WorldWideScience

Sample records for conversion polymerization shrinkage

  1. Remineralizing amorphous calcium phosphate based composite resins: the influence of inert fillers on monomer conversion, polymerization shrinkage, and microhardness

    Science.gov (United States)

    Marović, Danijela; Šariri, Kristina; Demoli, Nazif; Ristić, Mira; Hiller, Karl-Anton; Škrtić, Drago; Rosentritt, Martin; Schmalz, Gottfried; Tarle, Zrinka

    2016-01-01

    Aim To determine if the addition of inert fillers to a bioactive dental restorative composite material affects its degree of conversion (DC), polymerization shrinkage (PS), and microhardness (HV). Methods Three amorphous calcium phosphate (ACP)-based composite resins: without added fillers (0-ACP), with 10% of barium-glass fillers (Ba-ACP), and with 10% of silica fillers (Si-ACP), as well as commercial control (Ceram•X, Dentsply DeTrey) were tested in laboratory conditions. The amount of ACP (40%) and the composition of the resin mixture (based on ethoxylated bisphenol A dimethacrylate) was the same for all ACP materials. Fourier transform infrared spectroscopy was used to determine the DC (n = 40), 20 min and 72 h after polymerization. Linear PS and Vickers microhardness (n = 40) were also evaluated. The results were analyzed by paired samples t test, ANOVA, and one-way repeated measures ANOVA with Student-Newman-Keuls or Tukey’s post-hoc test (P = 0.05). Results The addition of barium fillers significantly increased the DC (20 min) (75.84 ± 0.62%) in comparison to 0-ACP (73.92 ± 3.08%), but the addition of silica fillers lowered the DC (71.00 ± 0.57%). Ceram•X had the lowest DC (54.93 ± 1.00%) and linear PS (1.01 ± 0.24%) but the highest HV (20.73 ± 2.09). PS was significantly reduced (P < 0.010) in both Ba-ACP (1.13 ± 0.25%) and Si-ACP (1.17 ± 0.19%) compared to 0-ACP (1.43 ± 0.21%). HV was significantly higher in Si-ACP (12.82 ± 1.30) than in 0-ACP (10.54 ± 0.86) and Ba-ACP (10.75 ± 0.62) (P < 0.010). Conclusion Incorporation of inert fillers to bioactive remineralizing composites enhanced their physical-mechanical performance in laboratory conditions. Both added fillers reduced the PS while maintaining high levels of the DC. Silica fillers additionally moderately improved the HV of ACP composites. PMID:27815937

  2. Volumetric polymerization shrinkage of contemporary composite resins

    Directory of Open Access Journals (Sweden)

    Halim Nagem Filho

    2007-10-01

    Full Text Available The polymerization shrinkage of composite resins may affect negatively the clinical outcome of the restoration. Extensive research has been carried out to develop new formulations of composite resins in order to provide good handling characteristics and some dimensional stability during polymerization. The purpose of this study was to analyze, in vitro, the magnitude of the volumetric polymerization shrinkage of 7 contemporary composite resins (Definite, Suprafill, SureFil, Filtek Z250, Fill Magic, Alert, and Solitaire to determine whether there are differences among these materials. The tests were conducted with precision of 0.1 mg. The volumetric shrinkage was measured by hydrostatic weighing before and after polymerization and calculated by known mathematical equations. One-way ANOVA (a or = 0.05 was used to determine statistically significant differences in volumetric shrinkage among the tested composite resins. Suprafill (1.87±0.01 and Definite (1.89±0.01 shrank significantly less than the other composite resins. SureFil (2.01±0.06, Filtek Z250 (1.99±0.03, and Fill Magic (2.02±0.02 presented intermediate levels of polymerization shrinkage. Alert and Solitaire presented the highest degree of polymerization shrinkage. Knowing the polymerization shrinkage rates of the commercially available composite resins, the dentist would be able to choose between using composite resins with lower polymerization shrinkage rates or adopting technical or operational procedures to minimize the adverse effects deriving from resin contraction during light-activation.

  3. Do low-shrink composites reduce polymerization shrinkage effects?

    Science.gov (United States)

    Tantbirojn, D; Pfeifer, C S; Braga, R R; Versluis, A

    2011-05-01

    Progress in polymer science has led to continuous reduction of polymerization shrinkage, exemplified by a new generation of "low-shrink composites". The common inference that shrinkage stress effects will be reduced in teeth restored with such restoratives with lower shrinkage was tested in extracted human premolars. Mesio-occluso-distal slot-shaped cavities were cut and restored with a conventional (SupremePlus) or low-shrink (RefleXions, Premise, Kalore, and LS) composite (N = 5). We digitized the coronal surfaces before and 10 min after restoration to determine cuspal deflection from the buccal and lingual volume change/area. We also determined the main properties involved (total shrinkage, post-gel shrinkage, degree of conversion, and elastic modulus), as well as microleakage, to verify adequate bonding. It was shown that, due to shrinkage stresses, buccal and lingual surfaces pulled inward after restoration (9-14 microns). Only Kalore and LS resulted in significantly lower tooth deformation (ANOVA/Student-Newman-Keuls post hoc, p = 0.05). The other two low-shrink composites, despite having the lowest and highest total shrinkage values, did not cause significant differences in cuspal deflection. Deflection seemed most related to the combination of post-gel shrinkage and elastic modulus. Therefore, even for significantly lower total shrinkage values, shrinkage stress is not necessarily reduced.

  4. [Comparative study of polymerization shrinkage and related properties of flowable composites and an unfilled resin].

    Science.gov (United States)

    Bukovinszky, Katalin; Molnár, Lilla; Bakó, József; Szalóki, Melinda; Hegedus, Csaba

    2014-03-01

    The polymerization shrinkage and shrinkage stress of dental composites are in the center of the interest of researchers and manufacturers. It is a great challenge to minimize this important property as low as possible. Many factors are related and are in complicated correlation with each other affecting the polymerization shrinkage. Polymerization shrinkage stress degree of conversion and elasticity has high importance from this aspect. Our aim was to study the polymerization shrinkage and related properties (modulus of elasticity, degree of conversion, shrinkage stress) of three flowable composite (Charisma Opal Flow, SDR, Filtek Ultimate) and an unfilled composite resin. Modulus of elasticity was measured using three point flexure tests on universal testing machine. The polymerization shrinkage stress was determined using bonded-disc technique. The degree of conversion measurements were performed by FT-IR spectroscopy. And the volumetric shrinkage was investigated using Archimedes principle and was measured on analytical balance with special additional equipment. The unfilled resin generally showed higher shrinkage (8,26%), shrinkage stress (0,8 MPa) and degree of conversion (38%), and presented the lowest modulus of elasticity (3047,02MPa). Highest values of unfilled resin correspond to the literature. The lack of fillers enlarges the shrinkage, and the shrinkage stress, but gives the higher flexibility and higher degree of conversion. Further investigations needs to be done to understand and reveal the differences between the composites.

  5. Effect of light-curing units and activation mode on polymerization shrinkage and shrinkage stress of composite resins.

    Science.gov (United States)

    Lopes, Lawrence Gonzaga; Franco, Eduardo Batista; Pereira, José Carlos; Mondelli, Rafael Francisco Lia

    2008-01-01

    The aim of this study was to evaluate the polymerization shrinkage and shrinkage stress of composites polymerized with a LED and a quartz tungsten halogen (QTH) light sources. The LED was used in a conventional mode (CM) and the QTH was used in both conventional and pulse-delay modes (PD). The composite resins used were Z100, A110, SureFil and Bisfil 2B (chemical-cured). Composite deformation upon polymerization was measured by the strain gauge method. The shrinkage stress was measured by photoelastic analysis. The polymerization shrinkage data were analyzed statistically using two-way ANOVA and Tukey test (p contraction and the stress values when compared to CM. LED generated the same stress as QTH in conventional mode. Regardless of the activation mode, SureFil produced lower contraction and stress values than the other light-cured resins. Conversely, Z100 and A110 produced the greatest contraction and stress values. As expected, the chemically cured resin generated lower shrinkage and stress than the light-cured resins. In conclusion, The PD mode effectively decreased contraction stress for Z100 and A110. Development of stress in light-cured resins depended on the shrinkage value.

  6. Polymerization shrinkage assessment of dental resin composites: a literature review.

    Science.gov (United States)

    Kaisarly, Dalia; Gezawi, Moataz El

    2016-09-01

    Composite restorations are widely used worldwide, but the polymerization shrinkage is their main disadvantage that may lead to clinical failures and adverse consequences. This review reports, currently available in vitro techniques and methods used for assessing the polymerization shrinkage. The focus lies on recent methods employing three-dimensional micro-CT data for the evaluation of polymerization shrinkage: volumetric measurement and the shrinkage vector evaluation through tracing particles before and after polymerization. Original research articles reporting in vitro shrinkage measurements and shrinkage stresses were included in electronic and hand-search. Earlier methods are easier, faster and less expensive. The procedures of scanning the samples in the micro-CT and performing the shrinkage vector evaluation are time consuming and complicated. Moreover, the respective software is not commercially available and the various methods for shrinkage vector evaluation are based on different mathematical principles. Nevertheless, these methods provide clinically relevant information and give insight into the internal shrinkage behavior of composite applied in cavities and how boundary conditions affect the shrinkage vectors. The traditional methods give comparative information on polymerization shrinkage of resin composites, whereas using three-dimensional micro-CT data for volumetric shrinkage measurement and the shrinkage vector evaluation is a highly accurate method. The methods employing micro-CT data give the researchers knowledge related to the application method and the boundary conditions of restorations for visualizing the shrinkage effects that could not be seen otherwise. Consequently, this knowledge can be transferred to the clinical situation to optimize the material manipulation and application techniques for improved outcomes.

  7. Measurement of linear polymerization shrinkage in light cure Ideal Makoo composite resin

    Directory of Open Access Journals (Sweden)

    Ghavam M.

    2001-09-01

    Full Text Available "nAbstract: Polymerization shrinkage of light cure composite resins causes many complications in conservative and esthetic restorations. The objective of this in-vitro study was to evaluate the polymerization shrinkage, degree of conversion and the amount of filler in IDM and tetric ceram composites. Ten disk shaped, uncured specimens (8mm×1.547mm of each composite were placed on glass slide in the center of the metal attached to it. Then specimens were light cured for 60s from underneath. After 30 minutes, the thickness of specimens, using a micrometer and the percent of the polymerization shrinkage of each sample were measured. Statistical analysis was carried out by t-test (P<0.05. Also the degree of conversion of specimens was evaluated with FTIR and the mineral filler content was measured by burning in electric oven. Polymerization shrinkage in IDM and tetric ceram was not significantly different. Degree of conversion and mineral filler content in tetric ceram was greater than that of IDM. "nIt is assumed that the low degree of conversion in IDM is due to its chemical composition and filler content. Also, the similarity in linear polymerization shrinkage between IDM and tetric ceram may be caused by the low degree of conversion in IDM.

  8. Effect of light-curing units and activation mode on polymerization shrinkage and shrinkage stress of composite resins

    Directory of Open Access Journals (Sweden)

    Lawrence Gonzaga Lopes

    2008-02-01

    Full Text Available The aim of this study was to evaluate the polymerization shrinkage and shrinkage stress of composites polymerized with a LED and a quartz tungsten halogen (QTH light sources. The LED was used in a conventional mode (CM and the QTH was used in both conventional and pulse-delay modes (PD. The composite resins used were Z100, A110, SureFil and Bisfil 2B (chemical-cured. Composite deformation upon polymerization was measured by the strain gauge method. The shrinkage stress was measured by photoelastic analysis. The polymerization shrinkage data were analyzed statistically using two-way ANOVA and Tukey test (p<0.05, and the stress data were analyzed by one-way ANOVA and Tukey's test (p<0.05. Shrinkage and stress means of Bisfil 2B were statistically significant lower than those of Z100, A110 and SureFil. In general, the PD mode reduced the contraction and the stress values when compared to CM. LED generated the same stress as QTH in conventional mode. Regardless of the activation mode, SureFil produced lower contraction and stress values than the other light-cured resins. Conversely, Z100 and A110 produced the greatest contraction and stress values. As expected, the chemically cured resin generated lower shrinkage and stress than the light-cured resins. In conclusion, The PD mode effectively decreased contraction stress for Z100 and A110. Development of stress in light-cured resins depended on the shrinkage value.

  9. Polymerization shrinkage of flowable resin-based restorative materials

    OpenAIRE

    Stavridakis, Minos M; Dietschi, Didier; Krejci, Ivo

    2005-01-01

    This study measured the linear polymerization displacement and polymerization forces induced by polymerization shrinkage of a series of flowable resin-based restorative materials. The materials tested were 22 flowable resin-based restorative materials (Admira Flow, Aelite Flow, Aeliteflow LV, Aria, Crystal Essence, Definite Flow, Dyract Flow, Filtek Flow, FloRestore, Flow-it, Flow-Line, Freedom, Glacier, OmegaFlo, PermaFlo, Photo SC, Revolution 2, Star Flow, Synergy Flow, Tetric Flow, Ultrase...

  10. Polymerization shrinkage, flexural and compression properties of low-shrinkage dental resin composites.

    Science.gov (United States)

    Park, Jeong-Kil; Lee, Geun-Ho; Kim, Jong-Hwa; Park, Mi-Gyoung; Ko, Ching-Chang; Kim, Hyung-Il; Kwon, Yong Hoon

    2014-01-01

    This study evaluated the polymerization shrinkage, flexural and compressive properties of low-shrinkage resin composites. For the study, four methacrylate-based and one silorane-based resin composites were light cured using three different light-curing units (LCUs) and their polymerization shrinkage, flexural (strength (FS) and modulus (FM)) and compressive (strength (CS) and modulus (CM)) properties were evaluated. Data were statistically analyzed using ANOVA and a post-hoc Tukey test. The polymerization shrinkage ranged approximately 7.6-14.2 μm for 2-mm thick specimens depending on the resin product and LCU. Filtek LS showed the least shrinkage while the rest shrank approximately 13.2-14.2 μm. However, Filtek LS showed the greatest shrinkage difference for the used LCUs. FS and CS of the tested specimens ranged 96.2-152.1 MPa and 239.2-288.4 MPa, respectively, depending on the resin product and LCU. The highest and lowest FS and FM were recorded for the methacrylate-based resin composites. Among the specimens, Filtek LS showed the lowest CS and CM.

  11. Conversion-dependent shrinkage stress and strain in dental resins and composites.

    Science.gov (United States)

    Stansbury, Jeffrey W; Trujillo-Lemon, Marianela; Lu, Hui; Ding, Xingzhe; Lin, Yan; Ge, Junhao

    2005-01-01

    The placement of dental composites is complicated by the contraction that accompanies polymerization of these materials. The resulting shrinkage stress that develops during cure of a bonded restoration can induce defects within the composite, the tooth or at the interface resulting in compromised clinical performance and/or esthetics. In light of the substantial efforts devoted to understanding and attempting to control shrinkage stress and strain in dental composite restoratives, this paper offers a perspective on the conversion dependent development of shrinkage and stress. The relationships between polymer property development and the physical evolution of the network structures associated with dental polymers as well as the interrelated kinetics of the photopolymerization reaction process are examined here. Some of the methods used to assess conversion in dental resins and composites are considered. In particular, newly introduced techniques that allow real time analysis of conversion by near-infrared spectroscopy to be coupled directly to simultaneous dynamic measurements of either shrinkage stress or strain are described. The results are compared with reports from the dental materials literature as well as complementary studies in other related fields of polymer science. The complex, nonlinear correlation between conversion, shrinkage and stress are highlighted. A brief review of some of the materials-based approaches designed to minimize polymerization shrinkage and stress is also provided.

  12. Polymerization shrinkage and stress development in amorphous calcium phosphate/urethane dimethacrylate polymeric composites

    Science.gov (United States)

    Antonucci, J.M.; Regnault, W. F.; Skrtic, D.

    2010-01-01

    This study explores how substituting a new high molecular mass oligomeric poly(ethylene glycol) extended urethane dimethacrylate (PEG-U) for 2-hydroxyethyl methacrylate (HEMA) in photo-activated urethane dimethacrylate (UDMA) resins affects degree of vinyl conversion (DC), polymerization shrinkage (PS), stress development (PSSD) and biaxial flexure strength (BFS) of their amorphous calcium phosphate (ACP) composites. The composites were prepared from four types of resins (UDMA, PEG-U, UDMA/HEMA and UDMA/PEG-U) and zirconia-hybridized ACP. Introducing PEG-U improved DC while not adversely affecting PS, PSSD and the BFS of composites. This improvement in DC is attributed to the long, more flexible structure between the vinyl groups of PEG-U and its higher molecular mass compared to poly(HEMA). The results imply that PEG-U has the potential to serve as an alternative to HEMA in dental and other biomedical applications. PMID:20169007

  13. Polymerization Shrinkage and Flexural Modulus of Flowable Dental Composites

    Directory of Open Access Journals (Sweden)

    Janaína Cavalcanti Xavier

    2010-09-01

    Full Text Available Linear polymerization shrinkage (LPS, flexural strength (FS and modulus of elasticity (ME of low-viscosity resin composites (Admira Flow™, Grandio Flow™/VOCO; Filtek Z350 Flow™/3M ESPE; Tetric Flow™/Ivoclar-Vivadent was evaluated using a well-established conventional micro-hybrid composite as a standard (Filtek Z250™/3M ESPE. For the measurement of LPS, composites were applied to a cylindrical metallic mould and polymerized (n = 8. The gap formed at the resin/mould interface was observed using SEM (1500×. For FS and ME, specimens were prepared according to the ISO 4049 specifications (n = 10. Statistical analysis of the data was performed with one-way ANOVA and the Tukey test. The conventional resin presented significantly lower LPS associated with high FS and ME, but only the ME values of the conventional resin differed significantly from the low-viscosity composites. The relationship between ME and LPS of low-viscosity resin composites when used as restorative material is a critical factor in contraction stress relief and marginal leakage.

  14. Effect of modulated photo-activation on polymerization shrinkage behavior of dental restorative resin composites

    NARCIS (Netherlands)

    T.T. Tauböck; A.J. Feilzer; W. Buchalla; C.J. Kleverlaan; I. Krejci; T. Attin

    2014-01-01

    This study investigated the influence of modulated photo-activation on axial polymerization shrinkage, shrinkage force, and hardening of light- and dual-curing resin-based composites. Three light-curing resin composites (SDR bulk-fill, Esthet X flow, and Esthet X HD) and one dual-curing material (Re

  15. Effect of modulated photo-activation on polymerization shrinkage behavior of dental restorative resin composites.

    Science.gov (United States)

    Tauböck, Tobias T; Feilzer, Albert J; Buchalla, Wolfgang; Kleverlaan, Cornelis J; Krejci, Ivo; Attin, Thomas

    2014-08-01

    This study investigated the influence of modulated photo-activation on axial polymerization shrinkage, shrinkage force, and hardening of light- and dual-curing resin-based composites. Three light-curing resin composites (SDR bulk-fill, Esthet X flow, and Esthet X HD) and one dual-curing material (Rebilda DC) were subjected to different irradiation protocols with identical energy density (27 J cm(-2) ): high-intensity continuous light (HIC), low-intensity continuous light (LIC), soft-start (SS), and pulse-delay curing (PD). Axial shrinkage and shrinkage force of 1.5-mm-thick specimens were recorded in real time for 15 min using custom-made devices. Knoop hardness was determined at the end of the observation period. Statistical analysis revealed no significant differences among the curing protocols for both Knoop hardness and axial shrinkage, irrespective of the composite material. Pulse-delay curing generated the significantly lowest shrinkage forces within the three light-curing materials SDR bulk-fill, Esthet X flow, and Esthet X HD. High-intensity continuous light created the significantly highest shrinkage forces within Esthet X HD and Rebilda DC, and caused significantly higher forces than LIC within Esthet X flow. In conclusion, both the composite material and the applied curing protocol control shrinkage force formation. Pulse-delay curing decreases shrinkage forces compared with high-intensity continuous irradiation without affecting hardening and axial polymerization shrinkage. © 2014 Eur J Oral Sci.

  16. Evaluation of polymerization shrinkage, polymerization shrinkage stress, wear resistance, and compressive strength of a silorane-based composite: A finite element analysis study

    Directory of Open Access Journals (Sweden)

    Suresh Mitthra

    2017-01-01

    Full Text Available Background: Understanding the mechanical properties is important in predicting the clinical behavior of composites. Finite element analysis (FEA evaluates properties of materials replicating clinical scenario. Aim: This study evaluated polymerization shrinkage and stress, wear resistance (WR, and compressive strength (CS of silorane in comparison with two methacrylate resins. Settings and Design: This study design was a numerical study using FEA. Materials and Methods: Three-dimensional (3D models of maxillary premolar with Class I cavities (2 mm depth, 4 mm length, and 2.5 mm width created and restored with silorane, nanohybrid, and microhybrid; Groups I, II, and III, respectively. Loads of 200–600 N were applied. Polymerization shrinkage was first determined by displacement produced in the X, Y, and Z planes. Maximum stress distribution due to shrinkage was calculated using AN SYS software. 3D cube models of composite resins were simulated with varying filler particle size. Similar loads were applied. WR and compressive stress were calculated: K W L/H and load/cross-sectional area, respectively. Statistical analysis done using one-way ANOVA, Kruskal–Wallis, and Tukey's honestly significant difference test (P < 0.05. Results: Polymerization shrinkage (0.99% and shrinkage stress (233.21 Mpa of silorane were less compared to microhybrid (2.14% and 472.43 Mpa and nanohybrid (2.32% and 464.88 Mpa. Silorane (7.92×/1011 μm/mm3 and nanohybrid (7.79×/1011 showed superior WR than microhybrid (1.113×/1017. There was no significant difference in compressive stress among the groups. Conclusion: Silorane exhibited less polymerization shrinkage and shrinkage stress compared to methacrylates. Silorane and nanohybrid showed greater WR compared to microhybrid. CS of all groups was similar.

  17. Characteristics of low polymerization shrinkage flowable resin composites in newly-developed cavity base materials for bulk filling technique.

    Science.gov (United States)

    Nitta, Keiko; Nomoto, Rie; Tsubota, Yuji; Tsuchikawa, Masuji; Hayakawa, Tohru

    2017-06-23

    The purpose of this study was to evaluate polymerization shrinkage and other physical properties of newly-developed cavity base materials for bulk filling technique, with the brand name BULK BASE (BBS). Polymerization shrinkage was measured according to ISO/FDIS 17304. BBS showed the significantly lowest polymerization shrinkage and significantly higher depth of cure than conventional flowable resin composites (p<0.05). The Knoop hardness, flexural strength and elastic modulus of that were significantly lower than conventional flowable resin composites (p<0.05). BBS had the significantly greatest filler content (p<0.05). SEM images of the surface showed failure of fillers. The lowest polymerization shrinkage was due to the incorporation of a new type of low shrinkage monomer, which has urethane moieties. There were no clear correlations between inorganic filler contents and polymerization shrinkage, flexural strength and elastic modulus. In conclusion, the low polymerization shrinkage of BBS will be useful for cavity treatment in dental clinics.

  18. Polymerization shrinkage and contraction force of composite resin restorative inserted with "Megafiller".

    Science.gov (United States)

    Tani, Y; Nambu, T; Ishikawa, A; Katsuyama, S

    1993-12-01

    This study quantified the contraction force and polymerization shrinkage of composite resins with/without beta-Quartz Glass Ceramic Inserts (BQCI) as "Megafiller". The materials used for the determination included a chemically cured composite and five light-cured composites. The system for measuring contraction force consisted of a transparent teflon tube for preparing the specimen, a small load cell, a dynamic strain gauge and a pen-recorder. After the composite was packed into the teflon mold, a BQCI (Type R3) was inserted through the opening and the specimen was cured. Linear polymerization shrinkage of the composites was measured every 10 seconds from the start of mixing or irradiation to 90 minutes by the mercury bath method. Three pieces each of BQCI (Type T3) were inserted in each specimen. The results suggested that BQCI was markedly effective in reducing polymerization shrinkage, but was not always effective in reducing the contraction force during polymerization.

  19. A theoretical and experimental analysis of polymerization shrinkage of bone cement: A potential major source of porosity.

    Science.gov (United States)

    Gilbert, J L; Hasenwinkel, J M; Wixson, R L; Lautenschlager, E P

    2000-10-01

    A theoretical basis for understanding polymerization shrinkage of bone cement is presented based on density changes in converting monomer to polymer. Also, an experimental method, based on dilatometry and the Archimedes' principle is presented for highly precise and accurate measurement of unconstrained volumetric shrinkage of bone cement. Furthermore, a theoretical and experimental analysis of polymerization shrinkage in a constrained deformational state is presented to demonstrate that porosity can develop due to shrinkage. Six bone-cement conditions (Simplex-Ptrade mark vacuum and hand mixed, Endurancetrade mark vacuum mixed, and three two-solution experimental bone cements with higher initial monomer levels) were tested for volumetric shrinkage. It was found that shrinkage varied statistically (ptheory that they are the result of shrinkage. The results of this study show that shrinkage of bone cement under certain constrained conditions may result in the development of porosity at the implant-bone cement interface and elsewhere in the polymerizing cement mantle.

  20. Conjugation of diisocyanate side chains to dimethacrylate reduces polymerization shrinkage and increases the hardness of composite resins

    Directory of Open Access Journals (Sweden)

    Yih-Dean Jan

    2014-04-01

    Conclusion: Conjugation of diisocyanate side chains to dimethacrylate represents an effective means of reducing polymerization shrinkage and increasing the surface hardness of dental composite resins.

  1. Polymerization Shrinkage of Dental Composites Registered by a Video-imaging Device. A pilot study

    OpenAIRE

    Afaag, Ali; Sandelin, Benjamin

    2014-01-01

    The use of composite materials for dental fillings has become more common due to demands for more esthetic filling materials and a national ban against using mercury-containing products, among others dental amalgam. However, one of the drawbacks with composites is their polymerization shrinkage. Filler particles are incorporated into composites among other things to minimize the shrinkage. The sizes of the filler particles have in recent years become smaller and most composites have nano-part...

  2. Microcomputed Tomography Evaluation of Polymerization Shrinkage of Class I Flowable Resin Composite Restorations.

    Science.gov (United States)

    Sampaio, C S; Chiu, K-J; Farrokhmanesh, E; Janal, M; Puppin-Rontani, R M; Giannini, M; Bonfante, E A; Coelho, P G; Hirata, R

    The present study aimed to characterize the pattern and volume of polymerization shrinkage of flowable resin composites, including one conventional, two bulk fill, and one self-adhesive. Standardized class I preparations (2.5 mm depth × 4 mm length × 4 mm wide) were performed in 24 caries-free human third molars that were randomly divided in four groups, according to the resin composite and adhesive system used: group 1 = Permaflo + Peak Universal Bond (PP); group 2 = Filtek Bulk Fill + Scotchbond Universal (FS); group 3 = Surefil SDR + XP Bond (SX); and group 4 = Vertise flow self-adhering (VE) (n=6). Each tooth was scanned three times using a microcomputed tomography (μCT) apparatus. The first scan was done after the cavity preparation, the second after cavity filling with the flowable resin composite before curing, and the third after it was cured. The μCT images were imported into three-dimensional rendering software, and volumetric polymerization shrinkage percentage was calculated for each sample. Data were submitted to one-way analysis of variance and post hoc comparisons. No significant difference was observed among PP, FS, and VE. SX bulk fill resin composite presented the lowest values of volumetric shrinkage. Shrinkage was mostly observed along the occlusal surface and part of the pulpal floor. In conclusion, polymerization shrinkage outcomes in a 2.5-mm deep class I cavity were material dependent, although most materials did not differ. The location of shrinkage was mainly at the occlusal surface.

  3. The effect of resin shades on microhardness, polymerization shrinkage, and color change of dental composite resins.

    Science.gov (United States)

    Jeong, Tae-Sung; Kang, Ho-Seung; Kim, Sung-Ki; Kim, Shin; Kim, Hyung-Il; Kwon, Yong Hoon

    2009-07-01

    The present study sought to evaluate the effect of resin shades on the degree of the polymerization. To this end, response variables affected by the degree of polymerization were examined in this study - namely, microhardness, polymerization shrinkage, and color change. Two commercial composite resins of four different shades were employed in this study: shades A3, A3.5, B3, and C3 of Z250 (Z2) and shades A3, A3.5, B3, and B4 of Solitaire 2 (S2). After light curing, the reflectance/absorbance, microhardness, polymerization shrinkage, and color change of the specimens were measured. On reflectance and absorbance, Z2 and S2 showed similar distribution curves regardless of the resin shade, with shade A3.5 of Z2 and shade A3 of S2 exhibiting the lowest/highest distributions. Similarly for attenuation coefficient and microhardness, the lowest/highest values were exhibited by shade A3.5 of Z2 and shade A3 of S2. On polymerization shrinkage, no statistically significant differences were observed among the different shades of Z2. Similarly for color change, Z2 specimens exhibited only a slight (DeltaE*=0.5-0.9) color change after immersion in distilled water for 10 days, except for shades A3 and A3.5. Taken together, results of the present study suggested that the degree of polymerization of the tested composite resins was minimally affected by resin shade.

  4. Dental composite resins: measuring the polymerization shrinkage using optical fiber Bragg grating sensors

    Science.gov (United States)

    Ottevaere, H.; Tabak, M.; Chah, K.; Mégret, P.; Thienpont, H.

    2012-04-01

    Polymerization shrinkage of dental composite materials is recognized as one of the main reasons for the development of marginal leakage between a tooth and filling material. As an alternative to conventional measurement methods, we propose optical fiber Bragg grating (FBG) based sensors to perform real-time strain and shrinkage measurements during the curing process of dental resin cements. We introduce a fully automated set-up to measure the Bragg wavelength shift of the FBG strain sensors and to accurately monitor the linear strain and shrinkage of dental resins during curing. Three different dental resin materials were studied in this work: matrix-filled BisGMA-based resins, glass ionomers and organic modified ceramics.

  5. Synthesis and characterization of a new trimethacrylate monomer with low polymerization shrinkage and its application in dental restoration materials.

    Science.gov (United States)

    He, Jingwei; Luo, Yuanfang; Liu, Fang; Jia, Demin

    2010-09-01

    In this study, a new trimethacrylate monomer alpha,alpha,alpha'-tri[4-(2'-hydroxy-3'-methacryloyloxy-propoxy)phenyl]-1-ethyl-4-isopropylbenzene (alpha,alpha,alpha'-THMPEIB) with a molecular weight of 850 and a large molecular volume was designed and synthesized. The structure of monomer alpha,alpha,alpha'-THMPEIB was confirmed by FT-IR, (1)H NMR, and elemental analysis. Degree of double-bond conversion, volume shrinkage, water sorption and solubility, diffusion coefficient value, and flexure strength of alpha,alpha,alpha'-THMPEIB/tri(ethylene glycol) dimethacrylate- (TEGDMA) based resin were measured. 2,2-Bis[4-(2'-hydroxy-3'-methacryloyloxy-propoxy)-phenyl]-propane (bis-GMA)/TEGDMA monomer mixture was used as reference. The result showed that the alpha,alpha,alpha'-THMPEIB/TEGDMA-based resin had the lower double-bond conversion, polymerization shrinkage, and water solubility than bis-GMA/TEGDMA-based resin. Water sorption and diffusion coefficient value of alpha,alpha,alpha'-THMPEIB/TEGDMA-based resin were nearly the same as those of bis-GMA/TEGDMA-based resin. Flexural strength of alpha,alpha,alpha'-THMPEIB/TEGDMA-based resin was higher than that of bis-GMA/ TEGDMA-based resin.

  6. Experimental evaluation and simulation of volumetric shrinkage and warpage on polymeric composite reinforced with short natural fibers

    Science.gov (United States)

    Santos, Jonnathan D.; Fajardo, Jorge I.; Cuji, Alvaro R.; García, Jaime A.; Garzón, Luis E.; López, Luis M.

    2015-09-01

    A polymeric natural fiber-reinforced composite is developed by extrusion and injection molding process. The shrinkage and warpage of high-density polyethylene reinforced with short natural fibers of Guadua angustifolia Kunth are analyzed by experimental measurements and computer simulations. Autodesk Moldflow® and Solid Works® are employed to simulate both volumetric shrinkage and warpage of injected parts at different configurations: 0 wt.%, 20 wt.%, 30 wt.% and 40 wt.% reinforcing on shrinkage and warpage behavior of polymer composite. Become evident the restrictive effect of reinforcing on the volumetric shrinkage and warpage of injected parts. The results indicate that volumetric shrinkage of natural composite is reduced up to 58% with fiber increasing, whereas the warpage shows a reduction form 79% to 86% with major fiber content. These results suggest that it is a highly beneficial use of natural fibers to improve the assembly properties of polymeric natural fiber-reinforced composites.

  7. Polymerization shrinkage of a dental resin composite determined by a fiber optic Fizeau interferometer

    Science.gov (United States)

    Arenas, Gustavo; Noriega, Sergio; Vallo, Claudia; Duchowicz, Ricardo

    2007-03-01

    A fiber optic sensing method based on a Fizeau-type interferometric scheme was employed for monitoring linear polymerization shrinkage in dental restoratives. This technique offers several advantages over the conventional methods of measuring polymerization contraction. This simple, compact, non-invasive and self-calibrating system competes with both conventional and other high-resolution bulk interferometric techniques. In this work, an analysis of the quality of interference signal and fringes visibility was performed in order to characterize their resolution and application range. The measurements of percent linear contraction as a function of the sample thickness were carried out in this study on two dental composites: Filtek P60 (3M ESPE) Posterior Restorer and Filtek Z250 (3M ESPE) Universal Restorer. The results were discussed with respect to others obtained employing alternative techniques.

  8. Effect of LED and Argon Laser on Degree of Conversion and Temperature Rise of Hybrid and Low Shrinkage Composite Resins

    Science.gov (United States)

    Pahlevan, Ayob; Tabatabaei, Masumeh Hasani; Arami, Sakineh; Valizadeh, Sara

    2016-01-01

    Objectives: Different light curing units are used for polymerization of composite resins. The aim of this study was to evaluate the degree of conversion (DC) and temperature rise in hybrid and low shrinkage composite resins cured by LED and Argon Laser curing lights. Materials and Methods: DC was measured using FTIR spectroscopy. For measuring temperature rise, composite resin samples were placed in Teflon molds and cured from the top. The thermocouple under samples recorded the temperature rise. After initial radiation and specimens reaching the ambient temperature, reirradiation was done and temperature was recorded again. Both temperature rise and DC data submitted to one-way ANOVA and Tukey-HSD tests (5% significance). Results: The obtained results revealed that DC was not significantly different between the understudy composite resins or curing units. Low shrinkage composite resin showed a significantly higher temperature rise than hybrid composite resin. Argon laser caused the lowest temperature rise among the curing units. Conclusion: Energy density of light curing units was correlated with the DC. Type of composite resin and light curing unit had a significant effect on temperature rise due to polymerization and curing unit, respectively. PMID:27843507

  9. Influence of the curing method on the post-polymerization shrinkage stress of a composite resin

    Directory of Open Access Journals (Sweden)

    Leonardo Gonçalves Cunha

    2008-08-01

    Full Text Available The aim of this study was to evaluate the effect of different curing methods on the stress generated by the polymerization shrinkage of a restorative composite in two moments: immediately after light exposure and after 5 min. Photoactivation was performed using two different light sources: (1 xenon plasma arc (PAC light (1,500 mW/cm2 - 3s and (2 a quartz-tungsten-halogen (QTH light with three light-curing regimens: continuous exposure (40 s at 800 mW/cm2 - CL; soft-start (10 s at 150 mW/cm2 and 30 s at 800 mW/cm2 - SS and intermittent light [cycles of 4 s (2 s with light on at 600 mW/cm2 and 2 s of light off, for 80s - IL]. The composite resin was applied between two 5-mm diameter metallic rods, mounted in a servohydraulic machine. The maximum stress was recorded immediately after light exposure (FF and after 5 min (5F. The results were submitted to ANOVA and Tukey's test (5%. For each method, the results obtained in FF and 5F were, respectively: CL (3.58 and 4.46 MPa; SS (2.99 and 4.36 MPa; IL (3.11 and 4.32 MPa and PAC (0.72 and 3.27 MPa. The stress generated by the polymerization shrinkage during light exposure can be associated with the photoactivation method used. A significant increase in the stress level was observed during the post-curing period up to 5 min, for all evaluated methods.

  10. Polymerization shrinkage and depth of cure of bulk-fill resin composites and highly filled flowable resin.

    Science.gov (United States)

    Jang, J-H; Park, S-H; Hwang, I-N

    2015-01-01

    The aim of this study was to evaluate the polymerization behavior and depth of cure (DOC) of recently introduced resin composites for posterior use: highly filled flowable composite and composites for bulk fill. A highly filled flowable (G-aenial Universal Flo [GUF]), two bulk-fill flowables (Surefil SDR Flow [SDR] and Venus Bulk fill [VBF]), and a bulk-fill nonflowable composite (Tetric N-Ceram Bulk fill [TBF]) were compared with two conventional composites (Tetric Flow [TF], Filtek Supreme Ultra [FS]). Linear polymerization shrinkage and polymerization shrinkage stress were each measured with custom-made devices. To evaluate DOC, the composite specimen was prepared using a mold with a hole of 4 mm depth and 4 mm internal diameter. The hole was bulk filled with each of the six composites and light cured for 20 seconds, followed by 24 hours of water storage. The surface hardness was measured on the top and the bottom using a Vickers microhardness (HV) indenter. The linear polymerization shrinkage of the composite specimens after photo-initiation decreased in the following order: TF and GUF > VBF > SDR > FS and TBF (pcomposite groups decreased in the following order: GUF > TF and VBF > SDR > FS and TBF (pflowable (GUF) revealed limitations in polymerization shrinkage and DOC. Bulk-fill flowables (SDR and VBF) were properly cured in 4-mm bulk, but they shrank more than the conventional nonflowable composite. A bulk-fill nonflowable (TBF) showed comparable shrinkage to the conventional nonflowable composite, but it was not sufficiently cured in the 4-mm bulk.

  11. Polymerization shrinkage and hygroscopic expansion of contemporary posterior resin-based filling materials--a comparative study.

    Science.gov (United States)

    Rüttermann, Stefan; Krüger, Sören; Raab, Wolfgang H-M; Janda, Ralf

    2007-10-01

    To investigate the polymerization shrinkage and hygroscopic expansion of contemporary posterior resin-based filling materials. The densities of SureFil (SU), CeramXMono (CM), Clearfil AP-X (CF), Solitaire 2 (SO), TetricEvoCeram (TE), and Filtek P60 (FT) were measured using the Archimedes' principle prior to and 15min after curing for 20, 40 and 60s and after 1h, 24h, 7 d, and 30 d storage at 37 degrees C in water. Volumetric changes (DeltaV) in percent after polymerization and after each storage period in water were calculated from the changes of densities. Water sorption and solubility were determined after 30 d for all specimens and their curing times. Two-way ANOVA was calculated for shrinkage and repeated measures ANOVA was calculated for hygroscopic expansion (p<0.05). DeltaV depended on filler load but not on curing time (SU approximately -2.0%, CM approximately -2.6%, CF approximately -2.1%, SO approximately -3.3%, TE approximately -1.7%, FT approximately -1.8%). Hygroscopic expansion depended on water sorption and solubility. Except for SU, all materials showed DeltaV approximately +1% after water storage. Polymerization shrinkage depended on the type of resin-based filling material but not on curing time. Shrinkage was not compensated by hygroscopic expansion.

  12. Visualization study on distortion of a metal frame by polymerization shrinkage and thermal contraction of resin.

    Science.gov (United States)

    Kakino, Ken; Endo, Kazuhiko; Hashimoto, Masanori; Furuta, Kunihiko; Ohno, Hiroki

    2014-01-01

    Three types of metal specimens (ring-shaped, plate-shaped, and a simulated anterior arch) for distortion observations were made from Au-Ag-Pd-Cu alloy. Distortion due to polymerization shrinkage and thermal contraction of a heat-curing acrylic resin containing 4-META (4-methacryloyloxyethyl trimellitate anhydride, 4-META resin) could be visualized for the ring-shaped specimen, which showed increasing distortion of the metal frame upon adhesion of the resin to the outer metal surface. Distortion of the plateshaped specimen adhering to 4-META resin decreased with increasing thickness of the cured resin. The distortion of the metal frame simulating an anterior arch of a six-unit bridge with a facing composite resin showed that the curvature of the metal frame was larger after curing of the facing composite resin. However, it recovered most of its original curvature with an associated increase in the number of cracks between the crowns after trimming the resin to a tooth profile.

  13. The influence of polymerization shrinkage of resin cements on bonding to metal.

    Science.gov (United States)

    Verzijden, C W; Feilzer, A J; Creugers, N H; Davidson, C L

    1992-02-01

    During the setting of a resin composite cement (RCC) used as an adhesive between a resin-bonded bridge and tooth structure, the adhesion may be disrupted by the development of shrinkage stress. The aim of this study was to investigate the influence of the shrinkage stress of three different RCCs on their adhesive and cohesive qualities when bonded to metal surfaces in a rigid set-up. Two opposing parallel NiCr discs (Wiron 77) were mounted in a tensilometer at a mutual distance of 200 microns and cemented with Panavia Ex, Clearfil F2, or Microfill Pontic C. The alloy surfaces were treated by either electrolytic etching, sand-blasting, silane-coating, or tin-plating. During setting, the discs were kept at their original mutual distance to simulate the extreme clinical situation of "complete" rigidity, where the casting and the tooth cannot move toward each other. The developing shrinkage stress was recorded continuously. During setting, the adhesive strength of the RCCs to silane-coated surfaces was always higher than their early cohesive strength. Electrolytically-etched surfaces as well as sand-blasted surfaces showed, in almost all cases, adhesive failure. The tin-plated samples showed mainly adhesive failure at the metal/resin interface. The highest bond strength values were found for silane-coated surfaces in combination with Clearfil F2.

  14. Photoelastic evaluation of the effect of composite formulation on polymerization shrinkage stress

    Directory of Open Access Journals (Sweden)

    Karla Mychellyne Costa Oliveira

    2012-06-01

    Full Text Available We compared polymerization stress in two commercial composites and three experimental composites made using camphorquinone (CQ and/or phenylpropanedione (PPD as photoinitiators. The internal surfaces of photoelastic resin discs with cylindrical cavities were roughened and treated with adhesive. Composites were divided into five groups: two commercial composites (Filtek Silorane and Filtek Z250 and three experimental composites with CQ/amine, CQ/PPD/amine, and PPD/amine. Composites were photopolymerized inside cavities, and subjected to photoelastic analysis immediately and at 24 hours and 7 days later using a plane polariscope. Stress created by Silorane (3.08 ± 0.09 MPa was similar to that of Z250 (3.19 ± 0.13 MPa immediately after photopolymerization (p > 0.05. After 24 hours and 7 days, Z250 (3.53 ± 0.15 and 3.69 ± 0.10 MPa, respectively showed higher stress than Silorane (3.19 ± 0.10 and 3.16 ± 0.10 MPa, respectively. Qualitative analysis immediately after photopolymerization showed composite/CQ promoted higher stress than PPD, but stress levels at other evaluated times were statistically similar, varying between 3.45 ± 0.11 MPa and 3.92 ± 0.13 MPa. At 24 hours and 7 days, Silorane created the lowest stress. All photoinitiators created comparable tensions during polymerization.

  15. Reducing composite restoration polymerization shrinkage stress through resin modified glass-ionomer based adhesives.

    Science.gov (United States)

    Naoum, S J; Mutzelburg, P R; Shumack, T G; Thode, Djg; Martin, F E; Ellakwa, A E

    2015-12-01

    The aim of this study was to determine whether employing resin modified glass-ionomer based adhesives can reduce polymerization contraction stress generated at the interface of restorative composite adhesive systems. Five resin based adhesives (G Bond, Optibond-All-in-One, Optibond-Solo, Optibond-XTR and Scotchbond-Universal) and two resin modified glass-ionomer based adhesives (Riva Bond-LC, Fuji Bond-LC) were analysed. Each adhesive was applied to bond restorative composite Filtek-Z250 to opposing acrylic rods secured within a universal testing machine. Stress developed at the interface of each adhesive-restorative composite system (n = 5) was calculated at 5-minute intervals over 6 hours. The resin based adhesive-restorative composite systems (RBA-RCS) demonstrated similar interface stress profiles over 6 hours; initial rapid contraction stress development (0-300 seconds) followed by continued contraction stress development ≤0.02MPa/s (300 seconds - 6 hours). The interface stress profile of the resin modified glass-ionomer based adhesive-restorative composite systems (RMGIBA-RCS) differed substantially to the RBA-RCS in several ways. Firstly, during 0-300 seconds the rate of contraction stress development at the interface of the RMGIBA-RCS was significantly (p resin modified glass-ionomer based adhesives can significantly reduce the magnitude and rate of polymerization contraction stress developed at the interface of adhesive-restorative composite systems. © 2015 Australian Dental Association.

  16. Comparison of techniques for the determination of conversion during suspension polymerization reactions

    Directory of Open Access Journals (Sweden)

    J. C. Santos

    2008-06-01

    Full Text Available The determination of conversion during suspension polymerization reactions is not an easy task due to the heterogeneity of the reaction medium and the tendency of particles to agglomerate rapidly when stirring is stopped. Usually, bulk polymerization in ampoules is employed to study the kinetics of suspension polymerization reactions. In this work, a comparison of different techniques for the determination of conversion during suspension polymerization reactions is presented. Results showed a good agreement between the conversion obtained by gravimetry during styrene suspension polymerization and on-line conversion monitoring data using fiber-optic based Raman Spectroscopy. Nevertheless, the polymerization rate of styrene bulk polymerization carried out in ampoules was higher than the real reaction rate of styrene suspension polymerization due to slightly higher reaction temperatures. Simulation results using the experimental temperature data in a mathematical model confirmed these results.

  17. Impact of quantity of resin, C-factor, and geometry on resin composite polymerization shrinkage stress in Class V restorations.

    Science.gov (United States)

    Borges, A L S; Borges, A B; Xavier, T A; Bottino, M C; Platt, J A

    2014-01-01

    This study evaluated the effect of quantity of resin composite, C-factor, and geometry in Class V restorations on shrinkage stress after bulk fill insertion of resin using two-dimensional finite element analysis. An image of a buccolingual longitudinal plane in the middle of an upper first premolar and supporting tissues was used for modeling 10 groups: cylindrical cavity, erosion, and abfraction lesions with the same C-factor (1.57), a second cylindrical cavity and abfraction lesion with the same quantity of resin (QR) as the erosion lesion, and then all repeated with a bevel on the occlusal cavosurface angle. The 10 groups were imported into Ansys 13.0 for two-dimensional finite element analysis. The mesh was built with 30,000 triangle and square elements of 0.1 mm in length for all the models. All materials were considered isotropic, homogeneous, elastic, and linear, and the resin composite shrinkage was simulated by thermal analogy. The maximum principal (MPS) and von Mises stresses (VMS) were analyzed for comparing the behavior of the groups. Different values of angles for the cavosurface margin in enamel and dentin were obtained for all groups and the higher the angle, the lower the stress concentration. When the groups with the same C-factor and QR were compared, the erosion shape cavity showed the highest MPS and VMS values, and abfraction shape, the lowest. A cavosurface bevel decreased the stress values on the occlusal margin. The geometry factor overcame the effects of C-factor and QR in some situations. Within the limitations of the current methodology, it is possible to conclude that the combination of all variables studied influences the stress, but the geometry is the most important factor to be considered by the operator.

  18. Free radical suspension polymerization kinetics of styrene up to high conversion

    NARCIS (Netherlands)

    Tefera, Nurelegne; Weickert, Günter; Bloodworth, Robert; Schweer, Johannes

    1994-01-01

    Styrene was polymerized using different amounts of azoisobutyronitrile as initiator at temperatures of 70°C, 75°C and 80°C in suspension. The course of reaction up to almost complete conversion was modeled within a classical kinetic framework. Optimal simultaneous descriptions of both conversion and

  19. Polymerization contraction and conversion of light-curing BisGMA-based methacrylate resins.

    Science.gov (United States)

    Venhoven, B A; de Gee, A J; Davidson, C L

    1993-09-01

    The aim of this study was to investigate the polymerization contraction and the conversion of light-curing methacrylate resins based on bisphenol-A bis(2-hydroxypropyl)methacrylate (BisGMA) diluted with triethylene glycol dimethyacrylate (TEGDMA), methyl methacrylate (MMA), hydroxypropyl methacrylate (HPMA) or (+/-)-2-ethylhexyl methacrylate (EHMA). The contraction measurements were carried out with a linometer, a simple device to determine true linear polymerization contraction of liquid monomers at ambient temperature. The contraction increased with the amount of diluting monomer. The estimated conversion of the BisGMA-TEGDMA, calculated using the contraction, is consistent with literature values. The BisGMA-HPMA mixtures showed high conversions at moderate contraction.

  20. KINETICS OF VINYL CHLORIDE (CO)POLYMERIZATION AT HIGH CONVERSION

    Institute of Scientific and Technical Information of China (English)

    Zu-ren Pan; Zhi-xue Weng; Zhi-ming Huang

    1999-01-01

    This paper provides a summarized review on the kinetics of vinyl chloride homopolymerization in the absence and presence of chain transfer agents, of VC/DAP(diallyl phthalate) copolymerization with chain extension and/or slightly crosslinking functions, and of vinylidene chloride/VC random copolymerization.Models of rate, degree of polymerization or molecular weight, copolymer composition, gel fraction and crosslinking density were proposed and interpreted mechanistically.

  1. Light induced polymerization of resin composite restorative materials

    Directory of Open Access Journals (Sweden)

    Blažić Larisa

    2004-01-01

    Full Text Available Introduction Dimensional stability of polymer-based dental materials is compromised by polymerization reaction of the monomer. The conversion into a polymer is accompanied by a closer packing of molecules, which leads to volume reduction called curing contraction or polymerization shrinkage. Curing contraction may break the adhesion between the adhesive system and hard tooth tissues forming micrographs which may result in marginal deterioration, recurrent caries and pulp injury. Polymerization shrinkage of resin-based restorative dental materials Polymerization of the organic phase (monomer molecules of resin-based dental materials causes shrinkage. The space occupied by filler particles is not associated with polymerization shrinkage. However, high filler loading within certain limits, can contribute to a lesser curing contraction. Polymerization shrinkage stress and stress reduction possibilities Polymerization shrinkage stress of polymer-based dental resins can be controlled in various ways. The adhesive bond in tooth-restoration interface guides the contraction forces to cavity walls. If leakage occurs, complications like secondary caries and pulpal irritation may jeopardize the longevity of a restoration. Stress relieve can be obtained by modifications of the monomer and photoinitiator, or by specially designed tooth preparation and application of bases and liners of low modulus of elasticity. The polymerization contraction can be compensated by water absorption due to oral cavity surrounding. The newest approach to stress relief is based on modulation of polymerization initiation. Conclusion This work deals with polymerization contraction and how to achieve leak-proof restoration. Restorative techniques that may reduce the negative effect of polymerization shrinkage stress need further research in order to confirm up-to-date findings.

  2. The effect of dry and wet environment on the resin composite polymerization shrinkage%干燥、湿润环境对光固化复合树脂聚合收缩影响的实验研究

    Institute of Scientific and Technical Information of China (English)

    曹立群; 赵守亮; 杨国标; 倪凡

    2013-01-01

    AIM: To study the effect of dry and wet environment on the polymerization shrinkage of three dental resin composites . MEHTODS: 18 freshly extracted human mandibular third molars were collected, MO cavities with the width of 1/3 of buccolingual cusp distance and depth of 2 mm were prepared on the molars. Cavities were treated with G-BOND bonding system except for P90 with its own bonding system, then three commercially available dental resin composites GRADIA DIRECT-P, Z350 and P90 were used to fill the cavities respectively( n =6). The teeth were then divided into wet and dry groups randomly (n = 3). The shrinkages of the composites and the deformation of the teeth were measured by electronic speckle pattern interferometry (ESPI) immediately after light cure for 40 s under the 650mW/cm2. RESULTS: Among the three dental resin composites, GRADIA DIRECT-P showed the largest polymerization shrinkage and tooth deformation, while P90 showed the minimum. The polymerization shrinkage in the moist environment was less than that under dry condition. CONCLUSION: The environment has a certain impact on the polymerization shrinkage of the dental resin composite. In wet environment, the polymerization shrinkage is less.%目的:测试干燥、湿润环境对3种光固化复合树脂聚合收缩的影响.方法:取18个新鲜拔除的下颌第三磨牙,制备近中邻(牙合)(MO)洞,洞宽为颊舌牙尖距的1/3,洞深为2 mm,然后分别用GRADIA DIRECT-P、Z350和P90树脂充填窝洞(P90用其自带粘结剂,其余均用G-BOND粘结剂处理洞壁)(n=6),并随机分成干燥组和湿润组(n=3).在650 mW/cm2光源下,光照固化40 s后采用电子散斑干涉技术测量树脂修复体的(牙合)面、近中邻面收缩和牙齿颊面的变形情况.结果:3种树脂中GRADIA DIRECT-P的收缩量和牙齿变形量最大,P90的收缩量和牙齿变形量最小;湿润环境可降低树脂修复体聚合收缩量和牙齿的变形量.结论:环境对光固化树脂的聚合

  3. Shrinkage assessment of low shrinkage composites using micro-computed tomography.

    Science.gov (United States)

    Hirata, Ronaldo; Clozza, Emanuele; Giannini, Marcelo; Farrokhmanesh, Ehsan; Janal, Malvin; Tovar, Nick; Bonfante, Estevam A; Coelho, Paulo G

    2015-05-01

    The aim of this study was to quantify the polymerization volumetric shrinkage of one regular and two low shrinkage bulk fill composites in class I cavities with or without an adhesive layer, using three-dimensional (3D) micro-computed tomography (μCT). Class I cavity preparations (2.5 mm depth × 4 mm length × 4 mm wide) were standardized in 36 extracted human third molars, which were randomly divided in six groups (n = 6 each) as follows: Group VIT (regular composite without bonding agent); Group SDR (low shrinkage flowable composite without bonding agent); Group TET (low shrinkage composite without bonding agent); Group VIT/P (regular composite with bonding agent); Group SDR/X (low shrinkage flowable composite with bonding agent); TET/T (low shrinkage composite with bonding agent). Each tooth was scanned via µCT at cavity preparation, immediately after cavity filling, and after light-curing. Acquired μCT data were imported into Amira software for analysis and volume values evaluated between steps from cavity preparation until light-curing. Both low shrinkage composites showed a significantly less volumetric shrinkage than VIT. The use of dental adhesive significantly decreased the average volumetric contraction similarly for the three composites, by about 20%. Both low shrinkage composites showed less volumetric polymerization contraction than the regular composite. The use of dental adhesive decreased the total volumetric shrinkage for all evaluated composites. © 2014 Wiley Periodicals, Inc.

  4. A Study of Shrinkage Stress Reduction and Mechanical Properties of Nanogel-Modified Resin Systems.

    Science.gov (United States)

    Liu, Jiancheng; Howard, Gregory D; Lewis, Steven H; Barros, Matthew D; Stansbury, Jeffrey W

    2012-11-01

    A series of nanogel compositions were prepared from urethane dimethacrylate (UDMA) and isobornyl methacrylate (IBMA) in the presence of a thiol chain transfer agent. The linear oligomer of IBMA was synthesized by a similar solution polymerization technique. The nanogels were prepared with different crosslinker concentrations to achieve varied branching densities and molecular weights. The prepolymers were dispersed in triethylene glycol dimethacrylate at loading levels ranging from 10 wt% to 50 wt%. Photopolymerization reaction kinetics of all prepolymer modified systems were enhanced relative to the nanogel-free control during early stage polymerization while limiting conversion was similar for most samples. Volumetric polymerization shrinkage was reduced proportionally with the prepolymer content while the corresponding decrease in polymerization stress was potentially greater than an additive linear behavior. Flexural strength for inert linear polymer-modified systems decreased significantly with the increase in the prepolymer content; however, with an increase in the crosslinker concentration within the nanogel additives, and an increase in the concentration of residual pendant reactive sites, flexural strength was maintained or improved regardless of the nanogel loading level. This demonstrates that covalent attachment rather than just physical entanglement with the polymer matrix is important for effective polymer mechanical reinforcement by nanogel additives. Reactive nanogel additives can be considered as a practical, generic means to achieve substantial reductions in polymerization shrinkage and shrinkage stress in common polymers.

  5. Alternative methods for determining shrinkage in restorative resin composites.

    Science.gov (United States)

    de Melo Monteiro, Gabriela Queiroz; Montes, Marcos Antonio Japiassú Resende; Rolim, Tiago Vieira; de Oliveira Mota, Cláudia Cristina Brainer; de Barros Correia Kyotoku, Bernardo; Gomes, Anderson Stevens Leônidas; de Freitas, Anderson Zanardi

    2011-08-01

    The purpose of this study was to evaluate polymerization shrinkage of resin composites using a coordinate measuring machine, optical coherence tomography and a more widely known method, such as Archimedes Principle. Two null hypothesis were tested: (1) there are no differences between the materials tested; (2) there are no differences between the methods used for polymerization shrinkage measurements. Polymerization shrinkage of seven resin-based dental composites (Filtek Z250™, Filtek Z350™, Filtek P90™/3M ESPE, Esthet-X™, TPH Spectrum™/Dentsply 4 Seasons™, Tetric Ceram™/Ivoclar-Vivadent) was measured. For coordinate measuring machine measurements, composites were applied to a cylindrical Teflon mold (7 mm × 2 mm), polymerized and removed from the mold. The difference between the volume of the mold and the volume of the specimen was calculated as a percentage. Optical coherence tomography was also used for linear shrinkage evaluations. The thickness of the specimens was measured before and after photoactivation. Polymerization shrinkage was also measured using Archimedes Principle of buoyancy (n=5). Statistical analysis of the data was performed with ANOVA and the Games-Howell test. The results show that polymerization shrinkage values vary with the method used. Despite numerical differences the ranking of the resins was very similar with Filtek P90 presenting the lowest shrinkage values. Because of the variations in the results, reported values could only be used to compare materials within the same method. However, it is possible rank composites for polymerization shrinkage and to relate these data from different test methods. Independently of the method used, reduced polymerization shrinkage was found for silorane resin-based composite. Copyright © 2011 Academy of Dental Materials. Published by Elsevier Ltd. All rights reserved.

  6. Effects of light-curing modes on the polymerization shrinkage and surface hardness of composite resins%光照模式对复合树脂聚合收缩率和表面硬度的影响

    Institute of Scientific and Technical Information of China (English)

    韩冰; 董艳梅; 王晓燕; 高学军

    2011-01-01

    Objective: To investigate the effects of light-curing modes on the polymerization shrinkage and surface hardness of resins and to explore the related clinical relevance. Methods: Resins with filler content of 76% ( mass fraction) were light-cured by high intensity, low intensity and soft start curing modes for 10 s and 20 s, respectively. Specimens for detecting volumetric shrinkage and surface hardness were prepared. Volumetric shrinkage was measured with Acuvol (n =7) and surface hardness were tested with an indenter (n=5). Results: The volumetric shrinkage of composites cured by high intensity, low intensity and soft-start curing mode was: 2.95% ±0. 08%/3.06% ±0.03% (10 s/20 s), 2.98% ± 0. 12%/3.05% ±0. 13% (10 s/20 s), and 3.03% ±0.05%/3. 11% ±0.07% (10 s/20 s), respectively. No significant difference existed among polymerization shrinkage of composites cured by the three light-curing modes (P>0. 05). The hardness of composites cured by high intensity, low intensity and soft-start curing mode was; (36.82 ±4.45) Mpa/(47.58 ±3.16) Mpa (10 s/20 s), (32.30 ±1.33) Mpa/(41.60±1.83) Mpa (10 s/20 s), and (34. 56 ± 1. 38) Mpa/(44. 62 ±2. 13) Mpa (10 s/20 s) , respectively. There existed significant difference among hardness of composites cured by the three light-curing modes ( P<0. 05 ). Polymerization shrinkage was correlated with energy density ( r = -0. 363, P = 0. 018). Surface hardness was also correlated with energy density (r = -0. 890, P < 0.001 ). Conclusion:It would be better to use high intensity curing mode to improve the physical properties of restorations. In order to keep the physical properties of composites, it is necessary to prolong the curing time using soft-start/low intensity curing modes to increase the energy density.%目的:研究光固化模式对复合树脂聚合收缩率和表面硬度的影响,探讨这些因素的影响对临床工作的指导意义.方法:研究使用填料含量为76%(质量分数)的

  7. Shrinkage stress of three composites under different polymerization methods Estresse de contração de três resinas compostas sob diferentes métodos de polimerização

    Directory of Open Access Journals (Sweden)

    Cesar Henrique Zanchi

    2006-04-01

    Full Text Available The aim of this study was to evaluate the shrinkage stress of three composites under different polymerization methods: halogen conventional polymerization (G1, halogen "soft-start" polymerization (G2 and LED polymerization (G3. The composites tested were Filtek Z-100 (3M/ESPE, Filtek Z-250 (3M/ESPE and Solitaire 2 (Heraeus Kulzer. For G1, an XL-3000 (3M/ESPE curing unit with light intensity of 507 mW/cm² was employed. In G2, the same light unit was used, but with a reduced light intensity in the first 20 s (166 mW/cm². In G3, an Ultrablue I (DMC LED curing unit with light intensity of 125 mW/cm² was used. The test was performed with a DL 2000 (EMIC universal testing machine and two metallic molds with a 1 mm space between them. The composites were inserted in the space between the molds and light cured according to the protocols mentioned above. Stress was registered in different periods of time: 10, 20, 40, 60, 90 and 120 s. A significant linear increase of the shrinkage stress over time was observed, except for Z-100 in G2. Generally, LED polymerization (G3 reduced the generated stress when compared to conventional halogen polymerization (G1. In G3, the composite with the additional co-initiatior presented lower stress when compared to the other composites tested. The combination between composite and polymerization method produced different patterns of stress behavior. LED polymerization reduced the initial shrinkage stress of the three materials and was influenced by the presence of co-initiators in the composites.O objetivo do presente estudo foi avaliar o estresse de contração de três resinas compostas sob diferentes métodos de fotoativação: fotoativação convencional halógena (G1, fotoativação "soft-start" halógena (G2 e fotoativação por LED (G3. As resinas compostas testadas foram a Filtek Z-100 (3M/ESPE, Filtek Z-250 (3M/ESPE e Solitaire 2 (Heraeus Kulzer. Para G1, um aparelho fotoativador XL-3000 (3M/ESPE com

  8. Effect of base monomer's refractive index on curing depth and polymerization conversion of photo-cured resin composites.

    Science.gov (United States)

    Fujita, Kou; Nishiyama, Norihiro; Nemoto, Kimiya; Okada, Tamami; Ikemi, Takuji

    2005-09-01

    In this study, we examined the effect of the transmitted amount of visible light through a resin composite on the curing depth and polymerization conversion. Transmitted amount of visible light was strongly dependent on the magnitude of refractive index difference that existed between the resin and silica filler. More specifically, the differences arose from the type of base monomer used. The transmitted amount of visible light exhibited a good correlation with the curing depth and Knoop hardness ratio of the bottom surface against the top surface of the resin composite. To improve the polymerization conversion of the cavity floor, it is important to reduce the refractive index difference that exists between the base resin and silica filler.

  9. Polymerization shrinkage and contraction stress of novel low shrinking dental composite resin%新型环氧树脂聚合体积收缩率及聚合收缩应力初探

    Institute of Scientific and Technical Information of China (English)

    李蕴聪; 孙翔; 熊洁; 陈吉华

    2012-01-01

    Objective To determine whether a new dedicated adhesive system employing a silorane composite exhibits low shrinking properties than does conventional methacrylate-based composites.Methods The following materials were used:group A:Xeno Ⅲ-TPH,group B:Clearfil SE bond-Clearfil Majesty Posterior,and group C:the FiltekTM silorane system.Polymerization volumetric shrinkage and contraction stress development were measured using a micro-CT instrument and a tensilometer.Results The volumetric shrinkage of the resin composite/adhesive combinations were 3.38% ± 0.17% (group A),1.95% ± 0.37% (group B) and 1.05% ±0.09% (group C) 30 min after light curing respectively.Group C had the lowest volumetric shrinkage (P <0.001),followed by group B,and group A.The contraction stress of the materials were (3.04 ± 0.26) MPa(group A),(3.49 ± 0.46) MPa (group B),and (1.54 ± 0.15) MPa (group C) respectively.The lowest contraction stress was observed in group C at 30 min during the stress test (P < 0.001).Conclusions The silorane composite and dedicated adhesive system exhibited excellent characteristics of low volumetric shrinkage and contraction stress development compared to conventional methacrylate-based composites.%目的 评价新型环氧树脂的聚合体积收缩率和聚合收缩应力,为其临床应用提供参考.方法 选用3种复合树脂材料:A组:丙烯酸酯树脂(XenoⅢ-TPH);B组:丙烯酸酯树脂(Clearfil SE bond-Clearfil Majesty Posterior);C组:新型环氧树脂(FiltekTM silorane adhesive-P90).3组复合树脂经光照固化后,用显微CT测量聚合体积收缩率,用万能材料实验机测试聚合收缩应力.结果 A、B和C组复合树脂的聚合体积收缩率分别为(3.38±0.17)%、(1.95±0.37)%和(1.05%±0.09)%;C组最小,与A、B组的差异均有统计学意义(P <0.001).A、B和C组复合树脂的聚合收缩应力分别为(3.04 ±0.26)、(3.49±0.46)和(1.54±0.15) MPa;C组最小,与A、B组的

  10. 2种光固化灯固化对3种不同复合树脂聚合收缩的影响%Effect of polymerization-shrinkages of different resin composite curing by two different light curing units

    Institute of Scientific and Technical Information of China (English)

    邓小林; 张保卫; 陆鹏

    2011-01-01

    PURPOSE: To investigate the effect of light-emitting diode (LED) light curing unit (LCU) and quartztungsten (QTH) LCU on the polymerization-shrinkage of different resin composites.METHODS: Three composites Z100,Z250, AP-X were irradiated by QTH LCU and LED LCU.Polymerization-shrinkage of 50s and 400s after the composites curing were measured by 3D-profile measuring apparatus by phase-shifted projected grating.The polymerization-shrinkage of LED and QTH curing composites were analysed by SPSS12.0 software package of one-way ANOVA.RESULTS: At 50s curing and 400s curing period, the polymerization- shrinkage of Z100, Z250 resin was different by QTH LCU and LED LCU curing, the polymerization-shrinkage by LED LCU curing was less than that by QTH LCU (P<0.05); the polymerization-shrinkage of AP-X was not statistically different by QTH LCU and LED LCU curing (P>0.05).CONCLUSUINS: The polymerization-shrinkage of Z100,Z250 resin is statistically less cured by LED LCU than QTH;the polymerization-shrinkage of AP-X resin is not statistically different cured by QTH LCU and LED LCU.Supported by Research Fund of Science and Technology Commission of Shanghai Municipality(08DZ2271100).%目的:比较2种光固化灯对3种复合树脂聚合收缩的影响.方法:相移投影栅形貌测量仪测量Z100、Z250、AP-X 等3种复合树脂在卤素灯和发光二极管同化灯开始固化后50s及开始固化后400s的树脂聚合收缩量.使用SPSS12.0 软件包对 QTH 及LFD 固化组聚合收缩量进行单因素方差分析.结果:在开始固化后50s和400s,QTH同化灯和 LED 固化灯固化Z100、Z250树脂产生的聚合收缩量有显著差异,QTH 固化灯固化Z100、Z250树脂产生的聚合收缩量显著大于LED固化灯(P<0.05),QTH和 LED 固化灯固化 AP-X 树脂产生的聚合收缩量则无统计学差异(P>0.05).结论:LED及QTH固化灯固化Z100、Z250树脂产生的聚合收缩影响有显著差异(P<0.05),LED及QTH固化灯固化 AP-X 产生的

  11. Effective Expansion: Balance between Shrinkage and Hygroscopic Expansion.

    Science.gov (United States)

    Suiter, E A; Watson, L E; Tantbirojn, D; Lou, J S B; Versluis, A

    2016-05-01

    The purpose of this study was to investigate the relationship between hygroscopic expansion and polymerization shrinkage for compensation of polymerization shrinkage stresses in a restored tooth. One resin-modified glass-ionomer (RMGI) (Ketac Nano, 3M ESPE), 2 compomers (Dyract, Dentsply; Compoglass, Ivoclar), and a universal resin-based composite (Esthet•X HD, Dentsply) were tested. Volumetric change after polymerization ("total shrinkage") and during 4 wk of water storage at 37°C was measured using an optical method (n= 10). Post-gel shrinkage was measured during polymerization using a strain gauge method (n= 10). Extracted human molars with large mesio-occluso-distal slot preparations were restored with the tested restorative materials. Tooth surfaces at baseline (preparation), after restoration, and during 4 wk of 37°C water storage were scanned with an optical scanner to determine cuspal flexure (n= 8). Occlusal interface integrity was measured using dye penetration. Data were analyzed using analysis of variance and post hoc tests (significance level 0.05). All tested materials shrunk after polymerization. RMGI had the highest total shrinkage (4.65%) but lowest post-gel shrinkage (0.35%). Shrinkage values dropped significantly during storage in water but had not completely compensated polymerization shrinkage after 4 wk. All restored teeth initially exhibited inward (negative) cuspal flexure due to polymerization shrinkage. Cuspal flexure with the RMGI restoration was significantly less (-6.4 µm) than with the other materials (-12.1 to -14.1 µm). After 1 d, cuspal flexure reversed to +5.0 µm cuspal expansion with the RMGI and increased to +9.3 µm at 4 wk. After 4 wk, hygroscopic expansion compensated cuspal flexure in a compomer (Compoglass) and reduced flexure with Dyract and resin-based composite. Marginal integrity (93.7% intact restoration wall) was best for the Compoglass restorations and lowest (73.1%) for the RMGI restorations. Hygroscopic

  12. Properties of a New Dental Photocurable Matrix Resin with Low Shrinkage

    Institute of Scientific and Technical Information of China (English)

    FU Jing; JIA Fang; XU Haiping; JI Baohui; LIU Xiaoqing

    2011-01-01

    In order to reduce the amount of volumetric shrinkage that occurs in dental composites as a result of curing, a new kind of dental matrix resin combining bisphenol-S-bis(3-meth acry late-2-hydroxy propyl)ether(BisS-GMA) with the expanding monomer unsaturated spiro orthoesters 2-methylene-1, 4, 6-trispiro[4, 4] nonane (SOE) was prepared, with triethylene glycol dimethacrylate (TEGDMA) as diluent. CQ (camphorquinone) of 1wt% and DMAEMA (2-(dimethylamino) ethyl meth acrylate) of 2wt% were used as photoinitiation system to initiate the copolymerization of the matrix resins. The performance including volumetric shrinkage, degree of conversion and condition of the ring-opening reaction of SOE, as well as curing time and the tensile bond strength were investigated respectively by the dilatometer, Fourier transfer infrared, the universal testing machine, and so on.The ring-opening polymerization of SOE occurred. Meanwhile, the obtain copolymers were crosslinked. The matrix resin containing BisS-GMA and SOE showed a reduced amount of volumetric shrinkage at 1.52%, which is a promising strategy for obtaining a polymer with a low amount of volumetric shrinkage. Furthermore, the other properties were not compromised.

  13. Polymerization kinetics of dental adhesives cured with LED: correlation between extent of conversion and permeability.

    Science.gov (United States)

    Breschi, Lorenzo; Cadenaro, Milena; Antoniolli, Francesca; Sauro, Salvatore; Biasotto, Matteo; Prati, Carlo; Tay, Franklin R; Di Lenarda, Roberto

    2007-09-01

    The aim of this study was to analyze the polymerization kinetics of different adhesive films in relation to their permeability after exposure to different LED curing units. One adhesive from each class was analyzed: a three-step etch-and-rinse (OptiBond FL; Sybron-Kerr), a two-step etch-and-rinse (One-Step, Bisco), a two-step self-etch (Clearfil Protect Bond, Kuraray) and a one-step self-etch adhesive (Xeno III; Dentsply DeTrey). Adhesive films were prepared and cured with SmartLite IQ (Dentsply) or L.E. Demetron I (Demetron Kerr) up to complete curing. Polymerization kinetic curves of the tested adhesives were obtained with differential scanning calorimetry (DSC). In particular, total reaction time and extent of polymerization (Ep) at 20, 40 or 60s were compared. Permeability of the adhesive films was evaluated on flat dentin surfaces of human extracted teeth connected to a permeability device and statistically analyzed. Total reaction time differed among the adhesives tested: OptiBond FLadhesives tested (padhesives, incomplete polymerization took place even after prolonged exposure intervals. An inverse correlation was found between Ep of the adhesives and their permeability using LED curing units. This study supports the hypothesis that, longer curing times than those recommended by the respective manufacturer decrease permeability of the bonded interfaces.

  14. Development of novel low shrinkage dental nanocomposite

    Science.gov (United States)

    Sun, Yi; Wu, Xiaorong; Liu, Yanju; Xie, Weili; Sun, Shouhua

    2009-07-01

    It has been the focus to develop low shrinkage dental composite resins in recent ten years. A major difficulty in developing low shrinkage dental materials is their deficiency in mechanical properties to clinical use. This paper reviews the present investigations of low shrinkage dental composite resins and attempts to develop a novel system with multifunctional POSS incorporated. In this paper, it is especially interesting to evaluate the influences of shrinkage with different weight percentage of POSS (0~15wt%) incorporated in dental composite resins. Their double bond conversions are evaluated and their microstructures are characterized with Fourier-transform infra-red spectroscopy and X-ray diffraction. Their mechanical properties are also presented in this paper. The results show that the shrinkage of nanocomposites with POSS can be reduced effectively from 3.53% to 2.18%. The mechanical properties of this novel system, such as strength, hardness and toughness, are also enhanced greatly. Especially with 2wt%POSS incorporated, the best integrative improved effects are revealed. The mechanism of shrinkage is discussed.

  15. A strategy for photothermal conversion of polymeric nanoparticles by polyaniline for smart control of targeted drug delivery

    Science.gov (United States)

    You, Chaoqun; Wu, Hongshuai; Wang, Mingxin; Wang, Senlin; Shi, Tianyi; Luo, Yanghui; Sun, Baiwang; Zhang, Xiangyang; Zhu, Jin

    2017-04-01

    The near-infrared (NIR)-mediated novel strategy to control the drug release from nanocarriers has developed rapidly in recent decades. Polyaniline as a non-cytotoxic and electroactive material for studying cellular proliferation has attracted great attention in recent years. In the present work, polyaniline-mediated polymeric nanoparticles were developed to target the delivery of cisplatin and release it in a controllable way. The prepared polyaniline nanoparticles displayed a size of 90 ± 1.0 nm, a favorable morphology in water, and could be targeted to tumors through the high affinity between trastuzumab and the overexpressed Her2 in tumor cells. In addition, the developed nanoparticles demonstrated exciting photothermal conversion efficiency induced by NIR light and achieved significant cell inhibition efficiency (93.97%) in vitro when exposed to an 808 nm NIR laser with the power of 1.54 W for 5 min. Therefore, the developed external control release delivery system with excellent specificity and high cytotoxicity exhibited great potential in cell research and our research demonstrated that the polyaniline also has potential in the application of photothermal conversion in biomedicine.

  16. Properties evaluation of silorane, low-shrinkage, non-flowable and flowable resin-based composites in dentistry

    OpenAIRE

    Maia, Rodrigo R.; Reis, Rodrigo S.; Moro, André F.V.; Perez, Cesar R.; Bárbara M. Pessôa; Dias, Katia R.H.C.

    2015-01-01

    Purpose. This study tested the null hypothesis that different classes of direct restorative dental materials: silorane-based resin, low-shrinkage and conventional (non-flowable and flowable) resin-based composite (RBC) do not differ from each other with regard to polymerization shrinkage, depth of cure or microhardness. Methods. 140 RBC samples were fabricated and tested by one calibrated operator. Polymerization shrinkage was measured using a gas pycnometer both before and immediately after ...

  17. Direct-write piezoelectric polymeric nanogenerator with high energy conversion efficiency.

    Science.gov (United States)

    Chang, Chieh; Tran, Van H; Wang, Junbo; Fuh, Yiin-Kuen; Lin, Liwei

    2010-02-10

    Nanogenerators capable of converting energy from mechanical sources to electricity with high effective efficiency using low-cost, nonsemiconducting, organic nanomaterials are attractive for many applications, including energy harvesters. In this work, near-field electrospinning is used to direct-write poly(vinylidene fluoride) (PVDF) nanofibers with in situ mechanical stretch and electrical poling characteristics to produce piezoelectric properties. Under mechanical stretching, nanogenerators have shown repeatable and consistent electrical outputs with energy conversion efficiency an order of magnitude higher than those made of PVDF thin films. The early onset of the nonlinear domain wall motions behavior has been identified as one mechanism responsible for the apparent high piezoelectricity in nanofibers, rendering them potentially advantageous for sensing and actuation applications.

  18. Coaxial extrusion conversion concept for polymeric flat plate solar collectors. Final technical report, September 30, 1978-December 31, 1979

    Energy Technology Data Exchange (ETDEWEB)

    Rhodes, R.O.; Chapman, N.J.; Chao, K.C.; Sorenson, K.F.

    1980-01-01

    This study investigated materials and processes for fundamental improvements in flat-plate solar collector cost and performance. The goal was to develop a process for direct conversion of inexpensive raw materials into a completed solar collector unit, without labor intensive assembly operations. It was thought that materials carefully matched to the process and end-use environment would substantially reduce collector costs, as compared to conventional industry practice. The project studied the feasibility of a cost-effective, glazed solar collector, with low labor input, utilizing a coaxial extrusion of compatible polymeric materials. This study evaluated all considered materials for the desired application. In addition, there was a trial extrusion of the leading candidate glazing and absorber materials, which resulted in successfully performing a coaxial extrusion of one cell. At the time the study was conducted, there were no materials available that met the necessary requirements for the specified utilization. It was recommended that, if potentially compatible materials become available, further investigation into the suitability of those materials be researched. Then, if a suitable material was found, proceeding into Phase II would be recommended.

  19. Shrinkage reduction of dental composites by addition of expandable zirconia filler

    DEFF Research Database (Denmark)

    Skovgaard, M.; Almdal, Kristoffer; Sørensen, Bent F.

    2011-01-01

    A problem with dental resin composites is the polymerization shrinkage, which makes the filling loosen from the tooth or induces crack formation. We have developed an expandable metastable tetragonal zirconia filler, which upon reaction with water, is able to counter the polymer shrinkage....... The shrinkage of the composite was calculated from density measurements using Archimedes method. The rate of the phase transformation in resin was measured by determining the volume fraction of monoclinic zirconia (vm). The composite had a vm of 0.5 after 8 h of water storage. The overall shrinkage...... of the composites was reduced from 3.2% (initially) to 1.7%....

  20. Low-shrink composite resins: a review of their history, strategies for managing shrinkage, and clinical significance.

    Science.gov (United States)

    Pitel, Mark L

    2013-09-01

    Despite numerous advances in composite resin technology over the course of many decades, shrinkage behavior and the resultant stresses inherent to direct placed composite restorations continue to challenge clinicians. This overview of composite resins includes a review of their history and development along with a discussion of strategies for reducing polymerization shrinkage. An assessment of the clinical significance of these materials is also provided, including a discussion of the differences between polymerization shrinkage and stress, incremental layering versus bulk placement, and the emergence of lower shrinkage stress monomer chemistry.

  1. Effect of a non-thermal, atmospheric-pressure, plasma brush on conversion of model self-etch adhesive formulations compared to conventional photo-polymerization

    Science.gov (United States)

    Chen, Mingsheng; Zhang, Ying; Yao, Xiaomei; Li, Hao; Yu, Qingsong; Wang, Yong

    2012-01-01

    Objective To determine the effectiveness and efficiency of non-thermal, atmospheric plasmas for inducing polymerization of model dental self-etch adhesives. Methods The monomer mixtures used were bis-[2-(methacryloyloxy)ethyl] phosphate (2MP) and 2-hydroxyethyl methacrylate (HEMA), with mass ratios of 70/30, 50/50 and 30/70. Water was added to the above formulations: 10–30 wt%. These monomer/water mixtures were treated steadily for 40 s under a non-thermal atmospheric plasma brush working at temperatures from 32° to 35°C. For comparison, photo-initiators were added to the above formulations for photo-polymerization studies, which were light-cured for 40 s. The degree of conversion (DC) of both the plasma- and light-cured samples was measured using FTIR spectroscopy with an attenuated total reflectance attachment. Results The non-thermal plasma brush was effective in inducing polymerization of the model self-etch adhesives. The presence of water did not negatively affect the DC of plasma-cured samples. Indeed, DC values slightly increased, with increasing water content in adhesives: from 58.3% to 68.7% when the water content increased from 10% to 30% in the adhesives with a 50/50 (2MP/HEMA) mass ratio. Conversion values of the plasma-cured groups were higher than those of light-cured samples with the same mass ratio and water content. Spectral differences between the plasma- and light-cured groups indicate subtle structural distinctions in the resultant polymer networks. Significance This research if the first to demonstrate that the non-thermal plasma brush induces polymerization of model adhesives under clinical settings by direct/indirect energy transfer. This device shows promise for polymerization of dental composite restorations having enhanced properties and performance. PMID:23018084

  2. Marginal adaptation of a low-shrinkage silorane-based composite: A SEM-analysis

    DEFF Research Database (Denmark)

    Schmidt, Malene; Bindslev, Preben Hørsted; Poulsen, Sven;

    2012-01-01

    shrinkage, has been marketed. Objective. To investigate whether reduced polymerization shrinkage improves the marginal adaptation of composite restorations. Material and methods. A total of 156 scanning electron microscopy (SEM) pictures (78 baseline, 78 follow-up) of the occlusal part of Class II......-casts of the restorations were used for SEM pictures at x 16 magnification. Pictures from baseline and follow-up (398 days, SD 29 days) were randomized and the examiner was blinded to the material and the age of the restoration. Stereologic measurements were used to calculate the length and the width of the marginal......Introduction. Shrinkage during polymerization of resin-based composite materials may lead to gap formation and hamper the marginal adaptaion of the restorations. To reduce the problem of polymerization shrinkage, a new composite material (Filtek™ Silorane, 3M-ESPE, Germany), with a reduced...

  3. Effects of different curing methods and microleakage and degree of conversion of composite resin restorations

    OpenAIRE

    2003-01-01

    Statement of Problem: Recently, investigators have presented new methods to reduce polymerization shrinkage of composite resin restorations. It is claimed that more powerful light cure systems associated with a change in radiation patterns, lead to improved mechanical properties and reduced microleakage. Purpose: The aim of the present study was to evaluate the effects of two curing systems, known as Soft-Start, Pulse-Delay, on microleakage and degree of conversion of composite resin restorat...

  4. GENERALIZED DOUBLE PARETO SHRINKAGE.

    Science.gov (United States)

    Armagan, Artin; Dunson, David B; Lee, Jaeyong

    2013-01-01

    We propose a generalized double Pareto prior for Bayesian shrinkage estimation and inferences in linear models. The prior can be obtained via a scale mixture of Laplace or normal distributions, forming a bridge between the Laplace and Normal-Jeffreys' priors. While it has a spike at zero like the Laplace density, it also has a Student's t-like tail behavior. Bayesian computation is straightforward via a simple Gibbs sampling algorithm. We investigate the properties of the maximum a posteriori estimator, as sparse estimation plays an important role in many problems, reveal connections with some well-established regularization procedures, and show some asymptotic results. The performance of the prior is tested through simulations and an application.

  5. The effect of resin thickness on polymerization characteristics of silorane-based composite resin

    Directory of Open Access Journals (Sweden)

    Sung-Ae Son

    2014-11-01

    Full Text Available Objectives This study examined the influence of the resin thickness on the polymerization of silorane- and methacrylate-based composites. Materials and Methods One silorane-based (Filtek P90, 3M ESPE and two methacrylate-based (Filtek Z250 and Z350, 3M ESPE composite resins were used. The number of photons were detected using a photodiode detector at the different thicknesses (thickness, 1, 2 and 3 mm specimens. The microhardness of the top and bottom surfaces was measured (n = 15 using a Vickers hardness with 200 gf load and 15 sec dwell time conditions. The degree of conversion (DC of the specimens was determined using Fourier transform infrared spectroscopy (FTIR. Scratched powder of each top and bottom surface of the specimen dissolved in ethanol for transmission FTIR spectroscopy. The refractive index was measured using a Abbe-type refractometer. To measure the polymerization shrinkage, a linometer was used. The results were analyzed using two-way ANOVA and Tukey's test at p < 0.05 level. Results The silorane-based resin composite showed the lowest filler content and light attenuation among the specimens. P90 showed the highest values in the DC and the lowest microhardness at all depth. In the polymerization shrinkage, P90 showed a significantly lower shrinkage than the rest two resin products (p < 0.05. P90 showed a significantly lower refractive index than the remaining two resin products (p < 0.05. Conclusions DC, microhardness, polymerization rate and refractive index linearly decreased as specimen thickness linearly increased. P90 showed much less polymerization shrinkage compared to other specimens. P90, even though achieved the highest DC, showed the lowest microhardness and refractive index.

  6. Modeling dental composite shrinkage by digital image correlation and finite element methods

    Science.gov (United States)

    Chen, Terry Yuan-Fang; Huang, Pin-Sheng; Chuang, Shu-Fen

    2014-10-01

    Dental composites are light-curable resin-based materials with an inherent defect of polymerization shrinkage which may cause tooth deflection and debonding of restorations. This study aimed to combine digital image correlation (DIC) and finite element analysis (FEA) to model the shrinkage behaviors under different light curing regimens. Extracted human molars were prepared with proximal cavities for composite restorations, and then divided into three groups to receive different light curing protocols: regular intensity, low intensity, and step-curing consisting of low and high intensities. For each tooth, the composite fillings were consecutively placed under both unbonded and bonded conditions. At first, the shrinkage of the unbonded restorations was analyzed by DIC and adopted as the setting of FEA. The simulated shrinkage behaviors obtained from FEA were further validated by the measurements in the bonded cases. The results showed that different light curing regimens affected the shrinkage in unbonded restorations, with regular intensity showing the greatest shrinkage strain on the top surface. The shrinkage centers in the bonded cases were located closer to the cavity floor than those in the unbonded cases, and were less affected by curing regimens. The FEA results showed that the stress was modulated by the accumulated light energy density, while step-curing may alleviate the tensile stress along the cavity walls. In this study, DIC provides a complete description of the polymerization shrinkage behaviors of dental composites, which may facilitate the stress analysis in the numerical investigation.

  7. Preparation of High Shrinkage Polypropylene

    Institute of Scientific and Technical Information of China (English)

    吕文军; 王华平; 李建梅; 张玉梅

    2001-01-01

    The common PP chips have been used to prepare high shrinkage PP fibers with shrinkage in boiling water higher than 50%. Meanwhile, the process conditions on fiber structure and properties have been discussed in detail. With the increase of drawing temperature, the shrinkage in boiling water of the fiber increases at first,and then decreases in the temperature range from 70℃ to 100℃. The better drawing temperature is from 75℃ to 85℃ according to the melt index of the PP material. The shrinkage in boiling water of PP fiber increases with the increase of pump delivery. The orientation factor and crystallinity increase with the increase of drawing temperature. With an increase in drawing temperature,unit-cell numbers and monomer unit numbers in every crystal nucleus tend to increase, but unit volume crystal nucleus tend to reduce.

  8. Spontaneous shrinkage of vestibular schwannoma

    Directory of Open Access Journals (Sweden)

    Rossana Romani

    2016-01-01

    Conclusion: Early WWR management can be associated with spontaneous shrinkage of VS over time. Prospective clinical study of larger numbers of such cases using the UK VS database may help to identify predictive factors for the spontaneous regression of VS.

  9. Measurement of composite shrinkage using a fibre optic Bragg grating sensor.

    Science.gov (United States)

    Milczewski, M S; Silva, J C C; Paterno, A S; Kuller, F; Kalinowski, H J

    2007-01-01

    Fibre Bragg grating is used to determine resin-based composite shrinkage. Two composite resins (Freedom from SDI and Z100 from 3M) were tested to determine the polymerization contraction behaviour. Each sample of resin was prepared with an embedded fibre Bragg grating. A LED activation unit with wavelength from 430 nm to 470 nm (Dabi Atlante) was used for resin polymerization. The wavelength position of the peak in the optical reflection spectra of the sensor was measured. The wavelength shift was related to the shrinkage deformation of the samples. Temperature and strain evolution during the curing phase of the material was monitored. The shrinkage in the longitudinal direction was 0.15 +/- 0.02% for resin Z100 (3M) and 0.06+/-0.01% for Freedom (SDI); two-thirds of shrinkage occurred after the first 50 s of illumination.

  10. The soil reference shrinkage curve

    CERN Document Server

    Chertkov, V Y

    2014-01-01

    A recently proposed model showed how a clay shrinkage curve is transformed to the soil shrinkage curve at the soil clay content higher than a critical one. The objective of the present work was to generalize this model to the soil clay content lower a critical one. I investigated (i) the reference shrinkage curve, that is, one without cracks; (ii) the superficial layer of aggregates, with changed pore structure compared with the intraaggregate matrix; and (iii) soils with sufficiently low clay content where there are large pores inside the intraaggregate clay (so-called lacunar pores). The methodology is based on detail accounting for different contributions to the soil volume and water content during shrinkage. The key point is the calculation of the lacunar pore volume variance at shrinkage. The reference shrinkage curve is determined by eight physical soil parameters: (1) oven-dried specific volume; (2) maximum swelling water content; (3) mean solid density; (4) soil clay content; (5) oven-dried structural...

  11. Properties evaluation of silorane, low-shrinkage, non-flowable and flowable resin-based composites in dentistry

    Directory of Open Access Journals (Sweden)

    Rodrigo R. Maia

    2015-06-01

    Full Text Available Purpose. This study tested the null hypothesis that different classes of direct restorative dental materials: silorane-based resin, low-shrinkage and conventional (non-flowable and flowable resin-based composite (RBC do not differ from each other with regard to polymerization shrinkage, depth of cure or microhardness.Methods. 140 RBC samples were fabricated and tested by one calibrated operator. Polymerization shrinkage was measured using a gas pycnometer both before and immediately after curing with 36 J/cm2 light energy density. Depth of cure was determined, using a penetrometer and the Knoop microhardness was tested from the top surface to a depth of 5 mm.Results. Considering polymerization shrinkage, the authors found significant differences (p < 0.05 between different materials: non-flowable RBCs showed lower values compared to flowable RBCs, with the silorane-based resin presenting the smallest shrinkage. The low shrinkage flowable composite performed similarly to non-flowable with significant statistical differences compared to the two other flowable RBCs. Regarding to depth of cure, low-shrinkage flowable RBC, were most effective compared to other groups. Microhardness was generally higher for the non-flowable vs. flowable RBCs (p < 0.05. However, the values for low-shrinkage flowable did not differ significantly from those of non-flowable, but were significantly higher than those of the other flowable RBCs.Clinical Significance. RBCs have undergone many modifications as they have evolved and represent the most relevant restorative materials in today’s dental practice. This study of low-shrinkage RBCs, conventional RBCs (non-flowable and flowable and silorane-based composite—by in vitro evaluation of volumetric shrinkage, depth of cure and microhardness—reveals that although filler content is an important determinant of polymerization shrinkage, it is not the only variable that affects properties of materials that were tested in

  12. Influence of light-polymerization modes on the degree of conversion and mechanical properties of resin composites: a comparative analysis between a hybrid and a nanofilled composite.

    Science.gov (United States)

    da Silva, Eduardo Moreira; Poskus, Laiza Tatiana; Guimarães, José Guilherme Antunes

    2008-01-01

    This study analyzed the influence of the light polymerization mode on the degree of conversion (DC) and mechanical properties of two resin composites: a hybrid (Filtek P60) and a nanofilled composite (Filtek Supreme). The composites were light activated by three light polymerization modes (Standard-S: 650 mW/cm2 for 30 seconds; High intensity-H: 1000 mW/cm2 for 20 seconds and Gradual-G: 100 up to 1000 mW/cm2 for 10 seconds + 1000 mW/cm2 for 10 seconds). The DC (%) was measured by FT-Raman spectroscopy. Flexural strength and flexural modulus were obtained from bar-shaped specimens (1 x 2 x 10 mm) submitted to the three-point bending test. Microhardness was evaluated by Knoop indentation (KHN). Data were analyzed by ANOVA and Student-Newman-Keuls multiple range test and linear regression analysis. The results showed the following DC: H > S > G (p hybrid > nanofilled (p S = G (p hybrid composite presented higher flexural strength and flexural modulus than the nanofilled composite (p composites (p = 0.1605). The results suggest that nanofilled composites may present a lower degree of conversion and reduced mechanical properties compared to hybrid composites.

  13. Dental composite polymerization: a three different sources comparison

    Science.gov (United States)

    Sozzi, Michele; Fornaini, Carlo; Lagori, Giuseppe; Merigo, Elisabetta; Cucinotta, Annamaria; Vescovi, Paolo; Selleri, Stefano

    2015-02-01

    The introduction of photo-activators, with absorption spectra in the violet region, in composite resins raised interest in the use of 405 nm diode lasers for polymerization. The purpose of this research is the evaluation of the resins polymerization by means of violet diode laser compared to traditional lamps. Two different resins have been used for the experiments: Filtek Supreme XT flow (3M ESPE, USA) and Tetric Evo flow (Ivoclar, Vivadent). The photo-activator used is Camphoroquinone, alone, or in combination with Lucirin TPO. The resins have been cured with an halogen lamp (Heliolux DXL, Vivadent Ivoclar, Austria), a broadband LED curing light (Valo Ultradent, USA) and a 405 nm laser (Euphoton, Italy). The measure of cure depth, of the volumetric shrinkage, and the conversion degree (DC%) of the double bond during the curing process have been evaluated. A composite layer of 3 mm was cured in Filtek Supreme resin (Camphoroquinone activator), lower if compared to the use of the other two light sources. Tests on Tetric Evo (Camphoroquinone + Lucirin) didn't show any improvement of the use of laser compared to the halogen lamp and the broadband LED. By measuring the volumetric shrinkage the laser induced the lower change with both the composites. In terms of DC% the lower performance was obtained with the laser. Considering that the polymerization process strongly depends on the kind of composite used the effectiveness of 405 nm laser proved to be lower than halogen lamps and broadband LEDs.

  14. Polymerization shrinkage evaluation of three packable composite resins using a gas pycnometer Avaliação da contração de polimerização de três resinas compactáveis, medida por picnômetro a gás

    Directory of Open Access Journals (Sweden)

    Ricardo Amore

    2003-09-01

    Full Text Available Modern restorative dentistry has been playing an outstanding role lately since composite resins, allied to adhesive systems, have been widely applied on anterior and posterior teeth restorations. The evolution of composite resins has mostly been verified due to the improvement of their aesthetic behavior and the increase in their compressive and abrasive strengths. In spite of these developments, the polymerization shrinkage inherent to the material has been a major deficiency that, so far, has been impossible to avoid. Using a gas pycnometry, this research investigated the polymerization shrinkage of three packable composite resins: Filtek P60 (3M, Prodigy Condensable (Kerr, and SureFil (Dentsply/Caulk, varying the distance from the light source to the surface of the resins (2 mm or 10 mm. The pycnometer Accupyc 1330 (Micromeritics, USA precisely records helium displacement, allowing fast and reliable measurements of the volume of composite resin immediately before and after polymerization, without interference of temperature or humidity. Results were not found to be statistically different for the three tested resins, either for 2 mm or 10 mm-distance from the light source to the composite surface.A Odontologia Restauradora moderna tem se destacado nos últimos anos e as resinas compostas, aliadas aos sistemas adesivos, têm sido muito empregadas para restaurações de dentes anteriores e posteriores. A evolução das resinas compostas tem sido constatada na melhoria do seu comportamento estético e no aumento da sua resistência à compressão e à abrasão. Apesar dos avanços mencionados, a contração de polimerização, inerente a esse material, continua sendo uma grande deficiência e, por enquanto, impossível de ser evitada. Nesta pesquisa a contração de polimerização de três resinas compostas compactáveis, Filtek P60 (3M, Prodigy Condensável (Kerr e SureFil (Dentsply/Caulk, variando-se a distância entre a fonte de luz e a

  15. Properties evaluation of silorane, low-shrinkage, non-flowable and flowable resin-based composites in dentistry.

    Science.gov (United States)

    Maia, Rodrigo R; Reis, Rodrigo S; Moro, André F V; Perez, Cesar R; Pessôa, Bárbara M; Dias, Katia R H C

    2015-01-01

    Purpose. This study tested the null hypothesis that different classes of direct restorative dental materials: silorane-based resin, low-shrinkage and conventional (non-flowable and flowable) resin-based composite (RBC) do not differ from each other with regard to polymerization shrinkage, depth of cure or microhardness. Methods. 140 RBC samples were fabricated and tested by one calibrated operator. Polymerization shrinkage was measured using a gas pycnometer both before and immediately after curing with 36 J/cm(2) light energy density. Depth of cure was determined, using a penetrometer and the Knoop microhardness was tested from the top surface to a depth of 5 mm. Results. Considering polymerization shrinkage, the authors found significant differences (p flowable RBCs showed lower values compared to flowable RBCs, with the silorane-based resin presenting the smallest shrinkage. The low shrinkage flowable composite performed similarly to non-flowable with significant statistical differences compared to the two other flowable RBCs. Regarding to depth of cure, low-shrinkage flowable RBC, were most effective compared to other groups. Microhardness was generally higher for the non-flowable vs. flowable RBCs (p flowable did not differ significantly from those of non-flowable, but were significantly higher than those of the other flowable RBCs. Clinical Significance. RBCs have undergone many modifications as they have evolved and represent the most relevant restorative materials in today's dental practice. This study of low-shrinkage RBCs, conventional RBCs (non-flowable and flowable) and silorane-based composite-by in vitro evaluation of volumetric shrinkage, depth of cure and microhardness-reveals that although filler content is an important determinant of polymerization shrinkage, it is not the only variable that affects properties of materials that were tested in this study.

  16. Mitigation strategies for autogenous shrinkage cracking

    DEFF Research Database (Denmark)

    Bentz, Dale P.; Jensen, Ole Mejlhede

    2004-01-01

    , the fundamental parameters contributing to the autogenous shrinkage and resultant early-age cracking of concrete are presented. Basic characteristics of the cement paste that contribute to or control the autogenous shrinkage response include the surface tension of the pore solution, the geometry of the pore...... of early-age cracking due to autogenous shrinkage. Mitigation strategies discussed in this paper include: the addition of shrinkage-reducing admixtures more commonly used to control drying shrinkage, control of the cement particle size distribution, modification of the mineralogical composition......, it should be possible to minimize cracking due to autogenous shrinkage via some combination of the presented approaches....

  17. Corrosion Performance of Composite Galvanic Coatings with Variable Concentration of Polymeric Nanoaggregates and/or Cr(III) Conversion Layers

    NARCIS (Netherlands)

    Koleva, D.A.; Taheri, P.; Tsvetkova, N.; Boshkov, N.; Van Breugel, K.; De Wit, J.H.W.; Mol, J.M.C.

    2011-01-01

    This paper reports on the corrosion performance of composite zinc layers (~ 8µm) on a steel substrate, considering the influence of nano-aggregates and Cr(III) conversion layers, compared to control (only Zn layers) conditions. The main factors, influencing the corrosion performance of Zn in this

  18. Corrosion Performance of Composite Galvanic Coatings with Variable Concentration of Polymeric Nanoaggregates and/or Cr(III) Conversion Layers

    NARCIS (Netherlands)

    Koleva, D.A.; Taheri, P.; Tsvetkova, N.; Boshkov, N.; Van Breugel, K.; De Wit, J.H.W.; Mol, J.M.C.

    2011-01-01

    This paper reports on the corrosion performance of composite zinc layers (~ 8µm) on a steel substrate, considering the influence of nano-aggregates and Cr(III) conversion layers, compared to control (only Zn layers) conditions. The main factors, influencing the corrosion performance of Zn in this st

  19. Cure shrinkage effects in epoxy and polycyanate matrix composites

    Energy Technology Data Exchange (ETDEWEB)

    Spellman, G.P.

    1995-12-22

    A relatively new advanced composite matrix, polycyanate ester, was evaluated for cure shrinkage. The chemical cure shrinkage of composites is difficult to model but a number of clever experimental techniques are available to the investigator. In this work the method of curing a prepreg layup on top of a previously cured laminate of identical ply composition is utilized. The polymeric matrices used in advanced composites have been primarily epoxies and therefore a common system of this type, Fiberite 3501-6, was used as a base case material. Three polycyanate matrix systems were selected for the study. These are: Fiberite 954-2A, YLA RS-3, and Bryte Technology BTCy-1. The first three of these systems were unidirectional prepreg with carbon fiber reinforcement. The Bryte Technology material was reinforced with E-glass fabric. The technique used to evaluate cure shrinkage results in distortion of the flatness of an otherwise symmetric laminate. The first laminate is cured in a conventional fashion. An identical layup is cured on this first laminate. During the second cure all constituents are exposed to the same thermal cycles. However, only the new portion of the laminate will experience volumetric changes associate with matrix cure. The additional strain of cure shrinkage results in an unsymmetric distribution of residual stresses and an associated warpage of the laminate. The baseline material, Fiberite 3501-6, exhibited cure shrinkage that was in accordance with expectations. Cure strains were {minus}4.5E-04. The YLA RS-3 material had cure strains somewhat lower at {minus}3.2E-04. The Fiberite 954-2A cure strain was {minus}1.5E-04 that is 70% lower than the baseline material. The glass fabric material with the Bryte BTCy-1 matrix did not result in meaningful results because the processing methods were not fully compatible with the material.

  20. DH and ESPI laser interferometry applied to the restoration shrinkage assessment

    Science.gov (United States)

    Campos, L. M. P.; Parra, D. F.; Vasconcelos, M. R.; Vaz, M.; Monteiro, J.

    2014-01-01

    In dental restoration postoperative marginal leakage is commonly associated to polymerization shrinkage effects. In consequence the longevity and quality of restorative treatment depends on the shrinkage mechanisms of the composite filling during the polymerization. In this work the development of new techniques for evaluation of those effects under light-induced polymerization of dental nano composite fillings is reported. The composite resins activated by visible light, initiate the polymerization process by absorbing light in wavelengths at about 470 nm. The techniques employed in the contraction assessment were digital holography (DH) and Electronic Speckle Pattern Interferometry (ESPI) based on laser interferometry. A satisfactory resolution was achieved in the non-contact displacement field measurements on small objects concerning the experimental dental samples. According to a specific clinical protocol, natural teeth were used (human mandibular premolars). A class I cavity was drilled and restored with nano composite material, according to Black principles. The polymerization was monitored by DH and ESPI in real time during the cure reaction of the restoration. The total displacement reported for the material in relation of the tooth wall was 3.7 μm (natural tooth). The technique showed the entire tooth surface (wall) deforming during polymerization shrinkage.

  1. The shrinkage in lime mortars

    Directory of Open Access Journals (Sweden)

    Sánchez, J. A.

    1997-03-01

    Full Text Available Nowadays, the methodology existing to measure the shrinkage in air, developed for paste and cement mortars, has serious problems to be applied to lime mortars, due to its different mechanism of hardening several modifications in Norms UNE 80-113-86 y 80-112-89 make possible the determination of the shrinkage in these traditional mortars.

    La metodología existente en la actualidad para la medida de la retracción de secado, desarrollada para las pastas y los morteros de cemento, presenta serios problemas a la hora de su aplicación a los morteros de cal debido a su distinto mecanismo de endurecimiento. Algunas modificaciones de las normas UNE 80-113-86 y 80-112-89 hacen posible la determinación de la retracción en estos morteros tradicionales.

  2. The influence of shrinkage reducing admixtures on plastic shrinkage

    Directory of Open Access Journals (Sweden)

    Mora, J.

    2003-12-01

    Full Text Available Shrinkage reducing admixtures (SRAs are viable alternatives for reducing plastic shrinkage cracking in concrete. The objective of the present paper is to study early age plastic shrinkage in restrained concrete elements, where three different SRAs have been used. The influence of the admixture is analyzed through the following measurements: capillary pressure, evaporation, temperature evolution, crack evolution and settlement. The tests for studying the cracking and deformation were made on two different configurations (i.e., restrained prisms with reduced cross-section and restrained panel, in a wind tunnel, with controlled wind temperature and velocity. The conclusions obtained indicate the viability of the use of this type of admixture and the usefulness of the test methods.

    Los aditivos reductores de retracción (SRAs se plantean, hoy en día, como una alternativa viable para reducir la fisuración por retracción plástica. El objetivo del presente artículo es conocer mejor y predecir el comportamiento a primeras edades de la retracción plástica en elementos estructurales coaccionados, a los que se les ha añadido diversos aditivos reductores de retracción (tres tipos diferentes. Esta influencia se analiza a través de las siguientes propiedades: presión capilar, evaporación, evolución de temperaturas, evolución de fisuración, y deformaciones verticales de asentamiento. Los ensayos para estudiar la fisuración y las deformaciones se han realizado sobre diferentes configuraciones (prisma restringido con estrangulamiento y panel restringido, en un túnel de viento, con temperaturas y velocidades de viento controladas. Las conclusiones obtenidas señalan la viabilidad del empleo de este tipo de aditivos y la bondad de los métodos experimentales utilizados.

  3. Accounting for PDMS shrinkage when replicating structures

    DEFF Research Database (Denmark)

    Madsen, Morten Hannibal; Feidenhans'l, Nikolaj Agentoft; Hansen, Poul-Erik

    2014-01-01

    are seldom applied to counteract the shrinkage of PDMS. Also, to perform metrological measurements using replica techniques one has to take the shrinkage into account. Thus we report a study of the shrinkage of PDMS with several different mixing ratios and curing temperatures. The shrinkage factor, with its...... associated uncertainty, for PDMS in the range 40 to 120 °C is provided. By applying this correction factor, it is possible to replicate structures with a standard uncertainty of less than 0.2% in lateral dimensions using typical curing temperatures and PDMS mixing ratios in the range 1:6 to 1:20 (agent:base)....

  4. Shrinkage behavior of self-compacting concrete

    Institute of Scientific and Technical Information of China (English)

    Farhad ASLANI; Shami NEJADI

    2012-01-01

    In the structures where long-term behavior should be monitored and controlled,creep and shrinkage effects have to be included precisely in the analysis and design procedures.Shrinkage varies with the constituent and mixture proportions,and depends on the curing conditions and the work environment as well.Self-compacting concrete (SCC) contains combinations of various components,such as aggregate,cement,superplasticizer,water-reducing agent and other ingredients which affect the properties of the SCC including shrinkage.Hence,the realistic prediction shrinkage strains of SCC are an important requirement of the design process for this type of concrete structures.This study reviews the accuracy of the conventional concrete (CC) shrinkage prediction models proposed by the international codes of practice,including CEB-FIP (1990),ACI 209R (1997),Eurocode 2 (2001),JSCE (2002),AASHTO (2004; 2007) and AS 3600 (2009).Also,SCC shrinkage prediction models proposed by Poppe and De Schutter (2005),Larson (2007),Cordoba (2007) and Khayat and Long (2010) are reviewed.Further,a new shrinkage prediction model based on the comprehensive analysis on both of the available models,i.e.,the CC and the SCC is proposed.The predicted shrinkage strains are compared with the actual measured shrinkage strains in 165 mixtures of SCC and 21 mixtures of CC.

  5. 高转化率配方乳聚丁苯橡胶聚合过程中间产物性能考察%The intermediates properties of SBR in emulsion polymerization by a recipe with high monomer conversion

    Institute of Scientific and Technical Information of China (English)

    金彦江; 沈本贤; 隋军; 崔明海; 杨磊; 赵基钢

    2011-01-01

    The monomer conversion of styrene butadiene rubber(SBR) polymerization was studied by a lab scale autocalve with the large-scale production recipe of high conversion for SBR in Jilin Petrochemical Company. And then the intermediates properties such as the combining styrene content, organic acids and soap content, Mooney viscosity in emulsion polymerization were all determined. The results showed that the performances of synthesized product with the polymerization time of 10 hours and monomer conversion up to 70% can meet up with the superior grade requirements of GB/T 8655-2006,while the combining styrene content and Mooney viscosity of synthesized product with the polymerization time of 12 hours and monomer conversion of 75% can not meet up with the superior grade requirements of GB/T 8655-2006.%采用中国石油吉林石化公司乳聚丁苯橡胶高转化率大生产配方,考察了实验室聚合反应釜聚合反应单体转化率随反应时间的变化,测定了生胶的结合苯乙烯含量、有机酸和皂含量、门尼粘度等性质,结果表明:反应10h,转化率为70%左右时生胶的各项性质均达到标准GB/T 8655-2006中规定的优等品指标要求;当反应12h,转化率达到75%时,生胶的结合苯乙烯含量和门尼粘度不符合要求.

  6. Compressed sensing recovery via nonconvex shrinkage penalties

    Science.gov (United States)

    Woodworth, Joseph; Chartrand, Rick

    2016-07-01

    The {{\\ell }}0 minimization of compressed sensing is often relaxed to {{\\ell }}1, which yields easy computation using the shrinkage mapping known as soft thresholding, and can be shown to recover the original solution under certain hypotheses. Recent work has derived a general class of shrinkages and associated nonconvex penalties that better approximate the original {{\\ell }}0 penalty and empirically can recover the original solution from fewer measurements. We specifically examine p-shrinkage and firm thresholding. In this work, we prove that given data and a measurement matrix from a broad class of matrices, one can choose parameters for these classes of shrinkages to guarantee exact recovery of the sparsest solution. We further prove convergence of the algorithm iterative p-shrinkage (IPS) for solving one such relaxed problem.

  7. A new approach to network heterogeneity: Polymerization Induced Phase Separation in photo-initiated, free-radical methacrylic systems.

    Science.gov (United States)

    Szczepanski, Caroline R; Pfeifer, Carmem S; Stansbury, Jeffrey W

    2012-09-28

    Non-reactive, thermoplastic prepolymers (poly- methyl, ethyl and butyl methacrylate) were added to a model homopolymer matrix composed of triethylene glycol dimethacrylate (TEGDMA) to form heterogeneous networks via polymerization induced phase separation (PIPS). PIPS creates networks with distinct phase structure that can partially compensate for volumetric shrinkage during polymerization through localized internal volume expansion. This investigation utilizes purely photo-initiated, free-radical systems, broadening the scope of applications for PIPS since these processing conditions have not been studied previously.The introduction of prepolymer into TEGDMA monomer resulted in stable, homogeneous monomer formulations, most of which underwent PIPS upon photo-irradiation, creating heterogeneous networks. During polymerization the presence of prepolymer enhanced autoacceleration, allowing for a more extensive ambient cure of the material. Phase separation, as characterized by dynamic changes in sample turbidity, was monitored simultaneously with monomer conversion and either preceded or was coincident with network gelation. Dynamic mechanical analysis shows a broadening of the tan delta peak and secondary peak formation, characteristic of phase-separated materials, indicating one phase rich in prepolymer and another depleted form upon phase separation. In certain cases, PIPS leads to an enhanced physical reduction of volumetric shrinkage, which is attractive for many applications including dental composite materials.

  8. Shrinkage Characteristics of Experimental Polymer Containing Composites under Controlled Light Curing Modes

    Directory of Open Access Journals (Sweden)

    Alain Pefferkorn

    2012-01-01

    Full Text Available The adsorption of polymethylmethacrylate polymer of different molecular weight at the aerosil/ethyleneglycol- or 1,3 butanediol-dimethacrylate interfaces was determined to provide microstructured networks. Their structural characteristics were determined to be controlled by the amount of polymer initially supplied to the system. The sediment (the settled phase characteristics, determined as a function of the polymer concentration and the rate of the polymerization shrinkage determined for composite resins, obtained by extrusion of the sediment after centrifugation, were found to be correlated. The specific role of the adsorbed polymer was found to be differently perturbed with the supplementary supply of dimethacrylate based monomer additives. Particularly, the bisphenol A dimethacrylate that generated crystals within the sediment was found to impede the shrinkage along the crystal lateral faces and strongly limit the shrinkage along its basal faces. Addition of ethyleneglycol- or polyethylene-glycoldimethacrylate monomers was determined to modify the sedimentation characteristics of the aerosil suspension and the shrinkage properties of the composites. Finally, the effects of stepwise light curing methods with prolonged lighting-off periods were investigated and found to modify the development and the final values of the composite shrinkage.

  9. Breast specimen shrinkage following formalin fixation

    Directory of Open Access Journals (Sweden)

    Horn CL

    2014-02-01

    Full Text Available Christopher L Horn, Christopher Naugler Department of Pathology and Laboratory Medicine, University of Calgary, and Calgary Laboratory Services, Calgary, AB, Canada Abstract: Accurate measurement of primary breast tumors and subsequent surgical margin assessment is critical for pathology reporting and resulting patient therapy. Anecdotal observations from pathology laboratory staff indicate possible shrinkage of breast cancer specimens due to the formalin fixation process. As a result, we conducted a prospective study to investigate the possible shrinkage effects of formalin fixation on breast cancer specimens. The results revealed no significant changes in tumor size, but there were significant changes in the distance to all surgical resection margins from the unfixed to fixed state. This shrinkage effect could interfere with the accuracy of determining distance to margin assessment and tumor-free margin assessment. Thus, changes in these measurements due to the formalin fixation process have the potential to alter treatment options for the patient. Keywords: breast margins, formalin, shrinkage, cancer

  10. A Shrinkage Estimator for Combination of Bioassays

    Institute of Scientific and Technical Information of China (English)

    Jian Xiong; D.G. Chen; Zhen-hai Yang

    2007-01-01

    A shrinkage estimator and a maximum likelihood estimator are proposed in this paper for combination of bioassays. The shrinkage estimator is obtained in closed form which incorporates prior information just on the common log relative potency after the homogeneity test for combination of bioassays is accepted. It is a practical improvement over other estimators which require iterative procedure to obtain the estimator for the relative potency. A real data is also used to show the superiorities for the newly-proposed procedures.

  11. Influence of Shrinkage-Reducing Admixtures on the Development of Plastic Shrinkage Cracks

    DEFF Research Database (Denmark)

    Lura, Pietro; Pease, Bradley Justin; Mazzotta, Guy;

    2007-01-01

    settlement of the concrete and tensile stress development in the surface of the concrete, which increase the potential for development of plastic shrinkage cracks. Specifically, this paper studies the development of plastic shrinkage cracks in mortars containing a commercially available shrinkage......-reducing admixture (SRA). Mortars containing SRA show fewer and narrower plastic shrinkage cracks than plain mortars when exposed to the same environmental conditions. It is proposed that the lower surface tension of the pore fluid in the mortars containing SRA results in less evaporation, reduced settlement......, reduced capillary tension, and lower crack-inducing stresses at the topmost layer of the mortar....

  12. Application of digital image correlation to full-field measurement of shrinkage strain of dental composites

    Institute of Scientific and Technical Information of China (English)

    Jian-ying LI; Andrew LAU; Alex S.L.FOK

    2013-01-01

    Objectives:Polymerization shrinkage of dental composites remains a major concern in restorative dentistry because it can lead to micro-cracking of the tooth and debonding at the tooth-restoration interface.The aim of this study was to measure the full-field polymerization shrinkage of dental composites using the optical digital image correlation (DIC) method and to evaluate how the measurement is influenced by the factors in experiment setup and image analysis.Methods:Four commercial dental composites,Premise Dentine,Z100,Z250 and Tetric EvoCeram,were tested.Composite was first placed into a slot mould to form a bar specimen with rectangular-section of 4 mm×2 mm,followed by the surface painting to create irregular speckles.Curing was then applied at one end of the specimen while the other part were covered against curing light for simulating the clinical curing condition of composite in dental cavity.The painted surface was recorded by a charge-coupled device (CCD) camera before and after curing.Subsequently,the volumetric shrinkage of the specimen was calculated with specialist DIC software based on image cross correlation.In addition,a few factors that may influence the measuring accuracy,including the subset window size,speckle size,illumination light and specimen length,were also evaluated.Results:The volumetric shrinkage of the specimen generally decreases with increasing distance from the irradiated surface with a conspicuous exception being the composite Premise Dentine as its maximum shrinkage occurred at a subsurface distance of about 1 mm instead of the irradiated surface.Zl00 had the greatest maximum shrinkage strain,followed by Z250,Tetric EvoCeram and then Premise Dentine.Larger subset window size made the shrinkage strain contour smoother.But the cost was that some details in the heterogeneity of the material were lost.Very small subset window size resulted in a lot of noise in the data,making it difficult to discern the general pattern in the strain

  13. Kinetics and mechanics of photo-polymerized triazole-containing thermosetting composites via the copper(I)-catalyzed azide-alkyne cycloaddition.

    Science.gov (United States)

    Song, Han Byul; Wang, Xiance; Patton, James R; Stansbury, Jeffrey W; Bowman, Christopher N

    2017-06-01

    Several features necessary for polymer composite materials in practical applications such as dental restorative materials were investigated in photo-curable CuAAC (copper(I)-catalyzed azide-alkyne cycloaddition) thermosetting resin-based composites with varying filler loadings and compared to a conventional BisGMA/TEGDMA based composite. Tri-functional alkyne and di-functional azide monomers were synthesized for CuAAC resins and incorporated with alkyne-functionalized glass microfillers for CuAAC composites. Polymerization kinetics, in situ temperature change, and shrinkage stress were monitored simultaneously with a tensometer coupled with FTIR spectroscopy and a data-logging thermocouple. The glass transition temperature was analyzed by dynamic mechanical analysis. Flexural modulus/strength and flexural toughness were characterized in three-point bending on a universal testing machine. The photo-CuAAC polymerization of composites containing between 0 and 60wt% microfiller achieved ∼99% conversion with a dramatic reduction in the maximum heat of reaction (∼20°C decrease) for the 60wt% filled CuAAC composites as compared with the unfilled CuAAC resin. CuAAC composites with 60wt% microfiller generated more than twice lower shrinkage stress of 0.43±0.01MPa, equivalent flexural modulus of 6.1±0.7GPa, equivalent flexural strength of 107±9MPa, and more than 10 times higher energy absorption of 10±1MJm(-3) when strained to 11% relative to BisGMA-based composites at equivalent filler loadings. Mechanically robust and highly tough, photo-polymerized CuAAC composites with reduced shrinkage stress and a modest reaction exotherm were generated and resulted in essentially complete conversion. Copyright © 2017 The Academy of Dental Materials. Published by Elsevier Ltd. All rights reserved.

  14. Shrinkage of dental composite in simulated cavity measured with digital image correlation.

    Science.gov (United States)

    Li, Jianying; Thakur, Preetanjali; Fok, Alex S L

    2014-07-21

    Polymerization shrinkage of dental resin composites can lead to restoration debonding or cracked tooth tissues in composite-restored teeth. In order to understand where and how shrinkage strain and stress develop in such restored teeth, Digital Image Correlation (DIC) was used to provide a comprehensive view of the displacement and strain distributions within model restorations that had undergone polymerization shrinkage. Specimens with model cavities were made of cylindrical glass rods with both diameter and length being 10 mm. The dimensions of the mesial-occlusal-distal (MOD) cavity prepared in each specimen measured 3 mm and 2 mm in width and depth, respectively. After filling the cavity with resin composite, the surface under observation was sprayed with first a thin layer of white paint and then fine black charcoal powder to create high-contrast speckles. Pictures of that surface were then taken before curing and 5 min after. Finally, the two pictures were correlated using DIC software to calculate the displacement and strain distributions. The resin composite shrunk vertically towards the bottom of the cavity, with the top center portion of the restoration having the largest downward displacement. At the same time, it shrunk horizontally towards its vertical midline. Shrinkage of the composite stretched the material in the vicinity of the "tooth-restoration" interface, resulting in cuspal deflections and high tensile strains around the restoration. Material close to the cavity walls or floor had direct strains mostly in the directions perpendicular to the interfaces. Summation of the two direct strain components showed a relatively uniform distribution around the restoration and its magnitude equaled approximately to the volumetric shrinkage strain of the material.

  15. Polymeric microspheres

    Science.gov (United States)

    Walt, David R.; Mandal, Tarun K.; Fleming, Michael S.

    2004-04-13

    The invention features core-shell microsphere compositions, hollow polymeric microspheres, and methods for making the microspheres. The microspheres are characterized as having a polymeric shell with consistent shell thickness.

  16. Shrinkage Properties of Cement Stabilized Gravel

    DEFF Research Database (Denmark)

    Lund, Mia Schou Møller; Hansen, Kurt Kielsgaard

    2014-01-01

    Cement stabilized gravel is an attractive material in road construction because its strength prop-erties are accommodating the increasingly higher requirements to the bearing capacity of a base course. However, reflection cracking of cement stabilized gravel is a major concern. In this pa......-per the shrinkage properties of cement stabilized gravel have been documented under various temperature and relative humidity conditions. Two cement contents corresponding to a 28-days compressive strength of 6.2 MPa and 12.3 MPa have been tested and compared. It is found that the coefficient of linear expansion...... for the two cement contents is 9.9 × 10-6 ⁰C-1 and 11.3 × 10-6 ⁰C-1, respectively. Furthermore, it is found that reflecting cracking can mainly be explained by temperature dependent shrinkage rather than moisture dependent shrinkage....

  17. Identification of microcracks caused by autogenous shrinkage

    DEFF Research Database (Denmark)

    Lura, Pietro; Jensen, Ole Mejlhede; Guang, Ye

    2005-01-01

    Detection and quantification of microcracks caused by restrained autogenous shrinkage in high-performance concrete is difficult. Available techniques either lack the required resolution or may cause further cracks indistinguishable from the original ones. The new technique presented in this paper...... microscopy, electron probe micro analysis, EPMA, and scanning electron microscopy, SEM. A preliminary analysis of the observed microcracks is presented in this paper....

  18. A Bayesian Shrinkage Approach for AMMI Models.

    Science.gov (United States)

    da Silva, Carlos Pereira; de Oliveira, Luciano Antonio; Nuvunga, Joel Jorge; Pamplona, Andrezza Kéllen Alves; Balestre, Marcio

    2015-01-01

    Linear-bilinear models, especially the additive main effects and multiplicative interaction (AMMI) model, are widely applicable to genotype-by-environment interaction (GEI) studies in plant breeding programs. These models allow a parsimonious modeling of GE interactions, retaining a small number of principal components in the analysis. However, one aspect of the AMMI model that is still debated is the selection criteria for determining the number of multiplicative terms required to describe the GE interaction pattern. Shrinkage estimators have been proposed as selection criteria for the GE interaction components. In this study, a Bayesian approach was combined with the AMMI model with shrinkage estimators for the principal components. A total of 55 maize genotypes were evaluated in nine different environments using a complete blocks design with three replicates. The results show that the traditional Bayesian AMMI model produces low shrinkage of singular values but avoids the usual pitfalls in determining the credible intervals in the biplot. On the other hand, Bayesian shrinkage AMMI models have difficulty with the credible interval for model parameters, but produce stronger shrinkage of the principal components, converging to GE matrices that have more shrinkage than those obtained using mixed models. This characteristic allowed more parsimonious models to be chosen, and resulted in models being selected that were similar to those obtained by the Cornelius F-test (α = 0.05) in traditional AMMI models and cross validation based on leave-one-out. This characteristic allowed more parsimonious models to be chosen and more GEI pattern retained on the first two components. The resulting model chosen by posterior distribution of singular value was also similar to those produced by the cross-validation approach in traditional AMMI models. Our method enables the estimation of credible interval for AMMI biplot plus the choice of AMMI model based on direct posterior

  19. A Bayesian Shrinkage Approach for AMMI Models.

    Directory of Open Access Journals (Sweden)

    Carlos Pereira da Silva

    Full Text Available Linear-bilinear models, especially the additive main effects and multiplicative interaction (AMMI model, are widely applicable to genotype-by-environment interaction (GEI studies in plant breeding programs. These models allow a parsimonious modeling of GE interactions, retaining a small number of principal components in the analysis. However, one aspect of the AMMI model that is still debated is the selection criteria for determining the number of multiplicative terms required to describe the GE interaction pattern. Shrinkage estimators have been proposed as selection criteria for the GE interaction components. In this study, a Bayesian approach was combined with the AMMI model with shrinkage estimators for the principal components. A total of 55 maize genotypes were evaluated in nine different environments using a complete blocks design with three replicates. The results show that the traditional Bayesian AMMI model produces low shrinkage of singular values but avoids the usual pitfalls in determining the credible intervals in the biplot. On the other hand, Bayesian shrinkage AMMI models have difficulty with the credible interval for model parameters, but produce stronger shrinkage of the principal components, converging to GE matrices that have more shrinkage than those obtained using mixed models. This characteristic allowed more parsimonious models to be chosen, and resulted in models being selected that were similar to those obtained by the Cornelius F-test (α = 0.05 in traditional AMMI models and cross validation based on leave-one-out. This characteristic allowed more parsimonious models to be chosen and more GEI pattern retained on the first two components. The resulting model chosen by posterior distribution of singular value was also similar to those produced by the cross-validation approach in traditional AMMI models. Our method enables the estimation of credible interval for AMMI biplot plus the choice of AMMI model based on direct

  20. Influence of polymerization mode and C-factor on cohesive strength of dual-cured resin cements

    NARCIS (Netherlands)

    Jongsma, L.A.; Kleverlaan, C.J.; Pallav, P.; Feilzer, A.J.

    2012-01-01

    Objectives The aim of this study is to determine the influence of the C-factor and the mode of polymerization on the cohesive strength of various dual-cure resin cements. Methods Three curing conditions were tested; chemical curing with free shrinkage conditions (C = 0), and constraint shrinkage con

  1. Twin screw extruders as polymerization reactors for a free radical homo polymerization

    NARCIS (Netherlands)

    Ganzeveld, K.J.; Janssen, L.P.B.M.

    1993-01-01

    The bulk polymerization of n-butylmethacrylate was investigated in a counter-rotating twin screw extruder. It appeared that the gel effect, occurring with bulk polymerizations, affected the polymerization progress very strongly. Due to this effect the conversion of the reaction is independent of the

  2. Effects of preheating and precooling on the hardness and shrinkage of a composite resin cured with QTH and LED.

    Science.gov (United States)

    Osternack, F H; Caldas, D B M; Almeida, J B; Souza, E M; Mazur, R F

    2013-01-01

    The aim of this study was to evaluate in vitro the hardness and shrinkage of a pre-cooled or preheated hybrid composite resin cured by a quartz-tungsten-halogen light (QTH) and light-emitting diode (LED) curing units. The temperature on the tip of the devices was also investigated. Specimens of Charisma resin composite were produced with a metal mold kept under 37°C. The syringes were submitted to 4°C, 23°C, and 60°C (n=20) before light-curing, which was carried out with the Optilux 501 VCL and Elipar FreeLight 2 units for 20 seconds. The specimens were kept under 37°C in a high humidity condition and darkness for 48 hours. The Knoop hardness test was carried out with a 50 gram-force (gf) load for 10 seconds, and the measurement of the shrinkage gap was carried out using an optical microscope. The data were subjected to analysis of variance and the Games-Howell test (α=0.05). The mean hardness of the groups were similar, irrespective of the temperatures (p>0.05). For 4°C and 60°C, the top surface light-cured by LED presented significantly reduced shrinkage when compared with the bottom and to both surfaces cured by QTH (phardness was not affected by pre-cooling or preheating. However, polymerization shrinkage was slightly affected by different pre-polymerization temperatures. The QTH-curing generated greater shrinkage than LED-curing only when the composite was preheated. Different temperatures did not affect the composite hardness and shrinkage when cured by a LED curing unit.

  3. A three-dimensional finite element model of the polymerization process in dental restorations.

    NARCIS (Netherlands)

    Barink, M.; Mark, P.C. van der; Fennis, W.M.M.; Kuys, R.H.; Kreulen, C.M.; Verdonschot, N.J.J.

    2003-01-01

    Restoration of dental restorations with resin composite is hampered by shrinkage of the material during the polymerization process. In this study, we simulated the polymerization process in a detailed three-dimensional finite element model of a human upper premolar with a cusp-replacing restoration.

  4. Discrete multiscale wavelet shrinkage and integrodifferential equations

    Science.gov (United States)

    Didas, S.; Steidl, G.; Weickert, J.

    2008-04-01

    We investigate the relation between discrete wavelet shrinkage and integrodifferential equations in the context of simplification and denoising of one-dimensional signals. In the continuous setting, strong connections between these two approaches were discovered in 6 (see references). The key observation is that the wavelet transform can be understood as derivative operator after the convolution with a smoothing kernel. In this paper, we extend these ideas to the practically relevant discrete setting with both orthogonal and biorthogonal wavelets. In the discrete case, the behaviour of the smoothing kernels for different scales requires additional investigation. The results of discrete multiscale wavelet shrinkage and related discrete versions of integrodifferential equations are compared with respect to their denoising quality by numerical experiments.

  5. Analytical methods for the measurement of polymerization kinetics and stresses of dental resin-based composites: A review

    Science.gov (United States)

    Ghavami-Lahiji, Mehrsima; Hooshmand, Tabassom

    2017-01-01

    Resin-based composites are commonly used restorative materials in dentistry. Such tooth-colored restorations can adhere to the dental tissues. One drawback is that the polymerization shrinkage and induced stresses during the curing procedure is an inherent property of resin composite materials that might impair their performance. This review focuses on the significant developments of laboratory tools in the measurement of polymerization shrinkage and stresses of dental resin-based materials during polymerization. An electronic search of publications from January 1977 to July 2016 was made using ScienceDirect, PubMed, Medline, and Google Scholar databases. The search included only English-language articles. Only studies that performed laboratory methods to evaluate the amount of the polymerization shrinkage and/or stresses of dental resin-based materials during polymerization were selected. The results indicated that various techniques have been introduced with different mechanical/physical bases. Besides, there are factors that may contribute the differences between the various methods in measuring the amount of shrinkages and stresses of resin composites. The search for an ideal and standard apparatus for measuring shrinkage stress and volumetric polymerization shrinkage of resin-based materials in dentistry is still required. Researchers and clinicians must be aware of differences between analytical methods to make proper interpretation and indications of each technique relevant to a clinical situation. PMID:28928776

  6. Regularized brain reading with shrinkage and smoothing

    OpenAIRE

    Wehbe, Leila; Ramdas, Aaditya; Steorts, Rebecca C.; Shalizi, Cosma Rohilla

    2014-01-01

    Functional neuroimaging measures how the brain responds to complex stimuli. However, sample sizes are modest, noise is substantial, and stimuli are high dimensional. Hence, direct estimates are inherently imprecise and call for regularization. We compare a suite of approaches which regularize via shrinkage: ridge regression, the elastic net (a generalization of ridge regression and the lasso), and a hierarchical Bayesian model based on small area estimation (SAE). We contrast regularization w...

  7. Shrinkage measurement for holographic recording materials

    Science.gov (United States)

    Fernández, R.; Gallego, S.; Márquez, A.; Francés, J.; Navarro Fuster, V.; Neipp, C.; Ortuño, M.; Beléndez, A.; Pascual, I.

    2017-05-01

    There is an increasing demand for new holographic recording materials. One of them are photopolymers, which are becoming a classic media in this field. Their versatility is well known and new possibilities are being created by including new components, such as nanoparticles or dispersed liquid crystal molecules in classical formulations, making them interesting for additional applications in which the thin film preparation and the structural modification have a fundamental importance. Prior to obtaining a wide commercialization of displays based on photopolymers, one of the key aspects is to achieve a complete characterization of them. In this sense, one of the main parameters to estimate and control is the shrinkage of these materials. The volume variations change the angular response of the hologram in two aspects, the angular selectivity and the maximum diffraction efficiency. One criteria for the recording material to be used in a holographic data storage application is the shrinkage, maximum of 0.5%. Along this work, we compare two different methods to measure the holographic recording material shrinkage. The first one is measuring the angle of propagation for both diffracted orders +/-1 when slanted gratings are recorded, so that an accurate value of the grating vector can be calculated. The second one is based on interference measurements at zero spatial frequency limit. We calculate the shrinkage for three different photopolymers: a polyvinyl alcohol acrylamide (PVA/AA) based photopolymer, one of the greenest photopolymers whose patent belongs to the Alicante University called Biophotopol and on the last place a holographic-dispersed liquid crystal photopolymer (H-PDLC).

  8. Nearest shrunken centroids via alternative genewise shrinkages

    Science.gov (United States)

    Choi, Byeong Yeob; Bair, Eric; Lee, Jae Won

    2017-01-01

    Nearest shrunken centroids (NSC) is a popular classification method for microarray data. NSC calculates centroids for each class and “shrinks” the centroids toward 0 using soft thresholding. Future observations are then assigned to the class with the minimum distance between the observation and the (shrunken) centroid. Under certain conditions the soft shrinkage used by NSC is equivalent to a LASSO penalty. However, this penalty can produce biased estimates when the true coefficients are large. In addition, NSC ignores the fact that multiple measures of the same gene are likely to be related to one another. We consider several alternative genewise shrinkage methods to address the aforementioned shortcomings of NSC. Three alternative penalties were considered: the smoothly clipped absolute deviation (SCAD), the adaptive LASSO (ADA), and the minimax concave penalty (MCP). We also showed that NSC can be performed in a genewise manner. Classification methods were derived for each alternative shrinkage method or alternative genewise penalty, and the performance of each new classification method was compared with that of conventional NSC on several simulated and real microarray data sets. Moreover, we applied the geometric mean approach for the alternative penalty functions. In general the alternative (genewise) penalties required fewer genes than NSC. The geometric mean of the class-specific prediction accuracies was improved, as well as the overall predictive accuracy in some cases. These results indicate that these alternative penalties should be considered when using NSC. PMID:28199352

  9. Comparative Study of Shrinkage and Non-Shrinkage Model of Food Drying

    Science.gov (United States)

    Shahari, N.; Jamil, N.; Rasmani, KA.

    2016-08-01

    A single phase heat and mass model has always been used to represent the moisture and temperature distribution during the drying of food. Several effects of the drying process, such as physical and structural changes, have been considered in order to increase understanding of the movement of water and temperature. However, the comparison between the heat and mass equation with and without structural change (in terms of shrinkage), which can affect the accuracy of the prediction model, has been little investigated. In this paper, two mathematical models to describe the heat and mass transfer in food, with and without the assumption of structural change, were analysed. The equations were solved using the finite difference method. The converted coordinate system was introduced within the numerical computations for the shrinkage model. The result shows that the temperature with shrinkage predicts a higher temperature at a specific time compared to that of the non-shrinkage model. Furthermore, the predicted moisture content decreased faster at a specific time when the shrinkage effect was included in the model.

  10. Boosting the power conversion efficiency of perovskite solar cells using self-organized polymeric hole extraction layers with high work function.

    Science.gov (United States)

    Lim, Kyung-Geun; Kim, Hak-Beom; Jeong, Jaeki; Kim, Hobeom; Kim, Jin Young; Lee, Tae-Woo

    2014-10-08

    A self-organized hole extraction layer (SOHEL) with high work function (WF) is designed for energy level alignment with the ionization potential level of CH3 NH3 PbI3 . The SOHEL increases the built-in potential, photocurrent, and power conversion efficiency (PCE) of CH3 NH3 PbI3 perovskite solar cells. Thus, interface engineering of the positive electrode of solution-processed planar heterojunction solar cells using a high-WF SOHEL is a very effective way to achieve high device efficiency (PCE = 11.7% on glass).

  11. Low shrinkage composite resins: influence on sealing ability in unfavorable C-factor cavities

    Directory of Open Access Journals (Sweden)

    Eliza Burlamaqui Klautau

    2011-02-01

    Full Text Available The present investigation observed the sealing ability of low shrinkage composite resins in large and deep cavities, placed and photocured in one increment. Large, deep cavities (5.0 mm diameter and 2.5 mm deep surrounded by enamel were prepared in bovine teeth, which were then divided into five groups. Groups 1, 2, 3 and 4: acid conditioning + Adper Single Bond (3M/ESPE, St Paul, MN, USA and restoration with Aelite LS Posterior (BISCO Inc. Schaumburg, IL, USA (G1; Filtek Z-350 (3M/ESPE,St Paul, MN, USA (G2; Filtek Z-350 Flow (3M/ESPE, St Paul, MN, USA (G3; Premisa (KERR Corporation, Orange, CA, USA (G4. Group 5: Silorane Adhesive system (3M/ESPE, St Paul, MN, USA + restoration with Filtek Low Shrinkage Posterior P90 (3M/ESPE, St Paul, MN, USA. After polymerization, the teeth were immersed in 0.5% basic fuchsine solution and immediately washed. Using the Imagetool Software, the extent of dye along the margins was calculated as a percentage of total perimeter. The restorations were then transversally sectioned and the depth of dye penetration was calculated in mm, using the same software. Kruskal-Wallis analysis for all groups showed no statistical differences for extent (p = 0.54 or depth (p = 0.8364 of dye penetration. According to this methodology, the so-called low shrinkage composite resins had the same sealing ability compared to regular and flowable nanocomposite materials.

  12. Reducing Shrinkage in Canned and Frozen Mushrooms

    OpenAIRE

    Gormley, T. R. (Thomas Ronan); Walshe, P.E.

    1982-01-01

    The process involving a preliminary soaking of the mushrooms in water for 20 min followed by a chill storage period followed by a further water soak for 2 hr, and known as the 3S process, gave a considerable reduction in total shrinkage in both brown and white strain canned mushrooms compared with the control samples. Water uptake by the mushrooms in the 3S process was greatest when the soaking water temperature was between 20 and 30°C and had a pH of 8. Citric acid in the blanch water enhanc...

  13. Mechanical Self-shrinkage of Artillery Barrels

    Directory of Open Access Journals (Sweden)

    Ioan Ciorba

    2012-09-01

    Full Text Available Objective of this paper is to define what self-shrink artillery barrel is. She is considered to be a compound barrel like as a thick-walled tube (k>2, in his wall being introduced a state of stress and strain using specific technological proceeds. This type of treatment is aimed to increase the artillery barrel load capacity and wear resistance in operation. The experimental part was realized using an industrial plant at Mechanical Factory of Resita. This part presents a comparative study between mechanical self-shrinkage on artillery head barrel, first using a mandrel and seconds a ball.

  14. Huadong sintering model about expansion and shrinkage

    Institute of Scientific and Technical Information of China (English)

    2001-01-01

    The whole sintering course from the beginning of heating to the end of heat preservation stage was studied by taking into account the influence of pressing. It was found that there exist expanding mechanism and shrinking mechanism in the sintering process, and the expanding mechanism is always acting before the shrinking mechanism. Whether the sintering body shrinks or expands depends on the interaction between the two mechanisms. And according to this, the Huadong sintering model in account of expansion and shrinkage mechanism was given.

  15. THE INFLUENCE OF SHRINKAGE AND MOISTURE DIFFUSION ON IDEALIZED TOOTH STRUCTURE INVOLVING DEBONDING DAMAGE

    Institute of Scientific and Technical Information of China (English)

    FanJianping; TangChak-Yin

    2005-01-01

    This study highlights the joint effect of early polymerization shrinkage and longtermmoisture diffusion on the behavior of the restoration-tooth structure. The interphase debonding between particle and polymer resin in dental composite is taken into account by introducing the damage variable. The idealized model is designed and constructed for representing the restorationtooth structure, which consists of enamel, dentin, composite and interphase, each considered as homogenous material. The simulation is carried out using the general-purpose finite element software package, ABAQUS incorporated with a user subroutine for definition of damaged material behavior. The influence of Young's moduli of composite and interphase on stress and displacement is discussed. The compensating effect of water sorption on the polymerization shrinkage is examined with and without involving damage evolution. A comparison is made between the influence of hyper-, equi- and hypo-water sorption. Interfacial failure in the specific regions as well as cuspal movement has been predicated. The damage evolving in dental composite reduces the rigidity of composite, thus in turn reducing consequent stress and increasing consequent displacement. The development of stresses at the restoration-tooth interface can have a detrimental effect on the longevity of a restoration.

  16. Silorane- and high filled-based"low-shrinkage" resin composites: shrinkage, flexural strength and modulus

    Directory of Open Access Journals (Sweden)

    Cesar Augusto Galvão Arrais

    2013-04-01

    Full Text Available This study compared the volumetric shrinkage (VS, flexural strength (FS and flexural modulus (FM properties of the low-shrinkage resin composite Aelite LS (Bisco to those of Filtek LS (3M ESPE and two regular dimethacrylate-based resin composites, the microfilled Heliomolar (Ivoclar Vivadent and the microhybrid Aelite Universal (Bisco. The composites (n = 5 were placed on the Teflon pedestal of a video-imaging device, and VS was recorded every minute for 5 min after 40 s of light exposure. For the FS and FM tests, resin discs (0.6 mm in thickness and 6.0 mm in diameter were obtained (n = 12 and submitted to a piston-ring biaxial test in a universal testing machine. VS, FS, and FM data were submitted to two-way repeated measures and one-way ANOVA, respectively, followed by Tukey's post-hoc test (a = 5%. Filtek LS showed lower VS than did Aelite LS, which in turn showed lower shrinkage than did the other composites. Aelite Universal and Filtek LS exhibited higher FS than did Heliomolar and Aelite LS, both of which exhibited the highest FM. No significant difference in FM was noted between Filtek LS and Aelite Universal, while Heliomolar exhibited the lowest values. Aelite LS was not as effective as Filtek LS regarding shrinkage, although both low-shrinkage composites showed lower VS than did the other composites. Only Filtek LS exhibited FS and FM comparable to those of the regular microhybrid dimethacrylate-based resin composite.

  17. Light-Curing Volumetric Shrinkage in Dimethacrylate-Based Dental Composites by Nanoindentation and PAL Study

    Science.gov (United States)

    Shpotyuk, Olha; Adamiak, Stanislaw; Bezvushko, Elvira; Cebulski, Jozef; Iskiv, Maryana; Shpotyuk, Oleh; Balitska, Valentina

    2017-01-01

    Light-curing volumetric shrinkage in dimethacrylate-based dental resin composites Dipol® is examined through comprehensive kinetics research employing nanoindentation measurements and nanoscale atomic-deficient study with lifetime spectroscopy of annihilating positrons. Photopolymerization kinetics determined through nanoindentation testing is shown to be described via single-exponential relaxation function with character time constants reaching respectively 15.0 and 18.7 s for nanohardness and elastic modulus. Atomic-deficient characteristics of composites are extracted from positron lifetime spectra parameterized employing unconstrained x3-term fitting. The tested photopolymerization kinetics can be adequately reflected in time-dependent changes observed in average positron lifetime (with 17.9 s time constant) and fractional free volume of positronium traps (with 18.6 s time constant). This correlation proves that fragmentation of free-volume positronium-trapping sites accompanied by partial positronium-to-positron traps conversion determines the light-curing volumetric shrinkage in the studied composites.

  18. A Comparative Evaluation of Microleakage of Two Low-Shrinkage Composites with a Conventional Resin Composite: an In Vitro Assessment.

    Science.gov (United States)

    Tavangar, Maryam; Tayefeh Davalloo, Reza; Darabi, Farideh; Karambin, Mahsa; Kazemi, Reza

    2016-03-01

    Polymerization shrinkage stress in composite restorations may lead to microleakage. Clinical methods such as using low-shrinkage composites have been suggested to overcome this problem; however, there are controversies about their efficiency in decreasing the microleakage. This in vitro study was conducted to compare the microleakage of two low-shrinkage resin composites with a conventional one. Fifty class V cavities of 2.5×3×2 mm (depth× length× width) were prepared in the buccal surfaces of intact bovine incisor teeth with the incisal margin on the enamel and gingival margin on the cementum. The teeth were randomly divided into 5 groups. In group 1, Clearfil APX (conventional) with SE Bond was used in 2 layers (Kuraray; Japan). In group 2, GC Kalore (low -shrinkage) with GC UniFil Bond was applied in one layer (GC Company). In group 3, the material of group 2 was applied in two layers. In group 4, FiltekP90 (low -shrinkage) with P90 System adhesive was applied in one layer (3M ESPE). In group 5, the materials of group 4 were applied in two layers. The samples were thermocycled and immersed in 0.5% fuchsin solution for 24h. The restorations were sectioned in buccolingual direction. Then they were evaluated for microleakage by using a stereomicroscope and scored as 0, 1, 2, and 3 and then Kruskal-Wallis test was used (p< 0.05). The groups were not significantly different regarding the microleakage in the coronal and cervical margins (p< 0.423 and p< 0.212, respectively); however, the Filtek P90 yielded the best results. In all groups, except group 5 (p= 0.018), the cervical margins had greater microleakage than the coronal margins. The results suggested that low-shrinkage resin composites may not reduce the marginal microleakage. The proper use of conventional resin composites may offer comparable clinical results.

  19. Condensation Polymerization

    Indian Academy of Sciences (India)

    S Ramakrishnan

    2017-04-01

    The very idea that large polymer molecules can indeed existwas hotly debated during the early part of the 20th century.As highlighted by Sivaram in his articles on Carothersand Flory, Staudinger’s macromolecular hypothesis was finallyaccepted, and the study of polymers gained momentumbecause of the remarkable efforts of the these two individualswho laid down the foundations concerning the processes thatled to the formation of large polymer molecules, and to thosethat led to an understanding of many of their extraordinaryphysical properties. Condensation polymerizations, as thename suggests, utilizes bond-forming reactions that generatea small molecule condensate, which often needs to be continuouslyremoved to facilitate the formation of the polymer. Inthis article, I shall describe some of the essential principles ofcondensation polymerizations or more appropriately calledstep-growth polymerizations; and I will also describe someinteresting extensions that lead to the formation of polymernetworks and highly branched polymers.

  20. Towards a first classification of aerosol shrinkage events

    Directory of Open Access Journals (Sweden)

    E. Alonso-Blanco

    2015-09-01

    Full Text Available This work presents for the first time a classification of shrinkage events based on the aerosol processes that precede them. To this end, 3.5 years of continuous measurements (from 2009 to 2012 of aerosol size distributions, obtained with a Scanning Mobility Particle Sizer (SMPS at an urban background site in Southern Europe, have been interpreted. 48 shrinkage events were identified and analysed, all occurring during spring and summer when the atmospheric conditions are more favourable for their development. In this study the shrinkage events took place mostly towards the end of the day, and their occurrence could be associated to atmospheric dilution conditions and a reduction in photochemical activity. The shrinkage rate (SR varied between −1.0 and −11.1 nm h−1 (average value of −4.7 ± 2.6 nm h−1. Changes in particle concentrations corresponding to the nucleation and Aitken modes were detected, whereby an increase in the number of particles in the nucleation mode often coincided with a reduction in the Aitken mode. The accumulation mode did not undergo significant changes during these processes. In addition, in some cases, a dilution of the total particle number concentration in the ambient air was observed. Following the proposed methodology, three groups of events have been identified: Group I (NPF + shrinkage, Group II (aerosol growth process + shrinkage and Group III (pure shrinkage events. The largest number of shrinkage events has been observed in the absence of prior processes, i.e. pure shrinkage events, followed by Group I events and finally Group II events. Although this analysis has confirmed that the triggering of shrinkage events is clearly linked to the atmospheric situation and the characteristics of the measurement area, this classification may contribute to a better understanding of the processes involved and the features that characterize shrinkage events.

  1. Polymerization rate and mechanism of ultrasonically initiated emulsion polymerization of n-butyl acrylate.

    Science.gov (United States)

    Xia, Hesheng; Wang, Qi; Liao, Yongqin; Xu, Xi; Baxter, Steven M; Slone, Robert V; Wu, Shuguang; Swift, Graham; Westmoreland, David G

    2002-07-01

    The factors affecting the induction period and polymerization rate in ultrasonically initiated emulsion polymerization of n-butyl acrylate (BA) were investigated. The induction period takes only an instant in ultrasonically initiated emulsion polymerization of BA without any added initiator by enhancing the N2 flow rate. Increasing temperature, power output and SDS concentration, decreasing the monomer concentration results in further decreasing induction period and enhanced polymerization rate. Under optimized reaction conditions the conversion of BA reaches 92% in 11 min. The polymerization rate can be controlled by varying reaction parameters. The apparatus of ultrasonically initiated semi-continuous and continuous emulsion polymerization were set up and the feasibility was first studied. Based on the experimental results, a free radical polymerization mechanism for ultrasonically initiated emulsion polymerization was proposed, including the sources of the radicals, the process of radical formation, the locus of polymerization and the polymerization process. Compared with conventional emulsion polymerization, where the radicals come from thermal decomposition of a chemical initiator, ultrasonically initiated emulsion polymerization has attractive features such as no need for a chemical initiator, lower reaction temperature, faster polymerization rate, and higher molecular weight of the polymer prepared.

  2. Hydration of Portoguese cements, measurement and modelling of chemical shrinkage

    DEFF Research Database (Denmark)

    Maia, Lino; Geiker, Mette Rica; Figueiras, Joaquim A.

    2008-01-01

    Development of cement hydration was studied by measuring the chemical shrinkage of pastes. Five types of Portuguese Portland cement were used in cement pastes with . Chemical shrinkage was measured by gravimetry and dilatometry. In gravimeters results were recorded automatically during at least...

  3. Plastic shrinkage of mortars with shrinkage reducing admixture and lightweight aggregates studied by neutron tomography

    Energy Technology Data Exchange (ETDEWEB)

    Wyrzykowski, Mateusz, E-mail: mateusz.wyrzykowski@empa.ch [Empa, Swiss Federal Laboratories for Materials Science and Technology, Concrete and Construction Chemistry Laboratory, Dübendorf (Switzerland); Lodz University of Technology, Department of Building Physics and Building Materials, Lodz (Poland); Trtik, Pavel [Paul Scherrer Institute, Laboratory for Neutron Scattering and Imaging, Villigen (Switzerland); Empa, Swiss Federal Laboratories for Materials Science and Technology, Concrete and Construction Chemistry Laboratory, Dübendorf (Switzerland); Münch, Beat [Empa, Swiss Federal Laboratories for Materials Science and Technology, Concrete and Construction Chemistry Laboratory, Dübendorf (Switzerland); Weiss, Jason [Purdue University, School of Civil Engineering, West Lafayette (United States); Vontobel, Peter [Paul Scherrer Institute, Laboratory for Neutron Scattering and Imaging, Villigen (Switzerland); Lura, Pietro [Empa, Swiss Federal Laboratories for Materials Science and Technology, Concrete and Construction Chemistry Laboratory, Dübendorf (Switzerland); ETH Zurich, Institute for Building Materials (IfB), Zurich (Switzerland)

    2015-07-15

    Water transport in fresh, highly permeable concrete and rapid water evaporation from the concrete surface during the first few hours after placement are the key parameters influencing plastic shrinkage cracking. In this work, neutron tomography was used to determine both the water loss from the concrete surface due to evaporation and the redistribution of fluid that occurs in fresh mortars exposed to external drying. In addition to the reference mortar with a water to cement ratio (w/c) of 0.30, a mortar with the addition of pre-wetted lightweight aggregates (LWA) and a mortar with a shrinkage reducing admixture (SRA) were tested. The addition of SRA reduced the evaporation rate from the mortar at the initial stages of drying and reduced the total water loss. The pre-wetted LWA released a large part of the absorbed water as a consequence of capillary pressure developing in the fresh mortar due to evaporation.

  4. Simulation of shrinkage cavity formation during solidification of binary alloy

    Directory of Open Access Journals (Sweden)

    T. Skrzypczak

    2010-01-01

    Full Text Available Presented paper is focused on numerical modeling of binary alloy solidification process with connection to shrinkage cavity formation phenomenon. Appropriate matching of cooling parameters during solidification process of the cast with raiser is essential to obtain suitable properties of the manufactured part. Localization, structure and depth of the shrinkage cavity is connected to these parameters. The raiser is removed after process, so defect localization in the top part of the manufactured element is of great importance. Mathematical model of solidification process is presented in the paper. The main focus is put on the algorithm of shrinkage cavity creation process. On the basis of mathematical model the numerical approach using finite element method is proposed. On the base of mathematical and numerical model computer program is made. It is able to perform simulation of the shrinkage cavity formation in 2D region. Shape and localization of shrinkage cavity obtained from simulation is compared to defect which was created during experiment.

  5. Effect of light intensity and irradiation time on the polymerization process of a dental composite resin

    Directory of Open Access Journals (Sweden)

    Discacciati José Augusto César

    2004-01-01

    Full Text Available Polymerization shrinkage is a critical factor affecting the longevity and acceptability of dental composite resins. The aim of this work was to evaluate the effect of light intensity and irradiation time on the polymerization process of a photo cured dental composite resin by measuring the Vickers hardness number (VHN and the volumetric polymerization shrinkage. Samples were prepared using a dental manual light-curing unit. The samples were submitted to irradiation times of 5, 10, 20 and 40 s, using 200 and 400 mW.cm-2 light intensities. Vickers hardness number was obtained at four different moments after photoactivation (immediate, 1 h, 24 h and 168 h. After this, volumetric polymerization shrinkage values were obtained through a specific density method. The values were analyzed by ANOVA and Duncan's (p = 0.05. Results showed increase in hardness values from the immediate reading to 1 h and 24 h readings. After 24 h no changes were observed regardless the light intensities or activation times. The hardness values were always smaller for the 200 mW.cm-2 light intensity, except for the 40 s irradiation time. No significant differences were detected in volumetric polymerization shrinkage considering the light intensity (p = 0.539 and the activation time (p = 0.637 factors. In conclusion the polymerization of the material does not terminate immediately after photoactivation and the increase of irradiation time can compensate a lower light intensity. Different combinations between light intensity and irradiation time, i.e., different amounts of energy given to the system, have not affected the polymerization shrinkage.

  6. Anisotropic shrinkage characteristics of tape cast alumina

    Science.gov (United States)

    Patwardhan, Jaideep Suresh

    Dimensional control during sintering is a major issue in ceramics processing to avoid high post-sintering costs associated with machining of the fired ceramic part to desired tolerances and dimensions. Ceramic forming processes such as tape casting, injection molding, and extrusion involve shear of anisotropic particles resulting in preferential alignment of the particles in the green body. This preferential alignment causes directionality in mechanical, electrical, optical, and magnetic properties and most importantly warpage or distortion during sintering. A large effort has been devoted to synthesizing ceramic green bodies with minimal density gradients and uniform packing and modeling the sintering behavior evolution but little effort has been devoted to characterizing orientation of particles and the effect of preferential alignment on sintering shrinkage anisotropy. A systematic study was initiated to study the effect of processing variables such as shear rate, solids loading, temperature, and binder content on aqueous tape cast alumina. Three different alumina systems: A16-SG, Baikowski RC-UFX DBM and RC-LS DBM were investigated. Aqueous tapes of high solids loading alumina (56 vol. %) were tape cast at various speeds and thicknesses and assuming plane Couette flow a shear rate regime of 21--270 s-1 was investigated. Higher shear rates and high solids loading resulted in higher in-plane anisotropy whereas the anisotropy in the thickness direction was higher for low solids loading systems. The anisotropy was found to be fairly constant above a certain critical shear rate (˜100 s-1) irrespective of the temperature and the solids loading and this correlated with the viscosity-shear rate relationship of the cast slips. The higher shrinkage anisotropy in the thickness direction for the low solids loading systems (35 and 45 vol. %) was attributed to the higher amount of organics in the slip required to sustain the suitable viscosity for tape casting and

  7. Cure shrinkage in epoxy grouts for grouted repairs

    Science.gov (United States)

    Shamsuddoha, Md.; Islam, Md. Mainul; Aravinthan, Thiru; Manalo, Allan; Lau, Kin-tak

    2013-08-01

    Structures can go through harsh environmental adversity and can experience material loss and cracks during their service lives. Infill material is used to ensure a supporting bed for a grouted repair. Epoxy grouts are used for repairing and rehabilitating structures, such as foundations, bridges, piers, transportation pipelines, etc., because they are resistant to typical chemicals and possess superior mechanical properties than other grouts. The resin based infill used inside the void or cracked space of the repair is vulnerable to shrinkage. When these filled grouts have high resin content, cracks can develop from residual stresses, which can affect the load transfer performance. It follows that interlayer separation and cracking of infill layer can occur in a grouted repair. In this study, volumetric shrinkage of two epoxy grouts was measured over 28 days using a Pycnometer. The highest volumetric shrinkage measured after 7 days was found to be 2.72%. The results suggest that the volumetric shrinkage can be reduced to 1.1% after 7 days, through the introduction of a coarse aggregate filler; a 2.5 times reduction in shrinkage. About 98% and 92% of the total shrinkage over the 28 day period, of the unfilled and filled grouts respectively, was found to occur within 7 days of mixing. The gel-time shrinkages were also calculated, to determine the "postgel" part of the curing contraction which subsequently produces residual stresses in the hardened grout systems.

  8. Comparative Analysis of Measured and Predicted Shrinkage Strain in Concrete

    Directory of Open Access Journals (Sweden)

    Kossakowski P. G.

    2014-06-01

    Full Text Available The article discusses the issues related to concrete shrinkage. The basic information on the phenomenon is presented as well as the factors that determine the contraction are pointed out and the stages of the process are described. The guidance for estimating the shrinkage strain is given according to Eurocode standard PN-EN 1992-1-1:2008. The results of studies of the samples shrinkage strain of concrete C25/30 are presented with a comparative analysis of the results estimated by the guidelines of the standard according to PN-EN 1992-1- 1:2008

  9. Shrinkage covariance matrix approach for microarray data

    Science.gov (United States)

    Karjanto, Suryaefiza; Aripin, Rasimah

    2013-04-01

    Microarray technology was developed for the purpose of monitoring the expression levels of thousands of genes. A microarray data set typically consists of tens of thousands of genes (variables) from just dozens of samples due to various constraints including the high cost of producing microarray chips. As a result, the widely used standard covariance estimator is not appropriate for this purpose. One such technique is the Hotelling's T2 statistic which is a multivariate test statistic for comparing means between two groups. It requires that the number of observations (n) exceeds the number of genes (p) in the set but in microarray studies it is common that n Hotelling's T2 statistic with the shrinkage approach is proposed to estimate the covariance matrix for testing differential gene expression. The performance of this approach is then compared with other commonly used multivariate tests using a widely analysed diabetes data set as illustrations. The results across the methods are consistent, implying that this approach provides an alternative to existing techniques.

  10. Marginal Microleakage of Low-shrinkage Composite Silorane in Primary Teeth: An In Vitro Study

    Directory of Open Access Journals (Sweden)

    Hamid Reza Poureslami

    2012-06-01

    Full Text Available Background and aims. Despite the increasing demand for adhesive restorations in pediatric dentistry, polymerization shrinkage and subsequent marginal microleakage remains a problem. The aim of this study was to evaluate of the sealing ability of novel low-shrinkage composite silorane in class V cavity of primary canines in comparison with three types of composite resin. Materials and methods. Ninety-one non-carious extracted primary canines were randomly divided in six groups (n=15. Standard class V cavities were prepared on the buccal surface of each tooth that the occlusal margin was in the enamel and the cervical margin extending 1 mm below the cemento-enamel junction. The preparations were restored with the different composite materials in normal consistency with application the bonding in six groups (Filtek silorane; etch + Filtek Silorane; Z250; Filtek supreme; els saremco; Aelite LS. Teeth were then exposed to thermal cycles (1000 cycles, 5°C and 55°C, sealed and immersed in a 0.5% basic fuchsine for 24 hours, and finally sectioned. Buccolingual and marginal leakage was assessed with dye penetration. Results. The best seal were obtained with etch + Filtek Silorane (P 0.05. Except for etch + silorane, there was no significant differences in sealing ability (P > 0.05, and in the microleakage degree at the cementum and enamel margins (P > 0.05 between the groups. Conclusion. According to the results, low-shrinkage silorane composite restorations with etching the cavity provide the highest seal in primary teeth.

  11. Creep and Shrinkage of High Strength Concretes: an Experimental Analysis

    Directory of Open Access Journals (Sweden)

    Berenice Martins Toralles carbonari

    2002-01-01

    Full Text Available The creep and shrinkage behaviour of high strength silica fume concretes is significantly different from that of conventional concretes. In order to represent the proper time-dependent response of the material in structural analysis and design, these aspects should be adequately quantified. This paper discusses an experimental setup that is able to determine the creep and shrinkage of concrete from the time of placing. It also compares different gages that can be used for measuring the strains. The method is applied to five different concretes in the laboratory under controlled environmental conditions. The phenomena that are quantified can be classified as basic shrinkage, drying shrinkage, basic creep and drying creep. The relative importance of these mechanisms in high strength concrete will also be presented.

  12. Nanocavity Shrinkage and Preferential Amorphization during Irradiation in Silicon

    Institute of Scientific and Technical Information of China (English)

    ZHU Xian-Fang; WANG Zhan-Guo

    2005-01-01

    @@ We model the recent experimental results and demonstrate that the internal shrinkage of nanocavities in silicon is intrinsically associated with preferential amorphization as induced by self-ion irradiation.

  13. Development of spraying agent for reducing drying shrinkage of mortar

    Science.gov (United States)

    Fujiwara, Hiromi; Maruoka, Masanori; Liu, Lingling

    2017-02-01

    Mortar used to repair is sometimes exposed to drying state in early ages after construction and a few days later water is sprayed frequently on the surface of the mortar in order to prevent cracks. This research studied on shrinkage characteristic of mortar subjected to drying conditions like this. The result showed that the water spraying on the mortar after initial drying did not have any effect to prevent shrinkage, but increased. And it also showed when various chemical agents are mixed and used in watersprayingit had the prevention effect on shrinkage. This report was to understand this kind of phenomenon and clarify the mechanism. In addition, based on the results, the new spraying agent was developed to reduce drying shrinkage.

  14. Comparison of shrinkage related properties of various patch repair materials

    Science.gov (United States)

    Kristiawan, S. A.; Fitrianto, R. S.

    2017-02-01

    A patch repair material has been developed in the form of unsaturated polyester resin (UPR)-mortar. The performance and durability of this material are governed by its compatibility with the concrete being repaired. One of the compatibility issue that should be tackled is the dimensional compatibility as a result of differential shrinkage between the repair material and the concrete substrate. This research aims to evaluate such shrinkage related properties of UPR-mortar and to compare with those of other patch repair materials. The investigation includes the following aspects: free shrinkage, resistance to delamination and cracking. The results indicate that UPR-mortar poses a lower free shrinkage, lower risk of both delamination and cracking tendency in comparison to other repair materials.

  15. Influence of gelatinous fibers on the shrinkage of silver maple

    Science.gov (United States)

    Donals G. Arganbright; Dwight W. Bensend; Floyd G. Manwiller

    1970-01-01

    The degree of lean was found to have a significant influence on the logitudinal and transverse shrinkage of three soft maple trees. This may be accounted for by differences in the cell wall layer thickness and fibril angle.

  16. Applying strain into graphene by SU-8 resist shrinkage

    Science.gov (United States)

    Takamura, Makoto; Hibino, Hiroki; Yamamoto, Hideki

    2016-07-01

    We investigated the use of the shrinkage of SU-8 resist caused by thermal annealing to apply strain into graphene grown by the chemical-vapor-deposition (CVD) method. We demonstrate that the shrinkage of resist deposited on top of graphene on a substrate induces a local tensile strain within a distance of 1-2 μm from the edge of the resist. The thermal shrinkage of SU-8 will allow us to design the local strain in graphene on substrates. We also show that the shrinkage induces a large tensile strain in graphene suspended between two bars of SU-8. We expect that a much larger strain can be induced by suppressing defects in CVD-grown graphene.

  17. Fabrication of Polydimethylsiloxane Microlenses Utilizing Hydrogel Shrinkage and a Single Molding Step

    Directory of Open Access Journals (Sweden)

    Bader Aldalali

    2014-05-01

    Full Text Available We report on polydimethlysiloxane (PDMS microlenses and microlens arrays on flat and curved substrates fabricated via a relatively simple process combining liquid-phase photopolymerization and a single molding step. The mold for the formation of the PDMS lenses is fabricated by photopolymerizing a polyacrylamide (PAAm pre-hydrogel. The shrinkage of PAAm after its polymerization forms concave lenses. The lenses are then transferred to PDMS by a single step molding to form PDMS microlens array on a flat substrate. The PAAm concave lenses are also transferred to PDMS and another flexible polymer, Solaris, to realize artificial compound eyes. The resultant microlenses and microlens arrays possess good uniformity and optical properties. The focal length of the lenses is inversely proportional to the shrinkage time. The microlens mold can also be rehydrated to change the focal length of the ultimate PDMS microlenses. The spherical aberration is 2.85 μm and the surface roughness is on the order of 204 nm. The microlenses can resolve 10.10 line pairs per mm (lp/mm and have an f-number range between f/2.9 and f/56.5. For the compound eye, the field of view is 113°.

  18. Accurate characterisation of post moulding shrinkage of polymer parts

    DEFF Research Database (Denmark)

    Neves, L. C.; De Chiffre, L.; González-Madruga, D.;

    2015-01-01

    The work deals with experimental determination of the shrinkage of polymer parts after injection moulding. A fixture for length measurements on 8 parts at the same time was designed and manufactured in Invar, mounted with 8 electronic gauges, and provided with 3 temperature sensors. The fixture...... of post moulding shrinkage of polymer parts was developed. Expanded uncertainties (k=2) of 3 μm were obtained....

  19. Method to determine factors contributing to thermoplastic sheet shrinkage

    Science.gov (United States)

    Rensch, Greg J.; Frye, Brad A.

    A test method is presented for the determination of shrinkage behavior in vacuum-formed thermoplastic resin sheeting, as presently simulated for various resin lots, sheet-gage thicknesses, sheet orientations, and mold profiles. The thermoforming machine and vacuum-forming mold characteristics are discussed. It is established that the four variable factors exert statistically significant effects on the shrinkage response of three Declar resin lots, but that these are of no real practical significance for either engineering or manufacturing operations.

  20. Fast shrinkage of tropical glaciers in Colombia

    Science.gov (United States)

    Ceballos, Jorge Luis; Euscátegui, Christian; Ramírez, Jair; Cañon, Marcela; Huggel, Christian; Haeberli, Wilfried; Machguth, Horst

    As a consequence of ongoing atmospheric temperature rise, tropical glaciers belong to the unique and threatened ecosystems on Earth, as defined by the Intergovernmental Panel on Climate Change (Houghton and others, 2001). Worldwide glacier monitoring, especially as part of the Global Climate Observing System (GCOS), includes the systematic collection of data on such perennial surface ice masses. Several peaks in the sierras of Colombia have lost their glacier cover during recent decades. Today, high-altitude glaciers still exist in Sierra Nevada de Santa Marta, in Sierra Nevada del Cocuy and on the volcanoes of Nevados del Ruiz, de Santa Isabel, del Tolima and del Huila. Comparison of reconstructions of maximum glacier area extent during the Little Ice Age with more recent information from aerial photographs and satellite images clearly documents a fast-shrinking tendency and potential disappearance of the remaining glaciers within the next few decades. In the past 50 years, Colombian glaciers have lost 50% or more of their area. Glacier shrinkage has continued to be strong in the last 15 years, with a loss of 10-50% of the glacier area. The relationship between fast glacier retreat and local, regional and global climate change is now being investigated. Preliminary analyses indicate that the temperature rise of roughly 1° C in the last 30 years recorded at high-altitude meteorological stations exerts a primary control on glacier retreat. The investigations on the Colombian glaciers thus corroborate earlier findings concerning the high sensitivity of glaciers in the wet inner tropics to temperature rise. To improve understanding of fast glacier retreat in Colombia, a modern monitoring network has been established according to the multilevel strategy of the Global Terrestrial Network for Glaciers (GTN-G) within GCOS. The observations are also contributions to continued assessments of hazards from the glacier-covered volcanoes and to integrated global change

  1. Biokompatible Polymere

    Science.gov (United States)

    Ha, Suk-Woo; Wintermantel, Erich; Maier, Gerhard

    Der klinische Einsatz von synthetischen Polymeren begann in den 60-er Jahren in Form von Einwegartikeln, wie beispielsweise Spritzen und Kathetern, vor allem aufgrund der Tatsache, dass Infektionen infolge nicht ausreichender Sterilität der wiederverwendbaren Artikel aus Glas und metallischen Werkstoffen durch den Einsatz von sterilen Einwegartikeln signifikant reduziert werden konnten [1]. Die Einführung der medizinischen Einwegartikel aus Polymeren erfolgte somit nicht nur aus ökonomischen, sondern auch aus hygienischen Gründen. Wegen der steigenden Anzahl synthetischer Polymere und dem zunehmenden Bedarf an ärztlicher Versorgung reicht die Anwendung von Polymeren in der Medizin von preisgünstigen Einwegartikeln, die nur kurzzeitig intrakorporal eingesetzt werden, bis hin zu Implantaten, welche über eine längere Zeit grossen Beanspruchungen im menschlichen Körper ausgesetzt sind. Die steigende Verbreitung von klinisch eingesetzten Polymeren ist auf ihre einfache und preisgünstige Verarbeitbarkeit in eine Vielzahl von Formen und Geometrien sowie auf ihr breites Eigenschaftsspektrum zurückzuführen. Polymere werden daher in fast allen medizinischen Bereichen eingesetzt.

  2. Characterization of a Low Shrinkage Dental Composite Containing Bismethylene Spiroorthocarbonate Expanding Monomer

    Science.gov (United States)

    Fu, Jing; Liu, Wenjia; Hao, Zhichao; Wu, Xiangnan; Yin, Jian; Panjiyar, Anil; Liu, Xiaoqing; Shen, Jiefei; Wang, Hang

    2014-01-01

    In this study, a novel dental composite based on the unsaturated bismethylene spiroorthocarbonate expanding monomer 3,9-dimethylene-1,3,5,7-tetraoxa-spiro[5,5]undecane (BMSOC) and bisphenol-S-bis(3-meth acrylate-2-hydroxypropyl)ether (BisS-GMA) was prepared. CQ (camphorquinone) of 1 wt % and DMAEMA (2-(dimethylamino)ethyl methacrylate) of 2 wt % were used in a photoinitiation system to initiate the copolymerization of the matrix resins. Distilled water contact angle measurements were performed for the wettability measurement. Degree of conversion, volumetric shrinkage, contraction stress and compressive strength were measured using Fourier Transformation Infrared-FTIR spectroscopy, the AccuVol and a universal testing machine, respectively. Within the limitations of this study, it can be concluded that the resin composites modified by bismethylene spiroorthocarbonate and BisS-GMA showed a low volumetric shrinkage at 1.25% and a higher contact angle. The lower contraction stress, higher degree of conversion and compressive strength of the novel dental composites were also observed. PMID:24518683

  3. Characterization of a Low Shrinkage Dental Composite Containing Bismethylene Spiroorthocarbonate Expanding Monomer

    Directory of Open Access Journals (Sweden)

    Jing Fu

    2014-02-01

    Full Text Available In this study, a novel dental composite based on the unsaturated bismethylene spiroorthocarbonate expanding monomer 3,9-dimethylene-1,3,5,7-tetraoxa-spiro[5,5]undecane (BMSOC and bisphenol-S-bis(3-meth acrylate-2-hydroxypropylether (BisS-GMA was prepared. CQ (camphorquinone of 1 wt % and DMAEMA (2-(dimethylaminoethyl methacrylate of 2 wt % were used in a photoinitiation system to initiate the copolymerization of the matrix resins. Distilled water contact angle measurements were performed for the wettability measurement. Degree of conversion, volumetric shrinkage, contraction stress and compressive strength were measured using Fourier Transformation Infrared-FTIR spectroscopy, the AccuVol and a universal testing machine, respectively. Within the limitations of this study, it can be concluded that the resin composites modified by bismethylene spiroorthocarbonate and BisS-GMA showed a low volumetric shrinkage at 1.25% and a higher contact angle. The lower contraction stress, higher degree of conversion and compressive strength of the novel dental composites were also observed.

  4. Contraction stress, elastic modulus, and degree of conversion of three flowable composites.

    Science.gov (United States)

    Cadenaro, Milena; Codan, Barbara; Navarra, Chiara O; Marchesi, Giulio; Turco, Gianluca; Di Lenarda, Roberto; Breschi, Lorenzo

    2011-06-01

    The aim of this study was to measure the contraction stress of three flowable resin composites and to correlate the stress with the elastic modulus and the degree of conversion. One low-shrinkage (Venus Diamond Flow) and two conventional (Tetric EvoFlow and X-Flow) flowable composites were polymerized for 40s with a light-emitting diode (LED) curing unit. Contraction force was continuously recorded for 300s using a stress-analyser, and stress values were calculated at 40s and at 300s. The maximum stress rate was also calculated for each specimen. The elastic modulus of each composite was assayed using a biaxial flexural test, and degree of conversion was analysed with Raman spectroscopy. X-Flow exhibited higher stress values than the other tested materials. Venus Diamond Flow showed the lowest stress values at 40s and at 300s, and the lowest maximum stress rate. Stress values were correlated with elastic modulus but not with degree of conversion, which was comparable among all tested materials.

  5. Functionalized polymer networks: synthesis of microporous polymers by frontal polymerization

    Indian Academy of Sciences (India)

    N S Pujari; A R Vishwakarma; T S Pathak; A M Kotha; S Ponrathnam

    2004-12-01

    A series of glycidyl methacrylate (GMA)–ethylene dimethacrylate (EGDM) copolymers of varying compositions were synthesized by free-radically triggered thermal frontal polymerization (FP) as well as by suspension polymerization (SP) using azobisisobutyronitrile [AIBN] as initiator. The two sets of copolymers were characterized by IR spectroscopy and mercury intrusion porosimetry, for determination of epoxy number and specific surface area. Frontal polymerization was more efficient, yielding greater conversions at much shorter reaction times. The self-propagating frontal polymerization also generates microporous material with narrow pore size distribution. It yields higher internal pore volume and surface area than suspension polymerization, surface morphologies are, however, inferior.

  6. Plastic and free shrinkages cracking of blended white cement concrete

    Energy Technology Data Exchange (ETDEWEB)

    Rashad, A.M.; White, T.; Ariaratnam, S.; Knutson, K. [Housing and Building National Research Center, Cairo (Egypt)

    2007-07-01

    This paper presented the results of a study that investigated the plastic and free shrinkages of white portland cement concrete, concrete incorporating silica fume (SF) and concrete incorporating metakaolin (MK) compared to regular plain gray portland cement concrete. An experimental program was designed to investigate the plastic and free shrinkage of concrete containing gray and white blended cement. The paper discussed the experimental details including materials and cement types such as SF, MK, aggregate, and superplasticizer as well as concrete mixtures and specimen preparation including mixture proportions, preparation and curing of concrete specimens, and test specimens. It also presented the determination of concrete properties such as slump of fresh concrete, plastic shrinkage, and dry shrinkage. Test results and discussion of results were also provided. It was concluded that plain white portland cement concrete showed less number of plastic cracks but slightly higher average crack width compared to other concrete mixtures with MK or SF. In addition, free shrinkage behavior of plain white cement and plain gray cement matrix was comparable. 23 refs.

  7. Geosynthetic clay liners shrinkage under simulated daily thermal cycles.

    Science.gov (United States)

    Sarabadani, Hamid; Rayhani, Mohammad T

    2014-06-01

    Geosynthetic clay liners are used as part of composite liner systems in municipal solid waste landfills and other applications to restrict the escape of contaminants into the surrounding environment. This is attainable provided that the geosynthetic clay liner panels continuously cover the subsoil. Previous case histories, however, have shown that some geosynthetic clay liner panels are prone to significant shrinkage and separation when an overlying geomembrane is exposed to solar radiation. Experimental models were initiated to evaluate the potential shrinkage of different geosynthetic clay liner products placed over sand and clay subsoils, subjected to simulated daily thermal cycles (60°C for 8 hours and 22°C for 16 hours) modelling field conditions in which the liner is exposed to solar radiation. The variation of geosynthetic clay liner shrinkage was evaluated at specified times by a photogrammetry technique. The manufacturing techniques, the initial moisture content, and the aspect ratio (ratio of length to width) of the geosynthetic clay liner were found to considerably affect the shrinkage of geosynthetic clay liners. The particle size distribution of the subsoil and the associated suction at the geosynthetic clay liner-subsoil interface was also found to have significant effects on the shrinkage of the geosynthetic clay liner.

  8. Drying and shrinkage of polymer gels

    Directory of Open Access Journals (Sweden)

    S. S. Waje

    2005-06-01

    Full Text Available The polymer hydrogel was synthesized by photo-polymerization process (UV light, 60 ºC in presence of Photo-initiator (IrgacureR and Cross-linker (NN'-methylene bisacrylamide; MBAM. In the present work, the drying of polymer hydrogel was carried out to study the effect of temperature, gel-sheet thickness, monomer ratio of acryl acid to acrylamide (AA/AM, concentration of MBAM and quantity of monomers. A correlation has been developed for modified sheet thickness as a function of contraction coefficient and degree of drying. Effective diffusivity was estimated from Fickian-diffusive model considering modified sheet thickness and was found to be in the range of 1.1 ´ 10-10-5.93 ´ 10-10 m²/s. The activation energy obtained using Arrhenius type equation was found to be in the range of 2979-10737 kJ/kmol H2O. The drying behavior shows an initial shoot-up in drying rate followed by constant rate and two falling rate periods.

  9. Linear Shrinkage Behaviour of Compacted Loam Masonry Blocks

    Directory of Open Access Journals (Sweden)

    NAWAB ALI LAKHO

    2017-04-01

    Full Text Available Walls of wet loam, used in earthen houses, generally experience more shrinkage which results in cracks and less compressive strength. This paper presents a technique of producing loam masonry blocks that are compacted in drained state during casting process in order to minimize shrinkage. For this purpose, loam masonry blocks were cast and compacted at a pressure of 6 MPa and then dried in shade by covering them in plastic sheet. The results show that linear shrinkage of 2% occurred which is smaller when compared to un-compacted wet loam walls. This implies that the loam masonry blocks compacted in drained state is expected to perform better than un-compacted wet loam walls.

  10. Brain shrinkage and subdural effusion associated with ACTH administration.

    Science.gov (United States)

    Satoh, J; Takeshige, H; Hara, H; Fukuyama, Y

    1982-01-01

    Sequential computed tomographic (CT) studies of 11 patients (aged five months to seven years) with intractable epilepsy treated with synthetic ACTH-Z showed brain shrinkage in all cases. Brain shrinkage started to appear on daily ACTH injections for seven days, reached the maximum within four weeks of administration (14 injections every day and then 7 injections every other day), and almost returned to the original status in seven out of nine cases which were followed up for one to three months after the therapy. The subjects aged less than two years showed more remarkable brain shrinkage than did those aged more than five years. Furthermore, two other cases were complicated by subdural effusion after ACTH therapy. It is the authors' assumption that both of these phenomena are caused by the high concentration of corticosteroid through a change of the water and electrolyte contents in the brain.

  11. Compressive dynamic range imaging via Bayesian shrinkage dictionary learning

    Science.gov (United States)

    Yuan, Xin

    2016-12-01

    We apply the Bayesian shrinkage dictionary learning into compressive dynamic-range imaging. By attenuating the luminous intensity impinging upon the detector at the pixel level, we demonstrate a conceptual design of an 8-bit camera to sample high-dynamic-range scenes with a single snapshot. Coding strategies for both monochrome and color cameras are proposed. A Bayesian reconstruction algorithm is developed to learn a dictionary in situ on the sampled image, for joint reconstruction and demosaicking. We use global-local shrinkage priors to learn the dictionary and dictionary coefficients representing the data. Simulation results demonstrate the feasibility of the proposed camera and the superior performance of the Bayesian shrinkage dictionary learning algorithm.

  12. Improving the Incoherence of a Learned Dictionary via Rank Shrinkage.

    Science.gov (United States)

    Ubaru, Shashanka; Seghouane, Abd-Krim; Saad, Yousef

    2017-01-01

    This letter considers the problem of dictionary learning for sparse signal representation whose atoms have low mutual coherence. To learn such dictionaries, at each step, we first update the dictionary using the method of optimal directions (MOD) and then apply a dictionary rank shrinkage step to decrease its mutual coherence. In the rank shrinkage step, we first compute a rank 1 decomposition of the column-normalized least squares estimate of the dictionary obtained from the MOD step. We then shrink the rank of this learned dictionary by transforming the problem of reducing the rank to a nonnegative garrotte estimation problem and solving it using a path-wise coordinate descent approach. We establish theoretical results that show that the rank shrinkage step included will reduce the coherence of the dictionary, which is further validated by experimental results. Numerical experiments illustrating the performance of the proposed algorithm in comparison to various other well-known dictionary learning algorithms are also presented.

  13. Prediction of ALLOY SHRINKAGE FACTORS FOR THE INVESTMENT CASTING PROCESS

    Energy Technology Data Exchange (ETDEWEB)

    Sabau, Adrian S [ORNL

    2006-01-01

    This study deals with the experimental measurements and numerical predictions of alloy shrinkage factors (SFs) related to the investment casting process. The dimensions of the A356 aluminum alloy casting were determined from the numerical simulation results of solidification, heat transfer, fluid dynamics, and deformation phenomena. The investment casting process was carried out using wax patterns of unfilled wax and shell molds that were made of fused silica with a zircon prime coat. The dimensions of the die tooling, wax pattern, and casting were measured, in order to determine the actual tooling allowances. Several numerical simulations were carried out, to assess the level of accuracy for the casting shrinkage. The solid fraction threshold, at which the transition from the fluid dynamics to the solid dynamics occurs, was found to be important in predicting shrinkage factors (SFs). It was found that accurate predictions were obtained for all measued dimensions when the shell mold was considered a deformable material.

  14. Shrinkage anisotropy characteristics from soil structure and initial sample/layer size

    CERN Document Server

    Chertkov, V Y

    2014-01-01

    The objective of this work is a physical prediction of such soil shrinkage anisotropy characteristics as variation with drying of (i) different sample/layer sizes and (ii) the shrinkage geometry factor. With that, a new presentation of the shrinkage anisotropy concept is suggested through the sample/layer size ratios. The work objective is reached in two steps. First, the relations are derived between the indicated soil shrinkage anisotropy characteristics and three different shrinkage curves of a soil relating to: small samples (without cracking at shrinkage), sufficiently large samples (with internal cracking), and layers of similar thickness. Then, the results of a recent work with respect to the physical prediction of the three shrinkage curves are used. These results connect the shrinkage curves with the initial sample size/layer thickness as well as characteristics of soil texture and structure (both inter- and intra-aggregate) as physical parameters. The parameters determining the reference shrinkage c...

  15. Optimal linear shrinkage corrections of sample LMMSE and MVDR estimators

    OpenAIRE

    2012-01-01

    La proposició d'estimadors shrinkage òptims que corregeixen la degradació dels mètodes sample LMMSE i sample MUDR en el règim on el número de mostres és petit en comparació a la dimensió de les observacions. [ANGLÈS] This master thesis proposes optimal shrinkage estimators that counteract the performance degradation of the sample LMMSE and sample MVDR methods in the regime where the sample size is small compared to the observation dimension. [CASTELLÀ] Esta máster tesis propone estimado...

  16. Hydration of Portoguese cements, measurement and modelling of chemical shrinkage

    DEFF Research Database (Denmark)

    Maia, Lino; Geiker, Mette Rica; Figueiras, Joaquim A.

    2008-01-01

    form of the dispersion model. The development of hydration varied between the investigated cements; based on the measured data the degree of hydration after 24 h hydration at 20 C varied between 40 and 50%. This should be taken into account when comparing properties of concrete made from the different......Development of cement hydration was studied by measuring the chemical shrinkage of pastes. Five types of Portuguese Portland cement were used in cement pastes with . Chemical shrinkage was measured by gravimetry and dilatometry. In gravimeters results were recorded automatically during at least...

  17. Free-radical solution-polymerization of trifluoronitrosomethane with tetrafluoroethylene

    Science.gov (United States)

    Gdickman, S. A.

    1972-01-01

    Heavy-walled glass reactor, equipped with aerosol-compatible couplings and needle valve and charged with solvent and initiator, is utilized for polymerization. Polymer conversions and reactor/vessel operation are discussed.

  18. LEWIS ACID-CATALYZED POLYMERIZATION OF L-LACTIDE - KINETICS AND MECHANISM OF THE BULK-POLYMERIZATION

    NARCIS (Netherlands)

    NIJENHUIS, AJ; GRIJPMA, DW; PENNINGS, AJ

    1992-01-01

    The kinetics of the L-lactide bulk polymerization was studied using tin(II) bis(2-ethylhexanoate) and zinc bis(2,2-dimethyl-3,5-heptanedionato-O,O'). Up to 80% conversion, the rate of polymerization using tin(II) bis(2-ethylhexanoate) is higher than that with the zinc-containing catalyst, while at

  19. Stiffness and shrinkage of green and dry joists

    Science.gov (United States)

    Lyman W. Wood; Lawrence A. Soltis

    1964-01-01

    This report gives information on the edgewise modulus of elasticity, stiffness, and shrinkage of 360 joists in three species, three grades, and two sizes, each species obtained from two sources. Each joist was evaluated nondestructively at four moisture content values ranging from the green condition to about 11 percent. Information is also given on specific gravity,...

  20. Effect of processing conditions on shrinkage in injection molding

    NARCIS (Netherlands)

    Jansen, K.M.B.; Dijk, van D.J.; Husselman, M.H.

    1998-01-01

    A systematic study on the effect of processing conditions on mold shrinkage was undertaken for seven common thermoplastic polymers. It turned out that the holding pressure was always the key parameter. The effect of the melt temperature is slightly less important. Injection velocity and mold tempera

  1. Postoperative sensitivity associated with low shrinkage versus conventional composites

    OpenAIRE

    Ivanović Vladimir; Savić-Stanković Tatjana; Karadžić Branislav; Ilić Jugoslav; Santini Ario; Beljić-Ivanović Katarina

    2013-01-01

    Introduction. Postoperative sensitivity in restorative dentistry can be related to preparation trauma, dentin adhesives’ ability to seal open dentinal tubules, deformation of restorations under occlusal stresses and microleakage. Objective. The study assessed possible reduction in postoperative sensitivity with low shrinkage compared to conventional composites using different bonding agents and the influence of the operator skill on the incidence of postoperative sensitivity. Methods. N...

  2. The Shrinkage Cracking Behavior in Reinforced Reactive Powder Concrete Walls

    Directory of Open Access Journals (Sweden)

    Samir A. Al-Mashhadi

    2017-07-01

    Full Text Available In this study, the reduced scale wall models were used (they are believed to resemble as much as possible the field conditions to study the shrinkage behavior of reactive powder concrete (RPC base restrained walls. Six base restrained RPC walls were casted in different length/height ratios of two ratios of steel fiber by volume in Summer. These walls were restrained by reinforced concrete bases to provide the continuous base restraint to the walls. The mechanical properties of reactive powder concrete investigated were; compressive strength between (75.3 – 140.1 MPa, splitting tensile strength between (5.7 – 13.9 MPa, flexural tensile strength (7.7 – 24.5 MPa, and static modulus of elasticity (32.7 – 47.1GPa. Based on the observations of this work, it was found that the cracks did not develop in the reduced scale of the reactive powder concrete (RPC walls restrained from movement at their bases for different L/H ratios (2, 5, and 10 and for two ratio of steel fiber (1% & 2% during 90 days period of drying conditions. Moreover, the shrinkage values increase toward the edges. Based on the results of this work, the increase in the maximum shrinkage values of walls with 1% steel fiber were (29%, 28%, 28% of the maximum shrinkage values of walls with 2% steel fiber of length/height ratios of (2, 5, and 10 respectively. The experimental observation in beam specimens showed that the free shrinkage, tensile strain capacity and elastic tensile strain capacity (at date of cracking of beams with 1% steel fiber were higher than the beams with 2% steel fiber by about (24%, (45% and (42% respectively

  3. Structure-Composition-Property Relationships in Polymeric Amorphous Calcium Phosphate-Based Dental Composites

    Directory of Open Access Journals (Sweden)

    Drago Skrtic

    2009-11-01

    Full Text Available Our studies of amorphous calcium phosphate (ACP-based materials over the last decade have yielded bioactive polymeric composites capable of protecting teeth from demineralization or even regenerating lost tooth mineral. The anti-cariogenic/remineralizing potential of these ACP composites originates from their propensity, when exposed to the oral environment, to release in a sustained manner sufficient levels of mineral-forming calcium and phosphate ions to promote formation of stable apatitic tooth mineral. However, the less than optimal ACP filler/resin matrix cohesion, excessive polymerization shrinkage and water sorption of these experimental materials can adversely affect their physicochemical and mechanical properties, and, ultimately, limit their lifespan. This study demonstrates the effects of chemical structure and composition of the methacrylate monomers used to form the matrix phase of composites on degree of vinyl conversion (DVC and water sorption of both copolymers and composites and the release of mineral ions from the composites. Modification of ACP surface via introducing cations and/or polymers ab initio during filler synthesis failed to yield mechanically improved composites. However, moderate improvement in composite’s mechanical stability without compromising its remineralization potential was achieved by silanization and/or milling of ACP filler. Using ethoxylated bisphenol A dimethacrylate or urethane dimethacrylate as base monomers and adding moderate amounts of hydrophilic 2-hydroxyethyl methacrylate or its isomer ethyl-α-hydroxymethacrylate appears to be a promising route to maximize the remineralizing ability of the filler while maintaining high DVC. Exploration of the structure/composition/property relationships of ACP fillers and polymer matrices is complex but essential for achieving a better understanding of the fundamental mechanisms that govern dissolution/re-precipitation of bioactive ACP fillers, and

  4. Conducting Polymeric Materials

    DEFF Research Database (Denmark)

    Hvilsted, Søren

    2016-01-01

    The overall objective of this collection is to provide the most recent developments within the various areas of conducting polymeric materials. The conductivity of polymeric materials is caused by electrically charged particles, ions, protons and electrons. Materials in which electrons...

  5. Study of ‘real’ shrinkage by ESEM observations and digital image analysis

    NARCIS (Netherlands)

    Jankovic, D.

    2007-01-01

    Defining the 'real' shrinkage values of concrete is still a subject of much debate. In shrinkage experiments size effects are inherently present. Through an attempt to determine the real shrinkage of cement-based materials, these size effects have to be eliminated or at least reduced as much a possi

  6. A Monte Carlo Evaluation of Estimated Parameters of Five Shrinkage Estimate Formuli.

    Science.gov (United States)

    Newman, Isadore; And Others

    1979-01-01

    A Monte Carlo simulation was employed to determine the accuracy with which the shrinkage in R squared can be estimated by five different shrinkage formulas. The study dealt with the use of shrinkage formulas for various sample sizes, different R squared values, and different degrees of multicollinearity. (Author/JKS)

  7. Conversational Dominance.

    Science.gov (United States)

    Esau, Helmut; Poth, Annette

    Details of conversational behavior can often not be interpreted until the social interaction, including the rights and obligations of the participants, their intent, the topic, etc., has been defined. This paper presents a model of conversation in which the conversational image a person presents in a given conversational situation is a function of…

  8. New particle growth and shrinkage observed in subtropical environments

    Directory of Open Access Journals (Sweden)

    L.-H. Young

    2012-07-01

    Full Text Available We present the first systematic analysis for new particle formation (NPF, growth and shrinkage of new particles observed at four different sites in subtropical Central Taiwan. A total of 14 NPF events were identified during 137 days of ambient measurements during a cold and warm season. The derived nucleation rates of 1 nm particles (J1 and growth rates were in the range of 39.6–252.9 cm−3 s−1 and 6.5–14.5 nm h−1, respectively. The NPF events occurred on days either with low condensation sink (CS, increased morning traffic emissions and the breakup of nocturnal inversion layer (type A, or with high CS, minimum levels of primary traffic emissions and enhanced atmospheric dilution (type B. On non-event days, the particle number concentrations were mostly driven by traffic emissions. We have also observed shrinkage of new particles (type A-S and B-S, reversal of growth, during five out of the 14 NPF events. In intense shrinkage cases, the grown particles shrank back to the smallest measurable size of ~10 nm, thereby creating a unique "arch-like" shape in the size distribution contour plot. The particle shrinkage rates ranged from 5.1 to 7.6 nm h−1. The ratios of shrinkage-to-growth rates were mostly in the range of 0.40–0.65, suggesting that a large fraction of the condensable species that contributed to growth were likely semi-volatile. The particle shrinkage was related to air masses with low CS due to atmospheric dilution, high ambient temperature and low relative humidity and such atmospheric conditions may have facilitated the evaporation of semi-volatile species from the particles to the gas phase. Our observations show that the new particle growth may be a~reversible process and the evaporating semi-volatile species are important for the growth of new particles to cloud condensation nuclei sizes.

  9. Alternatives in polymerization contraction stress management

    Directory of Open Access Journals (Sweden)

    Roberto R. Braga

    2004-01-01

    Full Text Available Polymerization contraction stress of dental composites is often associated with marginal and interfacial failure of bonded restorations. The magnitude of the stress depends on the composite's composition (filler content and matrix composition and its ability to flow before gelation, which is related to the cavity configuration and curing characteristics of the composite. This article reviews the variations found among studies regarding the contraction stress testing method, contraction stress values of current composites, and discusses the validity of contraction stress studies in relation to results from microleakage tests. The effect of lower curing rates and alternative curing routines on contraction stress values is also discussed, as well as the use of low elastic modulus liners. Moreover, studies with experimental Bis-GMA-based composites and recent developments in low-shrinkage monomers are described.

  10. STUDIES ON VINYL POLYMERIZATION WITH INITIATION SYSTEM CONTAINING AMINE DERIVATIVES

    Institute of Scientific and Technical Information of China (English)

    QIU Kunyuan; ZHANG Jingyi; FENG Xinde(S. T. Voong)

    1983-01-01

    Two main types of amine-containing initiation systems were studied in this work. In the case of MMA polymerization initiated by BPO-amine (DMT, DHET, DMA) redox systems, it was found that the polymerization rate and colour stability of the polymer for different amine systems were in the following order: DMT≈DHET>DMA. Accordingly, BPO-DMT and BPO-DHET are effective initiators. In the case of MEMA polymerization by amine (DMT, DHET, DMA) alone, it was found that the polymerization rate and the percentage of conversion for these different amine systems were in the following order: DMT≥DHET>DMA. The polymerization rate and the percentage of conversion also increased with the increase of DMT concentration. From the kinetic investigation the rate equation of Rp=K [DMT]1/2 [MEMA]3/2 was obtained, and the overall activation energy of polymerization was calculated to be 34.3 KJ/mol (8.2 Kcal/mol). Moreover, the polymerization of MEMA in the presence of DMT was strongly inhibited by hydroquinone, indicating the polymerization being free radical in nature. From these results, the mechanism of MEMA polymerization initiated by amine was proposed.

  11. [Three dimensional changes of the denture base of the complete denture following polymerization].

    Science.gov (United States)

    Takahashi, Y

    1990-02-01

    The objective of this study was to clarify some of the dimensional change patterns of the denture base of the complete denture following polymerization. Dimensional changes of three polymerization method types were compared. The complete dentures were measured by using the three dimensional measurement system. The results obtained were summarized as follows. 1. Dimensional changes from the original model immediately after polymerization of complete upper and lower dentures were recorded and all three polymerization methods produced shrinkage on all three axes toward the center. Heat cured resin samples and microwave cured resin samples showed the same shrinkage with pour type resin samples only showing 1/2 that amount. 2. The gradual dimensional changes occurring after polymerization up until 4 weeks were also recorded. The heat cured resin samples showed no additional changes but remained in its shrunken state. The pour-type resin samples began to enlarge until almost all of them reached the original model size within 4 weeks. The microwave cured resin samples began to enlarge but only slightly and then soon stopped changing. 3. All polymerization method types showed more dimensional change in the lower plate than in the upper plate.

  12. Exploiting tumor shrinkage through temporal optimization of radiotherapy

    CERN Document Server

    Unkelbach, Jan; Hong, Theodore; Papp, David; Ramakrishnan, Jagdish; Salari, Ehsan; Wolfgang, John; Bortfeld, Thomas

    2013-01-01

    In multi-stage radiotherapy, a patient is treated in several stages separated by weeks or months. This regimen has been motivated mostly by radiobiological considerations, but also provides an approach to reduce normal tissue dose by exploiting tumor shrinkage. The paper considers the optimal design of multi-stage treatments, motivated by the clinical management of large liver tumors for which normal liver dose constraints prohibit the administration of an ablative radiation dose in a single treatment. We introduce a dynamic tumor model that incorporates three factors: radiation induced cell kill, tumor shrinkage, and tumor cell repopulation. The design of multi-stage radiotherapy is formulated as a mathematical optimization problem in which the total dose to the liver is minimized, subject to delivering the prescribed dose to the tumor. Based on the model, we gain insight into the optimal administration of radiation over time, i.e. the optimal treatment gaps and dose levels. We analyze treatments consisting ...

  13. Modelling of elastoplastic damage in concrete due to desiccation shrinkage

    Science.gov (United States)

    Bourgeois, F.; Burlion, N.; Shao, J. F.

    2002-07-01

    We present a numerical modelling of elastoplastic damage due to drying shrinkage of concrete in the framework of mechanics of partially saturated porous media. An elastoplastic model coupled with isotropic damage is first formulated. Two plastic flow mechanisms are involved, controlled by applied stress and suction, respectively. A general concept of net effective stress is used in take into account effects of capillary pressure and material damage on stress-controlled plastic deformation. Damage evolution depends both on elastic and plastic strains. The model's parameters are determined or chosen from relevant experimental data. Comparisons between numerical simulations and experimental data are presented to show the capacity of model to reproduce mains features of concrete behaviour under mechanical loading and during drying shrinkage of concrete. An example of application concerning drying of a concrete wall is finally presented. The results obtained allow to show potential capacity of proposed model for numerical modelling of complex coupling processes in concrete structures.

  14. New System of Shrinkage Measurement through Cement Mortars Drying

    Science.gov (United States)

    Morón, Carlos; Saiz, Pablo; Ferrández, Daniel; García-Fuentevilla, Luisa

    2017-01-01

    Cement mortar is used as a conglomerate in the majority of construction work. There are multiple variants of cement according to the type of aggregate used in its fabrication. One of the major problems that occurs while working with this type of material is the excessive loss of moisture during cement hydration (setting and hardening), known as shrinkage, which provokes a great number of construction pathologies that are difficult to repair. In this way, the design of a new sensor able to measure the moisture loss of mortars at different age levels is useful to establish long-term predictions concerning mortar mass volume loss. The purpose of this research is the design and fabrication of a new capacitive sensor able to measure the moisture of mortars and to relate it with the shrinkage. PMID:28272297

  15. Shrinkage and trajectory of the flat jet with inclination angle

    Institute of Scientific and Technical Information of China (English)

    Shufeng Ye; Yusheng Xie; Hongzhi Guo; Ye Huang; Shantong Jin

    2003-01-01

    The performance of the flat jet with an inclination angle was investigated by a water model. A mathematical model for theshrinkage and the trajectory of the flat jet with an inclination angle was derived theoretically and verified by experimental data of thewater model. The experimental results indicate that the inclination angle (α) has no influence on the shrinkage of the flat jet, theshrinkage of the flat jet along the width direction decreases with the increasing of the initial velocity at the exit (u0) and the initialthickness of the flat jet (t0). Enough bigger initial exit velocity (u0) and initial thickness can suppress the shrinkage of the flat jetalong the width direction and keep the flat jet stabilized. In addition, the trajectory of the flat jet with an inclination angle is parabolicand must be taking into consideration when to determine the striking distance.

  16. Analysis of Shrinkage on Thick Plate Part using Genetic Algorithm

    Directory of Open Access Journals (Sweden)

    Najihah S.N.

    2016-01-01

    Full Text Available Injection moulding is the most widely used processes in manufacturing plastic products. Since the quality of injection improves plastic parts are mostly influenced by process conditions, the method to determine the optimum process conditions becomes the key to improving the part quality. This paper presents a systematic methodology to analyse the shrinkage of the thick plate part during the injection moulding process. Genetic Algorithm (GA method was proposed to optimise the process parameters that would result in optimal solutions of optimisation goals. Using the GA, the shrinkage of the thick plate part was improved by 39.1% in parallel direction and 17.21% in the normal direction of melt flow.

  17. Reversible cerebral shrinkage in kwashiorkor: an MRI study.

    Science.gov (United States)

    Gunston, G D; Burkimsher, D; Malan, H; Sive, A A

    1992-08-01

    Protein energy malnutrition is associated with cerebral atrophy which may be detrimental to intellectual development. The aim of this study was to document the anatomical abnormalities which lead to the appearance of cerebral atrophy using magnetic resonance imaging (MRI) in the acute stage of kwashiorkor and to monitor changes during nutritional rehabilitation. Twelve children aged 6 to 37 months requiring admission to hospital for the treatment of kwashiorkor were studied. The children were evaluated clinically, biochemically, and by MRI of their brains on admission and 30 and 90 days later. Brain shrinkage was present in every child on admission. White and grey matter appeared equally affected and the myelination was normal for age. At 90 days, the cerebral changes had resolved in nine and improved substantially in the remainder, by which time serum proteins and weight for age were within the normal range. The findings of this study suggest that brain shrinkage associated with kwashiorkor reverses rapidly with nutritional rehabilitation.

  18. Combinatorial Selection and Least Absolute Shrinkage via the CLASH Algorithm

    CERN Document Server

    Kyrillidis, Anastasios

    2012-01-01

    The least absolute shrinkage and selection operator (LASSO) for linear regression exploits the geometric interplay of the $\\ell_2$-data error objective and the $\\ell_1$-norm constraint to arbitrarily select sparse models. Guiding this uninformed selection process with sparsity models has been precisely the center of attention over the last decade in order to improve learning performance. To this end, we alter the selection process of LASSO to explicitly leverage combinatorial sparsity models (CSMs) via the combinatorial selection and least absolute shrinkage (CLASH) operator. We provide concrete guidelines how to leverage combinatorial constraints within CLASH, and characterize CLASH's guarantees as a function of the set restricted isometry constants of the sensing matrix. Finally, our experimental results show that CLASH can outperform both LASSO and model-based compressive sensing in sparse estimation.

  19. Autogenous Shrinkage of High Strength Lightweight Aggregate Concrete

    Institute of Scientific and Technical Information of China (English)

    DING Qingjun; TIAN Yaogang; WANG Fazhou; ZHANG Feng; HU Shuguang

    2005-01-01

    The characteristic of autogenous shrinkage ( AS ) and its effect on high strength lightweight aggregate concrete (HSLAC) were studied. The experimental results show that the main shrinkage of high strength concrete is AS and the amount of cement can affect the AS of HSLAC remarkably. At the early stage the AS of HSLAC is lower than that of high strength normal concrete, but it has a large growth at the later stage. The AS of high strength normal concrete becomes stable at 90d age, but HSLAC still has a high AS growth. It is found that adjusting the volume rate of lightweight aggregate, mixing with a proper dosage of fly ash and raising the water saturation degree of lightweight aggregate can markedly reduce the AS rate of HSLAC.

  20. Influence of Cyclodextrin on the Styrene Polymerization

    Institute of Scientific and Technical Information of China (English)

    HU Jie; LIU Bai-ling

    2004-01-01

    Cyclodextrin (CD) are oligosaccharides consisting of 6( α ), 7( β ), 8( γ ) units of1,4-linked glucose. Due to their polar hydrophilic outer shell and relatively hydrophobic cavity, theyare able to build up host-guest complexes by inclusion of suitable hydrophobic molecules. Theformation of these complexes leads to significant changes of the solubility and reactivity of the guestmolecules, but without any chemical modification. Thus, water insoluble molecules may becomecompletely water soluble simply by mixing with an aqueous solution of native CD or CD-derivatives.Hydrogen bonds or hydrophobic interactions are responsible for the stability of the complexes and itturned out that the complexed monomers could be successfully polymerized by free radicalpolymerization in water.In our present work, using styrene as monomer, potassium peroxodisulfate as radical initiator thatreacted in water in the presence ofβ-CD but without any additional surfactant, the effect ofcyclodextrin on the polymerization was described. Additionally, the acceleration mechanism ofcyclodextrin in the polymerization was also explained based on dynamic study.Table 1 Effect of CD on the monomer reactivityIt is found that β -CD could greatly accelerate the polymerization, enhance the final conversion ofmonomer. And the more the amount of β-CD was introduced, the faster the polymerization wasobtained. From Figure 1, after 5 hours reaction at 80℃, the monomer conversion in the presence of1.0g cyclodextrin reached to 95%. However, that in absence of cyclodextrin was only 60%. And themonomer conversion was not to exceed 75% even reacted for 8 hours when no CD in reactionsystem.In order to describe the acceleration of CD in the polymerization quantitatively, based onCD and without CD. As shown in Table 1, CD produced significant effect on the monomer reactivity.The relative relativities of monomer were greatly increased with the increase of the amount of CD.

  1. Research and Application of the Mathematic Model for the Washing Shrinkage of Woven Fabric

    Institute of Scientific and Technical Information of China (English)

    2007-01-01

    Having analyzed the relationships between washing shrinkage and weaving technique, parameters, material properties of woven fabrics and studied the shrinkage mechanism and its mathematical model of the plain fabric,researchers set up a shrinkage model of the twills and satins and proposed a method for calculating the washing shrinkage based on weaving technique and parameters of fabrics. Shrinkage experiments of silk habotai, silk twill and silk satin fabrics were performed. The results were compared with those of the theoretical computations, and it has been proven that the theoretical method is reliable.

  2. Super-resolution optical telescopes with local light diffraction shrinkage

    OpenAIRE

    Changtao Wang; Dongliang Tang; Yanqin Wang; Zeyu Zhao; Jiong Wang; Mingbo Pu; Yudong Zhang; Wei Yan; Ping Gao; Xiangang Luo

    2015-01-01

    Suffering from giant size of objective lenses and infeasible manipulations of distant targets, telescopes could not seek helps from present super-resolution imaging, such as scanning near-field optical microscopy, perfect lens and stimulated emission depletion microscopy. In this paper, local light diffraction shrinkage associated with optical super-oscillatory phenomenon is proposed for real-time and optically restoring super-resolution imaging information in a telescope system. It is found ...

  3. The Process of Shrinkage as a Challenge to Urban Governance

    Directory of Open Access Journals (Sweden)

    Stryjakiewicz Tadeusz

    2016-06-01

    Full Text Available For many decades most researchers, planners and local authorities have been focusing almost exclusively on urban growth and its socio-economic and spatial consequences. However, in the current debate concerning the future of cities and regions in Europe the process of their shrinkage starts to attract more attention. In the conditions of a declining population, urban governance is an important challenge for local authorities, being usually much more difficult than during the periods of population growth.

  4. Evaluating plastic shrinkage and permeability of polypropylene fiber reinforced concrete

    Directory of Open Access Journals (Sweden)

    G.M. Sadiqul Islam

    2016-12-01

    Full Text Available Plastic concrete is susceptible to develop cracks due to shrinkage in dry and windy conditions. Addition of fibers could reduce propagation of this crack. On the other hand, permeability determines the durability properties of concrete. This study evaluated strength, plastic shrinkage and permeability (gas and water of concrete incorporating ‘polypropylene’ fiber (aspect ratio 300 in various proportions (viz. 0.10%, 0.15%, 0.2%, 0.25% and 0.3% by volume of concrete. Plane concrete samples were also prepared and tested for reference purpose. Inclusion of 0.1% fiber gave minor reduction (2% in compressive strength while the tensile strength increased by 39% with same fiber content compared to the plain concrete. A significant reduction in crack generation, appearance period of first crack and crack area between plane concrete and fiber reinforced concretes was found. The experimental result with inclusion of 0.1–0.3% fiber in concrete indicated that plastic shrinkage cracks were reduced by 50–99% compared to the plain concrete. For reference concrete (without fiber, test within the high temperature and controlled humidity chamber gave higher crack width than the acceptable limit (3 mm specified by the ACI 224. With the inclusion of 0.1% fiber reduced the crack width down to 1 mm and the trend was continued with the addition of more fibers. However, results showed that with the addition of polypropylene fiber both water and gas permeability coefficient was increased. Therefore, it is concluded that the fiber reinforced concrete would work better for plastic shrinkage susceptible structural elements (flat elements such as slab; however, it requires careful judgement while applying to a water retaining structures.

  5. Prediction of Prestressing Losses by Concrete Creep and Shrinkage

    Energy Technology Data Exchange (ETDEWEB)

    Woo, S.K. [Korea Electric Power Research Institute, Taejon (Korea)

    1999-07-01

    In this study, the personal-computer program was developed to predict prestressing losses of containment structures induced by concrete creep and shrinkage in nuclear power plants. Thie program is composed of three major parts in which are the pre-processor, calculation module and post-processor. Input data for this program are: material properties of concrete, rebar, liner and duct, test results of concrete creep and shrinkage, relative humidity, dimension of containment structures, and the number of prestressing tendon related in containment structures. To obtain better results, this program was designed to reflect the prestressing losses due to influence that occurred after prestressing of each tendon, thus it can predict prestressing losses and allowable prestressing forces of each tendon. As a case study, this program was applied to containment structures of Youngkwang 3 and 4 NPP's and analytical results were compared with test results in Inservice Inspection of containment structures. From this comparison, it was proved that this program could well predict prestressing losses by concrete creep and shrinkage. (author). 4 refs., 1 fig., 3 tabs.

  6. PREDIKSI SHRINKAGE UNTUK MENGHINDARI CACAT PRODUK PADA PLASTIC INJECTION

    Directory of Open Access Journals (Sweden)

    Agus Dwi Anggono

    2015-05-01

    Full Text Available Plastic injection merupakan proses manufactur untuk membuat produk dengan bahan dasar plastic atau dalam kesempatan ini polypropylene. Pada proses tersebut seringkali terjadi cacat produk seperti pengerutan, retak, dimensi tidak sesuai dan kerusakan saat produk keluar dari mould, sehingga banyak material yang terbuang percuma. Meskipun cacat produk tersebut dipengaruhi banyak factor, tetapi yang paling utama adalah masalah shrinkage, atau penyusutan material setelah terjadi pendinginan. Sangat penting untuk melakukan prediksi lebih awal terjadinya penyusutan setelah pendinginan untuk menghindari cacat produk. Dalam penelitian ini akan dilakukan prediksi shrinkage yang akan digunakan untuk material polypropylene dengan cara perhitungan standar. Pembuatan modeling dalam bentuk 3D (tiga dimensi injection molding baik cavity maupun corenya dengan menggunakan CATIA, kemudian dilakukan analisis dengan software MoldFlow untuk pembuatan mesh dan memberikan batasan panas pada komponen sehingga dapat diketahui mode penyusutannya. Analisis ini akan memberikan gambaran tentang distribusi panas pada mould dan memberikan tentang gambaran aliran fluida. Pada analisis tersebut dapat dilihat gejala terjadinya cacat produk, jika hal itu terjadi maka perlu dilakukan perubahan shrinkage, sampai diperoleh hasil analisis yang baik.

  7. Controlled Shrinkage of Expanded Glass Particles in Metal Syntactic Foams

    Directory of Open Access Journals (Sweden)

    Kadhim Al-Sahlani

    2017-09-01

    Full Text Available Metal matrix syntactic foams have been fabricated via counter-gravity infiltration of a packed bed of recycled expanded glass particles (EG with A356 aluminum alloy. Particle shrinkage was studied and has been utilized to increase the particles’ strength and tailor the mechanical properties of the expanded glass/metal syntactic foam (EG-MSF. The crushing strength of particles could be doubled by shrinking them for 20 min at 700 °C. Owing to the low density of EG (0.20–0.26 g/cm3, the resulting foam exhibits a low density (1.03–1.19 g/cm3 that increases slightly due to particle shrinkage. Chemical and physical analyses of EG particles and the resulting foams were conducted. Furthermore, metal syntactic foam samples were tested in uni-axial compression tests. The stress-strain curves obtained exhibit three distinct regions: elastic deformation followed by a stress plateau and densification commencing at 70–80% macroscopic strain. Particle shrinkage increased the mechanical strength of the foam samples and their average plateau stress increased from 15.5 MPa to 26.7 MPa.

  8. Controlled Shrinkage of Expanded Glass Particles in Metal Syntactic Foams.

    Science.gov (United States)

    Al-Sahlani, Kadhim; Taherishargh, Mehdi; Kisi, Erich; Fiedler, Thomas

    2017-09-13

    Metal matrix syntactic foams have been fabricated via counter-gravity infiltration of a packed bed of recycled expanded glass particles (EG) with A356 aluminum alloy. Particle shrinkage was studied and has been utilized to increase the particles' strength and tailor the mechanical properties of the expanded glass/metal syntactic foam (EG-MSF). The crushing strength of particles could be doubled by shrinking them for 20 min at 700 °C. Owing to the low density of EG (0.20-0.26 g/cm³), the resulting foam exhibits a low density (1.03-1.19 g/cm³) that increases slightly due to particle shrinkage. Chemical and physical analyses of EG particles and the resulting foams were conducted. Furthermore, metal syntactic foam samples were tested in uni-axial compression tests. The stress-strain curves obtained exhibit three distinct regions: elastic deformation followed by a stress plateau and densification commencing at 70-80% macroscopic strain. Particle shrinkage increased the mechanical strength of the foam samples and their average plateau stress increased from 15.5 MPa to 26.7 MPa.

  9. The physical effects of an intra-aggregate structure on soil shrinkage

    CERN Document Server

    Chertkov, V Y

    2014-01-01

    Clay and soil containing it have shrinkage curves that are qualitatively different in shape. The objective of this work is to qualitatively show with maximum simplicity, how a clay shrinkage curve turns into a soil shrinkage curve. Because of the crack volume the measured shrinkage curve is not the single-valued feature of a soil. We use a concept of the reference shrinkage curve that is only stipulated by soil shrinkage without cracking, single-valued, and qualitatively similar to an observed shrinkage curve. We also use new concepts of an intra-aggregate soil structure: (i) a rigid superficial layer of aggregates that loses water during shrinkage; and (ii) lacunar pores (micro-cracks) inside an intra-aggregate clay that change in volume during shrinkage. Then, through a series of consecutive steps, illustrating each step by a separate graphic presentation, we move from a clay shrinkage curve to a soil shrinkage curve with predicted qualitative features that coincide with those experimentally observed in num...

  10. Evaluation of shrinkage and cracking in concrete of ring test by acoustic emission method

    Science.gov (United States)

    Watanabe, Takeshi; Hashimoto, Chikanori

    2015-03-01

    Drying shrinkage of concrete is one of the typical problems related to reduce durability and defilation of concrete structures. Lime stone, expansive additive and low-heat Portland cement are used to reduce drying shrinkage in Japan. Drying shrinkage is commonly evaluated by methods of measurement for length change of mortar and concrete. In these methods, there is detected strain due to drying shrinkage of free body, although visible cracking does not occur. In this study, the ring test was employed to detect strain and age cracking of concrete. The acoustic emission (AE) method was adopted to detect micro cracking due to shrinkage. It was recognized that in concrete using lime stone, expansive additive and low-heat Portland cement are effective to decrease drying shrinkage and visible cracking. Micro cracking due to shrinkage of this concrete was detected and evaluated by the AE method.

  11. Conversion disorder

    Science.gov (United States)

    ... this page: //medlineplus.gov/ency/article/000954.htm Conversion disorder To use the sharing features on this page, please enable JavaScript. Conversion disorder is a mental condition in which a person ...

  12. Preparation of polyvinylpyrrodione microspheres by dispersion polymerization

    Institute of Scientific and Technical Information of China (English)

    Linfeng ZHAI; Tiejun SHI; Hualin WANG

    2009-01-01

    The preparation of polyvinylpyrrolidone (PVP) microspheres in ethyl acetate by dispersion polymerization with N-vinylpyrrolidone (NVP) as initial monomer, poly(N-vinylpyrrolidone-co-vinyl acetate) (P (NVP-co-VAc)) as dispersant, and 2, 2'-azobisisobutyr-onitrile(AIBN) as initiator is reported. The influences of monomer concentration, dispersant concentration and initiator concentration on the size of PVP microspheres as well as the monomer conversion were studied. The structure and properties of PVP microspheres were analyzed. The results show that the prepared PVP micro-spheres have a mean diameter of 3-4 μm. With an increase in NVP concentration, the size and the molecular weight of the PVP microspheres as well as the monomer conversion all increase. With increasing P(NVP-co-VAc) concentra-tions, the PVP molecular weight and monomer conversion both increase while the size of the microspheres becomes smaller. As the concentration of AIBN increases, the microsphere size and monomer conversion increase whereas the PVP molecular weight decreases. The PVP prepared by dispersion polymerization has a crystal structure, and its molecular weight is lower compared to that prepared by solution polymerization.

  13. [On the polymerization of pour type resin (author's transl)].

    Science.gov (United States)

    Nagata, K; Hirasawa, T; Masuhara, E

    1976-05-01

    The initial polymerization point and the polymerization progress have been observed on powder-liquid pour type acrylic resin and one-liquid pour type acrylic resin. The results are as follows: 1. In case of un-heating at the bottom of powder liquid resin, in the former stage the polymerization makes the regular progress from the bottom part to the upper of the mould, but in the latter stage it does some irregular one. In case of heating at the bottom, at first it shows a better regular progress as in the case of un-heating. 2. In case of un-heating at the bottom of one-liquid resin, in the first stage the polymerization makes the regular progress from the bottom part of the resin and at the same time from its middle of the mould, and then to the upper part and the sprue part. In case of heating at the bottom, it begins just from the heated part, then it goes quite regularly to the middle, the upper, and the sprue part, and lastly the polymerization shrinkage concentrates exclusively at the sprue part.

  14. Polymerization Using Phosphazene Bases

    KAUST Repository

    Zhao, Junpeng

    2015-09-01

    In the recent rise of metal-free polymerization techniques, organic phosphazene superbases have shown their remarkable strength as promoter/catalyst for the anionic polymerization of various types of monomers. Generally, the complexation of phosphazene base with the counterion (proton or lithium cation) significantly improves the nucleophilicity of the initiator/chain end resulting in highly enhanced polymerization rates, as compared with conventional metalbased initiating systems. In this chapter, the general features of phosphazenepromoted/catalyzed polymerizations and the applications in macromolecular engineering (synthesis of functionalized polymers, block copolymers, and macromolecular architectures) are discussed with challenges and perspectives being pointed out.

  15. Temperature changes under demineralized dentin during polymerization of three resin-based restorative materials using QTH and LED units

    Directory of Open Access Journals (Sweden)

    Sayed-Mostafa Mousavinasab

    2014-08-01

    Full Text Available Objectives Light-curing of resin-based materials (RBMs increases the pulp chamber temperature, with detrimental effects on the vital pulp. This in vitro study compared the temperature rise under demineralized human tooth dentin during light-curing and the degrees of conversion (DCs of three different RBMs using quartz tungsten halogen (QTH and light-emitting diode (LED units (LCUs. Materials and Methods Demineralized and non-demineralized dentin disks were prepared from 120 extracted human mandibular molars. The temperature rise under the dentin disks (n = 12 during the light-curing of three RBMs, i.e. an Ormocer-based composite resin (Ceram. X, Dentsply DeTrey, a low-shrinkage silorane-based composite (Filtek P90, 3M ESPE, and a giomer (Beautifil II, Shofu GmbH, was measured with a K-type thermocouple wire. The DCs of the materials were investigated using Fourier transform infrared spectroscopy. Results The temperature rise under the demineralized dentin disks was higher than that under the non-demineralized dentin disks during the polymerization of all restorative materials (p 0.05. Conclusions Although there were no significant differences in the DCs, the temperature rise under demineralized dentin disks for the silorane-based composite was higher than that for dimethacrylate-based restorative materials, particularly with QTH LCU.

  16. Postoperative sensitivity associated with low shrinkage versus conventional composites

    Directory of Open Access Journals (Sweden)

    Ivanović Vladimir

    2013-01-01

    Full Text Available Introduction. Postoperative sensitivity in restorative dentistry can be related to preparation trauma, dentin adhesives’ ability to seal open dentinal tubules, deformation of restorations under occlusal stresses and microleakage. Objective. The study assessed possible reduction in postoperative sensitivity with low shrinkage compared to conventional composites using different bonding agents and the influence of the operator skill on the incidence of postoperative sensitivity. Methods. Nine hundred and sixty permanent premolars and molars with primary carious lesions from patients 21 to 40 years old were used. Cavities 2 to 3 mm deep and with margins in enamel were prepared by four operators. Two operators had five years (A and B and two had over 20 years (C and D of clinical experience. Teeth were divided into eight groups each contained 120 restorations: (1 Els®+James-2 (original formula, (2 Els®+James-2 (new formula, (3 Els®+Excite, (4 InTenSe®+James-2 (original formula, (5 InTenSe®+James-2 (new formula, (6 InTenSe®+Excite, (7 Tetric Ceram®+Excite, and (8 Point 4®+OptiBond Solo Plus. At 14 days postoperatively, two independent operators, who did not take part in the clinical procedure, assessed postoperative teeth sensitivity using special questionnaires. Data were analyzed using non-parametric chi-square, Mann-Whitney and ANOVA tests. Results. Group 8 showed significantly higher score than the other groups. Less postoperative sensitivity was reported with two low-shrinkage composites (groups 2, 3, and 5 but with no significant difference. There was no statistical difference between groups 1, 2, 3, 4, 5, 6 and 7. Operator A had the highest postoperative sensitivity score compared to the other three. Conclusion. Conventional composite material Point 4® with its bonding agent caused significantly more postoperative sensitivity than low shrinkage composites combined with different adhesives. Operator skill influenced the incidence of

  17. Sonar target enhancement by shrinkage of incoherent wavelet coefficients.

    Science.gov (United States)

    Hunter, Alan J; van Vossen, Robbert

    2014-01-01

    Background reverberation can obscure useful features of the target echo response in broadband low-frequency sonar images, adversely affecting detection and classification performance. This paper describes a resolution and phase-preserving means of separating the target response from the background reverberation noise using a coherence-based wavelet shrinkage method proposed recently for de-noising magnetic resonance images. The algorithm weights the image wavelet coefficients in proportion to their coherence between different looks under the assumption that the target response is more coherent than the background. The algorithm is demonstrated successfully on experimental synthetic aperture sonar data from a broadband low-frequency sonar developed for buried object detection.

  18. Sparse electromagnetic imaging using nonlinear iterative shrinkage thresholding

    KAUST Repository

    Desmal, Abdulla

    2015-04-13

    A sparse nonlinear electromagnetic imaging scheme is proposed for reconstructing dielectric contrast of investigation domains from measured fields. The proposed approach constructs the optimization problem by introducing the sparsity constraint to the data misfit between the scattered fields expressed as a nonlinear function of the contrast and the measured fields and solves it using the nonlinear iterative shrinkage thresholding algorithm. The thresholding is applied to the result of every nonlinear Landweber iteration to enforce the sparsity constraint. Numerical results demonstrate the accuracy and efficiency of the proposed method in reconstructing sparse dielectric profiles.

  19. Photoelastic study of shrinkage fitted components for a gasturbine engine

    Science.gov (United States)

    Govindaraju, T. V.; Maheshappa, H.; Govindaraju, N.; Gargesa, G.

    A 3D photoelastic model of shrink-fitted components of a gas turbine engine such as low-pressure main shaft and compressor adopter shaft (or hub) are used to perform a photo-elastic investigation of shrink-fitted components for different relative thickness ratio and different contact length ratio. The relative rigidity of the hub is found to increase as the relative thickness ratio increases, and the relative rigidity is found to increase as the contact length ratio decreases. An optimization of the geometry of the shrinkage-fitted components is also obtained.

  20. Shrinkage calibration method for μPIM manufactured parts

    DEFF Research Database (Denmark)

    Quagliotti, Danilo; Tosello, Guido; Salaga, J.

    2016-01-01

    Five green and five sintered parts of a micro mechanical component, produced by micro powder injection moulding, were measured using an optical coordinate measuring machine. The aim was to establish a method for quality assurance of the final produced parts. Initially, the so called “green” parts...... was evaluated propagating the expanded uncertainty previously stated and considering green and sintered parts correlated. Results showed that the proposed method can be effective instating tolerances if it is assumed that the variability on the dimensions induced by the shrinkage equals the propagated expanded...

  1. Cuspal Displacement Induced by Bulk Fill Resin Composite Polymerization: Biomechanical Evaluation Using Fiber Bragg Grating Sensors.

    Science.gov (United States)

    Vinagre, Alexandra; Ramos, João; Alves, Sofia; Messias, Ana; Alberto, Nélia; Nogueira, Rogério

    2016-01-01

    Polymerization shrinkage is a major concern to the clinical success of direct composite resin restorations. The aim of this study was to compare the effect of polymerization shrinkage strain of two resin composites on cuspal movement based on the use of fiber Bragg grating (FBG) sensors. Twenty standardized Class II cavities prepared in upper third molars were allocated into two groups (n = 10). Restorations involved the bulk fill placement of conventional microhybrid resin composite (Esthet•X® HD, Dentsply DeTrey) (Group 1) or flowable "low-shrinkage" resin composite (SDR™, Dentsply DeTrey) (Group 2). Two FBG sensors were used per restoration for real-time measurement of cuspal linear deformation and temperature variation. Group comparisons were determined using ANCOVA (α = 0.05) considering temperature as the covariate. A statistically significant correlation between cuspal deflection, time, and material was observed (p < 0.01). Cuspal deflection reached 8.8 μm (0.23%) and 7.8 μm (0.20%) in Groups 1 and 2, respectively. When used with bulk fill technique, flowable resin composite SDR™ induced significantly less cuspal deflection than the conventional resin composite Esthet•X® HD (p = 0.015) and presented a smoother curve slope during the polymerization. FBG sensors appear to be a valid tool for accurate real-time monitoring of cuspal deformation.

  2. Shrinkage and cracking behavior of high performance concretes containing chemical admixtures

    Institute of Scientific and Technical Information of China (English)

    亓萌; 李宗津; 马保国

    2002-01-01

    Modern concretes often incorporate several chemical admixtures to alter the properties of fresh or hardened concrete. In this work, the influences of three types of chemical admixtures, calcium nitrite inhibitor (CNI), retarder (D-17) and superplasticizer (W-19) on free shrinkage and restrained shrinkage cracking of high performance concrete were experimentally investigated. The test results showed that, with the same water to binder ratio (0.4), mixtures containing D-17 of 0.25 percent or higher ratio of W-19 (2.76 percent) all exhibited a reduction in free shrinkage and shrinkage cracking width. However, the incorporations of various ratios of CNI into mixtures led to an increase in free shrinkage and shrinkage cracking width as compared to control mixture. In order to study the influence of CNI, the microstructure of concrete mixture containing CNI were investigated by Mercury Intrusion Porosimetry as well as Scanning Electronic Microscopy(SEM) technique.

  3. Shrinkage and microstructural development during drying of organically modified silica xerogels

    Energy Technology Data Exchange (ETDEWEB)

    Raman, N.K. [New Mexico Univ., Albuquerque, NM (United States); Wallace, S. [Nanopore Corp., Albuquerque, NM (United States); Brinker, C.J. [New Mexico Univ., Albuquerque, NM (United States)]|[Sandia National Labs., Albuquerque, NM (United States)

    1996-07-01

    We have studied the different driving forces behind syneresis in MTES/TEOS gels by aging them in different H{sub 2}O/EtOH pore fluids. We show using shrinkage, density, contact angle, and N{sub 2} sorption measurements, the influence of gel/solvent interactions on the microstructural evolution during drying. Competing effects of syneresis (that occurs during aging) and drying shrinkage resulted in the overall linear shrinkage of the organically modified gels to be constant at {approximately}50%. Increasing the hydrophobicity of the gels caused the driving force for syneresis to change from primarily condensation reactions to a combination of condensation and solid/liquid interfacial energy. In addition the condensation driven shrinkage was observed to be irreversible, whereas the interfacial free energy driven shrinkage was observed to be partially reversible. Nitrogen sorption experiments show that xerogels with the same overall extent of shrinkage can have vastly different microstructures due to the effects of microphase separation.

  4. Can superabsorbent polymers mitigate shrinkage in cementitious materials blended with supplementary cementitious materials?

    DEFF Research Database (Denmark)

    Snoeck, Didier; Jensen, Ole Mejlhede; De Belie, Nele

    2016-01-01

    A promising way to mitigate autogenous shrinkage in cementitious materials with a low water-to-binder ratio is internal curing by the use of superabsorbent polymers. Superabsorbent polymers are able to absorb multiple times their weight in water and can be applied as an internal water reservoir...... shrinkage in materials blended with fly ash or blast-furnace slag remain scarce, especially after one week of age. This paper focuses on the autogenous shrinkage by performing manual and automated shrinkage measurements up to one month of age. Without superabsorbent polymers, autogenous shrinkage...... was reduced in cement pastes with the supplementary cementitious materials versus Portland cement pastes. At later ages, the rate of autogenous shrinkage is higher due to the pozzolanic activity of the supplementary cementitious materials. Internal curing by means of superabsorbent polymers is successful...

  5. Making Polymeric Microspheres

    Science.gov (United States)

    Rhim, Won-Kyu; Hyson, Michael T.; Chung, Sang-Kun; Colvin, Michael S.; Chang, Manchium

    1989-01-01

    Combination of advanced techniques yields uniform particles for biomedical applications. Process combines ink-jet and irradiation/freeze-polymerization techniques to make polymeric microspheres of uniform size in diameters from 100 to 400 micrometer. Microspheres used in chromatography, cell sorting, cell labeling, and manufacture of pharmaceutical materials.

  6. Collapse-type shrinkage characteristics in plantation-grown eucalypts: I . Correlations of basic density and some structural indices with shrinkage and collapse properties

    Institute of Scientific and Technical Information of China (English)

    WUYi-qiang; HAYASHIKazuo; LIUYuan; CAIYing-chun; SUGIMORIMasatoshi; LUOJian-ju

    2005-01-01

    Collapse-type shrinkage is one of highly refractory drying defects in low-medium density plantation-grown eucalypt wood used as solid wood products. Basic density (BD), microfibril angle (MFA), double fibre cell wall thickness (DWT), proportion of ray parenchyma (RP), unit cell wall shrinkage, total shrinkage and residual collapse, which are associated with collapse-type shrinkage characteristics, were investigated by using simple regression method for three species of collapse-susceptible Eucalyptus urophyll, E. grandis and E.urophyllaxE.grandis, planted at Dong-Men Forest Farm in Guangxi autonomous region, China. The results indicated that : unit cell wall shrinkage had a extremely strong positive correlation with BD, moderately strong positive correlation with DWT, and a weakly or moderately negative correlation with RP and MFA; total shrinkage was positively correlated with BD, DWT and RP and negatively related to MFA, but not able to be predicted ideally by any examined factors alone owing to lower R2 value (R2≤0.5712); residual collapse was negatively correlated with BD and DWT, linearly positively correlated with MFA, and had strongly positive linear correlation with RP. It is concluded that BD can be used as single factor (R2≥0.9412) to predicate unit cell wall shrinkage and RP is the relatively sound indicator for predicting residual collapse

  7. Shrinkage strain – Rates study of dental composites based on (BisGMA/TEGDMA monomers

    Directory of Open Access Journals (Sweden)

    A. Amirouche-Korichi

    2017-02-01

    The results revealed that the fraction of opaque filler had no significant effect on the shrinkage strain-rate and on the time at maximum shrinkage strain-rate but these two parameters are closely related to the monomer ratios and viscosity of the organic matrix. The results have confirmed the proportionality of the shrinkage strain and DC and showed that the filler contents and monomer ratios would not affect this proportionality.

  8. Applied bioactive polymeric materials

    CERN Document Server

    Carraher, Charles; Foster, Van

    1988-01-01

    The biological and biomedical applications of polymeric materials have increased greatly in the past few years. This book will detail some, but not all, of these recent developments. There would not be enough space in this book to cover, even lightly, all of the major advances that have occurred. Some earlier books and summaries are available by two of this book's Editors (Gebelein & Carraher) and these should be consul ted for additional information. The books are: "Bioactive Polymeric Systems" (Plenum, 1985); "Polymeric Materials In Medication" (Plenum, 1985); "Biological Acti vi ties of Polymers" (American Chemical Society, 1982). Of these three, "Bioacti ve Polymeric Systems" should be the most useful to a person who is new to this field because it only contains review articles written at an introductory level. The present book primarily consists of recent research results and applications, with only a few review or summary articles. Bioactive polymeric materials have existed from the creation of life...

  9. Influences of Initiators on Conversions of Vinyl Chloride Micro-Suspension Polymerizations and Particle Size Distributions of Poly(vinyl chloride) Resins%引发剂对氯乙烯微悬浮聚合转化率和聚氯乙烯粒径分布的影响

    Institute of Scientific and Technical Information of China (English)

    贾瑞; 蒋岳芳; 包永忠

    2016-01-01

    Vinyl chloride(VC) micro-suspension polymerizations(MSP) were carried out using a water-soluble initiator of ammonia persulfate (APS) and an oil-soluble initiator of 2,2'-azobis-(2,4-dimethylvaleronitrile) (ABVN), respectively, and their performances were compared with those of VC suspension polymerization (SP) initiated by ABVN and VC emulsion polymerization (EP) initiated by APS. Influences of initiator types on the particles size distribution of the resulted PVC latexes and the rheological behavior of plasticized PVC pastes were also investigated. It was found that VC MSP exhibited a higher conversion than SP, and lower conversion than EP after the same polymerization time under the same initiation condition. PVC latex prepared by MSP using APS as the initiator contained a greater number nano scale particles (size smaller than 100 nm), while almost no nano scale PVC particles were observed in PVC latex prepared by MSP using ABVN as the initiator. The above kinetics and size distribution differences were attributed to the different partition of primary free-radicals in water/micelles/monomer (sub) droplets, and the different nucleation modes. The plasticized paste prepared from MSP PVC using APS as the initiator showed pseduoplastic behavior and greater apparent viscosity, while the plasticized paste prepared from MSP PVC using ABVN as the initiator showed dilatant behavior.%分别采用水溶性过硫酸铵(APS)和油溶性偶氮二异庚腈(ABVN)引发剂进行氯乙烯(VC)微悬浮聚合,并与APS引发的VC乳液聚合以及ABVN引发的VC悬浮聚合情况进行比较,考察了引发剂类型对聚氯乙烯(PVC)乳胶粒子粒径分布和增塑糊流变特性的影响.结果表明:引发剂浓度相同时,VC微悬浮聚合转化率大于悬浮聚合,而小于VC乳液聚合;APS引发微悬浮聚合得到的PVC乳胶粒子存在数目较多的纳米级粒子,而ABVN引发微悬浮聚合得到的PVC基本不存在纳米级粒子;引发剂和分解产生的初

  10. Investigation of Shrinkage Defect in Castings by Quantitative Ishikawa Diagram

    Directory of Open Access Journals (Sweden)

    Chokkalingam B.

    2017-03-01

    Full Text Available Metal casting process involves processes such as pattern making, moulding and melting etc. Casting defects occur due to combination of various processes even though efforts are taken to control them. The first step in the defect analysis is to identify the major casting defect among the many casting defects. Then the analysis is to be made to find the root cause of the particular defect. Moreover, it is especially difficult to identify the root causes of the defect. Therefore, a systematic method is required to identify the root cause of the defect among possible causes, consequently specific remedial measures have to be implemented to control them. This paper presents a systematic procedure to identify the root cause of shrinkage defect in an automobile body casting (SG 500/7 and control it by the application of Pareto chart and Ishikawa diagram. with quantitative Weightage. It was found that the root causes were larger volume section in the cope, insufficient feeding of riser and insufficient poured metal in the riser. The necessary remedial measures were taken and castings were reproduced. The shrinkage defect in the castings was completely eliminated.

  11. Impaired decision-making and brain shrinkage in alcoholism.

    Science.gov (United States)

    Le Berre, A-P; Rauchs, G; La Joie, R; Mézenge, F; Boudehent, C; Vabret, F; Segobin, S; Viader, F; Allain, P; Eustache, F; Pitel, A-L; Beaunieux, H

    2014-03-01

    Alcohol-dependent individuals usually favor instant gratification of alcohol use and ignore its long-term negative consequences, reflecting impaired decision-making. According to the somatic marker hypothesis, decision-making abilities are subtended by an extended brain network. As chronic alcohol consumption is known to be associated with brain shrinkage in this network, the present study investigated relationships between brain shrinkage and decision-making impairments in alcohol-dependent individuals early in abstinence using voxel-based morphometry. Thirty patients performed the Iowa Gambling Task and underwent a magnetic resonance imaging investigation (1.5T). Decision-making performances and brain data were compared with those of age-matched healthy controls. In the alcoholic group, a multiple regression analysis was conducted with two predictors (gray matter [GM] volume and decision-making measure) and two covariates (number of withdrawals and duration of alcoholism). Compared with controls, alcoholics had impaired decision-making and widespread reduced gray matter volume, especially in regions involved in decision-making. The regression analysis revealed links between high GM volume in the ventromedial prefrontal cortex, dorsal anterior cingulate cortex and right hippocampal formation, and high decision-making scores (Palcoholism may result from impairment of both emotional and cognitive networks.

  12. Response Predicting LTCC Firing Shrinkage: A Response Surface Analysis Study

    Energy Technology Data Exchange (ETDEWEB)

    Girardi, Michael; Barner, Gregg; Lopez, Cristie; Duncan, Brent; Zawicki, Larry

    2009-02-25

    The Low Temperature Cofired Ceramic (LTCC) technology is used in a variety of applications including military/space electronics, wireless communication, MEMS, medical and automotive electronics. The use of LTCC is growing due to the low cost of investment, short development time, good electrical and mechanical properties, high reliability, and flexibility in design integration (3 dimensional (3D) microstructures with cavities are possible)). The dimensional accuracy of the resulting x/y shrinkage of LTCC substrates is responsible for component assembly problems with the tolerance effect that increases in relation to the substrate size. Response Surface Analysis was used to predict product shrinkage based on specific process inputs (metal loading, layer count, lamination pressure, and tape thickness) with the ultimate goal to optimize manufacturing outputs (NC files, stencils, and screens) in achieving the final product design the first time. Three (3) regression models were developed for the DuPont 951 tape system with DuPont 5734 gold metallization based on green tape thickness.

  13. Physical Model of Drying Shrinkage of Recycled Aggregate Concrete

    Institute of Scientific and Technical Information of China (English)

    GUO Yuanchen; WANG Xue; QIAN Jueshi

    2015-01-01

    We prepared concretes (RC0, RC30, and RC100) with three different mixes. The pore-size distribution parameters of RAC were examined by high-precision mercury intrusion method (MIM) and nuclear magnetic resonance (NMR) imaging. A capillary-bundle physical model with random-distribution pores (improved model, IM) was established according to the parameters, and dry-shrinkage strain values were calculated and verified. Results show that in all pore types, capillary pores, and gel pores have the greatest impacts on concrete shrinkage, especially for pores 2.5-50 and 50-100 nm in size. The median radii are 34.2, 31, and 34 nm for RC0, RC30, and RC100, respectively. Moreover, the internal micropore size distribution of RC0 differs from that of RC30 and RC100, and the pore descriptions of MIM and NMR are consistent both in theory and in practice. Compared with the traditional capillary-bundle model, the calculated results of IM have higher accuracy as demonstrated by experimental veriifcation.

  14. Design changes of device to investigation of alloys linear contraction and shrinkage stresses

    Directory of Open Access Journals (Sweden)

    J. Mutwil

    2009-07-01

    Full Text Available Some design changes in device elaborated by author to examination of linear contraction and shrinkage stresses progress of metals and alloys during– and after solidification have been described. The introduced changes have been focused on design of closing of shrinkage test rod mould. The introduced changes have been allowed to simplify a mounting procedure of thermocouples measuring a temperature of the shrinkage rod casting (in 6 points. Exemplary investigation results of linear contraction and shrinkage stresses development in Al-Si13.5% alloy have been presented.

  15. A physical resist shrinkage model for full-chip lithography simulations

    Science.gov (United States)

    Liu, Peng; Zheng, Leiwu; Ma, Maggie; Zhao, Qian; Fan, Yongfa; Zhang, Qiang; Feng, Mu; Guo, Xin; Wallow, Tom; Gronlund, Keith; Goossens, Ronald; Zhang, Gary; Lu, Yenwen

    2016-03-01

    Strong resist shrinkage effects have been widely observed in resist profiles after negative tone development (NTD) and therefore must be taken into account in computational lithography applications. However, existing lithography simulation tools, especially those designed for full-chip applications, lack resist shrinkage modeling capabilities because they are not needed until only recently when NTD processes begin to replace the conventional positive tone development (PTD) processes where resist shrinkage effects are negligible. In this work we describe the development of a physical resist shrinkage (PRS) model for full-chip lithography simulations and present its accuracy evaluation against experimental data.

  16. Thermal Emulsion Polymerization without any Conventional Initiators and Emulsifiers

    Institute of Scientific and Technical Information of China (English)

    2006-01-01

    Stable poly(styrene-co-sodium styrene suffonate) (P(St-NaSS) nanoparticles with broader size distribution were synthesized by thermal emulsion polymerization without any conventional initiators and emulsifiers. The obtained polymer nanoparticles have higher ξpotential, and the particle sizes have broad distribution. The stability of polymer particles originated from the addition of small amounts of ionic comonomer, NaSS, which can act as an emulsifier in somewhat. The monomer conversion could reach up to about 28 wt% in 48 h, and did not increase by further polymerization when higher polymerization temperature (120℃) was employed. This polymerization system may be give some further understand for mechanism of emulsion polymerization.

  17. Conversational Narcissism.

    Science.gov (United States)

    Vangelisti, Anita L.; And Others

    1990-01-01

    Examines narcissistic communication and the ways it is exhibited in everyday conversation. Identifies the following behavioral referents: boasting, refocusing the topic of conversation on the self, exaggerating hand and body movements, using a loud tone of voice, and "glazing over" when others speak. Suggests that conversational…

  18. Contentious Conversations

    Science.gov (United States)

    Zuidema, Leah A.

    2011-01-01

    The idea of joining a conversation through reading and writing is not new; in his 1941 book "The Philosophy of Literary Form: Studies in Symbolic Action," Kenneth Burke suggests that the acts of reading and writing are like entering a parlor where others are already conversing. The author explores the place of professional debate within NCTE and…

  19. The effect of fibers on the loss of water by evaporation and shrinkage of concrete

    Directory of Open Access Journals (Sweden)

    N. M. P. Pillar

    Full Text Available Shrinkage is one of the least desirable attributes in concrete. Large areas of exposed concrete surfaces , such as in shotcrete tunnel linings, where it is practically impossible to make a moist cure, are highly susceptible to plastic shrinkage at early ages. The autogenous and drying shrinkage can lead to states of greater than threshold strength, causing fracture, mechanical damage and lack of durability of concrete structures. The addition of fibers can greatly reduce plastic shrinkage, but has limited effect in mitigating autogenous and drying shrinkage. To evaluate the performance of polypropylene and steel fibers to understand their effect on shrinkage of concrete, a study was carried out to relate the loss of water from the paste and the shrinkage during the first 28 days of age, and compare it with a control mix without fiber. The loss of water was obtained by the weight loss of the specimens at different ages, since the only component that could contribute for the loss of weight was the water lost by the paste of the concrete. And the paste itself is the only source of shrinkage. Uniaxial compressive tests from very early ages enabled the determination of time when plastic shrinkage ended. It was observed that the control concrete mix lost three times more water and developed plastic and drying shrinkage 60 % higher than the fiber reinforced concrete mixes. It was possible to demonstrate that the reduced loss of water caused by the incorporation of fibers is related to the mitigation of plastic shrinkage. It was observed that the fibers are effective to restrain the movement of water through the cement paste in the plastic state, however such effect is limited after concrete starts the hardening state.

  20. SORPTION AND SOLUBILITY OF LOW-SHRINKAGE RESIN-BASED DENTAL COMPOSITES

    Directory of Open Access Journals (Sweden)

    Sevda Yantcheva

    2016-04-01

    Full Text Available Background: Resin-based composites are well-established restorative materials. However, these materials may absorb significant amounts of water when exposed to aqueous environments. Sorption and solubility are affecting composite restorations by two different mechanisms; the first is the up taking of water producing an increased weight and the second is the dissolution of materials in water, leading to a weight reduction of the final conditioned samples. Objective: To measure the water sorption and solubility of different low-shrinkage resin-based composites. Six materials were selected: Filtek P60, Filtek Ultimate, SonicFill, Filtek Silorane, Kalore and Venus Diamond. Materials and methods: Five disc specimens were prepared of each material and polymerized with diode light-curing unit. Water sorption and solubility of the different materials were were calculated by means of weighting the samples before and after water immersion and desiccation. Data were statistically analyzed using Shapiro-Wilk One Way Analysis of Variance followed by the Holm-Sidak comparison test . Results: There were significant differences (p<=0.001 between materials regarding sorption and solubility. Regarding sorption F. Silorane showed lowest values, followed by SonicFill, without significant difference between them. Statistical significant differences exist between F. Silorane and F.P60, F. Ultimate, Kalore. Significant differences exist between SonicFill and F. Ultimate. F.Silorane (-0.018 and Kalore (-0.010 showed lowest values of solubility but there were marginal difference among all composites investigated. Conclusions: 1.The material with lowest values of sorption and solubility was F.Silorane. 2. The attained sorption and solubility values for composites are influenced by the differences in resin matrix composition and filler contend. 3. Modifications of dimethacrylate matrix did not minimize significantly sorption and solubility of composites. 4. Besides water

  1. Analysis of gene set using shrinkage covariance matrix approach

    Science.gov (United States)

    Karjanto, Suryaefiza; Aripin, Rasimah

    2013-09-01

    Microarray methodology has been exploited for different applications such as gene discovery and disease diagnosis. This technology is also used for quantitative and highly parallel measurements of gene expression. Recently, microarrays have been one of main interests of statisticians because they provide a perfect example of the paradigms of modern statistics. In this study, the alternative approach to estimate the covariance matrix has been proposed to solve the high dimensionality problem in microarrays. The extension of traditional Hotelling's T2 statistic is constructed for determining the significant gene sets across experimental conditions using shrinkage approach. Real data sets were used as illustrations to compare the performance of the proposed methods with other methods. The results across the methods are consistent, implying that this approach provides an alternative to existing techniques.

  2. Polymeric bicontinuous microemulsions

    DEFF Research Database (Denmark)

    Bates, F.S.; Maurer, W.W.; Lipic, P.M.

    1997-01-01

    High molecular weight block copolymers can be viewed as macromolecular surfactants when blended with thermodynamically incompatible homopolymers. This Letter describes the formation of polymeric bicontinuous microemulsions in nurtures containing a model diblock copolymer and two homopolymers...

  3. Creep and shrinkage effects on integral abutment bridges

    Science.gov (United States)

    Munuswamy, Sivakumar

    Integral abutment bridges provide bridge engineers an economical design alternative to traditional bridges with expansion joints owing to the benefits, arising from elimination of expensive joints installation and reduced maintenance cost. The superstructure for integral abutment bridges is cast integrally with abutments. Time-dependent effects of creep, shrinkage of concrete, relaxation of prestressing steel, temperature gradient, restraints provided by abutment foundation and backfill and statical indeterminacy of the structure introduce time-dependent variations in the redundant forces. An analytical model and numerical procedure to predict instantaneous linear behavior and non-linear time dependent long-term behavior of continuous composite superstructure are developed in which the redundant forces in the integral abutment bridges are derived considering the time-dependent effects. The redistributions of moments due to time-dependent effects have been considered in the analysis. The analysis includes nonlinearity due to cracking of the concrete, as well as the time-dependent deformations. American Concrete Institute (ACI) and American Association of State Highway and Transportation Officials (AASHTO) models for creep and shrinkage are considered in modeling the time dependent material behavior. The variations in the material property of the cross-section corresponding to the constituent materials are incorporated and age-adjusted effective modulus method with relaxation procedure is followed to include the creep behavior of concrete. The partial restraint provided by the abutment-pile-soil system is modeled using discrete spring stiffness as translational and rotational degrees of freedom. Numerical simulation of the behavior is carried out on continuous composite integral abutment bridges and the deformations and stresses due to time-dependent effects due to typical sustained loads are computed. The results from the analytical model are compared with the

  4. POLYMER-SUPPORTED RARE EARTH CATALYSTS FOR STYRENE POLYMERIZATION

    Institute of Scientific and Technical Information of China (English)

    ZHAO Jian; YANG Mujie; ZHENG Yi; SHEN Zhiquan

    1991-01-01

    The neodymium complex supported on styrene-maleic anhydride copolymer (SMA·Nd) has been prepared for the first time and found to be a highly effective catalyst for the polymerization of styrene. The SMA · Nd polymeric complex is characterized by IR and its catalytic activity, and the polymerization features have been investigated in comparison with that of the conventional Ziegler-Natta catalysts. When [Nd] = 1×10-3 mol/L, [M]=5 mol/L, Al/Nd = 170 (mol ratio ) and CCl4/Nd=50(mol ratio), the polymerization conversion of styrene gets to 51.6% in six hours, and the catalytic activity reaches 1852 gPS/gNd, which is much higher than that of conventional rare earth catalysts. The polymerization reaction has an induction period and shows some characteristics of chain polymerization. The polymerization rate is the first order with respect to the concentration of styrene monomer. Addition of FeCl3 does not suppress the polymerization.

  5. Influence of ultra-fine fly ash on hydration shrinkage of cement paste

    Institute of Scientific and Technical Information of China (English)

    GAO Ying-li; ZHOU Shi-qiong

    2005-01-01

    Hydration shrinkage generated by cement hydration is the cause of autogenous shrinkage of high strength concrete. It may result in the volume change and even cracking of mortar and concrete. According to the data analysis in a series of experimental studies, the influence of ultra-fine fly ash on the hydration shrinkage of composite cementitious materials was investigated. It is found that ultra-fine fly ash can reduce the hydration shrinkage of cement paste effectively, and the more the ultra-fine fly ash, the less the hydration shrinkage. Compared with cement paste without the ultra-fine fly ash, the shrinkage ratio of cement paste reduces from 23.4% to 39.7% when the ultra-fine fly ash replaces cement from 20% to 50%. Moreover, the microscopic mechanism of the ultra-fine fly ash restraining the hydration shrinkage was also studied by scanning electron microscopy, X-ray diffraction and hydrated equations. The results show that the hydration shrinkage can be restrained to a certain degree because the ultra-fine fly ash does not participate in the hydration at the early stage and the secondary hydration products are different at the later stage.

  6. To develop a quantitative method for predicting shrinkage porosity in squeeze casting

    Institute of Scientific and Technical Information of China (English)

    Shaomin Li; Kenichiro Mine; Shinji Sanakanishi; Koichi Anzai

    2009-01-01

    In order to secure high strength and high elongation of suspension parts, it is critical to predict shrinkage porosity quantitatively. A new simulation method for quantitative predic'don of shrinkage porosity when replenishing molten metal has been proposed for squeeze casting process. To examine the accuracy of the calculation model, the proposed method was applied to a plate model.

  7. Magnitude, modeling and significance of swelling and shrinkage processes in clay soils.

    NARCIS (Netherlands)

    Bronswijk, J.J.B.

    1991-01-01

    The dynamic process of swelling and shrinkage in clay soils has significant practical consequences, such as the rapid transport of water and solutes via shrinkage cracks to the subsoil, and the destruction of buildings and roads on clay soils. In order to develop measuring methods and computer simul

  8. Effect of cure cycle on enthalpy relaxation and post shrinkage in neat epoxy and epoxy composites

    DEFF Research Database (Denmark)

    Jensen, Martin; Jakobsen, Johnny

    2016-01-01

    . Enthalpy recovery is found to exert a minor impact on the sample dimension during reheating since a non-reversing shrinkage is observed during reheating. This shrinkage is ascribed to structural changes on molecular level in the specimen and it is inferred that samples with a high initial disorder only...

  9. Influence of Cure Shrinkage on Process-Induced Stress and Deformation in Thick Thermosetting Composites

    Science.gov (United States)

    1992-07-01

    unidirectional composite micromechanics model The constituent fiber properties (constant), the resin properties and chemical shrinkage (cure dependent...during cure. Changes in the resin properties directly influence the mechanical properties in the composite, and chemical shrinkage represents a...xA (5) The expansion coefficients, otL and or, are based on the micromechanics model utilizing constant fiber properties. cure dependent resin

  10. Prediction of Shrinkage Pore Volume Fraction Using a Dimensionless Niyama Criterion

    Science.gov (United States)

    Carlson, Kent D.; Beckermann, Christoph

    2009-01-01

    A method is presented to use a dimensionless form of the well-known Niyama criterion to directly predict the amount of shrinkage porosity that forms during solidification of metal alloy castings. The main advancement offered by this method is that it avoids the need to know the threshold Niyama value below which shrinkage porosity forms; such threshold values are generally unknown and alloy dependent. The dimensionless criterion accounts for both the local thermal conditions (as in the original Niyama criterion) and the properties and solidification characteristics of the alloy. Once a dimensionless Niyama criterion value is obtained from casting simulation results, the corresponding shrinkage pore volume fraction can be determined knowing only the solid fraction-temperature curve and the total solidification shrinkage of the alloy. Curves providing the shrinkage pore volume percentage as a function of the dimensionless Niyama criterion are given for WCB steel, aluminum alloy A356, and magnesium alloy AZ91D. The present method is used in a general-purpose casting simulation software package to predict shrinkage porosity in three-dimensional (3-D) castings. Comparisons between simulated and experimental shrinkage porosity results for a WCB steel plate casting demonstrate that this method can reasonably predict shrinkage. Additional simulations for magnesium alloy AZ91D illustrate that this method is applicable to a wide variety of alloys and casting conditions.

  11. Chelating polymeric membranes

    KAUST Repository

    Peinemann, Klaus-Viktor

    2015-01-22

    The present application offers a solution to the current problems associated with recovery and recycling of precious metals from scrap material, discard articles, and other items comprising one or more precious metals. The solution is premised on a microporous chelating polymeric membrane. Embodiments include, but are not limited to, microporous chelating polymeric membranes, device comprising the membranes, and methods of using and making the same.

  12. Conversion Disorder

    Science.gov (United States)

    ... Recent significant stress or emotional trauma Being female — women are much more likely to develop conversion disorder Having a mental health condition, such as mood or anxiety disorders, dissociative disorder or certain personality disorders Having ...

  13. Conversation Analysis.

    Science.gov (United States)

    Schiffrin, Deborah

    1990-01-01

    Summarizes the current state of research in conversation analysis, referring primarily to six different perspectives that have developed from the philosophy, sociology, anthropology, and linguistics disciplines. These include pragmatics; speech act theory; interactional sociolinguistics; ethnomethodology; ethnography of communication; and…

  14. Conversation Analysis.

    Science.gov (United States)

    Schiffrin, Deborah

    1990-01-01

    Summarizes the current state of research in conversation analysis, referring primarily to six different perspectives that have developed from the philosophy, sociology, anthropology, and linguistics disciplines. These include pragmatics; speech act theory; interactional sociolinguistics; ethnomethodology; ethnography of communication; and…

  15. Monitoring of collagen shrinkage by use of second harmonic generation microscopy

    Science.gov (United States)

    Lin, Sung-Jan; Chen, Jau-Shiuh; Lo, Wen; Sun, Yen; Chen, Wei-Liang; Chan, Jung-Yi; Tan, Hsin-Yuan; Lin, Wei-Chou; Hsu, Chih-Jung; Young, Tai-Horng; Jee, Shiou-Hwa; Dong, Chen-Yuan

    2006-02-01

    Thermal treatment induced collagen shrinkage has a great number of applications in medical practice. Clinically, the there is lack of reliable non-invasive methods to quantify the shrinkage. Overt treatment by heat application can lead to devastating results. We investigate the serial changes of collagen shrinkage by thermal treatment of rat tail tendons. The change in length is correlated with the finding in second harmonic generation microscopy and histology. Rat tail tendon shortens progressively during initial thermal treatment. After a certain point in time, the length then remains almost constant despite further thermal treatment. The intensity of second harmonic generation signals also progressively decreases initially and then remains merely detectable upon further thermal treatment. It prompts us to develop a mathematic model to quantify the dependence of collagen shrinkage on changes of SHG intensity. Our results show that SHG intensity can be used to predict the degree of collagen shrinkage during thermal treatment for biomedical applications.

  16. Strategic conversation

    Directory of Open Access Journals (Sweden)

    Nicholas Asher

    2013-08-01

    Full Text Available Models of conversation that rely on a strong notion of cooperation don’t apply to strategic conversation — that is, to conversation where the agents’ motives don’t align, such as courtroom cross examination and political debate. We provide a game-theoretic framework that provides an analysis of both cooperative and strategic conversation. Our analysis features a new notion of safety that applies to implicatures: an implicature is safe when it can be reliably treated as a matter of public record. We explore the safety of implicatures within cooperative and non cooperative settings. We then provide a symbolic model enabling us (i to prove a correspondence result between a characterisation of conversation in terms of an alignment of players’ preferences and one where Gricean principles of cooperative conversation like Sincerity hold, and (ii to show when an implicature is safe and when it is not. http://dx.doi.org/10.3765/sp.6.2 BibTeX info

  17. Direct Conversion of Energy

    Energy Technology Data Exchange (ETDEWEB)

    Corliss, William R

    1964-01-01

    Topics include: direct versus dynamic energy conversion; laws governing energy conversion; thermoelectricity; thermionic conversion; magnetohydrodynamic conversion; chemical batteries; the fuel cell; solar cells; nuclear batteries; and advanced concepts including ferroelectric conversion and thermomagnetic conversion.

  18. A Novel RAFT Polymerization under UV Radiation at Ambient Temperature

    Institute of Scientific and Technical Information of China (English)

    Nianfa Yang; Lican Lu; Yuanli Cai

    2005-01-01

    @@ 1Introduction Reversible Addition Fragmentation chain Transfer (RAFT) polymerization has become a highly versatile technique for the controlled/"living" radical polymerization of a wide range of monomers under various conditions[1,2]. The RAFT polymerization was carried out using a dithiocarboxylate or trithiocarbonate as a Chain Transfer Agent (CTA), which mediates the growing chain radicals via an equilibrium[1,2]. From both academic and industrial standpoints, it is clearly desirable to develop a RAFT process under mild conditions. Rizzardo, et al [3] and McCormick's group[4] have respectively reported RAFT polymerization using conventional radical initiators at ambient temperature by adjusting the structure of CTA. The RAFT Polymerization initiated by γ-radiation has also reported recently[5]. Quinn, et al [6] have reported the RAFT polymerization under UV radiation using CTA as the source of primary radicals at 42 ℃, which was well controlled at low conversions (below 20% ) but less controlled at higher conversions (over 20% ) due to the photolysis of CTA residues under UV radiation.

  19. Dynamic Monte Carlo simulation of chain growth polymerization and its concentration effect

    Institute of Scientific and Technical Information of China (English)

    L(U) Wenqi; DING Jiandong

    2005-01-01

    Free radical polymerization and living ion polymerization have been simulated via the dynamic Monte Carlo method with the bond-fluctuation model in this paper. The polymerization-related parameters such as conversion of monomers, degree of polymerization, average molecular weight and its distribution are obtained by statistics. The simulation outputs are consistent with the corresponding theoretical predictions. The scaling relationships of the coil size versus chain length are also confirmed at different volume fractions. Furthermore, the effect of diffusion on polymerization is revealed preliminarily in our simulation. Hence the simulation approach has been proven to be feasible to investigate polymerization reactions with the advantages that configuration and diffusion of polymer chains can be examined together with polymerization kinetics.

  20. Effect of the key mixture parameters on shrinkage of reactive powder concrete.

    Science.gov (United States)

    Ahmad, Shamsad; Zubair, Ahmed; Maslehuddin, Mohammed

    2014-01-01

    Reactive powder concrete (RPC) mixtures are reported to have excellent mechanical and durability characteristics. However, such concrete mixtures having high amount of cementitious materials may have high early shrinkage causing cracking of concrete. In the present work, an attempt has been made to study the simultaneous effects of three key mixture parameters on shrinkage of the RPC mixtures. Considering three different levels of the three key mixture factors, a total of 27 mixtures of RPC were prepared according to 3(3) factorial experiment design. The specimens belonging to all 27 mixtures were monitored for shrinkage at different ages over a total period of 90 days. The test results were plotted to observe the variation of shrinkage with time and to see the effects of the key mixture factors. The experimental data pertaining to 90-day shrinkage were used to conduct analysis of variance to identify significance of each factor and to obtain an empirical equation correlating the shrinkage of RPC with the three key mixture factors. The rate of development of shrinkage at early ages was higher. The water to binder ratio was found to be the most prominent factor followed by cement content with the least effect of silica fume content.

  1. Effect of the Key Mixture Parameters on Shrinkage of Reactive Powder Concrete

    Directory of Open Access Journals (Sweden)

    Shamsad Ahmad

    2014-01-01

    Full Text Available Reactive powder concrete (RPC mixtures are reported to have excellent mechanical and durability characteristics. However, such concrete mixtures having high amount of cementitious materials may have high early shrinkage causing cracking of concrete. In the present work, an attempt has been made to study the simultaneous effects of three key mixture parameters on shrinkage of the RPC mixtures. Considering three different levels of the three key mixture factors, a total of 27 mixtures of RPC were prepared according to 33 factorial experiment design. The specimens belonging to all 27 mixtures were monitored for shrinkage at different ages over a total period of 90 days. The test results were plotted to observe the variation of shrinkage with time and to see the effects of the key mixture factors. The experimental data pertaining to 90-day shrinkage were used to conduct analysis of variance to identify significance of each factor and to obtain an empirical equation correlating the shrinkage of RPC with the three key mixture factors. The rate of development of shrinkage at early ages was higher. The water to binder ratio was found to be the most prominent factor followed by cement content with the least effect of silica fume content.

  2. Investigations of linear contraction and shrinkage stresses development in hypereutectic al-si binary alloys

    Directory of Open Access Journals (Sweden)

    J. Mutwil

    2009-07-01

    Full Text Available Shrinkage phenomena during solidification and cooling of hypereutectic aluminium-silicon alloys (AlSi18, AlSi21 have been examined. A vertical shrinkage rod casting with circular cross-section (constant or fixed: tapered has been used as a test sample. Two type of experiments have been conducted: 1 on development of the test sample linear dimension changes (linear expansion/contraction, 2 on development of shrinkage stresses in the test sample. By the linear contraction experiments the linear dimension changes of the test sample and the metal test mould as well a temperature in six points of the test sample have been registered. By shrinkage stresses examination a shrinkage tension force and linear dimension changes of the test sample as well a temperature in three points of the test sample have been registered. Registered time dependences of the test bar and the test mould linear dimension changes have shown, that so-called pre-shrinkage extension has been mainly by mould thermal extension caused. The investigation results have shown that both: the linear contraction as well as the shrinkage stresses development are evident dependent on metal temperature in a warmest region the sample (thermal centre.

  3. Compositional Changes for Reduction of Polymerisation-Induced Shrinkage in Holographic Photopolymers

    Directory of Open Access Journals (Sweden)

    D. Cody

    2016-01-01

    Full Text Available Polymerisation-induced shrinkage is one of the main reasons why many photopolymer materials are not used for certain applications including holographic optical elements and holographic data storage. Here, two compositional changes for the reduction of shrinkage in an acrylamide-based photopolymer are reported. A holographic interferometric technique was used to study changes in the dynamics of the shrinkage processes occurring in the modified photopolymer during holographic recording in real time. Firstly, the effect of the replacement of the acrylamide monomer in the photopolymer composition with a larger monomer molecule, diacetone acrylamide, on polymerisation-induced shrinkage has been studied. A reduction in relative shrinkage of 10–15% is obtained using this compositional change. The second method tested for shrinkage reduction involved the incorporation of BEA-type zeolite nanoparticles in the acrylamide-based photopolymer. A reduction in relative shrinkage of 13% was observed for acrylamide photopolymer layers doped with 2.5% wt. BEA zeolites in comparison to the undoped photopolymer.

  4. Influence of fly ash fineness on water requirement and shrinkage of blended cement mortars

    Directory of Open Access Journals (Sweden)

    Vanissorn Vimonsatit

    2015-12-01

    Full Text Available In this paper, the influence of fly ash fineness on water requirement and shrinkage of blended cement mortar was studied. The results indicate that the water requirement and shrinkage characteristic of the blended cement mortar are dependent on fly ash fineness and replacement level. The use of coarse fly ash slightly reduces the water requirement but greatly reduced the drying and the autogenous shrinkage of the blended cement mortars and the reduction is more with an increase in the fly ash replacement level. The finer fly ashes further reduce the water requirement, but increase the drying and the autogenous shrinkages as compared with coarser fly ash. The incorporation of superplasticizer drastically reduces the water requirement, but the effect on the drying and autogenous shrinkages of the normal Portland cement mortar is small. However, for the fly ash mortar, the use of superplasticizer results in a decrease in drying shrinkage and in a substantial increase in the autogenous shrinkage particularly for the fine fly ash at a high replacement level.

  5. Importance of shrinkage in empirical bayes estimates for diagnostics: problems and solutions.

    Science.gov (United States)

    Savic, Radojka M; Karlsson, Mats O

    2009-09-01

    Empirical Bayes ("post hoc") estimates (EBEs) of etas provide modelers with diagnostics: the EBEs themselves, individual prediction (IPRED), and residual errors (individual weighted residual (IWRES)). When data are uninformative at the individual level, the EBE distribution will shrink towards zero (eta-shrinkage, quantified as 1-SD(eta (EBE))/omega), IPREDs towards the corresponding observations, and IWRES towards zero (epsilon-shrinkage, quantified as 1-SD(IWRES)). These diagnostics are widely used in pharmacokinetic (PK) pharmacodynamic (PD) modeling; we investigate here their usefulness in the presence of shrinkage. Datasets were simulated from a range of PK PD models, EBEs estimated in non-linear mixed effects modeling based on the true or a misspecified model, and desired diagnostics evaluated both qualitatively and quantitatively. Identified consequences of eta-shrinkage on EBE-based model diagnostics include non-normal and/or asymmetric distribution of EBEs with their mean values ("ETABAR") significantly different from zero, even for a correctly specified model; EBE-EBE correlations and covariate relationships may be masked, falsely induced, or the shape of the true relationship distorted. Consequences of epsilon-shrinkage included low power of IPRED and IWRES to diagnose structural and residual error model misspecification, respectively. EBE-based diagnostics should be interpreted with caution whenever substantial eta- or epsilon-shrinkage exists (usually greater than 20% to 30%). Reporting the magnitude of eta- and epsilon-shrinkage will facilitate the informed use and interpretation of EBE-based diagnostics.

  6. Polymerisation shrinkage versus layer thickness of a dentine bonding resin: Method development

    Directory of Open Access Journals (Sweden)

    Jafarzadeh T

    2002-07-01

    Full Text Available Dentine bonding systems are usually unfilled, and so their shrinkage may be significant. High"nshrinkage may cause internal stress at the interface between resin-composite restoration and the dentine"nsubstrate. Failure of the adhesive interface may be observed due to the interna! stress. The aims of this"nstudy were:"nA To obtain a suitable method for measuring the kinetics of polymerisation shrinkage in unfilled resm at different thicknesses, particularly for thin films."nB Consideraing the effect of thickness on shrinkage."nScotchbond Multipurpose (3M adhesive bond resin was used. To overcome the particular challenges presented by thin films, a filled-ring measurement procedure was used. Also, a non-contact laser analogue displacement sensor system was developed and applied to measure polymerisation shrinkage. Regression analysis was performed on a complete data set. Non-linear regression analysis established a logarithmic relationship between polymerisation shrinkage and layer thickness. The method applied in this study was found to be sensitive and accurate procedure for determining photo-polymerisation shrinkage of thin films. Polymerisation shrinkage increased with logarithmic of the adhesive thickness.

  7. An integrated approach to soil structure, shrinkage, and cracking in samples and layers

    CERN Document Server

    Chertkov, V Y

    2014-01-01

    A recent model showed how a clay shrinkage curve is step-by-step transformed into the shrinkage curve of an aggregated soil at any clay content if it is measured on samples so small that cracks do not occur at shrinkage. Such a shrinkage curve was called a reference curve. The present work generalizes this model to any soil sample size or layer thickness, i.e., to any crack contribution to the shrinkage curve. The approach is based on: (i) recently suggested features of an intra-aggregate structure; (ii) detailed accounting for the contributions to the soil volume and water content during shrinkage; and (iii) new concepts of lacunar factor, crack factor, and critical sample size. The following input parameters are needed for the prediction: (i) all parameters determining the basic dependence of the reference shrinkage curve; (ii) parameters determining the critical sample size (structural porosity and minimum and maximum aggregate size at maximum swelling); and (iii) initial sample size or layer thickness. A ...

  8. Plasma polymerization by Softplasma

    DEFF Research Database (Denmark)

    Jiang, J.; Wu, Zhenning; Benter, Maike

    2008-01-01

    In the late 19th century, the first depositions - known today as plasma polymers, were reported. In the last century, more and more research has been put into plasma polymers. Many different deposition systems have been developed. [1, 2] Shi F. F. broadly classified them into internal electrode......, external electrode, and electrodeless microwave or high frequency reactors. [3] Softplasma™ is an internal electrode plasma setup powered by low frequenc~ gower supply. It was developed in late 90s for surface treatment of silicone rubber. [ ]- 5] It is a low pressure, low electron density, 3D homogenous...... plasma. In this study, we are presenting the surface modification"pf polymers by plasma polymerization using Softplasma™. Softplasma™ can be used for two major types of polymerization: polymerization of vinyl monomers, where plasma acts as initiator; chemical vapour deposition, where plasma acts...

  9. Polymeric Amines by chemical modifications of alternating aliphatic polyketones

    NARCIS (Netherlands)

    Zhang, Youchun; Broekhuis, A. A.; Stuart, Marc C. A.; Picchioni, F.

    2008-01-01

    Alternating, aliphatic polyketones were chemically modified by using di-amines to obtain polymeric products having pendant amino groups. The used reaction, Paal-Knorr, involves the formation of pyrrole rings along the polyketone backbone. The corresponding kinetics and final conversions are clearly

  10. Supported organometallic catalysts for hydrogenation and Olefin Polymerization

    Science.gov (United States)

    Marks, Tobin J.; Ahn, Hongsang

    2001-01-01

    Novel heterogeneous catalysts for the which hydrogenation of olefins and arenes with high conversion rates under ambient conditions and the polymerization of olefins have been developed. The catalysts are synthesized from Ziegler-type precatalysts by supporting them on sulfate-modified zirconia.

  11. POLYMERIC SURFACTANT STRUCTURE

    Institute of Scientific and Technical Information of China (English)

    P.M. Saville; J.W. White

    2001-01-01

    Polymeric surfactants are amongst the most widespread of all polymers. In nature, proteins and polysaccharides cause self organization as a result of this surfactancy; in industry, polymeric surfactants play key roles in the food, explosives and surface coatings sectors. The generation of useful nano- and micro-structures in films and emulsions as a result of polymer amphiphilicity and the application of mechanical stress is discussed. The use of X-ray and neutron small angle scattering and reflectivity to measure these structures and their dynamic properties will be described. New results on linear and dendritic polymer surfactants are presented.

  12. CHANNEL SHRINKAGE AND ITS INSTABILITY IN THE LOWER YELLOW RIVER1

    Institute of Scientific and Technical Information of China (English)

    2006-01-01

    From the mid 1980s through the late 1990s, the channel of the lower Yellow River experienced serious shrinkage, which has decreased the flood conveyance of the channel and the sediment carrying capacity of the flow, raised the water levels of floods, and, thus, severely threatened the safety of flood control along the river. The completion of Xiaolangdi Dam in 1999 could help mitigate the channel shrinkage problem, but the situation has not changed yet. This paper analyses the characteristics, mechanisms, and conditions resulting in channel shrinkage, points out channel instabilities, and puts forward approaches of channel rehabilitation.

  13. INTER-GROUP IMAGE REGISTRATION BY HIERARCHICAL GRAPH SHRINKAGE.

    Science.gov (United States)

    Ying, Shihui; Wu, Guorong; Liao, Shu; Shen, Dinggang

    2013-12-31

    In this paper, we propose a novel inter-group image registration method to register different groups of images (e.g., young and elderly brains) simultaneously. Specifically, we use a hierarchical two-level graph to model the distribution of entire images on the manifold, with intra-graph representing the image distribution in each group and the inter-graph describing the relationship between two groups. Then the procedure of inter-group registration is formulated as a dynamic evolution of graph shrinkage. The advantage of our method is that the topology of entire image distribution is explored to guide the image registration. In this way, each image coordinates with its neighboring images on the manifold to deform towards the population center, by following the deformation pathway simultaneously optimized within the graph. Our proposed method has been also compared with other state-of-the-art inter-group registration methods, where our method achieves better registration results in terms of registration accuracy and robustness.

  14. An improved adaptive wavelet shrinkage for ultrasound despeckling

    Indian Academy of Sciences (India)

    P Nirmala Devi; R Asokan

    2014-08-01

    Ultrasound imaging is the most widely used medical diagnostic technique for clinical decision making, due to its ability to make real time imaging for moving structures, low cost and safety. However, its usefulness is degraded by the presence of signal dependent speckle noise. Several wavelet-based denoising schemes have been reported in the literature for the removal of speckle noise. This study proposes a new and improved adaptive wavelet shrinkage in the translational invariant domain. It exploits the knowledge of the correlation of the wavelet coefficients within and across the resolution scales. A preliminary coefficient classification representing useful image information and noise is performed with a novel inter-scale dependency measure. The spatial context adaptation of the wavelet coefficients within a subband is achieved by a local spatial adaptivity indicator, determined by using a truncation threshold. A weighted signal variance is estimated based on this measure and used in the determination of a subband adaptive threshold. The proposed thresholding function aims to reduce the fixed bias of the soft thresholding approach. Experiments conducted with the proposed filter are compared with the existing filtering algorithms in terms of Peak-Signal to Noise Ratio (PSNR), Mean Square Error (MSE), Structural Similarity IndexMeasure (SSIM), Equivalent Number of Looks (ENL) and Edge Preservation Index (EPI). A comparison of the results shows that the proposed filter achieves an improvement in terms of quantitative measures and in terms of visual quality of the images.

  15. Super-resolution optical telescopes with local light diffraction shrinkage

    Science.gov (United States)

    Wang, Changtao; Tang, Dongliang; Wang, Yanqin; Zhao, Zeyu; Wang, Jiong; Pu, Mingbo; Zhang, Yudong; Yan, Wei; Gao, Ping; Luo, Xiangang

    2015-12-01

    Suffering from giant size of objective lenses and infeasible manipulations of distant targets, telescopes could not seek helps from present super-resolution imaging, such as scanning near-field optical microscopy, perfect lens and stimulated emission depletion microscopy. In this paper, local light diffraction shrinkage associated with optical super-oscillatory phenomenon is proposed for real-time and optically restoring super-resolution imaging information in a telescope system. It is found that fine target features concealed in diffraction-limited optical images of a telescope could be observed in a small local field of view, benefiting from a relayed metasurface-based super-oscillatory imaging optics in which some local Fourier components beyond the cut-off frequency of telescope could be restored. As experimental examples, a minimal resolution to 0.55 of Rayleigh criterion is obtained, and imaging complex targets and large targets by superimposing multiple local fields of views are demonstrated as well. This investigation provides an access for real-time, incoherent and super-resolution telescopes without the manipulation of distant targets. More importantly, it gives counterintuitive evidence to the common knowledge that relayed optics could not deliver more imaging details than objective systems.

  16. Shrinkage, abrasion, erosion and sorption of clay plasters

    Directory of Open Access Journals (Sweden)

    Minke, G.

    2011-09-01

    Full Text Available At the Buildung Research Institute (FEB, Faculty of Architecture, University of Kassel, Germany, in the last years several hundred tests were made to study the characteristics of different loam mortars in respect of their linear shrinkage, absorption of humidity and their resistance against abrasion and erosion. In order to get data about abrasion and erosion new test methods and special apparatusses were developed. The mortars tested, chosen from the market, showed extremely varying test results.

    En el Laboratorio de Construcciones Experimentales (FEB de la Facultad de Arquitectura, Universidad de Kassel, Alemania, fueron testeados cientos de diferentes pruebas de revoque de barro para estudiar su contracción durante el secado, su absorción de humedad y su resistencia contra abrasión, erosión y absorción. Para recibir datos sobre abrasión y erosión, nuevas aparatos y metodos fueron desarrollados. Los resultados de los revoques comprados en el mercado muestran gran diferencias en los valores.

  17. An Iterative Shrinkage Approach to Total-Variation Image Restoration

    CERN Document Server

    Michailovich, Oleg

    2009-01-01

    The problem of restoration of digital images from their degraded measurements plays a central role in a multitude of practically important applications. A particularly challenging instance of this problem occurs in the case when the degradation phenomenon is modeled by an ill-conditioned operator. In such a case, the presence of noise makes it impossible to recover a valuable approximation of the image of interest without using some a priori information about its properties. Such a priori information is essential for image restoration, rendering it stable and robust to noise. Particularly, if the original image is known to be a piecewise smooth function, one of the standard priors used in this case is defined by the Rudin-Osher-Fatemi model, which results in total variation (TV) based image restoration. The current arsenal of algorithms for TV-based image restoration is vast. In the present paper, a different approach to the solution of the problem is proposed based on the method of iterative shrinkage (aka i...

  18. Shrinkage/swelling of compacted clayey loose and dense soils

    Science.gov (United States)

    Nowamooz, Hossein; Masrouri, Farimah

    2009-11-01

    This Note presents an experimental study performed on expansive compacted loose and dense samples using osmotic oedometers. Several successive wetting and drying cycles were applied in a suction range between 0 and 8 MPa under different values of constant net vertical stress (15, 30, and 60 kPa). During the suction cycles, the dense samples showed cumulative swelling strains, while the loose samples showed volumetric shrinkage accumulation. At the end of the suction cycles, the volumetric strains converged to an equilibrium stage that indicated elastic behavior of the swelling soil for any further hydraulic variations. At this stage, the compression curves for the studied soil at the different imposed suctions (0, 2, and 8 MPa) converged towards the saturated state curve for the high applied vertical stresses. We defined this pressure as the saturation stress(P). The compression curves provided sufficient data to examine the soil mechanical behavior at the equilibrium stage. To cite this article: H. Nowamooz, F. Masrouri, C. R. Mecanique 337 (2009).

  19. Flood control and shrinkage in the Haihe River Mouth

    Institute of Scientific and Technical Information of China (English)

    胡世雄; 王兆印; 李行伟

    2001-01-01

    Because of overusing water resources in the upper and middle reaches of the Haihe Basin, less and less water flows to the river mouth. The Haihe River flow is cut off in most time of the seasons, sediment deposited in the river mouth channel is rarely scoured away, and many of the river mouth channels have been shrinking quickly. The discharge capacity of the channel is consequently reduced greatly, which results in more and more serious flood hazard. Many tide gates have been built for storing fresh water and preventing the salty and turbid water. The channel downstream of the gate is silting up and people have to dredge the channel every year before the flood season. This paper studies the laws of the siltation and strategies controlling channel shrinkage. The strategies are digger dredging, trailer dredging, scouring with pumping water or storing tidal water, building double guiding dikes and building a new gate. Comparison of various strategies is performed, suggesting the most effective strategy con

  20. Minerals of expansive and non-shrinkage sulfomineral cements

    Directory of Open Access Journals (Sweden)

    Samchenko Svetlana V.

    2017-01-01

    Full Text Available Usually to obtain expansive cements sulfoaluminate clinker or mix aluminate clinker with calcium sulfates (gypsum, hemihydrate, anhydrate are used. For these cements ettringite is an important hydration product and kinetic reaction of this phase plays an important role in determinаting performance. The alternative aluminate phases may be ferrite containing ones. This article deals with the composition and properties of solid solution of calcium sulfoaluminate, sulfoferrite and sulfoaluminoferrite cements. It was studied an influence of calcium sulfate on structure and properties of calcium aluminate and ferrite phases, and their stability under high temperatures. Beside that the properties of cements containing these phases were studied. The investigation of hydration and properties of sulfomineral cements shows that ettringite and its analogies are formed in such way to provide expansion and compression of cement stone. Degree of expansion and self-stressing of cement stone depends not only on composition of sulfated minerals but on ratio and types of clinkers. The higher expansion is reached by the use of high alite containing Portland cement clinker together with sulfoaluminate or sulfoalumoferrite one, the lower expansion is reached by addition of sulfoalumoferrite and sulfoferrite clinkers. These cements are classified as self-stressing, expansive or shrinkage-compensating ones depend on the degree of their expansion after 28 days of curing.

  1. Laser-induced scleral shrinkage for refractive surgery

    Science.gov (United States)

    Ren, Qiushi; Simon, Gabriel; Parel, Jean-Marie A.; Shen, Jin-Hui

    1994-06-01

    We investigate the laser refractive scleroplasty (LRS) as a potential minimal-invasive method for correcting post-operative astigmatism. The scleral shrinkage near limbus was induced on 6 cadaver eyes using a 200 micrometers fiber optic probe coupled to a pulsed Ho:YAG laser. The diameter of the treatment spot was 0.8 mm. The output energy measured at tip was 60.2+/- 0.6 mJ. The treatments consisted of multiple sector patterns placed along the major axis of astigmatism parallel to the limbus, and round patterns placed along the limbus. Three treatment spots were applied on each side of the sector. The separation among sectors and limbus is 1 mm. Keratometry and topography of the cornea were measured after each sector or round pattern treatment. Effect of 5 and 10 pulses at each treatment spot were compared. Histology was performed to evaluate laser tissue damage. The major axis of astigmatism was shifted 90 degrees after the sector pattern treatment and amount of dioptric change increased when adding a new treatment or using more treatment pulses. However, the spherical equivalent of the eyes was essentially unchanged. The keratometry of the corneas remained the same after the round pattern treatment. Laser refractive scleroplasty may be applied for the correction of post-operative astigmatism.

  2. [Study of "living" radical polymerization by FTIR in situ].

    Science.gov (United States)

    Chen, J; Hua, F; Qiu, J; Yang, Y

    2001-02-01

    Three types of living radical polymerization processes were monitored by means of FTIR spectrometer with handful diamond detector called as Dicomp in situ. It was found that both styrene and styrene/hydroxylpropyl methyacrylate (HPMA) could polymerize according to stable free radical polymerization (SFRP) mechanism in presence of 4-hydroxyl tetramethypiperidiyl-1-oxy(HTEMPO). For styrene/HPMA system, the styrene and HPMA conversion monitored by FTIR were linear with increase of molecular weight, but it gave longer induction period compared with that for St bulk polymerization. It was related to the hydrogen-transfer reaction between the propagating radicals with the end HPMA unit and HTEMPO. Furthermore, This following method in situ could be introduced into monitoring heterogeneous polymerization of styrene during atom transfer radical polymerization (ATRP). The apparent kinetics was found to be about zero order and not 1.0 order, due to propagating on the complex including radicals, CuX and bpy in heterogeneous interface. The polymerization rate will be not related to the St in bulk St phase.

  3. Conversational Telugu.

    Science.gov (United States)

    Beinstein, Judith; And Others

    The purpose of this text is to develop elementary conversational skills in Telugu. The language materials consist of four types of language learning activities. The first, and most predominant, is the unit microwave cycle. These cycles divide the learning process into two basic phases, the first of which involves mimicry, memorization, and…

  4. Conversion Disorder

    National Research Council Canada - National Science Library

    Fisher, Robert S; Stonnington, Cynthia M; Barry, John J

    2006-01-01

    ... to proceed after establishing a diagnosis of conversion disorder. Case Presentation "Ms. A," a 53-year-old left-handed woman, was admitted to our epilepsy monitoring unit for evaluation of a 4-month history of tremors, head bobbing, and episodic loss of awareness. The onset of these symptoms was 1 week after she had visited an emergency department...

  5. The influence of superabsorbent polymers on the autogenous shrinkage properties of cement pastes with supplementary cementitious materials

    DEFF Research Database (Denmark)

    Snoeck, D.; Jensen, Ole Mejlhede; De Belie, N.

    2015-01-01

    Fly ash and blast-furnace slag containing binders are frequently used in the construction industry and it is important to know the extent of autogenous shrinkage and its (ideal) mitigation by superabsorbent polymers in these systems as a function of their age. In this paper, the autogenous...... shrinkage was determined by manual and automated shrinkage measurements. Autogenous shrinkage was reduced in cement pastes with the supplementary cementitious materials versus Portland cement pastes. At later ages, the rate of autogenous shrinkage is higher due to the pozzolanic activity. Internal curing...

  6. Effect of Layering Methods, Composite Type, and Flowable Liner on the Polymerization Shrinkage Stress of Light Cured Dental Composites

    Science.gov (United States)

    2011-08-01

    thickness of flowable liner, use of RMGI (resin modified glass ionomer ) liner, and light curing methods on the cuspal deflection should be...was pressed between a slide glass and a flexible cover glass (Marienfeld, Germany) using a metal wire with 0.5 mm diameter as a spacer, producing...a disc-shaped specimen 0.5 mm in thickness and 6.0 mm in diameter. The tip of a LVDT probe was placed on the center of the cover glass and set to

  7. The reversible addition-fragmentation chain transfer (RAFT) miniemulsion polymerization of vinyl acetate mediated by xanthate

    Institute of Scientific and Technical Information of China (English)

    Bo Jiang; Qing Hua Zhang; Xiao Li Zhan; Feng Qiu Chen

    2009-01-01

    The reversible addition-fragmentation chain transfer (RAFT) miniemulsion polymerization of vinyl acetate (VAt) mediated by methyl (methoxycarbonothioyl) sulfanyl acetate (MMSA) was carried out. The results showed that polymerizations initiated by AIBN and KPS proceeded in a controlled way. The RAFT miniemulsion polymerization of VAc initiated by KPS showed the shorter inhibition period, higher propagation rate coefficient and final conversion than those in experiment initiated by AIBN. When the monomer conversion reached 25%, the polydispersity index (PDI) of polymer became broad, which was related to chain transfer reaction in RAFT miniemulsion of VAc.

  8. Polymerized and functionalized triglycerides

    Science.gov (United States)

    Plant oils are useful sustainable raw materials for the development of new chemical products. As part of our research emphasis in sustainability and green polymer chemistry, we have explored a new method for polymerizing epoxidized triglycerides with the use of fluorosulfonic acid. Depending on the ...

  9. Waterborne Polymeric Films.

    Science.gov (United States)

    1981-02-01

    Skydrol 500B is a fire resistant hydraulic fluid available from Monsanto and which is primarily tricresyl phosphate. In most cases, the above table...Makromol. Chem. 1979, 82 149.- 23. Ger. Offen 2,804,609; (8/9/79). Bayer AG. 24. Odian, G. "Principles of Polymerization; "McGraw-Hill Book Co.: New York

  10. A Novel Continuously Initiated Polymerization by One-Atmosphere Low Temperature Plasma Device

    Institute of Scientific and Technical Information of China (English)

    You qingliang; Meng yuedong; Wang jianhua; Ou qiongrong; Xu xu; Zhong shaofeng

    2005-01-01

    A novel atmospheric plasma device developed in this paper, which is more effective and convenient to study the plasma-initiated polymerization (PIP) than conventional setup. The structure and mechanism of the device is introduced. Some plasma-initiated polymerization experiments are carried out on the device, and the conversion of AA (Acrylic acid) and AM (Acryl amide) atmospheric (N2) plasma polymerization are respectively 89% and 94% after 120 h post polymerization, whereby IR spectra of the product (AA, AM). Our PIP result are confirmed.

  11. Polyamide-6 Polymerization in the VK Tube Reactor with Baffle Structure

    Institute of Scientific and Technical Information of China (English)

    WANG Xia-qin; TANG Zhi-lian

    2002-01-01

    The melt flow mechanism of polyamide-6 (PA6) was simulated with the mathematical flow model and tested by Particle Image Velotrimitry (PIV). The complete mathematical model for PA6 polymerization while flowing through the VK tube reactor was established according to PA6 hydrolytic polymerization kinetics. The characteristic data such as residence time, caprolactam conversion and the degree of polymerization (D. P.), at every stage of polymerization reaction and at every point of the VK tube were presented for the melt flowing through ten alternate conical baffles in VK tube.

  12. Study of swelling-shrinkage regularity of montmorillonite crystal and its relation with matric suction

    Institute of Scientific and Technical Information of China (English)

    谭罗荣; 孔令伟

    2001-01-01

    The swell-shrinking mineral of saturated and unsaturated expansive soil has important effect on engineering mechanical behavior. Based on the swelling-shrinkage change regularity of montmorillonite crystal in this paper, the actions between various interlayers of montmorillonite crystal are generally summarized as two kinds of action potentials-shrinkage potential and swelling potential. Moreover, through the experimental research and analysis, the expression formula for variations of the swelling potential and shrinkage potential with interlayer distance is presented, and the regularity of matric suction variations with interlayer distance is also obtained for unsaturated expansive soil. It may provide a new theoretical basis and research path for further research on the swelling-shrinkage mechanism of expansive soil and matric suction potential of unsaturated soil.

  13. Shrinkage and Expansive Strain of Concrete with Fly Ash and Expansive Agent

    Institute of Scientific and Technical Information of China (English)

    GAO Peiwei; LU Xiaolin; TANG Mingshu

    2009-01-01

    The effects of fly ash and MgO-type expansive agent on the shrinkage and expan-sive strain of concrete with high magnesia cement were investigated. The results show that high volumes of fly ash may reduce the shrinkage strain of concrete and inhibit the expansive strain of concrete with MgO-type expansive agent, but can not eliminate the shrinkage of concrete. MgO-type expansive agent may produce expansive strain and compensate the shrinkage strain of concrete, re-lieve the cracking risk, but the hydration product of magnesia tends to get together in paste and pro-duce expansive cracking of concrete with high magnesia content according to SEM observation.

  14. Numerical Simulation on Open Wellbore Shrinkage and Casing Equivalent Stress in Bedded Salt Rock Stratum

    Directory of Open Access Journals (Sweden)

    Jianjun Liu

    2013-01-01

    Full Text Available Most salt rock has interbed of mudstone in China. Owing to the enormous difference of mechanical properties between the mudstone interbed and salt rock, the stress-strain and creep behaviors of salt rock are significantly influenced by neighboring mudstone interbed. In order to identify the rules of wellbore shrinkage and casings equivalent stress in bedded salt rock stratum, three-dimensional finite difference models were established. The effects of thickness and elasticity modulus of mudstone interbed on the open wellbore shrinkage and equivalent stress of casing after cementing operation were studied, respectively. The results indicate that the shrinkage of open wellbore and equivalent stress of casings decreases with the increase of mudstone interbed thickness. The increasing of elasticity modulus will reduce the shrinkage of open wellbore and casing equivalent stress. Research results can provide the scientific basis for the design of mud density and casing strength.

  15. Numerical simulation on open wellbore shrinkage and casing equivalent stress in bedded salt rock stratum.

    Science.gov (United States)

    Liu, Jianjun; Zhang, Linzhi; Zhao, Jinzhou

    2013-01-01

    Most salt rock has interbed of mudstone in China. Owing to the enormous difference of mechanical properties between the mudstone interbed and salt rock, the stress-strain and creep behaviors of salt rock are significantly influenced by neighboring mudstone interbed. In order to identify the rules of wellbore shrinkage and casings equivalent stress in bedded salt rock stratum, three-dimensional finite difference models were established. The effects of thickness and elasticity modulus of mudstone interbed on the open wellbore shrinkage and equivalent stress of casing after cementing operation were studied, respectively. The results indicate that the shrinkage of open wellbore and equivalent stress of casings decreases with the increase of mudstone interbed thickness. The increasing of elasticity modulus will reduce the shrinkage of open wellbore and casing equivalent stress. Research results can provide the scientific basis for the design of mud density and casing strength.

  16. Experimental Research on the Autogenous Shrinkage of MK High Performance Concrete

    Institute of Scientific and Technical Information of China (English)

    2007-01-01

    Calcine and mill kaolin were used under agreeable technological conditions to generate matakaolin (MK). The autogenous shrinkage performance of high performance concrete added with MK was researched. It is shown that MK has an effective inhibitory action to early autogenous shrinkage of cement concrete, and the inhibitory action increases with the increase of MK. The autogenous shrinkage values from 24 hours after placement to 56 days are all higher than those of the contrasted concrete, among which, the value of the concrete with 5% MK is the highest. But the total shrinkage values in 56 days are all less than those of the contrasted test pieces. The total contraction after 24 h of placement decreases as the increase of MK, moreover,it is greatly less than that of the contrasted ones.

  17. Development of high shrinkage polyethylene terephthalate (PET) shape memory polymer tendons for concrete crack closure

    Science.gov (United States)

    Teall, Oliver; Pilegis, Martins; Sweeney, John; Gough, Tim; Thompson, Glen; Jefferson, Anthony; Lark, Robert; Gardner, Diane

    2017-04-01

    The shrinkage force exerted by restrained shape memory polymers (SMPs) can potentially be used to close cracks in structural concrete. This paper describes the physical processing and experimental work undertaken to develop high shrinkage die-drawn polyethylene terephthalate (PET) SMP tendons for use within a crack closure system. The extrusion and die-drawing procedure used to manufacture a series of PET tendon samples is described. The results from a set of restrained shrinkage tests, undertaken at differing activation temperatures, are also presented along with the mechanical properties of the most promising samples. The stress developed within the tendons is found to be related to the activation temperature, the cross-sectional area and to the draw rate used during manufacture. Comparisons with commercially-available PET strip samples used in previous research are made, demonstrating an increase in restrained shrinkage stress by a factor of two for manufactured PET filament samples.

  18. Mechanical properties, volumetric shrinkage and depth of cure of short fiber-reinforced resin composite.

    Science.gov (United States)

    Tsujimoto, Akimasa; Barkmeier, Wayne W; Takamizawa, Toshiki; Latta, Mark A; Miyazaki, Masashi

    2016-01-01

    The mechanical properties, volumetric shrinkage and depth of cure of a short fiber-reinforced resin composite (SFRC) were investigated in this study and compared to both a bulk fill resin composite (BFRC) and conventional glass/ceramic-filled resin composite (CGRC). Fracture toughness, flexural properties, volumetric shrinkage and depth of cure of the SFRC, BFRC and CGRC were measured. SFRC had significantly higher fracture toughness than BFRCs and CGRCs. The flexural properties of SFRC were comparable with BFRCs and CGRCs. SFRC showed significantly lower volumetric shrinkage than the other tested resin composites. The depth of cure of the SFRC was similar to BFRCs and higher than CGRCs. The data from this laboratory investigation suggests that SFRC exhibits improvements in fracture toughness, volumetric shrinkage and depth of cure when compared with CGRC, but depth of cure of SFRC was similar to BFRC.

  19. Influence of Technological Parameters of Furane Mixtures on Shrinkage Creation in Ductile Cast Iron Castings

    Directory of Open Access Journals (Sweden)

    Vasková I.

    2014-10-01

    Full Text Available Ductile cast iron (GS has noticed great development in last decades and its boom has no analogue in history humankind. Ductile iron has broaden the use of castings from cast iron into areas, which where exclusively domains for steel castings. Mainly by castings, which weight is very high, is the propensity to shrinkage creation even higher. Shrinkage creation influences mainly material, construction of casting, gating system and mould. Therefore, the main realized experiment was to ascertain the influence of technological parameters of furane mixture on shrinkage creation in castings from ductile iron. Together was poured 12 testing items in 3 moulds forto determine and compare the impact of various technological parameters forms the propensity for shrinkage in the casting of LGG.

  20. Strength and Drying Shrinkage of Alkali-Activated Slag Paste and Mortar

    Directory of Open Access Journals (Sweden)

    Mao-chieh Chi

    2012-01-01

    Full Text Available The aim of this study is to investigate the strengths and drying shrinkage of alkali-activated slag paste and mortar. Compressive strength, tensile strength, and drying shrinkage of alkali-activated slag paste and mortar were measured with various liquid/slag ratios, sand/slag ratios, curing ages, and curing temperatures. Experimental results show that the higher compressive strength and tensile strength have been observed in the higher curing temperature. At the age of 56 days, AAS mortars show higher compressive strength than Portland cement mortars and AAS mortars with liquid/slag ratio of 0.54 have the highest tensile strength in all AAS mortars. In addition, AAS pastes of the drying shrinkage are higher than AAS mortars. Meanwhile, higher drying shrinkage was observed in AAS mortars than that observed comparable Portland cement mortars.

  1. Properties and application of low-shrinkage resin composite%低聚合收缩复合树脂的性能及其应用

    Institute of Scientific and Technical Information of China (English)

    叶韵瑶

    2012-01-01

    聚合收缩是复合树脂的主要缺陷之一,易引起复合树脂与牙体之间形成间隙,产生釉质裂纹和牙尖移动,导致充填失败.近年来,一种以矽油基底基环氧化物为基质成分的新型复合树脂,以低聚合收缩率为特点,成为研究的热点.本文就这种新型复合树脂的性能和粘接等方面作一综述.%Polymerization shrinkage is one of the major deficiencies of resin composite, it may lead to gap between teeth and the filling resin composite, enamel cracks and cuspal deflection, and finally to restoration failure. Recently, a new low-shrinkage resin composite which is based on the new ring-opening silorane chemistry is made to overcome the problem. This review was to introduce the research progresses on the properties and adhesive system.

  2. Conversion Disorder

    Directory of Open Access Journals (Sweden)

    Yacov Rofé

    2013-11-01

    Full Text Available Conversion disorder remains a mystery that has only become more complicated with the decline of the scientific status of psychoanalysis (e.g., Piper, Lillevik, & Kritzer, 2008; Rofé, 2008 and recent neurological findings suggest that this behavior is controlled by biological mechanisms (van Beilen, Vogt, & Leenders, 2010. Moreover, existing theories have difficulty explaining the efficacy of various interventions, such as psychoanalysis, behavior therapy, drug therapy and religious therapy. This article reviews research and clinical evidence pertaining to both the development and treatment of conversion disorder and shows that this seemingly incompatible evidence can be integrated within a new theory, the Rational-Choice Theory of Neurosis (RCTN; Rofé, 2010. Despite the striking differences, RCTN continues Freud's framework of thinking as it employs a new concept of repression and replaces the unconscious with self-deception. Moreover, it incorporates Freud's idea, implicitly expressed in his theory, that neurotic disorders are, in fact, rational behaviors.

  3. Kinetics and Mechanism of Bulk Polymerization of Styrene Catalyzed by Rare Earth Catalyst

    Institute of Scientific and Technical Information of China (English)

    吴林波; 李伯耿; 李宝芳; 曹堃

    2001-01-01

    The bulk polymerization of styrene catalyzed by Nd(P204)3/MgBu2/HMPA (hexamethyl phospho-ramide) was carried out in capped glass tubes. The effects of reaction conditions on polymerization conversion and molecular weight in the range of high conversion were investigated. The molecular weight of the resultant polymers is dramatically high and its distribution is relatively narrow. The polymerization process demonstrates the feature of living polymerization and auto-acceleration phenomenon. The auto-acceleration phenomenon is attributed to the non-instantaneous formation of the active species. The experimental data suggest that chain transfer to MgBu2 is one of the factors governing the molecular weight development. A mechanism of polymerization is presented with the chain transfer process incorporated.

  4. Conversational sensing

    Science.gov (United States)

    Preece, Alun; Gwilliams, Chris; Parizas, Christos; Pizzocaro, Diego; Bakdash, Jonathan Z.; Braines, Dave

    2014-05-01

    Recent developments in sensing technologies, mobile devices and context-aware user interfaces have made it pos- sible to represent information fusion and situational awareness for Intelligence, Surveillance and Reconnaissance (ISR) activities as a conversational process among actors at or near the tactical edges of a network. Motivated by use cases in the domain of Company Intelligence Support Team (CoIST) tasks, this paper presents an approach to information collection, fusion and sense-making based on the use of natural language (NL) and controlled nat- ural language (CNL) to support richer forms of human-machine interaction. The approach uses a conversational protocol to facilitate a ow of collaborative messages from NL to CNL and back again in support of interactions such as: turning eyewitness reports from human observers into actionable information (from both soldier and civilian sources); fusing information from humans and physical sensors (with associated quality metadata); and assisting human analysts to make the best use of available sensing assets in an area of interest (governed by man- agement and security policies). CNL is used as a common formal knowledge representation for both machine and human agents to support reasoning, semantic information fusion and generation of rationale for inferences, in ways that remain transparent to human users. Examples are provided of various alternative styles for user feedback, including NL, CNL and graphical feedback. A pilot experiment with human subjects shows that a prototype conversational agent is able to gather usable CNL information from untrained human subjects.

  5. Effect of the Key Mixture Parameters on Shrinkage of Reactive Powder Concrete

    OpenAIRE

    Shamsad Ahmad; Ahmed Zubair; Mohammed Maslehuddin

    2014-01-01

    Reactive powder concrete (RPC) mixtures are reported to have excellent mechanical and durability characteristics. However, such concrete mixtures having high amount of cementitious materials may have high early shrinkage causing cracking of concrete. In the present work, an attempt has been made to study the simultaneous effects of three key mixture parameters on shrinkage of the RPC mixtures. Considering three different levels of the three key mixture factors, a total of 27 mixtures of RPC w...

  6. Study on a New Method of Reducing the Water Shrinkage of Rabbit Hair Knitted Fabrics

    Institute of Scientific and Technical Information of China (English)

    PAN Fu-kui; WANG Shan-yuan; LONG Min; YANG Guang-ming

    2005-01-01

    In order to reduce the water shrinkage of rabbit hair knitted fabrics, a new method is developed, which is blending rabbit hairs with a little bit of blaze. The sericin on the blaze which can swell and melt in hot and wet condition[1] can cohere the rabbit hairs through special processing. So the relative movement among fibers could be restricted. The testing results show that the water shrinkage of rabbit hair knitted fabrics can be greatly reduced after processed.

  7. Astrocytic mechanisms explaining neural-activity-induced shrinkage of extraneuronal space

    DEFF Research Database (Denmark)

    Østby, Ivar; Øyehaug, Leiv; Einevoll, Gaute T;

    2009-01-01

    Neuronal stimulation causes approximately 30% shrinkage of the extracellular space (ECS) between neurons and surrounding astrocytes in grey and white matter under experimental conditions. Despite its possible implications for a proper understanding of basic aspects of potassium clearance and astr......Neuronal stimulation causes approximately 30% shrinkage of the extracellular space (ECS) between neurons and surrounding astrocytes in grey and white matter under experimental conditions. Despite its possible implications for a proper understanding of basic aspects of potassium clearance...

  8. Influence of rare earths on shrinkage porosity in thin walled ductile cast iron

    DEFF Research Database (Denmark)

    Pedersen, Karl Martin; Tiedje, Niels Skat

    2009-01-01

    Ductile cast iron has been cast in test bars with thickness from 2 to 10 mm. The rare earth elements La and Ce have been added to some of the castings to evaluate their influence on microstructure and shrinkage tendency. Both La and Ce increased the graphite nodule count, especially for thickness...... the temperature T-1, which is controlled by the growth of off-eutectic austenite dendrites, increased the shrinkage tendency....

  9. Denoising of Mechanical Vibration Signals Using Quantum-Inspired Adaptive Wavelet Shrinkage

    OpenAIRE

    2014-01-01

    The potential application of a quantum-inspired adaptive wavelet shrinkage (QAWS) technique to mechanical vibration signals with a focus on noise reduction is studied in this paper. This quantum-inspired shrinkage algorithm combines three elements: an adaptive non-Gaussian statistical model of dual-tree complex wavelet transform (DTCWT) coefficients proposed to improve practicability of prior information, the quantum superposition introduced to describe the interscale dependencies of DTCWT co...

  10. Pore Structure and Influence of Recycled Aggregate Concrete on Drying Shrinkage

    OpenAIRE

    Yuanchen Guo; Jueshi Qian; Xue Wang

    2013-01-01

    Pore structure plays an important role in the drying shrinkage of recycled aggregate concrete (RAC). High-precision mercury intrusion and water evaporation were utilized to study the pore structure of RAC, which has a different replacement rate of recycled concrete aggregate (RCA), and to analyze its influence on drying shrinkage. Finally, a fractal-dimension calculation model was established based on the principles of mercury intrusion and fractal-geometry theory. Calculations were performed...

  11. Tumor shrinkage by cyclopamine tartrate through inhibiting hedgehog signaling

    Institute of Scientific and Technical Information of China (English)

    Qipeng Fan; Arash Garrossian; Massoud Garrossian; Dale Gardner; Jingwu Xie; Dongsheng Gu; Miao He; Hailan Liu; Tao Sheng; Guorui Xie; Ching-xin Li; Xiaoli Zhang; Brandon Wainwright

    2011-01-01

    The link of hedgehog (Hh) signaling activation to human cancer and synthesis of a variety of Hh signaling inhibitors raise great expectation that inhibiting Hh signaling may be effective in human cancer treatment. Cyclopamine (Cyc), an alkaloid from the Veratrum plant, is a specific natural product inhibitor of the Hh pathway that acts by targeting smoothened (SMO) protein. However, its poor solubility, acid sensitivity, and weak potency relative to other Hh antagonists prevent the clinical development of Cyc as a therapeutic agent. Here, we report properties of cyclopamine tartrate salt (CycT) and its activities in Hh signaling-mediated cancer in vitro and in vivo. Unlike Cyc, CycT is water soluble (5-10 mg/mL). The median lethal dose (LD) of CycT was 62.5 mg/kg body weight compared to 43.5 mg/kg for Cyc, and the plasma half-life (T) of CycT was not significantly different from that of Cyc. We showed that CycT had a higher inhibitory activity for Hh signaling-dependent motor neuron differentiation than did Cyc (IC = 50nmol/L for CycT vs. 300 nmol/L for Cyc). We also tested the antitumor effectiveness of these Hh inhibitors using two mouse models of basal cell carcinomas (K14cre:Ptch1and K14cre:SmoM2). After topical application of CycT or Cyc daily for 21 days, we found that all CycT-treated mice had tumor shrinkage and decreased expression of Hh target genes. Taken together, we found that CycT is an effective inhibitor of Hh signaling-mediated carcinogenesis.

  12. Cuspal Displacement Induced by Bulk Fill Resin Composite Polymerization: Biomechanical Evaluation Using Fiber Bragg Grating Sensors

    Science.gov (United States)

    Ramos, João; Alves, Sofia; Nogueira, Rogério

    2016-01-01

    Polymerization shrinkage is a major concern to the clinical success of direct composite resin restorations. The aim of this study was to compare the effect of polymerization shrinkage strain of two resin composites on cuspal movement based on the use of fiber Bragg grating (FBG) sensors. Twenty standardized Class II cavities prepared in upper third molars were allocated into two groups (n = 10). Restorations involved the bulk fill placement of conventional microhybrid resin composite (Esthet•X® HD, Dentsply DeTrey) (Group 1) or flowable “low-shrinkage” resin composite (SDR™, Dentsply DeTrey) (Group 2). Two FBG sensors were used per restoration for real-time measurement of cuspal linear deformation and temperature variation. Group comparisons were determined using ANCOVA (α = 0.05) considering temperature as the covariate. A statistically significant correlation between cuspal deflection, time, and material was observed (p flowable resin composite SDR™ induced significantly less cuspal deflection than the conventional resin composite Esthet•X® HD (p = 0.015) and presented a smoother curve slope during the polymerization. FBG sensors appear to be a valid tool for accurate real-time monitoring of cuspal deformation. PMID:27190517

  13. Cuspal Displacement Induced by Bulk Fill Resin Composite Polymerization: Biomechanical Evaluation Using Fiber Bragg Grating Sensors

    Directory of Open Access Journals (Sweden)

    Alexandra Vinagre

    2016-01-01

    Full Text Available Polymerization shrinkage is a major concern to the clinical success of direct composite resin restorations. The aim of this study was to compare the effect of polymerization shrinkage strain of two resin composites on cuspal movement based on the use of fiber Bragg grating (FBG sensors. Twenty standardized Class II cavities prepared in upper third molars were allocated into two groups (n=10. Restorations involved the bulk fill placement of conventional microhybrid resin composite (Esthet•X® HD, Dentsply DeTrey (Group 1 or flowable “low-shrinkage” resin composite (SDR™, Dentsply DeTrey (Group 2. Two FBG sensors were used per restoration for real-time measurement of cuspal linear deformation and temperature variation. Group comparisons were determined using ANCOVA (α=0.05 considering temperature as the covariate. A statistically significant correlation between cuspal deflection, time, and material was observed (p<0.01. Cuspal deflection reached 8.8 μm (0.23% and 7.8 μm (0.20% in Groups 1 and 2, respectively. When used with bulk fill technique, flowable resin composite SDR™ induced significantly less cuspal deflection than the conventional resin composite Esthet•X® HD (p=0.015 and presented a smoother curve slope during the polymerization. FBG sensors appear to be a valid tool for accurate real-time monitoring of cuspal deformation.

  14. Biocompatibility and cytotoxicity of two novel low-shrinkage dental resin matrices.

    Science.gov (United States)

    Jan, Yih-Dean; Lee, Bor-Shiunn; Lin, Chun-Pin; Tseng, Wan-Yu

    2014-06-01

    To reduce the polymerization shrinkage of dental composite resin, we used two different ratios of toluene 2,4-diisocyanate (TDI) or 1,6-hexamethylene diisocyanate (HDI) as functional side chains of bisphenol A-glycidyl methacrylate (bis-GMA) to synthesize two series of new dental resin matrices. This study evaluated the biocompatibility and cytotoxicity of these two series of new resin matrices. Two series of new dental resin matrices with the ratios of TDI or HDI functional side chain to bis-GMA (defined as B group) being 1:4, 1:2, 1:1 and 3:2 (defined as T1/4, T1/2, T1, T3/2, and H1/4, H1/2, H1, H3/2 groups, respectively) were synthesized. Each resin sample was light cured and immersed in the culture medium for 24 hours to make the extract solution. Then, human gingival fibroblasts were cultured in different extract solutions for 72 hours. The cytotoxicities of different resins were evaluated by microtitertetrazolium (MTT) assay, the levels of cell-produced reactive oxygen species (ROS) induced by different extract solutions was measured. Resins of the T1/4 and B groups revealed significantly higher cytotoxicity than resins of other groups. However, resins of the T1 and T3/2 groups exhibited less cytotoxicity. In general, resins of the TDI-modified groups showed equal or less cytotoxicity and induced equal or lower levels of ROS than the corresponding resins of the HDI-modified and B groups. Our results showed that the TDI-modified resin matrices containing more functional side chains were less cytotoxic than the corresponding HDI-modified resin matrices. When the ratio of functional side chain to bis-GMA is increased, the stereo hindrance of resin structure is increased, more toxic resin monomers are trapped in the complicated resin structure, and thus the resin matrix reveals less cytotoxicity. The TDI-modified resin matrices exhibit higher stereo hindrance of resin structure and thus show less cytotoxicity than the corresponding HDI-modified resin matrices

  15. Drying Shrinkage of Cement-Based Materials Under Conditions of Constant Temperature and Varying Humidity

    Institute of Scientific and Technical Information of China (English)

    MA Bao-guo; WEN Xiao-dong; WANG Ming-yuan; YAN Jia-jia; Gao Xiao-jian

    2007-01-01

    Currently,deformations along the central axis of specimens were usually measured under fixed environmental conditions. Seldom were the effects of environmental factors on the drying-shrinkage deformation of cement-based material considered. For this paper, the drying-shrinkage deformation at different w/b ratios and different additions to mortars was investigated under different environments at a temperature of 20 ℃ and humidity ranging from 100% to 50%. The specimens were cured in water for 28 days before measurement. The results illustrate that mortar shows much less shrinkage under various drying conditions when a lower w/b ratio is adopted. With a decrease in relative humidity the speed of drying-shrinkage becomes gradually lower. The addition of silica fume reduces the drying-shrinkage of mortar under higher relative humidity, because the pore structure of mortar with silica fume becomes more refined. The addition of fly ash increases the total porosity and the volume of coarse pores in the mortar. The drying-shrinkage of mortar under different conditions increases with the addition of more of fly ash.

  16. Effect on effective diffusion coefficients and investigation of shrinkage during osmotic dehydration of apricot

    Energy Technology Data Exchange (ETDEWEB)

    Togrul, Inci Turk; Ispir, Ayse [Firat University, Engineering Faculty, Department of Chemical Engineering, 23279 Elazig (Turkey)

    2007-10-15

    This article represents the results of the variation in density and shrinkage of apricots during its osmotic dehydration. Shrinkage was investigated by means of dimensionless volume, diameter and length. Various osmotic agents such as sucrose, glucose, fructose, maltodextrin and sorbitol were used. It was found that the shrinkage of apricots could be well correlated with the moisture content of the sample during osmotic dehydration. The relationship between dimensionless parameters and moisture content was investigated by using eight non-linear models for each osmotic agent. It was find that the following proposed model can be confidently use for explaining the effect of shrinkage during osmotic dehydration of apricots.V/V{sub 0},D/D{sub 0},L/L{sub 0},{rho}/{rho}{sub 0}=a+b. exp (cX)+d. exp (e.X{sup f})In addition, the osmotic dehydration kinetics of apricots with and without shrinkage was studied. The effective diffusivities calculated from the diffusional model with and without shrinkage varied from 10.342 x 10{sup -9} m{sup 2}/s to 5.139 x 10{sup -9} and from 1.755 x 10{sup -10} and 0.767 x 10{sup -10} m{sup 2}/s, respectively. (author)

  17. A new method for chill and shrinkage control in ladle treated ductile iron

    Institute of Scientific and Technical Information of China (English)

    Torbj(o)rn Skaland

    2006-01-01

    The paper is undertaken with the objective of describing a new method for treating ductile cast iron in a ladle process, where the main objective is to minimize formation of eutectic carbides and shrinkage porosity during solidification. The suppression of carbide formation is associated with the nucleating properties of the nodularizer and inoculant alloys. By nucleating properties it is understood the number and potency of nuclei formed by an alloy addition. The nodularizer and inoculant additions also influence ductile iron solidification shrinkage. Some alloys may give good protection against shrinkage while others tend to promote more shrinkage.The use of vanous rare earth elements is found to have a pronounced impact on these conditions. It has been discovered that the use of pure lanthanum as the primary rare earth source in the magnesium ferrosilicon nodularizer surprisingly further improves the performance of the ductile iron ladle treatment method compared to similar methods using cerium or mishmetal bearing nodularizers. The nucleating properties are substantially improved and the risk for carbides (chill) and shrinkage formation in the sandwich or tundish ladle treated ductile iron is then minimized.The paper describes this new ladle treatment concept in detail, and gives examples from successful testing of the new nodularizing technology and how it simultaneously affects and minimizes critical ductile iron chill and shrinkage tendencies.

  18. Transient brain shrinkage in infantile spasms after ACTH treatment. Report of two cases.

    Science.gov (United States)

    Maekawa, K; Ohta, H; Tamai, I

    1980-02-01

    This is the report of two cases of infantile spasms, manifesting transient brain shrinkage in computerized tomography (CT) after ACTH treatment. ACTH was given for 8 weeks to a 8-months-old Japanese girl with infantile spasms. First CT performed at 2 weeks after the final ACTH injection, displayed moderate brain shrinkage. Second CT at 4 months showed marked diminution of the shrinkage. ACTH was also given for 8 weeks to a 14 months old Japanese boy with infantile spasms. First CT, just before ACTH treatment, showed mild cortical atrophy, the second at 7 days after the final ACTH injection revealed marked brain shrinkage and moderate ventricular dilatation, and the third at 2 months, disclosed mild improvement of the shrinkage. ACTH or corticoateroid has widespread effects on the developing nervous system. In animal experiments, ACTH or steroids interfere with brain growth of young rats. CT findings of transient brain shrinkage in a child with infantile spasms might suggest that intensive treatment with ACTH or steroids in infancy interferes with brain growth as seen in the results of animal experiments.

  19. The effect of mucosal cuff shrinkage around dental implants during healing abutment replacement.

    Science.gov (United States)

    Nissan, J; Zenziper, E; Rosner, O; Kolerman, R; Chaushu, L; Chaushu, G

    2015-10-01

    Soft tissue shrinkage during the course of restoring dental implants may result in biological and prosthodontic difficulties. This study was conducted to measure the continuous shrinkage of the mucosal cuff around dental implants following the removal of the healing abutment up to 60 s. Individuals treated with implant-supported fixed partial dentures were included. Implant data--location, type, length, diameter and healing abutments' dimensions--were recorded. Mucosal cuff shrinkage, following removal of the healing abutments, was measured in bucco-lingual direction at four time points--immediately after 20, 40 and 60 s. anova was used to for statistical analysis. Eighty-seven patients (49 women and 38 men) with a total of 311 implants were evaluated (120 maxilla; 191 mandible; 291 posterior segments; 20 anterior segments). Two-hundred and five (66%) implants displayed thick and 106 (34%) thin gingival biotype. Time was the sole statistically significant parameter affecting mucosal cuff shrinkage around dental implants (P < 0.001). From time 0 to 20, 40 and 60 s, the mean diameter changed from 4.1 to 4.07, 3.4 and 2.81 mm, respectively. The shrinkage was 1%, 17% and 31%, respectively. The gingival biotype had no statistically significant influence on mucosal cuff shrinkage (P = 0.672). Time required replacing a healing abutment with a prosthetic element should be minimised (up to 20/40 s), to avoid pain, discomfort and misfit.

  20. Influence of Suspended Emulsion Polymerization Conditions on Particle Characteristics of Polyvinyl Chloride Resin

    Institute of Scientific and Technical Information of China (English)

    包永忠; 魏真理; 翁志学; 黄志明

    2003-01-01

    Suspended emulsion polymerization of vinyl chloride was carried out in a 5 L autoclave. The influence of agitation, polymerization conversion, dispersant and surfactant on the average particle size (PS) and particle size distribution (PSD), particle morphology and porosity of polyvinyl chloride (PVC) resin was investigated. It showed that the agitator had great influence on the smooth operation of polymerization, PS and PSD. The PS increased and PSD became narrow as polymerization conversion became high. The porosity decreased with the increase of conversion. A convenient choice of additives, both dispersants and non-ionic surfactants, allows one to adjust PS and PSD. The PS decreased with the addition of polyvinyl alcohol or hydroxypropyl methylcellulose dispersants,and increased with the addition of Span surfactants. The addition of dispersants or surfactants also affected the morphology and porosity of resin, and PVC resin with looser agglomeration and homogeneous distribution of primary particles was prepared.

  1. Monte Carlo simulation on kinetics of batch and semi-batch free radical polymerization

    KAUST Repository

    Shao, Jing

    2015-10-27

    Based on Monte Carlo simulation technology, we proposed a hybrid routine which combines reaction mechanism together with coarse-grained molecular simulation to study the kinetics of free radical polymerization. By comparing with previous experimental and simulation studies, we showed the capability of our Monte Carlo scheme on representing polymerization kinetics in batch and semi-batch processes. Various kinetics information, such as instant monomer conversion, molecular weight, and polydispersity etc. are readily calculated from Monte Carlo simulation. The kinetic constants such as polymerization rate k p is determined in the simulation without of “steady-state” hypothesis. We explored the mechanism for the variation of polymerization kinetics those observed in previous studies, as well as polymerization-induced phase separation. Our Monte Carlo simulation scheme is versatile on studying polymerization kinetics in batch and semi-batch processes.

  2. Perfluorocyclobutyl-containing Amphiphilic Block Copolymers Synthesized by RAFT Polymerization

    Institute of Scientific and Technical Information of China (English)

    LI, Yongjun; ZHANG, Sen; FENG, Chun; ZHANG, Yaqin; LI, Qingnuan; LI, Wenxin; HUANG, Xiaoyu

    2009-01-01

    Amphiphilic block copolymers containing hydrophobic perfluorocyclobutyl-based (PFCB) polyacrylate and hydrophilic poly(ethylene glycol) (PEG) segments were prepared via reversible addition-fragmentation chain transfer (RAP-T) polymerization. The PFCB-containing acrylate monomer, p-(2-(p-tolyloxy)perfluorocyclobutoxy)phenyl acrylate, was first synthesized from commercially available compounds in good yields, and this kind of acrylate monomer can be homopolymerized by free radical polymerization or RAFT polymerization. Kinetic study showed the 2,2'-azobis(isobutyronitrile) (AIBN) initiated and cumyl dithiobenzoate (CDB) mediated RAFT polymerization was in a living fashion, as suggested by the fact that the number-average molecular weights (M_n) increased linearly with the conversions of the monomer, while the polydispersity indices kept less than 1.10. The block polymers with narrow molecular weight distributions (M_w/M_n≤1.21) were prepared through RAFT polymerization using PEG monomethyl ether capped with 4-cyanopentanoic acid dithiobenzoate end group as the macro chain transfer agent (mPEG-CTA). The length of the hydrophobic segment can be tuned by the feed ratio of the PFCB-based acrylate monomer and the extending of the polymerization time. The micellization behavior of the block copolymers in aqueous media was investigated by the fluorescence probe technique.

  3. µCT-3D visualization analysis of resin composite polymerization and dye penetration test of composite adaptation.

    Science.gov (United States)

    Yoshikawa, Takako; Sadr, Alireza; Tagami, Junji

    2017-08-25

    This study evaluated the effects of the light curing methods and resin composite composition on composite polymerization contraction behavior and resin composite adaptation to the cavity wall using μCT-3D visualization analysis and dye penetration test. Cylindrical cavities were restored using Clearfil tri-S Bond ND Quick adhesive and filled with Clearfil AP-X or Clearfil Photo Bright composite. The composites were cured using the conventional or the slow-start curing method. The light-cured resin composite, which had increased contrast ratio during polymerization, improved adaptation to the cavity wall using the slow-start curing method. In the μCT-3D visualization method, the slow-start curing method reduced polymerization shrinkage volume of resin composite restoration to half of that produced by the conventional curing method in the cavity with adhesive for both composites. Moreover, μCT-3D visualization method can be used to detect and analyze resin composite polymerization contraction behavior and shrinkage volume as 3D image in the cavity.

  4. Perceptual shrinkage of a one-way motion path with high-speed motion.

    Science.gov (United States)

    Nakajima, Yutaka; Sakaguchi, Yutaka

    2016-07-28

    Back-and-forth motion induces perceptual shrinkage of the motion path, but such shrinkage is hardly perceived for one-way motion. If the shrinkage is caused by temporal averaging of stimulus position around the endpoints, it should also be induced for one-way motion at higher motion speeds. In psychophysical experiments with a high-speed projector, we tested this conjecture for a one-way motion stimulus at various speeds (4-100 deg/s) along a straight path. Results showed that perceptual shrinkage of the motion path was robustly observed in higher-speed motion (faster than 66.7 deg/s). In addition, the amount of the forwards shift at the onset position was larger than that of the backwards shift at the offset position. These results demonstrate that high-speed motion can induce shrinkage, even for a one-way motion path. This can be explained by the view that perceptual position is represented by the integration of the temporal average of instantaneous position and the motion representation.

  5. The effects of dimensional mould sizes on volumetric shrinkage strain of lateritic soil

    Directory of Open Access Journals (Sweden)

    John Engbonye SANI

    2016-07-01

    Full Text Available Dimensional influences of specimen size on the volumetric shrinkage strain values of a lateritic soil for waste containment system have not been researched upon. Therefore, this paper presents the result of a laboratory study on the volumetric shrinkage strain (VSS of lateritic soil at three different dimensional sizes of mould (split former mould, proctor mould and California bearing ratio mould at three energy levels; British standard light (BSL, West African standard (WAS and British standard heavy (BSH respectively. Compactions were done at different molding water content of -2% to +6% optimum moisture content (OMC. At -2% to +2% molding water content for the split former mould the volumetric shrinkage strain met the requirement of not more than 4% while at +4% and +6% only the WAS and BSH met the requirement. The proctor mould and the CBR mould on the other hand gave a lower value of volumetric shrinkage strain in all compactive effort and the values are lower than the 4% safe VSS suggested by Tay et al., (2001. Based on the VSS values obtained if the CBR mould can be used to model site condition it is recommended for use to simulate site condition for Volumetric shrinkage strain for all molding water content and compactive effort.

  6. A Pore-Centric Model for Combined Shrinkage and Gas Porosity in Alloy Solidification

    Science.gov (United States)

    Khalajzadeh, Vahid; Carlson, Kent D.; Backman, Daniel G.; Beckermann, Christoph

    2017-04-01

    A unified model has been developed for combined gas- and shrinkage-induced pore formation during solidification of metal alloys. The model is based on a pore-centric approach, in which the temporal evolution of the pore radius is calculated as a function of cooling rate, thermal gradient, gas diffusion, and shrinkage. It accounts for the effect of porosity formation on the liquid velocity within the mushy zone. Simulations for an aluminum alloy show that the porosity transitions smoothly from shrinkage-induced to gas-induced as the Niyama value is increased. A Blake (cavitation) instability is observed to occur when the porosity is both gas- and shrinkage-driven. A revised dimensionless Niyama curve for pure shrinkage is presented. The experimentally observed gas porosity trend that the pore volume decreases with increasing cooling rate is well predicted. The pore-centric formulation allows the present model to be solved locally, at any point in a casting, during a regular casting simulation.

  7. Pore Structure and Influence of Recycled Aggregate Concrete on Drying Shrinkage

    Directory of Open Access Journals (Sweden)

    Yuanchen Guo

    2013-01-01

    Full Text Available Pore structure plays an important role in the drying shrinkage of recycled aggregate concrete (RAC. High-precision mercury intrusion and water evaporation were utilized to study the pore structure of RAC, which has a different replacement rate of recycled concrete aggregate (RCA, and to analyze its influence on drying shrinkage. Finally, a fractal-dimension calculation model was established based on the principles of mercury intrusion and fractal-geometry theory. Calculations were performed to study the pore-structure fractal dimension of RAC. Results show the following. (1 With the increase in RCA content, the drying shrinkage values increase gradually. (2 Pores with the greatest impact on concrete shrinkage are those whose sizes ranging from 2.5 nm to 50 nm and from 50 nm to 100 nm. In the above two ranges, the proportions of RAC are greater than those of RC0 (natural aggregate concrete, NAC, which is the main reason the shrinkage values of RAC are greater than those of NAC. (3 The pore structure of RAC has good fractal feature, and the addition of RCA increases the complexity of the pore surface of concrete.

  8. Drying Shrinkage Behaviour of Fibre Reinforced Concrete Incorporating Polyvinyl Alcohol Fibres and Fly Ash

    Directory of Open Access Journals (Sweden)

    Amin Noushini

    2014-01-01

    Full Text Available The current study assesses the drying shrinkage behaviour of polyvinyl alcohol fibre reinforced concrete (PVA-FRC containing short-length (6 mm and long-length (12 mm uncoated monofilament PVA fibres at 0.125%, 0.25%, 0.375%, and 0.5% volumetric fractions. Fly ash is also used as a partial replacement of Portland cement in all mixes. PVA-FRC mixes have been compared to length change of control concrete (devoid of fibres at 3 storage intervals: early-age (0–7 days, short-term (0–28 days, and long-term (28–112 days intervals. The shrinkage results of FRC and control concrete up to 112 days indicated that all PVA-FRC mixes exhibited higher drying shrinkage than control. The shrinkage exhibited by PVA-FRC mixes ranged from 449 to 480 microstrain, where this value was only 427 microstrain in the case of control. In addition, the longer fibres exhibited higher mass loss, thus potentially contributing to higher shrinkage.

  9. Modified creep and shrinkage prediction model B3 for serviceability limit state analysis of composite slabs

    Science.gov (United States)

    Gholamhoseini, Alireza

    2016-03-01

    Relatively little research has been reported on the time-dependent in-service behavior of composite concrete slabs with profiled steel decking as permanent formwork and little guidance is available for calculating long-term deflections. The drying shrinkage profile through the thickness of a composite slab is greatly affected by the impermeable steel deck at the slab soffit, and this has only recently been quantified. This paper presents the results of long-term laboratory tests on composite slabs subjected to both drying shrinkage and sustained loads. Based on laboratory measurements, a design model for the shrinkage strain profile through the thickness of a slab is proposed. The design model is based on some modifications to an existing creep and shrinkage prediction model B3. In addition, an analytical model is developed to calculate the time-dependent deflection of composite slabs taking into account the time-dependent effects of creep and shrinkage. The calculated deflections are shown to be in good agreement with the experimental measurements.

  10. Effects of Manufactured-sand on Dry Shrinkage and Creep of High-strength Concrete

    Institute of Scientific and Technical Information of China (English)

    ZHOU Mingkai; WANG Jiliang; ZHU Lide; HE Tusheng

    2008-01-01

    The influences of natural sand, manufactured-sand (MS) and stone-dust (SD) in the manufactured-sand on workability, compressive strength, elastic modulus, drying shrinkage and creep properties of high-strength concrete (HSC) were tested and compared. The results show that the reasonable content (7%-10.5%) of SD in MS will not deteriorate the workability of MS-HSC. It could even improve the workability. Moreover, the compressive strength increases gradually with the increasing SD content,and the MS-HSC with low SD content (smaller than 7%) has the elastic modulus which approaches that of the natural sand HSC, but the elastic modulus reduces when the SD content is high. The influence of the SD content on drying shrinkage performance of MS-HSC is closely related to the hydration age. The shrinkage rate of MS-HSC in the former 7 d age is higher than that of the natural sand HSC, but the difference of the shrinkage rate in the late age is not marked. Meanwhile the shrinkage rate reduces as the fly ash is added; the specific creep and creep coefficient of MS-HSC with 7% SD are close to those of the natural sand HSC.

  11. Physical Shrinkage Relationship in Soils of Dissimilar Lithologies in Central Southeastern Nigeria

    Science.gov (United States)

    Onweremadu, E. U.; Akamigbo, F. O. R.; Igwe, C. A.

    This study investigated the relationship between volume shrinkage properties of soils derived from different parent materials in Central Southeastern Nigeria as they related to selected soil physical properties. Using a free survey technique and guided by a geological map of the area, field sampling was conducted in the early months of 2005. Routine analyses were done using collected soil samples. Results showed significant (pwaterholding capacity, Atterberg limits and Co-efficient Of Linear Extensibility (COLE) among the 6 studied soil groups. Volume shrinkage results indicated severe shrinkage (20-30%) rating for soils derived from Shale, moderate shrinkage (10-20%) for soils formed over Lower Coal Measures and Falsebedded Sandstones and slight shrinkage (0-10%) ratings for the rest. The COLE, used as an index of VS correlated significantly (pwaterholding capacity (WHC), Liquid Limit (LL), Plastic Limit (PL), Plasticity Index (PI) and clay content. A model was generated which expressed good predictive relationship between COLE and selected physical properties (R = 0.87; R2 = 0.75; 1-R2 = 0.25, RMSE = 0.01 and Bias = +0.00001), indicating high accuracy and little over-estimation by the model. More soil and soil related variables may further improve generated model (s), thus should be included in future studies.

  12. Shrinkage modeling of concrete reinforced by palm fibres in hot dry environments

    Science.gov (United States)

    Akchiche, Hamida; Kriker, Abdelouahed

    2017-02-01

    The cement materials, such as concrete and conventional mortar present very little resistance to traction and cracking, these hydraulic materials which induces large withdrawals on materials and cracks in structures. The hot dry environments such as: the Saharan regions of Algeria, Indeed, concrete structures in these regions are very fragile, and present high shrinkage. Strengthening of these materials by fibers can provide technical solutions for improving the mechanical performance. The aim of this study is firstly, to reduce the shrinkage of conventional concrete with its reinforcement with date palm fibers. In fact, Algeria has an extraordinary resources in natural fibers (from Palm, Abaca, Hemp) but without valorization in practical areas, especially in building materials. Secondly, to model the shrinkage behavior of concrete was reinforced by date palm fibers. In the literature, several models for still fiber concrete were founded but few are offers for natural fiber concretes. To do so, a still fiber concretes model of YOUNG - CHERN was used. According to the results, a reduction of shrinkage with reinforcement by date palm fibers was showed. A good ability of molding of shrinkage of date palm reinforced concrete with YOUNG - CHERN Modified model was obtained. In fact, a good correlation between experimental data and the model data was recorded.

  13. Shrinkage and growth compensation in common sunflowers: refining estimates of damage

    Science.gov (United States)

    Sedgwick, James A.; Oldemeye, John L.; Swenson, Elizabeth L.

    1986-01-01

    Shrinkage and growth compensation of artificially damaged common sunflowers (Helianthus annuus) were studied in central North Dakota during 1981-1982 in an effort to increase accuracy of estimates of blackbird damage to sunflowers. In both years, as plants matured damaged areas on seedheads shrank at a greater rate than the sunflower heads themselves. This differential shrinkage resulted in an underestimation of the area damaged. Sunflower head and damaged-area shrinkage varied widely by time and degree of damage and by size of the seedhead damaged. Because variation in shrinkage by time of damage was so large, predicting when blackbird damage occurs may be the most important factor in estimating seed loss. Yield'occupied seed area was greater (P < 0.05) for damaged than undamaged heads and tended to increase as degree of damage inflicted increased, indicating growth compensation was occurring in response to lost seeds. Yields of undamaged seeds in seedheads damaged during early seed development were higher than those of heads damaged later. This suggested that there was a period of maximal response to damage when plants were best able to redirect growth to seeds remaining in the head. Sunflowers appear to be able to compensate for damage of ≤ 15% of the total hear area. Estimates of damage can be improved by applying empirical results of differential shrinkage and growth compensations.

  14. Crack development through plastic shrinkage in fresh concretes and mortars

    Directory of Open Access Journals (Sweden)

    Aguanell García, M.

    1989-09-01

    Full Text Available The rate of water evaporation in the exposed surfaces plays an important part in the development of cracks in fresh concretes and mortars before hardening is completed. This rate of evaporation depends on the drying power of the wind sweeping such surfaces as a function of the relative humidity, temperature and speed of the air. After many studies and research work on the subject of plastic cracking, the following axiom has been established: "Plastic shrinkage and cracking of concrete surfaces take place when water evaporates from the surface quicker than it can be replaced through exudation". Once the value of weather parameters are known, the extent of the risk of crack development can be known and preventive steps taken to overcome such risk. Obviously, such steps are all oriented to reducing or stopping evaporation and go from covering surfaces with wet sackcloth or plastic foil, through sprinkling water mists or lowering the concrete temperature, to using film-forming curing products. Another additional measure can be the addition of polypropelene fibers to the concrete while in the mixer, at the rate of 0.9 kg fiber to 1 m3 of concrete.

    En la formación de grietas en morteros y hormigones frescos, antes de finalizar el fraguado, tiene una primordial importancia la velocidad de evaporación del agua de las superficies expuestas al exterior, velocidad que depende del poder desecante de los vientos que barren estas superficies y que está en función de la humedad relativa del aire, de su temperatura y de su velocidad. Después de los múltiples estudios e investigaciones sobre este tema de la formación de las grietas plásticas, se ha llegado a establecer el siguiente axioma: "La retracción plástica y las grietas se producen, en las superficies del hormigón, cuando el agua se evapora de ellas más rápidamente que la que puede ser reemplazada por exudación." Conociendo el valor de los parámetros meteorol

  15. Living olefin polymerization processes

    Science.gov (United States)

    Schrock, Richard R.; Baumann, Robert

    1999-01-01

    Processes for the living polymerization of olefin monomers with terminal carbon-carbon double bonds are disclosed. The processes employ initiators that include a metal atom and a ligand having two group 15 atoms and a group 16 atom or three group 15 atoms. The ligand is bonded to the metal atom through two anionic or covalent bonds and a dative bond. The initiators are particularly stable under reaction conditions in the absence of olefin monomer. The processes provide polymers having low polydispersities, especially block copolymers having low polydispersities. It is an additional advantage of these processes that, during block copolymer synthesis, a relatively small amount of homopolymer is formed.

  16. Phosphazene-promoted anionic polymerization

    KAUST Repository

    Zhao, Junpeng

    2014-01-01

    In the recent surge of metal-free polymerization techniques, phosphazene bases have shown their remarkable potential as organic promoters/catalysts for the anionic polymerization of various types of monomers. By complexation with the counterion (e.g. proton or lithium cation), phosphazene base significantly improve the nucleophilicity of the initiator/chain-end resulting in rapid and usually controlled anionic/quasi-anionic polymerization. In this review, we will introduce the general mechanism, i.e. in situ activation (of initiating sites) and polymerization, and summarize the applications of such a mechanism on macromolecular engineering toward functionalized polymers, block copolymers and complex macromolecular architectures.

  17. Effect of ultrasonic pretreatment on emulsion polymerization of styrene.

    Science.gov (United States)

    Nagatomo, Daichi; Horie, Takafumi; Hongo, Chizuru; Ohmura, Naoto

    2016-07-01

    This study investigated the effect of pretreatment of ultrasonic irradiation on emulsion polymerization of styrene to propose a process intensification method which gives high conversion, high reaction rate, and high energy efficiency. The solution containing styrene monomer was irradiated by a horn mounted on the ultrasonic transducer with the diameter of 5mm diameter and the frequency of 28 kHz before starting polymerization. The pretreatment of ultrasound irradiation as short as 1 min drastically improved monomer dispersion and increased reaction rate even under the agitation condition with low rotational speed of impeller. Furthermore, the ultrasonic pretreatment resulted in higher monomer concentration in polymer particles and produced larger polymer particles than conventional polymerization without ultrasonic pretreatment.

  18. Simulation of styrene polymerization reactors: kinetic and thermodynamic modeling

    Directory of Open Access Journals (Sweden)

    A. S. Almeida

    2008-06-01

    Full Text Available A mathematical model for the free radical polymerization of styrene is developed to predict the steady-state and dynamic behavior of a continuous process. Special emphasis is given for the kinetic and thermodynamic models, where the most sensitive parameters were estimated using data from an industrial plant. The thermodynamic model is based on a cubic equation of state and a mixing rule applied to the low-pressure vapor-liquid equilibrium of polymeric solutions, suitable for modeling the auto-refrigerated polymerization reactors, which use the vaporization rate to remove the reaction heat from the exothermic reactions. The simulation results show the high predictive capability of the proposed model when compared with plant data for conversion, average molecular weights, polydispersity, melt flow index, and thermal properties for different polymer grades.

  19. Near-infrared light responsive polymeric nanocomposites for cancer therapy.

    Science.gov (United States)

    Min, Cong; Zou, Xueqing; Yang, Quanzhu; Liao, Liqiong; Zhou, Guofu; Liu, Lijian

    2016-11-22

    Inorganic nanoparticles, which can absorb and convert near infrared (NIR) light to heat to ablate cancer cells, have been widely investigated in photothermal therapy. However, the inherent poor solubility and acute systemic toxicity of these inorganic particles hinder their application in clinical practice. Polymeric nnanocomposites materials containing both inorganic nanoparticles and polymers could be harnessed to achieve enhanced photothermal therapeutic effect as well as improved biocompatibility and multi-responsiveness. Synergistic chemo-photothermal efficacy towards cancer cells and tumor tissue can thus be realized through such multi-functional and multi-responsive polymeric nanocomposites. In this review, the recent developments in polymeric nanocomposites based on different types of inorganic nanoparticles (i.e. gold, carbon nanotube, graphene, and up-conversion nanoparticles) for NIR-triggered cancer therapy are summarized.

  20. Shrinkage Analysis on Thick Plate Part using Response Surface Methodology (RSM

    Directory of Open Access Journals (Sweden)

    Isafiq M.

    2016-01-01

    Full Text Available The work reported herein is about an analysis on the quality (shrinkage on a thick plate part using Response Surface Methodology (RSM. Previous researches showed that the most influential factor affecting the shrinkage on moulded parts are mould and melt temperature. Autodesk Moldflow Insight software was used for the analysis, while specifications of Nessei NEX 1000 injection moulding machine and P20 mould material were incorporated in this study on top of Acrylonitrile Butadiene Styrene (ABS as a moulded thermoplastic material. Mould temperature, melt temperature, packing pressure and packing time were selected as variable parameters. The results show that the shrinkage have improved 42.48% and 14.41% in parallel and normal directions respectively after the optimisation process.

  1. Thermal assisted ion shrinkage (TAIS) of fluorinated polyimide for optical telecommunication devices

    Science.gov (United States)

    Trigaud, T.; Moliton, J. P.; Quillat, M.; Chiron, D.

    1999-06-01

    In the framework of the development of low cost optical devices for telecommunications, here is studied the shrinkage of 6FDA-ODA polyimide films by ion irradiation as a function of five parameters: the ion fluence, the ion fluence rate, the ion energy, the ion nature and the target temperature. In the 30-350 keV energy range for impinging ions, the shrinkage remains constant whatever the tested fluence rate is. An upper limit appears for fluences above 10 16 ions cm -2. The etching is linearly dependent on the ion beam energy and reaches a maximum around 1 μm by thermal assisted ion shrinkage (TAIS) with Na + irradiations.

  2. A cure shrinkage model for analyzing the stresses and strains in encapsulated assemblies

    Science.gov (United States)

    Chambers, R. S.; Lagasse, R. R.; Guess, T. R.; Plazek, D. J.; Bero, C.

    Electrical component assemblies are encapsulated to provide delicate parts with voltage isolation and protection against damage caused by shock, vibration, and harsh atmospheric environments. During cure, thermosetting resins shrink and harden simultaneously. If the natural deformation of the resin is constrained by adhesion to the mold or to relatively stiff embedded components, cure shrinkage stresses are generated in the encapsulant. Subsequent cooling or thermal cycling produces additional stresses that are caused by the mismatches in thermal strains among the materials in the encapsulated assembly. Although cure shrinkage stresses frequently are neglected because they are considerably smaller than thermal stresses, cure shrinkage stresses can cause delamination or fractures in the encapsulant, since the partially cured resin is not as tough as the fully cured material. Cracks generated during cure can compromise performance (e.g., permit dielectric breakdown), degrade a component's protection, and grow under subsequent thermal cycling producing residual stresses that differ from those found in uncracked assemblies.

  3. A cure shrinkage model for analyzing the stresses and strains in encapsulated assemblies

    Energy Technology Data Exchange (ETDEWEB)

    Chambers, R.S.; Lagasse, R.R.; Guess, T.R. [Sandia National Labs., Albuquerque, NM (United States); Plazek, D.J.; Bero, C. [Pittsburgh Univ., PA (United States). Dept. of Materials Science and Engineering

    1992-12-31

    Electrical component assemblies are encapsulated to provide delicate parts with voltage isolation and protection against damage caused by shock, vibration, and harsh atmospheric environments. During cure, thermosetting resins shrink and harden simultaneously. If the natural deformation of the resin is constrained by adhesion to the mold or to relatively stiff embedded components, cure shrinkage stresses are generated in the encapsulant. Subsequent cooling or thermal cycling produces additional stresses that are caused by the mismatches in thermal strains among the materials in the encapsulated assembly. Although cure shrinkage stresses frequently are neglected because they are considerably smaller than thermal stresses, cure shrinkage stresses can cause delamination or fractures in the encapsulant, since the partially cured resin is not as tough as the fully cured material. Cracks generated during cure can compromise performance (e. g., permit dielectric breakdown), degrade a component`s protection, and grow under subsequent thermal cycling producing residual stresses that differ from those found in uncracked assemblies. 3 refs., 11 figs.

  4. Adaptive contourlet-wavelet iterative shrinkage/thresholding for remote sensing image restoration

    Institute of Scientific and Technical Information of China (English)

    Nu WEN; Shi-zhi YANG; Cheng-jie ZHU; Sheng-cheng CUI

    2014-01-01

    In this paper, we present an adaptive two-step contourlet-wavelet iterative shrinkage/thresholding (TcwIST) algorithm for remote sensing image restoration. This algorithm can be used to deal with various linear inverse problems (LIPs), including image deconvolution and reconstruction. This algorithm is a new version of the famous two-step iterative shrinkage/thresholding (TwIST) algorithm. First, we use the split Bregman Rudin-Osher-Fatemi (ROF) model, based on a sparse dictionary, to decom-pose the image into cartoon and texture parts, which are represented by wavelet and contourlet, respectively. Second, we use an adaptive method to estimate the regularization parameter and the shrinkage threshold. Finally, we use a linear search method to find a step length and a fast method to accelerate convergence. Results show that our method can achieve a signal-to-noise ratio improvement (ISNR) for image restoration and high convergence speed.

  5. Cell shrinkage as a signal to apoptosis in NIH 3T3 fibroblasts

    DEFF Research Database (Denmark)

    Friis, Martin B; Friborg, Christel R; Schneider, Linda

    2005-01-01

    Cell shrinkage is a hallmark of the apoptotic mode of programmed cell death, but it is as yet unclear whether a reduction in cell volume is a primary activation signal of apoptosis. Here we studied the effect of an acute elevation of osmolarity (NaCl or sucrose additions, final osmolarity 687...... mosmol l(-1)) on NIH 3T3 fibroblasts to identify components involved in the signal transduction from shrinkage to apoptosis. After 1.5 h the activity of caspase-3 started to increase followed after 3 h by the appearance of many apoptotic-like bodies. The caspase-3 activity increase was greatly enhanced...... in cells expressing a constitutively active G protein, Rac (RacV12A3 cell), indicating that Rac acts upstream to caspase-3 activation. The stress-activated protein kinase, p38, was significantly activated by phosphorylation within 30 min after induction of osmotic shrinkage, the phosphorylation being...

  6. Fast approach to infrared image restoration based on shrinkage functions calibration

    Science.gov (United States)

    Zhang, Chengshuo; Shi, Zelin; Xu, Baoshu; Feng, Bin

    2016-05-01

    High-quality image restoration in real time is a challenge for infrared imaging systems. We present a fast approach to infrared image restoration based on shrinkage functions calibration. Rather than directly modeling the prior of sharp images to obtain the shrinkage functions, we calibrate them for restoration directly by using the acquirable sharp and blurred image pairs from the same infrared imaging system. The calibration method is employed to minimize the sum of squared errors between sharp images and restored images from the blurred images. Our restoration algorithm is noniterative and its shrinkage functions are stored in the look-up tables, so an architecture solution of pipeline structure can work in real time. We demonstrate the effectiveness of our approach by testing its quantitative performance from simulation experiments and its qualitative performance from a developed wavefront coding infrared imaging system.

  7. Physical modeling of the soil swelling curve vs. the shrinkage curve

    CERN Document Server

    Chertkov, V Y

    2014-01-01

    Physical understanding of the links between soil swelling, texture, structure, cracking, and sample size is of great interest for the physical understanding of many processes in the soil-air-water system and for applications in civil, agricultural, and environmental engineering. The background of this work is an available chain of interconnected physical shrinkage curve models for clay, intra-aggregate matrix, aggregated soil without cracks, and soil with cracks. The objective of the work is to generalize these models to the case of swelling, and to construct the physical-swelling-model chain with a step-by-step transition from clay to aggregated soil with cracks. The generalization is based on thorough accounting for the analogies and differences between shrinkage and swelling and the corresponding use, modification, or replacement of the soil shrinkage features. Two specific soil swelling features to be used are: (i) air entrapping in pores of the contributing clay; and (ii) aggregate destruction with the f...

  8. Hormone replacement therapy and age-related brain shrinkage: regional effects.

    Science.gov (United States)

    Raz, Naftali; Rodrigue, Karen M; Kennedy, Kristen M; Acker, James D

    2004-11-15

    Neuroprotective properties of estrogen have been established in animal models, but clinical trials of hormone replacement therapy (HRT) produced contradictory results. We examined the impact of HRT on age-related regional changes in human brain volume. Six brain regions were measured twice, five years apart, in 12 healthy women who took HRT and in matched controls who did not. The controls showed a typical pattern of differential brain shrinkage in the association cortices and the hippocampus with no change in the primary visual cortex. In contrast, women who took HRT showed comparable shrinkage of the hippocampus but no significant shrinkage of the neocortex. Future large scale studies may benefit from applying regional rather than global measures in assessment of brain integrity.

  9. Hormone-dependent shrinkage of a sphenoid wing meningioma after pregnancy: case report.

    Science.gov (United States)

    Kerschbaumer, Johannes; Freyschlag, Christian F; Stockhammer, Günter; Taucher, Susanne; Maier, Hans; Thomé, Claudius; Seiz-Rosenhagen, Marcel

    2016-01-01

    Meningiomas are known to be associated with female sex hormones. Worsening neurological symptoms or newly diagnosed meningiomas have been described in the context of elevated levels of sex hormones, for example, in pregnancy. To the authors' knowledge, tumor shrinkage after the normalization of hormones has not been described, even if it is known that neurological deficits due to meningioma compression may improve after giving birth. A 32-year-old female patient presented with severe headache and vision disturbances at the end of her second pregnancy. Magnetic resonance imaging revealed an extended mass at the lateral left-sided sphenoid wing that was suspected to be a meningioma. After delivery, the patient's symptoms improved, and MRI obtained 2 months postpartum showed significant shrinkage of the lesion. Significant tumor shrinkage can occur after pregnancy. Thus, repeat imaging is indicated in these patients.

  10. Gratings in polymeric waveguides

    Science.gov (United States)

    Mishakov, G.; Sokolov, V.; Kocabas, A.; Aydinli, A.

    2007-04-01

    Laser-induced formation of polymer Bragg grating filters for Dense Wavelength Division Multiplexing (DWDM) applications is discussed. Acrylate monomers halogenated with both fluorine and chlorine, which possess absorption losses less than 0.25 dB/cm and wide choice of refractive indices (from 1.3 to 1.5) in the 1.5 μm telecom wavelength region were used. The monomers are highly intermixable thus permitting to adjust the refractive index of the composition within +/-0.0001. Moreover they are photocurable under UV exposure and exhibit high contrast in polymerization. These properties make halogenated acrylates very promising for fabricating polymeric waveguides and photonic circuits. Single-mode polymer waveguides were fabricated on silicon wafers using resistless contact lithography. Submicron index gratings have been written in polymer waveguides using holographic exposure with He-Cd laser beam (325 nm) through a phase mask. Both uniform and apodized gratings have been fabricated. The gratings are stable and are not erased by uniform UV exposure. The waveguide gratings possess narrowband reflection spectra in the 1.5 μm wavelength region of 0.4 nm width, nearly rectangular shape of the stopband and reflectivity R > 99%. The fabricated Bragg grating filters can be used for multiplexing/demultiplexing optical signals in high-speed DWDM optical fiber networks.

  11. Diversity Shrinkage: Cross-Validating Pareto-Optimal Weights to Enhance Diversity via Hiring Practices.

    Science.gov (United States)

    Song, Q Chelsea; Wee, Serena; Newman, Daniel A

    2017-07-27

    To reduce adverse impact potential and improve diversity outcomes from personnel selection, one promising technique is De Corte, Lievens, and Sackett's (2007) Pareto-optimal weighting strategy. De Corte et al.'s strategy has been demonstrated on (a) a composite of cognitive and noncognitive (e.g., personality) tests (De Corte, Lievens, & Sackett, 2008) and (b) a composite of specific cognitive ability subtests (Wee, Newman, & Joseph, 2014). Both studies illustrated how Pareto-weighting (in contrast to unit weighting) could lead to substantial improvement in diversity outcomes (i.e., diversity improvement), sometimes more than doubling the number of job offers for minority applicants. The current work addresses a key limitation of the technique-the possibility of shrinkage, especially diversity shrinkage, in the Pareto-optimal solutions. Using Monte Carlo simulations, sample size and predictor combinations were varied and cross-validated Pareto-optimal solutions were obtained. Although diversity shrinkage was sizable for a composite of cognitive and noncognitive predictors when sample size was at or below 500, diversity shrinkage was typically negligible for a composite of specific cognitive subtest predictors when sample size was at least 100. Diversity shrinkage was larger when the Pareto-optimal solution suggested substantial diversity improvement. When sample size was at least 100, cross-validated Pareto-optimal weights typically outperformed unit weights-suggesting that diversity improvement is often possible, despite diversity shrinkage. Implications for Pareto-optimal weighting, adverse impact, sample size of validation studies, and optimizing the diversity-job performance tradeoff are discussed. (PsycINFO Database Record (c) 2017 APA, all rights reserved).

  12. Regional brain shrinkage over two years: individual differences and effects of pro-inflammatory genetic polymorphisms.

    Science.gov (United States)

    Persson, N; Ghisletta, P; Dahle, C L; Bender, A R; Yang, Y; Yuan, P; Daugherty, A M; Raz, N

    2014-12-01

    We examined regional changes in brain volume in healthy adults (N=167, age 19-79years at baseline; N=90 at follow-up) over approximately two years. With latent change score models, we evaluated mean change and individual differences in rates of change in 10 anatomically-defined and manually-traced regions of interest (ROIs): lateral prefrontal cortex (LPFC), orbital frontal cortex (OF), prefrontal white matter (PFw), hippocampus (Hc), parahippocampal gyrus (PhG), caudate nucleus (Cd), putamen (Pt), insula (In), cerebellar hemispheres (CbH), and primary visual cortex (VC). Significant mean shrinkage was observed in the Hc, CbH, In, OF, and PhG, and individual differences in change were noted in all regions, except the OF. Pro-inflammatory genetic variants modified shrinkage in PhG and CbH. Carriers of two T alleles of interleukin-1β (IL-1β C-511T, rs16944) and a T allele of methylenetetrahydrofolate reductase (MTHFR C677T, rs1801133) polymorphisms showed increased PhG shrinkage. No effects of a pro-inflammatory polymorphism for C-reactive protein (CRP-286C>A>T, rs3091244) or apolipoprotein (APOE) ε4 allele were noted. These results replicate the pattern of brain shrinkage observed in previous studies, with a notable exception of the LPFC, thus casting doubt on the unique importance of prefrontal cortex in aging. Larger baseline volumes of CbH and In were associated with increased shrinkage, in conflict with the brain reserve hypothesis. Contrary to previous reports, we observed no significant linear effects of age and hypertension on regional brain shrinkage. Our findings warrant further investigation of the effects of neuroinflammation on structural brain change throughout the lifespan.

  13. Simulation of nylon 6 polymerization in tubular reactors with recycle

    Energy Technology Data Exchange (ETDEWEB)

    Gupta, S.K.; Kunzru, D.; Kumar, A.; Agarwal, K.K.

    1983-05-01

    In the hydrolytic polymerization of epsilon-caprolactam, the ring opening of the monomer is much slower than the polyaddition reaction. Hence, the mixing of aminocaproic acid to the feed results in a faster conversion of the monomer. Industrially, this fact is exploited by using a recycle stream. An isothermal plug flow reactor (PFR) with a recycle is simulated in this study, using two techniques: the method of successive substitutions and Wegstein's method. It is found that, under certain operating conditions, the use of a recycle stream gives higher monomer conversions and lower cyclic dimer concentrations than either a PFR or a homogeneous continuous flow stirred tank reactor (HCSTR), with the degree of polymerization almost the same as that obtained in an HCSTR, and thus offers a considerable advantage. However, when a recycle reactor is coupled with a subsequent flashing operation and a finishing reactor, these advantages are considerably reduced.

  14. Sparse contrast-source inversion using linear-shrinkage-enhanced inexact Newton method

    KAUST Repository

    Desmal, Abdulla

    2014-07-01

    A contrast-source inversion scheme is proposed for microwave imaging of domains with sparse content. The scheme uses inexact Newton and linear shrinkage methods to account for the nonlinearity and ill-posedness of the electromagnetic inverse scattering problem, respectively. Thresholded shrinkage iterations are accelerated using a preconditioning technique. Additionally, during Newton iterations, the weight of the penalty term is reduced consistently with the quadratic convergence of the Newton method to increase accuracy and efficiency. Numerical results demonstrate the applicability of the proposed method.

  15. Mining pharmacovigilance data using Bayesian logistic regression with James-Stein type shrinkage estimation.

    Science.gov (United States)

    An, Lihua; Fung, Karen Y; Krewski, Daniel

    2010-09-01

    Spontaneous adverse event reporting systems are widely used to identify adverse reactions to drugs following their introduction into the marketplace. In this article, a James-Stein type shrinkage estimation strategy was developed in a Bayesian logistic regression model to analyze pharmacovigilance data. This method is effective in detecting signals as it combines information and borrows strength across medically related adverse events. Computer simulation demonstrated that the shrinkage estimator is uniformly better than the maximum likelihood estimator in terms of mean squared error. This method was used to investigate the possible association of a series of diabetic drugs and the risk of cardiovascular events using data from the Canada Vigilance Online Database.

  16. The effect of mold surface topography on plastic parat in-process shrinkage in injection molding

    DEFF Research Database (Denmark)

    Arlø, Uffe Rolf; Hansen, Hans Nørgaard; Kjær, Erik Michael

    2003-01-01

    An experimental study of the effect of mold surface roughness on in-process in-flow linear part shrinkage in injection molding has been carried out. The investigation is based on an experimental two-cavity tool, where the cavities have different surface topographies, but are otherwise identical....... The study has been carried out for typical commercial polystyrene and polypropylene grades. The relationship between mold surface topography and linear shrinkage has been investigated with an experimental two-cavity mold producing simple rectangular parts with the nominal dimensions 1 x 25 x 50 mm (see...

  17. Method and application of wavelet shrinkage denoising based on genetic algorithm

    Institute of Scientific and Technical Information of China (English)

    2006-01-01

    Genetic algorithm (GA) based on wavelet transform threshold shrinkage (WTS) and translation-invafiant threshold shrinkage (TIS) is introduced into the method of noise reduction, where parameters used in WTS and TIS, such as wavelet function,decomposition levels, hard or soft threshold and threshold can be selected automatically. This paper ends by comparing two noise reduction methods on the basis of their denoising performances, computation time, etc. The effectiveness of these methods introduced in this paper is validated by the results of analysis of the simulated and real signals.

  18. Alcohol consumption and frontal lobe shrinkage: study of 1432 non-alcoholic subjects

    OpenAIRE

    Kubota, M.; Nakazaki, S.; Hirai, S.; Saeki, N; YAMAURA, A.; Kusaka, T

    2001-01-01

    OBJECTIVES—To evaluate the influences of chronic alcohol consumption on brain volume among social drinkers, as it is well known that alcohol misusers have a high risk of brain shrinkage.
METHODS—Frontal lobe volumes on MRI were compared with the current alcohol habits of consecutive 1432 non-alcoholic subjects.
RESULTS—After adjusting for other variables, age was found to be the most powerful promoting factor for the shrinkage with a odds ratio of 2.8 (95% confidence i...

  19. Hinge-free topology optimization with embedded translation-invariant differentiable wavelet shrinkage

    DEFF Research Database (Denmark)

    Yoon, G. H.; Kim, Y. Y.; Bendsøe, Martin P.;

    2004-01-01

    In topology optimization applications for the design of compliant mechanisms, the formation of hinges is typically encountered. Often such hinges are unphysical artifacts that appear due to the choice of discretization spaces for design and analysis. The objective of this work is to present a new...... in the multiscale design space. To imbed the shrinkage method implicitly in the optimization formulation and thus facilitate sensitivity analysis, the shrinkage method is made differentiable by means of differentiable versions of logical operators. The validity of the present method is confirmed by solving typical...... two-dimensional compliant mechanism design problems....

  20. Pickering miniemulsion polymerization using Laponite clay as a stabilizer.

    Science.gov (United States)

    Bon, Stefan A F; Colver, Patrick J

    2007-07-31

    Solid-stabilized, or Pickering, miniemulsion polymerizations using Laponite clay discs as stabilizer are investigated. Free radical polymerizations are carried out using a variety of hydrophobic monomers (i.e., styrene, lauryl (meth)acrylate, butyl (meth)acrylate, octyl acrylate, and 2-ethyl hexyl acrylate). Armored latexes, of which the surfaces of the particles are covered with clay discs, are obtained, as confirmed by scanning electron microscopy (FE-SEM) and atomic force microscopy (AFM). Overall polymerization kinetics of the Pickering miniemulsion polymerizations of styrene were investigated via gravimetry. Comparison with the bulk polymerization analogue clearly shows compartmentalization. Moreover, retardation effects up to intermediate monomer conversions are observed; they are more prominent for the smaller particles and are ascribed to the Laponite clay. A model is presented that allows for the prediction of the average particle size of the latexes produced as a function of the amounts of monomer and Pickering stabilizers used. It shows that under specific generic conditions the number of clay discs used correlates in a linear fashion with the total surface area of the latex particles. This is a direct result of the reversibility of the Laponite clay disc adhesion process under the emulsification conditions (i.e., sonication) used.

  1. Thermodynamic Presynthetic Considerations for Ring-Opening Polymerization.

    Science.gov (United States)

    Olsén, Peter; Odelius, Karin; Albertsson, Ann-Christine

    2016-03-14

    The need for polymers for high-end applications, coupled with the desire to mimic nature's macromolecular machinery fuels the development of innovative synthetic strategies every year. The recently acquired macromolecular-synthetic tools increase the precision and enable the synthesis of polymers with high control and low dispersity. However, regardless of the specificity, the polymerization behavior is highly dependent on the monomeric structure. This is particularly true for the ring-opening polymerization of lactones, in which the ring size and degree of substitution highly influence the polymer formation properties. In other words, there are two important factors to contemplate when considering the particular polymerization behavior of a specific monomer: catalytic specificity and thermodynamic equilibrium behavior. This perspective focuses on the latter and undertakes a holistic approach among the different lactones with regard to the equilibrium thermodynamic polymerization behavior and its relation to polymer synthesis. This is summarized in a monomeric overview diagram that acts as a presynthetic directional cursor for synthesizing highly specific macromolecules; the means by which monomer equilibrium conversion relates to starting temperature, concentration, ring size, degree of substitution, and its implications for polymerization behavior are discussed. These discussions emphasize the importance of considering not only the catalytic system but also the monomer size and structure relations to thermodynamic equilibrium behavior. The thermodynamic equilibrium behavior relation with a monomer structure offers an additional layer of complexity to our molecular toolbox and, if it is harnessed accordingly, enables a powerful route to both monomer formation and intentional macromolecular design.

  2. COPPER(0)-MEDIATED RADICAL POLYMERIZATION OF STYRENE AT ROOM TEMPERATURE

    Institute of Scientific and Technical Information of China (English)

    Xiao-fei Zhang; Yang Wu; Jun Huang; Xue-lang Miao; Zheng-biao Zhang; Xiu-lin Zhu

    2013-01-01

    The "living'/controlled radical polymerization (LRP) of styrene (St) at room temperature is rarely reported.In this work,copper(0) (Cu(0))-mediated radical polymerization of St at room temperature was investigated in detail.Dimethyl sulfoxide (DMSO),N,N-dimethylformamide (DMF) as well as a binary solvent,tetrahydrofuran/1,1,1,3,3,3-hexafluoro-2-propanol were used as the solvents,respectively.Methyl-2-bromopropionate and ethyl 2-bromoisobutyrate were used as the initiators,respectively.The polymerization proceeded smoothly with moderate conversions at room temperature.It was found that DMF was a good solvent with the essential features of LRP,while DMSO was a poor solvent with uncontrollable molecular weights.Besides,the match among the initiator,solvent and molar ratios of reactants can modulate the livingness of the polymerization,and the proper selection of ligand was also crucial to a controlled process.This work provided a first example of Cu(0)-mediated radical polymerization of St at room temperature,which would enrich and strength the LRP technique.

  3. Collaborative Research: Polymeric Multiferroics

    Energy Technology Data Exchange (ETDEWEB)

    Ren, Shenqiang [Temple Univ., Philadelphia, PA (United States). College of Engineering

    2017-04-20

    The goal of this project is to investigate room temperature magnetism and magnetoelectric coupling of polymeric multiferroics. A new family of molecular charge-transfer crystals has been emerged as a fascinating opportunity for the development of all-organic electrics and spintronics due to its weak hyperfine interaction and low spin-orbit coupling; nevertheless, direct observations of room temperature magnetic spin ordering have yet to be accomplished in organic charge-transfer solids. Furthermore, room temperature magnetoelectric coupling effect hitherto known multiferroics, is anticipated in organic donor-acceptor complexes because of magnetic field effects on charge-transfer dipoles, yet this is also unexplored. The PI seeks to fundamental understanding of the control of organic crystals to demonstrate and explore room temperature multiferroicity. The experimental results have been verified through the theoretical modeling.

  4. A New Initiator Cholesteryl Chloroformate for Cupper-Based Atom Transfer Radical Polymerization of Methyl Methacrylate

    Institute of Scientific and Technical Information of China (English)

    曹健; 楚娟; 张可达

    2004-01-01

    The polymerization of metyl methacrylate (MMA) was studied in detail by use of CuCl/L as a catalyst and cholesteryl chloroformate (CC) as an initiator. It was found that the atom transfer radical polymerization of MMA could proceed when L equals to a multidentate aliphatic amine ligand, N,N,N',N",N"-penta(methyl acrylate)diethylenetriamine (MA5-DETA), and no polymerization was occurred while L=2,2'-bipyridine and 1,10-phenanthroline. The linear proportionality of the molecular weights to the conversions and straight lines observed in ln[M]0/[M] versus time plots indicated that the present polymerization system had the typical controlled polymerization characteristics.

  5. Emulsion Polymerization of Etyl Acrylate: The Effect of Surfactant, Initiator Concentration and PolymerizationTechnique on Particle Size Distribution

    Directory of Open Access Journals (Sweden)

    Nitri Arinda

    2009-04-01

    Full Text Available Emulsion polymerization was conducted using ethyl acrylate monomer. Theeffect of sodium lauryl sulfate concentration, ammonium persulfate concentration, the various of polymerizationtechniques and feeding time to the conversion, particle size and its distribution were observed. The purpose of thisresearch is to obtain the optimum condition of ethyl acrylate homopolymer with particle size around 100 nm, to get theparticle size distribution monodisperse and to get solid content value of the experiment closed to its theoretical value.The optimum condition then could be applied in shell polymerization of core-shell polymers. The results of the researchshowed that semicontinuous technique obtained optimum sodium lauryl sulfate concentration at 20 CMC (criticalmicelle concentration and ammonium persulfate concentration is 3%. By using batch technique that the biggestparticle size is 123 nm with conversion 95.8% and monodisperse. The shorter of feeding time the more monomer ofethyl acrylate being polymerized, it is showed by the higher conversion up to 94.4% and the bigger particle size is107.9 nm.

  6. Reverse atom transfer radical polymerization of styrene in emulsion initiated by AIBN or V50

    Institute of Scientific and Technical Information of China (English)

    ZHANG Kai; ZHANG Hongwen; LI Hongtu; WANG Jingyuan

    2005-01-01

    Reverse atom transfer radical polymerization of styrene was conducted in emulsion by using Cu(II)/2,2′- bipydine or Cu(II)/phen complexes, AIBN or V50 as the initiator, Brij-98 or OP-10 as the surfactant. The results of GPC showed that both polymerization processes exhibit living characters when using AIBN as the initiator. However, when V50 was used, the monomer conversion was fairly low and the whole polymerization was not controlled well. The measurement of particle size and its distribution told us that the latex particles were mean and stable when using Brij-98 as the surfactant.

  7. Shrinkage insensitivity of NKCC1 in myosin II-depleted cytoplasts from Ehrlich ascites tumor cells

    DEFF Research Database (Denmark)

    Hoffmann, Else K; Pedersen, Stine F

    2007-01-01

    Protein phosphorylation/dephosphorylation and cytoskeletal reorganization regulate the Na(+)-K(+)-2Cl(-) cotransporter (NKCC1) during osmotic shrinkage; however, the mechanisms involved are unclear. We show that in cytoplasts, plasma membrane vesicles detached from Ehrlich ascites tumor cells (EATC...

  8. Influence of Superplasticizers on Strength and Shrinkage Cracking of Cement Mortar under Drying Conditions

    Institute of Scientific and Technical Information of China (English)

    MA Baoguo; WANG Xin'gang; LI Xiangguo; YANG Lei

    2007-01-01

    The effects of polynaphthalene series superplasticizers(PNS) with a low content of sodium sulfate (H-UNF),with a high content of sodium sulfate(C-UNF) and polycarboxylate type superplasticizer (PC) on strength and shrinkage cracking of cement mortar under drying conditions were investigated by means of multi-channel ellipse ring shrinkage cracking test, free shrinkage and strength test. The general effect of PNS and PC is to increase the initial cracking time of mortars, and decrease the cracking sensitivity of mortars. As for decreasing the cracking sensitivity of mortars, PC>H-UNF>C-UNF. To incorporate superplasticizers is apparently to increase the free shrinkage of mortars when keeping the constant w/b ratio and the content of cement pastes. As for the effect of controlling the volume stability of mortars, PC>C-UNF>H-UNF. Maximum crack width of mortars containing PC is lower, but the development rate of maximum crack width of mortars containing H-UNF is faster in comparison with control mortars. The flexural and compressive strengths of mortars at 28-day increase with increasing superplasticizer dosages under drying conditions. PC was superior to PNS in the aspect of increasing strength.

  9. Quantification of shrinkage microcracking in young mortar with fluorescence light microscopy and ESEM

    NARCIS (Netherlands)

    Bisschop, J.; Van Mier, J.C.M.

    1999-01-01

    In this paper a method is described to quantify shrinkage microcracking in young mortar by means of crack mapping. Visualisation of the microcracks is realised with two techniques: Fluorescence Light Microscopy (FLM) and Environmental Scanning Electron Microscopy (ESEM). The preliminary results obta

  10. Shrinkage of bubbles and drops in the lattice Boltzmann equation method for nonideal gases

    Science.gov (United States)

    Zheng, Lin; Lee, Taehun; Guo, Zhaoli; Rumschitzki, David

    2014-03-01

    One characteristic of multiphase lattice Boltzmann equation (LBE) methods is that the interfacial region has a finite (i.e., noninfinitesimal) thickness known as a diffuse interface. In simulations of, e.g., bubble or drop dynamics, for problems involving nonideal gases, one frequently observes that the diffuse interface method produces a spontaneous, nonphysical shrinkage of the bubble or drop radius. In this paper, we analyze in detail a single-fluid two-phase model and use a LBE model for nonideal gases in order to explain this fundamental problem. For simplicity, we only investigate the static bubble or droplet problem. We find that the method indeed produces a density shift, bubble or droplet shrinkage, as well as a critical radius below which the bubble or droplet eventually vanishes. Assuming that the ratio between the interface thickness D and the initial bubble or droplet radius r0 is small, we analytically show the existence of this density shift, bubble or droplet radius shrinkage, and critical bubble or droplet survival radius. Numerical results confirm our analysis. We also consider droplets on a solid surface with different curvatures, contact angles, and initial droplet volumes. Numerical results show that the curvature, contact angle, and the initial droplet volume have an effect on this spontaneous shrinkage process, consistent with the survival criterion.

  11. Shrinkage kinetics of a methacrylate- and a silorane-based resin composite: effect on marginal integrity

    NARCIS (Netherlands)

    Gregor, L.; Bortolotto, T.; Feilzer, A.J.; Krejci, I.

    2013-01-01

    Purpose: To evaluate the relation between the linear displacement (LD), shrinkage force (SF) and marginal adaptation of a methacrylate- and a silorane-based composite. Materials and Methods: The LD and SF of 8 samples made of Filtek Supreme XT (methacrylate-based composite) and Filtek Silorane (silo

  12. Detection and Influence of Shrinkage Pores and Nonmetallic Inclusions on Fatigue Life of Cast Aluminum Alloys

    Science.gov (United States)

    Tijani, Yakub; Heinrietz, André; Stets, Wolfram; Voigt, Patrick

    2013-12-01

    In the current study, test bars of cast aluminum alloys EN AC-AlSi8Cu3 and EN AC-AlSi7Mg0.3 were produced with a defined amounts of shrinkage pores and oxides. For this purpose, a permanent mold with heating and cooling devices for the generation of pores was constructed. The oxides were produced by contaminating the melt. The specimens and their corresponding defect distributions were examined and quantified by X-ray computer tomography (CT) and quantitative metallography, respectively. A special test algorithm for the simultaneous image analyses of pores and oxides was developed. Fatigue tests were conducted on the defective samples. It was found that the presence of shrinkage pores lowers the fatigue strength, and only few oxide inclusions were found to initiate fatigue cracks when shrinkage pores are present. The results show that the pore volume is not sufficient to characterize the influence of shrinkage pores on fatigue life. A parametric model for the calculation of fatigue life based on the pore parameters obtained from CT scans was implemented. The model accounts for the combined impact of pore location, size, and shape on fatigue life reduction.

  13. Astrocytic mechanisms explaining neural-activity-induced shrinkage of extraneuronal space.

    Directory of Open Access Journals (Sweden)

    Ivar Østby

    2009-01-01

    Full Text Available Neuronal stimulation causes approximately 30% shrinkage of the extracellular space (ECS between neurons and surrounding astrocytes in grey and white matter under experimental conditions. Despite its possible implications for a proper understanding of basic aspects of potassium clearance and astrocyte function, the phenomenon remains unexplained. Here we present a dynamic model that accounts for current experimental data related to the shrinkage phenomenon in wild-type as well as in gene knockout individuals. We find that neuronal release of potassium and uptake of sodium during stimulation, astrocyte uptake of potassium, sodium, and chloride in passive channels, action of the Na/K/ATPase pump, and osmotically driven transport of water through the astrocyte membrane together seem sufficient for generating ECS shrinkage as such. However, when taking into account ECS and astrocyte ion concentrations observed in connection with neuronal stimulation, the actions of the Na(+/K(+/Cl(- (NKCC1 and the Na(+/HCO(3 (- (NBC cotransporters appear to be critical determinants for achieving observed quantitative levels of ECS shrinkage. Considering the current state of knowledge, the model framework appears sufficiently detailed and constrained to guide future key experiments and pave the way for more comprehensive astroglia-neuron interaction models for normal as well as pathophysiological situations.

  14. Numerical Analysis of Influence of the Mold Material on the Distribution of Shrinkage Cavities

    Directory of Open Access Journals (Sweden)

    R. Dyja

    2013-01-01

    Full Text Available Production of castings, like any other field of technology is aimed at providing high-quality product, free from defects. One of the maincauses of defects in castings is the phenomenon of shrinkage of the casting. This phenomenon causes the formation of shrinkage cavitiesand porosity in the casting. The major preventive measure is supplementing a shortage of liquid metal. For supplement to be effective, it is necessary to use risers in proper shapes. Usually, the risers are selected on the basis of determination the place of formation of hot-spots in the castings. Although in these places the shrinkage defects are most likely to occur, shape and size of these defects are also affected by other factors. The article describes the original program setting out the shape and location of possible cavities in the casting. In the program is also taken into account the effect of temperature on the change in volume of liquid metal and the resultant differences in the shape and size of formed shrinkage cavities. The aim of the article is to describe the influence that have material properties of the mold on the simulation results.

  15. Autogenous shrinkage of Ducorit S5R ASTM C 1698-09 test method

    DEFF Research Database (Denmark)

    Damkilde, Lars

    The report deals with experimental measurement of autogenous shrinkage of Ducorit S5R according to the test method ASTM C 1698-09. This test method measures the bulk strain of a sealed cementitious specimen, at constant temperature and not subjected to external forces, from the time of final...

  16. Urban shrinkage, local housing markets and the role of voluntary community organisations

    DEFF Research Database (Denmark)

    Larsen, Jacob Norvig

    Since the beginning of the crisis in 2007-08 urban shrinkage has hit a large number of Danish municipalities, towns and villages outside the two major metropolitan areas in the country .Abandoned homes, plunging property prices and out-migration are among the major symptoms. As a consequence of t...

  17. A modelling study of drying shrinkage damage in concrete repair systems

    NARCIS (Netherlands)

    Lukovic, M.; Savija, B.; Schlangen, E.; Ye, G.; van Breugel, K.

    2014-01-01

    Differential shrinkage between repair material and concrete substrate is considered to be the main cause of premature failure of repair systems (Martinola, Sadouki et al. 2001, Beushausen and Alexander 2007). Magnitude of induced stresses depends on many factors, for example the amount of restraint,

  18. EFFECTS OF DYNEL FIBER BLENDING ON YARN SHRINKAGE AND WOVEN-FABRIC PROPERTIES

    Science.gov (United States)

    A 50/50 picker blend warp was woven with fillings from the various blends and twists. The fabrics were scoured and treated for water repellency . Highest...results of yarn and fabric shrinkage and air permeability. All water repellency tests were poor; fabrics with low-twist fillings were better than those

  19. Prediction of Shrinkage Porosity Defect in Sand Casting Process of LM25

    Science.gov (United States)

    Rathod, Hardik; Dhulia, Jay K.; Maniar, Nirav P.

    2017-08-01

    In the present worldwide and aggressive environment, foundry commercial enterprises need to perform productively with least number of rejections and create casting parts in shortest lead time. It has become extremely difficult for foundry industries to meet demands of defects free casting and meet strict delivery schedules. The process of casting solidification is complex in nature. Prediction of shrinkage defect in metal casting is one of the critical concern in foundries and is one of the potential research areas in casting. Due to increasing pressure to improve quality and to reduce cost, it is very essential to upgrade the level of current methodology used in foundries. In the present research work, prediction methodology of shrinkage porosity defect in sand casting process of LM25 using experimentation and ANSYS is proposed. The objectives successfully achieved are prediction of shrinkage porosity distribution in Al-Si casting and determining effectiveness of investigated function for predicting shrinkage porosity by correlating results of simulating studies to those obtained experimentally. The real-time application of the research reflects from the fact that experimentation is performed on 9 different Y junctions at foundry industry and practical data obtained from experimentation are used for simulation.

  20. Porous stainless steel hollow fibers with shrinkage-controlled small radial dimensions

    NARCIS (Netherlands)

    Luiten-Olieman, Mieke W.J.; Raaijmakers, Michiel J.T.; Winnubst, Louis; Wessling, Matthias; Nijmeijer, Arian; Benes, Nieck E.

    2011-01-01

    A method is presented for the preparation of thin (∼250 μm) porous stainless steel hollow fiber membranes based on dry–wet spinning of a particle-loaded polymer solution followed by heat treatment. Extraordinarily small radial dimensions were achieved by controlled shrinkage during thermal treatment

  1. Sequential shrinkage and swelling underlie P2X7-stimulated lymphocyte phosphatidylserine exposure and death.

    Science.gov (United States)

    Taylor, Simon R J; Gonzalez-Begne, Mireya; Dewhurst, Stephen; Chimini, Giovanna; Higgins, Christopher F; Melvin, James E; Elliott, James I

    2008-01-01

    Patterns of change in cell volume and plasma membrane phospholipid distribution during cell death are regarded as diagnostic means of distinguishing apoptosis from necrosis, the former being associated with cell shrinkage and early phosphatidylserine (PS) exposure, whereas necrosis is associated with cell swelling and consequent lysis. We demonstrate that cell volume regulation during lymphocyte death stimulated via the purinergic receptor P2X7 is distinct from both. Within seconds of stimulation, murine lymphocytes undergo rapid shrinkage concomitant with, but also required for, PS exposure. However, within 2 min shrinkage is reversed and swelling ensues ending in cell rupture. P2X7-induced shrinkage and PS translocation depend upon K+ efflux via KCa3.1, but use a pathway of Cl- efflux distinct from that previously implicated in apoptosis. Thus, P2X7 stimulation activates a novel pathway of cell death that does not conform to those conventionally associated with apoptosis and necrosis. The mixed apoptotic/necrotic phenotype of P2X7-stimulated cells is consistent with a potential role for this death pathway in lupus disease.

  2. Linear shrinkage test: justification for its reintroduction as a standard South African test method

    CSIR Research Space (South Africa)

    Sampson, LR

    2009-06-04

    Full Text Available Several problems with the linear shrinkage test specified in Method A4 of the THM 1 1979 were addressed as part of this investigation in an effort to improve the alleged poor reproducibility of the test and justify its reintroduction into THM 1. A...

  3. Shrinkage-reducing admixtures and early-age desiccation in cement pastes and mortars

    DEFF Research Database (Denmark)

    Bentz, D. P.; Geiker, Mette Rica; Hansen, Kurt Kielsgaard

    2001-01-01

    Fundamental studies of the early-age desiccation of cement-based materials with and without a shrinkage-reducing admixture (SRA) have been performed. Studies have been conducted under both sealed and drying conditions. Physical measurements include mass loss, surface tension, X-ray absorption...

  4. Brain shrinkage in alcoholics is not caused by changes in hydration: a pathological study.

    OpenAIRE

    Harper, C. G.; Kril, J J; Daly, J.M.

    1988-01-01

    Measurement of the water content of the cerebral white matter in 26 control and 24 alcoholic cases supports in vivo MRI studies and previous necropsy studies which appeared to show an increase in the water content in the alcoholic group. This negates the hypothesis that reversible brain shrinkage in alcoholics is caused by changes in the state of hydration.

  5. Differential brain shrinkage over 6 months shows limited association with cognitive practice.

    Science.gov (United States)

    Raz, Naftali; Schmiedek, Florian; Rodrigue, Karen M; Kennedy, Kristen M; Lindenberger, Ulman; Lövdén, Martin

    2013-07-01

    The brain shrinks with age, but the timing of this process and the extent of its malleability are unclear. We measured changes in regional brain volumes in younger (age 20-31) and older (age 65-80) adults twice over a 6 month period, and examined the association between changes in volume, history of hypertension, and cognitive training. Between two MRI scans, 49 participants underwent intensive practice in three cognitive domains for 100 consecutive days, whereas 23 control group members performed no laboratory cognitive tasks. Regional volumes of seven brain structures were measured manually and adjusted for intracranial volume. We observed significant mean shrinkage in the lateral prefrontal cortex, the hippocampus, the caudate nucleus, and the cerebellum, but no reliable mean change of the prefrontal white matter, orbital-frontal cortex, and the primary visual cortex. Individual differences in change were reliable in all regions. History of hypertension was associated with greater cerebellar shrinkage. The cerebellum was the only region in which significantly reduced shrinkage was apparent in the experimental group after completion of cognitive training. Thus, in healthy adults, differential brain shrinkage can be observed in a narrow time window, vascular risk may aggravate it, and intensive cognitive activity may have a limited effect on it.

  6. Significant reversibility of alcoholic brain shrinkage within 3 weeks of abstinence.

    Science.gov (United States)

    Trabert, W; Betz, T; Niewald, M; Huber, G

    1995-08-01

    Chronic alcoholism is often associated with brain shrinkage or atrophy. During recent years, it has been demonstrated that this shrinkage is, at least in part, reversible when abstinence is maintained. There are different hypotheses concerning the mechanisms for this reversibility, but many questions are still open. Especially the time conditions for these reversible changes are subject of discussion. Twenty-eight male patients with severe alcohol dependence were investigated in a computed tomographic study at the beginning of abstinence and 3 weeks later. Planimetric evaluation of 5 selected slices revealed a significant decrease in liquor areas and an increase of brain volume. The densitometric analysis showed an increase in brain tissue density. In a multiple regression approach it was shown that the reversibility was mostly influenced by the age of the patients. Our results support neither the hypothesis of an increase in brain water as the most important principle for reversibility in alcoholic brain shrinkage nor the hypothesis of augmented dendritic growth. Other mechanisms like reduced (during chronic intoxication) and normalized (during abstinence) cerebral hemoperfusion have to be considered as possible mechanisms for the reversibility of alcoholic brain shrinkage.

  7. The tissue shrinkage phenomenon on surgical margins in oral and oropharyngeal squamous cell carcinoma

    Institute of Scientific and Technical Information of China (English)

    David González-Ballester

    2016-01-01

    Aim: One of the most important factors associated with recurrence rate and overall survival is the status of surgical margin of resection free of disease. However, sometimes, the margins measured intra-operatively at the time of surgery differ of those measured by the pathologist in the histopathologic analysis. Faced with this dilemma, a literature review of the best available evidence was conducted in an attempt to determine how the phenomenon of tissue shrinkage may influence on the surgical margin of resection in patients undergoing oral and oropharyngeal squamous cell carcinoma (SCC).Methods: An electronic and manual search was conducted by one reviewer. A combination of controlled Medical Subjects Headings and keywords were used as search strategy. Inclusion and exclusion criteria were established.Results: Finally, after an exhaustive selection process, four articles fulfilled the inclusion criteria and were analyzed. All articles reported a decrease of surgical margin after resection. The tumor site and tumor stage seem to influence in degree of margin shrinkage.Conclusion:Tissue shrinkage on surgical margins of resection in oral SCC is a tangible phenomenon. There is a significant discrepancy between margins measured intraoperatively previous to resection and margins measured by pathologist after histologic processing. The highest percentage of retraction occurs at the time of resection. Margin shrinkage based on tumor site and tumor stage should be considered by any oncologic surgeon to ensure adequate margins of resection cleared of tumor.

  8. Shrinkages in heavy-sized cast components of nodular cast iron – NDT and fatigue

    Directory of Open Access Journals (Sweden)

    Bleicher Christoph

    2014-06-01

    Full Text Available Material defects like shrinkages, dross, pores and chunky graphite are likely to occur in thick-walled castings and are a challenge for the foundries and their customers. These defects are mostly detected with handheld ultrasonic testing (UT or X-ray analysis. Within a research project done at the Fraunhofer Institute for Structural Durability and System Reliability LBF, the fatigue of Dross, shrinkages and chunky graphite in thick-walled cast material GGG-40 was estimated based on X-ray and fatigue tests on bending specimens. High fatigue reductions were received for the different material imperfections. Based on these impressions a further research project was executed at the Fraunhofer LBF to get an estimation of the informational value of UT in relation to fatigue of shrinkages in thick-walled castings of the material EN-GJS-400-18U-LT, EN-GJS-450-18 and EN-GJS-700-2. With the help of X-ray analysis and the UT technique Sampling Phased Array (SPA information about geometry and density were derived for a numerical analysis of shrinkages in thick-walled castings concerning fatigue. The following text summarizes the fatigue results achieved in the two research projects with the help of the X-ray and UT analysis.

  9. Urban shrinkage, local housing markets and the role of voluntary community organisations

    DEFF Research Database (Denmark)

    Larsen, Jacob Norvig

    Since the beginning of the crisis in 2007-08 urban shrinkage has hit a large number of Danish municipalities, towns and villages outside the two major metropolitan areas in the country .Abandoned homes, plunging property prices and out-migration are among the major symptoms. As a consequence of t...

  10. SEM-induced shrinkage and site-selective modification of single-crystal silicon nanopores

    Science.gov (United States)

    Chen, Qi; Wang, Yifan; Deng, Tao; Liu, Zewen

    2017-07-01

    Solid-state nanopores with feature sizes around 5 nm play a critical role in bio-sensing fields, especially in single molecule detection and sequencing of DNA, RNA and proteins. In this paper we present a systematic study on shrinkage and site-selective modification of single-crystal silicon nanopores with a conventional scanning electron microscope (SEM). Square nanopores with measurable sizes as small as 8 nm × 8 nm and rectangle nanopores with feature sizes (the smaller one between length and width) down to 5 nm have been obtained, using the SEM-induced shrinkage technique. The analysis of energy dispersive x-ray spectroscopy and the recovery of the pore size and morphology reveal that the grown material along with the edge of the nanopore is the result of deposition of hydrocarbon compounds, without structural damage during the shrinking process. A simplified model for pore shrinkage has been developed based on observation of the cross-sectional morphology of the shrunk nanopore. The main factors impacting on the task of controllably shrinking the nanopores, such as the accelerating voltage, spot size, scanned area of e-beam, and the initial pore size have been discussed. It is found that single-crystal silicon nanopores shrink linearly with time under localized irradiation by SEM e-beam in all cases, and the pore shrinkage rate is inversely proportional to the initial equivalent diameter of the pore under the same e-beam conditions.

  11. Shrinkage Behaviour of Spheroidal Graphite Cast Iron in Green and Dry Sand Molds for the Benchmarking of Solidification Simulation

    Institute of Scientific and Technical Information of China (English)

    2001-01-01

    The effects of metallurgical and processing parameters on the formation of shrinkage cavities and porosities in spheroidal graphite cast iron have been studied, considering the parameters of carbon equivalent, inoculation, casting modulus, mold type (green or dry) and pouring temperature within specific ranges of these variables. Based on the orthogonal experiments, the metallurgical and processing parameters of the minimum casting shrinkage and the maximum casting shrinkage were obtained, and the effects of metallurgical and processing parameters on the formation of shrinkage cavities and porosities in spheroidal graphite cast iron castings were discussed. Finally,two regression equations relating these variables to the formation of shrinkage porosity were derived based upon the orthogonal experiments conducted.

  12. Taguchi design and flower pollination algorithm application to optimize the shrinkage of triaxial porcelain containing palm oil fuel ash

    Science.gov (United States)

    Zainudin, A.; Sia, C. K.; Ong, P.; Narong, O. L. C.; Nor, N. H. M.

    2017-01-01

    In the preparation of triaxial porcelain from Palm Oil Fuel Ash (POFA), a new parameter variable must be determined. The parameters involved are the particle size of POFA, percentage of POFA in triaxial porcelain composition, moulding pressure, sintering temperature and soaking time. Meanwhile, the shrinkage is the dependent variable. The optimization process was investigated using a hybrid Taguchi design and flower pollination algorithm (FPA). The interaction model of shrinkage was derived from regression analysis and found that the shrinkage is highly dependent on the sintering temperature followed by POFA composition, moulding pressure, POFA particle size and soaking time. The interaction between sintering temperature and soaking time highly affects the shrinkage. From the FPA process, targeted shrinkage approaching zero values were predicted for 142 μm particle sizes of POFA, 22.5 wt% of POFA, 3.4 tonne moulding pressure, 948.5 °C sintering temperature and 264 minutes soaking time.

  13. Assessment of murine brain tissue shrinkage caused by different histological fixatives using magnetic resonance and computed tomography imaging.

    Science.gov (United States)

    Wehrl, Hans F; Bezrukov, Ilja; Wiehr, Stefan; Lehnhoff, Mareike; Fuchs, Kerstin; Mannheim, Julia G; Quintanilla-Martinez, Leticia; Kohlhofer, Ursula; Kneilling, Manfred; Pichler, Bernd J; Sauter, Alexander W

    2015-05-01

    Especially for neuroscience and the development of new biomarkers, a direct correlation between in vivo imaging and histology is essential. However, this comparison is hampered by deformation and shrinkage of tissue samples caused by fixation, dehydration and paraffin embedding. We used magnetic resonance (MR) imaging and computed tomography (CT) imaging to analyze the degree of shrinkage on murine brains for various fixatives. After in vivo imaging using 7 T MRI, animals were sacrificed and the brains were dissected and immediately placed in different fixatives, respectively: zinc-based fixative, neutral buffered formalin (NBF), paraformaldehyde (PFA), Bouin-Holland fixative and paraformaldehyde-lysine-periodate (PLP). The degree of shrinkage based on mouse brain volumes, radiodensity in Hounsfield units (HU), as well as non-linear deformations were obtained. The highest degree of shrinkage was observed for PLP (68.1%, P brain shrinkage and only small deformations and is therefore recommended for in vivo ex vivo comparison studies.

  14. Effect of configuration factor on gap formation in hybrid composite resin, low-shrinkage composite resin and resin-modified glass ionomer.

    Science.gov (United States)

    Boroujeni, Parvin M; Mousavinasab, Sayyed M; Hasanli, Elham

    2015-05-01

    Polymerization shrinkage is one of the important factors in creation of gap between dental structure and composite resin restorations. The aim of this study was to evaluate the effect of configuration factor (C-factor) on gap formation in a hybrid composite resin, a low shrinkage composite resin and a resin modified glass ionomer restorative material. Cylindrical dentin cavities with 5.0 mm diameter and three different depths (1.0, 2.0 and 3.0 mm) were prepared on the occlusal surface of 99 human molars and the cavities assigned into three groups (each of 33). Each group contained three subgroups depend on the different depths and then cavities restored using resin modified glass ionomer (Fuji II LC Improved) and two type composite resins (Filtek P90 and Filtek Z250). Then the restorations were cut into two sections in a mesiodistal direction in the middle of restorations. Gaps were measured on mesial, distal and pulpal floor of the cavities, using a stereomicroscope. Data analyses using Kruskal-Wallist and Mann-Whitney tests. Increasing C-factor from 1.8 to 3.4 had no effect on the gap formation in two type composite resins, but Fuji II LC Improved showed significant effect of increasing C-factor on gap formation. Taken together, when C-factor increased from 1.8 up to 3.4 had no significant effect on gap formation in two tested resin composites. Although, Filtek P90 restorations showed smaller gap formation in cavities walls compared to Filtek Z250 restorations. High C-factor values generated the largest gap formation. Silorane-based composite was more efficient for cavity sealing than methacrylate-based composites and resin modified glass ionomer. © 2014 Wiley Publishing Asia Pty Ltd.

  15. Characterizetion of Flexural Strength, Warpage and Shrinkage of Polypropylene-Nanoclay-Nanocomposites Blend with Gigantochloa Scortechinii.

    Science.gov (United States)

    Khamis, S. Z.; Othman, M. H.; Hasan, S.; Ibrahim, M. H. I.

    2017-08-01

    This paper presents the characterization of Flexural Strength, Warpage and Shrinkage of reinforcement gigantochloa scortechinii fibre. The content of fiber were fixed at 0 wt.%, 3 wt.% and 6 wt.% in uniform increased. The selected injection moulding processing conditions were packing pressure, melt temperature, screw speed and filling time. The quality factors that need to be improved upon the characterization were flexural strength, warpage and shrinkage. This research started by drying the Gigantochloa Scortechinii fibres at 120°C. After that, 3 wt.% of the fibres were mixed with 81 wt.% of polypropylene, 15 wt.% of polypropylene grafted maleic anhydride (compatibilizer) and 1 wt. % of nanoclay. Samples with 6 wt.% of fibers were also prepared for comparison purpose. The mixing process was performed by using Brabender Lab-Compounder KETSE 20/40 and the pallets were produced using used Brabender® pelletizer with diameters of 1 to 4 mm. The optimisation process was accomplished by adopting the Taguchi L9 orthogonal array method. According to the results, for 0 wt.% GS, the flexural strength is 30.0082 MPa, the warpage is 0.0030000 mm and the shrinkage is 0.0003830 mm at packing pressure 40%, melt temperature 165°C, filled time 2 seconds and screw speed 35%. For the result 3 wt.% GS, the flexural strength is 32.2477 MPa, the warpage is 0.006670 mm and the shrinkage is 0.0003830 mm at packing pressure is 35%, melt temperature 165°C, filled times is 1 seconds and screw speed is 30%. While for the 6 wt.% GS, the results of the flexural strength is 36.9084 MPa, the warpage is 0.0066700 mm and the shrinkage is 0.0003830 mm at packing pressure is 35%, melt temperature 165°C, filled time is 2 seconds and screw speed is 30%. The existence of Gigantochloa Scortechinii fibre was also proven to effect significantly towards flexural strength with 6% increasing value ordering from 0 wt.% GS to 6 wt.% GS. while, the warpage value increasing from 0.003000 mm to 0.00667 mm and

  16. Computed tomographic measurements of mesh shrinkage after laparoscopic ventral incisional hernia repair with an expanded polytetrafluoroethylene mesh.

    Science.gov (United States)

    Schoenmaeckers, Ernst J P; van der Valk, Steef B A; van den Hout, Huib W; Raymakers, Johan F T J; Rakic, Srdjan

    2009-07-01

    The potential for shrinkage of intraperitoneally implanted meshes for laparoscopic repair of ventral and incisional hernia (LRVIH) remains a concern. Numerous experimental studies on this issue reported very inconsistent results. Expanded polytetrafluoroethylene (ePTFE) mesh has the unique property of being revealed by computed tomography (CT). We therefore conducted an analysis of CT findings in patients who had previously undergone LRVIH with an ePTFE mesh (DualMesh, WL Gore, Flagstaff, AZ, USA) in order to evaluate the shrinkage of implanted meshes. Of 656 LRVIH patients with DualMesh, all patients who subsequently underwent CT scanning were identified and only those with precisely known transverse diameter of implanted mesh and with CT scans made more than 3 months postoperatively were selected (n = 40). Two radiologists who were blinded to the size of the implanted mesh measured in consensus the maximal transverse diameter of the meshes by using the AquariusNET program (TeraRecon Inc., San Mateo, CA, USA). Mesh shrinkage was defined as the relative loss of transverse diameter as compared with the original transverse diameter of the mesh. The mean time from LRVIH to CT scan was 17.9 months (range 3-59 months). The mean shrinkage of the mesh was 7.5% (range 0-23.7%). For 11 patients (28%) there was no shrinkage at all. Shrinkage of 1-10% was found in 16 patients (40%), of 10-20% in 10 patients (25%), and of 20-24% in 3 patients (7.5%). No correlation was found regarding the elapsed time between LRVIH and CT, and shrinkage. There were two recurrences, one possibly related to shrinkage. Our observations indicate that shrinkage of DualMesh is remarkably lower than has been reported in experimental studies (8-51%). This study is the first to address the problem of shrinkage after intraperitoneal implantation of synthetic mesh in a clinical material.

  17. Measurement, growth types and shrinkage of newly formed aerosol particles at an urban research platform

    Science.gov (United States)

    Salma, Imre; Németh, Zoltán; Weidinger, Tamás; Kovács, Boldizsár; Kristóf, Gergely

    2016-06-01

    Budapest platform for Aerosol Research and Training (BpART) was created for advancing long-term on-line atmospheric measurements and intensive aerosol sample collection campaigns in Budapest. A joint study including atmospheric chemistry or physics, meteorology, and fluid dynamics on several-year-long data sets obtained at the platform confirmed that the location represents a well-mixed, average atmospheric environment for the city centre. The air streamlines indicated that the host and neighbouring buildings together with the natural orography play an important role in the near-field dispersion processes. Details and features of the airflow structure were derived, and they can be readily utilised for further interpretations. An experimental method to determine particle diffusion losses in the differential mobility particle sizer (DMPS) system of the BpART facility was proposed. It is based on CPC-CPC (condensation particle counter) and DMPS-CPC comparisons. Growth types of nucleated particles observed in 4 years of measurements were presented and discussed specifically for cities. Arch-shaped size distribution surface plots consisting of a growth phase followed by a shrinkage phase were characterised separately since they supply information on nucleated particles. They were observed in 4.5 % of quantifiable nucleation events. The shrinkage phase took 1 h 34 min in general, and the mean shrinkage rate with standard deviation was -3.8 ± 1.0 nm h-1. The shrinkage of particles was mostly linked to changes in local atmospheric conditions, especially in global radiation and the gas-phase H2SO4 concentration through its proxy, or to atmospheric mixing in few cases. Some indirect results indicate that variations in the formation and growth rates of nucleated particles during their atmospheric transport could be a driving force of shrinkage for particles of very small sizes and on specific occasions.

  18. Organometallic Polymeric Conductors

    Science.gov (United States)

    Youngs, Wiley J.

    1997-01-01

    For aerospace applications, the use of polymers can result in tremendous weight savings over metals. Suitable polymeric materials for some applications like EMI shielding, spacecraft grounding, and charge dissipation must combine high electrical conductivity with long-term environmental stability, good processability, and good mechanical properties. Recently, other investigators have reported hybrid films made from an electrically conductive polymer combined with insulating polymers. In all of these instances, the films were prepared by infiltrating an insulating polymer with a precursor for a conductive polymer (either polypyrrole or polythiophene), and oxidatively polymerizing the precursor in situ. The resulting composite films have good electrical conductivity, while overcoming the brittleness inherent in most conductive polymers. Many aerospace applications require a combination of properties. Thus, hybrid films made from polyimides or other engineering resins are of primary interest, but only if conductivities on the same order as those obtained with a polystyrene base could be obtained. Hence, a series of experiments was performed to optimize the conductivity of polyimide-based composite films. The polyimide base chosen for this study was Kapton. 3-MethylThiophene (3MT) was used for the conductive phase. Three processing variables were identified for producing these composite films, namely time, temperature, and oxidant concentration for the in situ oxidation. Statistically designed experiments were used to examine the effects of these variables and synergistic/interactive effects among variables on the electrical conductivity and mechanical strength of the films. Multiple linear regression analysis of the tensile data revealed that temperature and time have the greatest effect on maximum stress. The response surface of maximum stress vs. temperature and time (for oxidant concentration at 1.2 M) is shown. Conductivity of the composite films was measured for

  19. High temperature structural, polymeric foams from high internal emulsion polymerization

    Energy Technology Data Exchange (ETDEWEB)

    Hoisington, M.A.; Duke, J.R.; Apen, P.G.

    1996-02-01

    In 1982, a high internal phase emulsion (HIPE) polymerization process to manufacture microcellular, polymeric foam systems was patented by Unilever. This patent discloses a polymerization process that occurs in a water-in-oil emulsion in which the water represents at least 76% of the emulsion by volume. The oil phase consists of vinyl monomers such as styrene and acrylates that are crosslinked by divinyl monomers during polymerization. After polymerization and drying to remove the water phase, the result is a crosslinked polymer foam with an open cell microstructure that is homogeneous throughout in terms of morphology, density, and mechanical properties. Since 1982, numerous patents have examined various HIPE polymerized foam processing techniques and applications that include absorbents for body fluids, cleaning materials, and ion exchange systems. All the published HIPE polymerized foams have concentrated on materials for low temperature applications. Copolymerization of styrene with maleic anhydride and N-substituted maleimides to produce heat resistant thermoplastics has been studied extensively. These investigations have shown that styrene will free radically copolymerize with N-substituted maleimides to create an alternating thermoplastic copolymer with a Tg of approximately 200{degrees}C. However, there are many difficulties in attempting the maleimide styrene copolymerization in a HIPE such as lower polymerization temperatures, maleimide solubility difficulties in both styrene and water, and difficulty obtaining a stable HIPE with a styrene/maleimide oil phase. This work describes the preparation of copolymer foams from N-ethylmaleimide and Bis(3-ethyl-5-methyl-4-maleimide-phenyl)methane with styrene based monomers and crosslinking agents.

  20. Electroactivity in Polymeric Materials

    CERN Document Server

    2012-01-01

    Electroactivity in Polymeric Materials provides an in-depth view of the theory of electroactivity and explores exactly how and why various electroactive phenomena occur. The book explains the theory behind electroactive bending (including ion-polymer-metal-composites –IPMCs), dielectric elastomers, electroactive contraction, and electroactive contraction-expansion cycles.  The book also balances theory with applications – how electroactivity can be used – drawing inspiration from the manmade mechanical world and the natural world around us.  This book captures: A complete introduction to electroactive materials including examples and recent developments The theory and applications of numerous topics like electroactive bending of dielectric elastomers and electroactive contraction and expansion New topics, such as biomimetic applications and energy harvesting This is a must-read within the electroactive community, particularly for professionals and graduate students who are interested in the ...

  1. Kinetics of silica polymerization

    Energy Technology Data Exchange (ETDEWEB)

    Weres, O.; Yee, A.; Tsao, L.

    1980-05-01

    The polymerization of silicic acid in geothermal brine-like aqueous solutions to produce amorphous silica in colloidal form has been studied experimentally and theoretically. A large amount of high quality experimental data has been generated over the temperature rang 23 to 100{sup 0}C. Wide ranges of dissolved silica concentration, pH, and sodium chloride concentration were covered. The catalytic effects of fluoride and the reaction inhibiting effects of aluminum and boron were studied also. Two basic processes have been separately studied: the formation of new colloidal particles by the homogeneous nucleation process and the deposition of dissolved silica on pre-existing colloidal particles. A rigorous theory of the formation of colloidal particles of amorphous silica by homogeneous nucleation was developed. This theory employs the Lothe-Pound formalism, and is embodied in the computer code SILNUC which quantitatively models the homogeneous nucleation and growth of colloidal silica particles in more than enough detail for practical application. The theory and code were extensively used in planning the experimental work and analyzing the data produced. The code is now complete and running in its final form. It is capable of reproducing most of the experimental results to within experimental error. It is also capable of extrapolation to experimentally inaccessible conditions, i.e., high temperatures, rapidly varying temperature and pH, etc.

  2. Polymerization of anionic wormlike micelles.

    Science.gov (United States)

    Zhu, Zhiyuan; González, Yamaira I; Xu, Hangxun; Kaler, Eric W; Liu, Shiyong

    2006-01-31

    Polymerizable anionic wormlike micelles are obtained upon mixing the hydrotropic salt p-toluidine hydrochloride (PTHC) with the reactive anionic surfactant sodium 4-(8-methacryloyloxyoctyl)oxybenzene sulfonate (MOBS). Polymerization captures the cross-sectional radius of the micelles (approximately 2 nm), induces micellar growth, and leads to the formation of a stable single-phase dispersion of wormlike micellar polymers. The unpolymerized and polymerized micelles were characterized using static and dynamic laser light scattering, small-angle neutron scattering, 1H NMR, and stopped-flow light scattering. Stopped-flow light scattering was also used to measure the average lifetime of the unpolymerized wormlike micelles. A comparison of the average lifetime of unpolymerized wormlike micelles with the surfactant monomer propagation rate was used to elucidate the mechanism of polymerization. There is a significant correlation between the ratio of the average lifetime to the monomer propagation rate and the average aggregation number of the polymerized wormlike micelles.

  3. Surface glycosylation of polymeric membranes

    Institute of Scientific and Technical Information of China (English)

    DAI ZhengWei; WAN LingShu; XU ZhiKang

    2008-01-01

    Surface glycosylation of polymeric membranes has been inspired by the structure of natural biomembranes. It refers to that glycosyl groups are introduced onto the membrane surface by various strategies, which combine the separation function of the membrane with the biological function of the saccharides in one system. In this review, progress in the surface glycosylation of polymeric membranes is highlighted in two aspects, i.e. the glycosylation methods and the potential applications of the surface-glycosylated membranes.

  4. Mathematical Simulation of High-Conversion Binary Copolymerization

    Institute of Scientific and Technical Information of China (English)

    JiangWei; QinJiguang

    2005-01-01

    A new model for mathematical simulation of high-conversion binary copolymerization was established by combination of the concept of the three stage polymerization model (TSPM) proposed by Qin et al. for bulk free radical homopolymerization with the North equation to describe high-conversion copolymerization reaction exhibiting a strong gel effect, and the mathematical expressions of this new model were derived. Like TSPM, the new model also assmnes that the whole course of binary copolymerization can be divided into three different stages: low conversion, gel effect and glass effect stages. In addition, the reaction rate constants and the initiator efficiency at each copolymerization stage do not vary with conversion. Based on the expressions derived, a plot method for determining the overall rate constants and critical conversions was proposed. The literature data on conversion history for styrene (St)-methyl methacrylate (MMA) and ethylene glycol dimethacrylate (EGDMA)-MMA copolymerizations were treated to examine the model, which shows that the model is satisfactory.

  5. Design, Fabrication and Computational Characterization of a 3D Micro-Valve Built by Multi-Photon Polymerization

    Directory of Open Access Journals (Sweden)

    Stratos Galanopoulos

    2014-08-01

    Full Text Available We report on the design, modeling and fabrication by multi-photon polymerization of a complex medical fluidic device. The physical dimensions of the built micro-valve prototype are compared to those of its computer-designed model. Important fabrication issues such as achieving high dimensional resolution and ability to control distortion due to shrinkage are presented and discussed. The operational performance of both multi-photon and CAD-created models under steady blood flow conditions was evaluated and compared through computational fluid dynamics analysis.

  6. Ultrastructural evaluation of shrinkage artefacts induced by fixatives and embedding resins on osteocyte processes and pericellular space dimensions.

    Science.gov (United States)

    Shah, Furqan A; Johansson, Bengt R; Thomsen, Peter; Palmquist, Anders

    2015-04-01

    The integrity of the interface between the osteocyte (Ot) process and the canalicular wall was investigated in terms of change in the lateral dimensions of the Ot process in relation to the canalicular width, i.e., widening of the pericellular space. This has been interpreted as shrinkage of the Ot process relative to the canalicular wall during sample preparation stages of fixation, dehydration, and resin embedding. Sprague-Dawley rat tibial cross-sections were prepared for transmission electron microscopy (TEM). Four different fixative preparations: paraformaldehyde (PF), modified Karnovsky's (MK), glutaraldehyde (GRR) with ruthenium red (GRR), and zinc formalin (ZF); and two different embedding resins: LR Gold (LRG) and Epon812 (Epon) were evaluated. It was found that for LRG embedding, formalin-only fixatives (PF and ZF) induced lower shrinkage than GRR-containing fixatives (MK and GRR). In contrast, for Epon embedding, MK showed the highest shrinkage, while no differences were found between the remaining fixatives (PF, ZF, and GRR). All formalin-containing fixatives (MK, PF, and ZF) induced similar shrinkage in both embedding media. The most dramatic difference was for GRR fixation, which in combination with LRG embedding showed ∼ 62% more shrinkage than with Epon embedding, suggesting that the combination of GRR fixation and LRG embedding synergistically amplifies Ot shrinkage. These differences likely suggest a role of the resin in secondarily influencing the tissue structure following fixation. Further, the work confirms LRG as a poor embedding medium for bone specimens, as it causes large variations in shrinkage depending on fixation.

  7. Effects of molecular structure of the resins on the volumetric shrinkage and the mechanical strength of dental restorative composites.

    Science.gov (United States)

    Kim, L U; Kim, J W; Kim, C K

    2006-09-01

    To prepare a dental composite that has a low amount of curing shrinkage and excellent mechanical strength, various 2,2-bis[4-(2-hydroxy-3-methacryloyloxy propoxy) phenyl] propane (Bis-GMA) derivatives were synthesized via molecular structure design, and afterward, properties of their mixtures were explored. Bis-GMA derivatives, which were obtained by substituting methyl groups for hydrogen on the phenyl ring in the Bis-GMA, exhibited lower curing shrinkage than Bis-GMA, whereas their viscosities were higher than that of Bis-GMA. Other Bis-GMA derivatives, which contained a glycidyl methacrylate as a molecular end group exhibited reduced curing shrinkage and viscosity. Methoxy substitution for hydroxyl groups on the Bis-GMA derivatives was performed for the further reduction of the viscosity and curing shrinkage. Various resin mixtures, which had the same viscosity as the commercial one, were prepared, and their curing shrinkage was examined. A resin mixture containing 2,2-bis[3,5-dimethyl, 4-(2-methoxy-3-methacryloyloxy propoxy) phenyl] propane] (TMBis-M-GMA) as a base resin and 4-tert-butylphenoxy-2-methyoxypropyl methacrylate (t-BP-M-GMA) as a diluent exhibited the lowest curing shrinkage among them. The composite prepared from this resin mixture also exhibited the lowest curing shrinkage along with enhanced mechanical properties.

  8. Effect of water temperature on the fit of provisional crown margins during polymerization: An in vitro study

    Directory of Open Access Journals (Sweden)

    Vivekanandan Ramkumar

    2012-01-01

    Full Text Available Aim: To evaluate the effect of water temperature on the marginal fit of bis-acrylic composite provisional crown during resin polymerization. Materials and Methods: Precisely machined 10 brass master dies were designed to simulate molar teeth. Five brass dies were selected and precisely machined to simulate all ceramic crown preparation. An acrylic jaw replica was made in which brass dies were arranged equidistant from each other. A custom-made metallic tray was fabricated on the acrylic jaw replica to make polyvinyl siloxane impression matrix. Bis-acrylic composite resin provisional crowns were made using polyvinyl siloxane impression matrix. Provisional crowns were polymerized at room temperature (Group I direct technique, on dental stone cast; Group I indirect technique crowns and at different water temperatures (Group II direct technique crowns. The vertical marginal gap between all the provisional crown margins and the finish line of brass dies was measured using a Research Stereomicroscope System. Results: The results were statistically analyzed using one-way analysis of variance (ANOVA test and Newman-Keul′s test. The results showed that crowns polymerized in 20°C and 30°C water had marginal gap approximately three times smaller than those polymerized in 30°C air, due to the reduced polymerization shrinkage. Conclusion: This study shows that crowns polymerized in 20°C and 30°C water had mean vertical marginal gap approximately three times smaller than those polymerized in 30°C air. It was approximately closer to that of crowns fabricated by indirect technique. Warmer water also supposedly hastens polymerization.

  9. AQUEOUS STABLE FREE RADICAL POLYMERIZATION PROCESSES

    Institute of Scientific and Technical Information of China (English)

    Andrea R. Szkurhan; Michael K. Georges

    2004-01-01

    An overview of aqueous polymerizations, which include emulsion, miniemulsion and suspension polymerizations,under stable free radical polymerization (SFRP) conditions is presented. The success of miniemulsion and suspension SFRP polymerizations is contrasted with the difficulties associated with obtaining a stable emulsion polymerization. A recently developed unique microprecipitation technique is referenced as a means of making submicron sized particles that can be used to achieve a stable emulsion SFRP process.

  10. Studies in reactive extrusion processing of biodegradable polymeric materials

    Science.gov (United States)

    Balakrishnan, Sunder

    Various reaction chemistries such as Polymerization, Polymer cross-linking and Reactive grafting were investigated in twin-screw extruders. Poly (1,4-dioxan-2-one) (PPDX) was manufactured in melt by the continuous polymerization of 1,4-dioxan-2-one (PDX) monomer in a twin-screw extruder using Aluminum tri-sec butoxide (ATSB) initiator. Good and accurate control over molecular weight was obtained by controlling the ratio of monomer to initiator. A screw configuration consisting of only conveying elements was used for the polymerization. The polymerization reaction was characterized by a monomer-polymer dynamic equilibrium, above the melting temperature of the polymer, limiting the equilibrium conversion to 78-percent. Near complete (˜100-percent) conversion was obtained on co-polymerizing PDX monomer with a few mol-percent (around 8-percent) Caprolactone (CL) monomer in a twin-screw extruder using ATSB initiator. The co-polymers exhibited improved thermal stability with reduction in glass transition temperature. The extruder was modeled as an Axial Dispersed Plug Flow Reactor for the polymerization of CL monomer using Residence Time Distribution (RTD) Analysis. The model provided a good fit to the experimental RTD and conversion data. Aliphatic and aliphatic-aromatic co-polyesters, namely Polycaprolactone (PCL) and Poly butylenes (adipate-co-terephthalate) (Ecoflex) were cross-linked in a twin-screw extruder using radical initiator to form micro-gel reinforced biodegradable polyesters. Cross-linked Ecoflex was further extrusion blended with talc to form blends suitable to be blown into films. A screw configuration consisting of conveying and kneading elements was found to be effective in dispersion of the talc particles (5--10 microns) in the polyester matrix. While the rates of crystallization increased for the talc filled polyester blends, overall crystallinity reduced. Mechanical, tear and puncture properties of films made using the talc filled polyester blends

  11. Polymerization in emulsion microdroplet reactors

    Science.gov (United States)

    Carroll, Nick J.

    The goal of this research project is to utilize emulsion droplets as chemical reactors for execution of complex polymerization chemistries to develop unique and functional particle materials. Emulsions are dispersions of immiscible fluids where one fluid usually exists in the form of drops. Not surprisingly, if a liquid-to-solid chemical reaction proceeds to completion within these drops, the resultant solid particles will possess the shape and relative size distribution of the drops. The two immiscible liquid phases required for emulsion polymerization provide unique and complex chemical and physical environments suitable for the engineering of novel materials. The development of novel non-ionic fluorosurfactants allows fluorocarbon oils to be used as the continuous phase in a water-free emulsion. Such emulsions enable the encapsulation of almost any hydrocarbon compound in droplets that may be used as separate compartments for water-sensitive syntheses. Here, we exemplify the promise of this approach by suspension polymerization of polyurethanes (PU), in which the liquid precursor is emulsified into droplets that are then converted 1:1 into polymer particles. The stability of the droplets against coalescence upon removal of the continuous phase by evaporation confirms the formation of solid PU particles. These results prove that the water-free environment of fluorocarbon based emulsions enables high conversion. We produce monodisperse, cross-linked, and fluorescently labeled PU-latexes with controllable mesh size through microfluidic emulsification in a simple one-step process. A novel method for the fabrication of monodisperse mesoporous silica particles is presented. It is based on the formation of well-defined equally sized emulsion droplets using a microfluidic approach. The droplets contain the silica precursor/surfactant solution and are suspended in hexadecane as the continuous oil phase. The solvent is then expelled from the droplets, leading to

  12. Polymeric materials for neovascularization

    Science.gov (United States)

    DeVolder, Ross John

    Revascularization therapies have emerged as a promising strategy to treat various acute and chronic wounds, cardiovascular diseases, and tissue defects. It is common to either administer proangiogenic growth factors, such as vascular endothelial growth factor (VEGF), or transplant cells that endogenously express multiple proangiogenic factors. Additionally, these strategies utilize a wide variety of polymeric systems, including hydrogels and biodegradable plastics, to deliver proangiogenic factors in a sophisticated manner to maintain a sustained proangiogenic environment. Despite some impressive results in rebuilding vascular networks, it is still a challenging task to engineer mature and functional neovessels in target tissues, because of the increasing complexities involved with neovascularization applications. To resolve these challenges, this work aims to design a wide variety of proangiogenic biomaterial systems with tunable properties used for neovascularization therapies. This thesis describes the design of several biomaterial systems used for the delivery of proangiogenic factors in neovascularization therapies, including: an electrospun/electrosprayed biodegradable plastic patch used for directional blood vessel growth (Chapter 2), an alginate-g-pyrrole hydrogel system that biochemically stimulates cellular endogenous proangiogenic factor expression (Chapter 3), an enzyme-catalyzed alginate-g-pyrrole hydrogel system for VEGF delivery (Chapter 4), an enzyme-activated alginate-g-pyrrole hydrogel system with systematically controllable electrical and mechanical properties (Chapter 5), and an alginate-g-pyrrole hydrogel that enables the decoupled control of electrical conductivity and mechanical rigidity and is use to electrically stimulate cellular endogenous proangiogenic factor expression (Chapter 6). Overall, the biomaterial systems developed in this thesis will be broadly useful for improving the quality of a wide array of molecular and cellular based

  13. Post-curing conversion kinetics as functions of the irradiation time and increment thickness

    Directory of Open Access Journals (Sweden)

    Nicola Scotti

    2013-04-01

    Full Text Available Objective: This study evaluated the variation of conversion degree (DC in the 12 hours following initial photoactivation of a low-shrinkage composite resin (Venus Diamond. Material and Methods: The conversion degree was monitored for 12 hours using Attenuated Total Reflection (ATR F-TIR Spectroscopy. The composite was placed in 1 or 2 mm rings and cured for 10 or 20 seconds with a LED lamp. ATR spectra were acquired from the bottom surface of each sample immediately after the initial photoactivation (P=0, 30 minutes (P=0.5 and 12 hours after photoactivation (P=12 in order to obtain the DC progression during the post-curing period. Interactions between thickness (T, irradiation time (I and post-curing (P on the DC were calculated through ANOVA testing. Results: All the first order interactions were statistically significant, with the exception of the T-P interaction. Furthermore, the shift from P=0 to P=0.5 had a statistically higher influence than the shift from P=0.5 to P=12. The post-curing period played a fundamental role in reaching higher DC values with the low-shrinkage composite resin tested in this study. Moreover, both the irradiation time and the composite thickness strongly influenced the DC. Conclusions: Increased irradiation time may be useful in obtaining a high conversion degree (DC with a low-shrinkage nano-hybrid composite resin, particularly with 2 mm composite layers.

  14. Stress and structure development in polymeric coatings

    Science.gov (United States)

    Vaessen, Diane Melissa

    2002-09-01

    The main goal of this research is to measure the stress evolution in various polymer coating systems to establish the mechanisms responsible for stress development, stress relaxation, and defect formation. Investigated systems include ultraviolet (UV)-curable coatings, dense and porous coatings from polymer solutions, and latex coatings. Coating stress was measured using a controlled environment stress apparatus based on a cantilever deflection principle. For acrylate coatings, it was found that by cycling a UV-lamp on and off, keeping the total dose constant, coating stress was lowered by 60% by decreasing the cycle period. A stress minimum was also found to exist for a given dose of radiation. The lower stress is attributed to stress relaxation and/or slower reaction during dark periods. A viscoelastic stress model of this process was formulated and predicted stress values close to those observed experimentally. During drying of cellulose acetate (CA) coatings cast in acetone, final stress increased from 10 to 45 MPa as coating thickness decreased from 60 to 10 mum. This thickness dependent coating stress for a solvent-cast polymer coating is a new finding and is attributed to (1) less shrinkage in thicker coatings due to more trapped solvent (from skinning) and (2) greater amounts of polymer stress relaxation in thicker coatings. For porous CA coatings prepared by dry-cast phase separation, final in-plane stresses ranged from 20 MPa for coatings containing small pores (˜1 mum) to 5 MPa for coatings containing small pores and macrovoids (˜200 mum). For these coatings, a small amount of stress relaxation occurs due to capillary pressure relief. A stress plateau for the macrovoid-containing coating is likely caused by stress-induced rupture of the polymer-rich phase. Measured stress in pigment-free latex coatings was much lower (˜0.3 MPa) than UV-curable and solvent-cast polymer coatings and was found to increase with increasing latex glass transition

  15. Chromatin structure regulates gene conversion.

    Directory of Open Access Journals (Sweden)

    W Jason Cummings

    2007-10-01

    Full Text Available Homology-directed repair is a powerful mechanism for maintaining and altering genomic structure. We asked how chromatin structure contributes to the use of homologous sequences as donors for repair using the chicken B cell line DT40 as a model. In DT40, immunoglobulin genes undergo regulated sequence diversification by gene conversion templated by pseudogene donors. We found that the immunoglobulin Vlambda pseudogene array is characterized by histone modifications associated with active chromatin. We directly demonstrated the importance of chromatin structure for gene conversion, using a regulatable experimental system in which the heterochromatin protein HP1 (Drosophila melanogaster Su[var]205, expressed as a fusion to Escherichia coli lactose repressor, is tethered to polymerized lactose operators integrated within the pseudo-Vlambda donor array. Tethered HP1 diminished histone acetylation within the pseudo-Vlambda array, and altered the outcome of Vlambda diversification, so that nontemplated mutations rather than templated mutations predominated. Thus, chromatin structure regulates homology-directed repair. These results suggest that histone modifications may contribute to maintaining genomic stability by preventing recombination between repetitive sequences.

  16. Denoising of Mechanical Vibration Signals Using Quantum-Inspired Adaptive Wavelet Shrinkage

    Directory of Open Access Journals (Sweden)

    Yan-long Chen

    2014-01-01

    Full Text Available The potential application of a quantum-inspired adaptive wavelet shrinkage (QAWS technique to mechanical vibration signals with a focus on noise reduction is studied in this paper. This quantum-inspired shrinkage algorithm combines three elements: an adaptive non-Gaussian statistical model of dual-tree complex wavelet transform (DTCWT coefficients proposed to improve practicability of prior information, the quantum superposition introduced to describe the interscale dependencies of DTCWT coefficients, and the quantum-inspired probability of noise defined to shrink wavelet coefficients in a Bayesian framework. By combining all these elements, this signal processing scheme incorporating the DTCWT with quantum theory can both reduce noise and preserve signal details. A practical vibration signal measured from a power-shift steering transmission is utilized to evaluate the denoising ability of QAWS. Application results demonstrate the effectiveness of the proposed method. Moreover, it achieves better performance than hard and soft thresholding.

  17. Effect of selected physical properties of waxes on investments and casting shrinkage.

    Science.gov (United States)

    Ito, M; Yamagishi, T; Oshida, Y; Munoz, C A

    1996-02-01

    This study evaluated the relationship between flow characteristics, bending strength, and softening temperature of paraffin and dental inlay waxes to casting shrinkage when patterns were invested with a phosphate-bonded investment. This study found that the casting shrinkage decreased as the flow of the wax pattern increased. If a low flow wax is used or if there is a need for a thick pattern, the size of the casting ring should be increased. When wax patterns are formed for cast restorations, it is important to select the type of wax with the most desirable properties for the margin and the occlusal portions. Moreover, to accurately fabricate castings, it is necessary to understand the physical properties of the chosen waxes.

  18. Effectiveness of shrinkage-reducing admixtures on Portland pozzolan cement concrete

    Directory of Open Access Journals (Sweden)

    Videla, C.

    2005-06-01

    Full Text Available Drying shrinkage causes tensile stress in restrained concrete members. Since all structural elements are subject to some degree of restraint, drying shrinkage is regarded to be one of the main causes of concrete cracking. The purpose of the present study was to evaluate the effectiveness of SRA in reducing drying shrinkage strain in Portland pozzolan cement concrete. The major variables examined included slump, admixture type and dose, and specimen size. The measured results indicate that any of the admixtures used in the study significantly reduced shrinkage. Concrete manufactured with shrinkage reducing admixtures shrank an average of 43% less than concrete without admixtures. As a rule, the higher the dose of admixture, the higher was its shrinkage reduction performance. The experimental results were compared to the shrinkage strain estimated with the ACI 209, CEB MC 90, B3, GL 2000, Sakata 1993 and Sakata 2001 models. Although none of these models was observed to accurately describe the behaviour of Portland pozzolan cement concrete with shrinkage reducing admixtures, the Sakata 2001 model, with a weighted coefficient of variation of under 30%, may be regarded to be roughly adequate.

    La retracción por secado es un fenómeno intrínseco del hormigón que produce tensiones de tracción en elementos restringidos de hormigón. Puesto que todos los elementos presentan algún grado de retracción, se considera a la retracción por secado como una de las principales causas de agrietamiento en proyectos de construcción en hormigón. Por lo tanto, el objetivo de esta investigación fue evaluar la efectividad de los aditivos reductores de retracción (SRA en hormigones fabricados con cemento Portland puzolánico. Las variables principales estudiadas incluyen el asentamiento de cono de Abrams, marca y dosis de aditivo reductor de retracción, y tamaño de espécimen de hormigón. Los resultados obtenidos permiten concluir que el uso de

  19. Minimal volume regulation after shrinkage of red blood cells from five species of reptiles

    DEFF Research Database (Denmark)

    Kristensen, Karina; Berenbrink, Michael; Koldkjær, Pia

    2008-01-01

    Red blood cells (RBCs) from most vertebrates restore volume upon hypertonic shrinkage and the mechanisms underlying this regulatory volume increase (RVI) have been studied extensively in these cells. Despite the phylogenetically interesting position of reptiles, very little is known about their red...... cell function. The present study demonstrates that oxygenated RBCs in all major groups of reptiles exhibit no or a very reduced RVI upon ~ 25% calculated hyperosmotic shrinkage. Thus, RBCs from the snakes Crotalus durissus and Python regius, the turtle Trachemys scripta and the alligator Alligator...... was not characterized. It seems, therefore, that the RVI response based on NHE activation was lost among the early sauropsids that gave rise to modern reptiles and birds, while it was retained in mammals. An RVI response has then reappeared in birds, but based on activation of the NKCC. Alternatively, the absence...

  20. Autogenous shrinkage prediction on high-performance concrete of fly ash based on BP neural network

    Science.gov (United States)

    Wang, Baomin; Zhang, Wenping; Wang, Lijiu

    2006-11-01

    The article adopts test data of neural network for autogenous shrinkage to train and predict on the data which doesn't join training. The article's prediction is on the basis of common medium sand, 5-31.5mm limestone rubble, second class fly-ash, P.O42.5 silicate cement, considering factors include five ones such as ratio of water and cement, sand rate, content of cement, content of fly ash, etc.By adjusting various parameters of neural network structure, it obtains three optimized results of neural network simulation. The error between concrete autogtenous shrinkage value of neural network prediction and trial value is within 3%, which can meet requirement of the concrete engineering.

  1. Learned Shrinkage Approach for Low-Dose Reconstruction in Computed Tomography

    Directory of Open Access Journals (Sweden)

    Joseph Shtok

    2013-01-01

    Full Text Available We propose a direct nonlinear reconstruction algorithm for Computed Tomography (CT, designed to handle low-dose measurements. It involves the filtered back-projection and adaptive nonlinear filtering in both the projection and the image domains. The filter is an extension of the learned shrinkage method by Hel-Or and Shaked to the case of indirect observations. The shrinkage functions are learned using a training set of reference CT images. The optimization is performed with respect to an error functional in the image domain that combines the mean square error with a gradient-based penalty, promoting image sharpness. Our numerical simulations indicate that the proposed algorithm can manage well with noisy measurements, allowing a dose reduction by a factor of 4, while reducing noise and streak artifacts in the FBP reconstruction, comparable to the performance of a statistically based iterative algorithm.

  2. Accelerated Path-following Iterative Shrinkage Thresholding Algorithm with Application to Semiparametric Graph Estimation

    Science.gov (United States)

    Zhao, Tuo; Liu, Han

    2016-01-01

    We propose an accelerated path-following iterative shrinkage thresholding algorithm (APISTA) for solving high dimensional sparse nonconvex learning problems. The main difference between APISTA and the path-following iterative shrinkage thresholding algorithm (PISTA) is that APISTA exploits an additional coordinate descent subroutine to boost the computational performance. Such a modification, though simple, has profound impact: APISTA not only enjoys the same theoretical guarantee as that of PISTA, i.e., APISTA attains a linear rate of convergence to a unique sparse local optimum with good statistical properties, but also significantly outperforms PISTA in empirical benchmarks. As an application, we apply APISTA to solve a family of nonconvex optimization problems motivated by estimating sparse semiparametric graphical models. APISTA allows us to obtain new statistical recovery results which do not exist in the existing literature. Thorough numerical results are provided to back up our theory. PMID:28133430

  3. Significance of Shrinkage Induced Clamping Pressure in Fiber-Matrix Bonding in Cementitious Composite Materials

    DEFF Research Database (Denmark)

    Stang, Henrik

    1996-01-01

    The present paper accesses the significance of shrinkage inducedclamping pressure in fiber/matrix bonding mechanisms incementitious composite materials. The paper contains a description of an experimental setup whichallows mbox{measurement} of the clamping pressure which develops on anelastic...... acting on any elastic inhomogeneityembedded in the same cementitious matrix material. Fiber-shaped inhomogeneities are of special interest in cementitious composite material systems andresults are presented for the development of clamping pressure on three typical fiber types in two typical cementpastes...... used in high performance cementitious composite materials.Assuming a Coulomb type of friction on the fiber/matrix interface andusing typical values for the frictional coefficient it is shownthat the shrinkage induced clamping pressure could be one of the mostimportant factors determining the frictional...

  4. The effect of using hybrid nanomaterials on drying shrinkage and strength of cement pastes

    Directory of Open Access Journals (Sweden)

    Saaid I. Zaki

    2016-04-01

    Full Text Available The aim of this work is to study the effect of nanomaterials on the properties of cement paste, the experimental program included three parts: a- two types of nanosilica, locally produced NS1 and imported NS2, b- nanoclay (NC and c- Hybrid nanoparticles (NS1 & NC. In each part, cement paste was used with different percentages of nanoparticles. Compressive strength and drying shrinkage tests were applied in each part on the cured and uncured samples. The results showed that the compressive strength improved in the cement paste mixtures in the cured condition, the optimum percentages was 1% for NS1, 1% for NS2, 5% for NC, and 5% (0.5%NS1 & 4.5%NC for hybrid nanoparticles. The drying shrinkage increases with adding nanosilica and hybrid nanoparticles, while it decreases when adding NC.

  5. Early age shrinkage pattern of concrete on replacement of fine aggregate with industrial by-product

    Directory of Open Access Journals (Sweden)

    R.K. Mishra

    2016-10-01

    Full Text Available This is an experimental work carried out to investigate early age shrinkage pattern of concrete, prepared, on 50% replacement of industrial by-product (like pond ash and granulated blast furnace slag as fine aggregate using OPC, PPC and PSC as a binder. This is to observe the effect of pond ash and slag as they are having some cementitious properties and effect of cement type is also discussed. All the mixes were prepared keeping in view of pumpable concrete without any super plasticizers. Higher shrinkage value indicates the presence of more bleed water or internal moisture. It is concluded that slag is the best option for fine aggregate replacement for concrete making and durable structure.

  6. Bayesian-based Wavelet Shrinkage for SAR Image Despeckling Using Cycle Spinning

    Institute of Scientific and Technical Information of China (English)

    ZHANG De-xiang; GAO Qing-wei; CHEN Jun-ning

    2006-01-01

    A novel and efficient speckle noise reduction algorithm based on Bayesian wavelet shrinkage using cycle spinning is proposed. First, the sub-band decompositions of non-logarithmically transformed SAR images are shown. Then, a Bayesian wavelet shrinkage factor is applied to the decomposed data to estimate noise-free wavelet coefficients. The method is based on the Mixture Gaussian Distributed (MGD) modeling of sub-band coefficients. Finally, multi-resolution wavelet coefficients are reconstructed by wavelet-threshold using cycle spinning. Experimental results show that the proposed despeckling algorithm is possible to achieve an excellent balance between suppresses speckle effectively and preserves as many image details and sharpness as possible. The new method indicated its higher performance than the other speckle noise reduction techniques and minimizing the effect of pseudo-Gibbs phenomena.

  7. Influence of waxes remelting used in investment casting on their thermal properties and linear shrinkage

    Directory of Open Access Journals (Sweden)

    K. Grzeskowiak

    2015-04-01

    Full Text Available This paper presents the results of thermal properties and linear shrinkage of jewelry waxes utilized in investment casting. Three types of jewelry waxes were cyclically processed (by heating, holding in a molten state and coolingin the temperature range between 25 and 90 °C for about 7 hours. The samples were tested after 5th, 10th and 15thcycle. The remelting was designed to simulate the process of waxes reusability for production of patterns. Changes in thermal properties of waxes were determined using differential scanning calorimetry (DSC and linear shrinkage values were specified. The conducted examinations allowed to establish the way of multiple utilization of waxes in producing precise models.

  8. Stein-Rule Estimation and Generalized Shrinkage Methods for Forecasting Using Many Predictors

    DEFF Research Database (Denmark)

    Hillebrand, Eric Tobias; Lee, Tae-Hwy

    We examine the Stein-rule shrinkage estimator for possible improvements in estimation and forecasting when there are many predictors in a linear time series model. We consider the Stein-rule estimator of Hill and Judge (1987) that shrinks the unrestricted unbiased OLS estimator towards a restricted...... biased principal component (PC) estimator. Since the Stein-rule estimator combines the OLS and PC estimators, it is a model-averaging estimator and produces a combined forecast. The conditions under which the improvement can be achieved depend on several unknown parameters that determine the degree......-to-noise ratio is low, the PC estimator is superior. If the signal-to-noise ratio is high, the OLS estimator is superior. In out-of-sample forecasting with AR(1) predictors, the Stein-rule shrinkage estimator can dominate both OLS and PC estimators when the predictors exhibit low persistence....

  9. Edge detection algorithm based on ICA-domain shrinkage in noisy images

    Institute of Scientific and Technical Information of China (English)

    HAN XianHua; DAI ShuiYan; LI Jian; XIA GuoRong

    2008-01-01

    We propose a robust edge detection method based on ICA-domain shrinkage (independent component analysis). It is known that most basis functions extracted from natural images by ICA are sparse and similar to localized and oriented receptive fields, and in the proposed edge detection method, a target image is first transformed by ICA basis functions and then the edges are detected or reconstructed with sparse components. Furthermore, by applying a shrinkage algorithm to filter out the components of noise in ICA-domain, we can readily obtain the sparse components of the original image, resulting in a kind of robust edge detection even for a noisy image with a very low SN ratio. The efficiency of the proposed method is demonstrated by experiments with some natural images.

  10. SHRINKAGE REDUCTION AND CRACK PREVENTION OF ALKALI-ACTIVATED PHOSPHOROUS SLAG CEMENT

    Directory of Open Access Journals (Sweden)

    Yanan Wang

    2016-05-01

    Full Text Available The effects of fly ash, calcium oxide and polypropylene fiber on the physical and mechanical properties, shrinkage and cracking behaviors of alkali-activated phosphorous slag cement (AA-PS-C were studied. The results show that replacing 10-15% phosphorous slag by fly ash and adding calcium oxide as an expansive agent reduce the shrinkage of AA-PS-C. Fly ash will increase the flexural strength, although the compressive strength will be slightly decreased, while the calcium oxide expansive agent coated with aluminum stearate will slightly shorten the setting time and reduce the strength. Adding polypropylene fiber can greatly increase the crack-resistance of AA-PS-C.

  11. A moment projection method for population balance dynamics with a shrinkage term

    Science.gov (United States)

    Wu, Shaohua; Yapp, Edward K. Y.; Akroyd, Jethro; Mosbach, Sebastian; Xu, Rong; Yang, Wenming; Kraft, Markus

    2017-02-01

    A new method of moments for solving the population balance equation is developed and presented. The moment projection method (MPM) is numerically simple and easy to implement and attempts to address the challenge of particle shrinkage due to processes such as oxidation, evaporation or dissolution. It directly solves the moment transport equation for the moments and tracks the number of the smallest particles using the algorithm by Blumstein and Wheeler (1973) [41]. The performance of the new method is measured against the method of moments (MOM) and the hybrid method of moments (HMOM). The results suggest that MPM performs much better than MOM and HMOM where shrinkage is dominant. The new method predicts mean quantities which are almost as accurate as a high-precision stochastic method calculated using the established direct simulation algorithm (DSA).

  12. Autogenous shrinkage in high-performance cement paste: An evaluation of basic mechanisms

    DEFF Research Database (Denmark)

    Lura, Pietro; Jensen, Ole Mejlhede; van Breugel, Klaas

    2003-01-01

    In this paper, various mechanisms Suggested to cause autogenous shrinkage are presented. The mechanisms are evaluated from the point of view of their soundness and applicability to quantitative modeling of autogenous shrinkage. The capillary tension approach is advantageous, because it has a sound...... mechanical and thermodynamical basis. Furthermore, this mechanism is easily applicable in a numerical model when dealing with a continuously changing microstructure. In order to test the numerical model, autogenous deformation and internal relative humidity (RH) of a Portland cement paste were measured...... during the first week of hardening. The isothermal heat evolution was also recorded to monitor the progress of hydration and the elastic modulus in compression was measured. RH change, degree of hydration and elastic modulus were used as input data for the calculation of autogenous deformation based...

  13. A moment projection method for population balance dynamics with a shrinkage term

    Energy Technology Data Exchange (ETDEWEB)

    Wu, Shaohua [Department of Mechanical Engineering, National University of Singapore, Engineering Block EA, Engineering Drive 1, 117576 (Singapore); Yapp, Edward K.Y.; Akroyd, Jethro; Mosbach, Sebastian [Department of Chemical Engineering and Biotechnology, University of Cambridge, New Museums Site, Pembroke Street, Cambridge, CB2 3RA (United Kingdom); Xu, Rong [School of Chemical and Biomedical Engineering, Nanyang Technological University, 62 Nanyang Drive, 637459 (Singapore); Yang, Wenming [Department of Mechanical Engineering, National University of Singapore, Engineering Block EA, Engineering Drive 1, 117576 (Singapore); Kraft, Markus, E-mail: mk306@cam.ac.uk [Department of Chemical Engineering and Biotechnology, University of Cambridge, New Museums Site, Pembroke Street, Cambridge, CB2 3RA (United Kingdom); School of Chemical and Biomedical Engineering, Nanyang Technological University, 62 Nanyang Drive, 637459 (Singapore)

    2017-02-01

    A new method of moments for solving the population balance equation is developed and presented. The moment projection method (MPM) is numerically simple and easy to implement and attempts to address the challenge of particle shrinkage due to processes such as oxidation, evaporation or dissolution. It directly solves the moment transport equation for the moments and tracks the number of the smallest particles using the algorithm by Blumstein and Wheeler (1973) . The performance of the new method is measured against the method of moments (MOM) and the hybrid method of moments (HMOM). The results suggest that MPM performs much better than MOM and HMOM where shrinkage is dominant. The new method predicts mean quantities which are almost as accurate as a high-precision stochastic method calculated using the established direct simulation algorithm (DSA).

  14. Non-linear shrinkage estimation of large-scale structure covariance

    Science.gov (United States)

    Joachimi, Benjamin

    2017-03-01

    In many astrophysical settings, covariance matrices of large data sets have to be determined empirically from a finite number of mock realizations. The resulting noise degrades inference and precludes it completely if there are fewer realizations than data points. This work applies a recently proposed non-linear shrinkage estimator of covariance to a realistic example from large-scale structure cosmology. After optimizing its performance for the usage in likelihood expressions, the shrinkage estimator yields subdominant bias and variance comparable to that of the standard estimator with a factor of ∼50 less realizations. This is achieved without any prior information on the properties of the data or the structure of the covariance matrix, at a negligible computational cost.

  15. Fissure formation in coke. 2: Effect of heating rate, shrinkage and coke strength

    Energy Technology Data Exchange (ETDEWEB)

    D.R. Jenkins; M.R. Mahoney [CSIRO, North Ryde, NSW (Australia). Mathematical and Information Sciences

    2010-07-15

    We investigate the effects of the heating rate, coke shrinkage and coke breakage strength upon the fissure pattern developed in a coke oven charge during carbonisation. This is done principally using a mechanistic model of the formation of fissures, which considers them to be an array of equally spaced fissures, whose depth follows a 'period doubling' pattern based upon the time history of the fissures. The model results are compared with pilot scale coke oven experiments. The results show that the effect of heating rate on the fissure pattern is different to the effect of coke shrinkage, while the effect of coke breakage strength on the pattern is less pronounced. The results can be seen in both the shape and size of resulting coke lumps after stabilisation. The approach gives the opportunity to consider means of controlling the carbonisation process in order to tune the size of the coke lumps produced. 7 refs., 18 figs., 4 tabs.

  16. Shrinkage-based diagonal discriminant analysis and its applications in high-dimensional data.

    Science.gov (United States)

    Pang, Herbert; Tong, Tiejun; Zhao, Hongyu

    2009-12-01

    High-dimensional data such as microarrays have brought us new statistical challenges. For example, using a large number of genes to classify samples based on a small number of microarrays remains a difficult problem. Diagonal discriminant analysis, support vector machines, and k-nearest neighbor have been suggested as among the best methods for small sample size situations, but none was found to be superior to others. In this article, we propose an improved diagonal discriminant approach through shrinkage and regularization of the variances. The performance of our new approach along with the existing methods is studied through simulations and applications to real data. These studies show that the proposed shrinkage-based and regularization diagonal discriminant methods have lower misclassification rates than existing methods in many cases.

  17. A comparison of the dimensional accuracy of microwave and conventionally polymerized denture base materials.

    Science.gov (United States)

    Harrison, A; Huggett, R; Zissis, A; Vowles, R W

    1993-01-01

    This study compares the dimensional changes of microwave and conventionally polymerized denture bases and also establishes the degree of monomer conversion using gas-liquid chromatography. Dimensional changes of three denture base materials were assessed using an optical comparator and the results showed no significant differences between the materials employed or the curing method used. Efficient monomer conversion was demonstrated with levels of residual monomer of less than 1% for all materials.

  18. Shrinkage of Mt. Bogda Glaciers of Eastern Tian Shan in Central Asia during 1962-2006

    Institute of Scientific and Technical Information of China (English)

    Kaiming Li; Zhongqin Li; Cuiyun Wang; Baojuan Huai

    2016-01-01

    Many small mountain glaciers have been reported undergoing strong shrinkage, and it is therefore important to understand how they respond to climate change. The availability of topographic maps from 1962, Landsat TM imagery from 1990 and ASTER (Advanced Spaceborne Thermal Emission and Radiometer) imagery from 2006 and field investigation of some glaciers allow a comprehensive analysis of glacier change based on glacier size and topography on Mt. Bogda. Results include:(1) an overall loss of a glacierized area by 31.18±0.31 km2 or 21.6%from 1962 to 2006, (2) a marked dependence of glacier area shrinkage on initial size, with smaller glaciers experiencing higher shrinkage levels, (3) the disappearance of 12 small glaciers, (4) a striking difference in area loss between the southern and northern slopes of 25%and 17%, respectively. A subset of the investigated glaciers shows that the area 57.45±0.73 km2 in 1962 reduced to 54.79±0.561 km2 in 1990 and 48.88±0.49 km2 in 2006, with a relative area reduction of 4.6% during 1962–1990, and 10.8%during 1990–2006. The corresponding volume waste increased from 6.9%to 10.2%. Three reference glaciers were investigated in 1981 and revisited in 2009. Their terminus experienced a marked recession. Meteorological data from stations around Mt. Bogda reveals that glacier shrinkage is correlated with winter warming and an extension of the ablation period. Precipitation on the northwest side of the range shows a marked increase, with a slight increase on the southeast side.

  19. Correlation between shrinkage and infection of implanted synthetic meshes using an animal model of mesh infection.

    OpenAIRE

    Mamy, Laurent; Letouzey, Vincent; Lavigne, Jean-Philippe; Garric, Xavier; Gondry, Jean; Mares, Pierre; De Tayrac, Renaud

    2010-01-01

    International audience; INTRODUCTION AND HYPOTHESIS: The aim of this study was to evaluate a link between mesh infection and shrinkage. METHODS: Twenty-eight Wistar rats were implanted with synthetic meshes that were either non-absorbable (polypropylene (PP), n = 14) or absorbable (poly (D: ,L: -lactic acid) (PLA94), n = 14). A validated animal incisionnal abdominal hernia model of mesh infection was used. Fourteen meshes (n = 7 PLA94 and n = 7 PP meshes) were infected intraoperatively with 1...

  20. [Studies on the pour type resin for denture. (II) Curing shrinkage (author's transl)].

    Science.gov (United States)

    Nagata, K

    1976-09-01

    This study was to investigate the influence of concentration of crossliniking agents in the monomer and pressure applied on the curing shrinkage in pour type resins. A pressure could improve the dimentional accuracy in both case of the syrup and the power-liquid type resins, on the other hand crosslinking agents gave adversed effect on the dimentional accuracy of the pour type resins, especially on that of the group.

  1. Influence of raw materials composition on firing shrinkage, porosity, heat conductivity and microstructure of ceramic tiles

    Science.gov (United States)

    Kurovics, E.; Buzimov, A. Y.; Gömze, L. A.

    2016-04-01

    In this work some new raw material compositions from alumina, conventional brick-clays and sawdust were mixed, compacted and heat treated by the authors. Depending on raw material compositions and firing temperatures the specimens were examined on shrinkage, water absorption, heat conductivity and microstructures. The real raised experiments have shown the important role of firing temperature and raw material composition on color, heat conductivity and microstructure of the final product.

  2. Evolutionary trajectory of white spot syndrome virus (WSSV genome shrinkage during spread in Asia.

    Directory of Open Access Journals (Sweden)

    Mark P Zwart

    Full Text Available BACKGROUND: White spot syndrome virus (WSSV is the sole member of the novel Nimaviridae family, and the source of major economic problems in shrimp aquaculture. WSSV appears to have rapidly spread worldwide after the first reported outbreak in the early 1990s. Genomic deletions of various sizes occur at two loci in the WSSV genome, the ORF14/15 and ORF23/24 variable regions, and these have been used as molecular markers to study patterns of viral spread over space and time. We describe the dynamics underlying the process of WSSV genome shrinkage using empirical data and a simple mathematical model. METHODOLOGY/PRINCIPAL FINDINGS: We genotyped new WSSV isolates from five Asian countries, and analyzed this information together with published data. Genome size appears to stabilize over time, and deletion size in the ORF23/24 variable region was significantly related to the time of the first WSSV outbreak in a particular country. Parameter estimates derived from fitting a simple mathematical model of genome shrinkage to the data support a geometric progression (k<1 of the genomic deletions, with k = 0.371 ± 0.150. CONCLUSIONS/SIGNIFICANCE: The data suggest that the rate of genome shrinkage decreases over time before attenuating. Bioassay data provided support for a link between genome size and WSSV fitness in an aquaculture setting. Differences in genomic deletions between geographic WSSV isolates suggest that WSSV spread did not follow a smooth pattern of geographic radiation, suggesting spread of WSSV over long distances by commercial activities. We discuss two hypotheses for genome shrinkage, an adaptive and a neutral one. We argue in favor of the adaptive hypothesis, given that there is support for a link between WSSV genome size and fitness.

  3. Minimum Reinforcement in Concrete Structures under Restrained Shrinkage and Thermal Actions

    DEFF Research Database (Denmark)

    Christiansen, Morten Bo; Nielsen, Mogens Peter

    1999-01-01

    The present paper deals with minimum reinforcement to ensure limitation of crack widths in concrete structures subjected to small imposed strains, such as those from restrained shrinkage or thermal actions. A theory is presented, which models the behaviour of a tensile member from zero load...... to first yielding of reinforcement. The theory takes into account the formation of each crack. However, concluding the paper, a simple design formula is given, which provides the amount of reinforcement, necessary to ensure a given crack width....

  4. Polymerization of 5-alkyl δ-lactones catalyzed by diphenyl phosphate and their sequential organocatalytic polymerization with monosubstituted epoxides

    KAUST Repository

    Zhao, Junpeng

    2015-02-04

    Organocatalytic ring-opening polymerization (ROP) reactions of three renewable 5-alkyl δ-lactones, namely δ-hexalactone (HL), δ-nonalactone (NL) and δ-decalactone (DL), using diphenyl phosphate (DPP) were investigated. Room temperature, together with a relatively high monomer concentration (≥3 M), was demonstrated to be suitable for achieving a living ROP behavior, a high conversion of the lactone, a controlled molecular weight and a low dispersity of the polyester. HL, containing a 5-methyl substituent, showed a much higher reactivity (polymerization rate) and a slightly higher equilibrium conversion than the compounds with longer alkyl substituents (NL and DL). The effectiveness of DPP-catalyzed ROP of 5-alkyl δ-lactones facilitated the one-pot performance following the t-BuP4-promoted ROP of monosubstituted epoxides. It has been shown in an earlier study that substituted polyethers acted as "slow initiators" for non-substituted lactones. However, efficient initiations were observed in the present study as substituted lactones were polymerized from the substituted polyethers. Therefore, this reinforces the previously developed "catalyst switch" strategy, making it a more versatile tool for the synthesis of well-defined polyether-polyester block copolymers from a large variety of epoxide and lactone monomers. © The Royal Society of Chemistry 2015.

  5. Stereospecific olefin polymerization catalysts

    Science.gov (United States)

    Bercaw, John E.; Herzog, Timothy A.

    1998-01-01

    A metallocene catalyst system for the polymerization of .alpha.-olefins to yield stereospecific polymers including syndiotactic, and isotactic polymers. The catalyst system includes a metal and a ligand of the formula ##STR1## wherein: R.sup.1, R.sup.2, and R.sup.3 are independently selected from the group consisting of hydrogen, C.sub.1 to C.sub.10 alkyl, 5 to 7 membered cycloalkyl, which in turn may have from 1 to 3 C.sub.1 to C.sub.10 alkyls as a substituent, C.sub.6 to C.sub.15 aryl or arylalkyl in which two adjacent radicals may together stand for cyclic groups having 4 to 15 carbon atoms which in turn may be substituted, or Si(R.sup.8).sub.3 where R.sup.8 is selected from the group consisting of C.sub.1 to C.sub.10 alkyl, C.sub.6 to C.sub.15 aryl or C.sub.3 to C.sub.10 cycloalkyl; R.sup.4 and R.sup.6 are substituents both having van der Waals radii larger than the van der Waals radii of groups R.sup.1 and R.sup.3 ; R.sup.5 is a substituent having a van der Waals radius less than about the van der Waals radius of a methyl group; E.sup.1, E.sup.2 are independently selected from the group consisting of Si(R.sup.9).sub.2, Si(R.sup.9).sub.2 --Si(R.sup.9).sub.2, Ge(R.sup.9).sub.2, Sn(R.sup.9).sub.2, C(R.sup.9).sub.2, C(R.sup.9).sub.2 --C(R.sup.9).sub.2, where R.sup.9 is C.sub.1 to C.sub.10 alkyl, C.sub.6 to C.sub.15 aryl or C.sub.3 to C.sub.10 cycloalkyl; and the ligand may have C.sub.S or C.sub.1 -symmetry. Preferred metals are selected from the group consisting of group III, group IV, group V or lanthanide group elements. The catalysts are used to prepare stereoregular polymers including polypropylene from .alpha.-olefin monomers.

  6. Application of Artificial Neural Network to Predict Colour Change, Shrinkage and Texture of Osmotically Dehydrated Pumpkin

    Science.gov (United States)

    Tang, S. Y.; Lee, J. S.; Loh, S. P.; Tham, H. J.

    2017-06-01

    The objectives of this study were to use Artificial Neural Network (ANN) to predict colour change, shrinkage and texture of osmotically dehydrated pumpkin slices. The effects of process variables such as concentration of osmotic solution, immersion temperature and immersion time on the above mentioned physical properties were studied. The colour of the samples was measured using a colorimeter and the net colour difference changes, ΔE were determined. The texture was measured in terms of hardness by using a Texture Analyzer. As for the shrinkage, displacement of volume method was applied and percentage of shrinkage was obtained in terms of volume changes. A feed-forward backpropagation network with sigmoidal function was developed and best network configuration was chosen based on the highest correlation coefficients between the experimental values versus predicted values. As a comparison, Response Surface Methodology (RSM) statistical analysis was also employed. The performances of both RSM and ANN modelling were evaluated based on absolute average deviation (AAD), correlation of determination (R2) and root mean square error (RMSE). The results showed that ANN has higher prediction capability as compared to RSM. The relative importance of the variables on the physical properties were also determined by using connection weight approach in ANN. It was found that solution concentration showed the highest influence on all three physical properties.

  7. Large-proportional shrunken bio-replication of shark skin based on UV-curing shrinkage

    Science.gov (United States)

    Chen, Huawei; Che, Da; Zhang, Xin; Yue, Yue; Zhang, Deyuan

    2015-01-01

    The shark skin effect has attracted worldwide attention because of its superior drag reduction. As the product of natural selection, the maximum drag reduction of shark skin is found in its normal living environment. Large-proportional shrinkage of shark skin morphology is greatly anticipated for its adaptation to faster fluid flow. One novel approach, large-proportional shrunken bio-replication, is proposed as a method to adjust the optimal drag reduction region of shark skin based on the shrinkage of UV-cured material. The shark skin is taken as a replica template to allow large-proportional shrinking in the drag reduction morphology by taking advantage of the shrinkage of UV-curable material. The accuracy of the large-proportional shrunken bio-replication approach is verified by a comparison between original and shrunken bio-replicated shark skin, which shows that the shrinking ratio can reach 23% and the bio-replication accuracy is higher than 95%. In addition, the translation of the optimum drag reduction peak of natural surface function to various applications and environments is proved by drag reduction experiments.

  8. Influence Of Volcanic Scoria On Mechanical Strength, Chemical Resistance And Drying Shrinkage Of Mortars

    Directory of Open Access Journals (Sweden)

    Al-Swaidani A.

    2014-09-01

    Full Text Available In the study, three types of cement have been prepared; one CEM I type (the control sample and two blended cements: CEM II/A-P and CEM II/B-P (EN 197-1, each of them with three replacement levels of volcanic scoria: (10 %, 15 %, 20 % wt. and (25 %, 30 %, 35 % wt., respectively. Strength development of mortars has been investigated at 2, 7, 28 and 90 days curing. Evaluation of chemical resistance of mortars containing scoria-based cements has been investigated through exposure to 5 % sulphate and 5 % sulphuric acid solutions in accordance with ASTM C1012 & ASTM 267, respectively. Drying shrinkage has been evaluated in accordance with ASTM C596. Test results showed that at early ages, the mortars containing CEM II/B-P binders had strengths much lower than that of the control mortar. However, at 90 days curing, the strengths were comparable to the control mortar. In addition, the increase of scoria significantly improved the sulphate resistance of mortars. Further, an increase in scoria addition improved the sulphuric acid resistance of mortar, especially at the early days of exposure. The results of drying shrinkage revealed that the CEM II/B-P mortar bars exhibited a greater contraction when compared to the control mortar, especially at early ages. However, drying shrinkage of mortars was not influenced much at longer times.

  9. Non-uniform shrinkage of multiple-walled carbon nanotubes under in situ electron beam irradiation

    Energy Technology Data Exchange (ETDEWEB)

    Li, Lunxiong [South China Normal University, Brain Science Institute, Guangzhou (China); Xiamen University, China-Australia Joint Laboratory for Functional Nanomaterials and Physics Department, Xiamen (China); Su, Jiangbin [Xiamen University, China-Australia Joint Laboratory for Functional Nanomaterials and Physics Department, Xiamen (China); Chang Zhou University, School of Mathematics and Physics, Changzhou (China); Zhu, Xianfang [Xiamen University, China-Australia Joint Laboratory for Functional Nanomaterials and Physics Department, Xiamen (China)

    2016-10-15

    Instability of multiple-walled carbon nanotubes (MWCNTs) was investigated by in situ transmission electron microscopy at room temperature. Specially, the non-uniform shrinkage of tubes was found: The pristine MWCNT shrank preferentially in its axial direction from the most curved free cap end of the tube, but the shrinkage of the tube diameter was offset by the axial shrinkage: For the complex MWCNT, the two inner MWCNTs also preferentially axially shrank from their most curved cap ends and separated from each other. However, for the effect of the radial pressure from the out walls which enveloped the two inner tubes and the tube amorphization, the two inner tubes were extruded to come close to each other and finally touched again. The new ''evaporation'' and ''diffusion'' mechanisms of carbon atoms as driven by the nano-curvature of CNT and the electron beam-induced athermal activation were suggested to explain the above phenomena. (orig.)

  10. A cure shrinkage model for analyzing the stresses and strains in encapsulated assemblies

    Energy Technology Data Exchange (ETDEWEB)

    Chambers, R.S.; Lagasse, R.R.; Guess, T.R. (Sandia National Labs., Albuquerque, NM (United States)); Plazek, D.J.; Bero, C. (Pittsburgh Univ., PA (United States). Dept. of Materials Science and Engineering)

    1992-01-01

    Electrical component assemblies are encapsulated to provide delicate parts with voltage isolation and protection against damage caused by shock, vibration, and harsh atmospheric environments. During cure, thermosetting resins shrink and harden simultaneously. If the natural deformation of the resin is constrained by adhesion to the mold or to relatively stiff embedded components, cure shrinkage stresses are generated in the encapsulant. Subsequent cooling or thermal cycling produces additional stresses that are caused by the mismatches in thermal strains among the materials in the encapsulated assembly. Although cure shrinkage stresses frequently are neglected because they are considerably smaller than thermal stresses, cure shrinkage stresses can cause delamination or fractures in the encapsulant, since the partially cured resin is not as tough as the fully cured material. Cracks generated during cure can compromise performance (e. g., permit dielectric breakdown), degrade a component's protection, and grow under subsequent thermal cycling producing residual stresses that differ from those found in uncracked assemblies. 3 refs., 11 figs.

  11. Statistical mechanics provides novel insights into microtubule stability and mechanism of shrinkage.

    Science.gov (United States)

    Jain, Ishutesh; Inamdar, Mandar M; Padinhateeri, Ranjith

    2015-02-01

    Microtubules are nano-machines that grow and shrink stochastically, making use of the coupling between chemical kinetics and mechanics of its constituent protofilaments (PFs). We investigate the stability and shrinkage of microtubules taking into account inter-protofilament interactions and bending interactions of intrinsically curved PFs. Computing the free energy as a function of PF tip position, we show that the competition between curvature energy, inter-PF interaction energy and entropy leads to a rich landscape with a series of minima that repeat over a length-scale determined by the intrinsic curvature. Computing Langevin dynamics of the tip through the landscape and accounting for depolymerization, we calculate the average unzippering and shrinkage velocities of GDP protofilaments and compare them with the experimentally known results. Our analysis predicts that the strength of the inter-PF interaction (E(s)(m)) has to be comparable to the strength of the curvature energy (E(b)(m)) such that E(s)(m) - E(b)(m) ≈ 1kBT, and questions the prevalent notion that unzippering results from the domination of bending energy of curved GDP PFs. Our work demonstrates how the shape of the free energy landscape is crucial in explaining the mechanism of MT shrinkage where the unzippered PFs will fluctuate in a set of partially peeled off states and subunit dissociation will reduce the length.

  12. Shrinkage covariance matrix approach based on robust trimmed mean in gene sets detection

    Science.gov (United States)

    Karjanto, Suryaefiza; Ramli, Norazan Mohamed; Ghani, Nor Azura Md; Aripin, Rasimah; Yusop, Noorezatty Mohd

    2015-02-01

    Microarray involves of placing an orderly arrangement of thousands of gene sequences in a grid on a suitable surface. The technology has made a novelty discovery since its development and obtained an increasing attention among researchers. The widespread of microarray technology is largely due to its ability to perform simultaneous analysis of thousands of genes in a massively parallel manner in one experiment. Hence, it provides valuable knowledge on gene interaction and function. The microarray data set typically consists of tens of thousands of genes (variables) from just dozens of samples due to various constraints. Therefore, the sample covariance matrix in Hotelling's T2 statistic is not positive definite and become singular, thus it cannot be inverted. In this research, the Hotelling's T2 statistic is combined with a shrinkage approach as an alternative estimation to estimate the covariance matrix to detect significant gene sets. The use of shrinkage covariance matrix overcomes the singularity problem by converting an unbiased to an improved biased estimator of covariance matrix. Robust trimmed mean is integrated into the shrinkage matrix to reduce the influence of outliers and consequently increases its efficiency. The performance of the proposed method is measured using several simulation designs. The results are expected to outperform existing techniques in many tested conditions.

  13. Statistical mechanics provides novel insights into microtubule stability and mechanism of shrinkage.

    Directory of Open Access Journals (Sweden)

    Ishutesh Jain

    2015-02-01

    Full Text Available Microtubules are nano-machines that grow and shrink stochastically, making use of the coupling between chemical kinetics and mechanics of its constituent protofilaments (PFs. We investigate the stability and shrinkage of microtubules taking into account inter-protofilament interactions and bending interactions of intrinsically curved PFs. Computing the free energy as a function of PF tip position, we show that the competition between curvature energy, inter-PF interaction energy and entropy leads to a rich landscape with a series of minima that repeat over a length-scale determined by the intrinsic curvature. Computing Langevin dynamics of the tip through the landscape and accounting for depolymerization, we calculate the average unzippering and shrinkage velocities of GDP protofilaments and compare them with the experimentally known results. Our analysis predicts that the strength of the inter-PF interaction (E(s(m has to be comparable to the strength of the curvature energy (E(b(m such that E(s(m - E(b(m ≈ 1kBT, and questions the prevalent notion that unzippering results from the domination of bending energy of curved GDP PFs. Our work demonstrates how the shape of the free energy landscape is crucial in explaining the mechanism of MT shrinkage where the unzippered PFs will fluctuate in a set of partially peeled off states and subunit dissociation will reduce the length.

  14. Development of shrinkage and fracture parameters in selected fine-grained cement-based composites

    Directory of Open Access Journals (Sweden)

    Kucharczyková Barbara

    2017-01-01

    Full Text Available The paper summarizes results of a pilot study aimed at the evaluation of an experimental investigation focused on determination of the material characteristics development of selected fine-grained cement-based composites during their ageing. The composition of composites being investigated differed only in a water to cement (w/c ratio and in amount of superplasticizer. Quite extensive experiments were performed with the aim to determine shrinkage, dynamic a static modulus of elasticity and fracture properties on test specimens exposed to free drying during the whole time of its ageing (including the early stage of setting and hardening. The article presents especially results (including their statistical evaluation of shrinkage and fracture parameters development within 90 days of composites’ ageing. Experimental results show the dependence of the investigated characteristics on the value of w/c ratio. The most visible effect was observed in the case of shrinkage development. The curing conditions were reflected especially in high variability of the test results.

  15. Moisture Diffusivity and Shrinkage of Fruit and Cladode of Opuntia ficus-indica during Infrared Drying

    Directory of Open Access Journals (Sweden)

    Amira Touil

    2014-01-01

    Full Text Available Drying behaviour of prickly pear cladodes and fruits was studied with an Infrared dryer. The volume shrinkage for Opuntia ficus-indica products is calculated and a linear relation was established to describe the experimental variation of shrinkage of the product versus its moisture content. Effective diffusion coefficient of moisture transfer was determined using the Fick law at three drying temperatures (40, 50, and 60°C. Shrinkage was also included into the diffusion model for the determination of the effective diffusion coefficient. The obtained results of the effective moisture diffusivity, for the cladode and the fruit, were evaluated in the range of 1.77 × 10−10–5.07 × 10−10 m2/s and 2.53 × 10−10–7.6 × 10−10 m2/s, respectively. The values of the activation energies for cladode and fruit were estimated to be 45.39 and 47.79 kJ/mol, respectively. However, these values of moisture diffusivity were estimated independently of the evolution of moisture content during drying process. Therefore, a correlation (full quadratic equation for moisture diffusivity as a function of moisture content and temperature was developed. The parameters are obtained by a multilinear regression method. This equation was found satisfactory to describe the diffusivity evolution function of moisture content and temperature with correlation coefficients of 91.5 and 95%.

  16. Shrinkage-based diagonal Hotelling’s tests for high-dimensional small sample size data

    KAUST Repository

    Dong, Kai

    2015-09-16

    DNA sequencing techniques bring novel tools and also statistical challenges to genetic research. In addition to detecting differentially expressed genes, testing the significance of gene sets or pathway analysis has been recognized as an equally important problem. Owing to the “large pp small nn” paradigm, the traditional Hotelling’s T2T2 test suffers from the singularity problem and therefore is not valid in this setting. In this paper, we propose a shrinkage-based diagonal Hotelling’s test for both one-sample and two-sample cases. We also suggest several different ways to derive the approximate null distribution under different scenarios of pp and nn for our proposed shrinkage-based test. Simulation studies show that the proposed method performs comparably to existing competitors when nn is moderate or large, but it is better when nn is small. In addition, we analyze four gene expression data sets and they demonstrate the advantage of our proposed shrinkage-based diagonal Hotelling’s test.

  17. Mechanically controlled radical polymerization initiated by ultrasound

    Science.gov (United States)

    Mohapatra, Hemakesh; Kleiman, Maya; Esser-Kahn, Aaron Palmer

    2017-02-01

    In polymer chemistry, mechanical energy degrades polymeric chains. In contrast, in nature, mechanical energy is often used to create new polymers. This mechanically stimulated growth is a key component of the robustness of biological materials. A synthetic system in which mechanical force initiates polymerization will provide similar robustness in polymeric materials. Here we show a polymerization of acrylate monomers initiated and controlled by mechanical energy provided by ultrasonic agitation. The activator for an atom-transfer radical polymerization is generated using piezochemical reduction of a Cu(II) precursor complex, which thus converts a mechanical activation of piezoelectric particles to the synthesis of a new material. This polymerization reaction has some characteristics of controlled radical polymerization, such as narrow molecular-weight distribution and linear dependence of the polymeric chain length on the time of mechanical activation. This new method of controlled radical polymerization complements the existing methods to synthesize commercially useful well-defined polymers.

  18. Computed tomographic studies of the basis pedunculi in chronic hemiplegic patients: Topographic correlation between cerebral lesion and midbrain shrinkage

    Energy Technology Data Exchange (ETDEWEB)

    Warabi, T.; Miyasaka, K.; Inoue, K.; Nakamura, N.

    1987-09-01

    A computed tomographic method for analyzing the shrinkage of the basis pedunculi (BP) due to the secondary degeneration of the descending fibers was applied in correlation to the site of cerebral lesions in 89 chronic hemiplegic patients. Cerebral lesions in the anterior corona radiata or the anterior limb of the capsula interna caused shrinkage of the medial BP. Lesions in the central corona radiata or the genu and posterior limb of the capsula interna caused shrinkage of the central BP, while lesions of the posterior corona radiata or the posterior limb of the capsula interna caused shrinkage of the lateral BP. These results suggested that CT images are able to reveal the principle sites of atrophy of the descending fiber tracts in chronic hemiplegia.

  19. Effect of cyclic loading on microleakage of silorane based composite compared with low shrinkage methacrylate-based composites

    Directory of Open Access Journals (Sweden)

    Hamid Kermanshah

    2016-01-01

    Conclusion: Silorane did not provide better marginal seal than the low shrinkage methacrylate-based composites (except Aelite. In addition, cyclic loading did not affect the marginal microleakage of evaluated composite restorations .

  20. Functional bio-based polyesters by enzymatic polymerization

    DEFF Research Database (Denmark)

    Daugaard, Anders Egede; Hoffmann, Christian; Andersen, Christian

    During recent years enzymatic polymerization has become increasingly popular as an alternative to classical polyesterification processes. The high regioselectivity observed for lipases permits preparation of novel polyesters with a high number of functional groups.1 This is particularly interesting...... polymerization was applied to prepare functional water soluble polyesters based on dimethyl itaconate and poly(ethyleneglycol).2 The monomer permits postfunctionalization using thiol-ene chemistry or aza-michael additions, which was used to illustrate the possibilites of preparing functional hydrogels. Hydrogels...... was copolymerized together with ethyl-6-hydroxyhexanoate yielding copolymers with molecular weights of up to 12,000 g/mol. The polymers were postfunctionalized using trifluoroacetic anhydride, which resulted in 100% conversion of the secondary alcohols, illustrating the possibility to use the secondary alcohol...

  1. Electron-beam initiated polymerization of acrylate compositions 1 : FTIR monitoring of incremental irradiation

    CERN Document Server

    Patacz, C; Coqueret, X

    2000-01-01

    The electron-beam induced polymerization of some representative formulations including acrylate functional oligomers and diluents has been investigated by means of FTIR spectroscopy applied to films that were cured under a nitrogen flow. In order to gain a deeper insight into the reactivity of the polymerizable systems, the conversion-dose relationship was examined with emphasis on the following points : depth cure profile of the films, and the additivity of effects of incremental radiation doses on monomer conversion. It was shown to be possible to reproduce the actual polymerization profile from discontinuous measurements. This remarkable result is tentatively explained by the geometry of the samples causing limited thermal effects and by the minor influence of possible inhibition and post-polymerization that could influence each of the incremental transformations compared to a single large dose treatment. This method provides a fine tool for revealing differences in kinetic behavior between polymerizable m...

  2. Shrinkage of Value-Added Estimates and Characteristics of Students with Hard-to-Predict Achievement Levels.

    OpenAIRE

    Mariesa Herrmann; Elias Walsh; Eric Isenberg; Alexandra Resch

    2013-01-01

    This working paper investigates how empirical Bayes shrinkage, an approach commonly used in implementing teacher accountability systems, affects the value-added estimates of teachers of students with hard-to-predict achievement levels, such as students who have low prior achievement and receive free lunch. Teachers of these students tend to have less precise value-added estimates than teachers of other types of students. Shrinkage increases their estimates’ precision and reduces the absolut...

  3. Supramolecular Polymeric Materials Containing Cyclodextrins.

    Science.gov (United States)

    Nakahata, Masaki; Takashima, Yoshinori; Harada, Akira

    2017-01-01

    Smart design of polymeric materials may lead to intelligent materials exhibiting unique functional properties. Looking at nature, living systems use specific and reversible intermolecular interactions in realizing complex functions. Hence reversible bonds based on selective molecular recognition can impart artificial materials with unique functional properties. This review mainly focuses on supramolecular polymeric materials based on cyclodextrin-based host-guest interactions. Polymeric materials using molecular recognition at polymer main chain, side chain, and termini are described. Polymers carrying host and guest residues exhibit unique properties such as: 1) formation of macroscopic self-assembly of polymer gels carrying host and guest residues; 2) stimuli-responsive self-healing properties due to the reversible nature of host-guest interactions; and 3) macroscopic motion of artificial muscle cross-linked by host-guest interaction controlled by external stimuli. An overview of recent developments in this new frontier between materials science and life science is given.

  4. Impact of solvent selection on graft polymerization of acrylamide onto starch

    Science.gov (United States)

    The impact on polymer properties [molecular weight, monomer conversion, graft content, graft efficiency and anhydroglucose units between grafts (AGU/graft)] that result from changing the solvent for the graft co-polymerization of acrylamide onto starch from water to dimethylsulfoxide (DMSO) was eval...

  5. Zirconium-allyl complexes as resting states in zirconocene-catalyzed α-olefin polymerization.

    Science.gov (United States)

    Panchenko, Valentina N; Babushkin, Dmitrii E; Brintzinger, Hans H

    2015-01-01

    UV-vis spectroscopic data indicate that zirconocene cations with Zr-bound allylic chain ends are generally formed during olefin polymerization with zirconocene catalysts. The rates and extent of their formation and of their re-conversion to the initial pre-catalyst cations depend on the types of zirconocene complexes and activators used.

  6. Salicylaldimine Copper(II) complex catalyst: Pioneer for ring opening Polymerization of Lactide

    Indian Academy of Sciences (India)

    ANITA ROUTARAY; NIBEDITA NATH; TUNGABIDYA MAHARANA; PRATAP KUMAR SAHOO; JAYA PRAKASH DAS; ALEKHA KUMAR SUTAR

    2016-06-01

    Salicylaldimine copper complex has been synthesized and its reactivity for the ring-opening polymerization(ROP) of lactide has been studied. This monomeric copper complex was prepared by the reaction ofcopper(II) solution with one molar equivalent of salicylaldimine Schiff-base ligand in methanol under nitrogenatmosphere. This copper complex has been characterized by different spectroscopic methods, which showedsquare planar geometry. The molecular structure of the salicylaldimine Schiff-base has been determined byX-ray diffraction studies. The complex was tested as the initiator for the ring-opening polymerization of lactide,with variation in diamine group in ligand. The rate of polymerization is dependent on the diamine groupin the following order: ethylene > propylene > phenyl. The salicylaldimine copper complex allows controlledring-opening polymerization as indicated by the linear relationship between the percentage conversion and thenumber-average molecular weight. On the basis of literature reports, a mechanism for ROP of lactide has beenproposed.

  7. HETEROCYCLIC SCHIFF BASE NEODYMIUM COMPLEX AS CATALYST FOR RING-OPENING POLYMERIZATION OF ε-CAPROLACTONE

    Institute of Scientific and Technical Information of China (English)

    Lei Zhang; Xu-feng Ni; Wei-lin Sun; Zhi-quan Shen

    2008-01-01

    An aromatic heterocyclic Schiff base neodymium complex bearing thizole was synthesized and its activity in the ring-opening polymerization of ε-caprolactone (CL) was examined. The conditions of the CL/Nd molar ratio, monomer concentration, polymerization time and temperature were investigated. Activities of ca.171 kg/Nd·h were obtained under the optimum condition (CL/Nd = 1600 (molar ratio), |CL] = 2.26 mol L-1, 1 h at 50℃), giving a poly(ε-caprolactone) (PCL) of number-average molecular weight Mn = 5.4 × 104 and molecular weight distribution MWD = 1.96. The conversion of CL monomer as high as 94% was observed after polymerized for one hour. The mechanism of coordination polymerization has also been illustrated.

  8. Composite depth of cure using four polymerization techniques

    Directory of Open Access Journals (Sweden)

    Ericson Janolio de Camargo

    2009-10-01

    Full Text Available The light-curing technique is relevant to reduce the degree of polymerization shrinkage, improving clinical and esthetic success of composite resin restorations. OBJECTIVE: To evaluate in vitro the effect of four light-curing techniques on depth of cure of a composite resin. MATERIAL AND METHODS: Ten specimens of a composite resin were made in cylindrical cavities prepared in PVC plates (3.0 X 7.0 mm for each light-curing technique. Four photoactivation methods were investigated: stepped, ramped, pulse-delay and traditional. Specimens were longitudinally sectioned and polished for microhardness measurements (kg/mm², which were made at 0.1, 1.0, 2.0 and 4.0 mm from the irradiated surface. Data were subjected to ANOVA and Tukey's test. RESULTS: The effect of factors studied (curing method and distance from the surface and the interaction of these factors was statistically significant (p<0.05. The traditional method of cure provided higher microhardness values (69.6 ± 2.5 than the stepped (63.5 ± 3.1 and pulsed (63.9 ± 3.2 methods at all depths evaluated, but it did not differ from the ramped method (66.7± 4.4 at 0.1 and 1.0 mm of depth. CONCLUSION: All techniques employed provided satisfactory cure of the composite resin up to the depth of 2.0 mm from the irradiated surface.

  9. Water transfer properties and shrinkage in lime-based rendering mortars

    Science.gov (United States)

    Arizzi, A.; Cultrone, G.

    2012-04-01

    aspect to be considered in the evaluation of the decay caused by water is the high shrinkage suffered by renders when they are applied on an extended surface (i.e. a wall), especially when they are aerial lime-based mortars. The shrinkage causes the formation of fissures that become an easy way for water to entry and diffuse through the mortar pore system. This factor is rarely taken into consideration during the hydric assays performed in the laboratory, since mortar samples of 4x4x16 or 4x4x4 cm in size do not undergo to such degree of shrinkage. For this reason, we have also studied the shrinkage of these mortars and considered it in the final assessment of mortars hydric properties. The shrinkage was evaluated according to a non-standardized method, by means of a shrinkage-measuring device that measures the mortar dimensional variations over time. This measurement has shown that the highest the lime content the biggest the mortar shrinkage and, consequently, the strongest the decay due to water.

  10. 1-D diffusion based solidification model with volumetric expansion and shrinkage effect: A semi-analytical approach

    Science.gov (United States)

    Monde, Aniket D.; Chakraborty, Prodyut R.

    2017-10-01

    Volumetric expansion and shrinkage due to different densities of solid and liquid phases are common phenomena during solidification process. Simple analytical models addressing effect of volumetric expansion/shrinkage during solidification are rarely found. The few existing 1-D solidification models are valid only for semi-infinite domain with limitations of their application for finite domain size. The focus of the present work is to develop a 1-D semi-analytical solidification model addressing effects of volumetric expansion/shrinkage in a finite domain. The proposed semi-analytical scheme involves finding simultaneous solution of transient 1-D heat diffusion equations at solid and liquid domain coupled at the interface by Stefan condition. The change of the total domain length during solidification due to volumetric expansion/shrinkage is addressed by using mass conservation. For validation of the proposed model, solidification of water in a finite domain is studied without considering volumetric expansion/shrinkage effect and results are compared with those obtained from existing enthalpy updating based numerical model. After validation, case studies pertaining to volumetric expansion and shrinkage are performed considering solidification of water and paraffin respectively and physically consistent results are obtained. The study is relevant for understanding unidirectional crystal growth under the effect of controlled boundary condition.

  11. The correlation between aldehyde dehydrogenase-1A1 level and tumor shrinkage after preoperative chemoradiation in locally advanced rectal cancer

    Directory of Open Access Journals (Sweden)

    Rhandyka Rafli

    2015-12-01

    Full Text Available This study was performed to determine the correlation between aldehyde dehydrogenase-1A1 (ALDH1A1 level and tumor shrinkage after chemoradiation in locally advanced rectal cancer. This is a retrospective study of 14 locally advanced rectal cancer patients with long course neoadjuvant chemoradiation. ALDH1A1 level was measured using ELISA from paraffin embedded tissue. Tumor shrinkage was measured from computed tomography (CT scan or magnetic resonance imaging (MRI based on Response Evaluation Criteria in Solid Tumor v1.1 (RECIST v1.1. The mean of ALDH1A1 level was 9.014 ± 3.3 pg/mL and the mean of tumor shrinkage was 7.89 ± 35.7%. Partial response proportion was 28.6%, stable disease proportion was 50% and progressive disease proportion was 21.4%. There was a significant strong negative correlation (r = –0.890, plt; 0.001 between ALDH1A1 and tumor shrinkage. In conclusion, tumor shrinkage in locally advanced rectal cancer after preoperative chemoradiation was influenced by ALDH1A1 level. Higher level of ALDH1A1 suggests decreased tumor shrinkage after preoperative chemoradiation.

  12. Four-Phase Dendritic Model for the Prediction of Macrosegregation, Shrinkage Cavity, and Porosity in a 55-Ton Ingot

    Science.gov (United States)

    Ge, Honghao; Ren, Fengli; Li, Jun; Han, Xiujun; Xia, Mingxu; Li, Jianguo

    2017-03-01

    A four-phase dendritic model was developed to predict the macrosegregation, shrinkage cavity, and porosity during solidification. In this four-phase dendritic model, some important factors, including dendritic structure for equiaxed crystals, melt convection, crystals sedimentation, nucleation, growth, and shrinkage of solidified phases, were taken into consideration. Furthermore, in this four-phase dendritic model, a modified shrinkage criterion was established to predict shrinkage porosity (microporosity) of a 55-ton industrial Fe-3.3 wt pct C ingot. The predicted macrosegregation pattern and shrinkage cavity shape are in a good agreement with experimental results. The shrinkage cavity has a significant effect on the formation of positive segregation in hot top region, which generally forms during the last stage of ingot casting. The dendritic equiaxed grains also play an important role on the formation of A-segregation. A three-dimensional laminar structure of A-segregation in industrial ingot was, for the first time, predicted by using a 3D case simulation.

  13. Surface glycosylation of polymeric membranes

    Institute of Scientific and Technical Information of China (English)

    2008-01-01

    Surface glycosylation of polymeric membranes has been inspired by the structure of natural biomem-branes. It refers to that glycosyl groups are introduced onto the membrane surface by various strate-gies, which combine the separation function of the membrane with the biological function of the sac-charides in one system. In this review, progress in the surface glycosylation of polymeric membranes is highlighted in two aspects, i.e. the glycosylation methods and the potential applications of the sur-face-glycosylated membranes.

  14. On-demand photoinitiated polymerization

    Science.gov (United States)

    Boydston, Andrew J; Grubbs, Robert H; Daeffler, Chris; Momcilovic, Nebojsa

    2013-12-10

    Compositions and methods for adjustable lenses are provided. In some embodiments, the lenses contain a lens matrix material, a masking compound, and a prepolymer. The lens matrix material provides structure to the lens. The masking compound is capable of blocking polymerization or crosslinking of the prepolymer, until photoisomerization of the compound is triggered, and the compound is converted from a first isomer to a second isomer having a different absorption profile. The prepolymer is a composition that can undergo a polymerization or crosslinking reaction upon photoinitiation to alter one or more of the properties of the lenses.

  15. Cocoa procyanidins with different degrees of polymerization possess distinct activities in models of colonic inflammation.

    Science.gov (United States)

    Bitzer, Zachary T; Glisan, Shannon L; Dorenkott, Melanie R; Goodrich, Katheryn M; Ye, Liyun; O'Keefe, Sean F; Lambert, Joshua D; Neilson, Andrew P

    2015-08-01

    Procyanidins are available in the diet from sources such as cocoa and grapes. Procyanidins are unique in that they are comprised of repeating monomeric units and can exist in various degrees of polymerization. The degree of polymerization plays a role in determining the biological activities of procyanidins. However, generalizations cannot be made regarding the correlation between procyanidin structure and bioactivity because the size-activity relationship appears to be system dependent. Our aim was to screen fractions of procyanidins with differing degrees of polymerization in vitro for anti-inflammatory activities in models of colonic inflammation. Monomeric, oligomeric and polymeric cocoa procyanidin fractions were screened using cell models of disrupted membrane integrity and inflammation in human colon cells. High-molecular-weight polymeric procyanidins were the most effective at preserving membrane integrity and reducing secretion of interleukin-8 in response to inflammatory stimuli. Conversely, oligomeric procyanidins appeared to be the least effective. These results suggest that polymeric cocoa procyanidins may be the most effective for preventing loss of gut barrier function and epithelial inflammation, which are critical steps in the pathogenesis of metabolic endotoxemia, inflammatory bowel disease and colon cancer. Therefore, further investigations of the potential health-protective benefits of cocoa procyanidins with distinct degrees of polymerization, particularly high-molecular-weight procyanidins, are warranted.

  16. Special issue: Plasma Conversion

    NARCIS (Netherlands)

    Nozaki, T.; Bogaerts, A.; Tu, X.; van de Sanden, M. C. M.

    2017-01-01

    With growing concern of energy and environmental issues, the combination of plasma and heterogeneous catalysts receives special attention in greenhouse gas conversion, nitrogen fixation and hydrocarbon chemistry. Plasma gas conversion driven by renewable electricity is particularly important for the

  17. Effect of Cross-Linking on the Structure and Growth of Polymer Films Prepared by Interfacial Polymerization.

    Science.gov (United States)

    Berezkin, Anatoly V; Kudryavtsev, Yaroslav V

    2015-11-10

    Interfacial polymerization of tri- and bifunctional monomers (A3B2 polymerization) is investigated by dissipative particle dynamics to reveal an effect of cross-linking on the reaction kinetics and structure of the growing polymer film. Regardless of the comonomer reactivity and miscibility, the kinetics in an initially bilayer melt passes from the reaction to diffusion control. Within the crossover period, branched macromolecules undergo gelation, which drastically changes the scenario of the polymerization process. Comparison with the previously studied linear interfacial polymerization (Berezkin, A. V.; Kudryavtsev, Y. V. Linear Interfacial Polymerization: Theory and Simulations with Dissipative Particle Dynamics J. Chem. Phys. 2014, 141, 194906) shows similar conversion rates but very different product characteristics. Cross-linked polymer films are markedly heterogeneous in density, their average polymerization degree grows with the comonomer miscibility, and end groups are mostly trapped deeply in the film core. Products of linear interfacial polymerization demonstrate opposite trends as they are spontaneously homogenized by a convective flow of macromolecules expelled from the reactive zone to the film periphery, which we call the reactive extrusion effect and which is hampered in branched polymerization. Influence of the comonomer architecture on the polymer film characteristics could be used in various practical applications of interfacial polymerization, such as fabrication of membranes, micro- and nanocapsules and 3D printing.

  18. Chinese Conversation Structure

    Institute of Scientific and Technical Information of China (English)

    LIU Yan

    2016-01-01

    This paper aims to describe the features of Chinese conversation structure. Specifically speaking, the structure will be analyzed from the following four aspects:openings and pre-sequence, adjacency pairs, pre-closing and closing. Generally speak-ing, Chinese conversation structure is similar to English conversation structure. But still a lot of differences are found due to cul-tural factors.

  19. Functionalization and Polymerization on the CNT Surfaces

    KAUST Repository

    Albuerne, Julio

    2013-07-01

    In this review we focus on the current status of using carbon nanotube (CNT) as a filler for polymer nanocomposites. Starting with the historical background of CNT, its distinct properties and the surface functionalization of the nanotube, the three different surface polymerization techniques, namely grafting "from", "to" and "through/in between" were discussed. Wider focus has been given on "grafting from" surface initiated polymerizations, including atom transfer radical polymerization (ATRP), reversible addition fragmentation chain-transfer (RAFT) Polymerization, nitroxide mediated polymerization (NMP), ring opening polymerization (ROP) and other miscellaneous polymerization methods. The grafting "to" and "through / in between" also discussed and compared with grafting from polymerization. The merits and shortcomings of all three grafting methods were discussed and the bottleneck issue in grafting from method has been highlighted. Furthermore the current and potential future industrial applications were deliberated. Finally the toxicity issue of CNTs in the final product has been reviewed with the limited available literature knowledge. © 2013 Bentham Science Publishers.

  20. The absorption of polymeric composites

    Science.gov (United States)

    Řídký, R.; Popovič, M.; Rolc, S.; Drdlová, M.; Krátký, J.

    2016-06-01

    An absorption capacity of soft, viscoelastic materials at high strain rates is important for wide range of practical applications. Nowadays there are many variants of numerical models suitable for this kind of analysis. The main difficulty is in selection of the most realistic numerical model and a correct setup of many unknown material constants. Cooperation between theoretical simulations and real testing is next crucial point in the investigation process. Standard open source material database offer material properties valid for strain rates less than 250 s-1. There are experiments suitable for analysis of material properties with strain rates close to 2000 s-1. The high strain-rate characteristics of a specific porous blast energy absorbing material measured by modified Split Hopkinson Pressure Bar apparatus is presented in this study. Testing these low impedance materials using a metallic split Hopkinson pressure bar setup results in poor signal to noise ratios due to impedance mismatching. These difficulties are overcome by using polymeric Hopkinson bars. Conventional Hopkinson bar analysis cannot be used on the polymeric bars due to the viscoelastic nature of the bar material. One of the possible solution leads to complex and frequency depended Young modulus of testing bars material. This testing technique was applied to materials composed of porous glass/ceramic filler and polymeric binder, with density of 125 - 300 kg/m3 and particle size in range of 50 µm - 2 mm. The achieved material model was verified in practical application of sandwich structure includes polymeric composites under a blast test.

  1. The Viscosity of Polymeric Fluids.

    Science.gov (United States)

    Perrin, J. E.; Martin, G. C.

    1983-01-01

    To illustrate the behavior of polymeric fluids and in what respects they differ from Newtonian liquids, an experiment was developed to account for the shear-rate dependence of non-Newtonian fluids. Background information, procedures, and results are provided for the experiment. Useful in transport processes, fluid mechanics, or physical chemistry…

  2. Biodegradable polymeric prodrugs of naltrexone

    NARCIS (Netherlands)

    Bennet, D.B.; Li, X.; Adams, N.W.; Kim, S.W.; Hoes, C.J.T.; Feijen, J.

    1991-01-01

    The development of a biodegradable polymeric drug delivery system for the narcotic antagonist naltrexone may improve patient compliance in the treatment of opiate addiction. Random copolymers consisting of the ¿-amino acids N5-(3-hydroxypropyl--glutamine and -leucine were synthesized with equimolar

  3. Buckling of polymerized monomolecular films

    Science.gov (United States)

    Bourdieu, L.; Daillant, J.; Chatenay, D.; Braslau, A.; Colson, D.

    1994-03-01

    The buckling of a two-dimensional polymer network at the air-water interface has been evidenced by grazing incidence x-ray scattering. A comprehensive description of the inhomogeneous octadecyltrichlorosilane polymerized film was obtained by atomic force microscopy and x-ray scattering measurements. The buckling occurs with a characteristic wavelength ~=10 μm.

  4. Novel polymeric materials from triglycerides

    Science.gov (United States)

    Triglycerides are good platforms for new polymeric products that can substitute for petroleum-based materials. As part of our research emphasis in sustainability and green polymer chemistry, we have explored a number of reactions in efforts to produce a wide range of value-added products. In this ...

  5. Terrestrial evolution of polymerization of amino acids - Heat to ATP

    Science.gov (United States)

    Fox, S. W.; Nakashima, T.

    1981-01-01

    Sets of amino acids containing sufficient trifunctional monomer are thermally polymerized at temperatures such as 65 deg; the amino acids order themselves. Various polymers have diverse catalytic activities. The polymers aggregate, in aqueous solution, to cell-like structures having those activities plus emergent properties, e.g. proliferatability. Polyamino acids containing sufficient lysine catalyze conversion of free amino acids, by ATP, to small peptides and a high molecular weight fraction. The lysine-rich proteinoid is active in solution, within suspensions of cell-like particles, or in other particles composed of lysine-rich proteinoid and homopolyribonucleotide. Selectivities are observed. An archaic polyamino acid prelude to coded protein synthesis is indicated.

  6. RING OPENING POLYMERIZATION OF TETRAHYDROFURAN CATALYSED BY MAGHNITE-H+

    Institute of Scientific and Technical Information of China (English)

    Khadidja Benkenfoud; Amine Harrane; Mohammed Belbachir

    2012-01-01

    The cationic ring-opening polymerization of tetrahydrofuran using maghnite-H- is reported.Maghnite-H+,is a non-toxic solid catalyst issued from proton exchanged montmorillonite clay.Polytetrahydrofuran,also called "poly(butandiol) ether",with acetate and hydroxyl end groups was successfully synthesized.Effects of reaction temperature,weight ratio of initiator/monomer and reaction time on the conversion of monomer and on the molecular weight are investigated.A cationic mechanism of the reaction was proposed.This chemistry can be considered as a suitable route for preparing poly(THF) as a soft segment for thermoplastic elastomers.

  7. CATIONIC POLYMERIZATION OF 1,3-PENTADIENE INITIATED BY ORGANIC AZIDE/Et2AlCl

    Institute of Scientific and Technical Information of China (English)

    PENG Yuxing; DAI Hansong; LIU Jialin; CUN Linfeng

    1995-01-01

    The cationic polymerization of 1,3-pentadiene was initiated by the organic azide/Et2AlCl initiating system in CH2Cl2 and n-hexane. The polymerizations were also carried out in parallel with organic chloride/Et2AlCl and Et2AlCl alone for comparison. The Et2AlCl- induced polymerization gives a low yield while the polymerization initiated by organic chloride/Et2AlCl produces mainly insoluble product. In contrast, the polymerization with azide/Et2AlCl has a high conversion and the resulting polymer having a high molecular weight is totally soluble. The SEC spectra of the polymers have clearly shown the differences between these initiating systems.

  8. Elements of energy conversion

    CERN Document Server

    Russell, Charles R

    2013-01-01

    Elements of Energy Conversion brings together scattered information on the subject of energy conversion and presents it in terms of the fundamental thermodynamics that apply to energy conversion by any process. Emphasis is given to the development of the theory of heat engines because these are and will remain most important power sources. Descriptive material is then presented to provide elementary information on all important energy conversion devices. The book contains 10 chapters and opens with a discussion of forms of energy, energy sources and storage, and energy conversion. This is foll

  9. NGL data conversion system

    Science.gov (United States)

    Shoji, Masahiro; Horiuchi, Nobuyasu

    2005-06-01

    We are developing a NGL data conversion system for EPL, for LEEPL, and for EBDW, which is based on our established photomask data conversion system, PATACON PC-cluster. For EPL data conversion, it has SF division, Complementary division, Stitching, Proximity effect correction, Alignment mark insertion, EB stepper control data creation, and Mask inspection data creation. For LEEPL data conversion, it has Pattern checking, Complementary division, Stitching, Stress distortion correction, Alignment mark insertion, and Mask inspection data creation. For EB direct-writing data conversion, it has Proximity effect correction and Extraction of aperture pattern for cell projection exposure.

  10. Polymeric amines and biomedical uses thereof

    NARCIS (Netherlands)

    Broekhuis, Antonius; Zhang, Youchum; Picchioni, Francesco; Roks, Antonius

    2010-01-01

    The invention relates to the field of polymers and biomedical applications thereof. In particular, it relates to the use of polymeric amines derived from alternating polyketones.Provided is the use of a polymeric amine for modulating or supporting cellular behavior, said polymeric amine being an alt

  11. THE POLYMERIZATION OF AROMATIC AND HETEROCYCLIC DINITRILES

    Institute of Scientific and Technical Information of China (English)

    HUANG Zhitang

    1988-01-01

    This review is a concise survey about the works in our laboratory on the polymerization of aromatic and heterocyclic dinitriles, including the polymerization kinetics and mechanism, synthesis of heterocyclic dinitriles, the structure of polymers, and the correlation between the structures of dinitriles and polymerization rates and thermal performances of polymers.

  12. Glycine Polymerization on Oxide Minerals

    Science.gov (United States)

    Kitadai, Norio; Oonishi, Hiroyuki; Umemoto, Koichiro; Usui, Tomohiro; Fukushi, Keisuke; Nakashima, Satoru

    2016-07-01

    It has long been suggested that mineral surfaces played an important role in peptide bond formation on the primitive Earth. However, it remains unclear which mineral species was key to the prebiotic processes. This is because great discrepancies exist among the reported catalytic efficiencies of minerals for amino acid polymerizations, owing to mutually different experimental conditions. This study examined polymerization of glycine (Gly) on nine oxide minerals (amorphous silica, quartz, α-alumina and γ-alumina, anatase, rutile, hematite, magnetite, and forsterite) using identical preparation, heating, and analytical procedures. Results showed that a rutile surface is the most effective site for Gly polymerization in terms of both amounts and lengths of Gly polymers synthesized. The catalytic efficiency decreased as rutile > anatase > γ-alumina > forsterite > α- alumina > magnetite > hematite > quartz > amorphous silica. Based on reported molecular-level information for adsorption of Gly on these minerals, polymerization activation was inferred to have arisen from deprotonation of the NH3 + group of adsorbed Gly to the nucleophilic NH2 group, and from withdrawal of electron density from the carboxyl carbon to the surface metal ions. The orientation of adsorbed Gly on minerals is also a factor influencing the Gly reactivity. The examination of Gly-mineral interactions under identical experimental conditions has enabled the direct comparison of various minerals' catalytic efficiencies and has made discussion of polymerization mechanisms and their relative influences possible Further systematic investigations using the approach reported herein (which are expected to be fruitful) combined with future microscopic surface analyses will elucidate the role of minerals in the process of abiotic peptide bond formation.

  13. Effect of delayed polymerization time and bracket manipulation on orthodontic bracket bonding

    Science.gov (United States)

    Ponikvar, Michael J.

    This study examined the effect of bracket manipulation in combination with delayed polymerization times on orthodontic bracket shear bond strength and degree of resin composite conversion. Orthodontics brackets were bonded to extracted third molars in a simulated oral environment after a set period of delayed polymerization time and bracket manipulation. After curing the bracket adhesive, each bracket underwent shear bond strength testing followed by micro-Raman spectroscopy analysis to measure the degree of conversion of the resin composite. Results demonstrated the shear bond strength and the degree of conversion of ceramic brackets did not vary over time. However, with stainless steel brackets there was a significant effect (p ≤ 0.05) of delay time on shear bond strength between the 0.5 min and 10 min bracket groups. In addition, stainless steel brackets showed significant differences related to degree of conversion over time between the 0.5 min and 5 min groups, in addition to the 0.5 min and 10 min groups. This investigation suggests that delaying bracket adhesive polymerization up to a period of 10 min then adjusting the orthodontic bracket may increase both shear bond strength and degree of conversion of stainless steel brackets while having no effect on ceramic brackets.

  14. Nanosheet Graphene Composite Carbon Aerogels from Resorcinol-Formaldehyde via an Adsorption-Assembly Polymerization Method .

    Science.gov (United States)

    Qiu, Jielong; Zhang, Shuting; Mai, Jiawen; Wu, Fangjun; Liu, Wei

    2015-12-01

    An adsorption-assembly sol-gel polymerization between graphene oxide (GO) sheets and resorcinol-formaldehyde aqueous solution was investigated as a method to form graphene composite carbon aerogels (GCAs) with cross-linked nanosheet structure and a surface area as high as 489 m2/g. By adjusting the amount of GO and the catalyst of hexamethylenetetramine (HMTA) in the precursor mixture, aerogels with little drying shrinkage under ambient pressure condition could be obtained. Benefiting from the attendance of graphene oxide, the obtained GCAs showed a regular nanosheets structure with countless nano-size particles on the sheet surface, which is quite different from the conventional carbon aerogels. The electrochemical performance of the GCAs were evaluated, they displayed small internal resistance and outstanding electrochemical specific capacitance (131 F/g), as well as a stable cycle performance (no capacitance loss after 5000 cycles).

  15. Synthesis and properties of a dual responsive hydrogel by inverse microemulsion polymerization

    Indian Academy of Sciences (India)

    Tao Wan; Min Xu; Liyi Chen; Daqing Wu; Wenzhong Cheng; Ruixiang Li; Chuzhang Zou

    2014-11-01

    A novel dual responsive hydrogelwas synthesized by inversemicroemulsion polymerization, using itaconic acid as pH-responsive monomer and N- isopropylacrylamide as thermo-responsivemonomer. pH- and temperature-sensitivity and dynamic viscoelasticity behaviour of the dual responsive hydrogels were investigated. Dual responsive hydrogels showed remarkable pH- and temperature-sensitivity and enhanced viscoelastic behaviour under high stress. Temperature-induced shrinkage range of the dual responsive hydrogels was higher and broader than that of the conventional poly(N-isopropylacrylamide) hydrogel. FTIR revealed the structure of dual responsive hydrogels. The as-synthesized regular and sphere-like hydrogel particles had the average particle size of 49 nm in the range of 30-78 nm.

  16. A geometric atlas to predict lung tumor shrinkage for radiotherapy treatment planning

    Science.gov (United States)

    Zhang, Pengpeng; Rimner, Andreas; Yorke, Ellen; Hu, Yu-Chi; Kuo, Licheng; Apte, Aditya; Lockney, Natalie; Jackson, Andrew; Mageras, Gig; Deasy, Joseph O.

    2017-02-01

    To develop a geometric atlas that can predict tumor shrinkage and guide treatment planning for non-small-cell lung cancer. To evaluate the impact of the shrinkage atlas on the ability of tumor dose escalation. The creation of a geometric atlas included twelve patients with lung cancer who underwent both planning CT and weekly CBCT for radiotherapy planning and delivery. The shrinkage pattern from the original pretreatment to the residual posttreatment tumor was modeled using a principal component analysis, and used for predicting the spatial distribution of the residual tumor. A predictive map was generated by unifying predictions from each individual patient in the atlas, followed by correction for the tumor’s surrounding tissue distribution. Sensitivity, specificity, and accuracy of the predictive model for classifying voxels inside the original gross tumor volume were evaluated. In addition, a retrospective study of predictive treatment planning (PTP) escalated dose to the predicted residual tumor while maintaining the same level of predicted complication rates for a clinical plan delivering uniform dose to the entire tumor. The effect of uncertainty on the predictive model’s ability to escalate dose was also evaluated. The sensitivity, specificity and accuracy of the predictive model were 0.73, 0.76, and 0.74, respectively. The area under the receiver operating characteristic curve for voxel classification was 0.87. The Dice coefficient and mean surface distance between the predicted and actual residual tumor averaged 0.75, and 1.6 mm, respectively. The PTP approach allowed elevation of PTV D95 and mean dose to the actual residual tumor by 6.5 Gy and 10.4 Gy, respectively, relative to the clinical uniform dose approach. A geometric atlas can provide useful information on the distribution of resistant tumors and effectively guide dose escalation to the tumor without compromising the organs at risk complications. The atlas can be further refined by using

  17. An efficient reconstruction method for bioluminescence tomography based on two-step iterative shrinkage approach

    Science.gov (United States)

    Guo, Wei; Jia, Kebin; Tian, Jie; Han, Dong; Liu, Xueyan; Wu, Ping; Feng, Jinchao; Yang, Xin

    2012-03-01

    Among many molecular imaging modalities, Bioluminescence tomography (BLT) is an important optical molecular imaging modality. Due to its unique advantages in specificity, sensitivity, cost-effectiveness and low background noise, BLT is widely studied for live small animal imaging. Since only the photon distribution over the surface is measurable and the photo propagation with biological tissue is highly diffusive, BLT is often an ill-posed problem and may bear multiple solutions and aberrant reconstruction in the presence of measurement noise and optical parameter mismatches. For many BLT practical applications, such as early detection of tumors, the volumes of the light sources are very small compared with the whole body. Therefore, the L1-norm sparsity regularization has been used to take advantage of the sparsity prior knowledge and alleviate the ill-posedness of the problem. Iterative shrinkage (IST) algorithm is an important research achievement in a field of compressed sensing and widely applied in sparse signal reconstruction. However, the convergence rate of IST algorithm depends heavily on the linear operator. When the problem is ill-posed, it becomes very slow. In this paper, we present a sparsity regularization reconstruction method for BLT based on the two-step iterated shrinkage approach. By employing Two-step strategy of iterative reweighted shrinkage (IRS) to improve IST, the proposed method shows faster convergence rate and better adaptability for BLT. The simulation experiments with mouse atlas were conducted to evaluate the performance of proposed method. By contrast, the proposed method can obtain the stable and comparable reconstruction solution with less number of iterations.

  18. Influence of Blasted Uranium Ore Heap on Radon Concentration in Confined Workspaces of Shrinkage Mining Stope

    Science.gov (United States)

    Ye, Y. J.; Liang, T.; Ding, D. X.; Lei, B.; Su, H.; Zhang, Y. F.

    2017-07-01

    A calculation model for radon concentration in shrinkage mining stopes under various ventilation conditions was established in this study. The model accounts for the influence of permeability and area of the blasted ore heap, ventilation air quantity, and airflow direction on radon concentration in a confined workspace; these factors work together to allow the engineer to optimize the ventilation design. The feasibility and effectiveness of the model was verified by applying it to mines with elevated radon radiation exposure. The model was found to accurately changes in radon concentration according to the array of influence factors in underground uranium mines.

  19. Optimal Process Design of Shrinkage and Sink Marks in Injection Molding

    Institute of Scientific and Technical Information of China (English)

    2007-01-01

    The optimal process conditions of an injection molded polypropylenes dustpan were investigated to improve the part quality. A fractional factorial experiment was employed to screen the significant factors and main combinations among the numerous process parameters. And, with the consideration of interaction effects, an L27 orthogonal array based on the Taguchi method was conducted to determine the optimal process conditions. The results indicate that the melt temperature has the most remarkable influence on both the volume shrinkage and sink marks criterion weights. But the optimal process conditions and the order of influence are different for the two criterion weights.

  20. Shrinkage in canned mushrooms treated with xanthan gum as a pre-blanch soak treatment

    OpenAIRE

    Gormley, T. R. (Thomas Ronan)

    1986-01-01

    Vacuum treating freshly harvested mushrooms with a 1 % xanthan gum solution (XVT)containing 0.25% sodium metabisulphite{SMBS) prior to blanching and canning gave a lower shrinkage value than for corresponding samples vacuum treated with water, or those canned by conventional means or the 3S process. A combination of chill storage (2-4°C) for 1-3 days coupled with 1 % XVT was found best and gave even lower total canning losses (chill storage loss+blanch loss+retort loss); these were6% lower th...

  1. C-O-H-S magmatic fluid system in shrinkage bubbles of melt inclusions

    Science.gov (United States)

    Robidoux, P.; Frezzotti, M. L.; Hauri, E. H.; Aiuppa, A.

    2016-12-01

    Magmatic volatiles include multiple phases in the C-O-H-S system of shrinkage bubbles for which a conceptual model is still unclear during melt inclusion formation [1,2,3,4]. The present study aims to qualitatively explore the evolution of the volatile migration, during and after the formation of the shrinkage bubble in melt inclusions trapped by olivines from Holocene to present at San Cristóbal volcano (Nicaragua), Central American Volcanic Arc (CAVA). Combined scanning electron microscope (SEM) and Raman spectroscopy observations allow to define the mineral-fluid phases inside typical shrinkage bubbles at ambient temperature. The existence of residual liquid water is demonstrated in the shrinkage bubbles of naturally quenched melt inclusion and this water could represents the principal agent for chemical reactions with other dissolved ionic species (SO42-, CO32-, etc.) and major elements (Mg, Fe, Cu, etc.) [4,5]. With the objective of following the cooling story of the bubble-inclusion system, the new methodological approach here estimate the interval of equilibrium temperatures for each SEM-Raman identified mineral phase (carbonates, hydrous carbonates, sulfurs, sulfates, etc.). Finally, two distinct mechanisms are proposed to describe the evolution of this heterogeneous fluid system in bubble samples at San Cristóbal which imply a close re-examination for similar volcanoes in subduction zone settings: (1) bubbles are already contracted and filled by volatiles by diffusion processes from the glass and leading to a C-O-H-S fluid-glass reaction enriched in Mg-Fe-Cu elements (2) bubbles are formed by oversaturation of the volatiles from the magma which is producing an immiscible metal-rich fluid. [1]Moore et al. (2015). Am. Mineral. 100, 806-823 [2]Wallace et al. (2015). Am. Mineral. 100, 787-794 [3]Lowenstern (2015). Am. Mineral. 100, 672-673 [4]Esposito, et al. (2016). Am. Mineral. 101, 1691-1708 [5]Kamenetsky et al. (2001). Earth Planet. Sci. Lett. 184, 685-702

  2. Shrinkage of large isolated pores during hot isostatic pressing of presintered alumina ceramics

    Energy Technology Data Exchange (ETDEWEB)

    Oh, K.S.; Kim, D.Y. [Seoul National Univ. (Korea, Republic of). Dept. of Inorganic Materials Engineering; Cho, S.J. [Korea Research Inst. of Standards and Science, Taejon (Korea, Republic of)

    1995-09-01

    The shrinkage process of large pores during hot isostatic pressing (HIP) of presintered Al{sub 2}O{sub 3} and Al{sub 2}O{sub 3}-ZrO{sub 2} ceramics has been investigated. Large pores were observed to collapse by grain-boundary sliding, and then small pores resulting from the misfit of flowed grains disappeared, mainly by diffusion. Due to the high resistance to grain-boundary sliding, the pores in the Al{sub 2}O{sub 3}-ZrO{sub 2} ceramics were hard to eliminate.

  3. Vinylic polymerization of Norbornenecarboxylic Acid Esters by Palladium Complexes

    Institute of Scientific and Technical Information of China (English)

    2001-01-01

    New thermoplastic norbornene polymers containing ester groups were prepared byvinylic polymerization of norbornene-carboxylic acid esters by Pd(Ⅱ)-based catalysts. Themonomers were obtained by Diels-Alder reaction of cyclopentadiene with acrylic acid esters(methyl and butyl) as mixtures of endo/exo (ratio 40/60)-isomers and were converted topolymers in 60%~70% conversion. The endo-isomer was less reactive than the exo-isomer.To obtain higher molecular weight the more reactive pure exo-isomer was prepared andpolymerized with the Pd (Ⅱ)-catalysts, tetrakis (acetonitrile) Pd (Ⅱ) bis (tetrafluoroborate)and (η3-allyl)Pd(Ⅱ)SbF6, in high conversion. These polymers showed high glass transitiontemperatures, high transparency and good solubility in common solvents.

  4. Simulation of Rate Retardation in RAFT Polymerization of Styrene with Low RAFT-Initiator Ratio

    Institute of Scientific and Technical Information of China (English)

    WANG Yanjun; YUE Liying; CHEN Wenhao; YUAN Caideng

    2005-01-01

    Bulk polymerizations of styrene (St) were carried out in the presence of three reversible addition fragmentation chain transfer (RAFT) agents benzyl dithiobenzoate (BDB), cumyl dithiobenzoate(CDB), and 1-phenylethyl dithiobenzoate (PEDB) under low ratio of RAFT agent to initiator. The kinetic model was developed to predict polymerization rate, which indicates that the RAFT polymerization of St is a first-order reaction. In the range of experimental conversions, the plots of -ln(1-x) against time t are approximately linear (x is monomer conversion). The kinetic study reveals the existence of strong rate retardation in RAFT polymerization of styrene. A coefficient K r is defined to estimate the rate retardation in the RAFT system considering the assumption that the retardation in polymerization rate is mainly attributed to slow fragmentation of the intermediate radicals. K r relates to the structure of RAFT agents as well as the concentrations of RAFT agent and azobis isobutyronitrile (AIBN). For a certain RAFT agent, the value of K r is enhanced by the increase in the initial concentration of RAFT agent and the higher ratio of RAFT to AIBN. With the same recipe for different RAFT agents, the increasing trend for the values of K r is BDB

  5. Evaluation of shrinkage temperature of bovine pericardium tissue for bioprosthetic heart valve application by differential scanning calorimetry and freeze-drying microscopy

    Directory of Open Access Journals (Sweden)

    Virgilio Tattini Jr

    2007-03-01

    Full Text Available Bovine pericardium bioprosthesis has become a commonly accepted device for heart valve replacement. Present practice relies on the measurement of shrinkage temperature, observed as a dramatic shortening of tissue length. Several reports in the last decade have utilized differential scanning calorimetry (DSC as an alternative method to determine the shrinkage temperature, which is accompanied by the absorption of heat, giving rise to an endothermic peak over the shrinkage temperature range of biological tissues. Usually, freeze-drying microscope is used to determine collapse temperature during the lyophilization of solutions. On this experiment we used this technique to study the shrinkage event. The aim of this work was to compare the results of shrinkage temperature obtained by DSC with the results obtained by freeze-drying microscopy. The results showed that both techniques provided excellent sensitivity and reproducibility, and gave information on the thermal shrinkage transition via the thermodynamical parameters inherent of each method.

  6. Dynamic Simulation of Batch Polymerization Reactor and Sensitivity Analysis of Styrene Homopolymerization

    Directory of Open Access Journals (Sweden)

    S. Kuzmić

    2015-03-01

    Full Text Available In this work, dynamic simulations of a batch reactor in the process of styrene homopolymerization in a xylene solution initiated with two types of peroxide initiators, monofunctional and bifunctional, was carried out. The monofunctional peroxide initiator has wide industrial applications, while the bifunctional initiator in preliminary studies has shown some advantages, such as the production of polymers with homogeneous structure along with achieving high or even complete conversion of monomers. Additionally, the reaction time can be significantly reduced with no modification of the reactor system. Computer simulation was performed using ChemCAD software for simulation of the chemical process and its integrated modules CC-Polymer developed exclusively for the analysis and design of radical and step polymerization processes. This software package based on the previously developed very complex kinetic models predicts the basic structural properties of polymers such as molar mass and its distribution (dispersity, which directly determines the quality and use of the final product. Dependencies of monomer conversion and structural characteristics of the polymers on the polymerization time obtained by computer simulation were compared with the experimental data. The satisfactory tendencies and a relatively good agreement were accomplished regarding the end of polymerization for most of the examined conditions. Additionally, a sensitivity study for homopolymeric system initiated with diperoxide initiator was performed. The effects of monomer concentration, initiator concentration, temperature and reaction time on the rate of polymerization (monomer conversion and the main structural properties of polymers were examined.

  7. Shrinkage and Cracking Sensitivity of Cement Mortar Containing Fly Ash, Granulated Blast-furnace Slag and Silica Fume

    Institute of Scientific and Technical Information of China (English)

    2006-01-01

    A laboratory study was undertaken to investigate drying shrinkage and cracking sensitivity subjected to restrained shrinkage of mortar containing fly ash (FA), granulated blast-furnace slag (GBFS) and silica fume (SF). Six mortar mixtures including control Portland cement (PC) and FA,GBFS and SF mortar mixtures were prepared. FA replaced the cement on mass basis at the replacement ratios of 20% and 35%, GBFS replaced the cement at the replacement ratios of 40%, SF replaced the cement at the replacement ratios of 8% and the blended mixtures with 20% FA, 20% GBFS and 8% SF. Water-cementitious materials ratio and sand-cementitious materials ratio were 0.4 and 2.0 for all mixtures, respectively. The mixtures were cured at 65% relative humidity and 20℃. The drying shrinkage value, initial cracking time and cracking width of the mortar samples were measured. The results show that all the mortar mixture containing FA exhibited the decrease of drying shrinkage.Moreover, initial cracking time was markedly delayed, and the crack width of the initial crack was reduced. However, the incorporations of various ratios of GBFS and SF led to an increase of drying shrinkage, initial cracking time and cracking width as compared to control mixture.

  8. Does work stress make you shorter? An ambulatory field study of daily work stressors, job control, and spinal shrinkage.

    Science.gov (United States)

    Igic, Ivana; Ryser, Samuel; Elfering, Achim

    2013-10-01

    Body height decreases throughout the day due to fluid loss from the intervertebral disk. This study investigated whether spinal shrinkage was greater during workdays compared with nonwork days, whether daily work stressors were positively related to spinal shrinkage, and whether job control was negatively related to spinal shrinkage. In a consecutive 2-week ambulatory field study, including 39 office employees and 512 days of observation, spinal shrinkage was measured by a stadiometer, and calculated as body height in the morning minus body height in the evening. Physical activity was monitored throughout the 14 days by accelerometry. Daily work stressors, daily job control, biomechanical workload, and recreational activities after work were measured with daily surveys. Multilevel regression analyses showed that spinal disks shrank more during workdays than during nonwork days. After adjustment for sex, age, body weight, smoking status, biomechanical work strain, and time spent on physical and low-effort activities during the day, lower levels of daily job control significantly predicted increased spinal shrinkage. Findings add to knowledge on how work redesign that increases job control may possibly contribute to preserving intervertebral disk function and preventing occupational back pain.

  9. A Study of the Shrinkage Changes and Mathematical Modeling of Garlic (Allium sativumL. During Convective Drying

    Directory of Open Access Journals (Sweden)

    M Rasouli

    2012-05-01

    Full Text Available Garlic (Allium sativumL. is one of the most important Allium spice. From an economic point of view, the dried garlic slices are valuable products. In this research, garlic slices as a thin layer were dried in a laboratory scale hot-air dryer, under air flow of 1.5 m/s, air temperatures of 50, 60 and 70˚C and slice thicknesses of 2, 3 and 4 mm. The mean values of shrinkage of garlic slices obtained 69.8%. In addition, the effects of the drying variables on the shrinkage of dried garlic were evaluated. The ANOVA results indicated that the air temperature and slice thickness had no significant effect on final shrinkage of dried garlic slices. In order to derive and select the appropriate shrinkage model, four mathematical models were fitted to the experimental data. According to the statistical criteria (R2, SSE & RMSE the best model was found to describe the shrinkage behavior of garlic slice.

  10. Statistical Study to Evaluate the Effect of Processing Variables on Shrinkage Incidence During Solidification of Nodular Cast Irons

    Science.gov (United States)

    Gutiérrez, J. M.; Natxiondo, A.; Nieves, J.; Zabala, A.; Sertucha, J.

    2017-04-01

    The study of shrinkage incidence variations in nodular cast irons is an important aspect of manufacturing processes. These variations change the feeding requirements on castings and the optimization of risers' size is consequently affected when avoiding the formation of shrinkage defects. The effect of a number of processing variables on the shrinkage size has been studied using a layout specifically designed for this purpose. The β parameter has been defined as the relative volume reduction from the pouring temperature up to the room temperature. It is observed that shrinkage size and β decrease as effective carbon content increases and when inoculant is added in the pouring stream. A similar effect is found when the parameters selected from cooling curves show high graphite nucleation during solidification of cast irons for a given inoculation level. Pearson statistical analysis has been used to analyze the correlations among all involved variables and a group of Bayesian networks have been subsequently built so as to get the best accurate model for predicting β as a function of the input processing variables. The developed models can be used in foundry plants to study the shrinkage incidence variations in the manufacturing process and to optimize the related costs.

  11. Shrinkage estimation of the genomic relationship matrix can improve genomic estimated breeding values in the training set.

    Science.gov (United States)

    Müller, Dominik; Technow, Frank; Melchinger, Albrecht E

    2015-04-01

    We evaluated several methods for computing shrinkage estimates of the genomic relationship matrix and demonstrated their potential to enhance the reliability of genomic estimated breeding values of training set individuals. In genomic prediction in plant breeding, the training set constitutes a large fraction of the total number of genotypes assayed and is itself subject to selection. The objective of our study was to investigate whether genomic estimated breeding values (GEBVs) of individuals in the training set can be enhanced by shrinkage estimation of the genomic relationship matrix. We simulated two different population types: a diversity panel of unrelated individuals and a biparental family of doubled haploid lines. For different training set sizes (50, 100, 200), number of markers (50, 100, 200, 500, 2,500) and heritabilities (0.25, 0.5, 0.75), shrinkage coefficients were computed by four different methods. Two of these methods are novel and based on measures of LD, the other two were previously described in the literature, one of which was extended by us. Our results showed that shrinkage estimation of the genomic relationship matrix can significantly improve the reliability of the GEBVs of training set individuals, especially for a low number of markers. We demonstrate that the number of markers is the primary determinant of the optimum shrinkage coefficient maximizing the reliability and we recommend methods eligible for routine usage in practical applications.

  12. Finite Element Analysis of Shrinkage in the Interface of Functionally Graded Concrete Segment Used in Shield Tunneling

    Institute of Scientific and Technical Information of China (English)

    2006-01-01

    In functionally graded materials (FGM), the problem of interface stability caused by the volume deformation is commonly regarded as the key factor for its performance. Based on test results, in terms of finite element method (FEM) this paper analyzed problems in the shrinkage of functionally graded material interface of shield concrete segment, which was designed and produced by the principle of functionally graded materials. In the analysis model, the total shrinkage of concrete was converted into the thermal shrinkage by means of the method of "Equivalent Temperature Difference". Consequently, the shrinkage stress of interface layer was calculated and compared with the bond strength of interface layer.The results indicated that the volume deformation of two-phase materials of functionally graded concrete (FGC) segment, which were the concrete cover and the concrete structure layer, showed better compatibility and the tension stress of interface layer, which was resulted from the shrinkage of concrete and calculated by ANSYS, was less than the bond strength of interface layer. Therefore, the interface stability of functionally graded concrete segment was good and the sliding deformation of interface layer would not generate.

  13. Durability and Shrinkage Characteristics of Self-Compacting Concretes Containing Recycled Coarse and/or Fine Aggregates

    Directory of Open Access Journals (Sweden)

    Mehmet Gesoglu

    2015-01-01

    Full Text Available This paper addresses durability and shrinkage performance of the self-compacting concretes (SCCs in which natural coarse aggregate (NCA and/or natural fine aggregate (NFA were replaced by recycled coarse aggregate (RCA and/or recycled fine aggregate (RFA, respectively. A total of 16 SCCs were produced and classified into four series, each of which included four mixes designed with two water to binder (w/b ratios of 0.3 and 0.43 and two silica fume replacement levels of 0 and 10%. Durability properties of SCCs were tested for rapid chloride penetration, water sorptivity, gas permeability, and water permeability at 56 days. Also, drying shrinkage accompanied by the water loss and restrained shrinkage of SCCs were monitored over 56 days of drying period. Test results revealed that incorporating recycled coarse and/or fine aggregates aggravated the durability properties of SCCs tested in this study. The drying shrinkage and restrained shrinkage cracking of recycled aggregate (RA concretes had significantly poorer performance than natural aggregate (NA concretes. The time of cracking greatly prolonged as the RAs were used along with the increase in water/binder ratio.

  14. Uranium conversion; Conversion de l`uranium

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    1996-05-01

    This booklet is a presentation of the activities of the Comurhex company, created in 1971 and which became a 100% Cogema`s daughter company in 1992. The Comurhex company is in charge of the conversion of natural uranium into gaseous uranium hexafluoride (UF{sub 6}). The two steps of the conversion operation are performed in the Malvesi and Pierrelatte (France) industrial sites and represent 31% (14000 t/year) of the uranium conversion capacity of western countries. The refining and UF{sub 4} production (Malvesi) and the UF{sub 6} fabrication (Pierrelatte) processes are described. Comurhex is also one of the few companies in the world which produces UF{sub 6} from the uranium of spent fuels. (J.S.)

  15. SCATTERING FROM RAMIFIED POLYMERIC SYSTEMS

    Directory of Open Access Journals (Sweden)

    M.Benhamou

    2004-01-01

    Full Text Available Here, of great interest to us is a quantitative study of the scattering properties from ramified polymeric systems of arbitrary topology. We consider three types of systems, namely ramified polymers in solution, ramified polymer blends, or ternary mixtures made of two ramified polymers of different chemical nature immersed in a good solvent. To achieve the goal of the study, use is made of the Random Phase Approximation. First we determine the exact expression of the form factor of an ideal ramified polymer of any topology, from which we extract the exact expression of its gyration radius. Using the classical Zimm's formulae and the exact form factor, we determine all scattering properties of these three types of ramified polymeric systems. The main conclusion is that ramification of the chains induces drastic changes of the scattering properties.

  16. Magnetic properties of polymerized diphenyloctatetrayne

    Energy Technology Data Exchange (ETDEWEB)

    Beristain, Miriam F.; Jimenez-Solomon, Maria F.; Ortega, Alejandra; Escudero, Roberto [Instituto de Investigaciones en Materiales, Universidad Nacional Autonoma de Mexico, Apartado Postal 70-360, Ciudad Universitaria, Mexico DF 04510 (Mexico); Munoz, Eduardo [Instituto de Fisica, Universidad Nacional Autonoma de Mexico, Apartado Postal 20-364, Ciudad Universitaria, Mexico DF 01000 (Mexico); Maekawa, Yasunari; Koshikawa, Hiroshi [High Performance Polymer Group, Quantum Beam Science Directorate, Japan Atomic Energy Agency, 1233 Watanuki, Takasaki, Gunma 370-1292 (Japan); Ogawa, Takeshi, E-mail: ogawa@unam.mx [Instituto de Investigaciones en Materiales, Universidad Nacional Autonoma de Mexico, Apartado Postal 70-360, Ciudad Universitaria, Mexico DF 04510 (Mexico)

    2012-10-15

    A new type of metal-free ferromagnetic carbon material was obtained by thermal polymerization and electron beam irradiation of diphenyloctatetrayne (DPOT). The isothermal magnetic measurements showed hysteresis loops indicating weak but intrinsic ferromagnetism with Curie temperatures of around 600 K. Electron spin resonance spectroscopy showed that the material contained stable free radicals in the range of 10{sup 17}-10{sup 20} radicals g{sup -1} depending on the polymerization process. The ferromagnetism should be due to high radical concentration although no correlation was observed between them. It was shown that an amorphous ferromagnetic carbon could be obtained from a simple crystalline solid by heating at moderate temperatures. Highlights: Black-Right-Pointing-Pointer Diphenyloctatetrayne as a precursor for carbon with high radical concentration. Black-Right-Pointing-Pointer The carbon material consists of sp{sup 2} configuration. Black-Right-Pointing-Pointer A weak intrinsic metal-free ferromagnetism was observed for the carbon products.

  17. Recycling of rubble from building demolition for low-shrinkage concretes.

    Science.gov (United States)

    Corinaldesi, Valeria; Moriconi, Giacomo

    2010-04-01

    In this project concrete mixtures were prepared that were characterized by low ductility due to desiccation by using debris from building demolition, which after a suitable treatment was used as aggregate for partial replacement of natural aggregates. The recycled aggregate used came from a recycling plant, in which rubble from building demolition was selected, crushed, cleaned, sieved, and graded. Such aggregates are known to be more porous as indicated by the Saturated Surface Dry (SSD) moisture content. The recycled concrete used as aggregates were added to the concrete mixture in order to study their influence on the fresh and hardened concrete properties. They were added either after water pre-soaking or in dry condition, in order to evaluate the influence of moisture in aggregates on the performance of concrete containing recycled aggregate. In particular, the effect of internal curing, due to the use of such aggregates, was studied. Concrete behavior due to desiccation under dehydration was studied by means of both drying shrinkage test and German angle test, through which shrinkage under the restrained condition of early age concrete can be evaluated.

  18. Assessment and prediction of drying shrinkage cracking in bonded mortar overlays

    Energy Technology Data Exchange (ETDEWEB)

    Beushausen, Hans, E-mail: hans.beushausen@uct.ac.za; Chilwesa, Masuzyo

    2013-11-15

    Restrained drying shrinkage cracking was investigated on composite beams consisting of substrate concrete and bonded mortar overlays, and compared to the performance of the same mortars when subjected to the ring test. Stress development and cracking in the composite specimens were analytically modeled and predicted based on the measurement of relevant time-dependent material properties such as drying shrinkage, elastic modulus, tensile relaxation and tensile strength. Overlay cracking in the composite beams could be very well predicted with the analytical model. The ring test provided a useful qualitative comparison of the cracking performance of the mortars. The duration of curing was found to only have a minor influence on crack development. This was ascribed to the fact that prolonged curing has a beneficial effect on tensile strength at the onset of stress development, but is in the same time not beneficial to the values of tensile relaxation and elastic modulus. -- Highlights: •Parameter study on material characteristics influencing overlay cracking. •Analytical model gives good quantitative indication of overlay cracking. •Ring test presents good qualitative indication of overlay cracking. •Curing duration has little effect on overlay cracking.

  19. Shrinkage Estimators for Robust and Efficient Inference in Haplotype-Based Case-Control Studies

    KAUST Repository

    Chen, Yi-Hau

    2009-03-01

    Case-control association studies often aim to investigate the role of genes and gene-environment interactions in terms of the underlying haplotypes (i.e., the combinations of alleles at multiple genetic loci along chromosomal regions). The goal of this article is to develop robust but efficient approaches to the estimation of disease odds-ratio parameters associated with haplotypes and haplotype-environment interactions. We consider "shrinkage" estimation techniques that can adaptively relax the model assumptions of Hardy-Weinberg-Equilibrium and gene-environment independence required by recently proposed efficient "retrospective" methods. Our proposal involves first development of a novel retrospective approach to the analysis of case-control data, one that is robust to the nature of the gene-environment distribution in the underlying population. Next, it involves shrinkage of the robust retrospective estimator toward a more precise, but model-dependent, retrospective estimator using novel empirical Bayes and penalized regression techniques. Methods for variance estimation are proposed based on asymptotic theories. Simulations and two data examples illustrate both the robustness and efficiency of the proposed methods.

  20. Influence of vertical holes on creep and shrinkage of railway prestressed concrete sleepers

    Science.gov (United States)

    Li, Dan; Ngamkhanong, Chayut; Kaewunruen, Sakdirat

    2017-09-01

    Railway prestressed concrete sleepers (or railroad ties) must successfully perform two critical duties: first, to carry wheel loads from the rails to the ground; and second, to secure rail gauge for dynamic safe movements of trains. The second duty is often fouled by inappropriate design of the time-dependent behaviors due to their creep, shrinkage and elastic shortening responses of the materials. In addition, the concrete sleepers are often modified on construction sites to fit in other systems such as cables, signalling gears, drainage pipes, etc. Accordingly, this study is the world first to investigate creep and shrinkage effects on the railway prestressed concrete sleepers with vertical holes. This paper will highlight constitutive models of concrete materials within the railway sleepers under different environmental conditions over time. It will present a comparative investigation using a variety of methods to evaluate shortening effects in railway prestressed concrete sleepers. The outcome of this study will improve material design, which is very critical to the durability of railway track components.