WorldWideScience

Sample records for conversion light water

  1. High conversion heavy water moderated reactor

    International Nuclear Information System (INIS)

    Miyawaki, Yoshio; Wakabayashi, Toshio.

    1989-01-01

    In the present invention, fuel rods using uranium-plutonium oxide mixture fuels are arranged in a square lattice at the same pitch as that in light water cooled reactor and heavy water moderators are used. Accordingly, the volume ratio (Vm/Vf) between the moderator and the fuel can be, for example, of about 2. When heavy water is used for the moderator (coolant), since the moderating effect of heavy water is lower than that of light water, a high conversion ratio of not less than 0.8 can be obtained even if the fuel rod arrangement is equal to that of PWR (Vm/Vf about 2). Accordingly, it is possible to avoid problems caused by dense arrangement of fuel rods as in high conversion rate light water cooled reactors. That is, there are no more troubles in view of thermal hydrodynamic characteristics, re-flooding upon loss of coolant accident, etc., as well as the fuel production cost is not increased. (K.M.)

  2. Conceptual design study of high conversion light water reactor

    International Nuclear Information System (INIS)

    Okumura, Keisuke; Akie, Hiroshi; Mori, Takamasa; Nakagawa, Masayuki; Ishiguro, Yukio

    1990-06-01

    Since 1984, R and D work has been made for high conversion light water reactors (HCLWRs), at JAERI, to improve the natural uranium saving and effective plutonium utilization by the use of conventional or extended LWR technology. This report summarizes the results of the feasibility study made mainly from the viewpoint of nuclear design in the Phase-I Program (1985∼1989). Until now, the following various types of HCLWR core concepts have been investigated; 1) homogeneous core with tight pitch lattice of fuel rods, 2) homogeneous core with semi-tight pitch lattice, 3) spectral shift core using fertile rod with semi-tight pitch lattice, 4) flat-core, 5) axial heterogeneous core. The core burnup and thermohydraulic analyses during normal operations have been performed to clear up the burnup performances and feasibility for each core. Based on the analysis results, the axial heterogeneous HCLWR core was selected as the JAERI reference core. (author)

  3. MXene Ti3C2: An Effective 2D Light-to-Heat Conversion Material

    KAUST Repository

    Li, Renyuan

    2017-03-25

    MXene, a new series of 2D material, has been steadily advancing its applications to a variety of fields, such as catalysis, supercapacitor, molecular separation, electromagnetic wave interference shielding. This work reports a carefully designed aqueous droplet light heating system along with a thorough mathematical procedure, which combined leads to a precise determination of internal light-to-heat conversion efficiency of a variety of nanomaterials. The internal light-to-heat conversion efficiency of MXene, more specifically Ti3C2, was measured to be 100%, indicating a perfect energy conversion. Furthermore, a self-floating MXene thin membrane was prepared by simple vacuum filtration and the membrane, in the presence of a rationally chosen heat barrier, produced a light-to-water-evaporation efficiency of 84% under one sun irradiation, which is among the state of art energy efficiency for similar photothermal evaporation system. The outstanding internal light-to-heat conversion efficiency and great light-to-water evaporation efficiency reported in this work suggest that MXene is a very promising light-to-heat conversion material and thus deserves more research attention toward practical applications.

  4. Light-voltage conversion apparatus

    Energy Technology Data Exchange (ETDEWEB)

    Fujioka, Yoshiki

    1987-09-19

    In a light-voltage conversion unit, when input signal is applied, the output signal to the control circuit has quick rise-up time and slow breaking time. In order to improve this, a short-circuit transistor is placed at the diode, and this transistor is forced ON, when an output signal to the control circuit is lowered down to a constant voltage, to short-circuit between the output terminals. This, however, has a demerit of high power consumption by a transistor. In this invention, by connecting a light-emitting element which gets ON at the first transition and a light-emitting element which gets ON at the last transition, placing a light receiving element in front of each light-emitting element, when an input signal is applied; thus a load is driven only with ON signal of each light-emitting element, eliminating the delay in the last transition. All of these give a quick responsive light-voltage conversion without unnecessary power consumption. (5 figs)

  5. Hydrophobic Light-to-Heat Conversion Membranes with Self-Healing Ability for Interfacial Solar Heating

    KAUST Repository

    Zhang, Lianbin

    2015-07-01

    Self-healing hydrophobic light-to-heat conversion membranes for interfacial solar heating are fabricated by deposition of light-to-heat conversion material of polypyrrole onto porous stainless steel mesh, followed by hydrophobic fluoroalkylsilane modification. The mesh-based membranes spontaneously stay at the water–air interface, collect and convert solar light into heat, and locally heat only the water surface for an enhanced evaporation.

  6. Hydrophobic Light-to-Heat Conversion Membranes with Self-Healing Ability for Interfacial Solar Heating

    KAUST Repository

    Zhang, Lianbin; Tang, Bo; Wu, Jinbo; Li, Renyuan; Wang, Peng

    2015-01-01

    Self-healing hydrophobic light-to-heat conversion membranes for interfacial solar heating are fabricated by deposition of light-to-heat conversion material of polypyrrole onto porous stainless steel mesh, followed by hydrophobic fluoroalkylsilane modification. The mesh-based membranes spontaneously stay at the water–air interface, collect and convert solar light into heat, and locally heat only the water surface for an enhanced evaporation.

  7. An optimized power conversion system concept of the integral, inherently-safe light water reactor

    International Nuclear Information System (INIS)

    Memmott, Matthew J.; Wilding, Paul R.; Petrovic, Bojan

    2017-01-01

    Highlights: • Three power conversion systems (PCS) for the I"2S-LWR are presented. • An optimization analyses was performed to evaluate these PCS alternatives. • The ideal PCS consists of 5 turbines, and obtains an overall efficiency of 35.7%. - Abstract: The integral, inherently safe light water reactor (I"2S-LWR) has been developed to significantly enhance passive safety capabilities while maintaining cost competitiveness relative to the current light water reactor (LWR) fleet. The compact heat exchangers of the I"2S-LWR preclude boiling of the secondary fluid, which decreases the probability of heat exchanger failure, but this requires the addition of a flash drum, which negatively affects the overall plant thermodynamic efficiency. A state of the art Rankine cycle is proposed for the I"2S-LWR to increase the thermodynamic efficiency by utilizing a flash drum with optimized operational parameters. In presenting this option for power conversion in the I"2S-LWR power plant, the key metric used in rating the performance is the overall net thermodynamic efficiency of the cycle. In evaluating the flash-Rankine cycle, three basic industrial concepts are evaluated, one without an intermediate pressure turbine, one with an intermediate turbine and one reheat stream, and one with an intermediate turbine and two reheat streams. For each configuration, a single-path multi-variable optimization is undertaken to maximize the thermal efficiency. The third configuration with an intermediate turbine and 2 reheat streams is the most effective concept, with an optimized efficiency of 35.7%.

  8. Parametric study on thermal-hydraulic characteristics of high conversion light water reactor

    International Nuclear Information System (INIS)

    Mori, Takamasa; Nakagawa, Masayuki; Fujii, Sadao.

    1988-11-01

    To assess the feasibility of high conversion light water reactors (HCLWRs) from the thermal-hydraulic viewpoint, parametric study on thermal-hydraulic characteristics of HCLWR has been carried out by using a unit cell model. It is assumed that a HCLWR core is contained in a current 1000 MWe PWR plant. At the present study, reactor core parameters such as fuel pin diameter, pitch, core height and linear heat rate are widely and parametrically changed to survey the relation between these parameters and the basic thermal-hydraulic characteristics, i.e. maximum fuel temperature, minimum DNBR, reduction of reactor thermal output and so on. The validity of the unit cell model used has been ensured by comparison with the result of a subchannel analysis carried out for a whole core. (author)

  9. Evaluation of some resonance self-shielding procedures employed in high conversion light water reactor design

    International Nuclear Information System (INIS)

    Patino, N.E.; Abbate, M.J.; Sbaffoni, M.M.

    1990-01-01

    The procedures employed in the treatment of the resonance shielding effect have been identified as one of the causes of the large discrepancies found in the neutronic calculation of high conversion light water reactors (HCLWRs), indicating the need for a revision of the self-shielding procedures employed. In this work some well known techniques applied in HCLWR self-shielding calculations are evaluated; the study involves the comparison of methods for the generation of group constants, the analysis of the impact of considering some isotopes as infinitely diluted and the evaluation of the usual approximations utilized for the treatment of heterogeneities

  10. Frequency conversion of structured light.

    Science.gov (United States)

    Steinlechner, Fabian; Hermosa, Nathaniel; Pruneri, Valerio; Torres, Juan P

    2016-02-15

    Coherent frequency conversion of structured light, i.e. the ability to manipulate the carrier frequency of a wave front without distorting its spatial phase and intensity profile, provides the opportunity for numerous novel applications in photonic technology and fundamental science. In particular, frequency conversion of spatial modes carrying orbital angular momentum can be exploited in sub-wavelength resolution nano-optics and coherent imaging at a wavelength different from that used to illuminate an object. Moreover, coherent frequency conversion will be crucial for interfacing information stored in the high-dimensional spatial structure of single and entangled photons with various constituents of quantum networks. In this work, we demonstrate frequency conversion of structured light from the near infrared (803 nm) to the visible (527 nm). The conversion scheme is based on sum-frequency generation in a periodically poled lithium niobate crystal pumped with a 1540-nm Gaussian beam. We observe frequency-converted fields that exhibit a high degree of similarity with the input field and verify the coherence of the frequency-conversion process via mode projection measurements with a phase mask and a single-mode fiber. Our results demonstrate the suitability of exploiting the technique for applications in quantum information processing and coherent imaging.

  11. Light distribution system comprising spectral conversion means

    DEFF Research Database (Denmark)

    2012-01-01

    , longer wavelength,a spectral conversion characteristics of the spectral conversion fibre being essentially determined by the spectral absorption and emission properties of the photoluminescent agent, the amount of photo- luminescent agent,and the distribution of the photoluminescent agent in the spectral......System (200, 300) for the distribution of white light, having a supply side (201, 301, 401) and a delivery side (202, 302, 402), the system being configured for guiding light with a multitude of visible wavelengths in a propagation direction P from the supply side to the distribution side...... of providing a light distribution system and a method of correcting the spectral transmission characteristics of a light distribution system are disclosed....

  12. Colour gamut enhancement with remote light conversion mechanism

    Science.gov (United States)

    Koseoglu, D.; Sezer, Y. S.; Karsli, K.

    2018-01-01

    The backlight unit spectrum of liquid crystal displays (LCD) directly affects the colour gamut. With the invention of GaN based blue light emitting diodes (LED), phosphors and quantum dots (QD) have gained considerable scientific interest due to their broad range of applications especially in lighting and display technologies. These phosphors and QDs are used to convert the blue light of the LEDs into white in general lighting. On the other hand, in display systems, they are used to generate red and green bands. There are different application methods such as on-chip and remote configurations. In this study, we concentrate on remote phosphor and QD backlight configurations where the light conversion is done away from the chips. In our display designs, we used GaN based blue LED lateral chips as an excitation source, on the other hand, light conversion layers were placed in backlight units as a thin film for the emission of green and red bands. The mixing ratios of these composite layers were arranged to match the emission spectrum of the blue LEDs and the light conversion layer to the colour filters of the LCD, so that the green, blue, and red bands efficiently widens the colour space. The results were also compared with the on-chip phosphor arrangements.

  13. Accuracy of cell calculation methods used for analysis of high conversion light water reactor lattice

    International Nuclear Information System (INIS)

    Jeong, Chang-Joon; Okumura, Keisuke; Ishiguro, Yukio; Tanaka, Ken-ichi

    1990-01-01

    Validation tests were made for the accuracy of cell calculation methods used in analyses of tight lattices of a mixed-oxide (MOX) fuel core in a high conversion light water reactor (HCLWR). A series of cell calculations was carried out for the lattices referred from an international HCLWR benchmark comparison, with emphasis placed on the resonance calculation methods; the NR, IR approximations, the collision probability method with ultra-fine energy group. Verification was also performed for the geometrical modelling; a hexagonal/cylindrical cell, and the boundary condition; mirror/white reflection. In the calculations, important reactor physics parameters, such as the neutron multiplication factor, the conversion ratio and the void coefficient, were evaluated using the above methods for various HCLWR lattices with different moderator to fuel volume ratios, fuel materials and fissile plutonium enrichments. The calculated results were compared with each other, and the accuracy and applicability of each method were clarified by comparison with continuous energy Monte Carlo calculations. It was verified that the accuracy of the IR approximation became worse when the neutron spectrum became harder. It was also concluded that the cylindrical cell model with the white boundary condition was not so suitable for MOX fuelled lattices, as for UO 2 fuelled lattices. (author)

  14. Metylcyclohexane conversion to light olefins

    OpenAIRE

    SCOFIELD, C.F.; BENAZZI, E.; CAUFFRIEZ, H.; MARCILLY, C.

    1998-01-01

    This study consists in the evaluation of the catalytic properties of zeolites with different structures in the conversion of methylcyclohexane to light olefins. Results obtained suggest that the steric constrictions of the catalysts used play an important role in hydrogen transfer reactions. Higher selectivities for light olefins (C3= and C4=) were observed for zeolites having more closed structures, like MFI and ferrerite, when compared to those having more open ones, like beta, omega and fa...

  15. Metylcyclohexane conversion to light olefins

    Directory of Open Access Journals (Sweden)

    SCOFIELD C.F.

    1998-01-01

    Full Text Available This study consists in the evaluation of the catalytic properties of zeolites with different structures in the conversion of methylcyclohexane to light olefins. Results obtained suggest that the steric constrictions of the catalysts used play an important role in hydrogen transfer reactions. Higher selectivities for light olefins (C3= and C4= were observed for zeolites having more closed structures, like MFI and ferrerite, when compared to those having more open ones, like beta, omega and faujasite.

  16. Quantum manipulation of two-color stationary light: Quantum wavelength conversion

    International Nuclear Information System (INIS)

    Moiseev, S. A.; Ham, B. S.

    2006-01-01

    We present a quantum manipulation of a traveling light pulse using electromagnetically induced transparency-based slow light phenomenon for the generation of two-color stationary light. We theoretically discuss the two-color stationary light for the quantum wavelength conversion process in terms of pulse area, energy transfer, and propagation directions. The condition of the two-color stationary light pulse generation has been found and the quantum light dynamics has been studied analytically in the adiabatic limit. The quantum frequency conversion rate of the traveling light is dependent on the spatial spreading of the two-color stationary light pulse and can be near unity in an optically dense medium for the optimal frequencies of the control laser fields

  17. Impact of wastewater infrastructure upgrades on the urban water cycle: Reduction in halogenated reaction byproducts following conversion from chlorine gas to ultraviolet light disinfection

    Energy Technology Data Exchange (ETDEWEB)

    Barber, Larry B. [U.S. Geological Survey, 3215 Marine St., Boulder, CO 80303 (United States); Hladik, Michelle L. [U.S. Geological Survey, 6000 J Street Placer Hall, Sacramento, CA 95819 (United States); Vajda, Alan M. [University of Colorado, Department of Integrative Biology, CB 171, Denver, CO 80217 (United States); Fitzgerald, Kevin C. [U.S. Geological Survey, 3215 Marine St., Boulder, CO 80303 (United States); AECOM, 500 West Jefferson St., Ste. 1600, Louisville, KY 40202 (United States); Douville, Chris [City of Boulder, 4049 75th Street, Boulder, CO 80301 (United States)

    2015-10-01

    The municipal wastewater treatment facility (WWTF) infrastructure of the United States is being upgraded to expand capacity and improve treatment, which provides opportunities to assess the impact of full-scale operational changes on water quality. Many WWTFs disinfect their effluent prior to discharge using chlorine gas, which reacts with natural and synthetic organic matter to form halogenated disinfection byproducts (HDBPs). Because HDBPs are ubiquitous in chlorine-disinfected drinking water and have adverse human health implications, their concentrations are regulated in potable water supplies. Less is known about the formation and occurrence of HDBPs in disinfected WWTF effluents that are discharged to surface waters and become part of the de facto wastewater reuse cycle. This study investigated HDBPs in the urban water cycle from the stream source of the chlorinated municipal tap water that comprises the WWTF inflow, to the final WWTF effluent disinfection process before discharge back to the stream. The impact of conversion from chlorine-gas to low-pressure ultraviolet light (UV) disinfection at a full-scale (68,000 m{sup 3} d{sup −1} design flow) WWTF on HDBP concentrations in the final effluent was assessed, as was transport and attenuation in the receiving stream. Nutrients and trace elements (boron, copper, and uranium) were used to characterize the different urban source waters, and indicated that the pre-upgrade and post-upgrade water chemistry was similar and insensitive to the disinfection process. Chlorinated tap water during the pre-upgrade and post-upgrade samplings contained 11 (mean total concentration = 2.7 μg L{sup −1}; n = 5) and 10 HDBPs (mean total concentration = 4.5 μg L{sup −1}), respectively. Under chlorine-gas disinfection conditions 13 HDBPs (mean total concentration = 1.4 μg L{sup −1}) were detected in the WWTF effluent, whereas under UV disinfection conditions, only one HDBP was detected. The chlorinated WWTF effluent had

  18. Impact of wastewater infrastructure upgrades on the urban water cycle: Reduction in halogenated reaction byproducts following conversion from chlorine gas to ultraviolet light disinfection

    International Nuclear Information System (INIS)

    Barber, Larry B.; Hladik, Michelle L.; Vajda, Alan M.; Fitzgerald, Kevin C.; Douville, Chris

    2015-01-01

    The municipal wastewater treatment facility (WWTF) infrastructure of the United States is being upgraded to expand capacity and improve treatment, which provides opportunities to assess the impact of full-scale operational changes on water quality. Many WWTFs disinfect their effluent prior to discharge using chlorine gas, which reacts with natural and synthetic organic matter to form halogenated disinfection byproducts (HDBPs). Because HDBPs are ubiquitous in chlorine-disinfected drinking water and have adverse human health implications, their concentrations are regulated in potable water supplies. Less is known about the formation and occurrence of HDBPs in disinfected WWTF effluents that are discharged to surface waters and become part of the de facto wastewater reuse cycle. This study investigated HDBPs in the urban water cycle from the stream source of the chlorinated municipal tap water that comprises the WWTF inflow, to the final WWTF effluent disinfection process before discharge back to the stream. The impact of conversion from chlorine-gas to low-pressure ultraviolet light (UV) disinfection at a full-scale (68,000 m 3 d −1 design flow) WWTF on HDBP concentrations in the final effluent was assessed, as was transport and attenuation in the receiving stream. Nutrients and trace elements (boron, copper, and uranium) were used to characterize the different urban source waters, and indicated that the pre-upgrade and post-upgrade water chemistry was similar and insensitive to the disinfection process. Chlorinated tap water during the pre-upgrade and post-upgrade samplings contained 11 (mean total concentration = 2.7 μg L −1 ; n = 5) and 10 HDBPs (mean total concentration = 4.5 μg L −1 ), respectively. Under chlorine-gas disinfection conditions 13 HDBPs (mean total concentration = 1.4 μg L −1 ) were detected in the WWTF effluent, whereas under UV disinfection conditions, only one HDBP was detected. The chlorinated WWTF effluent had greater relative

  19. Three-Port dc-dc Conversion in Light-to-Light Systems

    DEFF Research Database (Denmark)

    Mira Albert, Maria del Carmen

    conversion efficiency under low irradiation conditions. This work is part of a Ph.D. research project to study the feasibility of implementing three-port converter (TPC) topologies in solar powered LED, light-to-light (LtL) systems. After the introduction in Chapter 1, an overview of the state-of-the art...... conventional light sources based on heated filaments (incandescent and halogen) and gas discharge (fluorescent, sodium, etc). The rapid development of this technology makes it possible to replace the conventional technologies towards high brightness LED lighting systems. The combination of these technologies......—solar cells, energy storage elements and LEDs—in a stand-alone solar powered LED system, can provide light where otherwise it would be cumbersome; in rural areas, where cabling can be challenging and expensive, and also in the urban environment, where the cost of digging and construction is very expensive...

  20. High conversion ratio plutonium recycle in pressurized water reactors

    International Nuclear Information System (INIS)

    Edlund, M.C.

    1975-01-01

    The use of Pu light water reactors in such a way as to minimise the depletion of Pu needed for future use, and therefore to reduce projected demands for U ore and U enrichment is envisaged. Fuel utilisation in PWRs could be improved by tightly-packed fuel rod lattices with conversion ratios of 0.8 to 0.9 compared with ratios of about 0.5 in Pu recycle designs using fuel to water volume ratios of currently operating PWRs. A conceptual design for the Babcock and Wilcox Company reactors now in operation is presented and for illustrative purposes thermalhydraulic design considerations and the reactor physics are described. Principle considerations in the mechanical design of the fuel assemblies are the effect of hydraulic forces, thermal expansion, and fission gas release. The impact of high conversion ratio plutionium recycle in separative work and natural U requirements for PWRs likely to be in operation by 1985 are examined. (U.K.)

  1. Low-temperature FTIR spectroscopy provides evidence for protein-bound water molecules in eubacterial light-driven ion pumps.

    Science.gov (United States)

    Nomura, Yurika; Ito, Shota; Teranishi, Miwako; Ono, Hikaru; Inoue, Keiichi; Kandori, Hideki

    2018-01-31

    Light-driven H + , Na + and Cl - pumps have been found in eubacteria, which convert light energy into a transmembrane electrochemical potential. A recent mutation study revealed asymmetric functional conversion between the two pumps, where successful functional conversions are achieved exclusively when mutagenesis reverses the evolutionary amino acid sequence changes. Although this fact suggests that the essential structural mechanism of an ancestral function is retained even after gaining a new function, questions regarding the essential structural mechanism remain unanswered. Light-induced difference FTIR spectroscopy was used to monitor the presence of strongly hydrogen-bonded water molecules for all eubacterial H + , Na + and Cl - pumps, including a functionally converted mutant. This fact suggests that the strongly hydrogen-bonded water molecules are maintained for these new functions during evolution, which could be the reason for successful functional conversion from Na + to H + , and from Cl - to H + pumps. This also explains the successful conversion of the Cl - to the H + pump only for eubacteria, but not for archaea. It is concluded that water-containing hydrogen-bonding networks constitute one of the essential structural mechanisms in eubacterial light-driven ion pumps.

  2. Critical heat flux experiments for high conversion light water reactor, (3)

    International Nuclear Information System (INIS)

    Iwamura, Takamichi; Okubo, Tsutomu; Suemura, Takayuki; Hiraga, Fujio; Murao, Yoshio

    1990-03-01

    As a part of the thermal-hydraulic feasibility study of a high conversion light water reactor (HCLWR), critical heat flux (CHF) experiments were performed using triangular array rod bundles under steady-state and flow reduction transient conditions. The geometries of test sections were: rod outer diameter 9.5 mm, number of rods 4∼7, heated length 0.5∼1.0 m, and pitch to diameter ratio (P/D) 1.126∼1.2. The simulated fuel rod was a stainless steel tube and uniformly heated electrically with direct current. In the steady-state tests, pressures ranged: 1.0∼3.9 Mpa, mass velocities: 460∼4270 kg/s·m 2 , and exit qualities: 0.02∼0.35. In the transient tests, the times to CHF detection ranged from 0.5 to 25.4 s. The steady-state CHF's for the 4-rod test sections were higher than those for the 7-rod test sections with respect to the bundle averaged flow conditions. The measured CHF's increased with decreasing the heated length and decreased with decreasing the P/D. Based on the local flow conditions obtained with the subchannel analysis code COBRA-IV-I, KfK correlation agreed with the CHF data within 20 %, while WSC-2, EPRI-B and W, EPRI-Columbia and Kattor correlations failed to give satisfactory agreements. Under flow reduction rates less than 6 %/s, no significant difference in the onset conditions of DNB (departure from nucleate boiling) was recognized between the steady-state and transient conditions. At flow reduction rates higher than 6 %/s, on the other hand, the DNB occurred earlier than the DNB time predicted with the steady-state experiments. (author)

  3. MXene Ti3C2: An Effective 2D Light-to-Heat Conversion Material

    KAUST Repository

    Li, Renyuan; Zhang, Lianbin; Shi, Le; Wang, Peng

    2017-01-01

    aqueous droplet light heating system along with a thorough mathematical procedure, which combined leads to a precise determination of internal light-to-heat conversion efficiency of a variety of nanomaterials. The internal light-to-heat conversion

  4. Catalytic conversion of light alkanes

    Energy Technology Data Exchange (ETDEWEB)

    Lyons, J.E.

    1992-06-30

    The second Quarterly Report of 1992 on the Catalytic Conversion of Light Alkanes reviews the work done between April 1, 1992 and June 31, 1992 on the Cooperative Agreement. The mission of this work is to devise a new catalyst which can be used in a simple economic process to convert the light alkanes in natural gas to oxygenate products that can either be used as clean-burning, high octane liquid fuels, as fuel components or as precursors to liquid hydrocarbon uwspomdon fuel. During the past quarter we have continued to design, prepare, characterize and test novel catalysts for the mild selective reaction of light hydrocarbons with air or oxygen to produce alcohols directly. These catalysts are designed to form active metal oxo (MO) species and to be uniquely active for the homolytic cleavage of the carbon-hydrogen bonds in light alkanes producing intermediates which can form alcohols. We continue to investigate three molecular environments for the active catalytic species that we are trying to generate: electron-deficient macrocycles (PHASE I), polyoxometallates (PHASE II), and regular oxidic lattices including zeolites and related structures as well as other molecular surface structures having metal oxo groups (PHASE I).

  5. Light-triggered thermoelectric conversion based on a carbon nanotube-polymer hybrid gel.

    Science.gov (United States)

    Miyako, Eijiro; Nagata, Hideya; Funahashi, Ryoji; Hirano, Ken; Hirotsu, Takahiro

    2009-01-01

    Lights? Nanotubes? Action! A hydrogel comprising lysozymes, poly(ethylene glycol), phospholipids, and functionalized single-walled carbon nanotubes is employed for light-driven thermoelectric conversion. A photoinduced thermoelectric conversion module based on the hydrogel functions as a novel electric power generator (see image). This concept may find application in various industries, such as robotics and aerospace engineering.

  6. Conversion degrees of resin composites using different light sources.

    Science.gov (United States)

    Ozturk, Bora; Cobanoglu, Nevin; Cetin, Ali Rıza; Gunduz, Beniz

    2013-01-01

    The objective of this study was to compare the conversion degree of six different composite materials (Filtek Z 250, Filtek P60, Spectrum TPH, Pertac II, Clearfil AP-X, and Clearfil Photo Posterior) using three different light sources (blue light-emitting diode [LED], plasma arc curing [PAC], and conventional halogen lamp [QTH]). Composites were placed in a 2 mm thick and 5 mm diameter Teflon molds and light cured from the top using three methods: LED for 40 s, PAC for 10 s, and QTH for 40 s. A Fourier Transform Infrared Spectroscopy (FTIR) was used to evaluate the degree of conversion (DC) (n=5). The results were analyzed with two-way analysis of variance and Tukey HSD test. DC was significantly influenced by two variables, light source and composite (PDC values than LED (PDC values of QTH and PAC or between DC values of LED and PAC (P>.05). The highest DC was observed in the Z 250 composite specimens following photopolymerization with QTH (70%). The lowest DC was observed in Clearfil Photo Posterior composite specimens following photo-polymerization with LED (43%). The DC was found to be changing according to both light sources and composite materials used. Conventional light halogen (QTH) from light sources and Filtek Z 250 and Filtek P 60 among composite materials showed the most DC performance.

  7. The effect of different light-curing units on fatigue behavior and degree of conversion of a resin composite.

    Science.gov (United States)

    Lohbauer, Ulrich; Rahiotis, Christos; Krämer, Norbert; Petschelt, Anselm; Eliades, George

    2005-07-01

    The aim of this study was to investigate the effect of different light-curing units and irradiation modes on the mechanical fatigue strength and degree of conversion of a restorative resin composite. Conventional halogen, plasma arc and blue LED light-curing units were used for polymerization of a resin composite (Tetric) Ceram, Ivoclar, Vivadent, Liechtenstein). Initial fracture strength (FS) and flexural fatigue limit (FFL) as well as degree of conversion (DC) were measured. The FFL was determined under cyclic loading for 10(5) cycles in terms of a staircase approach. The specimens were stored for 14 days in 37 degrees C distilled water prior to testing. The curing efficiency was observed with Fourier transform infrared micromultiple internal reflectance spectroscopy. The measurements were carried out at 0.5 and 2.5 mm distance from the directly irradiated surface after 14 days storage in dark and dry conditions at 37 degrees C. The highest FS, FFL and DC were observed from high energy curing devices and from extended curing intervals. The conventional halogen light exhibited the most homogenous in-depth curing efficiency along with a low loss of mechanical resistance under cyclic fatigue. Evaluation of flexural fatigue limit and curing efficiency correlate in terms of decreased mechanical strength due to insufficient light-curing intervals or light intensities. Initial promising fracture strengths do not correlate with a clinically more relevant fatigue loading and with the in-depth degree of conversion, both accounting for a significantly reduced strength performance.

  8. Asymmetric Functional Conversion of Eubacterial Light-driven Ion Pumps*

    Science.gov (United States)

    Inoue, Keiichi; Nomura, Yurika; Kandori, Hideki

    2016-01-01

    In addition to the well-known light-driven outward proton pumps, novel ion-pumping rhodopsins functioning as outward Na+ and inward Cl− pumps have been recently found in eubacteria. They convert light energy into transmembrane electrochemical potential difference, similar to the prototypical archaeal H+ pump bacteriorhodopsin (BR) and Cl− pump halorhodopsin (HR). The H+, Na+, and Cl− pumps possess the conserved respective DTE, NDQ, and NTQ motifs in the helix C, which likely serve as their functional determinants. To verify this hypothesis, we attempted functional interconversion between selected pumps from each category by mutagenesis. Introduction of the proton-pumping motif resulted in successful Na+ → H+ functional conversion. Introduction of the respective characteristic motifs with several additional mutations leads to successful Na+ → Cl− and Cl− → H+ functional conversions, whereas remaining conversions (H+ → Na+, H+ → Cl−, Cl− → Na+) were unsuccessful when mutagenesis of 4–6 residues was used. Phylogenetic analysis suggests that a H+ pump is the common ancestor of all of these rhodopsins, from which Cl− pumps emerged followed by Na+ pumps. We propose that successful functional conversions of these ion pumps are achieved exclusively when mutagenesis reverses the evolutionary amino acid sequence changes. Dependence of the observed functional conversions on the direction of evolution strongly suggests that the essential structural mechanism of an ancestral function is retained even after the gain of a new function during natural evolution, which can be evoked by a few mutations. By contrast, the gain of a new function needs accumulation of multiple mutations, which may not be easily reproduced by limited mutagenesis in vitro. PMID:26929409

  9. Effect of Water on HEMA Conversion by FT-IR Spectroscopy

    Directory of Open Access Journals (Sweden)

    TS. Jafarzadeh Kashi

    2007-09-01

    Full Text Available Objective: The use of HEMA as a biocompatible material in dentin bonding systems and its potential for clinical applications has been well established. Excess water can affect conversion of bonding resins. The aim of this study was to survey the effect of water on the degree of conversion of HEMA by Fourier Transform Infra-red Spectroscopy (FT-IR.Materials and Methods: In this experimental study, distilled water was added in amounts of 0, 0.05, 0.1, 0.2, and 0.4 ml to 1 ml of curable HEMA solution. Six repetitions per wa-ter ratio were made and investigated. Each sample was polymerized for 60 seconds. De-gree of conversion was obtained from the absorbance IR-Spectrum of the materials before and after polymerization by FT-IR spectroscopy. One way ANOVA and Tukey-HSD were carried out to compare and detect any differences among groups.Results: Statistical analysis indicates highly significant difference between pairs of groups at level (P<0.001. The results showed a trend of decreasing in HEMA conversion with increasing water. Degree of conversion changes significantly within the 0.05 ml to 0.2 ml water range. However, degree of conversion did not change after reaching 0.02 ml and before 0.05.Conclusion: Degree of conversion of HEMA decreased by increasing water. The most dramatic effect of water on the polymerization process occurs within a range which exists under clinical conditions. The reason that the degree of conversion did not show signifi-cant result before 0.05 ml may be related to the hydrophilic nature of HEMA.

  10. Visible-light Homogeneous Photocatalytic Conversion of CO2 into CO in Aqueous Solutions with an Iron Catalyst.

    Science.gov (United States)

    Rao, Heng; Bonin, Julien; Robert, Marc

    2017-11-23

    An iron-substituted tetraphenyl porphyrin bearing positively charged trimethylammonio groups at the para position of each phenyl ring catalyzes the photoinduced conversion of CO 2 . This complex is water soluble and acts as a molecular catalyst to selectively reduce CO 2 into CO under visible-light irradiation in aqueous solutions (acetonitrile/water=1:9 v/v) with the assistance of purpurin, a simple organic photosensitizer. CO is produced with a catalytic selectivity of 95 % and turnover number up to 120, illustrating the possibility of photocatalyzing the reduction of CO 2 in aqueous solution by using visible light, a simple organic sensitizer coupled to an amine as a sacrificial electron donor, and an earth-abundant metal-based molecular catalyst. © 2017 Wiley-VCH Verlag GmbH & Co. KGaA, Weinheim.

  11. Toward visible light response: Overall water splitting using heterogeneous photocatalysts

    KAUST Repository

    Takanabe, Kazuhiro

    2011-01-01

    Extensive energy conversion of solar energy can only be achieved by large-scale collection of solar flux. The technology that satisfies this requirement must be as simple as possible to reduce capital cost. Overall water splitting by powder-form photocatalysts directly produces a mixture of H 2 and O2 (chemical energy) in a single reactor, which does not require any complicated parabolic mirrors and electronic devices. Because of its simplicity and low capital cost, it has tremendous potential to become the major technology of solar energy conversion. Development of highly efficient photocatalysts is desired. This review addresses why visible light responsive photocatalysts are essential to be developed. The state of the art for the photocatalysts for overall water splitting is briefly described. Moreover, various fundamental aspects for developing efficient photocatalysts, such as particle size of photocatalysts, cocatalysts, and reaction kinetics are discussed. Copyright © 2011 De Gruyter.

  12. Light energy conversion by photocatalytic reaction

    Energy Technology Data Exchange (ETDEWEB)

    Fujishima, Akira; Yamagata, Sadamu [Univ. of Tokyo (Japan)

    1989-01-01

    The photocatalytic reaction, to be made to a suspended semiconductor powder system, was explained in summary. By using semiconductor as an electrode for the electrolyzation, etc. and projecting light on it to generate photoelectromotive force, a photocell can be composed. eg., by composing titanium oxide electrode, n-type semiconductor and platinum electrode, and irradiating light on the former electrode to generate electric current, oxygen and hydrogen are produced from the titanium oxide electrode and platinum electrode, respectively, which means the possibility of obtainment of clean energy from water as raw material. Such a wet type photocell, easy to produce, is active also in research. With white titanium oxide powder being suspended in water solution, hydrogen is produced by projecting light into it. Such a semiconductor is called photocatalyst, in which the research has been widely developed, mainly by taking notice of the hydrogen production on reduction side, since 1972. The photocatalysis using colloid and, differently, that doing heteropolyacid are also taken notice of. 24 refs., 6 figs.

  13. Uranium utilization of light water cooled reactors and fast breeders

    International Nuclear Information System (INIS)

    Stojadinovic, Timm

    1991-08-01

    The better uranium utilization of fast breeder reactors as compared with water cooled reactors is one argument in favour of the breeder introduction. This report tries to quantify this difference. It gives a generally valid formalism for the uranium utilization as a function of the fuel burnup, the conversion rate, fuel cycle losses and the fuel enrichment. On the basis of realistic assumptions, the ratio between the utilizations of breeder reactors to that of light water cooled reactors (LWR) amounts to 180 for the open LWR cycle and 100 in case of plutonium recycling in LWRs

  14. Multi-channel up-conversion infrared spectrometer and method of detecting a spectral distribution of light

    DEFF Research Database (Denmark)

    2015-01-01

    A multi-channel infrared spectrometer for detecting an infrared spectrum of light received from an object. The spectrometer comprises a wavelength converter system comprising a nonlinear material and having an input side and an output side. The wavelength converter system comprises at least a first...... on the first side into light in a second output wavelength range output on the second side. The spectrometer further comprises a demultiplexer configured for demultiplexing light in the first up-conversion channel and light in the second up-conversion channel. The demultiplexer is located on the first side...

  15. Conversion of tritium gas to tritiated water in the environment

    International Nuclear Information System (INIS)

    Noguchi, Hiroshi; Kato, Shohei

    1985-01-01

    The literature on conversion of tritium gas to tritiated water in various environments is reviewed. The conversion mechanisms and the conversion rates are as follows. 1. In the oxidation with oxygen and the isotopic exchange with water, tritium β-rays and metal catalyst are effective. The oxidation rate is ∼ 0.02 %/day at initial tritium concentration ≤ 10 -2 Ci/l and ∼ 2 %/day at 1 Ci/l. In the presence of oxygen and water, it is not clear whether the exchange reaction occurs or not because of the small amount of data. 2. For biological conversion, soil microorganisms contribute significantly. The conversion rate is greater than 10 %/hr. The tritium gas deposition velocity, which includes the uptake rate of tritium gas by soil and the conversion rate, ranges from 0.0025 to 0.11 cm/sec and is influenced by temperature and moisture of the soil. 3. Tritium gas is converted to the tritiated water through the reaction with hydroxyl radical produced by sunlight in the atmosphere. (author)

  16. Light water reactor safety

    CERN Document Server

    Pershagen, B

    2013-01-01

    This book describes the principles and practices of reactor safety as applied to the design, regulation and operation of light water reactors, combining a historical approach with an up-to-date account of the safety, technology and operating experience of both pressurized water reactors and boiling water reactors. The introductory chapters set out the basic facts upon which the safety of light water reactors depend. The central section is devoted to the methods and results of safety analysis. The accidents at Three Mile Island and Chernobyl are reviewed and their implications for light wate

  17. Conversion and conservation of light energy in a photosynthetic microbial mat ecosystem

    DEFF Research Database (Denmark)

    Al-Najjar, A.A.; De Beer, D.; Jørgensen, B. B.

    2011-01-01

    approach uses microscale measurements of the rates of heat dissipation, gross photosynthesis and light absorption in the system, and a model describing light propagation and conversion in a scattering-absorbing medium. The energy budget was dominated by heat dissipation on the expense of photosynthesis...

  18. The management and conversion of light

    DEFF Research Database (Denmark)

    Jensen, Jacob

    methods. A key challenge in device fabrication is the development of a suitable electrolyte system, and two electrolyte systems are compared in fully printable and laminated devices on flexible substrates. Devices of various sizes are presented and the transmission contrast, when switched between...... the fully bleached and fully colored state, are found to be 43 % at Absmax with a response time of less than 10 seconds. To show possible applications, an electrochromic display powered by a printed organic photovoltaic device are demonstrated, that can switch between the two redox states during solar......; carbon dioxide reduction and water splitting. Practical solutions are presented, and the use of flexible substrates as carrier foils is explored. A key challenge in these conversion systems is the necessary precautions that must be taken when evaluating conversion and this is most convincingly done...

  19. Simulating spontaneous parametric down-conversion using classical light: Conference paper

    CSIR Research Space (South Africa)

    Zhang, Y

    2014-08-01

    Full Text Available We present a simple way of simulating Spontaneous parametric down-conversion (SPDC) by modulating a classical laser beam with two spatial light modulators (SLM) through a back projection setup. This system has the advantage of having very high...

  20. Impact of wastewater infrastructure upgrades on the urban water cycle: Reduction in halogenated reaction byproducts following conversion from chlorine gas to ultraviolet light disinfection

    Science.gov (United States)

    Barber, Larry B.; Hladik, Michelle; Vajda, Alan M.; Fitzgerald, Kevin C.; Douville, Chris

    2015-01-01

    The municipal wastewater treatment facility (WWTF) infrastructure of the United States is being upgraded to expand capacity and improve treatment, which provides opportunities to assess the impact of full-scale operational changes on water quality. Many WWTFs disinfect their effluent prior to discharge using chlorine gas, which reacts with natural and synthetic organic matter to form halogenated disinfection byproducts (HDBPs). Because HDBPs are ubiquitous in chlorine-disinfected drinking water and have adverse human health implications, their concentrations are regulated in potable water supplies. Less is known about the formation and occurrence of HDBPs in disinfected WWTF effluents that are discharged to surface waters and become part of the de facto wastewater reuse cycle. This study investigated HDBPs in the urban water cycle from the stream source of the chlorinated municipal tap water that comprises the WWTF inflow, to the final WWTF effluent disinfection process before discharge back to the stream. The impact of conversion from chlorine-gas to low-pressure ultraviolet light (UV) disinfection at a full-scale (68,000 m3 d−1 design flow) WWTF on HDBP concentrations in the final effluent was assessed, as was transport and attenuation in the receiving stream. Nutrients and trace elements (boron, copper, and uranium) were used to characterize the different urban source waters, and indicated that the pre-upgrade and post-upgrade water chemistry was similar and insensitive to the disinfection process. Chlorinated tap water during the pre-upgrade and post-upgrade samplings contained 11 (mean total concentration = 2.7 μg L−1; n=5) and 10 HDBPs (mean total concentration = 4.5 μg L−1), respectively. Under chlorine-gas disinfection conditions 13 HDBPs (mean total concentration = 1.4 μg L−1) were detected in the WWTF effluent, whereas under UV disinfection conditions, only one HDBP was detected. The chlorinated WWTF effluent had greater relative

  1. Glass transition and degree of conversion of a light-cured orthodontic composite

    Directory of Open Access Journals (Sweden)

    Michela M. D. S. Sostena

    2009-12-01

    Full Text Available OBJECTIVE: This study evaluated the glass transition temperature (Tg and degree of conversion (DC of a light-cured (Fill Magic versus a chemically cured (Concise orthodontic composite. MATERIAL AND METHODS: Anelastic relaxation spectroscopy was used for the first time to determine the Tg of a dental composite, while the DC was evaluated by infrared spectroscopy. The light-cured composite specimens were irradiated with a commercial LED light-curing unit using different exposure times (40, 90 and 120 s. RESULTS: Fill Magic presented lower Tg than Concise (35-84ºC versus 135ºC, but reached a higher DC. CONCLUSIONS: The results of this study suggest that Fill Magic has lower Tg than Concise due to its higher organic phase content, and that when this light-cured composite is used to bond orthodontic brackets, a minimum energy density of 7.8 J/cm² is necessary to reach adequate conversion level and obtain satisfactory adhesion.

  2. Water-energy nexus: Impact on electrical energy conversion and mitigation by smart water resources management

    International Nuclear Information System (INIS)

    Gjorgiev, Blaže; Sansavini, Giovanni

    2017-01-01

    Highlights: • The issues to energy conversion stemming from the water-energy nexus are investigated. • The objective is to minimize power curtailments caused by critical river water conditions. • A water-energy nexus model for smart management of water resources is developed. • Systemic risks to energy conversion stem from critical temperature and flow regimes. • Full coordination of the hydrologically-linked units provides the most effective strategy. - Abstract: The water-energy nexus refers to the water used to generate electricity and to the electric energy used to collect, clean, move, store, and dispose of water. Water is used in all stages of electric energy conversion making power systems vulnerable to water scarcity and warming. In particular, a water flow decrease and temperature increase in rivers can significantly limit the generation of electricity. This paper investigates the issues to energy conversion stemming from the water-energy nexus and mitigates them by developing a model for the smart utilization of water resources. The objective is to minimize power curtailments caused by a river water flow decrease and a temperature increase. The developed water-energy nexus model integrates the operational characteristics of hydro power plants, the environmental conditions, the river water temperature prediction and thermal load release in river bodies. The application to a hydraulic cascade of hydro and a thermal power plants under drought conditions shows that smart water management entails a significant reduction of power curtailments. In general, the full coordination of the power outputs of the units affected by the hydrological link provides the most effective mitigations of the potential issues stemming from the water-energy nexus. Finally, critical temperature and flow regimes are identified which severely impact the energy conversion and may cause systemic risks in case the generators in one region must be simultaneously curtailed.

  3. Next generation light water reactors

    International Nuclear Information System (INIS)

    Omoto, Akira

    1992-01-01

    In the countries where the new order of nuclear reactors has ceased, the development of the light water reactors of new type has been discussed, aiming at the revival of nuclear power. Also in Japan, since it is expected that light water reactors continue to be the main power reactor for long period, the technology of light water reactors of next generation has been discussed. For the development of nuclear power, extremely long lead time is required. The light water reactors of next generation now in consideration will continue to be operated till the middle of the next century, therefore, they must take in advance sufficiently the needs of the age. The improvement of the way men and the facilities should be, the simple design, the flexibility to the trend of fuel cycle and so on are required for the light water reactors of next generation. The trend of the development of next generation light water reactors is discussed. The construction of an ABWR was started in September, 1991, as No. 6 plant in Kashiwazaki Kariwa Power Station. (K.I.)

  4. The (μ-, e+) conversion in nuclei mediated by light Majorana neutrinos

    International Nuclear Information System (INIS)

    Simkovic, F.; Domin, P.; Kovalenko, S.G.; Faessler, A.

    2001-01-01

    The lepton number violating (μ - ,e + ) conversion in nuclei mediated by the exchange of virtual light Majorana neutrinos is studied. We found that a previously overlooked imaginary part of this amplitude plays an important role. The numerical calculation has been made for the experimentally interesting (μ - ,e + ) conversion in 48 Ti using realistic renormalized proton-neutron QRPA wave functions. We also discuss the very similar case of the neutrinoless double beta decay of 48 Ca. The ratio of (μ - ,e + ) conversion over the total μ - absorption has been computed taking into account the current constraints from neutrino oscillation phenomenology. We compare our results with the experimental limits as well as with previous theoretical predictions. We have found that the Majorana neutrino mode of (μ - ,e + ) conversion in 48 Ti is too small to be measurable in the foreseeable future

  5. Conversion of light into macroscopic helical motion

    Science.gov (United States)

    Iamsaard, Supitchaya; Aßhoff, Sarah J.; Matt, Benjamin; Kudernac, Tibor; Cornelissen, Jeroen J. L. M.; Fletcher, Stephen P.; Katsonis, Nathalie

    2014-03-01

    A key goal of nanotechnology is the development of artificial machines capable of converting molecular movement into macroscopic work. Although conversion of light into shape changes has been reported and compared to artificial muscles, real applications require work against an external load. Here, we describe the design, synthesis and operation of spring-like materials capable of converting light energy into mechanical work at the macroscopic scale. These versatile materials consist of molecular switches embedded in liquid-crystalline polymer springs. In these springs, molecular movement is converted and amplified into controlled and reversible twisting motions. The springs display complex motion, which includes winding, unwinding and helix inversion, as dictated by their initial shape. Importantly, they can produce work by moving a macroscopic object and mimicking mechanical movements, such as those used by plant tendrils to help the plant access sunlight. These functional materials have potential applications in micromechanical systems, soft robotics and artificial muscles.

  6. Experimental determination of relative light conversion factors of TLD-100 for protons with energies from 2.0 to 9.0 MeV

    International Nuclear Information System (INIS)

    Schmidt, P.; Fellinger, J.; Henniger, J.; Huebner, K.

    1988-01-01

    The efficiency of thermoluminescent (TL) detectors to heavy charged particles is described by the so-called light conversion factor η. Relative light conversion factors for protons, alphas and heavier recoils are needed for the calculation of the neutron sensitivity of TL detectors. Such light conversion factors can be determined experimentally. In this paper a method is presented for the experimental determination of relative light conversion factors. Using the experimental arrangement described, relative light conversion factors for LiF material (TLD-100) for protons were determined. In LiF the relative main peak (peak V) efficiency is always lower than 1. It increases with increasing proton energy whereas the relative efficiency of the high temperature peak (peak VI) shows an opposite dependence on the proton energy. Relative light conversion factors for peak VI clearly exceed 1. (orig.)

  7. Layered tin monoselenide as advanced photothermal conversion materials for efficient solar energy-driven water evaporation.

    Science.gov (United States)

    Yao, Jiandong; Zheng, Zhaoqiang; Yang, Guowei

    2018-02-08

    Solar energy-driven water evaporation lays a solid foundation for important photothermal applications such as sterilization, seawater desalination, and electricity generation. Due to the strong light-matter coupling, broad absorption wavelength range, and prominent quantum confinement effect, layered tin monoselenide (SnSe) holds a great potential to effectively harness solar irradiation and convert it to heat energy. In this study, SnSe is successfully deposited on a centimeter-scale nickel foam using a facile one-step pulsed-laser deposition approach. Importantly, the maximum evaporation rate of SnSe-coated nickel foam (SnSe@NF) reaches 0.85 kg m -2 h -1 , which is even 21% larger than that obtained with the commercial super blue coating (0.7 kg m -2 h -1 ) under the same condition. A systematic analysis reveals that its good photothermal conversion capability is attributed to the synergetic effect of multi-scattering-induced light trapping and the optimal trade-off between light absorption and phonon emission. Finally, the SnSe@NF device is further used for seawater evaporation, demonstrating a comparable evaporation rate (0.8 kg m -2 h -1 ) to that of fresh water and good stability over many cycles of usage. In summary, the current contribution depicts a facile one-step scenario for the economical and efficient solar-enabled SnSe@NF evaporation devices. More importantly, an in-depth analysis of the photothermal conversion mechanism underneath the layered materials depicts a fundamental paradigm for the design and application of photothermal devices based on them in the future.

  8. Thorium Fuel Performance in a Tight-Pitch Light Water Reactor Lattice

    International Nuclear Information System (INIS)

    Kim, Taek Kyum; Downar, Thomas J.

    2002-01-01

    Research on the utilization of thorium-based fuels in the intermediate neutron spectrum of a tight-pitch light water reactor (LWR) lattice is reported. The analysis was performed using the Studsvik/Scandpower lattice physics code HELIOS. The results show that thorium-based fuels in the intermediate spectrum of tight-pitch LWRs have considerable advantages in terms of conversion ratio, reactivity control, nonproliferation characteristics, and a reduced production of long-lived radiotoxic wastes. Because of the high conversion ratio of thorium-based fuels in intermediate spectrum reactors, the total fissile inventory required to achieve a given fuel burnup is only 11 to 17% higher than that of 238 U fertile fuels. However, unlike 238 U fertile fuels, the void reactivity coefficient with thorium-based fuels is negative in an intermediate spectrum reactor. This provides motivation for replacing 238 U with 232 Th in advanced high-conversion intermediate spectrum LWRs, such as the reduced-moderator reactor or the supercritical reactor

  9. Conversion of visible light to electrical energy - Stable cadmium selenide photoelectrodes in aqueous electrolytes

    Science.gov (United States)

    Wrighton, M. S.; Ellis, A. B.; Kaiser, S. W.

    1977-01-01

    Stabilization of n-type CdSe to photoanodic dissolution is reported. The stabilization is accomplished by the competitive oxidation of S(--) or S(n)(--) at the CdSe photoanode in an electrochemical cell. Such stabilized cells are shown to sustain the conversion of low energy (not less than 1.7 eV) visible light to electricity with good efficiency and no deterioration of the CdSe photoelectrode or of the electrolyte. The electrolyte undergoes no net chemical change because the oxidation occurring at the photoelectrode is reversed at the cathode. Conversion of monochromatic light at 633 nm to electricity is shown to be up to approximately 9% efficient with output potentials of approximately 0.4 V. Conversion of solar energy to electricity is estimated to be approximately 2% efficient.

  10. Photocatalytic conversion of methane to methanol

    Energy Technology Data Exchange (ETDEWEB)

    Taylor, C.E.; Noceti, R.P.; D`Este, J.R. [Pittsburgh Energy Technology Center, PA (United States)

    1995-12-31

    A long-term goal of our research group is the exploration of novel pathways for the direct oxidation of methane to liquid fuels, chemicals, and intermediates. The use of three relatively abundant and inexpensive reactants, light, water, and methane, to produce methanol is attractive. The products of reaction, methanol and hydrogen, are both commercially desirable, methanol being used as is or converted to a variety of other chemicals, and the hydrogen could be utilized in petroleum and/or chemical manufacturing. Methane is produced as a by-product of coal gasification. Depending upon reactor design and operating conditions, up to 18% of total gasifier product may be methane. In addition, there are vast proven reserves of geologic methane in the world. Unfortunately, a large fraction of these reserves are in regions where there is little local demand for methane and it is not economically feasible to transport it to a market. There is a global research effort under way in academia, industry, and government to find methods to convert methane to useful, more readily transportable and storable materials. Methanol, the initial product of methane oxidation, is a desirable product of conversion because it retains much of the original energy of the methane while satisfying transportation and storage requirements. Investigation of direct conversion of methane to transportation fuels has been an ongoing effort at PETC for over 10 years. One of the current areas of research is the conversion of methane to methanol, under mild conditions, using light, water, and a semiconductor photocatalyst. The use of three relatively abundant and inexpensive reactants, light, water, and methane, to produce methanol, is attractive. Research in the laboratory is directed toward applying the techniques developed for the photocatalytic splitting of the water and the photochemical conversion of methane.

  11. Three-Dimensional Hetero-Integration of Faceted GaN on Si Pillars for Efficient Light Energy Conversion Devices.

    Science.gov (United States)

    Kim, Dong Rip; Lee, Chi Hwan; Cho, In Sun; Jang, Hanmin; Jeon, Min Soo; Zheng, Xiaolin

    2017-07-25

    An important pathway for cost-effective light energy conversion devices, such as solar cells and light emitting diodes, is to integrate III-V (e.g., GaN) materials on Si substrates. Such integration first necessitates growth of high crystalline III-V materials on Si, which has been the focus of many studies. However, the integration also requires that the final III-V/Si structure has a high light energy conversion efficiency. To accomplish these twin goals, we use single-crystalline microsized Si pillars as a seed layer to first grow faceted Si structures, which are then used for the heteroepitaxial growth of faceted GaN films. These faceted GaN films on Si have high crystallinity, and their threading dislocation density is similar to that of GaN grown on sapphire. In addition, the final faceted GaN/Si structure has great light absorption and extraction characteristics, leading to improved performance for GaN-on-Si light energy conversion devices.

  12. InP/ZnS nanocrystals for colour conversion in white light emitting diodes

    DEFF Research Database (Denmark)

    Shirazi, Roza

    In this work a comprehensive study of a colloidal InP/ZnS nanocrystals (NC) as the colour conversion material for white light emitting diodes (WLED) is shown. Studied nanocrystals were synthesised by wet chemistry using one pot, hot injection method. A quantum efficiency (QE) of photoluminescence......, radiative and non-radiative recombination rates were determined and QE of 63% for the population of NCs that emit light was derived. A search for source of exciton losses in bright nanocrystals temperature resolved TRPL was studied and it revealed carrier trapping most likely at core-shell interface as well...... as at the surface and which competes with bright and dark exciton states. A presence of long-lived dark excitons and trapped charges lead to strong Auger recombination at high (relative to the trapping times) excitation. A colour conversion efficiency of the nanocrystals upon light absorption and in a process...

  13. Hydrogen photoproduction by photoelectrochemical conversion

    International Nuclear Information System (INIS)

    Anon.

    1989-01-01

    The water-splitting reaction by photoelectrochemical processes has gained much more attention than any of many reactions proposed for solar generation of energy-rich molecules (fuels). The conversion efficiency of the photosystem is the key factor. The higher the efficiency, the more economically feasible will be the conversion scheme. The conversion efficiency is a function of the semiconductor properties, light intensity, spectral quality, properties of the electrolyte, counterelectrode, cell configuration, etc. The semiconductor parameters include band gap, absorption coefficient and diffusion length. The area and material used for a counterelectrode are important when considering polarization losses in a two-electrode system. Besides, the stability problem is also a very important one to meet the requirement for practical applications. This paper reviews some important issues on photoelectrochemical generation of hydrogen by water splitting. It includes energy conversion efficiency, market assessment and cost goal, state of the technology, and future directions for research

  14. Effect of Water on Ethanol Conversion over ZnO

    Energy Technology Data Exchange (ETDEWEB)

    Rahman, Muhammad Mahfuzur; Davidson, Stephen D.; Sun, Junming; Wang, Yong

    2015-10-01

    This work focuses on understanding the role of water on ethanol conversion over zinc oxide (ZnO). It was found that a competitive adsorption between ethanol and water occurs on ZnO, which leads to the blockage of the strong Lewis acid site by water on ZnO. As a result, both dehydration and dehydrogenation reactions are inhibited. However, the extent of inhibition for dehydration is orders of magnitude higher than that for dehydrogenation, leading to the shift of reaction pathway from ethanol dehydration to dehydrogenation. In the secondary reactions for acetaldehyde conversion, water inhibits the acetaldehyde aldol-condensation to crotonaldehyde, favoring the oxidation of acetaldehyde to acetic acid, and then to acetone via ketonization at high temperature (i.e., 400 °C).

  15. Time-dependent conversion of a methacrylate-based sealer polymerized with different light-curing units.

    Science.gov (United States)

    Beriat, Nilufer C; Ertan, Atilla; Cehreli, Zafer C; Gulsahi, Kamran

    2009-01-01

    The purpose of this study was to investigate the degree of conversion of a methacrylate-based sealer (Epiphany; Pentron Clinical Technologies, Wallingford, CT) with regard to the method of photoactivation, distance from the light-curing unit (LCU), and post-curing time. Freshly mixed Epiphany sealer was dispensed into half-pipe-shaped silicone moulds (n = 48), after which the specimens were photoactivated with one of the following LCUs from the coronal aspect: (1) quartz tungsten halogen/40 seconds and (2) light-emitting diode/20 seconds. In each specimen, the degree of conversion was measured at three different locations (coronal, middle, and apical) using Fourier transform infrared spectroscopy before and after photoactivation. The amount of conversion was approximately 50% after photoactivation and improved by approximately 10% after 15 days. Conversion of Epiphany was not affected by the type of LCU (p > 0.001) or the distance from the LCU (p > 0.001) but showed a significant increase within time (p < 0.001). These results indicate incomplete polymerization of Epiphany, despite a post-curing time of as long as 2 weeks in vitro.

  16. Conversion of CO2 via Visible Light Promoted Homogeneous Redox Catalysis

    Directory of Open Access Journals (Sweden)

    Bernhard Rieger

    2012-11-01

    Full Text Available This review gives an overview on the principles of light-promoted homogeneous redox catalysis in terms of applications in CO2 conversion. Various chromophores and the advantages of different structures and metal centers as well as optimization strategies are discussed. All aspects of the reduction catalyst site are restricted to CO2 conversion. An important focus of this review is the question of a replacement of the sacrificial donor which is found in most of the current publications. Furthermore, electronic parameters of supramolecular systems are reviewed with reference to the requisite of chromophores, oxidation and reduction sites.

  17. Towards the reanalysis of void coefficients measurements at proteus for high conversion light water reactor lattices

    Energy Technology Data Exchange (ETDEWEB)

    Hursin, M.; Koeberl, O.; Perret, G. [Paul Scherrer Institut PSI, 5232 Villigen (Switzerland)

    2012-07-01

    High Conversion Light Water Reactors (HCLWR) allows a better usage of fuel resources thanks to a higher breeding ratio than standard LWR. Their uses together with the current fleet of LWR constitute a fuel cycle thoroughly studied in Japan and the US today. However, one of the issues related to HCLWR is their void reactivity coefficient (VRC), which can be positive. Accurate predictions of void reactivity coefficient in HCLWR conditions and their comparisons with representative experiments are therefore required. In this paper an inter comparison of modern codes and cross-section libraries is performed for a former Benchmark on Void Reactivity Effect in PWRs conducted by the OECD/NEA. It shows an overview of the k-inf values and their associated VRC obtained for infinite lattice calculations with UO{sub 2} and highly enriched MOX fuel cells. The codes MCNPX2.5, TRIPOLI4.4 and CASMO-5 in conjunction with the libraries ENDF/B-VI.8, -VII.0, JEF-2.2 and JEFF-3.1 are used. A non-negligible spread of results for voided conditions is found for the high content MOX fuel. The spread of eigenvalues for the moderated and voided UO{sub 2} fuel are about 200 pcm and 700 pcm, respectively. The standard deviation for the VRCs for the UO{sub 2} fuel is about 0.7% while the one for the MOX fuel is about 13%. This work shows that an appropriate treatment of the unresolved resonance energy range is an important issue for the accurate determination of the void reactivity effect for HCLWR. A comparison to experimental results is needed to resolve the presented discrepancies. (authors)

  18. Impact of different moderator ratios with light and heavy water cooled reactors in equilibrium states

    International Nuclear Information System (INIS)

    Permana, Sidik; Takaki, Naoyuki; Sekimoto, Hiroshi

    2006-01-01

    As an issue of sustainable development in the world, energy sustainability using nuclear energy may be possible using several different ways such as increasing breeding capability of the reactors and optimizing the fuel utilization using spent fuel after reprocessing as well as exploring additional nuclear resources from sea water. In this present study the characteristics of light and heavy water cooled reactors for different moderator ratios in equilibrium states have been investigated. The moderator to fuel ratio (MFR) is varied from 0.1 to 4.0. Four fuel cycle schemes are evaluated in order to investigate the effect of heavy metal (HM) recycling. A calculation method for determining the required uranium enrichment for criticality of the systems has been developed by coupling the equilibrium fuel cycle burn-up calculation and cell calculation of SRAC 2000 code using nuclear data library from the JENDL 3.2. The results show a thermal spectrum peak appears for light water coolant and no thermal peak for heavy water coolant along the MFR (0.1 ≤ MFR ≤ 4.0). The plutonium quality can be reduced effectively by increasing the MFR and number of recycled HM. Considering the effect of increasing number of recycled HM; it is also effective to reduce the uranium utilization and to increase the conversion ratio. trans-Plutonium production such as americium (Am) and curium (Cm) productions are smaller for heavy water coolant than light water coolant. The light water coolant shows the feasibility of breeding when HM is recycled with reducing the MFR. Wider feasible area of breeding has been obtained when light water coolant is replaced by heavy water coolant

  19. Electrochemical conversion of micropollutants in gray water

    NARCIS (Netherlands)

    Butkovskyi, A.; Jeremiasse, A.W.; Hernandez Leal, L.; Zande, van der T.; Rijnaarts, H.; Zeeman, G.

    2014-01-01

    Electrochemical conversion of micropollutants in real gray water effluent was studied for the first time. Six compounds that are frequently found in personal care and household products, namely methylparaben, propylparaben, bisphenol A, triclosan, galaxolide, and 4- methylbenzilidene camphor

  20. The UV-light and X-irradiation induced conversion of p-phenoxyphenol in aqueous solution at 250C

    International Nuclear Information System (INIS)

    Ehrl, A.

    1975-01-01

    UV-photolysis and X-radiolysis of p-phenoxyphenol was expected to yield products analogous to those of thyronine, after aromatic structures being equivalent. When exposed to UV-light, p-phenoxyphenol was found being selectively converted into phenylhydroquinone in consequence of intramolecular rearrangement. The reaction heat was estimated applying bond energies to the conversion and comparing the result with differences in the combustion heat of homologous compounds. After X-irradiation, phenylhydroquinone however was not present. Formation of the irradiation products phenol, hydroquinone, p-benzoquinone and pyrocatechol presumed breakage of substrate molecules in consequence of intermolecular interaction with transient water radiolysis species. (orig.) [de

  1. Advanced light-water reactors

    International Nuclear Information System (INIS)

    Golay, M.W.; Todreas, N.E.

    1990-01-01

    Environmental concerns, economics and the earth's finite store of fossil fuels argue for a resuscitation of nuclear power. The authors think improved light-water reactors incorporating passive safety features can be both safe and profitable, but only if attention is paid to economics, effective management and rigorous training methods. The experience of nearly four decades has winnowed out designs for four basic types of reactor: the heavy-water reactor (HWR), the gas-cooled rector (GCR), the liquid-metal-cooled reactor (LMR) and the light-water reactor (LWR). Each design is briefly described before the paper discusses the passive safety features of the AP-600 rector, so-called because it employs an advanced pressurized water design and generates 600 MW of power

  2. [Effects of white organic light-emitting devices using color conversion films on electroluminescence spectra].

    Science.gov (United States)

    Hou, Qing-Chuan; Wu, Xiao-Ming; Hua, Yu-Lin; Qi, Qing-Jin; Li, Lan; Yin, Shou-Gen

    2010-06-01

    The authors report a novel white organic light-emitting device (WOLED), which uses a strategy of exciting organic/ inorganic color conversion film with a blue organic light-emitting diode (OLED). The luminescent layer of the blue OLED was prepared by use of CBP host blended with a blue highly fluorescent dye N-BDAVBi. The organic/inorganic color conversion film was prepared by dispersing a mixture of red pigment VQ-D25 and YAG : Ce3+ phosphor in PMMA. The authors have achieved a novel WOLED with the high color stability by optimizing the thickness and fluorescent pigment concentration of the color conversion film. When the driving voltage varied between 6 and 14 V, the color coordinates (CIE) varied slightly from (0.354, 0.304) to (0.357, 0.312) and the maximum current efficiency is about 5.8 cd x A(-1) (4.35 mA x cm(-2)), the maximum brightness is 16 800 cd x m(-2) at the operating voltage of 14 V.

  3. Nuclear fuel for light water reactors

    International Nuclear Information System (INIS)

    Etemad, A.

    1976-01-01

    The goal of the present speech is to point out some of the now-a-day existing problems related to the fuel cycle of light water reactors and to foresee their present and future solutions. Economical aspects of nuclear power generation have been considerably improving, partly through technological advancements and partly due to the enlargement of unit capacity. The fuel cycle, defined in the course of this talk, discusses the exploration, mining, ore concentration, purification, conversion, enrichment, manufacturing of fuel elements, their utilization in a reactor, their discharge and subsequent storage, reprocessing, and their re-use or disposal. Uranium market in the world and the general policy of several uranium owning countries are described. The western world requirement for uranium until the year 2000, uranium resources and the nuclear power programs in the United States, Australia, Canada, South Africa, France, India, Spain, and Argentina are discussed. The participation of Iran in a large uranium enrichment plant based on French diffusion technology is mentioned

  4. Problem statement: international safeguards for a light-water reactor fuels reprocessing plant

    International Nuclear Information System (INIS)

    Shipley, J.P.; Hakkila, E.A.; Dietz, R.J.; Cameron, C.P.; Bleck, M.E.; Darby, J.L.

    1979-03-01

    This report considers the problem of developing international safeguards for a light-water reactor (LWR) fuel reprocessing/conversion facility that combines the Purex process with conversion of plutonium nitrate to the oxide by means of plutonium (III) oxalate precipitation and calcination. Current international safeguards systems are based on the complementary concepts of materials accounting and containment and surveillance, which are designed to detect covert, national diversion of nuclear material. This report discusses the possible diversion threats and some types of countermeasures, and it represents the first stage in providing integrated international safeguards system concepts that make optimum use of available resources. The development of design methodology to address this problem will constitute a significant portion of the subsequent effort. Additionally, future technology development requirements are identified. 8 figures, 1 table

  5. Light-water nuclear reactors

    International Nuclear Information System (INIS)

    Drevon, G.

    1983-01-01

    This work gives basic information on light-water reactors which is advanced enough for the reader to become familiar with the essential objectives and aspects of their design, their operation and their insertion in the industrial, economic and human environment. In view of the capital role of electric energy in the modern economy a significant place is given to electron-nuclear power stations, particularly those of the type adopted for the French programme. The work includes sixteen chapters. The first chapter relates the history and presents the various applications of light water reactors. The second refers to the general elementary knowledge of reactor physics. The third chapter deals with the high power light-water nuclear power station and thereby introduces the ensuing chapters which, up to and including chapter 13, are devoted to the components and the various aspects of the operation of power stations, in particular safety and the relationship with the environment. Chapter 14 provides information on the reactors adapted to applications other than the generation of electricity on an industrial scale. Chapter 15 shows the extent of the industrial effort devoted to light-water reactors and chapter 16 indicates the paths along which the present work is preparing the future of these reactors. The various chapters have been written to allow for separate consultation. An index of the main technical terms and a bibliography complete the work [fr

  6. External dose conversion factor from canal water

    International Nuclear Information System (INIS)

    Bhargava, Pradeep; Chitra, S.; Mhatre, Arti S.; Singh, Kapil Deo

    2016-01-01

    External dose needs to be estimated for the radioactivity discharged into the canal, as it constitutes one of the pathways of exposure to the public. Two activities are considered here: i) a walk along the bank of the canal ii) and the walk on the bridge. A concentration of 1 Bq/l is assumed here for the gross beta activity for the estimation of the dose conversion factor. A canal of width 14.39 m and the depth of 2.5 m is considered for this study. Length of the canal is taken to be infinite. Canal side wall is assumed to be the 25 cm thick concrete. Two points are selected, one on the bank, and the second on a bridge 1 m above the top surface of canal water. Dose Conversion factors for the person moving on the Bridge (at one meter above the water surface) and standing on bank of canal is estimated by using the QAD CG code for 137 Cs. Dose conversion factors for the location mentioned above are found to be 1.11E-10 Sv/hr/(Bq/l) and 1.55 E-11 Sv/hr/(Bq/l) for bridge and bank of canal respectively. (author)

  7. Defect-engineered GaN:Mg nanowire arrays for overall water splitting under violet light

    International Nuclear Information System (INIS)

    Kibria, M. G.; Chowdhury, F. A.; Zhao, S.; Mi, Z.; Trudeau, M. L.; Guo, H.

    2015-01-01

    We report that by engineering the intra-gap defect related energy states in GaN nanowire arrays using Mg dopants, efficient and stable overall neutral water splitting can be achieved under violet light. Overall neutral water splitting on Rh/Cr 2 O 3 co-catalyst decorated Mg doped GaN nanowires is demonstrated with intra-gap excitation up to 450 nm. Through optimized Mg doping, the absorbed photon conversion efficiency of GaN nanowires reaches ∼43% at 375–450 nm, providing a viable approach to extend the solar absorption of oxide and non-oxide photocatalysts

  8. Recent advances in visible-light-responsive photocatalysts for hydrogen production and solar energy conversion--from semiconducting TiO2 to MOF/PCP photocatalysts.

    Science.gov (United States)

    Horiuchi, Yu; Toyao, Takashi; Takeuchi, Masato; Matsuoka, Masaya; Anpo, Masakazu

    2013-08-28

    The present perspective describes recent advances in visible-light-responsive photocatalysts intended to develop novel and efficient solar energy conversion technologies, including water splitting and photofuel cells. Water splitting is recognized as one of the most promising techniques to convert solar energy as a clean and abundant energy resource into chemical energy in the form of hydrogen. In recent years, increasing concern is directed to not only the development of new photocatalytic materials but also the importance of technologies to produce hydrogen and oxygen separately. Photofuel cells can convert solar energy into electrical energy by decomposing bio-related compounds and livestock waste as fuels. The advances of photocatalysts enabling these solar energy conversion technologies have been going on since the discovery of semiconducting titanium dioxide materials and have extended to organic-inorganic hybrid materials, such as metal-organic frameworks and porous coordination polymers (MOF/PCP).

  9. Photoassisted electrolysis of water - Conversion of optical to chemical energy

    Science.gov (United States)

    Wrighton, M. S.; Bolts, J. M.; Kaiser, S. W.; Ellis, A. B.

    1976-01-01

    A description is given of devices, termed photoelectrochemical cells, which can, in principle, be used to directly convert light to fuels and/or electricity. The fundamental principles on which the photoelectrochemical cell is based are related to the observation that irradiation of a semiconductor electrode in an electrochemical cell can result in the flow of an electric current in the external circuit. Attention is given to the basic mechanisms involved, the energy conversion efficiency, the advantages of photoelectrochemical cells, and the results of investigations related to the study of energy conversion via photoelectrochemical cells.

  10. Present status and subjects of research on heat removal in high conversion light water reactors

    International Nuclear Information System (INIS)

    Murao, Yoshio

    1990-01-01

    Merits of high conversion LWRs: (1) The utilization of nuclear fuel several times as much as that in LWRs is possible. The rate of effective utilization of uranium is 4-6%. (2) The active storage of plutonium is feasible. (3) The bridging to the nuclear fuel cycle industries in fast reactor age can be done. (4) These contribute to the control of plutonium storage as the partner of FBRs in fast reactor age. (5) These contribute to the flexibility of medium and long term energy strategy. The reduction of natural uranium demand by the introduction of high conversion LWRs: Assuming the scale of nuclear power facilities in 2030 as 107 million kW, and that HCLWRs are introduced from 2000, the reduction till 2100 is 13%. The features of high conversion LWRs, the effect of improving the conversion ratio by spectral hardening and so on are explained. The specification of high conversion LWRs is shown in comparison with other reactor types. The aim is the high conversion PWRs in which the same safety as conventional LWRs is ensured, and energy resources and economical efficiency are attractive. The schedule of the research and the subjects of the thermo-hydraulic engineering research are shown. (K.I.)

  11. Shape-Controlled Synthesis of High-Quality Cu7 S4 Nanocrystals for Efficient Light-Induced Water Evaporation.

    Science.gov (United States)

    Zhang, Changbo; Yan, Cong; Xue, Zhenjie; Yu, Wei; Xie, Yinde; Wang, Tie

    2016-10-01

    Copper sulfides (Cu 2-x S), are a novel kind of photothermal material exhibiting significant photothermal conversion efficiency, making them very attractive in various energy conversion related devices. Preparing high quality uniform Cu 2-x S nanocrystals (NCs) is a top priority for further energy-and sustainability relevant nanodevices. Here, a shape-controlled high quality Cu 7 S 4 NCs synthesis strategy is reported using sulfur in 1-octadecene as precursor by varying the heating temperature, as well as its forming mechanism. The performance of the Cu 7 S 4 NCs is further explored for light-driven water evaporation without the need of heating the bulk liquid to the boiling point, and the results suggest that as-synthesized highly monodisperse NCs perform higher evaporation rate than polydisperse NCs under the identical morphology. Furthermore, disk-like NCs exhibit higher water evaporation rate than spherical NCs. The water evaporation rate can be further enhanced by assembling the organic phase Cu 7 S 4 NCs into a dense film on the aqueous solution surface. The maximum photothermal conversion efficiency is as high as 77.1%. © 2016 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  12. Visible light to electrical energy conversion using photoelectrochemical cells

    Science.gov (United States)

    Wrighton, Mark S. (Inventor); Ellis, Arthur B. (Inventor); Kaiser, Steven W. (Inventor)

    1983-01-01

    Sustained conversion of low energy visible or near i.r. light (>1.25 eV) to electrical energy has been obtained using wet photoelectrochemical cells where there are no net chemical changes in the system. Stabilization of n-type semi-conductor anodes of CdS, CdSe, CdTe, GaP, GaAs and InP to photoanodic dissolution is achieved by employing selected alkaline solutions of Na.sub.2 S, Na.sub.2 S/S, Na.sub.2 Se, Na.sub.2 Se/Se, Na.sub.2 Te and Na.sub.2 Te/Te as the electrolyte. The oxidation of (poly) sulfide, (poly)selenide or (poly)telluride species occurs at the irradiated anode, and reduction of polysulfide, polyselenide or polytelluride species occurs at the dark Pt cathode of the photoelectrochemical cell. Optical to electrical energy conversion efficiencies approaching 15% at selected frequencies have been observed in some cells. The wavelength for the onset of photocurrent corresponds to the band gap of the particular anode material used in the cell.

  13. Determination of heavy water in heavy water - light water mixtures

    International Nuclear Information System (INIS)

    Sanhueza M, A.

    1986-01-01

    A description about experimental methodology to determine isotopic composition of heavy water - light water mixtures is presented. The employed methods are Nuclear Magnetic Resonance Spectroscopy, for measuring heavy water concentrations from 0 to 100% with intervals of 10% approx., and mass Spectrometry, for measuring heavy water concentrations from 0.1 to 1% with intervals of 0.15% approx., by means of an indirect method of Dilution. (Author)

  14. Standards for heavy water concentration determinations in light water

    International Nuclear Information System (INIS)

    Varlam, M.; Steflea, D.; Pavelescu, M.

    1995-01-01

    The paper presents a method to prepare heavy water -light water standards within the range 144 ppm - 1%. A formula for computing standards concentration based on initial concentration of D 2 O and distilled water is given

  15. COAL CONVERSION WASTEWATER TREATMENT BY CATALYTIC OXIDATION IN SUPERCRITICAL WATER; FINAL

    International Nuclear Information System (INIS)

    Phillip E. Savage

    1999-01-01

    Wastewaters from coal-conversion processes contain phenolic compounds in appreciable concentrations. These compounds need to be removed so that the water can be discharged or re-used. Catalytic oxidation in supercritical water is one potential means of treating coal-conversion wastewaters, and this project examined the reactions of phenol over different heterogeneous oxidation catalysts in supercritical water. More specifically, we examined the oxidation of phenol over a commercial catalyst and over bulk MnO(sub 2), bulk TiO(sub 2), and CuO supported on Al(sub 2) O(sub 3). We used phenol as the model pollutant because it is ubiquitous in coal-conversion wastewaters and there is a large database for non-catalytic supercritical water oxidation (SCWO) with which we can contrast results from catalytic SCWO. The overall objective of this research project is to obtain the reaction engineering information required to evaluate the utility of catalytic supercritical water oxidation for treating wastes arising from coal conversion processes. All four materials were active for catalytic supercritical water oxidation. Indeed, all four materials produced phenol conversions and CO(sub 2) yields in excess of those obtained from purely homogeneous, uncatalyzed oxidation reactions. The commercial catalyst was so active that we could not reliably measure reaction rates that were not limited by pore diffusion. Therefore, we performed experiments with bulk transition metal oxides. The bulk MnO(sub 2) and TiO(sub 2) catalysts enhance both the phenol disappearance and CO(sub 2) formation rates during SCWO. MnO(sub 2) does not affect the selectivity to CO(sub 2), or to the phenol dimers at a given phenol conversion. However, the selectivities to CO(sub 2) are increased and the selectivities to phenol dimers are decreased in the presence of TiO(sub 2) , which are desirable trends for a catalytic SCWO process. The role of the catalyst appears to be accelerating the rate of formation of

  16. Performance of advanced self-shielding models in DRAGON Version4 on analysis of a high conversion light water reactor lattice

    International Nuclear Information System (INIS)

    Karthikeyan, Ramamoorthy; Hebert, Alain

    2008-01-01

    A high conversion light water reactor lattice has been analysed using the code DRAGON Version4. This analysis was performed to test the performance of the advanced self-shielding models incorporated in DRAGON Version4. The self-shielding models are broadly classified into two groups - 'equivalence in dilution' and 'subgroup approach'. Under the 'equivalence in dilution' approach we have analysed the generalized Stamm'ler model with and without Nordheim model and Riemann integration. These models have been analysed also using the Livolant-Jeanpierre normalization. Under the 'subgroup approach', we have analysed Statistical self-shielding model based on physical probability tables and Ribon extended self-shielding model based on mathematical probability tables. This analysis will help in understanding the performance of advanced self-shielding models for a lattice that is tight and has a large fraction of fissions happening in the resonance region. The nuclear data for the analysis was generated in-house. NJOY99.90 was used for generating libraries in DRAGLIB format for analysis using DRAGON and A Compact ENDF libraries for analysis using MCNP5. The evaluated datafiles were chosen based on the recommendations of the IAEA Co-ordinated Research Project on the WIMS Library Update Project. The reference solution for the problem was obtained using Monte Carlo code MCNP5. It was found that the Ribon extended self-shielding model based on mathematical probability tables using correlation model performed better than all other models

  17. Efficient textured colour conversion layer of a down-converted white organic light-emitting diode by transfer imprinting

    International Nuclear Information System (INIS)

    Zhu, Wenqing; Xiao, Teng; Qian, Bingjie; Sun, Liangliang

    2015-01-01

    In this paper, we demonstrated an efficient textured colour conversion layer (CCL) of a down-converted white organic light-emitting diode (WOLED), which was fabricated by a very simple transfer imprinting method based on silicon wafer. The textured CCL not only helped to extract wave-guided light in the device, but also had an outstanding performance in enhancing the colour conversion rate, which was 1.75 times greater than that of flat CCL. Compared to flat CCL, the lower-doped textured CCL produced better white emission and higher efficiency simultaneously. Moreover, the WOLED with textured CCL also exhibited good colour stability at various voltages. (paper)

  18. Development of light water reactors and subjects for hereafter

    International Nuclear Information System (INIS)

    Murao, Yoshio

    1995-01-01

    As for light water reactors, the structure is relatively simple, and the power plants of large capacity can be realized easily, therefore, they have been used for long period as main nuclear reactors. During that period, the accumulation of experiences on the design, manufacture, operation, maintenance and regulation of light water has become enormous, and in Japan, the social base for maintaining and developing light water reactor technologies has been prepared sufficiently. If the nuclear power generation using seawater uranium is considered, the utilization of uranium for light water reactor technologies can become the method of producing the own energy for Japan. As the factors that threaten the social base of light water reactor technologies, there are a the lowering of the desire to promote light water reactors, the effect of secular deterioration, the price rise of uranium resources, the effect of plutonium accumulation, the effect of the circumstances in developing countries and the sure recruiting of engineers. The construction and the principle of working of light water reactors and the development of light water reactors hereafter, for example, the improvement on small scale and the addition of new technology resulting in cost reduction and the lowering of the quality requirement for engineers, the improvement of core design, the countermeasures by design to serious accidents and others are described. (K.I.)

  19. Results of an aging-related failure survey of light water safety systems and components

    International Nuclear Information System (INIS)

    Meale, B.M.; Satterwhite, D.G.; MacDonald, P.E.

    1988-01-01

    The collection and evaluation of operating experience data are necessary in determining the effects of aging on the safety of operating nuclear plants. This paper presents the final results of a two-year research effort evaluating aging impacts on components in light water reactor systems. This research was performed as a part of the Nuclear Plant Aging Research program, sponsored by the US Nuclear Regulatory Commission. Two unique types of data analyses were performed. In the first, an aging-survey study, aging-related failure data for fifteen light water reactor systems were obtained from the Nuclear Plant Reliability Data System (NPRDS). These included safety, support, and power conversion systems. A computerized sort of these records classified each record into one of five generic categories, based on the utility's choice of the failure's NPRDS cause category. Systems and components within the systems that were most affected by aging were identified. In the second analysis, information on aging-related reported causes of failures was evaluated for component failures reported to NPRDS for auxiliary feedwater, high pressure injection, service water, and Class 1E electrical power distribution systems. 3 refs., 13 figs., 4 tabs

  20. Conversion of tritium gas to tritiated water

    International Nuclear Information System (INIS)

    Papagiannakopoulos, P.J.; Easterly, C.E.

    1979-05-01

    The mechanisms of conversion of tritium gas to tritiated water (HTO) have been examined for several tritium gaseous mixtures. The physical and chemical processes involved in the self-radiolysis of such mixtures have been analyzed and the kinetics involved in the formation of HTO has been presented. It has been determined that the formation of the H and/or OH free radicals, as intermediate species, are of significance in the formation of HTO. Therefore, the problem of reducing the rate of formation of tritiated water in a mixture of gaseous tritium with atmospheric components is one of finding an effective scavenger for the H and/or OH free radicals

  1. Solar energy conversion by photocatalytic overall water splitting

    KAUST Repository

    Takanabe, Kazuhiro

    2015-07-04

    Summary: Solar energy is abundant and renewable energy: however, extensive conversion of the solar energy can only be achieved by large-scale collection of solar flux. The technology that satisfies this requirement must be as simple as possible to reduce capital cost. Overall water splitting (OWS) by powder-form photocatalysts directly produces H2 as a chemical energy in a single reactor, which does not require any complicated parabolic mirrors and electronic devices. Because of its simplicity and low capital cost, it has tremendous potential to become the major technology of solar energy conversion. To achieve the OWS efficiently, the development of efficient photocatalysts is mandatory. The OWS hotocatalysis involves the electrocatalys is for both water reduction and oxidation on the surafce of photocatalysts, which is driven by particular semiconductors that absorb photons to generate excited carriers. Such photocatalysts must be designed to maximize the charge separation efficiency at the catalyst-semiconductor and semiconductor-electrolyte interface. In addition the low-overpotential electrocatalyts towards water redox reactions should be insensitive to the back-reaction of the produced H2 and O2 that produces H2O. In this presentation, some recent progress on the topic of the OWS in our group will be discussed.

  2. On the conversion of dose to bone to dose to water in radiotherapy treatment planning systems

    Directory of Open Access Journals (Sweden)

    Nick Reynaert

    2018-01-01

    Full Text Available Background and purpose: Conversion factors between dose to medium (Dm,m and dose to water (Dw,w provided by treatment planning systems that model the patient as water with variable electron density are currently based on stopping power ratios. In the current paper it will be illustrated that this conversion method is not correct. Materials and methods: Monte Carlo calculations were performed in a phantom consisting of a 2 cm bone layer surrounded by water. Dw,w was obtained by modelling the bone layer as water with the electron density of bone. Conversion factors between Dw,w and Dm,m were obtained and compared to stopping power ratios and ratios of mass-energy absorption coefficients in regions of electronic equilibrium and interfaces. Calculations were performed for 6 MV and 20 MV photon beams. Results: In the region of electronic equilibrium the stopping power ratio of water to bone (1.11 largely overestimates the conversion obtained using the Monte Carlo calculations (1.06. In that region the MC dose conversion corresponds to the ratio of mass energy absorption coefficients. Near the water to bone interface, the MC ratio cannot be determined from stopping powers or mass energy absorption coefficients. Conclusion: Stopping power ratios cannot be used for conversion from Dm,m to Dw,w provided by treatment planning systems that model the patient as water with variable electron density, either in regions of electronic equilibrium or near interfaces. In regions of electronic equilibrium mass energy absorption coefficient ratios should be used. Conversions at interfaces require detailed MC calculations. Keywords: Dose to water, Monte Carlo, Dosimetry, TPS comparison

  3. Light up conversion effects in Erbium doped CaBi4Ti4O15 ceramics

    International Nuclear Information System (INIS)

    Bokolia, Renuka; Sreenivas, K.

    2013-01-01

    In recent years the rare earth doped bismuth layered structured ferroelectric (BLSF) compositions such as CaBi 4 Ti 4 O 15 , SrBi 4 Ti 4 O 15 and BaBi 4 Ti 4 O 15 ceramics have shown interesting light up-conversion emission effects. The observation of such novel effects has generated a lot of scientific interest, and there is a need to further improve their dielectric, piezoelectric and light up-conversion properties. In the present study, Erbium doped CaBi 4 Ti 4 O 15 (CBT), and SrBi 4 Ti 4 O 15 (SBT) ferroelectric ceramic have been prepared by the conventional solid state reaction method. Formation of single phase material is confirmed by X-Ray Diffraction (XRD), and changes occurring in the lattice parameters with Erbium dopant are analysed. Room temperature dielectric studies and ferroelectric studies will be discussed. (author)

  4. Molecular water oxidation catalysis

    CERN Document Server

    Llobet, Antoni

    2014-01-01

    Photocatalytic water splitting is a promising strategy for capturing energy from the sun by coupling light harvesting and the oxidation of water, in order to create clean hydrogen fuel. Thus a deep knowledge of the water oxidation catalysis field is essential to be able to come up with useful energy conversion devices based on sunlight and water splitting. Molecular Water Oxidation Catalysis: A Key Topic for New Sustainable Energy Conversion Schemes presents a comprehensive and state-of-the-art overview of water oxidation catalysis in homogeneous phase, describing in detail the most importan

  5. Feasibility Study of Supercritical Light Water Cooled Fast Reactors for Actinide Burning and Electric Power Production, 3rd Quarterly Report

    Energy Technology Data Exchange (ETDEWEB)

    Mac Donald, Philip Elsworth

    2002-06-01

    The use of light water at supercritical pressures as the coolant in a nuclear reactor offers the potential for considerable plant simplification and consequent capital and O&M cost reduction compared with current light water reactor (LWR) designs. Also, given the thermodynamic conditions of the coolant at the core outlet (i.e. temperature and pressure beyond the water critical point), very high thermal efficiencies of the power conversion cycle are possible (i.e. up to about 45%). Because no change of phase occurs in the core, the need for steam separators and dryers as well as for BWR-type re-circulation pumps is eliminated, which, for a given reactor power, results in a substantially shorter reactor vessel and smaller containment building than the current BWRs. Furthermore, in a direct cycle the steam generators are not needed.

  6. Modeling Water Clarity and Light Quality in Oceans

    Directory of Open Access Journals (Sweden)

    Mohamed A. Abdelrhman

    2016-11-01

    Full Text Available Phytoplankton is a primary producer of organic compounds, and it forms the base of the food chain in ocean waters. The concentration of phytoplankton in the water column controls water clarity and the amount and quality of light that penetrates through it. The availability of adequate light intensity is a major factor in the health of algae and phytoplankton. There is a strong negative coupling between light intensity and phytoplankton concentration (e.g., through self-shading by the cells, which reduces available light and in return affects the growth rate of the cells. Proper modeling of this coupling is essential to understand primary productivity in the oceans. This paper provides the methodology to model light intensity in the water column, which can be included in relevant water quality models. The methodology implements relationships from bio-optical models, which use phytoplankton chlorophyll a (chl-a concentration as a surrogate for light attenuation, including absorption and scattering by other attenuators. The presented mathematical methodology estimates the reduction in light intensity due to absorption by pure seawater, chl-a pigment, non-algae particles (NAPs and colored dissolved organic matter (CDOM, as well as backscattering by pure seawater, phytoplankton particles and NAPs. The methods presented facilitate the prediction of the effects of various environmental and management scenarios (e.g., global warming, altered precipitation patterns, greenhouse gases on the wellbeing of phytoplankton communities in the oceans as temperature-driven chl-a changes take place.

  7. Research of natural resources saving by design studies of Pressurized Light Water Reactors and High Conversion PWR cores with mixed oxide fuels composed of thorium/uranium/plutonium

    International Nuclear Information System (INIS)

    Vallet, V.

    2012-01-01

    Within the framework of innovative neutronic conception of Pressurized Light Water Reactors (PWR) of 3. generation, saving of natural resources is of paramount importance for sustainable nuclear energy production. This study consists in the one hand to design high Conversion Reactors exploiting mixed oxide fuels composed of thorium/uranium/plutonium, and in the other hand, to elaborate multi-recycling strategies of both plutonium and 233 U, in order to maximize natural resources economy. This study has two main objectives: first the design of High Conversion PWR (HCPWR) with mixed oxide fuels composed of thorium/uranium/plutonium, and secondly the setting up of multi-recycling strategies of both plutonium and 233 U, to better natural resources economy. The approach took place in four stages. Two ways of introducing thorium into PWR have been identified: the first is with low moderator to fuel volume ratios (MR) and ThPuO 2 fuel, and the second is with standard or high MR and ThUO 2 fuel. The first way led to the design of under-moderated HCPWR following the criteria of high 233 U production and low plutonium consumption. This second step came up with two specific concepts, from which multi-recycling strategies have been elaborated. The exclusive production and recycling of 233 U inside HCPWR limits the annual economy of natural uranium to approximately 30%. It was brought to light that the strong need in plutonium in the HCPWR dedicated to 233 U production is the limiting factor. That is why it was eventually proposed to study how the production of 233 U within PWR (with standard MR), from 2020. It was shown that the anticipated production of 233 U in dedicated PWR relaxes the constraint on plutonium inventories and favours the transition toward a symbiotic reactor fleet composed of both PWR and HCPWR loaded with thorium fuel. This strategy is more adapted and leads to an annual economy of natural uranium of about 65%. (author) [fr

  8. Experimental determination of relative light conversion factors of TLD-100 for protons with energies from 2.0 to 9.0 MeV

    International Nuclear Information System (INIS)

    Schmidt, P.; Fellinger, J.; Huebner, K.; Henniger, J.

    1985-01-01

    Relative light conversion factors (RLCF) for heavy charged particles (protons, deuterons, recoils) are needed for the calculation of the neutron sensitivity of thermoluminescent (TL) detectors. Such light conversion factors can be determined experimentally. A method is represented for the experimental determination of RLCF. The described experimental facility gives the possibility of irradiation of different luminophor samples with heavy charged particles and flux determination and particle spectrometry at the same time. For the determination of RLCF the doses are needed which are applicated at the irradiation with heavy charged particles and gamma radiation, respectively, and the according detector readings at the TL evaluation. The problems arising at the dose determination are discussed. With this experimental facility the RLCF for TLD-100 for protons were determined. The relative light conversion factors determined according to the light sum method as well as the peak height method are summarizinhly represented and discussed. Furthermore a comparison of the glow curves is made after gamma and proton irradiation

  9. Advances in light water reactor technologies

    CERN Document Server

    Saito, Takehiko; Ishiwatari, Yuki; Oka, Yoshiaki

    2010-01-01

    ""Advances in Light Water Reactor Technologies"" focuses on the design and analysis of advanced nuclear power reactors. This volume provides readers with thorough descriptions of the general characteristics of various advanced light water reactors currently being developed worldwide. Safety, design, development and maintenance of these reactors is the main focus, with key technologies like full MOX core design, next-generation digital I&C systems and seismic design and evaluation described at length. This book is ideal for researchers and engineers working in nuclear power that are interested

  10. Sprayed films of europium complexes toward light conversion devices

    Energy Technology Data Exchange (ETDEWEB)

    Camacho, Sabrina A.; Aoki, Pedro H.B.; Constantino, Carlos J.L.; Pires, Ana Maria, E-mail: anapires@fct.unesp.br

    2014-09-15

    Rare-earth complexes have become subject of intensive research due to the high quantum efficiency of their emission, very narrow bands, and excellent fluorescence monochromaticity. The chemical design and characterization of Eu complexes based on β-diketone ligands hexafluoroacetylacetate (hfac) and dibenzoylmetanate (dbm) is reported here. K[Eu(dbm){sub 4}] and K[Eu(hfac){sub 4}] complexes were immobilized as thin films by using the spray technique, a promising methodology for practical applications. The latter provides not only a faster layer deposition but also larger coated areas compared to conventional methods, such as layer-by-layer (LbL) and Langmuir–Blodgett (LB). The growth of the sprayed films was monitored through microbalance (QCM) and ultraviolet–visible (UV–Vis) absorption spectroscopy, which reveal a higher mass and absorbance per deposited layer of K[Eu(dbm){sub 4}] film. Micro-Raman images display a more homogeneous spatial distribution of the K[Eu(dbm){sub 4}] complex throughout the film, when compared to K[Eu(hfac){sub 4}] film. At nanometer scale, atomic force microscopy (AFM) images indicate that the roughness of the K[Eu(hfac){sub 4}] film is approximately one order of magnitude higher than that for the K[Eu(dbm){sub 4}] film, which pattern is kept at micrometer scale according to micro-Raman measurements. The photoluminescence data show that the complexes remain as pure red emitters upon spray immobilization. Besides, the quantum efficiency for the sprayed films are found equivalent to the values achieved for the powders, highlighting the potential of the films for application in light conversion devices. - Highlights: • Rare earth complexes thin films based on β-diketone ligands. • Spraying procedures to fabricate layer-by-layer (LbL) luminescent thin films. • Chemical design of Eu complexes based on hfac and dbm β-diketones ligands immobilized as sprayed films. • Pure red emitters upon spray immobilization. • Sprayed

  11. Experimental investigation of an optical water filter for Photovoltaic/Thermal conversion module

    International Nuclear Information System (INIS)

    Al-Shohani, Wisam A.M.; Sabouri, Aydin; Al-Dadah, Raya; Mahmoud, Saad; Butt, Haider

    2016-01-01

    Highlights: • New design of Photovoltaic/Thermal system is proposed. • Using the optical water layer as a spectrum splitter is tested experimentally. • Optical rig is developed to study the optical performance of water layer. • Energy conversion under different water layer thicknesses is determined. - Abstract: This paper presents an experimental investigation of a novel optical water filter used for Photovoltaic/Thermal and Concentrating Photovoltaic/Thermal modules. A water layer is used as a spectrum splitter of solar radiation placed above the photovoltaic cells and as a thermal working fluid simultaneously. The water layer absorbs the ultraviolet and part of infrared, which are not used by the photovoltaic, but transmits the visible and some of infrared to the solar cell surface which are used by the photovoltaic. In this work, the transmittance of the optical water filter was measured for different water thicknesses (1, 2, 3, 4, and 5 cm) and radiation wavelength ranging from 0.35 to 1 μm. Results show that there is a significant effect of the water layer thickness on the transmittance of the spectra where the transmittance decreases as the water layer increases. Moreover, energy conversion rate of photovoltaic with the optical water filter at different water layer thicknesses has been determined.

  12. Concept of dual-resolution light field imaging using an organic photoelectric conversion film for high-resolution light field photography.

    Science.gov (United States)

    Sugimura, Daisuke; Kobayashi, Suguru; Hamamoto, Takayuki

    2017-11-01

    Light field imaging is an emerging technique that is employed to realize various applications such as multi-viewpoint imaging, focal-point changing, and depth estimation. In this paper, we propose a concept of a dual-resolution light field imaging system to synthesize super-resolved multi-viewpoint images. The key novelty of this study is the use of an organic photoelectric conversion film (OPCF), which is a device that converts spectra information of incoming light within a certain wavelength range into an electrical signal (pixel value), for light field imaging. In our imaging system, we place the OPCF having the green spectral sensitivity onto the micro-lens array of the conventional light field camera. The OPCF allows us to acquire the green spectra information only at the center viewpoint with the full resolution of the image sensor. In contrast, the optical system of the light field camera in our imaging system captures the other spectra information (red and blue) at multiple viewpoints (sub-aperture images) but with low resolution. Thus, our dual-resolution light field imaging system enables us to simultaneously capture information about the target scene at a high spatial resolution as well as the direction information of the incoming light. By exploiting these advantages of our imaging system, our proposed method enables the synthesis of full-resolution multi-viewpoint images. We perform experiments using synthetic images, and the results demonstrate that our method outperforms other previous methods.

  13. Transient Model of a 10 MW Supercritical CO{sub 2} Brayton Cycle for Light Water Reactors by using MARS Code

    Energy Technology Data Exchange (ETDEWEB)

    Park, Joo-Hyun; Park, Hyun Sun; Kim, Moo Hwan [POSTECH, Pohang (Korea, Republic of); Bae, Sung Won; Cha, Jae-Eun [Korea Atomic Energy Research Institute, Daejeon (Korea, Republic of)

    2016-10-15

    In this study, recuperation cycle was chosen as a reference loop design and the MARS code was chosen as the transient cycle analysis code. Cycle design condition is focus on operation point of the light-water reactor. Development of a transient model was performed for 10MW-electron SCO{sub 2} coupled with light water reactors. In order to perform transient analysis, cycle transient model was developed and steady-state run was performed and presented in the paper. In this study, the transient model of SCO{sub 2} recuperation Brayton cycle was developed and implemented in MARS to study the steady-state simulation. We performed nodalization of the transient model using MARS code and obtained steady-state results. This study is shown that the supercritical CO{sub 2} Brayton cycle can be used as a power conversion system for light water reactors. Future work will include transient analysis such as partial road operation, power swing, start-up, and shutdown. Cycle control strategy will be considered for various control method.

  14. Transparent organic light-emitting diodes with different bi-directional emission colors using color-conversion capping layers

    Energy Technology Data Exchange (ETDEWEB)

    Lee, Jonghee, E-mail: jonghee.lee@etri.re.kr [OLED Research Center, Electronics and Telecommunications Research Institute (ETRI), Daejeon 305-700 (Korea, Republic of); Institut für Angewandte Photophysik, Technische Universität Dresden, George-Bähr-Straße 1, 01062 Dresden (Germany); Koh, Tae-Wook [Department of Electrical Engineering, Korea Advanced Institute of Science and Technology (KAIST), Daejeon 305-701 (Korea, Republic of); Cho, Hyunsu [OLED Research Center, Electronics and Telecommunications Research Institute (ETRI), Daejeon 305-700 (Korea, Republic of); Department of Electrical Engineering, Korea Advanced Institute of Science and Technology (KAIST), Daejeon 305-701 (Korea, Republic of); Schwab, Tobias [Institut für Angewandte Photophysik, Technische Universität Dresden, George-Bähr-Straße 1, 01062 Dresden (Germany); Lee, Jae-Hyun [Department School of Global Convergence Studies, Hanbat National University, San 16-1, Duckmyoung-dong, Daejeon 305-719 (Korea, Republic of); Hofmann, Simone [Institut für Angewandte Photophysik, Technische Universität Dresden, George-Bähr-Straße 1, 01062 Dresden (Germany); Lee, Jeong-Ik [OLED Research Center, Electronics and Telecommunications Research Institute (ETRI), Daejeon 305-700 (Korea, Republic of); Yoo, Seunghyup [Department of Electrical Engineering, Korea Advanced Institute of Science and Technology (KAIST), Daejeon 305-701 (Korea, Republic of); and others

    2015-06-15

    We report a study on transparent organic light-emitting diodes (OLEDs) with different bi-directional emission colors, enabled by color-conversion organic capping layers. Starting from a transparent blue OLED with an uncapped Ag top electrode exhibiting an average transmittance of 33.9%, a 4-(dicyanomethylene)-2-methyl-6-(4-dimethylaminostyryl)-4H-pyran (DCM)-doped tris-(8-hydroxy-quinolinato)-aluminum (Alq3) capping layer is applied to achieve color-conversion from blue to orange-red on the top side while maintaining almost unchanged device transmittance. This color-conversion capping layer does not only change the color of the top side emission, but also enhances the overall device efficiency due to the optical interaction of the capping layer with the primary blue transparent OLED. Top white emission from the transparent bi-directional OLED exhibits a correlated color temperature around 6000–7000 K, with excellent color stability as evidenced by an extremely small variation in color coordinate of Δ(x,y)=(0.002, 0.002) in the forward luminance range of 100–1000 cd m{sup −2}. At the same time, the blue emission color of bottom side is not influenced by the color conversion capping layer, which finally results in different emission colors of the two opposite sides of our transparent OLEDs. - Highlights: • We report transparent organic light-emitting diodes (OLEDs) with different bi-directional emission colors. • Transparent blue OLED with color-conversion organic capping layers (CCL) shows orange top side emission. • Top white emission exhibits a CCT around 7000 K, with excellent color stability on a driving voltage.

  15. Transparent organic light-emitting diodes with different bi-directional emission colors using color-conversion capping layers

    International Nuclear Information System (INIS)

    Lee, Jonghee; Koh, Tae-Wook; Cho, Hyunsu; Schwab, Tobias; Lee, Jae-Hyun; Hofmann, Simone; Lee, Jeong-Ik; Yoo, Seunghyup

    2015-01-01

    We report a study on transparent organic light-emitting diodes (OLEDs) with different bi-directional emission colors, enabled by color-conversion organic capping layers. Starting from a transparent blue OLED with an uncapped Ag top electrode exhibiting an average transmittance of 33.9%, a 4-(dicyanomethylene)-2-methyl-6-(4-dimethylaminostyryl)-4H-pyran (DCM)-doped tris-(8-hydroxy-quinolinato)-aluminum (Alq3) capping layer is applied to achieve color-conversion from blue to orange-red on the top side while maintaining almost unchanged device transmittance. This color-conversion capping layer does not only change the color of the top side emission, but also enhances the overall device efficiency due to the optical interaction of the capping layer with the primary blue transparent OLED. Top white emission from the transparent bi-directional OLED exhibits a correlated color temperature around 6000–7000 K, with excellent color stability as evidenced by an extremely small variation in color coordinate of Δ(x,y)=(0.002, 0.002) in the forward luminance range of 100–1000 cd m −2 . At the same time, the blue emission color of bottom side is not influenced by the color conversion capping layer, which finally results in different emission colors of the two opposite sides of our transparent OLEDs. - Highlights: • We report transparent organic light-emitting diodes (OLEDs) with different bi-directional emission colors. • Transparent blue OLED with color-conversion organic capping layers (CCL) shows orange top side emission. • Top white emission exhibits a CCT around 7000 K, with excellent color stability on a driving voltage

  16. Light water lattices

    International Nuclear Information System (INIS)

    1962-01-01

    The panel was attended by prominent physicists from most of the well-known laboratories in the field of light-water lattices, who exchanged the latest information on the status of work in their countries and discussed both the theoretical and the experimental aspects of the subjects. The supporting papers covered most problems, including criticality, resonance absorption, thermal utilization, spectrum calculations and the physics of plutonium bearing systems. Refs, figs and tabs

  17. Neutron thermalization in light water

    International Nuclear Information System (INIS)

    Abbate, M.J.; Lolich, J.V.

    1975-05-01

    Investigations related to neutron thermalization in light water have been made. Neutron spectra under quasi-infinite-medium conditions have been measured by the time-of-flight technique and calculations were performed with different codes. Through the use of improved experimental techniques and the best known calculational techniques available, the known discrepancies between experimentals and theoretical values were below from 40% to 16%. The present disagreement is believed to be due the scattering model used (ENDF-GASKET, based on the modified Haywood II frequency spectra), that shows to be very satisfactory for poisoned light water cases. Moreover, previous experiments were completed and differential, integral and pulse-source experimental techniques were improved. Also a second step of a neutron and reactor calculation system was completed. (author)

  18. LIGHT WATER MODERATED NEUTRONIC REACTOR

    Science.gov (United States)

    Christy, R.F.; Weinberg, A.M.

    1957-09-17

    A uranium fuel reactor designed to utilize light water as a moderator is described. The reactor core is in a tank at the bottom of a substantially cylindrical cross-section pit, the core being supported by an apertured grid member and comprised of hexagonal tubes each containing a pluralily of fuel rods held in a geometrical arrangement between end caps of the tubes. The end caps are apertured to permit passage of the coolant water through the tubes and the fuel elements are aluminum clad to prevent corrosion. The tubes are hexagonally arranged in the center of the tank providing an amulus between the core and tank wall which is filled with water to serve as a reflector. In use, the entire pit and tank are filled with water in which is circulated during operation by coming in at the bottom of the tank, passing upwardly through the grid member and fuel tubes and carried off near the top of the pit, thereby picking up the heat generated by the fuel elements during the fission thereof. With this particular design the light water coolant can also be used as the moderator when the uranium is enriched by fissionable isotope to an abundance of U/sup 235/ between 0.78% and 2%.

  19. Surface Plasmon-Assisted Solar Energy Conversion.

    Science.gov (United States)

    Dodekatos, Georgios; Schünemann, Stefan; Tüysüz, Harun

    2016-01-01

    The utilization of localized surface plasmon resonance (LSPR) from plasmonic noble metals in combination with semiconductors promises great improvements for visible light-driven photocatalysis, in particular for energy conversion. This review summarizes the basic principles of plasmonic photocatalysis, giving a comprehensive overview about the proposed mechanisms for enhancing the performance of photocatalytically active semiconductors with plasmonic devices and their applications for surface plasmon-assisted solar energy conversion. The main focus is on gold and, to a lesser extent, silver nanoparticles in combination with titania as semiconductor and their usage as active plasmonic photocatalysts. Recent advances in water splitting, hydrogen generation with sacrificial organic compounds, and CO2 reduction to hydrocarbons for solar fuel production are highlighted. Finally, further improvements for plasmonic photocatalysts, regarding performance, stability, and economic feasibility, are discussed for surface plasmon-assisted solar energy conversion.

  20. Feasibility Study of Supercritical Light Water Cooled Fast Reactors for Actinide Burning and Electric Power Production

    Energy Technology Data Exchange (ETDEWEB)

    Mac Donald, Philip Elsworth; Buongiorno, Jacopo; Davis, Cliff Bybee; Weaver, Kevan Dean

    2002-01-01

    The use of supercritical temperature and pressure light water as the coolant in a direct-cycle nuclear reactor offers potential for considerable plant simplification and consequent capital and O&M cost reduction compared with current light water reactor (LWR) designs. Also, given the thermodynamic conditions of the coolant at the core outlet (i.e. temperature and pressure beyond the water critical point), very high thermal efficiencies of the power conversion cycle are possible (i.e. up to 46%). Because no change of phase occurs in the core, the need for steam separators and dryers as well as for BWR-type recirculation pumps is eliminated, which, for a given reactor power, results in a substantially shorter reactor vessel than the current BWRs. Furthermore, in a direct cycle the steam generators are not needed. If a tight fuel rod lattice is adopted, it is possible to significantly reduce the neutron moderation and attain fast neutron energy spectrum conditions. In this project a supercritical water reactor concept with a simple, blanket-free, pancake-shaped core will be developed. This type of core can make use of either fertile or fertile-free fuel and retain the hard spectrum to effectively burn plutonium and minor actinides from LWR spent fuel while efficiently generating electricity.

  1. Critical heat flux experiments in a circular tube with heavy water and light water. (AWBA Development Program)

    International Nuclear Information System (INIS)

    Williams, C.L.; Beus, S.G.

    1980-05-01

    Experiments were performed to establish the critical heat flux (CHF) characteristics of heavy water and light water. Testing was performed with the up-flow of heavy and of light water within a 0.3744 inch inside diameter circular tube with 72.3 inches of heated length. Comparisons were made between heavy water and light water critical heat flux levels for the same local equilibrium quality at CHF, operating pressure, and nominal mass velocity. Results showed that heavy water CHF values were, on the average, 8 percent below the light water CHF values

  2. Effect of light energy density on conversion degree and hardness of dual-cured resin cement.

    Science.gov (United States)

    Komori, Paula Carolina de Paiva; de Paula, Andréia Bolzan; Martin, Airton Abrāo; Tango, Rubens Nisie; Sinhoreti, Mario Alexandre Coelho; Correr-Sobrinho, Lourenço

    2010-01-01

    This study evaluated the effect of different light energy densities on conversion degree (CD) and Knoop hardness number (KHN) of RelyX ARC (RLX) resin cement. After manipulation according to the manufacturer's instructions, RLX was inserted into a rubber mold (0.8 mm x 5 mm) and covered with a Mylar strip. The tip of the light-curing unit (LCU) was positioned in contact with the Mylar surface. Quartz-tungsten-halogen (QTH) and light-emitting diode (LED) LCUs with light densities of 10, 20 and 30 J/cm2 were used to light-cure the specimens. After light curing, the specimens were stored dry in lightproof containers at 37 degrees C. After 24 hours, the CD was analyzed by FT-Raman and, after an additional 24-hours, samples were submitted to Knoop hardness testing. The data of the CD (%) and KHN were submitted to two-way ANOVA and the Tukey's test (alpha = 0.05). QTH and LED were effective light curing units. For QTH, there were no differences among the light energy densities for CD or KHN. For LED, there was a significant reduction in CD with the light energy density set at 10 J/cm2. KHN was not influenced by the light-curing unit and by its light energy density.

  3. Light energy dissipation under water stress conditions

    International Nuclear Information System (INIS)

    Stuhlfauth, T.; Scheuermann, R.; Fock, H.P.

    1990-01-01

    Using 14 CO 2 gas exchange and metabolite analyses, stomatal as well as total internal CO 2 uptake and evolution were estimated. Pulse modulated fluorescence was measured during induction and steady state of photosynthesis. Leaf water potential of Digitalis lanata EHRH. plants decreased to -2.5 megapascals after withholding irrigation. By osmotic adjustment, leaves remained turgid and fully exposed to irradiance even at severe water stress. Due to the stress-induced reduction of stomatal conductance, the stomatal CO 2 exchange was drastically reduced, whereas the total CO 2 uptake and evolution were less affected. Stomatal closure induced an increase in the reassimilation of internally evolved CO 2 . This CO 2 -recycling consumes a significant amount of light energy in the form of ATP and reducing equivalents. As a consequence, the metabolic demand for light energy is only reduced by about 40%, whereas net photosynthesis is diminished by about 70% under severe stress conditions. By CO 2 recycling, carbon flux, enzymatic substrate turnover and consumption of light energy were maintained at high levels, which enabled the plant to recover rapidly after rewatering. In stressed D. lanata plants a variable fluorescence quenching mechanism, termed coefficient of actinic light quenching, was observed. Besides water conservation, light energy dissipation is essential and involves regulated metabolic variations

  4. Highly photoluminescent and photostable CdSe quantum dot-nylon hybrid composites for efficient light conversion applications

    Energy Technology Data Exchange (ETDEWEB)

    Yuan Ying; Riehle, Frank-Stefan [Freiburg Materials Research Centre (FMF), University of Freiburg, Stefan-Meier-Str. 21, D-79104 Freiburg (Germany); Department of Microsystems Engineering (IMTEK), Georg Koehler Allee 103, University of Freiburg, D-79110 Freiburg (Germany); Nitschke, Roland [Life Imaging Center, Centre of Systems Biology, University of Freiburg Habsburgerstr. 49, D-79104 Freiburg (Germany); Centre for Biological Signalling Studies (BIOSS), University of Freiburg (Germany); Krueger, Michael, E-mail: michael.krueger@fmf.uni-freiburg.de [Freiburg Materials Research Centre (FMF), University of Freiburg, Stefan-Meier-Str. 21, D-79104 Freiburg (Germany); Department of Microsystems Engineering (IMTEK), Georg Koehler Allee 103, University of Freiburg, D-79110 Freiburg (Germany)

    2012-02-15

    Highlights: Black-Right-Pointing-Pointer A novel in situ synthesis approach for highly luminescent CdSe core QDs-nylon hybrid materials. Black-Right-Pointing-Pointer Potential applications for light and energy conversion are demonstrated. Black-Right-Pointing-Pointer Three dimensional structures out of this hybrid material are available. - Abstract: Highly photoluminescent hexadecylamine (HDA) capped core CdSe quantum dots (QDs) with fluorescent quantum yields (QYs) up to 60% were synthesized using a hot injection method and directly incorporated into nylon polymer. For the incorporation of crude CdSe QDs into nylon a simple reproducible and upscalable one pot approach was developed without the need of further purification steps. The photoluminescence (PL) properties of the core QDs and the resulting QD-polymer hybrid composites were investigated and compared. Red emitting hybrid materials exhibit a QY of 60% with a high potential for applications in direct light and energy conversion. The hybrid materials could be successfully utilized as LED conversion layers. By avoiding exposure to oxygen the hybrid films can be kept for a month without detecting a significant decrease in luminescence. Various three dimensional structures are easily available opening doors for further applications such as novel materials for fluorescence standard development in laser scanning microscopy (LSM).

  5. EPR's energy conversion system. Alstom's solutions

    International Nuclear Information System (INIS)

    Ledermann, P.

    2009-01-01

    ARABELLE steam turbines have been developed by Alstom to be used as the energy conversion system of light water reactors with high output power like the N4 PWR and the EPR. ARABELLE turbines cumulate 200.000 hours of service with a reliability ratio of 99.97 per cent. This series of slides presents the main features of the turbine including: the use of the simple flux, the very large shape of low pressure blades, the technology of welded rotors. The other main equipment like the alternator, the condenser, the moisture separator-reheaters, the circulating pumps that Alstom integrates in the energy conversion system have benefited with technological improvements that are also presented. (A.C.)

  6. Direct measurement of electron beam quality conversion factors using water calorimetry.

    Science.gov (United States)

    Renaud, James; Sarfehnia, Arman; Marchant, Kristin; McEwen, Malcolm; Ross, Carl; Seuntjens, Jan

    2015-11-01

    In this work, the authors describe an electron sealed water calorimeter (ESWcal) designed to directly measure absorbed dose to water in clinical electron beams and its use to derive electron beam quality conversion factors for two ionization chamber types. A functioning calorimeter prototype was constructed in-house and used to obtain reproducible measurements in clinical accelerator-based 6, 9, 12, 16, and 20 MeV electron beams. Corrections for the radiation field perturbation due to the presence of the glass calorimeter vessel were calculated using Monte Carlo (MC) simulations. The conductive heat transfer due to dose gradients and nonwater materials was also accounted for using a commercial finite element method software package. The relative combined standard uncertainty on the ESWcal dose was estimated to be 0.50% for the 9-20 MeV beams and 1.00% for the 6 MeV beam, demonstrating that the development of a water calorimeter-based standard for electron beams over such a wide range of clinically relevant energies is feasible. The largest contributor to the uncertainty was the positioning (Type A, 0.10%-0.40%) and its influence on the perturbation correction (Type B, 0.10%-0.60%). As a preliminary validation, measurements performed with the ESWcal in a 6 MV photon beam were directly compared to results derived from the National Research Council of Canada (NRC) photon beam standard water calorimeter. These two independent devices were shown to agree well within the 0.43% combined relative uncertainty of the ESWcal for this beam type and quality. Absorbed dose electron beam quality conversion factors were measured using the ESWcal for the Exradin A12 and PTW Roos ionization chambers. The photon-electron conversion factor, kecal, for the A12 was also experimentally determined. Nonstatistically significant differences of up to 0.7% were found when compared to the calculation-based factors listed in the AAPM's TG-51 protocol. General agreement between the relative

  7. Polarization Patterns of Transmitted Celestial Light under Wavy Water Surfaces

    Directory of Open Access Journals (Sweden)

    Guanhua Zhou

    2017-03-01

    Full Text Available This paper presents a model to describe the polarization patterns of celestial light, which includes sunlight and skylight, when refracted by wavy water surfaces. The polarization patterns and intensity distribution of refracted light through the wave water surface were calculated. The model was validated by underwater experimental measurements. The experimental and theoretical values agree well qualitatively. This work provides a quantitative description of the repolarization and transmittance of celestial light transmitted through wave water surfaces. The effects of wind speed and incident sources on the underwater refraction polarization patterns are discussed. Scattering skylight dominates the polarization patterns while direct solar light is the dominant source of the intensity of the underwater light field. Wind speed has an influence on disturbing the patterns under water.

  8. LOGOS. HX: a core simulator for high conversion boiling water reactors

    International Nuclear Information System (INIS)

    Tsuiki, Makoto; Sakurada, Koichi; Yoshida, Hiroyuki.

    1988-01-01

    A three-dimensional physics simulator 'LOGOS. HX' has been developed for the designing analysis of high conversion boiling water reactor (HCBWR) cores. Its functions, calculational methods, and verification results will briefly be discussed. (author)

  9. Analysis of graphite gasification by water vapor at different conversions

    International Nuclear Information System (INIS)

    Xiaowei, Luo; Xiaoyu, Yu; Suyuan, Yu; Jean-Charles, Robin

    2014-01-01

    Highlights: • Graphite was gasified at different conversions. • The reaction temperature influences on the dimensionless the reaction rate. • The thickness or radius influence on the dimensionless reaction rate. - Abstract: The gasification rate of porous solids varies with the conversions with the rate increasing to a maximum and then decreasing. Many graphite gasification experiments have illustrated that the maximum gasification rates occur at different conversions for different temperatures and sample geometries. Thus, the gasification rate is related to the conversion, temperature and geometry of the graphite. The influences of those factors were studied for the graphite gasification by water vapor. A theoretical analysis was done on the basis of several logical assumptions. The influence of temperatures on the reaction rate was investigated for plate-like and cylindrical graphite. The effects of thickness for a plate-like graphite sample and of radius for a cylindrical sample on the reaction rate were also studied theoretically. The results reveal that the maximum dimensionless reaction rate decreases with reaction temperature. The plate thickness or the cylinder radius also affects the maximum dimensionless reaction rate

  10. Influence of the photoinitiator system and light photoactivation units on the degree of conversion of dental composites.

    Science.gov (United States)

    Porto, Isabel Cristina Celerino de Moraes; Soares, Luis Eduardo Silva; Martin, Airton Abrahão; Cavalli, Vanessa; Liporoni, Priscila Christiane Suzy

    2010-01-01

    The aim of this study was to observe the influence of two light polymerization units (LED or halogen light) on the degree of conversion (DC) of three dental composites with lighter shades and a different photoinitiator system. The top (T) and bottom (B) surfaces of 60 discs of composite resin (Filtek™ Supreme, Filtek™ Z250, Tetric™ Ceram Bleach) cured either by LED or by halogen lamp (HL) were studied using an FT-Raman spectrometer. The degree of conversion (DC) was evaluated by following the changes in the intensity of the methacrylate C=C stretching mode at 1640 cm⁻¹. The calculated DC ranged from 54.2% (B) to 73.4% (T) and from 60.2% (B) to 76.6% (T) for the LED and HL, respectively. LED and halogen devices were able to produce an adequate DC for all the resins tested.

  11. Development of quantitative analytical procedures on two-phase flow in tight-lattice fuel bundles for reduced-moderation light-water reactors

    International Nuclear Information System (INIS)

    Ohnuki, A.; Kureta, M.; Takae, K.; Tamai, H.; Akimoto, H.; Yoshida, H.

    2004-01-01

    The research project to investigate thermal-hydraulic performance in tight-lattice rod bundles for Reduced-Moderation Water Reactor (RMWR) started at Japan Atomic Energy Research Institute (JAERI) in 2002. The RMWR is a light water reactor for which a higher conversion ratio more than one can be expected. In order to attain this higher conversion ratio, triangular tight-lattice fuel bundles whose gap spacing between each fuel rod is around 1 mm are required. As for the thermal design of the RMWR core, conventional analytical methods are no good because the conventional composition equations can not predict the RMWR core with high accuracy. Then, development of new quantitative analytical procedures was carried out. Those analytical procedures are constructed by model experiments and advanced two-phase flow analysis codes. This paper describes the results of the model experiments and analytical results with the developed analysis codes. (authors)

  12. Water Footprints and ‘Pozas’: Conversations about Practices and Knowledges of Water Efficiency

    Directory of Open Access Journals (Sweden)

    Carolina Domínguez Guzmán

    2017-01-01

    Full Text Available In this article we present two logics of water efficiency: that of the Water Footprint and that of mango smallholder farmers on the desert coast of Peru (in Motupe. We do so in order to explore how both can learn from each other and to discuss what happens when the two logics meet. Rather than treating the Water Footprint as scientific, in the sense that it is separate from traditions or politics, and Motupe poza irrigation as cultural and, therefore, thick with local beliefs and superstitions, we describe both as consisting of intricate entanglements of knowledge and culture. This produces a more or less level playing field for the two water logics to meet and for proponents of each to enter into a conversation with one another; allowing furthermore for the identification of what Water Footprint inventors and promotors can learn from poza irrigators, and vice versa. The article concludes that important water wisdom may get lost when the Water Footprint logic becomes dominant, as is currently about to happen in Peru.

  13. Low temperature coal depolymerization-liquefaction: conversion of a North Dakota lignite to a light hydrocarbon oil

    Energy Technology Data Exchange (ETDEWEB)

    Shabtai, J.; Yuan Zhang (University of Utah, Salt Lake City, UT (USA). Dept. of Fuels Engineering)

    1989-10-01

    A new low temperature method of coal liquefaction is described which includes intercalation of the coal with FeCl{sub 3}, depolymerization under supercritical conditions, and hydroprocessing of the depolymerized product. Results indicate a high yield conversion of lignites to light hydrocarbon oils. 6 refs., 4 figs., 1 tab.

  14. Catalytic conversion of light alkanes. Quarterly progress report, April 1--June 30, 1992

    Energy Technology Data Exchange (ETDEWEB)

    Lyons, J.E.

    1992-06-30

    The second Quarterly Report of 1992 on the Catalytic Conversion of Light Alkanes reviews the work done between April 1, 1992 and June 31, 1992 on the Cooperative Agreement. The mission of this work is to devise a new catalyst which can be used in a simple economic process to convert the light alkanes in natural gas to oxygenate products that can either be used as clean-burning, high octane liquid fuels, as fuel components or as precursors to liquid hydrocarbon uwspomdon fuel. During the past quarter we have continued to design, prepare, characterize and test novel catalysts for the mild selective reaction of light hydrocarbons with air or oxygen to produce alcohols directly. These catalysts are designed to form active metal oxo (MO) species and to be uniquely active for the homolytic cleavage of the carbon-hydrogen bonds in light alkanes producing intermediates which can form alcohols. We continue to investigate three molecular environments for the active catalytic species that we are trying to generate: electron-deficient macrocycles (PHASE I), polyoxometallates (PHASE II), and regular oxidic lattices including zeolites and related structures as well as other molecular surface structures having metal oxo groups (PHASE I).

  15. Light energy dissipation under water stress conditions

    Energy Technology Data Exchange (ETDEWEB)

    Stuhlfauth, T.; Scheuermann, R.; Fock, H.P. (Universitaet Kaiserslautern (West Germany))

    1990-04-01

    Using {sup 14}CO{sub 2} gas exchange and metabolite analyses, stomatal as well as total internal CO{sub 2} uptake and evolution were estimated. Pulse modulated fluorescence was measured during induction and steady state of photosynthesis. Leaf water potential of Digitalis lanata EHRH. plants decreased to {minus}2.5 megapascals after withholding irrigation. By osmotic adjustment, leaves remained turgid and fully exposed to irradiance even at severe water stress. Due to the stress-induced reduction of stomatal conductance, the stomatal CO{sub 2} exchange was drastically reduced, whereas the total CO{sub 2} uptake and evolution were less affected. Stomatal closure induced an increase in the reassimilation of internally evolved CO{sub 2}. This CO{sub 2}-recycling consumes a significant amount of light energy in the form of ATP and reducing equivalents. As a consequence, the metabolic demand for light energy is only reduced by about 40%, whereas net photosynthesis is diminished by about 70% under severe stress conditions. By CO{sub 2} recycling, carbon flux, enzymatic substrate turnover and consumption of light energy were maintained at high levels, which enabled the plant to recover rapidly after rewatering. In stressed D. lanata plants a variable fluorescence quenching mechanism, termed coefficient of actinic light quenching, was observed. Besides water conservation, light energy dissipation is essential and involves regulated metabolic variations.

  16. Light scattering by particles in water theoretical and experimental foundations

    CERN Document Server

    Jonasz, Miroslaw

    2007-01-01

    Light scattering-based methods are used to characterize small particles suspended in water in a wide range of disciplines ranging from oceanography, through medicine, to industry. The scope and accuracy of these methods steadily increases with the progress in light scattering research. This book focuses on the theoretical and experimental foundations of the study and modeling of light scattering by particles in water and critically evaluates the key constraints of light scattering models. It begins with a brief review of the relevant theoretical fundamentals of the interaction of light with condensed matter, followed by an extended discussion of the basic optical properties of pure water and seawater and the physical principles that explain them. The book continues with a discussion of key optical features of the pure water/seawater and the most common components of natural waters. In order to clarify and put in focus some of the basic physical principles and most important features of the experimental data o...

  17. Influence of the photoinitiator system and light photoactivation units on the degree of conversion of dental composites

    Directory of Open Access Journals (Sweden)

    Isabel Cristina Celerino de Moraes Porto

    2010-12-01

    Full Text Available The aim of this study was to observe the influence of two light polymerization units (LED or halogen light on the degree of conversion (DC of three dental composites with lighter shades and a different photoinitiator system. The top (T and bottom (B surfaces of 60 discs of composite resin (Filtek™ Supreme, Filtek™ Z250, Tetric™ Ceram Bleach cured either by LED or by halogen lamp (HL were studied using an FT-Raman spectrometer. The degree of conversion (DC was evaluated by following the changes in the intensity of the methacrylate C=C stretching mode at 1640 cm-1. The calculated DC ranged from 54.2% (B to 73.4% (T and from 60.2% (B to 76.6% (T for the LED and HL, respectively. LED and halogen devices were able to produce an adequate DC for all the resins tested.

  18. Curing potential of experimental resin composites with systematically varying amount of bioactive glass: Degree of conversion, light transmittance and depth of cure.

    Science.gov (United States)

    Par, Matej; Spanovic, Nika; Bjelovucic, Ruza; Skenderovic, Hrvoje; Gamulin, Ozren; Tarle, Zrinka

    2018-06-17

    The aim of this work was to investigate the curing potential of an experimental resin composite series with the systematically varying amount of bioactive glass 45S5 by evaluating the degree of conversion, light transmittance and depth of cure. Resin composites based on a Bis-GMA/TEGDMA resin with a total filler load of 70 wt% and a variable amount of bioactive glass (0-40 wt%) were prepared. The photoinitiator system was camphorquinone and ethyl-4-(dimethylamino) benzoate. The degree of conversion and light transmittance were measured by Raman spectroscopy and UV-vis spectroscopy, respectively. The depth of cure was evaluated according to the classical ISO 4049 test. The initial introduction of bioactive glass into the experimental series diminished the light transmittance while the further increase in the bioactive glass amount up to 40 wt% caused minor variations with no clear trend. The curing potential of the experimental composites was similar to or better than that of commercial resin composites. However, unsilanized bioactive glass fillers demonstrated the tendency to diminish both the maximum attainable conversion and the curing efficiency at depth. Experimental composite materials containing bioactive glass showed a clinically acceptable degree of conversion and depth of cure. The degree of conversion and depth of cure were diminished by bioactive glass fillers in a dose-dependent manner, although light transmittance was similar among all of the experimental composites containing 5-40 wt% of bioactive glass. Reduced curing potential caused by the bioactive glass has possible consequences on mechanical properties and biocompatibility. Copyright © 2018 Elsevier Ltd. All rights reserved.

  19. Supercritical-pressure light water cooled reactors

    CERN Document Server

    Oka, Yoshiaki

    2014-01-01

    This book focuses on the latest reactor concepts, single pass core and experimental findings in thermal hydraulics, materials, corrosion, and water chemistry. It highlights research on supercritical-pressure light water cooled reactors (SCWRs), one of the Generation IV reactors that are studied around the world. This book includes cladding material development and experimental findings on heat transfer, corrosion and water chemistry. The work presented here will help readers to understand the fundamental elements of reactor design and analysis methods, thermal hydraulics, materials and water

  20. Developmental Light-Water Reactor Program

    International Nuclear Information System (INIS)

    Forsberg, C.W.

    1989-12-01

    This report summarizes the progress of the Developmental Light-Water Reactor (DLWR) Program at Oak Ridge National Laboratory in FY 1989. It also includes (1) a brief description of the program, (2) definition of goals, (3) earlier achievements, and (4) proposed future activities

  1. Direct measurement of electron beam quality conversion factors using water calorimetry

    Energy Technology Data Exchange (ETDEWEB)

    Renaud, James, E-mail: james.renaud@mail.mcgill.ca; Seuntjens, Jan [Medical Physics Unit, McGill University, Montréal, Québec H3G 1A4 (Canada); Sarfehnia, Arman [Medical Physics Unit, McGill University, Montréal, Québec H3G 1A4, Canada and Department of Radiation Oncology, University of Toronto, Toronto, Ontario M5S 3E2 (Canada); Marchant, Kristin [Allan Blair Cancer Centre, Saskatchewan Cancer Agency, Regina, Saskatchewan S4T 7T1, Canada and Department of Oncology, University of Saskatchewan, Saskatoon, Saskatchewan S7N 5A1 (Canada); McEwen, Malcolm; Ross, Carl [Ionizing Radiation Standards, National Research Council of Canada, Ottawa, Ontario K1A 0R6 (Canada)

    2015-11-15

    Purpose: In this work, the authors describe an electron sealed water calorimeter (ESWcal) designed to directly measure absorbed dose to water in clinical electron beams and its use to derive electron beam quality conversion factors for two ionization chamber types. Methods: A functioning calorimeter prototype was constructed in-house and used to obtain reproducible measurements in clinical accelerator-based 6, 9, 12, 16, and 20 MeV electron beams. Corrections for the radiation field perturbation due to the presence of the glass calorimeter vessel were calculated using Monte Carlo (MC) simulations. The conductive heat transfer due to dose gradients and nonwater materials was also accounted for using a commercial finite element method software package. Results: The relative combined standard uncertainty on the ESWcal dose was estimated to be 0.50% for the 9–20 MeV beams and 1.00% for the 6 MeV beam, demonstrating that the development of a water calorimeter-based standard for electron beams over such a wide range of clinically relevant energies is feasible. The largest contributor to the uncertainty was the positioning (Type A, 0.10%–0.40%) and its influence on the perturbation correction (Type B, 0.10%–0.60%). As a preliminary validation, measurements performed with the ESWcal in a 6 MV photon beam were directly compared to results derived from the National Research Council of Canada (NRC) photon beam standard water calorimeter. These two independent devices were shown to agree well within the 0.43% combined relative uncertainty of the ESWcal for this beam type and quality. Absorbed dose electron beam quality conversion factors were measured using the ESWcal for the Exradin A12 and PTW Roos ionization chambers. The photon-electron conversion factor, k{sub ecal}, for the A12 was also experimentally determined. Nonstatistically significant differences of up to 0.7% were found when compared to the calculation-based factors listed in the AAPM’s TG-51 protocol

  2. Optical analysis of down-conversion OLEDs

    Science.gov (United States)

    Krummacher, Benjamin; Klein, Markus; von Malm, Norwin; Winnacker, Albrecht

    2008-02-01

    Phosphor down-conversion of blue organic light-emitting diodes (OLEDs) is one approach to generate white light, which offers the possibility of easy color tuning, a simple device architecture and color stability over lifetime. In this article previous work on down-conversion devices in the field of organic solid state lighting is briefly reviewed. Further, bottom emitting down-conversion OLEDs are studied from an optical point of view. Therefore the physical processes occurring in the down-conversion layer are translated into a model which is implemented in a ray tracing simulation. By comparing its predictions to experimental results the model is confirmed. For the experiments a blue-emitting polymer OLED (PLED) panel optically coupled to a series of down-conversion layers is used. Based on results obtained from ray tracing simulation some of the implications of the model for the performance of down-conversion OLEDs are discussed. In particular it is analysed how the effective reflectance of the underlying blue OLED and the particle size distribution of the phosphor powder embedded in the matrix of the down-conversion layer influence extraction efficiency.

  3. Integration of Enzymes in Polyaniline-Sensitized 3D Inverse Opal TiO2 Architectures for Light-Driven Biocatalysis and Light-to-Current Conversion.

    Science.gov (United States)

    Riedel, Marc; Lisdat, Fred

    2018-01-10

    Inspired by natural photosynthesis, coupling of artificial light-sensitive entities with biocatalysts in a biohybrid format can result in advanced photobioelectronic systems. Herein, we report on the integration of sulfonated polyanilines (PMSA1) and PQQ-dependent glucose dehydrogenase (PQQ-GDH) into inverse opal TiO 2 (IO-TiO 2 ) electrodes. While PMSA1 introduces sensitivity for visible light into the biohybrid architecture and ensures the efficient wiring between the IO-TiO 2 electrode and the biocatalytic entity, PQQ-GDH provides the catalytic activity for the glucose oxidation and therefore feeds the light-driven reaction with electrons for an enhanced light-to-current conversion. Here, the IO-TiO 2 electrodes with pores of around 650 nm provide a suitable interface and morphology needed for the stable and functional assembly of polymer and enzyme. The IO-TiO 2 electrodes have been prepared by a template approach applying spin coating, allowing an easy scalability of the electrode height and surface area. The successful integration of the polymer and the enzyme is confirmed by the generation of an anodic photocurrent, showing an enhanced magnitude with increasing glucose concentrations. Compared to flat and nanostructured TiO 2 electrodes, the three-layered IO-TiO 2 electrodes give access to a 24-fold and 29-fold higher glucose-dependent photocurrent due to the higher polymer and enzyme loading in IO films. The three-dimensional IO-TiO 2 |PMSA1|PQQ-GDH architecture reaches maximum photocurrent densities of 44.7 ± 6.5 μA cm -2 at low potentials in the presence of glucose (for a three TiO 2 layer arrangement). The onset potential for the light-driven substrate oxidation is found to be at -0.315 V vs Ag/AgCl (1 M KCl) under illumination with 100 mW cm -2 , which is more negative than the redox potential of the enzyme. The results demonstrate the advantageous properties of IO-TiO 2 |PMSA1|PQQ-GDH biohybrid architectures for the light-driven glucose conversion

  4. A light-water detritiation project at Chalk River Laboratories

    International Nuclear Information System (INIS)

    Boniface, H.A.; Castillo, I.; Everatt, A.E.; Ryland, D.K.

    2010-01-01

    The NRU reactor rod bays is a large, open pool of water that receives hundreds of fuel rods annually, each carrying a small amount of residual tritiated heavy water. The tritium concentration of the rod bays water has risen over the years, to a level that is of concern to the operations staff and to the environment. The proposed long-term solution is to reduce the rod bays tritium concentration by direct detritiation of the water. The Combined Electrolytic-Catalytic Exchange (CECE) process is well suited to the light-water detritiation problem. With a tritium-protium separation factor greater than five, a CECE detritiation process can easily achieve the eight orders of magnitude separation required to split a tritiated light-water feed into an essentially tritium-free effluent stream and a tritiated heavy water product suitable for recycling through a heavy water upgrader. This paper describes a CECE light-water detritiation process specifically designed to reduce the tritium concentration in the NRU rod bays to an acceptable level. The conceptual design of a 600 Mg/a detritiation process has been developed and is now at the stage of project review and the beginning of detailed design. (author)

  5. Design features of the Light Water Breeder Reactor (LWBR) which improve fuel utilization in light water reactors (LWBR development program)

    International Nuclear Information System (INIS)

    Hecker, H.C.; Freeman, L.B.

    1981-08-01

    This report surveys reactor core design features of the Light Water Breeder Reactor which make possible improved fuel utilization in light water reactor systems and breeding with the uranium-thorium fuel cycle. The impact of developing the uranium-thorium fuel cycle on utilization of nuclear fuel resources is discussed. The specific core design features related to improved fuel utilization and breeding which have been implemented in the Shippingport LWBR core are presented. These design features include a seed-blanket module with movable fuel for reactivity control, radial and axial reflcetor regions, low hafnium Zircaloy for fuel element cladding and structurals, and a closely spaced fuel rod lattice. Also included is a discussion of several design modifications which could further improve fuel utilization in future light water reactor systems. These include further development of movable fuel control, use of Zircaloy fuel rod support grids, and fuel element design modifications

  6. Measurements of the light conversion efficiency of lithium borate for alpha particles relative to cobalt-60 gamma radiation

    Energy Technology Data Exchange (ETDEWEB)

    Bartlett, D.T.; Wall, B.F.; Fisher, E.S. (National Radiological Protection Board, Harwell (UK))

    1982-01-01

    The results are reported of measurements of the light conversion efficiencies of lithium borate TLD phosphor of British Nuclear Fuels Ltd. manufacture to 5.65 MeV and 2.4 MeV alpha particles relative to /sup 60/Co gamma radiation.

  7. Design study on PWR-type reduced-moderation light water core. Investigation of core adopting seed-blanket fuel assemblies

    Energy Technology Data Exchange (ETDEWEB)

    Shimada, Shoichiro; Kugo, Teruhiko; Okubo, Tsutomu; Iwamura, Takamichi [Japan Atomic Energy Research Inst., Tokai, Ibaraki (Japan). Tokai Research Establishment

    2003-03-01

    As a part of the design study on PWR-type Reduced-Moderation Water Reactors (RMWRs), a light water cooled core with the seed-blanket type fuel assemblies has been investigated. An assembly with seed of 13 layers and blanket of 5 layers was selected by optimization calculations. The core was composed with the 163 assemblies. The following results were obtained by burn-up calculations with the MVP-BURN code; The cycle length is 15 months by 3-batch refueling. The discharge burn-up including the inner blanket is about 25 GWd/t. The conversion ratio is about 1.0. The void reactivity coefficient is about-26.1 pcm/%void at BOC and -21.7pcm%void at EOC. About 10% of MA makes conversion ratio decrease about 0.05 to obtain the same burn-up. The void reactivity coefficient increased significantly and it is necessary to reduce it. FP amount corresponding to about 2 % of total plutonium weight makes reactivity decrease about 0.5 %{delta}k/k and void reactivity coefficient increase, however these changes are within the design margins. Capability of multi-recycling of plutonium was confirmed, using discharged plutonium for 4 cycles, if fissile plutonium of 15.5wt% is used. The conversion ratio increases by about 0.026 with recycling. However, void reactivity coefficient increases and some effort to obtain negative void reactivity coefficient is necessary. (author)

  8. Photocatalytic Conversion of Nitrogen to Ammonia with Water on Surface Oxygen Vacancies of Titanium Dioxide.

    Science.gov (United States)

    Hirakawa, Hiroaki; Hashimoto, Masaki; Shiraishi, Yasuhiro; Hirai, Takayuki

    2017-08-09

    Ammonia (NH 3 ) is an essential chemical in modern society. It is currently manufactured by the Haber-Bosch process using H 2 and N 2 under extremely high-pressure (>200 bar) and high-temperature (>673 K) conditions. Photocatalytic NH 3 production from water and N 2 at atmospheric pressure and room temperature is ideal. Several semiconductor photocatalysts have been proposed, but all suffer from low efficiency. Here we report that a commercially available TiO 2 with a large number of surface oxygen vacancies, when photoirradiated by UV light in pure water with N 2 , successfully produces NH 3 . The active sites for N 2 reduction are the Ti 3+ species on the oxygen vacancies. These species act as adsorption sites for N 2 and trapping sites for the photoformed conduction band electrons. These properties therefore promote efficient reduction of N 2 to NH 3 . The solar-to-chemical energy conversion efficiency is 0.02%, which is the highest efficiency among the early reported photocatalytic systems. This noble-metal-free TiO 2 system therefore shows a potential as a new artificial photosynthesis for green NH 3 production.

  9. High enrichment to low enrichment core's conversion. Technical securities

    International Nuclear Information System (INIS)

    Abbate, P.; Madariaga, M.R.

    1990-01-01

    This work presents the fulfillment of the technical securities subscribed by INVAP S.E. for the conversion of a high enriched uranium core. The reactor (of 5 thermal Mw), built in the 50's and 60's, is of the 'swimming pool' type, with light water and fuel elements of the curve plates MTR type, enriched at 93.15 %. These are neutronic and thermohydraulic securities. (Author) [es

  10. Direct Drive Generator for Renewable Power Conversion from Water Currents

    International Nuclear Information System (INIS)

    Segergren, Erik

    2005-01-01

    In this thesis permanent magnet direct drive generator for power conversion from water currents is studied. Water currents as a power source involves a number of constrains as well as possibilities, especially when direct drive and permanent magnets are considered. The high power fluxes and low current velocities of a water current, in combination with its natural variations, will affect the way the generator is operated and, flowingly, the appearance of the generator. The work in this thesis can, thus, be categorized into two general topics, generator technology and optimization. Under the first topic, fundamental generator technology is used to increase the efficiency of a water current generator. Under the latter topic, water current generators are optimized to a specific environment. The conclusion drawn from this work is that it is possible to design very low speed direct drive generators with good electromagnetic properties and wide efficiency peak

  11. First-principles quantum-mechanical investigations: The role of water in catalytic conversion of furfural on Pd(111)

    Science.gov (United States)

    Xue, Wenhua; Borja, Miguel Gonzalez; Resasco, Daniel E.; Wang, Sanwu

    2015-03-01

    In the study of catalytic reactions of biomass, furfural conversion over metal catalysts with the presence of water has attracted wide attention. Recent experiments showed that the proportion of alcohol product from catalytic reactions of furfural conversion with palladium in the presence of water is significantly increased, when compared with other solvent including dioxane, decalin, and ethanol. We investigated the microscopic mechanism of the reactions based on first-principles quantum-mechanical calculations. We particularly identified the important role of water and the liquid/solid interface in furfural conversion. Our results provide atomic-scale details for the catalytic reactions. Supported by DOE (DE-SC0004600). This research used the supercomputer resources at NERSC, of XSEDE, at TACC, and at the Tandy Supercomputing Center.

  12. Modeling Water Clarity and Light Quality in Oceans

    Science.gov (United States)

    Phytoplankton is a primary producer of organic compounds, and it forms the base of the food chain in ocean waters. The concentration of phytoplankton in the water column controls water clarity and the amount and quality of light that penetrates through it. The availability of ade...

  13. Large-scale cauliflower-shaped hierarchical copper nanostructures for efficient photothermal conversion

    Science.gov (United States)

    Fan, Peixun; Wu, Hui; Zhong, Minlin; Zhang, Hongjun; Bai, Benfeng; Jin, Guofan

    2016-07-01

    Efficient solar energy harvesting and photothermal conversion have essential importance for many practical applications. Here, we present a laser-induced cauliflower-shaped hierarchical surface nanostructure on a copper surface, which exhibits extremely high omnidirectional absorption efficiency over a broad electromagnetic spectral range from the UV to the near-infrared region. The measured average hemispherical absorptance is as high as 98% within the wavelength range of 200-800 nm, and the angle dependent specular reflectance stays below 0.1% within the 0-60° incident angle. Such a structured copper surface can exhibit an apparent heating up effect under the sunlight illumination. In the experiment of evaporating water, the structured surface yields an overall photothermal conversion efficiency over 60% under an illuminating solar power density of ~1 kW m-2. The presented technology provides a cost-effective, reliable, and simple way for realizing broadband omnidirectional light absorptive metal surfaces for efficient solar energy harvesting and utilization, which is highly demanded in various light harvesting, anti-reflection, and photothermal conversion applications. Since the structure is directly formed by femtosecond laser writing, it is quite suitable for mass production and can be easily extended to a large surface area.Efficient solar energy harvesting and photothermal conversion have essential importance for many practical applications. Here, we present a laser-induced cauliflower-shaped hierarchical surface nanostructure on a copper surface, which exhibits extremely high omnidirectional absorption efficiency over a broad electromagnetic spectral range from the UV to the near-infrared region. The measured average hemispherical absorptance is as high as 98% within the wavelength range of 200-800 nm, and the angle dependent specular reflectance stays below 0.1% within the 0-60° incident angle. Such a structured copper surface can exhibit an apparent

  14. Light-water reactor accident classification

    International Nuclear Information System (INIS)

    Washburn, B.W.

    1980-02-01

    The evolution of existing classifications and definitions of light-water reactor accidents is considered. Licensing practice and licensing trends are examined with respect to terms of art such as Class 8 and Class 9 accidents. Interim definitions, consistent with current licensing practice and the regulations, are proposed for these terms of art

  15. Fast reactor cooled by supercritical light water

    Energy Technology Data Exchange (ETDEWEB)

    Ishiwatari, Yuki; Mukouhara, Tami; Koshizuka, Seiichi; Oka, Yoshiaki [Tokyo Univ., Nuclear Engineering Research Lab., Tokai, Ibaraki (Japan)

    2001-09-01

    This report introduces the result of a feasibility study of a fast reactor cooled by supercritical light water (SCFR) with once-through cooling system. It is characterized by (1) no need of steam separator, recirculation system, or steam generator, (2) 1/7 of core flow rate compared with BWR or PWR, (3) high temperature and high pressure permits small turbine and high efficiency exceeding 44%, (4) structure and operation of major components are already experienced by LWRs or thermal power plants. Modification such as reducing blanket fuels and increasing seed fuels are made to achieve highly economic utilization of Pu and high power (2 GWe). The following restrictions were satisfied. (1) Maximum linear heat rate 39 kW/m, (2) Maximum surface temperature of Inconel cladding 620degC, (3) Negative void reactivity coefficient, (4) Fast neutron irradiation rate at the inner surface of pressure vessel less than 2.0x10{sup 19} n/cm{sup 2}. Thus the high power density of 167 MW/m{sup 3} including blanket is thought to contributes economy. The high conversion is attained to be 0.99 Pu fission residual rate by the outer radius of fuel rod of 0.88 mm. The breeding of 1.034 by Pu fission residual rate can be achieved by using briquette (tube-in-shell) type fuel structure. (K. Tsuchihashi)

  16. Study of the UV Light Conversion of Feruloyl Amides from Portulaca oleracea and Their Inhibitory Effect on IL-6-Induced STAT3 Activation.

    Science.gov (United States)

    Hwang, Joo Tae; Kim, Yesol; Jang, Hyun-Jae; Oh, Hyun-Mee; Lim, Chi-Hwan; Lee, Seung Woong; Rho, Mun-Chual

    2016-06-30

    Two new feruloyl amides, N-cis-hibiscusamide (5) and (7'S)-N-cis-feruloylnormetanephrine (9), and eight known feruloyl amides were isolated from Portulaca oleracea L. and the geometric conversion of the ten isolated feruloyl amides by UV light was verified. The structures of the feruloyl amides were determined based on spectroscopic data and comparison with literature data. The NMR data revealed that the structures of the isolated compounds showed cis/trans-isomerization under normal laboratory light conditions. Therefore, cis and trans-isomers of feruloyl amides were evaluated for their convertibility and stability by UV light of a wavelength of 254 nm. After 96 h of UV light exposure, 23.2%-35.0% of the cis and trans-isomers were converted to trans-isomers. Long-term stability tests did not show any significant changes. Among all compounds and conversion mixtures collected, compound 6 exhibited the strongest inhibition of IL-6-induced STAT3 activation in Hep3B cells, with an IC50 value of 0.2 μM. This study is the first verification of the conversion rates and an equilibrium ratio of feruloyl amides. These results indicate that this natural material might provide useful information for the treatment of various diseases involving IL-6 and STAT3.

  17. Hydrogen production from water: Recent advances in photosynthesis research

    Energy Technology Data Exchange (ETDEWEB)

    Greenbaum, E.; Lee, J.W. [Oak Ridge National Lab., TN (United States). Chemical Technology Div.

    1997-12-31

    The great potential of hydrogen production by microalgal water splitting is predicated on quantitative measurement of the algae`s hydrogen-producing capability, which is based on the following: (1) the photosynthetic unit size of hydrogen production; (2) the turnover time of photosynthetic hydrogen production; (3) thermodynamic efficiencies of conversion of light energy into the Gibbs free energy of molecular hydrogen; (4) photosynthetic hydrogen production from sea water using marine algae; (5) the potential for research advances using modern methods of molecular biology and genetic engineering to maximize hydrogen production. ORNL has shown that sustained simultaneous photoevolution of molecular hydrogen and oxygen can be performed with mutants of the green alga Chlamydomonas reinhardtii that lack a detectable level of the Photosystem I light reaction. This result is surprising in view of the standard two-light reaction model of photosynthesis and has interesting scientific and technological implications. This ORNL discovery also has potentially important implications for maximum thermodynamic conversion efficiency of light energy into chemical energy by green plant photosynthesis. Hydrogen production performed by a single light reaction, as opposed to two, implies a doubling of the theoretically maximum thermodynamic conversion efficiency from {approx}10% to {approx}20%.

  18. Photoelectrochemical water splitting: optimizing interfaces and light absorption

    NARCIS (Netherlands)

    Park, Sun-Young

    2015-01-01

    In this thesis several photoelectrochemical water splitting devices based on semiconductor materials were investigated. The aim was the design, characterization, and fabrication of solar-to-fuel devices which can absorb solar light and split water to produce hydrogen.

  19. Advanced light water reactors for the nineties

    International Nuclear Information System (INIS)

    Ross, F.A.; Sugnet, W.R.

    1987-01-01

    The EPRI/Industry advanced light water reactor (ALWR) program and the US Department of Energy ALWR program are closely coordinated to meet the common objective which is the availability of improved and simplified light water reactor plants that may be ordered in the next decade to meet new or replacement capacity requirements. The EPRI/Industry objectives, program participants, and foreign participants, utility requirements document, its organization and content, small plant conceptual design program, the DOE ALWR program, design verification program, General Electric ABWR design features, Combustion Engineering system design, mid-size plant development, General Electric SBWR objectives, Westinghouse/Burns and Roe design objectives, construction improvement, and improved instrumentation and control are discussed in the paper

  20. Feasibility Study of Supercritical Light Water Cooled Fast Reactors for Actinide Burning and Electric Power Production Progress Report for Year 1, Quarter 2 (January - March 2002)

    Energy Technology Data Exchange (ETDEWEB)

    Mac Donald, Philip Elsworth; Buongiorno, Jacopo; Davis, Cliff Bybee; Weaver, Kevan Dean

    2002-03-01

    The use of light water at supercritical pressures as the coolant in a nuclear reactor offers the potential for considerable plant simplification and consequent capital and O&M cost reduction compared with current light water reactor (LWR) designs. Also, given the thermodynamic conditions of the coolant at the core outlet (i.e. temperature and pressure beyond the water critical point), very high thermal efficiencies of the power conversion cycle are possible (i.e. up to about 45%). Because no change of phase occurs in the core, the need for steam separators and dryers as well as for BWR-type re-circulation pumps is eliminated, which, for a given reactor power, results in a substantially shorter reactor vessel and smaller containment building than the current BWRs. Furthermore, in a direct cycle the steam generators are not needed.

  1. Up-conversion nanoparticles sensitized inverse opal photonic crystals enable efficient water purification under NIR irradiation

    Science.gov (United States)

    Zhang, Yuanyuan; Wang, Lili; Ma, Xiumei; Ren, Junfeng; Sun, Qinxing; Shi, Yongsheng; Li, Lin; Shi, Jinsheng

    2018-03-01

    A novel porous monolayer inverse opal (IO) structure was prepared by a simple sol-gel method combined with a self-assembly PS photonic crystal (PC) as template. By prolonging deposition time of PS spheres, three-dimensional multilayer TiO2 IOPC was also fabricated. Up-conversion nanoparticles (UCNPs) were selected to sensitize TiO2 IOPCs. Photocatalytic activity of as-prepared materials was investigated by disinfection of bacteria and organic pollutant degradation. Under NIR light irradiation, a large improvement in bacterial inactivation and photodegradation efficiency could be seen for NYF/TiO2 composites in comparison with other samples. As for monolayer NYF/TiO2, water disinfection of 100% inactivation of bacteria is realized within 11 h and kinetic constant of RhB degradation is 0.133 h-1, which is about 10 times higher than that of pure TiO2 IOPCs. Reasons of enhanced photocatalytic activity were systematically investigated and a possible mechanism for NIR-driven photocatalysis was reasonably proposed.

  2. Materials technologies of light water reactors

    International Nuclear Information System (INIS)

    Begley, R.

    1984-01-01

    Satisfactory materials performance is a key element in achieving reliable operation of light water reactors. Outstanding performance under rigorous operational conditions has been exhibited by pressure boundary components, core internals, fuel cladding, and other critical components of these systems. Corrosion and stress corrosion phenomena have, however, had an impact on plant availability, most notably relating to pipe cracking in BWR systems and steam generator corrosion in PWR systems. These experiences have stimulated extensive development activities by the nuclear industry in improved NDE techniques, investigation of corrosion phenomena, as well as improved materials and repair processes. This paper reviews key materials performance aspects of light water reactors with particular emphasis on the progress which has been made in modeling of corrosion phenomena, control of the plant operating environment, advanced material development, and application of sophisticated repair procedures. Implementation of this technology provides the basis for improved plant availability

  3. Neutron disadvantage factors in heavy water and light water reactors

    International Nuclear Information System (INIS)

    Pop-Jordanov, J.

    1966-01-01

    A number od heavy water and light water reactor cells are analyzed in this paper by applying analytical methods of neutron thermalization. Calculations done according to the one-group Amouyal-Benoist method are included in addition. Computer codes for ZUSE Z-23 computer were written by applying both methods. The obtained results of disadvantage factors are then compared to results obtained by one-group P 3 approximation and by multigroup K7-THERMOS code [sr

  4. Study on high conversion type core of innovative water reactor for flexible fuel cycle (FLWR) for minor actinide (MA) recycling

    International Nuclear Information System (INIS)

    Fukaya, Yuji; Nakano, Yoshihiro; Okubo, Tsutomu

    2009-01-01

    In order to ensure sustainable energy supplies in the future based on the well-established light water reactor (LWR) technologies, conceptual design studies have been performed on the innovative water reactor for flexible fuel cycle (FLWR) with the high conversion ratio core. For early introduction of FLWR without a serious technical gap from the LWR technologies, the conceptual design of the high conversion type one (HC-FLWR) was constructed to recycle reprocessed plutonium. Furthermore, an investigation of minor actinide (MA) recycling based on the HC-FLWR core concept has been performed and is presented in this paper. Because HC-FLWR is a near-term technology, it would be a good option in the future if HC-FLWR can recycle MAs. In order to recycle MAs in HC-FLWR, it has been found that the core design should be changed, because the loaded MA makes the void reactivity coefficient worse and decreases the discharge burn-up. To find a promising core design specification, the investigation on the core characteristics were performed using the results from parameter surveys with core burn-up calculations. The final core designs were established by coupled three dimensional neutronics and thermal-hydraulics core calculations. The major core specifications are as follows. The plutonium fissile (Puf) content is 13 wt%. The discharge burn-up is about 55 GWd/t. Around 2 wt% of Np or Am can be recycled. The MA conversion ratios are around unity. In particular, it has been found that loaded Np can be transmuted effectively in this core concept. Therefore, these concepts would be a good option to reduce environmental burdens.

  5. Conversion of hot coke oven gas into light fuel gas over Ni/Al{sub 2}O{sub 3} catalyst

    Energy Technology Data Exchange (ETDEWEB)

    Li, L.Y.; Morishita, K.; Takarada, T. [Gunma University, Gunma (Japan). Dept. of Biology & Chemical Engineering

    2006-04-15

    Conversion of hot coke oven gas (COG, containing tarry material) into light fuel gas over a Ni/Al{sub 2}O{sub 3} catalyst was studied. Laboratory scale tests were carried out in a two-stage fixed-bed reactor at ambient pressure. The nickel catalyst promoted the hydropyrolysis reaction of tarry materials. High yields of total product gas and methane were obtained at high hydrogen concentrations. If the hydrogen supply was adequate for hydropyrolysis of the tarry material, conversion of coal volatiles was high, at more than 95% on carbon balance, even with a gas residence time as short as 0.15 s in the catalyst bed. The product gas yield depended on catalytic temperature. At 923 K, the maximum conversion of coal volatiles into the light gas was achieved at 95.0% on carbon balance, with methane 86.7 vol% of the carbonaceous gas product. Although carbon deposits deactivated the catalyst after a long period of use, the catalyst could be regenerated by treatment with oxygen at 800 K, providing high activity in subsequent decomposition of tarry material. The influence of sulphide on the tarry material decomposition reaction was small even in a 2000 ppm H{sub 2}S atmosphere.

  6. Light water reactor safeguards system evaluation

    International Nuclear Information System (INIS)

    Varnado, G.B.; Ericson, D.M. Jr.; Bennett, H.A.; Hulme, B.L.; Daniel, S.L.

    1978-01-01

    A methodology for assessing the effectiveness of safeguards systems was developed in this study and was applied to a typical light water reactor plant. The relative importance of detection systems, barriers, response forces and other safeguards system components was examined in extensive parameter variation studies. (author)

  7. Light water detritiation

    Energy Technology Data Exchange (ETDEWEB)

    Fedorchenko, O.A.; Aleksee, I.A.; Bondarenko, S.D.; Vasyanina, T.V. [B.P. Konstantinov Petersburg Nuclear Physics Institute of National Research Centre ' Kurchatov Institute' , Gatchina (Russian Federation)

    2015-03-15

    Hundreds of thousands of tons of tritiated light water have been accumulating from the enterprises of nuclear fuel cycles around the world. The Dual-Temperature Water-Hydrogen (DTWH) process looks like the only practical alternative to Combined Electrolysis and Catalytic Exchange (CECE). In DTWH power-consuming lower reflux device (electrolytic cell) is replaced by a so-called 'hot tower' (LPCE column operating at conditions which ensure relatively small value of elementary separation factor α(hot)). In the upper, cold tower, the tritium transfers from hydrogen to water while in the lower, hot tower - in the opposite direction - from water to hydrogen. The DTWH process is much more complicated compared to CECE; it must be thoroughly computed and strictly controlled by an automatic control system. The use of a simulation code for DTWH is absolutely important. The simulation code EVIO-5 deals with 3 flows inside a column (hydrogen gas, water vapour and liquid water) and 2 simultaneous isotope exchange sub-processes (counter-current phase exchange and co-current catalytic exchange). EVIO-5 takes into account the strong dependence of process performance on given conditions (temperature and pressure). It calculates steady-state isotope concentration profiles considering a full set of reversible exchange reactions between different isotope modifications of water and hydrogen (12 molecular species). So the code can be used for simulation of LPCE column operation for detritiation of hydrogen and water feed, which contains H and D not only at low concentrations but above 10 at.% also. EVIO-5 code is used to model a Tritium Removal Facility with a throughput capacity of about 400 m{sup 3}/day. Simulation results show that a huge amount of wet-proofed catalyst is required (about 6000 m{sup 3}), mainly (90%) in the first stage. One reason for these large expenses (apart from a big scale of the problem itself) is the relatively high tritium separation factor in the

  8. Light water detritiation

    International Nuclear Information System (INIS)

    Fedorchenko, O.A.; Aleksee, I.A.; Bondarenko, S.D.; Vasyanina, T.V.

    2015-01-01

    Hundreds of thousands of tons of tritiated light water have been accumulating from the enterprises of nuclear fuel cycles around the world. The Dual-Temperature Water-Hydrogen (DTWH) process looks like the only practical alternative to Combined Electrolysis and Catalytic Exchange (CECE). In DTWH power-consuming lower reflux device (electrolytic cell) is replaced by a so-called 'hot tower' (LPCE column operating at conditions which ensure relatively small value of elementary separation factor α(hot)). In the upper, cold tower, the tritium transfers from hydrogen to water while in the lower, hot tower - in the opposite direction - from water to hydrogen. The DTWH process is much more complicated compared to CECE; it must be thoroughly computed and strictly controlled by an automatic control system. The use of a simulation code for DTWH is absolutely important. The simulation code EVIO-5 deals with 3 flows inside a column (hydrogen gas, water vapour and liquid water) and 2 simultaneous isotope exchange sub-processes (counter-current phase exchange and co-current catalytic exchange). EVIO-5 takes into account the strong dependence of process performance on given conditions (temperature and pressure). It calculates steady-state isotope concentration profiles considering a full set of reversible exchange reactions between different isotope modifications of water and hydrogen (12 molecular species). So the code can be used for simulation of LPCE column operation for detritiation of hydrogen and water feed, which contains H and D not only at low concentrations but above 10 at.% also. EVIO-5 code is used to model a Tritium Removal Facility with a throughput capacity of about 400 m 3 /day. Simulation results show that a huge amount of wet-proofed catalyst is required (about 6000 m 3 ), mainly (90%) in the first stage. One reason for these large expenses (apart from a big scale of the problem itself) is the relatively high tritium separation factor in the hot tower

  9. Neutron fluence determination for light water reactor pressure vessels

    International Nuclear Information System (INIS)

    Gold, R.

    1994-01-01

    A general description of limitations that exist in pressure vessel neutron fluence determinations for commercial light water reactors is presented. Complexity factors that arise in light water reactor pressure vessel neutron fluence calculations are identified and used to analyze calculational limitations. Two broad categories of calculational limitations are introduced, namely benchmark field limitations and deep penetration limitations. Explicit examples of limitations that can arise in each of these two broad categories are presented. These limitations are used to show that the recent draft regulatory guide for the determination of pressure vessel neutron fluence, developed by the Nuclear Regulatory Commission, is based upon procedures and assumptions that are not valid. To eliminate the complexity and limitations of calculational methods, it is recommended that the determination of light water reactor pressure vessel neutron fluence be based upon experiment. Recommendations for improved methods of pressure vessel surveillance neutron dosimetry are advanced

  10. Flooding of a large, passive, pressure-tube light water reactor

    International Nuclear Information System (INIS)

    Hejzlar, P.; Todreas, N.E.; Driscoll, M.J.

    1997-01-01

    A reactor concept has been developed which can survive loss of coolant accidents without scram and without replenishing primary coolant inventory, while maintaining safe temperature limits on the fuel and pressure tubes. The proposed concept is a pressure tube type reactor of similar design to CANDU reactors, but differing in three key aspects. First, a solid SiC-coated graphite fuel matrix is used in place of fuel pin bundles to enable the dissipation of decay heat from the fuel in the absence of primary coolant. Second, the heavy water coolant in the pressure tubes is replaced by light water, which also serves as the moderator. Finally, the calandria tank, surrounded by a graphite reflector, contains a low pressure gas instead of heavy water moderator, and this normally-voided calandria is connected to a light water heat sink. The cover gas displaces the light water from the calandria during normal operation, while during loss of coolant or loss of heat sink accidents it allows passive calandria flooding. Calandria flooding also provides redundant and diverse reactor shutdown. This paper describes the thermal hydraulic characteristics of the passively initiated, gravity driven calandria flooding process. Flooding the calandria space with light water is a unique and very important feature of the proposed pressure-tube light water reactor (PTLWR) concept. The flooding of the top row of fuel channels must be accomplished fast enough so that in the total loss of coolant, none of the critical components of the fuel channel, i.e. the pressure tube, the calandria tube, the matrix and the fuel, exceed their design limits. The flooding process has been modeled and shown to be rapid enough to maintain all components within their design limits. (orig.)

  11. Light and heavy water replacing system in reactor container

    International Nuclear Information System (INIS)

    Miyamoto, Keiji.

    1979-01-01

    Purpose: To enable to determine the strength of a reactor container while neglecting the outer atmospheric pressure upon evacuation, by evacuating the gap between the reactor container and a biological thermal shield, as well as the container simultaneously upon light water - heavy water replacement. Method: Upon replacing light water with heavy water by vacuum evaporation system in a nuclear reactor having a biological thermal shield surrounding the reactor container incorporating therein a reactor core by way of a heat expansion absorbing gap, the reactor container and the havy water recycling system, as well as the inside of heat expansion absorbing gap are evacuated simultaneously. This enables to neglect the outer atmospheric outer pressure upon evacuation in the determination of the container strength, and the thickness of the container can be decreased by so much as the external pressure neglected. (Moriyama, K.)

  12. Safety of light water reactors. Risks of nuclear technology

    International Nuclear Information System (INIS)

    Veser, Anke; Schlueter, Franz-Hermann; Raskob, Wolfgang; Landman, Claudia; Paesler-Sauer, Juergen; Kessler, Guenter

    2012-01-01

    The book on the safety of light-water reactors includes the following chapters: Part I: Physical and technical safety concept of actual German and future European light-water reactors: (1) Worldwide operated nuclear power plants in 2011, (2) Some reactor physical fundamentals. (3) Nuclear power plants in Germany. (4) Radioactive exposure due to nuclear power plants. (5) Safety concept of light-water reactors. (6) Probabilistic analyses and risk studies. (7) Design of light-water reactors against external incidents. (8) Risk comparison of nuclear power plants and other energy systems. (9) Evaluation of risk studies using the improved (new) safety concept for LWR. (19) The severe reactor accidents of Three Mile Island, Chernobyl and Fukushima. Part II: Safety of German LWR in case of a postulated aircraft impact. (11) Literature. (12) Review of requirements and actual design. (13) Incident scenarios. (14) Load approach for aircraft impact. (15) Demonstration of the structural behavior in case of aircraft impact. (16) Special considerations. (17) Evaluation of the safety state of German and foreign nuclear power plants. Part III: ROSOS as example for a computer-based decision making support system for the severe accident management. (19) Literature. (20) Radiological fundamentals, accident management, modeling of the radiological situation. (21) The decision making support system RODOS. (22) RODOS and the Fukushima accident. (23) Recent developments in the radiological emergency management in the European frame.

  13. Hydrothermal conversion of biomass

    NARCIS (Netherlands)

    Knezevic, D.

    2009-01-01

    This thesis presents research of hydrothermal conversion of biomass (HTC). In this process, hot compressed water (subcritical water) is used as the reaction medium. Therefore this technique is suitable for conversion of wet biomass/ waste streams. By working at high pressures, the evaporation of

  14. Catalytic Conversion of Dihydroxyacetone to Lactic Acid Using Metal Salts in Water

    NARCIS (Netherlands)

    Rasrendra, Carolus B.; Fachri, Boy A.; Makertihartha, I. Gusti B. N.; Adisasmito, Sanggono; Heeres, Hero J.

    2011-01-01

    We herein present a study on the application of homogeneous catalysts in the form of metal salts on the conversion of trioses, such as dihydroxyacetone (DHA), and glyceraldehyde (GLY) to lactic acid (LA) in water. A wide range of metal salts (26 in total) were examined. Al(III) salts were identified

  15. Multisample conversion of water to hydrogen by zinc for stable isotope determination

    Science.gov (United States)

    Kendall, C.; Coplen, T.B.

    1985-01-01

    Two techniques for the conversion of water to hydrogen for stable isotope ratio determination have been developed that are especially suited for automated multisample analysis. Both procedures involve reaction of zinc shot with a water sample at 450 ??C. in one method designed for water samples in bottles, the water is put in capillaries and is reduced by zinc in reaction vessels; overall savings in sample preparation labor of 75% have been realized over the standard uranium reduction technique. The second technique is for waters evolved under vacuum and is a sealed-tube method employing 9 mm o.d. quartz tubing. Problems inherent with zinc reduction include surface inhomogeneity of the zinc and exchange of hydrogen both with the zinc and with the glass walls of the vessels. For best results, water/zinc and water/glass surface area ratios of vessels should be kept as large as possible.

  16. Toward visible light response: Overall water splitting using heterogeneous photocatalysts

    KAUST Repository

    Takanabe, Kazuhiro; Domen, Kazunari

    2011-01-01

    Extensive energy conversion of solar energy can only be achieved by large-scale collection of solar flux. The technology that satisfies this requirement must be as simple as possible to reduce capital cost. Overall water splitting by powder

  17. [Effects of light on submerged macrophytes in eutrophic water: research progress].

    Science.gov (United States)

    Li-Sha, Zou; Ze-Yu, Nie; Xiao-Yan, Yao; Ji-Yan, Shi

    2013-07-01

    The restoration of submerged macrophytes is the key to remediate eutrophic water and maintain the health of aquatic ecosystem, while light is the main limiting factor. This paper summarized the factors affecting the light extinction in water and the mechanisms of light intensity affecting the physiology of submerged macrophytes, with the focuses on the metabolic mechanisms of carbon, nitrogen, and phosphorus, the responses of antioxidant enzyme system, and the feedbacks of pigment composition and concentration in the common submerged macrophytes under low light stress. Several engineering techniques applied in the ecological restoration of submerged macrophytes were presented, and the framework of the restoration of submerged macrophytes in eutrophic water was proposed. Some problems in current research and several suggestions on future research were addressed, which could help the related research and engineering practices.

  18. Conversion of tritiated hydrogen to tritiated water on heated metal surfaces

    International Nuclear Information System (INIS)

    Dickson, R.S.

    1993-05-01

    The conversion of tritium to tritiated water on metal surfaces was studied under conditions relevant to releases into a fusion reactor hall (metal temperatures between 473 K and 623 K, air or inert gas atmospheres). The rate constant of oxidation per unit geometric surface area was found to be about a factor of ten higher than the rate constant per unit gas adsorption surface area for H 2 to H 2 O conversion on metal oxides in excess oxygen, probably because of the roughness of the metal surfaces on a gas adsorption scale. Surface roughness and oxides were found to have a major influence on the reaction rate. The reaction exhibited a first-order dependence on Q 2 concentration. Changing the dew point of the atmosphere did not affect the rate significantly, and rate constants for most metals were independent of whether the atmosphere was argon or air. Coatings of hydrocarbon and silicone polymers did not significantly affect the reaction rate on carbon steel and ferrous metals and brass all had about the same conversion rate constant. Aluminum alloy gave about three times lower and copper in Ar gave ten times higher conversion rate constants. Based on these data, an accident scenario involving exposure of 1000 m 2 of stainless steel at 573 K to a 10 4 m 3 room would cause conversion of ca. 0.1% of the Q 2 present to Q 2 O in 24 hours, while air ingress to the torus without leakage of the tritium into the room would cause 1.2% conversion in that time. The rate values are only accurate within a multiplicative factor of three, so they should be applied cautiously in model calculations. (author). 27 refs., 4 tabs., 4 figs

  19. Status of advanced technology and design for water cooled reactors: Light water reactors

    International Nuclear Information System (INIS)

    1988-10-01

    Water reactors represent a high level of performance and safety. They are mature technology and they will undoubtedly continue to be the main stream of nuclear power. There are substantial technological development programmes in Member States for further improving the technology and for the development of new concepts in water reactors. Therefore the establishment of an international forum for the exchange of information and stimulation of international co-operation in this field has emerged. In 1987 the IAEA established the International Working Group on Advanced Technologies for Water-Cooled Reactors (IWGATWR). Within the framework of IWGATWR the IAEA Technical Report on Status of Advanced Technology and Design for Water Cooled Reactors, Part I: Light Water Reactors and Part II: Heavy Water Reactors has been undertaken to document the major current activities and different trends of technological improvements and developments for future water reactors. Part I of the report dealing with LWRs has now been prepared and is based mainly on submissions from Member States. It is hoped that this part of the report, containing the status of advanced light water reactor design and technology of the year 1987 and early 1988 will be useful for disseminating information to Agency Member States and for stimulating international cooperation in this subject area. 93 refs, figs and tabs

  20. Electrolytic separation factors for oxygen isotopes in light and heavy water solutions

    International Nuclear Information System (INIS)

    Gulens, J.; Olmstead, W.J.; Longhurst, T.H.; Gale, K.L.; Rolston, J.H.

    1987-01-01

    The electrolytic separation factor, α, has been measured for /sup 17/O and /sup 18/O at Pt and Ni anodes in both light and heavy water solutions of 6M KOH as a function of current density. For oxygen-17, isotopic separation effects were not observed, within the experimental uncertainty of +-2%, under all conditions studied. For oxygen-18, there is a small difference of 2% in α values between Pt and Ni in both light and heavy water solutions, but there is no significant difference in α values between light and heavy water solutions. In light waters solutions, the separation factor at Pt is small, α(/sup 18/O) ≤ 1.02 for i ≥ 0.1 A/cm/sub 2/. This value agrees reasonably well with theoretical estimates

  1. Boreal Tree Light- and Water-Use: Asynchronous, Diverging, yet Complementary

    Science.gov (United States)

    Pappas, C.; Baltzer, J. L.; Barr, A.; Black, T. A.; Bohrer, G.; Detto, M.; Maillet, J.; Matheny, A. M.; Roy, A.; Sonnentag, O.; Stephens, J.

    2017-12-01

    Water stress has been suggested as a key mechanism behind the contemporary increase in tree mortality rates in northwestern North America. However, a detailed analysis of boreal tree light- and water-use strategies as well as their interspecific differences are still lacking. Here, we examine the tree hydraulic behaviour of co-occurring larch (Larix laricina) and black spruce (Picea mariana), two characteristic boreal tree species, near the southern limit of the boreal ecozone in central Canada. Sap flux density (Js) and concurrently recorded stem radius fluctuations and meteorological conditions are used to quantify tree hydraulic functioning and to scrutinize tree light- and water-use strategies. Our analysis reveals an asynchrony in the diel hydrodynamics of the two species with the initial rise in Js occurring two hours earlier in larch than in black spruce. Structural differences in the crown architecture of larch and black spruce lead to interspecific differences in light harvesting that can explain the observed asynchrony in their hydraulic function. Furthermore, the two species exhibit diverging stomatal regulation strategies with larch employing relatively isohydric whereas black spruce anisohydric behaviour. Such asynchronous and diverging tree-level light- and water-use strategies provide new insights into the ecosystem-level complementarity of tree form and function, with implications for understanding boreal forests' water and carbon dynamics and resilience to environmental stress.

  2. Research reactor core conversion guidebook. V.1: Summary

    International Nuclear Information System (INIS)

    1992-04-01

    In view of the proliferation concerns caused by the use of highly enriched uranium (HEU) and in anticipation that the supply of HEU to research and test reactors will be more restricted in the future, this guidebook has been prepared to assist research reactor operators in addressing the safety and licensing issues for conversion of their reactor cores from the use of HEU fuel to the use of low enriched uranium fuel. This Guidebook, in five volumes, addresses the effects of changes in the safety-related parameters of mixed cores and the converted core. It provides an information base which should enable the appropriate approvals processes for implementation of a specific conversion proposal, whether for a light or for a heavy water moderated research reactor. Refs, figs, bibliographies and tabs

  3. Overview of light water/hydrogen-based low energy nuclear reactions

    International Nuclear Information System (INIS)

    Miley, George H.; Shrestha, Prajakti J.

    2006-01-01

    This paper reviews light water and hydrogen-based low-energy nuclear reactions (LENRs) including the different methodologies used to study these reactions and the results obtained. Reports of excess heat production, transmutation reactions, and nuclear radiation emission are cited. An aim of this review is to present a summary of the present status of light water LENR research and provide some insight into where this research is heading. (author)

  4. Rheological Behaviour of Water-in-Light Crude Oil Emulsion

    Science.gov (United States)

    Husin, H.; Taju Ariffin, T. S.; Yahya, E.

    2018-05-01

    Basically, emulsions consist of two immiscible liquids which have different density. In petroleum industry, emulsions are undesirable due to their various costly problems in term of transportation difficulties and production loss. A study of the rheological behaviour of light crude oil and its mixture from Terengganu were carried out using Antoon Paar MCR 301 rheometer operated at pressure of 2.5 bar at temperature C. Water in oil emulsions were prepared by mixing light crude oil with different water volume fractions (20%, 30% and 40%). The objectives of present paper are to study the rheological behaviour of emulsion as a fuction of shear rate and model analysis that fitted with the experimental data. The rheological models of Ostwald-De-Waele and Herschel-Bulkley were fitted to the experimental results. All models represented well the rheological data, with high values for the correlation coefficients. The result indicated that variation of water content influenced shear rate-shear stress rheogram of the prepared emulsions. In the case of 100% light crude oil, the study demonstrated non-Newtonian shear thickening behavior. However, for emulsion with different volume water ratios, the rheological behaviour could be well described by Herschel-Bulkley models due to the present of yield stress parameter (R2 = 0.99807). As a conclusion, rheological studies showed that volume water ratio have a great impact on the shear stress and viscosity of water in oil emulsion and it is important to understand these factors to avoid various costly problems.

  5. Procedure for operating a heavy water cooled power reactor

    International Nuclear Information System (INIS)

    Rau, P.; Kumpf, H.

    1981-01-01

    Nuclear reactors cooled by heavy water usually have equipment for fuel element exchange during operation, with the primary circuit remaining contained. This fuel element exchange equipment is expensive and complicated in many respects. According to the invention, the heavy water is therefore replaced by light water after a certain time of operation in such way that light water is led in and heavy water is led off. After the replacement, at least a quarter of the fuel elements of the reactor core is exchanged with the reactor pressure vessel being open. Then the light water serving as a shielding is replaced by heavy water, with the reactor pressure vessel being closed. The invention is of interest particularly for high-conversion reactors. (orig.) [de

  6. Utility requirements for advanced light water reactors

    International Nuclear Information System (INIS)

    Machiels, A.; Gray, S.; Mulford, T.; Rodwell, E.

    1996-01-01

    The nuclear energy industry is actively engaged in developing advanced light water reactor (ALWR) designs for the next century. The new designs take advantage of the thousands of reactor-years of experience that have been accumulated by operating over 400 plants worldwide. The EPRI effort began in the early 1980's, when a survey of utility executives was conducted to determine their prerequisites for ordering nuclear power plants. The results were clear: new plants had to be simpler and safer, and have greater design margins, i.e., be more forgiving. The utility executives also supported making improvements to the established light water reactor technology, rather than trying to develop new reactor concepts. Finally, they wanted the option to build mid-size plants (∼600 MWe) in addition to full-size plants of more than 1200 MWe. 4 refs

  7. Nonlinear frequency conversion in fiber lasers

    DEFF Research Database (Denmark)

    Svane, Ask Sebastian

    The concept of nonlinear frequency conversion entails generating light at new frequencies other than those of the source light. The emission wavelength of typical fiber laser systems, relying on rare-earth dopants, are constrained within specific bands of the infrared region. By exploiting...... nonlinear processes, light from these specific wavelength bands can be used to generate light at new frequencies otherwise not obtainable by rare-earth elements. This thesis describes work covering Raman fiber lasers (RFLs) and amplifiers for nonlinear frequency down-conversion, and also the method...... of fiberoptic Cherenkov radiation (FCR) using ultrafast pulses as a means for generating tunable visible (VIS) light at higher frequencies. Two different polarization maintaining (PM) RFL cavities are studied with an emphasis on stability and spectral broadening. The cavities are formed by inscription of fiber...

  8. Facilitation of decommissioning light water reactors

    International Nuclear Information System (INIS)

    Moore, E.B. Jr.

    1979-12-01

    Information on design features, special equipment, and construction methods useful in the facilitation of decommissioning light water reactors is presented. A wide range of facilitation methods - from improved documentation to special decommissioning tools and techniques - is discussed. In addition, estimates of capital costs, cost savings, and radiation dose reduction associated with these facilitation methods are given

  9. High enrichment to low enrichment core's conversion. Accidents analysis

    International Nuclear Information System (INIS)

    Abbate, P.; Rubio, R.; Doval, A.; Lovotti, O.

    1990-01-01

    This work analyzes the different accidents that may occur in the reactor's facility after the 20% high-enriched uranium core's conversion. The reactor (of 5 thermal Mw), built in the 50's and 60's, is of the 'swimming pool' type, with light water and fuel elements of the curve plates MTR type, enriched at 93.15 %. This analysis includes: a) accidents by reactivity insertion; b) accidents by coolant loss; c) analysis by flow loss and d) fission products release. (Author) [es

  10. Current status of light water reactor and Hitachi's technical improvements for BWR

    International Nuclear Information System (INIS)

    Miki, Minoru; Ohki, Arahiko.

    1984-01-01

    Gradual technical improvements in Japan over the years has improved the reliability of light water reactors, and has achieved the highest capacity factor level in the world. Commercial operation of Fukushima 2-2 (1,100 MW) of the Tokyo Electric Power Co. was started in February, 1984, as the first standardized BWR base plant, ushering in a new age of domestic light water reactor technology. The ABWR (1,300 MW class) has been developed as Japan's next generation light water reactor, with construction aimed at the latter half of the 1980's. Hitachi's extensive efforts range from key nuclear equipment to various related robots, directed at improving safety, reliability, and the capacity factor, while reducing radiation exposure. This paper presents an outline of Hitachi's participation in the light water reactor's improvement and standardization, and the current status of our role in the international cooperation plan for the ABWR. (author)

  11. In situ measurement of inelastic light scattering in natural waters

    Science.gov (United States)

    Hu, Chuanmin

    Variation in the shape of solar absorption (Fraunhofer) lines are used to study the inelastic scattering in natural waters. In addition, oxygen absorption lines near 689nm are used to study the solar stimulated chlorophyll fluorescence. The prototype Oceanic Fraunhofer Line Discriminator (OFLD) has been further developed and improved by using a well protected fiber optic - wire conductor cable and underwater electronic housing. A Monte-Carlo code and a simple code have been modified to simulate the Raman scattering, DOM fluorescence and chlorophyll fluorescence. A series of in situ measurements have been conducted in clear ocean waters in the Florida Straits, in the turbid waters of Florida Bay, and in the vicinity of a coral reef in the Dry Tortugas. By comparing the reduced data with the model simulation results, the Raman scattering coefficient, b r with an excitation wavelength at 488nm, has been verified to be 2.6 × 10-4m-1 (Marshall and Smith, 1990), as opposed to 14.4 × 10- 4m-1 (Slusher and Derr, 1975). The wavelength dependence of b r cannot be accurately determined from the data set as the reported values (λ m-4 to λ m- 5) have an insignificant effect in the natural underwater light field. Generally, in clear water, the percentage of inelastic scattered light in the total light field at /lambda 510nm. At low concentrations (a y(/lambda = 380nm) less than 0.1m-1), DOM fluorescence plays a small role in the inelastic light field. However, chlorophyll fluorescence is much stronger than Raman scattering at 685nm. In shallow waters where a sea bottom affects the ambient light field, inelastic light is negligible for the whole visible band. Since Raman scattering is now well characterized, the new OFLD can be used to measure the solar stimulated in situ fluorescence. As a result, the fluorescence signals of various bottom surfaces, from coral to macrophytes, have been measured and have been found to vary with time possibly due to nonphotochemical quenching

  12. Low-Temperature Growth of Hydrogenated Amorphous Silicon Carbide Solar Cell by Inductively Coupled Plasma Deposition Toward High Conversion Efficiency in Indoor Lighting.

    Science.gov (United States)

    Kao, Ming-Hsuan; Shen, Chang-Hong; Yu, Pei-Chen; Huang, Wen-Hsien; Chueh, Yu-Lun; Shieh, Jia-Min

    2017-10-05

    A p-a-SiC:H window layer was used in amorphous Si thin film solar cells to boost the conversion efficiency in an indoor lighting of 500 lx. The p-a-SiC:H window layer/p-a-Si:H buffer layer scheme moderates the abrupt band bending across the p/i interface for the enhancement of V OC , J SC and FF in the solar spectra of short wavelengths. The optimized thickness of i-a-Si:H absorber layer is 400 nm to achieve the conversion efficiency of ~9.58% in an AM1.5 G solar spectrum. However, the optimized thickness of the absorber layer can be changed from 400 to 600 nm in the indoor lighting of 500 lx, exhibiting the maximum output power of 25.56 μW/cm 2 . Furthermore, various durability tests with excellent performance were investigated, which are significantly beneficial to harvest the indoor lights for applications in the self-powered internet of thing (IoT).

  13. Development of high conversion boiling water reactor

    International Nuclear Information System (INIS)

    Yamashita, Jun-ichi; Mochida, Takaaki; Uchikawa, Sadao.

    1988-01-01

    It is expected that the period of LWRs being the main source of electric power supply becomes long, therefore, the development of next generation LWRs placing emphasis on the effective utilization of uranium resources and the improvement of economical efficiency is necessary. In this paper, as the next generation BWRs subsequent to ABWRs, the concept of the core of high conversion type BWRs is reported, in which emphasis is placed on the saving of natural uranium resources by raising the rate of conversion to plutonium. This core is that of realizing the high rate of conversion by utilizing the void in the core, which is the feature of BWRs, and the case of making the change of the core structure relatively small by using cross type control rods and the case of changing the core structure for further heightening the rate of conversion and making control rods into cluster type are described. In order to meet the demand like this, Hitachi Ltd. has engaged in the development of the concept of the core of next generation LWRs. In the high conversion type BWRs, there is not large change in the reactor system and turbine system from the current BWRs. The features and the concept of the core of high conversion type BWRs are described. (Kako, I.)

  14. Ultraviolet light: sterile water without chlorine smell and taste

    International Nuclear Information System (INIS)

    Anon.

    1977-01-01

    The use of chlorine and hypochlorite is necessary in larger waterworks, but it is a disadvantage in smaller plants, where overtreatment easily leads to smell and taste of chlorine in the water. Ultraviolet light with a wavelength of 2535 Angstrom gives 100% disinfection with a dose of 10 mWs/cm 2 for all known bacteria. In practice a dose of 40 mWs/cm 2 and an irradiation time of 15 minutes is desireable. A standard unit utilising six UV light tubes arranged concentrically around a quartz tube, through which the water flows, is described briefly. (JIW)

  15. Ultraviolet light: sterile water without chlorine smell and taste

    Energy Technology Data Exchange (ETDEWEB)

    1977-02-14

    The use of chlorine and hypochlorite is necessary in larger waterworks, but it is a disadvantage in smaller plants, where overtreatment easily leads to smell and taste of chlorine in the water. Ultraviolet light with a wavelength of 2535 Angstrom gives 100% disinfection with a dose of 10 mWs/cm/sup 2/ for all known bacteria. In practice a dose of 40 mWs/cm/sup 2/ and an irradiation time of 15 minutes is desireable. A standard unit utilising six UV light tubes arranged concentrically around a quartz tube, through which the water flows, is described briefly.

  16. Conversion of Blue Water into Green Water for Improving Utilization Ratio of Water Resources in Degraded Karst Areas

    Directory of Open Access Journals (Sweden)

    Ke Chen

    2016-12-01

    Full Text Available Vegetation deterioration and soil loss are the main causes of more precipitation leakages and surface water shortages in degraded karst areas. In order to improve the utilization of water resources in such regions, water storage engineering has been considered; however, site selection and cost associated with the special karstic geological structure have made this difficult. According to the principle of the Soil Plant Atmosphere Continuum, increasing both vegetation cover and soil thickness would change water cycle process, resulting in a transformation from leaked blue water (liquid form into green water (gas or saturated water form for terrestrial plant ecosystems, thereby improving the utilization of water resources. Using the Soil Vegetation Atmosphere Transfer model and the geographical distributed approach, this study simulated the conversion from leaked blue water (leakage into green water in the environs of Guiyang, a typical degraded karst area. The primary results were as follows: (1 Green water in the area accounted for <50% of precipitation, well below the world average of 65%; (2 Vegetation growth played an important role in converting leakage into green water; however, once it increased to 56%, its contribution to reducing leakage decreased sharply; (3 Increasing soil thickness by 20 cm converted the leakage considerably. The order of leakage reduction under different precipitation scenarios was dry year > normal year > rainy year. Thus, increased soil thickness was shown effective in improving the utilization ratio of water resources and in raising the amount of plant ecological water use; (4 The transformation of blue water into green water, which avoids constructions of hydraulic engineering, could provide an alternative solution for the improvement of the utilization of water resources in degraded karst area. Although there are inevitable uncertainties in simulation process, it has important significance for overcoming similar

  17. US Advanced Light Water Reactor Program; overall objective

    International Nuclear Information System (INIS)

    Klug, N.

    1989-01-01

    The overall objective of the US Department of Energy (DOE) Advanced Light Water Reactor (ALWR) program is to perform coordinated programs of the nuclear industry and DOE to insure the availability of licensed, improved, and simplified light water reactor standard plant designs that may be ordered in the 1990's to help meet the US electrical power demand. The discussion includes plans to meet program objectives and the design certification program. DOE is currently supporting the development of conceptual designs, configurations, arrangements, construction methods/plans, and proof test key design features for the General Electric ASBWR and the Westinghouse AP600. Key features of each are summarized. Principal milestones related to licensing of large standard plants, simplified mid-size plant development, and plant lifetime improvement are noted

  18. Photoelectrochemical based direct conversion systems for hydrogen production

    Energy Technology Data Exchange (ETDEWEB)

    Kocha, S.; Peterson, M.; Arent, D. [National Renewable Energy Lab., Golden, CO (United States)] [and others

    1996-10-01

    Photon driven, direct conversion systems consist of a light absorber and a water splitting catalyst as a monolithic system; water is split directly upon illumination. This one-step process eliminates the need to generate electricity externally and subsequently feed it to an electrolyzer. These configurations require only the piping necessary for transport of hydrogen to an external storage system or gas pipeline. This work is focused on multiphoton photoelectrochemical devices for production of hydrogen directly using sunlight and water. Two types of multijunction cells, one consisting of a-Si triple junctions and the other GaInP{sub 2}/GaAs homojunctions, were studied for the photoelectrochemical decomposition of water into hydrogen and oxygen from an aqueous electrolyte solution. To catalyze the water decomposition process, the illuminated surface of the device was modified either by addition of platinum colloids or by coating with ruthenium dioxide. These colloids have been characterized by gel electrophoresis.

  19. Equations of state for light water

    International Nuclear Information System (INIS)

    Rubin, G.A.; Granziera, M.R.

    1983-01-01

    The equations of state for light water were developed, based on the tables of Keenan and Keyes. Equations are presented, describing the specific volume, internal energy, enthalpy and entropy of saturated steam, superheated vapor and subcooled liquid as a function of pressure and temperature. For each property, several equations are shown, with different precisions and different degress of complexity. (Author) [pt

  20. New lineup of light water reactors

    International Nuclear Information System (INIS)

    Okamura, Kiyoshi; Oshima, Koichiro; Kitsukawa, Keisuke

    2007-01-01

    Toshiba is promoting technical studies for upcoming nuclear power plants based on its large accumulation of experience in boiling water reactor (BWR) design, manufacturing, construction, and maintenance. Our goal is to achieve higher reliability, lower life-cycle costs, and better competitiveness for nuclear power plants compared with other energy sources. In addition, we are developing a new light water reactor (LWR) lineup featuring the safest and most economical LWRs in the world as next-generation reactors almost at new construction and replacement in the Japanese and international markets expected to start from the 2020s. We are committed not only to developing BWRs with the world's highest performance but also to participating in the pressurized water reactor (PWR) market, taking advantage of the synergistic effect of both Toshiba's and Westinghouse's experience. (author)

  1. Comparative evaluation of recent water hammer events in light water reactors

    International Nuclear Information System (INIS)

    House, R.K.; Sursock, J.P.; Kim, J.H.

    1987-01-01

    Water hammer events that occurred in commercial U.S. light water reactors in the five-year period from 1981 to 1985 were surveyed, and a preliminary evaluation of the events was conducted. The information developed supplements a previous study which evaluated water hammer events in the twelve-year period from 1969 to 1981. The current study of water hammer events in the 1980's confirms that the rate of events remains relatively constant (less than 0.25 events per plant year) in both PWRs and BWRs. Although water hammer events are not normally considered a safety issue, the economic impact of the events on plant operations can be significant. One particular severe water hammer event is estimated to have cost the plant owner $10 million for repair and evaluation alone. A variety of key characteristics of the recent water hammer events are summarized to establish a basis for further study of preventative methods

  2. Maximizing omnidirectional light harvesting in metal oxide hyperbranched array architectures

    Science.gov (United States)

    Wu, Wu-Qiang; Feng, Hao-Lin; Rao, Hua-Shang; Xu, Yang-Fan; Kuang, Dai-Bin; Su, Cheng-Yong

    2014-05-01

    The scrupulous design of nanoarchitectures and smart hybridization of specific active materials are closely related to the overall photovoltaic performance of an anode electrode. Here we present a solution-based strategy for the fabrication of well-aligned metal oxide-based nanowire-nanosheet-nanorod hyperbranched arrays on transparent conducting oxide substrates. For these hyperbranched arrays, we observe a twofold increment in dye adsorption and enhanced light trapping and scattering capability compared with the pristine titanium dioxide nanowires, and thus a power conversion efficiency of 9.09% is achieved. Our growth approach presents a strategy to broaden the photoresponse and maximize the light-harvesting efficiency of arrays architectures, and may lead to applications for energy conversion and storage, catalysis, water splitting and gas sensing.

  3. Thermobaricity, cabbeling, and water-mass conversion

    Science.gov (United States)

    McDougall, Trevor J.

    1987-05-01

    The efficient mixing of heat and salt along neutral surfaces (by mesoscale eddies) is shown to lead to vertical advection through these neutral surfaces. This is due to the nonlinearities of the equation of state of seawater through terms like ∂2ρ/∂θ∂p (thermobaric effect) and ∂2ρ/∂ θ2 (cabbeling). Cabbeling always causes a sinking or downwelling of fluid through neutral surfaces, whereas thermobaricity can lead to a vertical velocity (relative to neutral surfaces) of either sign. In this paper it is shown that for reasonable values of the lateral scalar diffusivity (especially below a depth of 1000 m), these two processes cause vertical velocities of the order of 10-7 m s-1 through neutral surfaces (usually downward!) and cause water-mass conversion of a magnitude equal to that caused by a vertical diffusivity of 10-4 m2 s-1 (often equivalent to a negative diffusivity). Both thermobaricity and cabbeling can occur in the presence of any nonzero amount of small-scale turbulence and so will not be detected by microstructure measurements. The conservation equations for tracers are considered in a nonorthogonal coordinate frame that moves with neutral surfaces in the ocean. Since only mixing processes cause advection across neutral surfaces, it is useful to regard this vertical advection as a symptom of various mixing processes rather than as a separate physical process. It is possible to derive conservative equations for scalars that do not contain the vertical advective term explicity. In these conservation equations, the terms that represent mixing processes are substantially altered. It is argued that this form of the conservation equations is the most appropriate when considering water-mass transformation, and some examples are given of its application in the North Atlantic. It is shown that the variation of the vertical diffusivity with height does not cause water-mass transformation. Also, salt fingering is often 3-4 times more effective at

  4. Efficiency and stability of a phosphor-conversion white light source using a blue laser diode

    Directory of Open Access Journals (Sweden)

    G. Ledru

    2014-10-01

    Full Text Available A white light source using direct phosphor-conversion excited by a blue laser diode is presented. In this preliminary study we have investigated the influence of phosphor’s thickness and operating current of the laser diode over the (x, y chromaticity coordinates, Correlated Color Temperature (CCT and Color Rendering Index (CRI. The best values found were 4000 K and 94. A 40 lm/W luminous efficacy was achieved together with a CRI close to 90 for an operating current of 0.8 A. Those values, to the best of our knowledge, were not previously reported in the literature.

  5. Visible-Light-Driven BiOI-Based Janus Micromotor in Pure Water.

    Science.gov (United States)

    Dong, Renfeng; Hu, Yan; Wu, Yefei; Gao, Wei; Ren, Biye; Wang, Qinglong; Cai, Yuepeng

    2017-02-08

    Light-driven synthetic micro-/nanomotors have attracted considerable attention due to their potential applications and unique performances such as remote motion control and adjustable velocity. Utilizing harmless and renewable visible light to supply energy for micro-/nanomotors in water represents a great challenge. In view of the outstanding photocatalytic performance of bismuth oxyiodide (BiOI), visible-light-driven BiOI-based Janus micromotors have been developed, which can be activated by a broad spectrum of light, including blue and green light. Such BiOI-based Janus micromotors can be propelled by photocatalytic reactions in pure water under environmentally friendly visible light without the addition of any other chemical fuels. The remote control of photocatalytic propulsion by modulating the power of visible light is characterized by velocity and mean-square displacement analysis of optical video recordings. In addition, the self-electrophoresis mechanism has been confirmed for such visible-light-driven BiOI-based Janus micromotors by demonstrating the effects of various coated layers (e.g., Al 2 O 3 , Pt, and Au) on the velocity of motors. The successful demonstration of visible-light-driven Janus micromotors holds a great promise for future biomedical and environmental applications.

  6. Light-water reactor research and development

    International Nuclear Information System (INIS)

    1985-05-01

    This report on the national program of research and development on light water reactors is the second of two reports requested in 1982 by W. Kenneth Davis, Deputy Secretary of the Department of Energy. A first report, published in September 1983, treated the needs for safety-related R and D. In this second report, the Energy Research Advisory Board finds that, although many light water reactors are providing reliable and economic electricity, it appears unlikely that U.S. utilities will order additional reactors until the currently unacceptable economic risk, created by the regulatory climate and uncertain demand, is reduced. Thus it is unlikely that the private sector alone will fund major LWR design improvements. However, nuclear power will continue on its current course of expansion overseas. DOE participation is vitally needed to support the national interest in LWR technology. The report outlines R and D needs for a program to improve the safety, reliability, and economics of the present generation of plants; to develop evolutionary improved designs to be ready when needed; and to explore innovative longer-term concepts for deployment after the year 2000. The respective roles of government and the private sector are discussed

  7. Metal-Organic Framework-Stabilized CO2/Water Interfacial Route for Photocatalytic CO2 Conversion.

    Science.gov (United States)

    Luo, Tian; Zhang, Jianling; Li, Wei; He, Zhenhong; Sun, Xiaofu; Shi, Jinbiao; Shao, Dan; Zhang, Bingxing; Tan, Xiuniang; Han, Buxing

    2017-11-29

    Here, we propose a CO 2 /water interfacial route for photocatalytic CO 2 conversion by utilizing a metal-organic framework (MOF) as both an emulsifier and a catalyst. The CO 2 reduction occurring at the CO 2 /water interface produces formate with remarkably enhanced efficiency as compared with that in conventional solvent. The route is efficient, facile, adjustable, and environmentally benign, which is applicable for the CO 2 transformation photocatalyzed by different kinds of MOFs.

  8. Sludge accumulation and conversion to methane in a septic tank treating domestic wastewater or black water.

    Science.gov (United States)

    Elmitwalli, Tarek

    2013-01-01

    Although the septic tank is the most applied on-site system for wastewater pre-treatment, limited research has been performed to determine sludge accumulation and biogas production in the tank. Therefore a dynamic mathematical model based on the Anaerobic Digestion Model No. 1 (ADM1) was developed for anaerobic digestion of the accumulated sludge in a septic tank treating domestic wastewater or black water. The results showed that influent chemical oxygen demand (COD) concentration and hydraulic retention time (HRT) of the tank mainly control the filling time with sludge, while operational temperature governs characteristics of the accumulated sludge and conversion to methane. For obtaining stable sludge and high conversion, the tank needs to be operated for a period more than a year without sludge wasting. Maximum conversion to methane in the tank is about 50 and 60% for domestic wastewater and black water, respectively. The required period for sludge wasting depends on the influent COD concentration and the HRT, while characteristics of the wasted sludge are affected by operational temperature followed by the influent COD concentration and the HRT. Sludge production from the tank ranges between 0.19 to 0.22 and 0.13 to 0.15 L/(person.d), for the domestic wastewater and black water, respectively.

  9. Research on energy conversion mechanism of a screw centrifugal pump under the water

    International Nuclear Information System (INIS)

    Quan, H; Li, R N; Han, W; Cheng, X R; Shen, Z J; Su, Q M

    2013-01-01

    In order to research screw centrifugal pump impeller power capability and energy conversion mechanism, we used Navier-Stokes equation and standard k-ε equation turbulence model on the basis of the Euler equations to carry out screw centrifugal pump internal flow numerical simulation. This was explored by simulating specific design conditions; the medium is water, variation of speed and pressure of flow filed under the action of the impeller, and the screw centrifugal impeller shroud line and wheel line segment take monitoring sites. The monitoring points are between dynamic head and static head change to analyze the energy conversion capability along the impeller corners of screw centrifugal pump. The results show that the energy of fluid of the screw centrifugal pump is provided by spiral segment, the spiral segment in front of the impeller has played a multi-level role, it has significant reference value to research the energy conversion mechanism of screw centrifugal pump under solid-liquid two phase

  10. A collection of publications and articles for a light water ultra-safe plant concept

    International Nuclear Information System (INIS)

    Klevans, E.H.

    1988-01-01

    This collection contains reports titled: ''The Penn State Ultra-Safe Reactor Concept; '' ''Ultra Safe Nuclear Power; '' ''Use of the Modular Modeling System, in the Design of the Penn State Advanced Light Water Reactor; '' ''Use of the Modular Modeling System in Severe Transient Analysis of Penn State Advanced Light Water Reactor; '' ''PSU Engineers' Reactor Design May Stop a Future TMI; '' and ''The Penn State Advanced Light Water reactor Concept.''

  11. Sustained Recycle in Light Water and Sodium-Cooled Reactors

    International Nuclear Information System (INIS)

    Piet, Steven J.; Bays, Samuel E.; Pope, Michael A.; Youinou, Gilles J.

    2010-01-01

    From a physics standpoint, it is feasible to sustain recycle of used fuel in either thermal or fast reactors. This paper examines multi-recycle potential performance by considering three recycling approaches and calculating several fuel cycle parameters, including heat, gamma, and neutron emission of fresh fuel; radiotoxicity of waste; and uranium utilization. The first recycle approach is homogeneous mixed oxide (MOX) fuel assemblies in a light water reactor (LWR). The transuranic portion of the MOX was varied among Pu, NpPu, NpPuAm, or all-TRU. (All-TRU means all isotopes through Cf-252.) The Pu case was allowed to go to 10% Pu in fresh fuel, but when the minor actinides were included, the transuranic enrichment was kept below 8% to satisfy the expected void reactivity constraint. The uranium portion of the MOX was enriched uranium. That enrichment was increased (to as much as 6.5%) to keep the fuel critical for a typical LWR irradiation. The second approach uses heterogeneous inert matrix fuel (IMF) assemblies in an LWR - a mix of IMF and traditional UOX pins. The uranium-free IMF fuel pins were Pu, NpPu, NpPuAm, or all-TRU. The UOX pins were limited to 4.95% U-235 enrichment. The number of IMF pins was set so that the amount of TRU in discharged fuel from recycle N (from both IMF and UOX pins) was made into the new IMF pins for recycle N+1. Up to 60 of the 264 pins in a fuel assembly were IMF. The assembly-average TRU content was 1-6%. The third approach uses fast reactor oxide fuel in a sodium-cooled fast reactor with transuranic conversion ratio of 0.50 and 1.00. The transuranic conversion ratio is the production of transuranics divided by destruction of transuranics. The FR at CR=0.50 is similar to the CR for the MOX case. The fast reactor cases had a transuranic content of 33-38%, higher than IMF or MOX.

  12. Tritium conversion in tritiated water: study of the involved reactions: a literature survey

    International Nuclear Information System (INIS)

    Ballereau, P.

    1987-10-01

    According to ICRP publication 30, hazards due to molecular tritium are not significant in comparison to hazards due to the oxidated form: tritiated water. It is thus important to know the kinetics of tritium/tritiated water conversion to obtain a realistic evaluation of the risks for the environment at level of present facilities and of future nuclear fusion facilities. Laboratory experiments in static contained conditions have shown that tritiated water is produced by two mechanisms: gas phase oxidation, hydrogen isotopic exchange with water. The periods found are relatively long and difficult to specify. In terrestrial atmosphere, the two mechanisms intervening in tritiated water formation are photochemical oxidation and biochemical reactions occurring in soil and in vegetation aerial parts. The corresponding periods are of some years for the first one, of some hours for the second one [fr

  13. Advanced light water reactor plant

    International Nuclear Information System (INIS)

    Giedraityte, Zivile

    2008-01-01

    For nuclear power to be competitive with the other methods of electrical power generation the economic performance should be significantly improved by increasing the time spent on line generating electricity relative to time spent off-line conducting maintenance and refueling. Maintenance includes planned actions (surveillances) and unplanned actions (corrective maintenance) to respond to component degradation or failure. A methodology is described which is used to resolve maintenance related operating cycle length barriers. Advanced light water nuclear power plant is designed with the purpose to maximize online generating time by increasing operating cycle length. (author)

  14. Dual-enhanced photothermal conversion properties of reduced graphene oxide-coated gold superparticles for light-triggered acoustic and thermal theranostics

    Science.gov (United States)

    Lin, Li-Sen; Yang, Xiangyu; Niu, Gang; Song, Jibin; Yang, Huang-Hao; Chen, Xiaoyuan

    2016-01-01

    A rational design of highly efficient photothermal agents that possess excellent light-to-heat conversion properties is a fascinating topic in nanotheranostics. Herein, we present a facile route to fabricate size-tunable reduced graphene oxide (rGO)-coated gold superparticles (rGO-GSPs) and demonstrate their dual-enhanced photothermal conversion properties for photoacoustic imaging and photothermal therapy. For the first time, graphene oxide (GO) was directly used as an emulsifying agent for the preparation of gold superparticles (GSPs) with near-infrared absorption by the emulsion method. Moreover, GO spontaneously deposited on the surface of GSPs could also act as the precursor of the rGO shell. Importantly, both the plasmonic coupling of the self-assembled gold nanoparticles and the interaction between GSPs and rGO endow rGO-GSPs with enhanced photothermal conversion properties, allowing rGO-GSPs to be used for sensitive photoacoustic detection and efficient photothermal ablation of tumours in vivo. This study provides a facile approach to prepare colloidal superparticles-graphene hybrid nanostructures and will pave the way toward the design and optimization of photothermal nanomaterials with improved properties for theranostic applications.A rational design of highly efficient photothermal agents that possess excellent light-to-heat conversion properties is a fascinating topic in nanotheranostics. Herein, we present a facile route to fabricate size-tunable reduced graphene oxide (rGO)-coated gold superparticles (rGO-GSPs) and demonstrate their dual-enhanced photothermal conversion properties for photoacoustic imaging and photothermal therapy. For the first time, graphene oxide (GO) was directly used as an emulsifying agent for the preparation of gold superparticles (GSPs) with near-infrared absorption by the emulsion method. Moreover, GO spontaneously deposited on the surface of GSPs could also act as the precursor of the rGO shell. Importantly, both the

  15. Light-water reactor safety analysis codes

    International Nuclear Information System (INIS)

    Jackson, J.F.; Ransom, V.H.; Ybarrondo, L.J.; Liles, D.R.

    1980-01-01

    A brief review of the evolution of light-water reactor safety analysis codes is presented. Included is a summary comparison of the technical capabilities of major system codes. Three recent codes are described in more detail to serve as examples of currently used techniques. Example comparisons between calculated results using these codes and experimental data are given. Finally, a brief evaluation of current code capability and future development trends is presented

  16. Wave energy conversion utilizing vertical motion of water in the array of water chambers aligned in the direction of wave propagation

    Directory of Open Access Journals (Sweden)

    Kesayoshi Hadano

    2017-05-01

    Full Text Available As a new technical approach, wave energy converter by using vertical motion of water in the multiple water chambers were developed to realize actual wave power generation as eco-environmental renewable energy. And practical use of wave energy converter was actually to require the following conditions: (1 setting up of the relevant device and its application to wave power generation in case that severe wave loading is avoided; (2 workability in installation and maintenance operations; (3 high energy conversion potential; and (4 low cost. In this system, neither the wall(s of the chambers nor the energy conversion device(s are exposed to the impulsive load due to water wave. Also since this system is profitable when set along the jetty or along a long floating body, installation and maintenance are done without difficulty and the cost is reduced. In this paper, we describe the system which consists of a float, a shaft connected with another shaft, a rack and pinion arrangement, a ratchet mechanism, and rotary type generator(s. Then, we present the dynamics model for evaluating the output electric power, and the results of numerical calculation including the effect of the phase shift of up/down motion of the water in the array of water chambers aligned along the direction of wave propagation.

  17. Core design concepts for high performance light water reactors

    International Nuclear Information System (INIS)

    Schulenberg, T.; Starflinger, J.

    2007-01-01

    Light water reactors operated under supercritical pressure conditions have been selected as one of the promising future reactor concepts to be studied by the Generation IV International Forum. Whereas the steam cycle of such reactors can be derived from modern fossil fired power plants, the reactor itself, and in particular the reactor core, still need to be developed. Different core design concepts shall be described here to outline the strategy. A first option for near future applications is a pressurized water reactor with 380 .deg. C core exit temperature, having a closed primary loop and achieving 2% pts. higher net efficiency and 24% higher specific turbine power than latest pressurized water reactors. More efficiency and turbine power can be gained from core exit temperatures around 500 .deg. C, which require a multi step heat up process in the core with intermediate coolant mixing, achieving up to 44% net efficiency. The paper summarizes different core and assembly design approaches which have been studied recently for such High Performance Light Water Reactors

  18. Fuel conversion of JRR-4 from HEU to LEU

    International Nuclear Information System (INIS)

    Ichikawa, Hiroki; Nakajima, Teruo

    1997-01-01

    Japanese JRR-4 (Japan Research Reactor No.4) is a pool type, light water moderated and cooled, ETR type fuel reactor used for Shielding experiments, isotope production, neutron activation analyses, Si doping, reactor students training. It acieved first criticality on January 28, 1965 with maximum thermal power 3.5MW. The standard core consistes of 20 Fuel elements, 7 control rods 5 Irradiation holes, neutron source, graphite reflectors. Available thermal flux is 7x1013 n/cm2/s. Within the RERTR program plans are made for core conversion from HEU to LEU

  19. Mechanism of wavelength conversion in polystyrene doped with benzoxanthene: emergence of a complex.

    Science.gov (United States)

    Nakamura, Hidehito; Shirakawa, Yoshiyuki; Kitamura, Hisashi; Sato, Nobuhiro; Shinji, Osamu; Saito, Katashi; Takahashi, Sentaro

    2013-01-01

    Fluorescent guest molecules doped in polymers have been used to convert ultraviolet light into visible light for applications ranging from optical fibres to filters for the cultivation of plants. The wavelength conversion process involves the absorption of light at short wavelengths followed by fluorescence emission at a longer wavelength. However, a precise understanding of the light conversion remains unclear. Here we show light responses for a purified polystyrene base substrates doped with fluorescent benzoxanthene in concentrations varied over four orders of magnitude. The shape of the excitation spectrum for fluorescence emission changes significantly with the concentration of the benzoxanthene, indicating formation of a base substrate/fluorescent molecule complex. Furthermore, the wavelength conversion light yield increases in three stages depending on the nature of the complex. These findings identify a mechanism that will have many applications in wavelength conversion materials.

  20. Tritium formation and elimination in light-water reactors

    International Nuclear Information System (INIS)

    Dolle, L.; Briec, M.; Miquel, P.

    1976-01-01

    Light-water reactors have a tritium balance which should be considered from both the working constraint and environmental pollution aspects. The formation of tritium in the primary circuit and in the fuel, the elimination and enrichment processes are considered [fr

  1. Surface tension mediated conversion of light to work

    Science.gov (United States)

    Okawa, David; Pastine, Stefan J; Zettl, Alexander K; Frechet, Jean M. J

    2014-12-02

    Disclosed are a method and apparatus for converting light energy to mechanical energy by modification of surface tension on a supporting fluid. The apparatus comprises an object which may be formed as a composite object comprising a support matrix and a highly light absorptive material. The support matrix may comprise a silicon polymer. The highly light absorptive material may comprise vertically aligned carbon nanotubes (VANTs) embedded in the support matrix. The composite object is supported on a fluid. By exposing the highly light absorptive material to light, heat is generated, which changes the surface tension of the composite object, causing it to move physically within the fluid.

  2. The light water natural uranium reactor

    International Nuclear Information System (INIS)

    Radkowsky, A.

    A new type of light water seed blanket with the seed having 20% enrichment and the blanket a special combination of elements of natural uranium and thorium, relatively close packed, but sufficient spacing for heat transfer purpose is described. The blanket would deliver approximately half the total energy for about 10,000 MWDIT, so this type of core would be just as economical or better in uranium ore consumation as present cores. (author)

  3. Light water reactor safety research project

    International Nuclear Information System (INIS)

    Markoczy, G.; Aksan, S.N.; Behringer, K.; Prodan, M.; Stierli, F.; Ullrich, G.

    1980-07-01

    The research and development activities for the safety of Light Water Power Reactors carried out 1979 at the Swiss Federal Institute for Reactor Research are described. Considerations concerning the necessity, objectives and size of the Safety Research Project are presented, followed by a detailed discussion of the activities in the five tasks of the program, covering fracture mechanics and nondestructive testing, thermal-hydraulics, reactor noise analysis and pressure vessel steel surveillance. (Auth.)

  4. A Series of Supramolecular Complexes for Solar Energy Conversion via Water Reduction to Produce Hydrogen: An Excited State Kinetic Analysis of Ru(II,Rh(III,Ru(II Photoinitiated Electron Collectors

    Directory of Open Access Journals (Sweden)

    Shamindri M. Arachchige

    2011-12-01

    Full Text Available Mixed-metal supramolecular complexes have been designed that photochemically absorb solar light, undergo photoinitiated electron collection and reduce water to produce hydrogen fuel using low energy visible light. This manuscript describes these systems with an analysis of the photophysics of a series of six supramolecular complexes, [{(TL2Ru(dpp}2RhX2](PF65 with TL = bpy, phen or Ph2phen with X = Cl or Br. The process of light conversion to a fuel requires a system to perform a number of complicated steps including the absorption of light, the generation of charge separation on a molecular level, the reduction by one and then two electrons and the interaction with the water substrate to produce hydrogen. The manuscript explores the rate of intramolecular electron transfer, rate of quenching of the supramolecules by the DMA electron donor, rate of reduction of the complex by DMA from the 3MLCT excited state, as well as overall rate of reduction of the complex via visible light excitation. Probing a series of complexes in detail exploring the variation of rates of important reactions as a function of sub-unit modification provides insight into the role of each process in the overall efficiency of water reduction to produce hydrogen. The kinetic analysis shows that the complexes display different rates of excited state reactions that vary with TL and halide. The role of the MLCT excited state is elucidated by this kinetic study which shows that the 3MLCT state and not the 3MMCT is likely that key contributor to the photoreduction of these complexes. The kinetic analysis of the excited state dynamics and reactions of the complexes are important as this class of supramolecules behaves as photoinitiated electron collectors and photocatalysts for the reduction of water to hydrogen.

  5. Laser-light backscattering response to water content and proteolysis in dry-cured ham

    DEFF Research Database (Denmark)

    Fulladosa, E.; Rubio-Celorio, M.; Skytte, Jacob Lercke

    2017-01-01

    on the acquisition conditions used. Laser backscattering was influenced by both dryness and proteolysis intensity showing an average light intensity decrease of 0.2 when decreasing water content (1% weight loss) and increasing proteolysis (equivalent to one-hour enzyme action). However, a decrease of scattering area...... was only detected when the water content was decreased (618 mm(2) per 1% weight loss). Changes on scattering of light profiles were only observed when the water content changed. Although there is a good correlation between water content and LBI parameters when analysing commercial samples, proteolysis...... of laser incidence) and to analyse the laser-light backscattering changes caused by additional hot air drying and proteolysis of dry-cured ham slices. The feasibility of the technology to determine water content and proteolysis (which is related to textural characteristics) of commercial sliced dry...

  6. Rapid water disinfection using vertically aligned MoS_2 nanofilms and visible light

    International Nuclear Information System (INIS)

    Liu, Chong; Kong, Desheng; Hsu, Po-Chun; Yuan, Hongtao; Lee, Hyun-Wook

    2016-01-01

    Here, solar energy is readily available in most climates and can be used for water purification. However, solar disinfection of drinking water (SODIS) mostly relies on ultraviolet light, which represents only 4% of total solar energy, and this leads to slow treatment speed. The development of new materials that can harvest visible light for water disinfection, and speed up solar water purification, is therefore highly desirable. Here, we show that few-layered vertically aligned MoS_2 (FLV-MoS_2) films can be used to harvest the whole spectrum of visible light (~ 50% of solar energy) and achieve highly efficient water disinfection. The bandgap of MoS_2 was increased from 1.3 eV to 1.55 eV by decreasing the domain size, which allowed the FLV-MoS_2 to generate reactive oxygen species (ROS) for bacterial inactivation in water. The FLV-MoS_2 showed ~15 times better log inactivation efficiency of indicator bacteria compared to bulk MoS_2, and much faster inactivation of bacteria under both visible light and sunlight illumination compared to widely used TiO_2. Moreover, by using a 5 nm copper film on top of the FLV-MoS_2 as a catalyst to facilitate electron-hole pair separation and promote the generation of ROS, the disinfection rate was further increased 6 fold. With our approach, we achieved water disinfection of >99.999% inactivation of bacteria in 20 minutes with a small amount of material (1.6 mg/L) under simulated visible light.

  7. Rapid water disinfection using vertically aligned MoS2 nanofilms and visible light

    International Nuclear Information System (INIS)

    Liu, Chong; Kong, Desheng; Hsu, Po-Chun; Yuan, Hongtao; Lee, Hyun-Wook

    2016-01-01

    In most climates, solar energy is readily available and can be used for water purification. But, solar disinfection of drinking water mostly relies on ultraviolet light, which represents only 4% of the total solar energy, and this leads to a slow treatment speed. Therefore, the development of new materials that can harvest visible light for water disinfection, and so speed up solar water purification, is highly desirable. Here we show that few-layered vertically aligned MoS_2 (FLV-MoS_2) films can be used to harvest the whole spectrum of visible light (~50% of solar energy) and achieve highly efficient water disinfection. The bandgap of MoS_2 was increased from 1.3 to 1.55 eV by decreasing the domain size, which allowed the FLV-MoS_2 to generate reactive oxygen species (ROS) for bacterial inactivation in the water. The FLV-MoS_2 showed a ~15 times better log inactivation efficiency of the indicator bacteria compared with that of bulk MoS_2, and a much faster inactivation of bacteria under both visible light and sunlight illumination compared with the widely used TiO_2. Moreover, by using a 5 nm copper film on top of the FLV-MoS_2 as a catalyst to facilitate electron–hole pair separation and promote the generation of ROS, the disinfection rate was increased a further sixfold. Here, we achieved water disinfection of >99.999% inactivation of bacteria in 20 min with a small amount of material (1.6 mg l–1) under simulated visible light.

  8. Single component Mn-doped perovskite-related CsPb2ClxBr5-x nanoplatelets with a record white light quantum yield of 49%: a new single layer color conversion material for light-emitting diodes.

    Science.gov (United States)

    Wu, Hao; Xu, Shuhong; Shao, Haibao; Li, Lang; Cui, Yiping; Wang, Chunlei

    2017-11-09

    Single component nanocrystals (NCs) with white fluorescence are promising single layer color conversion media for white light-emitting diodes (LED) because the undesirable changes of chromaticity coordinates for the mixture of blue, green and red emitting NCs can be avoided. However, their practical applications have been hindered by the relative low photoluminescence (PL) quantum yield (QY) for traditional semiconductor NCs. Though Mn-doped perovskite nanocube is a potential candidate, it has been unable to realize a white-light emission to date. In this work, the synthesis of Mn-doped 2D perovskite-related CsPb 2 Cl x Br 5-x nanoplatelets with a pure white emission from a single component is reported. Unlike Mn-doped perovskite nanocubes with insufficient energy transfer efficiency, the current reported Mn-doped 2D perovskite-related CsPb 2 Cl x Br 5-x nanoplatelets show a 10 times higher energy transfer efficiency from perovskite to Mn impurities at the required emission wavelengths (about 450 nm for perovskite emission and 580 nm for Mn emission). As a result, the Mn/perovskite dual emission intensity ratio surprisingly elevates from less than 0.25 in case of Mn-doped nanocubes to 0.99 in the current Mn-doped CsPb 2 Cl x Br 5-x nanoplatelets, giving rise to a pure white light emission with Commission Internationale de l'Eclairage (CIE) color coordinates of (0.35, 0.32). More importantly, the highest PL QY for Mn-doped perovskite-related CsPb 2 Cl x Br 5-x nanoplatelets is up to 49%, which is a new record for white-emitting nanocrystals with single component. These highly luminescent nanoplatelets can be blended with polystyrene (PS) without changing the white light emission but dramatically improving perovskite stability. The perovskite-PS composites are available not only as a good solution processable coating material for assembling LED, but also as a superior conversion material for achieving white light LED with a single conversion layer.

  9. Light induced electron transfer reactions of metal complexes

    International Nuclear Information System (INIS)

    Sutin, N.; Creutz, C.

    1980-01-01

    Properties of the excited states of tris(2,2'-bipyridine) and tris(1,10-phenanthroline) complexes of chromium(III), iron(II), ruthenium(II), osmium(II), rhodium(III), and iridium(III) are described. The electron transfer reactions of the ground and excited states are discussed and interpreted in terms of the driving force for the reaction and the distortions of the excited states relative to the corresponding ground states. General considerations relevant to the conversion of light into chemical energy are presented and progress in the use of polypyridine complexes to effect the light decomposition of water into hydrogen and oxygen is reviewed

  10. High resolution conductometry for isotopic assay of deuterium in mixtures of heavy water and light water

    International Nuclear Information System (INIS)

    Ananthanarayanan, R.; Sahoo, P.; Murali, N.

    2014-01-01

    A PC based high resolution conductivity monitoring technique has been deployed for determination of isotopic purity of heavy water in samples containing heavy water and light water mixtures using pulsating sensor based conductivity monitoring instrument. The technique involves accurate determination of conductivities of a series of specially treated heavy water and light water mixtures of various compositions at a constant solution temperature. The shift in conductivity (Δκ), which is the difference between conductivities of composite mixture after and before the formation of a typical complex compound (boric acid–mannitol complex in this case), shows a smooth and reproducible decreasing trend with increase in percentage composition of heavy water. This relation, which is obtained by appropriate calibration, is used in the software program for direct display of isotopic purity of heavy water. The technique is examined for determination of percentage composition of heavy water in the entire range of concentration (0-100 %) with reasonable precision (relative standard deviation, RSD ≤1.5 %). About 1 mL of sample is required for each analysis and analysis is completed within a couple of minutes after pretreatment of sample. The accuracy in measurement is ≤1.75 %. (author)

  11. Conversion of light-energy into molecular strain in the photocycle of the photoactive yellow protein.

    Science.gov (United States)

    Gamiz-Hernandez, Ana P; Kaila, Ville R I

    2016-01-28

    The Photoactive Yellow Protein (PYP) is a light-driven photoreceptor, responsible for the phototaxis of halophilic bacteria. Recently, a new short-lived intermediate (pR0) was characterized in the PYP photocycle using combined time-resolved X-ray crystallography and density functional theory calculations. The pR0 species was identified as a highly contorted cis-intermediate, which is stabilized by hydrogen bonds with protein residues. Here we show by hybrid quantum mechanics/classical mechanics (QM/MM) molecular dynamics simulations, and first-principles calculations of optical properties, that the optical shifts in the early steps of the PYP photocycle originate from the conversion of light energy into molecular strain, stored in the pR0 state, and its relaxation in subsequent reaction steps. Our calculations quantitatively reproduce experimental data, which enables us to identify molecular origins of the optical shifts. Our combined approach suggests that the short-lived pR0 intermediate stores ∼1/3 of the photon energy as molecular strain, thus providing the thermodynamic driving force for later conformational changes in the protein.

  12. Light water breeder reactor using a uranium-plutonium cycle

    International Nuclear Information System (INIS)

    Radkowsky, A.; Chen, R.

    1990-01-01

    This patent describes a light water receptor (LWR) for breeding fissile material using a uranium-plutonium cycle. It comprises: a prebreeder section having plutonium fuel containing a Pu-241 component, the prebreeder section being operable to produce enriched plutonium having an increased Pu-241 component; and a breeder section for receiving the enriched plutonium from the prebreeder section, the breeder section being operable for breeding fissile material from the enriched plutonium fuel. This patent describes a method of operating a light water nuclear reactor (LWR) for breeding fissile material using a uranium-plutonium cycle. It comprises: operating the prebreeder to produce enriched plutonium fuel having an increased Pu-241 component; fueling a breeder section with the enriched plutonium fuel to breed the fissile material

  13. Conversion of thermall energy to mechanical work in the oscillations with steam condensation in pool water

    International Nuclear Information System (INIS)

    Aya, Izuo; Nariai, Hideki.

    1988-01-01

    Pressure and fluid oscillations with steam injection into pool water were discussed from the view point of the conversion of thermal energy into mechanical work. When the change of fluid state moves clockwise in the p-V diagram, the oscillation sustains since the thermal energy changes into positive work. The equations difining the mechanical work at the condensation oscillations were presented. The oscillation threshold determined by the condition that mechanical work became zero, coincided with the values derived by the linear oscillation theory. The changes of pressure and specific volume during chugging were also shown with one dimensional simulation analysis. The p-V diagrams at various chugging modes were presented with the movement of steam water interface, and the conversion efficiency of thermal energy to mechanical work was also discussed. (author)

  14. High-throughput simultaneous determination of plasma water deuterium and 18-oxygen enrichment using a high-temperature conversion elemental analyzer with isotope ratio mass spectrometry.

    Science.gov (United States)

    Richelle, M; Darimont, C; Piguet-Welsch, C; Fay, L B

    2004-01-01

    This paper presents a high-throughput method for the simultaneous determination of deuterium and oxygen-18 (18O) enrichment of water samples isolated from blood. This analytical method enables rapid and simple determination of these enrichments of microgram quantities of water. Water is converted into hydrogen and carbon monoxide gases by the use of a high-temperature conversion elemental analyzer (TC-EA), that are then transferred on-line into the isotope ratio mass spectrometer. Accuracy determined with the standard light Antartic precipitation (SLAP) and Greenland ice sheet precipitation (GISP) is reliable for deuterium and 18O enrichments. The range of linearity is from 0 up to 0.09 atom percent excess (APE, i.e. -78 up to 5725 delta per mil (dpm)) for deuterium enrichment and from 0 up to 0.17 APE (-11 up to 890 dpm) for 18O enrichment. Memory effects do exist but can be avoided by analyzing the biological samples in quintuplet. This method allows the determination of 1440 samples per week, i.e. 288 biological samples per week. Copyright 2004 John Wiley & Sons, Ltd.

  15. Technology Implementation Plan. Fully Ceramic Microencapsulated Fuel for Commercial Light Water Reactor Application

    International Nuclear Information System (INIS)

    Snead, Lance Lewis; Terrani, Kurt A.; Powers, Jeffrey J.; Worrall, Andrew; Robb, Kevin R.; Snead, Mary A.

    2015-01-01

    This report is an overview of the implementation plan for ORNL's fully ceramic microencapsulated (FCM) light water reactor fuel. The fully ceramic microencapsulated fuel consists of tristructural isotropic (TRISO) particles embedded inside a fully dense SiC matrix and is intended for utilization in commercial light water reactor application.

  16. Technology Implementation Plan. Fully Ceramic Microencapsulated Fuel for Commercial Light Water Reactor Application

    Energy Technology Data Exchange (ETDEWEB)

    Snead, Lance Lewis [Oak Ridge National Lab. (ORNL), Oak Ridge, TN (United States); Terrani, Kurt A. [Oak Ridge National Lab. (ORNL), Oak Ridge, TN (United States); Powers, Jeffrey J. [Oak Ridge National Lab. (ORNL), Oak Ridge, TN (United States); Worrall, Andrew [Oak Ridge National Lab. (ORNL), Oak Ridge, TN (United States); Robb, Kevin R. [Oak Ridge National Lab. (ORNL), Oak Ridge, TN (United States); Snead, Mary A. [Oak Ridge National Lab. (ORNL), Oak Ridge, TN (United States)

    2015-04-01

    This report is an overview of the implementation plan for ORNL's fully ceramic microencapsulated (FCM) light water reactor fuel. The fully ceramic microencapsulated fuel consists of tristructural isotropic (TRISO) particles embedded inside a fully dense SiC matrix and is intended for utilization in commercial light water reactor application.

  17. Steam explosions in light water reactors

    International Nuclear Information System (INIS)

    1981-01-01

    The report deals with a postulated accident caused by molten fuel falling into the lower plenum of the containment of a reactor. The analysis which is presented in the report shows that the thermal energy released in the resulting steam explosion is not enough to destroy the pressure vessel or the containment. The report was prepared for the Swedish Governmental Committee on steam explosion in light water reactors. It includes statements issued by internationally well-known specialists. (G.B.)

  18. Programme of research and development on plutonium recycling in light-water reactors

    International Nuclear Information System (INIS)

    1979-01-01

    This is the third annual progress report concerning the programme on plutonium recycling in light-water reactors (indirect action) of the Commission of the European Communities. It covers the year 1978 and follows the annual reports for 1977 (EUR 6002 EN) and 1976 (EUR 5780). The preliminary results obtained under the 1975-79 programme indicate that: (a) assuming that plutonium recycling in light-water reactors is industrially developed by the end of the century, the foreseeable radiological impact on both workers and the general public can be maintained within the limits of current radiation protection standards; (b) on the whole, there is a good knowledge and mastery of the specific aspects involved in the plutonium recycling in light-water reactors and in particular they indicate that plutonium fuels have a similar behaviour to uranium fuels

  19. Direct conversion of cellulose to glycolic acid with a phosphomolybdic acid catalyst in a water medium

    KAUST Repository

    Zhang, Jizhe; Liu, Xin; Sun, Miao; Ma, Xiaohua; Han, Yu

    2012-01-01

    Direct conversion of cellulose to fine chemicals has rarely been achieved. We describe here an eco-benign route for directly converting various cellulose-based biomasses to glycolic acid in a water medium and oxygen atmosphere in which

  20. Self-propagating solar light reduction of graphite oxide in water

    Energy Technology Data Exchange (ETDEWEB)

    Todorova, N.; Giannakopoulou, T.; Boukos, N.; Vermisoglou, E. [Institute of Nanoscience and Nanotechnology, NCSR “Demokritos”, 153 41 Attikis (Greece); Lekakou, C. [Division of Mechanical, Medical, and Aerospace Engineering, Faculty of Engineering and Physical Sciences, University of Surrey, Guildford (United Kingdom); Trapalis, C., E-mail: c.trapalis@inn.demokritos.gr [Institute of Nanoscience and Nanotechnology, NCSR “Demokritos”, 153 41 Attikis (Greece)

    2017-01-01

    Highlights: • Graphite oxide was partially reduced by solar light irradiation in water media. • No addition of catalysts nor reductive agent were used for the reduction. • Specific capacitance increased stepwise with increase of irradiation time. • Self-propagating reduction of graphene oxide by solar light is suggested. - Abstract: Graphite Oxide (GtO) is commonly used as an intermediate material for preparation of graphene in the form of reduced graphene oxide (rGO). Being a semiconductor with tunable band gap rGO is often coupled with various photocatalysts to enhance their visible light activity. The behavior of such rGO-based composites could be affected after prolonged exposure to solar light. In the present work, the alteration of the GtO properties under solar light irradiation is investigated. Water dispersions of GtO manufactured by oxidation of natural graphite via Hummers method were irradiated into solar light simulator for different periods of time without addition of catalysts or reductive agent. The FT-IR analysis of the treated dispersions revealed gradual reduction of the GtO with the increase of the irradiation time. The XRD, FT-IR and XPS analyses of the obtained solid materials confirmed the transition of GtO to rGO under solar light irradiation. The reduction of the GtO was also manifested by the CV measurements that revealed stepwise increase of the specific capacitance connected with the restoration of the sp{sup 2} domains. Photothermal self-propagating reduction of graphene oxide in aqueous media under solar light irradiation is suggested as a possible mechanism. The self-photoreduction of GtO utilizing solar light provides a green, sustainable route towards preparation of reduced graphene oxide. However, the instability of the GtO and partially reduced GO under irradiation should be considered when choosing the field of its application.

  1. Analysis of an accelerator-driven subcritical light water reactor

    International Nuclear Information System (INIS)

    Kruijf, W.J.M. de; Wakker, P.H.; Wetering, T.F.H. van de; Verkooijen, A.H.M.

    1997-01-01

    An analysis of the basic characteristics of an accelerator-driven light water reactor has been made. The waste in the nuclear fuel cycle is considerably less than in the light water reactor open fuel cycle. This is mainly caused by the use of equilibrium nuclear fuel in the reactor. The accelerator enables the use of a fuel composition with infinite multiplication factor k ∞ < 1. The main problem of the use of this type of fuel is the strongly peaked flux distribution in the reactor core. A simple analytical model shows that a large core is needed with a high peak power factor in order to generate net electric energy. The fuel in the outer regions of the reactor core is used very poorly. 7 refs., 4 figs., 1 tab

  2. Penn State advanced light water reactor concept

    International Nuclear Information System (INIS)

    Borkowski, J.A.; Smith, K.A.; Edwards, R.M.; Robinson, G.E.; Schultz, M.A.; Klevans, E.H.

    1987-01-01

    The accident at Three Mile Island heightened concerns over the safety of nuclear power. In response to these concerns, a research group at the Pennsylvania State University (Penn State) undertook the conceptual design of an advanced light water reactor (ALWR) under sponsorship of the US Dept. of Energy (DOE). The design builds on the literally hundreds of years worth of experience with light water reactor technology. The concept is a reconfigured pressurized water reactor (PWR) with the capability of being shut down to a safe condition simply by removing all ac power, both off-site and on-site. Using additional passively activated heat sinks and replacing the pressurizer with a pressurizing pump system, the concept essentially eliminates the concerns of core damage associated with a total station blackout. Evaluation of the Penn State ALWR concept has been conducted using the EPRI Modular Modeling System (MMS). Results show that a superior response to normal operating transients can be achieved in comparison to the response with a conventional PWR pressurizer. The DOE-sponsored Penn State ALWR concept has evolved into a significant reconfiguration of a PWR leading to enhanced safety characteristics. The reconfiguration has touched a number of areas in overall plant design including a shutdown turbine in the secondary system, additional passively activated heat sinks, a unique primary side pressurizing concept, a low pressure cleanup system, reactor building layout, and a low power density core design

  3. Separation and Recovery of Uranium Metal from Spent Light Water Reactor Fuel via Electrolytic Reduction and Electrorefining

    International Nuclear Information System (INIS)

    Herrmann, S.D.; Li, S.X.

    2010-01-01

    A series of bench-scale experiments was performed in a hot cell at Idaho National Laboratory to demonstrate the separation and recovery of uranium metal from spent light water reactor (LWR) oxide fuel. The experiments involved crushing spent LWR fuel to particulate and separating it from its cladding. Oxide fuel particulate was then converted to metal in a series of six electrolytic reduction runs that were performed in succession with a single salt loading of molten LiCl - 1 wt% Li2O at 650 C. Analysis of salt samples following the series of electrolytic reduction runs identified the diffusion of select fission products from the spent fuel to the molten salt electrolyte. The extents of metal oxide conversion in the post-test fuel were also quantified, including a nominal 99.7% conversion of uranium oxide to metal. Uranium metal was then separated from the reduced LWR fuel in a series of six electrorefining runs that were performed in succession with a single salt loading of molten LiCl-KCl-UCl3 at 500 C. Analysis of salt samples following the series of electrorefining runs identified additional partitioning of fission products into the molten salt electrolyte. Analyses of the separated uranium metal were performed, and its decontamination factors were determined.

  4. Photovoltaic OLED Driver for Low-Power Stand-Alone Light-to-Light Systems

    DEFF Research Database (Denmark)

    Ploug, Rasmus Overgaard; Knott, Arnold

    2016-01-01

    of a three-port-converter for this purpose optimized for the specifications for driving an Organic Light Emitting Diode (OLED) panel intended for lighting purposes. By using a three-port-converter, featuring shared components for each conversion mode, the converter reaches 97 % efficiency at 1.8 W during...... conversion from photovoltaic panel to the battery, and 97 % in the area 1.4 W to 2 W for power delivery to the OLED....

  5. Light-water-reactor hydrogen manual

    International Nuclear Information System (INIS)

    Camp, A.L.; Cummings, J.C.; Sherman, M.P.; Kupiec, C.F.; Healy, R.J.; Caplan, J.S.; Sandhop, J.R.; Saunders, J.H.

    1983-06-01

    A manual concerning the behavior of hydrogen in light water reactors has been prepared. Both normal operations and accident situations are addressed. Topics considered include hydrogen generation, transport and mixing, detection, and combustion, and mitigation. Basic physical and chemical phenomena are described, and plant-specific examples are provided where appropriate. A wide variety of readers, including operators, designers, and NRC staff, will find parts of this manual useful. Different sections are written at different levels, according to the most likely audience. The manual is not intended to provide specific plant procedures, but rather, to provide general guidance that may assist in the development of such procedures

  6. Conversion of highly enriched uranium in thorium-232 based oxide fuel for light water reactors: MOX-T fuel

    Energy Technology Data Exchange (ETDEWEB)

    Vapirev, E I; Jordanov, T; Christoskov, I [Sofia Univ. (Bulgaria). Fizicheski Fakultet

    1994-12-31

    The idea of conversion of highly enriched uranium (HEU) from warheads without mixing it with natural uranium as well as the utilization of plutonium as fuel component is discussed. A nuclear fuel which is a mixture of 4% {sup 235}U (HEU) as a fissile isotope and 96 % {sup 232}Th (ThO{sub 2}) as a non-fissile isotope in a mixed oxide with thorium fuel is proposed. It is assumed that plutonium can also be used in the proposed fuel in a mixture with {sup 235}U. The following advantages of the use of HEU in LWRs in mixed {sup 235}U - Th fuel are pointed out: (1) No generation of long-living plutonium and americium isotopes (in case of reprocessing the high level radioactive wastes will contain only fission fragments and uranium); (2) The high conversion ratio of Th extends the expected burnup by approximately 1/3 without higher initial enrichment (the same initial enrichment simplifies the problem for compensation of the excess reactivity in the beginning with burnable poison and boric acid); (3) The high conversion ratio of Th allows the fuel utilization with less initial enrichment (by approx. 1/3) for the same burnup; thus less excess reactivity has to be compensated after reloading; in case of fuel reprocessing all fissile materials ({sup 235}U + {sup 233}U) could be chemically extracted. Irrespectively to the optimistic expectations outlined, further work including data on optimal loading and reloading schemes, theoretical calculations of thermal properties of {sup 235}U + Th fuel rods, manufacturing of several test fuel assemblies and investigations of their operational behaviour in a reactor core is still needed. 1 fig., 7 refs.

  7. Conversion of sand filters into activated carbon filters at the La Presa (Valencia) water works; Conversion de filtros de arena porcarbon activo en la ETAP de La Presa (Valencia)

    Energy Technology Data Exchange (ETDEWEB)

    Macian Cervera, V. J.; Monforte Monleon, L.; Ribera Orts, R.; Suris Jorda, J. I.; Klee, J. M.

    2007-07-01

    To improve the water quality at potable water treatment plant of La P esa (Valencia), the sand filters have been replaced for activated carbon filters. In the following review the results and conclusions of the direct sand filter conversion into activated carbon filters will be presented. The leads to a simple and fast solution to odour and taste removal, as well as dissolved organic matter, without investments in works at the water works. (Author)

  8. Nuclear (μ-,e+) conversion mediated by Majorana neutrinos

    International Nuclear Information System (INIS)

    Domin, P.; Kovalenko, S.; Faessler, Amand; Simkovic, F.

    2004-01-01

    We study the lepton number violating (LNV) process of (μ - ,e + ) conversion in nuclei mediated by the exchange of light and heavy Majorana neutrinos. Nuclear structure calculations have been carried out for the case of an experimentally interesting nucleus 48 Ti in the framework of a renormalized proton-neutron quasiparticle random phase approximation. We demonstrate that the imaginary part of the amplitude of a light Majorana neutrino exchange mechanism gives an appreciable contribution to the (μ - ,e + ) conversion rate. This specific feature is absent in the allied case of 0νββ decay. Using the present neutrino oscillations, tritium beta decay, accelerator, and cosmological data, we derived the limits on the effective masses of light μe and heavy N -1 > μe neutrinos. The expected rates of nuclear (μ - ,e + ) conversion, corresponding to these limits, were found to be so small that even within a distant future the (μ - ,e + ) conversion experiments will hardly be able to detect the neutrino signal. Therefore, searches for this LNV process can only rely on the presence of certain physics beyond the trivial extension of the standard model by inclusion of massive Majorana neutrinos

  9. Light Refraction by Water as a Rationale for the Poggendorff Illusion

    DEFF Research Database (Denmark)

    Bozhevolnyi, Sergey I.

    2017-01-01

    The Poggendorff illusion in its classical form of parallel lines interrupting a transversal is viewed from the perspective of being related to the everyday experience of observing the light refraction in water. It is argued that if one considers a transversal to be a light ray in air and the para...

  10. Separation setup for the light water detritiation process in the water-hydrogen system based on the membrane contact devices

    International Nuclear Information System (INIS)

    Rozenkevich, M. B.; Rastunova, I. L.; Prokunin, S. V.

    2008-01-01

    Detritiation of light water wastes down to a level permissible to discharge into the environment while simultaneously concentrating tritium to decrease amount of waste being buried is a constant problem. The laboratory setup for the light water detritiation process is presented. The separation column consists of 10 horizontally arranged perfluorosulphonic acid Nafion-type membrane contact devises and platinum catalyst (RCTU-3SM). Each contact device has 42.3 cm 2 of the membrane and 10 cm 3 of the catalyst. The column is washed by tritium free light water (L H2O ) and the tritium-containing flow (F HTO ) feeds the electrolyser at λ = G H2 /L H2O = 2. A separation factor of 66 is noted with the device at 336 K and 0.145 MPa. (authors)

  11. Supported black phosphorus nanosheets as hydrogen-evolving photocatalyst achieving 5.4% energy conversion efficiency at 353 K.

    Science.gov (United States)

    Tian, Bin; Tian, Bining; Smith, Bethany; Scott, M C; Hua, Ruinian; Lei, Qin; Tian, Yue

    2018-04-11

    Solar-driven water splitting using powdered catalysts is considered as the most economical means for hydrogen generation. However, four-electron-driven oxidation half-reaction showing slow kinetics, accompanying with insufficient light absorption and rapid carrier combination in photocatalysts leads to low solar-to-hydrogen energy conversion efficiency. Here, we report amorphous cobalt phosphide (Co-P)-supported black phosphorus nanosheets employed as photocatalysts can simultaneously address these issues. The nanosheets exhibit robust hydrogen evolution from pure water (pH = 6.8) without bias and hole scavengers, achieving an apparent quantum efficiency of 42.55% at 430 nm and energy conversion efficiency of over 5.4% at 353 K. This photocatalytic activity is attributed to extremely efficient utilization of solar energy (~75% of solar energy) by black phosphorus nanosheets and high-carrier separation efficiency by amorphous Co-P. The hybrid material design realizes efficient solar-to-chemical energy conversion in suspension, demonstrating the potential of black phosphorus-based materials as catalysts for solar hydrogen production.

  12. Characteristics of ultraviolet light and radicals formed by pulsed discharge in water

    Science.gov (United States)

    Sun, Bing; Kunitomo, Shinta; Igarashi, Chiaki

    2006-09-01

    In this investigation, the ultraviolet light characteristics and OH radical properties produced by a pulsed discharge in water were studied. For the plate-rod reactor, it was found that the ultraviolet light energy has a 3.2% total energy injected into the reactor. The ultraviolet light changed with the peak voltage and electrode distance. UV characteristics in tap water and the distilled water are given. The intensity of the OH radicals was the highest for the 40 mm electrode distance reactor. In addition, the properties of hydrogen peroxide and ozone were also studied under arc discharge conditions. It was found that the OH radicals were in the ground state and the excited state when a pulsed arc discharge was used. The ozone was produced by the arc discharge even if the oxygen gas is not bubbled into the reactor. The ozone concentration produces a maximum value with treatment time.

  13. Characteristics of ultraviolet light and radicals formed by pulsed discharge in water

    Energy Technology Data Exchange (ETDEWEB)

    Sun Bing [Dalian Maritime University, College of Environment, 1st Linghai Road, Dalian (China); Kunitomo, Shinta [Ebara Corporation, 1-6-27, Konan, Minato-ku 108-8480 (Japan); Igarashi, Chiaki [Ebara Research Co. Ltd, 2-1, Honfujisawa 4-chome, Fujisawa 251-8502 (Japan)

    2006-09-07

    In this investigation, the ultraviolet light characteristics and OH radical properties produced by a pulsed discharge in water were studied. For the plate-rod reactor, it was found that the ultraviolet light energy has a 3.2% total energy injected into the reactor. The ultraviolet light changed with the peak voltage and electrode distance. UV characteristics in tap water and the distilled water are given. The intensity of the OH radicals was the highest for the 40 mm electrode distance reactor. In addition, the properties of hydrogen peroxide and ozone were also studied under arc discharge conditions. It was found that the OH radicals were in the ground state and the excited state when a pulsed arc discharge was used. The ozone was produced by the arc discharge even if the oxygen gas is not bubbled into the reactor. The ozone concentration produces a maximum value with treatment time.

  14. Effect of cold water and inverse lighting on growth performance of broiler chickens under extreme heat stress.

    Science.gov (United States)

    Park, Sang-oh; Park, Byung-sung; Hwangbo, Jong

    2015-07-01

    The present study was carried out to investigate the effect of provision of extreme heat stress diet (EHD), inverse lighting, cold water on growth performance of broiler chickens exposed to extreme heat stress. The chickens were divided into four treatment groups, (T1, T2, T3, T4) as given below: Ti (EHD 1, 10:00-19:00 dark, 19:00-10:00 light, cool water 9 degrees C); T2 (EHD 2, 10:00-19:00 dark, 19:00-10:00 light, cool water 9 degrees C); T3 (EHD 1, 09:00-18:00 dark, 18:00-09:00 light, cool water 141C); T4 (EHD 2, 09:00-18:00 dark, 18:00-09:00 light, cool water 14 degrees C. EHD 1 contained soybean oil, molasses, methionine and lysine; EHD 2 contained the same ingredients as EHD 1 with addition of vitamin C. Groups T1 and T2 were given cooler water than the othertwo groups, and displayed higher body weight increase and diet intake as compared to T3 and T4 (pstress diet, inverse lighting (10:00-19:00 dark, 19:00-10:00 light) with cold water at 9 degrees C under extreme heat stress could enhance growth performance of broiler chickens.

  15. Hybrid lead halide perovskites for light energy conversion: Excited state properties and photovoltaic applications

    Science.gov (United States)

    Manser, Joseph S.

    travel 220 nm over the course of 2 ns after photoexcitation, with an extrapolated diffusion length greater than one micrometer over the full excited state lifetime. The solution-processability of metal halide perovskites necessarily raises questions as to the properties of the solvated precursors and their connection to the final solid-state perovskite phase. Through structural and steady-state and time-resolved absorption studies, the important link between the excited state properties of the precursor components, composed of solvated and solid-state halometallate complexes, and CH3NH3PbI3 is evinced. This connection provides insight into optical nonlinearities and electronic properties of the perovskite phase. Fundamental studies of CH 3NH3PbI3 ultimately serve as a foundation for application of this and other related materials in high-performance devices. In the final chapter, the operation of CH3NH3PbI 3 solar cells in a tandem architecture is presented. The quest for economic, large scale hydrogen production has motivated the search for new materials and device designs capable of splitting water using only energy from the sun. In light of this, we introduce an all solution-processed tandem water splitting assembly composed of a BiVO4 photoanode and a single-junction CH3NH3PbI3 hybrid perovskite solar cell. This unique configuration allows efficient solar photon management, with the metal oxide photoanode selectively harvesting high energy visible photons and the underlying perovskite solar cell capturing lower energy visible-near IR wavelengths in a single-pass excitation. Operating without external bias under standard terrestrial one sun illumination, the photoanode-photovoltaic architecture, in conjunction with an earthabundant cobalt phosphate catalyst, exhibits a solar-to-hydrogen conversion efficiency of 2.5% at neutral pH. The design of low-cost tandem water splitting assemblies employing single-junction hybrid perovskite materials establishes a potentially

  16. Infrared to visible image up-conversion using optically addressed spatial light modulator utilizing liquid crystal and InGaAs photodiodes

    Energy Technology Data Exchange (ETDEWEB)

    Solodar, A., E-mail: asisolodar@gmail.com; Arun Kumar, T.; Sarusi, G.; Abdulhalim, I. [Department of Electro-Optics Engineering and The Ilse Katz Institute for Nanoscale Science and Technology, Ben Gurion University of the Negev, Beer Sheva 84105 (Israel)

    2016-01-11

    Combination of InGaAs/InP heterojunction photodetector with nematic liquid crystal (LC) as the electro-optic modulating material for optically addressed spatial light modulator for short wavelength infra-red (SWIR) to visible light image conversion was designed, fabricated, and tested. The photodetector layer is composed of 640 × 512 photodiodes array based on heterojunction InP/InGaAs having 15 μm pitch on InP substrate and with backside illumination architecture. The photodiodes exhibit extremely low, dark current at room temperature, with optimum photo-response in the SWIR region. The photocurrent generated in the heterojunction, due to the SWIR photons absorption, is drifted to the surface of the InP, thus modulating the electric field distribution which modifies the orientation of the LC molecules. This device can be attractive for SWIR to visible image upconversion, such as for uncooled night vision goggles under low ambient light conditions.

  17. Catalytic conversion of light alkanes, Phase 3. Topical report, January 1990--December 1992

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    1992-12-31

    The mission of this work is to devise a new catalyst which can be used in the first simple, economic process to convert the light alkanes in natural gas to an alcohol-rich oxygenated product which can either be used as an environmentally friendly, high-performance liquid fuel, or a precursor to a liquid hydrocarbon transportation fuel. The authors have entered the proof-of-concept stage for converting isobutane to tert butyl alcohol in a practical process and are preparing to enter proof-of-concept of a propane to isopropyl alcohol process in the near future. Methane and ethane are more refractory and thus more difficult to oxidize than the C{sub 3} and C{sub 4} hydrocarbons. Nonetheless, advances made in this area indicate that further research progress could achieve the goal of their direct conversion to alcohols. Progress in Phase 3 catalytic vapor phase methane and ethane oxidation over metals in regular oxidic lattices are the subject of this topical report.

  18. High converter pressurized water reactor with heavy water as a coolant

    International Nuclear Information System (INIS)

    Ronen, Y.; Reyev, D.

    1983-01-01

    There is an increasing interest in water breeder and high converter reactors. The increase in the conversion ratio of these reactors is obtained by hardening the neutron spectrum achieved by tightening the reactor's lattice. Another way of hardening the neutron spectrum is to replace the light water with heavy water. Two pressurized water reactor fuel cycles that use heavy water as a coolant are considered. The first fuel cycle is based on plutonium and depleted uranium, and the second cycle is based on plutonium and enriched uranium. The uranium ore and separative work unit (SWU) requirements are calculated as well as the fuel cycle cost. The savings in uranium ore are about40 and 60% and about40% in SWU for both fuel cycles considered

  19. Light irradiance through novel CAD-CAM block materials and degree of conversion of composite cements.

    Science.gov (United States)

    Lise, Diogo Pedrollo; Van Ende, Annelies; De Munck, Jan; Yoshihara, Kumiko; Nagaoka, Noriyuki; Cardoso Vieira, Luiz Clovis; Van Meerbeek, Bart

    2018-02-01

    To assess light irradiance (LI) delivered by two light-curing units (LCU's) and to measure the degree of conversion (DC) of three composite cements, when cured through different thicknesses of two novel CAD-CAM block materials. 100-μm-thick films of a dual-curable composite cement (G-CEM LinkAce, GC), a light-curable flowable resin-based composite (RBC) (G-ænial Universal Flo, GC) and a micro-hybrid RBC (G-ænial Posterior, GC) were investigated as luting agents. Two 'polymer-ceramic' CAD-CAM blocks (Cerasmart, GC; Enamic, Vita Zahnfabrik) were sectioned in slabs with different thicknesses (1, 3 and 5mm). LI at the bottom of the specimens was measured using a calibrated spectrometer, while being light-cured through the CAD-CAM block slabs for 40s with a low- (±500mW/cm 2 ) or high- (±1,600mW/cm 2 ) irradiance LCU (n=5). After light-curing, micro-Raman spectra of the composite films were acquired to determine DC at 5min, 10min, 1h and 24h. LI data were statistically analyzed by Kruskal-Wallis followed by post-hoc comparisons, while a linear mixed-effect model was applied for the DC analysis. In addition, the CAD-CAM blocks ultrastructure was characterized upon argon-ion slicing using scanning transmission electron microscopy (STEM). Finally, light transmission (LT) through each CAD-CAM block material was assessed using a spectrophotometer. Curing-light attenuation and DC were significantly influenced by thickness and type of the overlying material. LCU only had a significant effect on DC of the micro-hybrid RBC. DC significantly increased over time for all composite cements. CAD-CAM block structural analysis revealed a relatively small and homogenous filler configuration (mean filler size of 0.2-0.5μm) for Cerasmart, while Enamic contained ceramic grains varying in shape and size (1-10μm), which were interconnected by the polymer-based network. LT was much higher at a wavelength range of 300-800nm for Cerasmart than for Enamic. Light-curable composite cements

  20. Bioassay using the water soluble fraction of a Nigerian Light Crude ...

    African Journals Online (AJOL)

    Summary: A 96-hour bioassay was conducted using the water soluble fraction of a Nigerian light crude oil sample on Clarias gariepinus fingerlings. 0, 2.5, 5.0, 7.5 and 10 mls of water soluble fractions (WSF) of the oil were added to 1000 litres of de-chlorinated tap water to form 0, 25, 50 , 75 and 100 parts per million ...

  1. Hydrogen Production from Water by Photosynthesis System I for Use as Fuel in Energy Conversion Devices (a.k.a. Understanding Photosystem I as a Biomolecular Reactor for Energy Conversion)

    Science.gov (United States)

    2014-04-01

    Hydrogen Production from Water by Photosynthesis System I for Use as Fuel in Energy Conversion Devices (a.k.a. Understanding Photosystem I as...Laboratory Adelphi, MD 20783-1197 ARL-TR-6904 April 2014 Hydrogen Production from Water by Photosynthesis System I for Use as Fuel in Energy...Final 3. DATES COVERED (From - To) 10/1/2010–10/1/2013 4. TITLE AND SUBTITLE Hydrogen Production from Water by Photosynthesis System I for Use as Fuel

  2. Study of the light emitted in the moderation of a heavy-water pile

    International Nuclear Information System (INIS)

    Breton, D.

    1958-06-01

    During the running of a reactor which uses water as a neutron moderator, a bluish light is seen to appear inside the liquid. A detailed study of this radiation, undertaken on the Fontenay-aux-Roses pile, has shown that the spectrum is identical with that which characterises the light produced by the Cerenkov effect. The light intensity as a function of the pile power grows exponentially as a function of time when the pile diverges, with a lifetime equal to that of the rise in power. An examination of the various particles present in the pile has led to the conclusion that only electrons with an energy greater than 260 keV con produce the Cerenkov light. The light source thus produced is about 2.10 6 photons/cm 2 of water, when the pile power equals 1 watt. (author) [fr

  3. Mechanical design of a light water breeder reactor

    International Nuclear Information System (INIS)

    Fauth, W.L. Jr.; Jones, D.S.; Kolsun, G.J.; Erbes, J.G.; Brennan, J.J.; Weissburg, J.A.; Sharbaugh, J.E.

    1976-01-01

    In a light water reactor system using the thorium-232--uranium-233 fuel system in a seed-blanket modular core configuration having the modules arranged in a symmetrical array surrounded by a reflector blanket region, the seed regions are disposed for a longitudinal movement between the fixed or stationary blanket region which surrounds each seed region. Control of the reactor is obtained by moving the inner seed region thus changing the geometry of the reactor, and thereby changing the leakage of neutrons from the relatively small seed region into the blanket region. The mechanical design of the Light Water Breeder Reactor (LWBR) core includes means for axially positioning of movable fuel assemblies to achieve the neutron economy required of a breeder reactor, a structure necessary to adequately support the fuel modules without imposing penalties on the breeding capability, a structure necessary to support fuel rods in a closely packed array and a structure necessary to direct and control the flow of coolant to regions in the core in accordance with the heat transfer requirements. 4 claims, 24 drawing figures

  4. Syngas conversion to a light alkene and related methods

    Science.gov (United States)

    Ginosar, Daniel M.; Petkovic, Lucia M.

    2017-11-14

    Methods of producing a light alkene. The method comprises contacting syngas and tungstated zirconia to produce a product stream comprising at least one light alkene. The product stream is recovered. Methods of converting syngas to a light alkene are also disclosed. The method comprises heating a precursor of tungstated zirconia to a temperature of between about 350.degree. C. and about 550.degree. C. to form tungstated zirconia. Syngas is flowed over the tungstated zirconia to produce a product stream comprising at least one light alkene and the product stream comprising the at least one light alkene is recovered.

  5. Light requirements of water lobelia (Lobelia dortmanna L.

    Directory of Open Access Journals (Sweden)

    Borowiak Dariusz

    2017-12-01

    Full Text Available Maximum depth of colonization (zC and total area covered by a population of Lobelia dortmanna, as well as underwater light regime were studied in 25 soft water lobelia lakes in north-western Poland. Variations in underwater light conditions among the lakes were described by Secchi disc depths (zSD, and by attenuation coefficients of irradiance within photosynthetically active radiation range (Kd,PAR, and euphotic zone depths (zEU derived from photometric measurements conducted twice a year (in midspring and midsummer during the period 2014–2015. Maximum depth of colonization of water lobelia ranged from 0.1 to 2.2 m (median zC = 0.8 m; mean zC = 1.0 m. Nine lakes showed the relative coverage of the littoral zone (RCLZ by L. dortmanna to be greater than the mean value, which was 4.8%. Studies showed that light requirements of water lobelia increase when the maximum depth of colonization also increases. This pattern could be partially related to the greater energy needs of deeper growing individuals due to enlarged seed production and their incubation, and for the creation of much heavier inflorescences. Assessment of the light requirements of L. dortmanna along the depth gradient indicates that relative irradiance (percentage of subsurface irradiance of PAR should be at the level of: (i 47–50% (annual total of quantum irradiance 3083–3280 mol m−2 yr−2 for plants growing within a depth range of 2.0–2.5 m; (ii 44–47% (2886–3083 mol m−2yr−1 for plants growing within a depth range of 1.5–2.0 m; (iii 41–44% (2690–2886 mol m−2yr−2 for plants growing within a depth range of 1.0–1.5 m; and (iv 34–41% (2230–2690 mol m−1 yr−1 for those growing in the littoral zone at a depth of between 0.5 and 1.0 m. In average conditions in the Pomeranian lakes, the maximum depth of colonization by L. dortmanna accounts for approximately a third of the Secchi disc depth and a fifth of the depth of the euphotic zone with irradiance

  6. Aging management of major light water reactor components

    International Nuclear Information System (INIS)

    Shah, V.N.; Sinha, U.P.; Ware, A.G.

    1992-01-01

    Review of technical literature and field experience has identified stress corrosion cracking as one of the major degradation mechanisms for the major light water reactor components. Three of the stress corrosion cracking mechanisms of current concern are (a) primary water stress corrosion cracking (PWSCC) in pressurized water reactors, and (b) intergranular stress corrosion cracking (IGSCC) and (c) irradiation-assisted stress corrosion cracking (IASCC) in boiling water reactors. Effective aging management of stress corrosion cracking mechanisms includes evaluation of interactions between design, materials, stressors, and environment; identification and ranking of susceptible sites; reliable inspection of any damage; assessment of damage rate; mitigation of damage; and repair and replacement using corrosion-resistant materials. Management of PWSCC includes use of lower operating temperatures, reduction in residual tensile stresses, development of reliable inspection techniques, and use of Alloy 690 as replacement material. Management of IGSCC of nozzle and attachment welds includes use of Alloy 82 as weld material, and potential use of hydrogen water chemistry. Management of IASCC also includes potential use of hydrogen water chemistry

  7. Development of Electro-Microbial Carbon Capture and Conversion Systems

    KAUST Repository

    Al Rowaihi, Israa S.

    2017-05-01

    Carbon dioxide is a viable resource, if used as a raw material for bioprocessing. It is abundant and can be collected as a byproduct from industrial processes. Globally, photosynthetic organisms utilize around 6’000 TW (terawatt) of solar energy to fix ca. 800 Gt (gigaton) of CO2 in the planets largest carbon-capture process. Photosynthesis combines light harvesting, charge separation, catalytic water splitting, generation of reduction equivalents (NADH), energy (ATP) production and CO2 fixation into one highly interconnected and regulated process. While this simplicity makes photosynthetic production of commodity interesting, yet photosynthesis suffers from low energy efficiency, which translates in an extensive footprint for solar biofuels production conditions that store < 2% of solar energy. Electron transfer processes form the core of photosynthesis. At moderate light intensity, the electron transport chains reach maximum transfer rates and only work when photons are at appropriate wavelengths, rendering the process susceptible to oxidative damage, which leads to photo-inhibition and loss of efficiency. Based on our fundamental analysis of the specialized tasks in photosynthesis, we aimed to optimize the efficiency of these processes separately, then combine them in an artificial photosynthesis (AP) process that surpasses the low efficiency of natural photosynthesis. Therefore, by combining photovoltaic light harvesting with electrolytic water splitting or CO2 reduction in combination with microbiological conversion of electrochemical products to higher valuable compounds, we developed an electro-microbial carbon capture and conversion setups that capture CO2 into the targeted bioplastic; polyhydroxybutyrate (PHB). Based on the type of the electrochemical products, and the microorganism that either (i) convert products formed by electrochemical reduction of CO2, e.g. formate (using inorganic cathodes), or (ii) use electrochemically produced H2 to reduce CO2

  8. Biogas Production and Engine Conversion From Diesel Engine to Biogas Engine for Lighting in Rural Area

    OpenAIRE

    Tun, Seint Thandar

    2012-01-01

    The research of alternative fuels implemented in internal combustion engines are becoming the subjects of interest nowadays. This paper describes a production of biogas from cow dung, diesel engine conversion process with piston modification of ZH1115 diesel engine. To produce biogas, the usual practice is to mix water with some organic material, such as cow dung (a free source of the appropriate micro-organisms). The slurry is placed in a leak-proof container (called a digester) and leaves i...

  9. Photon up-conversion increases biomass yield in Chlorella vulgaris.

    Science.gov (United States)

    Menon, Kavya R; Jose, Steffi; Suraishkumar, Gadi K

    2014-12-01

    Photon up-conversion, a process whereby lower energy radiations are converted to higher energy levels via the use of appropriate phosphor systems, was employed as a novel strategy for improving microalgal growth and lipid productivity. Photon up-conversion enables the utilization of regions of the solar spectrum, beyond the typical photosynthetically active radiation, that are usually wasted or are damaging to the algae. The effects of up-conversion of red light by two distinct sets of up-conversion phosphors were studied in the model microalgae Chlorella vulgaris. Up-conversion by set 1 phosphors led to a 2.85 fold increase in biomass concentration and a 3.2 fold increase in specific growth rate of the microalgae. While up-conversion by set 2 phosphors resulted in a 30% increase in biomass and 12% increase in specific intracellular neutral lipid, while the specific growth rates were comparable to that of the control. Furthermore, up-conversion resulted in higher levels of specific intracellular reactive oxygen species in C. vulgaris. Up-conversion of red light (654 nm) was shown to improve biomass yields in C. vulgaris. In principle, up-conversion can be used to increase the utilization range of the electromagnetic spectrum for improved cultivation of photosynthetic systems such as plants, algae, and microalgae. Copyright © 2014 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  10. Research and development on reduced-moderation light water reactor with passive safety features (Contract research)

    International Nuclear Information System (INIS)

    Iwamura, Takamichi; Okubo, Tsutomu; Akie, Hiroshi; Kugo, Teruhiko; Yonomoto, Taisuke; Kureta, Masatoshi; Ishikawa, Nobuyuki; Nagaya, Yasunobu; Araya, Fumimasa; Okajima, Shigeaki; Okumura, Keisuke; Suzuki, Motoe; Mineo, Hideaki; Nakatsuka, Toru

    2004-06-01

    The present report contains the achievement of 'Research and Development on Reduced-moderation Light Water Reactor with Passive Safety Features', which was performed by Japan Atomic Energy Research Institute (JAERI), Hitachi Ltd., Japan Atomic Power Company and Tokyo Institute of Technology in FY2000-2002 as the innovative and viable nuclear energy technology (IVNET) development project operated by the Institute of Applied Energy (IAE). In the present project, the reduced-moderation water reactor (RMWR) has been developed to ensure sustainable energy supply and to solve the recent problems of nuclear power and nuclear fuel cycle, such as economical competitiveness, effective use of plutonium and reduction of spent fuel storage. The RMWR can attain the favorable characteristics such as high burnup, long operation cycle, multiple recycling of plutonium (Pu) and effective utilization of uranium resources based on accumulated LWR technologies. Our development target is 'Reduced-moderation Light Water Reactor with Passive Safety Features' with innovative technologies to achieve above mentioned requirement. Electric power is selected as 300 MWe considering anticipated size required for future deployment. The reactor core consists of MOX fuel assemblies with tight lattice arrangement to increase the conversion ratio. Design targets of the core specification are conversion ratio more than unity, negative void reactivity feedback coefficient to assure safety, discharged burnup more than 60 GWd/t and operation cycle more than 2 years. As for the reactor system, a small size natural circulation BWR with passive safety systems is adopted to increase safety and reduce construction cost. The results obtained are as follows: As regards core design study, core design was performed to meet the goal. Sequence of startup operation was constructed for the RMWR. As the plant design, plant system was designed to achieve enhanced economy using passive safety system effectively. In

  11. The lantern shark's light switch: turning shallow water crypsis into midwater camouflage

    Science.gov (United States)

    Claes, Julien M.; Mallefet, Jérôme

    2010-01-01

    Bioluminescence is a common feature in the permanent darkness of the deep-sea. In fishes, light is emitted by organs containing either photogenic cells (intrinsic photophores), which are under direct nervous control, or symbiotic luminous bacteria (symbiotic photophores), whose light is controlled by secondary means such as mechanical occlusion or physiological suppression. The intrinsic photophores of the lantern shark Etmopterus spinax were recently shown as an exception to this rule since they appear to be under hormonal control. Here, we show that hormones operate what amounts to a unique light switch, by acting on a chromatophore iris, which regulates light emission by pigment translocation. This result strongly suggests that this shark's luminescence control originates from the mechanism for physiological colour change found in shallow water sharks that also involves hormonally controlled chromatophores: the lantern shark would have turned the initial shallow water crypsis mechanism into a midwater luminous camouflage, more efficient in the deep-sea environment. PMID:20410033

  12. Is light water reactor technology sustainable?

    International Nuclear Information System (INIS)

    Rothwell, G.; Van der Zwaan, B.

    2001-01-01

    This paper proposes criteria for determining ''intermediate sustainability'' over a 500-year horizon. We apply these criteria to Light Water Reactor (LWR) technology and the LWR industry. We conclude that LWR technology does not violate intermediate sustainability criteria for (1) environmental externalities, (2) worker and public health and safety, or (3) accidental radioactive release. However, it does not meet criteria to (1) efficiently use depleted uranium and (2) avoid uranium enrichment technologies that can lead to nuclear weapons proliferation. Finally, current and future global demand for LWR technology might be below the minimum needed to sustain the current global LWR industry. (author)

  13. Towards intrinsically safe light-water reactors

    International Nuclear Information System (INIS)

    Hannerz, K.

    1983-02-01

    The reactor-safety issue is one of the principal problems threatening the future of the nuclear option, at least in participatory democracies. It has contributed to widespread public distrust and is the direct cause of the escalation in design complexity and quality assurance requirements that are rapidly eroding the competitive advantage of nuclear power. Redesign of the light-water reactor can eliminate those features that leave it open to public distrust and obstructive intervention. This redesign appears feasible within the realm of proven technology in those fields (fuels, materials, water chemistry, waste technology, etc.) in which extended operating experience is essential for confidence in system performance. A pressurized water reactor outline design developed to achieve the above goal is presented. The key feature is the design of the primary system extracting heat from the core so that the latter is protected from damage caused by any credible system failure or any destructive intervention from the outside by either violent means (up to and including nonnuclear warfare) or by mistaken or malicious use of the plant control systems. Such a design objective can be achieved by placing the entire primary circulation system in a large pressurized pool of cold water with a high boric acid content. Enough water is provided in the pool to allow core-decay-heat removal by evaporation for at least one week following any incident with no cooling systems operating. Subsequently it is assumed that a supply of further water (a few cubic meters per hour) from the outside can be arranged, even without the presence of the plant operating personnel

  14. Ultraviolet light in the use of water disinfection

    International Nuclear Information System (INIS)

    Dabbagh, R.

    1999-01-01

    Ultraviolet light is an effective method in the use of water disinfection for swimming pools, potable water and industry required water. For many reasons Ultraviolet light and Ultraviolet compounded with chlorine (Ultraviolet/chlorine) has been brought to attention ed in resent years. In this research, a swimming pool water disinfection was carried out by means of a system with the use of a reactor which was made of stainless steel (SS-304) and with many another standards required. Operation of system was carried out at first in the pilot plant and then installation in essential water treatment integrated. Inactivation of pollution index, E. Coli or Total coliform and Pseudomonas aeroginosa studies with 6000,16000 and 30000 μW.s/cm 2 Ultraviolet dose and then in presence of 0.3,0.6,0.9 and 1.2 mg/1 free chlorine (Ultraviolet/chlorine). In swimming pools minimum free chlorine residual usually is 1.5 mg/1. Optimum Ultraviolet dose was 16000 μW.s/cm 2 attention to 50 percent Ultraviolet absorption ca sued to TSS,TDS and turbidity. In the Ultraviolet/chlorine system suitable rate was 16000μW.s/cm 2 Ultraviolet dose/0.6 mg/1 chlorine in the 2.4 * 10 5 CFU/100 ml for Total coliform and 3600 CFU/100 ml for Pseudomonas aeroginosa. Most probable number (MPN) estimated multiple tube fermentation technique. In this way the flow rate for system indicated about 240 cm 3 /s or 0.9 m 3 /h. The samples polluted for secondary pollution with 54000 CFU/100 ml for E. Coli and 1800 CFU/100ml Pseudomonas aeroginosa. The number of microbes decreased to zero duration after 45 minutes contact time in presence of free chlorine residual in samples. In practical conditions which that disinfectant system was installed in essential water treatment circuit under 1.4 atm hydraulic pressure no growth was seen for pollution index in disinfected water with Ultraviolet in microbial density about 840 CFU/100 ml for Total coliform and 12 CFU/100 ml for pseudomonas aeroginosa. Attention to lower

  15. Ultraviolet light in the use of water disinfection

    International Nuclear Information System (INIS)

    Dabbagh, R.

    1999-01-01

    Ultraviolet light is an effective method in the use of water disinfection for swimming pools, potable water and industry required water. For many reasons UV light and UV compounded with chlorine (UV/chlorine) has been brought to attention in resent years. In this research, a swimming pool water disinfection was carried out by means of a system with the use of a reactor which was made of stainless steel (SS-304) and with many another standards required. Operation of system was carried out at first in the pilot plant and then installation in essential water treatment integrated. Inactivation of pollution index, E. Coli or Total coliform and Pseudomonas aeroginosa studied with 6000,16000 and 30000 μW.s/cm 2 UV dose and then in presence of 0.3,0.6,0.9 and 1.2 mg/1 free chlorine (UV/chlorine). In swimming pools minimum free chlorine residual usually is 1.5 mg/1. Optimum UV dose was 16000 μW.s/cm 2 attention to 50 percent UV absorption caused to TSS,TDS and turbidity. In the UV/chlorine system suitable rate was 16000μW.s/cm 2 UV dose /0.6 mg/1 chlorine in the 2.4 * 10 5 CFU/100 ml for Total coliform and 3600CFU/100 ml for Pseudomonas aeroginosa. Most probable number(MPN) estimated multiple tube fermentation technique. In this way the flow rate for system indicated about 240 cm 3 /s or 0.9 m 3 /h. The samples polluted for secondary pollution with 54000 CFU/100 ml for E.Coli and 1800 CFU/100ml Pseudomonas aeroginosa. The number of microbes decreased to zero duration after 45 minutes contact time in presence of free chlorine residual in samples. In practical conditions which that disinfectant system was installed in essential water treatment circuit under 1.4 atm hydraulic pressure no growth was seen for pollution index in disinfected water with UV in microbial density about 840 CFU/100 ml for Total coliform and 12CFU/100 ml for Pseudomonas aeroginosa. Attention to lower turbidity, TSS and TDS in tap water, higher flow rate about 560 cm 3 /s or 2 m 3 /h acessesed

  16. 77 FR 15812 - Initial Test Program of Condensate and Feedwater Systems for Light-Water Reactors

    Science.gov (United States)

    2012-03-16

    ... Systems for Light-Water Reactors AGENCY: Nuclear Regulatory Commission. ACTION: Draft regulatory guide... Feedwater Systems for Light- Water Reactors.'' DG-1265 is proposed revision 2 of Regulatory Guide 1.68.1... Plants,'' dated January 1977. This regulatory guide is being revised to: (1) expand the scope of the...

  17. Light quantity affects the regulation of cell shape in Fremyella diplosiphon

    Directory of Open Access Journals (Sweden)

    Bagmi ePattanaik

    2012-05-01

    Full Text Available In some cyanobacteria, the color or prevalent wavelengths of ambient light can impact the protein or pigment composition of the light-harvesting complexes. In some cases, light color or quality impacts cellular morphology. The significance of changes in pigmentation is associated strongly with optimizing light absorption for photosynthesis, whereas the significance of changes in light quality-dependent cellular morphology is less well understood. In natural aquatic environments, light quality and intensity change simultaneously at varying depths of the water column. Thus, we hypothesize that changes in morphology that also have been attributed to differences in the prevalent wavelengths of available light may largely be associated with changes in light intensity. Fremyella diplosiphon shows highly reproducible light-dependent changes in pigmentation and morphology. Under red light (RL, F. diplosiphon cells are blue-green in color, due to the accumulation of high levels of phycocyanin, a RL- absorbing pigment in the light-harvesting complexes or phycobilisomes (PBSs, and the shape of cells are short and rounded. Conversely, under green light (GL, F. diplosiphon cells are red in color due to accumulation of GL- absorbing phycoerythrin in PBSs, and are longer and brick-shaped. GL is enriched at lower depths in the water column, where overall levels of light also are reduced, i.e., to 10% or less of the intensity found at the water surface. We hypothesize that longer cells under low light intensity, which is generally enriched in green wavelengths, are associated with greater levels of total photosynthetic pigments in the thylakoid membranes. To test this hypothesis, we grew F. diplosiphon under increasing intensities of GL and observed whether the length of cells diminished due to reduced pressure to maintain larger cells and the associated increased photosynthetic membrane capacity under high light intensity, independent of whether it is light of

  18. Deciphering visible light photoreductive conversion of CO2 to formic acid and methanol using waste prepared material.

    Science.gov (United States)

    Zhang, Qian; Lin, Cheng-Fang; Chen, Bor-Yann; Ouyang, Tong; Chang, Chang-Tang

    2015-02-17

    As gradual increases in atmospheric CO2 and depletion of fossil fuels have raised considerable public concern in recent decades, utilizing the unlimited solar energy to convert CO2 to fuels (e.g., formic acid and methanol) apparently could simultaneously resolve these issues for sustainable development. However, due to the complicated characteristics of CO2 reduction, the mechanism has yet to be disclosed. To clarify the postulated pathway as mentioned in the literature, the technique of electron paramagnetic resonance (ESR) was implemented herein to confirm the mechanism and related pathways of CO2 reduction under visible light using graphene-TiO2 as catalyst. The findings indicated that CO(-•) radicals, as the main intermediates, were first detected herein to react with several hydrogen ions and electrons for the formation of CH3OH. For example, the generation of CO(-•) radicals is possibly the vital rate-controlling step for conversion of CO2 to methanol as hypothesized elsewhere. The kinetics behind the proposed mechanism was also determined in this study. The mechanism and kinetics could provide the in-depth understanding to the pathway of CO2 reduction and disclose system optimization of maximal conversion for further application.

  19. Zinc oxide nanorod mediated visible light photoinactivation of model microbes in water

    Energy Technology Data Exchange (ETDEWEB)

    Sapkota, Ajaya; Anceno, Alfredo J; Dutta, Joydeep [Center of Excellence in Nanotechnology, Asian Institute of Technology, Klong Luang, Pathumthani 12120 (Thailand); Baruah, Sunandan; Shipin, Oleg V, E-mail: alfredo.anceno@cemagref.fr, E-mail: joy@ait.ac.th [Environmental Engineering and Management, Asian Institute of Technology, Klong Luang, Pathumthani 12120 (Thailand)

    2011-05-27

    The inactivation of model microbes in aqueous matrix by visible light photocatalysis as mediated by ZnO nanorods was investigated. ZnO nanorods were grown on glass substrate following a hydrothermal route and employed in the inactivation of gram-negative Escherichia coli and gram-positive Bacillus subtilis in MilliQ water. The concentration of Zn{sup 2+} ions in the aqueous matrix, bacterial cell membrane damage, and DNA degradation at post-exposure were also studied. The inactivation efficiencies for both organisms under light conditions were about two times higher than under dark conditions across the cell concentrations assayed. Anomalies in supernatant Zn{sup 2+} concentration were observed under both conditions as compared to control treatments, while cell membrane damage and DNA degradation were observed only under light conditions. Inactivation under dark conditions was hence attributed to the bactericidal effect of Zn{sup 2+} ions, while inactivation under light conditions was due to the combined effects of Zn{sup 2+} ions and photocatalytically mediated electron injection. The reduction of pathogenic bacterial densities by the photocatalytically active ZnO nanorods in the presence of visible light implies potential ex situ application in water decontamination at ambient conditions under sunlight.

  20. Biomimetic Water-Collecting Fabric with Light-Induced Superhydrophilic Bumps.

    Science.gov (United States)

    Wang, Yuanfeng; Wang, Xiaowen; Lai, Chuilin; Hu, Huawen; Kong, Yeeyee; Fei, Bin; Xin, John H

    2016-02-10

    To develop an efficient water-collecting surface that integrates both fast water-capturing and easy drainage properties is of high current interest for addressing global water issues. In this work, a superhydrophobic surface was fabricated on cotton fabric via manipulation of both the surface roughness and surface energy. This was followed by a subsequent spray coating of TiO2 nanosol that created light-induced superhydrophilic bumps with a unique raised structure as a result of the interfacial tension of the TiO2 nanosol sprayed on the superhydrophobic fiber surface. These raised TiO2 bumps induce both a wettability gradient and a shape gradient, synergistically accelerating water coalescence and water collection. The in-depth study revealed that the quantity and the distribution of the TiO2 had a significant impact on the final water collection efficiency. This inexpensive and facilely fabricated fabric biomimicks the desert beetle's back and spider silk, which are capable of fog harvesting without additional energy consumption.

  1. Visible-light driven nitrogen-doped petal-morphological ceria nanosheets for water splitting

    Science.gov (United States)

    Qian, Junchao; Zhang, Wenya; Wang, Yaping; Chen, Zhigang; Chen, Feng; Liu, Chengbao; Lu, Xiaowang; Li, Ping; Wang, Kaiyuan; Chen, Ailian

    2018-06-01

    Water splitting is a promising sustainable technology for solar-to-chemical energy conversion. Herein, we successfully fabricated nitrogen-doped ultrathin CeO2 nanosheets by using field poppy petals as templates, which exhibit an efficiently catalytic activity for water splitting. Abundant oxygen vacancies and substitutional N atoms were experimentally observed in the film due to its unique biomorphic texture. In view of high efficiency and long durability of the as-prepared photocatalyst, this biotemplate method may provide an alternative technique for using biomolecules to assemble 2D nanomaterials.

  2. Electrochemistry in light water reactors reference electrodes, measurement, corrosion and tribocorrosion issues

    CERN Document Server

    Bosch, R -W; Celis, Jean-Pierre

    2007-01-01

    There has long been a need for effective methods of measuring corrosion within light water nuclear reactors. This important volume discusses key issues surrounding the development of high temperature reference electrodes and other electrochemical techniques. The book is divided into three parts with part one reviewing the latest developments in the use of reference electrode technology in both pressurised water and boiling water reactors. Parts two and three cover different types of corrosion and tribocorrosion and ways they can be measured using such techniques as electrochemical impedance spectroscopy. Topics covered across the book include in-pile testing, modelling techniques and the tribocorrosion behaviour of stainless steel under reactor conditions. Electrochemistry in light water reactors is a valuable reference for all those concerned with corrosion problems in this key technology for the power industry. Discusses key issues surrounding the development of high temperature reference eletrodes A valuab...

  3. Coatings used in light-water nuclear power plants

    International Nuclear Information System (INIS)

    Anon.

    1981-01-01

    The guide is intended to provide a common basis in the selection of test methods which may be required to evaluate and qualify protective coatings (paints) to be used in a light-water nuclear power plant. Standard test methods for the determination of fire resistance, chemical resistance, physical properties, effects of radiation, decontaminability, thermal conductivity, repairability, and for evaluation under accident conditions are included

  4. Loose parts monitoring in light water reactor cooling systems

    International Nuclear Information System (INIS)

    Santos, A.; Alma, B.J.

    1982-01-01

    The work related to loose monitoring system for light water reactor, developed at GRS - Munique, are described. The basic problems due to the exact localization and detection of the loose part as well the research activities and development necessary aiming to obtain the best techniques in this field. (E.G.) [pt

  5. Supercritical-pressure, once-through cycle light water cooled reactor concept

    International Nuclear Information System (INIS)

    Oka, Yoshiaki; Koshizuka, Seiichi

    2001-01-01

    The purpose of the study is to develop new reactor concepts for the innovation of light water reactors (LWR) and fast reactors. Concept of the once-through coolant cycle, supercritical-pressure light water cooled reactor was developed. Major aspects of reactor design and safety were analysed by the computer codes which were developed by ourselves. It includes core design of thermal and fast reactors, plant system, safety criteria, accident and transient analysis, LOCA, PSA, plant control, start up and stability. High enthalpy rise as supercritical boiler was achieved by evaluating the cladding temperature directly during transients. Fundamental safety principle of the reactor is monitoring coolant flow rate instead of water level of LWR. The reactor system is compact and simple because of high specific enthalpy of supercritical water and the once-through cycle. The major components are similar to those of LWR and supercritical thermal plant. Their temperature are within the experiences in spite of the high outlet coolant temperature. The reactor is compatible with tight fuel lattice fast reactor because of the high head pumps and low coolant flow rate. The power rating of the fast reactor is higher than the that of thermal reactor because of the high power density. (author)

  6. Practical considerations in the use of UV light for drinking water disinfection

    International Nuclear Information System (INIS)

    Jeyanayagam, S.; Cotton, C.

    2002-01-01

    Ultraviolet (UV) light was discovered approximately 150 years ago. The first commercial UV lamp was made in the early 1900s soon followed by the manufacture of the quartz sleeve. These technological advances allowed the first application of UV light for water disinfection in 1907 in France. In the mid 1980s, UV disinfection was named as a Best available technology (BAT) for wastewater disinfection in the United States. Fueled by the recent findings that UV disinfection can inactivate key pathogens at cost effective UV doses, the drinking water industry in North America is closely investigating its application in large installations. (author)

  7. Investigation into the Use of Water Based Brake Fluid for Light Loads

    Directory of Open Access Journals (Sweden)

    W. A. Akpan

    2012-12-01

    Full Text Available This paper addresses the possibility of using water based fluid as a brake fluid for light loads. Characterization of both standard and water based braked fluids formulated was carried out. The properties of the latter were compared with that of a standard commercial brake fluid. The actual test of the formulated brake fluid was carried out with a Nissan Sunny vehicle model 1.5 within the speed range of 20km/hr to 80km/hr at the permanent campus of University of Uyo and the braking efficiency obtained attest to its suitability for light loads.

  8. 2D and 3D photonic crystal materials for photocatalysis and electrochemical energy storage and conversion

    Science.gov (United States)

    Collins, Gillian; Armstrong, Eileen; McNulty, David; O’Hanlon, Sally; Geaney, Hugh; O’Dwyer, Colm

    2016-01-01

    Abstract This perspective reviews recent advances in inverse opal structures, how they have been developed, studied and applied as catalysts, catalyst support materials, as electrode materials for batteries, water splitting applications, solar-to-fuel conversion and electrochromics, and finally as photonic photocatalysts and photoelectrocatalysts. Throughout, we detail some of the salient optical characteristics that underpin recent results and form the basis for light-matter interactions that span electrochemical energy conversion systems as well as photocatalytic systems. Strategies for using 2D as well as 3D structures, ordered macroporous materials such as inverse opals are summarized and recent work on plasmonic–photonic coupling in metal nanoparticle-infiltrated wide band gap inverse opals for enhanced photoelectrochemistry are provided. PMID:27877904

  9. Analysis on Radioactive Waste Transmutation in Light Water cooled Hyb-WT

    International Nuclear Information System (INIS)

    Hong, Seonghee; Kim, Myung Hyun

    2014-01-01

    A feasibility of realization is much higher in FFHR compared with pure fusion. A combination of plasma fusion source for neutrons with a subcritical reactor at the blanket side has much higher capability in transmutation of waste as well as reactor safety compared with fission reactor options. Fusion-Fission Hybrid Reactor (FFHR) uses various coolants depending on the purpose. It is important that coolant being used should be suitable to reactor purpose, because reactor performance and the design constraints may change depending on the coolant. There are basically two major groups of coolants for FFHR. One group of coolant does not contain Li. They are Na, Pb-Bi, H 2 O and D 2 O. The other group contains Li for tritium breeding. They are Li, LiPb, LiSN, FLIBE and FLiNaBe. Currently, the issue in FFHR is its implication for radioactive waste transmutation (FFHR for WT). Because radioactive wastes of spent nuclear fuel (SNF) are transmuted using fusion neutron source. Therefore a suitable coolant should be used for effective waste transmutation. . In FFHR for WT, LiPb coolant is being used mainly because of tritium production in Li and high neutron economic through reaction in Pb. However different coolants use such as Na, Pb-Bi are used in fast reactors and accelerator driven systems (ADS) having same purpose. In this study, radioactive waste transmutation performance of various coolants mentioned above will be compared and analyzed. Through this study, the coolants are judged primarily for their support to waste transmutation disregarding their limitation to reactor design and tritium breeding capability. First, performance of the light water coolant regarding radioactive waste transmutation was analyzed among various coolants mentioned above. In this paper, performance of radioactive waste transmutation can be known depending on different volume fractions (54.53, 60.27, 97.94vol.%) of the light water. Light water dose required fusion power lower than LiPb due to

  10. Dual-purpose light water reactor supplying heat for desalination

    International Nuclear Information System (INIS)

    Waplington, G.; Fichtner, H.

    1978-01-01

    The technical as well as the economic aspects of using a large commercial light water reactor for the production of both electricity and potable water have been examined. For the basis of the study, the multistage flash distillation process was selected, in conjunction with a reactor rated at not less than 2100 MW (thermal). Combined use of a condensing and a back-pressure turbine (the latter matched to distillation plant steam requirements) represents a convenient method for supplying process heat. Overall costs can be fairly allocated to the two products using the ''power credit'' method. A sample economic evaluation indicates highly favorable water costs as compared with more conventional distillation schemes based on fossil fuel

  11. Artificial photosynthesis: biomimetic approaches to solar energy conversion and storage.

    Science.gov (United States)

    Kalyanasundaram, K; Graetzel, M

    2010-06-01

    Using sun as the energy source, natural photosynthesis carries out a number of useful reactions such as oxidation of water to molecular oxygen and fixation of CO(2) in the form of sugars. These are achieved through a series of light-induced multi-electron-transfer reactions involving chlorophylls in a special arrangement and several other species including specific enzymes. Artificial photosynthesis attempts to reconstruct these key processes in simpler model systems such that solar energy and abundant natural resources can be used to generate high energy fuels and restrict the amount of CO(2) in the atmosphere. Details of few model catalytic systems that lead to clean oxidation of water to H(2) and O(2), photoelectrochemical solar cells for the direct conversion of sunlight to electricity, solar cells for total decomposition of water and catalytic systems for fixation of CO(2) to fuels such as methanol and methane are reviewed here. Copyright 2010 Elsevier Ltd. All rights reserved.

  12. Overview of environmental materials degradation in light-water reactors

    International Nuclear Information System (INIS)

    Shaaban, H.I.; Wu, P.

    1986-08-01

    This report provides a brief overview of analyses and conclusions reported in published literature regarding environmentally induced degradation of materials in operating light-water reactors. It is intended to provide a synopsis of subjects of concern rather than to address a licensing basis for any newly discovered problems related to reactor materials

  13. Development trends in light water reactors

    International Nuclear Information System (INIS)

    Fogelstroem, L.; Simon, M.

    1988-01-01

    The present market for new nuclear power plants is weak, but is expected to pick up again, which is why great efforts are being made to further develop the light water reactor line for future applications. There is both a potential and a need for further improvement, for instance with respect to even higher cost efficiency, a simplified operating permit procedure, shorter construction periods, and increased operational flexibility to meet rising demands in load following behavior and in better cycle data of fuel elements. However, also public acceptance must not be forgotten when deciding about the line to be followed in the development of LWR technology. (orig.) [de

  14. Is light water reactor technology sustainable?

    Energy Technology Data Exchange (ETDEWEB)

    Rothwell, G. [Stanford Univ., Dept. of Economics, CA (United States); Van der Zwaan, B. [Vrije Univ., Amsterdam, Inst. for Environmental Studies (Netherlands)

    2001-07-01

    This paper proposes criteria for determining ''intermediate sustainability'' over a 500-year horizon. We apply these criteria to Light Water Reactor (LWR) technology and the LWR industry. We conclude that LWR technology does not violate intermediate sustainability criteria for (1) environmental externalities, (2) worker and public health and safety, or (3) accidental radioactive release. However, it does not meet criteria to (1) efficiently use depleted uranium and (2) avoid uranium enrichment technologies that can lead to nuclear weapons proliferation. Finally, current and future global demand for LWR technology might be below the minimum needed to sustain the current global LWR industry. (author)

  15. Light pollution offshore: Zenithal sky glow measurements in the mediterranean coastal waters

    Science.gov (United States)

    Ges, Xavier; Bará, Salvador; García-Gil, Manuel; Zamorano, Jaime; Ribas, Salvador J.; Masana, Eduard

    2018-05-01

    Light pollution is a worldwide phenomenon whose consequences for the natural environment and the human health are being intensively studied nowadays. Most published studies address issues related to light pollution inland. Coastal waters, however, are spaces of high environmental interest, due to their biodiversity richness and their economical significance. The elevated population density in coastal regions is accompanied by correspondingly large emissions of artificial light at night, whose role as an environmental stressor is increasingly being recognized. Characterizing the light pollution levels in coastal waters is a necessary step for protecting these areas. At the same time, the marine surface environment provides a stage free from obstacles for measuring the dependence of the skyglow on the distance to the light polluting sources, and validating (or rejecting) atmospheric light propagation models. In this work we present a proof-of-concept of a gimbal measurement system that can be used for zenithal skyglow measurements on board both small boats and large vessels under actual navigation conditions. We report the results obtained in the summer of 2016 along two measurement routes in the Mediterranean waters offshore Barcelona, travelling 9 and 31.7 km away from the coast. The atmospheric conditions in both routes were different from the ones assumed for the calculation of recently published models of the anthropogenic sky brightness. They were closer in the first route, whose results approach better the theoretical predictions. The results obtained in the second route, conducted under a clearer atmosphere, showed systematic differences that can be traced back to two expected phenomena, which are a consequence of the smaller aerosol content: the reduction of the anthropogenic sky glow at short distances from the sources, and the slower decay rate of brightness with distance, which gives rise to a relative excess of brightness at large distances from the

  16. Hydrogen considerations in light-water power reactons

    International Nuclear Information System (INIS)

    Keilholtz, G.W.

    1976-02-01

    A critical review of the literature now available on hydrogen considerations in light-water power reactors (LWRs) and a bibliography of that literature are presented. The subject matter includes mechanisms for the generation of hydrogen-oxygen mixtures, a description of the fundamental properties of such mixtures, and their spontaneous ignition in both static and dynamic systems. The limits for hydrogen flammability and flame propagation are examined in terms of the effects of pressure, temperature, and additives; the emphasis is on the effects of steam and water vapor. The containment systems for pressurized-water reactors (PWRs) and boiling-water reactors (BWRs) are compared, and methods to control hydrogen and oxygen under the conditions of both normal operation and postulated accidents are reviewed. It is concluded that hydrogen can be controlled so that serious complications from the production of hydrogen will not occur. The bibliography contains abstracts from the computerized files of the Nuclear Safety Information Center. Key-word, author, and permuted-title indexes are provided. The bibliography includes responses to questions asked by the U. S. Nuclear Regulatory Commission (NRC) which relate to hydrogen, as well as information on normal operations and postulated accidents including generation of hydrogen from core sprays. Other topics included in the ten sections of the bibliography are metal-water reactions, containment atmosphere, radiolytic gas, and recombiners

  17. 10-fold enhancement in light-driven water splitting using niobium oxynitride microcone array films

    KAUST Repository

    Shaheen, Basamat

    2016-03-26

    We demonstrate, for the first time, the synthesis of highly ordered niobium oxynitride microcones as an attractive class of materials for visible-light-driven water splitting. As revealed by the ultraviolet photoelectron spectroscopy (UPS), photoelectrochemical and transient photocurrent measurements, the microcones showed enhanced performance (~1000% compared to mesoporous niobium oxide) as photoanodes for water splitting with remarkable stability and visible light activity. © 2016 Elsevier B.V. All rights reserved.

  18. Aging assessment and mitigation for major LWR [light water reactor] components

    International Nuclear Information System (INIS)

    Shah, Y.N.; Ware, A.G.; Conley, D.A.; MacDonald, P.E.; Burns, J.J. Jr.

    1989-01-01

    This paper summarizes some of the results of the Aging Assessment and Mitigation Project sponsored by the US Nuclear Regulatory Commission (USNRC), Office of Nuclear Regulatory Research. The objective of the project is to develop an understanding of the aging degradation of the major light water reactor (LWR) structures and components and to develop methods for predicting the useful life of these components so that the impact of aging on the safe operation of nuclear power plants can be evaluated and addressed. The research effort consists of integrating, evaluating, and updating the available aging-related information. This paper discusses current accomplishments and summarizes the significant degradation processes active in two major components: pressurized water reactor pressurizer surge and spray lines and nozzles, and light water reactor primary coolant pumps. This paper also evaluates the effectiveness of the current inservice inspection programs and presents conclusions and recommendations related to aging of these two major components. 37 refs., 7 figs., 3 tabs

  19. Estimation of diffuse attenuation of ultraviolet light in optically shallow Florida Keys waters from MODIS measurements

    Science.gov (United States)

    Diffuse attenuation of solar light (Kd, m−1) determines the percentage of light penetrating the water column and available for benthic organisms. Therefore, Kd can be used as an index of water quality for coastal ecosystems that are dependent on photosynthesis, such as the coral ...

  20. RETRAN sensitivity studies of light water reactor transients. Final report

    International Nuclear Information System (INIS)

    Burrell, N.S.; Gose, G.C.; Harrison, J.F.; Sawtelle, G.R.

    1977-06-01

    This report presents the results of sensitivity studies performed using the RETRAN/RELAP4 transient analysis code to identify critical parameters and models which influence light water reactor transient predictions. Various plant transients for both boiling water reactors and pressurized water reactors are examined. These studies represent the first detailed evaluation of the RETRAN/RELAP4 transient code capability in predicting a variety of plant transient responses. The wide range of transients analyzed in conjunction with the parameter and modeling studies performed identify several sensitive areas as well as areas requiring future study and model development

  1. Hydrogen evolution from water using solid carbon and light energy

    Energy Technology Data Exchange (ETDEWEB)

    Kawai, T; Sakata, T

    1979-11-15

    Hydrogen is produced from water vapour and solid carbon when mixed powders of TiO2, RuO2 and active carbon exposed to water vapor at room temperature, or up to 80 C, are illuminated. At 80 C, the rate of CO and COat2 formation increased. Therefore solar energy would be useful here as a combination of light energy and heat energy. Oxygen produced on the surface of the photocatalyst has a strong oxidising effect on the carbon. It is suggested that this process could be used for coal gasification and hydrogen production from water, accompanied by storage of solar energy.

  2. Nondestructive examination (NDE) Reliability for Inservice Inspection of Light Water Reactors

    International Nuclear Information System (INIS)

    Doctor, S.R.; Good, M.S.; Heasler, P.G.; Hockey, R.L.; Simonen, F.A.; Spanner, J.C.; Taylor, T.T.; Vo, T.V.

    1992-07-01

    The Evaluation and Improvement of NDE reliability for Inservice Inspection of Light Water Reactors (NDE Reliability) Program at the Pacific Northwest Laboratory was established by the Nuclear Regulatory Commission to determine the reliability of current inservice inspection (ISI) techniques and to develop recommendations that will ensure a suitably high inspection reliability. The objectives of this program include determining the reliability of ISI performed on the primary systems of commercial light-water reactors (LWRs); using probabilistic fracture mechanics analysis to determine the impact of NDE unreliability on system safety; and evaluating reliability improvements that can be achieved with improved and advanced technology. A final objective is to formulate recommended revisions to the Regulatory and ASME Code requirements, based on material properties, service conditions, and NDE uncertainties

  3. Radioactivity, radiation protection and monitoring during dismantling of light-water reactors

    International Nuclear Information System (INIS)

    Hummel, L.; Zech, J.B.

    2005-01-01

    Based on the radioactivity inventory in the systems and components of light-water reactors observed during operation, the impact of actions during plant emptying after the conclusion of power operation and possible subsequent long-term safe enclosure concerning the composition of the nuclide inventory of the plant to be dismantled will be described. Derived from this will be the effects on radioactivity monitoring in the plant, physical radiation protection monitoring, and the measured characterization of the residual materials resulting from the dismantling. The impact of long-term interim storage will also be addressed in the discussion. The talk should provide an overview of the interrelationships between source terms, decay times and the radioactivity monitoring requirements of the various dismantling concepts for commercial light-water reactors. (orig.)

  4. NEPTUNE: a modular system for light-water reactor calculation

    International Nuclear Information System (INIS)

    Bouchard, J.; Kanevoky, A.; Reuss, P.

    1975-01-01

    A complete modular system of light water reactor calculations has been designed. It includes basic nuclear data processing, the APOLLO phase: transport calculations for cells, multicells, fuel assemblies or reactors, the NEPTUNE phase: reactor calculations. A fuel management module, devoted to the automatic determination of the best shuffling strategy is included in NEPTUNE [fr

  5. Removal and recovery of tritium from light and heavy water

    International Nuclear Information System (INIS)

    Butler, J.P.; Hammerli, M.

    1979-01-01

    A method and apparatus for removing tritium from light water are described, comprising contacting tritiated feed water in a catalyst column in countercurrent flow with hydrogen gas originating from an electrolysis cell so as to enrich this feed water with tritium from the electrolytic hydrogen gas and passing the tritium enriched water to an electrolysis cell wherein the electrolytic hydrogen gas is generated and then fed upwards through the catalyst column or recovered as product. The tritium content of the hydrogen gas leaving the top of the enricher catalyst column is further reduced in a stripper column containing catalyst which transfers the tritium to a countercurrent flow of liquid water. Anodic oxygen and water vapour from the anode compartment may be fed to a drier and condensed electrolyte recycled with a slip stream or recovered as a further tritium product stream. A similar method involving heavy water is also described. (author)

  6. Photoanodic Hybrid Semiconductor–Molecular Heterojunction for Solar Water Oxidation

    KAUST Repository

    Joya, Khurram Saleem

    2015-06-29

    Inorganic photo-responsive semiconducting materials have been employed in photoelectrochemical(PEC) water oxidation devicesin pursuit of solar to fuel conversion.[1]The reaction kinetics in semiconductors is limited by poor contact at the interfaces, and charge transfer is impeded by surface defects and the grain boundaries.[2]It has shown that successful surface functionalization of the photo-responsive semiconducting materials with co-catalysts can maximize the charge separation, hole delivery and its effective consumption, and enhances the efficiency and performane of the PEC based water oxidation assembly.[3]We present here unique modification of photoanodic hematite (α-Fe2O3) and bismuth vanadate (BiVO4) with molecular co-catalysts for enhanced photoelectrochemical water oxidation (Figure 1). These hybrid inorganic–organometallic heterojunctions manifest impressive cathodic shifts in the onset potentials, and the photocurrent densities have been enhanced by > 90% at all potentials relative to uncatalyzed α-Fe2O3 or BiVO4, and other catalyst-semiconductor based heterojunctions.This is a novel development in the solar to fuel conversion field, and is crucially important for designing a tandem device where light interfere very little with the catalyst layer on top of semiconducting light absorber.

  7. High conversion pressurized water reactor with boiling channels

    Energy Technology Data Exchange (ETDEWEB)

    Margulis, M., E-mail: maratm@post.bgu.ac.il [The Unit of Nuclear Engineering, Ben Gurion University of the Negev, POB 653, Beer Sheva 84105 (Israel); Shwageraus, E., E-mail: es607@cam.ac.uk [Department of Engineering, University of Cambridge, CB2 1PZ Cambridge (United Kingdom)

    2015-10-15

    Highlights: • Conceptual design of partially boiling PWR core was proposed and studied. • Self-sustainable Th–{sup 233}U fuel cycle was utilized in this study. • Seed-blanket fuel assembly lattice optimization was performed. • A coupled Monte Carlo, fuel depletion and thermal-hydraulics studies were carried out. • Thermal–hydraulic analysis assured that the design matches imposed safety constraints. - Abstract: Parametric studies have been performed on a seed-blanket Th–{sup 233}U fuel configuration in a pressurized water reactor (PWR) with boiling channels to achieve high conversion ratio. Previous studies on seed-blanket concepts suggested substantial reduction in the core power density is needed in order to operate under nominal PWR system conditions. Boiling flow regime in the seed region allows more heat to be removed for a given coolant mass flow rate, which in turn, may potentially allow increasing the power density of the core. In addition, reduced moderation improves the breeding performance. A two-dimensional design optimization study was carried out with BOXER and SERPENT codes in order to determine the most attractive fuel assembly configuration that would ensure breeding. Effects of various parameters, such as void fraction, blanket fuel form, number of seed pins and their dimensions, on the conversion ratio were examined. The obtained results, for which the power density was set to be 104 W/cm{sup 3}, created a map of potentially feasible designs. It was found that several options have the potential to achieve end of life fissile inventory ratio above unity, which implies potential feasibility of a self-sustainable Thorium fuel cycle in PWRs without significant reduction in the core power density. Finally, a preliminary three-dimensional coupled neutronic and thermal–hydraulic analysis for a single seed-blanket fuel assembly was performed. The results indicate that axial void distribution changes drastically with burnup. Therefore

  8. Down-conversion phosphors as noble-metal-free co-catalyst in ZnO for efficient visible light photocatalysis

    Energy Technology Data Exchange (ETDEWEB)

    Chu, Haipeng [Institute of Coordination Bond Metrology and Engineering, College of Materials Science and Engineering, China Jiliang University, Hangzhou 310018 (China); Liu, Xinjuan, E-mail: lxj669635@126.com [Institute of Coordination Bond Metrology and Engineering, College of Materials Science and Engineering, China Jiliang University, Hangzhou 310018 (China); Liu, Jiaqing [Engineering Research Center for Nanophotonics & Advanced Instrument, Ministry of Education, Department of Physics, East China Normal University, Shanghai 200062 (China); Lei, Wenyan [Institute of Coordination Bond Metrology and Engineering, College of Materials Science and Engineering, China Jiliang University, Hangzhou 310018 (China); Li, Jinliang [Engineering Research Center for Nanophotonics & Advanced Instrument, Ministry of Education, Department of Physics, East China Normal University, Shanghai 200062 (China); Wu, Tianyang [Institute of Coordination Bond Metrology and Engineering, College of Materials Science and Engineering, China Jiliang University, Hangzhou 310018 (China); Li, Ping [Shanghai Nanotechnology Promotion Center, Shanghai 200237 (China); Li, Huili; Pan, Likun [Engineering Research Center for Nanophotonics & Advanced Instrument, Ministry of Education, Department of Physics, East China Normal University, Shanghai 200062 (China)

    2017-01-01

    Graphical abstract: ZnO-Lu{sub 3}(Al,Si){sub 5}(O,N){sub 12}:Ce{sup 3+} hybrid photocatalysts were synthesized via a fast microwave-assisted approach for visible light photocatalytic degradation of organic pollutions with a high degradation rate of 91%. - Highlights: • ZnO-Lu{sub 3}(Al,Si){sub 5}(O,N){sub 12}:Ce{sup 3+} were synthesized via a facile microwave-assisted method. • Lu{sub 3}(Al,Si){sub 5}(O,N){sub 12}:Ce{sup 3+} acts as co-catalyst to facilitates the self-sensitized degradation of MB. • ZnO-Lu{sub 3}(Al,Si){sub 5}(O,N){sub 12}:Ce{sup 3+} exhibited enhanced visible light photocatalytic activity. • A high MB degradation rate of 91% was achieved under visible light irradiation. - Abstract: Exploring novel visible light responsive photocatalysts is one of greatly significant issues from the viewpoint of using solar energy. Here we report the yellow-orange emitting α-Si{sub 3}N{sub 4}-doped Lu{sub 3}Al{sub 5}O{sub 12}:Ce{sup 3+} (Lu{sub 3}Al{sub 5-x}Si{sub x}O{sub 12-x}N{sub x}:Ce{sup 3+}) phosphors as a noble-metal-free co-catalyst for enhanced visible light photocatalytic activity of ZnO. The results show that ZnO-Lu{sub 3}Al{sub 5-x}Si{sub x}O{sub 12-x}N{sub x}:Ce{sup 3+} hybrid photocatalysts using a fast microwave-assisted approach exhibits a 91% methylene blue (MB) degradation under visible light irradiation at 240 min, which evidence the synergistic effect of ZnO and Lu{sub 3}Al{sub 5-x}Si{sub x}O{sub 12-x}N{sub x}:Ce{sup 3+} that suppress the rate of charge recombination and increase the self-sensitized degradation of MB. ZnO-down conversion phosphors can be envisaged as potential candidate in environmental engineering and solar energy applications.

  9. Modelling of solar cells with down-conversion of high energy photons, anti-reflection coatings and light trapping

    International Nuclear Information System (INIS)

    Vos, Alexis de; Szymanska, Aleksandra; Badescu, Viorel

    2009-01-01

    In classical solar cells, each absorbed photon gives rise to one electron-hole pair, irrespective of the photon energy. By applying an appropriate photoluminescent layer in front of the solar cell semiconductor, one can convert one high energy photon into two low energy photons (so-called down-conversion). In the present study, we do not consider photoluminescent layers that merely shift down photon energies (without enhancing the number of photons). In principle, these two photons can then generate two electron-hole pairs in the solar cell, thus increasing the efficiency of the device. However, the two photons emitted by the converter, are not necessarily emitted in the direction of the semiconductor: they can also be emitted in the direction 'back to the sun'. As most semiconductors have a high refractive index, in case the luminescent material has a low refractive index, more than half of the photoluminescence emission is lost in the sun direction, resulting in a net loss of light current generated by the solar cell instead of an increase. On the other hand, a high refractive index of the conversion layer (e.g. equal to the solar cell refractive index) will lead to a bad optical coupling with the air and a good optical coupling with the semiconductor, and therefore, more than 50% of the emitted low energy photons will actually reach the solar cell. However, in the latter case, many solar photons do not reach the converter in the first place because of reflection at the air-converter interface. As a result, it turns out that, in the absence of any anti-reflection coating, a refractive index n 2 of the converting layer in the range between n 1 1/2 and n 1 is optimal, where n 1 is the refractive index of the solar cell material. If, however, an anti-reflection coating is applied between air and the converter, the best choice for n 2 is n 1 . Finally, if two anti-reflection coatings are applied (the former between air and the converter, the latter between the

  10. Organometallics and related molecules for energy conversion

    CERN Document Server

    Wong, Wai-Yeung

    2015-01-01

    This book presents a critical perspective of the applications of organometallic compounds (including those with metal or metalloid elements) and other related metal complexes as versatile functional materials in the transformation of light into electricity (solar energy conversion) and electricity into light (light generation in light emitting diode), in the reduction of carbon dioxide to useful chemicals, as well as in the safe and efficient production and utilization of hydrogen, which serves as an energy storage medium (i.e. energy carrier). This book focuses on recent research developmen

  11. Design features to facilitate IAEA safeguards at light water reactors

    International Nuclear Information System (INIS)

    Pasternak, T.; Glancy, J.; Goldman, L.; Swartz, J.

    1981-01-01

    Several studies have been performed recently to identify and analyze light water reactor (LWR) features that, if incorporated into the facility design, would facilitate the implementation of International Atomic Energy Agency (IAEA) safeguards. This paper presents results and conclusions of these studies. 2 refs

  12. Environmentally assisted cracking in Light Water Reactors

    International Nuclear Information System (INIS)

    Chung, H.M.; Chopra, O.K.; Ruther, W.E.; Kassner, T.F.; Michaud, W.F.; Park, J.Y.; Sanecki, J.E.; Shack, W.J.

    1993-09-01

    This report summarizes work performed by Argonne National Laboratory on fatigue and environmentally assisted cracking (EAC) in light water reactors (LWRs) during the six months from October 1992 to March 1993. Fatigue and EAC of piping, pressure vessels, and core components in LWRs are important concerns as extended reactor lifetimes are envisaged. Topics that have been investigated include (1) fatigue of low-alloy steel used in piping, steam generators, and reactor pressure vessels. (2) EAC of cast stainless steels (SSs), (3) radiation-induced segregation and irradiation-assisted stress corrosion cracking of Type 304 SS after accumulation of relatively high fluence, and (4) EAC of low-alloy steels. Fatigue tests were conducted on medium-sulfur-content A106-Gr B piping and A533-Gr B pressure vessel steels in simulated PWR water and in air. Additional crack growth data were obtained on fracture-mechanics specimens of cast austenitic SSs in the as-received and thermally aged conditions and chromium-nickel-plated A533-Gr B steel in simulated boiling-water reactor (BWR) water at 289 degrees C. The data were compared with predictions based on crack growth correlations for ferritic steels in oxygenated water and correlations for wrought austenitic SS in oxygenated water developed at ANL and rates in air from Section XI of the ASME Code. Microchemical and microstructural changes in high- and commercial-purity Type 304 SS specimens from control-blade absorber tubes and a control-blade sheath from operating BWRs were studied by Auger electron spectroscopy and scanning electron microscopy

  13. Photovoltaic solar energy conversion

    CERN Document Server

    Bauer, Gottfried H

    2015-01-01

    This concise primer on photovoltaic solar energy conversion invites readers to reflect on the conversion of solar light into energy at the most fundamental level and encourages newcomers to the field to help find meaningful answers on how photovoltaic solar energy conversion can work (better), eventually contributing to its ongoing advancement. The book is based on lectures given to graduate students in the Physics Department at the University of Oldenburg over the last two decades, yet also provides an easy-to-follow introduction for doctoral and postdoctoral students from related disciplines such as the materials sciences and electrical engineering. Inspired by classic textbooks in the field, it reflects the author’s own ideas on how to understand, visualize and eventually teach the microscopic physical mechanisms and effects, while keeping the text as concise as possible so as to introduce interested readers to the field and balancing essential knowledge with open questions.

  14. Ultraviolet light-emitting diodes in water disinfection.

    Science.gov (United States)

    Vilhunen, Sari; Särkkä, Heikki; Sillanpää, Mika

    2009-06-01

    The novel system of ultraviolet light-emitting diodes (UV LEDs) was studied in water disinfection. Conventional UV lamps, like mercury vapor lamp, consume much energy and are considered to be problem waste after use. UV LEDs are energy efficient and free of toxicants. This study showed the suitability of LEDs in disinfection and provided information of the effect of two emitted wavelengths and different test mediums to Escherichia coli destruction. Common laboratory strain of E. coli (K12) was used and the effects of two emitted wavelengths (269 and 276 nm) were investigated with two photolytic batch reactors both including ten LEDs. The effects of test medium were examined with ultrapure water, nutrient and water, and nutrient and water with humic acids. Efficiency of reactors was almost the same even though the one emitting higher wavelength had doubled optical power compared to the other. Therefore, the effect of wavelength was evident and the radiation emitted at 269 nm was more powerful. Also, the impact of background was studied and noticed to have only slight deteriorating effect. In the 5-min experiment, the bacterial reduction of three to four log colony-forming units (CFU) per cubic centimeter was achieved, in all cases. When turbidity of the test medium was greater, part of the UV radiation was spent on the absorption and reactions with extra substances on liquid. Humic acids can also coat the bacteria reducing the sensitivity of the cells to UV light. The lower wavelength was distinctly more efficient when the optical power is considered, even though the difference of wavelengths was small. The reason presumably is the greater absorption of DNA causing more efficient bacterial breakage. UV LEDs were efficient in E. coli destruction, even if LEDs were considered to have rather low optical power. The effect of wavelengths was noticeable but the test medium did not have much impact. This study found UV LEDs to be an optimal method for bacterial

  15. Current progress and challenges in engineering viable artificial leaf for solar water splitting

    Directory of Open Access Journals (Sweden)

    Phuc D. Nguyen

    2017-12-01

    Full Text Available Large scale production of H2, a clean fuel, can be realized with just water and solar light energy by employing a viable energy conversion device called artificial leaf. In this tutorial review, we discuss on advances achieved recently and technical challenges remained toward the creation of such a leaf. Development of key components like catalysts for water electrolysis process and light harvester for harvesting solar energy as well as strategies being developed for assembling these components to create a complete artificial leaf will be highlighted.

  16. Radiation Protection at Light Water Reactors

    CERN Document Server

    Prince, Robert

    2012-01-01

    This book is aimed at Health Physicists wishing to gain a better understanding of the principles and practices associated with a light water reactor (LWR) radiation protection program. The role of key program elements is presented in sufficient detail to assist practicing radiation protection professionals in improving and strengthening their current program. Details related to daily operation and discipline areas vital to maintaining an effective LWR radiation protection program are presented. Programmatic areas and functions important in preventing, responding to, and minimizing radiological incidents and the importance of performing effective incident evaluations and investigations are described. Elements that are integral in ensuring continuous program improvements are emphasized throughout the text.

  17. STUDY OF THE EFFECT OF ENDFACES POLISHING ANGLE FOR ANISOTROPIC WAVEGUIDES ON STATE CONVERSION OF LIGHT POLARIZATION

    Directory of Open Access Journals (Sweden)

    V. A. Shulepov

    2016-05-01

    Full Text Available The paper deals with optical scheme for research of polarization state transformation at the junction of anisotropic waveguides. It consists of a light source, polarization controller, multifunctional integrated optical scheme (MIOS, single-mode fiber for input and output of optical radiation in MIOS and the polarization scanning Michelson interferometer. Optical radiation from the source of the plant comes through the polarization controller in one of the MIOS ports. Further, in one of the opposite ports the radiation is received by different fibers, polished at the angles of 19.5˚, 10.5˚ and 0˚. After that, the optical radiation gets into polarization Michelson interferometer. With that, the picture visibility is analyzed at different displacement of one arm upon which the value has been determined in the polarization conversion point connections. At the course of work it was obtained that the polarization state conversion at a splicing point rises with the slant angle deviation from its optimal value. Anisotropic waveguides splicing is one of the main tasks during fabrication of any fiber-optic sensor with integrated optical elements. The results of this work are of great interest for the wide range of specialists in the optical waveguides application field.

  18. Light Conversion and Scattering in UV Protective Textiles

    Directory of Open Access Journals (Sweden)

    Grancarić Ana Marija

    2014-12-01

    Full Text Available The primary cause of skin cancer is believed to be a long exposure to solar ultraviolet radiation (UV-R crossed with the amount of skin pigmentation in the population. It is believed that in childhood and adolescence 80% of UV-R gets absorbed, whilst in the remaining 20% gets absorbed later in the lifetime. This suggests that proper and early photoprotection may reduce the risk of subsequent occurrence of skin cancer. Textile and clothing are the most suitable interface between environment and human body. It can show UV protection, but in most cases it does not provide full sun screening properties. UV protection ability highly depends on large number of factors such as type of fibre, fabric surface and construction, type and concentration of dyestuff, fluorescent whitening agent (FWA, UV-B protective agents, as well as nanoparticles, if applied. Based on electronically excited state by energy of UV-R (usually 340-370 nm, the molecules of FWAs show the phenomenon of fluorescence giving to white textiles high whiteness of outstanding brightness by reemitting the energy at the blue region (typically 420-470 nm of the spectrum. By absorbing UV-A radiation, optical brightened fabrics transform this radiation into blue fluorescence, which leads to better UV protection. Natural zeolites are rock-forming, microporous silicate minerals. Applied as nanoparticles to textile surface, it scatters the UV-R resulting in lower UV-A and UV-B transmission. If applied with other UV absorbing agents, e.g. FWAs, synergistic effect occurs. Silicones are inert, synthetic compounds with a variety of forms and uses. It provides a unique soft touch, is very resistant to washing and improves the property of fabric to protect against UV radiation. Therefore, the UV protective properties of cotton fabric achieved by light conversion and scattering was researched in this paper. For that purpose, the stilbene-derived FWAs were applied on cotton fabric in wide concentration

  19. Aerosol behavior and light water reactor source terms

    International Nuclear Information System (INIS)

    Abbey, F.; Schikarski, W.O.

    1988-01-01

    The major developments in nuclear aerosol modeling following the accident to pressurized water reactor Unit 2 at Three Mile Island are briefly reviewed and the state of the art summarized. The importance and implications of these developments for severe accident source terms for light water reactors are then discussed in general terms. The treatment is not aimed at identifying specific source term values but is intended rather to illustrate trends, to assess the adequacy of the understanding of major aspects of aerosol behavior for source term prediction, and demonstrate in qualitative terms the effect of various aspects of reactor design. Areas where improved understanding of aerosol behavior might lead to further reductions in current source terms predictions are also considered

  20. How gas-guzzler conversions can accelerate transportation electrification

    Energy Technology Data Exchange (ETDEWEB)

    Gremban, R. [California Cars Initiative, Palo Alto, CA (United States)

    2010-07-01

    This presentation discussed how plug-in hybrid electric vehicles (PHEV) can ramp up to accelerate greenhouse gas reductions. Specific topics that were presented included required battery manufacturing capacity; rapid conversion of light, medium, and heavy-duty ICE vehicles in the United States into battery electric vehicles and PHEVs; the low hanging fruits such as pickups, vans, larger vehicles, and those with defined drive cycles; the economics of gas guzzler conversions; and Canada and Japan policies on conversions. United States' measures supporting electric vehicle/(PHEV) conversions was also addressed. Some examples of converting vehicles to PHEVs were also outlined. The presentation concluded with some key themes to begin now for market penetration. It was concluded that without ICE conversions, market penetration was too slow. figs.

  1. In Situ Catalytic Pyrolysis of Low-Rank Coal for the Conversion of Heavy Oils into Light Oils

    Directory of Open Access Journals (Sweden)

    Muhammad Nadeem Amin

    2017-01-01

    Full Text Available Lighter tars are largely useful in chemical industries but their quantity is quite little. Catalytic cracking is applied to improve the yield of light tars during pyrolysis. Consequently, in situ upgrading technique through a MoS2 catalyst has been explored in this research work. MoS2 catalyst is useful for the conversion of high energy cost into low energy cost. The variations in coal pyrolysis tar without and with catalyst were determined. Meanwhile, the obtained tar was analyzed using simulated distillation gas chromatograph and Elemental Analyzer. Consequently, the catalyst reduced the pitch contents and increased the fraction of light tar from 50 to 60 wt.% in coal pyrolysis tar. MoS2 catalyst increased the liquid yield from 18 to 33 (wt.%, db and decreased gas yield from 27 to 12 (wt.%, db compared to coal without catalyst. Moreover, it increased H content and hydrogen-to-carbon ratio by 7.9 and 3.3%, respectively, and reduced the contents of nitrogen, sulphur, and oxygen elements by 8.1%, 15.2%, and 23.9%, respectively, in their produced tars compared to coal without catalyst.

  2. Status of advanced light water reactor designs 2004

    International Nuclear Information System (INIS)

    2004-05-01

    The report is intended to be a source of reference information for interested organizations and individuals. Among them are decision makers of countries considering implementation of nuclear power programmes. Further, the report is addressed to government officials with an appropriate technical background and to research institutes of countries with existing nuclear programmes that wish to be informed on the global status in order to plan their nuclear power programmes including both research and development efforts and means for meeting future. The future utilization of nuclear power worldwide depends primarily on the ability of the nuclear community to further improve the economic competitiveness of nuclear power plants while meeting stringent safety requirements. The IAEA's activities in nuclear power technology development include the preparation of status reports on advanced reactor designs to provide all interested IAEA Member States with balanced and objective information on advances in nuclear plant technology. In the field of light water reactors, the last status report published by the IAEA was 'Status of Advanced Light Water Cooled Reactor Designs: 1996' (IAEA-TECDOC-968). Since its publication, quite a lot has happened: some designs have been taken into commercial operation, others have achieved significant steps toward becoming commercial products, including certification from regulatory authorities, some are in a design optimization phase to reduce capital costs, development for other designs began after 1996, and a few designs are no longer pursued by their promoters. With this general progress in mind, on the advice and with the support of the IAEA Department of Nuclear Energy's Technical Working Group on Advanced Technologies for Light Water Reactors (LWRs), the IAEA has prepared this new status report on advanced LWR designs that updates IAEA-TECDOC-968, presenting the various advanced LWR designs in a balanced way according to a common outline

  3. The manufacture of plutonium fuels for light water reactors

    International Nuclear Information System (INIS)

    Lebastard, G.

    1985-01-01

    This paper describes the agreement concluded between COGEMA and BELGONUCLEAIRE, reflected in the creation of the COMMOX group which has been made reponsible for promoting and marketing plutonium fuel rods for light water reactors. One then analyses the main aspects of manufacturing this type of fuel and the resources deployed. Finally one indicates the sales prospects scheduled to meet requirements (MELOX plant) [fr

  4. A supramolecular structure insight for conversion property of cellulose in hot compressed water: Polymorphs and hydrogen bonds changes.

    Science.gov (United States)

    Wang, Yan; Lian, Jie; Wan, Jinquan; Ma, Yongwen; Zhang, Yingshi

    2015-11-20

    Waste paper samples with different cellulose supramolecular structure were treated in hot compressed water (HCW) at 375°C and 22.5MPa within 200s to evaluate the specific effect mechanism of cellulose supramolecular structure on the conversion of waste paper to reusable resource. Although the distribution of liquid products and the oligosaccharides were related to reaction time, depolymerization and decrystallization of the cellulose, the characteristics absorption peak of cellulose from FTIR analysis and crystal structure of the cellulose detected in the residues with hydrolysis rate up 96.5% indicated crystal structure was the dominant factor that affect conversion behavior of waste paper. The conversion of cellulose Iβ to cellulose Iα or cellulose I(α+β) in HCW demonstrated that the recrystallization occurred during the decrystallization of cellulose through the rearrangement of hydrogen bonds. Copyright © 2015 Elsevier Ltd. All rights reserved.

  5. Analysis of thermal fatigue events in light water reactors

    Energy Technology Data Exchange (ETDEWEB)

    Okuda, Yasunori [Institute of Nuclear Safety System Inc., Seika, Kyoto (Japan)

    2000-09-01

    Thermal fatigue events, which may cause shutdown of nuclear power stations by wall-through-crack of pipes of RCRB (Reactor Coolant Pressure Boundary), are reported by licensees in foreign countries as well as in Japan. In this paper, thermal fatigue events reported in anomalies reports of light water reactors inside and outside of Japan are investigated. As a result, it is clarified that the thermal fatigue events can be classified in seven patterns by their characteristics, and the trend of the occurrence of the events in PWRs (Pressurized Water Reactors) has stronger co-relation to operation hours than that in BWRs (Boiling Water Reactors). Also, it is concluded that precise identification of locations where thermal fatigue occurs and its monitoring are important to prevent the thermal fatigue events by aging or miss modification. (author)

  6. Investigation into the use of water based brake fluid for light loads ...

    African Journals Online (AJOL)

    The actual test of the formulated brake fluid was carried out with a Nissan Sunny vehicle model 1.5 within the speed range of 20km/hr to 80km/hr at the permanent campus· of University of Uyo and the· braking effiqiency obtained at test to its suitability for light loads. Keywords·: Water-based, Brake fluid properties, Light loads ...

  7. Improved Light Conversion Efficiency Of Dye-Sensitized Solar Cell By Dispersing Submicron-Sized Granules Into The Nano-Sized TiO2 Layer

    Directory of Open Access Journals (Sweden)

    Song S.A.

    2015-06-01

    Full Text Available In this work, TiO2 nanoparticles and submicron-sized granules were synthesized by a hydrothermal method and spray pyrolysis, respectively. Submicron-sized granules were dispersed into the nano-sized TiO2 layer to improve the light conversion efficiency. Granules showed better light scattering, but lower in terms of the dye-loading quantity and recombination resistance compared with nanoparticles. Consequently, the nano-sized TiO2 layer had higher cell efficiency than the granulized TiO2 layer. When dispersed granules into the nanoparticle layer, the light scattering was enhanced without the loss of dye-loading quantities. The dispersion of granulized TiO2 led to increase the cell efficiency up to 6.51%, which was about 5.2 % higher than that of the electrode consisting of only TiO2 nanoparticles. Finally, the optimal hydrothermal temperature and dispersing quantity of granules were found to be 200°C and 20 wt%, respectively.

  8. Improvement of conversion efficiency of silicon solar cells using up-conversion molybdate La2Mo2O9:Yb,R (R=Er, Ho) phosphors

    Institute of Scientific and Technical Information of China (English)

    Yen-Chi Chen; Teng-Ming Chen

    2011-01-01

    The goal of this work was aimed to improve the power conversion efficiency of single crystalline silicon-based photovoltaic cells by using the solar spectral conversion principle,which employs an up-conversion phosphor to convert a low energy infrared photon to the more energetic visible photons to improve the spectral response.In this study,the surface of multicrystalline silicon solar cells was coated with an up-conversion molybdate phosphor to improve the spectral response of the solar cell in the ncar-infiared spectral range.The short circuit current (Isc),open circuit voltage (Voc),and conversion efficiency (η) of spectral conversion cells were measured.Preliminary experimental results revealed that the light conversion efficiency of a 1.5%-2.7% increase in Si-based cell was achieved.

  9. Investigation of saturation effects in ceramic phosphors for laser lighting

    DEFF Research Database (Denmark)

    Krasnoshchoka, Anastasiia; Thorseth, Anders; Dam-Hansen, Carsten

    2017-01-01

    We report observation of saturation effects in a Ce:LuAG and Eu-doped nitride ceramic phosphor for conversion of blue laser light for white light generation. The luminous flux from the phosphors material increases linearly with the input power until saturation effects limit the conversion....... It is shown, that the temperature of the phosphor layer influences the saturation power level and the conversion efficiency. It is also shown that the correlated color temperature (CCT), phosphor conversion efficiency and color rendering index (CRI) are dependent both on incident power and spot size diameter...... of the illumination. A phosphor conversion efficiency up to 140.8 lm/W with CRI of 89.4 was achieved. The saturation in a ceramic phosphor, when illuminated by high intensity laser diodes, is estimated to play the main role in limiting the available luminance from laser based lighting systems....

  10. Installation of the Light-Water Breeder Reactor at the Shippingport Atomic Power Station (LWBR Development Program)

    International Nuclear Information System (INIS)

    Massimino, R.J.; Williams, D.A.

    1983-05-01

    This report summarizes the refueling operations performed to install a Light Water Breeder Reactor (LWBR) core into the existing pressurized water reactor vessel at the Shippingport Atomic Power Station. Detailed descriptions of the major installation operations (e.g., primary system preconditioning, fuel installation, pressure boundary seal welding) are included as appendices to this report; these operations are of technical interest to any reactor servicing operation, whether the reactor is a breeder or a conventional light water non-breeder core

  11. Installation of the Light-Water Breeder Reactor at the Shippingport Atomic Power Station (LWBR Development Program)

    Energy Technology Data Exchange (ETDEWEB)

    Massimino, R.J.; Williams, D.A.

    1983-05-01

    This report summarizes the refueling operations performed to install a Light Water Breeder Reactor (LWBR) core into the existing pressurized water reactor vessel at the Shippingport Atomic Power Station. Detailed descriptions of the major installation operations (e.g., primary system preconditioning, fuel installation, pressure boundary seal welding) are included as appendices to this report; these operations are of technical interest to any reactor servicing operation, whether the reactor is a breeder or a conventional light water non-breeder core.

  12. Trends in light water reactor dosimetry programs

    International Nuclear Information System (INIS)

    Rahn, F.J.; Serpan, C.Z.; Fabry, A.; McElroy, W.N.; Grundl, J.A.; Debrue, J.

    1977-01-01

    Dosimetry programs and techniques play an essential role in the continued assurance of the safety and reliability of components of light water reactors. Primary concern focuses on the neutron irradiation embrittlement of reactor pressure vessels and methods by which the integrity of a pressure vessel can be predicted and monitored throughout its service life. Research in these areas requires a closely coordinated program which integrates the elements of the calculational and material sciences, the development of advanced dosimetric techniques and the use of benchmarks and validation of these methods. The paper reviews the status of the various international efforts in the dosimetry area

  13. Competition for light and water in a coupled soil-plant system

    Science.gov (United States)

    Manoli, Gabriele; Huang, Cheng-Wei; Bonetti, Sara; Domec, Jean-Christophe; Marani, Marco; Katul, Gabriel

    2017-10-01

    It is generally accepted that resource availability shapes the structure and function of many ecosystems. Within the soil-plant-atmosphere (SPA) system, resource availability fluctuates in space and time whereas access to resources by individuals is further impacted by plant-to-plant competition. Likewise, transport and transformation of resources within an individual plant is governed by numerous interacting biotic and abiotic processes. The work here explores the co-limitations on water losses and carbon uptake within the SPA arising from fluctuating resource availability and competition. In particular, the goal is to unfold the interplay between plant access and competition for water and light, as well as the impact of transport/redistribution processes on leaf-level carbon assimilation and water fluxes within forest stands. A framework is proposed that couples a three-dimensional representation of soil-root exchanges with a one-dimensional description of stem water flow and storage, canopy photosynthesis, and transpiration. The model links soil moisture redistribution, root water uptake, xylem water flow and storage, leaf potential and stomatal conductance as driven by supply and demand for water and carbon. The model is then used to investigate plant drought resilience of overstory-understory trees simultaneously competing for water and light. Simulation results reveal that understory-overstory interactions increase ecosystem resilience to drought (i.e. stand-level carbon assimilation rates and water fluxes can be sustained at lower root-zone soil water potentials). This resilience enhancement originates from reduced transpiration (due to shading) and hydraulic redistribution in soil supporting photosynthesis over prolonged periods of drought. In particular, the presence of different rooting systems generates localized hydraulic redistribution fluxes that sustain understory transpiration through overstory-understory interactions. Such complex SPA dynamics

  14. Preparation of silico-alumino-phosphates by the rapid crystallization method and their catalytic performance in the conversion of methanol to light olefins

    Energy Technology Data Exchange (ETDEWEB)

    Inui, T.; Matsuda, H.; Okaniwa, H.; Miyamoto, A. (Kyoto Univ. (Japan))

    1990-02-19

    Shape-selective silico-alumino-phosphates, SAPO-34 and SAPO-17, having the chabazite and erionite structure, respectively, were prepared within 4 h of hydrothermal treatment by the rapid crystallization method. They are highly effective for the selective conversion of methanol to light olefins, such as ethene, propene and butenes. It is shown that these SAPOs are more weakly acidic than typical H-ZSM-5 but more strongly acidic than H-Fe-silicates. 7 figs., 24 refs.

  15. The effect of temperature on the catalytic conversion of Kraft lignin using near-critical water

    DEFF Research Database (Denmark)

    Nguyen, Thi Dieu Huyen; Maschietti, Marco; Åmand, Lars-Erik

    2014-01-01

    The catalytic conversion of suspended LignoBoost Kraft lignin was performed in near-critical water using ZrO2/K2CO3 as the catalytic system and phenol as the co-solvent and char suppressing agent. The reaction temperature was varied from 290 to 370 C and its effect on the process was investigated...... in a continuous flow (1 kg/h). The yields of water-soluble organics (WSO), bio-oil and char (dry lignin basis) were in the ranges of 5–11%, 69–87% and 16–22%, respectively. The bio-oil, being partially deoxygenated, exhibited higher carbon content and heat value, but lower sulphur content than lignin. The main 1...

  16. Development of next-generation light water reactor

    International Nuclear Information System (INIS)

    Ishibashi, Fumihiko; Yasuoka, Makoto

    2010-01-01

    The Next-Generation Light Water Reactor Development Program, a national project in Japan, was inaugurated in April 2008. The primary objective of this program is to meet the need for the replacement of existing nuclear power plants in Japan after 2030. With the aim of setting a global standard design, the reactor to be developed offers greatly improved safety, reliability, and economic efficiency through several innovative technologies, including a reactor core system with uranium enrichment of 5 to 10%, a seismic isolation system, long-life materials, advanced water chemistry, innovative construction techniques, optimized passive and active safety systems, innovative digital technologies, and so on. In the first three years, a plant design concept with these innovative features is to be established and the effectiveness of the program will be reevaluated. The major part of the program will be completed in 2015. Toshiba is actively engaged in both design studies and technology development as a founding member of this program. (author)

  17. A new book : 'light-water reactor materials'

    International Nuclear Information System (INIS)

    Olander, Donald R.; Motta, Arthur T.

    2005-01-01

    The contents of a new book currently in preparation are described. The dearth of books in the field of nuclear materials has left both students in nuclear materials classes and professionals in the same field without a resource for the broad fundamentals of this important sub-discipline of nuclear engineering. The new book is devoted entirely to materials problems in the core of light-water reactors, from the pressure vessel into the fuel. Key topics deal with the UO 2 fuel, zircaloy cladding, stainless steel, and of course, water. The restriction to LWR materials does not mean a short monograph; the enormous quantity of experimental and theoretical work over the past 50 years on these materials presents a challenge of culling the most important features and explaining them in the simplest quantitative fashion. Moreover, LWRs will probably be the sole instrument of the return of nuclear energy in electric power production for the next decade or so. By that time, a new book will be needed

  18. An investigation of differences between measured and calculated bucklings of a series of light water and heavy water moderated experimental cores

    International Nuclear Information System (INIS)

    Figgins, A.J.G.

    1966-02-01

    A series of light water and light and heavy water moderated exponential and critical experiments performed by the Babcock and Wilcox Company were analysed using the METHUSELAH programme and it was found that the calculated and measured critical bucklings differed significantly. The effect was most marked as the temperature of the moderator was raised in the light water cores where it amounted to 10 m -2 for a 200 deg. C rise above room temperature. Of this discrepancy 3 m -2 , at the most, could be explained as being caused by the experimental cores not being large enough to have a central asymptotic region, leaving an unexplained difference of 7 m -2 . It is suggested that the only region in which METHUSELAH could be usefully modified to improve this agreement is in the calculation of the resonance escape probability. The last section of the report compares the calculated and measured results obtained at room temperatures. (author)

  19. Advanced high conversion PWR: preliminary analysis

    International Nuclear Information System (INIS)

    Golfier, H.; Bellanger, V.; Bergeron, A.; Dolci, F.; Gastaldi, B.; Koberl, O.; Mignot, G.; Thevenot, C.

    2007-01-01

    In this paper, physical aspects of a HCPWR (High Conversion Light Water Reactor), which is an innovative PWR fuelled with mixed oxide and having a higher conversion ratio due to a lower moderation ratio. Moderation ratios lower than unity are considered which has led to low moderation PWR fuel assembly designs. The objectives of this parametric study are to define a feasibility area with regard to the following neutronic aspects: moderation ratio, Pu loading, reactor spectrum, irradiation time, and neutronic coefficients. Important thermohydraulic parameters are the pressure drop, the critical heat flux, the maximum temperature in the fuel rod and the pumping power. The thermohydraulic analysis shows that a range of moderation ratios from 0.8 to 1.2 is technically possible. A compromise between improved fuel utilization and research and development effort has been found for the moderation ration of about 1. The parametric study shows that there are 2 ranges of interest for the moderation ratio: -) moderation ratio between 0.8 and 1.2 with reduced fissile heights (> 3 m), hexagonal arrangement fuel assembly and square arrangement fuel assembly are possible; and -) moderation between 0.6 and 0.7 with a modification of the reactor operating conditions (reduction of the primary flow and of the thermal power), the fuel rods could be arranged inside a hexagonal fuel rod assembly. (A.C.)

  20. Effects of temperature and salinity on light scattering by water

    Science.gov (United States)

    Zhang, Xiaodong; Hu, Lianbo

    2010-04-01

    A theoretical model on light scattering by water was developed from the thermodynamic principles and was used to evaluate the effects of temperature and salinity. The results agreed with the measurements by Morel within 1%. The scattering increases with salinity in a non-linear manner and the empirical linear model underestimate the scattering by seawater for S < 40 psu. Seawater also exhibits an 'anomalous' scattering behavior with a minimum occurring at 24.64 °C for pure water and this minimum increases with the salinity, reaching 27.49 °C at 40 psu.

  1. The Fabrication of Ga2O3/ZSM-5 Hollow Fibers for Efficient Catalytic Conversion of n-Butane into Light Olefins and Aromatics

    Directory of Open Access Journals (Sweden)

    Jing Han

    2016-01-01

    Full Text Available In this study, the dehydrogenation component of Ga2O3 was introduced into ZSM-5 nanocrystals to prepare Ga2O3/ZSM-5 hollow fiber-based bifunctional catalysts. The physicochemical features of as-prepared catalysts were characterized by means of XRD, BET, SEM, STEM, NH3-TPD, etc., and their performances for the catalytic conversion of n-butane to produce light olefins and aromatics were investigated. The results indicated that a very small amount of gallium can cause a marked enhancement in the catalytic activity of ZSM-5 because of the synergistic effect of the dehydrogenation and aromatization properties of Ga2O3 and the cracking function of ZSM-5. Compared with Ga2O3/ZSM-5 nanoparticles, the unique hierarchical macro-meso-microporosity of the as-prepared hollow fibers can effectively enlarge the bifunctionality by enhancing the accessibility of active sites and the diffusion. Consequently, Ga2O3/ZSM-5 hollow fibers show excellent catalytic conversion of n-butane, with the highest yield of light olefins plus aromatics at 600 °C by 87.6%, which is 56.3%, 24.6%, and 13.3% higher than that of ZSM-5, ZSM-5 zeolite fibers, and Ga2O3/ZSM-5, respectively.

  2. Comparison of two thorium fuel cycles for use in light water prebreeder/breeder reactor systems (AWBA Development Program)

    International Nuclear Information System (INIS)

    Merriman, F.C.; McCoy, D.F.; Boyd, W.A.; Dwyer, J.R.

    1983-05-01

    Light water prebreeder/breeder conceptual reactor systems have been developed which have the potential to significantly improve the fuel utilization of present generation light water reactors. The purpose of this study is to describe and compare two possible types of thorium fuel cycles for use in these light water prebreeder and breeder concepts. The two types of thorium fuel cycles basically differ in the fuel rod design used in the prebreeder cores and the uranium isotopic concentration of fuel supplied to the breeder cores

  3. Semiconductor nanowires for photovoltaic and photoelectrochemical energy conversion

    Energy Technology Data Exchange (ETDEWEB)

    Dasgupta, Neil; Yang, Peidong

    2013-01-23

    Semiconductor nanowires (NW) possess several beneficial properties for efficient conversion of solar energy into electricity and chemical energy. Due to their efficient absorption of light, short distances for minority carriers to travel, high surface-to-volume ratios, and the availability of scalable synthesis methods, they provide a pathway to address the low cost-to-power requirements for wide-scale adaptation of solar energy conversion technologies. Here we highlight recent progress in our group towards implementation of NW components as photovoltaic and photoelectrochemical energy conversion devices. An emphasis is placed on the unique properties of these one-dimensional (1D) structures, which enable the use of abundant, low-cost materials and improved energy conversion efficiency compared to bulk devices.

  4. Plasmon-mediated Energy Conversion in Metal Nanoparticle-doped Hybrid Nanomaterials

    Science.gov (United States)

    Dunklin, Jeremy R.

    Climate change and population growth demand long-term solutions for clean water and energy. Plasmon-active nanomaterials offer a promising route towards improved energetics for efficient chemical separation and light harvesting schemes. Two material platforms featuring highly absorptive plasmonic gold nanoparticles (AuNPs) are advanced herein to maximize photon conversion into thermal or electronic energy. Optical extinction, attributable to diffraction-induced internal reflection, was enhanced up to 1.5-fold in three-dimensional polymer films containing AuNPs at interparticle separations approaching the resonant wavelength. Comprehensive methods developed to characterize heat dissipation following plasmonic absorption was extended beyond conventional optical and heat transfer descriptions, where good agreement was obtained between measured and estimated thermal profiles for AuNP-polymer dispersions. Concurrently, in situ reduction of AuNPs on two-dimensional semiconducting tungsten disulfide (WS2) addressed two current material limitations for efficient light harvesting: low monolayer content and lack of optoelectronic tunability. Order-of-magnitude increases in WS2 monolayer content, enhanced broadband optical extinction, and energetic electron injection were probed using a combination of spectroscopic techniques and continuum electromagnetic descriptions. Together, engineering these plasmon-mediated hybrid nanomaterials to facilitate local exchange of optical, thermal, and electronic energy supports design and implementation into several emerging sustainable water and energy applications.

  5. European community light water reactor safety research projects. Experimental issue

    International Nuclear Information System (INIS)

    1975-01-01

    Research programs on light water reactor safety currently carried out in the European Community are presented. They cover: accident conditions (LOCA, ECCS, core meltdown, external influences, etc...), fault and accident prevention and means of mitigation, normal operation conditions, on and off site implications and equipment under severe accident conditions, and miscellaneous subjects

  6. Development status and application prospect of supercritical-pressure light water cooled reactor

    International Nuclear Information System (INIS)

    Li Manchang; Wang Mingli

    2006-01-01

    The Supercritical-pressure Light Water Cooled Reactor (SCWR) is selected by the Generation IV International Forum (GIF) as one of the six Generation IV nuclear systems that will be developed in the future, and it is an innovative design based on the existing technologies used in LWR and supercritical coal-fired plants. Technically, SCWR may be based on the design, construction and operation experiences in existing PWR and supercritical coal-fired plants, which means that there is no insolvable technology difficulties. Since PWR technology will be adopted in the near term and medium term projects in China, and considering the sustainable development of the technology, it is an inevitable choice to research and develop the nuclear system of supercritical light water cooled reactor. (authors)

  7. 10 CFR 50.46 - Acceptance criteria for emergency core cooling systems for light-water nuclear power reactors.

    Science.gov (United States)

    2010-01-01

    ... light-water nuclear power reactors. 50.46 Section 50.46 Energy NUCLEAR REGULATORY COMMISSION DOMESTIC... reactors. (a)(1)(i) Each boiling or pressurized light-water nuclear power reactor fueled with uranium oxide... evaluation model. This section does not apply to a nuclear power reactor facility for which the...

  8. Conversion from dose-to-graphite to dose-to-water in an 80 MeV/A carbon ion beam.

    Science.gov (United States)

    Rossomme, S; Palmans, H; Shipley, D; Thomas, R; Lee, N; Romano, F; Cirrone, P; Cuttone, G; Bertrand, D; Vynckier, S

    2013-08-21

    Based on experiments and numerical simulations, a study is carried out pertaining to the conversion of dose-to-graphite to dose-to-water in a carbon ion beam. This conversion is needed to establish graphite calorimeters as primary standards of absorbed dose in these beams. It is governed by the water-to-graphite mass collision stopping power ratio and fluence correction factors, which depend on the particle fluence distributions in each of the two media. The paper focuses on the experimental and numerical determination of this fluence correction factor for an 80 MeV/A carbon ion beam. Measurements have been performed in the nuclear physics laboratory INFN-LNS in Catania (Sicily, Italy). The numerical simulations have been made with a Geant4 Monte Carlo code through the GATE simulation platform. The experimental data are in good agreement with the simulated results for the fluence correction factors and are found to be close to unity. The experimental values increase with depth reaching 1.010 before the Bragg peak region. They have been determined with an uncertainty of 0.25%. Different numerical results are obtained depending on the level of approximation made in calculating the fluence correction factors. When considering carbon ions only, the difference between measured and calculated values is maximal just before the Bragg peak, but its value is less than 1.005. The numerical value is close to unity at the surface and increases to 1.005 near the Bragg peak. When the fluence of all charged particles is considered, the fluence correction factors are lower than unity at the surface and increase with depth up to 1.025 before the Bragg peak. Besides carbon ions, secondary particles created due to nuclear interactions have to be included in the analysis: boron ions ((10)B and (11)B), beryllium ions ((7)Be), alpha particles and protons. At the conclusion of this work, we have the conversion of dose-to-graphite to dose-to-water to apply to the response of a graphite

  9. Photoelectrochemical water splitting under visible light over anti-photocorrosive In2O3-coupling ZnO nanorod arrays photoanode

    International Nuclear Information System (INIS)

    Zhang, Yan; Zhang, Jinqiu; Nie, Mengyan; Sun, Kai; Li, Chunhu; Yu, Jianqiang

    2015-01-01

    In 2 O 3 quantum dots with a high crystallinity were deposited on the surface of ZnO nanorods through a chemistry bath method. The resulting In 2 O 3 -sensitizing ZnO nanorod arrays not only exhibited enhanced photoelectrochemical activity for water splitting under visible-light irradiation, but also possessed anti-photocorrosion property. The photo-induced charge-transfer property of In 2 O 3 could be improved greatly by coupling with ZnO. This observation demonstrated that the heterojunction at the interface between In 2 O 3 and ZnO could efficiently reduce the recombination of photo-induced electron–hole pairs and increase the lifetime of charge carriers and therefore enhance the photo-to-current efficiency of the In 2 O 3 –ZnO nanocrystalline arrays. It reveals that the heterojunction construction between two different semiconductors plays a very important role in determining the dynamic properties of their photogenerated charge carriers and their photo-to-current conversion efficiency

  10. The differential radiological impact of plutonium recycle in the light-water reactor fuel cycle: effluent discharges during normal operation

    International Nuclear Information System (INIS)

    Bouville, A.; Guetat, P.; Jones, J.A.; Kelly, G.N.; Legrand, J.; White, I.F.

    1980-01-01

    The radiological impact of a light-water reactor fuel cycle utilizing enriched uranium fuel may be altered by the recycle of plutonium. Differences in impact may arise during various operations in the fuel cycle: those which arise from effluents discharged during normal operation of the various installations comprising the fuel cycle are evaluated in this study. The differential radiological impact on the population of the European Communities (EC) of effluents discharged during the recycling of 10 tonnes of fissile plutonium metal is evaluated. The contributions from each stage of the fuel cycle, i.e. fuel fabrication, reactor operation and fuel reprocessing and conversion, are identified. Separate consideration is given to airborne and liquid effluents and account is taken of a wide range of environmental conditions, representative of the EC, in estimating the radiological impact. The recycle of plutonium is estimated to result in a reduction in the radiological impact from effluents of about 30% of that when using enriched uranium fuel

  11. Research and development of super light water reactors and super fast reactors in Japan

    International Nuclear Information System (INIS)

    Oka, Y.; Morooka, S.; Yamakawa, M.; Ishiwatari, Y.; Ikejiri, S.; Katsumura, Y.; Muroya, Y.; Terai, T.; Sasaki, K.; Mori, H.; Hamamoto, Y.; Okumura, K.; Kugo, T.; Nakatsuka, T.; Ezato, K.; Akasaka, N.; Hotta, A.

    2011-01-01

    Super Light Water Reactors (Super LWR) and Super Fast Reactors (Super FR) are the supercritical- pressure light water cooled reactors (SCWR) that are developed by the research group of University of Tokyo since 1989 and now jointly under development with the researchers of Waseda University, University of Tokyo and other organizations in Japan. The principle of the reactor concept development, the results of the past Super LWR and Super FR R&D as well as the R&D program of the Super FR second phase project are described. (author)

  12. Flow-induced vibration for light-water reactors. Progress report, April 1978-December 1979

    International Nuclear Information System (INIS)

    Schardt, J.F.

    1980-03-01

    Flow-Induced vibration for Light Water Reactors (FIV for LWRs) is a four-year program designed to improve the FIV performance of light water reactors through the development of design criteria, analytical models for predicting behavior of components, general scaling laws to improve the accuracy of reduced-scale tests, and the identification of high FIV risk areas. The program commenced December 1, 1976, but was suspended on September 30, 1978, due to a shift in Department of Energy (DOE) priorities away from LWR productivity/availability. It was reinitiated as of August 1, 1979. This progress report summarizes the accomplishments achieved during the period from April 1978 to December 1979

  13. Fuel Summary Report: Shippingport Light Water Breeder Reactor

    International Nuclear Information System (INIS)

    Illum, D.B.; Olson, G.L.; McCardell, R.K.

    1999-01-01

    The Shippingport Light Water Breeder Reactor (LWBR) was a small water cooled, U-233/Th-232 cycle breeder reactor developed by the Pittsburgh Naval Reactors to improve utilization of the nation's nuclear fuel resources in light water reactors. The LWBR was operated at Shippingport Atomic Power Station (APS), which was a Department of Energy (DOE) (formerly Atomic Energy Commission)-owned reactor plant. Shippingport APS was the first large-scale, central-station nuclear power plant in the United States and the first plant of such size in the world operated solely to produce electric power. The Shippingport LWBR was operated successfully from 1977 to 1982 at the APS. During the five years of operation, the LWBR generated more than 29,000 effective full power hours (EFPH) of energy. After final shutdown, the 39 core modules of the LWBR were shipped to the Expended Core Facility (ECF) at Naval Reactors Facility at the Idaho National Engineering and Environmental Laboratory (INEEL). At ECF, 12 of the 39 modules were dismantled and about 1000 of more than 17,000 rods were removed from the modules of proof-of-breeding and fuel performance testing. Some of the removed rods were kept at ECF, some were sent to Argonne National Laboratory-West (ANL-W) in Idaho and some to ANL-East in Chicago for a variety of physical, chemical and radiological examinations. All rods and rod sections remaining after the experiments were shipped back to ECF, where modules and loose rods were repackaged in liners for dry storage. In a series of shipments, the liners were transported from ECF to Idaho Nuclear Technology Engineering Center (INTEC), formerly the Idaho Chemical Processing Plant (ICPP). The 47 liners containing the fully-rodded and partially-derodded core modules, the loose rods, and the rod scraps, are now stored in underground dry wells at CPP-749

  14. Tritium formation and elimination in light-water electronuclear plants

    International Nuclear Information System (INIS)

    Dolle, L.; Bazin, J.

    1977-01-01

    In light-water reactors, the tritium balance should be considered from both the working constraint and environmental pollution aspects. In light-water electronuclear stations with pressurized reactors using boric acid in solution for reactivity control, the amounts of tritium formed in the primary circuit are worthy of note. The estimations concerning the tritium production in a hypothetical 1000 MWe reactor are discussed. In the tritium build-up, the part which takes the tritium formed by fission in the fuel, owing to diffusion through cladding, is still difficult to estimate. The tritium balance in different working nuclear power stations are consequently of interest. But the tritium produced by ternary fission in the fuel is always much more abundant, and remains almost entirely confined in the uranium oxide if the fuel is clad with zircaloy. The annual quantity stored in the fuel elements is more than 20 times larger than that of the built up free tritium in the primary circuit water of a reactor. It reaches about 12,400 Ci in the hypothetical reactor. In the presently operated reprocessing plants, tritium is all going over in the effluents, and is almost entirely released in the environment. Taking into account the increasing quantities of high irradiated fuel to be reprocessed, it seems necessary to develop separation processes. Development work and tests have been achieved jointly by CEA and SAINT-GOBAIN TECHNIQUES NOUVELLES in order to: contain the tritium in the high activity part of the plant; and keep small the tritiated effluent volume, about 300 liters per ton of reprocessed uranium. It is then possible to envisage a storage for decay of isotopic separation processes. Such separation processes have been estimated by CEA assuming a daily output of 1500 liters of water containing 2,3 Ci.1 -1 of tritium, the desired decontamination factor being 100 [fr

  15. Dynamic Response of Plant Chlorophyll Fluorescence to Light, Water and Nutrient Availability

    Science.gov (United States)

    Cendrero Mateo, M. D. P.; Moran, S. M.; Porcar-Castell, A.; Carmo-Silva, A. E.; Papuga, S. A.; Matveeva, M.; Wieneke, S.; Rascher, U.

    2014-12-01

    Photosynthesis is the most important exchange process of CO2 between the atmosphere and the land-surface. Spatial and temporal patterns of photosynthesis depend on dynamic plant-specific adaptation strategies to highly variable environmental conditions e.g. light, water, and nutrient availability. Chlorophyll fluorescence (ChF) has been proposed as a direct indicator of photosynthesis, and several studies have demonstrated its relationship with vegetation functioning at leaf and canopy level. In this study, two overarching questions about ChF were addressed: Q1) How water, nutrient and ambient light conditions determine the relationships between photosynthesis and ChF? Which is the optimum irradiance level for detecting water and nutrient deficit conditions with ChF?; Q2) What is the seasonal relationship between photosynthesis and ChF when nitrogen is the limiting factor? The results of this study indicated that when the differences between treatments (water or nitrogen) drive the relationship between photosynthesis and ChF, ChF has a direct relationship with photosynthesis. This study demonstrates that the light level at which plants were grown was optimum for detecting water and nutrient deficit with ChF. Further, the seasonal relation between photosynthesis and ChF with nitrogen stress was not a simple linear function due to the complex physiological relation between photosynthesis and ChF. Our study showed that at times in the season when nitrogen was sufficient and photosynthesis was highest, ChF decreased because these two processes compete for available energy. The results from this study demonstrated that ChF is a reliable indicator of plant stress and has great potential as a tool for better understand where, when, and how CO2 is exchanged between the land and atmosphere.

  16. Boiler conversions for biomass

    Energy Technology Data Exchange (ETDEWEB)

    Kinni, J [Tampella Power Inc., Tampere (Finland)

    1997-12-31

    Boiler conversions from grate- and oil-fired boilers to bubbling fluidized bed combustion have been most common in pulp and paper industry. Water treatment sludge combustion, need for additional capacity and tightened emission limits have been the driving forces for the conversion. To accomplish a boiler conversion for biofuel, the lower part of the boiler is replaced with a fluidized bed bottom and new fuel, ash and air systems are added. The Imatran Voima Rauhalahti pulverized-peat-fired boiler was converted to bubbling fluidized bed firing in 1993. In the conversion the boiler capacity was increased by 10 % to 295 MWth and NO{sub x} emissions dropped. In the Kymmene Kuusankoski boiler, the reason for conversion was the combustion of high chlorine content biosludge. The emissions have been under general European limits. During the next years, the emission limits will tighten and the boilers will be designed for most complete combustion and compounds, which can be removed from flue gases, will be taken care of after the boiler. (orig.) 3 refs.

  17. Boiler conversions for biomass

    Energy Technology Data Exchange (ETDEWEB)

    Kinni, J. [Tampella Power Inc., Tampere (Finland)

    1996-12-31

    Boiler conversions from grate- and oil-fired boilers to bubbling fluidized bed combustion have been most common in pulp and paper industry. Water treatment sludge combustion, need for additional capacity and tightened emission limits have been the driving forces for the conversion. To accomplish a boiler conversion for biofuel, the lower part of the boiler is replaced with a fluidized bed bottom and new fuel, ash and air systems are added. The Imatran Voima Rauhalahti pulverized-peat-fired boiler was converted to bubbling fluidized bed firing in 1993. In the conversion the boiler capacity was increased by 10 % to 295 MWth and NO{sub x} emissions dropped. In the Kymmene Kuusankoski boiler, the reason for conversion was the combustion of high chlorine content biosludge. The emissions have been under general European limits. During the next years, the emission limits will tighten and the boilers will be designed for most complete combustion and compounds, which can be removed from flue gases, will be taken care of after the boiler. (orig.) 3 refs.

  18. Hybrid Light-Emitting Diode Enhanced With Emissive Nanocrystals

    DEFF Research Database (Denmark)

    Kopylov, Oleksii

    This thesis investigates a new type of white light emitting hybrid diode, composed of a light emitting GaN/InGaN LED and a layer of semiconductor nanocrystals for color conversion. Unlike standard white LEDs, the device is configured to achieve high color conversion efficiency via non-radiative e......This thesis investigates a new type of white light emitting hybrid diode, composed of a light emitting GaN/InGaN LED and a layer of semiconductor nanocrystals for color conversion. Unlike standard white LEDs, the device is configured to achieve high color conversion efficiency via non...... of the hybrid diode fabrication including process techniques for GaN LED and incorporation of the nanocrystals are presented with the emphasis on the differences with standard LED processing. Results and analysis of optical and electrical characterization including photoluminescence (PL), micro-PL, time......-resolved PL and electroluminescence (EL) together with current-voltage characteristics are presented to evaluate the device performance. A clear evidence of non-radiative energy transfer was seen in the carrier dynamics of both the LED and the nanocrystals when the quantum well – nanocrystals separation...

  19. ATR technique, an appropriate method for determining the degree of conversion in dental giomers

    International Nuclear Information System (INIS)

    Prejmerean, Cristina; Prodan, Doina; Vlassa, Mihaela; Prejmerean, Vasile; Cuc, Stanca; Moldovan, Marioara; Streza, Mihaela; Buruiana, Tinca; Colceriu, Loredana

    2016-01-01

    Dental light-curing giomers were developed to combine the favourable properties of diacrylic resin composites (DRCs) and glass-ionomer cements (GICs) in a single material and to eliminate their inherent drawbacks. Giomers are characterized by their aesthetic appearance, high mechanical properties, adhesion to dental tissues as well as fluoride release and recharge abilities. The qualities of the giomers are greatly influenced by the level of conversion of the component resins. Infrared spectroscopy is one of the most largely used techniques for the determination of the degree of conversion in resin-based dental materials. However different results were obtained due to the performances of the used methods. The present work presents the determination of conversion degree in a series of dental copolymers and their corresponding giomers using transmission Fourier transform infrared spectroscopy (FTIR) and an attenuated total reflection technique (ATR) technique, respectively, the main aim being the study of the influence of the materials composition and of the light curing modes upon the achieved conversion in the cured giomers. Beautifil II commercial giomer was used as a control. A halogen lamp and a diode-blue LED lamp were used for the curing of the materials. The results showed that the composition of the resins greatly influenced the conversion. The highest conversions (up to 79%) were obtained in the case of the experimental giomers which contained the experimental Bis-GMA urethane analogue, followed by the Beautifil II giomer (61%) and experimental giomers based on commercial Bis-GMA (up to 50%), respectively. The resins light-cured by using the diode-blue LED lamp presented slightly higher conversions than the resins cured by halogen lamp. The study demonstrates the possibility to evaluate easily and reproducibly the conversion in light-curing composite materials with complex chemical composition and structure, particularly in the case of giomers by using the

  20. Research on Reduced-Moderation Water Reactor (RMWR)

    International Nuclear Information System (INIS)

    Iwamura, Takamichi; Okubo, Tsutomu; Shimada, Shoichiro

    1999-11-01

    The Reduced-Moderation Water Reactor (RMWR) is a next generation water-cooled reactor which aims at effective utilization of uranium resource, high burn-up and long operation cycle, and plutonium multi-recycle. These characteristics can be achieved by the high conversion ratio from 238 U to 239 Pu resulted from the higher neutron energy spectrum in comparison to conventional light water reactors. Considering the extension of LWR utilization, Japan Atomic Energy Research Institute (JAERI) started the research on it in 1997 and then started a collaboration in the conceptual design study with the Japan Atomic Power Company (JAPCO) in 1998. In the core design study of the RMWR, negative void reactivity coefficient is required from a viewpoint of safety as well as establishing hard neutron spectrum. In order to achieve the above trade-off characteristics simultaneously, several basic core design ideas should be combined, such as a tight lattice fuel assembly, a flat core, a blanket effect, a streaming effect and so on. Up to now, five core concepts have been created for the RMWR as follows: a high conversion BWR with high void fraction and super-flat core, a long operation cycle BWR using void channels, a high conversion BWR without blankets, a high conversion PWR using heavy water as a coolant, and a PWR for plutonium multi-recycle using seed-blanket type fuel assemblies. The present report summarizes the objectives, domestic and international trends, principles and characteristics, core conceptual designs and future R and D plans of the RMWR. (J.P.N.)

  1. Research on Reduced-Moderation Water Reactor (RMWR)

    Energy Technology Data Exchange (ETDEWEB)

    Iwamura, Takamichi; Okubo, Tsutomu; Shimada, Shoichiro [Japan Atomic Energy Research Inst., Tokai, Ibaraki (Japan). Tokai Research Establishment] [and others

    1999-11-01

    The Reduced-Moderation Water Reactor (RMWR) is a next generation water-cooled reactor which aims at effective utilization of uranium resource, high burn-up and long operation cycle, and plutonium multi-recycle. These characteristics can be achieved by the high conversion ratio from {sup 238}U to {sup 239}Pu resulted from the higher neutron energy spectrum in comparison to conventional light water reactors. Considering the extension of LWR utilization, Japan Atomic Energy Research Institute (JAERI) started the research on it in 1997 and then started a collaboration in the conceptual design study with the Japan Atomic Power Company (JAPCO) in 1998. In the core design study of the RMWR, negative void reactivity coefficient is required from a viewpoint of safety as well as establishing hard neutron spectrum. In order to achieve the above trade-off characteristics simultaneously, several basic core design ideas should be combined, such as a tight lattice fuel assembly, a flat core, a blanket effect, a streaming effect and so on. Up to now, five core concepts have been created for the RMWR as follows: a high conversion BWR with high void fraction and super-flat core, a long operation cycle BWR using void channels, a high conversion BWR without blankets, a high conversion PWR using heavy water as a coolant, and a PWR for plutonium multi-recycle using seed-blanket type fuel assemblies. The present report summarizes the objectives, domestic and international trends, principles and characteristics, core conceptual designs and future R and D plans of the RMWR. (J.P.N.)

  2. Status of core conversion with LEU silicide fuel in JRR-4

    Energy Technology Data Exchange (ETDEWEB)

    Nakajima, Teruo; Ohnishi, Nobuaki; Shirai, Eiji [Japan Atomic Energy Research Institute, Ibaraki-ken (Japan)

    1997-08-01

    Japan Research Reactor No.4 (JRR-4) is a light water moderated and cooled, 93% enriched uranium ETR-type fuel used and swimming pool type reactor with thermal output of 3.5MW. Since the first criticality was achieved on January 28, 1965, JRR-4 has been used for shielding experiments, radioisotope production, neutron activation analyses, training for reactor engineers and so on for about 30 years. Within the framework of the RERTR Program, the works for conversion to LEU fuel are now under way, and neutronic and thermal-hydraulic calculations emphasizing on safety and performance aspects are being carried out. The design and evaluation for the core conversion are based on the Guides for Safety Design and Evaluation of research and testing reactor facilities in Japan. These results show that the JRR-4 will be able to convert to use LEU fuel without any major design change of core and size of fuel element. LEU silicide fuel (19.75%) will be used and maximum neutron flux in irradiation hole would be slightly decreased from present neutron flux value of 7x10{sup 13}(n/cm{sup 2}/s). The conversion works are scheduled to complete in 1998, including with upgrade of the reactor building and utilization facilities.

  3. Status of core conversion with LEU silicide fuel in JRR-4

    International Nuclear Information System (INIS)

    Nakajima, Teruo; Ohnishi, Nobuaki; Shirai, Eiji

    1997-01-01

    Japan Research Reactor No.4 (JRR-4) is a light water moderated and cooled, 93% enriched uranium ETR-type fuel used and swimming pool type reactor with thermal output of 3.5MW. Since the first criticality was achieved on January 28, 1965, JRR-4 has been used for shielding experiments, radioisotope production, neutron activation analyses, training for reactor engineers and so on for about 30 years. Within the framework of the RERTR Program, the works for conversion to LEU fuel are now under way, and neutronic and thermal-hydraulic calculations emphasizing on safety and performance aspects are being carried out. The design and evaluation for the core conversion are based on the Guides for Safety Design and Evaluation of research and testing reactor facilities in Japan. These results show that the JRR-4 will be able to convert to use LEU fuel without any major design change of core and size of fuel element. LEU silicide fuel (19.75%) will be used and maximum neutron flux in irradiation hole would be slightly decreased from present neutron flux value of 7x10 13 (n/cm 2 /s). The conversion works are scheduled to complete in 1998, including with upgrade of the reactor building and utilization facilities

  4. Solar energy conversion. Chemical aspects

    Energy Technology Data Exchange (ETDEWEB)

    Likhtenshtein, Gertz [Ben-Gurion Univ. of the Negev, Beersheba (Israel). Dept. of Chemistry

    2012-07-01

    Finally filling a gap in the literature for a text that also adopts the chemist's view of this hot topic, Professor Likhtenshtein, an experienced author and internationally renowned scientist, considers different physical and engineering aspects in solar energy conversion. From theory to real-life systems, he shows exactly which chemical reactions take place when converting light energy, providing an overview of the chemical perspective from fundamentals to molecular harvesting systems and solar cells. This essential guide will thus help researchers in academia and industry better understand solar energy conversion, and so ultimately help this promising, multibillion euro/dollar field to expand. (orig.)

  5. Overview of the US Department of Energy Light Water Reactor Sustainability Program

    International Nuclear Information System (INIS)

    McCarthy, K.A.; Williams, D.L.; Reister, R.

    2012-01-01

    The US Department of Energy Light Water Reactor Sustainability (LWRS) Program is focused on enabling the long-term operation of US commercial power plants. Decisions on life extension will be made by commercial power plant owners - the information provided by the research and development activities in the LWRS Program will reduce the uncertainty (and therefore the risk) associated with making those decisions. The LWRS Program encompasses two facets of long-term operation: (1) manage the aging of plant systems, structures, and components so that nuclear power plant lifetimes can be extended and the plants can continue to operate safely, efficiently, and economically; and (2) provide science-based solutions to the nuclear industry that support implementation of performance improvement technologies. An important aspect of the Light Water Reactor Sustainability Program is partnering with industry and the Nuclear Regulatory Commission to support and conduct the long-term research needed to inform major component refurbishment and replacement strategies, performance enhancements, plant license extensions, and age-related regulatory oversight decisions. The Department of Energy research, development, and demonstration role focuses on aging phenomena and issues that require long-term research and/or unique Department of Energy laboratory expertise and facilities and are applicable to all operating reactors. This paper provides an overview of the Department of Energy Light Water Reactor Sustainability Program, including vision, goals, and major deliverables. (author)

  6. Light Refraction by Water as a Rationale for the Poggendorff Illusion.

    Science.gov (United States)

    Bozhevolnyi, Sergey I

    2016-08-24

    The Poggendorff illusion in its classical form of parallel lines interrupting a transversal is viewed from the perspective of being related to the everyday experience of observing the light refraction in water. It is argued that if one considers a transversal to be a light ray in air and the parallel lines to form an occluding strip of a medium with the refractive index being between that of air and water, then one should be able to account, both qualitatively and quantitatively, for most of the features associated with the Poggendorff illusion. Statistical treatment of the visual experiments conducted with seven participants, each analyzing 50 configurations having different intercepting angles and strip widths, resulted in the effective refractive index of the occluding strip N = 1.13 ± 0.15, which is sufficiently close to the average (between that of water and air) refractive index of ∼1.17. It is further argued that the same mechanism can also be employed to account for many variants of the Poggendorff illusion, including the corner-Poggendorff pattern, as well as for the Hering illusion. © The Author(s) 2016.

  7. Light-water reactor pressure vessel surveillance standards

    International Nuclear Information System (INIS)

    Anon.

    1981-01-01

    The master matrix standard describes a series of standard practices, guides, and methods for the prediction of neutron-induced changes in light-water reactor (LWR) pressure vessel steels throughout a pressure vessel's service life. Some of these are existing American Society for Testing and Materials (ASTM) standards, some are ASTM standards that have been modified, and some are newly proposed ASTM standards. The current (1) scope, (2) areas of application, (3) interrelationships, and (4) status and time table of development, improvement, validation, and calibration for a series of 16 ASTM standards are defined. The standard also includes a discussion of LWR pressure vessel surveillance - justification, requirements, and status of work

  8. Fuel utilization potential in light water reactors with once-through fuel irradiation (AWBA Development Program)

    International Nuclear Information System (INIS)

    Rampolla, D.S.; Conley, G.H.; Candelore, N.R.; Cowell, G.K.; Estes, G.P.; Flanery, B.K.; Duncombe, E.; Dunyak, J.; Satterwhite, D.G.

    1979-07-01

    Current commercial light water reactor cores operate without recylce of fuel, on a once-through fuel cycle. To help conserve the limited nuclear fuel resources, there is interest in increasing the energy yield and, hence, fuel utilization from once-through fuel irradiation. This report evaluates the potential increase in fuel utilization of light water reactor cores operating on a once-through cycle assuming 0.2% enrichment plant tails assay. This evaluation is based on a large number of survey calculations using techniques which were verified by more detailed calculations of several core concepts. It is concluded that the maximum fuel utilization which could be achieved by practical once-through pressurized light water reactor cores with either uranium or thorium is about 17 MWYth/ST U 3 O 8 (Megawatt Years Thermal per Short Ton of U 3 O 8 ). This is about 50% higher than that of current commercial light water reactor cores. Achievement of this increased fuel utilization would require average fuel burnup beyond 50,000 MWD/MT and incorporation of the following design features to reduce parasitic losses of neutrons: reflector blankets to utilize neutrons that would otherwise leak out of the core; fuel management practices in which a smaller fraction of the core is replaced at each refueling; and neutron economic reactivity control, such as movable fuel control rather than soluble boron control. For a hypothetical situation in which all neutron leakage and parasitic losses are eliminated and fuel depletion is not limited by design considerations, a maximum fuel utilization of about 20 MWYth/ST U 3 O 8 is calculated for either uranium or thorium. It is concluded that fuel utilization for comparable reactor designs is better with uranium fuel than with thorium fuel for average fuel depletions of 30,000 to 35,000 MWD/MT which are characteristic of present light water reactor cores

  9. Environmentally Benign Technology for Efficient Warm-White Light Emission

    Science.gov (United States)

    Shen, Pin-Chun; Lin, Ming-Shiun; Lin, Ching-Fuh

    2014-06-01

    Nowadays efficient down conversion for white light emission is mainly based on rare-earth doped phosphors or cadmium-containing quantum dots. Although they exhibit high luminescence efficiency, the rare-earth mining and cadmium pollution have so far led to extremely high environmental cost, which conflicts the original purpose of pursuing efficient lighting. Here, we explore a new strategy to achieve efficient luminescence conversion based on polymer-decorated nanoparticles. The ZnO and Mn2+ doped ZnS nanoparticles are encapsulated by poly(9,9-di-n- hexylfluorenyl-2,7-diyl). The resultant core-shell nanocomposites then encompass three UV-to-visible luminescence conversion routes for photon emissions at blue, green, and orange colors, respectively. As a result, the color temperature is widely tunable (2100 K ~ 6000 K), so candle light or pure white light can be generated. The quantum yield up to 91% could also be achieved. Such rare-earth-element free nanocomposites give the bright perspectives for energy-saving, healthy, and environmentally benign lighting.

  10. Proposal concerning the absorbed dose conversion factor

    Energy Technology Data Exchange (ETDEWEB)

    Shiragai, A [National Inst. of Radiological Sciences, Chiba (Japan)

    1978-03-01

    New definitions of the absorbed dose conversion factors Csub(lambda) and Csub(E) are proposed. The absorbed dose in water is given by the product of absorbed dose conversion factor, exposure calibration factor, ionisation chamber reading, cap displacement correction factor and perturbation correction factor. At exposure calibration the material of the build-up cap must be the same as that of the chamber wall. An ionisation chamber of which the wall material is water-equivalent or air-equivalent may be used. In the latter case the wall must be thin. For these two cases absorbed dose conversion factors are introduced and it is recommended that either of the two sets should be adopted. Furthermore, if the chamber wall is neither water- nor air-equivalent, the factor by which these currently defined values should be multiplied is also given: again the wall must be thin. The ICRU definitions of Csub(lambda) and Csub(E) are inconsistent, as recently pointed out, while the definitions presented here are consistent.

  11. Leaf physiology and biomass allocation of backcross hybrid American chestnut (Castanea dentata) seedlings in response to light and water availability.

    Science.gov (United States)

    Brown, Caleb E; Mickelbart, Michael V; Jacobs, Douglass F

    2014-12-01

    Partial canopy cover promotes regeneration of many temperate forest trees, but the consequences of shading on seedling drought resistance are unclear. Reintroduction of blight-resistant American chestnut (Castanea dentata (Marsh.) Borkh.) into eastern North American forests will often occur on water-limited sites and under partial canopy cover. We measured leaf pre-dawn water potential (Ψpd), leaf gas exchange, and growth and biomass allocation of backcross hybrid American chestnut seedlings from three orchard sources grown under different light intensities (76, 26 and 8% full photosynthetically active radiation (PAR)) and subjected to well-watered or mid-season water-stressed conditions. Seedlings in the water-stress treatment were returned to well-watered conditions after wilting to examine recovery. Seedlings growing under medium- and high-light conditions wilted at lower leaf Ψpd than low-light seedlings. Recovery of net photosynthesis (Anet) and stomatal conductance (gs) was greater in low and medium light than in high light. Seed source did not affect the response to water stress or light level in most cases. Between 26 and 8% full PAR, light became limiting to the extent that the effects of water stress had no impact on some growth and morphological traits. We conclude that positive and negative aspects of shading on seedling drought tolerance and recovery are not mutually exclusive. Partial shade may help American chestnut tolerate drought during early establishment through effects on physiological conditioning. © The Author 2014. Published by Oxford University Press. All rights reserved. For Permissions, please email: journals.permissions@oup.com.

  12. Technology programs in support of advanced light water reactor plants: Construction

    International Nuclear Information System (INIS)

    Eichen, E.P.

    1989-10-01

    Stone ampersand Webster Engineering Corporation (SWEC) is conducting several independent, yet interrelated, studies of light water reactor plants to improve constructibility and quality, to reduce costs and schedule duration, and to simplify design. This document discusses construction approaches. 77 refs., 5 figs., 6 tabs

  13. Development of Radiation-Resistant In-Water Wireless Transmission System Using Light Emitting Diodes and Photo Diodes

    Science.gov (United States)

    Takeuchi, T.; Shibata, H.; Otsuka, N.; Uehara, T.; Tsuchiya, K.; Shibagaki, T.; Komanome, H.

    2016-10-01

    Several kinds of commercially available light emitting diodes (LED) and photo diodes (PD) were irradiated with 60Co gamma ray up to 1 MGy for development of a radiation-resistant in-water wireless transmission system using visible light. The lens parts of the LEDs turned brown by the irradiation and their colors became dark with the absorbed dose. The total luminous fluxes decreased with the absorbed dose and the LED with shorter emission wavelength had the higher decrease rate. Meanwhile, the current-voltage characteristics hardly changed. These results indicate that the decreases of the total luminous flux of the LEDs were mainly caused not by the degradation of the semiconductor parts but by the coloring of the lens parts by the irradiation. On the other hand, the light sensitivities of the PDs decreased with the absorbed dose. The PDs with the window part which turned a darker color had the higher decrease rate. These results indicate that the decreases of light sensitivities of the PDs were also mainly caused by the coloring of the resin parts by the irradiation. If the wireless transmission is performed using the candidate LED and PD between 5 meters in water, using a few LEDs and PDs, the PD's output current generated by the emission light of the LED is estimated to be detectable even considering the effects of the absorption of the light in water and the increased dark current by the irradiation. Therefore, a radiation resistant in-water transmission system can be constructed using commercially available LEDs and PDs in principle.

  14. A light water excess heat reaction suggests that cold fusion may be alkali-hydrogen fusion

    International Nuclear Information System (INIS)

    Bush, R.T.

    1992-01-01

    This paper reports that Mills and Kneizys presented data in support of a light water excess heat reaction obtained with an electrolytic cell highly reminiscent of the Fleischmann-Pons cold fusion cell. The claim of Mills and Kneizys that their excess heat reaction can be explained on the basis of a novel chemistry, which supposedly also explains cold fusion, is rejected in favor of their reaction being, instead, a light water cold fusion reaction. It is the first known light water cold fusion reaction to exhibit excess heat, it may serve as a prototype to expand our understanding of cold fusion. From this new reactions are deduced, including those common to past cold fusion studies. This broader pattern of nuclear reactions is typically seen to involve a fusion of the nuclides of the alkali atoms with the simplest of the alkali-type nuclides, namely, protons, deuterons, and tritons. Thus, the term alkali-hydrogen fusion seems appropriate for this new type of reaction with three subclasses: alkali-hydrogen fusion, alkali-deuterium fusion, and alkali-tritium fusion. A new three-dimensional transmission resonance model (TRM) is sketched. Finally, preliminary experimental evidence in support of the hypothesis of a light water nuclear reaction and alkali-hydrogen fusion is reported. Evidence is presented that appears to strongly implicate the transmission resonance phenomenon of the new TRM

  15. Fission product model for lattice calculation of high conversion boiling water reactor

    International Nuclear Information System (INIS)

    Iijima, S.; Yoshida, T.; Yamamoto, T.

    1988-01-01

    A high precision fission product model for boiling water reactor (BWR) lattice calculation was developed, which consists of 45 nuclides to be treated explicitly and one nonsaturating pseudo nuclide. This model is applied to a high conversion BWR lattice calculation code. From a study based on a three-energy-group calculation of fission product poisoning due to full fission products and explicitly treated nuclides, the multigroup capture cross sections and the effective fission yields of the pseudo nuclide are determined, which do not depend on fuel types or reactor operating conditions for a good approximation. Apart from nuclear data uncertainties, the model and the derived pseudo nuclide constants would predict the fission product reactivity within an error of 0.1% Δk at high burnup

  16. The Non-Ergodic Nature of Internal Conversion

    DEFF Research Database (Denmark)

    Sølling, Theis I.; Kuhlman, Thomas Scheby; Stephansen, Anne B.

    2014-01-01

    The absorption of light by molecules can induce ultrafast dynamics and coupling of electronic and nuclear vibrational motion. The ultrafast nature in many cases rests on the importance of several potential energy surfaces in guiding the nuclear motion—a concept of central importance in many aspects...... of chemical reaction dynamics. This Minireview focuses on the non-ergodic nature of internal conversion, that is, on the concept that the nuclear dynamics only sample a reduced phase space, potentially resulting in localization of the dynamics in real space. A series of results that highlight...... it takes to reach it. 2) Localization of energy into a single reactive mode, which is dictated by the internal conversion process. 3) Initiation of the internal conversion by activation of a single complex motion, which then specifically couples to a reactive mode. 4) Nonstatistical internal conversion...

  17. A new device for acquiring ground truth on the absorption of light by turbid waters

    Science.gov (United States)

    Klemas, V. (Principal Investigator); Srna, R.; Treasure, W.

    1974-01-01

    The author has identified the following significant results. A new device, called a Spectral Attenuation Board, has been designed and tested, which enables ERTS-1 sea truth collection teams to monitor the attenuation depths of three colors continuously, as the board is being towed behind a boat. The device consists of a 1.2 x 1.2 meter flat board held below the surface of the water at a fixed angle to the surface of the water. A camera mounted above the water takes photographs of the board. The resulting film image is analyzed by a micro-densitometer trace along the descending portion of the board. This yields information on the rate of attenuation of light penetrating the water column and the Secchi depth. Red and green stripes were painted on the white board to approximate band 4 and band 5 of the ERTS MSS so that information on the rate of light absorption by the water column of light in these regions of the visible spectrum could be concurrently measured. It was found that information from a red, green, and white stripe may serve to fingerprint the composition of the water mass. A number of these devices, when automated, could also be distributed over a large region to provide a cheap method of obtaining valuable satellite ground truth data at present time intervals.

  18. Automated ultrasonic examination of light water reactor systems

    International Nuclear Information System (INIS)

    Walter, J.H.

    1975-01-01

    An automated ultrasonic examination system has been developed to meet the pre- and inservice inspection requirements of light water reactors. This system features remotely-controlled travelling instrument carriers, computerized collection and storage or inspection data in a manner providing real time comparison against code standards, and computer control over the positioning of the instrument carriers to provide precise location data. The system is currently being utilized in the field for a variety of reactor inspections. The principal features of the system and the recent inspection experience are discussed. (author)

  19. The industry/EPRI advanced light water reactor program

    International Nuclear Information System (INIS)

    Stahlkopf, K.E.; Noble, D.M.; Sugnet, W.R.; Bilan, W.J.

    1986-01-01

    For the United States nuclear power industry to remain viable, it must be prepared to meet the expected need for new generating capacity in the late 1990s with an improved reactor system. The best hope of meeting this requirement is with evolutionary changes in current LWR systems through system simplification and reevaluation of safety and operational design margins. The grid characteristics and the difficulty in raising capital for large projects indicate that smaller light water reactors (400 to 600 MWe) may play an important role the next generation

  20. Light water ultra-safe plant concept

    International Nuclear Information System (INIS)

    Klevans, E.

    1989-01-01

    Since the accident at Three Mile Island (TMI), Penn State Nuclear Engineering Department Faculty and Staff have considered various methods to improve already safe reactor designs and public perception of the safety of Nuclear Power. During 1987 and 1988, the Department of Energy provided funds to the Nuclear Engineering Department at Penn State to investigate a plant reconfiguration originated by M.A. Schultz called ''The Light Water Ultra-Safe Plant Concept''. This report presents a final summary of the project with references to several masters' theses and addendum reports for further detail. The two year research effort included design verification with detailed computer simulation of: (a) normal operation characteristics of the unique pressurizing concept, (b) severe transients without loss of coolant, (c) combined primary and secondary system modeling, and (d) small break and large break loss of coolant accidents. Other studies included safety analysis, low power density core design, and control system design to greatly simplify the control room and required operator responses to plant upset conditions. The overall conclusion is that a reconfigured pressurized water reactor can achieve real and perceived safety improvements. Additionally, control system research to produce greatly simplified control rooms and operator requirements should be continued in future projects

  1. Technology programs in support of advanced light water reactor plants: Construction

    International Nuclear Information System (INIS)

    Eichen, E.P.

    1987-12-01

    Stone ampersand Webster Engineering Corporation (SWEC) is conducting several independent, yet interrelated, studies of light water reactor plants to improve constructibility and quality, to reduce costs and schedule durations, and to simplify design. This document discusses successes and problems in construction. 49 refs., 16 figs., 8 tabs

  2. Technical specification: Mixed-oxide pellets for the light-water reactor irradiation demonstration test

    International Nuclear Information System (INIS)

    Cowell, B.S.

    1997-06-01

    This technical specification is a Level 2 Document as defined in the Fissile Materials Disposition Program Light-Water Reactor Mixed-oxide Fuel Irradiation Test Project Plan. It is patterned after the pellet specification that was prepared by Atomic Energy of Canada, Limited, for use by Los Alamos National Laboratory in fabrication of the test fuel for the Parallex Project, adjusted as necessary to reflect the differences between the Canadian uranium-deuterium reactor and light-water reactor fuels. This specification and the associated engineering drawing are to be utilized only for preparation of test fuel as outlined in the accompanying Request for Quotation and for additional testing as directed by Oak Ridge National Laboratory or the Department of Energy

  3. Photocatalytic hydrogen generation from water under visible light using core/shell nano-catalysts.

    Science.gov (United States)

    Wang, X; Shih, K; Li, X Y

    2010-01-01

    A microemulsion technique was employed to synthesize nano-sized photocatalysts with a core (CdS)/shell (ZnS) structure. The primary particles of the photocatalysts were around 10 nm, and the mean size of the catalyst clusters in water was about 100 nm. The band gaps of the catalysts ranged from 2.25 to 2.46 eV. The experiments of photocatalytic H(2) generation showed that the catalysts (CdS)(x)/(ZnS)(1-x) with x ranging from 0.1 to 1 were able to produce hydrogen from water photolysis under visible light. The catalyst with x=0.9 had the highest rate of hydrogen production. The catalyst loading density also influenced the photo-hydrogen production rate, and the best catalyst concentration in water was 1 g L(-1). The stability of the nano-catalysts in terms of size, morphology and activity was satisfactory during an extended test period for a specific hydrogen production rate of 2.38 mmol g(-1) L(-1) h(-1) and a quantum yield of 16.1% under visible light (165 W Xe lamp, lambda>420 nm). The results demonstrate that the (CdS)/(ZnS) core/shell nano-particles are a novel photo-catalyst for renewable hydrogen generation from water under visible light. This is attributable to the large band-gap ZnS shell that separates the electron/hole pairs generated by the CdS core and hence reduces their recombinations.

  4. Nondestructive examination (NDE) reliability for inservice inspection of light water reactors

    International Nuclear Information System (INIS)

    Doctor, S.R.; Deffenbaugh, J.D.; Good, M.S.; Green, E.R.; Heasler, P.G.; Simonen, F.A.; Spanner, J.C.; Taylor, T.T.

    1989-10-01

    The Evaluation and Improvement of NDE Reliability for Inservice Inspection of Light Water Reactors (NDE Reliability) Program at the Pacific Northwest Laboratory was established by the Nuclear Regulatory Commission to determine the reliability of current inservice inspection (ISI) techniques and to develop recommendations that will ensure a suitably high inspection reliability. The objectives of this program include determining the reliability of ISI performed on the primary systems of commercial light-water reactors (LWRs); using probabilistic fracture mechanics analysis to determine the impact of NDE unreliability on system safety; and evaluating reliability improvement that can be achieved with improved and advanced technology. A final objective is to formulate recommended revisions to ASME Code and Regulatory requirements based on material properties, service conditions, and NDE capabilities and uncertainties. The program scope is limited to ISI of the primary systems including the piping, vessel, and other inspected components. This is a progress report covering the programmatic work from October 1987 through March 1988. 21 refs., 28 figs., 2 tabs

  5. Nondestructive examination (NDE) reliability for inservice inspection of light waters reactors

    International Nuclear Information System (INIS)

    Doctor, S.R.; Deffenbaugh, J.D.; Good, M.S.; Green, E.R.; Heasler, P.G.; Simonen, F.A.; Spanner, J.C.; Taylor, T.T.

    1989-11-01

    Evaluation and Improvement of NDE Reliability for Inservice Inspection of Light Water Reactors (NDE Reliability) Program at the Pacific Northwest Laboratory was established by the Nuclear Regulatory Commission to determine the reliability of current inservice inspection (ISI) techniques and to develop recommendations that will ensure a suitably high inspection reliability. The objectives of this program include determining the reliability of ISI performed on the primary systems of commercial light-water reactors (LWRs); using probabilistic fracture mechanics analysis to determine the impact of NDE unreliability on system safety; and evaluating reliability improvements that can be achieved with improved and advanced technology. A final objective is to formulate recommended revisions to ASME Code and Regulatory requirements, based on material properties, service conditions, and NDE uncertainties. The program scope is limited to ISI of the primary systems including the piping, vessel, and other inspected components. This is a progress report covering the programmatic work from April 1988 through September 1988. 33 refs., 70 figs., 12 tabs

  6. Nondestructive Examination (NDE) Reliability for Inservice Inspection of Light Water Reactors

    International Nuclear Information System (INIS)

    Doctor, S.R.; Diaz, A.A.; Friley, J.R.

    1993-09-01

    The Evaluation and Improvement of NDE Reliability for Inservice Inspection of Light Water Reactors (NDE Reliability) Program at the Pacific Northwest Laboratory was established by the Nuclear Regulatory Commission to determine the reliability of current inservice inspection (ISI) techniques and to develop recommendations that will ensure a suitably high inspection reliability. The objectives of this program include determining the reliability of ISI performed on the primary systems of commercial light-water reactors (LWRs); using probabilistic fracture mechanics analysis to determine the impact of NDE unreliability on system safety; and evaluating reliability improvements that can be achieved with improved and advanced technology. A final objective is to formulate recommended revisions to ASME Code and Regulatory requirements, based on material properties, service conditions, and NDE uncertainties. The program scope is limited to ISI of the primary systems including the piping, vessel, and other components inspected in accordance with Section XI of the ASME Code. This is a progress report covering the programmatic work from October 1991 through March 1992

  7. Environmentally assisted cracking in light water reactors

    International Nuclear Information System (INIS)

    Chopra, O.K.; Chung, H.M.; Gruber, E.E.

    1996-07-01

    This report summarizes work performed by Argonne National Laboratory on fatigue and environmentally assisted cracking (EAC) in light water reactors (LWRs) from April 1995 to December 1995. Topics that have been investigated include fatigue of carbon and low-alloy steel used in reactor piping and pressure vessels, EAC of Alloy 600 and 690, and irradiation-assisted stress corrosion cracking (IASCC) of Type 304 SS. Fatigue tests were conducted on ferritic steels in water that contained various concentrations of dissolved oxygen (DO) to determine whether a slow strain rate applied during different portions of a tensile-loading cycle are equally effective in decreasing fatigue life. Crack-growth-rate tests were conducted on compact-tension specimens from several heats of Alloys 600 and 690 in simulated LWR environments. Effects of fluoride-ion contamination on susceptibility to intergranular cracking of high- and commercial- purity Type 304 SS specimens from control-tensile tests at 288 degrees Centigrade. Microchemical changes in the specimens were studied by Auger electron spectroscopy and scanning electron microscopy to determine whether trace impurity elements may contribute to IASCC of these materials

  8. End-of-life destructive examination of light water breeder reactor fuel rods (LWBR Development Program)

    International Nuclear Information System (INIS)

    Richardson, K.D.

    1987-10-01

    Destructive examination of 12 representative Light Water Breeder Reactor fuel rods was performed following successful operation in the Shippingport Atomic Power Station for 29,047 effective full power hours, about five years. Light Water Breeder Reactor fuel rods were unique in that the thorium oxide and uranium-233 oxide fuel was contained within Zircaloy-4 cladding. Destructive examinations included analysis of released fission gas; chemical analysis of the fuel to determine depletion, iodine, and cesium levels; chemical analysis of the cladding to determine hydrogen, iodine, and cesium levels; metallographic examination of the cladding, fuel, and other rod components to determine microstructural features and cladding corrosion features; and tensile testing of the irradiated cladding to determine mechanical strength. The examinations confirmed that Light Water Breeder Reactor fuel rod performance was excellent. No evidence of fuel rod failure was observed, and the fuel operating temperature was low (below 2580 0 F at which an increased percentage of fission gas is released). 21 refs., 80 figs., 20 tabs

  9. Methods for natural gas and heavy hydrocarbon co-conversion

    Science.gov (United States)

    Kong, Peter C [Idaho Falls, ID; Nelson, Lee O [Idaho Falls, ID; Detering, Brent A [Idaho Falls, ID

    2009-02-24

    A reactor for reactive co-conversion of heavy hydrocarbons and hydrocarbon gases and includes a dielectric barrier discharge plasma cell having a pair of electrodes separated by a dielectric material and passageway therebetween. An inlet is provided for feeding heavy hydrocarbons and other reactive materials to the passageway of the discharge plasma cell, and an outlet is provided for discharging reaction products from the reactor. A packed bed catalyst may optionally be used in the reactor to increase efficiency of conversion. The reactor can be modified to allow use of a variety of light sources for providing ultraviolet light within the discharge plasma cell. Methods for upgrading heavy hydrocarbons are also disclosed.

  10. Isotope effect in heavy/light water suspensions of optically active gold nanoparticles

    Science.gov (United States)

    Kutsenko, V. Y.; Artykulnyi, O. P.; Petrenko, V. I.; Avdeev, M. V.; Marchenko, O. A.; Bulavin, L. A.; Snegir, S. V.

    2018-04-01

    Aqueous suspensions of optically active gold nanoparticles coated with trisodium citrate were synthesized in light (H2O) water and mixture of light and heavy (H2O/D2O) water using the modified Turkevich protocol. The objective of the paper was to verify sensitivity of neutron scattering methods (in particular, neutron reflectometry) to the potential isotope H/D substitution in the stabilizing organic shell around particles in colloidal solutions. First, the isotope effect was studied with respect to the changes in the structural properties of metal particles (size, shape, crystalline morphology) in solutions by electron microscopy including high-resolution transmission electron microscopy from dried systems. The structural factors determining the variation in the adsorption spectra in addition to the change in the optical properties of surrounding medium were discussed. Then, neutron reflectometry was applied to the layered nanoparticles anchored on a silicon wafer via 3-aminopropyltriethoxysilane molecules to reveal the presence of deuterated water molecules in the shell presumably formed by citrate molecules around the metallic core.

  11. Summary report on the international comparison of NEACRP burnup benchmark calculations for high conversion light water reactor lattices

    International Nuclear Information System (INIS)

    Akie, Hiroshi; Ishiguro, Yukio; Takano, Hideki

    1988-10-01

    The results of the NEACRP HCLWR cell burnup benchmark calculations are summarized in this report. Fifteen organizations from eight countries participated in this benchmark and submitted twenty solutions. Large differences are still observed among the calculated values of void reactivities and conversion ratios. These differences are mainly caused from the discrepancies in the reaction rates of U-238, Pu-239 and fission products. The physics problems related to these results are briefly investigated in the report. In the specialists' meeting on this benchmark calculations held in April 1988, it was recommended to perform continuous energy Monte Carlo calculations in order to obtain reference solutions for design codes. The conclusions resulted from the specialists' meeting are also presented. (author)

  12. Disinfection of Spacecraft Potable Water Systems by Photocatalytic Oxidation Using UV-A Light Emitting Diodes

    Science.gov (United States)

    Birmele, Michele N.; O'Neal, Jeremy A.; Roberts, Michael S.

    2011-01-01

    Ultraviolet (UV) light has long been used in terrestrial water treatment systems for photodisinfection and the removal of organic compounds by several processes including photoadsorption, photolysis, and photocatalytic oxidation/reduction. Despite its effectiveness for water treatment, UV has not been explored for spacecraft applications because of concerns about the safety and reliability of mercury-containing UV lamps. However, recent advances in ultraviolet light emitting diodes (UV LEDs) have enabled the utilization of nanomaterials that possess the appropriate optical properties for the manufacture of LEDs capable of producing monochromatic light at germicidal wavelengths. This report describes the testing of a commercial-off-the-shelf, high power Nichia UV-A LED (250mW A365nnJ for the excitation of titanium dioxide as a point-of-use (POD) disinfection device in a potable water system. The combination of an immobilized, high surface area photocatalyst with a UV-A LED is promising for potable water system disinfection since toxic chemicals and resupply requirements are reduced. No additional consumables like chemical biocides, absorption columns, or filters are required to disinfect and/or remove potentially toxic disinfectants from the potable water prior to use. Experiments were conducted in a static test stand consisting of a polypropylene microtiter plate containing 3mm glass balls coated with titanium dioxide. Wells filled with water were exposed to ultraviolet light from an actively-cooled UV-A LED positioned above each well and inoculated with six individual challenge microorganisms recovered from the International Space Station (ISS): Burkholderia cepacia, Cupriavidus metallidurans, Methylobacterium fujisawaense, Pseudomonas aeruginosa, Sphingomonas paucimobilis and Wautersia basilensis. Exposure to the Nichia UV-A LED with photocatalytic oxidation resulted in a complete (>7-log) reduction of each challenge bacteria population in UV-A LEDs and semi

  13. Photosynthetic efficiency of Chlamydomonas reinhardtii in flashing light

    NARCIS (Netherlands)

    Vejrazka, C.; Janssen, M.G.J.; Streefland, M.; Wijffels, R.H.

    2011-01-01

    Efficient light to biomass conversion in photobioreactors is crucial for economically feasible microalgae production processes. It has been suggested that photosynthesis is enhanced in short light path photobioreactors by mixing-induced flashing light regimes. In this study, photosynthetic

  14. Conversion factors and oil statistics

    International Nuclear Information System (INIS)

    Karbuz, Sohbet

    2004-01-01

    World oil statistics, in scope and accuracy, are often far from perfect. They can easily lead to misguided conclusions regarding the state of market fundamentals. Without proper attention directed at statistic caveats, the ensuing interpretation of oil market data opens the door to unnecessary volatility, and can distort perception of market fundamentals. Among the numerous caveats associated with the compilation of oil statistics, conversion factors, used to produce aggregated data, play a significant role. Interestingly enough, little attention is paid to conversion factors, i.e. to the relation between different units of measurement for oil. Additionally, the underlying information regarding the choice of a specific factor when trying to produce measurements of aggregated data remains scant. The aim of this paper is to shed some light on the impact of conversion factors for two commonly encountered issues, mass to volume equivalencies (barrels to tonnes) and for broad energy measures encountered in world oil statistics. This paper will seek to demonstrate how inappropriate and misused conversion factors can yield wildly varying results and ultimately distort oil statistics. Examples will show that while discrepancies in commonly used conversion factors may seem trivial, their impact on the assessment of a world oil balance is far from negligible. A unified and harmonised convention for conversion factors is necessary to achieve accurate comparisons and aggregate oil statistics for the benefit of both end-users and policy makers

  15. Nuclear Data Libraries for Hydrogen in Light Water Ice

    International Nuclear Information System (INIS)

    Torres, L; Gillette, V.H

    2000-01-01

    Nuclear data libraries were produced for hydrogen (H) in light water ice at different temperatures, 20, 30, 50, 77, 112, 180, 230 K.These libraries were produced using the NJOY nuclear data processing system.With this code we produce pointwise cross sections and related quantities, in the ENDF format, and in the ACE format for MCNP.Experimental neutron spectra at such temperatures were compared with MCNP4B simulations, based on the locally produced libraries, leading to satisfactory results

  16. The Consortium for Advanced Simulation of Light Water Reactors

    International Nuclear Information System (INIS)

    Szilard, Ronaldo; Zhang, Hongbin; Kothe, Douglas; Turinsky, Paul

    2011-01-01

    The Consortium for Advanced Simulation of Light Water Reactors (CASL) is a DOE Energy Innovation Hub for modeling and simulation of nuclear reactors. It brings together an exceptionally capable team from national labs, industry and academia that will apply existing modeling and simulation capabilities and develop advanced capabilities to create a usable environment for predictive simulation of light water reactors (LWRs). This environment, designated as the Virtual Environment for Reactor Applications (VERA), will incorporate science-based models, state-of-the-art numerical methods, modern computational science and engineering practices, and uncertainty quantification (UQ) and validation against data from operating pressurized water reactors (PWRs). It will couple state-of-the-art fuel performance, neutronics, thermal-hydraulics (T-H), and structural models with existing tools for systems and safety analysis and will be designed for implementation on both today's leadership-class computers and the advanced architecture platforms now under development by the DOE. CASL focuses on a set of challenge problems such as CRUD induced power shift and localized corrosion, grid-to-rod fretting fuel failures, pellet clad interaction, fuel assembly distortion, etc. that encompass the key phenomena limiting the performance of PWRs. It is expected that much of the capability developed will be applicable to other types of reactors. CASL's mission is to develop and apply modeling and simulation capabilities to address three critical areas of performance for nuclear power plants: (1) reduce capital and operating costs per unit energy by enabling power uprates and plant lifetime extension, (2) reduce nuclear waste volume generated by enabling higher fuel burnup, and (3) enhance nuclear safety by enabling high-fidelity predictive capability for component performance.

  17. Intrinsic climate dependency of ecosystem light and water-use-efficiencies across Australian biomes

    International Nuclear Information System (INIS)

    Shi, Hao; Li, Longhui; Eamus, Derek; Cleverly, James; Huete, Alfredo; Yu, Qiang; Beringer, Jason; Van Gorsel, Eva; Hutley, Lindsay

    2014-01-01

    The sensitivity of ecosystem gross primary production (GPP) to availability of water and photosynthetically active radiation (PAR) differs among biomes. Here we investigated variations of ecosystem light-use-efficiency (eLUE: GPP/PAR) and water-use-efficiency (eWUE: GPP/evapotranspiration) among seven Australian eddy covariance sites with differing annual precipitation, species composition and temperature. Changes to both eLUE and eWUE were primarily correlated with atmospheric vapor pressure deficit (VPD) at multiple temporal scales across biomes, with minor additional correlations observed with soil moisture and temperature. The effects of leaf area index on eLUE and eWUE were also relatively weak compared to VPD, indicating an intrinsic dependency of eLUE and eWUE on climate. Additionally, eLUE and eWUE were statistically different for biomes between summer and winter, except eWUE for savannas and the grassland. These findings will improve our understanding of how light- and water-use traits in Australian ecosystems may respond to climate change. (letter)

  18. Navigation by light polarization in clear and turbid waters

    Science.gov (United States)

    Lerner, Amit; Sabbah, Shai; Erlick, Carynelisa; Shashar, Nadav

    2011-01-01

    Certain terrestrial animals use sky polarization for navigation. Certain aquatic species have also been shown to orient according to a polarization stimulus, but the correlation between underwater polarization and Sun position and hence the ability to use underwater polarization as a compass for navigation is still under debate. To examine this issue, we use theoretical equations for per cent polarization and electric vector (e-vector) orientation that account for the position of the Sun, refraction at the air–water interface and Rayleigh single scattering. The polarization patterns predicted by these theoretical equations are compared with measurements conducted in clear and semi-turbid coastal sea waters at 2 m and 5 m depth over sea floors of 6 m and 28 m depth. We find that the per cent polarization is correlated with the Sun's elevation only in clear waters. We furthermore find that the maximum value of the e-vector orientation angle equals the angle of refraction only in clear waters, in the horizontal viewing direction, over the deeper sea floor. We conclude that navigation by use of underwater polarization is possible under restricted conditions, i.e. in clear waters, primarily near the horizontal viewing direction, and in locations where the sea floor has limited effects on the light's polarization. PMID:21282170

  19. Degree of conversion and surface hardness of resin cement cured with different curing units.

    Science.gov (United States)

    Ozturk, Nilgun; Usumez, Aslihan; Usumez, Serdar; Ozturk, Bora

    2005-01-01

    The aim of this study was to evaluate the degree of conversion and Vickers surface hardness of resin cement under a simulated ceramic restoration with 3 different curing units: a conventional halogen unit, a high-intensity halogen unit, and a light-emitting diode system. A conventional halogen curing unit (Hilux 550) (40 s), a high-intensity halogen curing unit used in conventional and ramp mode (Optilux 501) (10 s and 20 s, respectively), and a light-emitting diode system (Elipar FreeLight) (20 s, 40 s) were used in this study. The dual-curing resin cement (Variolink II) was cured under a simulated ceramic restoration (diameter 5 mm, height 2 mm), and the degree of conversion and Vickers surface hardness were measured. For degree of conversion measurement, 10 specimens were prepared for each group. The absorbance peaks were recorded using the diffuse-reflection mode of Fourier transformation infrared spectroscopy. For Vickers surface hardness measurement, 10 specimens were prepared for each group. A load of 200 N was applied for 15 seconds, and 3 evaluations of each of the samples were performed. Degree of conversion achieved with Optilux 501 (20 s) was significantly higher than those of Hilux, Optilux 501 (10 s), Elipar FreeLight (20 s), and Elipar FreeLight (40 s). For Vickers surface hardness measurement, Optilux 501 (20 s) produced the highest surface hardness value. No significant differences were found among the Hilux, Optilux 501 (10 s), Elipar FreeLight (20 s), and Elipar FreeLight (40 s). The high-intensity halogen curing unit used in ramp mode (20 s) produced harder resin cement surfaces than did the conventional halogen curing unit, high-intensity halogen curing unit used in conventional mode (10 s) and light-emitting diode system (20 s, 40 s), when cured through a simulated ceramic restoration.

  20. Solar energy conversion

    CERN Document Server

    Likhtenshtein, Gertz I

    2012-01-01

    Finally filling a gap in the literature for a text that also adopts the chemist?s view of this hot topic, Prof Likhtenshtein, an experienced author and internationally renowned scientist, considers different physical and engineering aspects in solar energy conversion. From theory to real-life systems, he shows exactly which chemical reactions take place when converting light energy, providing an overview of the chemical perspective from fundamentals to molecular harvesting systems and solar cells. This essential guide will thus help researchers in academia and industry better understa

  1. Water chemistry control to meet the advanced design and operation of light water reactors

    International Nuclear Information System (INIS)

    Shirai, Hiroshi; Uchida, Shunsuke; Naitoh, Masanori; Okada, Hidetoshi; Sato, Masatoshi

    2014-01-01

    Water chemistry control is one of the key technologies to establish safe and reliable operation of nuclear power plants. The road maps on R and D plans for water chemistry of nuclear power systems in Japan have been proposed along with promotion of R and D related water chemistry improvement for the advanced application of light water reactors (LWRs). The technical trends were divided into four categories, dose rate reduction, structural integrity, fuel integrity and radioactive waste reduction, and latest technical break through for each category was shown for the advanced application of LWRs. At the same time, the technical break through and the latest movements for regulation of water chemistry were introduced for each of major organizations related to nuclear engineering in the world. The conclusions were summarized as follows; 1. Water chemistry improvements might contribute to achieve the advanced application of LWRs, while water chemistry should be often changed to achieve the advanced application of LWRs. 2. Only one solution for water chemistry control was not obtained for achieving the advanced application of LWRs, but miscellaneous solutions were possible for achieving one. Optimal water chemistry control was desired for having the good practices for satisfying multi-targets at the same time and it was much affected by the plant unique systems and operational history. 3. That meant it was difficult to determine water chemistry regulation targets for achieving application of LWRs but it was necessary to prepare suitable guideline for good achievement of application of LWRs. That meant the guideline should be recommendation for good practice in the plant. 4. The water chemistry guide line should be modified along with progress of plant operation and water chemistry and related technologies. (author)

  2. Ultrafast Electron Dynamics in Solar Energy Conversion.

    Science.gov (United States)

    Ponseca, Carlito S; Chábera, Pavel; Uhlig, Jens; Persson, Petter; Sundström, Villy

    2017-08-23

    Electrons are the workhorses of solar energy conversion. Conversion of the energy of light to electricity in photovoltaics, or to energy-rich molecules (solar fuel) through photocatalytic processes, invariably starts with photoinduced generation of energy-rich electrons. The harvesting of these electrons in practical devices rests on a series of electron transfer processes whose dynamics and efficiencies determine the function of materials and devices. To capture the energy of a photogenerated electron-hole pair in a solar cell material, charges of opposite sign have to be separated against electrostatic attractions, prevented from recombining and being transported through the active material to electrodes where they can be extracted. In photocatalytic solar fuel production, these electron processes are coupled to chemical reactions leading to storage of the energy of light in chemical bonds. With the focus on the ultrafast time scale, we here discuss the light-induced electron processes underlying the function of several molecular and hybrid materials currently under development for solar energy applications in dye or quantum dot-sensitized solar cells, polymer-fullerene polymer solar cells, organometal halide perovskite solar cells, and finally some photocatalytic systems.

  3. Issues affecting advanced passive light-water reactor safety analysis

    International Nuclear Information System (INIS)

    Beelman, R.J.; Fletcher, C.D.; Modro, S.M.

    1992-01-01

    Next generation commercial reactor designs emphasize enhanced safety through improved safety system reliability and performance by means of system simplification and reliance on immutable natural forces for system operation. Simulating the performance of these safety systems will be central to analytical safety evaluation of advanced passive reactor designs. Yet the characteristically small driving forces of these safety systems pose challenging computational problems to current thermal-hydraulic systems analysis codes. Additionally, the safety systems generally interact closely with one another, requiring accurate, integrated simulation of the nuclear steam supply system, engineered safeguards and containment. Furthermore, numerical safety analysis of these advanced passive reactor designs wig necessitate simulation of long-duration, slowly-developing transients compared with current reactor designs. The composite effects of small computational inaccuracies on induced system interactions and perturbations over long periods may well lead to predicted results which are significantly different than would otherwise be expected or might actually occur. Comparisons between the engineered safety features of competing US advanced light water reactor designs and analogous present day reactor designs are examined relative to the adequacy of existing thermal-hydraulic safety codes in predicting the mechanisms of passive safety. Areas where existing codes might require modification, extension or assessment relative to passive safety designs are identified. Conclusions concerning the applicability of these codes to advanced passive light water reactor safety analysis are presented

  4. Spectrally shaped broadband study of up-conversion in Y2O3:Er3+

    International Nuclear Information System (INIS)

    Lytle, A.L.; Gagnon, E.; Tulchinsky, L.; Krebs, J.K.

    2014-01-01

    We present a novel scheme for studying up-conversion through excited state absorption (ESA) by using a broadband excitation source with spectral shaping capabilities. Up-conversion processes have typically been investigated using a single, narrowband excitation source, when the two steps of the process are coincident in frequency, which is often made possible by broadening mechanisms of the intermediate excited state manifolds. Thus, narrowband sources are limited in the systems they can excite and what material information they can provide. With broadband light, we are able to drive up-conversion with non-coincident frequencies as well. Finally, by windowing the spectrum, we determine the optimal excitation bandwidth for low-concentration (1%) Y 2 O 3 :Er 3+ nanocrystals. - Highlights: • Broadband excitation light is used to drive up-conversion in Y 2 O 3 :Er 3+ . • Broadband light excites all available transitions in the two-photon process. • A spectral shaping technique is used to alter the excitation frequencies present. • The optimal excitation bandwidth is measured by windowing the spectrum. • Broadband excitation reveals information inaccessible by narrowband sources

  5. Spent fuel data base: commercial light water reactors

    International Nuclear Information System (INIS)

    Hauf, M.J.; Kniazewycz, B.G.

    1979-12-01

    As a consequence of this country's non-proliferation policy, the reprocessing of spent nuclear fuel has been delayed indefinitely. This has resulted in spent light water reactor (LWR) fuel being considered as a potential waste form for disposal. Since the Nuclear Regulatory Commission (NRC) is currently developing methodologies for use in the regulation of the management and disposal of high-level and transuranic wastes, a comprehensive data base describing LWR fuel technology must be compiled. This document provides that technology baseline and, as such, will support the development of those evaluation standards and criteria applicable to spent nuclear fuel

  6. Technology programs in support of advanced light water reactor plants: Construction

    International Nuclear Information System (INIS)

    Eichen, E.P.

    1989-01-01

    Under Contract No. AC03-86SF16565, Stone ampersand Webster Engineering Corporation (SWEC) is conducting several independent, yet interrelated, studies of light water reactor plants to improve constructibility and quality, to reduce costs and schedule durations, and to simplify design. This document discusses design requirements. 36 refs., 57 figs., 56 tabs

  7. LWR-WIMS, a computer code for light water reactor lattice calculations

    International Nuclear Information System (INIS)

    Halsall, M.J.

    1982-06-01

    LMR-WIMS is a comprehensive scheme of computation for studying the reactor physics aspects and burnup behaviour of typical lattices of light water reactors. This report describes the physics methods that have been incorporated in the code, and the modifications that have been made since the code was issued in 1972. (U.K.)

  8. A method and algorithm for correlating scattered light and suspended particles in polluted water

    International Nuclear Information System (INIS)

    Sami Gumaan Daraigan; Mohd Zubir Matjafri; Khiruddin Abdullah; Azlan Abdul Aziz; Abdul Aziz Tajuddin; Mohd Firdaus Othman

    2005-01-01

    An optical model has been developed for measuring total suspended solids TSS concentrations in water. This approach is based on the characteristics of scattered light from the suspended particles in water samples. An optical sensor system (an active spectrometer) has been developed to correlate pollutant (total suspended solids TSS) concentration and the scattered radiation. Scattered light was measured in terms of the output voltage of the phototransistor of the sensor system. The developed algorithm was used to calculate and estimate the concentrations of the polluted water samples. The proposed algorithm was calibrated using the observed readings. The results display a strong correlation between the radiation values and the total suspended solids concentrations. The proposed system yields a high degree of accuracy with the correlation coefficient (R) of 0.99 and the root mean square error (RMS) of 63.57 mg/l. (Author)

  9. Research on physical and chemical parameters of coolant in Light-Water Reactors

    Energy Technology Data Exchange (ETDEWEB)

    Reis, Isabela C.; Mesquita, Amir Z., E-mail: icr@cdtn.br, E-mail: amir@cdtn.br [Centro de Desenvolvimento da Tecnologia Nuclear (CDTN/CNEM-MG), Belo Horizonte, MG (Brazil)

    2015-07-01

    The coolant radiochemical monitoring of light-water reactors, both power reactor as research reactors is one most important tasks of the system safe operation. The last years have increased the interest in the coolant chemical studying to optimize the process, to minimize the corrosion, to ensure the primary system materials integrity, and to reduce the workers exposure radiation. This paper has the objective to present the development project in Nuclear Technology Development Center (CDTN), which aims to simulate the primary water physical-chemical parameters of light-water-reactors (LWR). Among these parameters may be cited: the temperature, the pressure, the pH, the electric conductivity, and the boron concentration. It is also being studied the adverse effects that these parameters can result in the reactor integrity. The project also aims the mounting of a system to control and monitoring of temperature, electric conductivity, and pH of water in the Installation of Test in Accident Conditions (ITCA), located in the Thermal-Hydraulic Laboratory at CDTN. This facility was widely used in the years 80/90 for commissioning of several components that were installed in Angra 2 containment. In the test, the coolant must reproduce the physical and chemical conditions of the primary. It is therefore fundamental knowledge of the main control parameters of the primary cooling water from PWR reactors. Therefore, this work is contributing, with the knowledge and the reproduction with larger faithfulness of the reactors coolant in the experimental circuits. (author)

  10. Cavitation and shock waves emission on the rigid boundary of water under mid-IR nanosecond laser pulse excitation

    Science.gov (United States)

    Pushkin, A. V.; Bychkov, A. S.; Karabutov, A. A.; Potemkin, F. V.

    2018-06-01

    The processes of conversion of light energy into mechanical energy under mid-IR nanosecond laser excitation on a rigid boundary of water are investigated. Strong water absorption of Q-switched Cr:Yb:Ho:YSGG (2.85 µm, 6 mJ, 45 ns) laser radiation provides rapid energy deposition of ~8 kJ cm‑3 accompanied with strong mechanical transients. The evolution of shock waves and cavitation bubbles is studied using the technique of shadowgraphy and acoustic measurements, and the conversion efficiency into these energy channels for various laser fluence (0.75–2.0 J cm‑2) is calculated. For 6 mJ laser pulse with fluence of 2.0 J cm‑2, the conversion into shock wave energy reaches 67%. The major part of the shock wave energy (92%) is dissipated when the shock front travels the first 250 µm, and the remaining 8% is transferred to the acoustic far field. The calculated pressure in the vicinity of water-silicon interface is 0.9 GPa. Cavitation efficiency is significantly less and reaches up to 5% of the light energy. The results of the current study could be used in laser parameters optimization for micromachining and biological tissue ablation.

  11. Scaling up nanoscale water-driven energy conversion into evaporation-driven engines and generators

    Science.gov (United States)

    Chen, Xi; Goodnight, Davis; Gao, Zhenghan; Cavusoglu, Ahmet H.; Sabharwal, Nina; Delay, Michael; Driks, Adam; Sahin, Ozgur

    2015-06-01

    Evaporation is a ubiquitous phenomenon in the natural environment and a dominant form of energy transfer in the Earth's climate. Engineered systems rarely, if ever, use evaporation as a source of energy, despite myriad examples of such adaptations in the biological world. Here, we report evaporation-driven engines that can power common tasks like locomotion and electricity generation. These engines start and run autonomously when placed at air-water interfaces. They generate rotary and piston-like linear motion using specially designed, biologically based artificial muscles responsive to moisture fluctuations. Using these engines, we demonstrate an electricity generator that rests on water while harvesting its evaporation to power a light source, and a miniature car (weighing 0.1 kg) that moves forward as the water in the car evaporates. Evaporation-driven engines may find applications in powering robotic systems, sensors, devices and machinery that function in the natural environment.

  12. The economics of the fuel cycle (light water reactors)

    International Nuclear Information System (INIS)

    Lepine, J.

    1979-01-01

    The economical characteristics of the fuel cycle (of light water reactors) as well as the definition and calculation method for the average updated cost of the kWh are recalled. The evolution followed by the unit prices of the different operations of the cycle, their total cost and the part taken by this cost in the overall cost of nuclear kWh are described. The effects on the cost of fuel of certain hypotheses, operating requirements and additional cost factors are considered [fr

  13. Light water reactors fuel assembly mechanical design and evaluation

    International Nuclear Information System (INIS)

    Anon.

    1981-01-01

    This standard establishes a procedure for performing an evaluation of the mechanical design of fuel assemblies for light water-cooled commercial power reactors. It does not address the various aspects of neutronic or thermalhydraulic performance except where these factors impose loads or constraints on the mechanical design of the fuel assemblies. This standard also includes a set of specific requirements for design, various potential performance problems and criteria aimed specifically at averting them. This standard replaces ANSI/ANS-57.5-1978

  14. Light Modulation and Water Splitting Enhancement Using a Composite Porous GaN Structure.

    Science.gov (United States)

    Yang, Chao; Xi, Xin; Yu, Zhiguo; Cao, Haicheng; Li, Jing; Lin, Shan; Ma, Zhanhong; Zhao, Lixia

    2018-02-14

    On the basis of the laterally porous GaN, we designed and fabricated a composite porous GaN structure with both well-ordered lateral and vertical holes. Compared to the plane GaN, the composite porous GaN structure with the combination of the vertical holes can help to reduce UV reflectance and increase the saturation photocurrent during water splitting by a factor of ∼4.5. Furthermore, we investigated the underlying mechanism for the enhancement of the water splitting performance using a finite-difference time-domain method. The results show that the well-ordered vertical holes can not only help to open the embedded pore channels to the electrolyte at both sides and reduce the migration distance of the gas bubbles during the water splitting reactions but also help to modulate the light field. Using this composite porous GaN structure, most of the incident light can be modulated and trapped into the nanoholes, and thus the electric fields localized in the lateral pores can increase dramatically as a result of the strong optical coupling. Our findings pave a new way to develop GaN photoelectrodes for highly efficient solar water splitting.

  15. Photocatalytic Hydrogen or Oxygen Evolution from Water over S- or N-Doped TiO2 under Visible Light

    Directory of Open Access Journals (Sweden)

    Kazumoto Nishijima

    2008-01-01

    Full Text Available S- or N-doping of TiO2 powder having an anatase or rutile phase extended the photocatalytic activity for water oxidation and reduction under UV light and visible light irradiation. For the reduction of water, anatase-doped TiO2 showed higher level of activity than that of doped TiO2 having a rutile phase using ethanol as an electron donor. Furthermore, the activity level of S-doped TiO2 for hydrogen evolution was higher than that of N-doped TiO2 photocatalysts under visible light. Photocatalytic oxidation of water on doped TiO2 having a rutile phase proceeded with fairly high efficiency when Fe3+ ions were used as electron acceptors compared to that on doped TiO2 having an anatase phase. In addition, water splitting under visible light irradiation was achieved by construction of a Z-scheme photocatalysis system employing the doped TiO2 having anatase and rutile phases for H2 and O2 evolution and the I−/IO3− redox couple as an electron relay.

  16. Theoretical interpretations of enhanced laser light absorption

    International Nuclear Information System (INIS)

    Kruer, W.L.

    1975-01-01

    Intense laser light is not efficiently absorbed classically but can be absorbed by its conversion to electron plasma waves near the critical density. The physical mechanisms for this conversion are discussed, and some simple estimates for heating by plasma waves are applied to some recent experiments. Several effects which strongly influence the absorption of high intensity light are emphasized, including a nonlinear steepening of the plasma density profile which is demonstrated in computer simulations. Finally the possibility of an induced reflection of laser light due to instabilities in the underdense plasma before the critical density is also discussed. Such stimulated reflection can be particularly important in plasmas with very long density gradients. (U.S.)

  17. Changes in olive oil volatile organic compounds induced by water status and light environment in canopies of Olea europaea L. trees.

    Science.gov (United States)

    Benelli, Giovanni; Caruso, Giovanni; Giunti, Giulia; Cuzzola, Angela; Saba, Alessandro; Raffaelli, Andrea; Gucci, Riccardo

    2015-09-01

    Light and water are major factors in fruit development and quality. In this study, the effect of water and light in Olea europaea trees on volatile organic compounds (VOCs) in olive oil was studied over 2 years. Mature fruits were harvested from three zones of the canopy with different light exposure (64%, 42% and 30% of incident light) of trees subjected to full, deficit or complementary irrigation. VOCs were determined by SPME GC-MS and analysed by principal component analysis followed by discriminant analysis to partition treatment effects. Fruit fresh weight and mesocarp oil content decreased in zones where intercepted light was less. Low light levels significantly slowed down fruit maturation, whereas conditions of water deficit accelerated the maturation process. The presence of cyclosativene and α-muurulene was associated with water deficit, nonanal, valencene with full irrigation; α-muurulene, (E)-2-hexanal were related to low light conditions, while trans-β-ocimene, α-copaene, (Z)-2-penten-1-ol, hexanal and nonanal to well exposed zones. The year strongly affected the VOC profile of olive oil. This is the first report on qualitative changes in VOCs induced by light environment and/or water status. This information is valuable to better understand the role of environmental factors on the sensory quality of virgin olive oil. © 2014 Society of Chemical Industry.

  18. Light activated bionanodevices

    CSIR Research Space (South Africa)

    Sparrow, RW

    2006-02-27

    Full Text Available production and Kinesin motor protein movement. It has been designed in a modular concept with three sections: energy trapping (light harvesting) and transfer; energy conversion to produce ATP; and mechanical translation. The potential applications of such a...

  19. Titanium dioxide nanotube membranes for solar energy conversion: effect of deep and shallow dopants.

    Science.gov (United States)

    Ding, Yuchen; Nagpal, Prashant

    2017-04-12

    Nanostructured titanium dioxide (TiO 2 ) has been intensively investigated as a material of choice for solar energy conversion in photocatalytic, photoelectrochemical, photovoltaic, and other photosensitized devices for converting light into chemical feedstocks or electricity. Towards management of light absorption in TiO 2 , while the nanotubular structure improves light absorption and simultaneous charge transfer to mitigate problems due to the indirect bandgap of the semiconductor, typically dopants are used to improve light absorption of incident solar irradiation in the wide bandgap of TiO 2 . While these dopants can be critical to the success of these solar energy conversion devices, their effect on photophysical and photoelectrochemical properties and detailed photokinetics are relatively under-studied. Here, we show the effect of deep and shallow metal dopants on the kinetics of photogenerated charged carriers in TiO 2 and the resulting effect on photocatalytic and photoelectrochemical processes using these nanotube membranes. We performed a detailed optical, electronic, voltammetry and electrochemical impedance study to understand the effect of shallow and deep metal dopants (using undoped and niobium- and copper-doped TiO 2 nanotubes) on light absorption, charge transport and charge transfer processes. Using wireless photocatalytic methylene blue degradation and carbon dioxide reduction, and wired photoelectrochemical device measurements, we elucidate the effect of different dopants on solar-to-fuel conversion efficiency and simultaneously describe the photokinetics using a model, to help design better energy conversion devices.

  20. Four-photon parametric light scattering of ultrashort laser pulses in water in case of weak self-phase modulation

    International Nuclear Information System (INIS)

    Babenko, V A; Sychev, Andrei A

    2009-01-01

    The hyper-Raman scattering (HRS) of light in water is detected reliably by the active spectroscopy method of coherent light scattering, in particular, by the method of four-photon parametric light scattering in a medium in which HRS is a 'signal' wave in the parametric process involving simultaneously two high-power laser photons and IR photons of an 'idler' wave. Hyper-Raman scattering by libration vibrations of water molecules, which virtually cannot be detected by conventional methods of Raman scattering, was observed. (nonlinear optical phenomena)

  1. Nondestructive Examination (NDE) Reliability for Inservice Inspection of Light Water Reactors

    International Nuclear Information System (INIS)

    Doctor, S.R.; Diaz, A.A.; Friley, J.R.; Good, M.S.; Greenwood, M.S.; Heasler, P.G.; Hockey, R.L.; Kurtz, R.J.; Simonen, F.A.; Spanner, J.C.; Taylor, T.T.; Vo, T.V.

    1992-07-01

    The Evaluation and Improvement of NDE Reliability for Inservice Inspection of Light Water Reactors (NDE Reliability) Program at the Pacific Northwest Laboratory was established by the Nuclear Regulatory Commission to determine the reliability of current inservice inspection (ISI) techniques and to develop recommendations that will ensure a suitably high inspection reliability. The objectives of this program include determining the reliability of ISI performed on the primary systems of commercial light-water reactors (LWR's); using probabilistic fracture mechanics analysis to determine the impact of NDE unreliability on system safety; and evaluating reliability improvements that can be achieved with improved and advanced technology. A final objective is to formulate recommended revisions to the Regulatory and ASME Code requirements, based on material properties, service conditions, and NDE uncertainties. The program scope is limited to ISI of the primary systems including the piping, vessel, and other components inspected in accordance with Section XI of the ASME Code. This is a progress report covering the programmatic work from April 1991 through September 1991

  2. Nondestructive Examination (NDE) Reliability for Inservice Inspection of Light Water Reactors

    International Nuclear Information System (INIS)

    Doctor, S.R.; Diaz, A.A.; Friley, J.R.; Greenwood, M.S.; Heasler, P.G.; Kurtz, R.J.; Simonen, F.A.; Spanner, J.C.; Vo, T.V.

    1993-11-01

    The Evaluation and Improvement of NDE Reliability for Inservice inspection of Light Water Reactors (NDE Reliability) Program at the Pacific Northwest Laboratory was established by the Nuclear Regulatory Commission to determine the reliability of current inservice inspection (ISI) techniques and to develop recommendations that will ensure a suitably high inspection reliability. The objectives of this program include determining the reliability of ISI performed on the primary systems of commercial light-water reactors (LWRs);using probabilistic fracture mechanics analysis to determine the impact of NDE unreliability on system safety; and evaluating reliability improvements that can be achieved with improved and advanced technology. A final objective is to formulate recommended revisions to the Regulatory and ASME Code requirements, based on material properties, service conditions, and NDE uncertainties. The program scope is limited to ISI of the primary systems including the piping, vessel and other components inspected in accordance with Section XI of the ASME Code. This is a programs report covering the programmatic work from April 1992 through September 1992

  3. Nondestructive examination (NDE) reliability for inservice inspection of light water reactors

    International Nuclear Information System (INIS)

    Doctor, S.R.; Good, M.S.; Green, E.R.; Heasler, P.G.; Simonen, F.A.; Spanner, J.C.; Taylor, T.T.; Vo, T.V.

    1991-08-01

    The Evaluation and Improvement of NDE Reliability for Inservice Inspection of Light Water Reactors (NDE Reliability) Program at the Pacific Northwest Laboratory was established by the Nuclear Regulatory Commission to determine the reliability of current inservice inspection (ISI) techniques and to develop recommendations that will ensure a suitably high inspection reliability. The objectives of this program include determining the reliability of ISI performed on the primary systems of commercial light-water reactors (LWRs); using probabilistic fracture mechanics analysis to determine the impact of NDE unreliability on system safety; and evaluating reliability improvements that can be achieved with improved and advanced technology. A final objective is to formulate recommended revisions to ASME Code and Regulatory requirements, based on material properties, service conditions, and NDE uncertainties. The program scope is limited to ISI of the primary systems including the piping, vessel, and other components inspected in accordance with Section 6 of the ASME Code. This is a progress report covering the pro grammatic work from April 1989 through September 1989. 12 refs., 4 figs. 5 tabs

  4. Loss Distribution Analysis of a Three-Port Converter for Low-Power Stand-Alone Light-to-Light Systems

    DEFF Research Database (Denmark)

    Mira Albert, Maria del Carmen; Knott, Arnold; Andersen, Michael A. E.

    2016-01-01

    In locations far from the equator achieving high conversion efficiency in low-power solar systems is challenging due to low solar irradiance levels. This paper presents a high efficiency three-port converter (TPC) for light-to-light (LtL) applications where no direct solar conversion is required...... demonstrates high efficiency in both power flow paths. At low irradiation level, the power flow from the photovoltaic panel to the battery shows a peak efficiency of 99.1% at at 1.5 W output power, and the LED driver stage presents a peak efficiency of 97.3% at 3 W output power....

  5. Water-light interaction: A novel pathway for multi hallmark therapy in cancer

    Directory of Open Access Journals (Sweden)

    Luis Santana-Blank

    2014-02-01

    Full Text Available Laser photobiomodulation (LPBM has been proposed as a multi-target (multi-hallmark therapy for cancer and other complex diseases based on an approach that aims to substitute and/or complement metabolic energy pathways through oxygen-dependent (e.g., cytochrome c oxidase (CcO and/or oxygen-independent (e.g., light-water interactions (e.g., F0-F1 motors mechanisms with critical signaling pathways in primarily aqueous media. Cellular and molecular bases for water-mediated, long-range, energy supplementation aimed at inducing and modulating physiologically reparative processes, including apoptosis, have been previously presented through a mechanism termed Photo Infrared Pulsed Biomodulation (PIPBM. Water’s role as an oscillator in LPBM has also been documented. These ideas were recently complemented by integrating the role of the quasi-crystalline exclusion zone (EZ described by Pollack as the fourth phase of water. This is retrospective analysis of experimental and clinical data using an infrared pulsed laser device (IPLD. It found photo-induced effects over the water dynamics of burned rat tissue monitored by 1H-NMR transverse relaxation times (1/T2, indicating significantly greater structuring of water. In addition, a microdensitometry study of T2 weighted tumor heterogeneities from a phase I clinical trial of the IPLD in patients with advanced neoplasias and an algorithm for tumor characterization indicated significantly increased structuring of water, possibly proving a photobiomodulation effect over the EZ associated with histologically-confirmed selective photo-induced tumor cell death. To the best of our knowledge, this is the first clinical demonstration of light-induced effects over the EZ. It supports our premise that LPBM can increase potential energy in the EZ, which then acts as a rechargeable electrolytic bio-battery for the external selective supplementation of the energy demand required for cellular work, signaling pathways and

  6. Energy Research Advisory Board, Civilian Nuclear Power Panel: Subpanel 1 report, Light water reactor utilization and improvement: Volume 2

    International Nuclear Information System (INIS)

    1986-10-01

    The Secretary of Energy requested that the Office of Nuclear Energy prepare a strategic national plan that outlines the Department's role in the future development of civilian nuclear power and that the Energy Research Advisory Board establish an ad hoc panel to review and comment on this plan. The Energy Research Advisory Board formed a panel for this review and three subpanels were formed. One subpanel was formed to address the institutional issues surrounding nuclear power, one on research and development for advanced nuclear power plants and a third subpanel on light water reactor utilization and improvement. The subpanel on light water reactors held two meetings at which representatives of the DOE, the NRC, EPRI, industry and academic groups made presentations. This is the report of the subpanel on light water reactor utilization and improvement. This report presents the subpanel's assessment of initiatives which the Department of Energy should undertake in the national interest, to develop and support light water reactor technologies

  7. Luminescence mechanisms of organic/inorganic hybrid organic light-emitting devices fabricated utilizing a Zn2SiO4:Mn color-conversion layer

    International Nuclear Information System (INIS)

    Choo, D.C.; Ahn, S.D.; Jung, H.S.; Kim, T.W.; Lee, J.Y.; Park, J.H.; Kwon, M.S.

    2010-01-01

    Zn 2 SiO 4 :Mn phosphor layers used in this study were synthesized by using the sol-gel method and printed on the glass substrates by using a vehicle solution and a heating process. Organic/inorganic hybrid organic light-emitting devices (OLEDs) utilizing a Zn 2 SiO 4 :Mn color-conversion layer were fabricated. X-ray diffraction data for the synthesized Zn 2 SiO 4 :Mn phosphor films showed that the Zn ions in the phosphor were substituted into Mn ions. The electroluminescence (EL) spectrum of the deep blue OLEDs showed that a dominant peak at 461 nm appeared. The photoluminescence spectrum for the Zn 2 SiO 4 :Mn phosphor layer by using a 470 nm excitation source showed that a dominant peak at 527 nm appeared, which originated from the 4 T 1 - 6 A 1 transitions of Mn ions. The appearance of the peak around 527 nm of the EL spectra for the OLEDs fabricated utilizing a Zn 2 SiO 4 :Mn phosphor layer demonstrated that the emitted blue color from the deep blue OLEDs was converted into a green color due to the existence of the color-conversion layer. The luminescence mechanisms of organic/inorganic hybrid OLEDs fabricated utilizing a Zn 2 SiO 4 :Mn color-conversion layer are described on the basis of the EL and PL spectra.

  8. Conversion of highly enriched uranium in thorium-232 based oxide fuel for light water reactors: MOX-T fuel

    Energy Technology Data Exchange (ETDEWEB)

    Vapirev, E; Jordanov, T; Khristoskov, I [Sofia Univ. (Bulgaria). Fizicheski Fakultet

    1996-12-31

    The possibility of using highly enriched uranium available from military inventories for production of mixed oxide fuel (MOX) has been proposed. The fuel is based on U-235 dioxide as fissile isotope and Th-232 dioxide as a non-fissile isotope. It is shown that although the fuel conversion coefficient to U-233 is expected to be less than 1, the proposed fuel has several important advantages resulting in cost reduction of the nuclear fuel cycle. The expected properties of MOX fuel (cross-sections, generated chains, delayed neutrons) are estimated. Due to fuel generation the initial enrichment is expected to be 1% less for production of the same energy. In contrast to traditional fuel no long living actinides are generated which reduces the disposal and reprocessing cost. 7 refs.

  9. Results of the mid-term assessment of the 'High Performance Light Water Reactor Phase 2' project

    International Nuclear Information System (INIS)

    Starflinger, J.; Schulenberg, T.; Marsault, P.

    2009-01-01

    The High Performance Light Water Reactor (HPLWR) is a Light Water Reactor (LWR) operating at supercritical pressure (p>22.1 MPa). In Europe, investigations on the HPLWR have been integrated into a joint research project, called High Performance Light Water Reactor Phase 2 (HPLWR Phase 2), which is co-funded by the European Commission. Within the second year of the project, the design of the reactor core, the pressure vessel and its internals have been analysed in detail by means of advanced codes and methods. The mechanical design has been assessed and shows that stresses inside components and possible deformations keep within acceptable limits. The neutronics and the flow inside the core have been investigated. The addition of a water layer in the reflector helps to flatten the radial power profile. The moderator flow path must be changed because of possible reverse flow in the gaps between the assemblies (downward flow). First calculations of transients showed an acceptable behaviour of the cladding temperatures. Material oxidation experiments were successfully performed. The auxiliary loop of the Supercritical Water Loop has been constructed. Heat transfer has been investigated numerically analysing heat transfer deterioration (HTD) and flow around fuel pins with wire wrap spacers. (author)

  10. More recent developments for the ultrasonic testing of light water reactor pressure vessels

    International Nuclear Information System (INIS)

    Seiger, H.; Engl, G.

    1976-01-01

    The development of an ultrasonic testing method for the inspection from the outside of the areas close to the cladding of the spherical fields of holes of light water reactor pressure vessels is described

  11. Photosynthesis in chlorolichens: the influence of the habitat light regime.

    Science.gov (United States)

    Piccotto, Massimo; Tretiach, Mauro

    2010-11-01

    The hypothesis that CO(2) gas exchange and chlorophyll a fluorescence (ChlaF) of lichens vary according to the light regimes of their original habitat, as observed in vascular plants, was tested by analysing the photosynthetic performance of 12 populations of seven dorsoventral, foliose lichens collected from open, south-exposed rocks to densely shaded forests. Light response curves were induced at optimum thallus water content and ChlaF emission curves at the species-specific photon flux at which the quantum yield of CO(2) assimilation is the highest and is saturating the photosynthetic process. Photosynthetic pigments were quantified in crude extracts. The results confirm that the maximum rate of gross photosynthesis is correlated with the chlorophyll content of lichens, which is influenced by light as well as by nitrogen availability. Like leaves, shade tolerant lichens emit more ChlaF than sun-loving ones, whereas the photosynthetic quantum conversion is higher in the latter.

  12. Natural uranium fueled light water moderated breeding hybrid power reactors

    International Nuclear Information System (INIS)

    Greenspan, E.; Schneider, A.; Misolovin, A.; Gilai, D.; Levin, P.

    The feasibility of fission-fusion hybrid reactors based on breeding light water thermal fission systems is investigated. The emphasis is on fuel-self-sufficient (FSS) hybrid power reactors that are fueled with natural uranium. Other LWHRs considered include FSS-LWHRs that are fueled with spent fuel from LWRs, and LWHRs which are to supplement LWRs to provide a tandem LWR-LWHR power economy that is fuel-self-sufficient

  13. Evaluation of actinide partitioning and transmutation in light-water reactors

    International Nuclear Information System (INIS)

    Collins, Emory D.; Renier, John-Paul

    2004-01-01

    Advanced Fuel Cycle Initiative (AFCI) studies were made to evaluate the feasibility of multicycle transmutation of plutonium and the minor actinides (MAs) in light-water reactors (LWRs). Results showed that significant repository benefits, cost reductions, proliferation resistance, and effective use of facilities can be obtained. Key advantages are shown to be made possible by processing 30-year-decayed spent fuel rather than the more traditional 5-year-decayed fuel. (authors)

  14. Effects of light and microbial activity on the degradation of two fluoroquinolone antibiotics in pond water and sediment.

    Science.gov (United States)

    Lin, Juo-Shan; Pan, Hung-Yu; Liu, Shiu-Mei; Lai, Hong-Thih

    2010-07-01

    Enrofloxacin (ENR) and ciprofloxacin (CIP) are two fluoroquinolone (FQ) antibiotics widely used to treat diseases of human beings and cultured animals. These two FQs are usually detected in the effluent of municipal sewage plants and related aquatic environments. The purpose of this study was to understand the fates of ENR and CIP in aquaculture pond water and a sediment slurry in a laboratory-scale experiment. Effects of light and microbial activity on the degradation of these two FQs were investigated. Results indicated that natural irradiation plays a major role in the degradation of ENR and CIP in pond water and the sediment slurry. The 50 % dissipation times (DT(50)) with non-sterile treatment were 0.01 and 18.4 d for ENR, and 0.04 and 17.3 d for CIP in the water and sediment slurry, respectively. On the other hand, the degradation of ENR and CIP under dark conditions was slow or even hindered, and all of their DT(50) values exceeded 100 d. These two FQs degraded faster in the sediment slurry than in pond water under dark conditions. Artificial ultraviolet (UV) and fluorescence light had similar effects on the degradation of ENR in the pond water and sediment slurry. Degradation of CIP was faster with UV than with fluorescence light treatment, while no such difference was found for ENR degradation. CIP was a degradation product of ENR under both light and dark conditions, and DT(50) values for both compounds were shorter in the presence of light. The phenomenon of biodegradation was observed during degradation of CIP in the sediment slurry under natural light.

  15. CAB models for water: A new evaluation of the thermal neutron scattering laws for light and heavy water in ENDF-6 format

    International Nuclear Information System (INIS)

    Márquez Damián, J.I.; Granada, J.R.; Malaspina, D.C.

    2014-01-01

    Highlights: • We present a new evaluation of the thermal scattering laws for light and heavy water. • This evaluation is based on molecular and experimental data, with no free parameters. • Calculations with these libraries compare well with experimental values. • Libraries result in an improvement over existing ENDF scattering law files. - Abstract: In this work we present the CAB models for water: a set of new models for the evaluation of the thermal neutron scattering laws for light and heavy water in ENDF-6 format, using the LEAPR module of NJOY. These models are based on experimental structure data and frequency spectra computed from molecular dynamics simulations. The calculations show a significant improvement over ENDF/B-VI and ENDF/B-VII when compared with measurements of differential and integral scattering data

  16. Spatiotemporal response of the water cycle to land use conversions in a typical hilly-gully basin on the Loess Plateau, China

    Science.gov (United States)

    Qiu, Linjing; Wu, Yiping; Wang, Lijing; Lei, Xiaohui; Liao, Weihong; Hui, Ying; Meng, Xianyong

    2017-12-01

    The hydrological effects of the Grain for Green project (GFGP) on the Loess Plateau have been extensively debated due to the complexity of the water system and its multiple driving factors. The aim of this study was to investigate the response of the hydrological cycle to the GFGP measures based in a case study of the Yanhe Basin, a typical hilly-gully area on the Loess Plateau of China. First, we analyzed the land use and land cover (LULC) changes from 1990 to 2010. Then, we evaluated the effects of LULC changes and sloping land conversion on the main hydrological components in the basin using the Soil and Water Assessment Tool (SWAT). The results indicated that cropland exhibited a decreasing trend, declining from 40.2 % of the basin area in 1990 to 17.6 % in 2010, and that the woodland and grassland areas correspondingly increased. With the land use changes from 1990 to 2010, the water yield showed a decreasing trend which was mainly due to decrease in surface runoff. In contrast, evapotranspiration (ET) showed an increasing trend over the same period, resulting in a persistent decrease in soil water. The conversion of sloping cropland to grassland or woodland exerted negative effects on water yield and soil water. Compared with the land use condition in 2010, the negative effects were most evident where cropland with a slope ≥ 15° was converted to woodland, with decreases in surface runoff and soil water of 17.1 and 6.4 %, respectively. These results suggest that the expansive reforestation on sloping land in the loess hilly-gully region decreased water yield and increased ET, resulting in reduced soil water. The results of this study can be used to support sustainable land use planning and water resource management on the Loess Plateau in China.

  17. Degree of conversion of resin-based orthodontic bonding materials cured with single-wave or dual-wave LED light-curing units.

    Science.gov (United States)

    Santini, Ario; McGuinness, Niall; Nor, Noor Azreen Md

    2014-12-01

    To evaluate the degree of conversion (DC) of orthodontic adhesives (RBOAs) cured with dual peak or single peak light-emitting diode (LED) light-curing units (LCUs). Standardized samples of RBOAs, APCPlus, Opal® Bond® and LightBond(TM) were prepared (n = 3) and cured with one of two dual peak LCUs (bluephase® G2-Ivoclar-Vivadent or Valo-Ultradent) or a single peak control (bluephase® Ivoclar-Vivadent). The DC was determined using micro-Raman spectroscopy. The presence or absence of initiators other than camphorquinone was confirmed by high-performance liquid chromatography and nuclear magnetic resonance spectroscopy. Data were analysed using general linear model in Minitab 15 (Minitab Inc., State College, PA, USA). There was no significant difference in DC between APCPlus, and Opal® Bond (confidence interval: -3.89- to 2.48); significant difference between APCPlus and LightBond(TM) (-18.55 to -12.18) and Opal® Bond and Lightbond(TM) (-17.85 to -11.48); no significant difference between bluephase (single peak) and dual peak LCUs, bluephase G2 (-4.896 to 1.476) and Valo (-3.935 to 2.437) and between bluephase G2 and Valo (-2.225 to 4.147). APCPlus and Opal® Bond showed higher DC values than LightBond(TM) (P<0.05). Lucirin® TPO was found only in Vit-l-escence. Lucirin® TPO was not identified in the three orthodontic adhesives. All three LCUs performed similarly with the orthodontic adhesives: orthodontic adhesive make had a greater effect on DC than the LCUs. It is strongly suggested that manufacturers of resin-based orthodontic materials test report whether or not dual peak LCUs should be used with their materials. Dual peak LED LCUs, though suitable in the majority of cases, may not be recommended for certain non Lucirin® TPO-containing materials. © 2014 British Orthodontic Society.

  18. Exceptionally High Efficient Co-Co2P@N, P-Codoped Carbon Hybrid Catalyst for Visible Light-Driven CO2-to-CO Conversion.

    Science.gov (United States)

    Fu, Wen Gan

    2018-05-02

    Artificial photosynthesis has attracted wide attention, particularly the development of efficient solar light-driven methods to reduce CO2 to form energy-rich carbon-based products. Because CO2 reduction is an uphill process with a large energy barrier, suitable catalysts are necessary to achieve this transformation. In addition, CO2 adsorption on a catalyst and proton transfer to CO2 are two important factors for the conversion reaction,and catalysts with high surface area and more active sites are required to improve the efficiency of CO2 reduction. Here, we report a visible light-driven system for CO2-to-CO conversion that consists of a heterogeneous hybrid catalyst of Co and Co2P nanoparticles embedded in carbon nanolayers codoped with N and P (Co-Co2P@NPC) and a homogeneous Ru(II)-based complex photosensitizer. The average generation rate of CO of the system was up to 35,000 μmol h-1 g-1 with selectivity of 79.1% in 3 h. Linear CO production at an exceptionally high rate of 63,000 μmol h-1 g-1 was observed in the first hour of reaction. Inspired by this highly active catalyst, we also synthesized Co@NC and Co2P@NPC materials and explored their structure, morphology, and catalytic properties for CO2 photoreduction. The results showed that the nanoparticle size, partially adsorbed H2O molecules on the catalyst surface, and the hybrid nature of the systems influenced their photocatalytic CO2 reduction performance. © 2018 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  19. Interactive lethal and mutagenic effects of ultraviolet light and bleomycin in yeast: synergism or antagonism?

    Science.gov (United States)

    Lillo, O L; Severgnini, A A; Nunes, E M

    1997-11-01

    The mutagenic interactions of ultraviolet light and bleomycin in haploid populations of Saccharomyces cerevisiae were analyzed. Survival and mutation frequency as a function of different bleomycin concentrations after one conditioning dose of UV radiation were determined. Furthermore, corresponding interaction functions and sensitization factors were calculated. A synergistic interaction between UV light and bleomycin was shown for both lethal and mutagenic events when the cells were in nutrient broth during the treatments. Conversely, the interaction between UV light and bleomycin was antagonistic when the cells were in deionized water during the treatment. The magnitude of lethal and mutagenic interactions depends on dose, and thus presumably on the number of lesions. The observed interactions between UV light and bleomycin suggest that the mechanism that is most likely involved is the induction of repair systems with different error probabilities during the delay of cell division.

  20. New-generation curing units and short irradiation time: the degree of conversion of microhybrid composite resin.

    Science.gov (United States)

    Scotti, Nicolla; Venturello, Alberto; Migliaretti, Giuseppe; Pera, Francesco; Pasqualini, Damiano; Geobaldo, Francesco; Berutti, Elio

    2011-09-01

    This in vitro study investigated the depth of cure of a microhybrid composite resin when cured with reduced times of exposure to three commercially available curing lights. Different sample thicknesses (1, 2, and 3 mm) were light cured in high intensity polymerization mode (2,400 mW/cm² for 5, 10, 15, and 20 seconds; 1,100 mW/cm² for 10, 20, 30, and 40 seconds; and 1,100 mW/cm² for 10, 20, 30, and 40 seconds, respectively). The degree of conversion (%) at the bottom of each sample was measured by Attenuated Total Reflection Fourier Transform Infrared (ATR F-TIR) analysis after each polymerization step. Data were analyzed by ANOVA for repeated measures, showing the degree of conversion was not influenced by the curing light employed (P = .622) but was significantly influenced by the thickness of composite resin (P conversion vs the shorter irradiation time permitted (T1) were not significant among different lamps but were significant among different thicknesses. The depth of cure of microhybrid composite resin appears not to be influenced by the curing light employed. Increased irradiation time significantly increases the degree of conversion. Thickness strongly influences depth of cure.

  1. HYDROKINETIC ENERGY CONVERSION SYSTEMS: PROSPECTS ...

    African Journals Online (AJOL)

    eobe

    Hydrokinetic energy conversion systems utilize the kinetic energy of flowing water bodies with little or no head to generate ... generator. ... Its principle of operation is analogous to that of wind ..... Crisis-solar and wind power systems, 2009,.

  2. Neutron collar calibration for assay of LWR [light-water reactor] fuel assemblies

    International Nuclear Information System (INIS)

    Menlove, H.O.; Pieper, J.E.

    1987-03-01

    The neutron-coincidence collar is used for the verification of the uranium content in light-water reactor fuel assemblies. An AmLi neutron source is used to give an active interrogation of the fuel assembly to measure the 235 U content, and the 238 U content is verified from a passive neutron-coincidence measurement. This report gives the collar calibration data of pressurized-water reactor and boiling-water reactor fuel assemblies. Calibration curves and correction factors are presented for neutron absorbers (burnable poisons) and different fuel assembly sizes. The data were collected at Exxon Nuclear, Franco-Belge de Fabrication de Combustibles, ASEA-Atom, and other nuclear fuel fabrication facilities

  3. Energy-saving quality road lighting with colloidal quantum dot nanophosphors

    Science.gov (United States)

    Erdem, Talha; Kelestemur, Yusuf; Soran-Erdem, Zeliha; Ji, Yun; Demir, Hilmi Volkan

    2014-12-01

    Here the first photometric study of road-lighting white light-emitting diodes (WLEDs) integrated with semiconductor colloidal quantum dots (QDs) is reported enabling higher luminance than conventional light sources, specifically in mesopic vision regimes essential to street lighting. Investigating over 100 million designs uncovers that quality road-lighting QD-WLEDs, with a color quality scale and color rendering index ≥85, enables 13-35% higher mesopic luminance than the sources commonly used in street lighting. Furthermore, these QD-WLEDs were shown to be electrically more efficient than conventional sources with power conversion efficiencies ≥16-29%. Considering this fact, an experimental proof-of-concept QD-WLED was demonstrated, which is the first account of QD based color conversion custom designed for street lighting applications. The obtained white LED achieved the targeted mesopic luminance levels in accordance with the road lighting standards of the USA and the UK. These results indicate that road-lighting QD-WLEDs are strongly promising for energy-saving quality road lighting.

  4. Energetics of semi-catalyzed-deuterium, light-water-moderated, fusion-fission toroidal reactors

    International Nuclear Information System (INIS)

    Jassby, D.L.; Towner, H.H.; Greenspan, E.; Schneider, A.; Misolovin, A.; Gilai, D.

    1978-07-01

    The semi-catalyzed-deuterium Light-Water Hybrid Reactor (LWHR) comprises a lithium-free light-water-moderated blanket with U 3 Si fuel driven by a deuterium-based fusion-neutron source, with complete burn-up of the tritium but almost no burn-up of the helium-3 reaction product. A one-dimensional model for a neutral-beam-driven tokamak plasma is used to determine the operating modes under which the fusion energy multiplication Q/sub p/ can be equal to or greater than 0.5. Thermonuclear, beam-target, and energetic-ion reactions are taken into account. The most feasible operating conditions for Q/sub p/ approximately 0.5 are tau/sub E/ = 2 to 4 x 10 14 cm -3 s, = 10 to 20 keV, and E/sub beam/ = 500 to 1000 keV, with approximately 40% of the fusion energy produced by beam-target reactions. Illustrative parameters of LWHRs are compared with those of an ignited D-T reactor

  5. Flow-induced vibration for light water reactors. Progress report, January-June 1980

    International Nuclear Information System (INIS)

    De Coster, M.A.

    1981-02-01

    Flow-Induced Vibration for Light Water Reactors (FIV for LWRs) is a four-year program designed to improve the FIV performance of light water reactors through the development of design criteria, analytical models for predicting behavior of components, general scaling laws to improve the accuracy of reduced-scale tests, and the identification of high FIV risk areas. The program is managed by the General Electric Nuclear Power Systems Engineering Department and has three major contributors: General Electric Nuclear Power Systems Engineering Department (NPSED), General Electric Corporate Research and Development (CR and D) and Argonne National Laboratory (ANL). The program commenced December 1, 1976, but was suspended on September 30, 1978, due to a shift in Department of Energy (DOE) priorities away from LWR productivity/availability. It was reinitiated as of August 1, 1979. A second program suspension occurred from March 29, 1980 through May 16, 1980, due to funding limits. This progress report summarizes the accomplishments achieved during the period from Janury 1980 to June 1980

  6. Transmutation of waste actinides in light water reactors

    International Nuclear Information System (INIS)

    Gorrell, T.C.

    1979-04-01

    Actinide recycle and transmutation calculations were made for three irradiation options of a light water reactor (LWR). The cases considered were: all actinides recycled in regular uranium fuel assemblies; transuranic actinides recycled in separate MOX assemblies with 235 U enrichment of uranium; and transuranic actinides recycled in separate MOX assemblies with plutonium enrichment of natural uranium. When all actinides were recycled in a uniform lattice, the transuranic inventory after ten recycles was 38% of the inventory accumulated without recycle. When the transuranics from two regular uranium assemblies were combined with those recycled from a MOX assembly, the transuranic inventory was reduced 50% after five recycles

  7. Implications of Fast Reactor Transuranic Conversion Ratio

    International Nuclear Information System (INIS)

    Piet, Steven J.; Hoffman, Edward A.; Bays, Samuel E.

    2010-01-01

    Theoretically, the transuranic conversion ratio (CR), i.e. the transuranic production divided by transuranic destruction, in a fast reactor can range from near zero to about 1.9, which is the average neutron yield from Pu239 minus 1. In practice, the possible range will be somewhat less. We have studied the implications of transuranic conversion ratio of 0.0 to 1.7 using the fresh and discharge fuel compositions calculated elsewhere. The corresponding fissile breeding ratio ranges from 0.2 to 1.6. The cases below CR=1 ('burners') do not have blankets; the cases above CR=1 ('breeders') have breeding blankets. The burnup was allowed to float while holding the maximum fluence to the cladding constant. We graph the fuel burnup and composition change. As a function of transuranic conversion ratio, we calculate and graph the heat, gamma, and neutron emission of fresh fuel; whether the material is 'attractive' for direct weapon use using published criteria; the uranium utilization and rate of consumption of natural uranium; and the long-term radiotoxicity after fuel discharge. For context, other cases and analyses are included, primarily once-through light water reactor (LWR) uranium oxide fuel at 51 MWth-day/kg-iHM burnup (UOX-51). For CR 1, heat, gamma, and neutron emission decrease with recycling. The uranium utilization exceeds 1%, especially as all the transuranic elements are recycled. exceeds 1%, especially as all the transuranic elements are recycled. At the system equilibrium, heat and gamma vary by somewhat over an order of magnitude as a function of CR. Isotopes that dominate heat and gamma emission are scattered throughout the actinide chain, so the modest impact of CR is unsurprising. Neutron emitters are preferentially found among the higher actinides, so the neutron emission varies much stronger with CR, about three orders of magnitude.

  8. Outline of design, manufacturing and installation experience of pressure vessel structure for the prototype heavy water moderated boiling light water cooled reactor 'FUGEN'

    International Nuclear Information System (INIS)

    Shibato, Eizo; Oguchi, Isao; Kishi, Toshikazu; Kitagawa, Yuji

    1977-01-01

    After component installation completed in June 1977 and various functional tests to be conducted later, the prototype heavy water moderated, boiling light water cooled reactor ''FUGEN'' is scheduled to reach first criticality in March 1978. Since the pressure vessel of ''FUGEN'' is completely different from that of a light water reactor in structure and materials, through research and development work was carried out prior to fabrication and construction. Based on these studies, installation of the actual pressure vessel was completed. Functional tests are now under way. This article describes examples in which our research and development results are reflected on design, manufacture, and installation of the pressure vessel. Also it introduces noteworthy achievements relevant to production techniques in manufacture and installation. (auth.)

  9. Modeling the electrochemistry of the primary circuits of light water reactors

    International Nuclear Information System (INIS)

    Bertuch, A.; Macdonald, D.D.; Pang, J.; Kriksunov, L.; Arioka, K.

    1994-01-01

    To model the corrosion behaviors of the heat transport circuits of light water reactors, a mixed potential model (NTM) has been developed and applied to both boiling water reactors (BWRs) and pressurized water reactors (PWRs). Using the data generated by the GE/UKEA-Harwell radiolysis model, electrochemical potentials (ECPs) have been calculated for the heat transport circuits of eight BWRs operating under hydrogen water chemistry (HWC). By modeling the corrosion behaviors of these reactors, the effectiveness of HWC at limiting IGSCC and IASCC can be determined. For simulating PWR primary circuits, a chemical-radiolysis model (developed by the authors) was used to generate input parameters for the MPM. Corrosion potentials of Type 304 and 316 SSs in PWR primary environments were calculated using the NTM and were found to be in good agreement with the corrosion potentials measured in the laboratory for simulated PWR primary environments

  10. Fatigue and environmentally assisted cracking in light water reactors

    International Nuclear Information System (INIS)

    Kassner, T.F.; Ruther, W.E.; Chung, H.M.; Hicks, P.D.; Hins, A.G.; Park, J.Y.; Shack, W.J.

    1991-12-01

    Fatigue and environmentally assisted cracking of piping, pressure vessels, and core components in light water reactors (LWRs) are important concerns as extended reactor lifetimes are envisaged. The degradation processes include intergranular stress corrosion cracking (IGSCC) of austenitic stainless steel (SS) piping in boiling water reactors (BWRs), and propagation of fatigue or SCC cracks (which initiate in sensitized SS cladding) into low-alloy ferritic steels in BWR pressure vessels. Similar cracking has also occurred in upper shell-to-transition cone girth welds in pressurized water reactor (PWR) steam generator vessels. Another concern is failure of reactor-core internal components after accumulation of relatively high fluence, which has occurred in both BWRs and PWRs. Research during the past year focused on (1) fatigue and SCC of ferritic steels used in piping and in steam generator and reactor pressure vessels, (2) role of chromate and sulfate in simulated BWR water in SCC of sensitized Type 304 SS, and (3) irradiation-assisted SCC in high- and commercial-purity Type 304 SS specimens from control-blade absorber tubes used in two operating BWRs. Failure after accumulation of relatively high fluence has been attributed to radiation-induced segregation (RIS) of elements such as Si, P, Ni, and Cr. This document provides a summary of research progress in these areas

  11. Fuel cycle options for light water reactors and heavy water reactors. Proceedings of a technical committee meeting

    International Nuclear Information System (INIS)

    1999-11-01

    In the second half of the 20th century nuclear power has evolved from the research and development environment to an industry that supplies 16% of the world's electricity. By the end of 1997, over 8500 reactor-years of operating experience had been accumulated. Global environmental change, and the continuing increase in global energy supply required to provide increasing populations with an improving standard of living, make the contribution from nuclear energy even more important for the next century. For nuclear power to achieve its full potential and make its needed contribution, it must be safe, economical, reliable and sustainable. All of these factors can be enhanced by judicious choice and development of advanced fuel cycle options. The Technical Committee Meeting (TCM) on Fuel Cycle Options for Light Water Reactors and Heavy Water Reactors was hosted by Atomic Energy of Canada Limited (AECL) on behalf of the Canadian Government and was jointly conducted within the frame of activities of the IAEA International Working Group on Advanced Technologies for Light Water Reactors (IWG-LWR) and the IAEA International Working Group on Advanced Technologies for Heavy Water Reactors (IWG-HWR). The TCM provided the opportunity to have in-depth discussions on important technical topics which were highlighted in the International Symposium on Nuclear Fuel Cycle and Reactor Strategies: Adjusting to New Realities, held in Vienna, 3-6 June 1997. The main results and conclusions of the TCM were presented as input for discussion at the first meeting of the IAEA newly formed International Working Group on Fuel Cycle Options

  12. Photoelectrochemical conversion of toluene to methylcyclohexane as an organic hydride by Cu 2ZnSnS 4-based photoelectrode assemblies

    KAUST Repository

    Wang, Peng

    2012-02-08

    Direct photoelectrochemical conversion of toluene (TL) to methylcyclohexane (MC) with water has been examined as an organic hydride conversion using light irradiation. The production of MC from TL was observed on Pt/CdS/Cu 2ZnSnS 4/Mo photoelectrodes with anion-type ionomer membrane assemblies. A cathodic photocurrent was observed below 0.7 V vs RHE (V RHE) in 0.1 M Na 2SO 4/NaOH (pH 9.5) aqueous solution, and an apparent photocurrent density of 0.5 mA cm -2 was obtained at 0 V RHE under the irradiation of a 300 W Xe lamp with a 420 nm cutoff filter. The yield of MC was measured by gas chromatography, and an 88% faradaic efficiency was estimated. This study suggests the possibility of direct energy conversion from solar energy to MC as an energy carrier of organic hydrides. © 2012 American Chemical Society.

  13. Effect of probiotic culture water on growth, mortality, and feed conversion ratio of Vaname shrimp (Litopenaeus vannamei Boone)

    Science.gov (United States)

    Bachruddin, M.; Sholichah, M.; Istiqomah, S.; Supriyanto, A.

    2018-04-01

    This study was aimed to determine the effect of various dose of probiotics in the culture water to the growth and mortality of Vaname shrimp. This study consist of treatment control and treatment of various dose of probiotics. Control (0 mL/10 L water), P1 (1 mL/10 L water), P2 (2 mL/10 L water), P3 (3 mL/10 L water) and P4 (4 mL/10 L water) treatment, given to the Vaname shrimps with intervals once per week. This probiotic consist of Lactobacillus plantarum, Lactobacillus fermentum, Bacillus subtilis, Bacillus licheniformis, Bacillus megaterium, Nitrobacter sp., and Nitrosomonas sp. Dependent variables in this study are weight of shrimp, length of shrimp, mortality and feed conversion ratio. The results had different of various dose probiotics application in the water showed significance for each treatment on growth and mortality of Vaname shrimp. The best results were shown in treatment P2 (2 mL/10 water) with mean value of Vaname shrimp weight is 7.447 ± 1.193 g/shrimp, the length is 10,390 ± 0,469 cm/shrimp, mortality is 41%, and the value of FCR is 0.91.

  14. Comparison of x ray computed tomography number to proton relative linear stopping power conversion functions using a standard phantom.

    Science.gov (United States)

    Moyers, M F

    2014-06-01

    Adequate evaluation of the results from multi-institutional trials involving light ion beam treatments requires consideration of the planning margins applied to both targets and organs at risk. A major uncertainty that affects the size of these margins is the conversion of x ray computed tomography numbers (XCTNs) to relative linear stopping powers (RLSPs). Various facilities engaged in multi-institutional clinical trials involving proton beams have been applying significantly different margins in their patient planning. This study was performed to determine the variance in the conversion functions used at proton facilities in the U.S.A. wishing to participate in National Cancer Institute sponsored clinical trials. A simplified method of determining the conversion function was developed using a standard phantom containing only water and aluminum. The new method was based on the premise that all scanners have their XCTNs for air and water calibrated daily to constant values but that the XCTNs for high density/high atomic number materials are variable with different scanning conditions. The standard phantom was taken to 10 different proton facilities and scanned with the local protocols resulting in 14 derived conversion functions which were compared to the conversion functions used at the local facilities. For tissues within ±300 XCTN of water, all facility functions produced converted RLSP values within ±6% of the values produced by the standard function and within 8% of the values from any other facility's function. For XCTNs corresponding to lung tissue, converted RLSP values differed by as great as ±8% from the standard and up to 16% from the values of other facilities. For XCTNs corresponding to low-density immobilization foam, the maximum to minimum values differed by as much as 40%. The new method greatly simplifies determination of the conversion function, reduces ambiguity, and in the future could promote standardization between facilities. Although it

  15. Computational fluid dynamics simulations of light water reactor flows

    International Nuclear Information System (INIS)

    Tzanos, C.P.; Weber, D.P.

    1999-01-01

    Advances in computational fluid dynamics (CFD), turbulence simulation, and parallel computing have made feasible the development of three-dimensional (3-D) single-phase and two-phase flow CFD codes that can simulate fluid flow and heat transfer in realistic reactor geometries with significantly reduced reliance, especially in single phase, on empirical correlations. The objective of this work was to assess the predictive power and computational efficiency of a CFD code in the analysis of a challenging single-phase light water reactor problem, as well as to identify areas where further improvements are needed

  16. Nuclear powerplant standardization: light water reactors. Volume 2. Appendixes

    International Nuclear Information System (INIS)

    1981-06-01

    This volume contains working papers written for OTA to assist in preparation of the report, NUCLEAR POWERPLANT STANDARDIZATION: LIGHT WATER REACTORS. Included in the appendixes are the following: the current state of standardization, an application of the principles of the Naval Reactors Program to commercial reactors; the NRC and standardization, impacts of nuclear powerplant standardization on public health and safety, descriptions of current control room designs and Duke Power's letter, Admiral Rickover's testimony, a history of standardization in the NRC, and details on the impact of standardization on public health and safety

  17. Stability analysis of supercritical-pressure light water-cooled reactor in constant pressure operation

    International Nuclear Information System (INIS)

    Suhwan, JI; Shirahama, H.; Koshizuka, S.; Oka, Y.

    2001-01-01

    The purpose of this study is to evaluate the thermal-hydraulic and the thermal-nuclear coupled stabilities of a supercritical pressure light water-cooled reactor. A stability analysis code at supercritical pressure is developed. Using this code, stabilities of full and partial-power reactor operating at supercritical pressure are investigated by the frequency-domain analysis. Two types of SCRs are analyzed; a supercritical light water reactor (SCLWR) and a supercritical water-cooled fast reactor (SCFR). The same stability criteria as Boiling Water Reactor are applied. The thermal-hydraulic stability of SCLWR and SCFR satisfies the criteria with a reasonable orifice loss coefficient. The decay ratio of the thermal-nuclear coupled stability in SCFR is almost zero because of a small coolant density coefficient of the fast reactor. The evaluated decay ratio of the thermal-nuclear coupled stability is 3,41 ∼ 10 -V at 100% power in SCFR and 0,028 at 100% power in SCLWR. The sensitivity is investigated. It is found that the thermal-hydraulic stability is sensitive to the mass flow rate strongly and the thermal-nuclear coupled stability to the coolant density coefficient. The bottom power peak distribution makes the thermal-nuclear stability worse and the thermal-nuclear stability better. (author)

  18. Review of the American Physical Society light water reactor safety study

    International Nuclear Information System (INIS)

    Budnitz, R.J.

    1975-11-01

    The issue of light-water reactor (LWR) safety has been the subject of a part-time, year-long study sponsored by the American Physical Society and supported by the National Science Foundation and the former Atomic Energy Commission. The 1974-1975 study produced a Report by the Study Group to the Society. The Report's ''Summary of Conclusions and Major Recommendations'' section is presented

  19. Light Water Reactor Sustainability Constellation Pilot Project FY11 Summary Report

    International Nuclear Information System (INIS)

    Johansen, R.

    2011-01-01

    Summary report for Fiscal Year 2011 activities associated with the Constellation Pilot Project. The project is a joint effor between Constellation Nuclear Energy Group (CENG), EPRI, and the DOE Light Water Reactor Sustainability Program. The project utilizes two CENG reactor stations: R.E. Ginna and Nine Point Unit 1. Included in the report are activities associate with reactor internals and concrete containments.

  20. Acclimation of Swedish and Italian ecotypes of Arabidopsis thaliana to light intensity.

    Science.gov (United States)

    Stewart, Jared J; Polutchko, Stephanie K; Adams, William W; Demmig-Adams, Barbara

    2017-11-01

    This study addressed whether ecotypes of Arabidopsis thaliana from Sweden and Italy exhibited differences in foliar acclimation to high versus low growth light intensity, and compared CO 2 uptake under growth conditions with light- and CO 2 -saturated intrinsic photosynthetic capacity and leaf morphological and vascular features. Differential responses between ecotypes occurred mainly at the scale of leaf architecture, with thicker leaves with higher intrinsic photosynthetic capacities and chlorophyll contents per leaf area, but no difference in photosynthetic capacity on a chlorophyll basis, in high light-grown leaves of the Swedish versus the Italian ecotype. Greater intrinsic photosynthetic capacity per leaf area in the Swedish ecotype was accompanied by a greater capacity of vascular infrastructure for sugar and water transport, but this was not associated with greater CO 2 uptake rates under growth conditions. The Swedish ecotype with its thick leaves is thus constructed for high intrinsic photosynthetic and vascular flux capacity even under growth chamber conditions that may not permit full utilization of this potential. Conversely, the Swedish ecotype was less tolerant of low growth light intensity than the Italian ecotype, with smaller rosette areas and lesser aboveground biomass accumulation in low light-grown plants. Foliar vein density and stomatal density were both enhanced by high growth light intensity with no significant difference between ecotypes, and the ratio of water to sugar conduits was also similar between the two ecotypes during light acclimation. These findings add to the understanding of the foliar vasculature's role in plant photosynthetic acclimation and adaptation.

  1. Sodium fast reactors energy conversion systems. Na-CO2 interaction. Comparison with Na-water interaction of conventional water Rankine cycle

    International Nuclear Information System (INIS)

    Latge, Christian; Simon, Nicole

    2006-01-01

    The Sodium Fast Reactor is a very promising candidate for the development of Fast Neutron Reactors. It is well known owing to its wide development since the 1950's, throughout all countries involved in the development of nuclear power plants. The development of Sodium-cooled fast neutron reactors is possible due to its very attractive sodium, nuclear, physical and even some of its chemical properties. Nevertheless, the operational feedback has shown that the concept has several drawbacks: difficulties for In-Service Inspection and Repair operations due to the sodium opacity and possible detrimental effects of its reactivity with air and water when the heat conversion is performed with a conventional Rankine cycle. Moreover, the various design projects have shown some difficulties in enhancing its competitiveness with regards to existing NPPs without any new innovative options, i.e. the possibility of suppressing the intermediate circuits and/or the development of an optimized energy conversion system. The Supercritical CO 2 Brayton Cycle option for the energy conversion has been widely suggested because of its high thermodynamic efficiency (over 40%), its potential compactness of the Balance Of Plant equipment due to the small-sized turbo machinery system, and for its applicability to both Direct or Indirect Cycle (Na, PbBi, He) assuming the hypothesis that the Supercritical CO 2 -Na interaction has less serious potential consequences than sodium-water consequences in the conventional Rankine cycle. Within the framework of the SMFR (Small Modular Fast Reactor) project, developed jointly by Argonne National Laboratory (ANL-USA), the 'Commissariat a l'Energie Atomique' (CEA) and Japan Atomic Energy Agency (JAEA, formerly Japan Nuclear Cycle development), this option has been selected and investigated. This paper deals with the study of the interaction between Na and CO 2 , based on a literature review: the result of this study will allow the definition of R and D

  2. Particulate photocatalysts for overall water splitting

    Science.gov (United States)

    Chen, Shanshan; Takata, Tsuyoshi; Domen, Kazunari

    2017-10-01

    The conversion of solar energy to chemical energy is a promising way of generating renewable energy. Hydrogen production by means of water splitting over semiconductor photocatalysts is a simple, cost-effective approach to large-scale solar hydrogen synthesis. Since the discovery of the Honda-Fujishima effect, considerable progress has been made in this field, and numerous photocatalytic materials and water-splitting systems have been developed. In this Review, we summarize existing water-splitting systems based on particulate photocatalysts, focusing on the main components: light-harvesting semiconductors and co-catalysts. The essential design principles of the materials employed for overall water-splitting systems based on one-step and two-step photoexcitation are also discussed, concentrating on three elementary processes: photoabsorption, charge transfer and surface catalytic reactions. Finally, we outline challenges and potential advances associated with solar water splitting by particulate photocatalysts for future commercial applications.

  3. Experimental and Kinetic Modeling Studies on the Conversion of Sucrose to Levulinic Acid and 5-Hydroxymethylfurfural Using Sulfuric Acid in Water

    NARCIS (Netherlands)

    Tan-Soetedjo, Jenny N. M.; van de Bovenkamp, Henk H.; Abdilla, Ria M.; Rasrendra, Carolus B.; van Ginkel, Jacob; Heeres, Hero J.

    2017-01-01

    We here report experimental and kinetic modeling studies on the conversion of sucrose to levulinic acid (LA) and 5-hydroxymethylfurfural (HMF) in water using sulfuric acid as the catalyst. Both compounds are versatile building blocks for the synthesis of various biobased (bulk) chemicals. A total of

  4. Organic electronics on fibers for energy conversion applications

    Science.gov (United States)

    O'Connor, Brendan T.

    Currently, there is great demand for pollution-free and renewable sources of electricity. Solar cells are particularly attractive from the standpoint of sunlight abundance. However, truly widespread adoption of solar cells is impeded by the high cost and poor scalability of existing technologies. For example, while 53,000 mi2 of 10% efficient solar cell modules would be required to supply the current U.S. energy demand, only about 50 mi2 have been installed worldwide. Organic semiconductors potentially offer a route to realizing low-cost solar cell modules, but currently suffer from low conversion efficiency. For organic-based solar cells to become commercially viable, further research is required to improve device performance, develop scalable manufacturing methods, and reduce installation costs via, for example, novel device form factors. This thesis makes several contributions to the field of organic solar cells, including the replacement of costly and brittle indium tin oxide (ITO) electrodes by inexpensive and malleable, thin metal films, and the application of external dielectric coatings to improve power conversion efficiency. Furthermore, we show that devices with non-planar geometries (e.g. organic solar cells deposited onto long fibers) can have higher efficiencies than conventional planar devices. Building on these results, we demonstrate novel fiber-based organic light emitting devices (OLEDs) that offer substantially improved color quality and manufacturability as a next-generation solid-state lighting technology. An intriguing possibility afforded by the fiber-based device architectures is the ability to integrate energy conversion and lighting functionalities with textiles, a mature, commodity-scale technology.

  5. Clarification of dissolved irradiated light-water-reactor fuel

    International Nuclear Information System (INIS)

    Rodrigues, G.C.

    1983-02-01

    Bench-scale studies with actual dissolved irradiated light water reactor (LWR) fuels showed that continuous centrifugation is a practical clarification method for reprocessing. Dissolved irradiated LWR fuel was satisfactorily clarified in a bench-scale, continuous-flow bowl centrifuge. The solids separated were successfully reslurried in water. When the reslurried solids were mixed with clarified centrate, the resulting suspension behaved similar to the original dissolver solution during centrifugation. Settling rates for solids in actual irradiated fuel solutions were measured in a bottle centrifuge. The results indicate that dissolver solutions may be clarified under conditions achievable by available plant-scale centrifuge technology. The effective particle diameter of residual solids was calculated to be 0.064 microns for Oconee-1 fuel and 0.138 microns for Dresden-1 fuel. Filtration was shown unsuitable for clarification of LWR fuel solutions. Conventional filtration with filter aid would unacceptably complicate remote canyon operation and maintenance, might introduce dissolved silica from filter aids, and might irreversibly plug the filter with dissolver solids. Inertial filtration exhibited irreversible pluggage with nonradioactive stand-in suspensions under all conditions tested

  6. Application of Photocatalysts and LED Light Sources in Drinking Water Treatment

    Directory of Open Access Journals (Sweden)

    Gopal Achari

    2013-09-01

    Full Text Available This study investigates a cross-section of TiO2 compositions for which existing evidence suggests the prospect of improved performance compared to standard Degussa P25. In the context of a program aimed toward a 365 nm LED based photo-reactor, the question is whether a distinctly superior photocatalyst composition for drinking water treatment is now available that would shape design choices. An answer was sought by synthesizing several photocatalysts with reported high reactivity in some context in the literature, and by performing photocatalysts reactivity tests using common pollutants of water system including Natural Organic Matter (NOM and Emerging Contaminants (ECs from the pesticide and pharmaceutical classes. 365 nm Light Emitting Diodes (LEDs were used as the irradiation source. Since LEDs are now available in the UV, we did not examine the TiO2 modifications that bring band gap excitation into the region beyond 400 nm. The results suggest that the choice of the photocatalyst should be best made to fit the reactor design and photocatalyst mounting constraints such as mass transport, reactive surface, and light field. No photocatalyst composition overall, superior for all classes emerged.

  7. Controllability studies for an advanced CANDU boiling light water reactor

    International Nuclear Information System (INIS)

    Lepp, R.M.; Hinds, H.W.

    1976-12-01

    Bulk controllability studies carried out as part of a conceptual design study of a 1200 MWe CANDU boiling-light-water reactor fuelled with U 235 - or Pu-enriched uranium oxide are outlined. The concept, the various models developed for its simulation on a hybrid computer and the perturbations used to test system controllability, are described. The results show that this concept will have better bulk controllability than similar CANDU-BLW reactors fuelled with natural uranium. (author)

  8. Thermo hydraulic analysis of narrow channel effect in supercritical-pressure light water reactor

    International Nuclear Information System (INIS)

    Zhou Tao; Chen Juan; Cheng Wanxu

    2012-01-01

    Highlights: ► Detailed thermal analysis with different narrow gaps between fuel rods is given. ► Special characteristics of narrow channels effect on heat transfer in supercritical pressure are shown. ► Reasonable size selection of gaps between fuel rods is proposed for SCWR. - Abstract: The size of the gap between fuel rods has important effects on flow and heat transfer in a supercritical-pressure light water reactor. Based on thermal analysis at different coolant flow rates, the reasonable value range of gap size between fuel rods is obtained, for which the maximum cladding temperature safety limits and installation technology are comprehensively considered. Firstly, for a given design flow rate of coolant, thermal hydraulic analysis of supercritical pressure light water reactor with different gap sizes is provided by changing the fuel rod pitch only. The results show that, by means of reducing the gap size between fuel rods, the heat transfer coefficients between coolant and fuel rod, as well as the heat transfer coefficient between coolant and water rod, would both increase noticeably. Furthermore, the maximum cladding temperature will significantly decrease when the moderator temperature is decreased but coolant temperature remains essentially constant. Meanwhile, the reduction in the maximum cladding temperature in the inner assemblies is much larger than that in the outer assemblies. In addition, the maximum cladding temperature could be further reduced by means of increasing coolant flow rate for each gap size. Finally, the characteristics of narrow channels effect are proposed, and the maximum allowable gap between fuel rods is obtained by making full use of the enhancing narrow channels effect on heat transfer, and concurrently considering installation. This could provide a theoretical reference for supercritical-pressure light water reactor design optimization, in which the effects of gap size and flow rate on heat transfer are both considered.

  9. RELAP5-3D Code for Supercritical-Pressure Light-Water-Cooled Reactors

    Energy Technology Data Exchange (ETDEWEB)

    Riemke, Richard Allan; Davis, Cliff Bybee; Schultz, Richard Raphael

    2003-04-01

    The RELAP5-3D computer program has been improved for analysis of supercritical-pressure, light-water-cooled reactors. Several code modifications were implemented to correct code execution failures. Changes were made to the steam table generation, steam table interpolation, metastable states, interfacial heat transfer coefficients, and transport properties (viscosity and thermal conductivity). The code modifications now allow the code to run slow transients above the critical pressure as well as blowdown transients (modified Edwards pipe and modified existing pressurized water reactor model) that pass near the critical point.

  10. Contribution to the interpretation of explosive phenomena in research light-water reactors

    International Nuclear Information System (INIS)

    Le Berre, Francois.

    1975-08-01

    The study allows the prediction of the transient behavior of a light-water reactor that undergoes a power excursion due to a step reactivity insertion. In particular, a film-model for boiling is developed, which takes into account fast heat transfers, and permits the description of the water-hammer phenomena. The latter is due to the sudden contact between the liquid coolant and the fuel plates, which results from the vanishing of the vapor film. It is shown in which conditions this phenomena may initiate a reactor explosion [fr

  11. Highly Efficient Photocatalytic Water Splitting over Edge-Modified Phosphorene Nanoribbons.

    Science.gov (United States)

    Hu, Wei; Lin, Lin; Zhang, Ruiqi; Yang, Chao; Yang, Jinlong

    2017-11-01

    Two-dimensional phosphorene with desirable optoelectronic properties (ideal band gap, high carrier mobility, and strong visible light absorption) is a promising metal-free photocatalyst for water splitting. However, the band edge positions of the valence band maximum (VBM) and conduction band maximum (CBM) of phosphorene are higher than the redox potentials in photocatalytic water splitting reactions. Thus, phosphorene can only be used as the photocathode for hydrogen evolution reaction as a low-efficiency visible-light-driven photocatalyst for hydrogen production in solar water splitting cells. Here, we propose a new mechanism to improve the photocatalytic efficiency of phosphorene nanoribbons (PNRs) by modifying their edges for full reactions in photocatalytic water splitting. By employing first-principles density functional theory calculations, we find that pseudohalogen (CN and OCN) passivated PNRs not only show desired VBM and CBM band edge positions induced by edge electric dipole layer, but also possess intrinsic optoelectronic properties of phosphorene, for both water oxidation and hydrogen reduction in photocatalytic water splitting without using extra energy. Furthermore, our calculations also predict that the maximum energy conversion efficiency of heterojunction solar cells consisting of different edge-modified PNRs can be as high as 20% for photocatalytic water splitting.

  12. Photonic crystal light source

    Science.gov (United States)

    Fleming, James G [Albuquerque, NM; Lin, Shawn-Yu [Albuquerque, NM; Bur, James A [Corrales, NM

    2004-07-27

    A light source is provided by a photonic crystal having an enhanced photonic density-of-states over a band of frequencies and wherein at least one of the dielectric materials of the photonic crystal has a complex dielectric constant, thereby producing enhanced light emission at the band of frequencies when the photonic crystal is heated. The dielectric material can be a metal, such as tungsten. The spectral properties of the light source can be easily tuned by modification of the photonic crystal structure and materials. The photonic crystal light source can be heated electrically or other heating means. The light source can further include additional photonic crystals that exhibit enhanced light emission at a different band of frequencies to provide for color mixing. The photonic crystal light source may have applications in optical telecommunications, information displays, energy conversion, sensors, and other optical applications.

  13. High-efficiency frequency doubling of continuous-wave laser light.

    Science.gov (United States)

    Ast, Stefan; Nia, Ramon Moghadas; Schönbeck, Axel; Lastzka, Nico; Steinlechner, Jessica; Eberle, Tobias; Mehmet, Moritz; Steinlechner, Sebastian; Schnabel, Roman

    2011-09-01

    We report on the observation of high-efficiency frequency doubling of 1550 nm continuous-wave laser light in a nonlinear cavity containing a periodically poled potassium titanyl phosphate crystal (PPKTP). The fundamental field had a power of 1.10 W and was converted into 1.05 W at 775 nm, yielding a total external conversion efficiency of 95±1%. The latter value is based on the measured depletion of the fundamental field being consistent with the absolute values derived from numerical simulations. According to our model, the conversion efficiency achieved was limited by the nonperfect mode matching into the nonlinear cavity and by the nonperfect impedance matching for the maximum input power available. Our result shows that cavity-assisted frequency conversion based on PPKTP is well suited for low-decoherence frequency conversion of quantum states of light.

  14. Designing interfaces of hydrogenase-nanomaterial hybrids for efficient solar conversion.

    Science.gov (United States)

    King, Paul W

    2013-01-01

    The direct conversion of sunlight into biofuels is an intriguing alternative to a continued reliance on fossil fuels. Natural photosynthesis has long been investigated both as a potential solution, and as a model for utilizing solar energy to drive a water-to-fuel cycle. The molecules and organizational structure provide a template to inspire the design of efficient molecular systems for photocatalysis. A clear design strategy is the coordination of molecular interactions that match kinetic rates and energetic levels to control the direction and flow of energy from light harvesting to catalysis. Energy transduction and electron-transfer reactions occur through interfaces formed between complexes of donor-acceptor molecules. Although the structures of several of the key biological complexes have been solved, detailed descriptions of many electron-transfer complexes are lacking, which presents a challenge to designing and engineering biomolecular systems for solar conversion. Alternatively, it is possible to couple the catalytic power of biological enzymes to light harvesting by semiconductor nanomaterials. In these molecules, surface chemistry and structure can be designed using ligands. The passivation effect of the ligand can also dramatically affect the photophysical properties of the semiconductor, and energetics of external charge-transfer. The length, degree of bond saturation (aromaticity), and solvent exposed functional groups of ligands can be manipulated to further tune the interface to control molecular assembly, and complex stability in photocatalytic hybrids. The results of this research show how ligand selection is critical to designing molecular interfaces that promote efficient self-assembly, charge-transfer and photocatalysis. This article is part of a Special Issue entitled: Metals in Bioenergetics and Biomimetics Systems. Copyright © 2013 Elsevier B.V. All rights reserved.

  15. Safety analysis of high temperature reactor cooled and moderated by supercritical light water

    International Nuclear Information System (INIS)

    Ishiwatari, Yuki; Oka, Yoshiaki; Koshizuka, Seiichi

    2003-01-01

    This paper describes 'Safety' of a high temperature supercritical light water cooled and moderated reactor (SCRLWR-H) with descending flow water rods. The safety system of the SCLWR-H is similar to that of a BWR. It consists of reactor scram, high pressure auxiliary feedwater system (AFS), low pressure core injection system (LPCI), safety relief valves (SRV), automatic depressurization system (ADS), and main steam isolation valves (MSIV). Ten types of transients and five types of accidents are analyzed using a plant transient analysis code SPRAT-DOWN. The sequences are determined referring to LWRs. At the 'Loss of load without turbine bypass' transient, the coolant density and the core power are increased by the over-pressurization, and at the same time the core flow rate is decreased by the closure of the turbine control valves. The peak cladding temperature increases to 727degC. The high temperature at this type of transient is one of the characteristics of the SCLWR-H. Conversely at 'feedwater-loss' events, the core power decrease to some extend by density feedback before the reactor scram. The peak cladding temperatures at the 'Partial loss of feedwater' transient and the 'Total loss of feedwater' accident are only 702degC and 833degC, respectively. The cladding temperature does not increase so much at the transients 'Loss of feedwater heating' and 'CR withdrawal' because of the operation of the plant control system. All the transients and accidents satisfy the satisfy criteria with good margins. The highest cladding temperatures of the transients and the accidents are 727degC and 833degC at the 'Loss of load without turbine bypass' and 'Total loss of feedwater', respectively. The duration of the high cladding temperature is very short at the transients. According to the parametric survey, the peak cladding temperature are sensitive to the parameters such as the pump coast-down time, delay of pump trip, AFS capacity, AFS delay, CR worth, and SRV setpoint

  16. Advanced Light Water Reactor Program: Program management and staff review methodology

    International Nuclear Information System (INIS)

    Moran, D.H.

    1986-12-01

    This report summarizes the NRC/EPRI coordinated effort to develop design requirements for a standardized advanced light water reactor (ALWR) and the procedures for screening and applying new generic safety issues to this program. The end-product will be an NRC-approved ALWR Requirements Document for use by the nuclear industry in generating designs of LWRs to be constructed for operation in the 1990s and beyond

  17. Lepton flavour violating μ-e conversion rate for various nuclei

    International Nuclear Information System (INIS)

    Koike, Masafumi; Kitano, Ryuichiro; Okada, Yasuhiro

    2003-01-01

    The coherent μ-e conversion rate for general LFV interactions for various nuclei is calculated. The branching ratio increases for the light nuclei such as Z ∼ 60. Although this tendency of Z dependence is the same for different types of coupling constants, there are significant differences in Z dependence of branching ratios. The atomic number dependence of the conversion ratio calculated here is useful to distinguish theoretical models with lepton flavour violation

  18. Progress in design study on reduced-moderation water reactors

    Energy Technology Data Exchange (ETDEWEB)

    Okubo, Tsutomu; Kugo, Teruhiko; Shimada, Shoichiro; Shirakawa, Toshihisa; Iwamura, Takamichi [Japan Atomic Energy Research Inst., Tokai, Ibaraki (Japan). Tokai Research Establishment; Takeda, Renzo [Hitachi Ltd., Tokyo (Japan); Yokoyama, Tsugio [Toshiba Corp., Kawasaki, Kanagawa (Japan); Hibi, Koki [Mitsubishi Heavy Industries Ltd., Tokyo (Japan); Wada, Shigeyuki [Japan Atomic Power Co., Tokyo (Japan)

    2000-06-01

    The Reduced-Moderation Water Reactor (RMWR) is a next generation water-cooled reactor which aims at effective utilization of uranium resource, high burn-up and long operation cycle, and plutonium multi-recycle. These characteristics can be achieved by the high conversion ratio from {sup 238}U to {sup 239}Pu resulted from the higher neutron energy spectrum in comparison to conventional light water reactors. Considering the extension of LWR utilization, Japan Atomic Energy Research Institute (JAERI) started the research on it in 1997 and then started a collaboration in the conceptual design study with the Japan Atomic Power Company (JAPC) in 1998, under technical cooperation with three Japanese reactor vendors. In the core design study of the RMWR, negative void reactivity coefficient is required from a viewpoint of safety as well as establishing hard neutron spectrum. In order to achieve the above trade-off characteristics simultaneously, several basic core design ideas should be combined, such as a tight-lattice fuel assembly, a flat core, a blanket effect, a streaming effect and so on. Up to now, five core concepts have been created for the RMWR as follows: a high conversion BWR type core with high void fraction and super-flat core, a long operation cycle BWR type core using void tube assembly, a high conversion BWR type core without blankets, a high conversion PWR type core using heavy water as a coolant, and a PWR type core for plutonium multi-recycle using seed-blanket type fuel assemblies. Detailed feasibility studies for the RMWR have been continued on core design study. The present report summarizes the recent progress in the design study for the RMWR. (author)

  19. White top-emitting OLEDs using organic colour-conversion layers for improved colour-stability

    Energy Technology Data Exchange (ETDEWEB)

    Schwab, Tobias; Hofmann, Simone; Thomschke, Michael; Luessem, Bjoern; Leo, Karl [Institut fuer Angewandte Photophysik, Technische Universitaet Dresden (Germany)

    2011-07-01

    In contrast to white organic light-emitting diodes (OLEDs) using several vertical stacked emitters, the principle of down-conversion gives the chance to achieve white light with a simplified layer structure and enhanced colour stability by preventing a colour shift over lifetime due to differential aging of dyes. We investigate an approach where the conversion material is integrated into a top-emitting OLED structure in a way, that only electrons can pass this layer. This assures optical excitation and avoids unwanted electrical recombination inside the conversion layer. The emission spectra, CIE-coordinates, efficiencies, and IV-characteristics depending on the conversion layer thickness have been determined and were compared to the non-emitting host-material with similar optical properties. Lifetime measurements show that these OLEDs have almost no colour change over an investigated period up to 2200 hours. It is shown that the external quantum efficiency of the OLED does not necessarily decrease with an increased conversion layer thickness, even if the photoluminescence quantum yield of these materials is below unity. This indicates that the efficiency is improved by out-coupling of isotropic re-emitted wave-guided modes.

  20. Qualification issues for advanced light-water reactor protection systems

    International Nuclear Information System (INIS)

    Korsah, K.; Clark, R.L.; Antonescu, C.

    1993-01-01

    The instrumentation and control (I ampersand C) systems in advanced reactors will make extensive use of digital controls, microprocessors, multiplexing, and fiber optic transmission. Elements of these advances in I ampersand C have been implemented on some current operating plants. However, the widespread use of the above technologies, as well as the use of artificial intelligence with minimum reliance on human operator control of reactors, highlights the need to develop standards for qualifying the I ampersand C used in the next generation of nuclear power plants. As a first step in this direction, the protection system I ampersand C for present-day plants was compared to that proposed for advanced light-water reactors (ALWRs). An evaluation template was developed by assembling a configuration of a safety channel instrument string for a generic ALWR, then comparing the impact of environmental stressors on that string to their effect on an equivalent instrument string from an existing light-water reactor. The template was then used to suggest a methodology for the qualification of microprocessor-based protection systems. The methodology identifies standards/regulatory guides (or lack thereof) for the qualification of microprocessor-based safety I ampersand C systems. This approach addresses in part issues raised in NRC policy document SECY-91-292, which recognizes that advanced I ampersand C systems for the nuclear industry are ''being developed without consensus standards. as the technology available for design is ahead of the technology that is well understood through experience and supported by application standards.''

  1. Performance of Ag-TiO2 Photocatalysts towards the Photocatalytic Disinfection of Water under Interior-Lighting and Solar-Simulated Light Irradiations

    Directory of Open Access Journals (Sweden)

    Camilo A. Castro

    2012-01-01

    Full Text Available This paper reports the characterization and photoactivity of Ag-TiO2 materials using different amounts of silver during the hydrothermal synthesis. Photocatalysts were characterized by means of TEM, XPS, XRD, DRS, and N2 sorption isotherms to determine the textural properties. The photocatalyst's configuration was observed to be as anatase-brookite mixed phase particles with Ag partially oxidized aggregates on the TiO2 surface, which increased visible light absorption of the material. Moreover, photoproduction of singlet oxygen was followed by EPR analysis under visible light irradiations following the formation of TEMPOL. Such photoproduction was totally decreased by using the singlet oxygen scavenger DABCO. Photocatalysts were tested towards the photocatalytic disinfection of water suing a solar light simulator and an interior-light irradiation setup. Results evidenced an increase in the photooxidative effect of TiO2, while dark processes evidenced that part of the inactivation process is due to the Ag-TiO2 surface bactericidal effect and possible lixiviated Ag+.

  2. Controlling hydrogen behavior in light water reactors

    International Nuclear Information System (INIS)

    Cullingford, H.S.; Edeskuty, F.J.

    1981-01-01

    In the aftermath of the incident at Three Mile Island Unit 2 (TMI-2), a new and different treatment of the Light Water Reactor (LWR) risks is needed for public safety because of the specific events involving hydrogen generation, transport, and behavior following the core damage. Hydrogen behavior in closed environments such as the TMI-2 containment building is a complex phenomenon that is not fully understood. Hence, an engineering approach is presented for prevention of loss of life, equipment, and environment in case of a large hydrogen generation in an LWR. A six-level defense strategy is described that minimizes the possibility of ignition of released hydrogen gas and otherwise mitigates the consequences of hydrogen release. Guidance is given to reactor manufacturers, utility companies, regulatory agencies, and research organizations committed to reducing risk factors and insuring safety of life, equipment, and environment

  3. Conversion and conservation of light energy in a photosynthetic microbial mat ecosystem

    DEFF Research Database (Denmark)

    Al-Najjar, A. A.; de Beer, Dirk; Jørgensen, Bo Barker

    2010-01-01

    : in light-limiting conditions, 95.5% of the absorbed light energy dissipated as heat and 4.5% was channeled into photosynthesis. This energy disproportionation changed in favor of heat dissipation at increasing irradiance, with >99% of the absorbed light energy being dissipated as heat and 700 micromol...

  4. Characterization of materials for the conversion of sunlight to enhance the efficiency of solar cells; Charakterisierung von Materialien fuer die Konversion von Sonnenlicht zur Effizienzsteigerung von Solarzellen

    Energy Technology Data Exchange (ETDEWEB)

    Baumgartner, Katharina

    2011-07-13

    . Decreasing the structure size, in which the rare earth ions are built, decreased the phonon energy of the matrix material, which leads to higher conversion efficiencies. The highest internal conversion efficiency is observed in FCZ glass, in this material the rare earth ion Eu is incorporated into barium chloride nanocrystals. The FZ and FCZ glasses are not resistant with regard to environmental influences. They corrode in contact with water. Sputtered silica and alumina films doped with the rare earth ion Tb, are optimized with regard to their photoluminescence intensity. The photoluminescence intensity of Tb doped thin films with different layer thickness on different substrates are corrected using the software program CODE with regard to interference effects and optical properties. The influence of Tb concentration, matrix material, and thermal annealing at different temperatures on the photoluminescence intensity is investigated. For up-conversion of the incoming sun light the rare earth ion Nd is investigated. Nd is implanted in quartz glass. The photoluminescence of Nd is investigated through down-conversion. The photoluminescence intensity is optimized through thermal annealing and their dependency on the Nd concentration is investigated. It was found, that concentration quenching sets in with a Nd concentration of 2at.%. The emission of Nd at 900 nm, which is important for up-conversion, is passivated through water diffusion from air over time, which can be temporarily activated through thermal annealing. So, this system is not resistant with regard to environmental influences and must be further optimized for the application as up-converter. At the end of this work, the developed and optimized down-converters are applied in amorphous thin film silicon solar cells. The glasses investigated for down-conversion are put onto amorphous thin film silicon solar cells. The commercial fluorescence glass doped with the rare earth ion Tb, leads to an increase in the internal

  5. Disinfection of deionised water inoculated with enterobacter using ultra violet light

    International Nuclear Information System (INIS)

    Mathrani, M.

    2001-01-01

    For the first time the enterobacter, not the escherichia coli,was used as a model bacteria to asses the disinfection of microorganisms in water by UV (Ultra Violet) irradiation. The cell density of the liquid culture was followed by optical density of 1.837 at 600 nm on spectrometer. For the disinfection purpose, a laboratory scale batch reactor (10 cm wide, 20 cm long, and 10 cm height), containing 250 ml sterilised deionized water inoculated with enterobacter,was run under supra-band gap light (wavelength < 400 nm, peaking between 340 and 365 nm with a maximum of 350 nm). After carrying out seven batch experiments it is concluded that the complete inactivation of Enterobacter ( approx. equal to x 10/sup 6/ CFU/ml) in the water can be achieved by UV irradiation for 2 hours. (author)

  6. A design study of high electric power for fast reactor cooled by supercritical light water

    International Nuclear Information System (INIS)

    Koshizuka, Seiichi

    2000-03-01

    In order to evaluate the possibility to achieve high electric power by a fast reactor with supercritical light water, the design study was carried out on a large fast reactor core with high coolant outlet temperature (SCFR-H). Since the reactor coolant circuit uses once-through direct cycle where all feedwater flows through the core to the turbine at supercritical pressure, it is possible to design much simpler and more compact reactor systems and to achieve higher thermal efficiency than those of current light water reactors. The once-through direct cycle system is employed in current fossil-fired power plants. In the present study, three types of core were designed. The first is SCFR-H with blankets cooled by ascending flow, the second is SCFR-H with blankets cooled by descending flow and the third is SCFR-H with high thermal power. Every core was designed to achieve the thermal efficiency over 43%, positive coolant density reactivity coefficient and electric power over 1600 MW. Core characteristics of SCFR-Hs were compared with those of SCLWR-H (electric power: 1212 MW), which is a thermal neutron spectrum reactor cooled and moderated by supercritical light water, with the same diameter of the reactor pressure vessel. It was shown that SCFR-H could increase the electric power about 1.7 times maximally. From the standpoint of the increase of a reactor thermal power, a fast reactor has advantages as compared with a thermal neutron reactor, because it can increase the power density by adopting tight fuel lattices and eliminating the moderator region. Thus, it was concluded that a reactor cooled by supercritical light water could further improve the cost competitiveness by using a fast neutron spectrum and achieving a higher thermal power. (author)

  7. Polarization-sensitive color in butterfly scales: polarization conversion from ridges with reflecting elements.

    Science.gov (United States)

    Zhang, Ke; Tang, Yiwen; Meng, Jinsong; Wang, Ge; Zhou, Han; Fan, Tongxiang; Zhang, Di

    2014-11-03

    Polarization-sensitive color originates from polarization-dependent reflection or transmission, exhibiting abundant light information, including intensity, spectral distribution, and polarization. A wide range of butterflies are physiologically sensitive to polarized light, but the origins of polarized signal have not been fully understood. Here we systematically investigate the colorful scales of six species of butterfly to reveal the physical origins of polarization-sensitive color. Microscopic optical images under crossed polarizers exhibit their polarization-sensitive characteristic, and micro-structural characterizations clarify their structural commonality. In the case of the structural scales that have deep ridges, the polarization-sensitive color related with scale azimuth is remarkable. Periodic ridges lead to the anisotropic effective refractive indices in the parallel and perpendicular grating orientations, which achieves form-birefringence, resulting in the phase difference of two different component polarized lights. Simulated results show that ridge structures with reflecting elements reflect and rotate the incident p-polarized light into s-polarized light. The dimensional parameters and shapes of grating greatly affect the polarization conversion process, and the triangular deep grating extends the outstanding polarization conversion effect from the sub-wavelength period to the period comparable to visible light wavelength. The parameters of ridge structures in butterfly scales have been optimized to fulfill the polarization-dependent reflection for secret communication. The structural and physical origin of polarization conversion provides a more comprehensive perspective on the creation of polarization-sensitive color in butterfly wing scales. These findings show great potential in anti-counterfeiting technology and advanced optical material design.

  8. Conversion and quantum efficiency from ultraviolet light to near infrared emission in Yb{sup 3+}-doped pyrovanadates MZnV{sub 2}O{sub 7} (M = Ca, Sr, Ba)

    Energy Technology Data Exchange (ETDEWEB)

    Guan, Ying; Huang, Yanlin [College of Chemistry, Chemical Engineering and Materials Science, Soochow University, Suzhou 215123 (China); Tsuboi, Taiju; Huang, Wei [Jiangsu-Singapore Joint Research Center for Organic/Bio-Electronics and Information Displays and Institute of Advanced Materials, Nanjing Tech University, Nanjing 211816 (China); Chen, Cuili; Cai, Peiqing [Department of Physics and Interdisciplinary Program of Biomedical, Mechanical and Electrical Engineering, Pukyong National University, Busan 608-737 (Korea, Republic of); Seo, Hyo Jin, E-mail: hjseo@pknu.ac.kr [Department of Physics and Interdisciplinary Program of Biomedical, Mechanical and Electrical Engineering, Pukyong National University, Busan 608-737 (Korea, Republic of)

    2014-12-15

    Highlights: • Efficient convertors of Yb{sup 3+} doped pyrovanadates are prepared and characterized. • Broadband down-conversion from ultraviolet into near-infrared is realized. • High quantum efficiency of 18.5% can be reached. • Energy transfer from VO{sub 4} groups to Yb{sup 3+} ions is demonstrated on the base of the crystal structure. - Abstract: Yb{sup 3+}-doped CaZnV{sub 2}O{sub 7}, SrZnV{sub 2}O{sub 7} and BaZnV{sub 2}O{sub 7} were synthesized via the solid-state reaction. The polycrystalline samples were investigated by XRD and SEM measurements. The reflectance spectra, photoluminescence (PL) excitation and emission spectra, the absolute quantum efficiency (QE) of the IR emission (900–1100 nm) were measured. The efficient conversion from ultraviolet (UV) light to near-infrared (NIR) emission has been demonstrated in the Yb{sup 3+}-doped pyrovanadates by the broadband down conversion from VO{sub 4}{sup 3−} to Yb{sup 3+} ions. Under UV light excitation, an intense NIR emission around 1000 nm ascribed to the {sup 2}F{sub 5/2} → {sup 2}F{sub 7/2} transition of Yb{sup 3+} ions has been observed, which just corresponds to the spectral response of Si solar cells. The NIR emission efficiency is observed to depend on the lattice of pyrovanadate. The mechanism of the NIR emission ascribed to energy transfer is discussed by taking into account the experimental results and the crystal structures.

  9. Correlation of light transmittance with asthma attack: fine water particles as a possible inducing factor of asthma.

    Science.gov (United States)

    Kanaya, Kazuo; Okamoto, Koji; Shimbo, Shinichiro; Ikeda, Masayuki

    2011-01-01

    It has been postulated that air-borne fine water particles (or mist) can induce asthma attacks in asthmatic children. To date, no attempt has been made to quantify the density of air-borne fine water particles with the aim of relating particle density to the etiology of asthma among children. The aim of this study was to investigate the relation of asthma attack frequency and the particle density evaluated in terms of light transmittance. The density of fine water particles was quantified by measuring reductions in light transmittance at 250, 365 and 580 nm at an outdoor location when the surroundings were in darkness. The measurements were made at distances varying from 1 to 3 m from the light sources and performed every morning and evening for 1 year. Each day was separated into two half-day units [i.e., morning (from midnight to noon) and afternoon (from noon to midnight)]. The number of asthma attacks among 121 enrolled asthmatic children was counted for each unit. A possible correlation between the transmittance reduction and frequency of asthma attacks was assessed. A significant difference was observed in the extent of reduction in light transmittance at 365 nm between the units with asthma attacks and those without attacks. Furthermore, the reduction in the transmittance was more evident when more asthma attacks were recorded among the patients. No difference was detected in the reduction in light transmittance at 250 or 580 nm. These results support the hypothesis that air-borne fine water particles are among the etiological factors that induce asthma attacks in asthmatic children.

  10. Once-through cycle, supercritical-pressure light water cooled reactor concept

    Energy Technology Data Exchange (ETDEWEB)

    Oka, Y.; Koshizuka, S. [Tokyo Univ., Tokai, Ibaraki (Japan). Nuclear Engineering Research Lab

    2001-07-01

    Concept of once-through cycle, supercritical-pressure light water cooled reactors was developed. The research covered major aspects of conceptual design such as cores of thermal and fast reactors, plant system and heat balance, safety system and criteria, accident and transient analysis, LOCA, PSA, plant control and start-up. The advantages of the reactor lie in the compactness of the plant from high specific enthalpy of supercritical water, the simplicity of the once-through cycle and the experiences of major component technologies which are based on supercritical fossil-fired power plants and LWRs. The operating temperatures of the major components are within the experience in spite of high coolant outlet temperature. The once-through cycle is compatible with the tight fuel lattice fast reactor because of high head pumps and small coolant flow rate. (author)

  11. Once-through cycle, supercritical-pressure light water cooled reactor concept

    International Nuclear Information System (INIS)

    Oka, Y.; Koshizuka, S.

    2001-01-01

    Concept of once-through cycle, supercritical-pressure light water cooled reactors was developed. The research covered major aspects of conceptual design such as cores of thermal and fast reactors, plant system and heat balance, safety system and criteria, accident and transient analysis, LOCA, PSA, plant control and start-up. The advantages of the reactor lie in the compactness of the plant from high specific enthalpy of supercritical water, the simplicity of the once-through cycle and the experiences of major component technologies which are based on supercritical fossil-fired power plants and LWRs. The operating temperatures of the major components are within the experience in spite of high coolant outlet temperature. The once-through cycle is compatible with the tight fuel lattice fast reactor because of high head pumps and small coolant flow rate. (author)

  12. Nuclear safety in light water reactors severe accident phenomenology

    CERN Document Server

    Sehgal, Bal Raj

    2011-01-01

    This vital reference is the only one-stop resource on how to assess, prevent, and manage severe nuclear accidents in the light water reactors (LWRs) that pose the most risk to the public. LWRs are the predominant nuclear reactor in use around the world today, and they will continue to be the most frequently utilized in the near future. Therefore, accurate determination of the safety issues associated with such reactors is central to a consideration of the risks and benefits of nuclear power. This book emphasizes the prevention and management of severe accidents to teach nuclear professionals

  13. Preliminary concepts: safeguards for spent light-water reactor fuels

    International Nuclear Information System (INIS)

    Cobb, D.D.; Dayem, H.A.; Dietz, R.J.

    1979-06-01

    The technology available for safeguarding spent nuclear fuels from light-water power reactors is reviewed, and preliminary concepts for a spent-fuel safeguards system are presented. Essential elements of a spent-fuel safeguards system are infrequent on-site inspections, containment and surveillance systems to assure the integrity of stored fuel between inspections, and nondestructive measurements of the fuel assemblies. Key safeguards research and development activities necessary to implement such a system are identified. These activities include the development of tamper-indicating fuel-assembly identification systems and the design and development of nondestructive spent-fuel measurement systems

  14. Secondary flows in the cooling channels of the high-performance light-water reactor

    Energy Technology Data Exchange (ETDEWEB)

    Laurien, E.; Wintterle, Th. [Stuttgart Univ., Institute for Nuclear Technolgy and Energy Systems (IKE) (Germany)

    2007-07-01

    The new design of a High-Performance Light-Water Reactor (HPLWR) involves a three-pass core with an evaporator region, where the compressed water is heated above the pseudo-critical temperature, and two superheater regions. Due to the strong dependency of the supercritical water density on the temperature significant mass transfer between neighboring cooling channels is expected if the temperature is unevenly distributed across the fuel element. An inter-channel flow is then superimposed to the secondary flow vortices induced by the non-isotropy of turbulence. In order to gain insight into the resulting flow patterns as well as into temperature and density distributions within the various subchannels of the fuel element CFD (Computational Fluid Dynamics) calculations for the 1/8 fuel element are performed. For simplicity adiabatic boundary conditions at the moderator box and the fuel element box are assumed. Our investigation confirms earlier results obtained by subchannel analysis that the axial mass flux is significantly reduced in the corner subchannel of this fuel element resulting in a net mass flux towards the neighboring subchannels. Our results provide a first estimation of the magnitude of the secondary flows in the pseudo-critical region of a supercritical light-water reactor. Furthermore, it is demonstrated that CFD is an efficient tool for investigations of flow patterns within nuclear reactor fuel elements. (authors)

  15. Efficiencies and Physical Principles of Various Solar Energy Conversion Processes Leading to the Photolysis of Water

    Energy Technology Data Exchange (ETDEWEB)

    Bergene, T

    1996-12-31

    In the application of solar energy, hydrogen is likely to be used as an energy carrier and a storage medium. Production of molecular hydrogen and oxygen from water requires energy input, which may come from solar energy in various ways. This thesis begins with a literature survey of the different conversion processes and the efficiencies, which is an introduction to a series of enclosed papers. These papers are: (1) Trapping of Minority Charge Carriers at Irradiated Semiconductor/Electrolyte Heterojunctions, (2) Model Calculations on Flat-Plate Solar Heat Collector With Integrated Solar Cells, and (3) Efficiencies and Physical Principles of Photolysis of Water By Microalgae. In the papers, The qualitative features of the ``illumination-current``-characteristic curve are deduced. The hypothesis is that trapping originates in some specific cases because of confinement, which leads to charge injections into energy states above that corresponding to the band edge. The quantitative features of certain hybrid photovoltaic/thermal configuration are deduced. An analysis of the theoretical and realizable efficiencies of the photolysis of water by micro algae is given. 151 refs., 18 figs., 1 table

  16. Analysis of Differences in Void Coefficient Predictions for Mixed-Oxide-Fueled Tight-Pitch Light Water Reactor Cells

    International Nuclear Information System (INIS)

    Unesaki, Hironobu; Shiroya, Seiji; Kanda, Keiji; Cathalau, Stephane; Carre, Franck-Olivier; Aizawa, Otohiko; Takeda, Toshikazu

    2000-01-01

    Analysis of the benchmark problems on the void coefficient of mixed-oxide (MOX)-fueled tight-pitch cells has been performed using the Japanese SRAC code system with the JENDL-3.2 library and the French APOLLO-2 code with the CEA93 library based on JEF-2.2. The benchmark problems have been specified to investigate the physical phenomena occurring during the progressive voidage of MOX-fueled tight-pitch lattices, such as high conversion light water reactor lattices, and to evaluate the impact of nuclear data and calculational methods. Despite the most recently compiled nuclear data libraries and the sophisticated calculation schemes employed in both code systems, the k ∞ and void reactivity values obtained by the two code systems show considerable discrepancy especially in the highly voided state. The discrepancy of k ∞ values shows an obvious dependence on void fraction and also has been shown to be sensitive to the isotopic composition of plutonium. The observed discrepancies are analyzed by being decomposed into contributing isotopes and reactions and have been shown to be caused by a complicated balance of both negative and positive components, which are mainly attributable to differences in a limited number of isotopes including 239 Pu, 241 Pu, 16 O, and stainless steel

  17. Environmental effects of energy conversion

    International Nuclear Information System (INIS)

    Hansmeyer, K.H.; Fortak, H.; Knoepp, H.; Lindackers, K.H.; Schafhausen, F.; Schoedel, J.P.

    1984-01-01

    The article presents an analysis of energy conversion systems by the ''Council of Environmental Experts'' in order to correct the erroneous assumption that small energy conversion systems will also be small-scale and negligible emitters of pollutants. The additional pollution caused by Neurath power plant is considered to be low, at least in its immediate vicinity, owing to the implementation of the most recent technical developments. The environmental effects of energy conversion processes are discussed, including the waste heat problem and processes for water-cooling of power plants. General aspects of a new concept of energy taxation are discussed which is to reduce energy consumption. The problem of radioactive waste is discussed from spent fuel storage and reprocessing to the decommissioning of older power plants. The author points out that also new fossil-fuel technologies will pollute the environment. (orig.) [de

  18. Direct catalytic conversion of brown seaweed-derived alginic acid to furfural using 12-tungstophosphoric acid catalyst in tetrahydrofuran/water co-solvent

    International Nuclear Information System (INIS)

    Park, Geonu; Jeon, Wonjin; Ban, Chunghyeon; Woo, Hee Chul; Kim, Do Heui

    2016-01-01

    Highlights: • Furfural was produced by catalytic conversion of macroalgae-derived alginic acid. • 12-Tungstophosphoric acid (H_3PW_1_2O_4_0) showed remarkable catalytic performance. • Tetrahydrofuran (THF) as a reaction medium significantly enhanced production of furfural. - Abstract: Furfural, a biomass-derived platform chemical, was produced by acid-catalyzed reaction of alginic acid extracted from brown seaweed. Three acid catalysts, H_2SO_4, Amberlyst15 and 12-tungstophosphoric acid (H_3PW_1_2O_4_0), were compared to evaluate their catalytic performance for the alginic acid conversion. The H_3PW_1_2O_4_0 catalyst showed the highest catalytic activity, yielding the maximum furfural yield (33.8%) at 180 °C for 30 min in tetrahydrofuran/water co-solvent. Higher reaction temperature promoted the conversion of alginic acid to furfural, but the transformation of furfural to humin was also accelerated. To our knowledge, this is the highest furfural yield among studies about the direct catalytic conversion of alginic acid. Furthermore, products distribution with time-on-stream was investigated in detail, which led us to propose a reaction pathway.

  19. Catalogue and classification of technical safety rules for light-water reactors and reprocessing plants

    International Nuclear Information System (INIS)

    Bloser, M.; Fichtner, N.; Neider, R.

    1975-08-01

    This report on the cataloguing and classification of technical rules for land-based light-water reactors and reprocessing plants contains a list of classified rules. The reasons for the classification system used are given and discussed

  20. CLUMPED LIGHT WATER MODERATED UO$sub 2$ SUPERHEAT CRITICALS. PART I. EXPERIMENTS

    Energy Technology Data Exchange (ETDEWEB)

    Warzek, F. G.; Johnston, H. F.

    1963-11-15

    The following critical and subcritical measurements were made in the EVESR core: reactivity with no control rods; full core reactivity with control rods; and power distribution in the full core with control rods. The fuel was UO/ sub 2/, and the elements were of the superheating type. The reactor was light- water-cooled and -moderated. (T.F.H.)

  1. Photoelectrochemical Complexes of Fucoxanthin-Chlorophyll Protein for Bio-Photovoltaic Conversion with a High Open-Circuit Photovoltage.

    Science.gov (United States)

    Zhang, Tianning; Liu, Cheng; Dong, Wenjing; Wang, Wenda; Sun, Yan; Chen, Xin; Yang, Chunhong; Dai, Ning

    2017-12-05

    Open-circuit photovoltage (V oc ) is among the critical parameters for achieving an efficient light-to-charge conversion in existing solar photovoltaic devices. Natural photosynthesis exploits light-harvesting chlorophyll (Chl) protein complexes to transfer sunlight energy efficiently. We describe the exploitation of photosynthetic fucoxanthin-chlorophyll protein (FCP) complexes for realizing photoelectrochemical cells with a high V oc . An antenna-dependent photocurrent response and a V oc up to 0.72 V are observed and demonstrated in the bio-photovoltaic devices fabricated with photosynthetic FCP complexes and TiO 2 nanostructures. Such high V oc is determined by fucoxanthin in FCP complexes, and is rarely found in photoelectrochemical cells with other natural light-harvesting antenna. We think that the FCP-based bio-photovoltaic conversion will provide an opportunity to fabricate environmental benign photoelectrochemical cells with high V oc , and also help improve the understanding of the essential physics behind the light-to-charge conversion in photosynthetic complexes. © 2017 Wiley-VCH Verlag GmbH & Co. KGaA, Weinheim.

  2. Conversion of toluene and water to methylcyclohexane and oxygen using niobium-doped strontium titanate photoelectrodes.

    Science.gov (United States)

    Kalousek, Vit; Wang, Peng; Minegishi, Tsutomu; Hisatomi, Takashi; Nakagawa, Kojiro; Oshima, Shinji; Kobori, Yoshihiro; Kubota, Jun; Domen, Kazunari

    2014-09-01

    Methylcyclohexane (MCH) is regarded as a promising hydrogen carrier that enables hydrogen to be harnessed as an alternate fuel source, which paves the way to a clean-energy future. A photoelectrochemical (PEC) system with a Nb:SrTiO3 photoelectrode for oxygen evolution from an aqueous electrolyte and a Pt/C electrode for toluene (TL) hydrogenation to MCH was investigated under UV irradiation. A Nb:SrTiO3 single-crystal electrode and an ionomer/Pt/C membrane-electrode assembly (MEA) were used as the photoanode and cathode, respectively. A steady-state current density of 0.12 mA cm(-2) was observed for the two-electrode system without any bias voltage for >2 h, and a Faradaic efficiency of 97% was obtained for MCH production from TL. This is the first demonstration of the production of MCH from TL and water using only light energy. This means that light energy was converted directly into MCH from TL and water without any electricity. The PEC properties of the devices are discussed. © 2014 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  3. Parametric studies for the nuclear design of high-conversion pressurized water reactors

    International Nuclear Information System (INIS)

    Axmann, J.; Oldekop, W.

    1987-01-01

    Undermoderated high-conversion pressurized water reactors with steel canning tubes offer the possibility of high burnup together with a comparatively low consumption of fissionable material; however, they require a relatively large inventory of fissionable material. The effects of different fuel compositions upon the specific consumption of fissionable material are investigated for a fixed burnup and moderator-to-fuel volume ratios varying between 0.5 and 2.0. Moreover, the required inventory of fissionable material is determined and the influence on the costs of electric power generation is shown. Further investigations deal with the neutron-physical effects of decreasing fuel rod diameters and the influence of differing steel additives. It appears that the parasitic neutron absorption by alloying constituents depends on the moderation level in a non-uniform manner and that the contribution of the fissionable material to the electric power generation costs is rather independent of the moderator-to-fuel volume ratio. (orig.) [de

  4. Slim planar apparatus for converting LED light into collimated polarized light uniformly emitted from its top surface.

    Science.gov (United States)

    Teng, Tun-Chien; Tseng, Li-Wei

    2014-10-20

    This study proposes a slim planar apparatus for converting nonpolarized light from a light-emitting diode (LED) into an ultra-collimated linearly polarized beam uniformly emitted from its top surface. The apparatus was designed based on a folded-bilayer configuration comprising a light-mixing collimation element, polarization conversion element, and polarization-preserving light guide plate (PPLGP) with an overall thickness of 5 mm. Moreover, the apparatus can be extended transversally by connecting multiple light-mixing collimation elements and polarization conversion elements in a side-by-side configuration to share a considerably wider PPLGP, so the apparatus can have theoretically unlimited width. The simulation results indicate that the proposed apparatus is feasible for the maximal backlight modules in 39-inch liquid crystal panels. In the case of an apparatus with a 480 × 80 mm emission area and two 8-lumen LED light sources, the average head-on polarized luminance and spatial uniformity over the emission area was 5000 nit and 83%, respectively; the vertical and transverse angular distributions of the emitting light were only 5° and 10°, respectively. Moreover, the average degree of polarization and energy efficiency of the apparatus were 82% and 72%, respectively. As compared with the high-performance ultra-collimated nonpolarized backlight module proposed in our prior work, not only did the apparatus exhibit outstanding optical performance, but also the highly polarized light emissions actually increased the energy efficiency by 100%.

  5. Aging management of light water reactor concrete containments

    International Nuclear Information System (INIS)

    Shah, V.N.; Hookhman, C.J.

    1994-01-01

    This paper evaluates aging of light water reactor concrete containments and identifies three degradation mechanisms that have potential to cause widespread aging damage after years of satisfactory experience: alkali-silica reaction, corrosion of reinforcing steel, and sulfate attack. The evaluation is based on a comprehensive review of the relevant technical literature. Low-alkali cement and slow-reacting aggregates selected according to ASTM requirements cause deleterious alkali-silica reactions. Low concentrations of chloride ions can initiate corrosion of the reinforcing steel if the hydroxyl ions are sufficiently reduced by carbonation, leaching, or magnesium sulfate attack. Magnesium sulfate attack on concrete can cause loss of strength and cementitious properties after long exposure. Techniques to detect and mitigate these long-term aging effects are discussed

  6. Multiangular hyperspectral investigation of polarized light in case 2 waters

    Science.gov (United States)

    Tonizzo, A.; Zhou, J.; Gilerson, A.; Chowdhary, J.; Gross, B.; Moshary, F.; Ahmed, S.

    2009-09-01

    The focus of this work is on the dependence of in situ hyperspectral and multiangular polarized data on the size distribution and refractive index of the suspended particles. Underwater polarization measurements were obtained using a polarimeter developed at the Optical Remote Sensing Laboratory of the City College of New York, NY. The degree of polarization (DOP) of the underwater light field in coastal environments was measured and the water-leaving polarized radiance was derived. In-water optical properties were also measured with an ac-9 (WET Labs). Absorption and attenuation spectra are then used to derive information on the dissolved and suspend components in the water medium which are used in a vector radiative transfer code which provides the upwelling radiance. The model was run for various values of the refractive index of mineral particles until the modeled DOP matched the measured one. The relationship between the intensity of the maximum of the DOP and both the refractive index of the mineral particles and the shapes of their size distributions is analyzed in detail.

  7. Polymeric Materials for Conversion of Electromagnetic Waves from the Sun to Electric Power

    Directory of Open Access Journals (Sweden)

    SK Manirul Haque

    2018-03-01

    Full Text Available Solar photoelectric energy converted into electricity requires large surface areas with incident light and flexible materials to capture these light emissions. Currently, sunlight rays are converted to electrical energy using silicon polymeric material with efficiency up to 22%. The majority of the energy is lost during conversion due to an energy gap between sunlight photons and polymer energy transformation. This energy conversion also depends on the morphology of present polymeric materials. Therefore, it is very important to construct mechanisms of highest energy occupied molecular orbitals (HOMOs and the lowest energy unoccupied molecular orbitals (LUMOs to increase the efficiency of conversion. The organic and inorganic solar cells used as dyes can absorb more photons from sunlight and the energy gap will be less for better conversion of energy to electricity than the conventional solar cells. This paper provides an up-to-date review on the performance, characterization, and reliability of different composite polymeric materials for energy conversion. Specific attention has been given to organic solar cells because of their several advantages over others, such as their low-energy payback time, conversion efficiency and greenhouse emissions. Finally, this paper provides the recent progress on the application of both organic and inorganic solar cells for electric power generations together with several challenges that are currently faced.

  8. Design and cost of near-term OTEC (Ocean Thermal Energy Conversion) plants for the production of desalinated water and electric power. [Ocean Thermal Energy Conversion (OTEC)

    Energy Technology Data Exchange (ETDEWEB)

    Rabas, T.; Panchal, C.; Genens, L.

    1990-01-01

    There currently is an increasing need for both potable water and power for many islands in the Pacific and Caribbean. The Ocean Thermal Energy Conversion (OTEC) technology fills these needs and is a viable option because of the unlimited supply of ocean thermal energy for the production of both desalinated water and electricity. The OTEC plant design must be flexible to meet the product-mix demands that can be very different from site to site. This paper describes different OTEC plants that can supply various mixes of desalinated water and vapor -- the extremes being either all water and no power or no water and all power. The economics for these plants are also presented. The same flow rates and pipe sizes for both the warm and cold seawater streams are used for different plant designs. The OTEC plant designs are characterized as near-term because no major technical issues need to be resolved or demonstrated. The plant concepts are based on DOE-sponsored experiments dealing with power systems, advanced heat exchanger designs, corrosion and fouling of heat exchange surfaces, and flash evaporation and moisture removal from the vapor using multiple spouts. In addition, the mature multistage flash evaporator technology is incorporated into the plant designs were appropriate. For the supply and discharge warm and cold uncertainties do exist because the required pipe sizes are larger than the maximum currently deployed -- 40-inch high-density polyethylene pipe at Keahole Point in Hawaii. 30 refs., 6 figs., 8 tabs.

  9. German Light-Water-Reactor Safety-Research Program

    International Nuclear Information System (INIS)

    Seipel, H.G.; Lummerzheim, D.; Rittig, D.

    1977-01-01

    The Light-Water-Reactor Safety-Research Program, which is part of the energy program of the Federal Republic of Germany, is presented in this article. The program, for which the Federal Minister of Research and Technology of the Federal Republic of Germany is responsible, is subdivided into the following four main problem areas, which in turn are subdivided into projects: (1) improvement of the operational safety and reliability of systems and components (projects: quality assurance, component safety); (2) analysis of the consequences of accidents (projects: emergency core cooling, containment, external impacts, pressure-vessel failure, core meltdown); (3) analysis of radiation exposure during operation, accident, and decommissioning (project: fission-product transport and radiation exposure); and (4) analysis of the risk created by the operation of nuclear power plants (project: risk and reliability). Various problems, which are included in the above-mentioned projects, are concurrently studied within the Heiss-Dampf Reaktor experiments

  10. Light water reactor lower head failure analysis

    International Nuclear Information System (INIS)

    Rempe, J.L.; Chavez, S.A.; Thinnes, G.L.

    1993-10-01

    This document presents the results from a US Nuclear Regulatory Commission-sponsored research program to investigate the mode and timing of vessel lower head failure. Major objectives of the analysis were to identify plausible failure mechanisms and to develop a method for determining which failure mode would occur first in different light water reactor designs and accident conditions. Failure mechanisms, such as tube ejection, tube rupture, global vessel failure, and localized vessel creep rupture, were studied. Newly developed models and existing models were applied to predict which failure mechanism would occur first in various severe accident scenarios. So that a broader range of conditions could be considered simultaneously, calculations relied heavily on models with closed-form or simplified numerical solution techniques. Finite element techniques-were employed for analytical model verification and examining more detailed phenomena. High-temperature creep and tensile data were obtained for predicting vessel and penetration structural response

  11. Light water reactor lower head failure analysis

    Energy Technology Data Exchange (ETDEWEB)

    Rempe, J.L.; Chavez, S.A.; Thinnes, G.L. [EG and G Idaho, Inc., Idaho Falls, ID (United States)] [and others

    1993-10-01

    This document presents the results from a US Nuclear Regulatory Commission-sponsored research program to investigate the mode and timing of vessel lower head failure. Major objectives of the analysis were to identify plausible failure mechanisms and to develop a method for determining which failure mode would occur first in different light water reactor designs and accident conditions. Failure mechanisms, such as tube ejection, tube rupture, global vessel failure, and localized vessel creep rupture, were studied. Newly developed models and existing models were applied to predict which failure mechanism would occur first in various severe accident scenarios. So that a broader range of conditions could be considered simultaneously, calculations relied heavily on models with closed-form or simplified numerical solution techniques. Finite element techniques-were employed for analytical model verification and examining more detailed phenomena. High-temperature creep and tensile data were obtained for predicting vessel and penetration structural response.

  12. Hydrodesulphurization of Light Gas Oil using hydrogen from the Water Gas Shift Reaction

    Science.gov (United States)

    Alghamdi, Abdulaziz

    2009-12-01

    The production of clean fuel faces the challenges of high production cost and complying with stricter environmental regulations. In this research, the ability of using a novel technology of upgrading heavy oil to treat Light Gas Oil (LGO) will be investigated. The target of this project is to produce cleaner transportation fuel with much lower cost of production. Recently, a novel process for upgrading of heavy oil has been developed at University of Waterloo. It is combining the two essential processes in bitumen upgrading; emulsion breaking and hydroprocessing into one process. The water in the emulsion is used to generate in situ hydrogen from the Water Gas Shift Reaction (WGSR). This hydrogen can be used for the hydrogenation and hydrotreating reaction which includes sulfur removal instead of the expensive molecular hydrogen. This process can be carried out for the upgrading of the bitumen emulsion which would improve its quality. In this study, the hydrodesulphurization (HDS) of LGO was conducted using in situ hydrogen produced via the Water Gas Shift Reaction (WGSR). The main objective of this experimental study is to evaluate the possibility of producing clean LGO over dispersed molybdenum sulphide catalyst and to evaluate the effect of different promoters and syn-gas on the activity of the dispersed Mo catalyst. Experiments were carried out in a 300 ml Autoclave batch reactor under 600 psi (initially) at 391°C for 1 to 3 hours and different amounts of water. After the hydrotreating reaction, the gas samples were collected and the conversion of carbon monoxide to hydrogen via WGSR was determined using a refinery gas analyzer. The sulphur content in liquid sample was analyzed via X-Ray Fluorescence. Experimental results showed that using more water will enhance WGSR but at the same time inhibits the HDS reaction. It was also shown that the amount of sulfur removed depends on the reaction time. The plan is to investigate the effect of synthesis gas (syngas

  13. Frontal Conversion and Uniformity in 3D Printing by Photopolymerisation.

    Science.gov (United States)

    Vitale, Alessandra; Cabral, João T

    2016-09-07

    We investigate the impact of the non-uniform spatio-temporal conversion, intrinsic to photopolymerisation, in the context of light-driven 3D printing of polymers. The polymerisation kinetics of a series of model acrylate and thiol-ene systems, both neat and doped with a light-absorbing dye, is investigated experimentally and analysed according to a descriptive coarse-grained model for photopolymerisation. In particular, we focus on the relative kinetics of polymerisation with those of 3D printing, by comparing the evolution of the position of the conversion profile ( z f ) to the sequential displacement of the object stage ( ∆z ). After quantifying the characteristic sigmoidal monomer-to-polymer conversion of the various systems, with a combination of patterning experiments, FT-IR mapping, and modelling, we compute representative regimes for which z f is smaller, commensurate with, or larger than ∆z . While non-monotonic conversion can be detrimental to 3D printing, for instance in causing differential shrinkage of inhomogeneity in material properties, we identify opportunities for facile fabrication of modulated materials in the z -direction (i.e., along the illuminated axis). Our simple framework and model, based on directly measured parameters, can thus be employed in photopolymerisation-based 3D printing, both in process optimisation and in the precise design of complex, internally stratified materials by coupling the z -stage displacement and frontal polymerisation kinetics.

  14. Frontal Conversion and Uniformity in 3D Printing by Photopolymerisation

    Directory of Open Access Journals (Sweden)

    Alessandra Vitale

    2016-09-01

    Full Text Available We investigate the impact of the non-uniform spatio-temporal conversion, intrinsic to photopolymerisation, in the context of light-driven 3D printing of polymers. The polymerisation kinetics of a series of model acrylate and thiol-ene systems, both neat and doped with a light-absorbing dye, is investigated experimentally and analysed according to a descriptive coarse-grained model for photopolymerisation. In particular, we focus on the relative kinetics of polymerisation with those of 3D printing, by comparing the evolution of the position of the conversion profile (zf to the sequential displacement of the object stage (∆z. After quantifying the characteristic sigmoidal monomer-to-polymer conversion of the various systems, with a combination of patterning experiments, FT-IR mapping, and modelling, we compute representative regimes for which zf is smaller, commensurate with, or larger than ∆z. While non-monotonic conversion can be detrimental to 3D printing, for instance in causing differential shrinkage of inhomogeneity in material properties, we identify opportunities for facile fabrication of modulated materials in the z-direction (i.e., along the illuminated axis. Our simple framework and model, based on directly measured parameters, can thus be employed in photopolymerisation-based 3D printing, both in process optimisation and in the precise design of complex, internally stratified materials by coupling the z-stage displacement and frontal polymerisation kinetics.

  15. Photoelectrochemical water splitting under visible light over anti-photocorrosive In{sub 2}O{sub 3}-coupling ZnO nanorod arrays photoanode

    Energy Technology Data Exchange (ETDEWEB)

    Zhang, Yan, E-mail: zhangyanchem@qdu.edu.cn [Oceanology University of China, College of Chemistry and Chemical Engineering (China); Zhang, Jinqiu [Qingdao University, Faculty of Chemical Science and Engineering (China); Nie, Mengyan [University of Southampton, National Centre for Advanced Tribology at Southampton, School of Engineering Sciences (United Kingdom); Sun, Kai [Qingdao University, Faculty of Chemical Science and Engineering (China); Li, Chunhu [Oceanology University of China, College of Chemistry and Chemical Engineering (China); Yu, Jianqiang [Qingdao University, Faculty of Chemical Science and Engineering (China)

    2015-07-15

    In{sub 2}O{sub 3} quantum dots with a high crystallinity were deposited on the surface of ZnO nanorods through a chemistry bath method. The resulting In{sub 2}O{sub 3}-sensitizing ZnO nanorod arrays not only exhibited enhanced photoelectrochemical activity for water splitting under visible-light irradiation, but also possessed anti-photocorrosion property. The photo-induced charge-transfer property of In{sub 2}O{sub 3} could be improved greatly by coupling with ZnO. This observation demonstrated that the heterojunction at the interface between In{sub 2}O{sub 3} and ZnO could efficiently reduce the recombination of photo-induced electron–hole pairs and increase the lifetime of charge carriers and therefore enhance the photo-to-current efficiency of the In{sub 2}O{sub 3}–ZnO nanocrystalline arrays. It reveals that the heterojunction construction between two different semiconductors plays a very important role in determining the dynamic properties of their photogenerated charge carriers and their photo-to-current conversion efficiency.

  16. Development of the fuel-cycle costs in nuclear power stations with light-water reactors

    International Nuclear Information System (INIS)

    Brosch, R.; Moraw, G.; Musil, G.; Schneeberger, M.

    1976-01-01

    The authors investigate the fuel-cycle costs in nuclear power stations with light-water reactors in the Federal Republic of Germany in the years 1966 to 1976. They determine the effect of the price development for the individual components of the nuclear fuel cycle on the fuel-cycle costs averaged over the whole power station life. Here account is taken also of inflation rates and the change in the DM/US $ parity. In addition they give the percentage apportionment of the fuel-cycle costs. The authors show that real fuel-cycle costs for nuclear power stations with light-water reactors in the Federal Republic of Germany have risen by 11% between 1966 and 1976. This contradicts the often repeated reproach that fuel costs in nuclear power stations are rising very steeply and are no longer competitive. (orig.) [de

  17. Vertical motion and elastic light-scattering of a laser-levitated water droplet

    International Nuclear Information System (INIS)

    Chan, C. W.; Lee, W. K.

    2001-01-01

    We report the vertical motion and elastic scattered light of a single laser-levitated water microdroplet as it slowly evaporated. The vertical displacement as a function of time exhibited peaks of a variety of widths. Morphology-dependent resonances (MDRs) that induced the displacement peaks were identified. We found that the Stokes equation is adequate to describe the vertical motions driven by broad MDRs. For motions driven by relatively narrow MDRs, significant deviations from results predicted by the Stokes equation were found. The elastic scattered light intensity as a function of the size of the droplet showed sudden increases attributable to deformations of the droplet as its size parameter scanned through narrow MDRs. Copyright 2001 Optical Society of America

  18. International academic program in technologies of light-water nuclear reactors. Phases of development and implementation

    International Nuclear Information System (INIS)

    Geraskin, N I; Glebov, V B

    2017-01-01

    The results of implementation of European educational projects CORONA and CORONA II dedicated to preserving and further developing nuclear knowledge and competencies in the area of technologies of light-water nuclear reactors are analyzed. Present article addresses issues of design and implementation of the program for specialized training in the branch of technologies of light-water nuclear reactors. The systematic approach has been used to construct the program for students of nuclear specialties, which corresponding to IAEA standards and commonly accepted nuclear principles recognized in the European Union. Possibilities of further development of the international cooperation between countries and educational institutions are analyzed. Special attention is paid to e-learning/distance training, nuclear knowledge preservation and interaction with European Nuclear Education Network. (paper)

  19. Monocrystalline silicon photovoltaic luminescent solar concentrator with 4.2% power conversion efficiency

    NARCIS (Netherlands)

    Desmet, L.; Ras, A.J.M.; Boer, de D.K.G.; Debije, M.G.

    2012-01-01

    We report conversion efficiencies of experimental single and dual light guide luminescent solar concentrators. We have built several 5¿¿cm×5¿¿cm and 10¿¿cm×10¿¿cm luminescent solar concentrator (LSC) demonstrators consisting of c-Si photovoltaic cells attached to luminescent light guides of Lumogen

  20. Development of Next-Generation LWR (Light Water Reactor) in Japan

    International Nuclear Information System (INIS)

    Yamamoto, T.; Kasai, S.

    2011-01-01

    The Next-Generation Light Water Reactor development program was launched in Japan in April 2008. The primary objective of the program is to cope with the need to replace existing nuclear power plants in Japan after 2030. The reactors to be developed are also expected to be a global standard design. Several innovative features are envisioned, including a reactor core system with uranium enrichment above 5%, a seismic isolation system, the use of long-life materials and innovative water chemistry, innovative construction techniques, safety systems with the best mix of passive and active concepts, and innovative digital technologies to further enhance reactor safety, reliability, economics, etc. In the first 3 years, a plant design concept with these innovative features is established and the effectiveness of the program is reevaluated. The major part of the program will be completed in 2015. (author)