Aroudi, A.; Belghith, S.; Bosque-Moncusí, J. M.; Giral, R.; Al Hosani, K.; Al-Numay, M. A study of a DC-DC boost converter fed by a photovoltaic (PV) generator and supplying a constant voltage load is presented. The input port of the converter is controlled using fixed frequency pulse width modulation (PWM) based on the loss-free resistor (LFR) concept whose parameter is selected with the aim to force the PV generator to work at its maximum power point. Under this control strategy, it is shown that the system can exhibit complex nonlinear behaviors for certain ranges of parameter values. First, using the nonlinear models of the converter and the PV source, the dynamics of the system are explored in terms of some of its parameters such as the proportional gain of the controller and the output DC bus voltage. To present a comprehensive approach to the overall system behavior under parameter changes, a series of bifurcation diagrams are computed from the circuit-level switched model and from a simplified model both implemented in PSIM© software showing a remarkable agreement. These diagrams show that the first instability that takes place in the system period-1 orbit when a primary parameter is varied is a smooth period-doubling bifurcation and that the nonlinearity of the PV generator is irrelevant for predicting this phenomenon. Different bifurcation scenarios can take place for the resulting period-2 subharmonic regime depending on a secondary bifurcation parameter. The boundary between the desired period-1 orbit and subharmonic oscillation resulting from period-doubling in the parameter space is obtained by calculating the eigenvalues of the monodromy matrix of the simplified model. The results from this model have been validated with time-domain numerical simulation using the circuit-level switched model and also experimentally from a laboratory prototype. This study can help in selecting the parameter values of the circuit in order to delimit the region of period-1 operation of the converter which is of practical interest in PV systems. 17. Topos models for physics and topos theory International Nuclear Information System (INIS) Wolters, Sander 2014-01-01 What is the role of topos theory in the topos models for quantum theory as used by Isham, Butterfield, Döring, Heunen, Landsman, Spitters, and others? In other words, what is the interplay between physical motivation for the models and the mathematical framework used in these models? Concretely, we show that the presheaf topos model of Butterfield, Isham, and Döring resembles classical physics when viewed from the internal language of the presheaf topos, similar to the copresheaf topos model of Heunen, Landsman, and Spitters. Both the presheaf and copresheaf models provide a “quantum logic” in the form of a complete Heyting algebra. Although these algebras are natural from a topos theoretic stance, we seek a physical interpretation for the logical operations. Finally, we investigate dynamics. In particular, we describe how an automorphism on the operator algebra induces a homeomorphism (or isomorphism of locales) on the associated state spaces of the topos models, and how elementary propositions and truth values transform under the action of this homeomorphism. Also with dynamics the focus is on the internal perspective of the topos 18. Prospects for advanced RF theory and modeling International Nuclear Information System (INIS) Batchelor, D. B. 1999-01-01 This paper represents an attempt to express in print the contents of a rather philosophical review talk. The charge for the talk was not to summarize the present status of the field and what we can do, but to assess what we will need to do in the future and where the gaps are in fulfilling these needs. The objective was to be complete, covering all aspects of theory and modeling in all frequency regimes, although in the end the talk mainly focussed on the ion cyclotron range of frequencies (ICRF). In choosing which areas to develop, it is important to keep in mind who the customers for RF modeling are likely to be and what sorts of tasks they will need for RF to do. This occupies the first part of the paper. Then we examine each of the elements of a complete RF theory and try to identify the kinds of advances needed. (c) 1999 American Institute of Physics 19. A Membrane Model from Implicit Elasticity Theory Science.gov (United States) Freed, A. D.; Liao, J.; Einstein, D. R. 2014-01-01 A Fungean solid is derived for membranous materials as a body defined by isotropic response functions whose mathematical structure is that of a Hookean solid where the elastic constants are replaced by functions of state derived from an implicit, thermodynamic, internal-energy function. The theory utilizes Biot’s (1939) definitions for stress and strain that, in 1-dimension, are the stress/strain measures adopted by Fung (1967) when he postulated what is now known as Fung’s law. Our Fungean membrane model is parameterized against a biaxial data set acquired from a porcine pleural membrane subjected to three, sequential, proportional, planar extensions. These data support an isotropic/deviatoric split in the stress and strain-rate hypothesized by our theory. These data also demonstrate that the material response is highly non-linear but, otherwise, mechanically isotropic. These data are described reasonably well by our otherwise simple, four-parameter, material model. PMID:24282079 20. Attribution models and the Cooperative Game Theory OpenAIRE Cano Berlanga, Sebastian; Vilella, Cori 2017-01-01 The current paper studies the attribution model used by Google Analytics. Precisely, we use the Cooperative Game Theory to propose a fair distribution of the revenues among the considered channels, in order to facilitate the cooperation and to guarantee stability. We define a transferable utility convex cooperative game from the observed frequencies and we use the Shapley value to allocate the revenues among the di erent channels. Furthermore, we evaluate the impact of an advertising... 1. MODELS AND THE DYNAMICS OF THEORIES Directory of Open Access Journals (Sweden) Paulo Abrantes 2007-12-01 Full Text Available Abstract: This paper gives a historical overview of the ways various trends in the philosophy of science dealt with models and their relationship with the topics of heuristics and theoretical dynamics. First of all, N. Campbell’s account of analogies as components of scientific theories is presented. Next, the notion of ‘model’ in the reconstruction of the structure of scientific theories proposed by logical empiricists is examined. This overview finishes with M. Hesse’s attempts to develop Campbell’s early ideas in terms of an analogical inference. The final part of the paper points to contemporary developments on these issues which adopt a cognitivist perspective. It is indicated how discussions in the cognitive sciences might help to flesh out some of the insights philosophers of science had concerning the role models and analogies play in actual scientific theorizing. Key words: models, analogical reasoning, metaphors in science, the structure of scientific theories, theoretical dynamics, heuristics, scientific discovery. 2. Conceptual Models and Theory-Embedded Principles on Effective Schooling. Science.gov (United States) Scheerens, Jaap 1997-01-01 Reviews models and theories on effective schooling. Discusses four rationality-based organization theories and a fifth perspective, chaos theory, as applied to organizational functioning. Discusses theory-embedded principles flowing from these theories: proactive structuring, fit, market mechanisms, cybernetics, and self-organization. The… 3. Finite Unification: Theory, Models and Predictions CERN Document Server Heinemeyer, S; Zoupanos, G 2011-01-01 All-loop Finite Unified Theories (FUTs) are very interesting N=1 supersymmetric Grand Unified Theories (GUTs) realising an old field theory dream, and moreover have a remarkable predictive power due to the required reduction of couplings. The reduction of the dimensionless couplings in N=1 GUTs is achieved by searching for renormalization group invariant (RGI) relations among them holding beyond the unification scale. Finiteness results from the fact that there exist RGI relations among dimensional couplings that guarantee the vanishing of all beta-functions in certain N=1 GUTs even to all orders. Furthermore developments in the soft supersymmetry breaking sector of N=1 GUTs and FUTs lead to exact RGI relations, i.e. reduction of couplings, in this dimensionful sector of the theory, too. Based on the above theoretical framework phenomenologically consistent FUTs have been constructed. Here we review FUT models based on the SU(5) and SU(3)^3 gauge groups and their predictions. Of particular interest is the Hig... 4. Prediction of the Individual Wave Overtopping Volumes of a Wave Energy Converter using Experimental Testing and First Numerical Model Results DEFF Research Database (Denmark) Victor, L.; Troch, P.; Kofoed, Jens Peter 2009-01-01 For overtopping wave energy converters (WECs) a more efficient energy conversion can be achieved when the volumes of water, wave by wave, that enter their reservoir are known and can be predicted. A numerical tool is being developed using a commercial CFD-solver to study and optimize...... nearshore 2Dstructure. First numerical model results are given for a specific test with regular waves, and are compared with the corresponding experimental results in this paper.... 5. Theory, modeling and simulation: Annual report 1993 Energy Technology Data Exchange (ETDEWEB) Dunning, T.H. Jr.; Garrett, B.C. 1994-07-01 Developing the knowledge base needed to address the environmental restoration issues of the US Department of Energy requires a fundamental understanding of molecules and their interactions in insolation and in liquids, on surfaces, and at interfaces. To meet these needs, the PNL has established the Environmental and Molecular Sciences Laboratory (EMSL) and will soon begin construction of a new, collaborative research facility devoted to advancing the understanding of environmental molecular science. Research in the Theory, Modeling, and Simulation program (TMS), which is one of seven research directorates in the EMSL, will play a critical role in understanding molecular processes important in restoring DOEs research, development and production sites, including understanding the migration and reactions of contaminants in soils and groundwater, the development of separation process for isolation of pollutants, the development of improved materials for waste storage, understanding the enzymatic reactions involved in the biodegradation of contaminants, and understanding the interaction of hazardous chemicals with living organisms. The research objectives of the TMS program are to apply available techniques to study fundamental molecular processes involved in natural and contaminated systems; to extend current techniques to treat molecular systems of future importance and to develop techniques for addressing problems that are computationally intractable at present; to apply molecular modeling techniques to simulate molecular processes occurring in the multispecies, multiphase systems characteristic of natural and polluted environments; and to extend current molecular modeling techniques to treat complex molecular systems and to improve the reliability and accuracy of such simulations. The program contains three research activities: Molecular Theory/Modeling, Solid State Theory, and Biomolecular Modeling/Simulation. Extended abstracts are presented for 89 studies. 6. Theory, modeling and simulation: Annual report 1993 International Nuclear Information System (INIS) Dunning, T.H. Jr.; Garrett, B.C. 1994-07-01 Developing the knowledge base needed to address the environmental restoration issues of the US Department of Energy requires a fundamental understanding of molecules and their interactions in insolation and in liquids, on surfaces, and at interfaces. To meet these needs, the PNL has established the Environmental and Molecular Sciences Laboratory (EMSL) and will soon begin construction of a new, collaborative research facility devoted to advancing the understanding of environmental molecular science. Research in the Theory, Modeling, and Simulation program (TMS), which is one of seven research directorates in the EMSL, will play a critical role in understanding molecular processes important in restoring DOE's research, development and production sites, including understanding the migration and reactions of contaminants in soils and groundwater, the development of separation process for isolation of pollutants, the development of improved materials for waste storage, understanding the enzymatic reactions involved in the biodegradation of contaminants, and understanding the interaction of hazardous chemicals with living organisms. The research objectives of the TMS program are to apply available techniques to study fundamental molecular processes involved in natural and contaminated systems; to extend current techniques to treat molecular systems of future importance and to develop techniques for addressing problems that are computationally intractable at present; to apply molecular modeling techniques to simulate molecular processes occurring in the multispecies, multiphase systems characteristic of natural and polluted environments; and to extend current molecular modeling techniques to treat complex molecular systems and to improve the reliability and accuracy of such simulations. The program contains three research activities: Molecular Theory/Modeling, Solid State Theory, and Biomolecular Modeling/Simulation. Extended abstracts are presented for 89 studies 7. An Assessment of Converter Modelling Needs for Offshore Wind Power Plants Connected via VSC-HVDC Networks DEFF Research Database (Denmark) Glasdam, Jakob; Zeni, Lorenzo; Hjerrild, Jesper 2013-01-01 Modular multilevel cascaded converter (MMCC) based high voltage direct current (HVDC) transmission is technically superior to other technologies, especially in case of connection of offshore wind power plants (OWPPs). Modelling challenges are faced by OWPP developers, who are not acquainted...... with detailed information regarding the internal behaviour of such complex devices. This paper presents an investigation of the modelling requirements of the MMCC HVDC system, based on comparison between simulation results using a detailed HVDC representation in PSCAD/EMTDC and two less detailed models realised... 8. σ-models and string theories International Nuclear Information System (INIS) Randjbar-Daemi, S. 1987-01-01 The propagation of closed bosonic strings interacting with background gravitational and dilaton fields is reviewed. The string is treated as a quantum field theory on a compact 2-dimensional manifold. The question is posed as to how the conditions for the vanishing trace anomaly and the ensuing background field equations may depend on global features of the manifold. It is shown that to the leading order in σ-model perturbation theory the string loop effects do not modify the gravitational and the dilaton field equations. However for the purely bosonic strings new terms involving the modular parameter of the world sheet are induced by quantum effects which can be absorbed into a re-definition of the background fields. The authors also discuss some aspects of several regularization schemes such as dimensional, Pauli-Villars and the proper-time cut off in an appendix 9. Quasi-optical converters for high-power gyrotrons: a brief review of physical models, numerical methods and computer codes International Nuclear Information System (INIS) Sabchevski, S; Zhelyazkov, I; Benova, E; Atanassov, V; Dankov, P; Thumm, M; Arnold, A; Jin, J; Rzesnicki, T 2006-01-01 Quasi-optical (QO) mode converters are used to transform electromagnetic waves of complex structure and polarization generated in gyrotron cavities into a linearly polarized, Gaussian-like beam suitable for transmission. The efficiency of this conversion as well as the maintenance of low level of diffraction losses are crucial for the implementation of powerful gyrotrons as radiation sources for electron-cyclotron-resonance heating of fusion plasmas. The use of adequate physical models, efficient numerical schemes and up-to-date computer codes may provide the high accuracy necessary for the design and analysis of these devices. In this review, we briefly sketch the most commonly used QO converters, the mathematical base they have been treated on and the basic features of the numerical schemes used. Further on, we discuss the applicability of several commercially available and free software packages, their advantages and drawbacks, for solving QO related problems 10. Bridging Economic Theory Models and the Cointegrated Vector Autoregressive Model DEFF Research Database (Denmark) Møller, Niels Framroze 2008-01-01 Examples of simple economic theory models are analyzed as restrictions on the Cointegrated VAR (CVAR). This establishes a correspondence between basic economic concepts and the econometric concepts of the CVAR: The economic relations correspond to cointegrating vectors and exogeneity in the econo......Examples of simple economic theory models are analyzed as restrictions on the Cointegrated VAR (CVAR). This establishes a correspondence between basic economic concepts and the econometric concepts of the CVAR: The economic relations correspond to cointegrating vectors and exogeneity...... are related to expectations formation, market clearing, nominal rigidities, etc. Finally, the general-partial equilibrium distinction is analyzed.... 11. Bridging Economic Theory Models and the Cointegrated Vector Autoregressive Model DEFF Research Database (Denmark) Møller, Niels Framroze 2008-01-01 Examples of simple economic theory models are analyzed as restrictions on the Cointegrated VAR (CVAR). This establishes a correspondence between basic economic concepts and the econometric concepts of the CVAR: The economic relations correspond to cointegrating vectors and exogeneity in the econo......Examples of simple economic theory models are analyzed as restrictions on the Cointegrated VAR (CVAR). This establishes a correspondence between basic economic concepts and the econometric concepts of the CVAR: The economic relations correspond to cointegrating vectors and exogeneity...... parameters of the CVAR are shown to be interpretable in terms of expectations formation, market clearing, nominal rigidities, etc. The general-partial equilibrium distinction is also discussed.... 12. Quantum integrable models of field theory International Nuclear Information System (INIS) Faddeev, L.D. 1979-01-01 Fundamental features of the classical method of the inverse problem have been formulated in the form which is convenient for its quantum reformulation. Typical examples are studied which may help to formulate the quantum method of the inverse problem. Examples are considered for interaction with both attraction and repulsion at a final density. The sine-Gordon model and the XYZ model from the quantum theory of magnetics are examined in short. It is noted that all the achievements of the one-dimensional mathematical physics as applied to exactly solvable quantum models may be put to an extent within the framework of the quantum method of the inverse problem. Unsolved questions are enumerated and perspectives of applying the inverse problem method are shown 13. Theory and Model for Martensitic Transformations DEFF Research Database (Denmark) Lindgård, Per-Anker; Mouritsen, Ole G. 1986-01-01 Martensitic transformations are shown to be driven by the interplay between two fluctuating strain components. No soft mode is needed, but a central peak occurs representing the dynamics of strain clusters. A two-dimensional magnetic-analog model with the martensitic-transition symmetry is constr......Martensitic transformations are shown to be driven by the interplay between two fluctuating strain components. No soft mode is needed, but a central peak occurs representing the dynamics of strain clusters. A two-dimensional magnetic-analog model with the martensitic-transition symmetry...... is constructed and analyzed by computer simulation and by a theory which accounts for correlation effects. Dramatic precursor effects at the first-order transition are demonstrated. The model is also of relevance for surface reconstruction transitions.... 14. Economic contract theory tests models of mutualism. Science.gov (United States) Weyl, E Glen; Frederickson, Megan E; Yu, Douglas W; Pierce, Naomi E 2010-09-07 Although mutualisms are common in all ecological communities and have played key roles in the diversification of life, our current understanding of the evolution of cooperation applies mostly to social behavior within a species. A central question is whether mutualisms persist because hosts have evolved costly punishment of cheaters. Here, we use the economic theory of employment contracts to formulate and distinguish between two mechanisms that have been proposed to prevent cheating in host-symbiont mutualisms, partner fidelity feedback (PFF) and host sanctions (HS). Under PFF, positive feedback between host fitness and symbiont fitness is sufficient to prevent cheating; in contrast, HS posits the necessity of costly punishment to maintain mutualism. A coevolutionary model of mutualism finds that HS are unlikely to evolve de novo, and published data on legume-rhizobia and yucca-moth mutualisms are consistent with PFF and not with HS. Thus, in systems considered to be textbook cases of HS, we find poor support for the theory that hosts have evolved to punish cheating symbionts; instead, we show that even horizontally transmitted mutualisms can be stabilized via PFF. PFF theory may place previously underappreciated constraints on the evolution of mutualism and explain why punishment is far from ubiquitous in nature. 15. Magnetic flux tube models in superstring theory CERN Document Server Russo, Jorge G 1996-01-01 Superstring models describing curved 4-dimensional magnetic flux tube backgrounds are exactly solvable in terms of free fields. We consider the simplest model of this type (corresponding to Kaluza-Klein' Melvin background). Its 2d action has a flat but topologically non-trivial 10-dimensional target space (there is a mixing of angular coordinate of the 2-plane with an internal compact coordinate). We demonstrate that this theory has broken supersymmetry but is perturbatively stable if the radius R of the internal coordinate is larger than R_0=\\sqrt{2\\a'}. In the Green-Schwarz formulation the supersymmetry breaking is a consequence of the presence of a flat but non-trivial connection in the fermionic terms in the action. For R R/2\\a' there appear instabilities corresponding to tachyonic winding states. The torus partition function Z(q,R) is finite for R > R_0 (and vanishes for qR=2n, n=integer). At the special points qR=2n (2n+1) the model is equivalent to the free superstring theory compactified on a circle... 16. Group theory for unified model building International Nuclear Information System (INIS) Slansky, R. 1981-01-01 The results gathered here on simple Lie algebras have been selected with attention to the needs of unified model builders who study Yang-Mills theories based on simple, local-symmetry groups that contain as a subgroup the SUsup(w) 2 x Usup(w) 1 x SUsup(c) 3 symmetry of the standard theory of electromagnetic, weak, and strong interactions. The major topics include, after a brief review of the standard model and its unification into a simple group, the use of Dynkin diagrams to analyze the structure of the group generators and to keep track of the weights (quantum numbers) of the representation vectors; an analysis of the subgroup structure of simple groups, including explicit coordinatizations of the projections in weight space; lists of representations, tensor products and branching rules for a number of simple groups; and other details about groups and their representations that are often helpful for surveying unified models, including vector-coupling coefficient calculations. Tabulations of representations, tensor products, and branching rules for E 6 , SO 10 , SU 6 , F 4 , SO 9 , SO 5 , SO 8 , SO 7 , SU 4 , E 7 , E 8 , SU 8 , SO 14 , SO 18 , SO 22 , and for completeness, SU 3 are included. (These tables may have other applications.) Group-theoretical techniques for analyzing symmetry breaking are described in detail and many examples are reviewed, including explicit parameterizations of mass matrices. (orig.) 17. Converter-level FEM simulation for lifetime prediction of an LED driver with improved thermal modelling DEFF Research Database (Denmark) Niu, H.; Wang, H.; Ye, X. 2017-01-01 application. A converter-level finite element simulation (FEM) simulation is carried out to obtain the ambient temperature of electrolytic capacitors and power MOSFETs used in the LED driver, which takes into account the impact of the driver enclosure and the thermal coupling among different components....... Therefore, the proposed method bridges the link between the global ambient temperature profile outside of the enclosure and the local ambient temperature profiles of the components of interest inside the driver. A quantitative comparison of the estimated annual lifetime consumptions of MOSFETs... 18. Non-Linear Numerical Modeling and Experimental Testing of a Point Absorber Wave Energy Converter DEFF Research Database (Denmark) Zurkinden, Andrew Stephen; Ferri, Francesco; Beatty, S. 2014-01-01 the calculation of the non-linear hydrostatic restoring moment by a cubic polynomial function fit to laboratory test results. Moreover, moments due to viscous drag are evaluated on the oscillating hemisphere considering the horizontal and vertical drag force components. The influence on the motions of this non.......e. H/λ≤0.02. For steep waves, H/λ≥0.04 however, the relative velocities between the body and the waves increase thus requiring inclusion of the non-linear hydrostatic restoring moment to effectively predict the dynamics of the wave energy converter. For operation of the device with a passively damping... 19. A matrix model from string field theory Directory of Open Access Journals (Sweden) Syoji Zeze 2016-09-01 Full Text Available We demonstrate that a Hermitian matrix model can be derived from level truncated open string field theory with Chan-Paton factors. The Hermitian matrix is coupled with a scalar and U(N vectors which are responsible for the D-brane at the tachyon vacuum. Effective potential for the scalar is evaluated both for finite and large N. Increase of potential height is observed in both cases. The largeN$matrix integral is identified with a system of N ZZ branes and a ghost FZZT brane. 20. Analysis, Design, Modeling, and Control of an Interleaved-Boost Full-Bridge Three-Port Converter for Hybrid Renewable Energy Systems DEFF Research Database (Denmark) Mira Albert, Maria del Carmen; Zhang, Zhe; Knott, Arnold 2017-01-01 This paper presents the design, modeling, and control of an isolated dc-dc three-port converter (TPC) based on an interleaved-boost full-bridge converter with pulsewidth modulation (PWM) and phase-shift control for hybrid renewable energy systems. In the proposed topology, the switches are driven... 1. Converter Structure-Based Power Loss and Static Thermal Modeling of The Press-Pack IGBT Three-Level ANPC VSC Applied to Multi-MW Wind Turbines DEFF Research Database (Denmark) Senturk, Osman Selcuk; Helle, Lars; Munk-Nielsen, Stig 2011-01-01 performance, the converter structure-based power loss and thermal models are developed in this study for the medium-voltage (MV) three-level active neutral-point-clamped voltage source converter (3L-ANPC-VSC) utilizing 4500 V-1800 A press-pack insulated-gate bipolar transistor-diode pairs and interfacing a 6... 2. Model Predictive Control of a Wave Energy Converter with Discrete Fluid Power Power Take-Off System DEFF Research Database (Denmark) Hansen, Anders Hedegaard; Asmussen, Magnus Færing; Bech, Michael Møller 2018-01-01 Wave power extraction algorithms for wave energy converters are normally designed without taking system losses into account leading to suboptimal power extraction. In the current work, a model predictive power extraction algorithm is designed for a discretized power take of system. It is shown how...... the quantized nature of a discrete fluid power system may be included in a new model predictive control algorithm leading to a significant increase in the harvested power. A detailed investigation of the influence of the prediction horizon and the time step is reported. Furthermore, it is shown how... 3. On low rank classical groups in string theory, gauge theory and matrix models International Nuclear Information System (INIS) Intriligator, Ken; Kraus, Per; Ryzhov, Anton V.; Shigemori, Masaki; Vafa, Cumrun 2004-01-01 We consider N=1 supersymmetric U(N), SO(N), and Sp(N) gauge theories, with two-index tensor matter and added tree-level superpotential, for general breaking patterns of the gauge group. By considering the string theory realization and geometric transitions, we clarify when glueball superfields should be included and extremized, or rather set to zero; this issue arises for unbroken group factors of low rank. The string theory results, which are equivalent to those of the matrix model, refer to a particular UV completion of the gauge theory, which could differ from conventional gauge theory results by residual instanton effects. Often, however, these effects exhibit miraculous cancellations, and the string theory or matrix model results end up agreeing with standard gauge theory. In particular, these string theory considerations explain and remove some apparent discrepancies between gauge theories and matrix models in the literature 4. Application of Chaos Theory to Psychological Models Science.gov (United States) Blackerby, Rae Fortunato This dissertation shows that an alternative theoretical approach from physics--chaos theory--offers a viable basis for improved understanding of human beings and their behavior. Chaos theory provides achievable frameworks for potential identification, assessment, and adjustment of human behavior patterns. Most current psychological models fail to address the metaphysical conditions inherent in the human system, thus bringing deep errors to psychological practice and empirical research. Freudian, Jungian and behavioristic perspectives are inadequate psychological models because they assume, either implicitly or explicitly, that the human psychological system is a closed, linear system. On the other hand, Adlerian models that require open systems are likely to be empirically tenable. Logically, models will hold only if the model's assumptions hold. The innovative application of chaotic dynamics to psychological behavior is a promising theoretical development because the application asserts that human systems are open, nonlinear and self-organizing. Chaotic dynamics use nonlinear mathematical relationships among factors that influence human systems. This dissertation explores these mathematical relationships in the context of a sample model of moral behavior using simulated data. Mathematical equations with nonlinear feedback loops describe chaotic systems. Feedback loops govern the equations' value in subsequent calculation iterations. For example, changes in moral behavior are affected by an individual's own self-centeredness, family and community influences, and previous moral behavior choices that feed back to influence future choices. When applying these factors to the chaos equations, the model behaves like other chaotic systems. For example, changes in moral behavior fluctuate in regular patterns, as determined by the values of the individual, family and community factors. In some cases, these fluctuations converge to one value; in other cases, they diverge in 5. PARFUME Theory and Model basis Report Energy Technology Data Exchange (ETDEWEB) Darrell L. Knudson; Gregory K Miller; G.K. Miller; D.A. Petti; J.T. Maki; D.L. Knudson 2009-09-01 The success of gas reactors depends upon the safety and quality of the coated particle fuel. The fuel performance modeling code PARFUME simulates the mechanical, thermal and physico-chemical behavior of fuel particles during irradiation. This report documents the theory and material properties behind vari¬ous capabilities of the code, which include: 1) various options for calculating CO production and fission product gas release, 2) an analytical solution for stresses in the coating layers that accounts for irradiation-induced creep and swelling of the pyrocarbon layers, 3) a thermal model that calculates a time-dependent temperature profile through a pebble bed sphere or a prismatic block core, as well as through the layers of each analyzed particle, 4) simulation of multi-dimensional particle behavior associated with cracking in the IPyC layer, partial debonding of the IPyC from the SiC, particle asphericity, and kernel migration (or amoeba effect), 5) two independent methods for determining particle failure probabilities, 6) a model for calculating release-to-birth (R/B) ratios of gaseous fission products that accounts for particle failures and uranium contamination in the fuel matrix, and 7) the evaluation of an accident condition, where a particle experiences a sudden change in temperature following a period of normal irradiation. The accident condi¬tion entails diffusion of fission products through the particle coating layers and through the fuel matrix to the coolant boundary. This document represents the initial version of the PARFUME Theory and Model Basis Report. More detailed descriptions will be provided in future revisions. 6. Cannabidiol Does Not Convert to Δ9-Tetrahydrocannabinol in an In Vivo Animal Model. Science.gov (United States) Wray, Louise; Stott, Colin; Jones, Nicholas; Wright, Stephen 2017-01-01 Introduction: Cannabidiol (CBD) can convert to Δ 9 -tetrahydrocannabinol (THC) in vitro with prolonged exposure to simulated gastric fluid; however, in vitro conditions may not be representative of the in vivo gut environment. Using the minipig, we investigated whether enteral CBD converts to THC in vivo . Materials and Methods: Synthetic CBD (100 mg/mL) was administered orally in a sesame oil formulation twice daily to minipigs ( N =3) in 15 mg/kg doses for 5 consecutive days. Blood samples were taken before and 1, 2, 4, and 6 h after morning doses on Days 1 and 5. Six hours after the final dose on Day 5, the animals were euthanized, and samples of gastrointestinal (GI) tract contents were obtained. Liquid chromatography with tandem mass spectrometry analysis determined CBD, THC, and 11-hydroxy-THC (11-OH-THC) concentrations. Lower limits of quantification: plasma CBD=1 ng/mL, plasma THC and 11-OH-THC=0.5 ng/mL, GI tract CBD=2 ng/mL, and GI tract THC and 11-OH-THC=1 ng/mL. Results: THC and 11-OH-THC were undetectable in all plasma samples. Maximum plasma concentrations ( C max ) of CBD were observed between 1 and 4 h on Days 1 and 5. CBD was present in plasma 6 h after administration on Days 1 (mean 33.6 ng/mL) and 5 (mean 98.8 ng/mL). Mean C max CBD values, 328 ng/mL (Day 1) and 259 ng/mL (Day 5), were within range of those achieved in clinical studies. Mean CBD exposure over 6 h was similar on Days 1 (921 h·ng/mL) and 5 (881 h·ng/mL). THC and 11-OH-THC were not detected in all GI tract samples. Mean CBD concentrations reached 84,500 ng/mL in the stomach and 43,900 ng/mL in the small intestine. Conclusions: Findings of the present study show that orally dosed CBD, yielding clinically relevant plasma exposures, does not convert to THC in the minipig, a species predictive of human GI tract function. 7. Stochastic linear programming models, theory, and computation CERN Document Server Kall, Peter 2011-01-01 This new edition of Stochastic Linear Programming: Models, Theory and Computation has been brought completely up to date, either dealing with or at least referring to new material on models and methods, including DEA with stochastic outputs modeled via constraints on special risk functions (generalizing chance constraints, ICC’s and CVaR constraints), material on Sharpe-ratio, and Asset Liability Management models involving CVaR in a multi-stage setup. To facilitate use as a text, exercises are included throughout the book, and web access is provided to a student version of the authors’ SLP-IOR software. Additionally, the authors have updated the Guide to Available Software, and they have included newer algorithms and modeling systems for SLP. The book is thus suitable as a text for advanced courses in stochastic optimization, and as a reference to the field. From Reviews of the First Edition: "The book presents a comprehensive study of stochastic linear optimization problems and their applications. … T... 8. Modeling and Comparison of Power Converters for Doubly Fed Induction Generators in Wind Turbines DEFF Research Database (Denmark) Helle, Lars on the generated power quality and controllability. A consequence of this increased focus has been an ever increased set of requirements formulated in national grid requirement. These requirements has forced wind turbines to evolve from a simple generator on a stick into complicated miniature power plants......During the last decades, renewable energy resources have become an ever increasing part of the world wide power generation and especially energy produced by wind turbines has captured a significant part of this power production. This large penetration of wind power has caused increased focus...... on the design engineers employed in the wind industry. Such a progress may force design engineers to adopt common practice from more or less related technologies rather than finding the optimum solution for the specific application. For instance when applying power electronic converters to wind turbines... 9. Mathematical Model and Computational Analysis of Selected Transient States of Cylindrical Linear Induction Motor Fed via Frequency Converter Directory of Open Access Journals (Sweden) Andrzej Rusek 2008-01-01 Full Text Available The mathematical model of cylindrical linear induction motor (C-LIM fed via frequency converter is presented in the paper. The model was developed in order to analyze numerically the transient states. Problems concerning dynamics of ac-machines especially linear induction motor are presented in [1 – 7]. Development of C-LIM mathematical model is based on circuit method and analogy to rotary induction motor. The analogy between both: (a stator and rotor windings of rotary induction motor and (b winding of primary part of C-LIM (inductor and closed current circuits in external secondary part of C-LIM (race is taken into consideration. The equations of C-LIM mathematical model are presented as matrix together with equations expressing each vector separately. A computational analysis of selected transient states of C-LIM fed via frequency converter is presented in the paper. Two typical examples of C-LIM operation are considered for the analysis: (a starting the motor at various static loads and various synchronous velocities and (b reverse of the motor at the same operation conditions. Results of simulation are presented as transient responses including transient electromagnetic force, transient linear velocity and transient phase current. 10. Modeling and Optimization : Theory and Applications Conference CERN Document Server Terlaky, Tamás 2017-01-01 This volume contains a selection of contributions that were presented at the Modeling and Optimization: Theory and Applications Conference (MOPTA) held at Lehigh University in Bethlehem, Pennsylvania, USA on August 17-19, 2016. The conference brought together a diverse group of researchers and practitioners, working on both theoretical and practical aspects of continuous or discrete optimization. Topics presented included algorithms for solving convex, network, mixed-integer, nonlinear, and global optimization problems, and addressed the application of deterministic and stochastic optimization techniques in energy, finance, logistics, analytics, health, and other important fields. The contributions contained in this volume represent a sample of these topics and applications and illustrate the broad diversity of ideas discussed at the meeting. 11. Theory and modelling of nanocarbon phase stability. Energy Technology Data Exchange (ETDEWEB) Barnard, A. S. 2006-01-01 The transformation of nanodiamonds into carbon-onions (and vice versa) has been observed experimentally and has been modeled computationally at various levels of sophistication. Also, several analytical theories have been derived to describe the size, temperature and pressure dependence of this phase transition. However, in most cases a pure carbon-onion or nanodiamond is not the final product. More often than not an intermediary is formed, known as a bucky-diamond, with a diamond-like core encased in an onion-like shell. This has prompted a number of studies investigating the relative stability of nanodiamonds, bucky-diamonds, carbon-onions and fullerenes, in various size regimes. Presented here is a review outlining results of numerous theoretical studies examining the phase diagrams and phase stability of carbon nanoparticles, to clarify the complicated relationship between fullerenic and diamond structures at the nanoscale. 12. Modeling and Optimization : Theory and Applications Conference CERN Document Server Terlaky, Tamás 2015-01-01 This volume contains a selection of contributions that were presented at the Modeling and Optimization: Theory and Applications Conference (MOPTA) held at Lehigh University in Bethlehem, Pennsylvania, USA on August 13-15, 2014. The conference brought together a diverse group of researchers and practitioners, working on both theoretical and practical aspects of continuous or discrete optimization. Topics presented included algorithms for solving convex, network, mixed-integer, nonlinear, and global optimization problems, and addressed the application of deterministic and stochastic optimization techniques in energy, finance, logistics, analytics, healthcare, and other important fields. The contributions contained in this volume represent a sample of these topics and applications and illustrate the broad diversity of ideas discussed at the meeting. 13. Game Theory and its Relationship with Linear Programming Models ... African Journals Online (AJOL) Game Theory and its Relationship with Linear Programming Models. ... This paper shows that game theory and linear programming problem are closely related subjects since any computing method devised for ... AJOL African Journals Online. 14. Hosotani model in closed string theory International Nuclear Information System (INIS) Shiraishi, Kiyoshi. 1988-11-01 Hosotani mechanism in the closed string theory with current algebra symmetry is described by the (old covariant) operator method. We compare the gauge symmetry breaking mechanism in a string theory which has SU(2) symmetry with the one in an equivalent compactified closed string theory. We also investigate the difference between Hosotani mechanism and Higgs mechanism in closed string theories by calculation of a fourpoint amplitude of 'Higgs' bosons at tree level. (author) 15. AC Small Signal Modeling of PWM Y-Source Converter by Circuit Averaging and Averaged Switch Modeling Technique DEFF Research Database (Denmark) Forouzesh, Mojtaba; Siwakoti, Yam Prasad; Blaabjerg, Frede 2016-01-01 Magnetically coupled Y-source impedance network is a newly proposed structure with versatile features intended for various power converter applications e.g. in the renewable energy technologies. The voltage gain of the Y-source impedance network rises exponentially as a function of turns ratio, w... 16. The Properties of Model Selection when Retaining Theory Variables DEFF Research Database (Denmark) Hendry, David F.; Johansen, Søren Economic theories are often fitted directly to data to avoid possible model selection biases. We show that embedding a theory model that specifies the correct set of m relevant exogenous variables, x{t}, within the larger set of m+k candidate variables, (x{t},w{t}), then selection over the second...... set by their statistical significance can be undertaken without affecting the estimator distribution of the theory parameters. This strategy returns the theory-parameter estimates when the theory is correct, yet protects against the theory being under-specified because some w{t} are relevant.... 17. System Dynamics as Model-Based Theory Building OpenAIRE Schwaninger, Markus; Grösser, Stefan N. 2008-01-01 This paper introduces model-based theory building as a feature of system dynamics (SD) with large potential. It presents a systemic approach to actualizing that potential, thereby opening up a new perspective on theory building in the social sciences. The question addressed is if and how SD enables the construction of high-quality theories. This contribution is based on field experiment type projects which have been focused on model-based theory building, specifically the construction of a mi... 18. A Realizability Model for Impredicative Hoare Type Theory DEFF Research Database (Denmark) Petersen, Rasmus Lerchedal; Birkedal, Lars; Nanevski, Alexandar 2008-01-01 We present a denotational model of impredicative Hoare Type Theory, a very expressive dependent type theory in which one can specify and reason about mutable abstract data types. The model ensures soundness of the extension of Hoare Type Theory with impredicative polymorphism; makes the connections...... to separation logic clear, and provides a basis for investigation of further sound extensions of the theory, in particular equations between computations and types.... 19. Irreducible integrable theories form tensor products of conformal models International Nuclear Information System (INIS) Mathur, S.D.; Warner, N.P. 1991-01-01 By using Toda field theories we show that there are perturbations of direct products of conformal theories that lead to irreducible integrable field theories. The same affine Toda theory can be truncated to different quantum integrable models for different choices of the charge at infinity and the coupling. The classification of integrable models that can be obtained in this fashion follows the classification of symmetric spaces of type G/H with rank H = rank G. (orig.) 20. Investigation of Wave Energy Converter Effects on Wave Fields: A Modeling Sensitivity Study in Monterey Bay CA. Energy Technology Data Exchange (ETDEWEB) Roberts, Jesse D.; Grace Chang; Jason Magalen; Craig Jones 2014-08-01 A n indust ry standard wave modeling tool was utilized to investigate model sensitivity to input parameters and wave energy converter ( WEC ) array deploym ent scenarios. Wave propagation was investigated d ownstream of the WECs to evaluate overall near - and far - field effects of WEC arrays. The sensitivity study illustrate d that b oth wave height and near - bottom orbital velocity we re subject to the largest pote ntial variations, each decreas ed in sensitivity as transmission coefficient increase d , as number and spacing of WEC devices decrease d , and as the deployment location move d offshore. Wave direction wa s affected consistently for all parameters and wave perio d was not affected (or negligibly affected) by varying model parameters or WEC configuration . 1. Electro-Mechanical Modeling and Performance Analysis of Floating Wave Energy Converters Utilizing Yo-Yo Vibrating System International Nuclear Information System (INIS) Sim, Kyuho; Park, Jisu; Jang, Seon-Jun 2015-01-01 This paper proposes a floating-type wave energy conversion system that consists of a mechanical part (yo-yo vibrating system, motion rectifying system, and power transmission system) and electrical part (power generation system). The yo-yo vibrating system, which converts translational input to rotational motion, is modeled as a single degree-of-freedom system. It can amplify the wave input via the resonance phenomenon and enhance the energy conversion efficiency. The electromechanical model is established from impedance matching of the mechanical part to the electrical system. The performance was analyzed at various wave frequencies and damping ratios for a wave input acceleration of 0.14 g. The maximum output occurred at the resonance frequency and optimal load resistance, where the power conversion efficiency and electrical output power reached 48% and 290 W, respectively. Utilizing the resonance phenomenon was found to greatly enhance the performance of the wave energy converter, and there exists a maximum power point at the optimum load resistance 2. Gas-liquid mass transfer and flow phenomena in the Peirce-Smith converter: a water model study Science.gov (United States) Zhao, Xing; Zhao, Hong-liang; Zhang, Li-feng; Yang, Li-qiang 2018-01-01 A water model with a geometric similarity ratio of 1:5 was developed to investigate the gas-liquid mass transfer and flow characteristics in a Peirce-Smith converter. A gas mixture of CO2 and Ar was injected into a NaOH solution bath. The flow field, volumetric mass transfer coefficient per unit volume ( Ak/V; where A is the contact area between phases, V is the volume, and k is the mass transfer coefficient), and gas utilization ratio ( η) were then measured at different gas flow rates and blow angles. The results showed that the flow field could be divided into five regions, i.e., injection, strong loop, weak loop, splashing, and dead zone. Whereas the Ak/V of the bath increased and then decreased with increasing gas flow rate, and η steadily increased. When the converter was rotated clockwise, both Ak/V and η increased. However, the flow condition deteriorated when the gas flow rate and blow angle were drastically increased. Therefore, these parameters must be controlled to optimal conditions. In the proposed model, the optimal gas flow rate and blow angle were 7.5 m3·h-1 and 10°, respectively. 3. Electro-Mechanical Modeling and Performance Analysis of Floating Wave Energy Converters Utilizing Yo-Yo Vibrating System Energy Technology Data Exchange (ETDEWEB) Sim, Kyuho; Park, Jisu [Seoul National University, Seoul (Korea, Republic of); Jang, Seon-Jun [Innovation KR, Seoul (Korea, Republic of) 2015-01-15 This paper proposes a floating-type wave energy conversion system that consists of a mechanical part (yo-yo vibrating system, motion rectifying system, and power transmission system) and electrical part (power generation system). The yo-yo vibrating system, which converts translational input to rotational motion, is modeled as a single degree-of-freedom system. It can amplify the wave input via the resonance phenomenon and enhance the energy conversion efficiency. The electromechanical model is established from impedance matching of the mechanical part to the electrical system. The performance was analyzed at various wave frequencies and damping ratios for a wave input acceleration of 0.14 g. The maximum output occurred at the resonance frequency and optimal load resistance, where the power conversion efficiency and electrical output power reached 48% and 290 W, respectively. Utilizing the resonance phenomenon was found to greatly enhance the performance of the wave energy converter, and there exists a maximum power point at the optimum load resistance. 4. Elaboration of the Thermodynamic Model of Refining the Converter Bath when Blowing through Three-Tier Oxygen Lance Directory of Open Access Journals (Sweden) Anatoliy G. Chernyatevich 2017-10-01 Full Text Available Background. In modern conditions, the BOP-process is the main method of mass use steel product production. At the same time, due to the shortage of high-quality charge materials, resource and energy-saving technologies are particularly relevant. To optimize the BOP-process under modern conditions, it is promising to use improved oxygen lances for top blowing in comparison with known designs. Objective. An important stage in the development of advanced steel production technologies is obtaining information on the thermodynamic model of blowing a converter bath through a three-tier lance with the elaboration of the regularities of oxidation processes within the reaction zone of a 160-ton industrial converter. Methods. The analysis that was carried out has a theoretical nature and is based on the definition of the influence of temperature and pressure on the regularities of oxidation processes within the reaction zones formed when oxygen jets are introduced into the volume of a metal bath, foamed slag-metallic emulsion and waste gases in the working space of the converter. As a thermodynamic parameter, the Gibbs energy was used to estimate the probability of chemical reactions. The pressure effect on the oxidation processes in the converter bath was evaluated in accordance with the Van’t Hoff formula. Results. The thermodynamic features of oxidation processes in the 160-ton BOF bath using a three-tier lance are presented. Primary reaction zone is characterized by the occurrence of oxidation of manganese, silicon, carbon, and iron by gaseous oxygen. In the secondary reaction zone there are chemical reactions of the oxidation of silicon and carbon dissolved in the metal by oxygen, as well as the reduction of iron oxide by carbon. The presence or absence of a slag phase on the melt surface practically does not affect the occurrence probability of chemical transformations within the boundary of primary and secondary reaction zones. The additional 5. Experimental and modelling study of reverse flow catalytic converters for natural gas/diesel dual fuel engine pollution control Energy Technology Data Exchange (ETDEWEB) Liu, B. 2000-07-01 There is renewed interest in the development of natural gas vehicles in response to the challenge to reduce urban air pollution and consumption of petroleum. The natural gas/diesel dual fuel engine is one way to apply natural gas to the conventional diesel engine. Dual fuel engines operating on natural gas and diesel emit less nitrogen oxides, and less carbon soot to the air compared to conventional diesel engines. The problem is that at light loads, fuel efficiency is reduced and emissions of hydrocarbons and carbon monoxide are increased. This thesis focused on control methods for emissions of hydrocarbons and carbon monoxide in the dual fuel engine at light loads. This was done by developing a reverse flow catalytic converter to complement dual fuel engine exhaust characteristics. Experimental measurements and numerical simulations of reverse flow catalytic converters were conducted. Reverse flow creates a high reactor temperature even when the engine is run at low exhaust temperature levels at light loads. The increase in reactor temperature from reverse flow could be 2 or 3 times higher than the adiabatic temperature increase, which is based on the reactor inlet temperature and concentration. This temperature makes it possible for greater than 90 per cent of the hydrocarbon and carbon monoxide to be converted with a palladium based catalyst. Reverse flow appears to be better than conventional unidirectional flow to deal with natural gas/diesel dual fuel engine pollution at light loads. Reverse flow could also maintain reactor temperature at over 800 K and hydrocarbon conversion at about 80 per cent during testing. The newly presented model simulates reactor performance with reasonable accuracy. Both carbon monoxide and methane oxidation over the palladium catalyst in excess oxygen and water were described using first order kinetics. 6. Physics of Failure Models for Capacitor Degradation in DC-DC Converters Data.gov (United States) National Aeronautics and Space Administration — This paper proposes a combined energy-based model with an empirical physics of failure model for degradation analysis and prognosis of electrolytic capacitors in... 7. From Landau's hydrodynamical model to field theory model to field theory models of multiparticle production: a tribute to Peter International Nuclear Information System (INIS) Cooper, F. 1996-01-01 We review the assumptions and domain of applicability of Landau's Hydrodynamical Model. By considering two models of particle production, pair production from strong electric fields and particle production in the linear σ model, we demonstrate that many of Landau's ideas are verified in explicit field theory calculations 8. Quantification of Wave Model Uncertainties Used for Probabilistic Reliability Assessments of Wave Energy Converters DEFF Research Database (Denmark) Ambühl, Simon; Kofoed, Jens Peter; Sørensen, John Dalsgaard 2015-01-01 Wave models used for site assessments are subjected to model uncertainties, which need to be quantified when using wave model results for probabilistic reliability assessments. This paper focuses on determination of wave model uncertainties. Four different wave models are considered, and validation...... data are collected from published scientific research. The bias and the root-mean-square error, as well as the scatter index, are considered for the significant wave height as well as the mean zero-crossing wave period. Based on an illustrative generic example, this paper presents how the quantified...... uncertainties can be implemented in probabilistic reliability assessments.... 9. Ray converter International Nuclear Information System (INIS) Reiss, K.H. 1976-01-01 In a radiographic system a converter is used for changing image forming intensity distribution in a bundle of penetrating rays into a flow of electrically charged particles by electrodes located in a gas space and partly latticed (grids) which lie at potentials stepped from cathode to anode. The invention is particularly characterized by the provision of at least two grids extending between and parallel to the cathode and the anode. The electrical field which lies between two electrodes lies at least between the grids located closest to the cathode being to the extent of between 1 and 10 percent, in the average preferably 3 percent below the electrical break down field in the gas in a homogeneous electrical field 10. Model-Based Fault Detection and Isolation of a Liquid-Cooled Frequency Converter on a Wind Turbine DEFF Research Database (Denmark) Li, Peng; Odgaard, Peter Fogh; Stoustrup, Jakob 2012-01-01 advanced fault detection and isolation schemes. In this paper, an observer-based fault detection and isolation method for the cooling system in a liquid-cooled frequency converter on a wind turbine which is built up in a scalar version in the laboratory is presented. A dynamic model of the scale cooling...... system is derived based on energy balance equation. A fault analysis is conducted to determine the severity and occurrence rate of possible component faults and their end effects in the cooling system. A method using unknown input observer is developed in order to detect and isolate the faults based...... on the developed dynamical model. The designed fault detection and isolation algorithm is applied on a set of measured experiment data in which different faults are artificially introduced to the scaled cooling system. The experimental results conclude that the different faults are successfully detected... 11. Open-Switch Fault Diagnosis and Fault Tolerant for Matrix Converter with Finite Control Set-Model Predictive Control DEFF Research Database (Denmark) Peng, Tao; Dan, Hanbing; Yang, Jian 2016-01-01 To improve the reliability of the matrix converter (MC), a fault diagnosis method to identify single open-switch fault is proposed in this paper. The introduced fault diagnosis method is based on finite control set-model predictive control (FCS-MPC), which employs a time-discrete model of the MC...... topology and a cost function to select the best switching state for the next sampling period. The proposed fault diagnosis method is realized by monitoring the load currents and judging the switching state to locate the faulty switch. Compared to the conventional modulation strategies such as carrier......-based modulation method, indirect space vector modulation and optimum Alesina-Venturini, the FCS-MPC has known and unchanged switching state in a sampling period. It is simpler to diagnose the exact location of the open switch in MC with FCS-MPC. To achieve better quality of the output current under single open... 12. Ultimate Limit State Model Basis for Assessment of Offshore Wind Energy Converters DEFF Research Database (Denmark) Thöns, Sebastian; Faber, M. H.; Rücker, W. 2012-01-01 then in combina-tion with the ultimate limit state requirements leads to the specific constitutive relations. As a result finite element models based on shell elements incorporating a structural and a loading model are introduced and described in detail. Applying these models the ultimate capacity of the support...... on the basis of literature review and measurement data from a prototype Multibrid M5000 support structure. In combination with the developed structural and loading models, sensitivity analyses in regard to the responses are peiformed to enhance the understanding and to refine the developed models. To this end...... variables on the responses including nonlinearity the refinement of the model is performed on a quantitative basis.... 13. Identifying the Optimal Offshore Areas for Wave Energy Converter Deployments in Taiwanese Waters Based on 12-Year Model Hindcasts Directory of Open Access Journals (Sweden) Hung-Ju Shih 2018-02-01 Full Text Available A 12-year sea-state hindcast for Taiwanese waters, covering the period from 2005 to 2016, was conducted using a fully coupled tide-surge-wave model. The hindcasts of significant wave height and peak period were employed to estimate the wave power resources in the waters surrounding Taiwan. Numerical simulations based on unstructured grids were converted to structured grids with a resolution of 25 × 25 km. The spatial distribution maps of offshore annual mean wave power were created for each year and for the 12-year period. Waters with higher wave power density were observed off the northern, northeastern, southeastern (south of Green Island and southeast of Lanyu and southern coasts of Taiwan. Five energetic sea areas with spatial average annual total wave energy density of 60–90 MWh/m were selected for further analysis. The 25 × 25 km square grids were then downscaled to resolutions of 5 × 5 km, and five 5 × 5 km optimal areas were identified for wave energy converter deployments. The spatial average annual total wave energy yields at the five optimal areas (S1–(S5 were estimated to be 64.3, 84.1, 84.5, 111.0 and 99.3 MWh/m, respectively. The prevailing wave directions for these five areas lie between east and northeast. 14. Modeling of H- surface conversion sources; binary (H-Ba) and ternary (H-Cs/W) converter arrangements International Nuclear Information System (INIS) van Os, C.F.A.; Kunkel, W.B.; Leguijt, C.; Los, J. 1991-01-01 The production process for the formation of H - ions in a surface conversion source is sputtering of hydrogen atoms from the converter surface layers by incident positive ions, followed by electron attachment via resonant charge exchange with the converter surface. The sputtering process is in direct relation to the converter surface composition. New experimental data led us to identify two different classes of converters: metallic converters, like solid barium(binary) and adlayer converters, like cesium on tungsten (ternary). For a binary converter the hydrogen in the surface layers is directly sputtered by the incoming ions. Consequently, the negative ion yield scales with the hydrogen concentration in the surface layers. In the cesium/tungsten system (ternary) the hydrogen at the surface is believed to be sandwiched between the cesium adlayer and the tungsten surface. Hence, the negative ion yield scales with the sputter coefficient of hydrogen on adsorbed cesium. This is experimentally confirmed 15. Chaos Theory as a Model for Managing Issues and Crises. Science.gov (United States) Murphy, Priscilla 1996-01-01 Uses chaos theory to model public relations situations in which the salient feature is volatility of public perceptions. Discusses the premises of chaos theory and applies them to issues management, the evolution of interest groups, crises, and rumors. Concludes that chaos theory is useful as an analogy to structure image problems and to raise… 16. Catastrophe Theory: A Unified Model for Educational Change. Science.gov (United States) Cryer, Patricia; Elton, Lewis 1990-01-01 Catastrophe Theory and Herzberg's theory of motivation at work was used to create a model of change that unifies and extends Lewin's two separate stage and force field models. This new model is used to analyze the behavior of academics as they adapt to the changing university environment. (Author/MLW) 17. A Leadership Identity Development Model: Applications from a Grounded Theory Science.gov (United States) Komives, Susan R.; Mainella, Felicia C.; Longerbeam, Susan D.; Osteen, Laura; Owen, Julie E. 2006-01-01 This article describes a stage-based model of leadership identity development (LID) that resulted from a grounded theory study on developing a leadership identity (Komives, Owen, Longerbeam, Mainella, & Osteen, 2005). The LID model expands on the leadership identity stages, integrates the categories of the grounded theory into the LID model, and… 18. Reconstructing Constructivism: Causal Models, Bayesian Learning Mechanisms, and the Theory Theory Science.gov (United States) Gopnik, Alison; Wellman, Henry M. 2012-01-01 We propose a new version of the "theory theory" grounded in the computational framework of probabilistic causal models and Bayesian learning. Probabilistic models allow a constructivist but rigorous and detailed approach to cognitive development. They also explain the learning of both more specific causal hypotheses and more abstract framework… 19. A novel series-resonant converter topology NARCIS (Netherlands) Tilgenkamp, N.V.; Haan, de S.W.H.; Huisman, H. 1987-01-01 A converter topology based on the principles of seriesresonant (SR) power conversion is described in which the input and output of this converter have one terminal in common, and the transformer is omitted. Both the underlying theory and associated waveforms are presented. The converter is suitable 20. Theory and modeling of active brazing. Energy Technology Data Exchange (ETDEWEB) van Swol, Frank B.; Miller, James Edward; Lechman, Jeremy B.; Givler, Richard C. 2013-09-01 Active brazes have been used for many years to produce bonds between metal and ceramic objects. By including a relatively small of a reactive additive to the braze one seeks to improve the wetting and spreading behavior of the braze. The additive modifies the substrate, either by a chemical surface reaction or possibly by alloying. By its nature, the joining process with active brazes is a complex nonequilibrium non-steady state process that couples chemical reaction, reactant and product diffusion to the rheology and wetting behavior of the braze. Most of the these subprocesses are taking place in the interfacial region, most are difficult to access by experiment. To improve the control over the brazing process, one requires a better understanding of the melting of the active braze, rate of the chemical reaction, reactant and product diffusion rates, nonequilibrium composition-dependent surface tension as well as the viscosity. This report identifies ways in which modeling and theory can assist in improving our understanding. 1. Domain Theory, Its Models and Concepts DEFF Research Database (Denmark) Andreasen, Mogens Myrup; Howard, Thomas J.; Bruun, Hans Peter Lomholt 2014-01-01 Domain Theory is a systems approach for the analysis and synthesis of products. Its basic idea is to view a product as systems of activities, organs and parts and to define structure, elements, behaviour and function in these domains. The theory is a basis for a long line of research contribution... 2. A Comparison Study of a Generic Coupling Methodology for Modeling Wake Effects of Wave Energy Converter Arrays Directory of Open Access Journals (Sweden) Tim Verbrugghe 2017-10-01 Full Text Available Wave Energy Converters (WECs need to be deployed in large numbers in an array layout in order to have a significant power production. Each WEC has an impact on the incoming wave field, by diffracting, reflecting and radiating waves. Simulating the wave transformations within and around a WEC array is complex; it is difficult, or in some cases impossible, to simulate both these near-field and far-field wake effects using a single numerical model, in a time- and cost-efficient way in terms of computational time and effort. Within this research, a generic coupling methodology is developed to model both near-field and far-field wake effects caused by floating (e.g., WECs, platforms or fixed offshore structures. The methodology is based on the coupling of a wave-structure interaction solver (Nemoh and a wave propagation model. In this paper, this methodology is applied to two wave propagation models (OceanWave3D and MILDwave, which are compared to each other in a wide spectrum of tests. Additionally, the Nemoh-OceanWave3D model is validated by comparing it to experimental wave basin data. The methodology proves to be a reliable instrument to model wake effects of WEC arrays; results demonstrate a high degree of agreement between the numerical simulations with relative errors lower than 5 % and to a lesser extent for the experimental data, where errors range from 4 % to 17 % . 3. Simulation of Heating of an Oil-Cooled Insulated Gate Bipolar Transistors Converter Model National Research Council Canada - National Science Library Ovrebo, Gregory 2004-01-01 I used SolidWorks a three-dimensional modeling software, and FloWorks, a fluid dynamics analysis tool, to simulate oil flow and heat transfer in a heat sink structure attached to three insulated gate bipolar transistors... 4. Comparison of the Experimental and Numerical Results of Modelling a 32-Oscillating Water Column (OWC, V-Shaped Floating Wave Energy Converter Directory of Open Access Journals (Sweden) John V. Ringwood 2013-08-01 Full Text Available Combining offshore wind and wave energy converting apparatuses presents a number of potentially advantageous synergies. To facilitate the development of a proposed floating platform combining these two technologies, proof of concept scale model testing on the wave energy converting component of this platform has been conducted. The wave energy component is based on the well-established concept of the oscillating water column. A numerical model of this component has been developed in the frequency domain, and the work presented here concerns the results of this modelling and testing. The results of both are compared to assess the validity and usefulness of the numerical model. 5. Experimental Update of the Overtopping Model Used for the Wave Dragon Wave Energy Converter Directory of Open Access Journals (Sweden) Erik Friis-Madsen 2013-04-01 Full Text Available An overtopping model specifically suited for Wave Dragon is needed in order to improve the reliability of its performance estimates. The model shall be comprehensive of all relevant physical processes that affect overtopping and flexible to adapt to any local conditions and device configuration. An experimental investigation is carried out to update an existing formulation suited for 2D draft-limited, low-crested structures, in order to include the effects on the overtopping flow of the wave steepness, the 3D geometry of Wave Dragon, the wing reflectors, the device motions and the non-rigid connection between platform and reflectors. The study is carried out in four phases, each of them specifically targeted at quantifying one of these effects through a sensitivity analysis and at modeling it through custom-made parameters. These are depending on features of the wave or the device configuration, all of which can be measured in real-time. Instead of using new fitting coefficients, this approach allows a broader applicability of the model beyond the Wave Dragon case, to any overtopping WEC or structure within the range of tested conditions. Predictions reliability of overtopping over Wave Dragon increased, as the updated model allows improved accuracy and precision respect to the former version. 6. Synthesis of Numerical Methods for Modeling Wave Energy Converter-Point Absorbers: Preprint Energy Technology Data Exchange (ETDEWEB) Li, Y.; Yu, Y. H. 2012-05-01 During the past few decades, wave energy has received significant attention among all ocean energy formats. Industry has proposed hundreds of prototypes such as an oscillating water column, a point absorber, an overtopping system, and a bottom-hinged system. In particular, many researchers have focused on modeling the floating-point absorber as the technology to extract wave energy. Several modeling methods have been used such as the analytical method, the boundary-integral equation method, the Navier-Stokes equations method, and the empirical method. However, no standardized method has been decided. To assist the development of wave energy conversion technologies, this report reviews the methods for modeling the floating-point absorber. 7. Experimental Update of the Overtopping Model Used for the Wave Dragon Wave Energy Converter DEFF Research Database (Denmark) Parmeggiani, Stefano; Kofoed, Jens Peter; Friis-Madsen, Erik 2013-01-01 An overtopping model specifically suited for Wave Dragon is needed in order to improve the reliability of its performance estimates. The model shall be comprehensive of all relevant physical processes that affect overtopping and flexible to adapt to any local conditions and device configuration....... An experimental investigation is carried out to update an existing formulation suited for 2D draft-limited, low-crested structures, in order to include the effects on the overtopping flow of the wave steepness, the 3D geometry of Wave Dragon, the wing reflectors, the device motions and the non-rigid connection...... of which can be measured in real-time. Instead of using new fitting coefficients, this approach allows a broader applicability of the model beyond the Wave Dragon case, to any overtopping WEC or structure within the range of tested conditions. Predictions reliability of overtopping over Wave Dragon... 8. The Impact of Mission Profile Models on the Predicted Lifetime of IGBT Modules in the Modular Multilevel Converter DEFF Research Database (Denmark) Zhang, Yi; Wang, Huai; Wang, Zhongxu 2017-01-01 and electrical power modeling methods on the estimated lifetime of IGBT modules in an MMC for offshore wind power application. In a 30 MW MMC case study, an annual wind speed profile with a resolution of 1 s/data, 10 minute/data, and 1 hour/data are considered, respectively. A method to re-generate higher......The reliability aspect study of Modular Multilevel Converter (MMC) is of great interest in industry applications, such as offshore wind. Lifetime prediction of key components is an important tool to design MMC with fulfilled reliability specifications. While many efforts have been made...... to the lifetime prediction of IGBT modules in renewable energy applications by considering long-term varying operation conditions (i.e., mission profile), the justifications of using the associated mission profiles are still missed. This paper investigates the impact of mission profile data resolutions... 9. Design of current controller of grid-connected voltage source converter based internal model control in wind power Energy Technology Data Exchange (ETDEWEB) Zhang Xianping; Guo Jindong; Xu Honghua [Inst. of Electrical Engineering, Chinese Academy of Sciences, BJ (China) 2008-07-01 Grid-connected voltage source converter (VSC) is important for variable speed turbines with doubly fed induction generator (DFIG), and bad performance of current loop of VSC may cause VSC inject much low and high order harmonics into grid. Therefore, design of current controller of VSC is very important. PI regulator is often used to regulate current error in dq rotating coordinate to obtain zero steady error. However, it is complex to design PI parameters, and researchers need many trial-and-error steps. Therefore, a novel and simple design method of PI regulator for grid-connected VSC, which is based internal model control (IMC), has been presented in this paper. The parameters of PI regulator can be expressed directly with certain L-type line filter parameters and the desired closed-loop bandwidth. At last, The simulation has been done and result shows that the method in this paper is easy and useful to regulate PI parameters. (orig.) 10. Dynamic modeling of wind turbine based axial flux permanent magnetic synchronous generator connected to the grid with switch reduced converter Directory of Open Access Journals (Sweden) Ali Reza Dehghanzadeh 2018-03-01 Full Text Available This paper studies the power electronic converters for grid connection of axial flux permanent magnetic synchronous generators (AFPMSG based variable speed wind turbine. In this paper, a new variable speed wind turbine with AFPMSG and Z-source inverter is proposed to improve number of switches and topology reliability. Besides, dynamic modeling of AFPMSG is presented to analyze grid connection of the proposed topology. The Z-source inverter controls maximum power point tracking (MPPT and delivering power to the grid. Therefore other DC–DC chopper is not required to control the rectified output voltage of generator in view of MPPT. As a result, the proposed topology requires less power electronic switches and the suggested system is more reliable against short circuit. The ability of proposed energy conversion system with AFPMSG is validated with simulation results and experimental results using PCI-1716 data acquisition system. 11. Big bang models in string theory Energy Technology Data Exchange (ETDEWEB) Craps, Ben [Theoretische Natuurkunde, Vrije Universiteit Brussel and The International Solvay Institutes Pleinlaan 2, B-1050 Brussels (Belgium) 2006-11-07 These proceedings are based on lectures delivered at the 'RTN Winter School on Strings, Supergravity and Gauge Theories', CERN, 16-20 January 2006. The school was mainly aimed at PhD students and young postdocs. The lectures start with a brief introduction to spacetime singularities and the string theory resolution of certain static singularities. Then they discuss attempts to resolve cosmological singularities in string theory, mainly focusing on two specific examples: the Milne orbifold and the matrix big bang. 12. Parametric study of laser photovoltaic energy converters Science.gov (United States) Walker, G. H.; Heinbockel, J. H. 1987-01-01 Photovoltaic converters are of interest for converting laser power to electrical power in a space-based laser power system. This paper describes a model for photovoltaic laser converters and the application of this model to a neodymium laser silicon photovoltaic converter system. A parametric study which defines the sensitivity of the photovoltaic parameters is described. An optimized silicon photovoltaic converter has an efficiency greater than 50 percent for 1000 W/sq cm of neodymium laser radiation. 13. Modeling and control of isolated full bridge boost DC-DC converter implemented in FPGA DEFF Research Database (Denmark) Taeed, Fazel; Nymand, M. 2013-01-01 design are discussed. In the next step a digital PI controller is designed and implemented in a FPGA to control the output voltage. Using the injection transformer method the open loop transfer function in closed loop is measured and modeling results are verified by experimental results.... 14. Dynamic plan modelling and visualization : converting an urban development plan into a transition scenario NARCIS (Netherlands) Vries, de B.; Jessurun, A.J.; Sadowski - Rasters, G.; Tidafy, T; Dorta, T 2009-01-01 Application of 3D models in urban planning practice is still limited to visualization of existing or newly designed situations. Municipalities are looking for possibilities to communicate the transition process of the urban development area with the citizens. A prototype system was developed to 15. Analytical modeling of thin film neutron converters and its application to thermal neutron gas detectors Energy Technology Data Exchange (ETDEWEB) Piscitelli, F; Esch, P Van, E-mail: piscitelli@ill.fr [Institut Laue-Langevin (ILL), 6, Jules Horowitz, 38042 Grenoble (France) 2013-04-15 A simple model is explored mainly analytically to calculate and understand the PHS of single and multi-layer thermal neutron detectors and to help optimize the design in different circumstances. Several theorems are deduced that can help guide the design. 16. The Standard Model is Natural as Magnetic Gauge Theory DEFF Research Database (Denmark) Sannino, Francesco 2011-01-01 matter. The absence of scalars in the electric theory indicates that the associated magnetic theory is free from quadratic divergences. Our novel solution to the Standard Model hierarchy problem leads also to a new insight on the mystery of the observed number of fundamental fermion generations......We suggest that the Standard Model can be viewed as the magnetic dual of a gauge theory featuring only fermionic matter content. We show this by first introducing a Pati-Salam like extension of the Standard Model and then relating it to a possible dual electric theory featuring only fermionic... 17. Chiral gauged Wess-Zumino-Witten theories and coset models in conformal field theory International Nuclear Information System (INIS) Chung, S.; Tye, S.H. 1993-01-01 The Wess-Zumino-Witten (WZW) theory has a global symmetry denoted by G L direct-product G R . In the standard gauged WZW theory, vector gauge fields (i.e., with vector gauge couplings) are in the adjoint representation of the subgroup H contained-in G. In this paper, we show that, in the conformal limit in two dimensions, there is a gauged WZW theory where the gauge fields are chiral and belong to the subgroups H L and H R where H L and H R can be different groups. In the special case where H L =H R , the theory is equivalent to vector gauged WZW theory. For general groups H L and H R , an examination of the correlation functions (or more precisely, conformal blocks) shows that the chiral gauged WZW theory is equivalent to (G/H L ) L direct-product(G/H R ) R coset models in conformal field theory 18. Spatial data modelling and maximum entropy theory Czech Academy of Sciences Publication Activity Database Klimešová, Dana; Ocelíková, E. 2005-01-01 Roč. 51, č. 2 (2005), s. 80-83 ISSN 0139-570X Institutional research plan: CEZ:AV0Z10750506 Keywords : spatial data classification * distribution function * error distribution Subject RIV: BD - Theory of Information 19. Electroweak theory and the Standard Model CERN Multimedia CERN. Geneva; Giudice, Gian Francesco 2004-01-01 There is a natural splitting in four sectors of the theory of the ElectroWeak (EW) Interactions, at pretty different levels of development/test. Accordingly, the 5 lectures are organized as follows, with an eye to the future: Lecture 1: The basic structure of the theory; Lecture 2: The gauge sector; Lecture 3: The flavor sector; Lecture 4: The neutrino sector; Lecture 5: The EW symmetry breaking sector. 20. Statistical Learning Theory: Models, Concepts, and Results OpenAIRE von Luxburg, Ulrike; Schoelkopf, Bernhard 2008-01-01 Statistical learning theory provides the theoretical basis for many of today's machine learning algorithms. In this article we attempt to give a gentle, non-technical overview over the key ideas and insights of statistical learning theory. We target at a broad audience, not necessarily machine learning researchers. This paper can serve as a starting point for people who want to get an overview on the field before diving into technical details. 1. Glass Durability Modeling, Activated Complex Theory (ACT) International Nuclear Information System (INIS) CAROL, JANTZEN 2005-01-01 atomic ratios is shown to represent the structural effects of the glass on the dissolution and the formation of activated complexes in the glass leached layer. This provides two different methods by which a linear glass durability model can be formulated. One based on the quasi- crystalline mineral species in a glass and one based on cation ratios in the glass: both are related to the activated complexes on the surface by the law of mass action. The former would allow a new Thermodynamic Hydration Energy Model to be developed based on the hydration of the quasi-crystalline mineral species if all the pertinent thermodynamic data were available. Since the pertinent thermodynamic data is not available, the quasi-crystalline mineral species and the activated complexes can be related to cation ratios in the glass by the law of mass action. The cation ratio model can, thus, be used by waste form producers to formulate durable glasses based on fundamental structural and activated complex theories. Moreover, glass durability model based on atomic ratios simplifies HLW glass process control in that the measured ratios of only a few waste components and glass formers can be used to predict complex HLW glass performance with a high degree of accuracy, e.g. an R 2 approximately 0.97 2. A brief introduction to regression designs and mixed-effects modelling by a recent convert OpenAIRE Balling, Laura Winther 2008-01-01 This article discusses the advantages of multiple regression designs over the factorial designs traditionally used in many psycholinguistic experiments. It is shown that regression designs are typically more informative, statistically more powerful and better suited to the analysis of naturalistic tasks. The advantages of including both fixed and random effects are demonstrated with reference to linear mixed-effects models, and problems of collinearity, variable distribution and variable sele... 3. Solid modeling and applications rapid prototyping, CAD and CAE theory CERN Document Server Um, Dugan 2016-01-01 The lessons in this fundamental text equip students with the theory of Computer Assisted Design (CAD), Computer Assisted Engineering (CAE), the essentials of Rapid Prototyping, as well as practical skills needed to apply this understanding in real world design and manufacturing settings. The book includes three main areas: CAD, CAE, and Rapid Prototyping, each enriched with numerous examples and exercises. In the CAD section, Professor Um outlines the basic concept of geometric modeling, Hermite and Bezier Spline curves theory, and 3-dimensional surface theories as well as rendering theory. The CAE section explores mesh generation theory, matrix notion for FEM, the stiffness method, and truss Equations. And in Rapid Prototyping, the author illustrates stereo lithographic theory and introduces popular modern RP technologies. Solid Modeling and Applications: Rapid Prototyping, CAD and CAE Theory is ideal for university students in various engineering disciplines as well as design engineers involved in product... 4. The logical foundations of scientific theories languages, structures, and models CERN Document Server Krause, Decio 2016-01-01 This book addresses the logical aspects of the foundations of scientific theories. Even though the relevance of formal methods in the study of scientific theories is now widely recognized and regaining prominence, the issues covered here are still not generally discussed in philosophy of science. The authors focus mainly on the role played by the underlying formal apparatuses employed in the construction of the models of scientific theories, relating the discussion with the so-called semantic approach to scientific theories. The book describes the role played by this metamathematical framework in three main aspects: considerations of formal languages employed to axiomatize scientific theories, the role of the axiomatic method itself, and the way set-theoretical structures, which play the role of the models of theories, are developed. The authors also discuss the differences and philosophical relevance of the two basic ways of aximoatizing a scientific theory, namely Patrick Suppes’ set theoretical predicate... 5. Supersymmetry and String Theory: Beyond the Standard Model International Nuclear Information System (INIS) Rocek, Martin 2007-01-01 When I was asked to review Michael Dine's new book, 'Supersymmetry and String Theory', I was pleased to have a chance to read a book by such an established authority on how string theory might become testable. The book is most useful as a list of current topics of interest in modern theoretical physics. It gives a succinct summary of a huge variety of subjects, including the standard model, symmetry, Yang-Mills theory, quantization of gauge theories, the phenomenology of the standard model, the renormalization group, lattice gauge theory, effective field theories, anomalies, instantons, solitons, monopoles, dualities, technicolor, supersymmetry, the minimal supersymmetric standard model, dynamical supersymmetry breaking, extended supersymmetry, Seiberg-Witten theory, general relativity, cosmology, inflation, bosonic string theory, the superstring, the heterotic string, string compactifications, the quintic, string dualities, large extra dimensions, and, in the appendices, Goldstone's theorem, path integrals, and exact beta-functions in supersymmetric gauge theories. Its breadth is both its strength and its weakness: it is not (and could not possibly be) either a definitive reference for experts, where the details of thorny technical issues are carefully explored, or a textbook for graduate students, with detailed pedagogical expositions. As such, it complements rather than replaces the much narrower and more focussed String Theory I and II volumes by Polchinski, with their deep insights, as well the two older volumes by Green, Schwarz, and Witten, which develop string theory pedagogically. (book review) 6. Introduction to gauge theories and the Standard Model CERN Document Server de Wit, Bernard 1995-01-01 The conceptual basis of gauge theories is introduced to enable the construction of generic models.Spontaneous symmetry breaking is dicussed and its relevance for the renormalization of theories with massive vector field is explained. Subsequently a d standard model. When time permits we will address more practical questions that arise in the evaluation of quantum corrections. 7. A 'theory of everything'? [Extending the Standard Model International Nuclear Information System (INIS) Ross, G.G. 1993-01-01 The Standard Model provides us with an amazingly successful theory of the strong, weak and electromagnetic interactions. Despite this, many physicists believe it represents only a step towards understanding the ultimate ''theory of everything''. In this article we describe why the Standard Model is thought to be incomplete and some of the suggestions for its extension. (Author) 8. Neutron Star Models in Alternative Theories of Gravity Science.gov (United States) Manolidis, Dimitrios We study the structure of neutron stars in a broad class of alternative theories of gravity. In particular, we focus on Scalar-Tensor theories and f(R) theories of gravity. We construct static and slowly rotating numerical star models for a set of equations of state, including a polytropic model and more realistic equations of state motivated by nuclear physics. Observable quantities such as masses, radii, etc are calculated for a set of parameters of the theories. Specifically for Scalar-Tensor theories, we also calculate the sensitivities of the mass and moment of inertia of the models to variations in the asymptotic value of the scalar field at infinity. These quantities enter post-Newtonian equations of motion and gravitational waveforms of two body systems that are used for gravitational-wave parameter estimation, in order to test these theories against observations. The construction of numerical models of neutron stars in f(R) theories of gravity has been difficult in the past. Using a new formalism by Jaime, Patino and Salgado we were able to construct models with high interior pressure, namely pc > rho c/3, both for constant density models and models with a polytropic equation of state. Thus, we have shown that earlier objections to f(R) theories on the basis of the inability to construct viable neutron star models are unfounded. 9. Generalized algebra-valued models of set theory NARCIS (Netherlands) Löwe, B.; Tarafder, S. 2015-01-01 We generalize the construction of lattice-valued models of set theory due to Takeuti, Titani, Kozawa and Ozawa to a wider class of algebras and show that this yields a model of a paraconsistent logic that validates all axioms of the negation-free fragment of Zermelo-Fraenkel set theory. 10. A QCD Model Using Generalized Yang-Mills Theory International Nuclear Information System (INIS) Wang Dianfu; Song Heshan; Kou Lina 2007-01-01 Generalized Yang-Mills theory has a covariant derivative, which contains both vector and scalar gauge bosons. Based on this theory, we construct a strong interaction model by using the group U(4). By using this U(4) generalized Yang-Mills model, we also obtain a gauge potential solution, which can be used to explain the asymptotic behavior and color confinement. 11. A review of organizational buyer behaviour models and theories ... African Journals Online (AJOL) Over the years, models have been developed, and theories propounded, to explain the behavior of industrial buyers on the one hand and the nature of the dyadic relationship between organizational buyers and sellers on the other hand. This paper is an attempt at a review of the major models and theories in extant ... 12. Sample-Data Modeling of a Zero Voltage Transition DC-DC Converter for On-Board Battery Charger in EV Directory of Open Access Journals (Sweden) Teresa R. Granados-Luna 2014-01-01 Full Text Available Battery charger is a key device in electric and hybrid electric vehicles. On-board and off-board topologies are available in the market. Lightweight, small, high performance, and simple control are desired characteristics for on-board chargers. Moreover, isolated single-phase topologies are the most common system in Level 1 battery charger topologies. Following this trend, this paper proposes a sampled-data modelling strategy of a zero voltage transition (ZVT DC-DC converter for an on-board battery charger. A piece-wise linear analysis of the converter is the basis of the technique presented such that a large-signal model and, therefore, a small-signal model of the converter are derived. Numerical and simulation results of a 250 W test rig validate the model. 13. A brief introduction to regression designs and mixed-effects modelling by a recent convert DEFF Research Database (Denmark) Balling, Laura Winther 2008-01-01 This article discusses the advantages of multiple regression designs over the factorial designs traditionally used in many psycholinguistic experiments. It is shown that regression designs are typically more informative, statistically more powerful and better suited to the analysis of naturalistic...... tasks. The advantages of including both fixed and random effects are demonstrated with reference to linear mixed-effects models, and problems of collinearity, variable distribution and variable selection are discussed. The advantages of these techniques are exemplified in an analysis of a word... 14. Converter structure-based power loss and static thermal modeling of the press-pack IGBT-based three-level ANPC and HB VSCs applied to Multi-MW wind turbines DEFF Research Database (Denmark) Senturk, Osman Selcuk; Munk-Nielsen, Stig; Teodorescu, Remus 2010-01-01 and the switch thermal performance which is determined by the converter load profile and the converter structure. In this study, the converter-structure based power loss and thermal models are developed for the medium voltage full-scale 3LANPC- VSC and 3L-HB-VSC utilizing press-pack IGBT-diode pairs......The wind turbine converters demand high power density due to nacelle space limitation and high reliability due to high maintenance cost. Once the converter topology with the semiconductor switch technology is selected, the converter power density and reliability are dependent on the component count... 15. The Birth of Model Theory Lowenheim's Theorem in the Frame of the Theory of Relatives CERN Document Server Badesa, Calixto 2008-01-01 Löwenheim's theorem reflects a critical point in the history of mathematical logic, for it marks the birth of model theory--that is, the part of logic that concerns the relationship between formal theories and their models. However, while the original proofs of other, comparably significant theorems are well understood, this is not the case with Löwenheim's theorem. For example, the very result that scholars attribute to Löwenheim today is not the one that Skolem--a logician raised in the algebraic tradition, like Löwenheim--appears to have attributed to him. In The Birth of Model Theory, Cali 16. Numerical modeling and experimental testing of a wave energy converter: deliverable D4.2 Energy Technology Data Exchange (ETDEWEB) Zurkinden, A.S.; Kramer, M.; Ferri, F.; Kofoed, J.P. 2013-05-15 The objective of this document is to summarize the outcome of the research which has been carried out during the period May 2011 until June 2012 i.e. during the first year of the PhD study. The work has been done in collaboration with the co-authors. The aim of the project was primarily to provide numerical values for comparison with the experimental test results which were carried out in the same time. It is for this reason why Chapter 4 does consist exclusively of numerical values. Experimental values and measured time series of wave elevations have been used throughout the report in order to a) validate the numerical model and b) preform stochastic analysis. The latter technique is introduced in order to optimize the control parameters of the power take off system. (Author) 17. Modelling and Testing of Wave Dragon Wave Energy Converter Towards Full Scale Deployment DEFF Research Database (Denmark) Parmeggiani, Stefano -commercial stage in which it has proven difficult to secure the necessary funding for the deployment of a full-scale demonstrator unit. The work presented aims at easing this process, by increasing public and scientific knowledge of the device, as well as by showing the latest progress in its development. Research....... This is mainly due to the development of an updated overtopping model specifically suited to Wave Dragon, which allows greater quality to predictions of the primary energy absorption of the device compared to previous versions. At the same time an equitable approach has been described and used in the performance......, the research has also provided a deeper insight into the physics of the overtopping process by individually assessing the influence of related device configuration and wave features, which goes beyond the present application and may be used for other overtopping WECs as well. Comprehensive analysis... 18. Modeling and control in Nissum. Technical report; Wave energy converter Wave Star Energy Technology Data Exchange (ETDEWEB) Sanchez, E.V. 2009-09-15 The purpose of this report is to give a deeper theoretical understanding of the achieved results of the performance tests described in another report. It is documented that the 2nd generation of PTO (Power Take-Off) is able to absorb significantly more energy than the existing PTO. 1) A linear dynamic model of the PTO in Nissum is derived and analogies to the electrical circuits are drawn. 2) A deeper mathematical and physical insight on the control strategy with the 2nd generation of PTO is given. 3) The 2nd generation of PTO is equivalent to create a resistive load which matches the intrinsic resistance of the system (resistance matching). 4) The performed simulations agree with the experiments realized in the actual performance tests where it is concluded that 2nd generation of PTO has a higher performance. (LN) 19. Non-linear σ-models and string theories International Nuclear Information System (INIS) Sen, A. 1986-10-01 The connection between σ-models and string theories is discussed, as well as how the σ-models can be used as tools to prove various results in string theories. Closed bosonic string theory in the light cone gauge is very briefly introduced. Then, closed bosonic string theory in the presence of massless background fields is discussed. The light cone gauge is used, and it is shown that in order to obtain a Lorentz invariant theory, the string theory in the presence of background fields must be described by a two-dimensional conformally invariant theory. The resulting constraints on the background fields are found to be the equations of motion of the string theory. The analysis is extended to the case of the heterotic string theory and the superstring theory in the presence of the massless background fields. It is then shown how to use these results to obtain nontrivial solutions to the string field equations. Another application of these results is shown, namely to prove that the effective cosmological constant after compactification vanishes as a consequence of the classical equations of motion of the string theory. 34 refs 20. Toric Methods in F-Theory Model Building Directory of Open Access Journals (Sweden) Johanna Knapp 2011-01-01 Full Text Available We discuss recent constructions of global F-theory GUT models and explain how to make use of toric geometry to do calculations within this framework. After introducing the basic properties of global F-theory GUTs, we give a self-contained review of toric geometry and introduce all the tools that are necessary to construct and analyze global F-theory models. We will explain how to systematically obtain a large class of compact Calabi-Yau fourfolds which can support F-theory GUTs by using the software package PALP. 1. Quantum Link Models and Quantum Simulation of Gauge Theories International Nuclear Information System (INIS) Wiese, U.J. 2015-01-01 This lecture is about Quantum Link Models and Quantum Simulation of Gauge Theories. The lecture consists out of 4 parts. The first part gives a brief history of Computing and Pioneers of Quantum Computing and Quantum Simulations of Quantum Spin Systems are introduced. The 2nd lecture is about High-Temperature Superconductors versus QCD, Wilson’s Lattice QCD and Abelian Quantum Link Models. The 3rd lecture deals with Quantum Simulators for Abelian Lattice Gauge Theories and Non-Abelian Quantum Link Models. The last part of the lecture discusses Quantum Simulators mimicking ‘Nuclear’ physics and the continuum limit of D-Theorie models. (nowak) 2. Towards a new technique to construct a 3D shear-wave velocity model based on converted waves Science.gov (United States) Hetényi, G.; Colavitti, L. 2017-12-01 A 3D model is essential in all branches of solid Earth sciences because geological structures can be heterogeneous and change significantly in their lateral dimension. The main target of this research is to build a crustal S-wave velocity structure in 3D. The currently popular methodologies to construct 3D shear-wave velocity models are Ambient Noise Tomography (ANT) and Local Earthquake Tomography (LET). Here we propose a new technique to map Earth discontinuities and velocities at depth based on the analysis of receiver functions. The 3D model is obtained by simultaneously inverting P-to-S converted waveforms recorded at a dense array. The individual velocity models corresponding to each trace are extracted from the 3D initial model along ray paths that are calculated using the shooting method, and the velocity model is updated during the inversion. We consider a spherical approximation of ray propagation using a global velocity model (iasp91, Kennett and Engdahl, 1991) for the teleseismic part, while we adopt Cartesian coordinates and a local velocity model for the crust. During the inversion process we work with a multi-layer crustal model for shear-wave velocity, with a flexible mesh for the depth of the interfaces. The RFs inversion represents a complex problem because the amplitude and the arrival time of different phases depend in a non-linear way on the depth of interfaces and the characteristics of the velocity structure. The solution we envisage to manage the inversion problem is the stochastic Neighbourhood Algorithm (NA, Sambridge, 1999), whose goal is to find an ensemble of models that sample the good data-fitting regions of a multidimensional parameter space. Depending on the studied area, this method can accommodate possible independent and complementary geophysical data (gravity, active seismics, LET, ANT, etc.), helping to reduce the non-linearity of the inversion. Our first focus of application is the Central Alps, where a 20-year long dataset of 3. Reconstructing constructivism: Causal models, Bayesian learning mechanisms and the theory theory OpenAIRE Gopnik, Alison; Wellman, Henry M. 2012-01-01 We propose a new version of the “theory theory” grounded in the computational framework of probabilistic causal models and Bayesian learning. Probabilistic models allow a constructivist but rigorous and detailed approach to cognitive development. They also explain the learning of both more specific causal hypotheses and more abstract framework theories. We outline the new theoretical ideas, explain the computational framework in an intuitive and non-technical way, and review an extensive but ... 4. Frequency Transient Suppression in Hybrid Electric Ship Power Systems: A Model Predictive Control Strategy for Converter Control with Energy Storage Directory of Open Access Journals (Sweden) Viknash Shagar 2018-03-01 Full Text Available This paper aims to understand how the common phenomenon of fluctuations in propulsion and service load demand contribute to frequency transients in hybrid electric ship power systems. These fluctuations arise mainly due to changes in sea conditions resulting in significant variations in the propulsion load demand of ships. This leads to poor power quality for the power system that can potentially cause hazardous conditions such as blackout on board the ship. Effects of these fluctuations are analysed using a hybrid electric ship power system model and a proposed Model Predictive Control (MPC strategy to prevent propagation of transients from the propellers into the shipboard power system. A battery energy storage system, which is directly connected to the DC-link of the frequency converter, is used as the smoothing element. Case studies that involve propulsion and service load changes have been carried out to investigate the efficacy of the proposed solution. Simulation results show that the proposed solution with energy storage and MPC is able to contain frequency transients in the shipboard power system within the permissible levels stipulated by the relevant power quality standards. These findings will help ship builders and operators to consider using battery energy storage systems controlled by advanced control techniques such as MPC to improve the power quality on board ships. 5. The Self-Perception Theory vs. a Dynamic Learning Model OpenAIRE Swank, Otto H. 2006-01-01 Several economists have directed our attention to a finding in the social psychological literature that extrinsic motivation may undermine intrinsic motivation. The self-perception (SP) theory developed by Bem (1972) explains this finding. The crux of this theory is that people remember their past decisions and the extrinsic rewards they received, but they do not recall their intrinsic motives. In this paper I show that the SP theory can be modeled as a variant of a conventional dynamic learn... 6. Theory and model use in social marketing health interventions. Science.gov (United States) Luca, Nadina Raluca; Suggs, L Suzanne 2013-01-01 The existing literature suggests that theories and models can serve as valuable frameworks for the design and evaluation of health interventions. However, evidence on the use of theories and models in social marketing interventions is sparse. The purpose of this systematic review is to identify to what extent papers about social marketing health interventions report using theory, which theories are most commonly used, and how theory was used. A systematic search was conducted for articles that reported social marketing interventions for the prevention or management of cancer, diabetes, heart disease, HIV, STDs, and tobacco use, and behaviors related to reproductive health, physical activity, nutrition, and smoking cessation. Articles were published in English, after 1990, reported an evaluation, and met the 6 social marketing benchmarks criteria (behavior change, consumer research, segmentation and targeting, exchange, competition and marketing mix). Twenty-four articles, describing 17 interventions, met the inclusion criteria. Of these 17 interventions, 8 reported using theory and 7 stated how it was used. The transtheoretical model/stages of change was used more often than other theories. Findings highlight an ongoing lack of use or underreporting of the use of theory in social marketing campaigns and reinforce the call to action for applying and reporting theory to guide and evaluate interventions. 7. Measurement Models for Reasoned Action Theory OpenAIRE Hennessy, Michael; Bleakley, Amy; Fishbein, Martin 2012-01-01 Quantitative researchers distinguish between causal and effect indicators. What are the analytic problems when both types of measures are present in a quantitative reasoned action analysis? To answer this question, we use data from a longitudinal study to estimate the association between two constructs central to reasoned action theory: behavioral beliefs and attitudes toward the behavior. The belief items are causal indicators that define a latent variable index while the attitude items are ... 8. Modeling Routinization in Games: An Information Theory Approach DEFF Research Database (Denmark) Wallner, Simon; Pichlmair, Martin; Hecher, Michael 2015-01-01 Routinization is the result of practicing until an action stops being a goal-directed process. This paper formulates a definition of routinization in games based on prior research in the fields of activity theory and practice theory. Routinization is analyzed using the formal model of discrete......-time, discrete-space Markov chains and information theory to measure the actual error between the dynamically trained models and the player interaction. Preliminary research supports the hypothesis that Markov chains can be effectively used to model routinization in games. A full study design is presented... 9. Internal Universes in Models of Homotopy Type Theory DEFF Research Database (Denmark) Licata, Daniel R.; Orton, Ian; Pitts, Andrew M. 2018-01-01 We show that universes of fibrations in various models of homotopy type theory have an essentially global character: they cannot be described in the internal language of the presheaf topos from which the model is constructed. We get around this problem by extending the internal language with a mo...... that the interval in cubical sets does indeed have. This leads to a completely internal development of models of homotopy type theory within what we call crisp type theory.......We show that universes of fibrations in various models of homotopy type theory have an essentially global character: they cannot be described in the internal language of the presheaf topos from which the model is constructed. We get around this problem by extending the internal language... 10. Theory, modeling, and simulation annual report, 1992 Energy Technology Data Exchange (ETDEWEB) 1993-05-01 This report briefly discusses research on the following topics: development of electronic structure methods; modeling molecular processes in clusters; modeling molecular processes in solution; modeling molecular processes in separations chemistry; modeling interfacial molecular processes; modeling molecular processes in the atmosphere; methods for periodic calculations on solids; chemistry and physics of minerals; graphical user interfaces for computational chemistry codes; visualization and analysis of molecular simulations; integrated computational chemistry environment; and benchmark computations. 11. Theories of conduct disorder: a causal modelling analysis NARCIS (Netherlands) Krol, N.P.C.M.; Morton, J.; Bruyn, E.E.J. De 2004-01-01 Background: If a clinician has to make decisions on diagnosis and treatment, he or she is confronted with a variety of causal theories. In order to compare these theories a neutral terminology and notational system is needed. The Causal Modelling framework involving three levels of description – 12. Models of Regge behaviour in an asymptotically free theory International Nuclear Information System (INIS) Polkinghorne, J.C. 1976-01-01 Two simple Feynman integral models are presented which reproduce the features expected to be of physical importance in the Regge behaviour of asymptotically free theories. Analysis confirms the result, expected on general grounds, that phi 3 in six dimensions has an essential singularity at l=-1. The extension to gauge theories is discussed. (Auth.) 13. Theory analysis of the Dental Hygiene Human Needs Conceptual Model. Science.gov (United States) MacDonald, L; Bowen, D M 2017-11-01 Theories provide a structural knowing about concept relationships, practice intricacies, and intuitions and thus shape the distinct body of the profession. Capturing ways of knowing and being is essential to any professions' practice, education and research. This process defines the phenomenon of the profession - its existence or experience. Theory evaluation is a systematic criterion-based assessment of a specific theory. This study presents a theory analysis of the Dental Hygiene Human Needs Conceptual Model (DH HNCM). Using the Walker and Avant Theory Analysis, a seven-step process, the DH HNCM, was analysed and evaluated for its meaningfulness and contribution to dental hygiene. The steps include the following: (i) investigate the origins; (ii) examine relationships of the theory's concepts; (iii) assess the logic of the theory's structure; (iv) consider the usefulness to practice; (v) judge the generalizability; (vi) evaluate the parsimony; and (vii) appraise the testability of the theory. Human needs theory in nursing and Maslow's Hierarchy of Need Theory prompted this theory's development. The DH HNCM depicts four concepts based on the paradigm concepts of the profession: client, health/oral health, environment and dental hygiene actions, and includes validated eleven human needs that evolved overtime to eight. It is logical, simplistic, allows scientific predictions and testing, and provides a unique lens for the dental hygiene practitioner. With this model, dental hygienists have entered practice, knowing they enable clients to meet their human needs. For the DH HNCM, theory analysis affirmed that the model is reasonable and insightful and adds to the dental hygiene professions' epistemology and ontology. © 2016 John Wiley & Sons A/S. Published by John Wiley & Sons Ltd. 14. Recent Additions in the Modeling Capabilities of an Open-Source Wave Energy Converter Design Tool: Preprint Energy Technology Data Exchange (ETDEWEB) Tom, N.; Lawson, M.; Yu, Y. H. 2015-04-20 WEC-Sim is a midfidelity numerical tool for modeling wave energy conversion devices. The code uses the MATLAB SimMechanics package to solve multibody dynamics and models wave interactions using hydrodynamic coefficients derived from frequency-domain boundary-element methods. This paper presents the new modeling features introduced in the latest release of WEC-Sim. The first feature discussed conversion of the fluid memory kernel to a state-space form. This enhancement offers a substantial computational benefit after the hydrodynamic body-to-body coefficients are introduced and the number of interactions increases exponentially with each additional body. Additional features include the ability to calculate the wave-excitation forces based on the instantaneous incident wave angle, allowing the device to weathervane, as well as import a user-defined wave elevation time series. A review of the hydrodynamic theory for each feature is provided and the successful implementation is verified using test cases. 15. Extended Nambu models: Their relation to gauge theories Science.gov (United States) Escobar, C. A.; Urrutia, L. F. 2017-05-01 Yang-Mills theories supplemented by an additional coordinate constraint, which is solved and substituted in the original Lagrangian, provide examples of the so-called Nambu models, in the case where such constraints arise from spontaneous Lorentz symmetry breaking. Some explicit calculations have shown that, after additional conditions are imposed, Nambu models are capable of reproducing the original gauge theories, thus making Lorentz violation unobservable and allowing the interpretation of the corresponding massless gauge bosons as the Goldstone bosons arising from the spontaneous symmetry breaking. A natural question posed by this approach in the realm of gauge theories is to determine under which conditions the recovery of an arbitrary gauge theory from the corresponding Nambu model, defined by a general constraint over the coordinates, becomes possible. We refer to these theories as extended Nambu models (ENM) and emphasize the fact that the defining coordinate constraint is not treated as a standard gauge fixing term. At this level, the mechanism for generating the constraint is irrelevant and the case of spontaneous Lorentz symmetry breaking is taken only as a motivation, which naturally bring this problem under consideration. Using a nonperturbative Hamiltonian analysis we prove that the ENM yields the original gauge theory after we demand current conservation for all time, together with the imposition of the Gauss laws constraints as initial conditions upon the dynamics of the ENM. The Nambu models yielding electrodynamics, Yang-Mills theories and linearized gravity are particular examples of our general approach. 16. Linear control theory for gene network modeling. Science.gov (United States) Shin, Yong-Jun; Bleris, Leonidas 2010-09-16 Systems biology is an interdisciplinary field that aims at understanding complex interactions in cells. Here we demonstrate that linear control theory can provide valuable insight and practical tools for the characterization of complex biological networks. We provide the foundation for such analyses through the study of several case studies including cascade and parallel forms, feedback and feedforward loops. We reproduce experimental results and provide rational analysis of the observed behavior. We demonstrate that methods such as the transfer function (frequency domain) and linear state-space (time domain) can be used to predict reliably the properties and transient behavior of complex network topologies and point to specific design strategies for synthetic networks. 17. Polling models : from theory to traffic intersections NARCIS (Netherlands) Boon, M.A.A. 2011-01-01 The subject of the present monograph is the study of polling models, which are queueing models consisting of multiple queues, cyclically attended by one server. Polling models originated in the late 1950s, but did not receive much attention until the 1980s when an abundance of new applications arose 18. Development of a dynamic computational model of social cognitive theory. Science.gov (United States) Riley, William T; Martin, Cesar A; Rivera, Daniel E; Hekler, Eric B; Adams, Marc A; Buman, Matthew P; Pavel, Misha; King, Abby C 2016-12-01 Social cognitive theory (SCT) is among the most influential theories of behavior change and has been used as the conceptual basis of health behavior interventions for smoking cessation, weight management, and other health behaviors. SCT and other behavior theories were developed primarily to explain differences between individuals, but explanatory theories of within-person behavioral variability are increasingly needed as new technologies allow for intensive longitudinal measures and interventions adapted from these inputs. These within-person explanatory theoretical applications can be modeled as dynamical systems. SCT constructs, such as reciprocal determinism, are inherently dynamical in nature, but SCT has not been modeled as a dynamical system. This paper describes the development of a dynamical system model of SCT using fluid analogies and control systems principles drawn from engineering. Simulations of this model were performed to assess if the model performed as predicted based on theory and empirical studies of SCT. This initial model generates precise and testable quantitative predictions for future intensive longitudinal research. Dynamic modeling approaches provide a rigorous method for advancing health behavior theory development and refinement and for guiding the development of more potent and efficient interventions. 19. Contribution to the study of conformal theories and integrable models International Nuclear Information System (INIS) Sochen, N. 1992-05-01 The purpose of this thesis is the 2-D physics study. The main tool is the conformal field theory with Kac-Moody and W algebra. This theory describes the 2-D models that have translation, rotation and dilatation symmetries, at their critical point. The expanded conformal theories describe models that have a larger symmetry than conformal symmetry. After a review of conformal theory methods, the author effects a detailed study of singular vector form in sl(2) affine algebra. With this important form, correlation functions can be calculated. The classical W algebra is studied and the relations between classical W algebra and quantum W algebra are specified. Bosonization method is presented and sl(2)/sl(2) topological model, studied. Partition function bosonization of different models is described. A program of rational theory classification is described linking rational conformal theories and spin integrable models, and interesting relations between Boltzmann weights of different models have been found. With these relations, the integrability of models by a direct calculation of their Boltzmann weights is proved 20. Three level constraints on conformal field theories and string models International Nuclear Information System (INIS) Lewellen, D.C. 1989-05-01 Simple tree level constraints for conformal field theories which follow from the requirement of crossing symmetry of four-point amplitudes are presented, and their utility for probing general properties of string models is briefly illustrated and discussed. 9 refs 1. Nematic elastomers: from a microscopic model to macroscopic elasticity theory. Science.gov (United States) Xing, Xiangjun; Pfahl, Stephan; Mukhopadhyay, Swagatam; Goldbart, Paul M; Zippelius, Annette 2008-05-01 A Landau theory is constructed for the gelation transition in cross-linked polymer systems possessing spontaneous nematic ordering, based on symmetry principles and the concept of an order parameter for the amorphous solid state. This theory is substantiated with help of a simple microscopic model of cross-linked dimers. Minimization of the Landau free energy in the presence of nematic order yields the neoclassical theory of the elasticity of nematic elastomers and, in the isotropic limit, the classical theory of isotropic elasticity. These phenomenological theories of elasticity are thereby derived from a microscopic model, and it is furthermore demonstrated that they are universal mean-field descriptions of the elasticity for all chemical gels and vulcanized media. 2. Soliton excitations in a class of nonlinear field theory models International Nuclear Information System (INIS) Makhan'kov, V.G.; Fedyanin, V.K. 1985-01-01 Investigation results of nonlinear models of the field theory with a lagrangian are described. The theory includes models both with zero stable vacuum epsilon=1 and with condensate epsilon=-1 (of disturbed symmetry). Conditions of existence of particle-like solutions (PLS), stability of these solutions are investigated. Soliton dynamics is studied. PLS formfactors are calculated. Statistical mechanics of solitons is built and their dynamic structure factors are calculated 3. Two-matrix models and c =1 string theory International Nuclear Information System (INIS) Bonora, L.; Xiong Chuansheng 1994-05-01 We show that the most general two-matrix model with bilinear coupling underlies c = 1 string theory. More precisely we prove that W 1+∞ constraints, a subset of the correlation functions and the integrable hierarchy characterizing such two-matrix model, correspond exactly to the W 1+∞ constraints, to the discrete tachyon correlation functions and the integrable hierarchy of the c = 1 string theory. (orig.) 4. Planar N = 4 gauge theory and the Hubbard model International Nuclear Information System (INIS) Rej, Adam; Serban, Didina; Staudacher, Matthias 2006-01-01 Recently it was established that a certain integrable long-range spin chain describes the dilatation operator of N = 4 gauge theory in the su(2) sector to at least three-loop order, while exhibiting BMN scaling to all orders in perturbation theory. Here we identify this spin chain as an approximation to an integrable short-ranged model of strongly correlated electrons: The Hubbard model 5. Scattering and short-distance properties in field theory models International Nuclear Information System (INIS) Iagolnitzer, D. 1987-01-01 The aim of constructive field theory is not only to define models but also to establish their general properties of physical interest. We here review recent works on scattering and on short-distance properties for weakly coupled theories with mass gap such as typically P(φ) in dimension 2, φ 4 in dimension 3 and the (renormalizable, asymptotically free) massive Gross-Neveu (GN) model in dimension 2. Many of the ideas would apply similarly to other (possibly non renormalizable) theories that might be defined in a similar way via phase-space analysis 6. The monster sporadic group and a theory underlying superstring models International Nuclear Information System (INIS) Chapline, G. 1996-09-01 The pattern of duality symmetries acting on the states of compactified superstring models reinforces an earlier suggestion that the Monster sporadic group is a hidden symmetry for superstring models. This in turn points to a supersymmetric theory of self-dual and anti-self-dual K3 manifolds joined by Dirac strings and evolving in a 13 dimensional spacetime as the fundamental theory. In addition to the usual graviton and dilaton this theory contains matter-like degrees of freedom resembling the massless states of the heterotic string, thus providing a completely geometric interpretation for ordinary matter. 25 refs 7. Activation of angiotensin-converting enzyme 2 (ACE2) attenuates allergic airway inflammation in rat asthma model International Nuclear Information System (INIS) Dhawale, Vaibhav Shrirang; Amara, Venkateswara Rao; Karpe, Pinakin Arun; Malek, Vajir; Patel, Deep; Tikoo, Kulbhushan 2016-01-01 Angiotensin-I converting enzyme (ACE) is positively correlated to asthma, chronic obstructive pulmonary disease (COPD), acute respiratory distress syndrome (ARDS) and is highly expressed in lungs. ACE2, the counteracting enzyme of ACE, was proven to be protective in pulmonary, cardiovascular diseases. In the present study we checked the effect of ACE2 activation in animal model of asthma. Asthma was induced in male wistar rats by sensitization and challenge with ovalbumin and then treated with ACE2 activator, diminazene aceturate (DIZE) for 2 weeks. 48 h after last allergen challenge, animals were anesthetized, blood, BALF, femoral bone marrow lavage were collected for leucocyte count; trachea for measuring airway responsiveness to carbachol; lungs and heart were isolated for histological studies and western blotting. In our animal model, the characteristic features of asthma such as altered airway responsiveness to carbachol, eosinophilia and neutrophilia were observed. Western blotting revealed the increased pulmonary expression of ACE1, IL-1β, IL-4, NF-κB, BCL2, p-AKT, p-p38 and decreased expression of ACE2 and IκB. DIZE treatment prevented these alterations. Intraalveolar interstitial thickening, inflammatory cell infiltration, interstitial fibrosis, oxidative stress and right ventricular hypertrophy in asthma control animals were also reversed by DIZE treatment. Activation of ACE2 by DIZE conferred protection against asthma as evident from biochemical, functional, histological and molecular parameters. To the best of our knowledge, we report for the first time that activation of ACE2 by DIZE prevents asthma progression by altering AKT, p38, NF-κB and other inflammatory markers. - Highlights: • Diminazene aceturate (DIZE), an ACE2 activator prevents ovalbumin-induced asthma. • DIZE acted by upregulating ACE2, downregulating ACE1, MAPKs, markers of inflammation, apoptosis. • DIZE reduced airway inflammation, fibrosis, right ventricular hypertrophy and 8. Activation of angiotensin-converting enzyme 2 (ACE2) attenuates allergic airway inflammation in rat asthma model Energy Technology Data Exchange (ETDEWEB) Dhawale, Vaibhav Shrirang; Amara, Venkateswara Rao; Karpe, Pinakin Arun; Malek, Vajir; Patel, Deep; Tikoo, Kulbhushan, E-mail: tikoo.k@gmail.com 2016-09-01 Angiotensin-I converting enzyme (ACE) is positively correlated to asthma, chronic obstructive pulmonary disease (COPD), acute respiratory distress syndrome (ARDS) and is highly expressed in lungs. ACE2, the counteracting enzyme of ACE, was proven to be protective in pulmonary, cardiovascular diseases. In the present study we checked the effect of ACE2 activation in animal model of asthma. Asthma was induced in male wistar rats by sensitization and challenge with ovalbumin and then treated with ACE2 activator, diminazene aceturate (DIZE) for 2 weeks. 48 h after last allergen challenge, animals were anesthetized, blood, BALF, femoral bone marrow lavage were collected for leucocyte count; trachea for measuring airway responsiveness to carbachol; lungs and heart were isolated for histological studies and western blotting. In our animal model, the characteristic features of asthma such as altered airway responsiveness to carbachol, eosinophilia and neutrophilia were observed. Western blotting revealed the increased pulmonary expression of ACE1, IL-1β, IL-4, NF-κB, BCL2, p-AKT, p-p38 and decreased expression of ACE2 and IκB. DIZE treatment prevented these alterations. Intraalveolar interstitial thickening, inflammatory cell infiltration, interstitial fibrosis, oxidative stress and right ventricular hypertrophy in asthma control animals were also reversed by DIZE treatment. Activation of ACE2 by DIZE conferred protection against asthma as evident from biochemical, functional, histological and molecular parameters. To the best of our knowledge, we report for the first time that activation of ACE2 by DIZE prevents asthma progression by altering AKT, p38, NF-κB and other inflammatory markers. - Highlights: • Diminazene aceturate (DIZE), an ACE2 activator prevents ovalbumin-induced asthma. • DIZE acted by upregulating ACE2, downregulating ACE1, MAPKs, markers of inflammation, apoptosis. • DIZE reduced airway inflammation, fibrosis, right ventricular hypertrophy and 9. Involvement of TNF-α converting enzyme in the development of psoriasis-like lesions in a mouse model. Directory of Open Access Journals (Sweden) Kenji Sato Full Text Available TNF-α plays a crucial role in psoriasis; therefore, TNF inhibition has become a gold standard for the treatment of psoriasis. TNF-α is processed from a membrane-bound form by TNF-α converting enzyme (TACE to soluble form, which exerts a number of biological activities. EGF receptor (EGFR ligands, including heparin-binding EGF-like growth factor (HB-EGF, amphiregulin and transforming growth factor (TGF-α are also TACE substrates and are psoriasis-associated growth factors. Vascular endothelial growth factor (VEGF, one of the downstream molecules of EGFR and TNF signaling, plays a key role in angiogenesis for developing psoriasis. In the present study, to assess the possible role of TACE in the pathogenesis of psoriasis, we investigated the involvement of TACE in TPA-induced psoriasis-like lesions in K5.Stat3C mice, which represent a mouse model of psoriasis. In this mouse model, TNF-α, amphiregulin, HB-EGF and TGF-α were significantly up-regulated in the skin lesions, similar to human psoriasis. Treatment of K5.Stat3C mice with TNF-α or EGFR inhibitors attenuated the skin lesions, suggesting the roles of TACE substrates in psoriasis. Furthermore, the skin lesions of K5.Stat3C mice showed down-regulation of tissue inhibitor of metalloproteinase-3, an endogenous inhibitor of TACE, and an increase in soluble TNF-α. A TACE inhibitor abrogated EGFR ligand-dependent keratinocyte proliferation and VEGF production in vitro, suggesting that TACE was involved in both epidermal hyperplasia and angiogenesis during psoriasis development. These results strongly suggest that TACE contributes to the development of psoriatic lesions through releasing two kinds of psoriasis mediators, TNF-α and EGFR ligands. Therefore, TACE could be a potential therapeutic target for the treatment of psoriasis. 10. Consumer preference models: fuzzy theory approach Science.gov (United States) Turksen, I. B.; Wilson, I. A. 1993-12-01 Consumer preference models are widely used in new product design, marketing management, pricing and market segmentation. The purpose of this article is to develop and test a fuzzy set preference model which can represent linguistic variables in individual-level models implemented in parallel with existing conjoint models. The potential improvements in market share prediction and predictive validity can substantially improve management decisions about what to make (product design), for whom to make it (market segmentation) and how much to make (market share prediction). 11. Narrative theories as computational models: reader-oriented theory and artificial intelligence Energy Technology Data Exchange (ETDEWEB) Galloway, P. 1983-12-01 In view of the rapid development of reader-oriented theory and its interest in dynamic models of narrative, the author speculates in a serious way about what such models might look like in computational terms. Researchers in artificial intelligence (AI) have already begun to develop models of story understanding as the emphasis in ai research has shifted toward natural language understanding and as ai has allied itself with cognitive psychology and linguistics to become cognitive science. Research in ai and in narrative theory share many common interests and problems and both studies might benefit from an exchange of ideas. 11 references. 12. A Dynamic Systems Theory Model of Visual Perception Development Science.gov (United States) Coté, Carol A. 2015-01-01 This article presents a model for understanding the development of visual perception from a dynamic systems theory perspective. It contrasts to a hierarchical or reductionist model that is often found in the occupational therapy literature. In this proposed model vision and ocular motor abilities are not foundational to perception, they are seen… 13. Membrane models and generalized Z2 gauge theories International Nuclear Information System (INIS) Lowe, M.J.; Wallace, D.J. 1980-01-01 We consider models of (d-n)-dimensional membranes fluctuating in a d-dimensional space under the action of surface tension. We investigate the renormalization properties of these models perturbatively and in 1/n expansion. The potential relationships of these models to generalized Z 2 gauge theories are indicated. (orig.) 14. Theories and Frameworks for Online Education: Seeking an Integrated Model Science.gov (United States) Picciano, Anthony G. 2017-01-01 This article examines theoretical frameworks and models that focus on the pedagogical aspects of online education. After a review of learning theory as applied to online education, a proposal for an integrated "Multimodal Model for Online Education" is provided based on pedagogical purpose. The model attempts to integrate the work of… 15. Linear control theory for gene network modeling. Directory of Open Access Journals (Sweden) Yong-Jun Shin Full Text Available Systems biology is an interdisciplinary field that aims at understanding complex interactions in cells. Here we demonstrate that linear control theory can provide valuable insight and practical tools for the characterization of complex biological networks. We provide the foundation for such analyses through the study of several case studies including cascade and parallel forms, feedback and feedforward loops. We reproduce experimental results and provide rational analysis of the observed behavior. We demonstrate that methods such as the transfer function (frequency domain and linear state-space (time domain can be used to predict reliably the properties and transient behavior of complex network topologies and point to specific design strategies for synthetic networks. 16. Measurement Models for Reasoned Action Theory. Science.gov (United States) Hennessy, Michael; Bleakley, Amy; Fishbein, Martin 2012-03-01 Quantitative researchers distinguish between causal and effect indicators. What are the analytic problems when both types of measures are present in a quantitative reasoned action analysis? To answer this question, we use data from a longitudinal study to estimate the association between two constructs central to reasoned action theory: behavioral beliefs and attitudes toward the behavior. The belief items are causal indicators that define a latent variable index while the attitude items are effect indicators that reflect the operation of a latent variable scale. We identify the issues when effect and causal indicators are present in a single analysis and conclude that both types of indicators can be incorporated in the analysis of data based on the reasoned action approach. 17. Modeling acquaintance networks based on balance theory Directory of Open Access Journals (Sweden) Vukašinović Vida 2014-09-01 Full Text Available An acquaintance network is a social structure made up of a set of actors and the ties between them. These ties change dynamically as a consequence of incessant interactions between the actors. In this paper we introduce a social network model called the Interaction-Based (IB model that involves well-known sociological principles. The connections between the actors and the strength of the connections are influenced by the continuous positive and negative interactions between the actors and, vice versa, the future interactions are more likely to happen between the actors that are connected with stronger ties. The model is also inspired by the social behavior of animal species, particularly that of ants in their colony. A model evaluation showed that the IB model turned out to be sparse. The model has a small diameter and an average path length that grows in proportion to the logarithm of the number of vertices. The clustering coefficient is relatively high, and its value stabilizes in larger networks. The degree distributions are slightly right-skewed. In the mature phase of the IB model, i.e., when the number of edges does not change significantly, most of the network properties do not change significantly either. The IB model was found to be the best of all the compared models in simulating the e-mail URV (University Rovira i Virgili of Tarragona network because the properties of the IB model more closely matched those of the e-mail URV network than the other models 18. Modeling in applied sciences a kinetic theory approach CERN Document Server Pulvirenti, Mario 2000-01-01 Modeling complex biological, chemical, and physical systems, in the context of spatially heterogeneous mediums, is a challenging task for scientists and engineers using traditional methods of analysis Modeling in Applied Sciences is a comprehensive survey of modeling large systems using kinetic equations, and in particular the Boltzmann equation and its generalizations An interdisciplinary group of leading authorities carefully develop the foundations of kinetic models and discuss the connections and interactions between model theories, qualitative and computational analysis and real-world applications This book provides a thoroughly accessible and lucid overview of the different aspects, models, computations, and methodology for the kinetic-theory modeling process Topics and Features * Integrated modeling perspective utilized in all chapters * Fluid dynamics of reacting gases * Self-contained introduction to kinetic models * Becker–Doring equations * Nonlinear kinetic models with chemical reactions * Kinet... 19. Baldrige Theory into Practice: A Generic Model Science.gov (United States) Arif, Mohammed 2007-01-01 Purpose: The education system globally has moved from a push-based or producer-centric system to a pull-based or customer centric system. Malcolm Baldrige Quality Award (MBQA) model happens to be one of the latest additions to the pull based models. The purpose of this paper is to develop a generic framework for MBQA that can be used by… 20. Optimal transportation networks models and theory CERN Document Server Bernot, Marc; Morel, Jean-Michel 2009-01-01 The transportation problem can be formalized as the problem of finding the optimal way to transport a given measure into another with the same mass. In contrast to the Monge-Kantorovitch problem, recent approaches model the branched structure of such supply networks as minima of an energy functional whose essential feature is to favour wide roads. Such a branched structure is observable in ground transportation networks, in draining and irrigation systems, in electrical power supply systems and in natural counterparts such as blood vessels or the branches of trees. These lectures provide mathematical proof of several existence, structure and regularity properties empirically observed in transportation networks. The link with previous discrete physical models of irrigation and erosion models in geomorphology and with discrete telecommunication and transportation models is discussed. It will be mathematically proven that the majority fit in the simple model sketched in this volume. 1. The Relevance of Using Mathematical Models in Macroeconomic Policies Theory Directory of Open Access Journals (Sweden) Nora Mihail 2006-11-01 Full Text Available The article presents a look of the principal’s mathematical models – starting with Theil, Hansen and Tinbergen work – and their results used to analysis and design macroeconomic policies. In modeling field changes are very fast in theoretical aspects of modeling the many problems of macroeconomic policies and in using in practice the different political models elaboration. The article points out the problems of static and dynamic theory used in macro-policies modeling. 2. The Relevance of Using Mathematical Models in Macroeconomic Policies Theory Directory of Open Access Journals (Sweden) Nora Mihail 2006-09-01 Full Text Available The article presents a look of the principal’s mathematical models – starting with Theil, Hansen and Tinbergen work – and their results used to analysis and design macroeconomic policies. In modeling field changes are very fast in theoretical aspects of modeling the many problems of macroeconomic policies and in using in practice the different political models elaboration. The article points out the problems of static and dynamic theory used in macro-policies modeling. 3. Fire and Heat Spreading Model Based on Cellular Automata Theory Science.gov (United States) Samartsev, A. A.; Rezchikov, A. F.; Kushnikov, V. A.; Ivashchenko, V. A.; Bogomolov, A. S.; Filimonyuk, L. Yu; Dolinina, O. N.; Kushnikov, O. V.; Shulga, T. E.; Tverdokhlebov, V. A.; Fominykh, D. S. 2018-05-01 The distinctive feature of the proposed fire and heat spreading model in premises is the reduction of the computational complexity due to the use of the theory of cellular automata with probability rules of behavior. The possibilities and prospects of using this model in practice are noted. The proposed model has a simple mechanism of integration with agent-based evacuation models. The joint use of these models could improve floor plans and reduce the time of evacuation from premises during fires. 4. Matrix model as a mirror of Chern-Simons theory International Nuclear Information System (INIS) Aganagic, Mina; Klemm, Albrecht; Marino, Marcos; Vafa, Cumrun 2004-01-01 Using mirror symmetry, we show that Chern-Simons theory on certain manifolds such as lens spaces reduces to a novel class of Hermitian matrix models, where the measure is that of unitary matrix models. We show that this agrees with the more conventional canonical quantization of Chern-Simons theory. Moreover, large N dualities in this context lead to computation of all genus A-model topological amplitudes on toric Calabi-Yau manifolds in terms of matrix integrals. In the context of type IIA superstring compactifications on these Calabi-Yau manifolds with wrapped D6 branes (which are dual to M-theory on G2 manifolds) this leads to engineering and solving F-terms for N=1 supersymmetric gauge theories with superpotentials involving certain multi-trace operators. (author) 5. Mixed models theory and applications with R CERN Document Server Demidenko, Eugene 2013-01-01 Mixed modeling is one of the most promising and exciting areas of statistical analysis, enabling the analysis of nontraditional, clustered data that may come in the form of shapes or images. This book provides in-depth mathematical coverage of mixed models' statistical properties and numerical algorithms, as well as applications such as the analysis of tumor regrowth, shape, and image. The new edition includes significant updating, over 300 exercises, stimulating chapter projects and model simulations, inclusion of R subroutines, and a revised text format. The target audience continues to be g 6. Nonconvex Model of Material Growth: Mathematical Theory Science.gov (United States) Ganghoffer, J. F.; Plotnikov, P. I.; Sokolowski, J. 2018-06-01 The model of volumetric material growth is introduced in the framework of finite elasticity. The new results obtained for the model are presented with complete proofs. The state variables include the deformations, temperature and the growth factor matrix function. The existence of global in time solutions for the quasistatic deformations boundary value problem coupled with the energy balance and the evolution of the growth factor is shown. The mathematical results can be applied to a wide class of growth models in mechanics and biology. 7. Solid mechanics theory, modeling, and problems CERN Document Server Bertram, Albrecht 2015-01-01 This textbook offers an introduction to modeling the mechanical behavior of solids within continuum mechanics and thermodynamics. To illustrate the fundamental principles, the book starts with an overview of the most important models in one dimension. Tensor calculus, which is called for in three-dimensional modeling, is concisely presented in the second part of the book. Once the reader is equipped with these essential mathematical tools, the third part of the book develops the foundations of continuum mechanics right from the beginning. Lastly, the book’s fourth part focuses on modeling the mechanics of materials and in particular elasticity, viscoelasticity and plasticity. Intended as an introductory textbook for students and for professionals interested in self-study, it also features numerous worked-out examples to aid in understanding. 8. Modeling workplace bullying using catastrophe theory. Science.gov (United States) Escartin, J; Ceja, L; Navarro, J; Zapf, D 2013-10-01 Workplace bullying is defined as negative behaviors directed at organizational members or their work context that occur regularly and repeatedly over a period of time. Employees' perceptions of psychosocial safety climate, workplace bullying victimization, and workplace bullying perpetration were assessed within a sample of nearly 5,000 workers. Linear and nonlinear approaches were applied in order to model both continuous and sudden changes in workplace bullying. More specifically, the present study examines whether a nonlinear dynamical systems model (i.e., a cusp catastrophe model) is superior to the linear combination of variables for predicting the effect of psychosocial safety climate and workplace bullying victimization on workplace bullying perpetration. According to the AICc, and BIC indices, the linear regression model fits the data better than the cusp catastrophe model. The study concludes that some phenomena, especially unhealthy behaviors at work (like workplace bullying), may be better studied using linear approaches as opposed to nonlinear dynamical systems models. This can be explained through the healthy variability hypothesis, which argues that positive organizational behavior is likely to present nonlinear behavior, while a decrease in such variability may indicate the occurrence of negative behaviors at work. 9. Hybrid Z-Source DC-DC Converter with ZVZCS and Power Transformer Resetting: Design, Modeling, and Fabrication Directory of Open Access Journals (Sweden) H. Torkaman 2018-03-01 Full Text Available This paper introduces a novel two transistors forward topology employing a z-source to achieve ZVZCS and power transformer resetting for various applications. Comparing with the forward converter, this topology has the advantage of displaying ZCS condition with an added Z-Source and no additional switches when the switches turn on, and that ZVS condition happens when the switches turn off. Duty cycle of the topology can exceed 50 percent. As a result, these converters are suitable for applications with high efficiency. In this paper, structure and properties of the topology will be discussed in details. Then the design principles will be presented. Finally, the benefits aforementioned will be approved in practice through a simple forward converter. 10. Spatial interaction models facility location using game theory CERN Document Server D'Amato, Egidio; Pardalos, Panos 2017-01-01 Facility location theory develops the idea of locating one or more facilities by optimizing suitable criteria such as minimizing transportation cost, or capturing the largest market share. The contributions in this book focus an approach to facility location theory through game theoretical tools highlighting situations where a location decision is faced by several decision makers and leading to a game theoretical framework in non-cooperative and cooperative methods. Models and methods regarding the facility location via game theory are explored and applications are illustrated through economics, engineering, and physics. Mathematicians, engineers, economists and computer scientists working in theory, applications and computational aspects of facility location problems using game theory will find this book useful. 11. Electrorheological fluids modeling and mathematical theory CERN Document Server Růžička, Michael 2000-01-01 This is the first book to present a model, based on rational mechanics of electrorheological fluids, that takes into account the complex interactions between the electromagnetic fields and the moving liquid. Several constitutive relations for the Cauchy stress tensor are discussed. The main part of the book is devoted to a mathematical investigation of a model possessing shear-dependent viscosities, proving the existence and uniqueness of weak and strong solutions for the steady and the unsteady case. The PDS systems investigated possess so-called non-standard growth conditions. Existence results for elliptic systems with non-standard growth conditions and with a nontrivial nonlinear r.h.s. and the first ever results for parabolic systems with a non-standard growth conditions are given for the first time. Written for advanced graduate students, as well as for researchers in the field, the discussion of both the modeling and the mathematics is self-contained. 12. Density functional theory and multiscale materials modeling Indian Academy of Sciences (India) One of the vital ingredients in the theoretical tools useful in materials modeling at all the length scales of interest is the concept of density. In the microscopic length scale, it is the electron density that has played a major role in providing a deeper understanding of chemical binding in atoms, molecules and solids. 13. Toda theories, W-algebras, and minimal models International Nuclear Information System (INIS) Mansfield, P.; Spence, B. 1991-01-01 We discuss the classical W-algebra symmetries of Toda field theories in terms of the pseudo-differential Lax operator associated with the Toda Lax pair. We then show how the W-algebra transformations can be understood as the non-abelian gauge transformations which preserve the form of the Lax pair. This provides a new understanding of the W-algebras, and we discuss their closure and co-cycle structure using this approach. The quantum Lax operator is investigated, and we show that this operator, which generates the quantum W-algebra currents, is conserved in the conformally extended Toda theories. The W-algebra minimal model primary fields are shown to arise naturally in these theories, leading to the conjecture that the conformally extended Toda theories provide a lagrangian formulation of the W-algebra minimal models. (orig.) 14. Towards a new tool to develop a 3-D shear-wave velocity model from converted waves Science.gov (United States) Colavitti, Leonardo; Hetényi, György 2017-04-01 The main target of this work is to develop a new method in which we exploit converted waves to construct a fully 3-D shear-wave velocity model of the crust. A reliable 3-D model is very important in Earth sciences because geological structures may vary significantly in their lateral dimension. In particular, shear-waves provide valuable complementary information with respect to P-waves because they usually guarantee a much better correlation in terms of rock density and mechanical properties, reducing the interpretation ambiguities. Therefore, it is fundamental to develop a new technique to improve structural images and to describe different lithologies in the crust. In this study we start from the analysis of receiver functions (RF, Langston, 1977), which are nowadays largely used for structural investigations based on passive seismic experiments, to map Earth discontinuities at depth. The RF technique is also commonly used to invert for velocity structure beneath single stations. Here, we plan to combine two strengths of RF method: shear-wave velocity inversion and dense arrays. Starting from a simple 3-D forward model, synthetic RFs are obtained extracting the structure along a ray to match observed data. During the inversion, thanks to a dense stations network, we aim to build and develop a multi-layer crustal model for shear-wave velocity. The initial model should be chosen simple to make sure that the inversion process is not influenced by the constraints in terms of depth and velocity posed at the beginning. The RFs inversion represents a complex problem because the amplitude and the arrival time of different phases depend in a non-linear way on the depth of interfaces and the characteristics of the velocity structure. The solution we envisage to manage the inversion problem is the stochastic Neighbourhood Algorithm (NA, Sambridge, 1999a, b), whose goal is to find an ensemble of models that sample the good data-fitting regions of a multidimensional parameter 15. Automated Physico-Chemical Cell Model Development through Information Theory Energy Technology Data Exchange (ETDEWEB) Peter J. Ortoleva 2005-11-29 The objective of this project was to develop predictive models of the chemical responses of microbial cells to variations in their surroundings. The application of these models is optimization of environmental remediation and energy-producing biotechnical processes.The principles on which our project is based are as follows: chemical thermodynamics and kinetics; automation of calibration through information theory; integration of multiplex data (e.g. cDNA microarrays, NMR, proteomics), cell modeling, and bifurcation theory to overcome cellular complexity; and the use of multiplex data and information theory to calibrate and run an incomplete model. In this report we review four papers summarizing key findings and a web-enabled, multiple module workflow we have implemented that consists of a set of interoperable systems biology computational modules. 16. Computational hemodynamics theory, modelling and applications CERN Document Server Tu, Jiyuan; Wong, Kelvin Kian Loong 2015-01-01 This book discusses geometric and mathematical models that can be used to study fluid and structural mechanics in the cardiovascular system. Where traditional research methodologies in the human cardiovascular system are challenging due to its invasive nature, several recent advances in medical imaging and computational fluid and solid mechanics modelling now provide new and exciting research opportunities. This emerging field of study is multi-disciplinary, involving numerical methods, computational science, fluid and structural mechanics, and biomedical engineering. Certainly any new student or researcher in this field may feel overwhelmed by the wide range of disciplines that need to be understood. This unique book is one of the first to bring together knowledge from multiple disciplines, providing a starting point to each of the individual disciplines involved, attempting to ease the steep learning curve. This book presents elementary knowledge on the physiology of the cardiovascular system; basic knowl... 17. Fuzzy Stochastic Optimization Theory, Models and Applications CERN Document Server Wang, Shuming 2012-01-01 Covering in detail both theoretical and practical perspectives, this book is a self-contained and systematic depiction of current fuzzy stochastic optimization that deploys the fuzzy random variable as a core mathematical tool to model the integrated fuzzy random uncertainty. It proceeds in an orderly fashion from the requisite theoretical aspects of the fuzzy random variable to fuzzy stochastic optimization models and their real-life case studies. The volume reflects the fact that randomness and fuzziness (or vagueness) are two major sources of uncertainty in the real world, with significant implications in a number of settings. In industrial engineering, management and economics, the chances are high that decision makers will be confronted with information that is simultaneously probabilistically uncertain and fuzzily imprecise, and optimization in the form of a decision must be made in an environment that is doubly uncertain, characterized by a co-occurrence of randomness and fuzziness. This book begins... 18. Nonlinear model predictive control theory and algorithms CERN Document Server Grüne, Lars 2017-01-01 This book offers readers a thorough and rigorous introduction to nonlinear model predictive control (NMPC) for discrete-time and sampled-data systems. NMPC schemes with and without stabilizing terminal constraints are detailed, and intuitive examples illustrate the performance of different NMPC variants. NMPC is interpreted as an approximation of infinite-horizon optimal control so that important properties like closed-loop stability, inverse optimality and suboptimality can be derived in a uniform manner. These results are complemented by discussions of feasibility and robustness. An introduction to nonlinear optimal control algorithms yields essential insights into how the nonlinear optimization routine—the core of any nonlinear model predictive controller—works. Accompanying software in MATLAB® and C++ (downloadable from extras.springer.com/), together with an explanatory appendix in the book itself, enables readers to perform computer experiments exploring the possibilities and limitations of NMPC. T... 19. An Ar threesome: Matrix models, 2d conformal field theories, and 4dN=2 gauge theories International Nuclear Information System (INIS) Schiappa, Ricardo; Wyllard, Niclas 2010-01-01 We explore the connections between three classes of theories: A r quiver matrix models, d=2 conformal A r Toda field theories, and d=4N=2 supersymmetric conformal A r quiver gauge theories. In particular, we analyze the quiver matrix models recently introduced by Dijkgraaf and Vafa (unpublished) and make detailed comparisons with the corresponding quantities in the Toda field theories and the N=2 quiver gauge theories. We also make a speculative proposal for how the matrix models should be modified in order for them to reproduce the instanton partition functions in quiver gauge theories in five dimensions. 20. Lenses on reading an introduction to theories and models CERN Document Server Tracey, Diane H 2017-01-01 Widely adopted as an ideal introduction to the major models of reading, this text guides students to understand and facilitate children's literacy development. Coverage encompasses the full range of theories that have informed reading instruction and research, from classical thinking to cutting-edge cognitive, social learning, physiological, and affective perspectives. Readers learn how theory shapes instructional decision making and how to critically evaluate the assumptions and beliefs that underlie their own teaching. Pedagogical features include framing and discussion questions, learning a 1. Perturbation theory instead of large scale shell model calculations International Nuclear Information System (INIS) Feldmeier, H.; Mankos, P. 1977-01-01 Results of large scale shell model calculations for (sd)-shell nuclei are compared with a perturbation theory provides an excellent approximation when the SU(3)-basis is used as a starting point. The results indicate that perturbation theory treatment in an SU(3)-basis including 2hω excitations should be preferable to a full diagonalization within the (sd)-shell. (orig.) [de 2. Scaling theory of depinning in the Sneppen model International Nuclear Information System (INIS) Maslov, S.; Paczuski, M. 1994-01-01 We develop a scaling theory for the critical depinning behavior of the Sneppen interface model [Phys. Rev. Lett. 69, 3539 (1992)]. This theory is based on a ''gap'' equation that describes the self-organization process to a critical state of the depinning transition. All of the critical exponents can be expressed in terms of two independent exponents, ν parallel (d) and ν perpendicular (d), characterizing the divergence of the parallel and perpendicular correlation lengths as the interface approaches its dynamical attractor 3. Thermodynamic Models from Fluctuation Solution Theory Analysis of Molecular Simulations DEFF Research Database (Denmark) Christensen, Steen; Peters, Günther H.j.; Hansen, Flemming Yssing 2007-01-01 Fluctuation solution theory (FST) is employed to analyze results of molecular dynamics (MD) simulations of liquid mixtures. The objective is to generate parameters for macroscopic GE-models, here the modified Margules model. We present a strategy for choosing the number of parameters included... 4. The Use of Modelling for Theory Building in Qualitative Analysis Science.gov (United States) Briggs, Ann R. J. 2007-01-01 The purpose of this article is to exemplify and enhance the place of modelling as a qualitative process in educational research. Modelling is widely used in quantitative research as a tool for analysis, theory building and prediction. Statistical data lend themselves to graphical representation of values, interrelationships and operational… 5. Goodness-of-Fit Assessment of Item Response Theory Models Science.gov (United States) Maydeu-Olivares, Alberto 2013-01-01 The article provides an overview of goodness-of-fit assessment methods for item response theory (IRT) models. It is now possible to obtain accurate "p"-values of the overall fit of the model if bivariate information statistics are used. Several alternative approaches are described. As the validity of inferences drawn on the fitted model… 6. Demonstration of the Recent Additions in Modeling Capabilities for the WEC-Sim Wave Energy Converter Design Tool: Preprint Energy Technology Data Exchange (ETDEWEB) Tom, N.; Lawson, M.; Yu, Y. H. 2015-03-01 WEC-Sim is a mid-fidelity numerical tool for modeling wave energy conversion (WEC) devices. The code uses the MATLAB SimMechanics package to solve the multi-body dynamics and models the wave interactions using hydrodynamic coefficients derived from frequency domain boundary element methods. In this paper, the new modeling features introduced in the latest release of WEC-Sim will be presented. The first feature discussed is the conversion of the fluid memory kernel to a state-space approximation that provides significant gains in computational speed. The benefit of the state-space calculation becomes even greater after the hydrodynamic body-to-body coefficients are introduced as the number of interactions increases exponentially with the number of floating bodies. The final feature discussed is the capability toadd Morison elements to provide additional hydrodynamic damping and inertia. This is generally used as a tuning feature, because performance is highly dependent on the chosen coefficients. In this paper, a review of the hydrodynamic theory for each of the features is provided and successful implementation is verified using test cases. 7. Optimal velocity difference model for a car-following theory International Nuclear Information System (INIS) Peng, G.H.; Cai, X.H.; Liu, C.Q.; Cao, B.F.; Tuo, M.X. 2011-01-01 In this Letter, we present a new optimal velocity difference model for a car-following theory based on the full velocity difference model. The linear stability condition of the new model is obtained by using the linear stability theory. The unrealistically high deceleration does not appear in OVDM. Numerical simulation of traffic dynamics shows that the new model can avoid the disadvantage of negative velocity occurred at small sensitivity coefficient λ in full velocity difference model by adjusting the coefficient of the optimal velocity difference, which shows that collision can disappear in the improved model. -- Highlights: → A new optimal velocity difference car-following model is proposed. → The effects of the optimal velocity difference on the stability of traffic flow have been explored. → The starting and braking process were carried out through simulation. → The effects of the optimal velocity difference can avoid the disadvantage of negative velocity. 8. Advances in cognitive theory and therapy: the generic cognitive model. Science.gov (United States) Beck, Aaron T; Haigh, Emily A P 2014-01-01 For over 50 years, Beck's cognitive model has provided an evidence-based way to conceptualize and treat psychological disorders. The generic cognitive model represents a set of common principles that can be applied across the spectrum of psychological disorders. The updated theoretical model provides a framework for addressing significant questions regarding the phenomenology of disorders not explained in previous iterations of the original model. New additions to the theory include continuity of adaptive and maladaptive function, dual information processing, energizing of schemas, and attentional focus. The model includes a theory of modes, an organization of schemas relevant to expectancies, self-evaluations, rules, and memories. A description of the new theoretical model is followed by a presentation of the corresponding applied model, which provides a template for conceptualizing a specific disorder and formulating a case. The focus on beliefs differentiates disorders and provides a target for treatment. A variety of interventions are described. 9. Performance Improvement of Sensorless Vector Control for Induction Motor Drives Fed by Matrix Converter Using Nonlinear Model and Disturbance Observer DEFF Research Database (Denmark) Lee, Kyo-Beum; Blaabjerg, Frede 2004-01-01 This paper presents a new sensorless vector control system for high performance induction motor drives fed by a matrix converter with a non-linearity compensation and disturbance observer. The nonlinear voltage distortion that is caused by communication delay and on-state voltage drop in switching... 10. Reduced Order Extended Luenberger Observer Based Sensorless Vector Control Fed by Matrix Converter with Non-linearity Modeling DEFF Research Database (Denmark) Lee, Kyo-Beum; Blaabjerg, Frede 2004-01-01 This paper presents a new sensorless vector control system for high performance induction motor drives fed by a matrix converter with non-linearity compensation. The nonlinear voltage distortion that is caused by commutation delay and on-state voltage drop in switching device is corrected by a new... 11. Wave-to-wire Modelling of Wave Energy Converters : Critical Assessment, Developments and Applicability for Economical Optimisation DEFF Research Database (Denmark) Ferri, Francesco The idea to use the motion of a wavy sea surface to produce electricity was investigate in the seventies, in a time when the earliest wave energy converters were conceived and developed. But nowadays still none of the patented devices reached a commercial stage. Wave energy is a large, mostly unt... 12. Harmonic models of a back-to-back converter in large offshore wind farms compared with measurement data DEFF Research Database (Denmark) Kocewiak, Lukasz Hubert; Hjerrild, Jesper; Bak, Claus Leth 2009-01-01 The offshore wind farm with installed back-to-back power converter in wind turbines is studied. As an example the Burbo Bank offshore wind farm with Siemens Wind Power wind turbines is taken into consideration. The wind farm is simulated in DIgSILENT Power Factory software in order to determine... 13. Digital control of high-frequency switched-mode power converters CERN Document Server Corradini, Luca; Mattavelli, Paolo; Zane, Regan This book is focused on the fundamental aspects of analysis, modeling and design of digital control loops around high-frequency switched-mode power converters in a systematic and rigorous manner Comprehensive treatment of digital control theory for power converters Verilog and VHDL sample codes are provided Enables readers to successfully analyze, model, design, and implement voltage, current, or multi-loop digital feedback loops around switched-mode power converters Practical examples are used throughout the book to illustrate applications of the techniques developed Matlab examples are also 14. Applications of generalizability theory and their relations to classical test theory and structural equation modeling. Science.gov (United States) Vispoel, Walter P; Morris, Carrie A; Kilinc, Murat 2018-03-01 Although widely recognized as a comprehensive framework for representing score reliability, generalizability theory (G-theory), despite its potential benefits, has been used sparingly in reporting of results for measures of individual differences. In this article, we highlight many valuable ways that G-theory can be used to quantify, evaluate, and improve psychometric properties of scores. Our illustrations encompass assessment of overall reliability, percentages of score variation accounted for by individual sources of measurement error, dependability of cut-scores for decision making, estimation of reliability and dependability for changes made to measurement procedures, disattenuation of validity coefficients for measurement error, and linkages of G-theory with classical test theory and structural equation modeling. We also identify computer packages for performing G-theory analyses, most of which can be obtained free of charge, and describe how they compare with regard to data input requirements, ease of use, complexity of designs supported, and output produced. (PsycINFO Database Record (c) 2018 APA, all rights reserved). 15. Putting "Organizations" into an Organization Theory Course: A Hybrid CAO Model for Teaching Organization Theory Science.gov (United States) Hannah, David R.; Venkatachary, Ranga 2010-01-01 In this article, the authors present a retrospective analysis of an instructor's multiyear redesign of a course on organization theory into what is called a hybrid Classroom-as-Organization model. It is suggested that this new course design served to apprentice students to function in quasi-real organizational structures. The authors further argue… 16. Reconstructing constructivism: causal models, Bayesian learning mechanisms, and the theory theory. Science.gov (United States) Gopnik, Alison; Wellman, Henry M 2012-11-01 We propose a new version of the "theory theory" grounded in the computational framework of probabilistic causal models and Bayesian learning. Probabilistic models allow a constructivist but rigorous and detailed approach to cognitive development. They also explain the learning of both more specific causal hypotheses and more abstract framework theories. We outline the new theoretical ideas, explain the computational framework in an intuitive and nontechnical way, and review an extensive but relatively recent body of empirical results that supports these ideas. These include new studies of the mechanisms of learning. Children infer causal structure from statistical information, through their own actions on the world and through observations of the actions of others. Studies demonstrate these learning mechanisms in children from 16 months to 4 years old and include research on causal statistical learning, informal experimentation through play, and imitation and informal pedagogy. They also include studies of the variability and progressive character of intuitive theory change, particularly theory of mind. These studies investigate both the physical and the psychological and social domains. We conclude with suggestions for further collaborative projects between developmental and computational cognitive scientists. 17. M-Theory Model-Building and Proton Stability CERN Document Server Ellis, Jonathan Richard; Nanopoulos, Dimitri V; Ellis, John; Faraggi, Alon E. 1998-01-01 We study the problem of baryon stability in M theory, starting from realistic four-dimensional string models constructed using the free-fermion formulation of the weakly-coupled heterotic string. Suitable variants of these models manifest an enhanced custodial gauge symmetry that forbids to all orders the appearance of dangerous dimension-five baryon-decay operators. We exhibit the underlying geometric (bosonic) interpretation of these models, which have a$Z_2 \\times Z_2\$ orbifold structure similar, but not identical, to the class of Calabi-Yau threefold compactifications of M and F theory investigated by Voisin and Borcea. A related generalization of their work may provide a solution to the problem of proton stability in M theory.

18. M-theory model-building and proton stability

International Nuclear Information System (INIS)

Ellis, J.; Faraggi, A.E.; Nanopoulos, D.V.; Houston Advanced Research Center, The Woodlands, TX; Academy of Athens

1997-09-01

The authors study the problem of baryon stability in M theory, starting from realistic four-dimensional string models constructed using the free-fermion formulation of the weakly-coupled heterotic string. Suitable variants of these models manifest an enhanced custodial gauge symmetry that forbids to all orders the appearance of dangerous dimension-five baryon-decay operators. The authors exhibit the underlying geometric (bosonic) interpretation of these models, which have a Z 2 x Z 2 orbifold structure similar, but not identical, to the class of Calabi-Yau threefold compactifications of M and F theory investigated by Voisin and Borcea. A related generalization of their work may provide a solution to the problem of proton stability in M theory

19. Algebraic computability and enumeration models recursion theory and descriptive complexity

CERN Document Server

Nourani, Cyrus F

2016-01-01

This book, Algebraic Computability and Enumeration Models: Recursion Theory and Descriptive Complexity, presents new techniques with functorial models to address important areas on pure mathematics and computability theory from the algebraic viewpoint. The reader is first introduced to categories and functorial models, with Kleene algebra examples for languages. Functorial models for Peano arithmetic are described toward important computational complexity areas on a Hilbert program, leading to computability with initial models. Infinite language categories are also introduced to explain descriptive complexity with recursive computability with admissible sets and urelements. Algebraic and categorical realizability is staged on several levels, addressing new computability questions with omitting types realizably. Further applications to computing with ultrafilters on sets and Turing degree computability are examined. Functorial models computability is presented with algebraic trees realizing intuitionistic type...

20. Theory to practice: the humanbecoming leading-following model.

Science.gov (United States)

Ursel, Karen L

2015-01-01

Guided by the humanbecoming leading-following model, the author designed a nursing theories course with the intention of creating a meaningful nursing theory to practice link. The author perceived that with the implementation of Situation-Background-Assessment-Recommendations (SBAR) communication, nursing staff had drifted away from using the Kardex™ in shift to shift reporting. Nurse students, faculty, and staff members supported the creation of a theories project which would engage nursing students in the pursuit of clinical excellence. The project chosen was to revise the existing Kardex™ (predominant nursing communication tool). In the project, guided by a nursing theory, nursing students focused on the unique patient's experience, depicting the specific role of nursing knowledge and the contributions of the registered nurse to the patient's healthcare journey. The emphasis of this theoretical learning was the application of a nursing theory to real-life clinical challenges with communication of relevant, timely, and accurate patient information, recognizing that real problems are often complex and require multi-perspective approaches. This project created learning opportunities where a nursing theory would be chosen by the nursing student clinical group and applied in their clinical specialty area. This practice activity served to broaden student understandings of the role of nursing knowledge and nursing theories in their professional practice. © The Author(s) 2014.

1. Theory of Time beyond the standard model

International Nuclear Information System (INIS)

Poliakov, Eugene S.

2008-01-01

A frame of non-uniform time is discussed. A concept of 'flow of time' is presented. The principle of time relativity in analogy with Galilean principle of relativity is set. Equivalence principle is set to state that the outcome of non-uniform time in an inertial frame of reference is equivalent to the outcome of a fictitious gravity force external to the frame of reference. Thus it is flow of time that causes gravity rather than mass. The latter is compared to experimental data achieving precision of up to 0.0003%. It is shown that the law of energy conservation is inapplicable to the frames of non-uniform time. A theoretical model of a physical entity (point mass, photon) travelling in the field of non-uniform time is considered. A generalized law that allows the flow of time to replace classical energy conservation is introduced on the basis of the experiment of Pound and Rebka. It is shown that linear dependence of flow of time on spatial coordinate conforms the inverse square law of universal gravitation and Keplerian mechanics. Momentum is shown to still be conserved

2. Standard Model theory calculations and experimental tests

International Nuclear Information System (INIS)

Cacciari, M.; Hamel de Monchenault, G.

2015-01-01

To present knowledge, all the physics at the Large Hadron Collider (LHC) can be described in the framework of the Standard Model (SM) of particle physics. Indeed the newly discovered Higgs boson with a mass close to 125 GeV seems to confirm the predictions of the SM. Thus, besides looking for direct manifestations of the physics beyond the SM, one of the primary missions of the LHC is to perform ever more stringent tests of the SM. This requires not only improved theoretical developments to produce testable predictions and provide experiments with reliable event generators, but also sophisticated analyses techniques to overcome the formidable experimental environment of the LHC and perform precision measurements. In the first section, we describe the state of the art of the theoretical tools and event generators that are used to provide predictions for the production cross sections of the processes of interest. In section 2, inclusive cross section measurements with jets, leptons and vector bosons are presented. Examples of differential cross sections, charge asymmetries and the study of lepton pairs are proposed in section 3. Finally, in section 4, we report studies on the multiple production of gauge bosons and constraints on anomalous gauge couplings

3. Models with oscillator terms in noncommutative quantum field theory

International Nuclear Information System (INIS)

Kronberger, E.

2010-01-01

The main focus of this Ph.D. thesis is on noncommutative models involving oscillator terms in the action. The first one historically is the successful Grosse-Wulkenhaar (G.W.) model which has already been proven to be renormalizable to all orders of perturbation theory. Remarkably it is furthermore capable of solving the Landau ghost problem. In a first step, we have generalized the G.W. model to gauge theories in a very straightforward way, where the action is BRS invariant and exhibits the good damping properties of the scalar theory by using the same propagator, the so-called Mehler kernel. To be able to handle some more involved one-loop graphs we have programmed a powerful Mathematica package, which is capable of analytically computing Feynman graphs with many terms. The result of those investigations is that new terms originally not present in the action arise, which led us to the conclusion that we should better start from a theory where those terms are already built in. Fortunately there is an action containing this complete set of terms. It can be obtained by coupling a gauge field to the scalar field of the G.W. model, integrating out the latter, and thus 'inducing' a gauge theory. Hence the model is called Induced Gauge Theory. Despite the advantage that it is by construction completely gauge invariant, it contains also some unphysical terms linear in the gauge field. Advantageously we could get rid of these terms using a special gauge dedicated to this purpose. Within this gauge we could again establish the Mehler kernel as gauge field propagator. Furthermore we where able to calculate the ghost propagator, which turned out to be very involved. Thus we were able to start with the first few loop computations showing the expected behavior. The next step is to show renormalizability of the model, where some hints towards this direction will also be given. (author) [de

4. Implications of Information Theory for Computational Modeling of Schizophrenia.

Science.gov (United States)

Silverstein, Steven M; Wibral, Michael; Phillips, William A

2017-10-01

Information theory provides a formal framework within which information processing and its disorders can be described. However, information theory has rarely been applied to modeling aspects of the cognitive neuroscience of schizophrenia. The goal of this article is to highlight the benefits of an approach based on information theory, including its recent extensions, for understanding several disrupted neural goal functions as well as related cognitive and symptomatic phenomena in schizophrenia. We begin by demonstrating that foundational concepts from information theory-such as Shannon information, entropy, data compression, block coding, and strategies to increase the signal-to-noise ratio-can be used to provide novel understandings of cognitive impairments in schizophrenia and metrics to evaluate their integrity. We then describe more recent developments in information theory, including the concepts of infomax, coherent infomax, and coding with synergy, to demonstrate how these can be used to develop computational models of schizophrenia-related failures in the tuning of sensory neurons, gain control, perceptual organization, thought organization, selective attention, context processing, predictive coding, and cognitive control. Throughout, we demonstrate how disordered mechanisms may explain both perceptual/cognitive changes and symptom emergence in schizophrenia. Finally, we demonstrate that there is consistency between some information-theoretic concepts and recent discoveries in neurobiology, especially involving the existence of distinct sites for the accumulation of driving input and contextual information prior to their interaction. This convergence can be used to guide future theory, experiment, and treatment development.

5. A spatial Mankiw-Romer-Weil model: Theory and evidence

OpenAIRE

Fischer, Manfred M.

2009-01-01

This paper presents a theoretical growth model that extends the Mankiw-Romer-Weil [MRW] model by accounting for technological interdependence among regional economies. Interdependence is assumed to work through spatial externalities caused by disembodied knowledge diffusion. The transition from theory to econometrics leads to a reduced-form empirical spatial Durbin model specification that explains the variation in regional levels of per worker output at steady state. A system ...

6. Reservoir theory, groundwater transit time distributions, and lumped parameter models

International Nuclear Information System (INIS)

Etcheverry, D.; Perrochet, P.

1999-01-01

The relation between groundwater residence times and transit times is given by the reservoir theory. It allows to calculate theoretical transit time distributions in a deterministic way, analytically, or on numerical models. Two analytical solutions validates the piston flow and the exponential model for simple conceptual flow systems. A numerical solution of a hypothetical regional groundwater flow shows that lumped parameter models could be applied in some cases to large-scale, heterogeneous aquifers. (author)

7. Theory of compressive modeling and simulation

Science.gov (United States)

Szu, Harold; Cha, Jae; Espinola, Richard L.; Krapels, Keith

2013-05-01

Modeling and Simulation (M&S) has been evolving along two general directions: (i) data-rich approach suffering the curse of dimensionality and (ii) equation-rich approach suffering computing power and turnaround time. We suggest a third approach. We call it (iii) compressive M&S (CM&S); because the basic Minimum Free-Helmholtz Energy (MFE) facilitating CM&S can reproduce and generalize Candes, Romberg, Tao & Donoho (CRT&D) Compressive Sensing (CS) paradigm as a linear Lagrange Constraint Neural network (LCNN) algorithm. CM&S based MFE can generalize LCNN to 2nd order as Nonlinear augmented LCNN. For example, during the sunset, we can avoid a reddish bias of sunlight illumination due to a long-range Rayleigh scattering over the horizon. With CM&S we can take instead of day camera, a night vision camera. We decomposed long wave infrared (LWIR) band with filter into 2 vector components (8~10μm and 10~12μm) and used LCNN to find pixel by pixel the map of Emissive-Equivalent Planck Radiation Sources (EPRS). Then, we up-shifted consistently, according to de-mixed sources map, to the sub-micron RGB color image. Moreover, the night vision imaging can also be down-shifted at Passive Millimeter Wave (PMMW) imaging, suffering less blur owing to dusty smokes scattering and enjoying apparent smoothness of surface reflectivity of man-made objects under the Rayleigh resolution. One loses three orders of magnitudes in the spatial Rayleigh resolution; but gains two orders of magnitude in the reflectivity, and gains another two orders in the propagation without obscuring smog . Since CM&S can generate missing data and hard to get dynamic transients, CM&S can reduce unnecessary measurements and their associated cost and computing in the sense of super-saving CS: measuring one & getting one's neighborhood free .

8. A Method for Identification of the Equivalent Inductance and Resistance in the Plant Model of Current-Controlled Grid-Tied Converters

DEFF Research Database (Denmark)

Vidal, Ana; Yepes, Alejandro G.; Fernandez, Francisco Daniel Freijedo

2015-01-01

Precise knowledge of the plant time constant L=R is essential to perform a thorough analysis and design of the current control loop in voltage source converters (VSCs). From the perspective of the current controller dynamics in the low frequency range, such plant time constant is also suitable...... for most cases in which an LCL filter is used. As the loop behavior can be significantly influenced by the VSC working conditions, the effects associated to converter losses should be included in the model, through an equivalent series resistance. In addition, the plant inductance may also present...... important uncertainties with respect to the value of the VSC L/LCL interface filter measured at rated conditions. Thus, in this work, a method is presented to estimate both parameters of the plant time constant, i.e., the equivalent inductance and resistance in the plant model of current-controlled VSCs...

9. Comparison of Mooring Loads in Survivability Mode on the Wave Dragon Wave Energy Converter Obtained by a Numerical Model and Experimental Data

DEFF Research Database (Denmark)

Parmeggiani, Stefano; Muliawan, Made Jaya; Gao, Zhen

2012-01-01

The Wave Dragon Wave Energy Converter is ready to be up-scaled to commercial size. The design and feasibility analysis of a 1.5 MW pre-commercial unit to be deployed at the DanWEC test center in Hanstholm, Denmark, is currently ongoing. With regard to the mooring system, the design has to be carr......The Wave Dragon Wave Energy Converter is ready to be up-scaled to commercial size. The design and feasibility analysis of a 1.5 MW pre-commercial unit to be deployed at the DanWEC test center in Hanstholm, Denmark, is currently ongoing. With regard to the mooring system, the design has...... to be carried out numerically, through coupled analyses of alternative solutions. The present study deals with the preliminary hydrodynamic characterization of Wave Dragon needed in order to calibrate the numerical model to be used for the mooring design. A hydrodynamic analysis of the small scale model...

10. Consistent constraints on the Standard Model Effective Field Theory

International Nuclear Information System (INIS)

Berthier, Laure; Trott, Michael

2016-01-01

We develop the global constraint picture in the (linear) effective field theory generalisation of the Standard Model, incorporating data from detectors that operated at PEP, PETRA, TRISTAN, SpS, Tevatron, SLAC, LEPI and LEP II, as well as low energy precision data. We fit one hundred and three observables. We develop a theory error metric for this effective field theory, which is required when constraints on parameters at leading order in the power counting are to be pushed to the percent level, or beyond, unless the cut off scale is assumed to be large, Λ≳ 3 TeV. We more consistently incorporate theoretical errors in this work, avoiding this assumption, and as a direct consequence bounds on some leading parameters are relaxed. We show how an S,T analysis is modified by the theory errors we include as an illustrative example.

11. Effective potential in Lorentz-breaking field theory models

Energy Technology Data Exchange (ETDEWEB)

Baeta Scarpelli, A.P. [Centro Federal de Educacao Tecnologica, Nova Gameleira Belo Horizonte, MG (Brazil); Setor Tecnico-Cientifico, Departamento de Policia Federal, Belo Horizonte, MG (Brazil); Brito, L.C.T. [Universidade Federal de Lavras, Departamento de Fisica, Lavras, MG (Brazil); Felipe, J.C.C. [Universidade Federal de Lavras, Departamento de Fisica, Lavras, MG (Brazil); Universidade Federal dos Vales do Jequitinhonha e Mucuri, Instituto de Engenharia, Ciencia e Tecnologia, Veredas, Janauba, MG (Brazil); Nascimento, J.R.; Petrov, A.Yu. [Universidade Federal da Paraiba, Departamento de Fisica, Joao Pessoa, Paraiba (Brazil)

2017-12-15

We calculate explicitly the one-loop effective potential in different Lorentz-breaking field theory models. First, we consider a Yukawa-like theory and some examples of Lorentz-violating extensions of scalar QED. We observe, for the extended QED models, that the resulting effective potential converges to the known result in the limit in which Lorentz symmetry is restored. Besides, the one-loop corrections to the effective potential in all the cases we study depend on the background tensors responsible for the Lorentz-symmetry violation. This has consequences for physical quantities like, for example, in the induced mass due to the Coleman-Weinberg mechanism. (orig.)

12. Lenses on Reading An Introduction to Theories and Models

CERN Document Server

Tracey, Diane H

2012-01-01

This widely adopted text explores key theories and models that frame reading instruction and research. Readers learn why theory matters in designing and implementing high-quality instruction and research; how to critically evaluate the assumptions and beliefs that guide their own work; and what can be gained by looking at reading through multiple theoretical lenses. For each theoretical model, classroom applications are brought to life with engaging vignettes and teacher reflections. Research applications are discussed and illustrated with descriptions of exemplary studies. New to This Edition

13. Effective potential in Lorentz-breaking field theory models

International Nuclear Information System (INIS)

Baeta Scarpelli, A.P.; Brito, L.C.T.; Felipe, J.C.C.; Nascimento, J.R.; Petrov, A.Yu.

2017-01-01

We calculate explicitly the one-loop effective potential in different Lorentz-breaking field theory models. First, we consider a Yukawa-like theory and some examples of Lorentz-violating extensions of scalar QED. We observe, for the extended QED models, that the resulting effective potential converges to the known result in the limit in which Lorentz symmetry is restored. Besides, the one-loop corrections to the effective potential in all the cases we study depend on the background tensors responsible for the Lorentz-symmetry violation. This has consequences for physical quantities like, for example, in the induced mass due to the Coleman-Weinberg mechanism. (orig.)

14. Integrable models in 1+1 dimensional quantum field theory

International Nuclear Information System (INIS)

1982-09-01

The goal of this lecture is to present a unifying view on the exactly soluble models. There exist several reasons arguing in favor of the 1+1 dimensional models: every exact solution of a field-theoretical model can teach about the ability of quantum field theory to describe spectrum and scattering; some 1+1 d models have physical applications in the solid state theory. There are several ways to become acquainted with the methods of exactly soluble models: via classical statistical mechanics, via Bethe Ansatz, via inverse scattering method. Fundamental Poisson bracket relation FPR and/or fundamental commutation relations FCR play fundamental role. General classification of FPR is given with promizing generalizations to FCR

15. A model of PCF in guarded type theory

DEFF Research Database (Denmark)

Paviotti, Marco; Møgelberg, Rasmus Ejlers; Birkedal, Lars

2015-01-01

Guarded recursion is a form of recursion where recursive calls are guarded by delay modalities. Previous work has shown how guarded recursion is useful for constructing logics for reasoning about programming languages with advanced features, as well as for constructing and reasoning about element...... adequate. The model construction is related to Escardo's metric model for PCF, but here everything is carried out entirely in type theory with guarded recursion, including the formulation of the operational semantics, the model construction and the proof of adequacy...... of coinductive types. In this paper we investigate how type theory with guarded recursion can be used as a metalanguage for denotational semantics useful both for constructing models and for proving properties of these. We do this by constructing a fairly intensional model of PCF and proving it computationally...

16. A Model of PCF in Guarded Type Theory

DEFF Research Database (Denmark)

Paviotti, Marco; Møgelberg, Rasmus Ejlers; Birkedal, Lars

2015-01-01

Guarded recursion is a form of recursion where recursive calls are guarded by delay modalities. Previous work has shown how guarded recursion is useful for constructing logics for reasoning about programming languages with advanced features, as well as for constructing and reasoning about element...... adequate. The model construction is related to Escardo's metric model for PCF, but here everything is carried out entirely in type theory with guarded recursion, including the formulation of the operational semantics, the model construction and the proof of adequacy....... of coinductive types. In this paper we investigate how type theory with guarded recursion can be used as a metalanguage for denotational semantics useful both for constructing models and for proving properties of these. We do this by constructing a fairly intensional model of PCF and proving it computationally...

17. An introduction to queueing theory modeling and analysis in applications

CERN Document Server

Bhat, U Narayan

2015-01-01

This introductory textbook is designed for a one-semester course on queueing theory that does not require a course on stochastic processes as a prerequisite. By integrating the necessary background on stochastic processes with the analysis of models, the work provides a sound foundational introduction to the modeling and analysis of queueing systems for a wide interdisciplinary audience of students in mathematics, statistics, and applied disciplines such as computer science, operations research, and engineering. This edition includes additional topics in methodology and applications. Key features: • An introductory chapter including a historical account of the growth of queueing theory in more than 100 years. • A modeling-based approach with emphasis on identification of models. • Rigorous treatment of the foundations of basic models commonly used in applications with appropriate references for advanced topics. • Applications in manufacturing and, computer and communication systems. • A chapter on ...

18. Application of the Min-Projection and the Model Predictive Strategies for Current Control of Three-Phase Grid-Connected Converters: a Comparative Study

Directory of Open Access Journals (Sweden)

M. Oloumi

2015-06-01

Full Text Available This paper provides a detailed comparative study concerning the performance of min-projection strategy (MPS and model predictive control (MPC systems to control the three-phase grid connected converters. To do so, first, the converter is modeled as a switched linear system. Then, the feasibility of the MPS technique is investigated and its stability criterion is derived as a lower limit on the DC link voltage. Next, the fundamental equations of the MPS to control a VSC are obtained in the stationary reference frame. The mathematical analysis reveals that the MPS is independent of the load, grid, filter and converter parameters. This feature is a great advantage of MPS over the MPC approach. However, the latter is a well-known model-based control technique, has already developed for controlling the VSC in the stationary reference frame. To control the grid connected VSC, both MPS and MPC approaches are simulated in the PSCAD/EMTDC environment. Simulation results illustrate that the MPS is functioning well and is less sensitive to grid and filter inductances as well as the DC link voltage level. However, the MPC approach renders slightly a better performance in the steady state conditions.

19. Traffic Games: Modeling Freeway Traffic with Game Theory.

Science.gov (United States)

Cortés-Berrueco, Luis E; Gershenson, Carlos; Stephens, Christopher R

2016-01-01

We apply game theory to a vehicular traffic model to study the effect of driver strategies on traffic flow. The resulting model inherits the realistic dynamics achieved by a two-lane traffic model and aims to incorporate phenomena caused by driver-driver interactions. To achieve this goal, a game-theoretic description of driver interaction was developed. This game-theoretic formalization allows one to model different lane-changing behaviors and to keep track of mobility performance. We simulate the evolution of cooperation, traffic flow, and mobility performance for different modeled behaviors. The analysis of these results indicates a mobility optimization process achieved by drivers' interactions.

20. Comparison of potential models through heavy quark effective theory

International Nuclear Information System (INIS)

Amundson, J.F.

1995-01-01

I calculate heavy-light decay constants in a nonrelativistic potential model. The resulting estimate of heavy quark symmetry breaking conflicts with similar estimates from lattice QCD. I show that a semirelativistic potential model eliminates the conflict. Using the results of heavy quark effective theory allows me to identify and compensate for shortcomings in the model calculations in addition to isolating the source of the differences in the two models. The results lead to a rule as to where the nonrelativistic quark model gives misleading predictions

1. Model building with a dynamical volume element in gravity, particle theory and theories of extended object

International Nuclear Information System (INIS)

Guendelman, E.

2004-01-01

Full Text:The Volume Element of Space Time can be considered as a geometrical object which can be independent of the metric. The use in the action of a volume element which is metric independent leads to the appearance of a measure of integration which is metric independent. This can be applied to all known generally coordinate invariant theories, we will discuss three very important cases: 1. 4-D theories describing gravity and matter fields, 2. Parametrization invariant theories of extended objects and 3. Higher dimensional theories including gravity and matter fields. In case 1, a large number of new effects appear: (i) spontaneous breaking of scale invariance associated to integration of degrees of freedom related to the measure, (ii) under normal particle physics laboratory conditions fermions split into three families, but when matter is highly diluted, neutrinos increase their mass and become suitable candidates for dark matter, (iii) cosmic coincidence between dark energy and dark matter is natural, (iv) quintessence scenarios with automatic decoupling of the quintessence scalar to ordinary matter, but not dark matter are obtained (2) For theories or extended objects, the use of a measure of integration independent of the metric leads to (i) dynamical tension, (ii) string models of non abelian confinement (iii) The possibility of new Weyl invariant light-like branes (WTT.L branes). These Will branes dynamically adjust themselves to sit at black hole horizons and in the context of higher dimensional theories can provide examples of massless 4-D particles with nontrivial Kaluza Klein quantum numbers, (3) In Bronx and Kaluza Klein scenarios, the use of a measure independent of the metric makes it possible to construct naturally models where only the extra dimensions get curved and the 4-D observable space-time remain flat

2. Theory of positive disintegration as a model of adolescent development.

Science.gov (United States)

Laycraft, Krystyna

2011-01-01

This article introduces a conceptual model of the adolescent development based on the theory of positive disintegration combined with theory of self-organization. Dabrowski's theory of positive disintegration, which was created almost a half century ago, still attracts psychologists' and educators' attention, and is extensively applied into studies of gifted and talented people. The positive disintegration is the mental development described by the process of transition from lower to higher levels of mental life and stimulated by tension, inner conflict, and anxiety. This process can be modeled by a sequence of patterns of organization (attractors) as a developmental potential (a control parameter) changes. Three levels of disintegration (unilevel disintegration, spontaneous multilevel disintegration, and organized multilevel disintegration) are analyzed in detail and it is proposed that they represent behaviour of early, middle and late periods of adolescence. In the discussion, recent research on the adolescent brain development is included.

3. Integrating social capital theory, social cognitive theory, and the technology acceptance model to explore a behavioral model of telehealth systems.

Science.gov (United States)

Tsai, Chung-Hung

2014-05-07

Telehealth has become an increasingly applied solution to delivering health care to rural and underserved areas by remote health care professionals. This study integrated social capital theory, social cognitive theory, and the technology acceptance model (TAM) to develop a comprehensive behavioral model for analyzing the relationships among social capital factors (social capital theory), technological factors (TAM), and system self-efficacy (social cognitive theory) in telehealth. The proposed framework was validated with 365 respondents from Nantou County, located in Central Taiwan. Structural equation modeling (SEM) was used to assess the causal relationships that were hypothesized in the proposed model. The finding indicates that elderly residents generally reported positive perceptions toward the telehealth system. Generally, the findings show that social capital factors (social trust, institutional trust, and social participation) significantly positively affect the technological factors (perceived ease of use and perceived usefulness respectively), which influenced usage intention. This study also confirmed that system self-efficacy was the salient antecedent of perceived ease of use. In addition, regarding the samples, the proposed model fitted considerably well. The proposed integrative psychosocial-technological model may serve as a theoretical basis for future research and can also offer empirical foresight to practitioners and researchers in the health departments of governments, hospitals, and rural communities.

4. Integrating Social Capital Theory, Social Cognitive Theory, and the Technology Acceptance Model to Explore a Behavioral Model of Telehealth Systems

Directory of Open Access Journals (Sweden)

Chung-Hung Tsai

2014-05-01

Full Text Available Telehealth has become an increasingly applied solution to delivering health care to rural and underserved areas by remote health care professionals. This study integrated social capital theory, social cognitive theory, and the technology acceptance model (TAM to develop a comprehensive behavioral model for analyzing the relationships among social capital factors (social capital theory, technological factors (TAM, and system self-efficacy (social cognitive theory in telehealth. The proposed framework was validated with 365 respondents from Nantou County, located in Central Taiwan. Structural equation modeling (SEM was used to assess the causal relationships that were hypothesized in the proposed model. The finding indicates that elderly residents generally reported positive perceptions toward the telehealth system. Generally, the findings show that social capital factors (social trust, institutional trust, and social participation significantly positively affect the technological factors (perceived ease of use and perceived usefulness respectively, which influenced usage intention. This study also confirmed that system self-efficacy was the salient antecedent of perceived ease of use. In addition, regarding the samples, the proposed model fitted considerably well. The proposed integrative psychosocial-technological model may serve as a theoretical basis for future research and can also offer empirical foresight to practitioners and researchers in the health departments of governments, hospitals, and rural communities.

5. Modelling machine ensembles with discrete event dynamical system theory

Science.gov (United States)

Hunter, Dan

1990-01-01

Discrete Event Dynamical System (DEDS) theory can be utilized as a control strategy for future complex machine ensembles that will be required for in-space construction. The control strategy involves orchestrating a set of interactive submachines to perform a set of tasks for a given set of constraints such as minimum time, minimum energy, or maximum machine utilization. Machine ensembles can be hierarchically modeled as a global model that combines the operations of the individual submachines. These submachines are represented in the global model as local models. Local models, from the perspective of DEDS theory , are described by the following: a set of system and transition states, an event alphabet that portrays actions that takes a submachine from one state to another, an initial system state, a partial function that maps the current state and event alphabet to the next state, and the time required for the event to occur. Each submachine in the machine ensemble is presented by a unique local model. The global model combines the local models such that the local models can operate in parallel under the additional logistic and physical constraints due to submachine interactions. The global model is constructed from the states, events, event functions, and timing requirements of the local models. Supervisory control can be implemented in the global model by various methods such as task scheduling (open-loop control) or implementing a feedback DEDS controller (closed-loop control).

6. Theory, modeling, and integrated studies in the Arase (ERG) project

Science.gov (United States)

Seki, Kanako; Miyoshi, Yoshizumi; Ebihara, Yusuke; Katoh, Yuto; Amano, Takanobu; Saito, Shinji; Shoji, Masafumi; Nakamizo, Aoi; Keika, Kunihiro; Hori, Tomoaki; Nakano, Shin'ya; Watanabe, Shigeto; Kamiya, Kei; Takahashi, Naoko; Omura, Yoshiharu; Nose, Masahito; Fok, Mei-Ching; Tanaka, Takashi; Ieda, Akimasa; Yoshikawa, Akimasa

2018-02-01

Understanding of underlying mechanisms of drastic variations of the near-Earth space (geospace) is one of the current focuses of the magnetospheric physics. The science target of the geospace research project Exploration of energization and Radiation in Geospace (ERG) is to understand the geospace variations with a focus on the relativistic electron acceleration and loss processes. In order to achieve the goal, the ERG project consists of the three parts: the Arase (ERG) satellite, ground-based observations, and theory/modeling/integrated studies. The role of theory/modeling/integrated studies part is to promote relevant theoretical and simulation studies as well as integrated data analysis to combine different kinds of observations and modeling. Here we provide technical reports on simulation and empirical models related to the ERG project together with their roles in the integrated studies of dynamic geospace variations. The simulation and empirical models covered include the radial diffusion model of the radiation belt electrons, GEMSIS-RB and RBW models, CIMI model with global MHD simulation REPPU, GEMSIS-RC model, plasmasphere thermosphere model, self-consistent wave-particle interaction simulations (electron hybrid code and ion hybrid code), the ionospheric electric potential (GEMSIS-POT) model, and SuperDARN electric field models with data assimilation. ERG (Arase) science center tools to support integrated studies with various kinds of data are also briefly introduced.[Figure not available: see fulltext.

7. Spectral and scattering theory for translation invariant models in quantum field theory

DEFF Research Database (Denmark)

Rasmussen, Morten Grud

This thesis is concerned with a large class of massive translation invariant models in quantum field theory, including the Nelson model and the Fröhlich polaron. The models in the class describe a matter particle, e.g. a nucleon or an electron, linearly coupled to a second quantised massive scalar...... by the physically relevant choices. The translation invariance implies that the Hamiltonian may be decomposed into a direct integral over the space of total momentum where the fixed momentum fiber Hamiltonians are given by , where denotes total momentum and is the Segal field operator. The fiber Hamiltonians...

8. Cohomological gauge theory, quiver matrix models and Donaldson-Thomas theoryCohomological gauge theory, quiver matrix models and Donaldson-Thomas theory

NARCIS (Netherlands)

Cirafici, M.; Sinkovics, A.; Szabo, R.J.

2009-01-01

We study the relation between Donaldson–Thomas theory of Calabi–Yau threefolds and a six-dimensional topological Yang–Mills theory. Our main example is the topological U(N) gauge theory on flat space in its Coulomb branch. To evaluate its partition function we use equivariant localization techniques

9. Linking Complexity and Sustainability Theories: Implications for Modeling Sustainability Transitions

Directory of Open Access Journals (Sweden)

Camaren Peter

2014-03-01

Full Text Available In this paper, we deploy a complexity theory as the foundation for integration of different theoretical approaches to sustainability and develop a rationale for a complexity-based framework for modeling transitions to sustainability. We propose a framework based on a comparison of complex systems’ properties that characterize the different theories that deal with transitions to sustainability. We argue that adopting a complexity theory based approach for modeling transitions requires going beyond deterministic frameworks; by adopting a probabilistic, integrative, inclusive and adaptive approach that can support transitions. We also illustrate how this complexity-based modeling framework can be implemented; i.e., how it can be used to select modeling techniques that address particular properties of complex systems that we need to understand in order to model transitions to sustainability. In doing so, we establish a complexity-based approach towards modeling sustainability transitions that caters for the broad range of complex systems’ properties that are required to model transitions to sustainability.

10. Excellence in Physics Education Award: Modeling Theory for Physics Instruction

Science.gov (United States)

Hestenes, David

2014-03-01

All humans create mental models to plan and guide their interactions with the physical world. Science has greatly refined and extended this ability by creating and validating formal scientific models of physical things and processes. Research in physics education has found that mental models created from everyday experience are largely incompatible with scientific models. This suggests that the fundamental problem in learning and understanding science is coordinating mental models with scientific models. Modeling Theory has drawn on resources of cognitive science to work out extensive implications of this suggestion and guide development of an approach to science pedagogy and curriculum design called Modeling Instruction. Modeling Instruction has been widely applied to high school physics and, more recently, to chemistry and biology, with noteworthy results.

11. A Model of Statistics Performance Based on Achievement Goal Theory.

Science.gov (United States)

Bandalos, Deborah L.; Finney, Sara J.; Geske, Jenenne A.

2003-01-01

Tests a model of statistics performance based on achievement goal theory. Both learning and performance goals affected achievement indirectly through study strategies, self-efficacy, and test anxiety. Implications of these findings for teaching and learning statistics are discussed. (Contains 47 references, 3 tables, 3 figures, and 1 appendix.)…

12. Anisotropic cosmological models and generalized scalar tensor theory

Abstract. In this paper generalized scalar tensor theory has been considered in the background of anisotropic cosmological models, namely, axially symmetric Bianchi-I, Bianchi-III and Kortowski–. Sachs space-time. For bulk viscous fluid, both exponential and power-law solutions have been stud- ied and some assumptions ...

13. Anisotropic cosmological models and generalized scalar tensor theory

In this paper generalized scalar tensor theory has been considered in the background of anisotropic cosmological models, namely, axially symmetric Bianchi-I, Bianchi-III and Kortowski–Sachs space-time. For bulk viscous ﬂuid, both exponential and power-law solutions have been studied and some assumptions among the ...

14. Two-dimensional models in statistical mechanics and field theory

International Nuclear Information System (INIS)

Koberle, R.

1980-01-01

Several features of two-dimensional models in statistical mechanics and Field theory, such as, lattice quantum chromodynamics, Z(N), Gross-Neveu and CP N-1 are discussed. The problems of confinement and dynamical mass generation are also analyzed. (L.C.) [pt

15. The early years of string theory: The dual resonance model

International Nuclear Information System (INIS)

Ramond, P.

1987-10-01

This paper reviews the past quantum mechanical history of the dual resonance model which is an early string theory. The content of this paper is listed as follows: historical review, the Veneziano amplitude, the operator formalism, the ghost story, and the string story

16. Interacting bosons model and relation with BCS theory

International Nuclear Information System (INIS)

Diniz, R.

1990-01-01

The Nambu mechanism for BCS theory is extended with inclusion of quadrupole pairing in addition to the usual monopole pairing. An effective Hamiltonian is constructed and its relation to the IBM is discussed. The faced difficulties and a possible generalization of this model are discussed. (author)

17. Symmetry-guided large-scale shell-model theory

Czech Academy of Sciences Publication Activity Database

Launey, K. D.; Dytrych, Tomáš; Draayer, J. P.

2016-01-01

Roč. 89, JUL (2016), s. 101-136 ISSN 0146-6410 R&D Projects: GA ČR GA16-16772S Institutional support: RVO:61389005 Keywords : Ab intio shell -model theory * Symplectic symmetry * Collectivity * Clusters * Hoyle state * Orderly patterns in nuclei from first principles Subject RIV: BE - Theoretical Physics Impact factor: 11.229, year: 2016

18. The Five-Factor Model and Self-Determination Theory

DEFF Research Database (Denmark)

Olesen, Martin Hammershøj; Thomsen, Dorthe Kirkegaard; Schnieber, Anette

This study investigates conceptual overlap vs. distinction between individual differences in personality traits, i.e. the Five-Factor Model; and Self-determination Theory, i.e. general causality orientations. Twelve-hundred-and-eighty-seven freshmen (mean age 21.71; 64% women) completed electronic...

19. A Proposed Model of Jazz Theory Knowledge Acquisition

Science.gov (United States)

Ciorba, Charles R.; Russell, Brian E.

2014-01-01

The purpose of this study was to test a hypothesized model that proposes a causal relationship between motivation and academic achievement on the acquisition of jazz theory knowledge. A reliability analysis of the latent variables ranged from 0.92 to 0.94. Confirmatory factor analyses of the motivation (standardized root mean square residual…

20. S matrix theory of the massive Thirring model

International Nuclear Information System (INIS)

Berg, B.

1980-01-01

The S matrix theory of the massive Thirring model, describing the exact quantum scattering of solitons and their boundstates, is reviewed. Treated are: Factorization equations and their solution, boundstates, generalized Jost functions and Levinson's theorem, scattering of boundstates, 'virtual' and anomalous thresholds. (orig.) 891 HSI/orig. 892 MKO

1. Using SAS PROC MCMC for Item Response Theory Models

Science.gov (United States)

Ames, Allison J.; Samonte, Kelli

2015-01-01

Interest in using Bayesian methods for estimating item response theory models has grown at a remarkable rate in recent years. This attentiveness to Bayesian estimation has also inspired a growth in available software such as WinBUGS, R packages, BMIRT, MPLUS, and SAS PROC MCMC. This article intends to provide an accessible overview of Bayesian…

2. Multilevel Higher-Order Item Response Theory Models

Science.gov (United States)

Huang, Hung-Yu; Wang, Wen-Chung

2014-01-01

In the social sciences, latent traits often have a hierarchical structure, and data can be sampled from multiple levels. Both hierarchical latent traits and multilevel data can occur simultaneously. In this study, we developed a general class of item response theory models to accommodate both hierarchical latent traits and multilevel data. The…

3. Item Response Theory Models for Performance Decline during Testing

Science.gov (United States)

Jin, Kuan-Yu; Wang, Wen-Chung

2014-01-01

Sometimes, test-takers may not be able to attempt all items to the best of their ability (with full effort) due to personal factors (e.g., low motivation) or testing conditions (e.g., time limit), resulting in poor performances on certain items, especially those located toward the end of a test. Standard item response theory (IRT) models fail to…

4. Item Response Theory Modeling of the Philadelphia Naming Test

Science.gov (United States)

Fergadiotis, Gerasimos; Kellough, Stacey; Hula, William D.

2015-01-01

Purpose: In this study, we investigated the fit of the Philadelphia Naming Test (PNT; Roach, Schwartz, Martin, Grewal, & Brecher, 1996) to an item-response-theory measurement model, estimated the precision of the resulting scores and item parameters, and provided a theoretical rationale for the interpretation of PNT overall scores by relating…

5. An NCME Instructional Module on Polytomous Item Response Theory Models

Science.gov (United States)

Penfield, Randall David

2014-01-01

A polytomous item is one for which the responses are scored according to three or more categories. Given the increasing use of polytomous items in assessment practices, item response theory (IRT) models specialized for polytomous items are becoming increasingly common. The purpose of this ITEMS module is to provide an accessible overview of…

6. Profiles in Leadership: Enhancing Learning through Model and Theory Building.

Science.gov (United States)

Mello, Jeffrey A.

2003-01-01

A class assignment was designed to present factors affecting leadership dynamics, allow practice in model and theory building, and examine leadership from multicultural perspectives. Students developed a profile of a fictional or real leader and analyzed qualities, motivations, context, and effectiveness in written and oral presentations.…

7. Compositional models and conditional independence in evidence theory

Czech Academy of Sciences Publication Activity Database

2011-01-01

Roč. 52, č. 3 (2011), s. 316-334 ISSN 0888-613X Institutional research plan: CEZ:AV0Z10750506 Keywords : Evidence theory * Conditional independence * multidimensional models Subject RIV: BA - General Mathematics Impact factor: 1.948, year: 2011 http://library.utia.cas.cz/separaty/2012/MTR/jirousek-0370515.pdf

8. Evaluating hydrological model performance using information theory-based metrics

Science.gov (United States)

The accuracy-based model performance metrics not necessarily reflect the qualitative correspondence between simulated and measured streamflow time series. The objective of this work was to use the information theory-based metrics to see whether they can be used as complementary tool for hydrologic m...

9. Stochastic models in risk theory and management accounting

NARCIS (Netherlands)

Brekelmans, R.C.M.

2000-01-01

This thesis deals with stochastic models in two fields: risk theory and management accounting. Firstly, two extensions of the classical risk process are analyzed. A method is developed that computes bounds of the probability of ruin for the classical risk rocess extended with a constant interest

10. Technologies for converter topologies

Science.gov (United States)

Zhou, Yan; Zhang, Haiyu

2017-02-28

In some embodiments of the disclosed inverter topologies, an inverter may include a full bridge LLC resonant converter, a first boost converter, and a second boost converter. In such embodiments, the first and second boost converters operate in an interleaved manner. In other disclosed embodiments, the inverter may include a half-bridge inverter circuit, a resonant circuit, a capacitor divider circuit, and a transformer.

11. Wavelength converter technology

DEFF Research Database (Denmark)

Kloch, Allan; Hansen, Peter Bukhave; Poulsen, Henrik Nørskov

1999-01-01

Wavelength conversion is important since it ensures full flexibility of the WDM network layer. Progress in optical wavelength converter technology is reviewed with emphasis on all-optical wavelength converter types based on semiconductor optical amplifiers.......Wavelength conversion is important since it ensures full flexibility of the WDM network layer. Progress in optical wavelength converter technology is reviewed with emphasis on all-optical wavelength converter types based on semiconductor optical amplifiers....

12. Conformal field theories, Coulomb gas picture and integrable models

International Nuclear Information System (INIS)

Zuber, J.B.

1988-01-01

The aim of the study is to present the links between some results of conformal field theory, the conventional Coulomb gas picture in statistical mechanics and the approach of integrable models. It is shown that families of conformal theories, related by the coset construction to the SU(2) Kac-Moody algebra, may be regarded as obtained from some free field, and modified by the coupling of its winding numbers to floating charges. This representation reflects the procedure of restriction of the corresponding integrable lattice models. The work may be generalized to models based on the coset construction with higher rank algebras. The corresponding integrable models are identified. In the conformal field description, generalized parafermions appear, and are coupled to free fields living on a higher-dimensional torus. The analysis is not as exhaustive as in the SU(2) case: all the various restrictions have not been identified, nor the modular invariants completely classified

13. Route Choice Model Based on Game Theory for Commuters

Directory of Open Access Journals (Sweden)

Licai Yang

2016-06-01

Full Text Available The traffic behaviours of commuters may cause traffic congestion during peak hours. Advanced Traffic Information System can provide dynamic information to travellers. Due to the lack of timeliness and comprehensiveness, the provided information cannot satisfy the travellers’ needs. Since the assumptions of traditional route choice model based on Expected Utility Theory conflict with the actual situation, a route choice model based on Game Theory is proposed to provide reliable route choice to commuters in actual situation in this paper. The proposed model treats the alternative routes as game players and utilizes the precision of predicted information and familiarity of traffic condition to build a game. The optimal route can be generated considering Nash Equilibrium by solving the route choice game. Simulations and experimental analysis show that the proposed model can describe the commuters’ routine route choice decisionexactly and the provided route is reliable.

14. Power quality improvement by using multi-pulse AC-DC converters for DC drives: Modeling, simulation and its digital implementation

Directory of Open Access Journals (Sweden)

Mohd Tariq

2014-12-01

Full Text Available The paper presents the modeling, simulation and digital implementation of power quality improvement of DC drives by using multi pulse AC–DC converter. As it is a well-known fact that power quality determines the fitness of electrical power to consumer devices, hence an effort has been made to improve power quality in this work. Simulation and digital implementation with the help of MATLAB/Simulink has been done and results obtained are discussed in detail to verify the theoretical results. The multipulse converter was connected with DC drives and was run at no load condition to find out the transient and steady state performances. FFT analysis has been performed and Total Harmonic Distortion (THD results obtained at different pulses are shown here.

15. Modeling Composite Assessment Data Using Item Response Theory

Science.gov (United States)

Ueckert, Sebastian

2018-01-01

Composite assessments aim to combine different aspects of a disease in a single score and are utilized in a variety of therapeutic areas. The data arising from these evaluations are inherently discrete with distinct statistical properties. This tutorial presents the framework of the item response theory (IRT) for the analysis of this data type in a pharmacometric context. The article considers both conceptual (terms and assumptions) and practical questions (modeling software, data requirements, and model building). PMID:29493119

16. Constitutive relationships and models in continuum theories of multiphase flows

International Nuclear Information System (INIS)

Decker, R.

1989-09-01

In April, 1989, a workshop on constitutive relationships and models in continuum theories of multiphase flows was held at NASA's Marshall Space Flight Center. Topics of constitutive relationships for the partial or per phase stresses, including the concept of solid phase pressure are discussed. Models used for the exchange of mass, momentum, and energy between the phases in a multiphase flow are also discussed. The program, abstracts, and texts of the presentations from the workshop are included

17. Perturbation theory around the Wess-Zumino-Witten model

International Nuclear Information System (INIS)

Hasseln, H. v.

1991-05-01

We consider a perturbation of the Wess-Zumino-Witten model in 2D by a current-current interaction. The β-function is computed to third order in the coupling constant and a nontrivial fixedpoint is found. By non-abelian bosonization, this perturbed WZW-model is shown to have the same β-function (at least to order g 2 ) as the fermionic theory with a four-fermion interaction. (orig.) [de

18. A general-model-space diagrammatic perturbation theory

International Nuclear Information System (INIS)

Hose, G.; Kaldor, U.

1980-01-01

A diagrammatic many-body perturbation theory applicable to arbitrary model spaces is presented. The necessity of having a complete model space (all possible occupancies of the partially-filled shells) is avoided. This requirement may be troublesome for systems with several well-spaced open shells, such as most atomic and molecular excited states, as a complete model space spans a very broad energy range and leaves out states within that range, leading to poor or no convergence of the perturbation series. The method presented here would be particularly useful for such states. The solution of a model problem (He 2 excited Σ + sub(g) states) is demonstrated. (Auth.)

19. Theory-based Bayesian models of inductive learning and reasoning.

Science.gov (United States)

Tenenbaum, Joshua B; Griffiths, Thomas L; Kemp, Charles

2006-07-01

Inductive inference allows humans to make powerful generalizations from sparse data when learning about word meanings, unobserved properties, causal relationships, and many other aspects of the world. Traditional accounts of induction emphasize either the power of statistical learning, or the importance of strong constraints from structured domain knowledge, intuitive theories or schemas. We argue that both components are necessary to explain the nature, use and acquisition of human knowledge, and we introduce a theory-based Bayesian framework for modeling inductive learning and reasoning as statistical inferences over structured knowledge representations.

20. Fluid analog model for boundary effects in field theory

International Nuclear Information System (INIS)

Ford, L. H.; Svaiter, N. F.

2009-01-01

Quantum fluctuations in the density of a fluid with a linear phonon dispersion relation are studied. In particular, we treat the changes in these fluctuations due to nonclassical states of phonons and to the presence of boundaries. These effects are analogous to similar effects in relativistic quantum field theory, and we argue that the case of the fluid is a useful analog model for effects in field theory. We further argue that the changes in the mean squared density are, in principle, observable by light scattering experiments.

1. Chern-Simons Theory, Matrix Models, and Topological Strings

International Nuclear Information System (INIS)

Walcher, J

2006-01-01

This book is a find. Marino meets the challenge of filling in less than 200 pages the need for an accessible review of topological gauge/gravity duality. He is one of the pioneers of the subject and a clear expositor. It is no surprise that reading this book is a great pleasure. The existence of dualities between gauge theories and theories of gravity remains one of the most surprising recent discoveries in mathematical physics. While it is probably fair to say that we do not yet understand the full reach of such a relation, the impressive amount of evidence that has accumulated over the past years can be regarded as a substitute for a proof, and will certainly help to delineate the question of what is the most fundamental quantum mechanical theory. Here is a brief summary of the book. The journey begins with matrix models and an introduction to various techniques for the computation of integrals including perturbative expansion, large-N approximation, saddle point analysis, and the method of orthogonal polynomials. The second chapter, on Chern-Simons theory, is the longest and probably the most complete one in the book. Starting from the action we meet Wilson loop observables, the associated perturbative 3-manifold invariants, Witten's exact solution via the canonical duality to WZW models, the framing ambiguity, as well as a collection of results on knot invariants that can be derived from Chern-Simons theory and the combinatorics of U (∞) representation theory. The chapter also contains a careful derivation of the large-N expansion of the Chern-Simons partition function, which forms the cornerstone of its interpretation as a closed string theory. Finally, we learn that Chern-Simons theory can sometimes also be represented as a matrix model. The story then turns to the gravity side, with an introduction to topological sigma models (chapter 3) and topological string theory (chapter 4). While this presentation is necessarily rather condensed (and the beginner may

2. Finite-size scaling theory and quantum hamiltonian Field theory: the transverse Ising model

International Nuclear Information System (INIS)

Hamer, C.J.; Barber, M.N.

1979-01-01

Exact results for the mass gap, specific heat and susceptibility of the one-dimensional transverse Ising model on a finite lattice are generated by constructing a finite matrix representation of the Hamiltonian using strong-coupling eigenstates. The critical behaviour of the limiting infinite chain is analysed using finite-size scaling theory. In this way, excellent estimates (to within 1/2% accuracy) are found for the critical coupling and the exponents α, ν and γ

3. A General Framework for Portfolio Theory. Part I: theory and various models

OpenAIRE

Maier-Paape, Stanislaus; Zhu, Qiji Jim

2017-01-01

Utility and risk are two often competing measurements on the investment success. We show that efficient trade-off between these two measurements for investment portfolios happens, in general, on a convex curve in the two dimensional space of utility and risk. This is a rather general pattern. The modern portfolio theory of Markowitz [H. Markowitz, Portfolio Selection, 1959] and its natural generalization, the capital market pricing model, [W. F. Sharpe, Mutual fund performance , 1966] are spe...

4. Modeling and Control of Grid Side Converter in Wind Power Generation System Based on Synchronous VFDPC with PLL

DEFF Research Database (Denmark)

Guo, Yougui; Zeng, Ping; Li, Lijuan

2011-01-01

Virtual flux oriented direct power control (VFDPC) is combined space vector modulation (SVM) with PI of DC-link voltage, active power and reactive power to control the grid side converter in wind power generation system in this paper. VFDPC has reached good performances with PLL (phase lock loop......, LCL filter, transformer grid, and control parts, such as PI controllers of DC-link voltage, active power, reactive power, and SVM, and so on. The simulation results have verified that the control strategy is feasible to fit for control of gird currents, active power, reactive power and DC-link voltage...

5. Cycloidal Wave Energy Converter

Energy Technology Data Exchange (ETDEWEB)

Stefan G. Siegel, Ph.D.

2012-11-30

This program allowed further advancing the development of a novel type of wave energy converter, a Cycloidal Wave Energy Converter or CycWEC. A CycWEC consists of one or more hydrofoils rotating around a central shaft, and operates fully submerged beneath the water surface. It operates under feedback control sensing the incoming waves, and converts wave power to shaft power directly without any intermediate power take off system. Previous research consisting of numerical simulations and two dimensional small 1:300 scale wave flume experiments had indicated wave cancellation efficiencies beyond 95%. The present work was centered on construction and testing of a 1:10 scale model and conducting two testing campaigns in a three dimensional wave basin. These experiments allowed for the first time for direct measurement of electrical power generated as well as the interaction of the CycWEC in a three dimensional environment. The Atargis team successfully conducted two testing campaigns at the Texas A&M Offshore Technology Research Center and was able to demonstrate electricity generation. In addition, three dimensional wave diffraction results show the ability to achieve wave focusing, thus increasing the amount of wave power that can be extracted beyond what was expected from earlier two dimensional investigations. Numerical results showed wave cancellation efficiencies for irregular waves to be on par with results for regular waves over a wide range of wave lengths. Using the results from previous simulations and experiments a full scale prototype was designed and its performance in a North Atlantic wave climate of average 30kW/m of wave crest was estimated. A full scale WEC with a blade span of 150m will deliver a design power of 5MW at an estimated levelized cost of energy (LCOE) in the range of 10-17 US cents per kWh. Based on the new results achieved in the 1:10 scale experiments these estimates appear conservative and the likely performance at full scale will

6. Should the model for risk-informed regulation be game theory rather than decision theory?

Science.gov (United States)

Bier, Vicki M; Lin, Shi-Woei

2013-02-01

deception), to identify optimal regulatory strategies. Therefore, we believe that the types of regulatory interactions analyzed in this article are better modeled using game theory rather than decision theory. In particular, the goals of this article are to review the relevant literature in game theory and regulatory economics (to stimulate interest in this area among risk analysts), and to present illustrative results showing how the application of game theory can provide useful insights into the theory and practice of risk-informed regulation. © 2012 Society for Risk Analysis.

7. sigma model approach to the heterotic string theory

International Nuclear Information System (INIS)

Sen, A.

1985-09-01

Relation between the equations of motion for the massless fields in the heterotic string theory, and the conformal invariance of the sigma model describing the propagation of the heterotic string in arbitrary background massless fields is discussed. It is emphasized that this sigma model contains complete information about the string theory. Finally, we discuss the extension of the Hull-Witten proof of local gauge and Lorentz invariance of the sigma-model to higher order in α', and the modification of the transformation laws of the antisymmetric tensor field under these symmetries. Presence of anomaly in the naive N = 1/2 supersymmetry transformation is also pointed out in this context. 12 refs

8. Integrable lambda models and Chern-Simons theories

International Nuclear Information System (INIS)

Schmidtt, David M.

2017-01-01

In this note we reveal a connection between the phase space of lambda models on S 1 ×ℝ and the phase space of double Chern-Simons theories on D×ℝ and explain in the process the origin of the non-ultralocality of the Maillet bracket, which emerges as a boundary algebra. In particular, this means that the (classical) AdS 5 ×S 5 lambda model can be understood as a double Chern-Simons theory defined on the Lie superalgebra psu(2,2|4) after a proper dependence of the spectral parameter is introduced. This offers a possibility for avoiding the use of the problematic non-ultralocal Poisson algebras that preclude the introduction of lattice regularizations and the application of the QISM to string sigma models. The utility of the equivalence at the quantum level is, however, still to be explored.

9. Models for probability and statistical inference theory and applications

CERN Document Server

Stapleton, James H

2007-01-01

This concise, yet thorough, book is enhanced with simulations and graphs to build the intuition of readersModels for Probability and Statistical Inference was written over a five-year period and serves as a comprehensive treatment of the fundamentals of probability and statistical inference. With detailed theoretical coverage found throughout the book, readers acquire the fundamentals needed to advance to more specialized topics, such as sampling, linear models, design of experiments, statistical computing, survival analysis, and bootstrapping.Ideal as a textbook for a two-semester sequence on probability and statistical inference, early chapters provide coverage on probability and include discussions of: discrete models and random variables; discrete distributions including binomial, hypergeometric, geometric, and Poisson; continuous, normal, gamma, and conditional distributions; and limit theory. Since limit theory is usually the most difficult topic for readers to master, the author thoroughly discusses mo...

10. Integrable lambda models and Chern-Simons theories

Energy Technology Data Exchange (ETDEWEB)

Schmidtt, David M. [Departamento de Física, Universidade Federal de São Carlos,Caixa Postal 676, CEP 13565-905, São Carlos-SP (Brazil)

2017-05-03

In this note we reveal a connection between the phase space of lambda models on S{sup 1}×ℝ and the phase space of double Chern-Simons theories on D×ℝ and explain in the process the origin of the non-ultralocality of the Maillet bracket, which emerges as a boundary algebra. In particular, this means that the (classical) AdS{sub 5}×S{sup 5} lambda model can be understood as a double Chern-Simons theory defined on the Lie superalgebra psu(2,2|4) after a proper dependence of the spectral parameter is introduced. This offers a possibility for avoiding the use of the problematic non-ultralocal Poisson algebras that preclude the introduction of lattice regularizations and the application of the QISM to string sigma models. The utility of the equivalence at the quantum level is, however, still to be explored.

11. Classical nucleation theory in the phase-field crystal model.

Science.gov (United States)

Jreidini, Paul; Kocher, Gabriel; Provatas, Nikolas

2018-04-01

A full understanding of polycrystalline materials requires studying the process of nucleation, a thermally activated phase transition that typically occurs at atomistic scales. The numerical modeling of this process is problematic for traditional numerical techniques: commonly used phase-field methods' resolution does not extend to the atomic scales at which nucleation takes places, while atomistic methods such as molecular dynamics are incapable of scaling to the mesoscale regime where late-stage growth and structure formation takes place following earlier nucleation. Consequently, it is of interest to examine nucleation in the more recently proposed phase-field crystal (PFC) model, which attempts to bridge the atomic and mesoscale regimes in microstructure simulations. In this work, we numerically calculate homogeneous liquid-to-solid nucleation rates and incubation times in the simplest version of the PFC model, for various parameter choices. We show that the model naturally exhibits qualitative agreement with the predictions of classical nucleation theory (CNT) despite a lack of some explicit atomistic features presumed in CNT. We also examine the early appearance of lattice structure in nucleating grains, finding disagreement with some basic assumptions of CNT. We then argue that a quantitatively correct nucleation theory for the PFC model would require extending CNT to a multivariable theory.

12. Matrix models and stochastic growth in Donaldson-Thomas theory

Energy Technology Data Exchange (ETDEWEB)

Szabo, Richard J. [Department of Mathematics, Heriot-Watt University, Colin Maclaurin Building, Riccarton, Edinburgh EH14 4AS, United Kingdom and Maxwell Institute for Mathematical Sciences, Edinburgh (United Kingdom); Tierz, Miguel [Grupo de Fisica Matematica, Complexo Interdisciplinar da Universidade de Lisboa, Av. Prof. Gama Pinto, 2, PT-1649-003 Lisboa (Portugal); Departamento de Analisis Matematico, Facultad de Ciencias Matematicas, Universidad Complutense de Madrid, Plaza de Ciencias 3, 28040 Madrid (Spain)

2012-10-15

We show that the partition functions which enumerate Donaldson-Thomas invariants of local toric Calabi-Yau threefolds without compact divisors can be expressed in terms of specializations of the Schur measure. We also discuss the relevance of the Hall-Littlewood and Jack measures in the context of BPS state counting and study the partition functions at arbitrary points of the Kaehler moduli space. This rewriting in terms of symmetric functions leads to a unitary one-matrix model representation for Donaldson-Thomas theory. We describe explicitly how this result is related to the unitary matrix model description of Chern-Simons gauge theory. This representation is used to show that the generating functions for Donaldson-Thomas invariants are related to tau-functions of the integrable Toda and Toeplitz lattice hierarchies. The matrix model also leads to an interpretation of Donaldson-Thomas theory in terms of non-intersecting paths in the lock-step model of vicious walkers. We further show that these generating functions can be interpreted as normalization constants of a corner growth/last-passage stochastic model.

13. Matrix models and stochastic growth in Donaldson-Thomas theory

International Nuclear Information System (INIS)

Szabo, Richard J.; Tierz, Miguel

2012-01-01

We show that the partition functions which enumerate Donaldson-Thomas invariants of local toric Calabi-Yau threefolds without compact divisors can be expressed in terms of specializations of the Schur measure. We also discuss the relevance of the Hall-Littlewood and Jack measures in the context of BPS state counting and study the partition functions at arbitrary points of the Kähler moduli space. This rewriting in terms of symmetric functions leads to a unitary one-matrix model representation for Donaldson-Thomas theory. We describe explicitly how this result is related to the unitary matrix model description of Chern-Simons gauge theory. This representation is used to show that the generating functions for Donaldson-Thomas invariants are related to tau-functions of the integrable Toda and Toeplitz lattice hierarchies. The matrix model also leads to an interpretation of Donaldson-Thomas theory in terms of non-intersecting paths in the lock-step model of vicious walkers. We further show that these generating functions can be interpreted as normalization constants of a corner growth/last-passage stochastic model.

14. Forewarning model for water pollution risk based on Bayes theory.

Science.gov (United States)

Zhao, Jun; Jin, Juliang; Guo, Qizhong; Chen, Yaqian; Lu, Mengxiong; Tinoco, Luis

2014-02-01

In order to reduce the losses by water pollution, forewarning model for water pollution risk based on Bayes theory was studied. This model is built upon risk indexes in complex systems, proceeding from the whole structure and its components. In this study, the principal components analysis is used to screen out index systems. Hydrological model is employed to simulate index value according to the prediction principle. Bayes theory is adopted to obtain posterior distribution by prior distribution with sample information which can make samples' features preferably reflect and represent the totals to some extent. Forewarning level is judged on the maximum probability rule, and then local conditions for proposing management strategies that will have the effect of transforming heavy warnings to a lesser degree. This study takes Taihu Basin as an example. After forewarning model application and vertification for water pollution risk from 2000 to 2009 between the actual and simulated data, forewarning level in 2010 is given as a severe warning, which is well coincide with logistic curve. It is shown that the model is rigorous in theory with flexible method, reasonable in result with simple structure, and it has strong logic superiority and regional adaptability, providing a new way for warning water pollution risk.

15. Soliton excitations in polyacetylene and relativistic field theory models

International Nuclear Information System (INIS)

Campbell, D.K.; Bishop, A.R.; Los Alamos Scientific Lab., NM

1982-01-01

A continuum model of a Peierls-dimerized chain, as described generally by Brazovskii and discussed for the case of polyacetylene by Takayama, Lin-Liu and Maki (TLM), is considered. The continuum (Bogliubov-de Gennes) equations arising in this model of interacting electrons and phonons are shown to be equivalent to the static, semiclassical equations for a solvable model field theory of self-coupled fermions - the N = 2 Gross-Neveu model. Based on this equivalence we note the existence of soliton defect states in polyacetylene that are additional to, and qualitatively different from, the amplitude kinks commonly discussed. The new solutions do not have the topological stability of kinks but are essentially conventional strong-coupling polarons in the dimerized chain. They carry spin (1/2) and charge (+- e). In addition, we discuss further areas in which known field theory results may apply to a Peierls-dimerized chain, including relations between phenomenological PHI 4 and continuuum electron-phonon models, and the structure of the fully quantum versus mean field theories. (orig.)

16. Classical nucleation theory in the phase-field crystal model

Science.gov (United States)

Jreidini, Paul; Kocher, Gabriel; Provatas, Nikolas

2018-04-01

A full understanding of polycrystalline materials requires studying the process of nucleation, a thermally activated phase transition that typically occurs at atomistic scales. The numerical modeling of this process is problematic for traditional numerical techniques: commonly used phase-field methods' resolution does not extend to the atomic scales at which nucleation takes places, while atomistic methods such as molecular dynamics are incapable of scaling to the mesoscale regime where late-stage growth and structure formation takes place following earlier nucleation. Consequently, it is of interest to examine nucleation in the more recently proposed phase-field crystal (PFC) model, which attempts to bridge the atomic and mesoscale regimes in microstructure simulations. In this work, we numerically calculate homogeneous liquid-to-solid nucleation rates and incubation times in the simplest version of the PFC model, for various parameter choices. We show that the model naturally exhibits qualitative agreement with the predictions of classical nucleation theory (CNT) despite a lack of some explicit atomistic features presumed in CNT. We also examine the early appearance of lattice structure in nucleating grains, finding disagreement with some basic assumptions of CNT. We then argue that a quantitatively correct nucleation theory for the PFC model would require extending CNT to a multivariable theory.

17. Applicability of the Electrodynamic Approximation in the Theory of Liquid-Metal, Induction MHD Converters; O primenimosti ehlektrodinamicheskogo priblizheniya v teorii zhidkometallicheskikh induktsionnykh mgd preobrazovatelej ehnergii

Energy Technology Data Exchange (ETDEWEB)

Lielpeter, Ja. Ja. [Institut Fiziki AN Latvijskoj SSSR Riga, SSSR (Latvia)

1966-11-15

The paper deals with the present status of theoretical work on this problem and describes the results of a number of new experiments designed, to clarify the theory of MHD phenomena. The possibilities of using the electrodynamic approximation are discussed. Induction MHD machines with constant channel cross-section in the working zone are considered. (author) [Russian] Daetsja harakteristika sostojanija teorii voprosa, opisyvajutsja rezul'taty nekotoryh novyh jeksperimentov, postavlennyh s cel'ju utochnenija teorii MGD javlenij i obsuzhdajutsja vozmozhnosti ispol'zovanija jelektrodinamicheskogo priblizhenija. Rassmatrivajutsja indukcionnye MGD mashiny s postojannym po dline secheniem kanala v rabochej zone. (author)

18. The Integration of Plant Sample Analysis, Laboratory Studies, and Thermodynamic Modeling to Predict Slag-Matte Equilibria in Nickel Sulfide Converting

Science.gov (United States)

Hidayat, Taufiq; Shishin, Denis; Grimsey, David; Hayes, Peter C.; Jak, Evgueni

2018-02-01

The Kalgoorlie Nickel Smelter (KNS) produces low Fe, low Cu nickel matte in its Peirce-Smith converter operations. To inform process development in the plant, new fundamental data are required on the effect of CaO in slag on the distribution of arsenic between slag and matte. A combination of plant sample analysis, high-temperature laboratory experiments, and thermodynamic modeling was carried out to identify process conditions in the converter and to investigate the effect of slag composition on the chemical behavior of the system. The high-temperature experiments involved re-equilibration of industrial matte-slag-lime samples at 1498 K (1225 °C) and P(SO2) = 0.12 atm on a magnetite/quartz substrate, rapid quenching in water, and direct measurement of phase compositions using electron probe X-ray microanalysis (EPMA) and laser ablation-inductively coupled plasma-mass spectrometry (LA-ICP-MS). A private thermodynamic database for the Ca-Cu-Fe-Mg-Ni-O-S-Si-(As) system was used together with the FactSage software package to assist in the analysis. Thermodynamic predictions combined with plant sample characterization and the present experimental data provide a quantitative basis for the analysis of the effect of CaO fluxing on the slag-matte thermochemistry during nickel sulfide converting, in particular on the spinel liquidus and the distribution of elements between slag and matte as a function of CaO addition.

19. Theory and theory-based models for the pedestal, edge stability and ELMs in tokamaks

International Nuclear Information System (INIS)

Guzdar, P.N.; Mahajan, S.M.; Yoshida, Z.; Dorland, W.; Rogers, B.N.; Bateman, G.; Kritz, A.H.; Pankin, A.; Voitsekhovitch, I.; Onjun, T.; Snyder, S.

2005-01-01

Theories for equilibrium and stability of H-modes, and models for use within integrated modeling codes with the objective of predicting the height, width and shape of the pedestal at the edge of H-mode plasmas in tokamaks, as well as the onset and frequency of Edge Localized Modes (ELMs), are developed. A theory model for relaxed plasma states with flow, which uses two-fluid Hall-MHD equations, predicts that the natural scale length of the pedestal is the ion skin depth and the pedestal width is larger than the ion poloidal gyro-radius, in agreement with experimental observations. Computations with the GS2 code are used to identify micro-instabilities, such as electron drift waves, that survive the strong flow shear, diamagnetic flows, and magnetic shear that are characteristic of the pedestal. Other instabilities on the pedestal and gyro-radius scale, such as the Kelvin-Helmholtz instability, are also investigated. Time-dependent integrated modeling simulations are used to follow the transition from L-mode to H-mode and the subsequent evolution of ELMs as the heating power is increased. The flow shear stabilization that produces the transport barrier at the edge of the plasma reduces different modes of anomalous transport and, consequently, different channels of transport at different rates. ELM crashes are triggered in the model by pressure-driven ballooning modes or by current-driven peeling modes. (author)

20. Hypersurface Homogeneous Cosmological Model in Modified Theory of Gravitation

Science.gov (United States)

Katore, S. D.; Hatkar, S. P.; Baxi, R. J.

2016-12-01

We study a hypersurface homogeneous space-time in the framework of the f (R, T) theory of gravitation in the presence of a perfect fluid. Exact solutions of field equations are obtained for exponential and power law volumetric expansions. We also solve the field equations by assuming the proportionality relation between the shear scalar (σ ) and the expansion scalar (θ ). It is observed that in the exponential model, the universe approaches isotropy at large time (late universe). The investigated model is notably accelerating and expanding. The physical and geometrical properties of the investigated model are also discussed.