WorldWideScience

Sample records for conventional radar-driven rocket

  1. ROCKET

    OpenAIRE

    CRUZ BARCELÓ, JULIA

    2015-01-01

    [In] The main objective of this project was to perform a stop-motion animation short film with my colleague Marta Soriano Gil, student of Fine Arts Degree at the Polytechnic University of Valencia, like myself. This project collects a year’s work developing the film, from the origins of the idea and the early stages of production to the final editing and audiovisual document. Rocket, is a project that has encompassed many disciplines, from the initial draws, designs and conc...

  2. Conventional and Bimodal Nuclear Thermal Rocket (NTR) Artificial Gravity Mars Transfer Vehicle Concepts

    Science.gov (United States)

    Borowski, Stanley K.; McCurdy, David R.; Packard, Thomas W.

    2016-01-01

    A variety of countermeasures have been developed to address the debilitating physiological effects of zero-gravity (0-g) experienced by cosmonauts and astronauts during their approximately 0.5 to 1.2 year long stays in low Earth orbit (LEO). Longer interplanetary flights, combined with possible prolonged stays in Mars orbit, could subject crewmembers to up to approximately 2.5 years of weightlessness. In view of known and recently diagnosed problems associated with 0-g, an artificial gravity (AG) spacecraft offers many advantages and may indeed be an enabling technology for human flights to Mars. A number of important human factors must be taken into account in selecting the rotation radius, rotation rate, and orientation of the habitation module or modules. These factors include the gravity gradient effect, radial and tangential Coriolis forces, along with cross-coupled acceleration effects. Artificial gravity Mars transfer vehicle (MTV) concepts are presented that utilize both conventional NTR, as well as, enhanced bimodal nuclear thermal rocket (BNTR) propulsion. The NTR is a proven technology that generates high thrust and has a specific impulse (Isp) capability of approximately 900 s-twice that of today's best chemical rockets. The AG/MTV concepts using conventional Nuclear Thermal Propulsion (NTP) carry twin cylindrical International Space Station (ISS)- type habitation modules with their long axes oriented either perpendicular or parallel to the longitudinal spin axis of the MTV and utilize photovoltaic arrays (PVAs) for spacecraft power. The twin habitat modules are connected to a central operations hub located at the front of the MTV via two pressurized tunnels that provide the rotation radius for the habitat modules. For the BNTR AG/MTV option, each engine has its own closed secondary helium(He)-xenon (Xe) gas loop and Brayton Rotating Unit (BRU) that can generate 10s of kilowatts (kWe) of spacecraft electrical power during the mission coast phase

  3. Torpedo Rockets

    Science.gov (United States)

    2004-01-01

    All through the 13th to the 15th Centuries there were reports of many rocket experiments. For example, Joanes de Fontana of Italy designed a surface-rurning, rocket-powered torpedo for setting enemy ships on fire

  4. Rocket Flight.

    Science.gov (United States)

    Van Evera, Bill; Sterling, Donna R.

    2002-01-01

    Describes an activity for designing, building, and launching rockets that provides students with an intrinsically motivating and real-life application of what could have been classroom-only concepts. Includes rocket design guidelines and a sample grading rubric. (KHR)

  5. Air-Breathing Rocket Engines

    Science.gov (United States)

    1998-01-01

    This photograph depicts an air-breathing rocket engine prototype in the test bay at the General Applied Science Lab facility in Ronkonkoma, New York. Air-breathing engines, known as rocket based, combined-cycle engines, get their initial take-off power from specially designed rockets, called air-augmented rockets, that boost performance about 15 percent over conventional rockets. When the vehicle's velocity reaches twice the speed of sound, the rockets are turned off and the engine relies totally on oxygen in the atmosphere to burn hydrogen fuel, as opposed to a rocket that must carry its own oxygen, thus reducing weight and flight costs. Once the vehicle has accelerated to about 10 times the speed of sound, the engine converts to a conventional rocket-powered system to propel the craft into orbit or sustain it to suborbital flight speed. NASA's Advanced Space Transportation Program at Marshall Space Flight Center, along with several industry partners and collegiate forces, is developing this technology to make space transportation affordable for everyone from business travelers to tourists. The goal is to reduce launch costs from today's price tag of $10,000 per pound to only hundreds of dollars per pound. NASA's series of hypersonic flight demonstrators currently include three air-breathing vehicles: the X-43A, X-43B and X-43C.

  6. Development of Kabila rocket: A radioisotope heated thermionic plasma rocket engine

    OpenAIRE

    Mboyi, Kalomba; Ren, Junxue; Liu, Yu

    2015-01-01

    A new type of plasma rocket engine, the Kabila rocket, using a radioisotope heated thermionic heating chamber instead of a conventional combustion chamber or catalyst bed is introduced and it achieves specific impulses similar to the ones of conventional solid and bipropellant rockets. Curium-244 is chosen as a radioisotope heat source and a thermal reductive layer is also used to obtain precise thermionic emissions. The self-sufficiency principle is applied by simultaneously heating up the e...

  7. Rocket Tablet,

    Science.gov (United States)

    1984-09-12

    the railway platform filled with sand, consumed by a great wave of emotion, looking at the soldiers and waving tearful farewells to them as well as...many matters awaiting me, how can I not be anxious?" Li Fuze rose and said farewell and Li Juemin insisted on -sending him off. These two comrades-in...front of the .? tombstone were the wife of the hero and several hundred solders; an entire rocket troop mourned the hero.... ...... from today on no

  8. YMCA ROCKET RAMPAGE! SUMMER CAMP

    National Research Council Canada - National Science Library

    Anonymous

    2014-01-01

    ... & Controls, sponsored the Rocket Rampagel summer camp at the YMCA in Eklton MD. On day 1, campers took Rockets 101, constructing balloon rockets and straw rockets, followed by racket manufacturing, where campers made rocket "propellant" on day 2...

  9. Rocket propulsion elements

    CERN Document Server

    Sutton, George P

    2011-01-01

    The definitive text on rocket propulsion-now revised to reflect advancements in the field For sixty years, Sutton's Rocket Propulsion Elements has been regarded as the single most authoritative sourcebook on rocket propulsion technology. As with the previous edition, coauthored with Oscar Biblarz, the Eighth Edition of Rocket Propulsion Elements offers a thorough introduction to basic principles of rocket propulsion for guided missiles, space flight, or satellite flight. It describes the physical mechanisms and designs for various types of rockets' and provides an unders

  10. Rockets two classic papers

    CERN Document Server

    Goddard, Robert

    2002-01-01

    Rockets, in the primitive form of fireworks, have existed since the Chinese invented them around the thirteenth century. But it was the work of American Robert Hutchings Goddard (1882-1945) and his development of liquid-fueled rockets that first produced a controlled rocket flight. Fascinated by rocketry since boyhood, Goddard designed, built, and launched the world's first liquid-fueled rocket in 1926. Ridiculed by the press for suggesting that rockets could be flown to the moon, he continued his experiments, supported partly by the Smithsonian Institution and defended by Charles Lindbergh. T

  11. Air-Breathing Rocket Engine Test

    Science.gov (United States)

    2000-01-01

    This photograph depicts an air-breathing rocket engine that completed an hour or 3,600 seconds of testing at the General Applied Sciences Laboratory in Ronkonkoma, New York. Referred to as ARGO by its design team, the engine is named after the mythological Greek ship that bore Jason and the Argonauts on their epic voyage of discovery. Air-breathing engines, known as rocket based, combined-cycle engines, get their initial take-off power from specially designed rockets, called air-augmented rockets, that boost performance about 15 percent over conventional rockets. When the vehicle's velocity reaches twice the speed of sound, the rockets are turned off and the engine relies totally on oxygen in the atmosphere to burn hydrogen fuel, as opposed to a rocket that must carry its own oxygen, thus reducing weight and flight costs. Once the vehicle has accelerated to about 10 times the speed of sound, the engine converts to a conventional rocket-powered system to propel the craft into orbit or sustain it to suborbital flight speed. NASA's Advanced SpaceTransportation Program at Marshall Space Flight Center, along with several industry partners and collegiate forces, is developing this technology to make space transportation affordable for everyone from business travelers to tourists. The goal is to reduce launch costs from today's price tag of $10,000 per pound to only hundreds of dollars per pound. NASA's series of hypersonic flight demonstrators currently include three air-breathing vehicles: the X-43A, X-43B and X-43C.

  12. Liquid Rocket Engine Testing

    Science.gov (United States)

    2016-10-21

    Briefing Charts 3. DATES COVERED (From - To) 17 October 2016 – 26 October 2016 4. TITLE AND SUBTITLE Liquid Rocket Engine Testing 5a. CONTRACT NUMBER...298 (Rev. 8-98) Prescribed by ANSI Std. 239.18 Liquid Rocket Engine Testing SFTE Symposium 21 October 2016 Jake Robertson, Capt USAF AFRL... Rocket Lab Distribution A: Approved for Public Release; Distribution Unlimited. PA Clearance 16493 2Distribution A: Approved for Public Release

  13. Introduction to rocket science and engineering

    CERN Document Server

    Taylor, Travis S

    2009-01-01

    What Are Rockets? The History of RocketsRockets of the Modern EraRocket Anatomy and NomenclatureWhy Are Rockets Needed? Missions and PayloadsTrajectoriesOrbitsOrbit Changes and ManeuversBallistic Missile TrajectoriesHow Do Rockets Work? ThrustSpecific ImpulseWeight Flow RateTsiolkovsky's Rocket EquationStagingRocket Dynamics, Guidance, and ControlHow Do Rocket Engines Work? The Basic Rocket EngineThermodynamic Expansion and the Rocket NozzleExit VelocityRocket Engine Area Ratio and LengthsRocket Engine Design ExampleAre All Rockets the Same? Solid Rocket EnginesLiquid Propellant Rocket Engines

  14. The flight of uncontrolled rockets

    CERN Document Server

    Gantmakher, F R; Dryden, H L

    1964-01-01

    International Series of Monographs on Aeronautics and Astronautics, Division VII, Volume 5: The Flight of Uncontrolled Rockets focuses on external ballistics of uncontrolled rockets. The book first discusses the equations of motion of rockets. The rocket as a system of changing composition; application of solidification principle to rockets; rotational motion of rockets; and equations of motion of the center of mass of rockets are described. The text looks at the calculation of trajectory of rockets and the fundamentals of rocket dispersion. The selection further focuses on the dispersion of f

  15. Not just rocket science

    Energy Technology Data Exchange (ETDEWEB)

    MacAdam, S.; Anderson, R. [Celan Energy Systems, Rancho Cordova, CA (United States)

    2007-10-15

    The paper explains a different take on oxyfuel combustion. Clean Energy Systems (CES) has integrated aerospace technology into conventional power systems, creating a zero-emission power generation technology that has some advantages over other similar approaches. When using coal as a feedstock, the CES process burns syngas rather than raw coal. The process uses recycled water and steam to moderate the temperature, instead of recycled CO{sub 2}. With no air ingress, the CES process produces very pure CO{sub 2}. This makes it possible to capture over 99% of the CO{sub 2} resulting from combustion. CES uses the combustion products to drive the turbines, rather than indirectly raising steam for steam turbines, as in the oxyfuel process used by companies such as Vattenfall. The core of the process is a high-pressure oxy-combustor adapted from rocket engine technology. This combustor burns gaseous or liquid fuels with gaseous oxygen in the presence of water. Fuels include natural gas, coal or coke-derived synthesis gas, landfill and biodigester gases, glycerine solutions and oil/water emulsion. 2 figs.

  16. Development of Kabila rocket: A radioisotope heated thermionic plasma rocket engine

    Directory of Open Access Journals (Sweden)

    Kalomba Mboyi

    2015-04-01

    Full Text Available A new type of plasma rocket engine, the Kabila rocket, using a radioisotope heated thermionic heating chamber instead of a conventional combustion chamber or catalyst bed is introduced and it achieves specific impulses similar to the ones of conventional solid and bipropellant rockets. Curium-244 is chosen as a radioisotope heat source and a thermal reductive layer is also used to obtain precise thermionic emissions. The self-sufficiency principle is applied by simultaneously heating up the emitting material with the radioisotope decay heat and by powering the different valves of the plasma rocket engine with the same radioisotope decay heat using a radioisotope thermoelectric generator. This rocket engine is then benchmarked against a 1 N hydrazine thruster configuration operated on one of the Pleiades-HR-1 constellation spacecraft. A maximal specific impulse and power saving of respectively 529 s and 32% are achieved with helium as propellant. Its advantages are its power saving capability, high specific impulses and simultaneous ease of storage and restart. It can however be extremely voluminous and potentially hazardous. The Kabila rocket is found to bring great benefits to the existing spacecraft and further research should optimize its geometric characteristics and investigate the physical principals of its operation.

  17. Another Look at Rocket Thrust

    Science.gov (United States)

    Hester, Brooke; Burris, Jennifer

    2012-01-01

    Rocket propulsion is often introduced as an example of Newton's third law. The rocket exerts a force on the exhaust gas being ejected; the gas exerts an equal and opposite force--the thrust--on the rocket. Equivalently, in the absence of a net external force, the total momentum of the system, rocket plus ejected gas, remains constant. The law of…

  18. Estimation of Pressure Index and Temperature Sensitivity Coefficient of Solid Rocket Propellants by Static Evaluation

    OpenAIRE

    Himanshu Shekhar

    2009-01-01

    Burning rate of a solid rocket propellant depends on pressure and temperature. Conventional strand burner and Crawford bomb test on propellant strands was conducted to assess these dependent parameters. However, behaviour of propellant in rocket motor is different from its behaviour in strand form. To overcome this anomaly, data from static evaluation of rocket motor was directly used for assessment of these burningrate controlling parameters. The conventional empirical power law (r=aoexp[p{T...

  19. The gravitational wave rocket

    OpenAIRE

    Bonnor, W. B.; Piper, M. S.

    1997-01-01

    Einstein's equations admit solutions corresponding to photon rockets. In these a massive particle recoils because of the anisotropic emission of photons. In this paper we ask whether rocket motion can be powered only by the emission of gravitational waves. We use the double series approximation method and show that this is possible. A loss of mass and gain in momentum arise in the second approximation because of the emission of quadrupole and octupole waves.

  20. Large Payload Nuclear Rockets

    Science.gov (United States)

    1964-06-01

    CORE TIMP . 5013R SOLIDO FRACrON ,0.7 REFL MAT: No 25O00 EFL TEMP. • 4000R Tg a 3.0 CM sot a 1.0 w• 20000 -.. 0U.. 1,iI.000. 0 •0 4~100 \\ 080I0...Boiling and Super - critical Pressure States," ARS 1710-61, presented at American Rocket Society Propellants, Combustion, and Liquid Rockets Conference

  1. ROCKET PORT CLOSURE

    Science.gov (United States)

    Mattingly, J.T.

    1963-02-12

    This invention provides a simple pressure-actuated closure whereby windowless observation ports are opened to the atmosphere at preselected altitudes. The closure comprises a disk which seals a windowless observation port in rocket hull. An evacuated instrument compartment is affixed to the rocket hull adjacent the inner surface of the disk, while the outer disk surface is exposed to the atmosphere through which the rocket is traveling. The pressure differential between the evacuated instrument compartment and the relatively high pressure external atmosphere forces the disk against the edge of the observation port, thereby effecting a tight seai. The instrument compartment is evacuated to a pressure equal to the atmospheric pressure existing at the altitude at which it is desiretl that the closure should open. When the rocket reaches this preselected altitude, the inwardly directed atmospheric force on the disk is just equaled by the residual air pressure force within the instrument compartment. Consequently, the closure disk falls away and uncovers the open observation port. The separation of the disk from the rocket hull actuates a switch which energizes the mechanism of a detecting instrument disposed within the instrument compartment. (AE C)

  2. Flow separation in rocket nozzles under high altitude condition

    Science.gov (United States)

    Stark, R.; Génin, C.

    2017-01-01

    The knowledge of flow separation in rocket nozzles is crucial for rocket engine design and optimum performance. Typically, flow separation is studied under sea-level conditions. However, this disregards the change of the ambient density during ascent of a launcher. The ambient flow properties are an important factor concerning the design of altitude-adaptive rocket nozzles like the dual bell nozzle. For this reason an experimental study was carried out to study the influence of the ambient density on flow separation within conventional nozzles.

  3. Rocket Flight Path

    Directory of Open Access Journals (Sweden)

    Jamie Waters

    2014-09-01

    Full Text Available This project uses Newton’s Second Law of Motion, Euler’s method, basic physics, and basic calculus to model the flight path of a rocket. From this, one can find the height and velocity at any point from launch to the maximum altitude, or apogee. This can then be compared to the actual values to see if the method of estimation is a plausible. The rocket used for this project is modeled after Bullistic-1 which was launched by the Society of Aeronautics and Rocketry at the University of South Florida.

  4. Cryogenic rocket engine development at Delft aerospace rocket engineering

    NARCIS (Netherlands)

    Wink, J; Hermsen, R.; Huijsman, R; Akkermans, C.; Denies, L.; Barreiro, F.; Schutte, A.; Cervone, A.; Zandbergen, B.T.C.

    2016-01-01

    This paper describes the current developments regarding cryogenic rocket engine technology at Delft Aerospace Rocket Engineering (DARE). DARE is a student society based at Delft University of Technology with the goal of being the first student group in the world to launch a rocket into space. After

  5. Rockets in World War I

    Science.gov (United States)

    2004-01-01

    World War I enlisted rockets once again for military purposes. French pilots rigged rockets to the wing struts of their airplanes and aimed them at enemy observation balloons filled with highly inflammable hydrogen.

  6. Thiokol Solid Rocket Motors

    Science.gov (United States)

    Graves, S. R.

    2000-01-01

    This paper presents viewgraphs on thiokol solid rocket motors. The topics include: 1) Communications; 2) Military and government intelligence; 3) Positioning satellites; 4) Remote sensing; 5) Space burial; 6) Science; 7) Space manufacturing; 8) Advertising; 9) Space rescue space debris management; 10) Space tourism; 11) Space settlements; 12) Hazardous waste disposal; 13) Extraterrestrial resources; 14) Fast package delivery; and 15) Space utilities.

  7. ROCKETS: Soar to Success

    Science.gov (United States)

    Brett, Christine E. W.; O'Merle, Mary Jane; White, Gene

    2017-01-01

    This article describes ROCKETS, an after-school program for at-risk youth, and how the university students became involved in this service-learning project. The article discusses the steps that were taken to start the program, what is being done to continue the program, and the challenges that faculty have faced. This program is an authentic…

  8. The Relativistic Rocket

    Science.gov (United States)

    Antippa, Adel F.

    2009-01-01

    We solve the problem of the relativistic rocket by making use of the relation between Lorentzian and Galilean velocities, as well as the laws of superposition of successive collinear Lorentz boosts in the limit of infinitesimal boosts. The solution is conceptually simple, and technically straightforward, and provides an example of a powerful…

  9. This "Is" Rocket Science!

    Science.gov (United States)

    Keith, Wayne; Martin, Cynthia; Veltkamp, Pamela

    2013-01-01

    Using model rockets to teach physics can be an effective way to engage students in learning. In this paper, we present a curriculum developed in response to an expressed need for helping high school students review physics equations in preparation for a state-mandated exam. This required a mode of teaching that was more advanced and analytical…

  10. Low toxicity rocket propellants

    NARCIS (Netherlands)

    Wink, J.

    2014-01-01

    Hydrazine (N2H4) and its hypergolic mate nitrogen tetroxide (N2O4) are used on virtually all spacecraft and on a large number of launch vehicles. In recent years however, there has been an effort in identifying and developing alternatives to replace hydrazine as a rocket propellant.

  11. Rocket Combustion Chamber Coating

    Science.gov (United States)

    Holmes, Richard R. (Inventor); McKechnie, Timothy N. (Inventor)

    2001-01-01

    A coating with the ability to protect (1) the inside wall (i.e., lining) of a rocket engine combustion chamber and (2) parts of other apparatuses that utilize or are exposed to combustive or high temperature environments. The novelty of this invention lies in the manner a protective coating is embedded into the lining.

  12. Baking Soda and Vinegar Rockets

    Science.gov (United States)

    Claycomb, James R.; Zachary, Christopher; Tran, Quoc

    2009-01-01

    Rocket experiments demonstrating conservation of momentum will never fail to generate enthusiasm in undergraduate physics laboratories. In this paper, we describe tests on rockets from two vendors that combine baking soda and vinegar for propulsion. The experiment compared two analytical approximations for the maximum rocket height to the…

  13. Laser rocket system analysis

    Science.gov (United States)

    Jones, W. S.; Forsyth, J. B.; Skratt, J. P.

    1979-01-01

    The laser rocket systems investigated in this study were for orbital transportation using space-based, ground-based and airborne laser transmitters. The propulsion unit of these systems utilizes a continuous wave (CW) laser beam focused into a thrust chamber which initiates a plasma in the hydrogen propellant, thus heating the propellant and providing thrust through a suitably designed nozzle and expansion skirt. The specific impulse is limited only by the ability to adequately cool the thruster and the amount of laser energy entering the engine. The results of the study showed that, with advanced technology, laser rocket systems with either a space- or ground-based laser transmitter could reduce the national budget allocated to space transportation by 10 to 345 billion dollars over a 10-year life cycle when compared to advanced chemical propulsion systems (LO2-LH2) of equal capability. The variation in savings depends upon the projected mission model.

  14. ISRO's solid rocket motors

    Science.gov (United States)

    Nagappa, R.; Kurup, M. R.; Muthunayagam, A. E.

    1989-08-01

    Solid rocket motors have been the mainstay of ISRO's sounding rockets and the first generation satellite launch vehicles. For the new launch vehicle under development also, the solid rocket motors contribute significantly to the vehicle's total propulsive power. The rocket motors in use and under development have been developed for a variety of applications and range in size from 30 mm dia employing 450 g of solid propellant—employed for providing a spin to the apogee motors—to the giant 2.8 m dia motor employing nearly 130 tonnes of solid propellant. The initial development, undertaken in 1967 was of small calibre motor of 75 mm dia using a double base charge. The development was essentially to understand the technological elements. Extruded aluminium tubes were used as a rocket motor casing. The fore and aft closures were machined from aluminium rods. The grain was a seven-pointed star with an enlargement of the port at the aft end and was charged into the chamber using a polyester resin system. The nozzle was a metallic heat sink type with graphite throat insert. The motor was ignited with a black powder charge and fired for 2.0 s. Subsequent to this, further developmental activities were undertaken using PVC plastisol based propellants. A class of sounding rockets ranging from 125 to 560 mm calibre were realized. These rocket motors employed improved designs and had delivered lsp ranging from 2060 to 2256 Ns/kg. Case bonding could not be adopted due to the higher cure temperatures of the plastisol propellants but improvements were made in the grain charging techniques and in the design of the igniters and the nozzle. Ablative nozzles based on asbestos phenolic and silica phenolic with graphite inserts were used. For the larger calibre rocket motors, the lsp could be improved by metallic additives. In the early 1970s designs were evolved for larger and more efficient motors. A series of 4 motors for the country's first satellite launch vehicle SLV-3 were

  15. Hybrid Rocket Technology

    OpenAIRE

    Sankaran Venugopal; K K Rajesh; V. Ramanujachari

    2011-01-01

    With their unique operational characteristics, hybrid rockets can potentially provide safer, lower-cost avenues for spacecraft and missiles than the current solid propellant and liquid propellant systems. Classical hybrids can be throttled for thrust tailoring, perform in-flight motor shutdown and restart. In classical hybrids, the fuel is stored in the form of a solid grain, requiring only half the feed system hardware of liquid bipropellant engines. The commonly used fuels are benign, nonto...

  16. The relativistic rocket

    Energy Technology Data Exchange (ETDEWEB)

    Antippa, Adel F [Departement de Physique, Universite du Quebec a Trois-Rivieres, Trois-Rivieres, Quebec G9A 5H7 (Canada)

    2009-05-15

    We solve the problem of the relativistic rocket by making use of the relation between Lorentzian and Galilean velocities, as well as the laws of superposition of successive collinear Lorentz boosts in the limit of infinitesimal boosts. The solution is conceptually simple, and technically straightforward, and provides an example of a powerful method that can be applied to a wide range of special relativistic problems of linear acceleration.

  17. Dual Expander Cycle Rocket Engine with an Intermediate, Closed-cycle Heat Exchanger

    Science.gov (United States)

    Greene, William D. (Inventor)

    2008-01-01

    A dual expander cycle (DEC) rocket engine with an intermediate closed-cycle heat exchanger is provided. A conventional DEC rocket engine has a closed-cycle heat exchanger thermally coupled thereto. The heat exchanger utilizes heat extracted from the engine's fuel circuit to drive the engine's oxidizer turbomachinery.

  18. Rocket + Science = Dialogue

    Science.gov (United States)

    Morris,Bruce; Sullivan, Greg; Burkey, Martin

    2010-01-01

    It's a cliche that rocket engineers and space scientists don t see eye-to-eye. That goes double for rocket engineers working on human spaceflight and scientists working on space telescopes and planetary probes. They work fundamentally different problems but often feel that they are competing for the same pot of money. Put the two groups together for a weekend, and the results could be unscientific or perhaps combustible. Fortunately, that wasn't the case when NASA put heavy lift launch vehicle designers together with astronomers and planetary scientists for two weekend workshops in 2008. The goal was to bring the top people from both groups together to see how the mass and volume capabilities of NASA's Ares V heavy lift launch vehicle could benefit the science community. Ares V is part of NASA's Constellation Program for resuming human exploration beyond low Earth orbit, starting with missions to the Moon. In the current mission scenario, Ares V launches a lunar lander into Earth orbit. A smaller Ares I rocket launches the Orion crew vehicle with up to four astronauts. Orion docks with the lander, attached to the Ares V Earth departure stage. The stage fires its engine to send the mated spacecraft to the Moon. Standing 360 feet high and weighing 7.4 million pounds, NASA's new heavy lifter will be bigger than the 1960s-era Saturn V. It can launch almost 60 percent more payload to translunar insertion together with the Ares I and 35 percent more mass to low Earth orbit than the Saturn V. This super-sized capability is, in short, designed to send more people to more places to do more things than the six Apollo missions.

  19. Rocket Assembly and Checkout Facility

    Data.gov (United States)

    Federal Laboratory Consortium — FUNCTION: Integrates, tests, and calibrates scientific instruments flown on sounding rocket payloads. The scientific instruments are assembled on an optical bench;...

  20. Rhenium Rocket Manufacturing Technology

    Science.gov (United States)

    1997-01-01

    The NASA Lewis Research Center's On-Board Propulsion Branch has a research and technology program to develop high-temperature (2200 C), iridium-coated rhenium rocket chamber materials for radiation-cooled rockets in satellite propulsion systems. Although successful material demonstrations have gained much industry interest, acceptance of the technology has been hindered by a lack of demonstrated joining technologies and a sparse materials property data base. To alleviate these concerns, we fabricated rhenium to C-103 alloy joints by three methods: explosive bonding, diffusion bonding, and brazing. The joints were tested by simulating their incorporation into a structure by welding and by simulating high-temperature operation. Test results show that the shear strength of the joints degrades with welding and elevated temperature operation but that it is adequate for the application. Rhenium is known to form brittle intermetallics with a number of elements, and this phenomena is suspected to cause the strength degradation. Further bonding tests with a tantalum diffusion barrier between the rhenium and C-103 is planned to prevent the formation of brittle intermetallics.

  1. What fuel for a rocket?

    CERN Document Server

    Miranda, E N

    2012-01-01

    Elementary concepts from general physics and thermodynamics have been used to analyze rocket propulsion. Making some reasonable assumptions, an expression for the exit velocity of the gases is found. From that expression one can conclude what are the desired properties for a rocket fuel.

  2. Nuclear Rocket Engine Reactor

    CERN Document Server

    Lanin, Anatoly

    2013-01-01

    The development of a nuclear rocket engine reactor (NRER ) is presented in this book. The working capacity of an active zone NRER under mechanical and thermal load, intensive neutron fluxes, high energy generation (up to 30 MBT/l) in a working medium (hydrogen) at temperatures up to 3100 K is displayed. Design principles and bearing capacity of reactors area discussed on the basis of simulation experiments and test data of a prototype reactor. Property data of dense constructional, porous thermal insulating and fuel materials like carbide and uranium carbide compounds in the temperatures interval 300 - 3000 K are presented. Technological aspects of strength and thermal strength resistance of materials are considered. The design procedure of possible emergency processes in the NRER is developed and risks for their origination are evaluated. Prospects of the NRER development for pilotless space devices and piloted interplanetary ships are viewed.

  3. The Application of Counter-Rotating Turbine in Rocket Turbopump

    Directory of Open Access Journals (Sweden)

    Tang Fei

    2008-01-01

    Full Text Available Counter rotating turbine offers advantages on weight, volume, efficiency, and maneuverability relative to the conventional turbine because of its special architecture. Nowadays, it has been a worldwide research emphasis and has been used widely in the aeronautic field, while its application in the astronautic field is seldom investigated. Researches of counter rotating turbine for rocket turbopump are reviewed in this paper. A primary analysis of a vaneless counter rotating-turbine configuration with rotors of different diameters and rotational speeds is presented. This unconventional configuration meets the requirements of turbopump and may benefit the performance and reliability of rocket engines.

  4. Study of Rapid-Regression Liquefying Hybrid Rocket Fuels

    Science.gov (United States)

    Zilliac, Greg; DeZilwa, Shane; Karabeyoglu, M. Arif; Cantwell, Brian J.; Castellucci, Paul

    2004-01-01

    A report describes experiments directed toward the development of paraffin-based hybrid rocket fuels that burn at regression rates greater than those of conventional hybrid rocket fuels like hydroxyl-terminated butadiene. The basic approach followed in this development is to use materials such that a hydrodynamically unstable liquid layer forms on the melting surface of a burning fuel body. Entrainment of droplets from the liquid/gas interface can substantially increase the rate of fuel mass transfer, leading to surface regression faster than can be achieved using conventional fuels. The higher regression rate eliminates the need for the complex multi-port grain structures of conventional solid rocket fuels, making it possible to obtain acceptable performance from single-port structures. The high-regression-rate fuels contain no toxic or otherwise hazardous components and can be shipped commercially as non-hazardous commodities. Among the experiments performed on these fuels were scale-up tests using gaseous oxygen. The data from these tests were found to agree with data from small-scale, low-pressure and low-mass-flux laboratory tests and to confirm the expectation that these fuels would burn at high regression rates, chamber pressures, and mass fluxes representative of full-scale rocket motors.

  5. Exergy Analysis of Rocket Systems

    Science.gov (United States)

    Gilbert, Andrew; Mesmer, Bryan; Watson, Michael D.

    2015-01-01

    Exergy is defined as the useful work available from a system in a specified environment. Exergy analysis allows for comparison between different system designs, and allows for comparison of subsystem efficiencies within system designs. The proposed paper explores the relationship between the fundamental rocket equation and an exergy balance equation. A previously derived exergy equation related to rocket systems is investigated, and a higher fidelity analysis will be derived. The exergy assessments will enable informed, value-based decision making when comparing alternative rocket system designs, and will allow the most efficient configuration among candidate configurations to be determined.

  6. Iterative learning control for the liquid rocket propulsion systems

    Science.gov (United States)

    Ryu, Youngsu; Lee, Tai-yong; Jung, Youngsuk; Oh, Seunghyub

    2005-12-01

    This paper addressed mathematical modeling and control of liquid rocket propulsion system (LRPS). Dynamic simulation of LRPS shows that control difficulty is rooted from the slow dynamics and high nonlinearity of the rocket motion. As a consequence a conventional feedback control technique is unsuitable for controlling the rocket motion. In this paper, it is proposed to use both cascade and iterative learning control techniques including feedback controllers. Using the cascade control algorithm it is enabled to overcome the control difficulty to a certain degree caused by the variation of time constants. Iterative learning control strategies improve the tracking performance and guarantee the safety through repetition. The LRPS control system which tracks the changes in the set-point and also diminishes the disturbance under modeling error has been synthesized. Overall performance of proposed control system has been demonstrated by means of thorough numerical simulation of LRPS control system.

  7. British used Congreve Rockets to Attack Napoleon

    Science.gov (United States)

    2004-01-01

    Sir William Congreve developed a rocket with a range of about 9,000 feet. The incendiary rocket used black powder, an iron case, and a 16-foot guide stick. In 1806, British used Congreve rockets to attack Napoleon's headquarters in France. In 1807, Congreve directed a rocket attack against Copenhagen.

  8. Alternate Propellant Thermal Rocket Project

    Data.gov (United States)

    National Aeronautics and Space Administration — The Alternate Propellant Thermal Rocket (APTR) is a novel concept for propulsion of space exploration or orbit transfer vehicles. APTR propulsion is provided by...

  9. Nuclear rocket engine reactor

    Energy Technology Data Exchange (ETDEWEB)

    Lanin, Anatoly

    2013-07-01

    Covers a new technology of nuclear reactors and the related materials aspects. Integrates physics, materials science and engineering Serves as a basic book for nuclear engineers and nuclear physicists. The development of a nuclear rocket engine reactor (NRER) is presented in this book. The working capacity of an active zone NRER under mechanical and thermal load, intensive neutron fluxes, high energy generation (up to 30 MBT/l) in a working medium (hydrogen) at temperatures up to 3100 K is displayed. Design principles and bearing capacity of reactors area discussed on the basis of simulation experiments and test data of a prototype reactor. Property data of dense constructional, porous thermal insulating and fuel materials like carbide and uranium carbide compounds in the temperatures interval 300 - 3000 K are presented. Technological aspects of strength and thermal strength resistance of materials are considered. The design procedure of possible emergency processes in the NRER is developed and risks for their origination are evaluated. Prospects of the NRER development for pilotless space devices and piloted interplanetary ships are viewed.

  10. Easier Analysis With Rocket Science

    Science.gov (United States)

    2003-01-01

    Analyzing rocket engines is one of Marshall Space Flight Center's specialties. When Marshall engineers lacked a software program flexible enough to meet their needs for analyzing rocket engine fluid flow, they overcame the challenge by inventing the Generalized Fluid System Simulation Program (GFSSP), which was named the co-winner of the NASA Software of the Year award in 2001. This paper describes the GFSSP in a wide variety of applications

  11. SAFE Testing Nuclear Rockets Economically

    Science.gov (United States)

    Howe, Steven D.; Travis, Bryan; Zerkle, David K.

    2003-01-01

    Several studies over the past few decades have recognized the need for advanced propulsion to explore the solar system. As early as the 1960s, Werner Von Braun and others recognized the need for a nuclear rocket for sending humans to Mars. The great distances, the intense radiation levels, and the physiological response to zero-gravity all supported the concept of using a nuclear rocket to decrease mission time. These same needs have been recognized in later studies, especially in the Space Exploration Initiative in 1989. One of the key questions that has arisen in later studies, however, is the ability to test a nuclear rocket engine in the current societal environment. Unlike the Rover/NERVA programs in the 1960s, the rocket exhaust can no longer be vented to the open atmosphere. As a consequence, previous studies have examined the feasibility of building a large-scale version of the Nuclear Furnace Scrubber that was demonstrated in 1971. We have investigated an alternative that would deposit the rocket exhaust along with any entrained fission products directly into the ground. The Subsurface Active Filtering of Exhaust, or SAFE, concept would allow variable sized engines to be tested for long times at a modest expense. A system overview, results of preliminary calculations, and cost estimates of proof of concept demonstrations are presented. The results indicate that a nuclear rocket could be tested at the Nevada Test Site for under $20 M.

  12. Nitrous oxide cooling in hybrid rocket nozzles

    Science.gov (United States)

    Lemieux, Patrick

    2010-02-01

    The Department of Mechanical Engineering at the California Polytechnic State University, San Luis Obispo, has developed an innovative program of experimental research and development on hybrid rocket motors (where the fuel and the oxidizer are in different phases prior to combustion). One project currently underway involves the development of aerospike nozzles for such motors. These nozzles, however, are even more susceptible to throat ablation than regular converging-diverging nozzles, due the nature of their flow expansion mechanism. This paper presents the result of a recent development project focused on reducing throat ablation in hybrid rocket motor nozzles. Although the method is specifically targeted at increasing the life and operating range of aerospike nozzles, this paper describes its proof-of-concept implementation on conventional nozzles. The method is based on a regenerative cooling mechanism that differs in practice from that used in liquid propellant motors. A series of experimental tests demonstrate that this new method is not only effective at reducing damage in the most ablative region of the nozzle, but that the nozzle can survive multiple test runs.

  13. Yes--This is Rocket Science: MMCs for Liquid Rocket Engines

    National Research Council Canada - National Science Library

    Shelley, J

    2001-01-01

    The Air Force's Integrated High-Payoff Rocket Propulsion Technologies (IHPRPT) Program has established aggressive goals for both improved performance and reduced cost of rocket engines and components...

  14. Rocket Science 101 Interactive Educational Program

    Science.gov (United States)

    Armstrong, Dennis; Funkhouse, Deborah; DiMarzio, Donald

    2007-01-01

    To better educate the public on the basic design of NASA s current mission rockets, Rocket Science 101 software has been developed as an interactive program designed to retain a user s attention and to teach about basic rocket parts. This program also has helped to expand NASA's presence on the Web regarding educating the public about the Agency s goals and accomplishments. The software was designed using Macromedia s Flash 8. It allows the user to select which type of rocket they want to learn about, interact with the basic parts, assemble the parts to create the whole rocket, and then review the basic flight profile of the rocket they have built.

  15. Rocket Science at the Nanoscale.

    Science.gov (United States)

    Li, Jinxing; Rozen, Isaac; Wang, Joseph

    2016-06-28

    Autonomous propulsion at the nanoscale represents one of the most challenging and demanding goals in nanotechnology. Over the past decade, numerous important advances in nanotechnology and material science have contributed to the creation of powerful self-propelled micro/nanomotors. In particular, micro- and nanoscale rockets (MNRs) offer impressive capabilities, including remarkable speeds, large cargo-towing forces, precise motion controls, and dynamic self-assembly, which have paved the way for designing multifunctional and intelligent nanoscale machines. These multipurpose nanoscale shuttles can propel and function in complex real-life media, actively transporting and releasing therapeutic payloads and remediation agents for diverse biomedical and environmental applications. This review discusses the challenges of designing efficient MNRs and presents an overview of their propulsion behavior, fabrication methods, potential rocket fuels, navigation strategies, practical applications, and the future prospects of rocket science and technology at the nanoscale.

  16. Low-thrust rocket trajectories

    Energy Technology Data Exchange (ETDEWEB)

    Keaton, P.W.

    1987-03-01

    The development of low-thrust propulsion systems to complement chemical propulsion systems will greatly enhance the evolution of future space programs. Two advantages of low-thrust rockets are stressed: first, in a strong gravitational field, such as occurs near the Earth, freighter missions with low-thrust engines require one-tenth as much propellant as do chemical engines. Second, in a weak gravitational field, such as occurs in the region between Venus and Mars, low-thrust rockets are faster than chemical rockets with comparable propellant mass. The purpose here is to address the physics of low-thrust trajectories and to interpret the results with two simple models. Analytic analyses are used where possible - otherwise, the results of numerical calculations are presented in graphs. The author has attempted to make this a self-contained report.

  17. Low-thrust rocket trajectories

    Energy Technology Data Exchange (ETDEWEB)

    Keaton, P.W.

    1986-01-01

    The development of low-thrust propulsion systems to complement chemical propulsion systems will greatly enhance the evolution of future space programs. Two advantages of low-thrust rockets are stressed: first, in a strong gravitational field, such as occurs near the Earth, freighter missions with low-thrust engines require one-tenth as much propellant as do chemical engines. Second, in a weak gravitational field, such as occurs in the region between Venus and Mars, low-thrust rockets are faster than chemical rockets with comparable propellant mass. The purpose here is to address the physics of low-thrust trajectories and to interpret the results with two simple models. Analytic analyses are used where possible - otherwise, the results of numerical calculations are presented in graphs. The author has attempted to make this a self-contained report. 57 refs., 10 figs.

  18. Italian Wild Rocket [Diplotaxis Tenuifolia (L. DC.]: Influence of Agricultural Practices on Antioxidant Molecules and on Cytotoxicity and Antiproliferative Effects

    Directory of Open Access Journals (Sweden)

    Roberto Pizzala

    2013-05-01

    Full Text Available Wild rocket [Diplotaxis tenuifolia (L. DC.] belongs to the Brassicaceae family and has its origin in the Mediterranean region. The effect of conventional and integrated cultivation practices on the nutritional properties and benefits of wild rocket [Diplotaxis tenuifolia (L. DC.] were studied. Bioactive molecules content (vitamin C, quercetin, lutein, antioxidant properties and bioactivity of polyphenolic extracts from the edible part of rocket in Caco-2 cells were determined. Regarding antioxidant properties, FRAP (Ferric Reducing Antioxidant Power values ranged from 4.44 ± 0.11 mmol/kg fw to 9.92 ± 0.46 mmol/kg fw for conventional rocket and from 4.13 ± 0.17 fw mmol/kg to 11.02 ± 0.45 mmol/kg fw for integrated rocket. The characteristics of wild rocket as a dietary source of antioxidants have been pointed out. Significant differences in the quality of conventional and integrated rocket have been shown, while no influence of agronomic practice on biological activity was reported. A significant accumulation of cells in G1 phase and a consequent reduction in the S and G2 + M phases were observed in Caco-2 cells treated with rocket polyphenol extract.

  19. Some typical solid propellant rocket motors

    NARCIS (Netherlands)

    Zandbergen, B.T.C.

    2013-01-01

    Typical Solid Propellant Rocket Motors (shortly referred to as Solid Rocket Motors; SRM's) are described with the purpose to form a database, which allows for comparative analysis and applications in practical SRM engineering.

  20. Metal Matrix Composites for Liquid Rocket Engines

    National Research Council Canada - National Science Library

    Shelley, J

    2001-01-01

    ...) technologies being developed for application to Liquid Rocket Engines (LIRE). Developments in LRE technology for the US Air Force are being tracked and planned through the Integrated High Payoff Rocket Propulsion Technologies Program (IHPRPT...

  1. Integrated Composite Rocket Nozzle Extension Project

    Data.gov (United States)

    National Aeronautics and Space Administration — ORBITEC proposes to develop and demonstrate an Integrated Composite Rocket Nozzle Extension (ICRNE) for use in rocket thrust chambers. The ICRNE will utilize an...

  2. Laser diagnostics for small rockets

    Science.gov (United States)

    Zupanc, Frank J.; Degroot, Wilhelmus A.

    1993-11-01

    Two nonintrusive flowfield diagnostics based on spectrally-resolved elastic (Rayleigh) and inelastic (Raman) laser light scattering were developed for obtaining local flowfield measurements in low-thrust gaseous H2/O2 rocket engines. The objective is to provide an improved understanding of phenomena occurring in small chemical rockets in order to facilitate the development and validation of advanced computational fluid dynamics (CFD) models for analyzing engine performance. The laser Raman scattering diagnostic was developed to measure major polyatomic species number densities and rotational temperatures in the high-density flowfield region extending from the injector through the chamber throat. Initial application of the Raman scattering diagnostic provided O2 number density and rotational temperature measurements in the exit plane of a low area-ratio nozzle and in the combustion chamber of a two-dimensional, optically-accessible rocket engine. In the low-density nozzle exit plane region where the Raman signal is too weak, a Doppler-resolved laser Rayleigh scattering diagnostic was developed to obtain axial and radial mean gas velocities, and in certain cases, H2O translational temperature and number density. The results from these measurements were compared with theoretical predictions from the RPLUS CFD code for analyzing rocket engine performance. Initial conclusions indicate that a detailed and rigorous modeling of the injector is required in order to make direct comparisons between laser diagnostic measurements and CFD predictions at the local level.

  3. Liquid propellant rocket combustion instability

    Science.gov (United States)

    Harrje, D. T.

    1972-01-01

    The solution of problems of combustion instability for more effective communication between the various workers in this field is considered. The extent of combustion instability problems in liquid propellant rocket engines and recommendations for their solution are discussed. The most significant developments, both theoretical and experimental, are presented, with emphasis on fundamental principles and relationships between alternative approaches.

  4. Multivariable optimization of liquid rocket engines using particle swarm algorithms

    Science.gov (United States)

    Jones, Daniel Ray

    Liquid rocket engines are highly reliable, controllable, and efficient compared to other conventional forms of rocket propulsion. As such, they have seen wide use in the space industry and have become the standard propulsion system for launch vehicles, orbit insertion, and orbital maneuvering. Though these systems are well understood, historical optimization techniques are often inadequate due to the highly non-linear nature of the engine performance problem. In this thesis, a Particle Swarm Optimization (PSO) variant was applied to maximize the specific impulse of a finite-area combustion chamber (FAC) equilibrium flow rocket performance model by controlling the engine's oxidizer-to-fuel ratio and de Laval nozzle expansion and contraction ratios. In addition to the PSO-controlled parameters, engine performance was calculated based on propellant chemistry, combustion chamber pressure, and ambient pressure, which are provided as inputs to the program. The performance code was validated by comparison with NASA's Chemical Equilibrium with Applications (CEA) and the commercially available Rocket Propulsion Analysis (RPA) tool. Similarly, the PSO algorithm was validated by comparison with brute-force optimization, which calculates all possible solutions and subsequently determines which is the optimum. Particle Swarm Optimization was shown to be an effective optimizer capable of quick and reliable convergence for complex functions of multiple non-linear variables.

  5. F. Gomez Arias' rocket vehicle project

    Science.gov (United States)

    Carreras, R.

    1977-01-01

    Research done by Spanish pioneer rocket scientists in the 19th century was investigated with major emphasis placed on F. Gomez Arias' rocket vehicle project. Arias, considered the world's first designer of rocket propelled, manned aircraft, was interested in solving the problem of space navigation. Major concerns included ascent and direction of heavier-than-airmachines, as well as ascent and direction of balloons.

  6. Measuring Model Rocket Engine Thrust Curves

    Science.gov (United States)

    Penn, Kim; Slaton, William V.

    2010-01-01

    This paper describes a method and setup to quickly and easily measure a model rocket engine's thrust curve using a computer data logger and force probe. Horst describes using Vernier's LabPro and force probe to measure the rocket engine's thrust curve; however, the method of attaching the rocket to the force probe is not discussed. We show how a…

  7. Premature ignition of a rocket motor.

    Energy Technology Data Exchange (ETDEWEB)

    Moore, Darlene Ruth

    2010-10-01

    During preparation for a rocket sled track (RST) event, there was an unexpected ignition of the zuni rocket motor (10/9/08). Three Sandia staff and a contractor were involved in the accident; the contractor was seriously injured and made full recovery. The data recorder battery energized the low energy initiator in the rocket.

  8. CFD Simulation of Liquid Rocket Engine Injectors

    Science.gov (United States)

    Farmer, Richard; Cheng, Gary; Chen, Yen-Sen; Garcia, Roberto (Technical Monitor)

    2001-01-01

    these investigators to be very valuable for code validation because combustion kinetics, turbulence models and atomization models based on low pressure experiments of hydrogen air combustion do not adequately verify analytical or CFD submodels which are necessary to simulate rocket engine combustion. We wish to emphasize that the simulations which we prepared for this meeting are meant to test the accuracy of the approximations used in our general purpose spray combustion models, rather than represent a definitive analysis of each of the experiments which were conducted. Our goal is to accurately predict local temperatures and mixture ratios in rocket engines; hence predicting individual experiments is used only for code validation. To replace the conventional JANNAF standard axisymmetric finite-rate (TDK) computer code 2 for performance prediction with CFD cases, such codes must posses two features. Firstly, they must be as easy to use and of comparable run times for conventional performance predictions. Secondly, they must provide more detailed predictions of the flowfields near the injector face. Specifically, they must accurately predict the convective mixing of injected liquid propellants in terms of the injector element configurations.

  9. Nanoparticles for solid rocket propulsion

    Energy Technology Data Exchange (ETDEWEB)

    Galfetti, L [Politecnico di Milano, SPLab, Milan (Italy); De Luca, L T [Politecnico di Milano, SPLab, Milan (Italy); Severini, F [Politecnico di Milano, SPLab, Milan (Italy); Meda, L [Polimeri Europa, Istituto G Donegani, Novara (Italy); Marra, G [Polimeri Europa, Istituto G Donegani, Novara (Italy); Marchetti, M [Universita di Roma ' La Sapienza' , Dipartimento di Ingegneria Aerospaziale ed Astronautica, Rome (Italy); Regi, M [Universita di Roma ' La Sapienza' , Dipartimento di Ingegneria Aerospaziale ed Astronautica, Rome (Italy); Bellucci, S [INFN, Laboratori Nazionali di Frascati, Frascati (Italy)

    2006-08-23

    The characterization of several differently sized aluminium powders, by BET (specific surface), EM (electron microscopy), XRD (x-ray diffraction), and XPS (x-ray photoelectron spectroscopy), was performed in order to evaluate their application in solid rocket propellant compositions. These aluminium powders were used in manufacturing several laboratory composite solid rocket propellants, based on ammonium perchlorate (AP) as oxidizer and hydroxil-terminated polybutadiene (HTPB) as binder. The reference formulation was an AP/HTPB/Al composition with 68/17/15% mass fractions respectively. The ballistic characterization of the propellants, in terms of steady burning rates, shows better performance for propellant compositions employing nano-aluminium when compared to micro-aluminium. Results obtained in the pressure range 1-70 bar show that by increasing the nano-Al mass fraction or decreasing the nano-Al size, larger steady burning rates are measured with essentially the same pressure sensitivity.

  10. Device for installing rocket engines

    Science.gov (United States)

    George, T. R., Jr. (Inventor)

    1976-01-01

    A device for installing rocket engines is reported that is supported at a cant relative to vertical by an axially extensible, tiltable pedestal. A lifting platform supports the rocket engine at its thrust chamber exit, including a mount having a concentric base characterized by a concave bearing surface, a plurality of uniformly spaced legs extended radially from the base, and an annular receiver coaxially aligned with the base and affixed to the distal ends of said legs for receiving the thrust chamber exit. The lifting platform rests on a seat concentrically related to the pedestal and affixed to an extended end portion thereof having a convex bearing surface mated in sliding engagement with the concave bearing surface of the annular base for accommodating a rocking motion of the platform.

  11. Rocket Engine Altitude Simulation Technologies

    Science.gov (United States)

    Woods, Jody L.; Lansaw, John

    2010-01-01

    John C. Stennis Space Center is embarking on a very ambitious era in its rocket engine propulsion test history. The first new large rocket engine test stand to be built at Stennis Space Center in over 40 years is under construction. The new A3 Test Stand is designed to test very large (294,000 Ibf thrust) cryogenic propellant rocket engines at a simulated altitude of 100,000 feet. A3 Test Stand will have an engine testing chamber where the engine will be fired after the air in the chamber has been evacuated to a pressure at the simulated altitude of less than 0.16 PSIA. This will result in a very unique environment with extremely low pressures inside a very large chamber and ambient pressures outside this chamber. The test chamber is evacuated of air using a 2-stage diffuser / ejector system powered by 5000 lb/sec of steam produced by 27 chemical steam generators. This large amount of power and flow during an engine test will result in a significant acoustic and vibrational environment in and around A3 Test Stand.

  12. Development of Thermal Barriers for Solid Rocket Motor Nozzle Joints

    Science.gov (United States)

    Steinetz, Bruce M.; Dunlap, Patrick H., Jr.

    1999-01-01

    The Space Shuttle solid rocket motor case assembly joints are sealed using conventional 0-ring seals. The 5500+F combustion gases are kept a safe distance away from the seals by thick layers of insulation. Special joint-fill compounds are used to fill the joints in the insulation to prevent a direct flowpath to the seals. On a number of occasions. NASA has observed in several of the rocket nozzle assembly joints hot gas penetration through defects in the joint- fill compound. The current nozzle-to-case joint design incorporates primary, secondary and wiper (inner-most) 0-rings and polysulfide joint-fill compound. In the current design, 1 out of 7 motors experience hot gas to the wiper 0-ring. Though the condition does not threaten motor safety, evidence of hot gas to the wiper 0-ring results in extensive reviews before resuming flight. NASA and solid rocket motor manufacturer Thiokol are working to improve the nozzle-to-case joint design by implementing a more reliable J-leg design and a thermal barrier, This paper presents burn-resistance, temperature drop, flow and resiliency test results for several types of NASA braided carbon-fiber thermal barriers. Burn tests were performed to determine the time to burn through each of the thermal barriers when exposed to the flame of an oxy-acetylene torch (5500 F), representative of the 5500 F solid rocket motor combustion temperatures. Thermal barriers braided out of carbon fibers endured the flame for over 6 minutes, three times longer than solid rocket motor burn time. Tests were performed on two thermal barrier braid architectures, denoted Carbon-3 and Carbon-6, to measure the temperature drop across and along the barrier in a compressed state when subjected to the flame of an oxyacetylene torch. Carbon-3 and Carbon-6 thermal barriers were excellent insulators causing temperature drops through their diameter of up to a 2800 and 2560 F. respectively. Gas temperature 1/4" downstream of the thermal barrier were within the

  13. Low thrust chemical rocket technology

    Science.gov (United States)

    Schneider, Steven J.

    1992-01-01

    An on-going technology program to improve the performance of low thrust chemical rockets for spacecraft on-board propulsion applications is reviewed. Improved performance and lifetime is sought by the development of new predictive tools to understand the combustion and flow physics, introduction of high temperature materials and improved component designs to optimize performance, and use of higher performance propellants. Improved predictive technology is sought through the comparison of both local and global predictions with experimental data. Predictions are based on both the RPLUS Navier-Stokes code with finite rate kinetics and the JANNAF methodology. Data were obtained with laser-based diagnostics along with global performance measurements. Results indicate that the modeling of the injector and the combustion process needs improvement in these codes and flow visualization with a technique such as 2-D laser induced fluorescence (LIF) would aid in resolving issues of flow symmetry and shear layer combustion processes. High temperature material fabrication processes are under development and small rockets are being designed, fabricated, and tested using these new materials. Rhenium coated with iridium for oxidation protection was produced by the Chemical Vapor Deposition (CVD) process and enabled an 800 K increase in rocket operating temperature. Performance gains with this material in rockets using Earth storable propellants (nitrogen tetroxide and monomethylhydrazine or hydrazine) were obtained through component redesign to eliminate fuel film cooling and its associated combustion inefficiency while managing head end thermal soakback. Material interdiffusion and oxidation characteristics indicated that the requisite lifetimes of tens of hours were available for thruster applications. Rockets were designed, fabricated, and tested with thrusts of 22, 62, 440 and 550 N. Performance improvements of 10 to 20 seconds specific impulse were demonstrated. Higher

  14. Two-dimensional motions of rockets

    Energy Technology Data Exchange (ETDEWEB)

    Kang, Yoonhwan [School of Electrical Engineering and Computer Sciences (EECS), Seoul National University, San 56-1, Sillim-dong, Gwanak-gu, Seoul 151-742 (Korea, Republic of); Bae, Saebyok [Institute for Gifted Students, Korea Advanced Institute of Science and Technology (KAIST), 373-1 Guseong-dong, Yuseong-gu, Daejeon 305-701 (Korea, Republic of)

    2007-01-15

    We analyse the two-dimensional motions of the rockets for various types of rocket thrusts, the air friction and the gravitation by using a suitable representation of the rocket equation and the numerical calculation. The slope shapes of the rocket trajectories are discussed for the three types of rocket engines. Unlike the projectile motions, the descending parts of the trajectories tend to be gentler and straighter slopes than the ascending parts for relatively large launching angles due to the non-vanishing thrusts. We discuss the ranges, the maximum altitudes and the engine performances of the rockets. It seems that the exponential fuel exhaustion can be the most potent engine for the longest and highest flights.0.

  15. Solid Rocket Testing at AFRL (Briefing Charts)

    Science.gov (United States)

    2016-10-21

    19b. TELEPHONE NUMBER (Include area code) 10/21/2016 Briefing Charts 01 October 2016 - 31 October 2016 Solid Rocket Testing at AFRL Robert Antypas Air...Unclassified SAR 18 R. Antypas N/A Solid Rocket Testing at AFRL 21 Oct 2016 Robert Antypas AFRL/RQRO -Distribution A: Approved for Public Release...Distribution Unlimited. PA#16492 2 Agenda • Solid Rocket Motors • History of Sea Level Testing • Small Component Testing • Full-scale Testing • Altitude

  16. Focused Rocket-Ejector RBCC Experiments

    Science.gov (United States)

    Santoro, Robert J.; Pal, Sibtosh

    2003-01-01

    This document reports the results of additional efforts for the Rocket Based Combined Cycle (RBCC) rocket-ejector mode research work carried out at the Perm State Propulsion Engineering Research Center in support of NASA s technology development efforts for enabling 3rd generation Reusable Launch Vehicles (RLV). The two tasks conducted under this program build on earlier NASA MSFC funded research program on rocket ejector investigations. The first task continued a systematic investigation of the improvements provided by a gaseous hydrogen (GHz)/oxygen (GO2) twin thruster RBCC rocket ejector system over a single rocket system. In a similar vein, the second task continued investigations into the performance of a hydrocarbon (liquid JP-7)/gaseous oxygen single thruster rocket-ejector system. To gain a systematic understanding of the rocket-ejector s internal fluid mechanic/combustion phenomena, experiments were conducted with both direct-connect and sea-level static diffusion and afterburning (DAB) configurations for a range of rocket operating conditions. For all experimental conditions, overall system performance was obtained through global measurements of wall static pressure profiles, heat flux profiles and engine thrust. For the GH2/GO2 propellant rocket ejector experiments, high frequency measurements of the pressure field within the system were also made to understand the unsteady behavior of the flowfield.

  17. The Advanced Solid Rocket Motor

    Science.gov (United States)

    Mitchell, Royce E.

    1992-08-01

    The Advanced Solid Rocket Motor will utilize improved design features and automated manufacturing methods to produce an inherently safer propulsive system for the Space Shuttle and future launch systems. This second-generation motor will also provide an additional 12,000 pounds of payload to orbit, enhancing the utility and efficiency of the Shuttle system. The new plant will feature strip-wound, asbestos-free insulation; propellant continuous mixing and casting; and extensive robotic systems. Following a series of static tests at the Stennis Space Center, MS flights are targeted to begin in early 1997.

  18. Rocket and Two Dimensional Immunoelectrophoresis in Diagnosis of Caprine Brucellosis.

    Science.gov (United States)

    Mehrabani, Davood; Gholami, Zahra; Kohanteb, Jamshid; Sepehrimanesh, Masood; Hosseini, Seyed Mohammad Hossein

    2015-08-01

    Brucellosis is a major bacterial zoonosis of global importance with the causative organisms of Gram-negative facultative intracellular pathogens. The aims of this study were to standardize two immunoelectrophoretic techniques, rocket and cross immunoelectrophoresis, and compare their results with other conventional serodiagnostic tests. Sera from 15 sheep, without any history of brucellosis vaccination, infected with Brucella melitensis M16 subcutaneously, were employed in a comparison of culture, precipitating, and immunoelectrophoretic tests. A 125 days serologic follow-up was performed after the infection was started. As a reference, these tests also done in the five healthy sheep. The results obtained with the rocket immunoelectrophoresis test correlated very well with those of the cross immunoelectrophoresis, whereas results of other tests such as culture, Rose Bengal, standard tube agglutination and 2-mercaptoethanol seruagglutination tests were inferior. As agglutination test shows cross reaction and a prozone phenomenon, and in blood culture, the bacteria is not always detectable, so they are time consuming rocket and cross immunoelectrophoresis are recommended because their results can be obtained in a shorter time.

  19. Liquid rocket combustion computer model with distributed energy release. DER computer program documentation and user's guide, volume 1

    Science.gov (United States)

    Combs, L. P.

    1974-01-01

    A computer program for analyzing rocket engine performance was developed. The program is concerned with the formation, distribution, flow, and combustion of liquid sprays and combustion product gases in conventional rocket combustion chambers. The capabilities of the program to determine the combustion characteristics of the rocket engine are described. Sample data code sheets show the correct sequence and formats for variable values and include notes concerning options to bypass the input of certain data. A seperate list defines the variables and indicates their required dimensions.

  20. Pressure And Thermal Modeling Of Rocket Launches

    Science.gov (United States)

    Smith, Sheldon D.; Myruski, Brian L.; Farmer, Richard C.; Freeman, Jon A.

    1995-01-01

    Report presents mathematical model for use in designing rocket-launching stand. Predicts pressure and thermal environment, as well as thermal responses of structures to impinging rocket-exhaust plumes. Enables relatively inexperienced analyst to determine time-varying distributions and absolute levels of pressure and heat loads on structures.

  1. Aerodynamics and flow characterisation of multistage rockets

    Science.gov (United States)

    Srinivas, G.; Prakash, M. V. S.

    2017-05-01

    The main objective of this paper is to conduct a systematic flow analysis on single, double and multistage rockets using ANSYS software. Today non-air breathing propulsion is increasing dramatically for the enhancement of space exploration. The rocket propulsion is playing vital role in carrying the payload to the destination. Day to day rocket aerodynamic performance and flow characterization analysis has becoming challenging task to the researchers. Taking this task as motivation a systematic literature is conducted to achieve better aerodynamic and flow characterization on various rocket models. The analyses on rocket models are very little especially in numerical side and experimental area. Each rocket stage analysis conducted for different Mach numbers and having different flow varying angle of attacks for finding the critical efficiency performance parameters like pressure, density and velocity. After successful completion of the analysis the research reveals that flow around the rocket body for Mach number 4 and 5 best suitable for designed payload. Another major objective of this paper is to bring best aerodynamics flow characterizations in both aero and mechanical features. This paper also brings feature prospectus of rocket stage technology in the field of aerodynamic design.

  2. Ionospheric shock waves triggered by rockets

    Directory of Open Access Journals (Sweden)

    C. H. Lin

    2014-09-01

    Full Text Available This paper presents a two-dimensional structure of the shock wave signatures in ionospheric electron density resulting from a rocket transit using the rate of change of the total electron content (TEC derived from ground-based GPS receivers around Japan and Taiwan for the first time. From the TEC maps constructed for the 2009 North Korea (NK Taepodong-2 and 2013 South Korea (SK Korea Space Launch Vehicle-II (KSLV-II rocket launches, features of the V-shaped shock wave fronts in TEC perturbations are prominently seen. These fronts, with periods of 100–600 s, produced by the propulsive blasts of the rockets appear immediately and then propagate perpendicularly outward from the rocket trajectory with supersonic velocities between 800–1200 m s−1 for both events. Additionally, clear rocket exhaust depletions of TECs are seen along the trajectory and are deflected by the background thermospheric neutral wind. Twenty minutes after the rocket transits, delayed electron density perturbation waves propagating along the bow wave direction appear with phase velocities of 800–1200 m s−1. According to their propagation character, these delayed waves may be generated by rocket exhaust plumes at earlier rocket locations at lower altitudes.

  3. V-2 Rocket at White Sands

    Science.gov (United States)

    1946-01-01

    A V-2 rocket takes flight at White Sands, New Mexico, in 1946. The German engineers and scientists who developed the V-2 came to the United States at the end of World War II and continued rocket testing under the direction of the U. S. Army, launching more than sixty V-2s.

  4. Singular Optimal Controls of Rocket Motion (Survey)

    Science.gov (United States)

    Kiforenko, B. N.

    2017-05-01

    Survey of modern state and discussion of problems of the perfection of methods of investigation of variational problems with a focus on mechanics of space flight are presented. The main attention is paid to the enhancement of the methods of solving of variational problems of rocket motion in the gravitational fields, including rocket motion in the atmosphere. These problems are directly connected with the permanently actual problem of the practical astronautics to increase the payload that is orbited by the carrier rockets in the circumplanetary orbits. An analysis of modern approaches to solving the problems of control of rockets and spacecraft motion on the trajectories with singular arcs that are optimal for the motion of the variable mass body in the medium with resistance is given. The presented results for some maneuvers can serve as an information source for decision making on designing promising rocket and space technology

  5. Electro magnetic compatibility of rockets; Rocket ni okeru denji tekigosei

    Energy Technology Data Exchange (ETDEWEB)

    Niimi, Y. [Nissan Motor Co. Ltd., Tokyo (Japan)

    1999-06-01

    Outlined herein is electro-magnetic compatibility (EMC), which is of crucial importance for rockets and satellites. It is concerned with interference between electronic devices, resulting from increased quantities of electromagnetic waves. This problem can be solved by keeping conducted emission (CE: emission of noise) or radiated emission (RE: radiated noise) of one component lower than conducted susceptibility (CS: resistance to noise) or radiated susceptibility (RS: ability of preventing malfunction by noise) of another component. The EMC-related standards have been established, base on the above concepts. They fall into two general categories; CISPR- and MIL-centered ones. MIL-STD-461 is one of the basic EMC standards for space craft. The aerospace industry should solve the various EMC-related problems specific to flying bodies, such as limited spaces for on-board devices, diversified types of components, common power sources, combinations of components supplied by different makers and ungrounded devices. The EMC testing unit installed can measure 20 Hz to 18 GHz of radiated noise and 20 Hz to 1 GHz of conducted noise, and works in an electrical field of up to 60 V/m at 14 KHz to 18 GHz. (NEDO)

  6. Regenerative cooling for liquid rocket engines

    Science.gov (United States)

    Qi, Feng

    1995-01-01

    Heat transfer in the thrust chamber is of great importance in the design of liquid propellant rocket engines. Regenerative cooling is an advanced method which can ensure not only the proper running but also higher performance of a rocket engine. The theoretical model is complicated, it relates to fluid dynamics, heat transfer, combustion, etc... In this paper, a regenerative cooling model is presented. Effects such as radiation, heat transfer to environment, variable thermal properties and coking are included in the model. This model can be applied to all kinds of liquid propellant rocket engines as well as similar constructions. The modularized computer code is completed in the work.

  7. Hydrocarbon Rocket Technology Impact Forecasting

    Science.gov (United States)

    Stuber, Eric; Prasadh, Nishant; Edwards, Stephen; Mavris, Dimitri N.

    2012-01-01

    Forecasting method is a normative forecasting technique that allows the designer to quantify the effects of adding new technologies on a given design. This method can be used to assess and identify the necessary technological improvements needed to close the gap that exists between the current design and one that satisfies all constraints imposed on the design. The TIF methodology allows for more design knowledge to be brought to the earlier phases of the design process, making use of tools such as Quality Function Deployments, Morphological Matrices, Response Surface Methodology, and Monte Carlo Simulations.2 This increased knowledge allows for more informed decisions to be made earlier in the design process, resulting in shortened design cycle time. This paper will investigate applying the TIF method, which has been widely used in aircraft applications, to the conceptual design of a hydrocarbon rocket engine. In order to reinstate a manned presence in space, the U.S. must develop an affordable and sustainable launch capability. Hydrocarbon-fueled rockets have drawn interest from numerous major government and commercial entities because they offer a low-cost heavy-lift option that would allow for frequent launches1. However, the development of effective new hydrocarbon rockets would likely require new technologies in order to overcome certain design constraints. The use of advanced design methods, such as the TIF method, enables the designer to identify key areas in need of improvement, allowing one to dial in a proposed technology and assess its impact on the system. Through analyses such as this one, a conceptual design for a hydrocarbon-fueled vehicle that meets all imposed requirements can be achieved.

  8. Transient combustion in hybrid rockets

    Science.gov (United States)

    Karabeyoglu, Mustafa Arif

    1998-09-01

    Hybrid rockets regained interest recently as an alternative chemical propulsion system due to their advantages over the solid and liquid systems that are currently in use. Development efforts on hybrids revealed two important problem areas: (1) low frequency instabilities and (2) slow transient response. Both of these are closely related to the transient behavior which is a poorly understood aspect of hybrid operation. This thesis is mainly involved with a theoretical study of transient combustion in hybrid rockets. We follow the methodology of identifying and modeling the subsystems of the motor such as the thermal lags in the solid, boundary layer combustion and chamber gasdynamics from a dynamic point of view. We begin with the thermal lag in the solid which yield the regression rate for any given wall heat flux variation. Interesting phenomena such as overshooting during throttling and the amplification and phase lead regions in the frequency domain are discovered. Later we develop a quasi-steady transient hybrid combustion model supported with time delays for the boundary layer processes. This is integrated with the thermal lag system to obtain the thermal combustion (TC) coupled response. The TC coupled system with positive delays generated low frequency instabilities. The scaling of the instabilities are in good agreement with actual motor test data. Finally, we formulate a gasdynamic model for the hybrid chamber which successfully resolves the filling/emptying and longitudinal acoustic behavior of the motor. The TC coupled system is later integrated to the gasdynamic model to obtain the overall response (TCG coupled system) of gaseous oxidizer motors with stiff feed systems. Low frequency instabilities were also encountered for the TCG coupled system. Apart from the transient investigations, the regression rate behavior of liquefying hybrid propellants such as solid cryogenic materials are also studied. The theory is based on the possibility of enhancement

  9. Early Spin-Stabilised Rockets - the Rockets of Bergrat Heinrich Gottlob Kuhn

    Science.gov (United States)

    Fricke, H.-D.

    19th century's war rockets were at first stabilised by sticks, but these sticks produced a very uncertain flight path and it often happened that rockets changed their direction and even flew back to their firing position. So very many early inventors in Europe, America, and British-India tried to stabilise the rocket's flight in a better way. They tried fins and even rotation but they did not succeed. It is said in history that William Hale was the first who succeeded in constructing a spin stabilised (i.e. rotating) rocket which worked. But before him, in the thirties of that century, a German amateur rocket inventor succeeded as well and secretly proved his stickless rotating rockets in trials for Prussian officers and some years later officially for Saxon artillery officers. His invention was then bought by the kingdom of Saxony, but these were never use in the field because of lack of money.

  10. 21 CFR 866.4830 - Rocket immunoelectro-phoresis equipment.

    Science.gov (United States)

    2010-04-01

    ... 21 Food and Drugs 8 2010-04-01 2010-04-01 false Rocket immunoelectro-phoresis equipment. 866.4830... § 866.4830 Rocket immunoelectro-phoresis equipment. (a) Identification. Rocket immunoelectrophoresis... called rocket immunoelectrophoresis. In this procedure, an electric current causes the protein in...

  11. High Pressure Pumps for Rocket Motors

    National Research Council Canada - National Science Library

    Barske, U. M

    1950-01-01

    .... A simplified type of open impeller centrifugal pump which has been operated successfully in some short and medium range rockets is recommended as the most suitable type at the present state of development...

  12. Fundamentals of aircraft and rocket propulsion

    CERN Document Server

    El-Sayed, Ahmed F

    2016-01-01

    This book provides a comprehensive basics-to-advanced course in an aero-thermal science vital to the design of engines for either type of craft. The text classifies engines powering aircraft and single/multi-stage rockets, and derives performance parameters for both from basic aerodynamics and thermodynamics laws. Each type of engine is analyzed for optimum performance goals, and mission-appropriate engines selection is explained. Fundamentals of Aircraft and Rocket Propulsion provides information about and analyses of: thermodynamic cycles of shaft engines (piston, turboprop, turboshaft and propfan); jet engines (pulsejet, pulse detonation engine, ramjet, scramjet, turbojet and turbofan); chemical and non-chemical rocket engines; conceptual design of modular rocket engines (combustor, nozzle and turbopumps); and conceptual design of different modules of aero-engines in their design and off-design state. Aimed at graduate and final-year undergraduate students, this textbook provides a thorough grounding in th...

  13. Magnesium Based Rockets for Martian Exploration Project

    Data.gov (United States)

    National Aeronautics and Space Administration — In the proposed Phase II program, we will continue the development of Mg bipropellant rockets for Martian PAV applications. In Phase I, we proved the feasibility of...

  14. Photon rockets moving arbitrarily in any dimension

    CERN Document Server

    Podolsky, Jiri

    2010-01-01

    A family of explicit exact solutions of Einstein's equations in four and higher dimensions is studied which describes photon rockets accelerating due to an anisotropic emission of photons. It is possible to prescribe an arbitrary motion, so that the acceleration of the rocket need not be uniform - both its magnitude and direction may vary with time. Except at location of the point-like rocket the spacetimes have no curvature singularities, and topological defects like cosmic strings are also absent. Any value of a cosmological constant is allowed. We investigate some particular examples of motion, namely a straight flight and a circular trajectory, and we derive the corresponding radiation patterns and the mass loss of the rockets. We also demonstrate the absence of "gravitational aberration" in such spacetimes. This interesting member of the higher-dimensional Robinson-Trautman class of pure radiation spacetimes of algebraic type D generalises the class of Kinnersley's solutions that has long been known in f...

  15. Hydroxyl Tagging Velocimetry for Rocket Plumes Project

    Data.gov (United States)

    National Aeronautics and Space Administration — A non-intrusive method for measuring velocities in a rocket exhaust is proposed in a joint effort by MetroLaser and Vanderbilt University. Hydroxyl Tagging...

  16. Ionospheric modification by rocket effluents. Final report

    Energy Technology Data Exchange (ETDEWEB)

    Bernhardt, P.A.; Price, K.M.; da Rosa, A.V.

    1980-06-01

    This report describes experimental and theoretical studies related to ionospheric disturbances produced by rocket exhaust vapors. The purpose of our research was to estimate the ionospheric effects of the rocket launches which will be required to place the Satellite Power System (SPS) in operation. During the past year, we have developed computational tools for numerical simulation of ionospheric changes produced by the injection of rocket exhaust vapors. The theoretical work has dealt with (1) the limitations imposed by condensation phenomena in rocket exhaust; (2) complete modeling of the ionospheric depletion process including neutral gas dynamics, plasma physics, chemistry and thermal processes; and (3) the influence of the modified ionosphere on radio wave propagation. We are also reporting on electron content measurements made during the launch of HEAO-C on Sept. 20, 1979. We conclude by suggesting future experiments and areas for future research.

  17. Manufacturing Advanced Channel Wall Rocket Liners Project

    Data.gov (United States)

    National Aeronautics and Space Administration — This SBIR will adapt and demonstrate a low cost flexible method of manufacturing channel wall liquid rocket nozzles and combustors, while providing developers a...

  18. Magnesium Based Rockets for Martian Exploration Project

    Data.gov (United States)

    National Aeronautics and Space Administration — We propose to develop Mg rockets for Martian ascent vehicle applications. The propellant can be acquired in-situ from MgO in the Martian regolith (5.1% Mg by mass)...

  19. Advanced Vortex Hybrid Rocket Engine (AVHRE) Project

    Data.gov (United States)

    National Aeronautics and Space Administration — ORBITEC proposes to develop a unique Advanced Vortex Hybrid Rocket Engine (AVHRE) to achieve a safe, highly-reliable, low-cost and uniquely versatile propulsion...

  20. Hydroxyl Tagging Velocimetry for Rocket Plumes Project

    Data.gov (United States)

    National Aeronautics and Space Administration — To address the need for non-intrusive sensors for rocket plume properties, we propose a laser-based velocity diagnostic that does not require seeding, works in high...

  1. Advanced Vortex Hybrid Rocket Engine (AVHRE) Project

    Data.gov (United States)

    National Aeronautics and Space Administration — Orbital Technologies Corporation (ORBITEC) proposes to develop a unique Advanced Vortex Hybrid Rocket Engine (AVHRE) to achieve a highly-reliable, low-cost and...

  2. NASA Space Rocket Logistics Challenges

    Science.gov (United States)

    Neeley, James R.; Jones, James V.; Watson, Michael D.; Bramon, Christopher J.; Inman, Sharon K.; Tuttle, Loraine

    2014-01-01

    The Space Launch System (SLS) is the new NASA heavy lift launch vehicle and is scheduled for its first mission in 2017. The goal of the first mission, which will be uncrewed, is to demonstrate the integrated system performance of the SLS rocket and spacecraft before a crewed flight in 2021. SLS has many of the same logistics challenges as any other large scale program. Common logistics concerns for SLS include integration of discreet programs geographically separated, multiple prime contractors with distinct and different goals, schedule pressures and funding constraints. However, SLS also faces unique challenges. The new program is a confluence of new hardware and heritage, with heritage hardware constituting seventy-five percent of the program. This unique approach to design makes logistics concerns such as commonality especially problematic. Additionally, a very low manifest rate of one flight every four years makes logistics comparatively expensive. That, along with the SLS architecture being developed using a block upgrade evolutionary approach, exacerbates long-range planning for supportability considerations. These common and unique logistics challenges must be clearly identified and tackled to allow SLS to have a successful program. This paper will address the common and unique challenges facing the SLS programs, along with the analysis and decisions the NASA Logistics engineers are making to mitigate the threats posed by each.

  3. Focused RBCC Experiments: Two-Rocket Configuration Experiments and Hydrocarbon/Oxygen Rocket Ejector Experiments

    Science.gov (United States)

    Santoro, Robert J.; Pal, Sibtosh

    2003-01-01

    This addendum report documents the results of two additional efforts for the Rocket Based Combined Cycle (RBCC) rocket-ejector mode research work carried out at the Penn State Propulsion Engineering Research Center in support of NASA s technology development efforts for enabling 3 d generation Reusable Launch Vehicles (RLV). The tasks reported here build on an earlier NASA MSFC funded research program on rocket ejector investigations. The first task investigated the improvements of a gaseous hydrogen/oxygen twin thruster RBCC rocket ejector system over a single rocket system. The second task investigated the performance of a hydrocarbon (liquid JP-7)/gaseous oxygen single thruster rocket-ejector system. To gain a systematic understanding of the rocket-ejector s internal fluid mechanic/combustion phenomena, experiments were conducted with both direct-connect and sea-level static diffusion and afterburning (DAB) configurations for a range of rocket operating conditions. For all experimental conditions, overall system performance was obtained through global measurements of wall static pressure profiles, heat flux profiles and engine thrust. Detailed mixing and combustion information was obtained through Raman spectroscopy measurements of major species (gaseous oxygen, hydrogen, nitrogen and water vapor) for the gaseous hydrogen/oxygen rocket ejector experiments.

  4. Iranian rocket launch alarms the West

    Science.gov (United States)

    Jeandron, Michelle

    2008-03-01

    Iran came a step closer to becoming a space-faring nation last month, with the successful test of a rocket capable of carrying a satellite into orbit and the opening of a new space centre. Western commentators, however, have expressed scepticism about whether Iran really does have the technology to successfully launch a satellite, suggesting instead that the country is more interested in developing intercontinental ballistic missiles, which require similarly powerful rockets.

  5. Bondi-Sachs metrics and Photon Rockets

    CERN Document Server

    Ge, Huabin; Su, Qiping; Wang, Ding; Zhang, Xiao

    2011-01-01

    We study the Bondi-Sachs rockets with nonzero cosmological constant. We observe that the acceleration of the systems arises naturally in the asymptotic symmetries of (anti-) de Sitter spacetimes. Assuming the validity of the concepts of energy and mass previously introduced in asymptotically flat spacetimes, we find that the emission of pure radiation energy balances the loss of the Bondi mass in certain special families of the Bondi-Sachs rockets, so in these there is no gravitational radiation.

  6. Dr. von Braun With German Rocket Experimenters

    Science.gov (United States)

    1930-01-01

    Dr. von Braun was among a famous group of rocket experimenters in Germany in the 1930s. This photograph is believed to be made on the occasion of Herman Oberth's Kegelduese liquid rocket engine being certified as to performance during firing. From left to right are R. Nebel, Dr. Ritter, Mr. Baermueller, Kurt Heinish, Herman Oberth, Klaus Riedel, Wernher von Braun, and an unidentified person.

  7. Detailed modal testing of a solid rocket motor using a portable test system

    Science.gov (United States)

    Glozman, Vladimir; Brillhart, Ralph D.

    1990-01-01

    Modern analytical techniques have expended the ability to evaluate solid rocket motors used in launch vehicles. As more detailed models of solid rocket motors were developed, testing methods were required to verify the models. Experimental modal analysis (modal testing) of space structures and launch vehicles has been a requirement for model validation for many years. However, previous testing of solid rocket motors has not typically involved dynamic modal testing of full scale motors for verification of solid propellant or system assembly properties. Innovative approaches to the testing of solid rocket motors were developed and modal testing of a full scale, two segment Titan 34D Solid Rocket Motor (SRM) was performed to validate detailed computer modeling. Special modifications were made to convert an existing facility into a temporary modal test facility which would accommodate the test article. The assembly of conventional data acquisition equipment into a multiple channel count portable system has made modal testing in the field feasible. Special purpose hydraulic exciters were configured to apply the dynamic driving forces required. All instrumentation and data collection equipment were installed at the test site for the duration of the test program and removed upon completion. Conversion of an existing test facility into a temporary modal test facility, and use of a multiple channel count portable test data acquisition system allowed all test objectives to be met and resulted in validation of the computer model in a minimum time.

  8. Nitrous Oxide/Paraffin Hybrid Rocket Engines

    Science.gov (United States)

    Zubrin, Robert; Snyder, Gary

    2010-01-01

    Nitrous oxide/paraffin (N2OP) hybrid rocket engines have been invented as alternatives to other rocket engines especially those that burn granular, rubbery solid fuels consisting largely of hydroxyl- terminated polybutadiene (HTPB). Originally intended for use in launching spacecraft, these engines would also be suitable for terrestrial use in rocket-assisted takeoff of small airplanes. The main novel features of these engines are (1) the use of reinforced paraffin as the fuel and (2) the use of nitrous oxide as the oxidizer. Hybrid (solid-fuel/fluid-oxidizer) rocket engines offer advantages of safety and simplicity over fluid-bipropellant (fluid-fuel/fluid-oxidizer) rocket en - gines, but the thrusts of HTPB-based hybrid rocket engines are limited by the low regression rates of the fuel grains. Paraffin used as a solid fuel has a regression rate about 4 times that of HTPB, but pure paraffin fuel grains soften when heated; hence, paraffin fuel grains can, potentially, slump during firing. In a hybrid engine of the present type, the paraffin is molded into a 3-volume-percent graphite sponge or similar carbon matrix, which supports the paraffin against slumping during firing. In addition, because the carbon matrix material burns along with the paraffin, engine performance is not appreciably degraded by use of the matrix.

  9. Fuel-Cell Power Source Based on Onboard Rocket Propellants

    Science.gov (United States)

    Ganapathi, Gani; Narayan, Sri

    2010-01-01

    The use of onboard rocket propellants (dense liquids at room temperature) in place of conventional cryogenic fuel-cell reactants (hydrogen and oxygen) eliminates the mass penalties associated with cryocooling and boil-off. The high energy content and density of the rocket propellants will also require no additional chemical processing. For a 30-day mission on the Moon that requires a continuous 100 watts of power, the reactant mass and volume would be reduced by 15 and 50 percent, respectively, even without accounting for boiloff losses. The savings increase further with increasing transit times. A high-temperature, solid oxide, electrolyte-based fuel-cell configuration, that can rapidly combine rocket propellants - both monopropellant system with hydrazine and bi-propellant systems such as monomethyl hydrazine/ unsymmetrical dimethyl hydrazine (MMH/UDMH) and nitrogen tetroxide (NTO) to produce electrical energy - overcomes the severe drawbacks of earlier attempts in 1963-1967 of using fuel reforming and aqueous media. The electrical energy available from such a fuel cell operating at 60-percent efficiency is estimated to be 1,500 Wh/kg of reactants. The proposed use of zirconia-based oxide electrolyte at 800-1,000 C will permit continuous operation, very high power densities, and substantially increased efficiency of conversion over any of the earlier attempts. The solid oxide fuel cell is also tolerant to a wide range of environmental temperatures. Such a system is built for easy refueling for exploration missions and for the ability to turn on after several years of transit. Specific examples of future missions are in-situ landers on Europa and Titan that will face extreme radiation and temperature environments, flyby missions to Saturn, and landed missions on the Moon with 14 day/night cycles.

  10. Rockets and People. Volume 1

    Science.gov (United States)

    Chertok, Boris E; Siddiqi, Asif A. (Editor)

    2005-01-01

    Much has been written in the West on the history of the Soviet space program but few Westerners have read direct first-hand accounts of the men and women who were behind the many Russian accomplishments in exploring space.The memoirs of Academician Boris Chertok, translated from the original Russian, fills that gap.Chertok began his career as an electrician in 1930 at an aviation factory near Moscow.Twenty-seven years later, he became deputy to the founding figure of the Soviet space program, the mysterious Chief Designer Sergey Korolev. Chertok s sixty-year-long career and the many successes and failures of the Soviet space program constitute the core of his memoirs, Rockets and People. These writings are spread over four volumes. This is volume I. Academician Chertok not only describes and remembers, but also elicits and extracts profound insights from an epic story about a society s quest to explore the cosmos. In Volume 1, Chertok describes his early years as an engineer and ends with the mission to Germany after the end of World War II when the Soviets captured Nazi missile technology and expertise. Volume 2 takes up the story with the development of the world s first intercontinental ballistic missile ICBM) and ends with the launch of Sputnik and the early Moon probes. In Volume 3, Chertok recollects the great successes of the Soviet space program in the 1960s including the launch of the world s first space voyager Yuriy Gagarin as well as many events connected with the Cold War. Finally, in Volume 4, Chertok meditates at length on the massive Soviet lunar project designed to beat the Americans to the Moon in the 1960s, ending with his remembrances of the Energiya-Buran project.

  11. Guided Multiple Launch Rocket System/Guided Multiple Launch Rocket System Alternative Warhead (GMLRS/GMLRS AW)

    Science.gov (United States)

    2015-12-01

    Selected Acquisition Report (SAR) RCS: DD-A&T(Q&A)823-260 Guided Multiple Launch Rocket System/Guided Multiple Launch Rocket System Alternative...James Mills Presion Fires Rocket and Missile Systems Project Office 5250 Martin Road Redstone Arsenal, AL 35898-8000 james.c.mills18.mil@mail.mil...Launch Rocket System/Guided Multiple Launch Rocket System Alternative Warhead (GMLRS/GMLRS AW) DoD Component Army Responsible Office References SAR

  12. Hybrid rocket engine research program at Ryerson University

    Energy Technology Data Exchange (ETDEWEB)

    Karpynczyk, J.; Greatrix, D.R. [Ryerson Polytechnic Univ., Toronto, ON (Canada). Dept. of Aerospace Engineering

    2007-07-01

    Hybrid rocket engines (HREs) are a combination of solid and liquid propellant rocket engine designs. A solid fuel grain is located in the main combustion chamber and nozzle aft, while a stored liquid or gaseous oxidizer source supplies the required oxygen content through a throttle valve, for combustion downstream in the main chamber. HREs have drawn significant interest in certain flight applications, as they can be advantageous in terms of cost, ease and safety in storage, controllability in flight, and availability of propellant constituents. Key factors that will lead to further practical usage of HREs for flight applications are their predictability and reproducibility of operational performance. This paper presented information on studies being conducted at Ryerson University aimed at analyzing and testing the performance of HREs. It discussed and illustrated the conventional HRE and analyzed engine performance considerations such as the fuel regression rate, mass flux about the fuel surface, burning rate, and zero transformation parameter. Other factors relating to HRE performance that were presented included induced forward and aft oxidizer flow swirl effects as a means for augmenting the fuel regression rate, stoichiometric grain length issues, and feed system stability. Last, the paper presented a simplified schematic diagram of a proposed thrust/test stand for HRE test firings. 2 refs., 3 figs.

  13. Low Cost Nuclear Thermal Rocket Cermet Fuel Element Environment Testing

    Science.gov (United States)

    Bradley, David E.; Mireles, Omar R.; Hickman, Robert R.

    2011-01-01

    Deep space missions with large payloads require high specific impulse (Isp) and relatively high thrust in order to achieve mission goals in reasonable time frames. Conventional, storable propellants produce average Isp. Nuclear thermal rockets (NTR) capable of high Isp thrust have been proposed. NTR employs heat produced by fission reaction to heat and therefore accelerate hydrogen which is then forced through a rocket nozzle providing thrust. Fuel element temperatures are very high (up to 3000K) and hydrogen is highly reactive with most materials at high temperatures. Data covering the effects of high temperature hydrogen exposure on fuel elements is limited. The primary concern is the mechanical failure of fuel elements which employ high-melting-point metals, ceramics or a combination (cermet) as a structural matrix into which the nuclear fuel is distributed. It is not necessary to include fissile material in test samples intended to explore high temperature hydrogen exposure of the structural support matrices. A small-scale test bed designed to heat fuel element samples via non-contact RF heating and expose samples to hydrogen is being developed to assist in optimal material and manufacturing process selection without employing fissile material. This paper details the test bed design and results of testing conducted to date.

  14. Net-Shape HIP Powder Metallurgy Components for Rocket Engines

    Science.gov (United States)

    Bampton, Cliff; Goodin, Wes; VanDaam, Tom; Creeger, Gordon; James, Steve

    2005-01-01

    True net shape consolidation of powder metal (PM) by hot isostatic pressing (HIP) provides opportunities for many cost, performance and life benefits over conventional fabrication processes for large rocket engine structures. Various forms of selectively net-shape PM have been around for thirty years or so. However, it is only recently that major applications have been pursued for rocket engine hardware fabricated in the United States. The method employs sacrificial metallic tooling (HIP capsule and shaped inserts), which is removed from the part after HIP consolidation of the powder, by selective acid dissolution. Full exploitation of net-shape PM requires innovative approaches in both component design and materials and processing details. The benefits include: uniform and homogeneous microstructure with no porosity, irrespective of component shape and size; elimination of welds and the associated quality and life limitations; removal of traditional producibility constraints on design freedom, such as forgeability and machinability, and scale-up to very large, monolithic parts, limited only by the size of existing HIP furnaces. Net-shape PM HIP also enables fabrication of complex configurations providing additional, unique functionalities. The progress made in these areas will be described. Then critical aspects of the technology that still require significant further development and maturation will be discussed from the perspective of an engine systems builder and end-user of the technology.

  15. The Hague Judgments Convention

    DEFF Research Database (Denmark)

    Nielsen, Peter Arnt

    2011-01-01

    The Hague Judgments Convention of 2005 is the first global convention on international jurisdiction and recognition and enforcement of judgments in civil and commercial matters. The author explains the political and legal background of the Convention, its content and certain crucial issues during...

  16. Metallic Hydrogen: A Game Changing Rocket Propellant

    Science.gov (United States)

    Silvera, Isaac F.

    2016-01-01

    The objective of this research is to produce metallic hydrogen in the laboratory using an innovative approach, and to study its metastability properties. Current theoretical and experimental considerations expect that extremely high pressures of order 4-6 megabar are required to transform molecular hydrogen to the metallic phase. When metallic hydrogen is produced in the laboratory it will be extremely important to determine if it is metastable at modest temperatures, i.e. remains metallic when the pressure is released. Then it could be used as the most powerful chemical rocket fuel that exists and revolutionize rocketry, allowing single-stage rockets to enter orbit and chemically fueled rockets to explore our solar system.

  17. Additive Manufacturing for Affordable Rocket Engines

    Science.gov (United States)

    West, Brian; Robertson, Elizabeth; Osborne, Robin; Calvert, Marty

    2016-01-01

    Additive manufacturing (also known as 3D printing) technology has the potential to drastically reduce costs and lead times associated with the development of complex liquid rocket engine systems. NASA is using 3D printing to manufacture rocket engine components including augmented spark igniters, injectors, turbopumps, and valves. NASA is advancing the process to certify these components for flight. Success Story: MSFC has been developing rocket 3D-printing technology using the Selective Laser Melting (SLM) process. Over the last several years, NASA has built and tested several injectors and combustion chambers. Recently, MSFC has 3D printed an augmented spark igniter for potential use the RS-25 engines that will be used on the Space Launch System. The new design is expected to reduce the cost of the igniter by a factor of four. MSFC has also 3D printed and tested a liquid hydrogen turbopump for potential use on an Upper Stage Engine. Additive manufacturing of the turbopump resulted in a 45% part count reduction. To understanding how the 3D printed parts perform and to certify them for flight, MSFC built a breadboard liquid rocket engine using additive manufactured components including injectors, turbomachinery, and valves. The liquid rocket engine was tested seven times in 2016 using liquid oxygen and liquid hydrogen. In addition to exposing the hardware to harsh environments, engineers learned to design for the new manufacturing technique, taking advantage of its capabilities and gaining awareness of its limitations. Benefit: The 3D-printing technology promises reduced cost and schedule for rocket engines. Cost is a function of complexity, and the most complicated features provide the largest opportunities for cost reductions. This is especially true where brazes or welds can be eliminated. The drastic reduction in part count achievable with 3D printing creates a waterfall effect that reduces the number of processes and drawings, decreases the amount of touch

  18. The ultimate limits of the relativistic rocket equation. The Planck photon rocket

    Science.gov (United States)

    Haug, Espen Gaarder

    2017-07-01

    In this paper we look at the ultimate limits of a photon propulsion rocket. The maximum velocity for a photon propulsion rocket is just below the speed of light and is a function of the reduced Compton wavelength of the heaviest subatomic particles in the rocket. We are basically combining the relativistic rocket equation with Haug's new insight on the maximum velocity for anything with rest mass. An interesting new finding is that in order to accelerate any subatomic ;fundamental; particle to its maximum velocity, the particle rocket basically needs two Planck masses of initial load. This might sound illogical until one understands that subatomic particles with different masses have different maximum velocities. This can be generalized to large rockets and gives us the maximum theoretical velocity of a fully-efficient and ideal rocket. Further, no additional fuel is needed to accelerate a Planck mass particle to its maximum velocity; this also might sound absurd, but it has a very simple and logical solution that is explained in this paper.

  19. Large Liquid Rocket Testing: Strategies and Challenges

    Science.gov (United States)

    Rahman, Shamim A.; Hebert, Bartt J.

    2005-01-01

    Rocket propulsion development is enabled by rigorous ground testing in order to mitigate the propulsion systems risks that are inherent in space flight. This is true for virtually all propulsive devices of a space vehicle including liquid and solid rocket propulsion, chemical and non-chemical propulsion, boost stage and in-space propulsion and so forth. In particular, large liquid rocket propulsion development and testing over the past five decades of human and robotic space flight has involved a combination of component-level testing and engine-level testing to first demonstrate that the propulsion devices were designed to meet the specified requirements for the Earth to Orbit launchers that they powered. This was followed by a vigorous test campaign to demonstrate the designed propulsion articles over the required operational envelope, and over robust margins, such that a sufficiently reliable propulsion system is delivered prior to first flight. It is possible that hundreds of tests, and on the order of a hundred thousand test seconds, are needed to achieve a high-reliability, flight-ready, liquid rocket engine system. This paper overviews aspects of earlier and recent experience of liquid rocket propulsion testing at NASA Stennis Space Center, where full scale flight engines and flight stages, as well as a significant amount of development testing has taken place in the past decade. The liquid rocket testing experience discussed includes testing of engine components (gas generators, preburners, thrust chambers, pumps, powerheads), as well as engine systems and complete stages. The number of tests, accumulated test seconds, and years of test stand occupancy needed to meet varying test objectives, will be selectively discussed and compared for the wide variety of ground test work that has been conducted at Stennis for subscale and full scale liquid rocket devices. Since rocket propulsion is a crucial long-lead element of any space system acquisition or

  20. Advanced Solid Rocket Motor case design status

    Science.gov (United States)

    Palmer, G. L.; Cash, S. F.; Beck, J. P.

    1993-06-01

    The Advanced Solid Rocket Motor (ASRM) case design aimed at achieving a safer and more reliable solid rocket motor for the Space Shuttle system is considered. The ASRM case has a 150.0 inch diameter, three equal length segment, and 9Ni-4CO-0.3C steel alloy. The major design features include bolted casebolted case joints which close during pressurization, plasma arc welded factory joints, integral stiffener for splash down and recovery, and integral External Tank attachment rings. Each mechanical joint has redundant and verifiable o-ring seals.

  1. Water bottle rocket in undergraduate laboratory

    Science.gov (United States)

    Schultz, William

    2012-11-01

    In the winter semester of 2012, we implemented the modeling and testing of a water bottle rocket in ME 495, the Senior Laboratory in Mechanical Engineering at the University of Michigan. The four week lab was the most well received by the students in recent memory. There were significant challenges, but the result was a thorough review of their undergraduate fluids class with some advanced concepts such as directional stability of a projectile. The student teams designed their own rockets based on one of many standard 20 ounce soft drink bottles. The culminating contest brought impressive results and a surprise ending.

  2. Cusp Alfven and Plasma Electrodynamics Rocket (CAPER) Project

    Data.gov (United States)

    National Aeronautics and Space Administration — Launch a single rocket from Andoya Rocket Range into an active cusp event. Observe electric and magnetic fields, HF waves, electron and ion distributions and...

  3. Hydrocarbon Rocket Engine Plume Imaging with Laser Induced Incandescence Project

    Data.gov (United States)

    National Aeronautics and Space Administration — NASA/ Marshall Space Flight Center (MSFC) needs sensors that can be operated on rocket engine plume environments to improve NASA/SSC rocket engine performance. In...

  4. A study of early korean rockets (1377-1600)

    Science.gov (United States)

    Chae, Yeon Seok

    The first Korean rocket was fired between 1377 and 1389 and began the Korean development of rockets as a tactical weapon. Although, Korea had successfully demonstrated the use of rockets as firearms in the fifteenth century, there had been no effort to present the historical development of the early Korean rockets in a paper which will be useful to both historians and scientists. The book entitled Kuk Cho Ore Sorye (1474) in the Korean language provided extensive rocket system description, however it required considerable research to interpret them. This paper is the first study of early Korean rockets and launchers. The major effort in this study is directed toward the development of design concepts and details of early Korean rockets. Also, to substantiate support of the historical data presented, some versions of the early Korean rockets were made according to their specifications and fired successfully by the author in 1981.

  5. Government Relations: It's Not Rocket Science

    Science.gov (United States)

    Radway, Mike

    2007-01-01

    Many people in the early childhood education field are afraid of government relations work, intimidated by politicians, and believe the whole process is unseemly. The author asserts that they should not be afraid nor be intimidated because government relations is not rocket science and fundamentally officeholders are no different from the rest of…

  6. The rocket problem in general relativity

    CERN Document Server

    Henriques, Pedro G

    2011-01-01

    We derive the covariant optimality conditions for rocket trajectories in general relativity, with and without a bound on the magnitude of the proper acceleration. The resulting theory is then applied to solve two specific problems: the minimum fuel consumption transfer between two galaxies in a FLRW model, and between two stable circular orbits in the Schwarzschild spacetime.

  7. Rockets: Physical Science Teacher's Guide with Activities.

    Science.gov (United States)

    Vogt, Gregory L.; Rosenberg, Carla R., Ed.

    Rockets have evolved from simple tubes filled with black powder into mighty vehicles capable of launching a spacecraft out into the galaxy. The guide begins with background information sections on the history of rocketry, scientific principles, and practical rocketry. The sections on scientific principles and practical rocketry are based on Isaac…

  8. Rocketing into the future the history and technology of rocket planes

    CERN Document Server

    van Pelt, Michel

    2012-01-01

    Rocketing into the Future journeys into the exciting world of rocket planes, examining the exotic concepts and actual flying vehicles that have been devised over the last one hundred years. Lavishly illustrated with over 150 photographs, it recounts the history of rocket planes from the early pioneers who attached simple rockets on to their wooden glider airplanes to the modern world of high-tech research vehicles. The book then looks at the possibilities for the future. The technological and economic challenges of the Space Shuttle proved insurmountable, and thus the program was unable to fulfill its promise of low-cost access to space. However, the burgeoning market of suborbital space tourism may yet give the necessary boost to the development of a truly reusable spaceplane.

  9. NASA Sounding Rocket Program Educational Outreach

    Science.gov (United States)

    Rosanova, G.

    2013-01-01

    Educational and public outreach is a major focus area for the National Aeronautics and Space Administration (NASA). The NASA Sounding Rocket Program (NSRP) shares in the belief that NASA plays a unique and vital role in inspiring future generations to pursue careers in science, mathematics, and technology. To fulfill this vision, the NSRP engages in a variety of educator training workshops and student flight projects that provide unique and exciting hands-on rocketry and space flight experiences. Specifically, the Wallops Rocket Academy for Teachers and Students (WRATS) is a one-week tutorial laboratory experience for high school teachers to learn the basics of rocketry, as well as build an instrumented model rocket for launch and data processing. The teachers are thus armed with the knowledge and experience to subsequently inspire the students at their home institution. Additionally, the NSRP has partnered with the Colorado Space Grant Consortium (COSGC) to provide a "pipeline" of space flight opportunities to university students and professors. Participants begin by enrolling in the RockOn! Workshop, which guides fledgling rocketeers through the construction and functional testing of an instrumentation kit. This is then integrated into a sealed canister and flown on a sounding rocket payload, which is recovered for the students to retrieve and process their data post flight. The next step in the "pipeline" involves unique, user-defined RockSat-C experiments in a sealed canister that allow participants more independence in developing, constructing, and testing spaceflight hardware. These experiments are flown and recovered on the same payload as the RockOn! Workshop kits. Ultimately, the "pipeline" culminates in the development of an advanced, user-defined RockSat-X experiment that is flown on a payload which provides full exposure to the space environment (not in a sealed canister), and includes telemetry and attitude control capability. The RockOn! and Rock

  10. US Rocket Propulsion Industrial Base Health Metrics

    Science.gov (United States)

    Doreswamy, Rajiv

    2013-01-01

    The number of active liquid rocket engine and solid rocket motor development programs has severely declined since the "space race" of the 1950s and 1960s center dot This downward trend has been exacerbated by the retirement of the Space Shuttle, transition from the Constellation Program to the Space launch System (SLS) and similar activity in DoD programs center dot In addition with consolidation in the industry, the rocket propulsion industrial base is under stress. To Improve the "health" of the RPIB, we need to understand - The current condition of the RPIB - How this compares to past history - The trend of RPIB health center dot This drives the need for a concise set of "metrics" - Analogous to the basic data a physician uses to determine the state of health of his patients - Easy to measure and collect - The trend is often more useful than the actual data point - Can be used to focus on problem areas and develop preventative measures The nation's capability to conceive, design, develop, manufacture, test, and support missions using liquid rocket engines and solid rocket motors that are critical to its national security, economic health and growth, and future scientific needs. center dot The RPIB encompasses US government, academic, and commercial (including industry primes and their supplier base) research, development, test, evaluation, and manufacturing capabilities and facilities. center dot The RPIB includes the skilled workforce, related intellectual property, engineering and support services, and supply chain operations and management. This definition touches the five main segments of the U.S. RPIB as categorized by the USG: defense, intelligence community, civil government, academia, and commercial sector. The nation's capability to conceive, design, develop, manufacture, test, and support missions using liquid rocket engines and solid rocket motors that are critical to its national security, economic health and growth, and future scientific needs

  11. Varieties of conventional implicature

    Directory of Open Access Journals (Sweden)

    Eric Scott McCready

    2010-07-01

    Full Text Available This paper provides a system capable of analyzing the combinatorics of a wide range of conventionally implicated and expressive constructions in natural language via an extension of Potts's (2005 L_CI logic for supplementary conventional implicatures. In particular, the system is capable of analyzing objects of mixed conventionally implicated/expressive and at-issue type, and objects with conventionally implicated or expressive meanings which provide the main content of their utterances. The logic is applied to a range of constructions and lexical items in several languages. doi:10.3765/sp.3.8 BibTeX info

  12. How Does Rocket Propulsion Work? The most common answer to ...

    Indian Academy of Sciences (India)

    The most common answer to the above question is – hot jet of gas comes out of the nozzle of the rocket engine at high speeds and as a reaction the rocket moves (is propelled) in the opposite direction [1]. But is this answer right? Let us explore what goes on inside a rocket engine and arrive at the right answer. Generally ...

  13. 77 FR 50584 - Voluntary Licensing of Amateur Rocket Operations

    Science.gov (United States)

    2012-08-22

    ... Federal Aviation Administration 14 CFR Part 400 RIN 2120-AJ84 Voluntary Licensing of Amateur Rocket... certain amateur rocket launches an opportunity to voluntarily apply for a commercial space transportation... operator of a Class 3 \\1\\ amateur rocket \\2\\ to voluntarily apply for a license or experimental permit...

  14. 14 CFR 437.67 - Tracking a reusable suborbital rocket.

    Science.gov (United States)

    2010-01-01

    ... 14 Aeronautics and Space 4 2010-01-01 2010-01-01 false Tracking a reusable suborbital rocket. 437... a reusable suborbital rocket. A permittee must— (a) During permitted flight, measure in real time the position and velocity of its reusable suborbital rocket; and (b) Provide position and velocity...

  15. 77 FR 67269 - Voluntary Licensing of Amateur Rocket Operations; Withdrawal

    Science.gov (United States)

    2012-11-09

    ... Federal Aviation Administration 14 CFR Part 400 RIN 2120-AK16 Voluntary Licensing of Amateur Rocket... launch operators that conduct certain amateur rocket launches to voluntarily apply for a commercial space... advanced high-power rockets the option of applying for a chapter III launch license or permit, or...

  16. Peregrine 100-km Sounding Rocket Project

    Science.gov (United States)

    Zilliac, Gregory

    2012-01-01

    The Peregrine Sounding Rocket Program is a joint basic research program of NASA Ames Research Center, NASA Wallops, Stanford University, and the Space Propulsion Group, Inc. (SPG). The goal is to determine the applicability of this technology to a small launch system. The approach is to design, build, and fly a stable, efficient liquefying fuel hybrid rocket vehicle to an altitude of 100 km. The program was kicked off in October of 2006 and has seen considerable progress in the subsequent 18 months. This research group began studying liquifying hybrid rocket fuel technology more than a decade ago. The overall goal of the research was to gain a better understanding of the fundamental physics of the liquid layer entrainment process responsible for the large increase in regression rate observed in these fuels, and to demonstrate the effect of increased regression rate on hybrid rocket motor performance. At the time of this reporting, more than 400 motor tests were conducted with a variety of oxidizers (N2O, GOx, LOx) at ever increasing scales with thrust levels from 5 to over 15,000 pounds (22 N to over 66 kN) in order to move this technology from the laboratory to practical applications. The Peregrine program is the natural next step in this development. A number of small sounding rockets with diameters of 3, 4, and 6 in. (7.6, 10.2, and 15.2 cm) have been flown, but Peregrine at a diameter of 15 in. (38.1 cm) and 14,000-lb (62.3-kN) thrust is by far the largest system ever attempted and will be one of the largest hybrids ever flown. Successful Peregrine flights will set the stage for a wide range of applications of this technology.

  17. Development and Performance of the 10 kN Hybrid Rocket Motor for the Stratos II Sounding Rocket

    NARCIS (Netherlands)

    Werner, R.M.; Knop, T.R.; Wink, J; Ehlen, J; Huijsman, R; Powell, S; Florea, R.; Wieling, W; Cervone, A.; Zandbergen, B.T.C.

    2016-01-01

    This paper presents the development work of the 10 kN hybrid rocket motor DHX-200 Aurora. The DHX-200 Aurora was developed by Delft Aerospace Rocket Engineering (DARE) to power the Stratos II and Stratos II+ sounding rocket, with the later one being launched in October 2015. Stratos II and Stratos

  18. Replacement of chemical rocket launchers by beamed energy propulsion.

    Science.gov (United States)

    Fukunari, Masafumi; Arnault, Anthony; Yamaguchi, Toshikazu; Komurasaki, Kimiya

    2014-11-01

    Microwave Rocket is a beamed energy propulsion system that is expected to reach space at drastically lower cost. This cost reduction is estimated by replacing the first-stage engine and solid rocket boosters of the Japanese H-IIB rocket with Microwave Rocket, using a recently developed thrust model in which thrust is generated through repetitively pulsed microwave detonation with a reed-valve air-breathing system. Results show that Microwave Rocket trajectory, in terms of velocity versus altitude, can be designed similarly to the current H-IIB first stage trajectory. Moreover, the payload ratio can be increased by 450%, resulting in launch-cost reduction of 74%.

  19. Nuclear Thermal Rocket (NTR) Development Risk Communication

    Science.gov (United States)

    Kim, Tony

    2014-01-01

    There are clear advantages of development of a Nuclear Thermal Rocket (NTR) for a crewed mission to Mars. NTR for in-space propulsion enables more ambitious space missions by providing high thrust at high specific impulse (approximately 900 sec) that is 2 times the best theoretical performance possible for chemical rockets. Missions can be optimized for maximum payload capability to take more payload with reduced total mass to orbit; saving cost on reduction of the number of launch vehicles needed. Or missions can be optimized to minimize trip time significantly to reduce the deep space radiation exposure to the crew. NTR propulsion technology is a game changer for space exploration. However, "NUCLEAR" is a word that is feared and vilified by some groups and the hostility towards development of any nuclear systems can meet great opposition by the public as well as from national leaders and people in authority. Communication of nuclear safety will be critical to the success of the development of the NTR. Why is there a fear of nuclear? A bomb that can level a city is a scary weapon. The first and only times the Nuclear Bomb was used in a war was on Hiroshima and Nagasaki during World War 2. The "Little Boy" atomic bomb was dropped on Hiroshima on August 6, 1945 and the "Fat Man" on Nagasaki 3 days later on August 9th. Within the first 4 months of bombings, 90- 166 thousand people died in Hiroshima and 60-80 thousand died in Nagasaki. It is important to note for comparison that over 500 thousand people died and 5 million made homeless due to strategic bombing (approximately 150 thousand tons) of Japanese cities and war assets with conventional non-nuclear weapons between 1942- 1945. A major bombing campaign of "firebombing" of Tokyo called "Operation Meetinghouse" on March 9 and 10 consisting of 334 B-29's dropped approximately1,700 tons of bombs around 16 square mile area and over 100 thousand people have been estimated to have died. The declaration of death is very

  20. Rocketry investigate the science and technology of rockets and ballistics

    CERN Document Server

    Mooney, Carla

    2014-01-01

    Rocketry: Investigate the Science and Technology of Rockets and Ballistics introduces students to the fascinating world of rocketry and ballistics. Readers discover the history of rocket development, from the earliest fire arrows in China to modern-day space shuttles, as well as the main concepts of rocketry, including how rockets are launched, move through the atmosphere, and return to earth safely. Exploring the science behind rocket flight, kids learn how the forces of thrust, gravity, lift, and drag interact to determine a rocket's path, then imagine new uses and technologies in rocketry that are being developed today and for the future. Combining hands-on activities with physics, chemistry, and mathematics, Rocketry brings fun to learning about the world of rocket science. Entertaining illustrations and fascinating sidebars illuminate the topic, while Words to Know highlighted and defined within the text reinforce new vocabulary. Projects include building a pneumatic blast rocket and launcher, testing a ...

  1. Development of small solid rocket boosters for the ILR-33 sounding rocket

    Science.gov (United States)

    Nowakowski, Pawel; Okninski, Adam; Pakosz, Michal; Cieslinski, Dawid; Bartkowiak, Bartosz; Wolanski, Piotr

    2017-09-01

    This paper gives an overview of the development of a 6000 Newton-class solid rocket motor for suborbital applications. The design configuration and results of interior ballistics calculations are given. The initial use of the motor as the main propulsion system of the H1 experimental in-flight test platform, within the Polish Small Sounding Rocket Program, is presented. Comparisons of theoretical and experimental performance are shown. Both on-ground and in-flight tests are discussed. A novel composite-case manufacturing technology, which enabled to reach high propellant mass fractions, was validated and significant cost-reductions were achieved. This paper focuses on the process of adapting the design for use as the booster stage of the ILR-33 sounding rocket, under development at the Institute of Aviation in Warsaw, Poland. Parallel use of two of the flight-proven rocket motors along with the main stage is planned. The process of adapting the rocket motor for booster application consists of stage integration, aerothermodynamics and reliability analyses. The separation mechanism and environmental impact are also discussed within this paper. Detailed performance analysis with focus on propellant grain geometry is provided. The evolution of the design since the first flights of the H1 rocket is covered and modifications of the manufacturing process are described. Issues of simultaneous ignition of two motors and their non-identical performance are discussed. Further applications and potential for future development are outlined. The presented results are based on the initial work done by the Rocketry Group of the Warsaw University of Technology Students' Space Association. The continuation of the Polish Small Sounding Rocket Program on a larger scale at the Institute of Aviation proves the value of the outcomes of the initial educational project.

  2. Current status of rocket developments in universities -development of a small hybrid rocket with a swirling oxidizer flow type engine

    OpenAIRE

    Yuasa, Saburo; Kitagawa, Koki

    2005-01-01

    To develop an experimental small hybrid rocket with a swirling gaseous oxygen flow type engine, we made a flight model engine. Burning tests of the engine showed that a maximum thrust of 692 N and a specific impulse of 263 s (at sea level) were achieved. We designed a small hybrid rocket with this engine. The rocket measured 1.8 m in length and 15.4 kg in mass. To confirm the flight stability of the rocket, wind tunnel tests using a 112-scale model of the rocket and simulations of the flight ...

  3. Taming Liquid Hydrogen: The Centaur Upper Stage Rocket, 1958-2002

    Science.gov (United States)

    Dawson, Virginia P.; Bowles, Mark D.

    2004-01-01

    During its maiden voyage in May 1962, a Centaur upper stage rocket, mated to an Atlas booster, exploded 54 seconds after launch, engulfing the rocket in a huge fireball. Investigation revealed that Centaur's light, stainless-steel tank had split open, spilling its liquid-hydrogen fuel down its sides, where the flame of the rocket exhaust immediately ignited it. Coming less than a year after President Kennedy had made landing human beings on the Moon a national priority, the loss of Centaur was regarded as a serious setback for the National Aeronautics and Space Administration (NASA). During the failure investigation, Homer Newell, Director of Space Sciences, ruefully declared: "Taming liquid hydrogen to the point where expensive operational space missions can be committed to it has turned out to be more difficult than anyone supposed at the outset." After this failure, Centaur critics, led by Wernher von Braun, mounted a campaign to cancel the program. In addition to the unknowns associated with liquid hydrogen, he objected to the unusual design of Centaur. Like the Atlas rocket, Centaur depended on pressure to keep its paper-thin, stainless-steel shell from collapsing. It was literally inflated with its propellants like a football or balloon and needed no internal structure to give it added strength and stability. The so-called "pressure-stabilized structure" of Centaur, coupled with the light weight of its high- energy cryogenic propellants, made Centaur lighter and more powerful than upper stages that used conventional fuel. But, the critics argued, it would never become the reliable rocket that the United States needed.

  4. Metal Matrix Composites for Rocket Engine Applications

    Science.gov (United States)

    McDonald, Kathleen R.; Wooten, John R.

    2000-01-01

    This document is from a presentation about the applications of Metal Matrix Composites (MMC) in rocket engines. Both NASA and the Air Force have goals which would reduce the costs and the weight of launching spacecraft. Charts show the engine weight distribution for both reuseable and expendable engine components. The presentation reviews the operating requirements for several components of the rocket engines. The next slide reviews the potential benefits of MMCs in general and in use as materials for Advanced Pressure Casting. The next slide reviews the drawbacks of MMCs. The reusable turbopump housing is selected to review for potential MMC application. The presentation reviews solutions for reusable turbopump materials, pointing out some of the issues. It also reviews the development of some of the materials.

  5. Investigation of Non-Conventional Bio-Derived Fuels for Hybrid Rocket Motors

    National Research Council Canada - National Science Library

    Putnam, Scott G

    2007-01-01

    .... Beeswax was tested with oxygen as the oxidizer and showed a regression rate at least three times as high as traditional hybrid propellant combinations such as hydroxyl-terminated polybutadiene (HTPB) and liquid oxygen (LOX...

  6. Investigation of Non-Conventional Bio-Derived Fuels for Hybrid Rocket Motors

    Science.gov (United States)

    2007-08-01

    had a thyroid disease . Studies have also shown that Lockheed Martin is responsible for perchlorate contamination to lettuce grown using water from...set for safe exposure to perchlorate. Knowing that tap water and lettuce , along with other vegetables, exposes people to perchlorate could lower the

  7. Design Study: Rocket Based MHD Generator

    Science.gov (United States)

    1997-01-01

    This report addresses the technical feasibility and design of a rocket based MHD generator using a sub-scale LOx/RP rocket motor. The design study was constrained by assuming the generator must function within the performance and structural limits of an existing magnet and by assuming realistic limits on (1) the axial electric field, (2) the Hall parameter, (3) current density, and (4) heat flux (given the criteria of heat sink operation). The major results of the work are summarized as follows: (1) A Faraday type of generator with rectangular cross section is designed to operate with a combustor pressure of 300 psi. Based on a magnetic field strength of 1.5 Tesla, the electrical power output from this generator is estimated to be 54.2 KW with potassium seed (weight fraction 3.74%) and 92 KW with cesium seed (weight fraction 9.66%). The former corresponds to a enthalpy extraction ratio of 2.36% while that for the latter is 4.16%; (2) A conceptual design of the Faraday MHD channel is proposed, based on a maximum operating time of 10 to 15 seconds. This concept utilizes a phenolic back wall for inserting the electrodes and inter-electrode insulators. Copper electrode and aluminum oxide insulator are suggested for this channel; and (3) A testing configuration for the sub-scale rocket based MHD system is proposed. An estimate of performance of an ideal rocket based MHD accelerator is performed. With a current density constraint of 5 Amps/cm(exp 2) and a conductivity of 30 Siemens/m, the push power density can be 250, 431, and 750 MW/m(sup 3) when the induced voltage uB have values of 5, 10, and 15 KV/m, respectively.

  8. Evolution of solid rocket booster component testing

    Science.gov (United States)

    Lessey, Joseph A.

    1989-01-01

    The evolution of one of the new generation of test sets developed for the Solid Rocket Booster of the U.S. Space Transportation System. Requirements leading to factory checkout of the test set are explained, including the evolution from manual to semiautomated toward fully automated status. Individual improvements in the built-in test equipment, self-calibration, and software flexibility are addressed, and the insertion of fault detection to improve reliability is discussed.

  9. Chemical Kinetics Phenomena in Rocket Engines

    Science.gov (United States)

    1952-06-01

    boric acid fluctuation bands are by far the most prominent feature of the spectrum of the exhaust flame from this propellant combination. Weak bands due...spectrum shows only the boric acid fluctuation bands with the super- imposed BO bands of Singh. Some weak bands appear above 6000 A on some of the...accurately. b. Aniline and Furfuryl Alcohol with YFNA. - The spectrum of this rocket flame appears to be continuous in the visible region, though weak bands which

  10. Minamata Convention on Mercury

    Science.gov (United States)

    On November 6, 2013 the United States signed the Minamata Convention on Mercury, a new multilateral environmental agreement that addresses specific human activities which are contributing to widespread mercury pollution

  11. Seal testing of large diameter rocket motors

    Science.gov (United States)

    Moore, N. B.; Hellums, John W.; Bechtel, Thomas; Kittredge, Ken; Crossfield, Craig

    1991-01-01

    This investigative program examines leakage testing of elastomeric O-ring seals for a solid rocket casing and provides direction towards an improved nondestructive postassembly test. It also details test equipment for the Space Shuttle systems solid rocket boosters (SRB). The results are useful to designers of hardware for pressure containment vessels which use O-ring seals. Using several subscale seal and groove configuration test fixtures equipped with either two or three O-ring seals in series, seal integrity is investigated with both a pressure decay and flowmeter methods. Both types of test equipment adequately detect the practical range of expected seal leak rates of 1 to 0.0001 sccs. The flowmeter leak test equipment appears to reduce testing time substantially. Limited seal leakage testing is performed on full-sized rocket motor segment seals, a pre-Challenger short stack, providing comparison of bore seals to test specimen bore and face seals. The conclusions are that seal reliability, verified via a performance pressure test, can be affected by temperature, quantity of grease, test pressure, and seal pressure load direction. Potential seal failure scenarios including contamination, seal damage, and sealing surface damage are discussed. Recommendations are made for an improved test procedure.

  12. Radiation from advanced solid rocket motor plumes

    Science.gov (United States)

    Farmer, Richard C.; Smith, Sheldon D.; Myruski, Brian L.

    1994-12-01

    The overall objective of this study was to develop an understanding of solid rocket motor (SRM) plumes in sufficient detail to accurately explain the majority of plume radiation test data. Improved flowfield and radiation analysis codes were developed to accurately and efficiently account for all the factors which effect radiation heating from rocket plumes. These codes were verified by comparing predicted plume behavior with measured NASA/MSFC ASRM test data. Upon conducting a thorough review of the current state-of-the-art of SRM plume flowfield and radiation prediction methodology and the pertinent data base, the following analyses were developed for future design use. The NOZZRAD code was developed for preliminary base heating design and Al2O3 particle optical property data evaluation using a generalized two-flux solution to the radiative transfer equation. The IDARAD code was developed for rapid evaluation of plume radiation effects using the spherical harmonics method of differential approximation to the radiative transfer equation. The FDNS CFD code with fully coupled Euler-Lagrange particle tracking was validated by comparison to predictions made with the industry standard RAMP code for SRM nozzle flowfield analysis. The FDNS code provides the ability to analyze not only rocket nozzle flow, but also axisymmetric and three-dimensional plume flowfields with state-of-the-art CFD methodology. Procedures for conducting meaningful thermo-vision camera studies were developed.

  13. Rocket Motor Joint Construction Including Thermal Barrier

    Science.gov (United States)

    Steinetz, Bruce M. (Inventor); Dunlap, Patrick H., Jr. (Inventor)

    2002-01-01

    A thermal barrier for extremely high temperature applications consists of a carbon fiber core and one or more layers of braided carbon fibers surrounding the core. The thermal barrier is preferably a large diameter ring, having a relatively small cross-section. The thermal barrier is particularly suited for use as part of a joint structure in solid rocket motor casings to protect low temperature elements such as the primary and secondary elastomeric O-ring seals therein from high temperature gases of the rocket motor. The thermal barrier exhibits adequate porosity to allow pressure to reach the radially outward disposed O-ring seals allowing them to seat and perform the primary sealing function. The thermal barrier is disposed in a cavity or groove in the casing joint, between the hot propulsion gases interior of the rocket motor and primary and secondary O-ring seals. The characteristics of the thermal barrier may be enhanced in different applications by the inclusion of certain compounds in the casing joint, by the inclusion of RTV sealant or similar materials at the site of the thermal barrier, and/or by the incorporation of a metal core or plurality of metal braids within the carbon braid in the thermal barrier structure.

  14. Optimization Methodology for Unconventional Rocket Nozzle Design

    Science.gov (United States)

    Follett, W.

    1996-01-01

    Several current rocket engine concepts such as the bell-annular tripropellant engine, and the linear aerospike being proposed for the X-33, require unconventional three-dimensional rocket nozzles which must conform to rectangular or sector-shaped envelopes to meet integration constraints. These types of nozzles exist outside the current experience database, therefore, development of efficient design methods for these propulsion concepts is critical to the success of launch vehicle programs. Several approaches for optimizing rocket nozzles, including streamline tracing techniques, and the coupling of CFD analysis to optimization algorithms are described. The relative strengths and weaknesses of four classes of optimization algorithms are discussed: Gradient based methods, genetic algorithms, simplex methods, and surface response methods. Additionally, a streamline tracing technique, which provides a very computationally efficient means of defining a three-dimensional contour, is discussed. The performance of the various optimization methods on thrust optimization problems for tripropellant and aerospike concepts is assessed and recommendations are made for future development efforts.

  15. Computational simulation of liquid rocket injector anomalies

    Science.gov (United States)

    Przekwas, A. J.; Singhal, A. K.; Tam, L. T.; Davidian, K.

    1986-01-01

    A computer model has been developed to analyze the three-dimensional two-phase reactive flows in liquid fueled rocket combustors. The model is designed to study the influence of liquid propellant injection nonuniformities on the flow pattern, combustion and heat transfer within the combustor. The Eulerian-Lagrangian approach for simulating polidisperse spray flow, evaporation and combustion has been used. Full coupling between the phases is accounted for. A nonorthogonal, body fitted coordinate system along with a conservative control volume formulation is employed. The physical models built into the model include a kappa-epsilon turbulence model, a two-step chemical reaction, and the six-flux radiation model. Semiempirical models are used to describe all interphase coupling terms as well as chemical reaction rates. The purpose of this study was to demonstrate an analytical capability to predict the effects of reactant injection nonuniformities (injection anomalies) on combustion and heat transfer within the rocket combustion chamber. The results show promising application of the model to comprehensive modeling of liquid propellant rocket engines.

  16. Water Rocket Seen from Educational Point of View

    Science.gov (United States)

    Takemae, Toshiaki

    The water rocket can be easily made of familiar materials. The water rocket flies well beyond expectations. Water rockets are widely used in educational activities for youngsters. The water rocket activities are interesting and educational for people of all ages. I will divide the contents of the water rocket activity into 3 steps and introduce representative examples in each step. I have considered the aim and the effect of each step. The 1st Step is the experience stage. The purpose of this step is to give a lot of children pleasure. In the 1st step, children are encouraged to have curiosity. It is important that the child enjoys the water rocket activity. It gets the children to think that they want to fly a water rocket. It is important to encourage children to have fun during the 1st step so that they will want to continue to the 2nd step. The 2nd Step is the research stage. The water rocket includes elements which show the children various physical phenomena. Through the water rocket activity, the child leans about real rockets. The children also learn the method of scientific experiments. Each child leans and experiences a scientific way of considering things. The water rocket is the optimal research subject for the club activities of school children. The 3rd Step is the creative stage. The child understands the principle of the mechanism. Then, the child improves a water rocket. To realize a variety of ideas, the child continues to repeat these activities in a variety of ways. In this way, the child gains a wide variety of experiences while advancing towards their goal. By using the water rocket as an educational tool we can teach children about many subjects and phenomena, many of which can be seen in daily life.

  17. The 2003 Goddard Rocket Replica Project: A Reconstruction of the World's First Functional Liquid Rocket System

    Science.gov (United States)

    Farr, R. A.; Elam, S. K.; Hicks, G. D.; Sanders, T. M.; London, J. R.; Mayne, A. W.; Christensen, D. L.

    2003-01-01

    As a part of NASA s 2003 Centennial of Flight celebration, engineers and technicians at Marshall Space Flight Center (MSFC), Huntsville, Alabama, in cooperation with the Alabama-Mississippi AIAA Section, have reconstructed historically accurate, functional replicas of Dr. Robert H. Goddard s 1926 first liquid- fuel rocket. The purposes of this project were to clearly understand, recreate, and document the mechanisms and workings of the 1926 rocket for exhibit and educational use, creating a vital resource for researchers studying the evolution of liquid rocketry for years to come. The MSFC team s reverse engineering activity has created detailed engineering-quality drawings and specifications describing the original rocket and how it was built, tested, and operated. Static hot-fire tests, as well as flight demonstrations, have further defined and quantified the actual performance and engineering actual performance and engineering challenges of this major segment in early aerospace history.

  18. Design criteria of launching rockets for burst aerial shells

    Energy Technology Data Exchange (ETDEWEB)

    Kuwahara, T.; Takishita, Y.; Onda, T.; Shibamoto, H.; Hosaya, F. [Hosaya Kako Co. Ltd (Japan); Kubota, N. [Mitsubishi Electric Corporation (Japan)

    2000-04-01

    Rocket motors attached to large-sized aerial shells are proposed to compensate for the increase in the lifting charge in the mortar and the thickness of the shell wall. The proposal is the result of an evaluation of the performance of solid propellants to provide information useful in designing launch rockets for large-size shells. The propellants composed of ammonium perchlorate and hydroxy-terminated polybutadiene were used to evaluate the ballistic characteristics such as the relationship between propellant mass and trajectories of shells and launch rockets. In order to obtain an optimum rocket design, the evaluation also included a study of the velocity and height of the rocket motor and shell separation. A launch rocket with a large-sized shell (84.5 cm in diameter) was designed to verify the effectiveness of this class of launch system. 2 refs., 6 figs.

  19. Preliminary analysis of hybrid rockets for launching nanosats into LEO

    OpenAIRE

    Costa, Fernando de Souza; Vieira, Ricardo

    2010-01-01

    This work determines the preliminary mass distribution of hybrid rockets using 98% H2O2 and solid paraffin mixed with aluminum as propellants. An iterative process is used tocalculate the rocket performance characteristics and to determine the inert mass fractionfrom given initial conditions. It is considered a mission to place a 20 kg payload into a 300 km circular equatorial orbit by air launched and ground launched hybrid rockets usingthree stages. The results indicate total initial masses...

  20. Ontogenic profiling of glucosinolates, flavonoids, and other secondary metabolites in Eruca sativa (salad rocket), Diplotaxis erucoides (wall rocket), Diplotaxis tenuifolia (wild rocket), and Bunias orientalis (Turkish rocket).

    Science.gov (United States)

    Bennett, Richard N; Rosa, Eduardo A S; Mellon, Fred A; Kroon, Paul A

    2006-05-31

    As an influence of the Mediterranean diet, rocket species such as Eruca sativa L., Diplotaxis species, and Bunias orientalis L. are eaten all over the world at different ontogenic stages in salads and soups. They are all species within the plant order Capparales (glucosinolate-containing species), and all are from the family Brassicaceae. Predominantly, the leaves of these species are eaten raw or cooked, although Eruca flowers are also consumed. There is considerable potential with raw plant material for a higher exposure to bioactive phytochemicals such as glucosinolates, their hydrolysis products, and also phenolics, flavonoids, and vitamins such as vitamin C. These compounds are susceptible to ontogenic variation, and the few published studies that have addressed this topic have been inconsistent. Thus, an ontogenic study was performed and all samples were analyzed using a previously developed robust liquid chromatography/mass spectrometry method for the identification and quantification of the major phytochemicals in all tissues of the rocket species. Seeds and roots of both Eruca and Diplotaxis contained predominantly 4-methylthiobutylglucosinolate. Leaves of Eruca and Diplotaxis contained high amounts of 4-mercaptobutylglucosinolate with lower levels of 4-methylthiobutlyglucosinolate and 4-methylsulfinylbutylglucosinolate. Flowers of Eruca and Diplotaxiscontained predominantly 4-methylsulfinylbutyl-glucosinolate. In addition, roots of both Diplotaxisspecies contained 4-hydroxybenzylglucosinolate but 4-hydroxybenzylglucosinolate was absent from roots of Eruca. Seeds and seedlings of all Eruca contained N-heterocyclic compounds but no sinapine, whereas Diplotaxis contained sinapine but not the N-heterocycles. In all tissues of B. orientalis, 4-hydroxybenzylglucosinolate and 4-methylsulfinyl-3-butenylglucosinolate were predominant. All rocket tissues, except roots, contained significant levels of polyglycosylated flavonoids, with/without hydroxycinnamoyl

  1. Numerical Simulation of Rocket Exhaust Interaction with Lunar Soil Project

    Data.gov (United States)

    National Aeronautics and Space Administration — Rocket plume impingement may cause significant damage and contaminate co-landed spacecraft and surrounding habitat structures during Lunar landing operations. Under...

  2. Numerical Simulation of Rocket Exhaust Interaction with Lunar Soil Project

    Data.gov (United States)

    National Aeronautics and Space Administration — Rocket plume impingement can cause significant damage and contaminate co-landing spacecraft and surrounding habitat structures during lunar landing operations. CFDRC...

  3. Unsupervised Anomaly Detection for Liquid-Fueled Rocket Prop...

    Data.gov (United States)

    National Aeronautics and Space Administration — Title: Unsupervised Anomaly Detection for Liquid-Fueled Rocket Propulsion Health Monitoring. Abstract: This article describes the results of applying four...

  4. Rocket-Powered Parachutes Rescue Entire Planes

    Science.gov (United States)

    2010-01-01

    Small Business Innovation Research (SBIR) contracts with Langley Research Center helped BRS Aerospace, of Saint Paul, Minnesota, to develop technology that has saved 246 lives to date. The company s whole aircraft parachute systems deploy in less than 1 second thanks to solid rocket motors and are capable of arresting the descent of a small aircraft, lowering it safely to the ground. BRS has sold more than 30,000 systems worldwide, and the technology is now standard equipment on many of the world s top-selling aircraft. Parachutes for larger airplanes are in the works.

  5. Water Rockets. Get Funny With Newton's Laws

    Directory of Open Access Journals (Sweden)

    Manuel Roca Vicent

    2017-01-01

    Full Text Available The study of the movement of the rocket has been used for decades to encourage students in the study of physics. This system has an undeniable interest to introduce concepts such as properties of gases, laws of Newton,  exchange  between  different  types  of  energy  and  its  conservation  or fluid  mechanics.  Our  works has  been  to  build  and  launch  these  rockets  in  different  educational  levels  and  in  each  of  these  ones  have introduced  the  part  of  Physics  more  suited  to  the  knowledge  of  our  students.  The  aim  of  the  learning experience  is  to  launch  the  rocket  as  far  as  possible  and  learn  to  predict  the  travelled  distance,  using Newton's  laws  and fluid  mechanics.  After  experimentation  we  demonstrated  to  be  able  to  control  the parameters that improve the performance of our rocket, such as the  fill factor, the volume and mass of the empty  bottle,  liquid  density,  launch  angle,  pressure  prior  air  release.  In addition, it is a fun experience can be attached to all levels of education in primary and high school.

  6. Numerical investigations of hybrid rocket engines

    Science.gov (United States)

    Betelin, V. B.; Kushnirenko, A. G.; Smirnov, N. N.; Nikitin, V. F.; Tyurenkova, V. V.; Stamov, L. I.

    2018-03-01

    Paper presents the results of numerical studies of hybrid rocket engines operating cycle including unsteady-state transition stage. A mathematical model is developed accounting for the peculiarities of diffusion combustion of fuel in the flow of oxidant, which is composed of oxygen-nitrogen mixture. Three dimensional unsteady-state simulations of chemically reacting gas mixture above thermochemically destructing surface are performed. The results show that the diffusion combustion brings to strongly non-uniform fuel mass regression rate in the flow direction. Diffusive deceleration of chemical reaction brings to the decrease of fuel regression rate in the longitudinal direction.

  7. Air expansion in the water rocket

    CERN Document Server

    Romanelli, Alejandro; Madina, Federico González

    2012-01-01

    We study the thermodynamics of the water rocket in the thrust phase, taking into account the expansion of the air with water vapor, vapor condensation and the energy taken from the environment. We set up a simple experimental device with a stationary bottle and verified that the gas expansion in the bottle is well approximated by a polytropic process $PV^\\beta$= constant, where the parameter $\\beta$ depends on the initial conditions. We find an analytical expression for $\\beta $ that only depends on the thermodynamic initial conditions and is in good agreement with the experimental results.

  8. Analysis of a Radioisotope Thermal Rocket Engine

    Science.gov (United States)

    Machado-Rodriguez, Jonathan P.; Landis, Geoffrey A.

    2017-01-01

    The Triton Hopper is a concept for a vehicle to explore the surface of Neptunes moon Triton, which uses a radioisotope heated rocket engine and in-situ propellant acquisition. The initial Triton Hopper conceptual design stores pressurized Nitrogen in a spherical tank to be used as the propellant. The aim of the research was to investigate the benefits of storing propellant at ambient temperature and heating it through a thermal block during engine operation, as opposed to storing gas at a high temperature.

  9. Ablative Material Testing at Lewis Rocket Lab

    Science.gov (United States)

    1997-01-01

    The increasing demand for a low-cost, reliable way to launch commercial payloads to low- Earth orbit has led to the need for inexpensive, expendable propulsion systems for new launch vehicles. This, in turn, has renewed interest in less complex, uncooled rocket engines that have combustion chambers and exhaust nozzles fabricated from ablative materials. A number of aerospace propulsion system manufacturers have utilized NASA Lewis Research Center's test facilities with a high degree of success to evaluate candidate materials for application to new propulsion devices.

  10. Numerical simulations of a sounding rocket in ionospheric plasma: Effects of magnetic field on the wake formation and rocket potential

    Science.gov (United States)

    Darian, D.; Marholm, S.; Paulsson, J. J. P.; Miyake, Y.; Usui, H.; Mortensen, M.; Miloch, W. J.

    2017-09-01

    The charging of a sounding rocket in subsonic and supersonic plasma flows with external magnetic field is studied with numerical particle-in-cell (PIC) simulations. A weakly magnetized plasma regime is considered that corresponds to the ionospheric F2 layer, with electrons being strongly magnetized, while the magnetization of ions is weak. It is demonstrated that the magnetic field orientation influences the floating potential of the rocket and that with increasing angle between the rocket axis and the magnetic field direction the rocket potential becomes less negative. External magnetic field gives rise to asymmetric wake downstream of the rocket. The simulated wake in the potential and density may extend as far as 30 electron Debye lengths; thus, it is important to account for these plasma perturbations when analyzing in situ measurements. A qualitative agreement between simulation results and the actual measurements with a sounding rocket is also shown.

  11. EEI convention report

    Energy Technology Data Exchange (ETDEWEB)

    1961-07-01

    Highlights of papers given at Edison Electric Institute's annual convention, June 1961, are presented. James F. Young reported on research and future power transmission trends, and he predicted 700 kV will be used in the U.S. by 1975.

  12. Conventional Spinal Anaesthesia

    African Journals Online (AJOL)

    Blood pressure, heart rate, respiratory rate and oxygen saturation were monitored over 1hour. RESULTS: Three ... Patients in the conventional group had statistically significant greater fall in the systolic blood pressures at 15, 30 and 45 ..... cardiovascular homeostasis during spinal anaesthesia, unilateral spinal anaesthesia ...

  13. Results of Small-scale Solid Rocket Combustion Simulator testing at Marshall Space Flight Center

    Science.gov (United States)

    Goldberg, Benjamin E.; Cook, Jerry

    1993-01-01

    The Small-scale Solid Rocket Combustion Simulator (SSRCS) program was established at the Marshall Space Flight Center (MSFC), and used a government/industry team consisting of Hercules Aerospace Corporation, Aerotherm Corporation, United Technology Chemical Systems Division, Thiokol Corporation and MSFC personnel to study the feasibility of simulating the combustion species, temperatures and flow fields of a conventional solid rocket motor (SRM) with a versatile simulator system. The SSRCS design is based on hybrid rocket motor principles. The simulator uses a solid fuel and a gaseous oxidizer. Verification of the feasibility of a SSRCS system as a test bed was completed using flow field and system analyses, as well as empirical test data. A total of 27 hot firings of a subscale SSRCS motor were conducted at MSFC. Testing of the Small-scale SSRCS program was completed in October 1992. This paper, a compilation of reports from the above team members and additional analysis of the instrumentation results, will discuss the final results of the analyses and test programs.

  14. Software for Collaborative Engineering of Launch Rockets

    Science.gov (United States)

    Stanley, Thomas Troy

    2003-01-01

    The Rocket Evaluation and Cost Integration for Propulsion and Engineering software enables collaborative computing with automated exchange of information in the design and analysis of launch rockets and other complex systems. RECIPE can interact with and incorporate a variety of programs, including legacy codes, that model aspects of a system from the perspectives of different technological disciplines (e.g., aerodynamics, structures, propulsion, trajectory, aeroheating, controls, and operations) and that are used by different engineers on different computers running different operating systems. RECIPE consists mainly of (1) ISCRM a file-transfer subprogram that makes it possible for legacy codes executed in their original operating systems on their original computers to exchange data and (2) CONES an easy-to-use filewrapper subprogram that enables the integration of legacy codes. RECIPE provides a tightly integrated conceptual framework that emphasizes connectivity among the programs used by the collaborators, linking these programs in a manner that provides some configuration control while facilitating collaborative engineering tradeoff studies, including design to cost studies. In comparison with prior collaborative-engineering schemes, one based on the use of RECIPE enables fewer engineers to do more in less time.

  15. The Off-plane Grating Rocket Experiment

    Science.gov (United States)

    Donovan, Benjamin

    2018-01-01

    The next generation of X-ray spectrometers necessitate significant increases in both resolution and effective area to achieve the science goals set forth in the 2010 Decadal Survey and the 2013 Astrophysics Roadmap. The Off-plane Grating Rocket Experiment (OGRE), an X-ray spectroscopy suborbital rocket payload currently scheduled for launch in Q3 2020, will serve as a testbed for several key technologies which can help achieve the desired performance increases of future spectrometers. OGRE will be the first instrument to fly mono-crystalline silicon X-ray mirrors developed at NASA Goddard Space Flight Center. The payload will also utilize an array of off-plane gratings manufactured at The Pennsylvania State University. Additionally, the focal plane will be populated with an array of four electron-multiplying CCDs developed by the Open University and XCAM Ltd. With these key technologies, OGRE hopes to achieve the highest resolution on-sky soft X-ray spectrum to date. We discuss the optical design, expected performance, and the current status of the payload.

  16. Physiological and phytosanitary potential of rocket seeds

    Directory of Open Access Journals (Sweden)

    Jucilayne Fernandes Vieira

    2015-02-01

    Full Text Available The objective of this study was to evaluate the physiological and sanitary quality of seeds of rocket; the research was done at the Laboratory of Seed Analysis and greenhouse of the Department of Plant Science, Federal University of Pelotas (UFPel. Four lots of the cultivar "Antonella'' were tested for following features: initial and final moisture content, germination rate, first count of germination, accelerated aging with saline solution, dry matter contents, seedling shoot and root length, emergence speed index, emergence of seedlings in substrate, electrical conductivity and sanitary condition. A completely randomized design with four replications was used for all tests done and means were compared by Tukey test (P≤0.05. For all tests performed it was concluded that despite changes in the ranking of the best lots, there was agreement regarding the indication of the inferiority of the lot 3 in all tests and it was also observed that the incidence of fungi associated with seeds of rocket interfere with the physiological quality of the lots.

  17. The FOXSI Solar Sounding Rocket Campaigns

    Science.gov (United States)

    Glesener, Lindsay; Krucker, Sam; Christe, Steven; Ishikawa, Shin-Nosuke; Buitrago-Casas, Juan Camilo; Ramsey, Brian; Gubarev, Mikhail; Takahashi, Tadayuki; Watanabe, Shin; Takeda, Shin'ichiro; hide

    2016-01-01

    The Focusing Optics X-ray Solar Imager (FOXSI) is, in its initial form, a sounding rocket experiment designed to apply the technique of focusing hard X-ray (HXR) optics to the study of fundamental questions about the high-energy Sun. Solar HXRs arise via bremsstrahlung from energetic electrons and hot plasma produced in solar flares and thus are one of the most direct diagnostics of flare-accelerated electrons and the impulsive heating of the solar corona. Previous missions have always been limited in sensitivity and dynamic range by the use of indirect (Fourier) imaging due to the lack of availability of direct focusing optics, but technological advances now make direct focusing accessible in the HXR regime (as evidenced by the NuSTAR spacecraft and several suborbital missions). The FOXSI rocket experiment develops and optimizes HXR focusing telescopes for the unique scientific requirements of the Sun. To date, FOXSI has completed two successful flights on 2012 November 02 and 2014 December 11 and is funded for a third flight. This paper gives a brief overview of the experiment, which is sensitive to solar HXRs in the 4-20 keV range, describes its first two flights, and gives a preview of plans for FOXSI-3.

  18. Solid Rocket Launch Vehicle Explosion Environments

    Science.gov (United States)

    Richardson, E. H.; Blackwood, J. M.; Hays, M. J.; Skinner, T.

    2014-01-01

    Empirical explosion data from full scale solid rocket launch vehicle accidents and tests were collected from all available literature from the 1950s to the present. In general data included peak blast overpressure, blast impulse, fragment size, fragment speed, and fragment dispersion. Most propellants were 1.1 explosives but a few were 1.3. Oftentimes the data from a single accident was disjointed and/or missing key aspects. Despite this fact, once the data as a whole was digitized, categorized, and plotted clear trends appeared. Particular emphasis was placed on tests or accidents that would be applicable to scenarios from which a crew might need to escape. Therefore, such tests where a large quantity of high explosive was used to initiate the solid rocket explosion were differentiated. Also, high speed ground impacts or tests used to simulate such were also culled. It was found that the explosions from all accidents and applicable tests could be described using only the pressurized gas energy stored in the chamber at the time of failure. Additionally, fragmentation trends were produced. Only one accident mentioned the elusive "small" propellant fragments, but upon further analysis it was found that these were most likely produced as secondary fragments when larger primary fragments impacted the ground. Finally, a brief discussion of how this data is used in a new launch vehicle explosion model for improving crew/payload survival is presented.

  19. Collaboration with and without Coauthorship: Rocket Science Versus Economic Science

    OpenAIRE

    Barnett, William

    2015-01-01

    This essay is about my prior experiences as a rocket scientist on Apollo rocket engines, with comparison to my subsequent experiences at the Federal Reserve, and in academia, with emphasis upon differences in collaboration and scientific methodology. A primary difference is in the emphasis on measurement.

  20. Project Stratos; reaching space with a student-built rocket

    NARCIS (Netherlands)

    Haneveer, M.

    2013-01-01

    In the spring of 2009 a team of 15 TU Delft students travelled to Kiruna, Sweden with only one goal: to launch the rocket Stratos I they had been working on for 2 years to an altitude of over 12km, thereby claiming the European Amateur Rocket Altitude record. These students were part of Delft

  1. Theoretical and Experimental Analysis of the Physics of Water Rockets

    Science.gov (United States)

    Barrio-Perotti, R.; Blanco-Marigorta, E.; Fernandez-Francos, J.; Galdo-Vega, M.

    2010-01-01

    A simple rocket can be made using a plastic bottle filled with a volume of water and pressurized air. When opened, the air pressure pushes the water out of the bottle. This causes an increase in the bottle momentum so that it can be propelled to fairly long distances or heights. Water rockets are widely used as an educational activity, and several…

  2. Development of high performance hybrid rocket fuels

    Science.gov (United States)

    Zaseck, Christopher R.

    In this document I discuss paraffin fuel combustion and investigate the effects of additives on paraffin entrainment and regression. In general, hybrid rockets offer an economical and safe alternative to standard liquid and solid rockets. However, slow polymeric fuel regression and low combustion efficiency have limited the commercial use of hybrid rockets. Paraffin is a fast burning fuel that has received significant attention in the 2000's and 2010's as a replacement for standard fuels. Paraffin regresses three to four times faster than polymeric fuels due to the entrainment of a surface melt layer. However, further regression rate enhancement over the base paraffin fuel is necessary for widespread hybrid rocket adoption. I use a small scale opposed flow burner to investigate the effect of additives on the combustion of paraffin. Standard additives such as aluminum combust above the flame zone where sufficient oxidizer levels are present. As a result no heat is generated below the flame itself. In small scale opposed burner experiments the effect of limited heat feedback is apparent. Aluminum in particular does not improve the regression of paraffin in the opposed burner. The lack of heat feedback from additive combustion limits the applicability of the opposed burner. In turn, the results obtained in the opposed burner with metal additive loaded hybrid fuels do not match results from hybrid rocket experiments. In addition, nano-scale aluminum increases melt layer viscosity and greatly slows the regression of paraffin in the opposed flow burner. However, the reactive additives improve the regression rate of paraffin in the opposed burner where standard metals do not. At 5 wt.% mechanically activated titanium and carbon (Ti-C) improves the regression rate of paraffin by 47% in the opposed burner. The mechanically activated Ti C likely reacts in or near the melt layer and provides heat feedback below the flame region that results in faster opposed burner regression

  3. Developments in REDES: The Rocket Engine Design Expert System

    Science.gov (United States)

    Davidian, Kenneth O.

    1990-01-01

    The Rocket Engine Design Expert System (REDES) was developed at NASA-Lewis to collect, automate, and perpetuate the existing expertise of performing a comprehensive rocket engine analysis and design. Currently, REDES uses the rigorous JANNAF methodology to analyze the performance of the thrust chamber and perform computational studies of liquid rocket engine problems. The following computer codes were included in REDES: a gas properties program named GASP; a nozzle design program named RAO; a regenerative cooling channel performance evaluation code named RTE; and the JANNAF standard liquid rocket engine performance prediction code TDK (including performance evaluation modules ODE, ODK, TDE, TDK, and BLM). Computational analyses are being conducted by REDES to provide solutions to liquid rocket engine thrust chamber problems. REDES was built in the Knowledge Engineering Environment (KEE) expert system shell and runs on a Sun 4/110 computer.

  4. Reusable Rocket Engine Turbopump Health Management System

    Science.gov (United States)

    Surko, Pamela

    1994-01-01

    A health monitoring expert system software architecture has been developed to support condition-based health monitoring of rocket engines. Its first application is in the diagnosis decisions relating to the health of the high pressure oxidizer turbopump (HPOTP) of Space Shuttle Main Engine (SSME). The post test diagnostic system runs off-line, using as input the data recorded from hundreds of sensors, each running typically at rates of 25, 50, or .1 Hz. The system is invoked after a test has been completed, and produces an analysis and an organized graphical presentation of the data with important effects highlighted. The overall expert system architecture has been developed and documented so that expert modules analyzing other line replaceable units may easily be added. The architecture emphasizes modularity, reusability, and open system interfaces so that it may be used to analyze other engines as well.

  5. Rockets: Physical science teacher's guide with activities

    Science.gov (United States)

    Vogt, Gregory L.; Rosenberg, Carla R. (Editor)

    1993-01-01

    This guide begins with background information sections on the history of rocketry, scientific principles, and practical rocketry. The sections on scientific principles and practical rocketry are based on Isaac Newton's three laws of motion. These laws explain why rockets work and how to make them more efficient. The background sections are followed with a series of physical science activities that demonstrate the basic science of rocketry. Each activity is designed to be simple and take advantage of inexpensive materials. Construction diagrams, materials and tools lists, and instructions are included. A brief discussion elaborates on the concepts covered in the activities and is followed with teaching notes and discussion questions. The guide concludes with a glossary of terms, suggested reading list, NASA educational resources, and an evaluation questionnaire with a mailer.

  6. Integrated model of a composite propellant rocket

    Science.gov (United States)

    Miccio, Francesco

    2016-12-01

    The combustion of composite solid propellants was investigated and an available numerical model was improved for taking into account the change of pressure, when the process occurs in a confined environment, as inside a rocket. The pressure increase upon ignition is correctly described by the improved model for both sandwich and dispersed particles propellants. In the latter case, self-induced fluctuations in the pressure and in all other computed variables occur, as consequence of the periodic rise and depletion of oxidizer particles from the binder matrix. The comparison with the results of the constant pressure model shows a different fluctuating profile of gas velocity, with a possible second order effect induced by the pressure fluctuations.

  7. Closed-cycle liquid propellant rocket engines

    Science.gov (United States)

    Kuznetsov, N. D.

    1993-06-01

    The paper presents experience gained by SSSPE TRUD in development of NK-33, NK-43, NK-39, and NK-31 liquid propellant rocket engines, which are reusable, closed-cycle type, working on liquid oxygen and kerosene. Results are presented showing the engine structure efficiency, configuration rationality, and optimal thrust values which provide the following specific parameters: specific vacuum impulses in the range 331-353 s (for NK-33 and NK-31 engines, respectively) and specific weight of about 8 kg/tf (NK-33 and NK-43 engines). The problems which occurred during engine development and the study of the main components of these engines are discussed. The important technical data, materials, methodology, and bench development data are presented for the gas generator, turbopump assembly, combustion chamber and full-scale engines.

  8. Rocket Testing and Integrated System Health Management

    Science.gov (United States)

    Figueroa, Fernando; Schmalzel, John

    2005-01-01

    Integrated System Health Management (ISHM) describes a set of system capabilities that in aggregate perform: determination of condition for each system element, detection of anomalies, diagnosis of causes for anomalies, and prognostics for future anomalies and system behavior. The ISHM should also provide operators with situational awareness of the system by integrating contextual and timely data, information, and knowledge (DIaK) as needed. ISHM capabilities can be implemented using a variety of technologies and tools. This chapter provides an overview of ISHM contributing technologies and describes in further detail a novel implementation architecture along with associated taxonomy, ontology, and standards. The operational ISHM testbed is based on a subsystem of a rocket engine test stand. Such test stands contain many elements that are common to manufacturing systems, and thereby serve to illustrate the potential benefits and methodologies of the ISHM approach for intelligent manufacturing.

  9. Additive Manufacturing a Liquid Hydrogen Rocket Engine

    Science.gov (United States)

    Jones, Carl P.; Robertson, Elizabeth H.; Koelbl, Mary Beth; Singer, Chris

    2016-01-01

    Space Propulsion is a 5 day event being held from 2nd May to the 6th May 2016 at the Rome Marriott Park Hotel in Rome, Italy. This event showcases products like Propulsion sub-systems and components, Production and manufacturing issues, Liquid, Solid, Hybrid and Air-breathing Propulsion Systems for Launcher and Upper Stages, Overview of current programmes, AIV issues and tools, Flight testing and experience, Technology building blocks for Future Space Transportation Propulsion Systems : Launchers, Exploration platforms & Space Tourism, Green Propulsion for Space Transportation, New propellants, Rocket propulsion & global environment, Cost related aspects of Space Transportation propulsion, Modelling, Pressure-Thrust oscillations issues, Impact of new requirements and regulations on design etc. in the Automotive, Manufacturing, Fabrication, Repair & Maintenance industries.

  10. Strategic interaction and conventions

    Directory of Open Access Journals (Sweden)

    Espinosa, María Paz

    2012-03-01

    Full Text Available The scope of the paper is to review the literature that employs coordination games to study social norms and conventions from the viewpoint of game theory and cognitive psychology. We claim that those two alternative approaches are in fact complementary, as they provide different insights to explain how people converge to a unique system of self-fulfilling expectations in presence of multiple, equally viable, conventions. While game theory explains the emergence of conventions relying on efficiency and risk considerations, the psychological view is more concerned with frame and labeling effects. The interaction between these alternative (and, sometimes, competing effects leads to the result that coordination failures may well occur and, even when coordination takes place, there is no guarantee that the convention eventually established will be the most efficient.

    El objetivo de este artículo es presentar la literatura que emplea los juegos de coordinación para el estudio de normas y convenciones sociales, que se han analizado tanto desde el punto de vista de la teoría de juegos como de la psicología cognitiva. Argumentamos en este trabajo que estos dos enfoques alternativos son en realidad complementarios, dado que ambos contribuyen al entendimiento de los procesos mediante los cuales las personas llegan a coordinarse en un único sistema de expectativas autorrealizadas, en presencia de múltiples convenciones todas ellas igualmente viables. Mientras que la teoría de juegos explica la aparición de convenciones basándose en argumentos de eficiencia y comportamientos frente al riesgo, el enfoque de la psicología cognitiva utiliza en mayor medida consideraciones referidas al entorno y naturaleza de las decisiones. La interacción entre estos efectos diferentes (y en ocasiones, rivales desemboca con frecuencia en fallos de coordinación y, aun cuando la coordinación se produce, no hay garantía de que la convención en vigor sea la m

  11. Ablative Rocket Deflector Testing and Computational Modeling

    Science.gov (United States)

    Allgood, Daniel C.; Lott, Jeffrey W.; Raines, Nickey

    2010-01-01

    A deflector risk mitigation program was recently conducted at the NASA Stennis Space Center. The primary objective was to develop a database that characterizes the behavior of industry-grade refractory materials subjected to rocket plume impingement conditions commonly experienced on static test stands. The program consisted of short and long duration engine tests where the supersonic exhaust flow from the engine impinged on an ablative panel. Quasi time-dependent erosion depths and patterns generated by the plume impingement were recorded for a variety of different ablative materials. The erosion behavior was found to be highly dependent on the material s composition and corresponding thermal properties. For example, in the case of the HP CAST 93Z ablative material, the erosion rate actually decreased under continued thermal heating conditions due to the formation of a low thermal conductivity "crystallization" layer. The "crystallization" layer produced near the surface of the material provided an effective insulation from the hot rocket exhaust plume. To gain further insight into the complex interaction of the plume with the ablative deflector, computational fluid dynamic modeling was performed in parallel to the ablative panel testing. The results from the current study demonstrated that locally high heating occurred due to shock reflections. These localized regions of shock-induced heat flux resulted in non-uniform erosion of the ablative panels. In turn, it was observed that the non-uniform erosion exacerbated the localized shock heating causing eventual plume separation and reversed flow for long duration tests under certain conditions. Overall, the flow simulations compared very well with the available experimental data obtained during this project.

  12. Launch operation of rockets; Rocket no uchiage seibi sagyo ni tsuite

    Energy Technology Data Exchange (ETDEWEB)

    Igo, H.; Ito, N.; Yokotsuka, Y. [Nissan Motor Co. Ltd., Tokyo (Japan)

    1999-02-01

    This paper describes the work from formation of the contract through launching that includes the launch operation, task organization of this operation, how the operation proceeded, and so on of the TR - IA rocket that Nissan is responsible for launching as the system integrator. The description of launching operations and count-down operations were clarified by examining the TR - IA launch operation which Nissan was experienced in. (author)

  13. Beginnings of rocket development in the czech lands (Czechoslovakia)

    Science.gov (United States)

    Plavec, Michal

    2011-11-01

    Although the first references are from the 15th Century when both Hussites and crusaders are said to have used rockets during the Hussite Wars (also known as the Bohemian Wars) there is no strong evidence that rockets were actually used at that time. It is worth noting that Konrad Kyeser, who described several rockets in his Bellifortis manuscript written 1402-1405, served as advisor to Bohemian King Wenceslas IV. Rockets were in fact used as fireworks from the 16th century in noble circles. Some of these were built by Vavřinec Křička z Bitý\\vsky, who also published a book on fireworks, in which he described how to build rockets for firework displays. Czech soldiers were also involved in the creation of a rocket regiment in the Austrian (Austro-Hungarian) army in the first half of the 19th century. The pioneering era of modern rocket development began in the Czech lands during the 1920s. The first rockets were succesfully launched by Ludvík Očenášek in 1930 with one of them possibly reaching an altitude of 2000 metres. Vladimír Mandl, lawyer and author of the first book on the subject of space law, patented his project for a stage rocket (vysokostoupající raketa) in 1932, but this project never came to fruition. There were several factories during the so-called Protectorate of Bohemia and Moravia in 1939-1945, when the Czech lands were occupied by Nazi Germany, where parts for German Mark A-4/V-2 rockets were produced, but none of the Czech technicians or constructors were able to build an entire rocket. The main goal of the Czech aircraft industry after WW2 was to revive the stagnant aircraft industry. There was no place to create a rocket industry. Concerns about a rocket industry appeared at the end of the 1950s. The Political Board of the Central Committee of the Czechoslovak Communist Party started to study the possibilities of creating a rocket industry after the first flight into space and particularly after US nuclear weapons were based in Italy

  14. Hybrid rocket motor testing at Nammo Raufoss A/S

    Science.gov (United States)

    Rønningen, Jan-Erik; Kubberud, Nils

    2005-08-01

    Hybrid rocket motor technology and the use of hybrid rockets have gained increased interest in recent years in many countries. A typical hybrid rocket consists of a tank containing the oxidizer in either liquid or gaseous state connected to the combustion chamber containing an injector, inert solid fuel grain and nozzle. Nammo Raufoss A/S has for almost 40 years designed and produced high-performance solid propellant rocket motors for many military missile systems as well as solid propellant rocket motors for civil space use. In 2003 an in-house technology program was initiated to investigate and study hybrid rocket technology. On 23 September 2004 the first in-house designed hybrid test rocket motor was static test fired at Nammo Raufoss Test Center. The oxidizer was gaseous oxygen contained in a tank pressurized to 10MPa, flow controlled through a sonic orifice into the combustion chamber containing a multi port radial injector and six bore cartridge-loaded fuel grain containing a modified HTPB fuel composition. The motor was ignited using a non-explosive heated wire. This paper will present what has been achieved at Nammo Raufoss since the start of the program.

  15. Conventions and Institutional Logics

    DEFF Research Database (Denmark)

    Westenholz, Ann

    Two theoretical approaches – Conventions and Institutional Logics – are brought together and the similarities and differences between the two are explored. It is not the intention to combine the approaches, but I would like to open both ‘boxes’ and make them available to each other with the purpose...... of creating a space for dialog. Both approaches were developed in the mid-1980s as a reaction to rational-choice economic theory and collectivistic sociological theory. These two theories were oversimplifying social life as being founded either in actor-micro level analyses or in structure-macro level...... by overcoming traditional micro-macro and actor-structure dimensions. However, they have also achieved this in different ways and I ask if there is a benefit to ‘importing’ some of these differences into the other approach....

  16. Optimization of Construction of the rocket-assisted projectile

    Directory of Open Access Journals (Sweden)

    Arkhipov Vladimir

    2017-01-01

    Full Text Available New scheme of the rocket motor of rocket-assisted projectile providing the increase in distance of flight due to controlled and optimal delay time of ignition of the solid-propellant charge of the SRM and increase in reliability of initiation of the SRM by means of the autonomous system of ignition excluding the influence of high pressure gases of the propellant charge in the gun barrel has been considered. Results of the analysis of effectiveness of using of the ignition delay device on motion characteristics of the rocket-assisted projectile has been presented.

  17. Rocket nozzle thermal shock tests in an arc heater facility

    Science.gov (United States)

    Painter, James H.; Williamson, Ronald A.

    1986-01-01

    A rocket motor nozzle thermal structural test technique that utilizes arc heated nitrogen to simulate a motor burn was developed. The technique was used to test four heavily instrumented full-scale Star 48 rocket motor 2D carbon/carbon segments at conditions simulating the predicted thermal-structural environment. All four nozzles survived the tests without catastrophic or other structural failures. The test technique demonstrated promise as a low cost, controllable alternative to rocket motor firing. The technique includes the capability of rapid termination in the event of failure, allowing post-test analysis.

  18. Study of Liquid Breakup Process in Solid Rocket Motor Nozzle

    Science.gov (United States)

    2016-02-16

    Journal Article 3. DATES COVERED (From - To) 16 June 2015 – 31 July 2015 4. TITLE AND SUBTITLE Study of Liquid Breakup Process in Solid Rocket Motor... Rockets , Volume 52 Issue 4 July 2015 (AIAA 2015-1605) PA Case Number: #15348; Clearance Date: 6/26/2015 ©2015 AIAA The U.S. Government is joint author...of the work and has the right to use, modify, reproduce, release, perform, display, or 14. ABSTRACT In a solid rocket motor (SRM), when the

  19. Numerical Exploration of Solid Rocket Motor Blast Tube Flow Field

    OpenAIRE

    Afroz Javed; Sinha, P.K.; Debasis Chakraborty

    2013-01-01

    The blast tube flowfield of a solid rocket motor is explored numerically by solving 3-D RANS equations with SST Turbulence model using a commercial computational fluid dynamics (CFD) software CFX-10. Parametric studies are carried out to find out the effect of the blast tube diameter on the total pressure loss in the rocket motor. It is observed that the total pressure loss in the rocket motor is less than 4 per cent and the blast tube is contributing less than 1 per cent. It is also found ou...

  20. Water Impact Prediction Tool for Recoverable Rockets

    Science.gov (United States)

    Rooker, William; Glaese, John; Clayton, Joe

    2011-01-01

    Reusing components from a rocket launch can be cost saving. NASA's space shuttle system has reusable components that return to the Earth and impact the ocean. A primary example is the Space Shuttle Solid Rocket Booster (SRB) that descends on parachutes to the Earth after separation and impacts the ocean. Water impact generates significant structural loads that can damage the booster, so it is important to study this event in detail in the design of the recovery system. Some recent examples of damage due to water impact include the Ares I-X First Stage deformation as seen in Figure 1 and the loss of the SpaceX Falcon 9 First Stage.To ensure that a component can be recovered or that the design of the recovery system is adequate, an adequate set of structural loads is necessary for use in failure assessments. However, this task is difficult since there are many conditions that affect how a component impacts the water and the resulting structural loading that a component sees. These conditions include the angle of impact with respect to the water, the horizontal and vertical velocities, the rotation rate, the wave height and speed, and many others. There have been attempts to simulate water impact. One approach is to analyze water impact using explicit finite element techniques such as those employed by the LS-Dyna tool [1]. Though very detailed, this approach is time consuming and would not be suitable for running Monte Carlo or optimization analyses. The purpose of this paper is to describe a multi-body simulation tool that runs quickly and that captures the environments a component might see. The simulation incorporates the air and water interaction with the component, the component dynamics (i.e. modes and mode shapes), any applicable parachutes and lines, the interaction of winds and gusts, and the wave height and speed. It is capable of quickly conducting Monte Carlo studies to better capture the environments and genetic algorithm optimizations to reproduce a

  1. Parametric study and performance analysis of hybrid rocket motors with double-tube configuration

    Science.gov (United States)

    Yu, Nanjia; Zhao, Bo; Lorente, Arnau Pons; Wang, Jue

    2017-03-01

    The practical implementation of hybrid rocket motors has historically been hampered by the slow regression rate of the solid fuel. In recent years, the research on advanced injector designs has achieved notable results in the enhancement of the regression rate and combustion efficiency of hybrid rockets. Following this path, this work studies a new configuration called double-tube characterized by injecting the gaseous oxidizer through a head end injector and an inner tube with injector holes distributed along the motor longitudinal axis. This design has demonstrated a significant potential for improving the performance of hybrid rockets by means of a better mixing of the species achieved through a customized injection of the oxidizer. Indeed, the CFD analysis of the double-tube configuration has revealed that this design may increase the regression rate over 50% with respect to the same motor with a conventional axial showerhead injector. However, in order to fully exploit the advantages of the double-tube concept, it is necessary to acquire a deeper understanding of the influence of the different design parameters in the overall performance. In this way, a parametric study is carried out taking into account the variation of the oxidizer mass flux rate, the ratio of oxidizer mass flow rate injected through the inner tube to the total oxidizer mass flow rate, and injection angle. The data for the analysis have been gathered from a large series of three-dimensional numerical simulations that considered the changes in the design parameters. The propellant combination adopted consists of gaseous oxygen as oxidizer and high-density polyethylene as solid fuel. Furthermore, the numerical model comprises Navier-Stokes equations, k-ε turbulence model, eddy-dissipation combustion model and solid-fuel pyrolysis, which is computed through user-defined functions. This numerical model was previously validated by analyzing the computational and experimental results obtained for

  2. Improving of technical characteristics of launch vehicles with liquid rocket engines using active onboard de-orbiting systems

    Science.gov (United States)

    Trushlyakov, V.; Shatrov, Ya.

    2017-09-01

    In this paper, the analysis of technical requirements (TR) for the development of modern space launch vehicles (LV) with main liquid rocket engines (LRE) is fulfilled in relation to the anthropogenic impact decreasing. Factual technical characteristics on the example of a promising type of rocket ;Soyuz-2.1.v.; are analyzed. Meeting the TR in relation to anthropogenic impact decrease based on the conventional design approach and the content of the onboard system does not prove to be efficient and leads to depreciation of the initial technical characteristics obtained at the first design stage if these requirements are not included. In this concern, it is shown that the implementation of additional active onboard de-orbiting system (AODS) of worked-off stages (WS) into the onboard LV stages systems allows to meet the TR related to the LV environmental characteristics, including fire-explosion safety. In some cases, the orbital payload mass increases.

  3. ESD and the Rio Conventions

    Science.gov (United States)

    Sarabhai, Kartikeya V.; Ravindranath, Shailaja; Schwarz, Rixa; Vyas, Purvi

    2012-01-01

    Chapter 36 of Agenda 21, a key document of the 1992 Earth Summit, emphasised reorienting education towards sustainable development. While two of the Rio conventions, the Convention on Biological Diversity (CBD) and the United Nations Framework Convention on Climate Change (UNFCCC), developed communication, education and public awareness (CEPA)…

  4. 40 CFR 61.43 - Emission testing-rocket firing or propellant disposal.

    Science.gov (United States)

    2010-07-01

    ... 40 Protection of Environment 8 2010-07-01 2010-07-01 false Emission testing-rocket firing or... Standard for Beryllium Rocket Motor Firing § 61.43 Emission testing—rocket firing or propellant disposal. (a) Ambient air concentrations shall be measured during and after firing of a rocket motor or...

  5. 77 FR 61642 - National Environmental Policy Act; Sounding Rockets Program; Poker Flat Research Range

    Science.gov (United States)

    2012-10-10

    ..., and educational institutions have conducted suborbital rocket launches from the PFRR. While the PFRR...-zone rocket launching facility in the United States where a sounding rocket can readily study the... rockets are launched and within which spent stages and payloads impact the ground. Within these flight...

  6. 78 FR 40196 - National Environmental Policy Act; Sounding Rockets Program; Poker Flat Research Range

    Science.gov (United States)

    2013-07-03

    ... government agencies, and educational institutions have conducted suborbital rocket launches from the PFRR...-latitude, auroral-zone rocket launching facility in the United States where a sounding rocket can readily... environmental consequences of five alternative means for continuing sounding rocket launches at PFRR. The...

  7. Rocket Propulsion Technology Impact on TSTO Launch System Cost

    National Research Council Canada - National Science Library

    Mossman, Jason

    2001-01-01

    .... This paper reports the methods and results of that study. The reported analysis focused on chemical rocket propulsion using either hydrogen or hydrocarbon fuels, and oxygen or high purity hydrogen peroxide as oxidizers...

  8. Gaseous Helium Reclamation at Rocket Test Systems Project

    Data.gov (United States)

    National Aeronautics and Space Administration — GHe reclamation is critical in reducing operating costs at rocket engine test facilities. Increases in cost and shortages of helium will dramatically impact testing...

  9. Tactical Grade MEMS IMUs for Spin-Stabilized Rockets Project

    Data.gov (United States)

    National Aeronautics and Space Administration — We propose a tactical grade MEMS IMU for spin-stabilized rockets for metric tracking and autonomous systems. The enabling instrument is a gyroscope designed for very...

  10. Dynamical Model of Rocket Propellant Loading with Liquid Hydrogen

    Data.gov (United States)

    National Aeronautics and Space Administration — A dynamical model describing the multi-stage process of rocket propellant loading has been developed. It accounts for both the nominal and faulty regimes of...

  11. Simulation and experimental research on line throwing rocket with flight

    Directory of Open Access Journals (Sweden)

    Wen-bin Gu

    2014-06-01

    Full Text Available The finite segment method is used to model the line throwing rocket system. A dynamic model of line throwing rocket with flight motion based on Kane's method is presented by the kinematics description of the system and the consideration of the forces acting on the system. The experiment designed according to the parameters of the dynamic model is made. The simulation and experiment results, such as range, velocity and flight time, are compared and analyzed. The simulation results are basically agreed with the test data, which shows that the flight motion of the line throwing rocket can be predicted by the dynamic model. A theoretical model and guide for the further research on the disturbance of rope and the guidance, flight control of line throwing rocket are provided by the dynamic modeling.

  12. Distributed Rocket Engine Testing Health Monitoring System Project

    Data.gov (United States)

    National Aeronautics and Space Administration — Leveraging the Phase I achievements of the Distributed Rocket Engine Testing Health Monitoring System (DiRETHMS) including its software toolsets and system building...

  13. Mars McLOX Rocket Propulsion System Project

    Data.gov (United States)

    National Aeronautics and Space Administration — The Methane and Carbon Monoxide/LOX rocket (MCLOX) is a technology for accomplishing ascent from Mars. Current Mars in-situ propellant production (ISPP) technologies...

  14. Scale-Up of GRCop: From Laboratory to Rocket Engines

    Science.gov (United States)

    Ellis, David L.

    2016-01-01

    GRCop is a high temperature, high thermal conductivity copper-based series of alloys designed primarily for use in regeneratively cooled rocket engine liners. It began with laboratory-level production of a few grams of ribbon produced by chill block melt spinning and has grown to commercial-scale production of large-scale rocket engine liners. Along the way, a variety of methods of consolidating and working the alloy were examined, a database of properties was developed and a variety of commercial and government applications were considered. This talk will briefly address the basic material properties used for selection of compositions to scale up, the methods used to go from simple ribbon to rocket engines, the need to develop a suitable database, and the issues related to getting the alloy into a rocket engine or other application.

  15. SpaceX rocket fuel plan under scrutiny

    Science.gov (United States)

    Gwynne, Peter

    2016-12-01

    NASA's International Space Station advisory committee has raised concerns about SpaceX's plans to fuel rockets that are used to ferry astronauts to the International Space Station (ISS) while the crew is onboard.

  16. Energy-Based Acoustic Measurement System for Rocket Noise Project

    Data.gov (United States)

    National Aeronautics and Space Administration — Accurate estimates of the vibroacoustic loading placed on space vehicles and payloads during launch require knowledge of the rocket noise source properties. Given...

  17. Propellant Flow Actuated Piezoelectric Rocket Engine Igniter Project

    Data.gov (United States)

    National Aeronautics and Space Administration — Spark ignition of a bi-propellant rocket engine is a classic, proven, and generally reliable process. However, timing can be critical, and the control logic,...

  18. Rocket Fuel Synthesis by Fisher-Tropsch Process Project

    Data.gov (United States)

    National Aeronautics and Space Administration — While In-Situ Resource Utilization (ISRU) studies for Mars return have emphasized methane fuel, only modest work has been done to develop the methane-powered rocket...

  19. Distributed Rocket Engine Testing Health Monitoring System Project

    Data.gov (United States)

    National Aeronautics and Space Administration — The on-ground and Distributed Rocket Engine Testing Health Monitoring System (DiRETHMS) provides a system architecture and software tools for performing diagnostics...

  20. Ultraviolet photographic pyrometer used in rocket exhaust analysis

    Science.gov (United States)

    Levin, B. P.

    1966-01-01

    Ultraviolet photographic pyrometer investigates the role of carbon as a thermal radiator and determines the geometry, location, and progress of afterburning phenomena in the exhaust plume of rocket engines using liquid oxygen/RP-1 as propellant.

  1. Gaseous Helium Reclamation at Rocket Test Systems Project

    Data.gov (United States)

    National Aeronautics and Space Administration — The ability to restore large amounts of vented gaseous helium (GHe) at rocket test sites preserves the GHe and reduces operating cost. The used GHe is vented into...

  2. CIV Interferometer for a Solar Sounding Rocket Program

    Science.gov (United States)

    Gary, G. A.; West, E. A.; Davis, J. M.; Rees, D.

    2007-01-01

    A sounding rocket instrument consisting of two vacuum ultraviolet Fabry-Perot filters in series would allow high-spectral resolution over an extended field of view for solar observations of the transition region between the chromosphere and the corona.

  3. Conventional mechanical ventilation

    Directory of Open Access Journals (Sweden)

    Tobias Joseph

    2010-01-01

    Full Text Available The provision of mechanical ventilation for the support of infants and children with respiratory failure or insufficiency is one of the most common techniques that are performed in the Pediatric Intensive Care Unit (PICU. Despite its widespread application in the PICUs of the 21st century, before the 1930s, respiratory failure was uniformly fatal due to the lack of equipment and techniques for airway management and ventilatory support. The operating rooms of the 1950s and 1960s provided the arena for the development of the manual skills and the refinement of the equipment needed for airway management, which subsequently led to the more widespread use of endotracheal intubation thereby ushering in the era of positive pressure ventilation. Although there seems to be an ever increasing complexity in the techniques of mechanical ventilation, its successful use in the PICU should be guided by the basic principles of gas exchange and the physiology of respiratory function. With an understanding of these key concepts and the use of basic concepts of mechanical ventilation, this technique can be successfully applied in both the PICU and the operating room. This article reviews the basic physiology of gas exchange, principles of pulmonary physiology, and the concepts of mechanical ventilation to provide an overview of the knowledge required for the provision of conventional mechanical ventilation in various clinical arenas.

  4. Solid Rocket Motor Design Using Hybrid Optimization

    Directory of Open Access Journals (Sweden)

    Kevin Albarado

    2012-01-01

    Full Text Available A particle swarm/pattern search hybrid optimizer was used to drive a solid rocket motor modeling code to an optimal solution. The solid motor code models tapered motor geometries using analytical burn back methods by slicing the grain into thin sections along the axial direction. Grains with circular perforated stars, wagon wheels, and dog bones can be considered and multiple tapered sections can be constructed. The hybrid approach to optimization is capable of exploring large areas of the solution space through particle swarming, but is also able to climb “hills” of optimality through gradient based pattern searching. A preliminary method for designing tapered internal geometry as well as tapered outer mold-line geometry is presented. A total of four optimization cases were performed. The first two case studies examines designing motors to match a given regressive-progressive-regressive burn profile. The third case study studies designing a neutrally burning right circular perforated grain (utilizing inner and external geometry tapering. The final case study studies designing a linearly regressive burning profile for right circular perforated (tapered grains.

  5. MHD thrust vectoring of a rocket engine

    Science.gov (United States)

    Labaune, Julien; Packan, Denis; Tholin, Fabien; Chemartin, Laurent; Stillace, Thierry; Masson, Frederic

    2016-09-01

    In this work, the possibility to use MagnetoHydroDynamics (MHD) to vectorize the thrust of a solid propellant rocket engine exhaust is investigated. Using a magnetic field for vectoring offers a mass gain and a reusability advantage compared to standard gimbaled, elastomer-joint systems. Analytical and numerical models were used to evaluate the flow deviation with a 1 Tesla magnetic field inside the nozzle. The fluid flow in the resistive MHD approximation is calculated using the KRONOS code from ONERA, coupling the hypersonic CFD platform CEDRE and the electrical code SATURNE from EDF. A critical parameter of these simulations is the electrical conductivity, which was evaluated using a set of equilibrium calculations with 25 species. Two models were used: local thermodynamic equilibrium and frozen flow. In both cases, chlorine captures a large fraction of free electrons, limiting the electrical conductivity to a value inadequate for thrust vectoring applications. However, when using chlorine-free propergols with 1% in mass of alkali, an MHD thrust vectoring of several degrees was obtained.

  6. Oxidizer heat exchangers for rocket engine operation in idle modes

    Science.gov (United States)

    Kanic, P. G.; Kmiec, T. D.

    1987-01-01

    The heat exchanger concept is discussed together with its role in rocket engine operation in idle modes. Two heat exchanger designs (low and high heat transfer) utilizing different approaches to achieve stable oxygen vaporization are presented as well as their performance test results. It is concluded that compact and lightweight heat exchangers can be used in a stable manner under the 'idle' operating conditions expected with the RL10 rocket engine.

  7. Numerical Modeling of a Ducted Rocket Combustor With Experimental Validation

    OpenAIRE

    Hewitt, Patrick

    2008-01-01

    The present work was conducted with the intent of developing a high-fidelity numerical model of a unique combustion flow problem combining multi-phase fuel injection with substantial momentum and temperature into a highly complex turbulent flow. This important problem is very different from typical and more widely known liquid fuel combustion problems and is found in practice in pulverized coal combustors and ducted rocket ramjets. As the ducted rocket engine cycle is only now finding wides...

  8. Introduction to the Problem of Rocket-Powered Aircraft Performance

    Science.gov (United States)

    1947-12-01

    8217 Reynolds number for a more exact study. The introduction of drag as a function of Reynolds number would, in general , shift.the curves of figure 13 and...the air. Some other important problema involved in attaining maximum possible range are the determination of the optimum flight paths, the... general and specific facts relative to rocket performance brought out are as follows: l. The jet efficiency of a rocket accelerating horizontally in

  9. Problems of the mathematical description of rocket engines as plants

    Science.gov (United States)

    Kiforenko, B. N.

    2012-09-01

    Mathematical models of liquid-propellant, nuclear, and electric rocket engines are presented that more fully describe thrust generation than the classical models do. The optimal control of engine thrust is analyzed within the framework of Mayer's general variational problem. It is shown that the control of a rocket engine satisfying the necessary optimality conditions belongs to the boundary arc of the feasible control set between the point of maximum thrust and the point of maximum exhaust velocity

  10. Walter Thiel—Short life of a rocket scientist

    Science.gov (United States)

    Thiel, Karen; Przybilski, Olaf

    2013-10-01

    In 2012 we celebrate the 70th anniversary of the first successful rocket launch that reached a height of 84.5 km and had a speed of 4.824 km/h (5x sonic speed). This rocket flew 190 km to the target location. One of the masterminds of this launch was Walter Thiel, a German chemist and rocket engineer. Thiel was highly talented, during his education from primary school until diploma exams he always received a grade of A in his exams. He was called "the student with the 7 A grades". In 1934 Thiel became Dr.-Ing. (chem.), with the highest possible honor (summa cum laude), when he was only 24 years old. He started to work for the rocket development department at Humboldt University, Berlin. Walter Dornberger asked him to leave the university research department and become head of rocket propulsion development in his team in Kummersdorf, near Berlin. Thiel's groundbreaking ideas for the rocket engine would lead to a significant reduction in material, weight and work processes, as well as a shortening in the length of the engine itself. Thiel and his team also defined the fuel itself and the best ratio of mixture between ethanol and liquid oxygen for the engine. In 1940 the propulsion team moved from Kummersdorf to Peenemünde after the launch sites were completed there. Thiel became deputy of Wernher von Braun at the R&D units. One of Thiel's team members was Konrad Dannenberg, who later became famous in the development of the Saturn program. On the night from August 17 to August 18, 1943, Thiel and his family (wife and two children) were killed during a Royal Air Force bombing raid (Operation Hydra). The Moon crater "Thiel" on the far side of the Moon is named after Walter Thiel. The research results of Walter Thiel had a strong impact on the United States' rocket program as well as the Russian rocket development program.

  11. Numerical and Experimental Investigation of Hybrid Rocket Motors Transient Behavior

    OpenAIRE

    Barato, Francesco

    2013-01-01

    As the space business is shifting from pure performances to affordability a renewed interest is growing about hybrid rocket propulsion. Hybrid rocket motors are attractive for their inherent advantages like simplicity, reliability, safety and reduced costs. Moreover hybrid motors are easy to throttle and thus they are ideal candidate when soft-landing or energy management capabilities are required. This thesis is mainly involved with a theoretical/numerical study of hybrid transie...

  12. An Improved Approach for Hybrid Rocket Injection System Design

    OpenAIRE

    M. Invigorito; G. Elia; M. Panelli

    2016-01-01

    Hybrid propulsion combines beneficial properties of both solid and liquid rockets, such as multiple restarts, throttability as well as simplicity and reduced costs. A nitrous oxide (N2O)/paraffin-based hybrid rocket engine demonstrator is currently under development at the Italian Aerospace Research Center (CIRA) within the national research program HYPROB, funded by the Italian Ministry of Research. Nitrous oxide belongs to the class of self-pressurizing propellants that exhibit a high vapor...

  13. Blood Pump Development Using Rocket Engine Flow Simulation Technology

    Science.gov (United States)

    Kiris, Cetin C.; Kwak, Dochan

    2002-01-01

    This viewgraph presentation provides information on the transfer of rocket engine flow simulation technology to work involving the development of blood pumps. Details are offered regarding the design and requirements of mechanical heart assist devices, or VADs (ventricular assist device). There are various computational fluid dynamics issues involved in the visualization of flow in such devices, and these are highlighted and compared to those of rocket turbopumps.

  14. Performance of a RBCC Engine in Rocket-Operation

    Science.gov (United States)

    Tomioka, Sadatake; Kubo, Takahiro; Noboru Sakuranaka; Tani, Koichiro

    Combination of a scramjet (supersonic combustion ramjet) flow-pass with embedded rocket engines (the combined system termed as Rocket-based Combined Cycle engine) are expected to be the most effective propulsion system for space launch vehicles. Either SSTO (Single Stage To Orbit) system or TSTO (Two Stage To Orbit) system with separation at high altitude needs final stage acceleration in space, so that the RBCC (Rocket Based Combined Cycle) engine should be operated as rocket engines. Performance of the scramjet combustor as the extension to the rocket nozzle, was experimentally evaluated by injecting inert gas at various pressure through the embedded rocket chamber while the whole sub-scaled model was placed in a low pressure chamber connected to an air-driven ejector system. The results showed that the thrust coefficient was about 1.2, the low value being found to mainly due to the friction force on the scramjet combustor wall, while blocking the scramjet flow pass’s opening to increase nozzle extension thrust surface, was found to have little effects on the thrust performance. The combustor was shortened to reduce the friction loss, however, degree of reduction was limited as friction decreased rapidly with distance from the onset of the scramjet combustor.

  15. The NASA Sounding Rocket Program and space sciences

    Science.gov (United States)

    Gurkin, L. W.

    1992-01-01

    High altitude suborbital rockets (sounding rockets) have been extensively used for space science research in the post-World War II period; the NASA Sounding Rocket Program has been on-going since the inception of the Agency and supports all space science disciplines. In recent years, sounding rockets have been utilized to provide a low gravity environment for materials processing research, particularly in the commercial sector. Sounding rockets offer unique features as a low gravity flight platform. Quick response and low cost combine to provide more frequent spaceflight opportunities. Suborbital spacecraft design practice has achieved a high level of sophistication which optimizes the limited available flight times. High data-rate telemetry, real-time ground up-link command and down-link video data are routinely used in sounding rocket payloads. Standard, off-the-shelf, active control systems are available which limit payload body rates such that the gravitational environment remains less than 10(-4) g during the control period. Operational launch vehicles are available which can provide up to 7 minutes of experiment time for experiment weights up to 270 kg. Standard payload recovery systems allow soft impact retrieval of payloads. When launched from White Sands Missile Range, New Mexico, payloads can be retrieved and returned to the launch site within hours.

  16. Optimization Pitch Angle Controller of Rocket System Using Improved Differential Evolution Algorithm

    OpenAIRE

    Lastomo, Dwi; Setiadi, Herlambang; Djalal, Muhammad Ruswandi

    2017-01-01

    Pitch angle of rocket system is the important parts of the rocket. This part corresponds to the movement of the rocket system. Rocket system is fell into multi-input and multi-output (MIMO) system. The most challenge factor in MIMO system is designing the controller, if the design is not appropriate, it may lead to the unstable condition. Hence, appropriate and robust control design is inevitable. This paper introduces PID controller as pitch angle control of rocket system. Furthermore, PID c...

  17. Upper Atmosphere Research Report Number 21. Summary of Upper Atmosphere Rocket Research Firings

    Science.gov (United States)

    1954-02-01

    Recovery 5.2 6. ROCKET INSTRUMENTATION Instrument Space 6.1 Instrument Weight 6.1 Rocket Stability 6.1 Acceleration 6.2 Vibration 6.2 Pressurization...INSTRUMENTATION Intumit Spce Instrumet Weigh Rocket Stability K Acceleration Vibration Pressurization Aerodynamic Effects i Aspect Equipmnent Reliability...should be taxed to its maximum capacity to avoid cariying useless battery weight. Rocket Stability A rocket is statically stable when its center of gravity

  18. Rocket Fuel R and D at AFRL: Recent Activities and Future Direction

    Science.gov (United States)

    2017-04-12

    Charts 14 March 2017 - 12 April 2017 Rocket Fuel R&D at AFRL: Recent Activities & Future Direction Matt Billingsley Air Force Research Laboratory (AFMC...Unclassified SAR 31 Matthew Billingsley N/A Q1W8 DISTRIBUTION A: Approved for Public Release; Distribution Unlimited PA Clearance Number 17163 Rocket ... Rocket Kerosene Fuels Chemical Propulsion Liquid Rocket Engines (LRE) Solid Rocket Motors (SRM) Cryogenic (Liquid O2/fuel) Storable (IRFNA, MMH

  19. Antioxidant activity in selected Slovenian organic and conventional crops

    Directory of Open Access Journals (Sweden)

    Manca KNAP

    2015-12-01

    Full Text Available The demand for organically produced food is increasing. There is widespread belief that organic food is substantially healthier and safer than conventional food. According to literature organic food is free of phytopharmaceutical residues, contain less nitrates and more antioxidants. The aim of the present study was to verify if there are any differences in the antioxidant activity between selected Slovenian organic and conventional crops. Method of DPPH (2,2-diphenyl-1-picryhydrazyl was used to determine the antioxidant activity of 16 samples from organic and conventional farms. The same varieties of crops were analysed. DPPH method was employed to measure the antioxidant activity of polar antioxidants (AAp and antioxidant activity of fraction in ethyl acetate soluble antioxidants (EA AA. Descriptive statistics and variance analysis were used to describe differences between farming systems. Estimated differences between interactions for the same crop and different farming practice were mostly not statistically significant except for the AAp for basil and beetroot. Higher statistically significant values were estimated for conventional crops. For the EA AA in broccoli, cucumber, rocket and cherry statistically significant higher values were estimated for organic production.

  20. Coupled Lagrangian impingement spray model for doublet impinging injectors under liquid rocket engine operating conditions

    Directory of Open Access Journals (Sweden)

    Qiang WEI

    2017-08-01

    Full Text Available To predict the effect of the liquid rocket engine combustion chamber conditions on the impingement spray, the conventional uncoupled spray model for impinging injectors is extended by considering the coupling of the jet impingement process and the ambient gas field. The new coupled model consists of the plain-orifice sub-model, the jet-jet impingement sub-model and the droplet collision sub-model. The parameters of the child droplet are determined with the jet-jet impingement sub-model using correlations about the liquid jet parameters and the chamber conditions. The overall model is benchmarked under various impingement angles, jet momentum and off-center ratios. Agreement with the published experimental data validates the ability of the model to predict the key spray characteristics, such as the mass flux and mixture ratio distributions in quiescent air. Besides, impinging sprays under changing ambient pressure and non-uniform gas flow are investigated to explore the effect of liquid rocket engine chamber conditions. First, a transient impingement spray during engine start-up phase is simulated with prescribed pressure profile. The minimum average droplet diameter is achieved when the orifices work in cavitation state, and is about 30% smaller than the steady single phase state. Second, the effect of non-uniform gas flow produces off-center impingement and the rotated spray fan by 38°. The proposed model suggests more reasonable impingement spray characteristics than the uncoupled one and can be used as the first step in the complex simulation of coupling impingement spray and combustion in liquid rocket engines.

  1. Telemetry Boards Interpret Rocket, Airplane Engine Data

    Science.gov (United States)

    2009-01-01

    For all the data gathered by the space shuttle while in orbit, NASA engineers are just as concerned about the information it generates on the ground. From the moment the shuttle s wheels touch the runway to the break of its electrical umbilical cord at 0.4 seconds before its next launch, sensors feed streams of data about the status of the vehicle and its various systems to Kennedy Space Center s shuttle crews. Even while the shuttle orbiter is refitted in Kennedy s orbiter processing facility, engineers constantly monitor everything from power levels to the testing of the mechanical arm in the orbiter s payload bay. On the launch pad and up until liftoff, the Launch Control Center, attached to the large Vehicle Assembly Building, screens all of the shuttle s vital data. (Once the shuttle clears its launch tower, this responsibility shifts to Mission Control at Johnson Space Center, with Kennedy in a backup role.) Ground systems for satellite launches also generate significant amounts of data. At Cape Canaveral Air Force Station, across the Banana River from Kennedy s location on Merritt Island, Florida, NASA rockets carrying precious satellite payloads into space flood the Launch Vehicle Data Center with sensor information on temperature, speed, trajectory, and vibration. The remote measurement and transmission of systems data called telemetry is essential to ensuring the safe and successful launch of the Agency s space missions. When a launch is unsuccessful, as it was for this year s Orbiting Carbon Observatory satellite, telemetry data also provides valuable clues as to what went wrong and how to remedy any problems for future attempts. All of this information is streamed from sensors in the form of binary code: strings of ones and zeros. One small company has partnered with NASA to provide technology that renders raw telemetry data intelligible not only for Agency engineers, but also for those in the private sector.

  2. Liquid rocket combustion chamber acoustic characterization

    Directory of Open Access Journals (Sweden)

    Cândido Magno de Souza

    2010-09-01

    Full Text Available Over the last 40 years, many solid and liquid rocket motors have experienced combustion instabilities. Among other causes, there is the interaction of acoustic modes with the combustion and/or fluid dynamic processes inside the combustion chamber. Studies have been showing that, even if less than 1% of the available energy is diverted to an acoustic mode, combustion instability can be generated. On one hand, this instability can lead to ballistic pressure changes, couple with other propulsion systems such as guidance or thrust vector control, and in the worst case, cause motor structural failure. In this case, measures, applying acoustic techniques, must be taken to correct/minimize these influences on the combustion. The combustion chamber acoustic behavior in operating conditions can be estimated by considering its behavior in room conditions. In this way, acoustic tests can be easily performed, thus identifying the cavity modes. This paper describes the procedures to characterize the acoustic behavior in the inner cavity of four different configurations of a combustion chamber. Simple analytical models are used to calculate the acoustic resonance frequencies and these results are compared with acoustic natural frequencies measured at room conditions. Some comments about the measurement procedures are done, as well as the next steps for the continuity of this research. The analytical and experimental procedures results showed good agreement. However, limitations on high frequency band as well as in the identification of specific kinds of modes indicate that numerical methods able to model the real cavity geometry and an acoustic experimental modal analysis may be necessary for a more complete analysis. Future works shall also consider the presence of passive acoustic devices such as baffles and resonators capable of introducing damping and avoiding or limiting acoustic instabilities.

  3. Orbit transfer rocket engine technology program

    Science.gov (United States)

    Gustafson, N. B.; Harmon, T. J.

    1993-10-01

    An advanced near term (1990's) space-based Orbit Transfer Vehicle Engine (OTVE) system was designed, and the technologies applicable to its construction, maintenance, and operations were developed under Tasks A through F of the Orbit Transfer Rocket Engine Technology Program. Task A was a reporting task. In Task B, promising OTV turbomachinery technologies were explored: two stage partial admission turbines, high velocity ratio diffusing crossovers, soft wear ring seals, advanced bearing concepts, and a rotordynamic analysis. In Task C, a ribbed combustor design was developed. Possible rib and channel geometries were chosen analytically. Rib candidates were hot air tested and laser velocimeter boundary layer analyses were conducted. A channel geometry was also chosen on the basis of laser velocimeter data. To verify the predicted heat enhancement effects, a ribbed calorimeter spool was hot fire tested. Under Task D, the optimum expander cycle engine thrust, performance and envelope were established for a set of OTV missions. Optimal nozzle contours and quick disconnects for modularity were developed. Failure Modes and Effects Analyses, maintenance and reliability studies and component study results were incorporated into the engine system. Parametric trades on engine thrust, mixture ratio, and area ratio were also generated. A control system and the health monitoring and maintenance operations necessary for a space-based engine were outlined in Task E. In addition, combustor wall thickness measuring devices and a fiberoptic shaft monitor were developed. These monitoring devices were incorporated into preflight engine readiness checkout procedures. In Task F, the Integrated Component Evaluator (I.C.E.) was used to demonstrate performance and operational characteristics of an advanced expander cycle engine system and its component technologies. Sub-system checkouts and a system blowdown were performed. Short transitions were then made into main combustor ignition and

  4. Rocket plume temperature measurement by wire welded thermocouples

    Science.gov (United States)

    Xu, Qiang

    2006-05-01

    The plume of solid rocket motor is a high velocity flow with high temperature. Temperature distribution in the plume is of great interest for analyzing the compatibility of rocket weapon system. The high temperature exhausted flow field would cause damage on certain equipment and loading vehicles. An instantaneous temperature field with sharp step is established by the exhausted flow field of rocket motor. The increasing rate of the step depends on the flow velocity at cross section of nozzle exit. To perform an accurate measurement of temperature inside the flow field, a thermocouple must be sturdy enough to endure the flow impingement. In the meantime, the thermocouple must have a short time constant to trace the temperature fluctuation in flow field and a small size to avoid disturbing the flow field severely. The dynamic performance of the thermocouples used in exhausted flow temperature measurement must be evaluated before the experiment. The thermocouple which can be used in measuring the temperature distribution in rocket plume was presented in this paper. A NAMNAC (R) self-renew-erode thermocouples with a nominal time constant of 10 microseconds was used as a reference in a dynamic calibration test for this kind of thermocouple. The thermocouple could trace the temperature increase in the exhausted flow perfectly. This kind of thermocouples was used in several real tests of rocket motors, such as the temperature in free exhausted flow field of a stationary rocket motor test, the stagnate temperature in a shock flow field during the launching of a rocket, and the temperature in a launch tube.

  5. Application of the Aarhus Convention

    Directory of Open Access Journals (Sweden)

    Tubić Bojan

    2011-01-01

    Full Text Available Convention on access to information, public participation in decision-making and access to justice in environmental matters (Aarhus Convention has been adopted in 1998 and entered into force three years later. It envisages three elements for strengthening democratic procedures in decision-making: access to information, public participation and access to justice. At the first meeting of the Member States the Aarhus Convention Compliance Committee was founded. The European Union is a party of the Convention and it has implemented the provisions in its legal order. After entering into force of the Convention, several Directives that regulate these issues in the EU have been enacted. Republic of Serbia has ratified the Convention in 2009 and it is currently in the process of its implementation by involving private subjects in decision-making on environmental issues.

  6. Understanding the conventional arms trade

    Science.gov (United States)

    Stohl, Rachel

    2017-11-01

    The global conventional arms trade is worth tens of billions of dollars every year and is engaged in by every country in the world. Yet, it is often difficult to control the legal trade in conventional arms and there is a thriving illicit market, willing to arm unscrupulous regimes and nefarious non-state actors. This chapter examines the international conventional arms trade, the range of tools that have been used to control it, and challenges to these international regimes.

  7. Sounding rocket activities of Japan in 2003 and 2004

    Science.gov (United States)

    Ishii, Nobuaki; Inatani, Yoshifumi; Nonaka, Satoshi; Nakajima, Takashi; Takumi, Abe; Yuichi, Tsuda; Yamagami, Takamasa

    2005-08-01

    In October 2003, a new space agency, JAXA (Japan Aerospace Exploration Agency) was reorganized and started as a primary space agency to promote all space activities in Japan. The Institute of Space and Astronautical Science (ISAS) belonged to JAXA and continued to promote space science and technologies using unique scientific satellites, sounding rockets and balloons. This paper summarizes sounding rocket and ballooning activities of ISAS in the fiscal year of 2003 and 2004, associated with satellite launch programs. In this time period, three sounding rockets and nineteen balloons were launched by ISAS. One of the sounding rocket, S-310-35 was an international collaboration between Japan and Norway, which was launched from Andoya Rocket Range (ARR), Andenes, Norway, so as to study the upper atmospheric dynamics and energetics associated with the auroral energy in the polar lower thermosphere. Through the combination with the national researchers and the cooperation with international organizations, ISAS will keep its own flight opportunities and be able to obtain many new scientific findings.

  8. Combustion of metal agglomerates in a solid rocket core flow

    Science.gov (United States)

    Maggi, Filippo; Dossi, Stefano; DeLuca, Luigi T.

    2013-12-01

    The need for access to space may require the use of solid propellants. High thrust and density are appealing features for different applications, spanning from boosting phase to other service applications (separation, de-orbiting, orbit insertion). Aluminum is widely used as a fuel in composite solid rocket motors because metal oxidation increases enthalpy release in combustion chamber and grants higher specific impulse. Combustion process of metal particles is complex and involves aggregation, agglomeration and evolution of reacting particulate inside the core flow of the rocket. It is always stated that residence time should be enough in order to grant complete metal oxidation but agglomerate initial size, rocket grain geometry, burning rate, and other factors have to be reconsidered. New space missions may not require large rocket systems and metal combustion efficiency becomes potentially a key issue to understand whether solid propulsion embodies a viable solution or liquid/hybrid systems are better. A simple model for metal combustion is set up in this paper. Metal particles are represented as single drops trailed by the core flow and reacted according to Beckstead's model. The fluid dynamics is inviscid, incompressible, 1D. The paper presents parametric computations on ideal single-size particles as well as on experimental agglomerate populations as a function of operating rocket conditions and geometries.

  9. A minimum cost tolerance allocation method for rocket engines and robust rocket engine design

    Science.gov (United States)

    Gerth, Richard J.

    1993-11-01

    Rocket engine design follows three phases: systems design, parameter design, and tolerance design. Systems design and parameter design are most effectively conducted in a concurrent engineering (CE) environment that utilize methods such as Quality Function Deployment and Taguchi methods. However, tolerance allocation remains an art driven by experience, handbooks, and rules of thumb. It was desirable to develop and optimization approach to tolerancing. The case study engine was the STME gas generator cycle. The design of the major components had been completed and the functional relationship between the component tolerances and system performance had been computed using the Generic Power Balance model. The system performance nominals (thrust, MR, and Isp) and tolerances were already specified, as were an initial set of component tolerances. However, the question was whether there existed an optimal combination of tolerances that would result in the minimum cost without any degradation in system performance.

  10. A minimum cost tolerance allocation method for rocket engines and robust rocket engine design

    Science.gov (United States)

    Gerth, Richard J.

    1993-01-01

    Rocket engine design follows three phases: systems design, parameter design, and tolerance design. Systems design and parameter design are most effectively conducted in a concurrent engineering (CE) environment that utilize methods such as Quality Function Deployment and Taguchi methods. However, tolerance allocation remains an art driven by experience, handbooks, and rules of thumb. It was desirable to develop and optimization approach to tolerancing. The case study engine was the STME gas generator cycle. The design of the major components had been completed and the functional relationship between the component tolerances and system performance had been computed using the Generic Power Balance model. The system performance nominals (thrust, MR, and Isp) and tolerances were already specified, as were an initial set of component tolerances. However, the question was whether there existed an optimal combination of tolerances that would result in the minimum cost without any degradation in system performance.

  11. Vacuum Plasma Spray Forming of Copper Alloy Liners for Regeneratively Cooled Liquid Rocket Combustion Chambers

    Science.gov (United States)

    Zimmerman, Frank

    2003-01-01

    Vacuum plasma spray (VPS) has been demonstrated as a method to form combustion chambers from copper alloys NARloy-Z and GRCop-84. Vacuum plasma spray forming is of particular interest in the forming of CuCrNb alloys such as GRCop-84, developed by NASA s Glenn Research Center, because the alloy cannot be formed using conventional casting and forging methods. This limitation is related to the levels of chromium and niobium in the alloy, which exceed the solubility limit in copper. Until recently, the only forming process that maintained the required microstructure of CrNb intermetallics was powder metallurgy formation of a billet from powder stock, followed by extrusion. This severely limits its usefulness in structural applications, particularly the complex shapes required for combustion chamber liners. This paper discusses the techniques used to form combustion chambers from CuCrNb and NARloy-Z, which will be used in regeneratively cooled liquid rocket combustion chambers.

  12. Conceptual Design for a Dual-Bell Rocket Nozzle System Using a NASA F-15 Airplane as the Flight Testbed

    Science.gov (United States)

    Jones, Daniel S.; Ruf, Joseph H.; Bui, Trong T.; Martinez, Martel; St. John, Clinton W.

    2014-01-01

    The dual-bell rocket nozzle was first proposed in 1949, offering a potential improvement in rocket nozzle performance over the conventional-bell nozzle. Despite the performance advantages that have been predicted, both analytically and through static test data, the dual-bell nozzle has still not been adequately tested in a relevant flight environment. In 2013 a proposal was constructed that offered a National Aeronautics and Space Administration (NASA) F-15 airplane as the flight testbed, with the plan to operate a dual-bell rocket nozzle during captive-carried flight. If implemented, this capability will permit nozzle operation into an external flow field similar to that of a launch vehicle, and facilitate an improved understanding of dual-bell nozzle plume sensitivity to external flow-field effects. More importantly, this flight testbed can be utilized to help quantify the performance benefit with the dual-bell nozzle, as well as to advance its technology readiness level. Toward this ultimate goal, this report provides plans for future flights to quantify the external flow field of the airplane near the nozzle experiment, as well as details on the conceptual design for the dual-bell nozzle cold-flow propellant feed system integration within the NASA F-15 Propulsion Flight Test Fixture. The current study shows that this concept of flight research is feasible, and could result in valuable flight data for the dual-bell nozzle.

  13. Chemical rocket propulsion a comprehensive survey of energetic materials

    CERN Document Server

    Shimada, Toru; Sinditskii, Valery; Calabro, Max

    2017-01-01

    Developed and expanded from the work presented at the New Energetic Materials and Propulsion Techniques for Space Exploration workshop in June 2014, this book contains new scientific results, up-to-date reviews, and inspiring perspectives in a number of areas related to the energetic aspects of chemical rocket propulsion. This collection covers the entire life of energetic materials from their conceptual formulation to practical manufacturing; it includes coverage of theoretical and experimental ballistics, performance properties, as well as laboratory-scale and full system-scale, handling, hazards, environment, ageing, and disposal. Chemical Rocket Propulsion is a unique work, where a selection of accomplished experts from the pioneering era of space propulsion and current technologists from the most advanced international laboratories discuss the future of chemical rocket propulsion for access to, and exploration of, space. It will be of interest to both postgraduate and final-year undergraduate students in...

  14. Parameters Affecting the Erosive Burning of Solid Rocket Motor

    Directory of Open Access Journals (Sweden)

    Abdelaziz Almostafa

    2018-01-01

    Full Text Available Increasing the velocity of gases inside solid rocket motors with low port-to-throat area ratios, leading to increased occurrence and severity of burning rate augmentation due to flow of propellant products across burning propellant surfaces (erosive burning, erosive burning of high energy composite propellant was investigated to supply rocket motor design criteria and to supplement knowledge of combustion phenomena, pressure, burning rate and high velocity of gases all of these are parameters affect on erosive burning. Investigate the phenomena of the erosive burning by using the 2’inch rocket motor and modified one. Different tests applied to fulfil all the parameters that calculated out from the experiments and by studying the pressure time curve and erosive burning phenomena.

  15. Launching rockets and small satellites from the lunar surface

    Science.gov (United States)

    Anderson, K. A.; Dougherty, W. M.; Pankow, D. H.

    1985-01-01

    Scientific payloads and their propulsion systems optimized for launch from the lunar surface differ considerably from their counterparts for use on earth. For spin-stabilized payloads, the preferred shape is a large diameter-to-length ratio to provide stability during the thrust phase. The rocket motor required for a 50-kg payload to reach an altitude of one lunar radius would have a mass of about 41 kg. To place spin-stabilized vehicles into low altitude circular orbits, they are first launched into an elliptical orbit with altitude about 840 km at aposelene. When the spacecraft crosses the desired circular orbit, small retro-rockets are fired to attain the appropriate direction and speed. Values of the launch angle, velocity increments, and other parameters for circular orbits of several altitudes are tabulated. To boost a 50-kg payload into a 100-km altitude circular orbit requires a total rocket motor mass of about 90 kg.

  16. Bumper 8 model rocket launched at 50th anniversary celebration

    Science.gov (United States)

    2000-01-01

    A 50th Anniversary Ceremony was held today in honor of the first rocket launch, called Bumper 8, from Pad 3 at Cape Canaveral on July 24, 1950. Among the activities was the launch of a Bumper 8 model rocket (seen here), presentation of a Bumper Award to the Honorable George Kirkpatrick, State Senator, District 5; remarks by Center Director Roy Bridges and Commander, 45th Space Wing, Brig. Gen. Donald Pettit; and a reception at Hangar C. Bumper consisted of a German V-2 missile acting as the booster and a U.S. Army WAC Corporal rocket as the second stage. Since 1950 there have been a total of 3,245 launches from Cape Canaveral.

  17. Probe experiment with RIKI device on a meteorological rocket

    Energy Technology Data Exchange (ETDEWEB)

    Chapknov, S.K.; Ivanova, T.N.; Gusheva, M.N.; Knchev, A.G.; Tsvetkov, Z.I.

    1979-01-01

    The RIKI device carried on board the Centaure-II ionospheric sounding rocket launched on October 31, 1978 from the equatorial rocket base at Tumba, India in order to measure local plasma ion concentrations and temperatures is described. The device consists of a four-spherical-electrode and a three-spherical-electrode spherical ion trap and a block of measuring electronics mounted in the air-tight rocket container. The volt-ampere characteristics of protons traversing a system of concentric grids are determined in fine or coarse resolution as sweeping voltages are supplied to the grids from a sawtooth wave generator. Positive ions which penetrate the grids are collected by the ion trap collectors, and the current generated is used to determine operational modes. Measurements of ion concentration obtained with the RIKI device have been found to be in good agreement with electron concentration measurements obtained concurrently.

  18. Electron beam sounding rocket experiments for probing the distant magnetosphere

    Science.gov (United States)

    Nemzek, R. J.; Winckler, J. R.

    1991-01-01

    Electron accelerators on sounding rockets have injected 8-40-keV electrons on closed magnetospheric tail field lines near 250 km altitude in the northern auroral zone. These beams mirrored at the southern conjugate point ad returned as 'echoes' which were detected on the rocket system. The 20 percent of the beam that returned was sufficient to measure field line lengths and verify magnetospheric magnetic models, to measure fluctuating electric fields, and electron pitch angle scattering (6-10) R(E) distant, and to identify 10-100 V field-aligned potentials above the rocket. The experiment gives new insight into the motion of natural electrons in the outer Van Allen radiation belt.

  19. Development status of M-V rocket structures and mechanisms

    Science.gov (United States)

    Onoda, Junjiro; Minesugi, Kenji; Watanabe, Naoyuki

    M-V is the next generation satellite launcher of the Mu rocket series of Institute of Space and Astronautical Science (ISAS). This paper describes the plan and the status of the development of its structure and mechanisms. The performance of the motor casings for the solid propellant rockets, which are the largest structural members in each stage, will be much improved by the introduction of new materials and new fabrication methods. For the nose-faring made of honeycomb sandwich shells with carbon fiber reinforced plastic (CFRP) face sheet, a new separation joint is being developed, which is composed of an expanding shielded mild detonating cord. A unique inter-stage joint between the 1st and 2nd stages is being developed in order to accommodate to the fire-in-the-hole (FITH) ignition of the 2nd stage rocket motor.

  20. FLUENT-based modelling of rocket exhaust signatures

    Science.gov (United States)

    Rapanotti, John L.

    2006-05-01

    Commercially available fluid-dynamics solvers, such as FLUENT, are being developed to analyze and design missiles of increasing complexity. These robust solvers can be further adapted to predict spectral radiation directly. While retaining the capability to predict signatures from underexpanded axisymmetric rocket exhaust typical of most rockets, this new capability can be extended to include subsonic missiles, such as sea-skimmers, ballistic missiles operating in near-vacuum conditions and side-discharging rockets for manual and semi-automatic command missile guidance. The preliminary results presented in this study suggest that when combined with available atmospheric models, these comprehensive codes can be used to develop improved threat detection and missile guidance optics.

  1. Rocket Based Combined Cycle (RBCC) Propulsion Workshop, volume 2

    Science.gov (United States)

    Chojnacki, Kent T.

    1992-01-01

    The goal of the Rocket Based Combined Cycle (RBCC) Propulsion Technology Workshop, was to impart technology information to the propulsion community with respect to hypersonic combined cycle propulsion capabilities. The major recommendation resulting from this technology workshop was as follows: conduct a systems-level applications study to define the desired propulsion system and vehicle technology requirements for LEO launch vehicles. All SSTO and TSTO options using the various propulsion systems (airbreathing combined cycle, rocket-based combined cycle, and all rocket) must be considered. Such a study should be accomplished as soon as possible. It must be conducted with a consistent set of ground rules and assumptions. Additionally, the study should be conducted before any major expenditures on a RBCC technology development program occur.

  2. Performance of an Axisymmetric Rocket Based Combined Cycle Engine During Rocket Only Operation Using Linear Regression Analysis

    Science.gov (United States)

    Smith, Timothy D.; Steffen, Christopher J., Jr.; Yungster, Shaye; Keller, Dennis J.

    1998-01-01

    The all rocket mode of operation is shown to be a critical factor in the overall performance of a rocket based combined cycle (RBCC) vehicle. An axisymmetric RBCC engine was used to determine specific impulse efficiency values based upon both full flow and gas generator configurations. Design of experiments methodology was used to construct a test matrix and multiple linear regression analysis was used to build parametric models. The main parameters investigated in this study were: rocket chamber pressure, rocket exit area ratio, injected secondary flow, mixer-ejector inlet area, mixer-ejector area ratio, and mixer-ejector length-to-inlet diameter ratio. A perfect gas computational fluid dynamics analysis, using both the Spalart-Allmaras and k-omega turbulence models, was performed with the NPARC code to obtain values of vacuum specific impulse. Results from the multiple linear regression analysis showed that for both the full flow and gas generator configurations increasing mixer-ejector area ratio and rocket area ratio increase performance, while increasing mixer-ejector inlet area ratio and mixer-ejector length-to-diameter ratio decrease performance. Increasing injected secondary flow increased performance for the gas generator analysis, but was not statistically significant for the full flow analysis. Chamber pressure was found to be not statistically significant.

  3. An Object Model for a Rocket Engine Numerical Simulator

    Science.gov (United States)

    Mitra, D.; Bhalla, P. N.; Pratap, V.; Reddy, P.

    1998-01-01

    Rocket Engine Numerical Simulator (RENS) is a packet of software which numerically simulates the behavior of a rocket engine. Different parameters of the components of an engine is the input to these programs. Depending on these given parameters the programs output the behaviors of those components. These behavioral values are then used to guide the design of or to diagnose a model of a rocket engine "built" by a composition of these programs simulating different components of the engine system. In order to use this software package effectively one needs to have a flexible model of a rocket engine. These programs simulating different components then should be plugged into this modular representation. Our project is to develop an object based model of such an engine system. We are following an iterative and incremental approach in developing the model, as is the standard practice in the area of object oriented design and analysis of softwares. This process involves three stages: object modeling to represent the components and sub-components of a rocket engine, dynamic modeling to capture the temporal and behavioral aspects of the system, and functional modeling to represent the transformational aspects. This article reports on the first phase of our activity under a grant (RENS) from the NASA Lewis Research center. We have utilized Rambaugh's object modeling technique and the tool UML for this purpose. The classes of a rocket engine propulsion system are developed and some of them are presented in this report. The next step, developing a dynamic model for RENS, is also touched upon here. In this paper we will also discuss the advantages of using object-based modeling for developing this type of an integrated simulator over other tools like an expert systems shell or a procedural language, e.g., FORTRAN. Attempts have been made in the past to use such techniques.

  4. Three Dimensional Analysis of Elastic Rocket and Launcher at Launching

    Science.gov (United States)

    Takeuchi, Shinsuke

    In this paper, a three-dimensional analysis of launching dynamics of a sounding rocket is investigated. In the analysis, the elastic vibration of the vehicle and launcher is considered. To estimate a trajectory dispersion including the effect of elasticity of the vehicle and launcher, a three-dimensional numerical simulation of a launch is performed. The accuracy of the numerical simulation is discussed and it is concluded that the simulation can estimate the maximum value of the trajectory dispersion properly. After that, the maximum value is estimated for the actual sounding rocket and the value is shown to be within the safty margin for this particular case.

  5. Major accomplishments of America's nuclear rocket program (Rover)

    Science.gov (United States)

    Finseth, J. L.

    The United States embarked on a program called Rover to develop nuclear rocket engines in 1955. Initially, nuclear rockets were considered as a potential backup for intercontinental ballistic missile propulsion, but later proposed applications included both a lunar second stage and use in manned Mars flights. Under the Rover program, 19 different reactors were built and tested during the period of 1959-1969. Additionally, several cold flow (non-fuelled) reactors were tested, as well as a nuclear fuels test cell. The Rover program was terminated in 1973 due to budget constraints and an evolving political climate. The author reviews the engine test program and discusses several subsystems.

  6. Numerical Simulation of Multiphase Flow in Solid Rocket Motors

    Science.gov (United States)

    Attili, A.; Favini, B.; Di Giacinto, M.; Serraglia, F.

    2009-01-01

    In the paper a general mathematical description of the flow in the internal chamber of solid rocket motors is presented. The formulation adopted take into account the multi-species and multiphase, reactive, multidimensional characteristics of the flow. The grain combustion is described by a pressure dependent law; aluminum droplet are modelled by a Lagrangian approach, coupled with the Eulerian formulation adopted for the gas phase. The mathematical model has been implemented in a simulation code and several simulations have been performed; in particular in the paper the re- sults for two geometries are described: a simple cylindrical port-area rocket and the Zefiro 9 SRM.

  7. A Method of Initial Velocity Measurement for Rocket Projectile

    Directory of Open Access Journals (Sweden)

    Zhang Jiancheng

    2017-01-01

    Full Text Available In this paper, a novel method is proposed to measure the initial velocity of the rocket based on STFT (the short-time Fourier transform and the WT (wavelet transform. The radar echo signal processing procedure involves the following steps: sampling process, overlapping windows, wavelet decomposition and reconstruction, computing FFT (Fast Fourier Transform and spectrum analysis, power spectrum peak detection. Then, according to the peak of the detection power spectrum, the corresponding Doppler frequency is obtained. Finally, on the basis of the relationship between Doppler frequency and instantaneous velocity, the V-T curve is drawn in MATLAB to obtain the initial velocity of the rocket muzzle.

  8. Parallelization of Rocket Engine Simulator Software (PRESS)

    Science.gov (United States)

    Cezzar, Ruknet

    1998-01-01

    /18/99). At the least, the research would need to be done on Windows 95/Windows NT based platforms. Moreover, with the acquisition of Lahey Fortran package for PC platform, and the existing Borland C + + 5. 0, we can do work on C + + wrapper issues. We have carefully studied the blueprint for Space Transportation Propulsion Integrated Design Environment for the next 25 years [13] and found the inclusion of HBCUs in that effort encouraging. Especially in the long period for which a map is provided, there is no doubt that HBCUs will grow and become better equipped to do meaningful research. In the shorter period, as was suggested in our presentation at the HBCU conference, some key decisions regarding the aging Fortran based software for rocket propellants will need to be made. One important issue is whether or not object oriented languages such as C + + or Java should be used for distributed computing. Whether or not "distributed computing" is necessary for the existing software is yet another, larger, question to be tackled with.

  9. Pulse Detonation Rocket MHD Power Experiment

    Science.gov (United States)

    Litchford, Ron J.; Cook, Stephen (Technical Monitor)

    2002-01-01

    A pulse detonation research engine (MSFC (Marshall Space Flight Center) Model PDRE (Pulse Detonation Rocket Engine) G-2) has been developed for the purpose of examining integrated propulsion and magnetohydrodynamic power generation applications. The engine is based on a rectangular cross-section tube coupled to a converging-diverging nozzle, which is in turn attached to a segmented Faraday channel. As part of the shakedown testing activity, the pressure wave was interrogated along the length of the engine while running on hydrogen/oxygen propellants. Rapid transition to detonation wave propagation was insured through the use of a short Schelkin spiral near the head of the engine. The measured detonation wave velocities were in excess of 2500 m/s in agreement with the theoretical C-J velocity. The engine was first tested in a straight tube configuration without a nozzle, and the time resolved thrust was measured simultaneously with the head-end pressure. Similar measurements were made with the converging-diverging nozzle attached. The time correlation of the thrust and head-end pressure data was found to be excellent. The major purpose of the converging-diverging nozzle was to configure the engine for driving an MHD generator for the direct production of electrical power. Additional tests were therefore necessary in which seed (cesium-hydroxide dissolved in methanol) was directly injected into the engine as a spray. The exhaust plume was then interrogated with a microwave interferometer in an attempt to characterize the plasma conditions, and emission spectroscopy measurements were also acquired. Data reduction efforts indicate that the plasma exhaust is very highly ionized, although there is some uncertainty at this time as to the relative abundance of negative OH ions. The emission spectroscopy data provided some indication of the species in the exhaust as well as a measurement of temperature. A 24-electrode-pair segmented Faraday channel and 0.6 Tesla permanent

  10. Powder metallurgy bearings for advanced rocket engines

    Science.gov (United States)

    Fleck, J. N.; Killman, B. J.; Munson, H.E.

    1985-01-01

    Traditional ingot metallurgy was pushed to the limit for many demanding applications including antifriction bearings. New systems require corrosion resistance, better fatigue resistance, and higher toughness. With conventional processing, increasing the alloying level to achieve corrosion resistance results in a decrease in other properties such as toughness. Advanced powder metallurgy affords a viable solution to this problem. During powder manufacture, the individual particle solidifies very rapidly; as a consequence, the primary carbides are very small and uniformly distributed. When properly consolidated, this uniform structure is preserved while generating a fully dense product. Element tests including rolling contact fatigue, hot hardness, wear, fracture toughness, and corrosion resistance are underway on eleven candidate P/M bearing alloys and results are compared with those for wrought 440C steel, the current SSME bearing material. Several materials which offer the promise of a significant improvement in performance were identified.

  11. Evolving rocket optics applications drive manufacturing advances

    Science.gov (United States)

    Myer, Brian; Perdue, Jamie; Bartlett, Kevin; DeGroote Nelson, Jessica

    2017-10-01

    Improvements to sensing hardware and image processing for airborne optical systems have inspired designers to propose new optics and windows which may be any of: more precise, conformal/freeform and multi-functional. Manufacture of these optics has required innovations in machining, polishing and metrology. The performance requirements and manufacturing methods demand more from conventional optical materials, while also driving development of new formulations with tailored optical and mechanical properties. We describe innovations in manufacturing and adaptations for optical materials selected for end-use performance, though some such materials may present unusual challenges related to their composition, how they are produced, and/or the design geometry. Our desire is to share some observations with the optical designer, who may be able to incorporate some tips into parts "designed for manufacture."

  12. Another solid rocket booster is mated with a Boeing Delta II rocket at LP17A, CCAS

    Science.gov (United States)

    1999-01-01

    At Pad 17A, Cape Canaveral Air Station, a fourth and final solid rocket booster (SRB) (right) is moved from the mobile tower by a crane before mating with the Delta II rocket (left). The rocket will be aided by four SRBs to carry the Stardust satellite into space for a close encounter with the comet Wild 2 in January 2004. Using a medium called aerogel, Stardust will capture comet particles flying off the nucleus of the comet, plus collect interstellar dust for later analysis. The collected samples will return to Earth in a Sample Return Capsule to be jettisoned as Stardust swings by Earth in January 2006. Stardust is scheduled to be launched on Feb. 6, 1999.

  13. Rocket-Plume Spectroscopy Simulation for Hydrocarbon-Fueled Rocket Engines

    Science.gov (United States)

    Tejwani, Gopal D.

    2010-01-01

    The UV-Vis spectroscopic system for plume diagnostics monitors rocket engine health by using several analytical tools developed at Stennis Space Center (SSC), including the rocket plume spectroscopy simulation code (RPSSC), to identify and quantify the alloys from the metallic elements observed in engine plumes. Because the hydrocarbon-fueled rocket engine is likely to contain C2, CO, CH, CN, and NO in addition to OH and H2O, the relevant electronic bands of these molecules in the spectral range of 300 to 850 nm in the RPSSC have been included. SSC incorporated several enhancements and modifications to the original line-by-line spectral simulation computer program implemented for plume spectral data analysis and quantification in 1994. These changes made the program applicable to the Space Shuttle Main Engine (SSME) and the Diagnostic Testbed Facility Thruster (DTFT) exhaust plume spectral data. Modifications included updating the molecular and spectral parameters for OH, adding spectral parameter input files optimized for the 10 elements of interest in the spectral range from 320 to 430 nm and linking the output to graphing and analysis packages. Additionally, the ability to handle the non-uniform wavelength interval at which the spectral computations are made was added. This allowed a precise superposition of wavelengths at which the spectral measurements have been made with the wavelengths at which the spectral computations are done by using the line-by-line (LBL) code. To account for hydrocarbon combustion products in the plume, which might interfere with detection and quantification of metallic elements in the spectral region of 300 to 850 nm, the spectroscopic code has been enhanced to include the carbon-based combustion species of C2, CO, and CH. In addition, CN and NO have spectral bands in 300 to 850 nm and, while these molecules are not direct products of hydrocarbon-oxygen combustion systems, they can show up if nitrogen or a nitrogen compound is present

  14. Rocket motors incorporating basalt fiber and nanoclay compositions and methods of insulating a rocket motor with the same

    Science.gov (United States)

    Gajiwala, Himansu M. (Inventor)

    2011-01-01

    An insulation composition that comprises at least one nitrile butadiene rubber, basalt fibers, and nanoclay is disclosed. Further disclosed is an insulation composition that comprises polybenzimidazole fibers, basalt fibers, and nanoclay. The basalt fibers may be present in the insulation compositions in a range of from approximately 1% by weight to approximately 6% by weight of the total weight of the insulation composition. The nanoclay may be present in the insulation compositions in a range of from approximately 5% by weight to approximately 10% by weight of the total weight of the insulation composition. Rocket motors including the insulation compositions and methods of insulating a rocket motor are also disclosed.

  15. The seven secrets of how to think like a rocket scientist

    CERN Document Server

    Longuski, James

    2007-01-01

    This book explains the methods that rocket scientists use - expressed in a way that could be applied in everyday life. It's short and snappy and written by a rocket scientist. It is intended for general "armchair" scientists.

  16. History of the development of rocket technology and astronautics in Poland

    Science.gov (United States)

    Geisler, W.

    1977-01-01

    The development of rocket technology in Poland is outlined. The history cites 13th century use of war rockets in combating Tartars as well as 20th century studies of the future and reality of space flights.

  17. Evolutionary Games and Social Conventions

    DEFF Research Database (Denmark)

    Hansen, Pelle Guldborg

    2007-01-01

    Some thirty years ago Lewis published his Convention: A Philosophical Study (Lewis, 2002). This laid the foundation for a game-theoretic approach to social conventions, but became more famously known for its seminal analysis of common knowledge; the concept receiving its canonical analysis...... in Aumann (1976) and which, together with the assumptions of perfect rationality, came to be defining of classical game theory. However, classical game theory is currently undergoing severe crisis as a tool for exploring social phenomena; a crisis emerging from the problem of equilibrium selection around......-defined metaphors of individual learning and social imitation processes, from which a revised theory of convention may be erected (see Sugden 2004, Binmore 1993 and Young 1998). This paper makes a general argument in support of the evolutionary turn in the theory of convention by a progressive exposition of its...

  18. Towards a Theory of Convention

    DEFF Research Database (Denmark)

    Hansen, Pelle Guldborg

    2006-01-01

    theory. Like for the study of common knowledge much has happened in this latter field since then. The theory of convention has been developed and extended so as to include multiple types as well as a basis for the study of social norms. However, classical game theory is currently undergoing severe crisis...... as a tool for understanding and explaining social phenomena; a crisis emerging from the problem of equilibrium selection around which any theory of convention must revolve. The so-called evolutionary turn in game theory marks a transition from the classical assumptions of rationality and common knowledge......Some thirty years ago Lewis published his Convention: A philosophical Study (Lewis 1969). Besides exciting the logical community by providing the seminal analysis work on common knowledge, it also laid the foundations for the formal approach to the study of social conventions by means of game...

  19. Health Monitoring and Diagnosis of Solid Rocket Motors with Bore Cracks

    Science.gov (United States)

    2015-11-01

    Technical Paper 3. DATES COVERED (From - To) January 2014-February 2015 4. TITLE AND SUBTITLE Health Monitoring and Diagnosis of Solid Rocket Motors with... rocket motors at various storage temperatures. Capabilities of a rocket motor health monitoring system are assessed based on the assumption that the...system can detect critical bore cracks in solid rocket motors. 15. SUBJECT TERMS structural health monitoring (SHM) · structural integrity · damage

  20. Performance Investigation of Solid-Rocket Motor with Nozzle Throat Erosion

    OpenAIRE

    Suwicha Chankapoe; Nattawat Winya; Narupon Pittayaprasertkul

    2013-01-01

    In order to determine the performance and key design parameters of rocket, the erosion of nozzle throat during solid rocket motor burning have to be calculated. This study aims to predict the nozzle throat erosion in solid rocket motors according to the thrust profile of motor in operating conditions and develop a model for optimum performance of rocket. We investigate the throat radius change in the static test programs. The standard method and thrust coefficient are used for adjusting into...

  1. Damage assessment of long-range rocket system by electromagnetic pulse weapon

    Science.gov (United States)

    Cao, Lingyu; Liu, Guoqing; Li, Jinming

    2017-08-01

    This paper analyzes the damage mechanism and characteristics of electromagnetic pulse weapon, establishes the index system of survivability of long-range rocket launcher system, and uses AHP method to establish the combat effectiveness model of long-range rocket missile system. According to the damage mechanism and characteristics of electromagnetic pulse weapon, the damage effect of the remote rocket system is established by using the exponential method to realize the damage efficiency of the remote rocket system.

  2. Project SQUID. Liquid Propellant Rockets. Volume 2, Part 2

    Science.gov (United States)

    1947-06-30

    problem-, directed tow ard droppable .JATO unit is being developed for the XB-45 the desiga or levelopment of a specific power plant. airplane. This...operations such as propellant dynamometer stand and absorb the thrust of the analysis and instrument calibration. rocket. In addition to these main

  3. Behavior Of Joint Seal In Solid Rocket Booster

    Science.gov (United States)

    Moore, Carleton J.

    1988-01-01

    Report analyzes behavior of O-ring seals in case of Solid Rocket Booster. Numerical simulations of transient response of seal presented with measurements of relevant mechanical properties of O-rings to show there is range of operating conditions in which seal can fail.

  4. U.S./CIS eye joint nuclear rocket venture

    Science.gov (United States)

    Clark, John S.; Mcilwain, Melvin C.; Smetanikov, Vladimir; D'Yakov, Evgenij K.; Pavshuk, Vladimir A.

    1993-01-01

    An account is given of the significance for U.S. spacecraft development of a nuclear thermal rocket (NTR) reactor concept that has been developed in the (formerly Soviet) Commonwealth of Independent States (CIS). The CIS NTR reactor employs a hydrogen-cooled zirconium hydride moderator and ternary carbide fuels; the comparatively cool operating temperatures associated with this design promise overall robustness.

  5. Rocket nozzle lip flow by direct simulation Monte Carlo method

    Science.gov (United States)

    Hueser, J. E.; Brock, F. J.; Melfi, L. T., Jr.; Bird, G. A.

    1985-01-01

    The flow in the immediate vicinity of a rocket nozzle lip has been analyzed, and the results are presented. A rapid change in gas composition is observed in the flow around the lip depending principally on species molecular mass and local flow angle. The divergence of axial and radial temperatures indicating breakdown of translational equilibrium is observed in the results.

  6. The Effect of Resistance on Rocket Injector Acoustics

    Science.gov (United States)

    Morgan, C. J.

    2015-01-01

    Combustion instability, where unsteady heat release couples with acoustic modes, has long been an area of concern in liquid rocket engines. Accurate modeling of the acoustic normal modes of the combustion chamber is important to understanding and preventing combustion instability. The injector resistance can have a significant influence on the chamber normal mode shape, and hence on the system stability.

  7. Adventures in Rocket Science. EG-2007-12-179-MSFC

    Science.gov (United States)

    Huegele, Vince; Hill, Kristy; Terry, Brenda

    2008-01-01

    This guide was prepared as a tool useful for informal education venues (4-H, Boys and Girls Clubs, Boy Scouts, Girl Scouts, etc.), science clubs and related programs, and can be adopted for formal education settings. An exciting and productive study in rocket science can be implemented using the selected activities for the above-mentioned…

  8. Improvements to the Whoosh Bottle Rocket Car Demonstration

    Science.gov (United States)

    Campbell, Dean J.; Staiger, Felicia A.; Jujjavarapu, Chaitanya N.

    2015-01-01

    The whoosh bottle rocket car has been redesigned to be more reusable and more robust, making it even easier to use as a demonstration. Enhancements of this demonstration, including the use of heat sensitive ink and electronic temperature probes, enable users to find warmer and cooler regions on the surface of the whoosh bottle.

  9. Rocket Scientist for a Day: Investigating Alternatives for Chemical Propulsion

    Science.gov (United States)

    Angelin, Marcus; Rahm, Martin; Gabrielsson, Erik; Gumaelius, Lena

    2012-01-01

    This laboratory experiment introduces rocket science from a chemistry perspective. The focus is set on chemical propulsion, including its environmental impact and future development. By combining lecture-based teaching with practical, theoretical, and computational exercises, the students get to evaluate different propellant alternatives. To…

  10. Analytical Description of Ascending Motion of Rockets in the Atmosphere

    Science.gov (United States)

    Rodrigues, H.; de Pinho, M. O.; Portes, D., Jr.; Santiago, A.

    2009-01-01

    In continuation of a previous work, we present an analytic study of ascending vertical motion of a rocket subjected to a quadratic drag for the case where the mass-variation law is a linear function of time. We discuss the detailed analytical solution of the model differential equations in closed form. Examples of application are presented and…

  11. First results of the Auroral Turbulance II rocket experiment

    DEFF Research Database (Denmark)

    Danielides, M.A.; Ranta, A.; Ivchenco, N.

    1999-01-01

    The Auroral Turbulance II sounding rocket was launched on February 11, 1997 into moderately active nightside aurora from the Poker Flat Research Range, Alaska, US. The experiment consisted of three independent, completely instrumented payloads launched by a single vehicle. The aim of the experiment...

  12. Comet mission is blown off course by faulty rocket

    CERN Multimedia

    Henderson, M

    2003-01-01

    ESA has announced that the launch of the Rosetta probe, has been delayed indefinitely because of problems with the unreliable Ariane-5 rocket on which it was to fly. The project will now have to be redesigned completely to target a different comet at a later date (1/2 page).

  13. In-flight calibration of mesospheric rocket plasma probes.

    Science.gov (United States)

    Havnes, Ove; Hartquist, Thomas W; Kassa, Meseret; Morfill, Gregor E

    2011-07-01

    Many effects and factors can influence the efficiency of a rocket plasma probe. These include payload charging, solar illumination, rocket payload orientation and rotation, and dust impact induced secondary charge production. As a consequence, considerable uncertainties can arise in the determination of the effective cross sections of plasma probes and measured electron and ion densities. We present a new method for calibrating mesospheric rocket plasma probes and obtaining reliable measurements of plasma densities. This method can be used if a payload also carries a probe for measuring the dust charge density. It is based on that a dust probe's effective cross section for measuring the charged component of dust normally is nearly equal to its geometric cross section, and it involves the comparison of variations in the dust charge density measured with the dust detector to the corresponding current variations measured with the electron and/or ion probes. In cases in which the dust charge density is significantly smaller than the electron density, the relation between plasma and dust charge density variations can be simplified and used to infer the effective cross sections of the plasma probes. We illustrate the utility of the method by analysing the data from a specific rocket flight of a payload containing both dust and electron probes.

  14. Ultrasonic investigation of mechanical properties of double base rocket propellants

    NARCIS (Netherlands)

    Schroeff, J.A. van der; Boer, R.S. de

    1976-01-01

    For a series of double base rocket propellants and for poly-methylmethacrylate (PMMA) the longitudinal and transverse sound wave velocities are measured at a frequency of 0.351 MHz in t h e temperature range of −40°C to +60°C. The relations between these acoustic properties and mechanical properties

  15. Analysis of supercritical methane in rocket engine cooling channels

    NARCIS (Netherlands)

    Denies, L.; Zandbergen, B.T.C.; Natale, P.; Ricci, D.; Invigorito, M.

    2016-01-01

    Methane is a promising propellant for liquid rocket engines. As a regenerative coolant, it would be close to its critical point, complicating cooling analysis. This study encompasses the development and validation of a new, open-source computational fluid dynamics (CFD) method for analysis of

  16. In-flight calibration of mesospheric rocket plasma probes

    Energy Technology Data Exchange (ETDEWEB)

    Havnes, Ove [Institute for Physics and Technology, University of Tromsoe, N-9037 Tromsoe (Norway); University Studies Svalbard (UNIS), N-9170 Longyearbyen, Svalbard (Norway); Hartquist, Thomas W. [School of Physics and Astronomy, University of Leeds, Leeds LS2 9JT (United Kingdom); Kassa, Meseret [Institute for Physics and Technology, University of Tromsoe, N-9037 Tromsoe (Norway); Morfill, Gregor E. [Max-Planck-Institute fuer extraterrestrische Physik, D-85741Garching (Germany)

    2011-07-15

    Many effects and factors can influence the efficiency of a rocket plasma probe. These include payload charging, solar illumination, rocket payload orientation and rotation, and dust impact induced secondary charge production. As a consequence, considerable uncertainties can arise in the determination of the effective cross sections of plasma probes and measured electron and ion densities. We present a new method for calibrating mesospheric rocket plasma probes and obtaining reliable measurements of plasma densities. This method can be used if a payload also carries a probe for measuring the dust charge density. It is based on that a dust probe's effective cross section for measuring the charged component of dust normally is nearly equal to its geometric cross section, and it involves the comparison of variations in the dust charge density measured with the dust detector to the corresponding current variations measured with the electron and/or ion probes. In cases in which the dust charge density is significantly smaller than the electron density, the relation between plasma and dust charge density variations can be simplified and used to infer the effective cross sections of the plasma probes. We illustrate the utility of the method by analysing the data from a specific rocket flight of a payload containing both dust and electron probes.

  17. Metallic hydrogen: The most powerful rocket fuel yet to exist

    Energy Technology Data Exchange (ETDEWEB)

    Silvera, Isaac F [Lyman Laboratory of Physics, Harvard University, Cambridge MA 02138 (United States); Cole, John W, E-mail: silvera@physics.harvard.ed [NASA MSFC, Huntsville, AL 35801 (United States)

    2010-03-01

    Wigner and Huntington first predicted that pressures of order 25 GPa were required for the transition of solid molecular hydrogen to the atomic metallic phase. Later it was predicted that metallic hydrogen might be a metastable material so that it remains metallic when pressure is released. Experimental pressures achieved on hydrogen have been more than an order of magnitude higher than the predicted transition pressure and yet it remains an insulator. We discuss the applications of metastable metallic hydrogen to rocketry. Metastable metallic hydrogen would be a very light-weight, low volume, powerful rocket propellant. One of the characteristics of a propellant is its specific impulse, I{sub sp}. Liquid (molecular) hydrogen-oxygen used in modern rockets has an Isp of {approx}460s; metallic hydrogen has a theoretical I{sub sp} of 1700s. Detailed analysis shows that such a fuel would allow single-stage rockets to enter into orbit or carry economical payloads to the moon. If pure metallic hydrogen is used as a propellant, the reaction chamber temperature is calculated to be greater than 6000 K, too high for currently known rocket engine materials. By diluting metallic hydrogen with liquid hydrogen or water, the reaction temperature can be reduced, yet there is still a significant performance improvement for the diluted mixture.

  18. Selecting and using materials for a nuclear rocket engine reactor

    Energy Technology Data Exchange (ETDEWEB)

    Lanin, Anatolii G; Fedik, Ivan I [' Luch' Research and Production Association, Podol' sk, Moscow region (Russian Federation)

    2011-03-31

    This paper provides a historical account of how the nuclear rocket engine reactor was created and discusses the problem of selecting materials for a gas environment at a temperature of up to 3100 K and energy release of 30 MW per liter. (from the history of physics)

  19. Theodore von Kármán–Rocket Scientist

    Indian Academy of Sciences (India)

    Home; Journals; Resonance – Journal of Science Education; Volume 10; Issue 8. Theodore von Kármán – Rocket Scientist. Jaywant H Arakeri. Article-in-a-Box Volume 10 Issue 8 August 2005 pp 2-3. Fulltext. Click here to view fulltext PDF. Permanent link: http://www.ias.ac.in/article/fulltext/reso/010/08/0002-0003 ...

  20. Two-step rocket engine bipropellant valve concept

    Science.gov (United States)

    Capps, J. E.; Ferguson, R. E.; Pohl, H. O.

    1969-01-01

    Initiating combustion of altitude control rocket engines in a precombustion chamber of ductile material reduces high pressure surges generated by hypergolic propellants. Two-step bipropellant valve concepts control initial propellant flow into precombustion chamber and subsequent full flow into main chamber.

  1. Mineral content of the rocket plant ( Eruca sativa ) | Barlas | African ...

    African Journals Online (AJOL)

    Historical research has shown that rocket was used both as a garden plant and as a kind of herb or spice (Yaniv et al., 1998). According to data from the ... Apart from its use in nutrition, it is also used in the health and cosmetics industries as a result of the effectiveness of its phytochemical content. There have been few ...

  2. Implementation of microwave transmissions for rocket exhaust plume diagnostics

    Science.gov (United States)

    Coutu, Nicholas George

    Rocket-launched vehicles produce a trail of exhaust that contains ions, free electrons, and soot. The exhaust plume increases the effective conductor length of the rocket. A conductor in the presence of an electric field (e.g. near the electric charge stored within a cloud) can channel an electric discharge. The electrical conductivity of the exhaust plume is related to its concentration of free electrons. The risk of a lightning strike in-flight is a function of both the conductivity of the body and its effective length. This paper presents an approach that relates the electron number density of the exhaust plume to its propagation constant. Estimated values of the collision frequency and electron number density generated from a numerical simulation of a rocket plume are used to guide the design of the experimental apparatus. Test par meters are identified for the apparatus designed to transmit a signal sweep form 4 GHz to 7 GHz through the exhaust plume of a J-class solid rocket motor. Measurements of the scattering parameters imply that the transmission does not penetrate the plume, but instead diffracts around it. The electron density 20 cm downstream from the nozzle exit is estimated to be between 2.7x1014 m--3 and 5.6x10 15 m--3.

  3. Turbulence Modeling of Cavitating Flows in Liquid Rocket Turbopumps

    NARCIS (Netherlands)

    Mani, K.V.; Cervone, A.; Hickey, J.P.

    2017-01-01

    An accurate prediction of the performance characteristics of cavitating cryogenic turbopump inducers is essential for an increased reliance on numerical simulations in the early turbopump design stages of liquid rocket engines (LRE). This work focuses on the sensitivities related to the choice of

  4. Von Braun Rocket Team at Fort Bliss, Texas

    Science.gov (United States)

    1940-01-01

    The German Rocket Team, also known as the Von Braun Rocket Team, poses for a group photograph at Fort Bliss, Texas. After World War II ended in 1945, Dr. Wernher von Braun led some 120 of his Peenemuende Colleagues, who developed the V-2 rocket for the German military during the War, to the United Sttes under a contract to the U.S. Army Corps as part of Operation Paperclip. During the following five years the team worked on high altitude firings of the captured V-2 rockets at the White Sands Missile Range in New Mexico, and a guided missile development unit at Fort Bliss, Texas. In April 1950, the group was transferred to the Army Ballistic Missile Agency (ABMA) at Redstone Arsenal in Huntsville, Alabama, and continued to work on the development of the guided missiles for the U.S. Army until transferring to a newly established field center of the National Aeronautic and Space Administration (NASA), George C. Marshall Space Flight Center (MSFC).

  5. Mean Line Pump Flow Model in Rocket Engine System Simulation

    Science.gov (United States)

    Veres, Joseph P.; Lavelle, Thomas M.

    2000-01-01

    A mean line pump flow modeling method has been developed to provide a fast capability for modeling turbopumps of rocket engines. Based on this method, a mean line pump flow code PUMPA has been written that can predict the performance of pumps at off-design operating conditions, given the loss of the diffusion system at the design point. The pump code can model axial flow inducers, mixed-flow and centrifugal pumps. The code can model multistage pumps in series. The code features rapid input setup and computer run time, and is an effective analysis and conceptual design tool. The map generation capability of the code provides the map information needed for interfacing with a rocket engine system modeling code. The off-design and multistage modeling capabilities of the code permit parametric design space exploration of candidate pump configurations and provide pump performance data for engine system evaluation. The PUMPA code has been integrated with the Numerical Propulsion System Simulation (NPSS) code and an expander rocket engine system has been simulated. The mean line pump flow code runs as an integral part of the NPSS rocket engine system simulation and provides key pump performance information directly to the system model at all operating conditions.

  6. Rocket grenade injuries: patient management in a field hospital setting.

    Science.gov (United States)

    Wiedeman, J E

    1994-01-01

    An incident involving RPG-7 (rocket grenade) injuries was managed in a field hospital in the Middle East. Used by guerrilla forces worldwide, the RPG-7 is exemplary of military weapons that produce extensive fragment-related wounds and associated blast effects. The active duty or reserve military physician must be prepared to diagnose and treat such injuries in a remote setting.

  7. The "Rocket Experiment for Neutral Upwelling 2 (RENU2)" Sounding Rocket

    Science.gov (United States)

    Lessard, M.; Bekkeng, T. A.; Clausen, L. B. N.; Clemmons, J. H.; Crowley, G.; Ellingsen, P. G.; Fritz, B.; Harrington, M. I.; Hatch, S.; Hecht, J. H.; Hysell, D. L.; Kenward, D. R.; Labelle, J. W.; Lynch, K. A.; Moen, J.; Oksavik, K.; Otto, A.; Partamies, N.; Powell, S. P.; Sadler, B.; Sigernes, F.; Syrjäsuo, M.; Yeoman, T. K.

    2016-12-01

    Thermospheric upwelling has been known to exist since the earliestdays of the space program, when observers noted increased satellite dragassociated with solar activity. Scientists quickly attributed the upwelling toJoule heating effects, explaining that increased solar activity results inincreased Joule heating, which can couple energy to the ambient neutral gasesto cause the upwelling. Observations by the CHAMP satellite, however, haveshown that neutral upwelling often occurs on much smaller scales and is highlycorrelated with small-scale field-aligned currents in the vicinity of the cuspregion. Several theories have since been put forward that seek to explain thisphenomenon. Motivated by these competing theories and outfitted with acomprehensive suite of instruments, the RENU2 sounding rocket was launched intoa Poleward Moving Auroral Form (PMAF) in the cusp region on December 13, 2015.In this highly successful mission, instruments on the payload did, in fact,record neutral atomic oxygen above the payload at 350 km as it passed throughthe PMAF. In addition, signatures of N2+ ions also appeared above the PMAF,evidence of so-called "sunlit aurora". In this presentation, initial resultswill be presented from this mission and discussed in the context describedabove.

  8. Ground and flight test program of a Stokes-flow parachute: Packaging, deployment, and sounding rocket integration

    Science.gov (United States)

    Niederer, P. G.; Mihora, D. J.

    1972-01-01

    The current design and hardware components of the patented 14 sqm Stokes flow parachute are described. The Stokes-flow parachute is a canopy of open mesh material, which is kept deployed by braces. Because of the light weight of its mesh material, and the high drag on its mesh elements when they operate in the Stokes-flow flight regime, this parachute has an extremely low ballistic coefficient. It provides a stable aerodynamic platform superior to conventional nonporous billowed parachutes, is exceptionally packable, and is easily contained within the canister of the Sidewinder Arcas or the RDT and E rockets. Thus, it offers the potential for gathering more meteorological data, especially at high altitudes, than conventional billowed parachutes. Methods for packaging the parachute are also recommended. These methods include schemes for folding the canopy and for automatically releasing the pressurizing fluid as the packaged parachute unfolds.

  9. Tight Fits for Americas Next Moon Rocket, Ares V

    Science.gov (United States)

    Jaap, John; Fisher, Wyatt; Richardson, Lea

    2010-01-01

    America has begun the development of a new heavy lift rocket which will enable humans to return to the moon and reach even farther destinations. Five decades ago, the National Aeronautics and Space Administration designed a system (called Saturn/Apollo) to carry men to the moon and back; the rocket which boosted them to the moon was the Saturn V. Saturn V was huge relative to contemporary rockets and is still the largest rocket ever launched. The new moon rocket is called Ares V. It will insert 40% more payload into low earth orbit than Saturn V; and after docking with the crew spacecraft, it will insert 50% more payload onto the translunar trajectory than Saturn V. The current design of Ares V calls for two liquid-fueled stages and 2 "strap-on" solid rockets. The solid rockets are extended-length versions of the solid rockets used on the Shuttle. The diameter of the liquid stages is at least as large as the first stage of the Saturn V; the height of the lower liquid stage (called the core stage) is longer than the external tank of the Shuttle. Huge rockets require huge infrastructure and, during the Saturn/Apollo era, America invested significantly in manufacturing, assembly and launch facilities which are still in use today. Since the Saturn/Apollo era, America has invested in additional infrastructure for the Shuttle program. Ares V must utilize this existing infrastructure, with reasonable modifications. Building a rocket with 50% more capability in the same buildings, testing it in the same test stands, shipping on the same canals under the same bridges, assembling it in the same building, rolling it to the pad on the same crawler, and launching it from the same launch pad is an engineering and logistics challenge which goes hand-in-hand with designing the structure, tanks, turbines, engines, software, etc. necessary to carry such a large payload to earth orbit and to the moon. This paper quantitatively discusses the significant "tight fits" that are

  10. 75 FR 20344 - Taking and Importing Marine Mammals; Taking Marine Mammals Incidental to Rocket Launches from...

    Science.gov (United States)

    2010-04-19

    ... Marine Mammals Incidental to Rocket Launches from Kodiak, AK AGENCY: National Marine Fisheries Service... (Eumetopias jubatus) and Pacific harbor seals (Phoca vitulina richardsi) incidental to rocket launches from... Steller sea lions and harbor seals, by harassment, incidental to rocket launches at KLC, became effective...

  11. 77 FR 61513 - Voluntary Licensing of Amateur Rocket Operations; Correction; Delay of Effective Date

    Science.gov (United States)

    2012-10-10

    ... Federal Aviation Administration 14 CFR Part 400 RIN 2120-AK16 Voluntary Licensing of Amateur Rocket... of its regulations to allow launch operators that conduct certain amateur rocket launches an... final rule entitled, ``Voluntary Licensing of Amateur Rocket Operations'' (77 FR 50584). In this rule...

  12. 14 CFR 437.95 - Inspection of additional reusable suborbital rockets.

    Science.gov (United States)

    2010-01-01

    ... of an Experimental Permit § 437.95 Inspection of additional reusable suborbital rockets. A permittee may launch or reenter additional reusable suborbital rockets of the same design under the permit after... suborbital rockets. 437.95 Section 437.95 Aeronautics and Space COMMERCIAL SPACE TRANSPORTATION, FEDERAL...

  13. Assessment of turbulence modeling for gas flow in two-dimensional convergent–divergent rocket nozzle

    National Research Council Canada - National Science Library

    Balabel, A; Hegab, A.M; Nasr, M; El-Behery, Samy M

    2011-01-01

    ... characteristics have a strong and direct impact on many physical processes occurring within the nozzle. The flow behavior inside the combustion chamber of a rocket plays a key role in both motor design and operation. The majority of the previous studies on the rocket motors have involved the investigations of a nozzleless rocket motor to study the applicabilit...

  14. Launch summary for 1978 - 1982. [sounding rockets, space probes, and satellites

    Science.gov (United States)

    Hills, H. K.

    1984-01-01

    Data pertinent to the launching of space probes, soundings rockets, and satellites presented in tables include launch date, time, and site; agency rocket identification; sponsoring country or countries; instruments carried for experiments; the peak altitude achieved by the rockets; and the apoapsis and periapsis for satellites. The experimenter or institution involved in the launching is also cited.

  15. The National Space Science Data Center guide to international rocket data

    Science.gov (United States)

    Dubach, L. L.

    1972-01-01

    Background information is given which briefly describes the mission of the National Space Science Data Center (NSSDC), including its functions and systems, along with its policies and purposes for collecting rocket data. The operation of a machine-sensible rocket information system, which allows the Data Center to have convenient access to information and data concerning all rocket flights carrying scientific experiments, is also described. The central feature of this system, an index of rocket flights maintained on magnetic tape, is described. Standard outputs for NSSDC and for the World Data Center A (WDC-A) for Rockets and Satellites are described.

  16. Contact diagnostics of combustion products of rocket engines, their units, and systems

    Science.gov (United States)

    Ivanov, N. N.; Ivanov, A. N.

    2013-12-01

    This article is devoted to a new block-module device used in the diagnostics of condensed combustion products of rocket engines during research and development with liquid-propellant rocket engines (Glushko NPO Energomash; engines RD-171, RD-180, and RD-191) and solid-propellant rocket motors. Soot samplings from the supersonic high-temperature jet of a high-power liquid-propellant rocket engine were taken by the given device for the first time in practice for closed-exhaust lines. A large quantity of significant results was also obtained during a combustion investigation of solid propellants within solid-propellant rocket motors.

  17. Conventional and unconventional political participation

    Energy Technology Data Exchange (ETDEWEB)

    Opp, K.D.

    1985-01-01

    A non-recursive model is proposed and empirically tested with data of opponents of nuclear power. In explaining conventional and unconventional participation the theory of collective action is applied and modified in two respects: the perceived influence on the elimination of collective evils are taken into account; the selective incentives considered are non-material ones. These modifications proved to be valid: the collective good variables and non-material incentives were important determinants for the two forms of participation. Another result was that there is a reciprocal causal relationship between conventional and unconventional participation.

  18. Nuclear Rocket Facility Decommissioning Project: Controlled Explosive Demolition of Neutron-Activated Shield Wall

    Energy Technology Data Exchange (ETDEWEB)

    Michael R. Kruzic

    2008-06-01

    Located in Area 25 of the Nevada Test Site (NTS), the Test Cell A (TCA) Facility (Figure 1) was used in the early to mid-1960s for testing of nuclear rocket engines, as part of the Nuclear Rocket Development Program, to further space travel. Nuclear rocket testing resulted in the activation of materials around the reactors and the release of fission products and fuel particles. The TCA facility, known as Corrective Action Unit 115, was decontaminated and decommissioned (D&D) from December 2004 to July 2005 using the Streamlined Approach for Environmental Restoration (SAFER) process, under the Federal Facility Agreement and Consent Order. The SAFER process allows environmental remediation and facility closure activities (i.e., decommissioning) to occur simultaneously, provided technical decisions are made by an experienced decision maker within the site conceptual site model. Facility closure involved a seven-step decommissioning strategy. First, preliminary investigation activities were performed, including review of process knowledge documentation, targeted facility radiological and hazardous material surveys, concrete core drilling and analysis, shield wall radiological characterization, and discrete sampling, which proved to be very useful and cost-effective in subsequent decommissioning planning and execution and worker safety. Second, site setup and mobilization of equipment and personnel were completed. Third, early removal of hazardous materials, including asbestos, lead, cadmium, and oil, was performed ensuring worker safety during more invasive demolition activities. Process piping was to be verified void of contents. Electrical systems were de-energized and other systems were rendered free of residual energy. Fourth, areas of high radiological contamination were decontaminated using multiple methods. Contamination levels varied across the facility. Fixed beta/gamma contamination levels ranged up to 2 million disintegrations per minute (dpm)/100

  19. Fatigue life prediction of liquid rocket engine combustor with subscale test verification

    Science.gov (United States)

    Sung, In-Kyung

    Reusable rocket systems such as the Space Shuttle introduced a new era in propulsion system design for economic feasibility. Practical reusable systems require an order of magnitude increase in life. To achieve this improved methods are needed to assess failure mechanisms and to predict life cycles of rocket combustor. A general goal of the research was to demonstrate the use of subscale rocket combustor prototype in a cost-effective test program. Life limiting factors and metal behaviors under repeated loads were surveyed and reviewed. The life prediction theories are presented, with an emphasis on studies that used subscale test hardware for model validation. From this review, low cycle fatigue (LCF) and creep-fatigue interaction (ratcheting) were identified as the main life limiting factors of the combustor. Several life prediction methods such as conventional and advanced viscoplastic models were used to predict life cycle due to low cycle thermal stress, transient effects, and creep rupture damage. Creep-fatigue interaction and cyclic hardening were also investigated. A prediction method based on 2D beam theory was modified using 3D plate deformation theory to provide an extended prediction method. For experimental validation two small scale annular plug nozzle thrusters were designed, built and tested. The test article was composed of a water-cooled liner, plug annular nozzle and 200 psia precombustor that used decomposed hydrogen peroxide as the oxidizer and JP-8 as the fuel. The first combustor was tested cyclically at the Advanced Propellants and Combustion Laboratory at Purdue University. Testing was stopped after 140 cycles due to an unpredicted failure mechanism due to an increasing hot spot in the location where failure was predicted. A second combustor was designed to avoid the previous failure, however, it was over pressurized and deformed beyond repair during cold-flow test. The test results are discussed and compared to the analytical and numerical

  20. Modeling of gaseous reacting flow and thermal environment of liquid rocket injectors

    Science.gov (United States)

    Sozer, Emre

    Reacting flow and thermal fields around the injector critically affect the performance and life of liquid rocket engines. The performance gain by enhanced mixing is often countered by increased heat flux to the chamber wall, which can result in material failure. A CFD based design approach can aid in optimization of competing objectives by providing detailed flow field data and an ability to feasibly evaluate a large number of design configurations. To address issues related to the CFD analysis of such flows, various turbulence and combustion modeling aspects are assessed. Laminar finite-rate chemistry and steady laminar flamelet combustion models are adopted to facilitate individual assessments of turbulence-chemistry interactions (TCI) and chemical non-equilibrium. Besides the experimental wall heat transfer information, assessments are aided by evaluations of time scales, grid sensitivity, wall treatments and kinetic schemes. Several multi-element injector configurations are considered to study element-to-element interactions. Under the conditions considered, chemical non-equilibrium effect is found to be unimportant. TCI is found to noticeably alter the flow and thermal fields near the injector and the flame surface. In the multi-element injector case, due to proximity of the outer row injector elements to the wall, wall heat flux distribution is also significantly affected by TCI. The near wall treatment is found to critically affect wall heat flux predictions. A zonal treatment, blending the low-Reynolds number model and the law-of-the-wall approach is shown to improve the accuracy significantly. Porous materials such as Rigimesh are often used as the injector face plate of liquid rocket engines. A multi-scale model which eliminates the empirical dependence of conventional analysis methods, is developed. The resulting model is tested using experimental information showing excellent agreement. The model development and assessment presented for both injector

  1. Evaluation of Open Cell Foam Heat Transfer Enhancement for Liquid Rocket Engine

    Science.gov (United States)

    Chung, J. N.; Tully, Landon; Kim, Jung Hwan; Jones, Gregg W.; Watkins, William

    2006-01-01

    As NASA pursues the exploration mission, advanced propulsion for the next generation of spacecraft will be needed. These new propulsion systems will require higher performance and increased durability, despite current limitations on materials. A break-through technology is needed in the thrust chamber. In this paper the idea of using a porous metallic foam is examined for its potential cooling enhancement capabilities. The goal is to increase the chamber wall cooling without creating an additional pressure drop penalty. A feasibility study based on experiments at laboratory-scale conditions was performed and analysis at rocket conditions is underway. In the experiment, heat transfer and pressure drop data were collected using air as the coolant in a copper or nickel foam filled annular channel. The foam-channel performance was evaluated based on comparison with conventional microchannel cooling passages under equal pressure drop conditions. The heat transfer enhancement of the foam channel over the microchannel ranges from 130% to 172%. The enhancement is relatively independent of the pressure drop and increases with decreasing pore size. A direct numerical simulation model of the foam heat exchange has been built. The model is based on the actual metal foam microstructure of thin ligaments (0.2- 0.3 mm in diameter) that form a network of interconnected open-cells. The cell dimension is around 2 mm. The numerical model was built using the FLUENT CFD code. Comparison of the pressure drop results predicted by the current model with those experimental data of Leong and Jin [8] shows favorable comparisons. Pressure drop predictions have been made using hydrogen as a coolant at typical rocket conditions. Conjugate heat transfer analysis using the foam filled channel is planned for the future.

  2. On the efficiency of rocket-borne particle detection in the mesosphere

    Directory of Open Access Journals (Sweden)

    J. Hedin

    2007-07-01

    Full Text Available Meteoric smoke particles have been proposed as a key player in the formation and evolution of mesospheric phenomena. Despite their apparent importance still very little is known about these particles. Important questions concern the smoke number density and size distribution as a function of altitude as well as the fraction of charged particles. Sounding rockets are used to measure smoke in situ, but aerodynamics has remained a major challenge. Basically, the small smoke particles tend to follow the gas flow around the payload rather than reaching the detector if aerodynamics is not considered carefully in the detector design. So far only indirect evidence for the existence of meteoric smoke has been available from measurements of heavy charge carriers. Quantitative ways are needed that relate these measured particle population to the atmospheric particle population. This requires in particular knowledge about the size-dependent, altitude-dependent and charge-dependent detection efficiency for a given instrument. In this paper, we investigate the aerodynamics for a typical electrostatic detector design. We first quantify the flow field of the background gas, then introduce particles in the flow field and determine their trajectories around the payload structure. We use two different models to trace particles in the flow field, a Continuous motion model and a Brownian motion model. Brownian motion is shown to be of basic importance for the smallest particles. Detection efficiencies are determined for three detector designs, including two with ventilation holes to allow airflow through the detector. Results from this investigation show that rocket-borne smoke detection with conventional detectors is largely limited to altitudes above 75 km. The flow through a ventilated detector has to be relatively large in order to significantly improve the detection efficiency.

  3. Internal Flow Simulation of Enhanced Performance Solid Rocket Booster for the Space Transportation System

    Science.gov (United States)

    Ahmad, Rashid A.; McCool, Alex (Technical Monitor)

    2001-01-01

    An enhanced performance solid rocket booster concept for the space shuttle system has been proposed. The concept booster will have strong commonality with the existing, proven, reliable four-segment Space Shuttle Reusable Solid Rocket Motors (RSRM) with individual component design (nozzle, insulator, etc.) optimized for a five-segment configuration. Increased performance is desirable to further enhance safety/reliability and/or increase payload capability. Performance increase will be achieved by adding a fifth propellant segment to the current four-segment booster and opening the throat to accommodate the increased mass flow while maintaining current pressure levels. One development concept under consideration is the static test of a "standard" RSRM with a fifth propellant segment inserted and appropriate minimum motor modifications. Feasibility studies are being conducted to assess the potential for any significant departure in component performance/loading from the well-characterized RSRM. An area of concern is the aft motor (submerged nozzle inlet, aft dome, etc.) where the altered internal flow resulting from the performance enhancing features (25% increase in mass flow rate, higher Mach numbers, modified subsonic nozzle contour) may result in increased component erosion and char. To assess this issue and to define the minimum design changes required to successfully static test a fifth segment RSRM engineering test motor, internal flow studies have been initiated. Internal aero-thermal environments were quantified in terms of conventional convective heating and discrete phase alumina particle impact/concentration and accretion calculations via Computational Fluid Dynamics (CFD) simulation. Two sets of comparative CFD simulations of the RSRM and the five-segment (IBM) concept motor were conducted with CFD commercial code FLUENT. The first simulation involved a two-dimensional axi-symmetric model of the full motor, initial grain RSRM. The second set of analyses

  4. Development of miniaturised low cost attitude determination system for sounding rockets

    Science.gov (United States)

    Bekkeng, Jan Kenneth; Booij, Wilfred; Moen, J.

    2005-08-01

    Spacecraft attitude (orientation) information is needed in order to transform scientific vector measurements in the reference frame of the rocket into a more meaningful Earth-fixed reference frame. By fusing data from a 3-axial magnetometer, a sun sensor and three rate gyros the rockets attitude can be determined (reconstructed). Since the system does not need to determine the attitude in real time (the attitude data is not used to control the rocket orientation), all data from the attitude sensors can be transmitted back to ground, where they are fused to estimate an absolute orientation of the rocket. A prototype inertial measurement unit and a miniature high accuracy lens-less sun sensor for spinning rocket is under development. A test version of both instruments will be launched on a single stage Hotel Payload sounding rocket from Andøya Rocket Range in July 2005.

  5. Experiment/Analytical Characterization of the RBCC Rocket-Ejector Mode

    Science.gov (United States)

    Ruf, J. H.; Lehman, M.; Pal, S.; Santoro, R. J.; West, J.; Turner, James E. (Technical Monitor)

    2000-01-01

    Experimental and complementary CFD results from the study of the rocket-ejector mode of a Rocket Based Combined Cycle (RBCC) engine are presented and discussed. The experiments involved systematic flowfield measurements in a two-dimensional, variable geometry rocket-ejector system. The rocket-ejector system utilizes a single two-dimensional, gaseous oxygen/gaseous hydrogen rocket as the ejector. To gain a thorough understanding of the rocket-ejector's internal fluid mechanic/combustion phenomena, experiments were conducted with both direct-connect and sea-level static configurations for a range of rocket operating conditions. Overall system performance was obtained through global measurements of wall static pressure profiles, heat flux profiles and engine thrust, whereas detailed mixing and combustion information was obtained through Raman spectroscopy measurements of major species (oxygen, hydrogen, nitrogen and water vapor). The experimental results for both the direct-connect and sea-level static configurations are compared with CFD predictions of the flowfield.

  6. Focused Experimental and Analytical Studies of the RBCC Rocket-Ejector

    Science.gov (United States)

    Lehman, M.; Pal, S.; Schwes, D.; Chen, J. D.; Santoro, R. J.

    1999-01-01

    The rocket-ejector mode of a Rocket Based Combined Cycle Engine (RBCC) was studied through a joint experimental/analytical approach. A two-dimensional variable geometry rocket-ejector system with enhanced optical access was designed and fabricated for experimentation. The rocket-ejector system utilizes a single two-dimensional gaseous oxygen/gaseous hydrogen rocket as the ejector. To gain a systematic understanding of the rocket ejector's internal fluid mechanic/combustion phenomena, experiments were conducted with both direct-connect and sea-level static configurations for a range of rocket operating conditions Overall system performance was obtained through Global measurements of wall static pressure profiles, heat flux profiles and engine thrust, whereas detailed mixing and combustion information was obtained through Raman spectroscopy measurements of major species (gaseous oxygen, hydrogen. nitrogen and water vapor). These experimental efforts were complemented by Computational Fluid Dynamic (CFD) flowfield analyses.

  7. Solid rocket technology advancements for space tug and IUS applications

    Science.gov (United States)

    Ascher, W.; Bailey, R. L.; Behm, J. W.; Gin, W.

    1975-01-01

    In order for the shuttle tug or interim upper stage (IUS) to capture all the missions in the current mission model for the tug and the IUS, an auxiliary or kick stage, using a solid propellant rocket motor, is required. Two solid propellant rocket motor technology concepts are described. One concept, called the 'advanced propulsion module' motor, is an 1800-kg, high-mass-fraction motor, which is single-burn and contains Class 2 propellent. The other concept, called the high energy upper stage restartable solid, is a two-burn (stop-restartable on command) motor which at present contains 1400 kg of Class 7 propellant. The details and status of the motor design and component and motor test results to date are presented, along with the schedule for future work.

  8. The Water Recovery X-ray Rocket (WRX-R)

    Science.gov (United States)

    Miles, Drew

    2017-08-01

    The Water Recovery X-ray Rocket (WRX-R) is a diffuse soft X-ray spectrometer that will launch on a sounding rocket from the Kwajalein Atoll. WRX-R has a field of view of >10 deg2 and will observe the Vela supernova remnant. A mechanical collimator, state-of-the-art off-plane reflection grating array and hybrid CMOS detector will allow WRX to achieve the most highly-resolved spectrum of the Vela SNR ever recorded. In addition, this payload will fly a hard X-ray telescope that is offset from the soft X-ray spectrometer in order to observe the pulsar at the center of the remnant. We present here an introduction to the instrument, the expected science return, and an update on the state of the payload as we work towards launch.

  9. Schlieren image velocimetry measurements in a rocket engine exhaust plume

    Science.gov (United States)

    Morales, Rudy; Peguero, Julio; Hargather, Michael

    2017-11-01

    Schlieren image velocimetry (SIV) measures velocity fields by tracking the motion of naturally-occurring turbulent flow features in a compressible flow. Here the technique is applied to measuring the exhaust velocity profile of a liquid rocket engine. The SIV measurements presented include discussion of visibility of structures, image pre-processing for structure visibility, and ability to process resulting images using commercial particle image velocimetry (PIV) codes. The small-scale liquid bipropellant rocket engine operates on nitrous oxide and ethanol as propellants. Predictions of the exhaust velocity are obtained through NASA CEA calculations and simple compressible flow relationships, which are compared against the measured SIV profiles. Analysis of shear layer turbulence along the exhaust plume edge is also presented.

  10. 2-DOF Angle Measurement of Rocket Nozzle with Multivision

    Directory of Open Access Journals (Sweden)

    Yubo Guo

    2013-01-01

    Full Text Available A real-time measurement method is presented for the 2-DOF swing angles of rocket nozzle by the use of multivision and rocket nozzle rotation axes. This method takes offline processing to measure the position of two nozzle rotation axes in image coordinate system by means of multi-vision and identify the rotation transformation relation between image coordinate system and fixed-nozzle coordinate system. During real-time measurement, the nozzle 2-DOF swing angles can be measured with transformation of marker coordinate from image coordinate system to fixed-nozzle coordinate system. This method can effectively resolve the problem of occlusion by markers in wide swing range of the nozzle. Experiments were conducted to validate its correctness and high measurement accuracy.

  11. Scanning Rocket Impact Area with an UAV: First Results

    Science.gov (United States)

    Santos, C. C. C.; Costa, D. A. L. M.; Junior, V. L. S.; Silva, B. R. F.; Leite, D. L.; Junor, C. E. B. S.; Liberator, B. A.; Nogueira, M. B.; Senna, M. D.; Santiago, G. S.; Dantas, J. B. D.; Alsina, P. J.; Albuquerque, G. L. A.

    2015-09-01

    This paper presents the first subsystems developed for an UAV used in safety procedures of sounding rockets campaigns. The aim of this UAV is to scan the rocket impact area in order to search for unexpected boats. To achieve this mission, designers developed an image recognition algorithm, two human-machine interfaces and two communication links, one to control the drone and the other for receiving telemetry data. In this paper, developers take all major engineering decisions in order to overcome the project constraints. A secondary goal of the project is to encourage young people to take part in Brazilian space program. For this reason, most of designers are undergraduate students under supervision of experts.

  12. Advanced active health monitoring system of liquid rocket engines

    Science.gov (United States)

    Qing, Xinlin P.; Wu, Zhanjun; Beard, Shawn; Chang, Fu-Kuo

    2008-11-01

    An advanced SMART TAPE system has been developed for real-time in-situ monitoring and long term tracking of structural integrity of pressure vessels in liquid rocket engines. The practical implementation of the structural health monitoring (SHM) system including distributed sensor network, portable diagnostic hardware and dedicated data analysis software is addressed based on the harsh operating environment. Extensive tests were conducted on a simulated large booster LOX-H2 engine propellant duct to evaluate the survivability and functionality of the system under the operating conditions of typical liquid rocket engines such as cryogenic temperature, vibration loads. The test results demonstrated that the developed SHM system could survive the combined cryogenic temperature and vibration environments and effectively detect cracks as small as 2 mm.

  13. Multiobjective Optimization of Rocket Engine Pumps Using Evolutionary Algorithm

    Science.gov (United States)

    Oyama, Akira; Liou, Meng-Sing

    2001-01-01

    A design optimization method for turbopumps of cryogenic rocket engines has been developed. Multiobjective Evolutionary Algorithm (MOEA) is used for multiobjective pump design optimizations. Performances of design candidates are evaluated by using the meanline pump flow modeling method based on the Euler turbine equation coupled with empirical correlations for rotor efficiency. To demonstrate the feasibility of the present approach, a single stage centrifugal pump design and multistage pump design optimizations are presented. In both cases, the present method obtains very reasonable Pareto-optimal solutions that include some designs outperforming the original design in total head while reducing input power by one percent. Detailed observation of the design results also reveals some important design criteria for turbopumps in cryogenic rocket engines. These results demonstrate the feasibility of the EA-based design optimization method in this field.

  14. Identification of rocket-induced acoustic waves in the ionosphere

    Science.gov (United States)

    Mabie, Justin; Bullett, Terence; Moore, Prentiss; Vieira, Gerald

    2016-10-01

    Acoustic waves can create plasma disturbances in the ionosphere, but the number of observations is limited. Large-amplitude acoustic waves generated by energetic sources like large earthquakes and tsunamis are more readily observed than acoustic waves generated by weaker sources. New observations of plasma displacements caused by rocket-generated acoustic waves were made using the Vertically Incident Pulsed Ionospheric Radar (VIPIR), an advanced high-frequency radar. Rocket-induced acoustic waves which are characterized by low amplitudes relative to those induced by more energetic sources can be detected in the ionosphere using the phase data from fixed frequency radar observations of a plasma layer. This work is important for increasing the number and quality of observations of acoustic waves in the ionosphere and could help improve the understanding of energy transport from the lower atmosphere to the thermosphere.

  15. Developing Avionics Hardware and Software for Rocket Engine Testing

    Science.gov (United States)

    Aberg, Bryce Robert

    2014-01-01

    My summer was spent working as an intern at Kennedy Space Center in the Propulsion Avionics Branch of the NASA Engineering Directorate Avionics Division. The work that I was involved with was part of Rocket University's Project Neo, a small scale liquid rocket engine test bed. I began by learning about the layout of Neo in order to more fully understand what was required of me. I then developed software in LabView to gather and scale data from two flowmeters and integrated that code into the main control software. Next, I developed more LabView code to control an igniter circuit and integrated that into the main software, as well. Throughout the internship, I performed work that mechanics and technicians would do in order to maintain and assemble the engine.

  16. Scaling of Performance in Liquid Propellant Rocket Engine Combustion Devices

    Science.gov (United States)

    Hulka, James R.

    2008-01-01

    This paper discusses scaling of combustion and combustion performance in liquid propellant rocket engine combustion devices. In development of new combustors, comparisons are often made between predicted performance in a new combustor and measured performance in another combustor with different geometric and thermodynamic characteristics. Without careful interpretation of some key features, the comparison can be misinterpreted and erroneous information used in the design of the new device. This paper provides a review of this performance comparison, including a brief review of the initial liquid rocket scaling research conducted during the 1950s and 1960s, a review of the typical performance losses encountered and how they scale, a description of the typical scaling procedures used in development programs today, and finally a review of several historical development programs to see what insight they can bring to the questions at hand.

  17. 46 CFR 160.040-4 - Equipment for impulse-projected rocket type line-throwing appliance.

    Science.gov (United States)

    2010-10-01

    ... 46 Shipping 6 2010-10-01 2010-10-01 false Equipment for impulse-projected rocket type line...-Throwing Appliance, Impulse-Projected Rocket Type (and Equipment) § 160.040-4 Equipment for impulse-projected rocket type line-throwing appliance. (a) Four rocket projectiles, each complete with bridle and...

  18. 33 CFR 334.1290 - In Bering Sea, Shemya Island Area, Alaska; meteorological rocket launching facility, Alaskan Air...

    Science.gov (United States)

    2010-07-01

    ..., Alaska; meteorological rocket launching facility, Alaskan Air Command, U.S. Air Force. 334.1290 Section...; meteorological rocket launching facility, Alaskan Air Command, U.S. Air Force. (a) The danger zone. An arc of a...) Rockets will normally be launched one each day Monday through Friday between 9 a.m. and 3 p.m. Rocket...

  19. Oxidation of Copper Alloy Candidates for Rocket Engine Applications

    Science.gov (United States)

    Ogbuji, Linus U. Thomas; Humphrey, Donald L.

    2002-01-01

    The gateway to affordable and reliable space transportation in the near future remains long-lived rocket-based propulsion systems; and because of their high conductivities, copper alloys remain the best materials for lining rocket engines and dissipating their enormous thermal loads. However, Cu and its alloys are prone to oxidative degradation -- especially via the ratcheting phenomenon of blanching, which occurs in situations where the local ambient can oscillate between oxidation and reduction, as it does in a H2/02- fuelled rocket engine. Accordingly, resistance to blanching degradation is one of the key requirements for the next generation of reusable launch vehicle (RLV) liner materials. Candidate copper alloys have been studied with a view to comparing their oxidation behavior, and hence resistance to blanching, in ambients corresponding to conditions expected in rocket engine service. These candidate materials include GRCop-84 and GRCop-42 (Cu - Cr-8 - Nb-4 and Cu - Cr-4 - Nb-2 respectively); NARloy-Z (Cu-3%Ag-0.5%Y), and GlidCop (Cu-O.l5%Al2O3 ODS alloy); they represent different approaches to improving the mechanical properties of Cu without incurring a large drop in thermal conductivity. Pure Cu (OFHC-Cu) was included in the study to provide a baseline for comparison. The samples were exposed for 10 hours in the TGA to oxygen partial pressures ranging from 322 ppm to 1.0 atmosphere and at temperatures of up to 700 C, and examined by SEM-EDS and other techniques of metallography. This paper will summarize the results obtained.

  20. Rhinoconjunctivitis and occupational asthma caused by Diplotaxis erucoides (wall rocket).

    Science.gov (United States)

    Brito, F F; Mur, P; Bartolomé, B; Galindo, P A; Gómez, E; Borja, J; Martínez, A

    2001-07-01

    Wall rocket (Diplotaxis erucoides) is a common Crucifera plant that grows in European and American vineyards and olive groves. We present the cases of 2 farmers with rhinoconjunctivitis and asthma related to wine-growing tasks during D erucoides pollination (March-April). The aim of this work was to demonstrate that occupational symptoms were caused by D erucoides pollen sensitization. Cutaneous tests, specific IgE measurements, conjunctival and bronchial provocation tests, and peak-flow measurements during working days were performed.

  1. Data Mining for ISHM of Liquid Rocket Propulsion Status Update

    Science.gov (United States)

    Srivastava, Ashok; Schwabacher, Mark; Oza, Nijunj; Martin, Rodney; Watson, Richard; Matthews, Bryan

    2006-01-01

    This document consists of presentation slides that review the current status of data mining to support the work with the Integrated Systems Health Management (ISHM) for the systems associated with Liquid Rocket Propulsion. The aim of this project is to have test stand data from Rocketdyne to design algorithms that will aid in the early detection of impending failures during operation. These methods will be extended and improved for future platforms (i.e., CEV/CLV).

  2. Transient flow characteristics in a rocket engine nozzle

    OpenAIRE

    Takahashi, Masahiro; Ueda, Shuichi; Tomita, Takeo; Takahashi, Mamoru; Tamura, Hiroshi; Aoki, Kenji; 高橋 政浩; 植田 修一; 冨田 健夫; 高橋 守; 田村 洋; 青木 賢治

    2002-01-01

    Transient flow characteristics in convergent-divergent nozzles with cold gaseous nitrogen were studied using axisymmetric Navier-Stokes computation. A mechanism which possibly causes serious side-load during the start-up transient of the rocket engine nozzle is discussed. The numerical results are compared with the experimental results for validation. In case of the nozzle, with which remarkable side-load peaks were observed in the experiment and the transition from the Free Shock Separation ...

  3. Preliminary Combustion Analysis toward Stability Estimation of Rocket Engine Combustor

    OpenAIRE

    Mizobuchi, Yasuhiro; Shimizu, Taro; Naito, Taiki; 溝渕, 泰寛; 清水, 太郎; 内藤, 大貴

    2011-01-01

    A combustion flow in a model combustor equipped with a single injector located at a non-center position of the face plate is numerically simulated to investigate the combustion oscillation driving term, so called 'Rayleigh Index term' which plays a key role when we estimate the combustion stability of rocket engine combustors. The simulation reproduces the unsteady but stabilized flame behavior and reveals the flame stabilization mechanism. The critical combustion oscillation mode, T-mode, is...

  4. Workshop on the Suborbital Science Sounding Rocket Program, Volume 1

    Science.gov (United States)

    1991-01-01

    The unique characteristics of the sounding rocket program is described, with its importance to space science stressed, especially in providing UARS correlative measurements. The program provided opportunities to do innovative scientific studies in regions not other wise accessible; it was a testbed for developing new technologies; and its key attributes were flexibility, reliability, and economy. The proceedings of the workshop are presented in viewgraph form, including the objectives of the workshop and the workshop agenda.

  5. Critical evaluation of thermodynamic design procedures for rocket motor igniters

    Directory of Open Access Journals (Sweden)

    J. H. Knoetze

    1994-07-01

    Full Text Available There are different methods that can be used for the thermodynamic design of igniters for solid rocket motors. These methods are mostly empirically based and can easily lead to an under-designed or over-designed igniter. The best-known methods are the free volume method, the surface area method, the critical pressure, the Bryan-Lawrence equation, the ignition delay-free volume method, the mass discharge coefficient method and the heat flux method.

  6. Ionospheric response to a rocket launch from the Vostochnyi Cosmodrome

    Science.gov (United States)

    Zherebtsov, G. A.; Perevalova, N. P.

    2016-12-01

    The atmospheric disturbances caused by the first rocket launch from the Vostochnyi Cosmodrome on April 28, 2016, were registered 10-24 min after the launch using the signals of the GPS/GLONASS global navigation satellite systems. The analysis of the spatial distribution of the disturbances allowed the conclusion that the launch vehicle moved northwest from the cosmodrome, which corresponds to a trajectory of the satellite movement to the orbit with an inclination of 98º.

  7. The identification of parameter of solid rocket motor

    Science.gov (United States)

    Fang, Dingyou

    1992-08-01

    An end-burning grain in which long metal wires are embedded is used here as an example of parameter identification in solid rocket motors. The results indicate that when the deposition and erosion at the nozzle throat are not considered or the characteristic velocity is inaccurate or the identification technique of identification and parameter initial value identification are inaccurate, the identification results are all inaccurate. Parameters measured and information obtained experimentally can be used to check the credibility of identified parameters.

  8. A study of forced flow separation in rocket nozzle

    Science.gov (United States)

    Chiou, J. N.; Hung, R. J.

    1974-01-01

    The characteristics of flow profile in a rocket nozzle during the start transient were investigated as well as possibilities of reducing the side-load thrust by sticking trip wires in the nozzle. To simplify the geometry of flow configuration around the trip wire, it was assumed that the flow is passing through square steps instead of round wires. Since a purely analytic solution is not available, a series of semiempirical solutions was proposed.

  9. Numerical Simulation Method for Combustion in a Oxyhydrogen Rocket Motor

    OpenAIRE

    Taki, Shiro; Fujiwara, Toshitaka; 滝, 史郎; 藤原, 俊隆

    1984-01-01

    Numerical simulations of unsteady phenomena in the combustion chamber of an oxyhydrogen rocket motor were made in an attempt to develop a computer code for use in investigating such phenomena as vibrating combustion. The combustion in this system is controlled by diffusion, the effect of which works much slower than sound or pressure waves, so that diffusions are usually solved using the implicit finite difference method for unlimited time step size caused by stability criterion. However, the...

  10. Combustion and Magnetohydrodynamic Processes in Advanced Pulse Detonation Rocket Engines

    Science.gov (United States)

    2012-10-01

    2.22)) Θ Characteristic Temperature 0 Permittivity of free space μ0 Permeability of free space ()i i th numerical grid cell q (. . . , qi−1, qi, qi...the rapid burning of solid fuel composed of a mixture of a fuel and oxidizer. Gun powder emerged in China around AD 850 as the result of accidental...the advancement of liquid fueled rockets and in 1919 published, “A Method of Reaching Extreme Altitudes”, which not only provided the mathematical

  11. ’MLRS’: A Rocket System for the Marine Corps

    Science.gov (United States)

    1990-03-29

    34 by the French missionaries in China, no specific dates are listed. Most of the French writings on the subject were based on second-hand reports and...hearsay from missionaries who had been based in the Orient since the 16th century (3). From 1232 on occasional mention of rockets appeared in...historical writings of the Chinese, Arabs, French and others. The Chinese were known to have used them across the Asian conti- nent from Persia (Iran) to

  12. Space shuttle program solid rocket booster decelerator subsystem

    Science.gov (United States)

    Barnard, J. W.

    1985-01-01

    The recovery of the Solid Rocket Boosters presented a major challenge. The SRB represents the largest payload ever recovered and presents the added complication that it is continually emitting hot gases and burning particles of insulation and other debris. Some items, such as portions of the nozzle, are large enough to burn through the nylon parachute material. The SRB Decelerator Subsystem program was highly successful in that no SRB has been lost as a result of inadequate performance of the DSS.

  13. Design of a hybrid rocket / inflatable wing UAV

    Science.gov (United States)

    Sudduth, Cory

    This paper discusses the design challenges and development of a UAV that transitions from a rocket, which allows the aircraft to reach a target altitude rapidly, and then deploys an inflatable wing from an enclosed shell in midflight to allow for loitering and surveillance. The wing deployment and transition is tested in static and dynamic environments, while the performance and stability of both the aircraft mode and rocket mode are examined analytically. An in-depth discussion of key components, including the design, analysis and testing, is also included. Designing an UAV that transitions from a high velocity rocket, to a slow velocity UAV provides many difficult and unique design challenges. For example, the incorporation of deployable wing technology into a full UAV system results in many design constraints. In this particular design inflatable wings are used to generate lift during aircraft mode, and the stabilizing fins for the main wing also acted as the fins for the vehicle during its rocket phase. This required the balancing of the two different vehicle configurations to ensure that the aircraft would be able to fly stably in both modes, and transition between them without catastrophic failure. Significant research, and testing went into the finding the best method of storing the inflatable wing, as well as finding the required inflation rate to minimize unsteady aerodynamic affects. Design work was also invested in the development of an inflation system, as it had to be highly reliable, and yet very light weight for use in this small UAV. This paper discusses how these design challenges were overcome, the development and testing of individual sub-components and how they are incorporated into the overall vehicle. The analysis that went into this UAV, as well as methods used to optimize the design in order to minimize weight and maximize the aircraft performance and loitering time is also discussed.

  14. Direct Electrical Arc Ignition of Hybrid Rocket Motors

    OpenAIRE

    Judson, Michael I., Jr.

    2015-01-01

    Hybrid rockets motors provide distinct safety advantages when compared to traditional liquid or solid propellant systems, due to the inherent stability and relative inertness of the propellants prior to established combustion. As a result of this inherent propellant stability, hybrid motors have historically proven dicult to ignite. State of the art hybrid igniter designs continue to require solid or liquid reactants distinct from the main propellants. These ignition methods however, reintrod...

  15. Ultra-fast Escape of a Octopus-inspired Rocket

    Science.gov (United States)

    Weymouth, Gabriel; Triantafyllou, Michael

    2013-11-01

    The octopus, squid, and other cephalopods inflate with water and then release a jet to accelerate in the opposite direction. This escape mechanism is particularly interesting in the octopus because they become initially quite bluff, yet this does not hinder them in achieving impressive bursts of speed. We examine this somewhat paradoxical maneuver using a simple deflating spheroid model in both potential and viscous flow. We demonstrate that the dynamic reduction of the width of the body completely changes the flow and forces acting on the escaping rocket in three ways. First, a body which reduces in size can generate an added mass thrust which counteracts the added mass inertia. Second, the motion of the shrinking wall acts similar to suction on a static wall, reducing separation and drag forces in a viscous fluid, but that this effects depends on the rate of size change. Third, using a combination of these two features it is possible to initially load the fluid with kinetic energy when heavy and bluff and then recover that energy when streamlined and light, enabling ultra-fast accelerations. As a notable example, these mechanisms allow a shrinking spheroid rocket in a heavy inviscid fluid to achieve speeds greater than an identical rocket in the vacuum of space. Southampton Marine and Maritime Institute.

  16. Nuclear Thermal Rocket - An Established Space Propulsion Technology

    Science.gov (United States)

    Klein, Milton

    2004-02-01

    From the late 1950s to the early 1970s a major program successfully developed the capability to conduct space exploration using the advanced technology of nuclear rocket propulsion. The program had two primary elements: pioneering and advanced technology work-Rover-at Los Alamos National Laboratory and its contractors provided the basic reactor design, fuel materials development, and reactor testing capability; and engine development-NERVA-by the industrial team of Aerojet and Westinghouse building on and extending the Los Alamos efforts to flight system development. This presentation describes the NERVA program, the engine system testing that demonstrated the space-practical operation capabilities of nuclear thermal rockets, and the mission studies that point the way to most effectively use the NTR capabilities. Together, the two programs established a technology base that includes proven NTR capabilities of (1) over twice the specific impulse of chemical propulsion systems, (2) thrust capabilities ranging from 44kN to 1112kN, and (3) practical thrust-to-weight ratios for future NASA space exploration missions, both manned payloads to Mars and unmanned payloads to the outer planets. The overall nuclear rocket program had a unique management structure that integrated the efforts of the two government agencies involved-NASA and the then-existing Atomic Energy Commission. The objective of this paper is to summarize and convey the technical and management lessons learned in this program as the nation considers the design of its future space exploration activities.

  17. Nuclear rockets: High-performance propulsion for Mars

    Energy Technology Data Exchange (ETDEWEB)

    Watson, C.W.

    1994-05-01

    A new impetus to manned Mars exploration was introduced by President Bush in his Space Exploration Initiative. This has led, in turn, to a renewed interest in high-thrust nuclear thermal rocket propulsion (NTP). The purpose of this report is to give a brief tutorial introduction to NTP and provide a basic understanding of some of the technical issues in the realization of an operational NTP engine. Fundamental physical principles are outlined from which a variety of qualitative advantages of NTP over chemical propulsion systems derive, and quantitative performance comparisons are presented for illustrative Mars missions. Key technologies are described for a representative solid-core heat-exchanger class of engine, based on the extensive development work in the Rover and NERVA nuclear rocket programs (1955 to 1973). The most driving technology, fuel development, is discussed in some detail for these systems. Essential highlights are presented for the 19 full-scale reactor and engine tests performed in these programs. On the basis of these tests, the practicality of graphite-based nuclear rocket engines was established. Finally, several higher-performance advanced concepts are discussed. These have received considerable attention, but have not, as yet, developed enough credibility to receive large-scale development.

  18. A research on polyether glycol replaced APCP rocket propellant

    Science.gov (United States)

    Lou, Tianyou; Bao, Chun Jia; Wang, Yiyang

    2017-08-01

    Ammonium perchlorate composite propellant (APCP) is a modern solid rocket propellant used in rocket vehicles. It differs from many traditional solid rocket propellants by the nature of how it is processed. APCP is cast into shape, as opposed to powder pressing it with black powder. This provides manufacturing regularity and repeatability, which are necessary requirements for use in the aerospace industry. For traditional APCP, ingredients normally used are ammonium peroxide, aluminum, Hydroxyl-terminated polybutadiene(HTPB), curing agency and other additives, the greatest disadvantage is that the fuel is too expensive. According to the price we collected in our country, a single kilogram of this fuel will cost 200 Yuan, which is about 35 dollars, for a fan who may use tons of the fuel in a single year, it definitely is a great deal of money. For this reason, we invented a new kind of APCP fuel. Changing adhesive agency from cross-linked htpb to cross linked polyether glycol gives a similar specific thrust, density and mechanical property while costs a lower price.

  19. An introduction to the water recovery x-ray rocket

    Science.gov (United States)

    Miles, Drew M.; McEntaffer, Randall L.; Schultz, Ted B.; Donovan, Benjamin D.; Tutt, James H.; Yastishock, Daniel; Steiner, Tyler; Hillman, Christopher R.; McCoy, Jake A.; Wages, Mitchell; Hull, Sam; Falcone, Abe; Burrows, David N.; Chattopadhyay, Tanmoy; Anderson, Tyler; McQuaide, Maria

    2017-08-01

    The Water Recovery X-ray Rocket (WRXR) is a sounding rocket payload that will launch from the Kwajalein Atoll in April 2018 and seeks to be the first astrophysics sounding rocket payload to be water recovered by NASA. WRXR's primary instrument is a grating spectrometer that consists of a mechanical collimator, X-ray reflection gratings, grazing-incidence mirrors, and a hybrid CMOS detector. The instrument will obtain a spectrum of the diffuse soft X-ray emission from the northern part of the Vela supernova remnant and is optimized for 3rd and 4th order OVII emission. Utilizing a field of view of 3.25° × 3.25° and resolving power of λ/δλ ≍40-50 in the lines of interest, the WRXR spectrometer aims to achieve the most highly-resolved spectrum of Vela's diffuse soft X-ray emission. This paper presents introductions to the payload and the science target.

  20. The Rocket Balloon (Rocketball): Applications to Science, Technology, and Education

    Science.gov (United States)

    Esper, Jaime

    2009-01-01

    Originally envisioned to study upper atmospheric phenomena, the Rocket Balloon system (or Rocketball for short) has utility in a range of applications, including sprite detection and in-situ measurements, near-space measurements and calibration correlation with orbital assets, hurricane observation and characterization, technology testing and validation, ground observation, and education. A salient feature includes the need to reach space and near-space within a critical time-frame and in adverse local meteorological conditions. It can also provide for the execution of technology validation and operational demonstrations at a fraction of the cost of a space flight. In particular, planetary entry probe proof-of-concepts can be examined. A typical Rocketball operational scenario consists of a sounding rocket launch and subsequent deployment of a balloon above a desired location. An obvious advantage of this combination is the additional mission 'hang-time' rendered by the balloon once the sounding rocket flight is completed. The system leverages current and emergent technologies at the NASA Goddard Space Flight Center and other organizations.

  1. Investigation of Cooling Water Injection into Supersonic Rocket Engine Exhaust

    Science.gov (United States)

    Jones, Hansen; Jeansonne, Christopher; Menon, Shyam

    2017-11-01

    Water spray cooling of the exhaust plume from a rocket undergoing static testing is critical in preventing thermal wear of the test stand structure, and suppressing the acoustic noise signature. A scaled test facility has been developed that utilizes non-intrusive diagnostic techniques including Focusing Color Schlieren (FCS) and Phase Doppler Particle Anemometry (PDPA) to examine the interaction of a pressure-fed water jet with a supersonic flow of compressed air. FCS is used to visually assess the interaction of the water jet with the strong density gradients in the supersonic air flow. PDPA is used in conjunction to gain statistical information regarding water droplet size and velocity as the jet is broken up. Measurement results, along with numerical simulations and jet penetration models are used to explain the observed phenomena. Following the cold flow testing campaign a scaled hybrid rocket engine will be constructed to continue tests in a combusting flow environment similar to that generated by the rocket engines tested at NASA facilities. LaSPACE.

  2. Priming and physiological performance of rocket salad seeds

    Directory of Open Access Journals (Sweden)

    Jarbas Alves

    2012-03-01

    Full Text Available Rocket salad is a leafy vegetable that has become a popular food in various regions of Brazil. Its multiplication is only possible with seeds and, therefore, high quality propagation material is necessary for establishing a good crop. Studies show that seed conditioning promotes physiological improvements in the speed and uniformity of seedling establishment in the field. The present work was carried out in order to verify the effect of priming on the performance of rocket salad seeds. Five seed lots of rocket salad, cultivar Cultivada, were primed for 24 hours, using the potentials of 0.0, -0.1, -0.2, -0.3MPa, in a polyethylene glycol (Carbonax 6000 solution. A completely randomized design with 20 treatments (5 seed lots × 4 potentials was used, with four replications. Means were compared by Tukey’s test and regression analyses were conducted for the osmotic potential. The data showed that priming improved germination and the percentage of strong plants in relation to vigor.

  3. Dynamic mechanical analysis of double base rocket propellants

    Directory of Open Access Journals (Sweden)

    Marcin Cegła

    2016-03-01

    Full Text Available The article presents dynamic mechanical analysis (DMA for solid rocket propellants testing. Principles of operation and measured values are briefly described. The authors refer to the previous research of PTFE material and literature data providing information about proper experimental conditions and influence of measurement frequency, load amplitude, and heating rate on the results of DMA tests. The experimental results of solid double-base rocket propellant testing obtained on the N Netzsch DMA 242 device are presented. Mechanical properties such as the dynamic storage modulus E´, the dynamic loss modulus E˝ and tan(δ were measured within temperature range from (–120°C to (+90°C at the heating rate of 1 K/min. The test sample was subjected to a dual cantilever multi-frequency test. Special attention was paid to determination of the glass transition temperature of the tested propellant in reference to the NATO standardization agreement 4540 as well as influence of the measurement frequency on the glass transition.[b]Keywords[/b]: Dynamic mechanical analysis, solid rocket propellants, glass transition temperature

  4. Expert System Architecture for Rocket Engine Numerical Simulators: A Vision

    Science.gov (United States)

    Mitra, D.; Babu, U.; Earla, A. K.; Hemminger, Joseph A.

    1998-01-01

    Simulation of any complex physical system like rocket engines involves modeling the behavior of their different components using mostly numerical equations. Typically a simulation package would contain a set of subroutines for these modeling purposes and some other ones for supporting jobs. A user would create an input file configuring a system (part or whole of a rocket engine to be simulated) in appropriate format understandable by the package and run it to create an executable module corresponding to the simulated system. This module would then be run on a given set of input parameters in another file. Simulation jobs are mostly done for performance measurements of a designed system, but could be utilized for failure analysis or a design job such as inverse problems. In order to use any such package the user needs to understand and learn a lot about the software architecture of the package, apart from being knowledgeable in the target domain. We are currently involved in a project in designing an intelligent executive module for the rocket engine simulation packages, which would free any user from this burden of acquiring knowledge on a particular software system. The extended abstract presented here will describe the vision, methodology and the problems encountered in the project. We are employing object-oriented technology in designing the executive module. The problem is connected to the areas like the reverse engineering of any simulation software, and the intelligent systems for simulation.

  5. Drosophila melanogaster (fruit fly) locomotion during a sounding rocket flight

    Science.gov (United States)

    Miller, Mark S.; Keller, Tony S.

    2008-05-01

    The locomotor activity of young Drosophila melanogaster (fruit fly) was studied during a Nike-Orion sounding rocket flight, which included a short-duration microgravity exposure. An infrared monitoring system was used to determine the activity level, instantaneous velocity, and continuous velocity of 240 (120 male, 120 female) fruit flies. Individual flies were placed in chambers that limit their motion to walking. Chambers were oriented both vertically and horizontally with respect to the rocket's longitudinal axis. Significant changes in Drosophila locomotion patterns were observed throughout the sounding rocket flight, including launch, microgravity exposure, payload re-entry, and after ocean impact. During the microgravity portion of the flight (3.8 min), large increases in all locomotion measurements for both sexes were observed, with some measurements doubling compared to pad (1 G) data. Initial effects of microgravity were probably delayed due to large accelerations from the payload despining immediately before entering microgravity. The results indicate that short-duration microgravity exposure has a large effect on locomotor activity for both males and females, at least for a short period of time. The locomotion increases may explain the increased male aging observed during long-duration exposure to microgravity. Studies focusing on long-duration microgravity exposure are needed to confirm these findings, and the relationship of increased aging and locomotion.

  6. Using PDV to Understand Damage in Rocket Motor Propellants

    Science.gov (United States)

    Tear, Gareth; Chapman, David; Ottley, Phillip; Proud, William; Gould, Peter; Cullis, Ian

    2017-06-01

    There is a continuing requirement to design and manufacture insensitive munition (IM) rocket motors for in-service use under a wide range of conditions, particularly due to shock initiation and detonation of damaged propellant spalled across the central bore of the rocket motor (XDT). High speed photography has been crucial in determining this behaviour, however attempts to model the dynamic behaviour are limited by the lack of precision particle and wave velocity data with which to validate against. In this work Photonic Doppler Velocimetery (PDV) has been combined with high speed video to give accurate point velocity and timing measurements of the rear surface of a propellant block impacted by a fragment travelling upto 1.4 km s-1. By combining traditional high speed video with PDV through a dichroic mirror, the point of velocity measurement within the debris cloud has been determined. This demonstrates a new capability to characterise the damage behaviour of a double base rocket motor propellant and hence validate the damage and fragmentation algorithms used in the numerical simulations.

  7. Application of Chaboche Model in Rocket Thrust Chamber Analysis

    Science.gov (United States)

    Asraff, Ahmedul Kabir; Suresh Babu, Sheela; Babu, Aneena; Eapen, Reeba

    2017-06-01

    Liquid Propellant Rocket Engines are commonly used in space technology. Thrust chamber is one of the most important subsystems of a rocket engine. The thrust chamber generates propulsive thrust force for flight of the rocket by ejection of combustion products at supersonic speeds. Often double walled construction is employed for these chambers. The thrust chamber investigated here has its hot inner wall fabricated out of a high thermal conductive material like copper alloy and outer wall made of stainless steel. Inner wall is subjected to high thermal and pressure loads during operation of engine due to which it will be in the plastic regime. Main reasons for the failure of such chambers are fatigue in the plastic range (called as low cycle fatigue since the number of cycles to failure will be low in plastic range), creep and thermal ratcheting. Elasto plastic material models are required to simulate the above effects through a cyclic stress analysis. This paper gives the details of cyclic stress analysis carried out for the thrust chamber using different plasticity model combinations available in ANSYS (Version 15) FE code. The best model among the above is applied in the cyclic stress analysis of two dimensional (plane strain and axisymmetric) and three dimensional finite element models of thrust chamber. Cyclic life of the chamber is calculated from stress-strain graph obtained from above analyses.

  8. A Risk Radar driven by Internet of intelligences serving for emergency management in community.

    Science.gov (United States)

    Huang, Chongfu; Wu, Tong; Renn, Ortwin

    2016-07-01

    Today, most of the commercial risk radars only have the function to show risks, as same as a set of risk matrixes. In this paper, we develop the Internet of intelligences (IOI) to drive a risk radar monitoring dynamic risks for emergency management in community. An IOI scans risks in a community by 4 stages: collecting information and experience about risks; evaluating risk incidents; verifying; and showing risks. Employing the information diffusion method, we optimized to deal with the effective information for calculating risk value. Also, a specific case demonstrates the reliability and practicability of risk radar. Copyright © 2016 Elsevier Inc. All rights reserved.

  9. Grounding Damage to Conventional Vessels

    DEFF Research Database (Denmark)

    Lützen, Marie; Simonsen, Bo Cerup

    2003-01-01

    regulations for design of bottom compartment layout with regard to grounding damages are largely based on statistical damage data. New and updated damage statistics holding 930 grounding accident records has been investigated. The bottom damage statistics is compared to current regulations for the bottom......The present paper is concerned with rational design of conventional vessels with regard to bottom damage generated in grounding accidents. The aim of the work described here is to improve the design basis, primarily through analysis of new statistical data for grounding damage. The current...... for the relation between the amount of deformed structure and the energy absorption. Finally, the paper shows how damage statistics for existing, conventional vessels can be used together with theoretical prediction methods for determining grounding damage distributions for new vessel types not included...

  10. Numerical Simulation of Rocket Exhaust Interaction with Lunar Soil

    Science.gov (United States)

    Liever, Peter; Tosh, Abhijit; Curtis, Jennifer

    2012-01-01

    This technology development originated from the need to assess the debris threat resulting from soil material erosion induced by landing spacecraft rocket plume impingement on extraterrestrial planetary surfaces. The impact of soil debris was observed to be highly detrimental during NASA s Apollo lunar missions and will pose a threat for any future landings on the Moon, Mars, and other exploration targets. The innovation developed under this program provides a simulation tool that combines modeling of the diverse disciplines of rocket plume impingement gas dynamics, granular soil material liberation, and soil debris particle kinetics into one unified simulation system. The Unified Flow Solver (UFS) developed by CFDRC enabled the efficient, seamless simulation of mixed continuum and rarefied rocket plume flow utilizing a novel direct numerical simulation technique of the Boltzmann gas dynamics equation. The characteristics of the soil granular material response and modeling of the erosion and liberation processes were enabled through novel first principle-based granular mechanics models developed by the University of Florida specifically for the highly irregularly shaped and cohesive lunar regolith material. These tools were integrated into a unique simulation system that accounts for all relevant physics aspects: (1) Modeling of spacecraft rocket plume impingement flow under lunar vacuum environment resulting in a mixed continuum and rarefied flow; (2) Modeling of lunar soil characteristics to capture soil-specific effects of particle size and shape composition, soil layer cohesion and granular flow physics; and (3) Accurate tracking of soil-borne debris particles beginning with aerodynamically driven motion inside the plume to purely ballistic motion in lunar far field conditions. In the earlier project phase of this innovation, the capabilities of the UFS for mixed continuum and rarefied flow situations were validated and demonstrated for lunar lander rocket

  11. Negotiating Conventions and Creating Community

    DEFF Research Database (Denmark)

    Cole, Alexander Sasha; Barberá-Tomás, David

    2014-01-01

    This article examines the processes of negotiation and institution building through which transnational networks of learning are fashioned. It does so by examining the case of the European animation industry and the activity of an association, Cartoon, which facilitated the development of common...... conventions supporting cooperation and learning in this industry. The case draws attention to how issues of institutional context can frustrate collaboration and limit the scope of learning; simultaneously, it illustrates interventions that permitted the negotiation between situated and context...

  12. Dilution Confusion: Conventions for Defining a Dilution

    Science.gov (United States)

    Fishel, Laurence A.

    2010-01-01

    Two conventions for preparing dilutions are used in clinical laboratories. The first convention defines an "a:b" dilution as "a" volumes of solution A plus "b" volumes of solution B. The second convention defines an "a:b" dilution as "a" volumes of solution A diluted into a final volume of "b". Use of the incorrect dilution convention could affect…

  13. THE POSSIBILITY OF USING LASER-ULTRASOUND TO MONITOR THE QUALITY SOLDERED CONNECTIONS CHAMBERS OF LIQUID ROCKET ENGINES

    Directory of Open Access Journals (Sweden)

    N. V. Astredinova

    2014-01-01

    Full Text Available During the manufacturing process to the design of modern liquid rocket engines are presented important requirements, such as minimum weight, maximum stiffness and strength of nodes, maximum service life in operation, high reliability and quality of soldered and welded seams. Due to the high quality requirements soldered connections and the specific design of the nozzle, it became necessary in the development and testing of a new non-conventional non-destructive testing method – laser-ultrasound diagnosis. In accordance with regulatory guidelines, quality control soldered connections is allowed to use an acoustic kind of control methods of the reflected light, transmitted light, resonant, free vibration and acoustic emission. Attempts to use traditional methods of non-destructive testing did not lead to positive results. This is due primarily to the size of typical solder joint defects, as well as the structural features of the rocket engine, the data structure is not controllable. In connection with this, a new method that provides quality control soldered connections cameras LRE based on the thermo generation of ultrasound. Methods of ultrasonic flaw detection of photoacoustic effect, in most cases, have a number of advantages over methods that use standard (traditional piezo transducers. In the course of studies have found that the sensitivity of the laser-ultrasonic method and flaw detector UDL-2M can detect lack of adhesion in the solder joints on the upper edges of the nozzle in the sub-header area of the site.

  14. Numerical Calculation of Effect of Elastic Deformation on Aerodynamic Characteristics of a Rocket

    OpenAIRE

    Abbas, Laith K.; Dongyang Chen; Xiaoting Rui

    2014-01-01

    The application and workflow of Computational Fluid Dynamics (CFD)/Computational Structure Dynamics (CSD) on solving the static aeroelastic problem of a slender rocket are introduced. To predict static aeroelastic behavior accurately, two-way coupling and inertia relief methods are used to calculate the static deformations and aerodynamic characteristics of the deformed rocket. The aerodynamic coefficients of rigid rocket are computed firstly and compared with the experimental data, which ver...

  15. Fuel Chemistry And Combustion Distribution Effects On Rocket Engine Combustion Stability

    Science.gov (United States)

    2015-11-19

    AFRL-AFOSR-VA-TR-2016-0014 Effects of Increased Energy and Particulate Damping on Rocket William. Anderson PURDUE UNIVERSITY Final Report 11/19/2015...Distribution Effects On Rocket Engine Combustion Stability 5a. CONTRACT NUMBER 5b. GRANT NUMBER FA9550-10-1-0431 5c. PROGRAM ELEMENT NUMBER 6. AUTHOR(S...addition can be used to alter the combustion instability characteristics of liquid rocket engines. Fuels with increased energy, either due to higher heats

  16. Effect of Swirl on an Unstable Single-Element Gas-Gas Rocket Engine

    Science.gov (United States)

    2014-06-01

    combustion systems including gas turbines, rocket engines, and industrial furnaces. Swirl can have dramatic effects on the flowfield; these include jet growth...of the jet .16 In rocket engines, swirl injectors have several advantages over jet -type injectors; they are less sensitive to manufacturing defects...of Jet and Swirl Injectors,” Liquid Rocket Thrust Chambers: Aspects of Modeling, Analysis, and Design, edited by V. Yang, M. Habiballah, J. Hulka

  17. Fluid-Structure Interaction Effects on Mass Flow Rates in Solid Rocket Motors

    Science.gov (United States)

    2015-09-02

    in Solid Rocket Motors 5a. CONTRACT NUMBER 5b. GRANT NUMBER 5c. PROGRAM ELEMENT NUMBER 6. AUTHOR(S) William Harrigan 5d. PROJECT NUMBER...Determination of mass flow rate in a solid rocket motor is critical in the design of a new motor due to its effect on the thrust produced. Fluid...mass flow rates. The FSI analyses with two‐way coupling provided a more accurate assessment of solid rocket motor internal ballistics. 15. SUBJECT

  18. Scientific Experiences Using Argentinean Sounding Rockets in Antarctica

    Science.gov (United States)

    Sánchez-Peña, Miguel

    2000-07-01

    Argentina in the sixties and seventies, had experience for developing and for using sounding rockets and payloads to perform scientific space experiments. Besides they have several bases in Antarctica with adequate premises and installations, also duly equipped aircrafts and trained crews to flight to the white continent. In February 1965, scientists and technical people from the "Instituto de Investigacion Aeronáutica y Espacial" (I.I.A.E.) with the cooperation of the Air Force and the Tucuman University, conducted the "Matienzo Operation" to measure X radiation and temperature in the upper atmosphere, using the Gamma Centauro rocket and also using big balloons. The people involved in the experience, the launcher, other material and equipment flew from the south tip of Argentina to the Matienzo base in Antarctica, in a C-47 aircraft equipped with skies an additional jet engine Marbore 2-C. Other experience was performed in 1975 in the "Marambio" Antartic Base, using the two stages solid propellent sounding rocket Castor, developed in Argentina. The payload was developed in cooperation with the Max Planck Institute of Germany. It consist of a special mixture including a shape charge to form a ionized cloud producing a jet of electrons travelling from Marambio base to the conjugate point in the Northern hemisphere. The cloud was observed by several ground stations in Argentina and also by a NASA aircraft with TV cameras, flying at East of New York. The objective of this experience was to study the electric and magnetic fields in altitude, the neutral points, the temperature and electrons profile. The objectives of both experiments were accomplished satisfactorily.

  19. Computational Thermochemistry of Jet Fuels and Rocket Propellants

    Science.gov (United States)

    Crawford, T. Daniel

    2002-01-01

    The design of new high-energy density molecules as candidates for jet and rocket fuels is an important goal of modern chemical thermodynamics. The NASA Glenn Research Center is home to a database of thermodynamic data for over 2000 compounds related to this goal, in the form of least-squares fits of heat capacities, enthalpies, and entropies as functions of temperature over the range of 300 - 6000 K. The chemical equilibrium with applications (CEA) program written and maintained by researchers at NASA Glenn over the last fifty years, makes use of this database for modeling the performance of potential rocket propellants. During its long history, the NASA Glenn database has been developed based on experimental results and data published in the scientific literature such as the standard JANAF tables. The recent development of efficient computational techniques based on quantum chemical methods provides an alternative source of information for expansion of such databases. For example, it is now possible to model dissociation or combustion reactions of small molecules to high accuracy using techniques such as coupled cluster theory or density functional theory. Unfortunately, the current applicability of reliable computational models is limited to relatively small molecules containing only around a dozen (non-hydrogen) atoms. We propose to extend the applicability of coupled cluster theory- often referred to as the 'gold standard' of quantum chemical methods- to molecules containing 30-50 non-hydrogen atoms. The centerpiece of this work is the concept of local correlation, in which the description of the electron interactions- known as electron correlation effects- are reduced to only their most important localized components. Such an advance has the potential to greatly expand the current reach of computational thermochemistry and thus to have a significant impact on the theoretical study of jet and rocket propellants.

  20. Rocket dust storms and detached layers in the Martian atmosphere

    Science.gov (United States)

    Spiga, A.; Faure, J.; Madeleine, J.; Maattanen, A. E.; Forget, F.

    2012-12-01

    Airborne dust is the main climatic agent in the Martian environment. Local dust storms play a key role in the dust cycle; yet their life cycle is poorly known. Here we use mesoscale modeling with radiatively-active transported dust to predict the evolution of a local dust storm monitored by OMEGA onboard Mars Express. We show that the evolution of this dust storm is governed by deep convective motions. The supply of convective energy is provided by the absorption of incoming sunlight by dust particles, in lieu of latent heating in moist convection on Earth. We propose to use the terminology "rocket dust storm", or conio-cumulonimbus, to describe those storms in which rapid and efficient vertical transport takes place, injecting dust particles at high altitudes in the Martian troposphere (30 to 50 km). Combined to horizontal transport by large-scale winds, rocket dust storms form detached layers of dust reminiscent of those observed with instruments onboard Mars Global Surveyor and Mars Reconnaissance Orbiter. Detached layers are stable over several days owing to nighttime sedimentation being unable to counteract daytime convective transport, and to the resupply of convective energy at sunrise. The peak activity of rocket dust storms is expected in low-latitude regions at clear season, which accounts for the high-altitude tropical dust maximum unveiled by Mars Climate Sounder. Our findings on dust-driven deep convection have strong implications for the Martian dust cycle, thermal structure, atmospheric dynamics, cloud microphysics, chemistry, and robotic and human exploration.ensity-scaled dust optical depth at local times 1400 1600 and 1800 (lat 2.5°S, Ls 135°) hortwave heating rate at local time 1500 and latitude 2.5°S.

  1. Large ionospheric TEC depletion induced by the 2016 North Korea rocket

    Science.gov (United States)

    Choi, Byung-Kyu; Kil, Hyosub

    2017-01-01

    A rocket called Kwangmyongsong-4 was launched from North Korea at 00:30 UT on February 7, 2016. We investigated ionospheric total electron content (TEC) depletions induced by the rocket using the Global Navigation Satellite System (GNSS) stations in South Korea. A sudden depletion in TEC variations appeared ∼6 min after the rocket launch. The drops in slant TEC exceeded 17 TEC unit (TECU) and those in vertical TEC were approximately 7 TECU. It is remarkable that the TEC drop by the 2016 Kwangmyongsong-4 rocket is larger (almost by three times) than that by the 2012 Unha-3 rocket. There are the differences of the background TEC values at the 2012 and the 2016 cases. These results suggest that the difference of the background electron density affects the magnitude of TEC depletion. The horizonal velocity of the rocket was 1.6 km/s, which was estimated from horizontal distances with an initial time of TEC disturbances. However, the 2012 Unha-3 rocket (∼2.5 km/s) moved faster horizontally than the 2016 Kwangmyongsong-4 rocket. Furthermore, when the rocket moved from high latitudes to low latitudes, TEC disturbances reduced gradually, and then, the depletion persisted for a longer time at the west side (the right side of southern direction).

  2. Unique thermocouple to measure the temperatures of squibs, igniters, propellants, and rocket nozzles

    Science.gov (United States)

    Nanigian, Jacob; Nanigian, Dan

    2006-05-01

    The temperatures produced by the various components in the propulsion system of rockets and missiles determine the performance of the rocket. Since these temperatures occur very rapidly and under extreme conditions, standard thermocouples fail before any meaningful temperatures are measured. This paper describes the features of a special family of high performance thermocouples, which can measure these transient temperatures with millisecond response times and under the most severe conditions of erosion. Examples of igniter, propellant and rocket nozzle temperatures are included in this paper. Also included is heat flux measurements made by these sensors in rocket applications.

  3. Numerical Calculation of Effect of Elastic Deformation on Aerodynamic Characteristics of a Rocket

    Directory of Open Access Journals (Sweden)

    Laith K. Abbas

    2014-01-01

    Full Text Available The application and workflow of Computational Fluid Dynamics (CFD/Computational Structure Dynamics (CSD on solving the static aeroelastic problem of a slender rocket are introduced. To predict static aeroelastic behavior accurately, two-way coupling and inertia relief methods are used to calculate the static deformations and aerodynamic characteristics of the deformed rocket. The aerodynamic coefficients of rigid rocket are computed firstly and compared with the experimental data, which verified the accuracy of CFD output. The results of the analysis for elastic rocket in the nonspinning and spinning states are compared with the rigid ones. The results highlight that the rocket deformation aspects are decided by the normal force distribution along the rocket length. Rocket deformation becomes larger with increasing the flight angle of attack. Drag and lift force coefficients decrease and pitching moment coefficients increase due to rocket deformations, center of pressure location forwards, and stability of the rockets decreases. Accordingly, the flight trajectory may be affected by the change of these aerodynamic coefficients and stability.

  4. Microelectronic Spare and Repair Part Status Analysis for the Multiple Launch Rocket System (MLRS)

    National Research Council Canada - National Science Library

    Maddux, Gary

    1999-01-01

    .... IOD required management and engineering support In performing microelectronic technology and availability assessments for the impact of nonavailability on the Multiple Launch Rocket System (MLRS...

  5. Radiophysical and geomagnetic effects of rocket burn and launch in the near-the-earth environment

    CERN Document Server

    Chernogor, Leonid F

    2013-01-01

    Radiophysical and Geomagnetic Effects of Rocket Burn and Launch in the Near-the-Earth Environment describes experimental and theoretical studies on the effects of rocket burns and launchings on the near-the-Earth environment and geomagnetic fields. It illuminates the main geophysical and radiophysical effects on the ionosphere and magnetosphere surrounding the Earth that accompany rocket or cosmic apparatus burns and launchings from 1,000 to 10,000 kilometers.The book analyzes the disturbances of plasma and the ambient magnetic and electric fields in the near-Earth environment from rocket burn

  6. Integration of Flex Nozzle System and Electro Hydraulic Actuators to Solid Rocket Motors

    Science.gov (United States)

    Nayani, Kishore Nath; Bajaj, Dinesh Kumar

    2017-10-01

    A rocket motor assembly comprised of solid rocket motor and flex nozzle system. Integration of flex nozzle system and hydraulic actuators to the solid rocket motors are done after transportation to the required place where integration occurred. The flex nozzle system is integrated to the rocket motor in horizontal condition and the electro hydraulic actuators are assembled to the flex nozzle systems. The electro hydraulic actuators are connected to the hydraulic power pack to operate the actuators. The nozzle-motor critical interface are insulation diametrical compression, inhibition resin-28, insulation facial compression, shaft seal `O' ring compression and face seal `O' ring compression.

  7. Computer Modeling of a Rotating Detonation Engine in a Rocket Configuration

    Science.gov (United States)

    2015-03-01

    in a rocket . In the plateaus, the RDE has extracted as much energy from the fuel as possible, so additional time in the combustion chamber will not...impulse for rocket engines 53 of 150 sec falls below that of existing rocket engines. The nozzle and exhaust were assumed to be ideal, as were the...COMPUTER MODELING OF A ROTATING DETONATION ENGINE IN A ROCKET CONFIGURATION THESIS Nihar N. Shah, 1st Lt, USAF AFIT-ENY-MS-15-M-230 DEPARTMENT OF THE

  8. Implementing the chemical weapons convention

    Energy Technology Data Exchange (ETDEWEB)

    Kellman, B.; Tanzman, E. A.

    1999-12-07

    In 1993, as the CWC ratification process was beginning, concerns arose that the complexity of integrating the CWC with national law could cause each nation to implement the Convention without regard to what other nations were doing, thereby causing inconsistencies among States as to how the CWC would be carried out. As a result, the author's colleagues and the author prepared the Manual for National Implementation of the Chemical Weapons Convention and presented it to each national delegation at the December 1993 meeting of the Preparatory Commission in The Hague. During its preparation, the Committee of CWC Legal Experts, a group of distinguished international jurists, law professors, legally-trained diplomats, government officials, and Parliamentarians from every region of the world, including Central Europe, reviewed the Manual. In February 1998, they finished the second edition of the Manual in order to update it in light of developments since the CWC entered into force on 29 April 1997. The Manual tries to increase understanding of the Convention by identifying its obligations and suggesting methods of meeting them. Education about CWC obligations and available alternatives to comply with these requirements can facilitate national response that are consistent among States Parties. Thus, the Manual offers options that can strengthen international realization of the Convention's goals if States Parties act compatibly in implementing them. Equally important, it is intended to build confidence that the legal issues raised by the Convention are finite and addressable. They are now nearing competition of an internet version of this document so that interested persons can access it electronically and can view the full text of all of the national implementing legislation it cites. The internet address, or URL, for the internet version of the Manual is http: //www.cwc.ard.gov. This paper draws from the Manual. It comparatively addresses approximately thirty

  9. Numerical simulation of film-cooled ablative rocket nozzles

    Science.gov (United States)

    Landrum, D. B.; Beard, R. M.

    1996-01-01

    The objective of this research effort was to evaluate the impact of incorporating an additional cooling port downstream between the injector and nozzle throat in the NASA Fast Track chamber. A numerical model of the chamber was developed for the analysis. The analysis did not model ablation but instead correlated the initial ablation rate with the initial nozzle wall temperature distribution. The results of this study provide guidance in the development of a potentially lighter, second generation ablative rocket nozzle which maintains desired performance levels.

  10. Glycemic control of diabetes patients under continuous rocket attacks.

    Science.gov (United States)

    Soskolne, Varda; Dekel, Rachel; Vinker, Shlomo

    2016-01-01

    Evidence regarding the detrimental effects of exposure to stress on glycemic control among diabetes patients has mainly focused on personal life events or acute trauma. However, the effects of continuous exposure to extreme stress on type 2 diabetes patients have rarely been studied. The aim of the current study was to examine the association of continuous exposure to rocket attacks with glycemic control and with risk factors for diabetes complications among civilian type 2 diabetes patients. We focus on patients residing in the Western Negev in the south of Israel that has been subjected to rocket attacks fired from Gaza since the end of 2001. A two-arm retrospective cohort study of type 2 diabetes patients, aged 35-70 years, residing in a region with chronic exposure to rocket attacks (N = 1697) and in a non-exposed comparison region in Israel (N = 3000). Data were retrieved from the Health Maintenance Organization (HMO)'s database for four time periods representing exposure: chronic-2008; elevated-2009 (post'Cast Lead' operation); return to chronic-2010, 2011. Data included socio-demographic variables, HbA 1c , BMI, LDL cholesterol, blood pressure. General Linear Models (GLM) were used for analysis. For HbA 1c , the model yielded a significant main effect for time, a borderline significance main effect for region, and a significant time by region interaction: no differences in HbA 1c levels between the regions in 2008 and 2009, followed by significant differences between the regions in 2010 and 2011 when HbA 1c continued to increase in the exposed region but decreased in the comparison region. Regarding risk factors, a significant main effect for time for LDL cholesterol only, and significant main effects for region were found in all factors: BMI and LDL cholesterol were higher in the exposed than in the comparison region, but blood pressure values were lower. Continuous exposure to rocket attacks is associated with glycemic control and risk factors in a

  11. Weak Equivalence Principle Test on a Sounding Rocket

    CERN Document Server

    Phillips, James D; Popescu, Eugeniu M; Rocco, Emanuele; Thapa, Rajesh; Reasenberg, Robert D; Lorenzini, Enrico C

    2010-01-01

    SR-POEM, our principle of equivalence measurement on a sounding rocket, will compare the free fall rate of two substances yielding an uncertainty of E-16 in the estimate of \\eta. During the past two years, the design concept has matured and we have been working on the required technology, including a laser gauge that is self aligning and able to reach 0.1 pm per root hertz for periods up to 40 s. We describe the status and plans for this project.

  12. A weak equivalence principle test on a suborbital rocket

    Energy Technology Data Exchange (ETDEWEB)

    Reasenberg, Robert D; Phillips, James D, E-mail: reasenberg@cfa.harvard.ed [Smithsonian Astrophysical Observatory, Harvard-Smithsonian Center for Astrophysics, Cambridge, MA 02138 (United States)

    2010-05-07

    We describe a Galilean test of the weak equivalence principle, to be conducted during the free fall portion of a sounding rocket flight. The test of a single pair of substances is aimed at a measurement uncertainty of sigma(eta) < 10{sup -16} after averaging the results of eight separate drops. The weak equivalence principle measurement is made with a set of four laser gauges that are expected to achieve 0.1 pm Hz{sup -1/2}. The discovery of a violation (eta not = 0) would have profound implications for physics, astrophysics and cosmology.

  13. Status of the Micro-X Sounding Rocket Telescope

    Science.gov (United States)

    Goldfinger, David; Micro-X Collaboration

    2017-01-01

    Micro-X is a sounding rocket borne X-ray telescope that uses Transition Edge Sensor microcalorimeters to provide superior energy resolution. Micro-X has a variety of applications with plans to observe the Puppis A supernova remnant during its first flight, as well as future observations of the Milky Way to search for X-ray signals from decaying dark matter. Commissioning and functionality testing are complete and this project is now in the calibration and performance optimization phase. We present an overview of the instrument and an update on ongoing progress in preparation for the upcoming launch. NASA Space Technology Research Fellowship.

  14. A weak equivalence principle test on a suborbital rocket

    CERN Document Server

    Reasenberg, Robert D

    2010-01-01

    We describe a Galilean test of the weak equivalence principle, to be conducted during the free fall portion of a sounding rocket flight. The test of a single pair of substances is aimed at a measurement uncertainty of sigma(eta) < 10^-16 after averaging the results of eight separate drops. The weak equivalence principle measurement is made with a set of four laser gauges that are expected to achieve 0.1 pm Hz^-1/2. The discovery of a violation (eta not equal to 0) would have profound implications for physics, astrophysics, and cosmology.

  15. Integration of rocket turbine design and analysis through computer graphics

    Science.gov (United States)

    Hsu, Wayne; Boynton, Jim

    1988-01-01

    An interactive approach with engineering computer graphics is used to integrate the design and analysis processes of a rocket engine turbine into a progressive and iterative design procedure. The processes are interconnected through pre- and postprocessors. The graphics are used to generate the blade profiles, their stacking, finite element generation, and analysis presentation through color graphics. Steps of the design process discussed include pitch-line design, axisymmetric hub-to-tip meridional design, and quasi-three-dimensional analysis. The viscous two- and three-dimensional analysis codes are executed after acceptable designs are achieved and estimates of initial losses are confirmed.

  16. Development of moldable carbonaceous materials for ablative rocket nozzles.

    Science.gov (United States)

    Lockhart, R. J.; Bortz, S. A.; Schwartz, M. A.

    1972-01-01

    Description of a materials system developed for use as low-cost ablative nozzles for NASA's 260-in. solid rocket motor. Petroleum coke and carbon black fillers were employed; high density was achieved by controlling particle size distribution. An alumina catalyzed furfuryl ester resin which produced high carbon residues after pyrolysis was employed as the binder. Staple carbon fibers improved the strength and crack resistance of molded bodies. In static firing tests of two subscale nozzles, this material compared favorably in erosion rate with several other ablative systems.

  17. Ceramic Matrix Composite Turbine Disk for Rocket Engines

    Science.gov (United States)

    Effinger, Mike; Genge, Gary; Kiser, Doug

    2000-01-01

    NASA has recently completed testing of a ceramic matrix composite (CMC), integrally bladed disk (blisk) for rocket engine turbopumps. The turbopump's main function is to bring propellants from the tank to the combustion chamber at optimal pressures, temperatures, and flow rates. Advantages realized by using CMC blisks are increases in safety by increasing temperature margins and decreasing costs by increasing turbopump performance. A multidisciplinary team, involving materials, design, structural analysis, nondestructive inspection government, academia, and industry experts, was formed to accomplish the 4.5 year effort. This article will review some of the background and accomplishments of the CMC Blisk Program relative to the benefits of this technology.

  18. VIABILITY OF BACILLUS SUBTILIS SPORES IN ROCKET PROPELLANTS.

    Science.gov (United States)

    GODDING, R M; LYNCH, V H

    1965-01-01

    The sporicidal activity of components used in liquid and solid rocket propellants was tested by use of spores of Bacillus subtilis dried on powdered glass. Liquid propellant ingredients tested were N(2)O(4), monomethylhydrazine and 1,1-dimethylhydrazine. N(2)O(4) was immediately sporicidal; the hydrazines were effective within several days. Solid propellants consisted of ammonium perchlorate in combination with epoxy resin (EPON 828), tris-1-(2-methyl) aziridinyl phosphine oxide, bis-1-(2-methyl) aziridinyl phenylphosphine oxide, and three modified polybutadiene polymers. There was no indication of appreciable sporicidal activity of these components.

  19. Rocket Engines from the Glushko Design Bureau - 1946-2000

    Science.gov (United States)

    Siddiqi, A. A.

    Valentin P. Glushko (1908-89) oversaw the most influential rocket engine design organization in the Soviet Union. Originally known as OKB-456, the design bureau designed first stage engines for almost all operational Soviet ICBMs, the exceptions being the UR-100 (U.S. Department of Defense code name SS-11) and the UR-100N (SS- 19). According to official information, the design bureau has developed more than 120 engines since the end of World War II [1]. This article will attempt to summarize the development of engines at the Glushko Design Bureau and identify its the main thematic trends over the course of 55 years.

  20. Simulation of liquid propellant rocket engine combustion instabilities

    Science.gov (United States)

    Ventrice, M. B.; Fang, J. C.; Purdy, K. R.

    1979-01-01

    A simulation technique for studying the high frequency combustion instabilities of liquid propellant rocket engines has been developed and used to investigate various aspects of instability phenomena. Of importance was investigation of the significance of the method of coupling the combustion and the gas dynamics of the system. Two coupling processes were studied: linear response of the combustion process to pressure fluctuations, and the nature of the resulting instabilities; and nonlinear response of the combustion process to velocity fluctuations, and the nature of the resulting instabilities. For the combustion model studied, nonlinear (velocity) coupling was found to more closely characterize liquid propellant instabilities.

  1. Hypergolic bipropellant spray combustion and flow modelling in rocket engines

    Science.gov (United States)

    Larosiliere, Louis M.; Litchford, Ron J.; Jeng, San-Mou

    1990-01-01

    A predictive tool for hypergolic bipropellant spray combustion and flow evolution in small rocket combustion chambers is described. It encompasses a computational technique for the gas-phase governing equations, a discrete particle method for liquid bipropellant sprays, and constitutive models for combustion chemistry, interphase exchanges, and unlike impinging hypergolic spray interactions. Emphasis is placed on the phenomenological modeling of the hypergolic liquid bipropellant gasification processes. Sample computations with the N2H4-N2O4 propellant system are given in order to show some of the capabilities and inadequacies of this tool.

  2. SRM (Solid Rocket Motor) propellant and polymer materials structural modeling

    Science.gov (United States)

    Moore, Carleton J.

    1988-01-01

    The following investigation reviews and evaluates the use of stress relaxation test data for the structural analysis of Solid Rocket Motor (SRM) propellants and other polymer materials used for liners, insulators, inhibitors, and seals. The stress relaxation data is examined and a new mathematical structural model is proposed. This model has potentially wide application to structural analysis of polymer materials and other materials generally characterized as being made of viscoelastic materials. A dynamic modulus is derived from the new model for stress relaxation modulus and is compared to the old viscoelastic model and experimental data.

  3. Effects of rocket engines on laser during lunar landing

    Energy Technology Data Exchange (ETDEWEB)

    Wan, Xiong, E-mail: wanxiong1@126.com [Key Laboratory of Space Active Opto-Electronics Technology, Shanghai Institute of Technical Physics, Chinese Academy of Science, Shanghai 200083 (China); Key Laboratory of Nondestructive Test (Ministry of Education), Nanchang Hangkong University, Nanchang 330063 (China); Shu, Rong; Huang, Genghua [Key Laboratory of Space Active Opto-Electronics Technology, Shanghai Institute of Technical Physics, Chinese Academy of Science, Shanghai 200083 (China)

    2013-11-15

    In the Chinese moon exploration project “ChangE-3”, the laser telemeter and lidar are important equipments on the lunar landing vehicle. A low-thrust vernier rocket engine works during the soft landing, whose plume may influence on the laser equipments. An experiment has first been accomplished to evaluate the influence of the plume on the propagation characteristics of infrared laser under the vacuum condition. Combination with our theoretical analysis has given an appropriate assessment of the plume's effects on the infrared laser hence providing a valuable basis for the design of lunar landing systems.

  4. Study of plasticizer diffusion in a solid rocket motor´s bondline

    Directory of Open Access Journals (Sweden)

    Juliano Libardi

    2009-06-01

    Full Text Available This work aims to determine the diffusion coefficient of the plasticizers dibutyl phthalate (DBP, dioctyl phthalate (DOP and dioctyl azelate (DOZ on the internal insulating layer of solid rocket motors. These plasticizers are originally present in the layers of rubber, liner and propellant, respectively. This species are not chemically bonded and tend to diffuse from propellant to insulating and vice versa. A computer program based on the mathematical model of Fick’s second Law of diffusion was developed to perform the calculus from the concentration data obtained by gas chromatographic (GC analyses. The samples were prepared with two different adhesive liners; one conventional (LHNA and the other with barrier properties (LHNT. A common feature of both liners was that they were synthesized by the reaction of hydroxyl-terminated polybutadiene (HTPB and diisocyanates. However, a bond promoter was used to increase the crosslink density of the LHNT liner and to improve its performance as barrier against the diffusion. The effects of the diffusion of the plasticizers were also investigated by hardness analyses, which were executed on samples aged at room temperature and at 80ºC. The results showed an increase trend for the samples aged at room temperature and an opposite behavior for the tests carried out at 80ºC.

  5. A rapid method for optimization of the rocket propulsion system for single-stage-to-orbit vehicles

    Science.gov (United States)

    Eldred, C. H.; Gordon, S. V.

    1976-01-01

    A rapid analytical method for the optimization of rocket propulsion systems is presented for a vertical take-off, horizontal landing, single-stage-to-orbit launch vehicle. This method utilizes trade-offs between propulsion characteristics affecting flight performance and engine system mass. The performance results from a point-mass trajectory optimization program are combined with a linearized sizing program to establish vehicle sizing trends caused by propulsion system variations. The linearized sizing technique was developed for the class of vehicle systems studied herein. The specific examples treated are the optimization of nozzle expansion ratio and lift-off thrust-to-weight ratio to achieve either minimum gross mass or minimum dry mass. Assumed propulsion system characteristics are high chamber pressure, liquid oxygen and liquid hydrogen propellants, conventional bell nozzles, and the same fixed nozzle expansion ratio for all engines on a vehicle.

  6. Antioxidant assays – consistent findings from FRAP and ORAC reveal a negative impact of organic cultivation on antioxidant potential in spinach but not watercress or rocket leaves

    Science.gov (United States)

    Payne, Adrienne C; Mazzer, Alice; Clarkson, Graham J J; Taylor, Gail

    2013-01-01

    Watercress (Rorippa nasturtium-aquaticum), wild rocket (Diplotaxis tenuifolia), and spinach (Spinacia oleracea) are commercial crops reported to have high concentrations of antioxidants, possibly contributing to disease prevention following human consumption. Following analysis of supermarket-purchased salad leaves, we report the antioxidant content potential of these species using two comparable techniques assessing the consistency between the assays – by the ferric reducing antioxidant power (FRAP) assay and the oxygen radical absorbance capacity (ORAC) assay. The leaves were harvested from both conventionally and organically managed crops, to investigate whether organic agriculture results in improved crop quality. Watercress had the highest FRAP and ability to scavenge free radicals, followed by spinach and rocket. For watercress and rocket, there was no significant effect of organic agriculture on FRAP and ORAC, but for spinach, the antioxidant potential was reduced and this was significant at the 5% level of probability for FRAP but not ORAC, although the trend was clear in both tests. We conclude that there is variation in salad crop antioxidant potential and that FRAP and ORAC are useful techniques for measuring antioxidants in these salad crops with similar ranking for each salad crop studied. PMID:24804054

  7. Antioxidant assays - consistent findings from FRAP and ORAC reveal a negative impact of organic cultivation on antioxidant potential in spinach but not watercress or rocket leaves.

    Science.gov (United States)

    Payne, Adrienne C; Mazzer, Alice; Clarkson, Graham J J; Taylor, Gail

    2013-11-01

    Watercress (Rorippa nasturtium-aquaticum), wild rocket (Diplotaxis tenuifolia), and spinach (Spinacia oleracea) are commercial crops reported to have high concentrations of antioxidants, possibly contributing to disease prevention following human consumption. Following analysis of supermarket-purchased salad leaves, we report the antioxidant content potential of these species using two comparable techniques assessing the consistency between the assays - by the ferric reducing antioxidant power (FRAP) assay and the oxygen radical absorbance capacity (ORAC) assay. The leaves were harvested from both conventionally and organically managed crops, to investigate whether organic agriculture results in improved crop quality. Watercress had the highest FRAP and ability to scavenge free radicals, followed by spinach and rocket. For watercress and rocket, there was no significant effect of organic agriculture on FRAP and ORAC, but for spinach, the antioxidant potential was reduced and this was significant at the 5% level of probability for FRAP but not ORAC, although the trend was clear in both tests. We conclude that there is variation in salad crop antioxidant potential and that FRAP and ORAC are useful techniques for measuring antioxidants in these salad crops with similar ranking for each salad crop studied.

  8. Nanofabrication: conventional and nonconventional methods.

    Science.gov (United States)

    Chen, Y; Pépin, A

    2001-01-01

    Nanofabrication is playing an ever increasing role in science and technology on the nanometer scale and will soon allow us to build systems of the same complexity as found in nature. Conventional methods that emerged from microelectronics are now used for the fabrication of structures for integrated circuits, microelectro-mechanical systems, microoptics and microanalytical devices. Nonconventional or alternative approaches have changed the way we pattern very fine structures and have brought about a new appreciation of simple and low-cost techniques. We present an overview of some of these methods, paying particular attention to those which enable large-scale production of lithographic patterns. We preface the review with a brief primer on lithography and pattern transfer concepts. After reviewing the various patterning techniques, we discuss some recent application issues in the fields of microelectronics, optoelectronics, magnetism as well as in biology and biochemistry.

  9. Laparoscopic splenectomy using conventional instruments

    Directory of Open Access Journals (Sweden)

    Dalvi A

    2005-01-01

    Full Text Available INTRODUCTION : Laparoscopic splenectomy (LS is an accepted procedure for elective splenectomy. Advancement in technology has extended the possibility of LS in massive splenomegaly [Choy et al., J Laparoendosc Adv Surg Tech A 14(4, 197-200 (2004], trauma [Ren et al., Surg Endosc 15(3, 324 (2001; Mostafa et al., Surg Laparosc Endosc Percutan Tech 12(4, 283-286 (2002], and cirrhosis with portal hypertension [Hashizume et al., Hepatogastroenterology 49(45, 847-852 (2002]. In a developing country, these advanced gadgets may not be always available. We performed LS using conventional and reusable instruments in a public teaching the hospital without the use of the advanced technology. The technique of LS and the outcome in these patients is reported. MATERIALS AND METHODS : Patients undergoing LS for various hematological disorders from 1998 to 2004 were included. Electrocoagulation, clips, and intracorporeal knotting were the techniques used for tackling short-gastric vessels and splenic pedicle. Specimen was delivered through a Pfannensteil incision. RESULTS : A total of 26 patients underwent LS. Twenty-two (85% of patients had spleen size more than 500 g (average weight being 942.55 g. Mean operative time was 214 min (45-390 min. The conversion rate was 11.5% ( n = 3. Average duration of stay was 5.65 days (3-30 days. Accessory spleen was detected and successfully removed in two patients. One patient developed subphrenic abscess. There was no mortality. There was no recurrence of hematological disease. CONCLUSION : Laparoscopic splenectomy using conventional equipment and instruments is safe and effective. Advanced technology has a definite advantage but is not a deterrent to the practice of LS.

  10. Cooled Ceramic Composite Panel Tested Successfully in Rocket Combustion Facility

    Science.gov (United States)

    Jaskowiak, Martha H.

    2003-01-01

    Regeneratively cooled ceramic matrix composite (CMC) structures are being considered for use along the walls of the hot-flow paths of rocket-based or turbine-based combined-cycle propulsion systems. They offer the combined benefits of substantial weight savings, higher operating temperatures, and reduced coolant requirements in comparison to components designed with traditional metals. These cooled structures, which use the fuel as the coolant, require materials that can survive aggressive thermal, mechanical, acoustic, and aerodynamic loads while acting as heat exchangers, which can improve the efficiency of the engine. A team effort between the NASA Glenn Research Center, the NASA Marshall Space Flight Center, and various industrial partners has led to the design, development, and fabrication of several types of regeneratively cooled panels. The concepts for these panels range from ultra-lightweight designs that rely only on CMC tubes for coolant containment to more maintainable designs that incorporate metal coolant containment tubes to allow for the rapid assembly or disassembly of the heat exchanger. One of the cooled panels based on an all-CMC design was successfully tested in the rocket combustion facility at Glenn. Testing of the remaining four panels is underway.

  11. Unsteady Analyses of Valve Systems in Rocket Engine Testing Environments

    Science.gov (United States)

    Shipman, Jeremy; Hosangadi, Ashvin; Ahuja, Vineet

    2004-01-01

    This paper discusses simulation technology used to support the testing of rocket propulsion systems by performing high fidelity analyses of feed system components. A generalized multi-element framework has been used to perform simulations of control valve systems. This framework provides the flexibility to resolve the structural and functional complexities typically associated with valve-based high pressure feed systems that are difficult to deal with using traditional Computational Fluid Dynamics (CFD) methods. In order to validate this framework for control valve systems, results are presented for simulations of a cryogenic control valve at various plug settings and compared to both experimental data and simulation results obtained at NASA Stennis Space Center. A detailed unsteady analysis has also been performed for a pressure regulator type control valve used to support rocket engine and component testing at Stennis Space Center. The transient simulation captures the onset of a modal instability that has been observed in the operation of the valve. A discussion of the flow physics responsible for the instability and a prediction of the dominant modes associated with the fluctuations is presented.

  12. Using Innovative Technologies for Manufacturing and Evaluating Rocket Engine Hardware

    Science.gov (United States)

    Betts, Erin M.; Hardin, Andy

    2011-01-01

    Many of the manufacturing and evaluation techniques that are currently used for rocket engine component production are traditional methods that have been proven through years of experience and historical precedence. As we enter into a new space age where new launch vehicles are being designed and propulsion systems are being improved upon, it is sometimes necessary to adopt new and innovative techniques for manufacturing and evaluating hardware. With a heavy emphasis on cost reduction and improvements in manufacturing time, manufacturing techniques such as Direct Metal Laser Sintering (DMLS) and white light scanning are being adopted and evaluated for their use on J-2X, with hopes of employing both technologies on a wide variety of future projects. DMLS has the potential to significantly reduce the processing time and cost of engine hardware, while achieving desirable material properties by using a layered powdered metal manufacturing process in order to produce complex part geometries. The white light technique is a non-invasive method that can be used to inspect for geometric feature alignment. Both the DMLS manufacturing method and the white light scanning technique have proven to be viable options for manufacturing and evaluating rocket engine hardware, and further development and use of these techniques is recommended.

  13. Hyperthermal Environments Simulator for Nuclear Rocket Engine Development

    Science.gov (United States)

    Litchford, Ron J.; Foote, John P.; Clifton, W. B.; Hickman, Robert R.; Wang, Ten-See; Dobson, Christopher C.

    2011-01-01

    An arc-heater driven hyperthermal convective environments simulator was recently developed and commissioned for long duration hot hydrogen exposure of nuclear thermal rocket materials. This newly established non-nuclear testing capability uses a high-power, multi-gas, wall-stabilized constricted arc-heater to produce hightemperature pressurized hydrogen flows representative of nuclear reactor core environments, excepting radiation effects, and is intended to serve as a low-cost facility for supporting non-nuclear developmental testing of hightemperature fissile fuels and structural materials. The resulting reactor environments simulator represents a valuable addition to the available inventory of non-nuclear test facilities and is uniquely capable of investigating and characterizing candidate fuel/structural materials, improving associated processing/fabrication techniques, and simulating reactor thermal hydraulics. This paper summarizes facility design and engineering development efforts and reports baseline operational characteristics as determined from a series of performance mapping and long duration capability demonstration tests. Potential follow-on developmental strategies are also suggested in view of the technical and policy challenges ahead. Keywords: Nuclear Rocket Engine, Reactor Environments, Non-Nuclear Testing, Fissile Fuel Development.

  14. On Nonlinear Combustion Instability in Liquid Propellant Rocket Motors

    Science.gov (United States)

    Sims, J. D. (Technical Monitor); Flandro, Gary A.; Majdalani, Joseph; Sims, Joseph D.

    2004-01-01

    All liquid propellant rocket instability calculations in current use have limited value in the predictive sense and serve mainly as a correlating framework for the available data sets. The well-known n-t model first introduced by Crocco and Cheng in 1956 is still used as the primary analytical tool of this type. A multitude of attempts to establish practical analytical methods have achieved only limited success. These methods usually produce only stability boundary maps that are of little use in making critical design decisions in new motor development programs. Recent progress in understanding the mechanisms of combustion instability in solid propellant rockets"' provides a firm foundation for a new approach to prediction, diagnosis, and correction of the closely related problems in liquid motor instability. For predictive tools to be useful in the motor design process, they must have the capability to accurately determine: 1) time evolution of the pressure oscillations and limit amplitude, 2) critical triggering pulse amplitude, and 3) unsteady heat transfer rates at injector surfaces and chamber walls. The method described in this paper relates these critical motor characteristics directly to system design parameters. Inclusion of mechanisms such as wave steepening, vorticity production and transport, and unsteady detonation wave phenomena greatly enhance the representation of key features of motor chamber oscillatory behavior. The basic theoretical model is described and preliminary computations are compared to experimental data. A plan to develop the new predictive method into a comprehensive analysis tool is also described.

  15. Simulation of a GOX-kerosene subscale rocket combustion chamber

    Science.gov (United States)

    Höglauer, Christoph; Kniesner, Björn; Knab, Oliver; Kirchberger, Christoph; Schlieben, Gregor; Kau, Hans-Peter

    2011-12-01

    In view of future film cooling tests at the Institute for Flight Propulsion (LFA) at Technische Universität München, the Astrium in-house spray combustion CFD tool Rocflam-II was validated against first test data gained from this rocket test bench without film cooling. The subscale rocket combustion chamber uses GOX and kerosene as propellants which are injected through a single double swirl element. Especially the modeling of the double swirl element and the measured wall roughness were adapted on the LFA hardware. Additionally, new liquid kerosene fluid properties were implemented and verified in Rocflam-II. Also the influences of soot deposition and hot gas radiation on the wall heat flux were analytically and numerically estimated. In context of reviewing the implemented evaporation model in Rocflam-II, the binary diffusion coefficient and its pressure dependency were analyzed. Finally simulations have been performed for different load points with Rocflam-II showing a good agreement compared to test data.

  16. Evaluation of Geopolymer Concrete for Rocket Test Facility Flame Deflectors

    Science.gov (United States)

    Allgood, Daniel C.; Montes, Carlos; Islam, Rashedul; Allouche, Erez

    2014-01-01

    The current paper presents results from a combined research effort by Louisiana Tech University (LTU) and NASA Stennis Space Center (SSC) to develop a new alumina-silicate based cementitious binder capable of acting as a high performance refractory material with low heat ablation rate and high early mechanical strength. Such a binder would represent a significant contribution to NASA's efforts to develop a new generation of refractory 'hot face' liners for liquid or solid rocket plume environments. This project was developed as a continuation of on-going collaborations between LTU and SSC, where test sections of a formulation of high temperature geopolymer binder were cast in the floor and walls of Test Stand E-1 Cell 3, an active rocket engine test stand flame trench. Additionally, geopolymer concrete panels were tested using the NASA-SSC Diagnostic Test Facility (DTF) thruster, where supersonic plume environments were generated on a 1ft wide x 2ft long x 6 inch deep refractory panel. The DTF operates on LOX/GH2 propellants producing a nominal thrust of 1,200 lbf and the combustion chamber conditions are Pc=625psig, O/F=6.0. Data collected included high speed video of plume/panel area and surface profiles (depth) of the test panels measured on a 1-inch by 1-inch giving localized erosion rates during the test. Louisiana Tech conducted a microstructure analysis of the geopolymer binder after the testing program to identify phase changes in the material.

  17. Distributed Health Monitoring System for Reusable Liquid Rocket Engines

    Science.gov (United States)

    Lin, C. F.; Figueroa, F.; Politopoulos, T.; Oonk, S.

    2009-01-01

    The ability to correctly detect and identify any possible failure in the systems, subsystems, or sensors within a reusable liquid rocket engine is a major goal at NASA John C. Stennis Space Center (SSC). A health management (HM) system is required to provide an on-ground operation crew with an integrated awareness of the condition of every element of interest by determining anomalies, examining their causes, and making predictive statements. However, the complexity associated with relevant systems, and the large amount of data typically necessary for proper interpretation and analysis, presents difficulties in implementing complete failure detection, identification, and prognostics (FDI&P). As such, this paper presents a Distributed Health Monitoring System for Reusable Liquid Rocket Engines as a solution to these problems through the use of highly intelligent algorithms for real-time FDI&P, and efficient and embedded processing at multiple levels. The end result is the ability to successfully incorporate a comprehensive HM platform despite the complexity of the systems under consideration.

  18. Romanian MRE Rocket Engines Program - An Early Endeavor

    Science.gov (United States)

    Rugescu, R. E.

    2002-01-01

    (MRE) was initiated in the years '60 of the past century at the Chair of Aerospace Sciences "Elie Carafoli" from the "Politehnica" University in Bucharest (PUB). Consisting of theoretical and experimental investigations in the form of computational methods and technological solutions for small size MRE-s and the concept of the test stand for these engines, the program ended in the construction of the first Romanian liquid rocket motors. Hermann Oberth and Dorin Pavel, were known from 1923, no experimental practice was yet tempted, at the time level of 1960. It was the intention of the developers at PUB to cover this gap and initiate a feasible, low-cost, demonstrative program of designing and testing experimental models of MRE. The research program was oriented towards future development of small size space carrier vehicles for scientific applications only, as an independent program with no connection to other defense programs imagined by the authorities in Bucharest, at that time. Consequently the entire financial support was assured by "Politehnica" university. computerized methods in the thermochemistry of heterogeneous combustion, for both steady and unsteady flows with chemical reactions and two phase flows. The research was gradually extended to the production of a professional CAD program for steady-state heat transfer simulations and the loading capacity analyses of the double wall, cooled thrust chamber. The resulting computer codes were run on a 360-30 IMB machine, beginning in 1968. Some of the computational methods were first exposed at the 9th International Conference on Applied Mechanics, held in Bucharest between June 23-27, 1969. hot testing of a series of storable propellant, variable thrust, variable geometry, liquid rocket motors, with a maximal thrust of 200N. A remotely controlled, portable test bad, actuated either automatically or manually and consisting of a 6-modules construction was built for this motor series, with a simple 8 analog

  19. Numerical simulation of divergent rocket-based-combined-cycle performances under the flight condition of Mach 3

    Science.gov (United States)

    Cui, Peng; Xu, WanWu; Li, Qinglian

    2018-01-01

    Currently, the upper operating limit of the turbine engine is Mach 2+, and the lower limit of the dual-mode scramjet is Mach 4. Therefore no single power systems can operate within the range between Mach 2 + and Mach 4. By using ejector rockets, Rocket-based-combined-cycle can work well in the above scope. As the key component of Rocket-based-combined-cycle, the ejector rocket has significant influence on Rocket-based-combined-cycle performance. Research on the influence of rocket parameters on Rocket-based-combined-cycle in the speed range of Mach 2 + to Mach 4 is scarce. In the present study, influences of Mach number and total pressure of the ejector rocket on Rocket-based-combined-cycle were analyzed numerically. Due to the significant effects of the flight conditions and the Rocket-based-combined-cycle configuration on Rocket-based-combined-cycle performances, flight altitude, flight Mach number, and divergence ratio were also considered. The simulation results indicate that matching lower altitude with higher flight Mach numbers can increase Rocket-based-combined-cycle thrust. For another thing, with an increase of the divergent ratio, the effect of the divergent configuration will strengthen and there is a limit on the divergent ratio. When the divergent ratio is greater than the limit, the effect of divergent configuration will gradually exceed that of combustion on supersonic flows. Further increases in the divergent ratio will decrease Rocket-based-combined-cycle thrust.

  20. Why mixed equilibria may not be conventions

    DEFF Research Database (Denmark)

    Hansen, Pelle Guldborg

    2008-01-01

    on dropping Lewis' eccentric ‘coordination' requirement as well as that of common knowledge, they are confused on whether conventions should be regarded as proper thereby precluding mixed equilibria. In this paper I argue that mixed equilibria may not be conventions, but also suggest that the reason...... for this reveals that though common knowledge is not necessary for a convention to operate, it may be utilized as to identify the conventional aspect of a given practice....

  1. Identification of Noise Sources During Rocket Engine Test Firings and a Rocket Launch Using a Microphone Phased-Array

    Science.gov (United States)

    Panda, Jayanta; Mosher, Robert N.; Porter, Barry J.

    2013-01-01

    A 70 microphone, 10-foot by 10-foot, microphone phased array was built for use in the harsh environment of rocket launches. The array was setup at NASA Wallops launch pad 0A during a static test firing of Orbital Sciences' Antares engines, and again during the first launch of the Antares vehicle. It was placed 400 feet away from the pad, and was hoisted on a scissor lift 40 feet above ground. The data sets provided unprecedented insight into rocket noise sources. The duct exit was found to be the primary source during the static test firing; the large amount of water injected beneath the nozzle exit and inside the plume duct quenched all other sources. The maps of the noise sources during launch were found to be time-dependent. As the engines came to full power and became louder, the primary source switched from the duct inlet to the duct exit. Further elevation of the vehicle caused spilling of the hot plume, resulting in a distributed noise map covering most of the pad. As the entire plume emerged from the duct, and the ondeck water system came to full power, the plume itself became the loudest noise source. These maps of the noise sources provide vital insight for optimization of sound suppression systems for future Antares launches.

  2. Aerospace propulsion products; high-quality rocket ignition systems for the future

    NARCIS (Netherlands)

    Van Zon, N.; Nevinskaia, A.

    2013-01-01

    Aerospace Propulsion Products is the leading European company in designing and producing rocket ignition systems and spinoff products. One of their directors, Edwin Vermeulen, gave us an insight on the company and its future. He states that “whatever rocket technology is needed, we have the

  3. Method and device for protecting objects against Rocket Propelled Grenades (RPGs)

    NARCIS (Netherlands)

    Wentzel, C.M.

    2008-01-01

    A device and a method for protecting objects against rocket-propelled grenades having a hollow nose cone includes a netting of knotted and coated superstrong fibers disposed in front of the object, in such a manner that the nose cone of a rocket caught in the netting will penetrate one of the meshes

  4. Preliminary Studies on a Small-Scale Single-Tube Pulse Detonation Rocket Prototype

    Science.gov (United States)

    Wang, Ke; Fan, Wei; Yan, Yu; Jin, Le

    2013-06-01

    As a new concept propulsion system, the pulse detonation engine has received extensive concerns from all over the world in the past few years. With oxidizer on board, it operates as a rocket engine which is known as pulse detonation rocket engine. In this study, a rocket model powered by a single-tube pulse detonation rocket engine was fabricated to demonstrate and validate whether or not it could operate stably and reliably independently. The single-tube pulse detonation rocket prototype consisted of a wireless control unit, three tanks for oxidizer, fuel and purge gas, various valves and a detonation tube. With compact design, the pulse detonation rocket prototype had an outer diameter of 260 mm and a length of 2200 mm. Oxygen, liquid aviation kerosene and nitrogen were utilized as oxidizer, fuel and purge gas, respectively. Operation tests were carried out to obtain proper operating conditions for the pulse detonation rocket prototype first, and then sliding test was conducted. It was concluded that the pulse detonation rocket prototype could operate stably and reliably. The generated thrust was estimated and compared with theoretical value.

  5. Spark Ignition of Combustible Vapor in a Plastic Bottle as a Demonstration of Rocket Propulsion

    Science.gov (United States)

    Mattox, J. R.

    2017-01-01

    I report an innovation that provides a compelling demonstration of rocket propulsion, appropriate for students of physics and other physical sciences. An electrical spark is initiated from a distance to cause the deflagration of a combustible vapor mixed with air in a lightweight plastic bottle that is consequently propelled as a rocket by the…

  6. A Multiconstrained Ascent Guidance Method for Solid Rocket-Powered Launch Vehicles

    Directory of Open Access Journals (Sweden)

    Si-Yuan Chen

    2016-01-01

    Full Text Available This study proposes a multiconstrained ascent guidance method for a solid rocket-powered launch vehicle, which uses a hypersonic glide vehicle (HGV as payload and shuts off by fuel exhaustion. First, pseudospectral method is used to analyze the two-stage launch vehicle ascent trajectory with different rocket ignition modes. Then, constraints, such as terminal height, velocity, flight path angle, and angle of attack, are converted into the constraints within height-time profile according to the second-stage rocket flight characteristics. The closed-loop guidance method is inferred by different spline curves given the different terminal constraints. Afterwards, a thrust bias energy management strategy is proposed to waste the excess energy of the solid rocket. Finally, the proposed method is verified through nominal and dispersion simulations. The simulation results show excellent applicability and robustness of this method, which can provide a valuable reference for the ascent guidance of solid rocket-powered launch vehicles.

  7. The effect of the germination temperature on the phytochemical content of broccoli and rocket sprouts.

    Science.gov (United States)

    Ragusa, Lucia; Picchi, Valentina; Tribulato, Alessandro; Cavallaro, Chiara; Lo Scalzo, Roberto; Branca, Ferdinando

    2017-06-01

    This study investigates the effect of different germination temperatures (10, 20 and 30 °C) on the phytochemical content as well as reducing and antioxidant capacity of broccoli and rocket sprouts. In both seeds and sprouts, the total glucosinolates and ascorbic acid contents did not differ between vegetables, while broccoli exhibited exceptionally higher polyphenols and greater reducing and antioxidant capacity compared to rocket. In both species, an increase in germination temperature positively affected the glucosinolate content. Ascorbic acid increased during germination without a difference among the three tested temperatures. The phenol content in broccoli sprouts increased when they were grown at 30 °C, but the amount decreased at the highest temperatures in rocket. The reducing and antioxidant capacities increased with germination, and higher indexes were detected at 10 °C, particularly in rocket. Different germination temperatures differentiate the health-promoting phytochemical content and antioxidant properties in broccoli and rocket sprouts.

  8. Propulsion and launching analysis of variable-mass rockets by analytical methods

    Directory of Open Access Journals (Sweden)

    D.D. Ganji

    2013-09-01

    Full Text Available In this study, applications of some analytical methods on nonlinear equation of the launching of a rocket with variable mass are investigated. Differential transformation method (DTM, homotopy perturbation method (HPM and least square method (LSM were applied and their results are compared with numerical solution. An excellent agreement with analytical methods and numerical ones is observed in the results and this reveals that analytical methods are effective and convenient. Also a parametric study is performed here which includes the effect of exhaust velocity (Ce, burn rate (BR of fuel and diameter of cylindrical rocket (d on the motion of a sample rocket, and contours for showing the sensitivity of these parameters are plotted. The main results indicate that the rocket velocity and altitude are increased with increasing the Ce and BR and decreased with increasing the rocket diameter and drag coefficient.

  9. Charging and the cross-field discharge during electron accelerator operation on a rocket

    Science.gov (United States)

    Kellogg, Paul J.; Monson, Steven J.

    1988-01-01

    Preliminary results are presented from experiments to study the neutralization processes around an electron beam emitting rocket. The rocket, SCEX II, was flown on January 31, 1987 from Alaska, with a payload consisting of two independent electron accelerators and two arms with conducting elements to act as Langmuir probes and to measure floating potentials. It was expected that electrons in the strong electric fields around the charged rocket would gain sufficient energy to ionize neutrals, producing ions which would be hurled outward at energies up to the rocket potential. Three hemispherical retarding potential analyzers were ejected from the main payload to measure these ions. The measurements show that fields sufficient to accelerate electrons to ionizing energies were present around the rocket.

  10. Rocket-borne Lithium ejection system for neutral wind measurement

    Science.gov (United States)

    Habu, H.; Yamamoto, M.; Watanabe, S.; Larsen, M. F.

    2013-11-01

    Chemical tracer releases represent the most widely used technique for in situ neutral wind measurements in the thermosphere/ionosphere region. Different chemicals have been used for this purpose, but lithium releases in particular provide some unique capabilities due to the strong resonant emissions that are produced when lithium is illuminated by sunlight. The majority of the lithium releases from sounding rockets were carried out in the 1960's and 1970's, but there has been recent renewed interest in the use of lithium vapor releases to extend neutral wind measurements into the F region and for daytime wind profile measurements in the E region. The rocketborne Lithium Ejection System (LES) is a chemical release device that has been developed for the Japanese space research program. Since lithium vapor acts as a neutral tracer, the winds are obtained by tracking the motion of the clouds or trails optically from the ground using the bright red emission that is characteristic of the chemical. Lithium is a solid at room temperature, so that a gas release requires rapid vaporization of the metal to make the cloud at the intended altitude. The release canister is designed to produce a high-heat chemical reaction without gaseous products. Appropriate mixtures of thermite are employed as the heat source. In early experiments, lithium pellets were mixed directly into the thermite. However, since lithium is an active chemical, the use of lithium-thermite mixtures creates potential hazards when used in a rocket-borne device. Moreover, the pyrotechnic devices used to ignite the thermite also have to be considered in the payload canister design to assure that the safety standards for sounding rockets are satisfied. The design of the LES, described in this paper, was based on the safety requirements and the reliability in storing and handling of the materials. The LES design is also flexible in that the lithium tracer material can be replaced with other chemicals without

  11. Probable Rotation States of Rocket Bodies in Low Earth Orbit

    Science.gov (United States)

    Ojakangas, Gregory W.; Anz-Meador, P.; Cowardin, H.

    2012-01-01

    In order for Active Debris Removal to be accomplished, it is critically important to understand the probable rotation states of orbiting, spent rocket bodies. As compared to the question of characterizing small unresolved debris, in this problem there are several advantages: (1) objects are of known size, mass, shape and color, (2) they have typically been in orbit for a known period of time, (3) they are large enough that resolved images may be obtainable for verification of predicted orientation, and (4) the dynamical problem is simplified to first order by largely cylindrical symmetry. It is also nearly certain for realistic rocket bodies that internal friction is appreciable in the case where residual liquid or, to a lesser degree, unconsolidated solid fuels exist. Equations of motion have been developed for this problem in which internal friction as well as torques due to solar radiation, magnetic induction, and gravitational gradient are included. In the case of pure cylindrical symmetry, the results are compared to analytical predictions patterned after the standard approach for analysis of symmetrical tops. This is possible because solar radiation and gravitational torques may be treated as conservative. Agreement between results of both methods ensures their mutual validity. For monotone symmetric cylinders, solar radiation torque vanishes if the center of mass resides at the geometric center of the object. Results indicate that in the absence of solar radiation effects, rotation states tend toward an equilibrium configuration in which rotation is about the axis of maximum inertia, with the axis of minimum inertia directed toward the center of the earth. Solar radiation torque introduces a modification to this orientation. The equilibrium state is asymptotically approached within a characteristic timescale given by a simple ratio of relevant characterizing parameters for the body in question. Light curves are simulated for the expected asymptotic final

  12. Boiler and Pressure Balls Monopropellant Thermal Rocket Engine

    Science.gov (United States)

    Greene, William D. (Inventor)

    2009-01-01

    The proposed technology is a rocket engine cycle utilizing as the propulsive fluid a low molecular weight, cryogenic fluid, typically liquid hydrogen, pressure driven, heated, and expelled through a nozzle to generate high velocity and high specific impulse discharge gas. The proposed technology feeds the propellant through the engine cycle without the use of a separate pressurization fluid and without the use of turbomachinery. Advantages of the proposed technology are found in those elements of state-of-the-art systems that it avoids. It does not require a separate pressurization fluid or a thick-walled primary propellant tank as is typically required for a classical pressure-fed system. Further, it does not require the acceptance of intrinsic reliability risks associated with the use of turbomachinery

  13. Effect of Stagger on the Vibroacoustic Loads from Clustered Rockets

    Science.gov (United States)

    Rojo, Raymundo; Tinney, Charles E.; Ruf, Joseph H.

    2016-01-01

    The effect of stagger startup on the vibro-acoustic loads that form during the end- effects-regime of clustered rockets is studied using both full-scale (hot-gas) and laboratory scale (cold gas) data. Both configurations comprise three nozzles with thrust optimized parabolic contours that undergo free shock separated flow and restricted shock separated flow as well as an end-effects regime prior to flowing full. Acoustic pressure waveforms recorded at the base of the nozzle clusters are analyzed using various statistical metrics as well as time-frequency analysis. The findings reveal a significant reduction in end- effects-regime loads when engine ignition is staggered. However, regardless of stagger, both the skewness and kurtosis of the acoustic pressure time derivative elevate to the same levels during the end-effects-regime event thereby demonstrating the intermittence and impulsiveness of the acoustic waveforms that form during engine startup.

  14. CANSAT: Design of a Small Autonomous Sounding Rocket Payload

    Science.gov (United States)

    Berman, Joshua; Duda, Michael; Garnand-Royo, Jeff; Jones, Alexa; Pickering, Todd; Tutko, Samuel

    2009-01-01

    CanSat is an international student design-build-launch competition organized by the American Astronautical Society (AAS) and American Institute of Aeronautics and Astronautics (AIAA). The competition is also sponsored by the Naval Research Laboratory (NRL), the National Aeronautics and Space Administration (NASA), AGI, Orbital Sciences Corporation, Praxis Incorporated, and SolidWorks. Specifically, the 2009 Virginia Tech CanSat Team is funded by BAE Systems, Incorporated of Manassas, Virginia. The objective of the 2009 CanSat competition is to complete remote sensing missions by designing a small autonomous sounding rocket payload. The payload designed will follow and perform to a specific set of mission requirements for the 2009 competition. The competition encompasses a complete life-cycle of one year which includes all phases of design, integration, testing, reviews, and launch.

  15. Scale Effects on Solid Rocket Combustion Instability Behaviour

    Directory of Open Access Journals (Sweden)

    David R. Greatrix

    2011-01-01

    Full Text Available The ability to understand and predict the expected internal behaviour of a given solid-propellant rocket motor under transient conditions is important. Research towards predicting and quantifying undesirable transient axial combustion instability symptoms necessitates a comprehensive numerical model for internal ballistic simulation under dynamic flow and combustion conditions. A numerical model incorporating pertinent elements, such as a representative transient, frequency-dependent combustion response to pressure wave activity above the burning propellant surface, is applied to the investigation of scale effects (motor size, i.e., grain length and internal port diameter on influencing instability-related behaviour in a cylindrical-grain motor. The results of this investigation reveal that the motor’s size has a significant influence on transient pressure wave magnitude and structure, and on the appearance and magnitude of an associated base pressure rise.

  16. From Bridges and Rockets, Lessons for Software Systems

    Science.gov (United States)

    Holloway, C. Michael

    2004-01-01

    Although differences exist between building software systems and building physical structures such as bridges and rockets, enough similarities exist that software engineers can learn lessons from failures in traditional engineering disciplines. This paper draws lessons from two well-known failures the collapse of the Tacoma Narrows Bridge in 1940 and the destruction of the space shuttle Challenger in 1986 and applies these lessons to software system development. The following specific applications are made: (1) the verification and validation of a software system should not be based on a single method, or a single style of methods; (2) the tendency to embrace the latest fad should be overcome; and (3) the introduction of software control into safety-critical systems should be done cautiously.

  17. Failure characteristics analysis and fault diagnosis for liquid rocket engines

    CERN Document Server

    Zhang, Wei

    2016-01-01

    This book concentrates on the subject of health monitoring technology of Liquid Rocket Engine (LRE), including its failure analysis, fault diagnosis and fault prediction. Since no similar issue has been published, the failure pattern and mechanism analysis of the LRE from the system stage are of particular interest to the readers. Furthermore, application cases used to validate the efficacy of the fault diagnosis and prediction methods of the LRE are different from the others. The readers can learn the system stage modeling, analyzing and testing methods of the LRE system as well as corresponding fault diagnosis and prediction methods. This book will benefit researchers and students who are pursuing aerospace technology, fault detection, diagnostics and corresponding applications.

  18. Rocket Solid Propellant Alternative Based on Ammonium Dinitramide

    Directory of Open Access Journals (Sweden)

    Grigore CICAN

    2017-03-01

    Full Text Available Due to the continuous run for a green environment the current article proposes a new type of solid propellant based on the fairly new synthesized oxidizer, ammonium dinitramide (ADN. Apart of having a higher specific impulse than the worldwide renowned oxidizer, ammonium perchlorate, ADN has the advantage, of leaving behind only nitrogen, oxygen and water after decomposing at high temperatures and therefore totally avoiding the formation of hydrogen chloride fumes. Based on the oxidizer to fuel ratios of the current formulations of the major rocket solid booster (e.g. Space Shuttle’s SRB, Ariane 5’s SRB which comprises mass variations of ammonium perchlorate oxidizer (70-75%, atomized aluminum powder (10-18% and polybutadiene binder (12-20% a new solid propellant was formulated. As previously stated, the new propellant formula and its variations use ADN as oxidizer and erythritol tetranitrate as fuel, keeping the same polybutadiene as binder.

  19. Biofunctional properties of Eruca sativa Miller (rocket salad) hydroalcoholic extract.

    Science.gov (United States)

    Sultan, Khushbakht; Zakir, Muhammad; Khan, Haroon; Rauf, Abdur; Akber, Noor Ul; Khan, Murad Ali

    2016-01-01

    Eruca sativa Miller is a worldwide common alimentary plant (rocket leaves). The aim of this study was to correlate the potential in vitro scavenging activity of the E. sativa hydroalcoholic extract (HAE) with its in vivo hypoglycaemic effect. In DDPH free radical (DFR) and ferric-reducing antioxidant power assays, HAE in a concentration dependent manner (25-100 μg/mL) displayed a strong scavenging activity with maximum effect of 88% and 75% at 100 μg/mL, respectively. Daily administration of HAE (50 mg/kg; p.o.) in the in vivo model of alloxan-induced diabetic rabbits for 28 days showed significant reduction in glycaemia, also supported by recovery of body weight. In conclusion, our results give preliminary information on the potential use of this plant as a nutraceutical, useful to control and/or prevent a hyperglycaemic status.

  20. Investigation of the cooling film distribution in liquid rocket engine

    Directory of Open Access Journals (Sweden)

    Luís Antonio Silva

    2011-05-01

    Full Text Available This study presents the results of the investigation of a cooling method widely used in the combustion chambers, which is called cooling film, and it is applied to a liquid rocket engine that uses as propellants liquid oxygen and kerosene. Starting from an engine cooling, whose film is formed through the fuel spray guns positioned on the periphery of the injection system, the film was experimentally examined, it is formed by liquid that seeped through the inner wall of the combustion chamber. The parameter used for validation and refinement of the theoretical penetration of the film was cooling, as this parameter is of paramount importance to obtain an efficient thermal protection inside the combustion chamber. Cold tests confirmed a penetrating cold enough cooling of the film for the length of the combustion chamber of the studied engine.

  1. Analysis of Acoustic Cavitation Surge in a Rocket Engine Turbopump

    Directory of Open Access Journals (Sweden)

    Hideaki Nanri

    2010-01-01

    Full Text Available In a liquid rocket engine, cavitation in an inducer of a turbopump sometimes causes instability phenomena when the inducer is operated at low inlet pressure. Cavitation surge (auto-oscillation, one such instability phenomenon, has been discussed mainly based on an inertia model assuming incompressible flow. When this model is used, the frequency of the cavitation surge decreases continuously as the inlet pressure of the turbopump decreases. However, we obtained an interesting experimental result in which the frequency of cavitation surge varied discontinuously. Therefore, we employed one-dimensional analysis based on an acoustic model in which the fluid is assumed to be compressible. The analytical result qualitatively corresponded with the experimental result.

  2. Nano-aluminum as energetic material for rocket propellants

    Energy Technology Data Exchange (ETDEWEB)

    Meda, L. [Istituto G. Donegani, Polimeri Europa, 28100 Novara (Italy)], E-mail: laura.meda@polimerieuropa.com; Marra, G. [Istituto G. Donegani, Polimeri Europa, 28100 Novara (Italy); Galfetti, L.; Severini, F.; De Luca, L. [Politecnico di Milano, Solid Propulsion Laboratory (SP Lab), 20158 Milano (Italy)

    2007-09-15

    A characterization of differently sized aluminum powders, by using BET (specific surface measurements), Scanning Electron Microscopy (SEM), X-Ray Diffraction (XRD), and X-ray Photoelectron Spectroscopy (XPS), was performed in order to evaluate their performance in solid propellant. These aluminum powders were used in manufacturing composite rocket propellants, that are based on Ammonium Perchlorate (AP) as oxidizer and Hydroxyl-Terminated-PolyButadiene (HTPB) as binder. The reference formulation was AP/HTPB/Al with 68/17/15 mass fractions, respectively. The ballistic characterization of studied propellants, made in terms of steady burning rates, showed how better is the performance of nano-aluminized compared to micro-aluminized propellants. Measurements of Al powder ignition time and temperature were also carried out.

  3. Scale effects on solid rocket combustion instability behaviour

    Energy Technology Data Exchange (ETDEWEB)

    Greatrix, D. R. [Ryerson University, Department of Aerospace Engineering, Toronto, Ontario (Canada)

    2011-07-01

    The ability to understand and predict the expected internal behaviour of a given solid-propellant rocket motor under transient conditions is important. Research towards predicting and quantifying undesirable transient axial combustion instability symptoms necessitates a comprehensive numerical model for internal ballistic simulation under dynamic flow and combustion conditions. A numerical model incorporating pertinent elements, such as a representative transient, frequency-dependent combustion response to pressure wave activity above the burning propellant surface, is applied to the investigation of scale effects (motor size, i.e., grain length and internal port diameter) on influencing instability-related behaviour in a cylindrical-grain motor. The results of this investigation reveal that the motor's size has a significant influence on transient pressure wave magnitude and structure, and on the appearance and magnitude of an associated base pressure rise. (author)

  4. Sounding Rocket Instrument Development at UAHuntsville/NASA MSFC

    Science.gov (United States)

    Kobayashi, Ken; Cirtain, Jonathan; Winebarger, Amy; Savage, Sabrina; Golub, Leon; Korreck, Kelly; Kuzin, Sergei; Walsh, Robert; DeForest, Craig; DePontieu, Bart; hide

    2013-01-01

    We present an overview of solar sounding rocket instruments developed jointly by NASA Marshall Space Flight Center and the University of Alabama in Huntsville. The High Resolution Coronal Imager (Hi-C) is an EUV (19.3 nm) imaging telescope which was flown successfully in July 2012. The Chromospheric Lyman-Alpha SpectroPolarimeter (CLASP) is a Lyman Alpha (121.6 nm) spectropolarimeter developed jointly with the National Astronomical Observatory of Japan and scheduled for launch in 2015. The Marshall Grazing Incidence X-ray Spectrograph is a soft X-ray (0.5-1.2 keV) stigmatic spectrograph designed to achieve 5 arcsecond spatial resolution along the slit.

  5. Ecological effects and environmental fate of solid rocket exhaust

    Science.gov (United States)

    Nimmo, B.; Stout, I. J.; Mickus, J.; Vickers, D.; Madsen, B.

    1974-01-01

    Specific target processes were classified as to the chemical, chemical-physical, and biological reactions and toxic effects of solid rocket emissions within selected ecosystems at Kennedy Space Center. Exposure of Citris seedlings, English peas, and bush beans to SRM exhaust under laboratory conditions demonstrated reduced growth rates, but at very high concentrations. Field studies of natural plant populations in three diverse ecosystems failed to reveal any structural damage at the concentration levels tested. Background information on elemental composition of selected woody plants from two terrestrial ecosystems is reported. LD sub 50 for a native mouse (peromysous gossypinus) exposed to SRM exhaust was determined to be 50 ppm/g body weight. Results strongly indicate that other components of the SRM exhaust act synergically to enhance the toxic effects of HCl gas when inhaled. A brief summary is given regarding the work on SRM exhaust and its possible impact on hatchability of incubating bird eggs.

  6. Integrated System Health Management (ISHM) Implementation in Rocket Engine Testing

    Science.gov (United States)

    Figueroa, Fernando; Morris, Jon; Turowski, Mark; Franzl, Richard; Walker, Mark; Kapadia, Ravi; Venkatesh, Meera

    2010-01-01

    A pilot operational ISHM capability has been implemented for the E-2 Rocket Engine Test Stand (RETS) and a Chemical Steam Generator (CSG) test article at NASA Stennis Space Center. The implementation currently includes an ISHM computer and a large display in the control room. The paper will address the overall approach, tools, and requirements. It will also address the infrastructure and architecture. Specific anomaly detection algorithms will be discussed regarding leak detection and diagnostics, valve validation, and sensor validation. It will also describe development and use of a Health Assessment Database System (HADS) as a repository for measurements, health, configuration, and knowledge related to a system with ISHM capability. It will conclude with a discussion of user interfaces, and a description of the operation of the ISHM system prior, during, and after testing.

  7. Gouge initiation in high-velocity rocket sled testing

    Energy Technology Data Exchange (ETDEWEB)

    Tachau, R.D.M.; Trucano, T.G. [Sandia National Labs., Albuquerque, NM (United States); Yew, C.H. [Texas Univ., Austin, TX (United States)

    1994-07-01

    A model is presented which describes the formation of surface damage ``gouging`` on the rails that guide rocket sleds. An unbalanced sled can randomly cause a very shallow-angle, oblique impact between the sled shoe and the rail. This damage phenomenon has also been observed in high-velocity guns where the projectile is analogous to the moving sled shoe and the gun barrel is analogous to the stationary rail. At sufficiently high velocity, the oblique impact will produce a thin hot layer of soft material on the contact surfaces. Under the action of a normal moving load, the soft layer lends itself to an anti-symmetric deformation and the formation of a ``hump`` in front of the moving load. A gouge is formed when this hump is overrun by the sled shoe. The phenomenon is simulated numerically using the CTH strong shock physics code, and the results are in good agreement with experimental observation.

  8. Waters Rockets for Teaching Momentum and Energy Concepts

    Science.gov (United States)

    Sizemore, Jim; Parish, R. J.; Hooten, James T.

    2012-10-01

    Concepts regarding momentum and energy are especially difficult for students to grasp and concrete examples are valuable. We will discuss, and show video, of launching water rockets using standard plastic soda and water bottles and describe the launcher composed of PVC pipe and a bicycle pump. We pose the question to students of the ratio of water to air that achieves the greatest time-of-flight. Immediate feedback is obtained by immediately testing student's hypotheses. After several launches the students understanding of Newton's Third Law and momentum and energy concepts improves. This is an engaging activity, students enjoy watching their instructors become thoroughly drenched, and students are enthusiastic. This enthusiasm, fun, and immediate testing of hypotheses reinforce momentum and energy concepts as will be shown by questionnaire results.

  9. Critical ionization velocity interaction in the CRIT I rocket experiment

    Science.gov (United States)

    Brenning, N.; Faelthammar, C.-G.; Marklund, G.; Haerendel, G.; Kelley, M.; Pfaff, R.

    1990-01-01

    In the rocket experiment CRIT I, launched from Wallops Island on May 13, 1986, two identical Barium-shaped charges were fired from distances of 1.3 km and 3.6 km towards the main experiment payload, which was separated from a sub-payload by a couple of km along the magnetic field. The relevance of earlier proposed mechanisms for electron heating in ionospheric critical velocity experiments is investigated in the light of the CRIT I results. It is concluded that both the 'homogeneous' and the 'ionizing front' models can be applied, in different parts of the stream. It is also possible that a third, entirely different, mechanism may contribute to the electron heating. This mechanism involves direct energization of electrons in the magnetic-field-aligned component of the dc electric field.

  10. NiAl-based approach for rocket combustion chambers

    Science.gov (United States)

    Nathal, Michael V. (Inventor); Gayda, John (Inventor); Noebe, Ronald D. (Inventor)

    2005-01-01

    A multi-layered component, such as a rocket engine combustion chamber, includes NiAl or NiAl-based alloy as a structural layer on the hot side of the component. A second structural layer is formed of material selected from Ni-based superalloys, Co-based alloys, Fe-based alloys, Cu, and Cu-based alloys. The second material is more ductile than the NiAl and imparts increased toughness to the component. The second material is selected to enhance one or more predetermined physical properties of the component. Additional structural layers may be included with the additional material(s) being selected for their impact on physical properties of the component.

  11. Approaches to Low Fuel Regression Rate in Hybrid Rocket Engines

    Directory of Open Access Journals (Sweden)

    Dario Pastrone

    2012-01-01

    Full Text Available Hybrid rocket engines are promising propulsion systems which present appealing features such as safety, low cost, and environmental friendliness. On the other hand, certain issues hamper the development hoped for. The present paper discusses approaches addressing improvements to one of the most important among these issues: low fuel regression rate. To highlight the consequence of such an issue and to better understand the concepts proposed, fundamentals are summarized. Two approaches are presented (multiport grain and high mixture ratio which aim at reducing negative effects without enhancing regression rate. Furthermore, fuel material changes and nonconventional geometries of grain and/or injector are presented as methods to increase fuel regression rate. Although most of these approaches are still at the laboratory or concept scale, many of them are promising.

  12. Developing safety culture-rocket science or common sense?

    Energy Technology Data Exchange (ETDEWEB)

    Mahn, J.A.

    1998-08-01

    Despite evidence of significant management contributions to the causes of major accidents, recent events at Millstone Nuclear Power Station in the US and Ontario Hydro in Canada might lead one to conclude that the significance of safety culture, and the role of management in developing and maintaining an appropriate safety culture, is either not being understood or not being taken serious as integral to the safe operation of some complex, high-reliability operations. It is the purpose of this paper to address four aspects of management that are particularly important to safety culture, and to illustrate how development of an appropriate safety culture is more a matter of common sense than rocket science.

  13. The early scientific history of the rocket-grenade experiment

    Science.gov (United States)

    Stroud, W. G.

    1975-01-01

    In the decade, 1950 to 1960, some thirty sounding rockets carrying the grenade experiment were fired in the Arctic, at middle latitudes and in the equatorial western Pacific. The vertical distributions of temperatures and winds at different seasons and at different times of the day were measured. Although there were significant variations in the results from each of the sites, an outstanding feature was the uniformity with latitude of the seasonal variation of the wind field. Over the latitude-altitude ranges sampled, the winds were strong and from the west during the winter months; and weak and from the east during the summer months. The nature of the general circulation pattern in the mesosphere of the northern hemisphere was revealed by the measurements. Of particular interest were those measurements made at the seasonal turnovers because of the insight into the dynamics of this region they provided.

  14. Study of Liquid Breakup Process in Solid Rocket Motors

    Science.gov (United States)

    2014-01-01

    Fellowship Program (SFFP). V REFERENCES                                                                  1 Xiao, Y.M., R.S. Amano, " Aluminized ...Motors," Journal of Propulsion and Power, Vol.11, pp. 10-23, 1995. 8 Hess, E., Chen, K., Acosta, P., Brent, D., Fendell, F.; "Effect of Aluminized ...No. 9, pp. 1763-1770, September 2003. 11 Bandera, A., Maggi, F., and Deluca, L.T., "Agglomeration of Aluminized Solid Rocket Propellants," in 45th

  15. Development Testing of 1-Newton ADN-Based Rocket Engines

    Science.gov (United States)

    Anflo, K.; Gronland, T.-A.; Bergman, G.; Nedar, R.; Thormählen, P.

    2004-10-01

    With the objective to reduce operational hazards and improve specific and density impulse as compared with hydrazine, the Research and Development (R&D) of a new monopropellant for space applications based on AmmoniumDiNitramide (ADN), was first proposed in 1997. This pioneering work has been described in previous papers1,2,3,4 . From the discussion above, it is clear that cost savings as well as risk reduction are the main drivers to develop a new generation of reduced hazard propellants. However, this alone is not enough to convince a spacecraft builder to choose a new technology. Cost, risk and schedule reduction are good incentives, but a spacecraft supplier will ask for evidence that this new propulsion system meets a number of requirements within the following areas: This paper describes the ongoing effort to develop a storable liquid monopropellant blend, based on AND, and its specific rocket engines. After building and testing more than 20 experimental rocket engines, the first Engineering Model (EM-1) has now accumulated more than 1 hour of firing-time. The results from test firings have validated the design. Specific impulse, combustion stability, blow-down capability and short pulse capability are amongst the requirements that have been demonstrated. The LMP-103x propellant candidate has been stored for more than 1 year and initial material compatibility screening and testing has started. 1. Performance &life 2. Impact on spacecraft design &operation 3. Flight heritage Hereafter, the essential requirements for some of these areas are outlined. These issues are discussed in detail in a previous paper1 . The use of "Commercial Of The Shelf" (COTS) propulsion system components as much as possible is essential to minimize the overall cost, risk and schedule. This leads to the conclusion that the Technology Readiness Level (TRL) 5 has been reached for the thruster and propellant. Furthermore, that the concept of ADN-based propulsion is feasible.

  16. Initial Ion Results from the RENU2 Sounding Rocket

    Science.gov (United States)

    Harrington, M.; Lessard, M.; Lynch, K. A.

    2016-12-01

    RENU2 (Rocket Experiment for Neutral Upwelling 2) is a multiple investigator sounding rocket campaign that was designed to transit the cusp region between 200 and 600 km and study particle processes during a neutral upwelling event. The RENU2 payload dayside observations will be compared with measurements made by the EISCAT Svalbard radars. This project aims to investigate the connection between ion upflows and outflows, and neutral upwelling from the topside ionosphere. Low-earth orbiting satellites are affected by these regions of enhanced neutral densities which decay their orbits due to satellite drag. Three electrostatic analyzers were flown to measure 2D ion distribution functions, providing observations of temperature enhancements, bulk velocity moments, anisotropy and conics. The thermal energy ion detector (HT) sweeps over an energy range of .12 to 22 eV and the medium energy detector (HM) has an energy range from 3.6 to 790 eV. The thermal mass ion detector (BPS) sweeps over the same energy range as the thermal energy detector, but also has a crude mass discriminator separating atomic oxygen from hydrogen. All of the detectors provide two dimensional phase space distributions; the thermal detectors have a cadence of 128 ms while the medium energy detector provides a distribution every 64 ms. These measurements of the upwelling process will be used as input for coupled models or be used as a metric to compare to what the models predict. During initial data analysis, we found nongyrotropy in the medium energy ions, a proton enhancement during an otherwise uneventful region, and three ion upflow events which will be further investigated.

  17. Enrichment Zoning Options for the Small Nuclear Rocket Engine (SNRE)

    Energy Technology Data Exchange (ETDEWEB)

    Bruce G. Schnitzler; Stanley K. Borowski

    2010-07-01

    Advancement of U.S. scientific, security, and economic interests through a robust space exploration program requires high performance propulsion systems to support a variety of robotic and crewed missions beyond low Earth orbit. In NASA’s recent Mars Design Reference Architecture (DRA) 5.0 study (NASA-SP-2009-566, July 2009), nuclear thermal propulsion (NTP) was again selected over chemical propulsion as the preferred in-space transportation system option because of its high thrust and high specific impulse (-900 s) capability, increased tolerance to payload mass growth and architecture changes, and lower total initial mass in low Earth orbit. An extensive nuclear thermal rocket technology development effort was conducted from 1955-1973 under the Rover/NERVA Program. The Small Nuclear Rocket Engine (SNRE) was the last engine design studied by the Los Alamos National Laboratory during the program. At the time, this engine was a state-of-the-art design incorporating lessons learned from the very successful technology development program. Past activities at the NASA Glenn Research Center have included development of highly detailed MCNP Monte Carlo transport models of the SNRE and other small engine designs. Preliminary core configurations typically employ fuel elements with fixed fuel composition and fissile material enrichment. Uniform fuel loadings result in undesirable radial power and temperature profiles in the engines. Engine performance can be improved by some combination of propellant flow control at the fuel element level and by varying the fuel composition. Enrichment zoning at the fuel element level with lower enrichments in the higher power elements at the core center and on the core periphery is particularly effective. Power flattening by enrichment zoning typically results in more uniform propellant exit temperatures and improved engine performance. For the SNRE, element enrichment zoning provided very flat radial power profiles with 551 of the 564

  18. Using Innovative Technologies for Manufacturing Rocket Engine Hardware

    Science.gov (United States)

    Betts, E. M.; Eddleman, D. E.; Reynolds, D. C.; Hardin, N. A.

    2011-01-01

    Many of the manufacturing techniques that are currently used for rocket engine component production are traditional methods that have been proven through years of experience and historical precedence. As the United States enters into the next space age where new launch vehicles are being designed and propulsion systems are being improved upon, it is sometimes necessary to adopt innovative techniques for manufacturing hardware. With a heavy emphasis on cost reduction and improvements in manufacturing time, rapid manufacturing techniques such as Direct Metal Laser Sintering (DMLS) are being adopted and evaluated for their use on NASA s Space Launch System (SLS) upper stage engine, J-2X, with hopes of employing this technology on a wide variety of future projects. DMLS has the potential to significantly reduce the processing time and cost of engine hardware, while achieving desirable material properties by using a layered powder metal manufacturing process in order to produce complex part geometries. Marshall Space Flight Center (MSFC) has recently hot-fire tested a J-2X gas generator (GG) discharge duct that was manufactured using DMLS. The duct was inspected and proof tested prior to the hot-fire test. Using a workhorse gas generator (WHGG) test fixture at MSFC's East Test Area, the duct was subjected to extreme J-2X hot gas environments during 7 tests for a total of 537 seconds of hot-fire time. The duct underwent extensive post-test evaluation and showed no signs of degradation. DMLS manufacturing has proven to be a viable option for manufacturing rocket engine hardware, and further development and use of this manufacturing method is recommended.

  19. The calculation of the thrust of a rocket motor

    Directory of Open Access Journals (Sweden)

    J. H. Knoetze

    1993-07-01

    Full Text Available Traditionally the thrust of a rocket motor is calculated by first calculating the thrust coefficient and then multiplying it by the product of the throat area and pressure. The thrust coefficient is calculated using a standard gas dynamics equation. This equation assumes that the combustion products are a single component, non-reacting ideal gas and that the flow through the nozzle is isentropic. The thrust coefficient is a function of the ratio of specific heats, y, the area ratio of the nozzle and the motor and ambient pressures. Standard methods exist for calculating the tosses due to deviations from the assumed flow. The combustion products of modern composite propellants contain a significant portion of condensed species (primarily A1₂O₃, while the composition of the combustion products changes continuously as the products move throught the nozzle. Some uncertainty therefore exists with regard to which value of y to use and how to handle the condensed species. The assumption o f an ideat, non-reacting gas can be el iminated hy as.mming the process to he isentropic and to calculate the thrust hy using the thermodynamic state and composition of the combustion products in the motor and nozzle exit. This can be achieved by using any of the standard thermochemistry programs available in the rocket industry. It is thus possible to use the results of a standard thermochemistry program directly in an alternative method for calculating thrust. Using this method only the mass flow rate (which is a function of pressure, throat area and effective caracteristic velocity and the results from the thermochemistry program are needed to calculate the thrust. The advantages of the alternative method are illustrated by comparing the results of the two methods with a measured thrust curve.

  20. Direct electrical arc ignition of hybrid rocket motors

    Science.gov (United States)

    Judson, Michael I., Jr.

    Hybrid rockets motors provide distinct safety advantages when compared to traditional liquid or solid propellant systems, due to the inherent stability and relative inertness of the propellants prior to established combustion. As a result of this inherent propellant stability, hybrid motors have historically proven difficult to ignite. State of the art hybrid igniter designs continue to require solid or liquid reactants distinct from the main propellants. These ignition methods however, reintroduce to the hybrid propulsion system the safety and complexity disadvantages associated with traditional liquid or solid propellants. The results of this study demonstrate the feasibility of a novel direct electrostatic arc ignition method for hybrid motors. A series of small prototype stand-alone thrusters demonstrating this technology were successfully designed and tested using Acrylonitrile Butadiene Styrene (ABS) plastic and Gaseous Oxygen (GOX) as propellants. Measurements of input voltage and current demonstrated that arc-ignition will occur using as little as 10 watts peak power and less than 5 joules total energy. The motor developed for the stand-alone small thruster was adapted as a gas generator to ignite a medium-scale hybrid rocket motor using nitrous oxide /and HTPB as propellants. Multiple consecutive ignitions were performed. A large data set as well as a collection of development `lessons learned' were compiled to guide future development and research. Since the completion of this original groundwork research, the concept has been developed into a reliable, operational igniter system for a 75mm hybrid motor using both gaseous oxygen and liquid nitrous oxide as oxidizers. A development map of the direct spark ignition concept is presented showing the flow of key lessons learned between this original work and later follow on development.

  1. Combustion instability analysis for liquid propellant rocket engines

    Science.gov (United States)

    Kim, Y. M.; Chen, C. P.; Ziebarth, J. P.

    1992-01-01

    The multi-dimensional numerical model has been developed to analyze the nonlinear combustion instabilities in liquid-fueled engines. The present pressure-based approach can handle the implicit pressure-velocity coupling in a non-iterative way. The additional scalar conservation equations for the chemical species, the energy, and the turbulent transport quantities can be handled by the same predictor-corrector sequences. This method is time-accurate and it can be applicable to the all-speed, transient, multi-phase, and reacting flows. Special emphasis is given to the acoustic/vaporization interaction which may act as the crucial rate-controlling mechanism in the liquid-fueled rocket engines. The subcritical vaporization is modeled to account for the effects of variable thermophysical properties, non-unitary Lewis number in the gas-film, the Stefan flow effect, and the effect of transient liquid heating. The test cases include the one-dimenisonal fast transient non-reacting and reacting flows, and the multi-dimensional combustion instabilities encountered in the liquid-fueled rocket thrust chamber. The present numerical model successfully demonstrated the capability to simulate the fast transient spray-combusting flows in terms of the limiting-cycle amplitude phenomena, correspondence between combustion and acoustics, and the steep-fronted wave and flame propagation. The investigated parameters include the spray initial conditions, air-fuel mixture ratios, and the engine geometry. Stable and unstable operating conditions are found for the liquid-fueled combustors. Under certain conditions, the limiting cycle behavior of the combusting flowfields is obtained. The numerical results indicate that the spray vaporization processes play an important role in releasing thermal energy and driving the combustion instability.

  2. 75 FR 39203 - Notice of Availability of a Pest Risk Analysis for Importation of Wall Rocket Leaves from the...

    Science.gov (United States)

    2010-07-08

    ... of Wall Rocket Leaves from the United Kingdom into the Continental United States AGENCY: Animal and... prepared a pest risk analysis with respect to perennial wall rocket leaves grown in the United Kingdom. The... leaves of perennial wall rocket. Based on that analysis, we believe that the application of one or more...

  3. 33 CFR 334.640 - Gulf of Mexico south of Apalachee Bay, Fla.; Air Force rocket firing range.

    Science.gov (United States)

    2010-07-01

    ... Bay, Fla.; Air Force rocket firing range. 334.640 Section 334.640 Navigation and Navigable Waters... REGULATIONS § 334.640 Gulf of Mexico south of Apalachee Bay, Fla.; Air Force rocket firing range. (a) The... meanderings of the shore to the point of beginning. (b) The regulations. (1) The fact that aerial rocket...

  4. 75 FR 71415 - Notice of Decision To Issue Permits for the Importation of Wall Rocket Leaves From the United...

    Science.gov (United States)

    2010-11-23

    ... Wall Rocket Leaves From the United Kingdom Into the Continental United States AGENCY: Animal and Plant... begin issuing permits for the importation into the continental United States of wall rocket leaves from... plant pests or noxious weeds via the importation of wall rocket leaves from the United Kingdom. DATES...

  5. 15 CFR 744.3 - Restrictions on Certain Rocket Systems (including ballistic missile systems and space launch...

    Science.gov (United States)

    2010-01-01

    ... 15 Commerce and Foreign Trade 2 2010-01-01 2010-01-01 false Restrictions on Certain Rocket Systems (including ballistic missile systems and space launch vehicles and sounding rockets) and Unmanned Air...: END-USER AND END-USE BASED § 744.3 Restrictions on Certain Rocket Systems (including ballistic missile...

  6. Antithermal shield for rockets with heat evacuation by infrared radiation reflection

    Directory of Open Access Journals (Sweden)

    Ioan RUSU

    2010-12-01

    Full Text Available At high speed, the friction between the air mass and the rocket surface causes a localheating of over 1000 Celsius degrees. For the heat protection of the rocket, on its outside surfacethermal shields are installed.Studying the Coanda effect, the fluid flow on solids surface, respectively, the author Ioan Rusuhas discovered by simply researches that the Coanda effect could be /extended also to the fluid flowon discontinuous solids, namely, on solids provided with orifices. This phenomenon was named by theauthor, the expanded Coanda effect. Starting with this discovery, the author has invented a thermalshield, registered at The State Office for inventions and Trademarks OSIM, deposit F 2010 0153This thermal shield:- is built as a covering rocket sheet with many orifices installed with a minimum space fromthe rocket body- takes over the heat fluid generated by the frontal part of the rocket and avoids the directcontact between the heat fluid and the rocket body- ensures the evacuation of the infrared radiation, generated by the heat fluid flowing overthe shield because of the extended Coanda effect by reflection from the rocket bodysurface.

  7. Ignition and flame stabilization of a strut-jet RBCC combustor with small rocket exhaust.

    Science.gov (United States)

    Hu, Jichao; Chang, Juntao; Bao, Wen

    2014-01-01

    A Rocket Based Combined Cycle combustor model is tested at a ground direct connected rig to investigate the flame holding characteristics with a small rocket exhaust using liquid kerosene. The total temperature and the Mach number of the vitiated air flow, at exit of the nozzle are 1505 K and 2.6, respectively. The rocket base is embedded in a fuel injecting strut and mounted in the center of the combustor. The wall of the combustor is flush, without any reward step or cavity, so the strut-jet is used to make sure of the flame stabilization of the second combustion. Mass flow rate of the kerosene and oxygen injected into the rocket is set to be a small value, below 10% of the total fuel when the equivalence ratio of the second combustion is 1. The experiment has generated two different kinds of rocket exhaust: fuel rich and pure oxygen. Experiment result has shown that, with a relative small total mass flow rate of the rocket, the fuel rich rocket plume is not suitable for ignition and flame stabilization, while an oxygen plume condition is suitable. Then the paper conducts a series of experiments to investigate the combustion characteristics under this oxygen pilot method and found that the flame stabilization characteristics are different at different combustion modes.

  8. Ignition and Flame Stabilization of a Strut-Jet RBCC Combustor with Small Rocket Exhaust

    Directory of Open Access Journals (Sweden)

    Jichao Hu

    2014-01-01

    Full Text Available A Rocket Based Combined Cycle combustor model is tested at a ground direct connected rig to investigate the flame holding characteristics with a small rocket exhaust using liquid kerosene. The total temperature and the Mach number of the vitiated air flow, at exit of the nozzle are 1505 K and 2.6, respectively. The rocket base is embedded in a fuel injecting strut and mounted in the center of the combustor. The wall of the combustor is flush, without any reward step or cavity, so the strut-jet is used to make sure of the flame stabilization of the second combustion. Mass flow rate of the kerosene and oxygen injected into the rocket is set to be a small value, below 10% of the total fuel when the equivalence ratio of the second combustion is 1. The experiment has generated two different kinds of rocket exhaust: fuel rich and pure oxygen. Experiment result has shown that, with a relative small total mass flow rate of the rocket, the fuel rich rocket plume is not suitable for ignition and flame stabilization, while an oxygen plume condition is suitable. Then the paper conducts a series of experiments to investigate the combustion characteristics under this oxygen pilot method and found that the flame stabilization characteristics are different at different combustion modes.

  9. CFD Analysis of Square Flow Channel in Thermal Engine Rocket Adventurer for Space Nuclear Application

    Energy Technology Data Exchange (ETDEWEB)

    Nam, S. H.; Suh, K. Y. [Seoul National University, Seoul (Korea, Republic of); Kang, S. G. [PHILOSOPHIA, Inc., Seoul (Korea, Republic of)

    2008-10-15

    Solar system exploration relying on chemical rockets suffers from long trip time and high cost. In this regard nuclear propulsion is an attractive option for space exploration. The performance of Nuclear Thermal Rocket (NTR) is more than twice that of the best chemical rocket. Resorting to the pure hydrogen (H{sub 2}) propellant the NTRs can possibly achieve as high as 1,000 s of specific impulse (I{sub sp}) representing the ratio of the thrust over the fuel consumption rate, as compared to only 425 s of H{sub 2}/O{sub 2} rockets. If we reflect on the mission to Mars, NTRs would reduce the round trip time to less than 300 days, instead of over 600 days with chemical rockets. This work presents CFD analysis of one Fuel Element (FE) of Thermal Engine Rocket Adventurer (TERA). In particular, one Square Flow Channel (SFC) is analyzed in Square Lattice Honeycomb (SLHC) fuel to examine the effects of mass flow rate on rocket performance.

  10. Observation and simulation of the ionosphere disturbance waves triggered by rocket exhausts

    Science.gov (United States)

    Lin, Charles C. H.; Chen, Chia-Hung; Matsumura, Mitsuru; Lin, Jia-Ting; Kakinami, Yoshihiro

    2017-08-01

    Observations and theoretical modeling of the ionospheric disturbance waves generated by rocket launches are investigated. During the rocket passage, time rate change of total electron content (rTEC) enhancement with the V-shape shock wave signature is commonly observed, followed by acoustic wave disturbances and region of negative rTEC centered along the trajectory. Ten to fifteen min after the rocket passage, delayed disturbance waves appeared and propagated along direction normal to the V-shape wavefronts. These observation features appeared most prominently in the 2016 North Korea rocket launch showing a very distinct V-shape rTEC enhancement over enormous areas along the southeast flight trajectory despite that it was also appeared in the 2009 North Korea rocket launch with the eastward flight trajectory. Numerical simulations using the physical-based nonlinear and nonhydrostatic coupled model of neutral atmosphere and ionosphere reproduce promised results in qualitative agreement with the characteristics of ionospheric disturbance waves observed in the 2009 event by considering the released energy of the rocket exhaust as the disturbance source. Simulations reproduce the shock wave signature of electron density enhancement, acoustic wave disturbances, the electron density depletion due to the rocket-induced pressure bulge, and the delayed disturbance waves. The pressure bulge results in outward neutral wind flows carrying neutrals and plasma away from it and leading to electron density depletions. Simulations further show, for the first time, that the delayed disturbance waves are produced by the surface reflection of the earlier arrival acoustic wave disturbances.

  11. Ricardo Dyrgalla (1910-1970), pioneer of rocket development in Argentina

    Science.gov (United States)

    de León, Pablo

    2009-12-01

    One of the most important developers of liquid propellant rocket engines in Argentina was Polish-born Ricardo Dyrgalla. Dyrgalla immigrated to Argentina from the United Kingdom in 1946, where he had been studying German weapons development at the end of the Second World War. A trained pilot and aeronautical engineer, he understood the intricacies of rocket propulsion and was eager to find practical applications to his recently gained knowledge. Dyrgalla arrived in Argentina during Juan Perón's first presidency, a time when technicians from all over Europe were being recruited to work in various projects for the recently created Argentine Air Force. Shortly after immigrating, Dyrgalla proposed to develop an advanced air-launched weapon, the Tábano, based on a rocket engine of his design, the AN-1. After a successful development program, the Tábano was tested between 1949 and 1951; however, the project was canceled by the government shortly after. Today, the AN-1 rocket engine is recognized as the first liquid propellant rocket to be developed in South America. Besides the AN-1, Dyrgalla also developed several other rockets systems in Argentina, including the PROSON, a solid-propellant rocket launcher developed by the Argentine Institute of Science and Technology for the Armed Forces (CITEFA). In the late 1960s, Dyrgalla and his family relocated to Brazil due mostly to the lack of continuation of rocket development in Argentina. There, he worked for the Institute of Aerospace Technology (ITA) until his untimely death in 1970. Ricardo Dyrgalla deserves to be recognized among the world's rocket pioneers and his contribution to the science and engineering of rocketry deserves a special place in the history of South America's rocketry and space flight advocacy programs.

  12. Human rights and conventionality control in Mexico

    Directory of Open Access Journals (Sweden)

    Azul América Aguiar-Aguilar

    2014-12-01

    Full Text Available The protection of human rights in Mexico has, de jure, suffered an important change in the last years, given a new judicial interpretation delivered by the National Supreme Court of Justice that allows the use of conventionality control, which means, that it allows federal and state judges to verify the conformity of domestic laws with those established in the Inter-American Convention of Human Rights. To what extent domestic actors are protecting human rights using this new legal tool called conventionality control? In this article I explore whom and how is conventionality control being used in Mexico. Using N-Vivo Software I reviewed concluded decisions delivered by intermediate level courts (Collegiate Circuit Courts in three Mexican states. The evidence points that conventionality control is a very useful tool especially to defenders, who appear in sentences claiming compliance with the commitments Mexico has acquired when this country ratified the Convention.

  13. Coil-On-Plug Ignition for LOX/Methane Liquid Rocket Engines in Thermal Vacuum Environments

    Science.gov (United States)

    Melcher, John C.; Atwell, Matthew J.; Morehead, Robert L.; Hurlbert, Eric A.; Bugarin, Luz; Chaidez, Mariana

    2017-01-01

    A coil-on-plug ignition system has been developed and tested for Liquid Oxygen (LOX) / liquid methane rocket engines operating in thermal vacuum conditions. The igniters were developed and tested as part of the Integrated Cryogenic Propulsion Test Article (ICPTA), previously tested as part of the Project Morpheus test vehicle. The ICPTA uses an integrated, pressure-fed, cryogenic LOX/methane propulsion system including a reaction control system (RCS) and a main engine. The ICPTA was tested at NASA Glenn Research Center's Plum Brook Station in the Spacecraft Propulsion Research Facility (B-2) under vacuum and thermal vacuum conditions. In order to successfully demonstrate ignition reliability in the vacuum conditions and eliminate corona discharge issues, a coil-on-plug ignition system has been developed. The ICPTA uses spark-plug ignition for both the main engine igniter and the RCS. The coil-on-plug configuration eliminates the conventional high-voltage spark plug cable by combining the coil and the spark-plug into a single component. Prior to ICPTA testing at Plum Brook, component-level reaction control engine (RCE) and main engine igniter testing was conducted at NASA Johnson Space Center (JSC), which demonstrated successful hot-fire ignition using the coil-on-plug from sea-level ambient conditions down to 10(exp.-2) torr. Integrated vehicle hot-fire testing at JSC demonstrated electrical and command/data system performance. Lastly, Plum Brook testing demonstrated successful ignitions at simulated altitude conditions at 30 torr and cold thermal-vacuum conditions at 6 torr. The test campaign successfully proved that coil-on-plug technology will enable integrated LOX/methane propulsion systems in future spacecraft.

  14. Stochastic rocket dynamics under random nozzle side loads: Ornstein-Uhlenbeck boundary layer separation and its coarse grained connection to side loading and rocket response

    CERN Document Server

    Keanini, R G; Tkacik, Peter T; Weggel, David C; Knight, P Douglas

    2011-01-01

    A long-standing, though ill-understood problem in rocket dynamics, rocket response to random, altitude-dependent nozzle side-loads, is investigated. Side loads arise during low altitude flight due to random, asymmetric, shock-induced separation of in-nozzle boundary layers. In this paper, stochastic evolution of the in-nozzle boundary layer separation line, an essential feature underlying side load generation, is connected to random, altitude-dependent rotational and translational rocket response via a set of simple analytical models. Separation line motion, extant on a fast boundary layer time scale, is modeled as an Ornstein-Uhlenbeck process. Pitch and yaw responses, taking place on a long, rocket dynamics time scale, are shown to likewise evolve as OU processes. Stochastic, altitude-dependent rocket translational motion follows from linear, asymptotic versions of the full nonlinear equations of motion; the model is valid in the practical limit where random pitch, yaw, and roll rates all remain small. Comp...

  15. Karl Poggensee - A widely unknown German rocket pioneer - The early years 1930-1934 - A chronology

    Science.gov (United States)

    Rohrwild, Karlheinz

    2017-09-01

    The rediscovered estate of Karl Poggensee allows to reproduce chronologically his rocket tests of the period 1930-1934 almost completely for the first time. Thrilled by the movie ;The Woman in the Moon; for the idea of space travel, he started as a student of Hinderburg-Polytechnikum (IAO), Oldenburg, to build his first solid-fuel rocket, producing his own propellant charges. Being a coming electrical engineer his main goal was not set up new record heights, but to provide his rockets with automatic measuring instruments, camera and parachute release systems. The optimization of this sequence was his main focus.

  16. Technical Advisory Team (TAT) report on the rocket sled test accident of October 9, 2008.

    Energy Technology Data Exchange (ETDEWEB)

    Stofleth, Jerome H.; Dinallo, Michael Anthony; Medina, Anthony J.

    2009-01-01

    This report summarizes probable causes and contributing factors that led to a rocket motor initiating prematurely while employees were preparing instrumentation for an AIII rocket sled test at SNL/NM, resulting in a Type-B Accident. Originally prepared by the Technical Advisory Team that provided technical assistance to the NNSA's Accident Investigation Board, the report includes analyses of several proposed causes and concludes that the most probable source of power for premature initiation of the rocket motor was the independent battery contained in the HiCap recorder package. The report includes data, evidence, and proposed scenarios to substantiate the analyses.

  17. Solid Rocket Booster (SRB) Flight System Integration at Its Best

    Science.gov (United States)

    Wood, T. David; Kanner, Howard S.; Freeland, Donna M.; Olson, Derek T.

    2011-01-01

    The Solid Rocket Booster (SRB) element integrates all the subsystems needed for ascent flight, entry, and recovery of the combined Booster and Motor system. These include the structures, avionics, thrust vector control, pyrotechnic, range safety, deceleration, thermal protection, and retrieval systems. This represents the only human-rated, recoverable and refurbishable solid rocket ever developed and flown. Challenges included subsystem integration, thermal environments and severe loads (including water impact), sometimes resulting in hardware attrition. Several of the subsystems evolved during the program through design changes. These included the thermal protection system, range safety system, parachute/recovery system, and others. Because the system was recovered, the SRB was ideal for data and imagery acquisition, which proved essential for understanding loads, environments and system response. The three main parachutes that lower the SRBs to the ocean are the largest parachutes ever designed, and the SRBs are the largest structures ever to be lowered by parachutes. SRB recovery from the ocean was a unique process and represented a significant operational challenge; requiring personnel, facilities, transportation, and ground support equipment. The SRB element achieved reliability via extensive system testing and checkout, redundancy management, and a thorough postflight assessment process. However, the in-flight data and postflight assessment process revealed the hardware was affected much more strongly than originally anticipated. Assembly and integration of the booster subsystems required acceptance testing of reused hardware components for each build. Extensive testing was done to assure hardware functionality at each level of stage integration. Because the booster element is recoverable, subsystems were available for inspection and testing postflight, unique to the Shuttle launch vehicle. Problems were noted and corrective actions were implemented as needed

  18. Suction v. conventional curettage in incomplete abortion

    African Journals Online (AJOL)

    Suction v. conventional curettage in incomplete abortion. A randomised controlled trial. D. A. A. VERKUYL, C. A. CROWTHER .Abstract This randomised controlled trial of 357 patients who had had an incomplete abortion compared suction curettage with conventional curettage for evacuation ofthe uterus. The 179 patients ...

  19. Organic and conventional production systems, microbial fertilization ...

    African Journals Online (AJOL)

    A common belief among consumers is the superior quality of organically grown tomato fruits over their conventionally grown counterparts. The present study was performed to evaluate the quality characteristics of tomatoes grown using organic and conventional production systems and to determine the effects of microbial ...

  20. The Limitations of Upper-Atmosphere Research Vehicles Powered by Current British Solid-Fuel Rockets

    National Research Council Canada - National Science Library

    King-Hele, D. G

    1953-01-01

    .... If current rockets are to be of value in upper-atmosphere research, therefore, they must either be used in a single-stage arrangement, or be launched well above sea level, perhaps from a balloon or mountain top...

  1. Attitude Dynamics of a Spinning Rocket with Internal Fluid Whirling Motion

    Directory of Open Access Journals (Sweden)

    Marius Ionut MARMUREANU

    2014-06-01

    Full Text Available This paper evaluates the impact that helical motion of fluid products of combustion within the combustion chamber of a rocket can have on the attitude dynamics of rocket systems. By developing the study presented by Sookgaew (2004, we determined the configuration of the Coriolis moment components, which catch the impact of the combustion product’s whirling motion, for the radial and centripetal propellant burn pattern specific to S-5M and S-5K solid rocket motors. We continue the investigation of the effects of internal whirling motion of fluid products of combustion on the attitude behavior of variable mass systems of the rocket type by examining the spin motion and transverse attitude motion of such systems. The results obtained show that internal fluid whirling motion can cause appreciable deviations in spin rate predictions, and also affects the frequencies of the transverse angular velocity components.

  2. Liquid-propellant rocket engine testing at Arnold Engineering Development Center

    Science.gov (United States)

    Dehoff, Bryan; Tucker, Edgar K.; McAmis, Rob W.

    A continuing need exists for facilities to test both storable and cryogenic liquid-propellant rocket engines and stages at simulated altitude as part of a resposible acquisition risk reduction program. Storable propellant Intercontinental Ballistic Missile (ICBM) Post Boost Vehicles (PBV) require simulated altitude testing as part of the Aging and Surveillance programs designed to ensure an effective and reliable missile system. Likewise, simulated altitude testing is necessary acquisition risk reduction for advanced cryogenic rocket engines and stages that are being upgraded or developed to satisfy a variety of defense and commercial payload requirements. A review of liquid rocket test facilities at Arnold Engineering Development Center (AEDC) is presented. The facility capabilities used in support of acquisition risk reduction are described, as are new facility capabilities recently completed or funded. Furthermore, a description of the technology applications available at AEDC in support of liquid rocket diagnostics, analysis, and evaluation techniques is presented.

  3. Advanced Materials and Manufacturing for Low-Cost, High-Performance Liquid Rocket Combustion Chambers Project

    Data.gov (United States)

    National Aeronautics and Space Administration — Silicided niobium alloy (C103) combustion chambers have been used extensively in both NASA and DoD liquid rocket propulsion systems. Niobium alloys offer a good...

  4. Maturation of Structural Health Management Systems for Solid Rocket Motors Project

    Data.gov (United States)

    National Aeronautics and Space Administration — Solid rocket motor cases are subject to a variety of external environmental and loading conditions from cradle-to-grave. These conditions can significantly impact...

  5. Stable Tactical-Grade MEMS IMU for Spin-Stabilized Rockets Project

    Data.gov (United States)

    National Aeronautics and Space Administration — An Integrated MEMS IMU is proposed that will operate effectively in a spinning rocket up to 7 revs/sec. The IMU contains three gyroscopes and nine accelerometers on...

  6. Low Erosion Ceramic Composite Liners for Improved Performance of Ablative Rocket Thrust Chambers Project

    Data.gov (United States)

    National Aeronautics and Space Administration — Advanced liquid rocket propulsion systems must achieve longer burn times without performance degradation to allow the lowest cost per kilogram access to space....

  7. [Study on rapid determination and analysis of rocket kerosene by near infrared spectrum and chemometrics].

    Science.gov (United States)

    Xia, Ben-Li; Cong, Ji-Xin; Li, Xia; Wang, Xuan-Jun

    2011-06-01

    The rocket kerosene quality properties such as density, distillation range, viscosity and iodine value were successfully measured based on their near-infrared spectrum (NIRS) and chemometrics. In the present paper, more than 70 rocket kerosene samples were determined by near infrared spectrum, the models were built using the partial least squares method within the appropriate wavelength range. The correlation coefficients (R2) of every rocket kerosene's quality properties ranged from 0.862 to 0.999. Ten unknown samples were determined with the model, and the result showed that the prediction accuracy of near infrared spectrum method accords with standard analysis requirements. The new method is well suitable for replacing the traditional standard method to rapidly determine the properties of the rocket kerosene.

  8. Nitrates and glucosinolates as strong determinants of the nutritional quality in rocket leafy salads.

    Science.gov (United States)

    Cavaiuolo, Marina; Ferrante, Antonio

    2014-04-14

    Rocket is an important leafy vegetable crop and a good source of antioxidants and anticancer molecules such as glucosinolates and other sulfur compounds. Rocket is also a hyper-accumulator of nitrates which have been considered for long time the main factors that cause gastro-intestinal cancer. In this review, the content of these compounds in rocket tissues and their levels at harvest and during storage are discussed. Moreover, the effect of these compounds in preventing or inducing human diseases is also highlighted. This review provides an update to all the most recent studies carried out on rocket encouraging the consumption of this leafy vegetable to reduce the risk of contracting cancer and other cardiovascular diseases.

  9. Neptune modular rockets for breakthrough low-cost space access Project

    Data.gov (United States)

    National Aeronautics and Space Administration — Interorbital Systems is developing a new generation of modular, low-cost, rapid-response space launch vehicles. Interorbital modular rockets core element is the...

  10. Quasi-2D Unsteady Flow Solver Module for Rocket Engine and Propulsion System Simulations

    National Research Council Canada - National Science Library

    Campell, Bryan T; Davis, Roger L

    2006-01-01

    .... The solver is targeted to the commercial dynamic simulation software package Simulink(Registered) for integration into a larger suite of modules developed for simulating rocket engines and propulsion systems...

  11. A Numerical Study of Combined Convective and Radiative Heat Transfer in a Rocket Engine Combustion Chamber

    National Research Council Canada - National Science Library

    Savur, Mehmet

    2002-01-01

    A numerical study was conducted to predict the combined convective and radiative heat transfer rates on the walls of a small aspect ratio cylinder representative of the scaled model of a rocket engine combustion chamber...

  12. A General Quadrature Solution for Relativistic, Non-relativistic, and Weakly-Relativistic Rocket Equations

    CERN Document Server

    Bruce, Adam L

    2015-01-01

    We show the traditional rocket problem, where the ejecta velocity is assumed constant, can be reduced to an integral quadrature of which the completely non-relativistic equation of Tsiolkovsky, as well as the fully relativistic equation derived by Ackeret, are limiting cases. By expanding this quadrature in series, it is shown explicitly how relativistic corrections to the mass ratio equation as the rocket transitions from the Newtonian to the relativistic regime can be represented as products of exponential functions of the rocket velocity, ejecta velocity, and the speed of light. We find that even low order correction products approximate the traditional relativistic equation to a high accuracy in flight regimes up to $0.5c$ while retaining a clear distinction between the non-relativistic base-case and relativistic corrections. We furthermore use the results developed to consider the case where the rocket is not moving relativistically but the ejecta stream is, and where the ejecta stream is massless.

  13. Nitrates and Glucosinolates as Strong Determinants of the Nutritional Quality in Rocket Leafy Salads

    Directory of Open Access Journals (Sweden)

    Marina Cavaiuolo

    2014-04-01

    Full Text Available Rocket is an important leafy vegetable crop and a good source of antioxidants and anticancer molecules such as glucosinolates and other sulfur compounds. Rocket is also a hyper-accumulator of nitrates which have been considered for long time the main factors that cause gastro-intestinal cancer. In this review, the content of these compounds in rocket tissues and their levels at harvest and during storage are discussed. Moreover, the effect of these compounds in preventing or inducing human diseases is also highlighted. This review provides an update to all the most recent studies carried out on rocket encouraging the consumption of this leafy vegetable to reduce the risk of contracting cancer and other cardiovascular diseases.

  14. Code Validation of CFD Heat Transfer Models for Liquid Rocket Engine Combustion Devices

    National Research Council Canada - National Science Library

    Coy, E. B

    2007-01-01

    .... The design of the rig and its capabilities are described. A second objective of the test rig is to provide CFD validation data under conditions relevant to liquid rocket engine thrust chambers...

  15. Proposal for a Concept Assessment of a Fission Fragment Rocket Engine (FFRE) Propelled Spacecraft Project

    Data.gov (United States)

    National Aeronautics and Space Administration — A new technology, the Fission Fragment Rocket Engine (FFRE), requires small amounts of readily available, energy dense, long lasting fuel, significant thrust at...

  16. System for Acquisition and Analysis of Energy-Based Acoustic Data for Rocket Noise Project

    Data.gov (United States)

    National Aeronautics and Space Administration — Accurate estimates of the vibroacoustic loading placed on space vehicles and payloads during launch require knowledge of the rocket noise source properties. Given...

  17. RECENT ACTIVITIES AT THE CENTER FOR SPACE NUCLEAR RESEARCH FOR DEVELOPING NUCLEAR THERMAL ROCKETS

    Energy Technology Data Exchange (ETDEWEB)

    Robert C. O' Brien

    2001-09-01

    Nuclear power has been considered for space applications since the 1960s. Between 1955 and 1972 the US built and tested over twenty nuclear reactors/ rocket-engines in the Rover/NERVA programs. However, changes in environmental laws may make the redevelopment of the nuclear rocket more difficult. Recent advances in fuel fabrication and testing options indicate that a nuclear rocket with a fuel form significantly different from NERVA may be needed to ensure public support. The Center for Space Nuclear Research (CSNR) is pursuing development of tungsten based fuels for use in a NTR, for a surface power reactor, and to encapsulate radioisotope power sources. The CSNR Summer Fellows program has investigated the feasibility of several missions enabled by the NTR. The potential mission benefits of a nuclear rocket, historical achievements of the previous programs, and recent investigations into alternatives in design and materials for future systems will be discussed.

  18. The Undergraduate Satellite and Rocket Design, Fabrication and Launch Program at the US Air Force Academy

    National Research Council Canada - National Science Library

    Siegenthaler, Kenneth E; Sellers, J. J; Miller, D. A; Lawrence, T. J; Richie, D. J

    2004-01-01

    ...." Its motto and aim is for cadets to "Learn Space by Doing Space." Cadets majoring in astronautical engineering and space operations study either the design, fabrication, testing, and launching of a sounding rocket...

  19. DURACON - Variable Emissivity Broadband Coatings for Liquid Propellant Rocket Nozzles Project

    Data.gov (United States)

    National Aeronautics and Space Administration — The need exists for a fast drying, robust, low gloss, black, high emissivity coating that can be applied easily on aircraft rocket nozzles and nozzle extensions....

  20. Process-Hardened, Multi-Analyte Sensor for Characterizing Rocket Plum Constituents Under Test Environment Project

    Data.gov (United States)

    National Aeronautics and Space Administration — This STTR project aims to develop a process-hardened, simple and low cost multi-analyte sensor for detecting components of rocket engine plumes. The sensor will be...