WorldWideScience

Sample records for convention on nuclear safety

  1. National nuclear safety report 1998. Convention on nuclear safety

    International Nuclear Information System (INIS)

    1998-01-01

    The Argentine Republic subscribed the Convention on Nuclear Safety, approved by a Diplomatic Conference in Vienna, Austria, in June 17th, 1994. According to the provisions in Section 5th of the Convention, each Contracting Party shall submit for its examination a National Nuclear Safety Report about the measures adopted to comply with the corresponding obligations. This Report describes the actions that the Argentine Republic is carrying on since the beginning of its nuclear activities, showing that it complies with the obligations derived from the Convention, in accordance with the provisions of its Article 4. The analysis of the compliance with such obligations is based on the legislation in force, the applicable regulatory standards and procedures, the issued licenses, and other regulatory decisions. The corresponding information is described in the analysis of each of the Convention Articles constituting this Report. The present National Report has been performed in order to comply with Article 5 of the Convention on Nuclear Safety, and has been prepared as much as possible following the Guidelines Regarding National Reports under the Convention on Nuclear Safety, approved in the Preparatory Meeting of the Contracting Parties, held in Vienna in April 1997. This means that the Report has been ordered according to the Articles of the Convention on Nuclear Safety and the contents indicated in the guidelines. The information contained in the articles, which are part of the Report shows the compliance of the Argentine Republic, as a contracting party of such Convention, with the obligations assumed

  2. National Nuclear Safety Report 2001. Convention on Nuclear Safety

    International Nuclear Information System (INIS)

    2001-01-01

    The First National Nuclear Safety Report was presented at the first review meeting of the Nuclear Safety Convention. At that time it was concluded that Argentina met the obligations of the Convention. This second National Nuclear Safety Report is an updated report which includes all safety aspects of the Argentinian nuclear power plants and the measures taken to enhance the safety of the plants. The present report also takes into account the observations and discussions maintained during the first review meeting. The conclusion made in the first review meeting about the compliance by Argentina of the obligations of the Convention are included as Annex 1. In general, the information contained in this Report has been updated since March 31, 1998 to March 31, 2001. Those aspects that remain unchanged were not addressed in this second report with the objective of avoiding repetitions and in order to carry out a detailed analysis considering article by article. As a result of the above mentioned detailed analysis of all the Articles, it can be stated that the country fulfils all the obligations imposed by the Nuclear Safety Convention

  3. National nuclear safety report 2004. Convention on nuclear safety

    International Nuclear Information System (INIS)

    2004-01-01

    The second National Nuclear Safety Report was presented at the second review meeting of the Nuclear Safety Convention. At that time it was concluded that Argentina met the obligations of the Convention. This third National Nuclear Safety Report is an updated report which includes all safety aspects of the Argentinian nuclear power plants and the measures taken to enhance the safety of the plants. The present report also takes into account the observations and discussions maintained during the second review meeting. The conclusion made in the first review meeting about the compliance by Argentina of the obligations of the Convention are included as Annex I and those belonging to the second review meeting are included as Annex II. In general, the information contained in this Report has been updated since March 31, 2001 to April 30, 2004. Those aspects that remain unchanged were not addressed in this third report. As a result of the detailed analysis of all the Articles, it can be stated that the country fulfils all the obligations imposed by the Nuclear Safety Convention. The questions and answers originated at the Second Review Meeting are included as Annex III

  4. Convention on nuclear safety

    International Nuclear Information System (INIS)

    1994-01-01

    The Convention on Nuclear Safety was adopted on 17 June 1994 by Diplomatic Conference convened by the International Atomic Energy Agency at its Headquarters from 14 to 17 June 1994. The Convention will enter into force on the ninetieth day after the date of deposit with the Depository (the Agency's Director General) of the twenty-second instrument of ratification, acceptance or approval, including the instruments of seventeen States, having each at leas one nuclear installation which has achieved criticality in a reactor core. The text of the Convention as adopted is reproduced in the Annex hereto for the information of all Member States

  5. Effectiveness of the Convention on Nuclear Safety

    International Nuclear Information System (INIS)

    Schwarz, G.

    2016-01-01

    The Convention on Nuclear Safety (CNS) has been established after the Chernobyl accident with the primary objective of achieving and maintaining a high level of nuclear safety worldwide, through the enhancement of national measures and international cooperation. The CNS is an incentive convention. It defines the basic safety standard which shall be met by the Contracting Parties. The verification of compliance is based on a self-assessment by the Countries and a Peer Review by the other Contracting Parties. As of July 2015, there are 78 Contracting Parties. Among the Contracting Parties of the Convention are all countries operating nuclear power plants except the Islamic Republic of Iran and Taiwan, all countries constructing nuclear power plants, all countries having nuclear power plants in long term shutdown and all countries having signed contracts for the construction of nuclear power plants. The National Reports under the CNS therefore cover almost all nuclear power plants of the world. The peer review of reports, questions and answers that are exchanged in connection with the Review Meetings provided a unique overview of nuclear safety provisions and issues in countries planning or operating nuclear power plants. This is especially important for neighbouring countries to those operating nuclear power plants.

  6. Convention on nuclear safety. Final act

    International Nuclear Information System (INIS)

    1994-01-01

    The Diplomatic Conference, which was convened by the International Atomic Energy Agency at its Headquarters from 14 to 17 June 1994, adopted the Convention on Nuclear Safety reproduced in document INFCIRC/449 and the Final Act of the Conference. The text of the Final Act of the Conference, including an annexed document entitled ''Some clarification with respect to procedural and financial arrangements, national reports, and the conduct of review meetings, envisaged in the Convention on Nuclear Safety'', is reproduced in the Attachment hereto for the information of all Member States

  7. Treaty implementation applied to conventions on nuclear safety

    International Nuclear Information System (INIS)

    Montjoie, Michel

    2015-01-01

    Given that safety is the number one priority for the nuclear industry, it would seem normal that procedures exist to ensure the effective implementation of the provisions of the conventions on nuclear safety, as already exist for numerous international treaties. Unfortunately, these procedures are either weak or even nonexistent. Therefore, consideration must be given to whether this weakness represents a genuine deficiency in ensuring the main objective of these conventions, which is to achieve a high level of nuclear safety worldwide. But, before one can even address that issue, a prior question must be answered: does the specific nature of the international legal framework on nuclear safety automatically result in a lack of non-compliance procedures in international conventions on the subject? If so, the lack of procedures is justified, despite the drawbacks. The specific nature of the international law on nuclear safety, which in 1994 shaped the content of the CNS by notably not 'allowing' (even today) the incorporation of precise international rules have been taken into account. The next step is to examine whether the absence of non-compliance procedures (which could have been integrated into the text) is a hindrance in ensuring the objectives of the conventions on nuclear safety, and to examine the procedures that could have been used, based on existing provisions in other areas of international law (environmental law, financial law, disarmament law, human rights, etc.). International environmental law will be the main source of this study, as it has certain similarities with the international law on nuclear safety due to the sometimes vague nature of its obligations and irrespective of the fact that one of the purposes of nuclear safety is in particular to protect the environment from radiological hazards. Indeed, the provisions of the law on nuclear safety are mainly technical and designed to guarantee the normal operation of nuclear facilities

  8. Nuclear safety: an international approach: the convention on nuclear safety

    International Nuclear Information System (INIS)

    Rosen, M.

    1994-01-01

    This paper is a general presentation of the IAEA Convention on Nuclear Safety which has already be signed by 50 countries and which is the first legal instrument that directly addresses the safety of nuclear power plants worldwide. The paper gives a review of its development and some key provisions for a better understanding of how this agreement will operate in practice. The Convention consists of an introductory preamble and four chapters consisting of 35 articles dealing with: the principal objectives, definitions and scope of application; the various obligations (general provisions, legislation, responsibility and regulation, general safety considerations taking into account: the financial and human resources, the human factors, the quality assurance, the assessment and verification of safety, the radiation protection and the emergency preparedness; the safety of installations: sitting, design and construction, operation); the periodic meetings of the contracting parties to review national reports on the measures taken to implement each of the obligations, and the final clauses and other judicial provisions common to international agreements. (J.S.). 1 append

  9. Clear progress in nuclear safety worldwide: Convention on nuclear safety concludes

    International Nuclear Information System (INIS)

    2002-01-01

    It has been concluded that a significant progress has been observed in a number of key areas, such as strengthened legislation, regulatory independence, the availability of financial resources, enhanced emergency preparedness and safety improvements at nuclear power plants built to earlier standards. The objective of the Convention is to achieve and maintain a high level of nuclear safety worldwide. During the two week Review Meeting, parties engaged in a 'peer review' process in which the National Reports from individual States were collectively examined and discussed, with written replies provided to all the questions raised. Clear improvement was noted in the quality of the National Reports, the number of questions and the openness and quality of discussion and answers. The Contracting Parties praised the IAEA's various safety review missions and services, which they use widely to help enhance the effectiveness of their national safety arrangements. Forty-six contracting parties participated at the Review Meeting with over 400 delegates attending, including many heads and senior officers from regulatory bodies and experts from industry. To date, the Convention has been signed by sixty-five States and ratified by fifty-four, representing 428 of the 448 nuclear power reactors worldwide

  10. National report of Brazil. Nuclear Safety Convention

    International Nuclear Information System (INIS)

    1998-09-01

    This document represents the national report prepared as a fulfillment of the brazilian obligations related to the Convention on Nuclear Safety. In chapter 2 some details are given about the existing nuclear installations. Chapter 3 provides details about the legislation and regulations, including the regulatory framework and the regulatory body. Chapter 4 covers general safety considerations as described in articles 10 to 16 of the Convention. Chapter 5 addresses to the safety of the installations during siting, design, construction and operation. Chapter 6 describes planned activities to further enhance nuclear safety. Chapter 7 presents the final remarks related to the degree of compliance with the Convention obligations

  11. National report of Brazil on nuclear safety convention - introduction

    International Nuclear Information System (INIS)

    1998-01-01

    This document was prepared for fulfilling the Brazilian obligations under the Convention on Nuclear Safety. Chapter 1 presents some historical aspects of the Brazilian nuclear policy, targets to be attained for increasing the nuclear energy contribution for the national production of electric energy

  12. Convention on nuclear safety. Questions posted to Switzerland in 2008

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    2008-07-01

    Switzerland signed the Convention on Nuclear Safety (CNS) on 31 October 1995. It ratified the Convention on 12 September 1996, which came into force on 11 December 1996. In accordance with Article 5 of the Convention, Switzerland has prepared and submitted 4 country reports for Review Meetings of Contracting Parties organised in 1999, 2002, 2005 and 2006. These meetings at the IAEA headquarters in Vienna were attended by a Swiss delegation. Most of the requirements of the articles of the Convention were already standard practice in Switzerland. In the last years, all Swiss nuclear power plants (NPPs) as well as the Swiss Federal Nuclear Safety Inspectorate (HSK) built up documented quality management systems. The independence of HSK from licensing authorities is fulfilled on a technical level. In 2005, a new Nuclear Energy Act came into force requiring formal independence of the supervisory authorities from the licensing authorities. A separate act to legally settle the Inspectorate's fully independent status was adopted by Parliament. HSK participates in international co-operation and is represented in numerous nuclear safety working groups in order to ensure the exchange of scientific, technical and regulatory know-how. The regulatory processes applied to the licensing and safety surveillance of nuclear installations and their operation are up to date with the current state of science and technology. Deterministic and probabilistic safety evaluations guide and prioritise inspections and provide the basis for a graded approach to safety review and assessment. The surveillance of the NPPs' operating, control and safety systems, their component performance and integrity, their organisational and human aspects as well as the management, conditioning and interim storage of radioactive waste are permanent features of the supervisory authority's activities. Within the frame of a new integrated oversight process there is an annual systematic assessment of

  13. Convention on nuclear safety. Questions posted to Switzerland in 2008

    International Nuclear Information System (INIS)

    2008-01-01

    Switzerland signed the Convention on Nuclear Safety (CNS) on 31 October 1995. It ratified the Convention on 12 September 1996, which came into force on 11 December 1996. In accordance with Article 5 of the Convention, Switzerland has prepared and submitted 4 country reports for Review Meetings of Contracting Parties organised in 1999, 2002, 2005 and 2006. These meetings at the IAEA headquarters in Vienna were attended by a Swiss delegation. Most of the requirements of the articles of the Convention were already standard practice in Switzerland. In the last years, all Swiss nuclear power plants (NPPs) as well as the Swiss Federal Nuclear Safety Inspectorate (HSK) built up documented quality management systems. The independence of HSK from licensing authorities is fulfilled on a technical level. In 2005, a new Nuclear Energy Act came into force requiring formal independence of the supervisory authorities from the licensing authorities. A separate act to legally settle the Inspectorate's fully independent status was adopted by Parliament. HSK participates in international co-operation and is represented in numerous nuclear safety working groups in order to ensure the exchange of scientific, technical and regulatory know-how. The regulatory processes applied to the licensing and safety surveillance of nuclear installations and their operation are up to date with the current state of science and technology. Deterministic and probabilistic safety evaluations guide and prioritise inspections and provide the basis for a graded approach to safety review and assessment. The surveillance of the NPPs' operating, control and safety systems, their component performance and integrity, their organisational and human aspects as well as the management, conditioning and interim storage of radioactive waste are permanent features of the supervisory authority's activities. Within the frame of a new integrated oversight process there is an annual systematic assessment of nuclear safety

  14. France - Convention on Nuclear Safety. Sixth National report for the 2014 review meeting

    International Nuclear Information System (INIS)

    2013-07-01

    The Convention on Nuclear Safety, hereinafter referred to as 'the Convention', is one of the results of international discussions initiated in 1992 in order to contribute to maintaining a high level of nuclear safety worldwide. The convention sets a number of nuclear safety objectives and defines measures to meet them. France signed the Convention on 20 September 1994, the date on which it was opened for signature during the IAEA General Conference, and approved it on 13 September 1995. The Convention entered into force on 24 October 1996. For many years France has been participating actively in international initiatives to enhance nuclear safety. It considers the Convention on Nuclear Safety to be an important instrument for achieving this aim. The areas covered by the Convention have long been part of the French approach to nuclear safety. The purpose of this sixth report, which was drafted pursuant to Article 5 of the Convention and which covers the period 2010 to mid-2013, is to present the measures taken by France in order to fulfil each of its obligations as specified in the said Convention. Since the Convention applies to all nuclear-power generating reactors most of this report is dedicated to the measures taken in order to ensure their safety. However, as in previous reports, France has decided in this sixth report also to present the measures that were taken for all research reactors. First of all, research reactors are actually subject to the same overall regulations as nuclear-power reactors with regard to safety and radiation protection. Then, within the framework of the Joint Convention on the Safety of Spent Fuel Management and the Safety of Radioactive Waste Management, to which France is a Contracting Party, an account was made of the measures taken in those respective fields with regard to research reactors. Lastly, the Board of Governors of the International Atomic Energy Agency (IAEA), of which France is a member, in March 2004 approved the Code

  15. The nuclear safety convention. Results for Argentine as contracting party

    International Nuclear Information System (INIS)

    Caruso, Gustavo

    2002-01-01

    A powerful mechanism for increasing safety worldwide is through the development and adoption of legally binding Safety Conventions. Since 1986 four Conventions were ratified in the areas of Nuclear, Radiation and Waste Safety. The Nuclear Safety Convention establishes an international co-operation mechanism to maintain safety nuclear installations, focused on: to achieve and maintain a high level of nuclear safety worldwide through the enhancement of national measures and international co-operation including, where appropriate, safety-related technical co-operation; to establish and maintain effective defences in nuclear installations against potential radiological hazards in order to protect individuals, society and the environment from harmful effects of ionizing radiation from such installations and to prevent accidents with radiological consequences and to mitigate such consequences should they occur. Each contracting party shall take, within the framework of its national law, the legislative, regulatory and administrative measures and other steps necessary for implementing its obligations under this Convention. Moreover, each contracting parties shall submit for review prior to each review meeting, a National Report on the measures it has taken to implement each of the obligations of the Convention. The contracting parties concluded that the review process had proven to be of great value to their national nuclear safety programmes. (author)

  16. Convention on nuclear safety. Rules of procedure and financial rules

    International Nuclear Information System (INIS)

    1999-01-01

    The document is the first revision of the Rules of Procedures and Financial Rules that apply mutatis mutandis to any meetings of the Contracting Parties to the Convention on Nuclear Safety (INFCIRC/573), convened in accordance with the Chapter 3 of the Convention

  17. Convention on Nuclear Safety. Rules of procedure and financial rules

    International Nuclear Information System (INIS)

    2002-01-01

    The document is the second revision of the Rules of Procedures and Financial Rules that apply mutatis mutandis to any meetings of the Contracting Parties to the Convention on Nuclear Safety (INFCIRC/573), convened in accordance with the Chapter 3 of the Convention

  18. National report of Brazil: nuclear safety convention - September 1998

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    1998-09-01

    This National Report was prepared by a group composed of representatives of the various Brazilian organizations with responsibilities in the field of nuclear safety, aiming the fulfilling the Convention of Nuclear Energy obligations. The Report contains a description of the Brazilian policy and programme on the safety of nuclear installations, and an article by article description of the measures Brazil is undertaking in order to implement the obligations described in the Convention. The last chapter describes plans and future activities to further enhance the safety of nuclear installations in Brazil.

  19. National report of Brazil: nuclear safety convention - September 1998

    International Nuclear Information System (INIS)

    1998-09-01

    This National Report was prepared by a group composed of representatives of the various Brazilian organizations with responsibilities in the field of nuclear safety, aiming the fulfilling the Convention of Nuclear Energy obligations. The Report contains a description of the Brazilian policy and programme on the safety of nuclear installations, and an article by article description of the measures Brazil is undertaking in order to implement the obligations described in the Convention. The last chapter describes plans and future activities to further enhance the safety of nuclear installations in Brazil

  20. The impact of the future Nuclear Safety Convention on the Spanish licensing system

    International Nuclear Information System (INIS)

    Ripol Carulla, S.

    1995-01-01

    The adoption of the 1994 Nuclear Safety Convention should not affect Spanish law. Nevertheless, the coming into force of the Nuclear Safety Convention in Spain will represent an opportunity for Spanish nuclear authorities to clarify one of the aspects of the Spanish nuclear legislation that has become oldfashioned. It would be important to adopt a general rule on nuclear safety which, at the highest level, would clearly establish the prerequisites which have to be fulfilled in order to get a licence as well as the competences of the supervision authorities, including the (criminal and) administrative penalties that can be imposed. (orig./HP)

  1. Second review meeting of the Contracting Parties to the Convention on Nuclear Safety

    International Nuclear Information System (INIS)

    Rafferty, Barbara

    2002-01-01

    The Second Review Meeting of the Contracting Parties to the Convention on Nuclear Safety was held in the Headquarters of the International Atomic Energy Agency in Vienna from 15-26 April 2002, under the chairmanship of the President, Mr Miroslav Gregoric, Director of the Slovenian Nuclear Safety Authority. The Convention on Nuclear Safety entered into force in October 1996, has been signed by sixty-five States and ratified by fifty-four, bringing within its scope 428 of the 448 nuclear reactors worldwide. The Convention aims to achieve and maintain a high level of nuclear safety worldwide, through inter alia enhancement of national measures and international co-operation. Obligations on Contracting Parties in accordance with the Convention include: the establishment and maintenance of a legislative and regulatory framework to govern the safety of land-based civil nuclear installations; the allocation of adequate financial and human resources to support the safety objectives; ensuring that all reasonably practicable improvements to safety are made as a matter of urgency. Adherence to this Convention entails two basic commitments by each Contracting Party: to prepare and make available a national report for review; and to subject its national report to a peer review by the other Contracting Parties. Thus, being a Contracting Party to this Convention involves: including in the national report a self-assessment of steps and measures already taken and in progress to implement the Convention obligations; taking an active part in an open and transparent review of its national report and the Reports of other Contracting Parties; and a commitment to a continuous learning and improving process, something which is a key element of a strong safety culture. The peer review of national reports takes place every three years, the first having been held in 1999. The Second Review Meeting was attended by delegates from 46 contracting parties. During the review certain issues were

  2. France - Convention on Nuclear Safety. Fourth National Report Issued for the 2008 Peer Review Meeting

    International Nuclear Information System (INIS)

    2007-01-01

    The Convention on Nuclear Safety, hereinafter referred to as 'the Convention', is one of the results of international discussions initiated in 1992 with the aim of proposing binding international obligations regarding nuclear safety. France signed the Convention on 20 September 1994, the date on which it was opened for signature during the IAEA's General Conference, and approved it on 13 September 1995. The Convention entered into force on 24 October 1996. For many years France has been participating actively in international initiatives to enhance nuclear safety, and it considers the Convention on Nuclear Safety to be an important instrument for achieving this aim. The areas covered by the Convention have long been part of the French approach to nuclear safety. This report, the fourth of its kind, is issued in compliance with Article 5 of the Convention on Nuclear Safety and presents the measures taken by France to fulfil each of the obligations of the Convention. As such, the Convention on Nuclear Safety applies to nuclear power reactors, and so most of this report deals with measures taken to ensure their safety. However, in this fourth report, as in the third, France has decided to include the measures taken concerning all research reactors, with a graded approach tailored to their size where appropriate. First of all, research reactors are subject to the same general regulations as nuclear power reactors with regard to nuclear safety and radiation protection. Furthermore, the most powerful research reactor also generates electricity. Secondly, in the reports under the Joint Convention on the Safety of Spent Fuel Management and on the Safety of Radioactive Waste Management, to which France is a party, the measures taken for research reactors in these areas have been described. Finally, in March 2004 the IAEA Board of Governors, on which France has a seat, approved the Code of Conduct on the Safety of Research Reactors, which incorporates most of the

  3. Guidelines regarding the Review Process under the Convention on Nuclear Safety

    International Nuclear Information System (INIS)

    2013-01-01

    These Guidelines, established by the Contracting Parties pursuant to Article 22 of the Convention, are intended to be read in conjunction with the text of the Convention. Their purpose is to provide guidance to the Contracting Parties on the process for reviewing National Reports submitted in accordance with Article 5 of the Convention and thereby to facilitate the efficient review of implementation by the Contracting Parties of their obligations under the Convention. The aim of the review process should be to achieve a thorough examination of National Reports submitted in accordance with Article 5 of the Convention, so that Contracting Parties can learn from each other's solutions to common and individual nuclear safety problems and, above all, contribute to improving nuclear safety worldwide through a constructive exchange of views. [fr

  4. Guidelines regarding the Review Process under the Convention on Nuclear Safety

    International Nuclear Information System (INIS)

    2013-01-01

    These Guidelines, established by the Contracting Parties pursuant to Article 22 of the Convention, are intended to be read in conjunction with the text of the Convention. Their purpose is to provide guidance to the Contracting Parties on the process for reviewing National Reports submitted in accordance with Article 5 of the Convention and thereby to facilitate the efficient review of implementation by the Contracting Parties of their obligations under the Convention. The aim of the review process should be to achieve a thorough examination of National Reports submitted in accordance with Article 5 of the Convention, so that Contracting Parties can learn from each other's solutions to common and individual nuclear safety problems and, above all, contribute to improving nuclear safety worldwide through a constructive exchange of views.

  5. Guidelines regarding the Review Process under the Convention on Nuclear Safety

    International Nuclear Information System (INIS)

    2013-01-01

    These Guidelines, established by the Contracting Parties pursuant to Article 22 of the Convention, are intended to be read in conjunction with the text of the Convention. Their purpose is to provide guidance to the Contracting Parties on the process for reviewing National Reports submitted in accordance with Article 5 of the Convention and thereby to facilitate the efficient review of implementation by the Contracting Parties of their obligations under the Convention. The aim of the review process should be to achieve a thorough examination of National Reports submitted in accordance with Article 5 of the Convention, so that Contracting Parties can learn from each other's solutions to common and individual nuclear safety problems and, above all, contribute to improving nuclear safety worldwide through a constructive exchange of views. [es

  6. Guidelines regarding the Review Process under the Convention on Nuclear Safety

    International Nuclear Information System (INIS)

    2011-01-01

    These guidelines, established by the Contracting Parties pursuant to Article 22 of the Convention, are intended to be read in conjunction with the text of the Convention. Their purpose is to provide guidance to the Contracting Parties on the process for reviewing National Reports submitted in accordance with Article 5 and thereby to facilitate the efficient review of implementation by the Contracting Parties of their obligations under the Convention. The aim of the review process should be to achieve a thorough examination of National Reports submitted in accordance with Article 5 of the Convention, so that Contracting Parties can learn from each other's solutions to common and individual nuclear safety problems and, above all, contribute to improving nuclear safety worldwide through a constructive exchange of views [fr

  7. Guidelines regarding the review process under the Convention on Nuclear Safety

    International Nuclear Information System (INIS)

    2002-01-01

    These guidelines, established by the Contracting Parties pursuant to Article 22 of the Convention, are intended to be read in conjunction with the text of the Convention. Their purpose is to provide guidance to the Contracting Parties on the process for reviewing National Reports submitted in accordance with Article 5 and thereby to facilitate the efficient review of implementation by the Contracting Parties of their obligations under the Convention. The aim of the review process should be to achieve a thorough examination of National Reports submitted in accordance with Article 5 of the Convention, so that Contracting Parties can learn from each other's solutions to common and individual nuclear safety problems and, above all, contribute to improving nuclear safety worldwide through a constructive exchange of views

  8. Guidelines regarding the review process under the convention on nuclear safety

    International Nuclear Information System (INIS)

    1998-01-01

    These guidelines, established by the Contracting Parties pursuant to Article 22 of the Convention, are intended to be read in conjunction with the text of the Convention. Their purpose is to provide guidance to the Contracting Parties on the process for reviewing national reports submitted in accordance with Article 5 and thereby to facilitate the efficient review of implementation by the Contracting Parties of their obligations under the Convention. The aim of the review process should be to achieve a thorough examination of national reports submitted in accordance with Article 5 of the Convention, so that Contracting Parties can learn from each other's solutions to common and individual nuclear safety problems and, above all, contribute to improving nuclear safety worldwide through a constructive exchange of views

  9. Guidelines regarding the Review Process under the Convention on Nuclear Safety

    International Nuclear Information System (INIS)

    2011-01-01

    These guidelines, established by the Contracting Parties pursuant to Article 22 of the Convention, are intended to be read in conjunction with the text of the Convention. Their purpose is to provide guidance to the Contracting Parties on the process for reviewing National Reports submitted in accordance with Article 5 and thereby to facilitate the efficient review of implementation by the Contracting Parties of their obligations under the Convention. The aim of the review process should be to achieve a thorough examination of National Reports submitted in accordance with Article 5 of the Convention, so that Contracting Parties can learn from each other's solutions to common and individual nuclear safety problems and, above all, contribute to improving nuclear safety worldwide through a constructive exchange of views

  10. Guidelines regarding the review process under the Convention on Nuclear Safety

    International Nuclear Information System (INIS)

    1999-01-01

    These guidelines, established by the Contracting Parties pursuant to Article 22 of the Convention, are intended to be read in conjunction with the text of the Convention. Their purpose is to provide guidance to the Contracting Parties on the process for reviewing national reports submitted in accordance with Article 5 and thereby to facilitate the efficient review of implementation by the Contracting Parties of their obligations under the Convention. The aim of the review process should be to achieve a thorough examination of national reports submitted in accordance with Article 5 of the Convention, so that Contracting Parties can learn from each other's solutions to common and individual nuclear safety problems and, above all, contribute to improving nuclear safety worldwide through a constructive exchange of views

  11. Guidelines regarding the Review Process under the Convention on Nuclear Safety

    International Nuclear Information System (INIS)

    2011-01-01

    These guidelines, established by the Contracting Parties pursuant to Article 22 of the Convention, are intended to be read in conjunction with the text of the Convention. Their purpose is to provide guidance to the Contracting Parties on the process for reviewing National Reports submitted in accordance with Article 5 and thereby to facilitate the efficient review of implementation by the Contracting Parties of their obligations under the Convention. The aim of the review process should be to achieve a thorough examination of National Reports submitted in accordance with Article 5 of the Convention, so that Contracting Parties can learn from each other's solutions to common and individual nuclear safety problems and, above all, contribute to improving nuclear safety worldwide through a constructive exchange of views [es

  12. Sixth national report of Brazil for the nuclear safety convention

    International Nuclear Information System (INIS)

    2013-01-01

    Brazil has presented periodically its National Report prepared by a group composed of representatives of the various Brazilian organizations with responsibilities related to nuclear safety. Due to the implications of the Fukushima nuclear accident in 2011, an Extraordinary National Report was presented in 2012. This Sixth National Report is an update of the Fifth National Report in relation to the Convention on Nuclear Safety articles and also an update of the Extraordinary Report with respect to the action taken related to lesson learned from the Fukushima accident. It includes relevant information for the period of 2010/2012. This document represents the national report prepared as a fulfillment of the brazilian obligations related to the Convention on Nuclear Safety. In chapter 2 some details are given about the existing nuclear installations. Chapter 3 provides details about the legislation and regulations, including the regulatory framework and the regulatory body. Chapter 4 covers general safety considerations as described in articles 10 to 16 of the Convention. Chapter 5 addresses to the safety of the installations during siting, design, construction and operation. Chapter 6 describes planned activities to further enhance nuclear safety. Chapter 7 presents the final remarks related to the degree of compliance with the Convention obligations

  13. Sixth national report of Brazil for the nuclear safety convention

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    2013-07-01

    Brazil has presented periodically its National Report prepared by a group composed of representatives of the various Brazilian organizations with responsibilities related to nuclear safety. Due to the implications of the Fukushima nuclear accident in 2011, an Extraordinary National Report was presented in 2012. This Sixth National Report is an update of the Fifth National Report in relation to the Convention on Nuclear Safety articles and also an update of the Extraordinary Report with respect to the action taken related to lesson learned from the Fukushima accident. It includes relevant information for the period of 2010/2012. This document represents the national report prepared as a fulfillment of the brazilian obligations related to the Convention on Nuclear Safety. In chapter 2 some details are given about the existing nuclear installations. Chapter 3 provides details about the legislation and regulations, including the regulatory framework and the regulatory body. Chapter 4 covers general safety considerations as described in articles 10 to 16 of the Convention. Chapter 5 addresses to the safety of the installations during siting, design, construction and operation. Chapter 6 describes planned activities to further enhance nuclear safety. Chapter 7 presents the final remarks related to the degree of compliance with the Convention obligations.

  14. France - convention on nuclear safety. Fifth national report for the 2011 peer review meeting

    International Nuclear Information System (INIS)

    2010-01-01

    The Convention on Nuclear Safety, hereinafter referred to as 'the Convention', is one of the results of international discussions initiated in 1992 in order to contribute maintaining a high level of nuclear safety worldwide. The convention aims to propose binding international obligations regarding nuclear safety. France signed the Convention on 20 September 1994, the date on which it was opened for signature during the IAEA's General Conference, and approved it on 13 September 1995. The Convention entered into force on 24 October 1996. For many years France has been participating actively in international initiatives to enhance nuclear safety, and it considers the Convention on Nuclear Safety to be an important instrument for achieving this aim. The areas covered by the Convention have long been part of the French approach to nuclear safety. The purpose of this fifth report, which was drafted pursuant to Article 5 of the Convention on Nuclear Safety, is to present the measures taken by France in order to fulfil each of her obligations as specified in the said Convention. Since the Convention applies to all nuclear-power generating reactors, most of this report is dedicated to the measures taken in order to ensure their safety. However, as in previous reports, France has decided to present also in this fifth report, the measures that were taken for all research reactors, together with a graduated approach, if need be, for taking their size into account. First of all, research reactors are actually submitted to the same overall regulations as nuclear-power reactors with regard to safety and radiation protection. It should be noted that the most powerful French research reactor, called Phenix, which also used to produce electricity, was disconnected from the grid in March 2009, but continued to run an 'ultimate-test programme' until 1 February 2010. Later, in the framework of the Joint Convention on the Safety of Spent Fuel Management and the Safety of Radioactive

  15. Guidelines regarding National Reports under the Convention on Nuclear Safety

    International Nuclear Information System (INIS)

    2013-01-01

    These Guidelines, established by the Contracting Parties pursuant to Article 22 of the Convention on Nuclear Safety (hereinafter called the Convention), are intended to be read in conjunction with the text of the Convention. Their purpose is to provide guidance to the Contracting Parties regarding material that may be useful to include in the National Reports required under Article 5 of the Convention and thereby to facilitate the most efficient review of implementation by the Contracting Parties of their obligations under the Convention.

  16. Effects and practices on nuclear safety convention promoting nuclear safety in China

    International Nuclear Information System (INIS)

    Zhang Wei; Cheng Jianxiu; Chen Maosong

    2010-01-01

    By the means of peer review and self-review, the Contracting Parties are reviewed on obligations under the Convention. In order to implementation these, the State Department established the specific group, under the efforts of departments together, the China fulfilled the obligations successfully. The international society affirmed the good practices on nuclear safety in China, at the same time, they pointed out some fields that China pay close attention to. On the basis of analyzing questions, we point out some aspects which are combined the common questions put forward by the International Atomic Energy Agency on the 4th reviewing meeting that the Chinese government pay close attention to on the next review meeting. Meanwhile, we also put forward some suggestions on how to do better on fulfilling the convention. (authors)

  17. Convention on nuclear safety. Rules of procedure and financial rules

    International Nuclear Information System (INIS)

    1998-01-01

    The document presents the Rules of Procedure and Financial Rules that apply mutatis mutandis to any meeting of the Contracting Parties to the Convention on Nuclear Safety (INFCIRC/449) convened in accordance with Chapter 3 of the Convention. It includes four parts: General provisions, Preparatory process for review meetings, Review meetings, and Amendment and interpretation of rules

  18. Guidelines regarding National Reports under the Convention on Nuclear Safety

    International Nuclear Information System (INIS)

    2011-01-01

    These guidelines, established by the Contracting Parties pursuant to Article 22 of the Convention on Nuclear Safety (hereinafter called the Convention), are intended to be read in conjunction with the text of the Convention. Their purpose is to provide guidance to the Contracting Parties regarding material that it may be useful to include in the National Reports required under Article 5 and thereby to facilitate the most efficient review of implementation by the Contracting Parties of their obligations under the Convention [es

  19. Guidelines regarding National Reports under the Convention on Nuclear Safety

    International Nuclear Information System (INIS)

    2011-01-01

    These guidelines, established by the Contracting Parties pursuant to Article 22 of the Convention on Nuclear Safety (hereinafter called the Convention), are intended to be read in conjunction with the text of the Convention. Their purpose is to provide guidance to the Contracting Parties regarding material that it may be useful to include in the National Reports required under Article 5 and thereby to facilitate the most efficient review of implementation by the Contracting Parties of their obligations under the Convention

  20. Fifth national report of Brazil for the nuclear safety convention

    International Nuclear Information System (INIS)

    2010-01-01

    This Fifth National Report is a new update to include relevant information for the period of 2007/2009. This document represents the national report prepared as a fulfillment of the Brazilian obligations related to the Convention on Nuclear Safety. In chapter 2 some details are given about the existing nuclear installations. Chapter 3 provides details about the legislation and regulations, including the regulatory framework and the regulatory body. Chapter 4 covers general safety considerations as described in articles 10 to 16 of the Convention. Chapter 5 addresses to the safety of the installations during siting, design, construction and operation. Chapter 6 describes planned activities to further enhance nuclear safety. Chapter 7 presents the final remarks related to the degree of compliance with the Convention obligations

  1. Convention on Nuclear Safety. Second National Report, October 2001

    International Nuclear Information System (INIS)

    2001-01-01

    The present document is the second Spanish national report prepared in order to comply with the obligations deriving from the convention on Nuclear Safety, made in Vienna on 20th September 1994. This convention was signed by Spain on 15th October 1994 and ratified by way of an instrument issued by the Ministry of Foreign Affairs, signed by H. M. the King on 19th June 1995. The convention, which entered into force on 24th October 1996, following ratification by a minimum number of countries, as set out in articles 20, 21 and 22 includes 51 countries and Euratom, in addition to Spain. The first review meeting, organised in accordance with chapter 3 of the Convention, was held in vienna in April 1999. Spain was represented by the CSN, the State organisation solely responsible for nuclear safety, both for the drawing up of the national report and for participation in the meeting held between the parties. In accordance with article 21, the second review meeting has been scheduled for April 2002, also in Vienna. At the review meeting, the countries party to the Convention review the national reports required by article 5, Spain submitted its first national report in September 1998. The present document is an update of that first report, and is to be submitted by 15th October 2001, as agreed on during the first review meeting. This report will be reviewed by the interested countries, which will forward their comments and questions. In April 2002, the Spanish report and the questions received will be subjected to the review process contemplated by the convention, along with the reports submitted by the other countries

  2. Analysis of the Convention on Nuclear Safety and Suggestions for Improvement

    International Nuclear Information System (INIS)

    Choi, K. S.; Viet, Phuong Nguyen

    2013-01-01

    The innovative approach of the Convention, which is based on incentive after than legal binding, had been considered successful in strengthening the nuclear safety worldwide. However, the nuclear accident at the Fukushima Dai-ichi Nuclear Power Plant (Japan) in March 2011 has exposed a number of weaknesses of the Convention. Given that context, this paper will analyse the characteristics of the CNS in order to understand the advantages and disadvantages of the Convention, and finally to suggest some possible improvements. The analysis in this paper shows that the incentive approach of the CNS has succeeded in facilitating the active roles of its Contracting Parties in making the National Reports and participating in the peer review of these reports. However, the incoherent quality of the National Reports, the different level of participation in the peer review process by different Contracting Parties, and the lack of transparency of the peer review have undermined the effectiveness of the Convention in strengthening the international safety regime as well as preventing serious regulatory errors that had happened in Japan before the Fukushima accident. Therefore, the peer review process should be reformed into a more transparent and independent direction, while an advisory group of regulators within the CNS might also be useful in improving the effectiveness of the Convention as already proven by the good practice in the European Union. Only with such effective change, the CNS can maintain its pivotal role in the international safety regime

  3. National report of the Slovak Republic. Compiled in terms of the convention on nuclear safety. May 2007

    International Nuclear Information System (INIS)

    Balaj, J.; Konecny, L.; Rovny, J.; Metke, E.; Zemanova, D.; Turner, M.; Pospisil, M.; Jurina, V.; Rivny, I.; Soltes, L.; Petrik, T.; Petrovic, J.; Fazekasova, H.; Kobzova, D.; Trcka, T.; Maudry, J.; Betak, A.; Capkovic, J.

    2007-05-01

    A brief national safety report of the Slovak Republic compiled in terms of the joint convention on nuclear safety in 2007 is presented. This safety report consists of following chapters: (1) Introduction; (2) Nuclear installations in the Slovak Republic in terms of the Convention; (C) Scope of application; (3) Legislation and regulation; (4) General safety aspects; (5) Safety of nuclear installations in Slovakia; (6) Annexes

  4. Sweden's second national report under the Convention on nuclear safety. Swedish implementation of the obligations of the Convention

    International Nuclear Information System (INIS)

    2001-01-01

    The National Reports to the Review Meetings according to Article 5 of the Convention call for a self-assessment of each Contracting Party with regard to compliance with the obligations of the Convention. For Sweden this self-assessment has demonstrated full compliance with all the obligations of the Convention, as shown in detail in part B of this National Report. Sweden wishes to emphasise the incentive character of the Convention. In the opinion of Sweden, the Convention implies a commitment to continuous learning from experience and a proactive approach to safety improvement. Therefore, Sweden has found it important that a National Report highlights strong features in national nuclear practices as well as areas where special attention to the further development are needed. Since the first report to the Convention was issued, three major events have been experienced in the Swedish nuclear programme: Phase out of nuclear power started by the closing of one unit of a twin unit plant on 30 November 1999. The full effects of deregulation of the electricity market have been experienced. Together with increasing taxes on nuclear power, this has strongly affected the production economy of the nuclear industry resulting in efforts to reduce production costs and leaving less room for investments. The new general safety regulations came into force 1 July 1999, resulting in a more structured approach to inspection and safety assessment. These changes have created new challenges for the safety work of the licensees as well as for the regulatory bodies during the last three years. However, the generally positive impression reported to the first review meeting under the Convention still stands. Therefore, Sweden would like to point out the following as strong features in its national nuclear practice: The responsibility for safety is very well defined in the Swedish legal framework. In order not to dilute the responsibility of the licence holders, the Swedish regulations are

  5. Considerations about the impact of the Convention on Nuclear Safety on the regulatory action of the CNEN in Brazilian nuclear power plants

    International Nuclear Information System (INIS)

    Camargo, Claudio; Pontedeiro, Auro

    1995-01-01

    Preliminary discussion is conducted about the impact of the terms of the Convention on Nuclear safety, adopted by Diplomatic Conference in September 1994 in the International Atomic Energy Agency, on the regulatory action of Brazilian Nuclear Regulatory Body - CNEN. Following the Convention articles structure, the paper emphasizes technical aspects of the nuclear safety standards adopted in the licensing process of Brazilian Nuclear Power Plants. The recent experience in the issuance of Angra-1 NPP Permanent Operation Authorization is used to demonstrate that current safety standards in Brazil are in compliance with the international compromises and in agreement with what is expected by the so called Safety Culture. (author). 9 refs

  6. France - Convention on nuclear safety. Fourth national report established in view of the 2008 examination meeting

    International Nuclear Information System (INIS)

    2007-07-01

    This report is the fourth one established in compliance with the article 5 of the international Convention on nuclear safety, and presents measures implemented by France to meet each of the Convention requirements. It addresses electro-nuclear reactors as well as research reactors. After an overview of the main evolutions since the third French report, and a general presentation of the French national nuclear policy, the report addresses the different articles of the Convention. These articles deal with general arrangements (application arrangements, presentation of reports, existing nuclear installations with their safety assessments and main safety improvements brought to the different nuclear reactors), law and regulation (legal and regulatory framework, regulation bodies, responsibility of an authorization holder), general safety considerations (priority for safety, human and financial resources, human factors, quality insurance, safety assessment and verification, radiation protection, organisation in case of emergency), and installation safety (site selection, design and construction, exploitation, activities planned to improve safety). Appendices propose a list and locations of French nuclear reactors, a list of the main legal and regulatory texts, presentations of nuclear reactor operators (EDF, CEA, ILL), and an overview of practices of control of the environment

  7. Second Meeting for Evaluation of the Nuclear Safety Convention

    International Nuclear Information System (INIS)

    2002-01-01

    This report presents the results of the Second Meeting for Evaluation of the Nuclear Safety Convention. the CSN. as the only competent Government organism on nuclear safety, represented Spain in the preparation of the national report and at the Review Meeting, acquiring a set of obligations for the next three years, until the holding of third meeting. (Author)

  8. Announcement of the Ministry of Foreign Affairs of the Slovak Republic. Convention on nuclear safety

    International Nuclear Information System (INIS)

    1997-01-01

    Ministry of Foreign Affairs of the Slovak Republic has been announcemented that from September 20, 1994 up to acquirement of its validity was opened in Vienna for signature Convention on nuclear safety. Instead of Slovak Republic the convention September 20, 1994 was signed. National Council of the Slovak Republic with the convention expressed the consent by its resolution No. 75 from January 25, 1995 and the president of the Slovak Republic February 23, 1995 its ratified. Ratification document at the depository of this convention was deposited, the director general of the International Agency for Atomic Energy, March 7, 1995. The validity of the Convention October 24, 1996, on the article section 1, was acquired. The text of the Convention on nuclear safety continued [sk

  9. Second national report of Brazil for the nuclear safety convention - September 2001

    International Nuclear Information System (INIS)

    2001-09-01

    This National Report was prepared by a group composed of representatives of the various Brazilian organizations with responsibilities in the field of nuclear safety, aiming the fulfilling the Convention of Nuclear Energy obligations. The Report contains a description of the Brazilian policy and programme on the safety of nuclear installations, and an article by article description of the measures Brazil is undertaking in order to implement the obligations described in the Convention. The chapter 6 describes plans and future activities to further enhance the safety of nuclear installations in Brazil

  10. Second national report of Brazil for the nuclear safety convention - September 2001

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    2001-09-01

    This National Report was prepared by a group composed of representatives of the various Brazilian organizations with responsibilities in the field of nuclear safety, aiming the fulfilling the Convention of Nuclear Energy obligations. The Report contains a description of the Brazilian policy and programme on the safety of nuclear installations, and an article by article description of the measures Brazil is undertaking in order to implement the obligations described in the Convention. The chapter 6 describes plans and future activities to further enhance the safety of nuclear installations in Brazil.

  11. Convention on Nuclear Safety. Second national report on the implementation by france of the obligations of the Convention

    International Nuclear Information System (INIS)

    2001-09-01

    The first national report on the implementation by france of the obligation under the Convention is structured along its Articles. the french Nuclear safety Authority ensured the co ordination of the report, with contributions from other regulators and nuclear operators. this report was distributed at the middle of April 2003 to the other Contracting party (on 3 november to 14, 2003 at the IAEA headquarters. (author)

  12. Fourth national report of Brazil for the nuclear safety convention. Sep. 2007

    International Nuclear Information System (INIS)

    2007-09-01

    This Fourth National Report of Brazil is a new update to include relevant information of the period of 2004-2007. This document represents the national report prepared as a fulfillment of the brazilian obligations related to the Convention on Nuclear Safety. In chapter 2 some details are given about the existing nuclear installations. Chapter 3 provides details about the legislation and regulations, including the regulatory framework and the regulatory body. Chapter 4 covers general safety considerations as described in articles 10 to 16 of the Convention. Chapter 5 addresses to the safety of the installations during siting, design, construction and operation. Chapter 6 describes planned activities to further enhance nuclear safety. Chapter 7 presents the final remarks related to the degree of compliance with the Convention obligations

  13. Fourth national report of Brazil for the nuclear safety convention. Sep. 2007

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    2007-09-15

    This Fourth National Report of Brazil is a new update to include relevant information of the period of 2004-2007. This document represents the national report prepared as a fulfillment of the brazilian obligations related to the Convention on Nuclear Safety. In chapter 2 some details are given about the existing nuclear installations. Chapter 3 provides details about the legislation and regulations, including the regulatory framework and the regulatory body. Chapter 4 covers general safety considerations as described in articles 10 to 16 of the Convention. Chapter 5 addresses to the safety of the installations during siting, design, construction and operation. Chapter 6 describes planned activities to further enhance nuclear safety. Chapter 7 presents the final remarks related to the degree of compliance with the Convention obligations

  14. Implementation of the obligations of the Convention on Nuclear Safety. The first Swiss report in accordance with Article 5

    International Nuclear Information System (INIS)

    1998-09-01

    This report is issued according to Article 5 of the International Convention on Nuclear Safety. It has been produced by the Swiss Federal Nuclear Safety Inspectorate. Before submission to the Federal Department of Environment, Transport, Energy and Communication, the report has been commented by the Federal Office of Energy (BFE/OFEN), the Swiss Federal Nuclear Safety Commission (KSA/CSA), and the Swiss nuclear power plants of Beznau, Leibstadt and Muehleberg. The Goesgen nuclear power plant has chosen not to comment on the report. The introduction to the report provides general information about Switzerland, a brief political history of nuclear power and an overview of the nuclear facilities in Switzerland. In the subsequent sections, numbered after the Articles 6 to 19 of the Convention on Nuclear Safety, key aspects are commented on in such a way as to give a clear indication on how the various duties imposed by the Convention are fulfilled in Switzerland

  15. Implementation of the obligations of the Convention on Nuclear Safety. The first Swiss report in accordance with Article 5

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    1998-09-01

    This report is issued according to Article 5 of the International Convention on Nuclear Safety. It has been produced by the Swiss Federal Nuclear Safety Inspectorate. Before submission to the Federal Department of Environment, Transport, Energy and Communication, the report has been commented by the Federal Office of Energy (BFE/OFEN), the Swiss Federal Nuclear Safety Commission (KSA/CSA), and the Swiss nuclear power plants of Beznau, Leibstadt and Muehleberg. The Goesgen nuclear power plant has chosen not to comment on the report. The introduction to the report provides general information about Switzerland, a brief political history of nuclear power and an overview of the nuclear facilities in Switzerland. In the subsequent sections, numbered after the Articles 6 to 19 of the Convention on Nuclear Safety, key aspects are commented on in such a way as to give a clear indication on how the various duties imposed by the Convention are fulfilled in Switzerland.

  16. The IAEA nuclear safety conventions: an example of successful ''treaty management''?

    International Nuclear Information System (INIS)

    Handl, G.

    2003-01-01

    The nuclear safety conventions represent an advance in bringing national nuclear power activities within the ambition of international legal safety norms. They introduce a novel measure of international legal accountability for the safety of commercial nuclear power operations. But whether this system represents a successful example of treaty management defies an easy answer. Certainly, it is beyond doubt that the peer review process combines aspects of law application(enforcement/control of implementation and compliance) with lawmaking. The nuclear safety convention bear the characteristics of a political compromise that affects effectiveness. For the time being it remains unclear whether this compromise will prove acceptable in the long run or how the tension between the two contending perspectives is likely to resolve itself. (N.C.)

  17. Second national report of Brazil for the nuclear safety convention - introduction

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    2001-09-01

    This document was prepared for fulfilling the Brazilian obligations under the Convention on Nuclear Safety. Chapter 1 presents some historical aspects of the Brazilian nuclear policy, targets to be attained for increasing the nuclear energy contribution for the national production of electric energy.

  18. Second national report of Brazil for the nuclear safety convention - introduction

    International Nuclear Information System (INIS)

    2001-01-01

    This document was prepared for fulfilling the Brazilian obligations under the Convention on Nuclear Safety. Chapter 1 presents some historical aspects of the Brazilian nuclear policy, targets to be attained for increasing the nuclear energy contribution for the national production of electric energy

  19. Sweden's third national report under the the Convention on Nuclear Safety. Swedish implementation of the obligations of the Convention

    International Nuclear Information System (INIS)

    2004-01-01

    The national reports to the review meetings according to Article 5 of the Convention call for a self-assessment of each Contracting Party with regard to compliance with the obligations of the Convention. For Sweden this self-assessment has demonstrated full compliance with all the obligations of the Convention, as shown in detail in part B of this national report. There is an open and constructive dialogue between the regulatory bodies and the licensees. The owner companies are well established with good corporate financial records. They demonstrate a commitment to maintain a high level of safety in their nuclear power plants. Not withstanding the increased competition, the licensees continue to co-operate in solving important safety issues. The regulators in Sweden are assessed as well qualified for their tasks and their resources have been maintained. The international co-operation networks of both regulators and utilities are well developed. From the safety and environmental impact point of view, the Swedish nuclear power plants are competitive internationally. However, Sweden would like to point out the following issues, where further development should be given special attention in relation to the obligations under the Convention: The compatibility of the Act on Nuclear Activities with the Environmental Code needs to be followed up in order to assure that the licensing process is fully consistent. The future supply of radiation protection specialists needs to be further investigated and measures may need to be taken, as has been done to ensure the supply or nuclear safety specialists. The ongoing concentration of vendors and service companies needs to be assessed, from the safety and availability point of view, and the licensees may need to implement their own joint solutions if the market can not supply the necessary services at acceptable conditions. The operating organisations need to assess their consolidation after several organisational changes following

  20. 3. French national report on implementation of the obligations of the Convention on nuclear safety - Issued for the 2005 Peer review meeting

    International Nuclear Information System (INIS)

    2004-01-01

    The Convention on Nuclear Safety, hereinafter referred to as 'the Convention', is one of the results of international discussions initiated in 1992 with the aim of proposing binding international obligations regarding nuclear safety. France signed the Convention on 20 September 1994, on the first day it was opened for signature on the occasion of the General Conference of the IAEA. France approved the Convention on 13 September 1995 and it entered into force on 24 October 1996. For many years, France has been participating in international initiatives to enhance nuclear safety and considers the Convention on Nuclear Safety to be an important step in this direction. The areas covered by the Convention have long been part of the French approach to nuclear safety. This report, the third one of its kind, is issued in compliance with Article 5 of the Convention on Nuclear Safety and presents the measures taken by France to meet each of the obligations of the Convention. As such, the Convention on Nuclear Safety applies to nuclear power reactors and so most of this report deals with measures taken to ensure their safety. However, for this third report, a number of considerations led France also to present the measures taken concerning all research reactors, with a 'graded approach' tailored to their size where appropriate. First of all, research reactors are subject to the same general regulations as power reactors with regard to nuclear safety and radiation protection. Furthermore, the most powerful research reactor, which is also intended for producing power, was already included in the previous French report. Secondly, within the first report under the Joint Convention on the safety of spent fuel management and on the safety of radioactive waste management, to which France is a party, the measures taken for research reactors in these areas were already presented. Finally the IAEA Board of Governors, on which France has a seat, in March 2004 approved the Code of

  1. National nuclear safety report 2005. Convention on nuclear safety

    International Nuclear Information System (INIS)

    2006-01-01

    This National Nuclear Safety Report was presented at the 3rd. Review meeting. In general the information contained in the report are: Highlights / Themes; Follow-up from 2nd. Review meeting; Challenges, achievements and good practices; Planned measures to improve safety; Updates to National report to 3rd. Review meeting; Questions from peer review of National Report; and Conclusions

  2. Sweden's fourth national report under the Convention on Nuclear Safety. Swedish implementation of the obligations of the Convention

    International Nuclear Information System (INIS)

    2007-01-01

    The national reports to the review meetings according to Article 5 of the Convention call for a self-assessment of each Contracting Party with regard to compliance with the obligations of the Convention. For Sweden this self-assessment has demonstrated compliance with all the obligations of the Convention, as shown in part B of this national report. The Swedish existing nuclear power programme is currently under strong development since a few years. Large amounts are being invested in the 10 remaining operating reactors to prepare for long term operation. The licensees as well as the regulatory bodies have also been challenged over the last years by events, especially the Forsmark event in July 2006, demonstrating the importance of having strong safety management in place and maintaining of a vital safety culture. Of particular importance is not only to develop good formal management systems, but also to monitor and follow up how the systems function in the daily work at the plants. The need for this attention is reinforced by the major programmes going on during a limited time period to upgrade and uprate the plants. These programmes will require a full effort of the operating organisations as well as of the regulatory bodies. An additional challenge is, during the same time period, to manage the transfer of knowledge to a new generation of engineers and specialists. A large number of key staff is due to retire within the next 10 years. The generally positive impression reported to earlier review meetings under the Convention still stands. Therefore, Sweden would like to point out the following as strong features in its national nuclear practice: The Swedish legal framework is well developed and the responsibility for safety is very well defined. The nuclear law also provides for public insight into the activities of the licensees. The regulatory bodies have maintained and increased their resources and are further developing their regulatory practices. There is an

  3. National report of the Slovak Republic compiled according to the terms of the convention on nuclear safety

    International Nuclear Information System (INIS)

    Adamovsky, V.; Betak, A.; Balaj, J.; Bystricka, S.; Grebeciova, J.; Husarcek, J.; Metke, E.; Pospisil, M.; Smrtnik, I.; Turner, M.; Uhrik, P.; Zemanova, D.; Bulla, R.; Filip, A.; Jurina, V.; Sedlak, M.; Tomek, J.; Zimermann, M.

    2013-06-01

    A brief safety report of the Slovak Republic in 2013 is presented. A account of activities carried out by the Nuclear Regulatory Authority of the Slovak Republic (UJD) is presented. These activities are reported under the headings: (1) Introduction; (2) Nuclear installations in Slovak Republic in terms of the convention; (3) Legislation and regulation; (4) General safety aspects; (5) Safety of nuclear installations in the Slovak Republic; ((6) Annexes; (6.1) List of nuclear installations and technical and economic indicators; (6.2) Selected generally binding legal regulations and safety guidelines in relation to nuclear and radiation safety; (6.3) List of selected national and international documents applicable to safety of nuclear installations; (6.4) Limits for radioactive discharges; (6.5) IAEA Action Plan on Nuclear Safety; (6.6) Team of authors.

  4. Convention on supplementary compensation for nuclear damage

    International Nuclear Information System (INIS)

    Chinese Nuclear Society, Beijing; U.S. Nuclear Energy Institute

    2000-01-01

    The Contracting parties recognize the importance of the measures provided in the Vienna Convention on Civil Liability for Nuclear Damage and the Paris Convention on Third party liability in the Field of Nuclear Energy as well as in national legislation on compensation for nuclear damage consistent with the principles of these conventions. The Contracting parties desire to establish a worldwide liability regime to supplement and enhance these measures with a view to increasing the amount of compensation for nuclear damage and encourage regional and global co-operation to promote a higher level of nuclear safety in accordance with the principle of international partnership and solidarity

  5. The role of nuclear law in nuclear safety after Fukushima

    International Nuclear Information System (INIS)

    Cardozo, Diva E. Puig

    2013-01-01

    The paper contains the following topics: nuclear law, origin and evolution, role of the legal instruments on nuclear safety, nuclear safety the impact of major nuclear accidents: Chernobyl and Fukushima. The response of the nuclear law post Fukushima. Safety and security. International framework for nuclear safety: nuclear convention joint convention on safety on spent fuel management and on the safety of radioactive waste management. The Fukushima World Conference on Nuclear Safety. Convention on Prompt Notification and Assistance in case of a Nuclear Accident or Radiological Emergency. Plan of Action for Nuclear Safety. IAEA recommendations for the safety transport of radioactive material. International framework for nuclear security. Convention on the Physical Protection of Nuclear Materials. International Convention for the Suppression of Acts Against Nuclear Terrorism. Resolution No. 1540 of the Security Council of United Nations (2004). Measures to strengthen international safety. Code of conduct on the safety research reactor

  6. An international nuclear safety regime

    International Nuclear Information System (INIS)

    Rosen, M.

    1995-01-01

    For all the parties involved with safe use of nuclear energy, the opening for signature of the 'Convention on Nuclear Safety' (signed by 60 countries) and the ongoing work to prepare a 'Convention on Radioactive Waste Safety' are particularly important milestones. 'Convention on Nuclear Safety' is the first legal instrument that directly addresses the safety of nuclear power plants worldwide. The two conventions are only one facet of international cooperation to enhance safety. A review of some cooperative efforts of the past decades, and some key provisions of the new safety conventions, presented in this paper, show how international cooperation is increasing nuclear safety worldwide. The safety philosophy and practices involved with legal framework for the safe use of nuclear power will foster a collective international involvement and commitment. It will be a positive step towards increasing public confidence in nuclear power

  7. Results of 6th Review Meeting and Perspective of the 7th Review Meeting of the Convention on Nuclear Safety

    International Nuclear Information System (INIS)

    Lee, Sukho; Kim, Manwoong; You, Jeongwon; Lee, Youngeal

    2017-01-01

    This paper highlighted the objective and role of the Convention on Nuclear Safety organized by the IAEA. The Convention provides Member States to demonstrate and share how to maintain and improve the level of nuclear safety. The results of the 6 th review meeting were implemented for safety improvements and to prepare for 7 th national report. Seven and a half months before the 7 th Review Meeting, the National Report has submitted on steps and measures taken to implement Convention obligations. The Contracting Parties reviewed each other’s reports, and exchanged written questions, written answers and comments. The discussions in the Country Group sessions were generally good with a lively and frank exchange of information. The Country Groups noted the significant measures taken by Contracting Parties to improve nuclear safety and identified a number of good practices to be shared with all Contracting Parties.

  8. The specific tasks of RF TSO - FSUE VO 'Safety', related with Implementation of obligations under the Convention on Nuclear Safety

    International Nuclear Information System (INIS)

    Potapov, V.; Kuznetsov, M.; Kapralov, E.

    2010-01-01

    It was more than 20 years ago that IAEA discussed the issue pertaining to the need in scientific and engineering support to the regulatory body. The Convention on Nuclear Safety being the keystone in assurance of the global nuclear safety and security regime was adopted in 1994. It is pointed out that two independent organizations supervised by Rostechnadzor have been established within the Russian TSO system, FSUE VO 'Safety' being one of them. The tasks of the organization comprise obligatory certification of equipment as well as acceptance of equipment before its delivery to the NPP both in Russia and in the countries constructing the power units based on the Russian designs. The acceptance procedure has been set forth in the new Russian document at the level of the federal rules and regulations for nuclear safety assurance. As far as its implementation decision is concerned, a task for selection and training of personnel has been set and allocated on the Training and Methodological Center of Nuclear and Radiation Safety established with the support of FSUE VO 'Safety', which provides training programmes and specific lecture courses in the wide range of the relevant topics. (author)

  9. Statement to Second Extraordinary Meeting of Contracting Parties to Convention on Nuclear Safety, 27 August 2012, Vienna, Austria

    International Nuclear Information System (INIS)

    Amano, Y.

    2012-01-01

    Full Text: I am pleased to address this Second Extraordinary Meeting of the Contracting Parties to the Convention on Nuclear Safety. This important meeting will be closely watched by the global nuclear community. I know you will make good use of this opportunity to consider further measures to strengthen nuclear safety throughout the world in the light of the lessons which we are still learning from the Fukushima Daiichi accident. One year after the adoption of the IAEA Action Plan on Nuclear Safety, significant progress has been made in several key areas. These include the assessment of safety vulnerabilities of nuclear power plants, strengthening IAEA peer review services, improving emergency preparedness and response capabilities and reviewing IAEA safety standards. Your work this week will address the request to Contracting Parties, expressed in the Action Plan, to explore mechanisms to enhance the effective implementation of Safety Conventions and to consider proposals to amend the Convention on Nuclear Safety. You will recall that last year's Ministerial Declaration stressed 'the importance of universal adherence to, and the effective implementation and continuous review of, the relevant international instruments on nuclear safety'. The Action Plan encouraged Member States to work cooperatively to maximize the lessons learned from the Fukushima Daiichi accident and to produce concrete results as soon as possible. The IAEA has reported periodically to Member States about its work to implement the Action Plan. We have also organised a number of international expert meetings to analyse technical aspects of the accident and ensure that the right lessons are learned. The results of this Extraordinary Meeting will provide an important input to future considerations of implementation of the Action Plan. Our Member States will review implementation at the Agency's 56th General Conference next month, while the Fukushima Ministerial Conference on Nuclear Safety in

  10. Implementation of the obligations of the Convention on Nuclear Safety CNS - Switzerland’s seventh national report to the Convention on Nuclear Safety

    International Nuclear Information System (INIS)

    2016-07-01

    In the aftermath of the Fukushima Daiichi accident in 2011, the Swiss government decided to phase out nuclear energy. Existing plants will continue to operate as long as they are considered safe by the Swiss Federal Nuclear Safety Inspectorate (ENSI) and as long as they fulfil all legal and regulatory requirements in this respect. In Switzerland, on-going activities regarding safety assessment of the different stages in the lifetime of nuclear installations consist of periodic assessments and assessments of long-term operation for existing Swiss nuclear power plants (NPPs). Assessments of long-term operation have been performed for two Swiss NPPs (Beznau and Muehleberg) which have been in commercial operation for over 40 years. A detailed examination demonstrated that the conditions for taking a NPP out of service have not yet been reached and will not be reached by these two plants within the next 10 years. Nevertheless, it is mandatory to continue with the scheduled ageing management, maintenance and backfitting activities. In late 2013, BKW Energy Ltd announced that Muehleberg NPP will be decommissioned at the end of 2019. The plant will shut down on December 20 th , 2019.The single 373 MWe boiling water reactor began operating in 1972. It will be the first Swiss nuclear power plant to be decommissioned. The preparatory work for decommissioning is well under way. In April 2015, a follow-up mission was conducted by the Integrated Regulatory Review Service in Switzerland. The Swiss government should give ENSI the ability to issue legally binding technical safety requirements and license conditions concerning nuclear safety, nuclear security and radiation safety. A follow-up mission by the Operational Safety Review Team on the Muehleberg NPP was completed in June 2014. Switzerland participated in the European Stress Test and its follow-up activities. During 2014, the necessary measures to achieve continuous improvement in the supervisory culture were defined. The

  11. Implementation of the obligations of the Convention on Nuclear Safety CNS - Switzerland’s seventh national report to the Convention on Nuclear Safety

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    2016-07-15

    In the aftermath of the Fukushima Daiichi accident in 2011, the Swiss government decided to phase out nuclear energy. Existing plants will continue to operate as long as they are considered safe by the Swiss Federal Nuclear Safety Inspectorate (ENSI) and as long as they fulfil all legal and regulatory requirements in this respect. In Switzerland, on-going activities regarding safety assessment of the different stages in the lifetime of nuclear installations consist of periodic assessments and assessments of long-term operation for existing Swiss nuclear power plants (NPPs). Assessments of long-term operation have been performed for two Swiss NPPs (Beznau and Muehleberg) which have been in commercial operation for over 40 years. A detailed examination demonstrated that the conditions for taking a NPP out of service have not yet been reached and will not be reached by these two plants within the next 10 years. Nevertheless, it is mandatory to continue with the scheduled ageing management, maintenance and backfitting activities. In late 2013, BKW Energy Ltd announced that Muehleberg NPP will be decommissioned at the end of 2019. The plant will shut down on December 20{sup th}, 2019.The single 373 MWe boiling water reactor began operating in 1972. It will be the first Swiss nuclear power plant to be decommissioned. The preparatory work for decommissioning is well under way. In April 2015, a follow-up mission was conducted by the Integrated Regulatory Review Service in Switzerland. The Swiss government should give ENSI the ability to issue legally binding technical safety requirements and license conditions concerning nuclear safety, nuclear security and radiation safety. A follow-up mission by the Operational Safety Review Team on the Muehleberg NPP was completed in June 2014. Switzerland participated in the European Stress Test and its follow-up activities. During 2014, the necessary measures to achieve continuous improvement in the supervisory culture were defined

  12. National report of the Slovak Republic. Compiled in terms of the convention on nuclear safety. September 2004

    International Nuclear Information System (INIS)

    Balaj, J.; Jurina, V.; Kasana, A.

    2004-09-01

    A brief national safety report of the Slovak Republic in 2004 is presented. A account of activities carried out by the Nuclear Regulatory Authority of the Slovak Republic (UJD) is presented. These activities are reported under the headings: (1) Introduction; (2) Nuclear installations in Slovakia according to the convention; (3) Legislation and regulation; (4) General safety aspects; (5) Safety of nuclear installations in Slovakia; (6) Annexes: 6.1 List of nuclear installations and technical and economic parameters; 6.2 Some generally binding legal documents concerning nuclear and radiation safety; 6.3 Limits of radioactive discharges; 6.4 Author team. Contents, list of abbreviations used as well as reference index are included

  13. Convention on nuclear safety. Signature, ratification, acceptance, approval or accession. Status as of 17 March 1997

    International Nuclear Information System (INIS)

    1997-01-01

    The document presents the status as of 17 March 1997 of signature, ratification, acceptance, approval or accession by Member States of the Convention on Nuclear Safety adopted on 17 June 1994 by the Diplomatic Conference convened by the IAEA at its Headquarters between 14-17 June 1994. The Convention entered into force on 24 October 1996. There are 65 signatories and 35 parties. Reservations/declarations deposited upon signature are also included

  14. Differences in safety margins between nuclear and conventional design standards with regards to seismic hazard definition and design criteria

    International Nuclear Information System (INIS)

    Elgohary, M.; Saudy, A.; Orbovic, N.; Dejan, D.

    2006-01-01

    With the surging interest in new build nuclear all over the world and a permanent interest in earthquake resistance of nuclear plants, there is a need to quantify the safety margins in nuclear buildings design in comparison to conventional buildings in order to increase the public confidence in the safety of nuclear power plants. Nuclear (CAN3-N289 series) and conventional (NBCC 2005) seismic standards have different approaches regarding the design of civil structures. The origin of the differences lays in the safety philosophy behind the seismic nuclear and conventional standards. Conventional seismic codes contain the minimal requirement destined primarily to safeguard against major structural failure and loss of life. It doesn't limit damage to a certain acceptable degree or maintain function. Nuclear seismic code requires that structures, systems and components important to safety, withstand the effects of earthquakes. The requirement states that for equipment important to safety, both integrity and functionality should be ascertained. The seismic hazard is generally defined on the basis of the annual probability of exceedence (return period). There is a major difference on the return period and the confidence level for design earthquakes between the conventional and the nuclear seismic standards. The seismic design criteria of conventional structures are based on the use of Force Modification Factors to take into account the energy dissipation by incursion in non-elastic domain and the reserve of strength. The use of such factors to lower intentionally the seismic input is consistent with the safety philosophy of the conventional seismic standard which is the 'non collapse' rather than the integrity and/or the operability of the structures or components. Nuclear seismic standard requires that the structure remain in the elastic domain; energy dissipation by incursion in non-elastic domain is not allowed for design basis earthquake conditions. This is

  15. Implementation of the obligations of the convention on nuclear safety. Fifth Swiss report in accordance with Article 5

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    2010-07-15

    Switzerland signed the Convention on Nuclear Safety (CNS). In accordance with Article 5 of CNS, Switzerland has submitted 4 country reports for Review Meetings of Contracting Parties. This 5{sup th} report by the Swiss Federal Nuclear Safety Inspectorate (ENSI) provides an update on compliance with CNS obligations. The report attempts to give appropriate consideration to issues that aroused particular interest at the 4{sup th} Review Meeting. It starts with general political information on Switzerland, a brief history of nuclear power and an overview of Swiss nuclear facilities. This is followed by a comprehensive overview of the status of nuclear safety in Switzerland (as of July 2010) which indicates how Switzerland complies with the key obligations of the Convention. ENSI updated a substantial proportion of its guidelines which are harmonised with the safety requirements of the Western European Nuclear Regulators Association (WENRA) based on IAEA Safety Standards. On 1{sup st} January 2009, ENSI became formally independent of the Swiss Federal Office of Energy. It is now a stand-alone organisation controlled by its own management board. Switzerland recently started a process to select a site for the disposal of radioactive waste in deep geological formations. The first generation of NPPs in Switzerland has been the subject of progressive back-fitting. The second generation of NPPs incorporated various safety and operating improvements in their initial design. All Swiss NPPs have undergone the safety review process required under the Convention and have incorporated the improvements identified in the respective safety review reports. The Swiss policy of continuous improvements to NPPs ensures a high level of safety. The legislation and regulatory framework for nuclear installations is well established. It provides the formal basis for the supervision and the continuous improvement of nuclear installations. The Nuclear Energy Act and its ordinance came into force

  16. Implementation of the obligations of the convention on nuclear safety. Fifth Swiss report in accordance with Article 5

    International Nuclear Information System (INIS)

    2010-07-01

    Switzerland signed the Convention on Nuclear Safety (CNS). In accordance with Article 5 of CNS, Switzerland has submitted 4 country reports for Review Meetings of Contracting Parties. This 5 th report by the Swiss Federal Nuclear Safety Inspectorate (ENSI) provides an update on compliance with CNS obligations. The report attempts to give appropriate consideration to issues that aroused particular interest at the 4 th Review Meeting. It starts with general political information on Switzerland, a brief history of nuclear power and an overview of Swiss nuclear facilities. This is followed by a comprehensive overview of the status of nuclear safety in Switzerland (as of July 2010) which indicates how Switzerland complies with the key obligations of the Convention. ENSI updated a substantial proportion of its guidelines which are harmonised with the safety requirements of the Western European Nuclear Regulators Association (WENRA) based on IAEA Safety Standards. On 1 st January 2009, ENSI became formally independent of the Swiss Federal Office of Energy. It is now a stand-alone organisation controlled by its own management board. Switzerland recently started a process to select a site for the disposal of radioactive waste in deep geological formations. The first generation of NPPs in Switzerland has been the subject of progressive back-fitting. The second generation of NPPs incorporated various safety and operating improvements in their initial design. All Swiss NPPs have undergone the safety review process required under the Convention and have incorporated the improvements identified in the respective safety review reports. The Swiss policy of continuous improvements to NPPs ensures a high level of safety. The legislation and regulatory framework for nuclear installations is well established. It provides the formal basis for the supervision and the continuous improvement of nuclear installations. The Nuclear Energy Act and its ordinance came into force in 2005

  17. Joint Convention on the Safety of Spent Fuel Management and on the Safety of Radioactive Waste Management. Fourth National Report on Compliance with the Joint Convention Obligations. France

    International Nuclear Information System (INIS)

    2011-09-01

    The Joint Convention on the Safety of Spent Fuel Management and the Safety of Radioactive Waste Management, hereinafter referred to as the 'Joint Convention', is the result of international discussions that followed the adoption of the Convention on Nuclear Safety, in 1994. France signed the Joint Convention at the General Conference of the International Atomic Energy Agency (IAEA) held on 29 September 1997, the very first day the Joint Convention was opened for signature. She approved it on 22 February 2000 and filed the corresponding instruments with the IAEA on 27 April 2000. The Joint Convention entered into force on 18 June 2001. For many years, France has been taking an active part in the pursuit of international actions to reinforce nuclear safety and considers the Joint Convention to be a key step in that direction. The fields covered by the Joint Convention have long been part of the French approach to nuclear safety. This report is the fourth of its kind. It is published in accordance with Article 32 of the Joint Convention and presents the measures taken by France to meet each of her obligations set out in the Convention. The facilities and radioactive materials covered by the Joint Convention are much diversified in nature and are controlled in France by different regulatory authorities (see Section E). Over and above a specific threshold of radioactive content, a facility is referred to as a 'basic nuclear facility' (installation nucleaire de base - INB) and placed under the control of the French Nuclear Safety Authority (Autorite de surete nucleaire - ASN). Below that threshold and provided that the facility involved falls under a category of the nomenclature of classified facilities for other purposes than their radioactive materials, any facility may be considered as a 'classified facility on environmental-protection grounds' (installation classee pour la protection de l'environnement - ICPE) and placed under the control of the Ministry for the

  18. National report of the Slovak Republic. Compiled according to the terms of the convention on nuclear safety

    International Nuclear Information System (INIS)

    Duchac, A.; Konecny, L.; Lipar, M.; Metke, E.; Novak, S.; Rohar, S.; Turner, M.; Zemanova, D.; Zlatnansky, J.; Gies, F.; Lipar, B.; Parimucha, F.; Pospisil, P.; Tomek, J.; Toth, A.; Jurina, V.; Kmosena, M.; Marcin, S.; Silny, M.

    1998-09-01

    A brief safety report of the Slovak Republic in 1998 is presented. A account of activities carried out by the Nuclear Regulatory Authority of the Slovak Republic (UJD) is presented.These activities are reported under the headings: (1) Introduction; (2) Nuclear installations in Slovakia accords to the convention definition; (3) Legislation and supervision; (4) General safety aspects; (5) Safety of nuclear installations in Slovakia; ((6) Annexes; (7) Act of National Council of the Slovak Republic No. 130/1998 Coll. LL. Contents and list of abbreviations used are included

  19. Stakeholder involvement in international conventions governing civil nuclear activities

    International Nuclear Information System (INIS)

    Emmerechts, Sam

    2017-01-01

    Mr Emmerechts explained that international conventions have varying positions on stakeholders and their involvement depending upon the intent of the legislator and the field they cover, ranging from a narrow to a broad interpretation. He addressed stakeholder involvement in two other international conventions governing civil nuclear activities, namely the Convention on Nuclear Safety, and the Joint Convention on the Safety of Spent Fuel Management and on the Safety of Radioactive Waste Management (the Joint Convention), both concluded under the auspices of the International Atomic Energy Agency (IAEA). He noted that the Convention on Nuclear Safety remains a 'traditional' international legal instrument, focusing on governments and governmental bodies as the main stakeholders and limiting obligations regarding the involvement of the public and intergovernmental organisations to their receiving information and observing. Likewise, the Joint Convention limits obligations regarding public involvement to access to information, notably as to the siting of proposed facilities. However, he noted that in the European Union, the Directive on Nuclear Safety (2014/87/Euratom) and the Directive for the Safe Management of Spent Fuel and Radioactive Waste (2011/70/Euratom) have more advanced public participation requirements in nuclear decision making. Mr Emmerechts explained that the substantial differences between nuclear legislation and the Aarhus and Espoo Conventions with regards to public involvement requirements could partly be explained by the technicality of nuclear information and by issues related to nuclear security

  20. Implementation of the obligations of the convention on nuclear safety. Fourth Swiss report in accordance with Article 5

    International Nuclear Information System (INIS)

    2007-07-01

    Switzerland has signed the Convention on Nuclear Safety. Most of the requirements of the articles of the Convention were already standard practice in Switzerland. In the last years, all Swiss nuclear power plants (NPPs) as well as the Swiss Federal Nuclear Safety Inspectorate (HSK) built up documented quality management systems. The independence of HSK from licensing authorities is fulfilled on a technical level. In 2005, a new Nuclear Energy Act came into force requiring formal independence of the supervisory authorities from the licensing authorities. A separate act to legally settle the Inspectorate's fully independent status was adopted by Parliament. HSK participates in international projects and is represented in numerous nuclear safety working groups in order to ensure the exchange of scientific, technical and regulatory know-how. The regulatory processes applied to the licensing and safety surveillance of nuclear installations and their operation are up to date with the current state of science and technology. Deterministic and probabilistic safety evaluations guide and prioritise inspections and provide the basis for a graded approach to safety review and assessment. The surveillance of the NPPs' operating, control and safety systems, their component performance and integrity, their organisational and human aspects as well as the management, conditioning and interim storage of radioactive waste are permanent features of the supervisory authority's activities. Within the frame of a new integrated oversight process there is an annual systematic assessment of nuclear safety for each NPP based on the analysis of events, inspection results and operator licensing reviews. The assurance of low radiation doses to both NPP workers and the general public is an additional goal that is directly associated with the safe operation of NPPs. In case of an accident in a nuclear installation, contingency plans are in place and are continually updated. Emergency drills are

  1. Implementation of the obligations of the convention on nuclear safety. Fourth Swiss report in accordance with Article 5

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    2007-07-15

    Switzerland has signed the Convention on Nuclear Safety. Most of the requirements of the articles of the Convention were already standard practice in Switzerland. In the last years, all Swiss nuclear power plants (NPPs) as well as the Swiss Federal Nuclear Safety Inspectorate (HSK) built up documented quality management systems. The independence of HSK from licensing authorities is fulfilled on a technical level. In 2005, a new Nuclear Energy Act came into force requiring formal independence of the supervisory authorities from the licensing authorities. A separate act to legally settle the Inspectorate's fully independent status was adopted by Parliament. HSK participates in international projects and is represented in numerous nuclear safety working groups in order to ensure the exchange of scientific, technical and regulatory know-how. The regulatory processes applied to the licensing and safety surveillance of nuclear installations and their operation are up to date with the current state of science and technology. Deterministic and probabilistic safety evaluations guide and prioritise inspections and provide the basis for a graded approach to safety review and assessment. The surveillance of the NPPs' operating, control and safety systems, their component performance and integrity, their organisational and human aspects as well as the management, conditioning and interim storage of radioactive waste are permanent features of the supervisory authority's activities. Within the frame of a new integrated oversight process there is an annual systematic assessment of nuclear safety for each NPP based on the analysis of events, inspection results and operator licensing reviews. The assurance of low radiation doses to both NPP workers and the general public is an additional goal that is directly associated with the safe operation of NPPs. In case of an accident in a nuclear installation, contingency plans are in place and are continually updated

  2. Recent Activities on Global Nuclear Safety Regime

    International Nuclear Information System (INIS)

    Cho, Kun-Woo; Park, Jeong-Seop; Kim, Do-Hyoung

    2006-01-01

    Recently, rapid progress on the globalization of the nuclear safety issues is being made in IAEA (International Atomic Energy Agency) and its member states. With the globalization, the need for international cooperation among international bodies and member states continues to grow for resolving these universal nuclear safety issues. Furthermore, the importance of strengthening the global nuclear safety regime is emphasized through various means, such as efforts in application of IAEA safety standards to all nuclear installations in the world and in strengthening the code of conduct and the convention on nuclear safety. In this regards, it is important for us to keep up with the activities related with the global nuclear safety regime as an IAEA member state and a leading country in nuclear safety regulation

  3. National report of the Slovak Republic. Compiled according to the terms of the convention on nuclear safety, June 2010

    International Nuclear Information System (INIS)

    Balaj, J.; Homola, J.; Rovny, J.; Metke, E.; Zemanova, D.; Grebeciova, J.; Turner, M.; Pospisil, M.; Bystricka, S.; Jurina, V.; Rovny, I.; Soltes, L.; Husarova, M.; Petrovic, J.; Fazekasova, H.; Zizkova, D.; Vagac, M.; Maudry, J.; Hacaj, A.; Betak, A.; Barbaric, M.

    2010-06-01

    A brief safety report of the Slovak Republic in 2010 is presented. A account of activities carried out by the Nuclear Regulatory Authority of the Slovak Republic (UJD) is presented.These activities are reported under the headings: (1) Introduction; (2) Nuclear installations in Slovak Republic in terms of the convention; (3) Legislation and regulation; (4) General safety aspects; (5) Safety of nuclear installations in Slovakia; ((6) Annexes; (6.1) List of nuclear installations and technical and economic indicators; (6.2) Selected generally binding legal regulations and safety guidelines in relation to nuclear and radiation safety; (6.3) List of selected national and international documents applicable to safety of nuclear installations; (6.4) Limits for radioactive discharges; (6.5) Team of authors.

  4. The role of nuclear law in nuclear safety after Fukushima; El rol del derecho nuclear en seguridad nuclear luego de Fukushima

    Energy Technology Data Exchange (ETDEWEB)

    Cardozo, Diva E. Puig, E-mail: d.puig@adinet.com.uy [International Nuclear Law Association (INLA), Montevideo (Uruguay)

    2013-07-01

    The paper contains the following topics: nuclear law, origin and evolution, role of the legal instruments on nuclear safety, nuclear safety the impact of major nuclear accidents: Chernobyl and Fukushima. The response of the nuclear law post Fukushima. Safety and security. International framework for nuclear safety: nuclear convention joint convention on safety on spent fuel management and on the safety of radioactive waste management. The Fukushima World Conference on Nuclear Safety. Convention on Prompt Notification and Assistance in case of a Nuclear Accident or Radiological Emergency. Plan of Action for Nuclear Safety. IAEA recommendations for the safety transport of radioactive material. International framework for nuclear security. Convention on the Physical Protection of Nuclear Materials. International Convention for the Suppression of Acts Against Nuclear Terrorism. Resolution No. 1540 of the Security Council of United Nations (2004). Measures to strengthen international safety. Code of conduct on the safety research reactor.

  5. Joint convention on the safety of spent fuel management and on the safety of radioactive waste management. First national report on the implementation by France of the obligations of the Convention

    International Nuclear Information System (INIS)

    2003-03-01

    The Joint Convention on the safety of spent fuel management and on the safety of radioactive waste management is supplementing the Convention of Nuclear Safety. it was approved by France on february 22, 2000 and it entered into force on June 18,2001. Article 32 obliges each contracting Party to present at the review meetings (every three years) a report on the way in which it implements the obligations of the Convention (full text of the Convention and additional information on the web site of the IAEA, its director General being the depository of the Convention. (author)

  6. Implementation of the Joint Convention on the Safety of Spent Fuel Management and on the Safety of Radioactive Waste Management

    International Nuclear Information System (INIS)

    Stewart, L.; Tonkay, D.

    2004-01-01

    This paper discusses the implementation of the Joint Convention on the Safety of Spent Fuel Management and on the Safety of Radioactive Waste Management. The Joint Convention: establishes a commitment with respect to safe management of spent nuclear fuel and radioactive waste; requires the Parties to ''take appropriate steps'' to ensure the safety of their spent fuel and waste management activities, but does not delineate standards the Parties must meet; and seeks to attain, through its Contracting Parties, a higher level of safety with respect to management of their spent nuclear fuel, disused sealed sources, and radioactive waste

  7. National report of the Slovak Republic. Compiled according to the terms of the convention on nuclear safety. September 2001

    International Nuclear Information System (INIS)

    Balaj, J.; Bezak, S.; Gies, F.

    2001-09-01

    A brief national safety report of the Slovak Republic in 2001 is presented. A account of activities carried out by the Nuclear Regulatory Authority of the Slovak Republic (UJD) is presented. These activities are reported under the headings: (1) Introduction; (2) Nuclear installations in Slovakia accords to the convention definition; (3) Legislation and regulation; (4) General safety aspects; (5) Safety of nuclear installations in Slovakia; ((6) Annexes: (a) List of nuclear installations and technical and economic parameters; (b) 6.2 Some generally binding legal regulations concerning nuclear and radiation safety; (c) 6.3 List of some national and international documents relating to safety of WWER type reactors; 6.4 Limits of radioactive substance discharges; 6.5 Author team. Contents, list of abbreviations used as well as reference index are included

  8. The Joint Convention on the Safety of Spent Fuel Management and on the Safety of Radioactive Waste Management

    International Nuclear Information System (INIS)

    Risoluti, P.

    2004-01-01

    The Joint Convention on the Safety of Spent Fuel Management and the Safety of Radioactive Waste Management (the Joint Convention) is the only legally binding international treaty in the area of radioactive waste management. It was adopted by a Diplomatic Conference in September 1997 and opened for signature on 29 September 1997. The Convention entered into force on 18 June 1998, and to date (September 04) has been signed by 42 States, of which 34 have formally ratified, thus becoming Contracting Parties. The Joint Convention applies to spent fuel and radioactive waste resulting from civilian application. Its principal aim is to achieve and maintain a high degree of safety in their management worldwide. The Convention is an incentive instrument, not designed to ensure fulfillment of obligations through control and sanction, but by a peer pressure. The obligations of the Contracting Parties are mainly based on the international safety standards developed by the IAEA in past decades. The Convention is intended for all countries generating radioactive waste. Therefore it is relevant not only for those using nuclear power, but for any country where application of nuclear energy in medicine, conventional industry and research is currently used. Obligations of Contracting Parties include attending periodic Review Meetings and prepare National Reports for review by the other Contracting Parties. The National Reports should describe how the country is complying with the requirements of the Articles of the Convention. The first such meeting was held at the IAEA headquarters in November 2003. This paper will describe the origin of the Convention, present its content, the expected outcome for the worldwide safety, and the benefits for a country to be part of it

  9. IAEA Director General's concluding remarks. Meeting of the Contracting Parties to the Convention on Nuclear Safety. Vienna, 26 April 2002

    International Nuclear Information System (INIS)

    ElBaradei, M.

    2002-01-01

    The Convention on Nuclear Safety is considered as a part of the overall nuclear safety regime. That regime has many components, but they all have one single objective - to make sure that safety is at as high a level as possible. The Convention is a living process, a process which should eventually lead to increasingly greater safety. The Meting has focused on a number of issues that are also priorities for the Agency; one such issue is safety culture. The effectiveness and transparency are key issues. A second issue which is highlighted is management of nuclear knowledge. Other high priority issues which were identified include: planned life extension; the need during life extension to look into the ageing of equipment and structures; deregulation and its impact on safety; and the question of periodic safety reviews. The question of co-operation between regulatory bodies is one that was given emphasis to over the last few years. It is very important that there be exchange of experience and exchange of expertise between regulatory bodies, and between the manufacturers of power reactors and the countries where the reactors are operated. Also of importance in terms of international co-operation is the development of adequate emergency response everywhere. A major point that which is left to the participating countries is that although safety is a national responsibility - there is absolutely no question about that -many issues need international co-operation

  10. Statement to Sixth Review Meeting of Contracting Parties to Convention on Nuclear Safety, 4 April 2014, Vienna, Austria

    International Nuclear Information System (INIS)

    Amano, Y.

    2014-01-01

    Full text: Good afternoon, Dear Colleagues, Ladies and Gentlemen, I am pleased to say a few words to you at the end of the Sixth Review Meeting of the Contracting Parties to the Convention on Nuclear Safety. The Convention is a very important mechanism which has contributed a lot to strengthening nuclear safety in the countries which are party to it. In the last two weeks, you have addressed some very important issues. During your productive and lively discussions, a number of challenges were identified for consideration by Contracting Parties. These included: how to achieve harmonized emergency plans and response measures; how to make better use of operating and regulatory experience and international peer review services; and how to strengthen regulators' independence, safety culture, transparency and openness. The Agency will continue to work closely with you in addressing all of these issues. The Fifth Review Conference, which took place in 2011 just after the Fukushima Daiichi accident, was the first opportunity for Contracting Parties to address the accident in an international conference. The fact that you devoted a special session to the Fukushima Daiichi accident this time demonstrates the continued resolve of the Contracting Parties to ensure that the right lessons are learned everywhere. The Agency continues to work with all our Member States to implement the IAEA Action Plan on Nuclear Safety, about which you received a briefing. I know you will agree with me that it is vitally important that all the measures that have been agreed to strengthen global nuclear safety are actually implemented. Work continues on the IAEA report on the Fukushima Daiichi accident, which will be finalised this year. I understand that you decided to submit a proposal to amend the text of the Convention, addressing design and construction objectives for both existing and new nuclear power plants, to a Diplomatic Conference to be convened within one year. I am aware that a clear

  11. The Joint Convention on the safety of spent fuel management and on the safety of radioactive waste management. An instrument to achieve a global safety

    International Nuclear Information System (INIS)

    Risoluti, P.

    2006-01-01

    The Joint Convention on the Safety of Spent Fuel Management and the Safety of Radioactive Waste Management (the Joint Convention) is the first legally binding international treaty in the area of radioactive material management. It was adopted by a Diplomatic Conference in September 1997 and opened for signature on 29 September 1997. The Convention entered into force on 18 June 1998, and to date (May 2006) has been ratified by 41 countries. The Joint Convention applies to spent fuel and radioactive waste resulting from civilian application. Its principal aim is to achieve and maintain a high degree of safety in their management worldwide. The Convention is an incentive instrument, not designed to ensure fulfilment of obligations through control and sanction, but by a volunteer peer review mechanism. The obligations of the Contracting Parties are mainly based on the international safety standards developed by the IAEA in past decades. The Convention is of interest of all countries generating radioactive waste. Therefore it is relevant not only for those using nuclear power, but for any country where application of nuclear energy in education, agriculture, medicine and industry is currently used. Obligations of Contracting Parties include attending a Review Meeting held every three years and prepare National Reports for review by the other Contracting Parties. In the National Reports basic information on inventory and facilities for management of radioactive materials has to be provided. Countries with small nuclear power and/or research programs or countries having radioactive materials only from nuclear application on medicine, agriculture or conventional industry, can benefit from the exchange of information and the technical knowledge gained by the reporting procedure set up by the Convention. The second Review Meeting is to be held at IAEA headquarters from 15 to 26 May 2006. This paper presents the objectives and the implementation status of the Convention, the

  12. Convention on Nuclear Safety. Second national report on the implementation by france of the obligations of the Convention; Convention sur la surete nucleaire. Deuxieme rapport national sur la mise en oeuvre par la France des obligations de la Convention

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    2001-09-15

    The first national report on the implementation by france of the obligation under the Convention is structured along its Articles. the french Nuclear safety Authority ensured the co ordination of the report, with contributions from other regulators and nuclear operators. this report was distributed at the middle of April 2003 to the other Contracting party (on 3 november to 14, 2003 at the IAEA headquarters. (author)

  13. Implementation of the obligations of the Convention on Nuclear Safety - 6th national report of Switzerland to the Convention in accordance with its article 5

    International Nuclear Information System (INIS)

    2013-08-01

    After a short description of Switzerland as a state in the middle of Europe and of its political organization, the report explains the development of the nuclear power from the first experimental reactor in 1957. Presently five nuclear power plants (NPP) are operating in Switzerland, producing about 40% of the electricity consumption of the country, the rest being produced essentially by hydroelectric plants. As the first regulatory authority, the Swiss Federal Nuclear Safety Commission was set up in 1960, which evolved to the Swiss Nuclear Safety Inspectorate (ENSI). Switzerland signed the Convention on Nuclear Safety (CNS) which came into force at the end of 1996. Since there, Switzerland has prepared and submitted the country reports for the regular Review Meetings of Contracting Countries. This 6th report by ENSI provides an update on compliance with CNS obligations. It gives consideration to issues that aroused particular interest at the 5th meeting and at the extraordinary meeting dedicated to the consequences of the accident at Fukushima Daiichi. Shortly after the accident at Fukushima Daiichi, the Swiss government has decided to phase out nuclear energy; existing plants will continue to operate as long as they are safe. In Switzerland, on-going activities regarding safety assessment of the different stages in the lifetime of nuclear installations consist of periodic assessments and assessments of long-term operation for existing Swiss NPPs. Such assessments have been performed for two Swiss NPPs (Beznau NPP and Muehleberg NPP) which have been in commercial operation for over 40 years. A detailed examination demonstrated that the conditions for the taking out of service of an NPP are not and will not be reached by these two plants within the next 10 years. Nevertheless, it is mandatory to continue with the scheduled ageing management, maintenance and backfitting activities. After the Fukushima accident, additional safety reviews were performed. All Swiss

  14. Implementation of the obligations of the Convention on Nuclear Safety - 6th national report of Switzerland to the Convention in accordance with its article 5

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    2013-08-15

    After a short description of Switzerland as a state in the middle of Europe and of its political organization, the report explains the development of the nuclear power from the first experimental reactor in 1957. Presently five nuclear power plants (NPP) are operating in Switzerland, producing about 40% of the electricity consumption of the country, the rest being produced essentially by hydroelectric plants. As the first regulatory authority, the Swiss Federal Nuclear Safety Commission was set up in 1960, which evolved to the Swiss Nuclear Safety Inspectorate (ENSI). Switzerland signed the Convention on Nuclear Safety (CNS) which came into force at the end of 1996. Since there, Switzerland has prepared and submitted the country reports for the regular Review Meetings of Contracting Countries. This 6th report by ENSI provides an update on compliance with CNS obligations. It gives consideration to issues that aroused particular interest at the 5th meeting and at the extraordinary meeting dedicated to the consequences of the accident at Fukushima Daiichi. Shortly after the accident at Fukushima Daiichi, the Swiss government has decided to phase out nuclear energy; existing plants will continue to operate as long as they are safe. In Switzerland, on-going activities regarding safety assessment of the different stages in the lifetime of nuclear installations consist of periodic assessments and assessments of long-term operation for existing Swiss NPPs. Such assessments have been performed for two Swiss NPPs (Beznau NPP and Muehleberg NPP) which have been in commercial operation for over 40 years. A detailed examination demonstrated that the conditions for the taking out of service of an NPP are not and will not be reached by these two plants within the next 10 years. Nevertheless, it is mandatory to continue with the scheduled ageing management, maintenance and backfitting activities. After the Fukushima accident, additional safety reviews were performed. All Swiss

  15. A study on international nuclear organizations and conventions for the globalization of Korean nuclear community

    Energy Technology Data Exchange (ETDEWEB)

    Lee, Kwang Seok; Oh, Keun Bae; Lee, Byung Wook; Cho, Il Hoon; Lee, Jae Sung; Choi, Young Rok; Ko, Han Seok; Ham, Chul Hoon; Lee, Byung Woon [Korea Atomic Energy Research Institute, Taejon (Korea, Republic of)

    1995-12-01

    The objective of this study is to analyze the current status of international nuclear organizations and conventions in systems perspective and suggest national strategies for utilizing them for the globalization of Korean nuclear community. This study analyzes the current status of international nuclear organizations such as IAEA(International Atomic Energy Agency) and international nuclear conventions related to nuclear accidents, nuclear liability, physical protection or nuclear safety. Based on the analysis, this study suggests national strategies, in general and specific terms, to utilize international nuclear organizations and conventions for the globalization of Korean nuclear community. Separately from this report this study publishes `IAEA Handbook`, which contains all about IAEA such as statute, membership, organizational structure, main activities, finance and budget, etc.. 9 tabs., 2 figs., 35 refs. (Author).

  16. A study on international nuclear organizations and conventions for the globalization of Korean nuclear community

    International Nuclear Information System (INIS)

    Lee, Kwang Seok; Oh, Keun Bae; Lee, Byung Wook; Cho, Il Hoon; Lee, Jae Sung; Choi, Young Rok; Ko, Han Seok; Ham, Chul Hoon; Lee, Byung Woon

    1995-12-01

    The objective of this study is to analyze the current status of international nuclear organizations and conventions in systems perspective and suggest national strategies for utilizing them for the globalization of Korean nuclear community. This study analyzes the current status of international nuclear organizations such as IAEA(International Atomic Energy Agency) and international nuclear conventions related to nuclear accidents, nuclear liability, physical protection or nuclear safety. Based on the analysis, this study suggests national strategies, in general and specific terms, to utilize international nuclear organizations and conventions for the globalization of Korean nuclear community. Separately from this report this study publishes 'IAEA Handbook', which contains all about IAEA such as statute, membership, organizational structure, main activities, finance and budget, etc.. 9 tabs., 2 figs., 35 refs. (Author)

  17. On the safety performance of the advanced nuclear energy systems

    International Nuclear Information System (INIS)

    Li Shounan

    1999-01-01

    Some features on the safety performances of the Advanced Nuclear Energy Systems are discussed. The advantages and some peculiar problems on the safety of Advanced Nuclear Energy Systems with subcritical nuclear reactor driven by external neutron sources are also pointed out in comparison with conventional nuclear reactors

  18. Joint Convention on the safety of spent fuel management and on the safety of radioactive waste management. Second national report on implementation by France of its obligations under the convention

    International Nuclear Information System (INIS)

    2005-09-01

    The Joint Convention on the Safety of Spent Fuel Management and on the Safety of Radioactive Waste Management, hereinafter referred to as the 'Joint Convention', is the result of international discussions which took place following adoption of the Convention on Nuclear Safety in 1994. France signed the Joint Convention on 29 September 1997, the first day on which it was opened for signature, during the General Conference of the International Atomic Energy Agency (IAEA). France approved it on 22 February 2000 and deposited the corresponding instruments with the IAEA on 27 April 2000. The Joint Convention entered into force on 18 June 2001. For many years, France has been taking an active part in international action to reinforce nuclear safety and it considers the Joint Convention to be a key step in this direction. The fields it covers have for a long time been part of the French approach to nuclear safety. This report, which is the second of its kind, is published in accordance with article 32 of the Joint Convention and presents the measures taken by France to meet each of the obligations set out in the Convention. The facilities and radioactive materials which are the subject of this Convention are of widely differing types and in France are covered by different regulatory authorities, as explained in section E of this report. Above a certain radioactive content threshold, a facility is referred to as a 'basic nuclear installation' (BNI) and is placed under the authority of the Nuclear Safety Authority. This category includes in particular all facilities receiving spent fuel (reactors, reprocessing plants, storage facilities, etc.), most of the facilities whose 'main purpose is management of radioactive waste' as defined by this Convention, and a large number of facilities containing radioactive waste, even if management of the waste is not their primary objective: the total number of all types of BNIs is about 125 facilities. Below this threshold, an

  19. EU law on nuclear safety / Ana Stanic

    Index Scriptorium Estoniae

    Stanic, Ana

    2010-01-01

    Tuumaseadmete tuumaohutust käsitlevast õigusest Euroopa Liidus. ELi direktiivist 2009/71 ja 1994. aasta tuumaohutuse konventsioonist (Convention on Nuclear Safety), Rahvusvahelise Aatomienergiaagentuuri (IAEA) standarditest

  20. Nuclear power safety

    International Nuclear Information System (INIS)

    1988-01-01

    The International Atomic Energy Agency, the organization concerned with worldwide nuclear safety has produced two international conventions to provide (1) prompt notification of nuclear accidents and (2) procedures to facilitate mutual assistance during an emergency. IAEA has also expanded operational safety review team missions, enhanced information exchange on operational safety events at nuclear power plants, and planned a review of its nuclear safety standards to ensure that they include the lessons learned from the Chernobyl nuclear plant accident. However, there appears to be a nearly unanimous belief among IAEA members that may attempt to impose international safety standards verified by an international inspection program would infringe on national sovereignty. Although several Western European countries have proposed establishing binding safety standards and inspections, no specific plant have been made; IAEA's member states are unlikely to adopt such standards and an inspection program

  1. Implementation of the obligations of the Convention on Nuclear Safety CNS

    International Nuclear Information System (INIS)

    2012-05-01

    On 11 March 2011 a massive earthquake of magnitude 9 followed by a devastating tsunami hit the east coast of Japan's main island Honshu. Those natural events triggered a series of malfunctioning and equipment failures that led to the severe nuclear accident at Fukushima Dai-ichi. The consequences of the accident have been dramatic for the Japanese population and the staff involved, and had a major impact on the public opinion as well. In Switzerland in particular the government and the parliament have decided to suspend the licensing process for the new builds and committed to a nuclear phase-out. In the global nuclear community the reaction to the accident has led to the adoption of the IAEA Action Plan by all member states. Within this framework, the Swiss Federal Nuclear Safety Inspectorate (ENSI) advocates an effective strengthening of the global nuclear safety regime, including mandatory international review missions and enhanced transparency in reporting. The European Union (EU) initiated a so-called stress test for its member countries with nuclear power plants in which also Switzerland participates. The EU stress tests is a focused reassessment of the European nuclear facilities on their protection against extreme external events (namely earthquakes, flooding and extreme weather conditions), against the loss of safety functions (namely in the case of prolonged station blackouts and loss of ultimate heat sink) and severe accident management in general. The reassessment aims at identifying safety margins beyond design and cliff edge effects. Beside the various international efforts which Switzerland actively supported, there has been a series of national actions taken by ENSI with the goal of understanding the event sequence in Fukushima and its causes so as to draw consequences for nuclear safety in Switzerland. In fact lessons have been identified, analyses performed and concrete measures adopted. In general terms the safety of the Swiss nuclear power

  2. Preliminary assessment on the differences of nuclear terrorism convention from the convention on the physical protection of nuclear material and amendment to the convention on the physical protection of nuclear material

    International Nuclear Information System (INIS)

    Midiana Ariethia; Muhamad Ilman A A; Mas Pungky Hendrawijaya

    2011-01-01

    The threat of acts of nuclear terrorism in all its forms and manifestations create the urgent need to enhance international cooperation between countries in designing and following practical and effective measures for the prevention of acts of terrorism and to counter and punish its offenders. Several United Nations Security Council Resolutions, such as UNSCR Number 1373 (2001), and UNSCR Number 1540 (2005), and the result of Nuclear Security Summit in 2010 that encourage the member countries of IAEA to ratify nuclear conventions as soon as possible, are the reasons that the Indonesian Government planning on ratifying The International Convention for The Suppression of Acts of Nuclear Terrorism (Nuclear Terrorism Convention). Nuclear Terrorism Convention is one of the 16 (sixteen) international instruments that must be ratified by the member countries of IAEA. Of the 16 (sixteen) international instruments, 3 (three) conventions are related to nuclear; Convention on the Physical Protection of Nuclear Material, Amendment to the Convention on the Physical Protection of Nuclear Material, dan Nuclear Terrorism Convention. This paper presents the preliminary assessment on the differences of Nuclear Terrorism Convention to The Convention on The Physical Protection of Nuclear Material and Amendment to The Convention on The Physical Protection of Nuclear Material. This assessment is important due to the plan of the Indonesian Government to ratify the Nuclear Terrorism Convention. The result of this assessment could be used by BAPETEN in the ratification process of the Nuclear Terrorism Convention. The method used in this assessment is references assessment. (author)

  3. Convention on nuclear safety 2012 extra ordinary meeting. The Swedish National Report

    International Nuclear Information System (INIS)

    2012-01-01

    During the 5th Review Meeting of the Convention on Nuclear Safety (CNS), the Contracting Parties in attendance agreed to hold an Extraordinary Meeting in August 2012 with the aim to enhance safety through reviewing and sharing lessons learned and actions taken by Contracting Parties in response to events at TEPCO Fukushima Dai-ichi. It was agreed that a brief and concise National Report should be developed by each Contracting Party to support the Extraordinary Meeting. This report should be submitted three months prior to the meeting to the Secretariat via the Convention-secured website for peer review by other Contracting Parties. It was also agreed that the Contracting Parties should organize their reports by topics that cross the boundaries of multiple CNS Articles. Each National Report should provide specific information on these topics to address the lessons learned and activities undertaken by each Contracting Party. The National Report should include a description of the activities the Contracting Party has completed and any activities it intends to complete along with scheduled completion dates. The present report is therefore structured in accordance with the guidance given by the General Committee for CNS. In Chapter 0, a brief description of Swedish nuclear power plants is given with an emphasis on measures that have been taken gradually as a result of new knowledge and experience. The following chapters deal with the six topics, which are: 1) External events, 2) Design issues, 3) Severe accident management and recovery, 4) National organizations, 5) Emergency preparedness and response and post-accident management, and 6) International cooperation. Each chapter concludes with a table illustrating a high-level summary of the items identified. To clarify the relationship between the text and table contained in each chapter, the parts of the text appearing in the table are underlined. Furthermore, the text of some sections/subsections in different chapters

  4. Nuclear power safety

    International Nuclear Information System (INIS)

    1991-11-01

    This paper reports that since the Chernobyl nuclear plant accident in 1986, over 70 of the International Atomic Energy Agency's 112 member states have adopted two conventions to enhance international cooperation by providing timely notification of an accident and emergency assistance. The Agency and other international organizations also developed programs to improve nuclear power plant safety and minimize dangers from radioactive contamination. Despite meaningful improvements, some of the measures have limitations, and serious nuclear safety problems remain in the design and operation of the older, Soviet-designed nuclear power plants. The Agency's ability to select reactors under its operational safety review program is limited. Also, information on the extent and seriousness of safety-related incidents at reactors in foreign countries is not publicly available. No agreements exist among nuclear power countries to make compliance with an nuclear safety standards or principles mandatory. Currently, adherence to international safety standards or principles is voluntary and nonbinding. Some states support the concept of mandatory compliance, but others, including the United States, believe that mandatory compliance infringes on national sovereignty and that the responsibility for nuclear reactor safety remains with each nation

  5. Merchant shipping (Safety Convention) Act 1977

    International Nuclear Information System (INIS)

    1977-01-01

    When this Act comes into force, it will enable the United Kingdom to ratify and to give effect to the 1974 International Convention for the Safety of Life at Sea (the SOLAS Convention) which replaces the SOLAS Convention of 1960. Under the Act, the Secretary of State may make such rules as he considers appropriate regarding ships provided with nuclear power plants in accordance with Chapter VIII of the Annex to the 1974 Convention and to Recommendations attached to it, dealing with nuclear ships, and insofar as those provisions have not been implemented by the Merchant Shipping Acts 1894 to 1974. (NEA) [fr

  6. Joint Convention on the safety of spent fuel management and on the safety of radioactive waste management. Third review meeting. Questions asked to France and answers

    International Nuclear Information System (INIS)

    2009-01-01

    The Joint Convention on the Safety of Spent Fuel Management and the Safety of Radioactive Waste Management, referred to as the 'Joint Convention', is the result of international discussions that followed the adoption of the Convention on Nuclear Safety, in 1994. France signed the Joint Convention at the General Conference of the International Atomic Energy Agency (IAEA) held on 29 September 1997, the very first day the Joint Convention was opened for signature. She approved it on 22 February 2000 and filed the corresponding instruments with the IAEA on 27 April 2000. The Joint Convention entered into force on 18 June 2001. For many years, France has been taking an active part in the pursuit of international actions to reinforce nuclear safety and considers the Joint Convention to be a key step in that direction. The fields covered by the Joint Convention have long been part of the French approach to nuclear safety. For his third report, France presented a document reflecting the viewpoints of the various stakeholders (regulatory authorities and operators). Thus, for each of the chapters in which the regulatory authority is not the only party to express its point of view, a three-stage structure was adopted: first of all a description by the regulatory authority of the regulations, followed by a presentation by the operators of the steps taken to meet the regulations and finally, an analysis by the regulatory authority of the steps taken by the operators. This third report was distributed in October 2008 to all Contracting Parties who asked 213 questions on the French report. France answered each of them in the present document

  7. The incentive concept as developed in the nuclear safety conventions and its possible extension to other sectors

    International Nuclear Information System (INIS)

    Wright, T. de

    2007-01-01

    This paper seeks to analyse the incentive concept, initially adopted in the C.N.S. (convention on nuclear safety) and later developed in the Joint Convention, as the innovation credited with encouraging both participation in , and compliance with, the nuclear safety conventions. It then seeks to examine the possibilities for the introduction of that concept into other sectors of international law. In the first part of the paper, the essential features of the concept and the mechanisms used in the conventions to bring it into effect will be discussed. the second part of the paper will focus on the different aspects of the conventions which have been described as integral to the concept. The third part of the paper will identify certain apprehensions regarding the effectiveness of such 'soft' treaty provisions and explain why the ' incentive' concept may be particularly well suited to certain specific situations. The final part of the paper will address the potential application of the concept and related treaty provisions to other fields of law, particularly to international environmental law. in addition, some suggestions will be made as to how provisions implementing the incentive concept into a treaty may be slightly modified to increase their effectiveness. (N.C.)

  8. Sweden's first national report under the Joint Convention on the safety of spent fuel management and on the safety of radioactive waste management. Swedish implementation of the obligations of the Joint Convention

    International Nuclear Information System (INIS)

    2003-01-01

    This report is issued according to Article 32 of the Joint Convention on the Safety of Spent Fuel Management and on the Safety of Radioactive Waste Management. Sweden signed the Joint Convention September 29, 1997 and the Joint Convention entered into force on June 18, 2001. The areas covered by the Joint Convention have been incorporated in the Swedish system for spent fuel and radioactive waste management for a long time. The Swedish Government considered at the time of signing of the Joint Convention that the safety philosophy, legislation and the safety work conducted by the licensees and the authorities in Sweden complied with the obligations of the Convention. This is confirmed in the present report. The Swedish Government directed the Swedish Nuclear Power Inspectorate (SKI) to prepare this report in co-operation with the Swedish Radiation Protection Authority (SSI). A working group of five persons, with representatives from SKI, SSI and the Swedish Nuclear Fuel and Waste Management Co. (SKB), has prepared this report. The report has been discussed in the boards of SKI and SSI. The Swedish Government adopted the report in April 2003. Section A of this report provides an overview of the Swedish nuclear waste programme, including a brief historical review, in order to give the reader a background to the current programme for the management of spent fuel and radioactive waste. Sections B to J provide information on which the conclusions are drawn about the compliance with the obligations of the Joint Convention. By necessity this information is rather brief and strongly focused on those aspects which are addressed in the articles. Too many details and additional information would over-load the report and make the review process difficult. The goal has been to provide enough details to make the Swedish practices understandable. Data that might be missing will be added on request as a part of the review process. Article 32 of the Joint Convention calls for a self

  9. What is new in the Act on Nuclear Safety

    International Nuclear Information System (INIS)

    Novosel, N.

    2005-01-01

    The Act on Nuclear Safety was passed by the Croatian Parliament on 15 October 2003, and published in Narodne novine (official journal) No. 173/03. This Act regulates safety measures for using nuclear materials and equipment, regulates nuclear activities, and establishes the National Office for Nuclear Safety. The new act supersedes the Act on Protective Measures Against Ionising Radiation and Safety in the Use of Nuclear Facilities and Installations (Narodne novine No. 18/81) and the Act on Protection against Ionising Radiation and Special Safety Measures in Using Nuclear Energy (Narodne novine No. 53/91). Regulations based on the latter Act shall apply until they are replaced by new regulations based on the Act on Nuclear Safety. Provisions of this Act apply for nuclear activities, nuclear materials and specified equipment. Croatia does not have nuclear facilities on its territory, but a Croatian power utility company owns 50% of the Nuclear Power Plant Krsko on the territory of Slovenia. In that respect, Croatia has assumed responsibilities defined by the Agreement between the Government of the Republic of Slovenia and the Government of the Republic of Croatia on the Regulation of the Status and Other Legal Relationships, Connected with Investments in the Krsko Nuclear Power Plant, its Exploitation and Decommissioning (Narodne novine No. 9/02, International Agreements). Having accessioned international conventions and agreements, Croatia has also assumed the responsibility to implement their provisions. In the process of European and international integrations, Croatia has to harmonize with the European and international standards in nuclear safety.(author)

  10. Some considerations on the safety of nuclear ships

    International Nuclear Information System (INIS)

    Kuramoto, Masaaki

    1978-01-01

    For realizing the practical utilization of nuclear merchant ships, it is essential to gain their acceptance by maritime countries on an equal footing with conventional vessels, and to have the administrative procedures for their admission simplified. This, however cannot be expected to be attained overnight, and progressive measures will have to be adopted, to approach the ultimate goal step by step. The first step should be to demonstrate the safety of nuclear propulsion, for which nuclear ships must accumulate their mileages of safe service. The second important step is to simplify the procedures demanded of nuclear ships for access to ports, through the establishment of international safety standards and design criteria, the enforcement of safety measures covering the entrance of nuclear ships into ports, and the assurance of safety in he repair, inspection and refuelling operations of these ships. Among these measures, the considerations relevant to port entry are the subject of vital interest to both ship operators and port authorities

  11. Nuclear Safety Review for 2015

    International Nuclear Information System (INIS)

    2015-06-01

    Safety in the Light of the Accident at the Fukushima Daiichi Nuclear Power Plant; and IAEA Report on Radiation Protection After the Fukushima Daiichi Accident: Promoting Confidence and Understanding3. The Agency’s report on severe accident management in the light of the accident at the Fukushima Daiichi NPP is currently in the publication process. Furthermore, during this reporting period, significant progress has been made in preparing the Agency’s report on the Fukushima Daiichi accident. The report will be formally presented to the 59th session of the General Conference in 2015. The Sixth Review Meeting of the Contracting Parties to the Convention on Nuclear Safety (CNS) concluded in April 2014. Of the 76 Contracting Parties, 33 Contracting Parties have NPPs, while 43 Contracting Parties have no NPPs. Sixty-nine of the 76 Contracting Parties participated in the Review Meeting and 65 Contracting Parties provided National Reports which were presented and discussed at the six Country Group sessions. Additionally, to reinforce the effectiveness of the Convention peer review process, the Contracting Parties approved modifications to the CNS guideline documents recommended by the Working Group on Effectiveness and Transparency, set up after the Second Extraordinary Meeting of the Contracting Parties to the Convention in August 2012. These modifications aim, for example, to ensure greater consistency in reporting and to enhance international cooperation. The next Review Meeting will be convened in April 2017. At the CNS review meeting, the Contracting Parties agreed to convene a Diplomatic Conference within one year to examine a proposal from Switzerland to amend Article 18 of the Convention addressing the design and construction of both existing and new NPPs. • The Agency organized the third International Conference on Challenges Faced by Technical and Scientific Support Organizations (TSOs) in Enhancing Nuclear Safety and Security: Strengthening Cooperation and

  12. A study on LAN applications in nuclear safety systems

    International Nuclear Information System (INIS)

    Kim, Sung; Lee, Young Ryul; Koo, Jun Mo; Han, Jai Bok

    1995-01-01

    It is a general tendency to digitalize the conventional relay based I and C systems in nuclear power plant. But, the digitalisation of nuclear safety systems has many a difficulty to surmount. The typical one thing of many difficulties is the data communication problem between local controllers and systems. The network architecture built with LAN (Local Area Network) in digital systems of the other industries are general. But in case of nuclear safety systems many considerations in point of safety and license are required to implement it in the field. In this parer, some considerations for applying LAN in nuclear safety systems were reviewed

  13. Towards an International Approach to Nuclear Safety

    International Nuclear Information System (INIS)

    Tomihiro Taniguchi

    2006-01-01

    This document presents in a series of transparencies the different activities of the IAEA: Introduction of International Atomic Energy Agency, Changing world, Changing Technology, Changing Global Security, Developing Innovative Nuclear Energy Systems, Global Nuclear Safety Regime, IAEA Safety Standards: Hierarchy - Global Reference for Striving for Excellence, IAEA Safety Reviews and Services: Integrated Safety Approach, Global Knowledge Network - Asian Nuclear Safety Network, Safety Issues and Challenges, Synergy between Safety and Security, Recent Developments: Safety and Security of Radioactive Sources, Convention on Physical Protection of Nuclear Material (CPPNM), Incident and Emergency Preparedness and Response, Holistic Approach for Safety and Security, Sustainable Development. (J.S.)

  14. Enhancing operational nuclear safety

    International Nuclear Information System (INIS)

    Sengoku, Katsuhisa

    2008-01-01

    Since Chernobyl, the dictum A n accident anywhere is an accident everywhere i s a globally shared perception. The paper presents challenges to the international nuclear community: globalization, sustainable and dynamic development, secure, safe and clean energy supply, nuclear r enaissance , public concern for nuclear safety, nuclear security, and technology and management. Strong national safety infrastructures and international cooperation are required to maintain a high level of nuclear safety and security worldwide. There is an increasing number of countries thinking of going nuclear: Morocco, Indonesia, Iran, Poland, Turkey, Bangladesh, Egypt, Vietnam, Chile, Nigeria, Malaysia, Thailand, Uruguay, Tunisia, Algeria. Another serious incident will jeopardize the prospect of nuclear renaissance. Safety and security are preconditions for countries newly introducing NPP as well as for those with mature nuclear programmes. The Global Nuclear Safety Regime (GNSR) is referred to as the institutional, legal and technical framework to achieve worldwide implementation of the safety of nuclear installations. At the top of the framework is the Convention on Nuclear Safety which covers the nuclear power plants. The convention has 56 contracting parties which meet triennially where national reports are presented and subject to the review of peers. The International Atomic Energy Agency (IAEA) undertakes a programme to foster the GNSR through the establishment of IAEA safety standards and related publications. The programme provides for the application of standards for the (1) safety of nuclear installations, (2) safety of radioactive sources, (3) safe transport of radioactive material and (4) management of radioactive waste. It also provides for the security of nuclear installations, nuclear material and radioactive material. The safety standards hierarchy is as follows: safety fundamental, safety requirements and safety guides. The safety fundamentals are the bases for IAEA

  15. Towards an international regime on radiation and nuclear safety

    International Nuclear Information System (INIS)

    Gonzalez, A.J.

    2000-01-01

    The 1990s have seen the de facto emergence of what might be called an 'international regime on nuclear and radiation safety'. It may be construed to encompass three key elements: legally binding international undertakings among States; globally agreed international safety standards; and provisions for facilitating the application of those standards. While nuclear and radiation safety are national responsibilities, governments have long been interested in formulating harmonised approaches to radiation and nuclear safety. A principal mechanism for achieving harmonisation has been the establishment of internationally agreed safety standards and the promotion of their global application. The development of nuclear and radiation safety standards is a statutory function of the IAEA, which is unique in the United Nations system. The IAEA Statute expressly authorises the Agency 'to establish standards of safety' and 'to provide for the application of these standards'. As the following articles and supplement in this edition of the IAEA Bulletin point out, facilitating international conventions; developing safety standards; and providing mechanisms for their application are high priorities for the IAEA. (author)

  16. Supervision of nuclear safety - IAEA requirements, accepted solutions, trends

    International Nuclear Information System (INIS)

    Jurkowski, M.

    2007-01-01

    Ten principles of the nuclear safety, based on the IAEA's standards are presented. Convention on Nuclear Safety recommends for nuclear safety landscape, the control transparency, culture safety, legal framework and knowledge preservation. Examples of solutions accepted in France, Finland, and Czech Republic are discussed. New trends in safety fundamentals and Integration Regulatory Review are presented

  17. Conclusions and Recommendations of the IAEA International Conference on Topical Issues in Nuclear Safety: Ensuring Safety for Sustainable Nuclear Development

    International Nuclear Information System (INIS)

    El-Shanawany, Mamdouh

    2011-01-01

    Over 200 participants from 33 countries and three international organizations came and actively participated and contributed to focused discussions and the success of the conference. The following points summarize the key conclusions and recommendations of the conference with respect to nuclear safety. 1. The nuclear safety approach is based on the philosophy developed in the 60's: defense in depth principles and deterministic criteria. When properly applied and completed by probabilistic analyses and operational experience feedback, it continues to be a successful approach. However, guarding against the risk of accidents requires constant vigilance and high technical competence and a never ending fight against complacency. In this context, having a strong leadership with a commitment to continuous improvement and a vision of sustained excellence is a key element of nuclear safety. Continuous improvement in safety also should be pursued through scientific research and operational experience feedback. 2. An accident anywhere is of concern to all Member States. Therefore, it is in the interest of all Member States to share and collaborate on safety matters. Participation of all Member States in international nuclear safety instruments and conventions, including liability for nuclear damage, is considered beneficial to global safety. The Convention on Nuclear Safety, the Joint Convention, international cooperation through IAEA and other organizations, bilateral or multilateral arrangements are important elements for establishing networks for sharing and transferring knowledge. It is acknowledged that the IAEA's Safety Fundamentals and Safety Requirements provide a sound foundation for high level nuclear safety. IAEA Safety Standards should be the basis for the establishment and maintenance of safety infrastructure. The IAEA's peer reviews and services such as IRRS, OSART, Site Evaluation and Reactor Safety Reviews provide also a valuable platform for sharing

  18. Main Conclusions and Recommendations of International Conference on Topical Issues in Nuclear Installation Safety: Ensuring Safety for Sustainable Nuclear Development

    International Nuclear Information System (INIS)

    El-Shanawany, Mamdouh

    2011-01-01

    Over 200 participants from 33 countries and three international organizations came and actively participated and contributed to focused discussions and the success of the conference. The following points summarize the key conclusions and recommendations of the conference with respect to nuclear safety. 1. The nuclear safety approach is based on the philosophy developed in the 60's: defense in depth principles and deterministic criteria. When properly applied and completed by probabilistic analyses and operational experience feedback, it continues to be a successful approach. However, guarding against the risk of accidents requires constant vigilance and high technical competence and a never ending fight against complacency. In this context, having a strong leadership with a commitment to continuous improvement and a vision of sustained excellence is a key element of nuclear safety. Continuous improvement in safety also should be pursued through scientific research and operational experience feedback. 2. An accident anywhere is of concern to all Member States. Therefore, it is in the interest of all Member States to share and collaborate on safety matters. Participation of all Member States in international nuclear safety instruments and conventions, including liability for nuclear damage, is considered beneficial to global safety. The Convention on Nuclear Safety, the Joint Convention, international cooperation through IAEA and other organizations, bilateral or multilateral arrangements are important elements for establishing networks for sharing and transferring knowledge. It is acknowledged that the IAEA's Safety Fundamentals and Safety Requirements provide a sound foundation for high level nuclear safety. IAEA Safety Standards should be the basis for the establishment and maintenance of safety infrastructure. The IAEA's peer reviews and services such as IRRS, OSART, Site Evaluation and Reactor Safety Reviews provide also a valuable platform for sharing

  19. NS [Nuclear Safety] update. Current safety and security activities and developments taking place in the Department of Nuclear Safety and Security, Issue no. 10, March 2009

    International Nuclear Information System (INIS)

    2009-03-01

    The current issue contains information about the following meetings: Application of the Code of Conduct on the Safety of Research Reactors (the 'Code'). Environmental Modelling for Radiation Safety (EMRAS II); Convention on the Safety of Spent Fuel Management and on the Safety of Radioactive Waste Management (the Joint Convention). The document also gives an overview on International Nuclear Security Advisory Service (INSServ)

  20. The Nuclear Safety Convention - does it confirm existing German law, and update international law?

    International Nuclear Information System (INIS)

    Lindemann, C.

    1995-01-01

    Some selected examples are discussed that are intended to answer the question of whether the NSC in its essence represents a development in confirmation of existing German nuclear law, and whether, assuming its coming into effect, this Convention will mean a step forward in the development of international law. The author examines the value of this codification of international law as such, and some of the obligations and standards such as retrofitting measures or shutdown of reactors below safety standard, and continues with briefly discussing the relationship between the NSC and nuclear liability law, the planned provisions for radiological protection in Art. 15, and the obligations for transboundary notification of safety-relevant events. These stipulations are analysed in comparison to existing international law, and with a view to their implementation under German law. Some provisions of the NSC that are based on standards of international technical guidance are compared with German regulatory guides. (orig./HP) [de

  1. Safety culture in nuclear power plants

    International Nuclear Information System (INIS)

    Weihe, G. von; Pamme, H.

    2003-01-01

    Experience shows that German nuclear power plants have always been operated reliably and safely. Over the years, the safety level in these plants has been raised considerably so that they can stand any comparison with other countries. This is confirmed by the two reports published by the Federal Ministry for the Environment on the nuclear safety convention. Behind this, there must obviously stand countless appropriate 'good practices' and a safety management system in nuclear power plants. (orig.) [de

  2. Sweden's second national report under the Joint Convention on the safety of spent fuel management and on the safety of radioactive waste management. Swedish implementation of the obligations of the Joint Convention

    International Nuclear Information System (INIS)

    2005-01-01

    into operation, e.g. an encapsulation plant and a repository for spent fuel. These activities will require substantial efforts for both the nuclear industry and the regulatory bodies. Sweden also wishes to mention that there are areas in which improvements to the national waste management system are needed: - The implementation of suggested improvements to the management system of radioactive waste generated outside the nuclear fuel cycle, as suggested by a Governmental committee. - The financing system as well as the regulatory review procedures related to the financing system need to be improved and modernised. Sweden is looking forward to reporting on its progress to future Review Meetings under the Joint Convention. At the first review meeting in November 2003, Sweden accepted to report on the following issues in particular, in its next report: 1. The outcome of the Governmental committee to consider and propose a national system for the management and final disposal of radioactive waste generated outside the nuclear fuel cycle. 2. The development of more comprehensive, consistent and clear safety regulations for decommissioning of nuclear facilities. 3. The development of a consistent and complete set of waste acceptance criteria for long-lived waste to be stored pending disposal. These reports can be found in the following sections: 1. section K.2 2. section E.19.1.1 and F.26.1.1 3. section K.4 These reports do not indicate any concerns as to the Swedish compliance with the obligations under the Joint Convention

  3. The European community and nuclear safety

    International Nuclear Information System (INIS)

    Brinkhorst, L.J.

    1992-01-01

    standards at the highest practical levels. Central and Eastern European States and those of the ex-USSR have requested the Community to assist them to create the appropriate conditions for a safe and economically healthy nuclear power industry. Assisting in the transformation of Eastern Europe nuclear safety practice to meet international standards is an important step towards an internationally accepted nuclear safety regime The weight of the Community assistance programme in nuclear safety to Eastern Europe is already recognised the Commission has been assigned the role of Coordinator of the bilateral assistance programmes of the 24 industrialised countries known as the G-24. In 1991, the European Community opened the way for the formal building of a system of internationally accepted nuclear safety requirements by being at the initiative of the International Nuclear Safety Conference which led to the Resolution of the General Conference of the International Atomic Energy Agency calling for an International Nuclear Safety Convention. The Community's faith on the safety added value of the potential convention puts a political and technical burden on Community Member States and the Commission to ensure that the content of the Convention would make it an effective instrument for nuclear safety progress. (author)

  4. The evolution and future direction of the Joint Convention on the Safety of Spent Fuel Management and the Safety of Radioactive Waste Management

    International Nuclear Information System (INIS)

    Siraky, Gabriela

    2008-01-01

    Full text: The Joint Convention on the Safety of Spent Fuel Management and the Safety of Radioactive Waste Management, namely the Joint Convention, had been established in 1997. The objective of the Convention is to achieve and maintain a high level of safety worldwide in that fields to ensure that there are effective defenses against potential hazards so that individuals, society and the environment are protected from the harmful effects of ionizing radiation and to prevent accidents with radiological consequences and to mitigate their consequences. The Parties to the Convention intend to achieve this objective by international cooperation, peer reviews of each other's performance, assistance when needed for states with less developed programmes and capabilities and the use of internationally accepted standards of safety. The Joint Convention is rooted in the discussions held previously to the establishment of the Convention of the Nuclear Safety that had taken place in the period 1993-1994. The idea of a Convention on the Safety of waste management evolved since then, getting its final status in November 1997 after seven meetings of a specially appointed working group of outstanding specialists on the subject. After that, it was needed three years more until the number of the ratifying States, that then became Contracting Parties, to get the condition that let the Convention to enter into force: ninety days after the date of deposit with the Depository of the twenty-fifth instrument of ratification, acceptance or approval, including the instruments of fifteen States having an operational nuclear power plant. The First Review Meeting was held three years after it entered into force, in November 2003, with the attendance of 33 Parties that presented their National Reports. The second review meeting was held in May 2006. Forty-one Contracting Parties participated in the Second Review Meeting. There is then, a constant evolution in the number of Contracting Parties

  5. Nuclear safety culture and nuclear safety supervision

    International Nuclear Information System (INIS)

    Chai Jianshe

    2013-01-01

    In this paper, the author reviews systematically and summarizes up the development process and stage characteristics of nuclear safety culture, analysis the connotation and characteristics of nuclear safety culture, sums up the achievements of our country's nuclear safety supervision, dissects the challenges and problems of nuclear safety supervision. This thesis focused on the relationship between nuclear safety culture and nuclear safety supervision, they are essential differences, but there is a close relationship. Nuclear safety supervision needs to introduce some concepts of nuclear safety culture, lays emphasis on humanistic care and improves its level and efficiency. Nuclear safety supervision authorities must strengthen nuclear safety culture training, conduct the development of nuclear safety culture, make sure that nuclear safety culture can play significant roles. (author)

  6. Meeting challenges through good practice. Using the highlights from the third review meeting of the Convention on Nuclear Safety to improve national regulatory systems

    International Nuclear Information System (INIS)

    Keen, L.J.; Cameron, J.K.

    2006-01-01

    The third review meeting of the Convention on Nuclear Safety (CNS), held in April 2005, demonstrated collective progress on ensuring worldwide nuclear safety. The Contracting Parties highlighted areas of focus to be brought back to the fourth review meeting and also committed to a continuity process to revitalize the review processes under the CNS. Specific progress has been achieved in the first year since the conclusion of the third review meeting, but further commitment to progress is required, by the Contracting Parties and the Secretariat of the IAEA, over the next year, especially if changes to the review processes are to be achieved for the fourth review meeting in 2008. (author)

  7. Joint Convention on the safety of spent fuel management and on the safety of radioactive waste management. France's answers to questions and comments received from other Contracting Parties on its second report for the JC

    International Nuclear Information System (INIS)

    2009-01-01

    The Joint Convention on the Safety of Spent Fuel Management and the Safety of Radioactive Waste Management, referred to as the 'Joint Convention', is the result of international discussions that followed the adoption of the Convention on Nuclear Safety, in 1994. France signed the Joint Convention at the General Conference of the International Atomic Energy Agency (IAEA) held on 29 September 1997, the very first day the Joint Convention was opened for signature. She approved it on 22 February 2000 and filed the corresponding instruments with the IAEA on 27 April 2000. The Joint Convention entered into force on 18 June 2001. For many years, France has been taking an active part in the pursuit of international actions to reinforce nuclear safety and considers the Joint Convention to be a key step in that direction. The fields covered by the Joint Convention have long been part of the French approach to nuclear safety. For his second report, France presented a document reflecting the viewpoints of the various stakeholders (regulatory authorities and operators). Thus, for each of the chapters in which the regulatory authority is not the only party to express its point of view, a three-stage structure was adopted: first of all a description by the regulatory authority of the regulations, followed by a presentation by the operators of the steps taken to meet the regulations and finally, an analysis by the regulatory authority of the steps taken by the operators. France received questions and comments from the other contracting parties of the joint convention and answered them in the present document

  8. National Report presented by the Mexican United States to satisfy the compromises of the Nuclear Safety Convention

    International Nuclear Information System (INIS)

    1998-01-01

    In order to satisfy to the compromises derived of the ratification by part of the Mexican Government for the Nuclear Safety Convention it is presented this National Report which is based on the directives proposed as a result of the preparatory meetings held in the IAEA Headquarters in the city of Vienna, Austria. This National Report represents a document summary and activities realized at present in relation with the only nuclear facility in Mexico: the Nuclear Power Plant in Laguna Verde, Veracruz. This report consists of two parts: In the first one it is described how have been satisfied each one of the compromises. The second one talks about the Laws and Regulations on nuclear activities in the country. (Author)

  9. National report of the Slovak Republic - proposal. Compiled in terms of the joint convention on the safety of spent fuel management and on the safety of radioactive waste management. Jun 2008

    International Nuclear Information System (INIS)

    Jurina, V.; Viktory, D.; Kobzova, D.; Petrik, T.; Sovcik, J.; Hekel, P.; Suess, J.; Tomek, J.; Lukacovic, J.; Hekel, P.; Ivan, J.; Ziakova, M.; Metke, E.; Pospisil, M.; Turner, M.; Homola, J.; Konecny, L.; Parimucha, F.; Vaclav, J.; Horvath, J.; Soos, F.; Betak, A.; Pospisil, P.; Mihaly, B.; Kubala, M.; Schmidtova, B.; Orihel, M.; Vasina, D.; Balaz, J.; Ehn, L.; Micovicova, D.; Vrtoch, M.; Mlcuch, L.; Granak, P.; Meleg, J.; Sedliak, D.; Bardy, M.; Gogoliak, J.; Prazska, M.; Burslova, J.

    2008-06-01

    A brief national safety report of the Slovak Republic compiled in terms of the joint convention on the safety of spent fuel management and on the safety of radioactive waste management in 2008 is presented. This safety report consists of following chapters: (A) Introduction; (B) Spent nuclear fuel (SNF) and radioactive waste (RAW) management conception; (C) Scope of application; (D) Spent nuclear fuel (SNF) and radioactive waste (RAW) management; (E) Legislation and regulatory framework; (F) General safety provisions; (G) Safety of spent nuclear fuel management; (H) Safety of radioactive waste management; (I) Transboundary movement of spent nuclear fuel and radioactive waste; (J) Discussed sealed radioactive sources; (K) Planned measures to improve safety; (L) Annexes

  10. Law on protection against ionising radiation and nuclear safety in Slovenia

    International Nuclear Information System (INIS)

    Breznik, B.; Krizman, M.; Skrk, D.; Tavzes, R.

    2003-01-01

    The existing legislation related to nuclear and radiation safety in Slovenia was introduced in 80's. The necessity for the new law is based on the new radiation safety standards (ICRP 60) and the intention of Slovenia to harmonize the legislation with the European Union. The harmonization means adoption of the basic safety standards and other relevant directives and regulations of Euratom. The nuclear safety section of this law is based on the legally binding international conventions ratified by Slovenia. The general approach is similar to that of some members of Nuclear Energy Agency (OECD). The guidelines of the law were set by the Ministry of the Environment and Spatial Planning, Nuclear Safety Administration, and Ministry of Health. The expert group of the Ministry of Environment and Spatial Planning and the Ministry of Health together with the representatives of the users of the ionising sources and representatives of the nuclear sector, prepared the draft of the subject law. The emphasis in this paper is given to main topics and solutions related to the control of the occupationally exposed workers, radiation safety, licensing, nuclear and waste safety, and radiation protection of people and patients. (authors)

  11. Introduction to the Joint Convention on the Safety of Spent Fuel Management and on the Safety of Radioactive Waste Management and Canada's participation

    International Nuclear Information System (INIS)

    Mecke, J.L.

    2011-01-01

    The Joint Convention on the Safety of Spent Fuel Management and on the Safety of Radioactive Waste Management (Joint Convention) is the first and the only legally binding international instrument to address safety issues concerning the management of spent fuel and radioactive waste on a global scale. It entered into force on June 18, 2001. The Government of Canada strongly supported international efforts to bring into force the Joint Convention and was the second country to ratify it. The Joint Convention is an 'incentive instrument' that is based on peer review (similar in that respect to the Convention on Nuclear Safety) and devised to encourage countries that are Contracting Parties to report and to foster open and frank discussions on the safety of spent fuel and radioactive waste management. Being an incentive convention, it is not designed to mandate Contracting Parties to fulfill its obligation through control and sanction, but it is based on the common objectives of Contracting Parties to achieve and maintain a high level of safety in spent fuel and radioactive waste management, protect individuals, society and the environment from ionizing radiation and prevent accidents and if necessary mitigating the consequences of such accidents. The following paper will provide an introduction to the Joint Convention and provide a summary of Canada's peer review at the most recent Review Meeting which was held on May 11-20, 2009, at the International Atomic Energy Agency (IAEA) headquarters in Vienna, Austria. (author)

  12. Risk and safety in the nuclear industry and conventional norms of society

    International Nuclear Information System (INIS)

    Tadmor, J.

    1977-01-01

    The societal acceptance of various risks is analyzed and rules of risk acceptance as a function of different parameters (e. g., expected benefit, intensity of effect) are spelled out. The monetary value of a human life is estimated, based on investments in safety of different human activities. The acceptable risks and safety investments in different human activities are then compared with risks and safety investments of the nuclear industry. Safety investments required to reduce radioactivity releases and risks from nuclear power stations to ALAP (as low as practiable) levels are taken as a study case. It is found that risks in the nuclear industry are several orders of magnitude lower and safety investments per human life saved are several orders of magnitude higher, as compared with risks and safety investments in other human activities

  13. Strengthening the Global Nuclear Safety Regime. INSAG-21. A report by the International Nuclear Safety Group

    International Nuclear Information System (INIS)

    2014-01-01

    The Global Nuclear Safety Regime is the framework for achieving the worldwide implementation of a high level of safety at nuclear installations. Its core is the activities undertaken by each country to ensure the safety and security of the nuclear installations within its jurisdiction. But national efforts are and should be augmented by the activities of a variety of international enterprises that facilitate nuclear safety - intergovernmental organizations, multinational networks among operators, multinational networks among regulators, the international nuclear industry, multinational networks among scientists, international standards setting organizations and other stakeholders such as the public, news media and non-governmental organizations (NGOs) that are engaged in nuclear safety. All of these efforts should be harnessed to enhance the achievement of safety. The existing Global Nuclear Safety Regime is functioning at an effective level today. But its impact on improving safety could be enhanced by pursuing some measured change. This report recommends action in the following areas: - Enhanced use of the review meetings of the Convention on Nuclear Safety as a vehicle for open and critical peer review and a source for learning about the best safety practices of others; - Enhanced utilization of IAEA Safety Standards for the harmonization of national safety regulations, to the extent feasible; - Enhanced exchange of operating experience for improving operating and regulatory practices; and - Multinational cooperation in the safety review of new nuclear power plant designs. These actions, which are described more fully in this report, should serve to enhance the effectiveness of the Global Nuclear Safety Regime

  14. Nuclear regulatory policy concept on safety, security, safeguards and emergency preparedness (3S+EP)

    International Nuclear Information System (INIS)

    Ilyas, Zurias

    2009-01-01

    Regulatory Policy is formulated in regulations that stipulate the assurance of workers and public safety and environmental protection. Legislation and regulations on nuclear energy should consider nuclear safety, security and safeguards, as well as nuclear emergency preparedness (3S+EP) and liability for nuclear damage. Specific requirements stipulated in international conventions and agreements should also be taken into account. Regulatory Policy is formulated in regulations that stipulate the assurance of workers and public safety and environmental protection. Legislation and regulations on nuclear energy should consider nuclear safety, security and safeguards, as well as nuclear emergency preparedness (3S+EP) and liability for nuclear damage. Specific requirements stipulated in international conventions and agreements should also be taken into account. By undertaking proper regulatory oversight on Safety, Security and Emergency Preparedness (3S+EP) as an integrated and comprehensive system, safe and secure use of nuclear energy can be assured. Licence requirements and conditions should fulfil regulatory requirements pertaining to 3S+EP for nuclear installation as an integrated system. An effective emergency capacity that can be immediately mobilized is important. The capacity in protecting the personnel before, during and after the disaster should also be planned. Thus, proper emergency preparedness should be supported by adequate resources. The interface between safety, security, safeguards and emergency preparedness has to be set forth in nuclear regulations, such as regulatory requirements; 3S+EP; components, systems and structures of nuclear installations and human resources. Licensing regulations should stipulate, among others, DIQ, installations security system, safety analysis report, emergency preparedness requirements and necessary human resources that meet the 3S+EP requirements.

  15. Nuclear law - Nuclear safety

    International Nuclear Information System (INIS)

    Pontier, Jean-Marie; Roux, Emmanuel; Leger, Marc; Deguergue, Maryse; Vallar, Christian; Pissaloux, Jean-Luc; Bernie-Boissard, Catherine; Thireau, Veronique; Takahashi, Nobuyuki; Spencer, Mary; Zhang, Li; Park, Kyun Sung; Artus, J.C.

    2012-01-01

    This book contains the contributions presented during a one-day seminar. The authors propose a framework for a legal approach to nuclear safety, a discussion of the 2009/71/EURATOM directive which establishes a European framework for nuclear safety in nuclear installations, a comment on nuclear safety and environmental governance, a discussion of the relationship between citizenship and nuclear, some thoughts about the Nuclear Safety Authority, an overview of the situation regarding the safety in nuclear waste burying, a comment on the Nome law with respect to electricity price and nuclear safety, a comment on the legal consequences of the Fukushima accident on nuclear safety in the Japanese law, a presentation of the USA nuclear regulation, an overview of nuclear safety in China, and a discussion of nuclear safety in the medical sector

  16. Risk and safety in the nuclear industry and conventional norms of society

    International Nuclear Information System (INIS)

    Tadmor, J.

    In the present study the societal acceptance of various risks is analyzed and rules of risk acceptance as a function of different parameters are spelled out. The monetary value of a human life is estimated, based on investments in safety of different human activities. The acceptable risks and safety investments in different human activities are then compared with risks and safety investments of the nuclear industry. Safety investments required to reduce the radioactivity releases and risks from nuclear power stations to ALAP levels are taken as a study case. It is found that risks in the nuclear industry are several orders of magnitude lower and safety investments per human life saved are several orders of magnitude higher, as compared with risks and safety investments in other human activities. It is also shown that the incremental safety investments needed to further reduce the radiation doses in the environment during normal and continuous operation of nuclear plants are extravagantly high as compared to safety investments in other human activities and in other facets of human life. Considering that there is a limit to the economic means available, societal expenditures for reducing risks should by spread, as much as possible, over all human activities to get the maximum return from investments. (B.G.)

  17. Research on the improvement of nuclear safety -Thermal hydraulic tests for reactor safety system-

    Energy Technology Data Exchange (ETDEWEB)

    Jung, Moon Kee; Park, Choon Kyung; Yang, Sun Kyoo; Chun, Se Yung; Song, Chul Hwa; Jun, Hyung Kil; Jung, Heung Joon; Won, Soon Yun; Cho, Yung Roh; Min, Kyung Hoh; Jung, Jang Hwan; Jang, Suk Kyoo; Kim, Bok Deuk; Kim, Wooi Kyung; Huh, Jin; Kim, Sook Kwan; Moon, Sang Kee; Lee, Sang Il [Korea Atomic Energy Research Institute, Taejon (Korea, Republic of)

    1995-06-01

    The present research aims at the development of the thermal hydraulic verification test technology for the safety system of the conventional and advanced nuclear power plant and the development of the advanced thermal hydraulic measuring techniques. In this research, test facilities simulating the primary coolant system and safety system are being constructed for the design verification tests of the existing and advanced nuclear power plant. 97 figs, 14 tabs, 65 refs. (Author).

  18. National report of the Slovak Republic compiled in terms of the join convention on the safety of spent fuel management and on the safety of radwaste management

    International Nuclear Information System (INIS)

    Jurina, V.; Viktory, D.; Petrik, T.; Sovcik, J.; Suess, J.; Tomek, J.; Lukacovic, J.; Ivan, J.; Ziakova, M.; Metke, E.; Pospisil, M.; Turner, M.; Homola, J.; Vaclav, J.; Bystricka, S.; Barbaric, M.; Horvath, J.; Betak, J.; Mihaly, B.; Adamovsky, V.; Baloghova, A.; Orihel, M.; Vasina, D.; Balaz, J.; Misovicova, D.; Vrtoch, M.; Mlcuch, J.; Granak, P.; Meleg, J.; Bardy, M.; Gogoliak, J.

    2011-08-01

    The National safety report of the Slovak Republic on the safety of spent fuel management and on the safety of radwaste management in 2011 is presented. These activities in the safety of spent fuel management and radioactive waste management in the Slovak Republic are reported under the headings: (A) Introduction; B) Concept for spent nuclear fuel management (SNF) and radwaste management (RAW); (C) Scope of application of the convention; (D) Spent fuel management and radioactive waste (RAW) management facilities; (E) Legislation and regulation; (F) General safety provisions; (G) Safety of spent fuel management; (H) Safety of radioactive waste (RAW) management; (I) Transboundary movement of spent nuclear fuel and radioactive waste; (J) Disused sealed sources; (K) Planned measures to improve safety; (L) Communication with the public; (M) Annexes. Annexes consists of following parts: I. List of nuclear facilities for spent fuel and RAW management. II. Limits of radioactive material discharges into atmosphere and hydrosphere. III. List of nuclear installations in decommissioning. IV. Inventory of stored spent nuclear fuel. V. Inventory of stored RAW. VI. List of national laws, decrees and guidelines. VII. List of international expert reports (including safety reports). VIII. List of authors.

  19. On the fundamentals of nuclear reactor safety assessment. Inherent threats and their implications

    Energy Technology Data Exchange (ETDEWEB)

    Hyvaerinen, J. [Finnish Centre for Radiation and Nuclear Safety, Helsinki (Finland). Nuclear Safety Dept.

    1996-12-01

    The thesis addresses some fundamental questions related to implementation and assessment of nuclear safety. The safety principles and assessment methods are described, followed by descriptions of selected novel technical challenges to nuclear safety. The novel challenges encompass a wide variety of technical issues, thus providing insights on the limitations of conventional safety assessment methods. Study of the limitations suggests means to improve nuclear reactor design criteria and safety assessment practices. The novel safety challenges discussed are (1) inherent boron dilution in PWRs, (2) metallic insulation performance with respect to total loss of emergency cooling systems in a loss-of-coolant accident, and (3) horizontal steam generator heat transfer performance at natural circulation conditions. (50 refs.).

  20. On the fundamentals of nuclear reactor safety assessment. Inherent threats and their implications

    International Nuclear Information System (INIS)

    Hyvaerinen, J.

    1996-12-01

    The thesis addresses some fundamental questions related to implementation and assessment of nuclear safety. The safety principles and assessment methods are described, followed by descriptions of selected novel technical challenges to nuclear safety. The novel challenges encompass a wide variety of technical issues, thus providing insights on the limitations of conventional safety assessment methods. Study of the limitations suggests means to improve nuclear reactor design criteria and safety assessment practices. The novel safety challenges discussed are (1) inherent boron dilution in PWRs, (2) metallic insulation performance with respect to total loss of emergency cooling systems in a loss-of-coolant accident, and (3) horizontal steam generator heat transfer performance at natural circulation conditions. (50 refs.)

  1. IAEA Director General welcomes landmark convention to combat nuclear terrorism

    International Nuclear Information System (INIS)

    2005-01-01

    Full text: IAEA Director General Mohamed ElBaradei welcomed the adoption of an International convention against nuclear terrorism. 'This is a landmark achievement which will bolster global efforts to combat nuclear terrorism,' Dr. ElBaradei said. 'It will be a key part of international efforts to prevent terrorists from gaining access to nuclear weapons'. The United Nations General Assembly adopted the convention, The International Convention for the Suppression of Acts of Nuclear Terrorism, on 13 April 2005. The Convention strengthens the global legal framework to counter terrorist threats. Based on a proposal by the Russian Federation in 1998, the Convention focuses on criminal offences related to nuclear terrorism and covers a broad range of possible targets, including nuclear reactors as well as nuclear material and radioactive substances. Under its provisions, alleged offenders - for example any individual or group that unlawfully and intentionally possesses or uses radioactive material with the intent to cause harm - must be either extradited or prosecuted. States are also encouraged to cooperate with each other in connection with criminal investigations and extradition proceedings. The Convention further requires that any seized nuclear or radiological material be held in accordance with IAEA safeguards, and handled in keeping with the IAEA's health, safety and physical protection standards. Dr. ElBaradei also recalled that the Agency is in the process of amending the Convention on the Physical Protection of Nuclear Material, in order to broaden its scope, and in so doing, strengthen the current legal framework for securing nuclear material against illicit uses. A conference will be held from 4 to 8 July in Vienna to consider and adopt the amendments. The Convention opens for signature in September this year. Dr ElBaradei urged all States to 'sign and ratify the Convention without delay so nuclear terrorism will have no chance'. (IAEA)

  2. White paper on nuclear safety in 2005

    International Nuclear Information System (INIS)

    2006-04-01

    The white paper consists of four parts. The first part described the outline of international discussions on safety culture and activities promoted by utilities and regulatory bodies in Japan. The second part explained the main activities of the Nuclear Safety Commission of Japan and nuclear regulatory authorities on nuclear safety regulation. The third part introduced various activities for ensuring overall nuclear safety in Japan, such as safety regulation systems for nuclear facilities, disaster measures at nuclear facilities, progress in nuclear research, nuclear safety regulation by risk-informed utilization, environmental radiation surveys, international cooperation on nuclear safety. The forth part contained various materials and data related to the Nuclear Safety Commission of Japan. (J.P.N.)

  3. Stress Tests Worldwide - IAEA Nuclear Safety Action Plan

    International Nuclear Information System (INIS)

    Lyons, J.E.

    2012-01-01

    The IAEA nuclear safety action plan relies on 11 important issues. 1) Safety assessments in light of the Fukushima accident: the IAEA secretariat will develop a methodology for stress tests against specific extreme natural hazards and will provide assistance for their implementation; 2) Strengthen existing IAEA peer reviews; 3) Emergency preparedness and response; 4) National Regulatory bodies in terms of independence and adequacy of human and financial resources; 5) The development of safety culture and scientific and technical capacity in Operating Organizations; 6) The upgrading of IAEA safety standards in a more efficient way; 7) A better implementation of relevant conventions concerning nuclear safety and nuclear accidents; 8) To provide a broad assistance on safety standard for countries embarking on a nuclear power program; 9) To facilitate the use of available information, expertise and techniques concerning radiation protection; 10) To enhance the transparency of nuclear industry; and 11) To promote the cooperation between member states in nuclear safety. (A.C.)

  4. Safety of nuclear ships

    International Nuclear Information System (INIS)

    1978-01-01

    Interest in the utilization of nuclear steam supply systems for merchant ships and icebreakers has recently increased considerably due to the sharp rise in oil prices and the continuing trend towards larger and faster merchant ships. Canada, for example, is considering construction of an icebreaker in the near future. On the other hand, an accident which could result in serious damage to or the sinking of a nuclear ship is potentially far more dangerous to the general public than a similar accident with a conventional ship. Therefore, it was very important to evaluate in an international forum the safety of nuclear ships in the light of our contemporary safety philosophy, taking into account the results of cumulative operating experience with nuclear ships in operation. The philosophy and safety requirement for land-based nuclear installations were outlined because of many common features for both land-based nuclear installations and nuclear ships. Nevertheless, essential specific safety requirements for nuclear ships must always be considered, and the work on safety problems for nuclear ships sponsored by the NEA was regarded as an important step towards developing an international code of practice by IMCO on the safety of nuclear merchant ships. One session was devoted to the quantitative assessment of nuclear ship safety. The probability technique of an accident risk assessment for nuclear power plants is well known and widely used. Its modification, to make it applicable to nuclear propelled merchant ships, was discussed in some papers. Mathematical models for describing various postulated accidents with nuclear ships were developed and reported by several speakers. Several papers discussed a loss-of-coolant accident (LOCA) with nuclear steam supply systems of nuclear ships and engineering design features to prevent a radioactive effluence after LOCA. Other types of postulated accidents with reactors and systems in static and dynamic conditions were also

  5. Convention on Early Notification of a Nuclear Accident and Convention on Assistance in the Case of a Nuclear Accident or Radiological Emergency

    International Nuclear Information System (INIS)

    1997-01-01

    Part I: Status lists as of 31 December 1996. A. Convention on Early Notification of a Nuclear Accident (Notification Convention). B. Convention on Assistance in the Case of a Nuclear Accident or Radiological Emergency (Assistance Convention). PART II: Texts of reservations/declarations made upon or following expressing consent to be bound and objections thereto Part III: Texts of reservations/declarations made upon signature

  6. Results of the 3rd Review Meeting of the Convention on Nuclear Safety and Preparatory Works for the 4th Meeting

    International Nuclear Information System (INIS)

    Choi, Young Sung; Choi, Kwang Sik; Kim, Woong Sik

    2006-01-01

    The 3 rd Review Meeting of the Convention on Nuclear Safety (CNS) took place from April 11-22, 2005. Fifty out of fifty-five Contracting Parties (CPs) participated with over 500 delegates in attendance. It was concluded that all CPs in attendance were in compliance with the requirements of the CNS. It was also noted that although the focus tends to be on the triennial national reports and review meetings, the CNS should emphasize an ongoing process that continually promotes the advancement of nuclear safety. With regard to this continuity process, the President of the 3 rd Review Meeting sent to all the CPs a message to remind of the lessons offered and learned from the Meeting and to put them into action as well. The president also asked that the CPs start in earnest later this year their preparations for the Forth Meeting in 2008. This paper introduces the results of the 3 rd Review Meeting and presents some suggestions on preparatory works that should be done for the next Review Meeting

  7. Development of the national report of the Mexican United States for the Convention on Nuclear Safety of the IAEA

    International Nuclear Information System (INIS)

    Ruiz L, P.

    2006-01-01

    In this work the content of the National Report of the Mexican United States in it revision 2 is presented, which was presented for it exam by the member countries of the Convention on Nuclear Safety, in April, 2005. The conclusion of this Report, with base in the existent objective evidence, is that the Laguna Verde Central continues maintaining a level of similar safety to that of other nuclear power plants of its type, not existing conditions at the moment that they can be identified as adverse for a sure operation and that, therefore, plans don't exist to advance the closing of this installation, before the end of its useful life. The questions that the member countries formulated to the Report of Mexico, the answers that were provided to these questions, as well as the conclusions of the 3 Exam Meeting of April, 2005 are also included. The next National Report, in it revision 3, it will cover the period from the January 1, 2004 to December 31, 2006, it was developed from January to August, 2007, it delivered to the IAEA on September of the same year and it was presented in the IAEA Headquarters (IAEA) in the 4 Exam Meeting on April, 2008. (Author)

  8. Answers to questions on National Report of the Slovak Republic. Compiled according to the terms of the joint convention on the safety of spent fuel management and on the safety of radioactive waste management. October 2003

    International Nuclear Information System (INIS)

    2003-10-01

    Slovakia is pleased to present to the State Parties of the Joint Convention on the Safety of Spent Fuel Management and on the Safety of Radioactive Waste Management the Answers to questions received on the National Report of the Slovak Republic compiled according to the terms of the Joint Convention (April 2003). Slovakia is ready to provide additional explanations to these Answers during the 1 st Review Meeting. In the Annexes the 254/1994 Coll. LL. Act of the National Council of the Slovak Republic of 25 August 1994 on State Fund of Decommissioning of Nuclear Installations and Handling of Spent Nuclear Fuels and Nuclear Wastes is included

  9. Protocol to amend the Vienna convention on civil liability for nuclear damage. Convention on supplementary compensation for nuclear damage. Final act

    International Nuclear Information System (INIS)

    1998-01-01

    The document reproduces the Final Act of the Diplomatic Conference held in Vienna between 8-12 September 1997 which adopted the Protocol to Amend the Vienna Convention on Civil Liability for Nuclear Damage, and the Convention on Supplementary Compensation for Nuclear Damage

  10. Protocol to amend the Vienna convention on civil liability for nuclear damage. Convention on supplementary compensation for nuclear damage. Final act

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    1998-07-23

    The document reproduces the Final Act of the Diplomatic Conference held in Vienna between 8-12 September 1997 which adopted the Protocol to Amend the Vienna Convention on Civil Liability for Nuclear Damage, and the Convention on Supplementary Compensation for Nuclear Damage

  11. Convention on the Physical Protection of Nuclear Material

    International Nuclear Information System (INIS)

    1980-01-01

    The convention on the Physical Protection of Nuclear Material is composed of the text of 23 articles, annex 1 showing the levels of physical protection and annex 2 which is the categorization list of nuclear material. The text consists of definitions (article 1), the scope of applications (2), liability of protecting nuclear material during international transport (3 and 4), duty of mutual cooperation (5 and 6), responsibility for criminal punishment (7 to 13), and final provisions (14 to 23). It is to be noted that the nuclear material for military purposes and domestic nuclear facilities are excluded in the connection. After the brief description of the course leading to the establishment of the convention, individual articles and annexes and the respective Japanese version, and the explanation based on the intergovernmental meeting discussion on the draft convention are described. (J.P.N.)

  12. White paper on nuclear safety in 2009

    International Nuclear Information System (INIS)

    2009-06-01

    It deals with a general introduction of nuclear safety like general safety, safety regulation and system law and standard. It indicates of nuclear energy facility safety about general safety, safety regulation of operating nuclear power plant safety regulation under constructing nuclear power plant. It deals with radiation facility safety, monitoring of environmental radiation, radiation protection, radiation control, international cooperating on nuclear energy safety and establishment of safety regulation.

  13. Nuclear. Convention on early notification of a nuclear accident. Treaty series 1990 no.21

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    1992-12-31

    The States present at this convention are aware that comprehensive measures have been are being taken to ensure a high level of safety in nuclear activities, aimed at preventing nuclear accidents and minimizing the consequences of any such accident should it occur. The States are convinced of the need to provide relevant information about nuclear accidents as early as possible in order that transboundary radiological consequences can be minimized. In the event of an accident the State involved will notify, through the International Energy Agency the other States which may be physically affected, as to the nature of the accident, the time of occurrence and its exact location.

  14. Nuclear. Convention on early notification of a nuclear accident. Treaty series 1990 no.21

    International Nuclear Information System (INIS)

    1991-01-01

    The States present at this convention are aware that comprehensive measures have been are being taken to ensure a high level of safety in nuclear activities, aimed at preventing nuclear accidents and minimizing the consequences of any such accident should it occur. The States are convinced of the need to provide relevant information about nuclear accidents as early as possible in order that transboundary radiological consequences can be minimized. In the event of an accident the State involved will notify, through the International Energy Agency the other States which may be physically affected, as to the nature of the accident, the time of occurrence and its exact location

  15. Vienna Convention and Its Revision and convention on Supplementary Compensation for Nuclear Damage on September 12, 1997

    International Nuclear Information System (INIS)

    Soljan, V.

    1998-01-01

    After Chernobyl, the perception of common interest in modernization of the international regime that regulate various aspects of nuclear energy, has been evident among states with nuclear power plants as well as those likely to be involved in or affected by a nuclear incident. The adoption of the protocol Amending the Vienna Convention on Civil liability for Nuclear Damage, 1963 and the Convention on Supplementary Compensation for nuclear damage in September 1997, represents important part of the entire result that has been achieved from the 1986. This article gives a brief survey on the background of the process of modernization of the international regime of liability for nuclear damage and examines solutions contained in the provisions of the conventions. (author)

  16. The Nordic Nuclear Safety Research (NKS) programme. Nordic cooperation on nuclear safety

    Energy Technology Data Exchange (ETDEWEB)

    Andersson, Kasper G. [Technical Univ. of Denmark, Roskilde (Denmark). National Lab. for Sustainable Energy; Ekstroem, Karoliina [Fortum Power and Heat, Fortum (Finland); Gwynn, Justin P. [Norwegian Radiation Protection Authority, Tromsoe (Norway). Fram Centre; Magnusson, Sigurdur M. [Icelandic Radiation Safety Authority, Reykjavik (Iceland); Physant, Finn C. [NKS-Sekretariatet, Roskilde (Denmark)

    2012-07-01

    The roots of the current Nordic Nuclear Safety Research (NKS) programme can be traced back to the recommendation by the Nordic Council in the late 1950s for the establishment of joint Nordic committees on the issues of nuclear research and radiation protection. One of these joint Nordic committees, the 'Kontaktorgan', paved the way over its 33 years of existence for the future of Nordic cooperation in the field of nuclear safety, through the formation of Nordic groups on reactor safety, nuclear waste and environmental effects of nuclear power in the late 1960s and early 1970s. With an increased focus on developing nuclear power in the wake of the energy crisis on the 1970s, the NKS was established by the Nordic Council to further develop the previous strands of Nordic cooperation in nuclear safety. NKS started its first programme in 1977, funding a series of four year programmes over the next 24 years covering the areas of reactor safety, waste management, emergency preparedness and radioecology. Initially funded directly from the Nordic Council, ownership of NKS was transferred from the political level to the national competent authorities at the beginning of the 1990s. This organizational and funding model has continued to the present day with additional financial support from a number of co-sponsors in Finland, Norway and Sweden. (orig.)

  17. White paper on nuclear safety in 2000

    International Nuclear Information System (INIS)

    2001-04-01

    This report is composed of three parts and a subjective part Part 1 includes special articles on the measures for the security of nuclear safety and the future problems described from the beginning of the security. Taking consideration that there exists potential risk in the utilization of nuclear energy in addition to the previous accidents in the area of nuclear energy, future measures to take for safety security were discussed as well as the reorganization of government facilities. In addition, the measures for nuclear safety according to the special nuclear disaster countermeasure law and the future problems were described. In Part 2, the trend of nuclear safety in 2000 and the actual effects of 'the basic principle for the countermeasures of the hour' proposed by the nuclear safety commission were outlined. Moreover, the activities of the commission in 2000 were briefly described. In Part 3, various activities for security of nuclear safety, the safety regulation system and the disaster protection system in nuclear facilities, nuclear safety researches in Japan were described in addition to international cooperation as to nuclear safety. Finally, various materials related to the nuclear safety commission, and the materials on the practical activities for nuclear safety were listed in the subjective part. (M.N.)

  18. International conventions on civil liability for nuclear damage. Revised 1976 ed.

    International Nuclear Information System (INIS)

    1976-01-01

    This revised edition contains the texts of the following multilateral conventions and instruments concerning civil liability for nuclear damage: The Vienna Convention of 21 May 1963 on Civil Liability for Nuclear Damage; The Paris Convention of 29 July 1960 on Third Party Liability in the Field of Nuclear Energy (incorporating the provisions of the Additional Protocol of 28 January 1964); The Brussels Convention of 31 January 1963; Supplementary to the Paris Convention of 29 July 1960 (and incorporating the provisions of the Additional Protocol signed in Paris on 28 January 1964); and the Brussels Convention of 25 May 1962 on the Liability of Operators of Nuclear Ships. Final Act and Resolutions of the International Conference on Civil Liability for Nuclear Damage, held in Vienna from 29 April to 19 May 1963; Final Act of the International Legal Conference on Maritime Carriage of Nuclear Substances, held in Brussels from 29 November to 2 December 1971; and Convention Relating to Civil Liability in the Field of Maritime Carriage of Nuclear Material, adopted at Brussels on 17 December 1971

  19. Thermal hydraulic tests for reactor safety system -Research on the improvement of nuclear safety-

    International Nuclear Information System (INIS)

    Chung, Moon Ki; Park, Chun Kyeong; Yang, Seon Kyu; Chung, Chang Hwan; Chun, Shee Yeong; Song, Cheol Hwa; Chun, Hyeong Gil; Chang, Seok Kyu; Chung, Heung Joon; Won, Soon Yeon; Cho, Yeong Ro; Kim, Bok Deuk; Min, Kyeong Ho

    1994-07-01

    The present research aims at the development of the thermal hydraulic verification test technology for the reactor safety system of the conventional and advanced nuclear power plant and the development of the advanced thermal hydraulic measuring techniques. (Author)

  20. Promoting safety in nuclear installations. The IAEA has established safety standards for nuclear reactors and provides expert review and safety services to assist Member States in their application

    International Nuclear Information System (INIS)

    2002-01-01

    More than 430 nuclear power plants (NPPs) are currently operating in 30 countries around the world. The nuclear share of total electricity production ranges from about 20 percent in the Czech Republic and United States to nearly 78 percent in France and Lithuania. Worldwide, nuclear power generates about 16% of the total electricity. The safety of such nuclear installations is fundamental. Every aspect of a power plant must be closely supervised and scrutinized by national regulatory bodies to ensure safety at every phase. These aspects include design, construction, commissioning, trial operation, commercial operation, repair and maintenance, plant upgrades, radiation doses to workers, radioactive waste management and, ultimately, plant decommissioning. Safety fundamentals comprise defence-in-depth, which means having in place multiple levels of protection. nuclear facilities; regulatory responsibility; communicating with the public; adoption of the international convention on nuclear safety including implementation of IAEA nuclear safety standards. This publication covers topics of designing for safety (including safety concepts, design principles, and human factors); operating safety (including safety culture and advance in operational safety); risk assessment and management

  1. The international regime for nuclear safety after Fukushima; Das internationale System nuklearer Sicherheit nach Fukushima

    Energy Technology Data Exchange (ETDEWEB)

    Raetzke, Christian [CONLAR Consulting on Nuclear Law and Regulation, Leipzig (Germany)

    2014-05-15

    The Chernobyl catastrophe in 1986 lead to a new foundation of the international regime for nuclear safety: the 1994 Convention on Nuclear Safety introduced for the first time obligations on adhering states to adopt certain principles to achieve a high level of safety. The Convention, however, does not contain detailed standards, nor does it install a 'hard' mechanism for control and enforcement. While the system has undoubtedly lead to improvements in nuclear safety worldwide, it was not able to detect and remedy the deficiencies in the Japanese system. Ideas voiced immediately after the Fukushima accident to take a further decisive step towards a more stringent international system seemed not to be met with enthusiasm. The general tendency is to use the existing instruments and mechanisms in a more effective manner. However, very recently (in April 2014) the member states of the Convention on Nuclear Safety decided to stage a diplomatic conference with the aim to amend the Convention and to insert safety objectives. Time will eventually show whether this is a first, but decisive step towards the idea of an international system of mandatory and enforceable nuclear safety standards. (orig.)

  2. Safety of nuclear power plants: Design. Safety requirements

    International Nuclear Information System (INIS)

    2000-01-01

    The present publication supersedes the Code on the Safety of Nuclear Power Plants: Design (Safety Series No. 50-C-D (Rev. 1), issued in 1988). It takes account of developments relating to the safety of nuclear power plants since the Code on Design was last revised. These developments include the issuing of the Safety Fundamentals publication, The Safety of Nuclear Installations, and the present revision of various safety standards and other publications relating to safety. Requirements for nuclear safety are intended to ensure adequate protection of site personnel, the public and the environment from the effects of ionizing radiation arising from nuclear power plants. It is recognized that technology and scientific knowledge advance, and nuclear safety and what is considered adequate protection are not static entities. Safety requirements change with these developments and this publication reflects the present consensus. This Safety Requirements publication takes account of the developments in safety requirements by, for example, including the consideration of severe accidents in the design process. Other topics that have been given more detailed attention include management of safety, design management, plant ageing and wearing out effects, computer based safety systems, external and internal hazards, human factors, feedback of operational experience, and safety assessment and verification. This publication establishes safety requirements that define the elements necessary to ensure nuclear safety. These requirements are applicable to safety functions and the associated structures, systems and components, as well as to procedures important to safety in nuclear power plants. It is expected that this publication will be used primarily for land based stationary nuclear power plants with water cooled reactors designed for electricity generation or for other heat production applications (such as district heating or desalination). It is recognized that in the case of

  3. Safety of nuclear power plants: Design. Safety requirements

    International Nuclear Information System (INIS)

    2004-01-01

    The present publication supersedes the Code on the Safety of Nuclear Power Plants: Design (Safety Series No. 50-C-D (Rev. 1), issued in 1988). It takes account of developments relating to the safety of nuclear power plants since the Code on Design was last revised. These developments include the issuing of the Safety Fundamentals publication, The Safety of Nuclear Installations, and the present revision of various safety standards and other publications relating to safety. Requirements for nuclear safety are intended to ensure adequate protection of site personnel, the public and the environment from the effects of ionizing radiation arising from nuclear power plants. It is recognized that technology and scientific knowledge advance, and nuclear safety and what is considered adequate protection are not static entities. Safety requirements change with these developments and this publication reflects the present consensus. This Safety Requirements publication takes account of the developments in safety requirements by, for example, including the consideration of severe accidents in the design process. Other topics that have been given more detailed attention include management of safety, design management, plant ageing and wearing out effects, computer based safety systems, external and internal hazards, human factors, feedback of operational experience, and safety assessment and verification. This publication establishes safety requirements that define the elements necessary to ensure nuclear safety. These requirements are applicable to safety functions and the associated structures, systems and components, as well as to procedures important to safety in nuclear power plants. It is expected that this publication will be used primarily for land based stationary nuclear power plants with water cooled reactors designed for electricity generation or for other heat production applications (such as district heating or desalination). It is recognized that in the case of

  4. Convention on early notification of a nuclear accident. Convention on assistance in the case of a nuclear accident or radiological emergency

    International Nuclear Information System (INIS)

    1989-08-01

    The document refers to the Convention on early notification of a nuclear accident (INFCIRC-335) and to the Convention on assistance in the case of a nuclear accident or radiological emergency (INFCIRC-336). Part I contains reservations/declarations made upon or following signature and Part II contains reservations/declarations made upon or following deposit of instrument expressing consent to be bound. The status of signature, ratification, acceptance, approval or accession by States or organizations as of 31 July 1989 for the conventions is presented in two attachments

  5. Meetings of all the contracting parties of agreements on Nuclear Safety of the IAEA

    International Nuclear Information System (INIS)

    Ripoll Carulla, S.

    2003-01-01

    One of the most original aspects at the Convention on Nuclear Safety was the incorporation of the mechanism for Meetings with Contracting States into Chapter III. This mechanism has become one of the most characteristic elements at the convention, which is usually defined as a motivational convention, due in large part to the actual existence of these meetings. (Author)

  6. White paper on nuclear safety in 2004

    International Nuclear Information System (INIS)

    2005-05-01

    The white paper consists of four parts. The first part described the regulation of nuclear facility decommissioning and the clearance level at which the decommissioned waste materials are not necessarily treated as radioactive materials. The second part explained the main operations of the nuclear safety regulation of the Nuclear Safety Commission and the regulatory bodies in 2004 and Mihama unit 3 accident. The third part introduced various activities for the general preservation of nuclear safety in Japan, such as safety regulation systems for nuclear facilities, disaster preparedness of nuclear facilities, progress in nuclear research, environmental radiation surveys and international cooperation on nuclear safety. The forth part contained various materials and data related to the Nuclear Safety Commission. (J.P.N.)

  7. Developments in international convention on nuclear third party liability

    International Nuclear Information System (INIS)

    Reyners, P.

    2000-01-01

    A few years after the adoption of a Protocol to amend the world-wide Vienna Convention on Civil Liability for Nuclear Damage and of a new ''global'' Convention on the Supplementary Compensation of Nuclear Damage (September 1997), the countries which are party to the Western Europe based Paris and Brussels Conventions are working on the revision of these instruments within the OECD Nuclear Energy Agency. The objective of this exercise is not only to preserve the compatibility of the Paris and Vienna provisions, which is now an imperative deriving from the application of the 1988 Joint Protocol linking these two Conventions, but also to substantially improve certain features of this regime such as its technical and geographical scope of application, the facilitation of the rights of victims to defend their claims and, of course, the level of funds effectively available to compensate the damage. This paper reviews briefly the recent evolution of the international nuclear liability regime and discusses some of the challenges which the nuclear countries are facing in this context. (author)

  8. Joint convention on the safety of spent fuel management and on the safety of radioactive waste management

    International Nuclear Information System (INIS)

    1997-01-01

    The Joint Convention on the Safety of Spent Fuel Management and on the Safety of Radioactive Waste Management was adopted on 5 September 1997 by a Diplomatic Conference convened by the IAEA from 1 to 5 September 1997. The Joint Convention was opened for signature at Vienna on 29 September 1997 during the forty-first session of the General Conference of the IAEA. This document reproduces the text of the Convention

  9. Joint convention on the safety of spent fuel management and on the safety of radioactive waste management

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    1997-12-24

    The Joint Convention on the Safety of Spent Fuel Management and on the Safety of Radioactive Waste Management was adopted on 5 September 1997 by a Diplomatic Conference convened by the IAEA from 1 to 5 September 1997. The Joint Convention was opened for signature at Vienna on 29 September 1997 during the forty-first session of the General Conference of the IAEA. This document reproduces the text of the Convention.

  10. China's nuclear safety regulatory body: The national nuclear safety administration

    International Nuclear Information System (INIS)

    Zhang Shiguan

    1991-04-01

    The establishment of an independent nuclear safety regulatory body is necessary for ensuring the safety of nuclear installations and nuclear fuel. Therefore the National Nuclear Safety Administration was established by the state. The aim, purpose, organization structure and main tasks of the Administration are presented. At the same time the practical examples, such as nuclear safety regulation on the Qinshan Nuclear Power Plant, safety review and inspections for the Daya Bay Nuclear Power Plant during the construction, and nuclear material accounting and management system in the nuclear fuel fabrication plant in China, are given in order to demonstrate the important roles having been played on nuclear safety by the Administration after its founding

  11. State Office for Nuclear Safety - New Regulatory Body in Croatia

    International Nuclear Information System (INIS)

    Novosel, N.; Prah, M.; Valcic, I.; Cizmek, A.

    2006-01-01

    The Act on Nuclear Safety was adopted by the Croatian Parliament on 15 October 2003, and it is published in the Official Gazette No. 173/03. This Act regulates safety and protective measures for using nuclear materials and specified equipment and performing nuclear activities, and establishes the State Office for Nuclear Safety. Provisions of this Act apply on nuclear activities, nuclear materials and specified equipment. Also, by accession to international conventions and agreements, Croatia took the responsibility of implementing the provisions of those international treaties. In the process of European and international integrations, Croatia has to make harmonization with European and international standards also in the field of nuclear safety. The State Office for Nuclear Safety as an independent regulatory authority started its work on 1st June 2005 by taking over responsibility for activities relating to nuclear safety and cooperation with the International Atomic Energy Agency from the Ministry of the Economy, Labour and Entrepreneurship. In this paper responsibilities, organization and projects of the State Office for Nuclear Safety will be presented, with the accent on development of regulations and international cooperation. (author)

  12. Notes on implementation of IAEA Convention on Early Notification of a Nuclear Accident (CENNA)

    International Nuclear Information System (INIS)

    Camilleri, A.

    1989-01-01

    The communication arrangements adopted to implement the Convention on Early Notification of a Nuclear Accident (CENNA) are discussed. Central to these is the global Telecommunications system (GTS) of the World Meteorological Organisation (WMO). The GTS has a global structure and proven reliability and it operates 24 hours a day and the WMO has agreed to its being used to disseminate the information specified in CENNA relevant to minimising the radiological consequences of an accident. It has been necessary for individual states to arrange for a Telecommunications link between the nearest GTS entry point (normally at a national meteorological office) and the national authority responsible for receiving and issuing notifications under the international nuclear safety conventions. A telecommunications link is in place between the IAEA's Vienna headquarters and the WMO in Vienna. The system was tested with a series of five trial transmissions conducted in January - February 1988. 3 figs

  13. Effort on Nuclear Power Plants safety

    International Nuclear Information System (INIS)

    Prayoto.

    1979-01-01

    Prospects of nuclear power plant on designing, building and operation covering natural safety, technical safety, and emergency safety are discussed. Several problems and their solutions and nuclear energy operation in developing countries especially control and permission are also discussed. (author tr.)

  14. Safety assessment and verification for nuclear power plants. Safety guide

    International Nuclear Information System (INIS)

    2004-01-01

    This Safety Guide was prepared under the IAEA programme for safety standards for nuclear power plants. The present publication is a revision of the IAEA Safety Guide on Management of Nuclear Power Plants for Safe Operation issued in 1984. It supplements Section 2 of the Safety Requirements publication on Safety of Nuclear Power Plants: Operation. Nuclear power technology is different from the customary technology of power generation from fossil fuel and by hydroelectric means. One major difference between the management of nuclear power plants and that of conventional generating plants is the emphasis that should be placed on nuclear safety, quality assurance, the management of radioactive waste and radiological protection, and the accompanying national regulatory requirements. This Safety Guide highlights the important elements of effective management in relation to these aspects of safety. The attention to be paid to safety requires that the management recognize that personnel involved in the nuclear power programme should understand, respond effectively to, and continuously search for ways to enhance safety in the light of any additional requirements socially and legally demanded of nuclear energy. This will help to ensure that safety policies that result in the safe operation of nuclear power plants are implemented and that margins of safety are always maintained. The structure of the organization, management standards and administrative controls should be such that there is a high degree of assurance that safety policies and decisions are implemented, safety is continuously enhanced and a strong safety culture is promoted and supported. The objective of this publication is to guide Member States in setting up an operating organization which facilitates the safe operation of nuclear power plants to a high level internationally. The second objective is to provide guidance on the most important organizational elements in order to contribute to a strong safety

  15. Safety assessment and verification for nuclear power plants. Safety guide

    International Nuclear Information System (INIS)

    2005-01-01

    This Safety Guide was prepared under the IAEA programme for safety standards for nuclear power plants. The present publication is a revision of the IAEA Safety Guide on Management of Nuclear Power Plants for Safe Operation issued in 1984. It supplements Section 2 of the Safety Requirements publication on Safety of Nuclear Power Plants: Operation. Nuclear power technology is different from the customary technology of power generation from fossil fuel and by hydroelectric means. One major difference between the management of nuclear power plants and that of conventional generating plants is the emphasis that should be placed on nuclear safety, quality assurance, the management of radioactive waste and radiological protection, and the accompanying national regulatory requirements. This Safety Guide highlights the important elements of effective management in relation to these aspects of safety. The attention to be paid to safety requires that the management recognize that personnel involved in the nuclear power programme should understand, respond effectively to, and continuously search for ways to enhance safety in the light of any additional requirements socially and legally demanded of nuclear energy. This will help to ensure that safety policies that result in the safe operation of nuclear power plants are implemented and that margins of safety are always maintained. The structure of the organization, management standards and administrative controls should be such that there is a high degree of assurance that safety policies and decisions are implemented, safety is continuously enhanced and a strong safety culture is promoted and supported. The objective of this publication is to guide Member States in setting up an operating organization which facilitates the safe operation of nuclear power plants to a high level internationally. The second objective is to provide guidance on the most important organizational elements in order to contribute to a strong safety

  16. IAEA safety fundamentals: the safety of nuclear installations and the defence in depth concept

    International Nuclear Information System (INIS)

    Aro, I.

    2005-01-01

    This presentation is a replica of the similar presentation provided by the IAEA Basic Professional Training Course on Nuclear Safety. The presentation utilizes the IAEA Safety Series document No. 110, Safety Fundamentals: the Safety of Nuclear Installations. The objective of the presentation is to provide the basic rationale for actions in provision of nuclear safety. The presentation also provides basis to understand national nuclear safety requirements. There are three Safety Fundamentals documents in the IAEA Safety Series: one for nuclear safety, one for radiation safety and one for waste safety. The IAEA is currently revising its Safety Fundamentals by combining them into one general Safety Fundamentals document. The IAEA Safety Fundamentals are not binding requirements to the Member States. But, a very similar text has been provided in the Convention on Nuclear Safety which is legally binding for the Member State after ratification by the Parliament. This presentation concentrates on nuclear safety. The Safety Fundamentals documents are the 'policy documents' of the IAEA Safety Standards Series. They state the basic objectives, concepts and principles involved in ensuring protection and safety in the development and application of atomic energy for peaceful purposes. They will state - without providing technical details and without going into the application of principles - the rationale for actions necessary in meeting Safety Requirements. Chapter 7 of this presentation describes the basic features of defence in depth concept which is referred to in the Safety Fundamentals document. The defence in depth concept is a key issue in reaching high level of safety specifically at the design stage but as the reader can see the extended concept also refers to the operational stage. The appendix has been taken directly from the IAEA Basic Professional Training Course on Nuclear Safety and applied to the Finnish conditions. The text originates from the references

  17. Convention on early notification of a nuclear accident. Convention on assistance in the case of a nuclear accident or radiological emergency

    International Nuclear Information System (INIS)

    1987-05-01

    The document refers to the Convention on early notification of a nuclear accident (INFCIRC-335) and to the Convention on assistance in the case of a nuclear accident or radiological emergency (INFCIRC-336). Part I of the document contains the texts of reservations/declarations made by some of the countries upon or following signature. Part II contains the texts of reservations/declarations made upon or following deposit of instrument, expressing consent to be bound

  18. Joint convention on the safety of spent fuel management and on the safety of radioactive waste management. Report of the Federal Republic of Germany for the sixth review meeting in May 2018

    International Nuclear Information System (INIS)

    2017-08-01

    The joint convention on the safety of spent fuel management and on the safety of radioactive waste management covers the following topics: historical development and actual status of the civil use of nuclear power, politics and the spent fuel management, inventories and listing, legislation and executive systems, other safeguard regulations, safety during spent fuel handling, safety during radioactive waste processing, transport across national borders, disused enclosed radioactive sources, general regulations for safety enhancement.

  19. Nuclear Safety Review for the Year 2006

    International Nuclear Information System (INIS)

    2007-07-01

    the various stakeholders effectively and efficiently. Related to this is the need for operators, users and regulatory bodies to communicate with the public effectively and in an open and transparent manner. The global nature of safety is reflected in the relevant international instruments, including conventions and codes of conduct, currently in place. All the international conventions related to safety welcomed additional contracting parties in 2006. During the year, the second review meeting took place for the Joint Convention on the Safety of Spent Fuel Management and on the Safety of Radioactive Waste Management. The newly established Integrated Regulatory Review Service (IRRS) is contributing to the enhancement of Member States' legislative and regulatory infrastructure and the harmonization of regulatory approaches in nuclear, radiation, radioactive waste and transport safety. It is also one of the most effective feedback tools on the application of Agency standards that will be used for the further improvement of existing standards and guidance. In addition, the approach evaluates not only the policies and strategies, but also how efficient and effective they are regarding protection against all types of exposure. Therefore it is also a tool for information sharing and mutual learning on good policies and practices that can be used to reach harmonization step by step. Overall, the safety performance of the nuclear industry is good. However, there continue to be recurring events and there is a need to maintain vigilance. There is also a need for lessons learned to be transferred across the various sectors of the nuclear industry. Strong safety management and safety culture are vitally important for the continuation of this good performance. Leaders must ensure that personnel are properly trained and that adequate resources are available. The nuclear power industry around the world remains a safe and sound one with no worker or member of the public receiving a

  20. The basic discussion on nuclear power safety improvement based on nuclear equipment design

    International Nuclear Information System (INIS)

    Zhao Feiyun; Yao Yangui; Yu Hao; He Yinbiao; Gao Lei; Yao Weida

    2013-01-01

    The safety of strengthening nuclear power design was described based on nuclear equipment design after Fukushima nuclear accident. From these aspects, such as advanced standard system, advanced design method, suitable test means, consideration of beyond design basis event, and nuclear safety culture construction, the importance of nuclear safety improvement was emphatically presented. The enlightenment was given to nuclear power designer. (authors)

  1. White paper on nuclear safety in 1981

    International Nuclear Information System (INIS)

    1981-01-01

    The measures to research, develop and utilize atomic energy in Japan have been strengthened since the Atomic Energy Act was instituted in 1955, always on the major premise of securing the safety. The Nuclear Safety Commission established in October, 1978, has executed various measures to protect the health and safety of the nation as the center of the atomic energy safety regulation administration in Japan. Now, the Nuclear Safety Commission has published this annual report on atomic energy safety, summarizing various activities for securing the safety of atomic energy since its establishment to the end of March, 1981. This report is the inaugural issue, and the course till the Nuclear Safety Commission has made its start is also described. The report is composed of general remarks, response to the TMI accident, the safety regulation and security of nuclear facilities, the treatment and disposal of radioactive wastes, the investigation of environmental radioactivity, the countermeasures for preventing disasters around nuclear power stations and others, the research on the safety of atomic energy, international cooperation, and the improvement of the basis for securing the safety. Various related materials are attached. (Kako, I.)

  2. Sweden's third national report under the Joint Convention on the safety of spent fuel management and on the safety of radioactive waste management. Swedish implementation of the obligations of the Joint Convention

    International Nuclear Information System (INIS)

    2008-01-01

    Article 32 of the Joint Convention calls for a self-assessment by each Contracting Party regarding compliance with the obligations of the Convention. Sweden's self-assessment has demonstrated compliance with all the obligations of the Convention, as shown in detail in sections B to J of this report. The Swedish existing nuclear power programme is since a few years under strong development. Large amounts are being invested in the 10 remaining operating reactors to prepare for long term operation and major programmes are going on to upgrade and uprate the plants. The former regulatory authorities, the Swedish Nuclear Power Inspectorate (SKI), and the Swedish Radiation Protection Authority (SSI), was merged into a new regulatory body, the Swedish Radiation Safety Authority, July 01, 2008. The new authority has been tasked with the responsibility and tasks from SKI and SSI. These developments create new challenges for the safety work of the licensees as well as for the regulatory authority. Even though comprehensive and very active programmes for the management and disposal of spent fuel and radioactive waste have been established, many challenges remain. Over the next 5-15 years several new facilities will be sited, constructed and taken into operation, e.g. an encapsulation plant and a repository for spent fuel. These activities will require substantial efforts for both the nuclear industry and the regulatory bodies. The generally positive impression reported to earlier review meetings under the Joint Convention still stands. Therefore, Sweden would like to point out the following as strong features in its national nuclear practice: The responsibility for safety is clearly defined in the Swedish legal framework. In order not to dilute the responsibility of the licence holders, the Swedish regulations are designed to define requirements to be achieved, not the detailed means to achieve them. Within the framework given by the regulations, the licence holders have to

  3. Nuclear safety regulation on nuclear safety equipment activities in relation to human and organizational factors

    International Nuclear Information System (INIS)

    Li Tianshu

    2013-01-01

    Based on years of knowledge in nuclear safety supervision and experience of investigating and dealing with violation events in repair welding of DFHM, this paper analyzes major faults in manufacturing and maintaining activities of nuclear safety equipment in relation to human and organizational factors. It could be deducted that human and organizational factors has definitely become key features in the development of nuclear energy and technology. Some feasible measures to reinforce supervision on nuclear safety equipment activities have also been proposed. (author)

  4. Convention on Nuclear Safety - CNS. Report by the government of the Federal Republic of Germany for the sixth review conference in March/April 2014; Uebereinkommen ueber nukleare Sicherheit. Bericht der Regierung der Bundesrepublik Deutschland fuer die Sechste Ueberpruefungstagung im Maerz/April 2014

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    2013-08-01

    The report by the government of the Federal Republic of Germany for the sixth review conference (Convention on Nuclear Safety - CNS) in March/April 2014 covers the following issues: reappraisal of nuclear energy in the Federal Republic of Germany; measures as consequence of the reactor accident in the nuclear power plant Fukushima; safety regulations; execution of the IRRS follow-up mission in Germany; safety management and technical qualification of the occupational personnel; safety surveillance; radiation protection, overview on important safety topics; events and incidents larger INES 0. Assessment of the existing nuclear facilities; progress and changes since 2011; future activities.

  5. Nuclear safety review 1992. Part D of the IAEA Yearbook 1992

    International Nuclear Information System (INIS)

    1992-09-01

    Activities aimed at upgrading the safety of nuclear power plants in countries of eastern Europe, the birth of the concept of an international nuclear safety convention and the new recommendations of the International Commission on Radiological Protection (ICRP) made 1991 a very important year in the fields of radiation protection and nuclear safety. Following the political changes in eastern Europe, attention is now centred on the safety of Soviet designed reactors. It has become apparent that the safety approach adopted in the design and operation of the older reactors (WWER-440/230s) was different from that which has been prevalent in western countries for many years and does not meet present safety standards. In addition to continuing its project on the safety of WWER-440/230s, the IAEA is proceeding with activities relating to the other reactor types operating in eastern European countries: WWER-440/213s, WWER-l000s and RBMKs. Concern for nuclear safety led the decision makers participating in the International Conference on the Safety of Nuclear Power: Strategy for the Future to support the concept of an international nuclear safety convention - a concept later endorsed by the IAEA General Conference and Board of Governors, the latter authorizing the Director General to set up an open ended working group with the task of carrying out the necessary preparations for such a convention. The radiation protection area was dominated by work on the revision of regulations and standards in the light of the new ICRP recommendations. The revision of the Basic Safety Standards for Radiation Protection, which is well under way, reflects a major international consensus on the basic requirements for restricting the risks from practices which could expose people to radiation. Co-operation between interested international organizations through a Joint Secretariat has proved to be efficient. Major lessons can be learned from experience with the utilization of nuclear technology

  6. Convention on early notification of a nuclear accident and convention on assistance in the case of a nuclear accident or radiological emergency

    International Nuclear Information System (INIS)

    1991-09-01

    The document refers to the Convention on Early Notification of a Nuclear Accident (IAEA-INFCIRC-335) and to the Convention on Assistance in the Case of a Nuclear Accident or Radiological Emergency (IAEA-INFCIRC-336). Part I contains the status lists as of August 31, 1991. Part II contains reservations/declarations made upon expressing consent to be bound and objections there to. Part III contains reservations/declarations made upon signature

  7. U.S. Perspectives on the Joint Convention

    International Nuclear Information System (INIS)

    Strosnider, J.; Federline, M.; Camper, L.; Abu-Eid, R.; Gnugnoli, G.; Gorn, J.; Bubar, P.; Tonkay, D.

    2006-01-01

    The Joint Convention on the Safety of Spent Fuel Management and on the Safety of Radioactive Waste Management (Joint Convention) is an international convention, under the auspices of the International Atomic Energy Agency (IAEA). It is a companion to a suite of international conventions on nuclear safety and physical security, which serve to promote a global culture for the safe use of radioactive materials. Although the U.S. was the first nation to sign the Joint Convention on September 29, 1997, the ratification process was a challenging experience for the U.S., in the face of legislative priorities dominated by concerns for national security and threats from terrorism after September 11, 2001. Notwithstanding these prevailing circumstances, the U.S. ratified the Joint Convention in 2003, just prior to the First Review Meeting of the Contracting Parties, and participated fully therein. For the United States, participation as a Contracting Party provides many benefits. These range from working with other Parties to harmonize international approaches to achieve strong and effective nuclear safety programs on a global scale, to stimulating initiatives to improve safety systems within our own domestic programs, to learning about technical innovations by other Parties that can be useful to U.S. licensees, utilities, and industry in managing safety and its associated costs in our waste management activities. The Joint Convention process also provides opportunities to identify future areas of bilateral and multilateral technical and regulatory cooperation with other Parties, as well as an opportunity for U.S. vendors and suppliers to broaden their market to include foreign clients for safety improvement equipment and services. The Joint Convention is consistent with U.S. foreign policy considerations to support, as a priority, the strengthening of the worldwide safety culture in the use of nuclear energy. Because of its many benefits, we believe it is important to take

  8. Code of safety for nuclear merchant ships

    International Nuclear Information System (INIS)

    1982-01-01

    The Code is in chapters, entitled: general (including general safety principles and principles of risk acceptance); design criteria and conditions; ship design, construction and equipment; nuclear steam supply system; machinery and electrical installations; radiation safety (including radiological protection design; protection of persons; dosimetry; radioactive waste management); operation (including emergency operation procedures); surveys. Appendices cover: sinking velocity calculations; seaway loads depending on service periods; safety assessment; limiting dose-equivalent rates for different areas and spaces; quality assurance programme; application of single failure criterion. Initial application of the Code is restricted to conventional types of ships propelled by nuclear propulsion plants with pressurized light water type reactors. (U.K.)

  9. Special national report of the Slovak Republic compiled under the convention on nuclear safety. April 2012

    International Nuclear Information System (INIS)

    2012-04-01

    A Special safety report of the Slovak Republic in 2012 is presented. An account of activities carried out by the Nuclear Regulatory Authority of the Slovak Republic (UJD) is presented. These activities are reported under the headings: (0) Introduction; (0.1) Purpose of the report; (0.2) Brief description of the site characteristics and units; (1) Executive summary; (2) External events; (2.1) Seismic; (2.2) Flooding; (2.3) Extreme weather conditions; (3) Design issues; (3.1) Loss of electrical power; (3.2) Loss of the decay heat removal capability/ultimate heat sink; (3.3) Loss of the primary ultimate heat sink, combined with station black out (see stress tests specifications); (4) Severe accident management; (4.1) Organization and arrangements of the licensee to manage accidents; (4.2) Accident management measures in place at the various stages of a scenario of loss of the core cooling function; (4.3) Maintaining the containment integrity after occurrence of significant fuel damage (up to core meltdown) in the reactor core; (4.4) Accident management measures to restrict the radioactive releases; (5) National organizations (regulator, technical support organizations, operator, government); (5.1) Legislative and regulatory framework; (6) Emergency preparedness and response and post--accident management (off-site); (6.1) Implementation of legislation in the field of emergency preparedness; (7) International cooperation; (7.1) Conventions and communications; (7.2) Cooperation with the international organizations; (7.3) Providing feedback including occurrences at nuclear installations of other nuclear power plants abroad.

  10. Enhancement of safety at nuclear facilities in Pakistan

    International Nuclear Information System (INIS)

    Ahmad, S.A.; Hayat, T.; Azhar, W.

    2006-01-01

    Pakistan is benefiting from nuclear technology mostly in health and energy sectors as well as agriculture and industry and has an impeccable safety record. At the national level uses of nuclear technology started in 1955 resulting in the operation of Karachi Radioisotope Center, Karachi, in December 1960. Pakistan Nuclear Safety Committee (PNSC) was formulated in 1964 with subsequent promulgation of Pakistan Atomic Energy Commission (PAEC) Ordinance in 1965 to cope with the anticipated introduction of a research reactor, namely PARR-I, and a nuclear power plant, namely KANUPP. Since then Pakistan's nuclear program has expanded to include numerous nuclear facilities of varied nature. This program has definite economic and social impacts by producing electricity, treating and diagnosing cancer patients, and introducing better crop varieties. Appropriate radiation protection includes a number of measures including database of sealed radiation sources at PAEC operated nuclear facilities, see Table l, updated during periodic physical verification of these sources, strict adherence to the BSS-115, IAEA recommended enforcement of zoning at research reactors and NPPs, etc. Pakistan is party to several international conventions and treaties, such as Convention of Nuclear Safety and Early Notification, to improve and enhance safety at its nuclear facilities. In addition Pakistan generally and PAEC particularly believes in a blend of prudent regulations and good/best practices. This is described in this paper. (Author)

  11. Convention on early notification of a nuclear accident. Convention on assistance in the case of a nuclear accident or radiological emergency

    International Nuclear Information System (INIS)

    1990-08-01

    The document refers to the Convention on Early Notification of a Nuclear Accident (IAEA-INFCIRC-335) and to the Convention on Assistance in the Case of a Nuclear Accident or Radiological Emergency (IAEA-INFCIRC-336). Part I contains reservations/declarations made upon or following signature and Part II contains reservations/declarations made upon or following deposit of instrument expressing consent to be bound. The status of signature, ratification, acceptance, approval or accession by States or organizations as of 31 July 1990 is presented in two attachments

  12. Information report on nuclear safety and radiation protection of the SOMANU site - Issue 2014

    International Nuclear Information System (INIS)

    2015-01-01

    Published in compliance with the French code of the environment, this report first presents different aspects of the SOMANU plant which is dedicated to the maintenance of materials and equipment from nuclear installations: location and environment, history, description of activities, regulatory framework. It describes the various measures regarding nuclear safety and radiation protection: general principles of nuclear safety, organization, presentation of the Areva's nuclear safety Charter, inspections and controls, measures regarding radiation protection. The next part addresses nuclear events which occurred on this site and had to be declared. The report gives an overview of activities and measures regarding the management of releases and the control of the environment. The next part addresses waste management: general considerations on radioactive waste management in France, description and classification of radioactive wastes present in the INB, management of conventional wastes. The management of other impacts is also reported. The last chapter reviews the actions undertaken in the field of transparency and information. Recommendations of the CHSCT are reported

  13. Information report on nuclear safety and radiation protection of the SOMANU site - Issue 2012

    International Nuclear Information System (INIS)

    2013-06-01

    Published in compliance with the French code of the environment, this report first presents different aspects of the SOMANU plant which is dedicated to the maintenance of materials and equipment from nuclear installations: location and environment, history, description of activities, regulatory framework. It describes the various measures regarding nuclear safety and radiation protection: general principles of nuclear safety, organization, presentation of the Areva's nuclear safety Charter, inspections and controls, measures regarding radiation protection. The next part addresses nuclear events which occurred on this site and had to be declared. The report gives an overview of activities and measures regarding the management of releases and the control of the environment. The next part addresses waste management: generalities on radioactive waste management in France, description and classification of radioactive wastes present in the INB, management of conventional wastes. The management of other impacts is also reported. The last chapter reviews the actions undertaken in the field of transparency and information. Recommendations of the CHSCT are reported

  14. Additional safety assessments, follow-up of stress tests of the French nuclear power stations. Action plan of the nuclear safety authority

    International Nuclear Information System (INIS)

    2012-01-01

    This document presents the French national action plan defined by the Nuclear Safety Authority (ASN) in compliance with the recommendations made by the ENSREG (European nuclear safety regulators group). It refers to decisions taken at the national level after the Fukushima accident, recommendations after European stress tests, and recommendations after the extraordinary meeting of contracting parties at the Convention on Nuclear Safety of August 2012. For different topics, this document recalls the recommendations made by the peer review, indicates the ASN's opinion and progress or ASN's requirements for different power stations. The first part addresses the recommendations made by peers and based on the European review. Topics concern natural hazards (effects, detection, inspections and controls related to earthquakes, margin assessment with respect to flooding and natural hazards), the loss of safety systems (cooling systems, electricity supplies, actions, instruments, training, and so on), the management of a severe accident (reference levels, measures, guides, exercises, training, management of contaminated water, radiation protection, premises). The second part deals with topics addressed within the frame of the Convention: national organisations, organisations in an emergency and post-accidental situation, international cooperation. A third part addresses the follow-up of additional measures issued by the ASN

  15. Convention on supplementary compensation for nuclear damage

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    1998-07-22

    The document reproduces the text of the Convention on Supplementary Compensation for Nuclear Damage which was adopted on 12 September 1997 by a Diplomatic Conference held between 8-12 September 1997 in Vienna

  16. Convention on supplementary compensation for nuclear damage

    International Nuclear Information System (INIS)

    1998-01-01

    The document reproduces the text of the Convention on Supplementary Compensation for Nuclear Damage which was adopted on 12 September 1997 by a Diplomatic Conference held between 8-12 September 1997 in Vienna

  17. Deterministic Safety Analysis for Nuclear Power Plants. Specific Safety Guide (Spanish Edition)

    International Nuclear Information System (INIS)

    2012-01-01

    The IAEA's Statute authorizes the Agency to establish safety standards to protect health and minimize danger to life and property - standards which the IAEA must use in its own operations, and which a State can apply by means of its regulatory provisions for nuclear and radiation safety. A comprehensive body of safety standards under regular review, together with the IAEA's assistance in their application, has become a key element in a global safety regime. In the mid-1990s, a major overhaul of the IAEA's safety standards programme was initiated, with a revised oversight committee structure and a systematic approach to updating the entire corpus of standards. The new standards that have resulted are of a high calibre and reflect best practices in Member States. With the assistance of the Commission on Safety Standards, the IAEA is working to promote the global acceptance and use of its safety standards. Safety standards are only effective, however, if they are properly applied in practice. The IAEA's safety services - which range in scope from engineering safety, operational safety, and radiation, transport and waste safety to regulatory matters and safety culture in organizations - assist Member States in applying the standards and appraise their effectiveness. These safety services enable valuable insights to be shared and I continue to urge all Member States to make use of them. Regulating nuclear and radiation safety is a national responsibility, and many Member States have decided to adopt the IAEA's safety standards for use in their national regulations. For the contracting parties to the various international safety conventions, IAEA standards provide a consistent, reliable means of ensuring the effective fulfilment of obligations under the conventions. The standards are also applied by designers, manufacturers and operators around the world to enhance nuclear and radiation safety in power generation, medicine, industry, agriculture, research and education

  18. Convention on early notification of a nuclear accident and convention on assistance in the case of a nuclear accident or radiological emergency

    International Nuclear Information System (INIS)

    1992-09-01

    The document refers to the Convention on Early Notification of a Nuclear Accident (CENNA) (IAEA-INFCIRC-335) and the Convention on Assistance in the Case of a Nuclear Accident or Radiological Emergency (CANARE) (IAEA-INFCIRC-336). Part I contains the status lists as of 10 September 1992, part II contains the texts of reservations/declarations made upon expressing consent to be bound and objections there to, and part III contains the texts of reservations/declarations made upon signature

  19. Convention on early notification of a nuclear accident and convention on assistance in the case of a nuclear accident or radiological emergency

    International Nuclear Information System (INIS)

    1997-01-01

    The document refers to the Convention on Early Notification of a Nuclear Accident (CENNA) (IAEA-INFCIRC-335) and the Convention on Assistance in the Case of a Nuclear Accident or Radiological Emergency (CANARE) (IAEA-INFCIRC-336). Part I contains the status list as of 31 December 1996, Part II contains the texts of reservations/declarations made upon or following expressing consent to be bound and objections thereto, and Part III contains the texts of reservations/declarations made upon signature

  20. Convention on early notification of a nuclear accident and convention on assistance in the case of a nuclear accident or radiological emergency

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    1997-02-28

    The document refers to the Convention on Early Notification of a Nuclear Accident (CENNA) (IAEA-INFCIRC-335) and the Convention on Assistance in the Case of a Nuclear Accident or Radiological Emergency (CANARE) (IAEA-INFCIRC-336). Part I contains the status list as of 31 December 1996, Part II contains the texts of reservations/declarations made upon or following expressing consent to be bound and objections thereto, and Part III contains the texts of reservations/declarations made upon signature.

  1. Research and exploration on nuclear safety culture construction

    International Nuclear Information System (INIS)

    Zhang Lifang; Zhao Hongtao; Wang Hongwei

    2012-01-01

    This thesis mainly researched the definition, characteristics, development stage and setup procedure concerning nuclear safety culture, based on practice and experiences in Technical Physics Institute of Heilongjian. Academy of Science. The author discussed the importance of nuclear safety culture construction for an enterprise of nuclear technology utilization, and emphasized all the enterprise and individual who engaged in nuclear and radiation safety should acquire good nuclear safety culture quality, and ensure the application and development of the nuclear safety cult.ure construction in the enterprises of nu- clear technological utilization. (authors)

  2. Safety culture in the nuclear field

    International Nuclear Information System (INIS)

    2005-09-01

    The council of IAEA governors ratified twelve elemental principles of physical protection of nuclear matters and installations. These principles will be included in the future updating of the international convention on the physical protection. The F basic principle proposes a definition of the safety culture and recommends that its implementation and its perenniality to be a reality in the concerned organisms.It appears as necessary to precise the concept of safety culture. The twelve principles are as follow: A State liability, B liability during international transports, C legislative and regulatory framework, D competent authority, E operators liability, F safety culture, G threats, H graduated approach, I deep defence, J assurance of the quality, K emergency plan, L confidentiality. The present document is complementary of INSAG-4, 1991 (safety series number 75, INSAG-4 safety culture, a report by the international nuclear safety advisory group, IAEA, 1991) that presents a concept of safety culture. It proposes also, in a particular chapter, the comparisons( common points and specificities) between safety culture and security culture. (N.C.)

  3. A legislative framework for the safety of nuclear installations in the European Union

    International Nuclear Information System (INIS)

    Kus, S.; Emmerechts, S.

    2009-01-01

    For the first time since the inception of the European Community in 1957 and after two previously unsuccessful attempts, on 25 June 2009 the Council of the European Union adopted European-wide, binding requirements on nuclear safety. The goal of the 'Council Directive establishing a Community framework for the nuclear safety of nuclear installations' ('the Directive') is to maintain and to promote the continuous improvement of nuclear safety and to ensure that a high level of nuclear safety is provided by EU member states to protect workers and the general public against the dangers arising from nuclear installations. The Directive is based on the IAEA Safety Fundamentals and the Convention on Nuclear Safety. The 27 member states of the Community are required to bring into force the laws, regulations and administrative provisions necessary to comply with the Directive by 22 July 2011. The Directive applies to a range of nuclear installations that is wider than the one adopted in the Convention on Nuclear Safety.9 The Directive applies to any civilian nuclear installation, defined as: a) an enrichment plant, nuclear fuel fabrication plant, nuclear power plant, reprocessing plant, research reactor facility, spent fuel storage facility; and b) storage facilities for radioactive waste that are on the same site and are directly related to nuclear installations listed under point a). The Directive is without doubt a milestone in international and regional law making in the field of nuclear law, not so much because of its content but because of the supranational nature of European law and the powers of EU institutions. Member states have long resisted the Directive because of the powers which it delegates to the European Commission, and more importantly, to the European Court of Justice. The Commission, as the guardian of the treaties and the measures taken by the institutions, ensures that EU legislation is applied correctly by the member states. It can start

  4. The global nuclear safety regime and its impact in Brazil

    International Nuclear Information System (INIS)

    Almeida, C.

    2004-01-01

    This work describes the Global Nuclear Safety Regime that was established worldwide after the accident at the Tchernobyl nuclear power plant. This regime is composed of biding international safety conventions, globally accepted safety standard, and a voluntary peer review system. The impact of this Global Regime in Brazil is also discussed. (Author)

  5. Third National Report on compliance with the Joint Convention Obligations

    International Nuclear Information System (INIS)

    2008-09-01

    The Joint Convention on the Safety of Spent Fuel Management and the Safety of Radioactive Waste Management, hereinafter referred to as the 'Joint Convention', is the result of international discussions that followed the adoption of the Convention on Nuclear Safety, in 1994. France signed the Joint Convention at the General Conference of the International Atomic Energy Agency (IAEA) held on 29 September 1997, the very first day the Joint Convention was opened for signature. She approved it on 22 February 2000 and filed the corresponding instruments with the IAEA on 27 April 2000. The Joint Convention entered into force on 18 June 2001. For many years, France has been taking an active part in the pursuit of international actions to reinforce nuclear safety and considers the Joint Convention to be a key step in that direction. The fields covered by the Joint Convention have long been part of the French approach to nuclear safety. This report is the third one of its kind. It is published in accordance with Article 32 of the Joint Convention and presents the measures taken by France to meet each of her obligations set out in the Convention. The facilities and the radioactive materials covered by this Convention are quite diversified in nature and are controlled in France by different regulatory authorities. Above a specific threshold of radioactive content, a facility is referred to as a 'basic nuclear facility' (installation nucleaire de base - INB) and placed under the control of the Nuclear Safety Authority (Autorite de surete nucleaire - ASN). Below that threshold and provided that the facility involved is subject to the nomenclature of classified facilities for other purposes than their radioactive materials, any facility may be considered as a 'classified facility on environmental-protection grounds' (installation classee pour la protection de l'environnement - ICPE) and placed under the control of the Ministry for the Environment. Facilities that contain only

  6. National report of the Slovak Republic. Compiled in terms of the joint convention on the safety of spent fuel management and on the safety of radioactive waste management. 2005

    International Nuclear Information System (INIS)

    Hekel, P.; Ivan, J.; Lukacovic, K.; Parimucha, F.; Suss, J; Tomek, J.; Jurina, V.; Kobzova, D.; Konecny, L.; Homola, J.; Zavazanova, A.; Metke, E.; Turner, M.; Vaclav, J.; Ziakova, M.; Pospisil, M.; Petrik, T.

    2005-09-01

    The National Report (Compiled in terms of the Joint Convention - September 2005) contains information how each of the obligations of the Joint Convention have been implemented. A account of activities carried out by the Nuclear Regulatory Authority of the Slovak Republic (UJD) and other Slovak organisations are presented. These activities are reported under the headings: (A) Introduction; (B) Spent fuel and radioactive waste management; C) Scope of application; (D) Inventories and lists; (E) Legislation and regulation; (F) Other general safety provisions; (G) Safety of spent fuel management; (H) Safety of RAW management; (I) Transboundary movement of SF and RAW; (J) Disused sealed sources; (K) planned activiries to improve safety; (L) Annexes

  7. Nuclear Safety Regulations

    International Nuclear Information System (INIS)

    Novosel, N.; Prah, M.

    2008-01-01

    Beside new Ordinance on the control of nuclear material and special equipment ('Official Gazette' No. 15/08), from 2006 State Office for Nuclear Safety (SONS) adopted Ordinance on performing nuclear activities ('Official Gazette' No. 74/06) and Ordinance on special requirements which expert organizations must fulfil in order to perform certain activities in the field of nuclear safety ('Official Gazette' No. 74/06), based on Nuclear Safety Act ('Official Gazette' No. 173/03). The Ordinance on performing nuclear activities regulates the procedure of notification of the intent to perform nuclear activities, submitting the application for the issue of a licence to perform nuclear activities, and the procedure for issuing decisions on granting a licence to perform a nuclear activity. The Ordinance also regulates the content of the forms for notification of the intent to perform nuclear activities, as well as of the application for the issue of a licence to perform the nuclear activity and the method of keeping the register of nuclear activities. According to the Nuclear Safety Act, nuclear activities are the production, processing, use, storage, disposal, transport, import, export, possession or other handling of nuclear material or specified equipment. The Ordinance on special requirements which expert organizations must fulfil in order to perform certain activities in the field of nuclear safety regulates these mentioned conditions, whereas compliance is established by a decision passed by the SONS. Special requirements which expert organizations must fulfil in order to perform certain activities in the field of nuclear safety are organizational, technical, technological conditions and established system of quality assurance. In 2007, State Office for Nuclear Safety finalized the text of new Ordinance on conditions for nuclear safety and protection with regard to the siting, design, construction, use and decommissioning of a facility in which a nuclear activity is

  8. Progress towards a convention on the safe management of radioactive waste

    International Nuclear Information System (INIS)

    Webb, G.A.M.; Jankowitsch, O.

    1996-01-01

    The Convention on Nuclear Safety was prepared during the period 1992 to 1994 and after consideration by a diplomatic conference in June 1994 was opened for signature at the general conference of the IAEA in September 1994. The matter of the safety of radioactive waste was discussed many times during the development of the convention but it was eventually decided to restrict the coverage to matters concerned with nuclear safety of land-based civil nuclear power plants and those aspects of radioactive waste management directly connected with and carried out on the same site as the power plant. In the preamble to the convention, however, item (ix) affirms 'the need to begin promptly the development of an international convention on the safety of radioactive waste management as soon as the ongoing process to develop waste management safety fundamentals has resulted in broad international agreement'. In September 1994, the general conference of the IAEA also passed a resolution inviting the board of governors and the director general to commence preparations for a convention on the safety of radioactive waste management. The director general therefore organized a preparatory meeting of experts from member states to discuss the basic concepts and the possible scope of such a convention and to examine working methods and the procedures for its preparation. This meeting which took place in February 1995 prepared a paper entitled 'Inventory of Issues Raised' and proposed that the appropriate mechanism would be the setting up of an open-ended group of legal and technical experts to prepare the convention. The Safety Series document at the fundamentals level on the principles of radioactive waste management was approved by the Board of Governors in March 1995 and all the initial preconditions for starting work on the convention were then fulfilled. (author)

  9. Nuclear Safety

    Energy Technology Data Exchange (ETDEWEB)

    Silver, E G [ed.

    1989-01-01

    This document is a review journal that covers significant developments in the field of nuclear safety. Its scope includes the analysis and control of hazards associated with nuclear energy, operations involving fissionable materials, and the products of nuclear fission and their effects on the environment. Primary emphasis is on safety in reactor design, construction, and operation; however, the safety aspects of the entire fuel cycle, including fuel fabrication, spent-fuel processing, nuclear waste disposal, handling of radioisotopes, and environmental effects of these operations, are also treated.

  10. Research program on nuclear technology and nuclear safety

    International Nuclear Information System (INIS)

    Dreier, J.

    2010-04-01

    This paper elaborated for the Swiss Federal Office of Energy (SFOE) presents the synthesis report for 2009 made by the SFOE's program leader on the research program concerning nuclear technology and nuclear safety. Work carried out, knowledge gained and results obtained in the various areas are reported on. These include projects carried out in the Laboratory for Reactor Physics and System Behaviour LRS, the LTH Thermohydraulics Laboratory, the Laboratory for Nuclear Materials LNM, the Laboratory for Final Storage Safety LES and the Laboratory for Energy Systems Analysis LEA of the Paul Scherrer Institute PSI. Work done in 2009 and results obtained are reported on, including research on transients in Swiss reactors, risk and human reliability. Work on the 'Proteus' research reactor is reported on, as is work done on component safety. International co-operation in the area of serious accidents and the disposal of nuclear wastes is reported on. Future concepts for reactors and plant life management are discussed. The energy business in general is also discussed. Finally, national and international co-operation is noted and work to be done in 2010 is reviewed

  11. Implementation of the obligations of the joint Convention on the safety of spent fuel management and on the safety of radioactive waste management - Sixth national report of Switzerland in accordance with article 32 of the Convention

    International Nuclear Information System (INIS)

    2017-10-01

    This comprehensive, illustrated Sixth Swiss National Report in accordance with Article 32 of the Convention on Nuclear Safety reports on Swiss policies and practices with respect to the management of various categories of radioactive waste. The scope of application is looked at. This includes reprocessing and the processing of naturally occurring radioactive materials. Further sections of the report present notes on inventories and lists, along with a review of legislative and regulatory systems. Other general safety provisions discussed include the responsibility of licence holders, human and financial resources, quality assurance, operational radiation protection, emergency preparedness and decommissioning. Safety aspects of spent fuel management and the design, location and operation of disposal facilities are discussed. General efforts to improve safety are looked at, as is the global transport of wastes. An annex provides information on national laws, regulations and associated guidelines

  12. Towards a new international framework for nuclear safety: Developments from Fukushima to Vienna

    International Nuclear Information System (INIS)

    Durand-Poudret, Emma

    2015-01-01

    On 11 March 2011, the nuclear safety sector was deeply shaken by the accident at the Fukushima Daiichi nuclear power plant in Japan. Because of this accident, 25 years of established certainties in nuclear power plant operational safety that followed the Chernobyl disaster were once again called into question. The adequacy of the international safety instruments was naturally questioned as well. The global nuclear safety framework is primarily composed of the Convention on Nuclear Safety (CNS) and the safety standards of the International Atomic Energy Agency (IAEA). Should this accident have been an inducement for a comprehensive overhaul of the existing framework? The broader international community mobilised its resources in response to this event, reflecting the overriding importance of nuclear safety and the urgent need to learn lessons from the accident. A process of reviewing the effectiveness of the CNS thus began in April 2011 at the Fifth Review Meeting of the Contracting Parties to the Convention. In September 2011, the adoption of the IAEA Action Plan on Nuclear Safety encouraged the states parties to study mechanisms to enhance the effective implementation of the CNS and to consider proposals to amend the Convention. In August 2012, the Second Extraordinary Meeting of the Contracting Parties allowed certain states to table amendments, thus stimulating debate but also revealing the difficulty of obtaining the majority required for such an undertaking. In order to break the impasse, an effectiveness and transparency working group was set up with the ambitious task of reporting to the Sixth Review Meeting on 'a list of actions to strengthen the CNS and on proposals to amend, where necessary, the Convention'. Since the amendment approach appeared to be a valid solution, Switzerland took the opportunity of the Sixth Review Meeting to submit a new draft to that effect. The convening of a Diplomatic Conference under Article 32 of the CNS would then

  13. Research on crisis communication of nuclear and radiation safety

    International Nuclear Information System (INIS)

    Cao Yali; Zhang Ying

    2013-01-01

    Insufficient public cognition of nuclear and radiation safety and absence of effective method to handle crisis lead to common crisis events of nuclear and radiation safety, which brings about unfavorable impact on the sound development of nuclear energy exploring and application of nuclear technology. This paper, based on crisis communication theory, analyzed the effect of current situation on nuclear and radiation safety crisis, discussed how to handle crisis, and tried to explore the effective strategies for nuclear and radiation safety crisis handling. (authors)

  14. On the road to new nuclear safety

    International Nuclear Information System (INIS)

    Kovacs, Zoltan; Novakova, Helena; Spenlinger, Robert

    2013-01-01

    The article describes the issue of nuclear safety of nuclear power plants and major factors affecting nuclear safety, discusses the consequences of the Fukushima-Daiichi accident, and outlines the advanced concept of nuclear safety which extends the current regulatory requirements for plant safety. This new concept should be adopted globally to prevent occurrences having similar consequences worldwide. The tasks of this new nuclear safety concept are discussed. (orig.)

  15. Achievements and Perspectives of the Joint Convention on the Safety of Spent Fuel Management and on the Safety of Radioactive Waste Management

    International Nuclear Information System (INIS)

    Louvat, D.; Lacoste, A.C.

    2006-01-01

    The Joint Convention on the Safety of Spent Fuel management and on the Safety of Radioactive Waste Management is the first legal instrument to directly address the safety of spent fuel and radioactive waste management on a global scale. The Joint Convention entered into force in 2001. This paper describes its process and its main achievements to date. The perspectives to establish of a Global Waste Safety Regime based on the Joint Convention are also discussed. (authors)

  16. Answers to questions on National Report of the Slovak Republic. Compiled according to the terms of the joint convention on the safety of spent fuel management and on the safety of radioactive waste management. April 2006

    International Nuclear Information System (INIS)

    2003-04-01

    Slovakia is pleased to present to the State Parties of the Joint Convention on the Safety of Spent Fuel Management and on the Safety of Radioactive Waste Management the Answers to questions received on the National Report of the Slovak Republic compiled according to the terms of the Joint Convention (2005). Slovakia is ready to provide additional explanations to these Answers during the 2 nd Review Meeting. In the Annexes the 541/2004 Coll. LL. Act of 9 September 2004 on Peaceful Use of Nuclear Energy (Atomic Act) and on Alternations and Amendments to Some Acts

  17. Nuclear safety policy working group recommendations on nuclear propulsion safety for the space exploration initiative

    Science.gov (United States)

    Marshall, Albert C.; Lee, James H.; Mcculloch, William H.; Sawyer, J. Charles, Jr.; Bari, Robert A.; Cullingford, Hatice S.; Hardy, Alva C.; Niederauer, George F.; Remp, Kerry; Rice, John W.

    1993-01-01

    An interagency Nuclear Safety Working Group (NSPWG) was chartered to recommend nuclear safety policy, requirements, and guidelines for the Space Exploration Initiative (SEI) nuclear propulsion program. These recommendations, which are contained in this report, should facilitate the implementation of mission planning and conceptual design studies. The NSPWG has recommended a top-level policy to provide the guiding principles for the development and implementation of the SEI nuclear propulsion safety program. In addition, the NSPWG has reviewed safety issues for nuclear propulsion and recommended top-level safety requirements and guidelines to address these issues. These recommendations should be useful for the development of the program's top-level requirements for safety functions (referred to as Safety Functional Requirements). The safety requirements and guidelines address the following topics: reactor start-up, inadvertent criticality, radiological release and exposure, disposal, entry, safeguards, risk/reliability, operational safety, ground testing, and other considerations.

  18. Convention on Nuclear Safety - CNS. Report by the government of the Federal Republic of Germany for the seventh review conference in March/April 2017; Uebereinkommen ueber nukleare Sicherheit. Bericht der Regierung der Bundesrepublik Deutschland fuer die Siebte Ueberpruefungstagung im Maerz/April 2017

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    2016-06-22

    The CNS (Convention on Nuclear Safety) report by the government of the Federal Republic of Germany for the seventh review conference in March/April 2017 covers the following topics: Summary of the most important results since the sixth review conference: existing nuclear facilities, frame for legislation and execution, licensing system, regulatory authority, governmental organizations, responsibility of the licensee, priority of safety, financing and personnel, human factors, quality assurance, safety assessment, radiation protection, emergency preparedness, site selection for nuclear facilities, design and construction, operation.

  19. Safety indicators as a tool for operational safety evaluation of nuclear power plants

    International Nuclear Information System (INIS)

    Araujo, Jefferson Borges; Melo, Paulo Fernando Ferreira Frutuoso e; Schirru, Roberto

    2009-01-01

    Performance indicators have found a wide use in the conventional and nuclear industries. For the conventional industry, the goal is to optimize production, reducing loss of time with accidents, human error and equipment downtimes. In the nuclear industry, nuclear safety is an additional goal. This paper presents a general methodology to the establishment, selection and use of safety indicators for a two loop PWR plant, as Angra 1. The use of performance indicators is not new. The NRC has its own methodology and the IAEA presents methodology suggestions, but there is no detailed documentation about indicators selection, criteria and bases used. Additionally, only the NRC methodology performs a limited integrated evaluation. The study performed identifies areas considered critical for the plant operational safety. For each of these areas, strategic sub-areas are defined. For each strategic sub-area, specific safety indicators are defined. These proposed Safety Indicators are based on the contribution to risk considering a quantitative risk analysis. For each safety indicator, a goal, a bounded interval and proper bases are developed, to allow for a clear and comprehensive individual behavior evaluation. On the establishment of the intervals and boundaries, a probabilistic safety study, operational experience, international and national standards and technical specifications were used. Additionally, an integrated evaluation of the indicators, using expert systems, was done to obtain an overview of the plant general safety. This evaluation uses well-defined and clear rules and weights for each indicator to be considered. These rules were implemented by means of a computational language, on a friendly interface, so that it is possible to obtain a quick response about operational safety. This methodology can be used to identify situations where the plant safety is challenged, by giving a general overview of the plant operational condition. Additionally, this study can

  20. Safety assessment and verification for nuclear power plants. Safety guide

    International Nuclear Information System (INIS)

    2001-01-01

    This publication supports the Safety Requirements on the Safety of Nuclear Power Plants: Design. This Safety Guide was prepared on the basis of a systematic review of all the relevant publications including the Safety Fundamentals, Safety of Nuclear Power Plants: Design, current and ongoing revisions of other Safety Guides, INSAG reports and other publications that have addressed the safety of nuclear power plants. This Safety Guide also provides guidance for Contracting Parties to the Convention on Nuclear Safety in meeting their obligations under Article 14 on Assessment and Verification of Safety. The Safety Requirements publication entitled Safety of Nuclear Power Plants: Design states that a comprehensive safety assessment and an independent verification of the safety assessment shall be carried out before the design is submitted to the regulatory body. This publication provides guidance on how this requirement should be met. This Safety Guide provides recommendations to designers for carrying out a safety assessment during the initial design process and design modifications, as well as to the operating organization in carrying out independent verification of the safety assessment of new nuclear power plants with a new or already existing design. The recommendations for performing a safety assessment are suitable also as guidance for the safety review of an existing plant. The objective of reviewing existing plants against current standards and practices is to determine whether there are any deviations which would have an impact on plant safety. The methods and the recommendations of this Safety Guide can also be used by regulatory bodies for the conduct of the regulatory review and assessment. Although most recommendations of this Safety Guide are general and applicable to all types of nuclear reactors, some specific recommendations and examples apply mostly to water cooled reactors. Terms such as 'safety assessment', 'safety analysis' and 'independent

  1. Nuclear Safety Review 2013

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    2013-07-15

    The Nuclear Safety Review 2013 focuses on the dominant nuclear safety trends, issues and challenges in 2012. The Executive Overview provides crosscutting and worldwide nuclear safety information along with a summary of the major sections covered in this report. Sections A-E of this report cover improving radiation, transport and waste safety; strengthening safety in nuclear installations; improving regulatory infrastructure and effectiveness; enhancing emergency preparedness and response (EPR); and civil liability for nuclear damage. The Appendix provides details on the activities of the Commission on Safety Standards (CSS), and activities relevant to the IAEA Safety Standards. The world nuclear community has made noteworthy progress in strengthening nuclear safety in 2012, as promoted by the IAEA Action Plan on Nuclear Safety (hereinafter referred to as ''the Action Plan''). For example, an overwhelming majority of Member States with operating nuclear power plants (NPPs) have undertaken and essentially completed comprehensive safety reassessments ('stress tests') with the aim of evaluating the design and safety aspects of plant robustness to protect against extreme events, including: defence in depth, safety margins, cliff edge effects, multiple failures, and the prolonged loss of support systems. As a result, many have introduced additional safety measures including mitigation of station blackout. Moreover, the IAEA's peer review services and safety standards have been reviewed and strengthened where needed. Capacity building programmes have been built or improved, and EPR programmes have also been reviewed and improved. Furthermore, in 2012, the IAEA continued to share lessons learned from the Fukushima Daiichi accident with the nuclear community including through three international experts' meetings (IEMs) on reactor and spent fuel safety, communication in the event of a nuclear or radiological emergency, and protection against extreme earthquakes and tsunamis.

  2. Nuclear Safety Review 2013

    International Nuclear Information System (INIS)

    2013-07-01

    The Nuclear Safety Review 2013 focuses on the dominant nuclear safety trends, issues and challenges in 2012. The Executive Overview provides crosscutting and worldwide nuclear safety information along with a summary of the major sections covered in this report. Sections A-E of this report cover improving radiation, transport and waste safety; strengthening safety in nuclear installations; improving regulatory infrastructure and effectiveness; enhancing emergency preparedness and response (EPR); and civil liability for nuclear damage. The Appendix provides details on the activities of the Commission on Safety Standards (CSS), and activities relevant to the IAEA Safety Standards. The world nuclear community has made noteworthy progress in strengthening nuclear safety in 2012, as promoted by the IAEA Action Plan on Nuclear Safety (hereinafter referred to as ''the Action Plan''). For example, an overwhelming majority of Member States with operating nuclear power plants (NPPs) have undertaken and essentially completed comprehensive safety reassessments ('stress tests') with the aim of evaluating the design and safety aspects of plant robustness to protect against extreme events, including: defence in depth, safety margins, cliff edge effects, multiple failures, and the prolonged loss of support systems. As a result, many have introduced additional safety measures including mitigation of station blackout. Moreover, the IAEA's peer review services and safety standards have been reviewed and strengthened where needed. Capacity building programmes have been built or improved, and EPR programmes have also been reviewed and improved. Furthermore, in 2012, the IAEA continued to share lessons learned from the Fukushima Daiichi accident with the nuclear community including through three international experts' meetings (IEMs) on reactor and spent fuel safety, communication in the event of a nuclear or radiological emergency, and protection against extreme earthquakes and tsunamis

  3. Discussion about risk-informed regulations on the nuclear safety

    International Nuclear Information System (INIS)

    Gu Yeyi

    2008-01-01

    The article introduces the background and status quo of regulations on the nuclear safety in China, and points out the inadequacies existing with the current regulations. The author explains the risk-informed safety management concerning its development, status quo, and achievements made, in an attempt to make out the trend of improving regulations on the nuclear safety through risk-informed methods. Combining the U.S. development program of establishing risk-informed regulations on the nuclear safety, the author narrates principles and features of the new regulations system, and provides suggestions for the promotion of risk-informed safety management and establishment of risk-informed regulations on the nuclear safety. (author)

  4. Atomic Information Technology Safety and Economy of Nuclear Power Plants

    CERN Document Server

    Woo, Taeho

    2012-01-01

    Atomic Information Technology revaluates current conceptions of the information technology aspects of the nuclear industry. Economic and safety research in the nuclear energy sector are explored, considering statistical methods which incorporate Monte-Carlo simulations for practical applications. Divided into three sections, Atomic Information Technology covers: • Atomic economics and management, • Atomic safety and reliability, and • Atomic safeguarding and security. Either as a standalone volume or as a companion to conventional nuclear safety and reliability books, Atomic Information Technology acts as a concise and thorough reference on statistical assessment technology in the nuclear industry. Students and industry professionals alike will find this a key tool in expanding and updating their understanding of this industry and the applications of information technology within it.

  5. Health and safety at the Whiteshell Nuclear Research Establishment

    International Nuclear Information System (INIS)

    LeNeveu, D.M.

    1982-04-01

    This report outlines the health and safety program at the Whiteshell Nuclear Research Establishment. It describes the procedures in place to ensure that a high standard of conventional industrial and radiation safety is maintained in the workplace

  6. SFEN Annual Convention 2012 - The nuclear energy one year after Fukushima. Proceedings

    International Nuclear Information System (INIS)

    2012-03-01

    This document brings together the available presentations given at the 2012 edition of the Annual Convention of the French society of nuclear energy (SFEN) on the topic of nuclear energy one year after Fukushima. Twenty four presentations (slides) are compiled in this document: 1 - Presentation and introduction of the Annual Convention (Luc Oursel - SFEN President); 2 - Status of onsite/offsite remedial actions, key lessons learned (Akira Omoto, Tokyo univ., Japan Atomic Energy Commission); 3 - Complementary Safety Assessments (CSA) of the French NPP fleet (Dominique Miniere, EDF); 4 - Speech of M. Francois Fillon - Prime Minister; 5 - CSA of the fuel cycle facilities (Philippe Knoche, Areva); 6 - CSA of the EPR (Bertrand de l'Epinois, Areva; Jean-Luc Foret, EDF CNEN); 7 - The collective responsibility of the operators: the action of WANO (Laurent Stricker, WANO); 8 - Conclusions of French Nuclear Safety Authority (ASN) - Safety measures to be strengthened; 9 - Opinion no. 2012-AV-013 from January 3, 2012 of the French Nuclear Safety Authority - ASN (Sophie Mourlon, ASN; Caroline Lavarenne, IRSN); 10 - Nuclear energy: an energy for the future (Bernard Bigot, CEA); 11 - The nuclear phaseout in Germany from the view of German industry (Eberhard von Rottenburg, BDI); 12 - Prospects in China (Wei Lu, CGNP Europe); 13 - Industry Current Status and its Prospects in the United States (J. Spina, CENG); 14 - Nuclear energy prospects in France: recommendations of the Commission 'Energy 2050' (Jacques Percebois, Creden); 15 - Electrical generation system efficiency and economy (Yves Giraud, EDF); 16 - Electrical generation systems and distribution networks (Herve Mignon, Rte); 17 - Prospects in the UK (Tim Stone, DECC/OND, Senior Adviser to the Secretary of State); 18 - Climatic changes and energy policy (Laura Cozzi, IEA); 19 - The young nuclear professionals network (Boris Supiot, SFEN Young Generation Group); 20 - Socio-economic impacts of the nuclear power industry in

  7. Safety surveillance of activities on nuclear pressure components in China

    International Nuclear Information System (INIS)

    Li Ganjie; Li Tianshu; Yan Tianwen

    2005-01-01

    The nuclear pressure components, which perform the nuclear safety functions, are one of the key physical barriers for nuclear safety. For the national strategy on further development of nuclear power and localization of nuclear pressure components, there still exist some problems in preparedness on the localization. As for the technical basis, what can not be overlooked is the management. Aiming at the current problems, National Nuclear Safety Administration (NNSA) has taken measures to strengthen the propagation and popularization of nuclear safety culture, adjust the review and approval policies for nuclear pressure components qualification license, establish more stringent management requirements, and enhance the surveillance of activities on nuclear pressure equipment. Meanwhile, NNSA has improved the internal management and the regulation efficiency on nuclear pressure components. At the same time, with the development and implementation of 'Rules on the Safety Regulation for Nuclear Safety Important Components' to be promulgated by the State Council of China, NNSA will complete and improve the regulation on nuclear pressure components and other nuclear equipment. (authors)

  8. Comments on nuclear reactor safety in Ontario

    International Nuclear Information System (INIS)

    1987-08-01

    The Chalk River Technicians and Technologists Union representing 500 technical employees at the Chalk River Nuclear Laboratories of AECL submit comments on nuclear reactor safety to the Ontario Nuclear Safety Review. Issues identified by the Review Commissioner are addressed from the perspective of both a labour organization and experience in the nuclear R and D field. In general, Local 1568 believes Ontario's CANDU nuclear reactors are not only safe but also essential to the continued economic prosperity of the province

  9. Preliminary Study on the Revision of Nuclear Safety Policy Statement

    International Nuclear Information System (INIS)

    Lee, Y. E.; Lee, S. H.; Chang, H. S.; Choi, K. S.; Jung, S. J.

    2011-01-01

    Nuclear safety policy in Korea is currently declared in the Nuclear Safety Charter as the highest tier document and safety principles and directions are announced in the Nuclear Safety Policy Statement. As the circumstances affecting on the nuclear safety policy change, it needs to revise the Statement. This study aims to develop the revised Nuclear Safety Policy Statement to declare that securing safety is a prerequisite to the utilization of nuclear energy, and that all workers in nuclear industry and regulatory body must adhere to the principle of priority to safety. As a result, two different types of revision are being prepared as of August. One is based on the spirit of Nuclear Safety Charter as well as the direction of future-oriented safety policies including the changes in the environment after declaration of the Statement. The other is to declare the fundamental safety objective and safety principles as the top philosophy of national nuclear safety policy by adopting the '10 Safety Principles in IAEA Safety Fundamental' instead of the current Charter. Both versions of revision are subject to further in-depth discussion. However once the revision is finalized and declared, it would be useful to accomplish effectively the organizational responsibilities and to enhance the public confidence in nuclear safety by performing the regulatory activities in a planned and systematic manner and promulgating the government's dedication to priority to safety

  10. The nuclear liability conventions revised

    International Nuclear Information System (INIS)

    Reyners, P.

    2004-01-01

    The signature on 12 February 2004 of the Protocols amending respectively the 1960 Paris Convention and the 1963 Brussels Supplementary Convention was the second step of the process of modernisation of the international nuclear liability regime after the adoption in September 1997 of a Protocol revising the 1963 Vienna Convention and of a new Convention on Supplementary Compensation for Nuclear Damage. The common objective of the new instruments is to provide more funds to compensate a larger number of potential victims in respect of a broader range of damage. Another goal of the revision exercise was to maintain the compatibility between the Paris and Vienna based systems, a commitment enshrined in the 1988 Joint Protocol, as well as to ascertain that Paris/Brussels countries could also become a Party to the Convention on Supplementary Compensation. However, while generally consistent vis a vis the Joint Protocol, the provisions of the Paris and Vienna Conventions, as revised, differ on some significant aspects. Another remaining issue is whether the improved international nuclear liability regime will succeed in attracting in the future a larger number of countries, particularly outside Europe, and will so become truly universal. Therefore, the need for international co-operation to address these issues, to facilitate the adoption of new implementing legislation and to ensure that this special regime keeps abreast of economic and technological developments, is in no way diminished after the revision of the Conventions.(author)

  11. Discussion on building safety culture inside a nuclear safety regulatory body

    International Nuclear Information System (INIS)

    Fan Yumao

    2013-01-01

    A strong internal safety culture plays a key role in improving the performance of a nuclear regulatory body. This paper discusses the definition of internal safety culture of nuclear regulatory bodies, and explains the functions that the safety culture to facilitate the nuclear safety regulation and finally puts forward some thoughts about building internal safety culture inside regulatory bodies. (author)

  12. International Cooperation of the Republic of Croatia in the Field of Nuclear Safety

    International Nuclear Information System (INIS)

    Novosel, N.; Rosandic, L.

    2010-01-01

    International cooperation of the Republic of Croatia in the field of nuclear safety can be divided in two parts - political part, for which the Ministry of Foreign Affairs and European Integration is responsible, and technical part, for which the State Office for Nuclear Safety is responsible, in cooperation with other state administration bodies, where applicable. According to the Nuclear Safety Act (OG 73/2003) the State Office for Nuclear Safety: 'coordinates technical cooperation with the International Atomic Energy Agency for all participants from the Republic of Croatia'; 'fulfills the obligations which the Republic of Croatia has assumed through international conventions and bilateral agreements concerning nuclear safety and the application of protective measures aimed at the non-proliferation of nuclear weapons' and 'cooperates with international organizations and associations in the area of nuclear safety, and appoints its own expert representatives to take part in the work of such organizations and associations or to monitor their work'. In this paper various aspects of the technical cooperation with the International Atomic Energy Agency, as well as international conventions and bilateral agreements in the field of nuclear safety, will be presented. Also, cooperation with other international organizations and associations in the nuclear area, such as Nuclear Suppliers Group, Zangger Committee, Wassenaar Arrangement, Comprehensive Nuclear-Test-Ban Treaty Organization, Euratom and certain civil expert groups of NATO, will be described.(author).

  13. Proceedings of the seminar on nuclear safety research and the workshop on reactor safety research

    International Nuclear Information System (INIS)

    2001-07-01

    The seminar on the nuclear safety research was held on November 20, 2000 according to the start of new five year safety research plan (FY2001-2005: established by Nuclear Safety Commission) with 79 participants. In the seminar, Commissioner Dr. Kanagawa gave the outline of the next five year safety research plan. Following this presentation, progresses and future scopes of safety researches in the fields of reactor facility, fuel cycle facility, radioactive waste and environmental impact on radiation at Japan Atomic Energy Research Institute (JAERI) were reported. After the seminar, the workshop on reactor safety research was held on November 21-22, 2000 with 141 participants. In the workshop, four sessions titled safety of efficient and economic utilization of nuclear fuel, safety related to long-term utilization of power reactors, research on common safety-related issues and toward further improvement of nuclear safety were organized and, outcomes and future perspectives in these wide research R and D in the related area at other organizations including NUPEC, JAPEIC and Kansai Electric Power Co. was presented in each session. This report compiles outlines of the presentations and used materials in the seminar and the workshop to form the proceedings for the both meetings. (author)

  14. Differences in Approach between Nuclear and Conventional Seismic Standards with regard to Hazard Definition - CSNI Integrity And Ageing Working Group

    International Nuclear Information System (INIS)

    Djaoudi, Ali; Labbe, Pierre; Murphy, Andrew; Kitada, Yoshio

    2008-01-01

    The Committee on the safety of Nuclear Installations (CSNI) of the OECD-NEA co-ordinates the NEA activities related to maintaining and advancing the scientific and technological knowledge base of the safety of nuclear installations. The Integrity and Ageing of Components and Structures Working Group of the CSNI is responsible for work related to the development and use of methods, data and information to assess the behaviour of materials and structures. It has three sub-groups, dealing with the integrity of metal components and structures, ageing of concrete structures, and the seismic behaviour of structures. The CSNI, at its meeting in June 2003, agreed to initiate an activity aimed to identify any difference between nuclear and non-nuclear conventional standards and their potential significance with regard to seismic hazards and design methods. There was a perception, mainly in some of the European countries that nuclear seismic hazard and design standards may be lagging behind developments in similar standards for conventional facilities. Adequate answer to such perception, need the examination of the following aspects and their significance on the seismic assessment of structures and components: - The safety philosophy behind the seismic nuclear and conventional standards. - The differences in approach regarding the seismic hazard definition. - The difference in approach regarding the design and the methods of analysis. These topics are examined in this report. Appendices A to H of this report contain a brief description of the conventional and the nuclear approaches in the NEA member countries: Belgium, Canada, Czech Republic, Germany, Japan, South Korea, Spain,and USA. The following general conclusions can be drawn: - The approach adopted by the nuclear seismic standards is more conservative and more reliable (in particular for meeting the continued operation criteria) than the recommended by the currently applicable force based conventional seismic codes

  15. THE IMPACT OF THE GLOBAL NUCLEAR SAFETY REGIME IN BRAZIL

    International Nuclear Information System (INIS)

    Almeida, C.

    2004-01-01

    A turning point of the world nuclear industry with respect to safety occurred due to the accident at Chernobyl, in 1986. A side from the tragic personal losses and the enormous financial damage, the Chernobyl accident has literally demonstrated that ''a nuclear accident anywhere is an accident everywhere''. The impact was felt immediately by the nuclear industry, with plant cancellations (e.g. Austria), elimination of national programs (e.g. Italy) and general construction delays. However, the reaction of the nuclear industry was equally immediate, which led to the proposal and establishment of a Global Nuclear Safety Regime. This regime is composed of biding international safety conventions, globally accepted safety standard, and a voluntary peer review system. In a previous work, the author has presented in detail the components of this Regime, and briefly discussed its impact in the Brazilian nuclear power organizations, including the Regulatory Body. This work, on the opposite, briefly reviews the Global Nuclear Safety Regime, and concentrates in detail in the discussion of its impact in Brazil, showing how it has produced some changes, and where the peer pressure regime has failed to produce real results

  16. Nuclear Safety Review for the Year 2005

    International Nuclear Information System (INIS)

    2006-01-01

    In 2005, the Agency and its Director General were awarded the Nobel Peace Prize. The Nobel Committee statement recognizes the Agency's 'efforts to prevent nuclear energy from being used for military purposes and to ensure that nuclear energy for peaceful purposes is used in the safest possible way.' The global nature of safety is reflected in the relevant international legal instruments, both binding conventions and the non-binding codes of conduct currently in place. During the year, the third review meeting of the Contracting Parties to the Convention on Nuclear Safety as well as the third meeting of the representatives of the competent authorities under the Convention on Early Notification of a Nuclear Accident and Convention on Assistance in the Case of a Nuclear Accident or a Radiological Emergency took place. Improvements have been made in national legislation and regulatory infrastructure in many Member States in 2005. However, inadequate safety management and regulatory supervision of nuclear installations and use of ionizing radiation is a continuing issue in many Member States. A continuing challenge is to collect, analyse and disseminate safety experience and knowledge. Nuclear power plant (NPP) operational safety performance remained high throughout the world in 2005. Radiation doses to workers and members of the public due to NPP operation are well below regulatory limits. Personal injury accidents and incidents are among the lowest in industry. There were no accidents that resulted in the release of radiation that could adversely impact the environment. NPPs in many parts of the world have successfully coped with severe natural disaster conditions such as earthquakes, tsunamis, widespread river flooding and hurricanes. However, operational safety performance has been on a plateau for several years and concern has been expressed in many forums regarding the need to guard against complacency in the industry. Research reactors also maintained a good

  17. New Nuclear Safety Regulations

    International Nuclear Information System (INIS)

    Novosel, N.; Prah, M.; Cizmek, A.

    2008-01-01

    Beside new Ordinance on the control of nuclear material and special equipment (Official Gazette No. 15/08), from 2006 State Office for Nuclear Safety (SONS) adopted Ordinance on performing nuclear activities (Official Gazette No. 74/06) and Ordinance on special conditions for individual activities to be performed by expert organizations which perform activities in the area of nuclear safety (Official Gazette No. 74/06), based on Nuclear Safety Act (Official Gazette No. 173/03). The Ordinance on performing nuclear activities regulates the procedure of announcing the intention to perform nuclear activity, submitting an application for the issue of a license to perform nuclear activity, and the procedure for adoption a decision on issuing a nuclear activity license. The Ordinance also regulates the contents of the application form for the announcement of the intention to perform nuclear activity, as well as of the application for the issue of a nuclear activity license and the method of keeping a nuclear activity register. The Ordinance on special conditions for individual activities to be performed by expert organizations which perform activities in the area of nuclear safety regulates these mentioned conditions, whereas compliance is established by a decision passed by the SONS. Special conditions for individual activities to be performed by expert organizations which perform activities in the area of nuclear safety are organizational, technical, technological conditions and established system of quality assurance. In 2007, SONS finalized the text of new Ordinance on nuclear safety and protection conditions for location, design, construction, operation and decommissioning of facility in which nuclear activity is performed. This Ordinance regulates nuclear safety and protection conditions for location, design, construction, operation and decommissioning of facility in which nuclear activity is performed. This Ordinance defines facilities in which nuclear activity is

  18. Nuclear Safety

    International Nuclear Information System (INIS)

    1978-09-01

    In this short paper it has only been possible to deal in a rather general way with the standards of safety used in the UK nuclear industry. The record of the industry extending over at least twenty years is impressive and, indeed, unique. No other industry has been so painstaking in protection of its workers and in its avoidance of damage to the environment. Headings are: introduction; how a nuclear power station works; radiation and its effects (including reference to ICRP, the UK National Radiological Protection Board, and safety standards); typical radiation doses (natural radiation, therapy, nuclear power programme and other sources); safety of nuclear reactors - design; key questions (matters of concern which arise in the public mind); safety of operators; safety of people in the vicinity of a nuclear power station; safety of the general public; safety bodies. (U.K.)

  19. Convention on the physical protection of nuclear material

    International Nuclear Information System (INIS)

    1982-01-01

    The document presents the original draft for a Convention on the Physical Protection of Nuclear Material, full reports of all the discussions held by representatives of Member States at meetings called by the IAEA, texts of written comments provided by Member States and the final agreed text of the Convention, list of original signatory States and status of the list of signatory States at the date of publication

  20. Nuclear safety

    International Nuclear Information System (INIS)

    Tarride, Bruno

    2015-10-01

    The author proposes an overview of methods and concepts used in the nuclear industry, at the design level as well as at the exploitation level, to ensure an acceptable safety level, notably in the case of nuclear reactors. He first addresses the general objectives of nuclear safety and the notion of acceptable risk: definition and organisation of nuclear safety (relationships between safety authorities and operators), notion of acceptable risk, deterministic safety approach and main safety principles (safety functions and confinement barriers, concept of defence in depth). Then, the author addresses the safety approach at the design level: studies of operational situations, studies of internal and external aggressions, safety report, design principles for important-for-safety systems (failure criterion, redundancy, failure prevention, safety classification). The next part addresses safety during exploitation and general exploitation rules: definition of the operation domain and of its limits, periodic controls and tests, management in case of incidents, accidents or aggressions

  1. Deterministic Safety Analysis for Nuclear Power Plants. Specific Safety Guide (Spanish Edition); Analisis determinista de seguridad para centrales nucleares. Guia de Seguridad Especifica

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    2012-12-15

    The IAEA's Statute authorizes the Agency to establish safety standards to protect health and minimize danger to life and property - standards which the IAEA must use in its own operations, and which a State can apply by means of its regulatory provisions for nuclear and radiation safety. A comprehensive body of safety standards under regular review, together with the IAEA's assistance in their application, has become a key element in a global safety regime. In the mid-1990s, a major overhaul of the IAEA's safety standards programme was initiated, with a revised oversight committee structure and a systematic approach to updating the entire corpus of standards. The new standards that have resulted are of a high calibre and reflect best practices in Member States. With the assistance of the Commission on Safety Standards, the IAEA is working to promote the global acceptance and use of its safety standards. Safety standards are only effective, however, if they are properly applied in practice. The IAEA's safety services - which range in scope from engineering safety, operational safety, and radiation, transport and waste safety to regulatory matters and safety culture in organizations - assist Member States in applying the standards and appraise their effectiveness. These safety services enable valuable insights to be shared and I continue to urge all Member States to make use of them. Regulating nuclear and radiation safety is a national responsibility, and many Member States have decided to adopt the IAEA's safety standards for use in their national regulations. For the contracting parties to the various international safety conventions, IAEA standards provide a consistent, reliable means of ensuring the effective fulfilment of obligations under the conventions. The standards are also applied by designers, manufacturers and operators around the world to enhance nuclear and radiation safety in power generation, medicine, industry, agriculture, research and education

  2. A study on optimization of the nuclear safety system

    International Nuclear Information System (INIS)

    Lee, Sang Hoon; Koh, Byung Joon; Kim, Jin Soo; Kim, Byoung Do; Cho, Seong Won; Kwon, Seog Kwon; Choi, Kwang Sik

    1986-12-01

    The number of nuclear facilities (nuclear power plants, research reactors, nuclear fuel facilities) under construction or in operation in Korea continues to increase and this has brought about increased importance and concerns toward nuclear safety in Korea. Also, domestic nuclear related organizations are increasingly carrying out the design/construction of nuclear power plants and the development /supply of nuclear fuels. In order to flexibly respond to these changes and to suggest direction to take, it is necessary to re-examine the current nuclear safety regulation system. This study is carried out in two stages and this report describes the results of the analysis and the assessment of the nuclear licencing system of such foreign countries as sweden and German, as the first of the two. In this regard, this study includes the analysis on the backgrounds on the choice of nuclear licensing system, the analysis on the licensing procedures, the analysis on the safety inspection system and the enforcement laws, the analysis on the structure and function of the regulatory, business and research organizations as well as the analysis on the relationship between the safety research and the regulatory duties. In this study, the German safety inspection system and the enforcement procedures and the Swedish nuclear licensing system are analyzed in detail. By comparing and assessing the finding with the current Korea Nuclear Licensing System, this study points out some reform measures of the Korean system that needs to improved. With the changing situations in mind, this study aims to develop the nuclear safety regulation system optimized for Korean situation by re-examining the current regulation system. (Author)

  3. Code on the safety of nuclear power plants: Design

    International Nuclear Information System (INIS)

    1988-01-01

    This Code is a compilation of nuclear safety principles aimed at defining the essential requirements necessary to ensure nuclear safety. These requirements are applicable to structures, systems and components, and procedures important to safety in nuclear power plants embodying thermal neutron reactors, with emphasis on what safety requirements shall be met rather than on specifying how these requirements can be met. It forms part of the Agency's programme for establishing Codes and Safety Guides relating to land based stationary thermal neutron power plants. The document should be used by organizations designing, manufacturing, constructing and operating nuclear power plants as well as by regulatory bodies

  4. Decisions on the safety of using nuclear power

    International Nuclear Information System (INIS)

    Janka, P.

    1992-01-01

    A new nuclear energy law came into force in Finland in 1988. This law defines general principles, conditions and requirements concerning the use of nuclear power. The law expects the use of nuclear power to be safe and the safety and contingency systems to be sufficient. General rules for the safety of using nuclear power and for safety arrangements and contingency plans are laid down by the government. The Finnish Centre for Radiation and Nuclear Safety has proposed the various rules to be adopted by the government and come into force by 1991. The rules for the safety of nuclear power plants and final waste storage plants contain limits for emissions of radioactive substances and radiation exposure and requirements for the safety in planning, building and using nuclear power plants and final waste storage plants. They observe international experience and research on risks linked to the use of nuclear power from the last few years as well as means and measures to contain these risks under all conditions. Safety arrangements at nuclear power plants contain measures required to be taken by the owner of the plants to thwart unlawful activities aimed at the plant. Most important of these are the rules for actions to be taken in dangerous situations. The proposed contingency plans contain measures to be taken by the owner of the plants in order to contain nuclear damages resulting from an accident. Most important of these are the rules for planning contingency arrangements, keeping these arrangements operable and actions to be taken in emergency situations. (author)

  5. International convention for the suppression of acts of nuclear terrorism

    International Nuclear Information System (INIS)

    Jankowitsch-Prevor, O.

    2005-01-01

    The Preamble, composed of 13 paragraphs and drafted in the usual style of a General Assembly resolution, is aimed at placing the convention in a number of relevant contexts. First, the convention is linked to the issue of the maintenance of international peace and security through a reference to the purposes of the United Nations under Article 1 of the Charter. Next, it is presented as being a further step in the decisions, measures and instruments developed by the United Nations over the past ten years with the common objective of eliminating international terrorism in all its forms. Lastly, the convention is placed in its specific nuclear context through a number of references. In its third paragraph, the Preamble contains a reference to the principle recognizing 'the right of all states to develop and apply nuclear energy for peaceful purposes and their legitimate interests in the potential benefits to be derived from the peaceful application of nuclear energy'. This paragraph is identical to the first paragraph of the Preamble of the CPPNM, and the same principle is stated again in the first paragraph of the Preamble of the Amendment to the CPPNM, and constitutes a kind of general statement in favour of the peaceful use of nuclear energy and technology, without explicit reservations concerning non-proliferation, the safety and security of nuclear facilities or the management of radioactive waste. A draft amendment presented by the United States delegation in the final phase of work that suggested adding the phrase 'while recognizing that the goals of peaceful utilisation should not be used as a cover for proliferation' to the sentence cited above, was apparently not retained. Next, the Preamble mentions the 1980 Convention on the Physical Protection of Nuclear Material, and in the tenth paragraph the threat that 'acts of nuclear terrorism may result in the gravest consequences and may pose a threat to international peace and security'. Paragraph 11 of the

  6. Knowledge management and networking for enhancing nuclear safety

    International Nuclear Information System (INIS)

    Taniguchi, T.; Lederman, L.

    2004-01-01

    Striving for innovative solutions to enhance efficiency of programme delivery and a wider outreach of its nuclear safety activities, the International Atomic Energy Agency (IAEA) has developed an Integrated Safety Approach as a platform for linking its safety related statutory functions and its many associated activities. The approach recognizes the vital importance of effective management of the knowledge base and builds on the integration between the IAEA's safety standards and all aspects of the provision for their application, including peer reviews and technical meetings to share lessons learned. The IAEA is using knowledge management techniques to develop process flows, map safety knowledge and to promote knowledge sharing. The first practical application was the establishment of a knowledge base related to safety aspects of ageing and long-term operation of nuclear power plants. The IAEA is also promoting and facilitating the establishment of regional nuclear and radiation safety networks to preserve existing knowledge and expertise as well as to strengthen sharing and creation of new knowledge in these fields. Prominent examples are the Asian Nuclear Safety Network established in the frame of the IAEA's Programme on the Safety of Nuclear Installations in South East Asia, Pacific and Far East Countries, and the Ibero-American Radiation Safety Network in the frame of the Ibero-American Forum of Nuclear Regulators. Results to date are most encouraging and suggest that this pioneer work should be extended to other regions and eventually to a global nuclear safety network. Responsive to the need of Member States, the IAEA Secretariat has prepared and made available a large number of up-to-date training packages in nuclear, radiation, transport and waste safety, using IAEA safety standards as a basis. It is also providing instruction to trainers in Member States on the use of these modules. This ensures that the material is properly used and that the IAEA

  7. Nuclear power and nuclear safety 2009

    International Nuclear Information System (INIS)

    Lauritzen, B.; Oelgaard, P.L.; Kampmann, D.; Nystrup, P.E.; Thorlaksen, B.

    2010-05-01

    The report is the seventh report in a series of annual reports on the international development of nuclear power production, with special emphasis on safety issues and nuclear emergency preparedness. The report is written in collaboration between Risoe DTU and the Danish Emergency Management Agency. The report for 2009 covers the following topics: status of nuclear power production, regional trends, reactor development, safety related events, international relations, conflicts and the European safety directive. (LN)

  8. Joint Convention on the safety of spent fuel management and on the safety of radioactive waste management. Third national report on the implementation of obligations of the Joint Convention

    International Nuclear Information System (INIS)

    2008-09-01

    This report is published in compliance with the Joint Convention and presents the measures implemented by France to comply with each of the obligations defined by this convention. The structure of the report refers to the articles of the Convention. Therefore, after a presentation of the main evolutions since France's previous report, the following themes are addressed: policies and practices, scope of application, inventories and lists, legislative and regulatory system, other general safety provisions, safety of spent fuel management, trans-boundary movement, disused sealed sources, and planned activities to improve safety

  9. Report on nuclear and radiological safety in 1994

    International Nuclear Information System (INIS)

    Lovincic, D.

    1995-01-01

    The Slovenian Nuclear Safety Administration (SNSA) in cooperation with the Health Inspectorate, prepared the Report on Nuclear and Radiological Safety in the Republic of Slovenia for 1994 as part of its regular practice of reporting on its activities to the Government and the Parliament of the Republic of Slovenia. The report is divided into seven thematic chapters covering the activities of the SNSA, the operation of nuclear facilities in Slovenia, the activities of the Agency for Radwaste Management (ARAO), the activities of international safety missions in Slovenia, environmental radioactivity monitoring in Slovenia, ionizing radiation sources control by Slovenian Health Inspectorate and review of the operation of nuclear facilities around the world.

  10. Radiation protection aspects of design for nuclear power plants. Safety guide

    International Nuclear Information System (INIS)

    2005-01-01

    The IAEA's Statute authorizes the Agency to establish safety standards to protect health and minimize danger to life and property - standards which the IAEA must use in its own operations, and which a State can apply by means of its regulatory provisions for nuclear and radiation safety. A comprehensive body of safety standards under regular review, together with the IAEA's assistance in their application, has become a key element in a global safety regime. In the mid-1990s, a major overhaul of the IAEA's safety standards programme was initiated, with a revised oversight committee structure and a systematic approach to updating the entire corpus of standards. The new standards that have resulted are of a high calibre and reflect best practices in Member States. With the assistance of the Commission on Safety Standards, the IAEA is working to promote the global acceptance and use of its safety standards. Safety standards are only effective, however, if they are properly applied in practice. The IAEA's safety services - which range in scope from engineering safety, operational safety, and radiation, transport and waste safety to regulatory matters and safety culture in organizations - assist Member States in applying the standards and appraise their effectiveness. These safety services enable valuable insights to be shared and continue to urge all Member States to make use of them. Regulating nuclear and radiation safety is a national responsibility, and many Member States have decided to adopt the IAEA's safety standards for use in their national regulations. For the Contracting Parties to the various international safety conventions, IAEA standards provide a consistent, reliable means of ensuring the effective fulfilment of obligations under the conventions. The standards are also applied by designers, manufacturers and operators around the world to enhance nuclear and radiation safety in power generation, medicine, industry, agriculture, research and education

  11. Nuclear Safety Review for 2014

    International Nuclear Information System (INIS)

    2014-07-01

    The Nuclear Safety Review 2014 focuses on the dominant nuclear safety trends, issues and challenges in 2013. The Executive Overview provides general nuclear safety information along with a summary of the major issues covered in this report: strengthening safety in nuclear installations; improving radiation, transport and waste safety; enhancing emergency preparedness and response (EPR); improving regulatory infrastructure and effectiveness; and strengthening civil liability for nuclear damage. The Appendix provides details on the activities of the Commission on Safety Standards, and activities relevant to the Agency’s safety standards. The global nuclear community has made steady and continuous progress in strengthening nuclear safety in 2013, as promoted by the IAEA Action Plan on Nuclear Safety (hereinafter referred to as “the Action Plan”) and reported in Progress in the Implementation of the IAEA Action Plan on Nuclear Safety (document GOV/INF/2013/8-GC(57)/INF/5), and the Supplementary Information to that report and Progress in the Implementation of the IAEA Action Plan on Nuclear Safety (document GOV/INF/2014/2). • Significant progress continues to be made in several key areas, such as assessments of safety vulnerabilities of nuclear power plants (NPPs), strengthening of the Agency’s peer review services, improvements in EPR capabilities, strengthening and maintaining capacity building, and protecting people and the environment from ionizing radiation. The progress that has been made in these and other areas has contributed to the enhancement of the global nuclear safety framework. • Significant progress has also been made in reviewing the Agency’s safety standards, which continue to be widely applied by regulators, operators and the nuclear industry in general, with increased attention and focus on vitally important areas such as design and operation of NPPs, protection of NPPs against severe accidents, and EPR. • The Agency continued to

  12. Regulatory oversight on nuclear safety in Taiwan

    Energy Technology Data Exchange (ETDEWEB)

    Huang, T-T. [Atomic Energy Council, New Taipei City, Taiwan (China)

    2014-07-01

    Taiwan is a densely populated island and over 98% of its energy is imported, 16.5% of which is nuclear, in the form of materials and services. Ensuring that the most stringent nuclear safety standards are met therefore remains a priority for the government and the operator, Taiwan power Company (Taipower). There are eight nuclear power reactors in Taiwan, six of which are in operation and two are under construction. The first began operating nearly 40 years ago. For the time being the issue of whether to decommission or extend life of the operating units is also being discussed and has no conclusion yet. Nuclear energy has been a hot issue in debate over the past decades in Taiwan. Construction of Lungmen nuclear power plant, site selection of a final low-level waste disposal facility, installation of spent fuel dry storage facilities and safety of the currently operating nuclear power reactors are the issues that all Taiwanese are concerned most. In order to ensure the safety of nuclear power plant, the Atomic Energy Council (AEC) has implemented rigorous regulatory work over the past decades. After the Fukushima accident, AEC has conducted a reassessment program to re-evaluate all nuclear power plants in Taiwan, and asked Taipower to follow the technical guidelines, which ENSREG has utilized to implement stress test over nuclear power plants in Europe. In addition, AEC has invited two expert teams from OECD/NEA and ENSREG to conduct peer reviews of Taiwan's stress test national report in 2013. My presentation will focus on activities regulating safety of nuclear power programs. These will cover (A) policy of nuclear power regulation in Taiwan, (B)challenges of the Lungmen Plant, (C) post-Fukushima safety re-assessment, and (D)radioactive waste management. (author)

  13. Report on nuclear and radiological safety in 1995

    International Nuclear Information System (INIS)

    Lovincic, D.

    1996-07-01

    The Slovenian Nuclear Safety Administration (SNSA) in cooperation with the Health Inspectorate of the Republic of Slovenia and the Administration for Rescue and Disaster Relief (URSZR) has prepared a Report on Nuclear and Radiological Safety in the Republic of Slovenia for 1995. The report is presenting: the activities of the SNSA; the operation of nuclear facilities; monitoring of radioactivity; control of ionizing radiation and nuclear electricity generation.

  14. The 1968 Brussels convention and liability for nuclear damage

    International Nuclear Information System (INIS)

    Sands, Ph.; Galizzi, P.

    2000-01-01

    The legal regime governing civil liability for transboundary nuclear damage is expressly addressed by two instruments adopted in the 1960's: the 1960 Paris Convention on Third Party Liability in the Field of Nuclear Energy and the 1963 Vienna Convention on Civil Liability for Nuclear Damage These establish particular rules governing the jurisdiction of national courts and other matters, including channelling of liability to nuclear operators, definitions of nuclear damage, the applicable standard of care, and limitations on liability. Another instrument - the 1968 Brussels Convention on Jurisdiction and the Enforcement of Judgements in Civil and Commercial Matters (hereinafter referred to as 'the Brussels Convention') - which is not often mentioned in the nuclear context will nevertheless also be applicable in certain cases. It is premised upon different rules as to forum and applicable law, and presents an alternate vision of the appropriate arrangements governing civil liability for nuclear damage. In this paper we consider the relative merits and demerits of the Brussels Convention from the perspective of non-nuclear states which might suffer damage as a result of a nuclear accident in another state. We conclude that in the context of the applicability of the Brussels Convention the dedicated nuclear liability conventions present few attractions to non-nuclear states in Europe. We focus in particular on issues relating to jurisdiction and applicable law, and do so by reference to a hypothetical accident in the United Kingdom which has transboundary effects in Ireland. (author)

  15. Status of National Nuclear Infrastructure Development (NG-T-3.2). Basis for Evaluation - Legal, safety, security, safeguards issues

    International Nuclear Information System (INIS)

    Yllera, Javier

    2010-01-01

    A framework for achieving high levels of nuclear safety and security worldwide Builds upon: Legal Instruments; Use of IAEA SSs and security guidance; Harmonization of national regulations; Exchange of knowledge, experiences & regulatory practices and Multinational cooperation and safety reviews. The IAEA is the depository of many key international conventions and legal agreements. All countries with operating nuclear power plants are now parties to the Convention. The main objective of Convention on Nuclear Safety is to achieve and maintain a high level of nuclear safety worldwide through the enhancement of national measures and international cooperation including, where appropriate, safety related technical co-operation. All practical efforts must be made to prevent and mitigate nuclear or radiation accidents. The primary means of preventing and mitigating the consequences of accidents is “defence in depth”. Safety assessments are to be carried out and documented by the organization responsible for operating the facility, are to be independently verified and are to be submitted to the regulatory body as part of the licensing or authorization process. Licensing process must be well-defined, clear, transparent and traceable. The public should be given an opportunity to provide their views during certain steps of the licensing process

  16. IAEA activities in nuclear safety: future perspectives. Spanish Nuclear Safety Council, Madrid, 28 May 1998

    International Nuclear Information System (INIS)

    ElBaradei, M.

    1998-01-01

    The document represents the conference given by the Director General of the IAEA at the Spanish Nuclear Safety Council in Madrid, on 28 May 1998, on Agency's activities in nuclear safety. The following aspects are emphasized: Agency's role in creating a legally binding nuclear safety regime, non-binding safety standards, services provided by the Agency to assist its Member States in the Application of safety standards, Agency's nuclear safety strategy, and future perspective concerning safety aspects related to radioactive wastes, residues of past nuclear activities, and security of radiological sources

  17. Economic consideration of nuclear safety and cost benefit analysis in nuclear safety regulation

    International Nuclear Information System (INIS)

    Choi, Y. S.; Choi, K. S.; Choi, K. W.; Song, I. J.; Park, D. K.

    2001-01-01

    For the optimization of nuclear safety regulation, understanding of economic aspects of it becomes increasingly important together with the technical approach used so far to secure nuclear safety. Relevant economic theories on private and public goods were reviewed to re-illuminate nuclear safety from the economic perspective. The characteristics of nuclear safety as a public good was reviewed and discussed in comparison with the car safety as a private safety good. It was shown that the change of social welfare resulted from the policy change induced can be calculated by the summation of compensating variation(CV) of individuals. It was shown that the value of nuclear safety could be determined in monetary term by this approach. The theoretical background and history of cost benefit analysis of nuclear safety regulation were presented and topics for future study were suggested

  18. Organization and Nuclear Safety: Safety culture

    International Nuclear Information System (INIS)

    Martin Marquinez, A.

    1998-01-01

    This book presents the experience in nuclear safety and its influence in the exploitation on nuclear power plants. The safety organization and quality management before and after Chernobylsk and three mile island accidents

  19. Manche storage Centre. Information report on nuclear safety and radiation protection 2015

    International Nuclear Information System (INIS)

    2016-01-01

    After a presentation of the Manche Storage Centre (CSM), the first French center of surface storage of low- and intermediate-level radioactive wastes, of its history, its buildings and activities, of the multi-layer cover, of the water management system (installation, controls, sampling), this report then describes the measures related to nuclear safety, the management of conventional and nuclear wastes produced by the Centre, the other impacts, the control, maintenance and follow-up of installations, the radiation protection and security of the center, the incidents and accidents that occurred at the facility, and the public information and communication actions. Recommendations of the Health and safety Committee (CHSCT) are reported at the end

  20. The operating organization for nuclear power plants. Safety guide

    International Nuclear Information System (INIS)

    2001-01-01

    This Safety Guide was prepared under the IAEA programme for safety standards for nuclear power plants. The present publication is a revision of the IAEA Safety Guide on Management of Nuclear Power Plants for Safe Operation issued in 1984. It supplements Section 2 of the Safety Requirements publication on Safety of Nuclear Power Plants: Operation. Nuclear power technology is different from the customary technology of power generation from fossil fuel and by hydroelectric means. One major difference between the management of nuclear power plants and that of conventional generating plants is the emphasis that should be placed on nuclear safety, quality assurance, the management of radioactive waste and radiological protection, and the accompanying national regulatory requirements. This Safety Guide highlights the important elements of effective management in relation to these aspects of safety. The attention to be paid to safety requires that the management recognize that personnel involved in the nuclear power programme should understand, respond effectively to, and continuously search for ways to enhance safety in the light of any additional requirements socially and legally demanded of nuclear energy. This will help to ensure that safety policies that result in the safe operation of nuclear power plants are implemented and that margins of safety are always maintained. The structure of the organization, management standards and administrative controls should be such that there is a high degree of assurance that safety policies and decisions are implemented, safety is continuously enhanced and a strong safety culture is promoted and supported. The objective of this publication is to guide Member States in setting up an operating organization which facilitates the safe operation of nuclear power plants to a high level internationally. The second objective is to provide guidance on the most important organizational elements in order to contribute to a strong safety

  1. The operating organization for nuclear power plants. Safety guide

    International Nuclear Information System (INIS)

    2005-01-01

    This Safety Guide was prepared under the IAEA programme for safety standards for nuclear power plants. The present publication is a revision of the IAEA Safety Guide on Management of Nuclear Power Plants for Safe Operation issued in 1984. It supplements Section 2 of the Safety Requirements publication on Safety of Nuclear Power Plants: Operation. Nuclear power technology is different from the customary technology of power generation from fossil fuel and by hydroelectric means. One major difference between the management of nuclear power plants and that of conventional generating plants is the emphasis that should be placed on nuclear safety, quality assurance, the management of radioactive waste and radiological protection, and the accompanying national regulatory requirements. This Safety Guide highlights the important elements of effective management in relation to these aspects of safety. The attention to be paid to safety requires that the management recognize that personnel involved in the nuclear power programme should understand, respond effectively to, and continuously search for ways to enhance safety in the light of any additional requirements socially and legally demanded of nuclear energy. This will help to ensure that safety policies that result in the safe operation of nuclear power plants are implemented and that margins of safety are always maintained. The structure of the organization, management standards and administrative controls should be such that there is a high degree of assurance that safety policies and decisions are implemented, safety is continuously enhanced and a strong safety culture is promoted and supported. The objective of this publication is to guide Member States in setting up an operating organization which facilitates the safe operation of nuclear power plants to a high level internationally. The second objective is to provide guidance on the most important organizational elements in order to contribute to a strong safety

  2. The operating organization for nuclear power plants. Safety guide

    International Nuclear Information System (INIS)

    2004-01-01

    This Safety Guide was prepared under the IAEA programme for safety standards for nuclear power plants. The present publication is a revision of the IAEA Safety Guide on Management of Nuclear Power Plants for Safe Operation issued in 1984. It supplements Section 2 of the Safety Requirements publication on Safety of Nuclear Power Plants: Operation. Nuclear power technology is different from the customary technology of power generation from fossil fuel and by hydroelectric means. One major difference between the management of nuclear power plants and that of conventional generating plants is the emphasis that should be placed on nuclear safety, quality assurance, the management of radioactive waste and radiological protection, and the accompanying national regulatory requirements. This Safety Guide highlights the important elements of effective management in relation to these aspects of safety. The attention to be paid to safety requires that the management recognize that personnel involved in the nuclear power programme should understand, respond effectively to, and continuously search for ways to enhance safety in the light of any additional requirements socially and legally demanded of nuclear energy. This will help to ensure that safety policies that result in the safe operation of nuclear power plants are implemented and that margins of safety are always maintained. The structure of the organization, management standards and administrative controls should be such that there is a high degree of assurance that safety policies and decisions are implemented, safety is continuously enhanced and a strong safety culture is promoted and supported. The objective of this publication is to guide Member States in setting up an operating organization which facilitates the safe operation of nuclear power plants to a high level internationally. The second objective is to provide guidance on the most important organizational elements in order to contribute to a strong safety

  3. International Symposium on Nuclear Safety

    International Nuclear Information System (INIS)

    2013-03-01

    Nuclear Regulatory Authority of the Slovak Republic and the Embassy of Japan in the Slovak Republic, under the auspices of the Deputy Prime Minister and Minister of Foreign and European Affairs Mr Lajcak organized International Symposium on Nuclear Safety on 14 and 15 March 2013. The symposium took place almost exactly two years after the occurrence of accidents at the Japanese nuclear power plant Fukushima Daichi. The main mission of the symposium was an attempt to contribute to the improvement of nuclear safety by sharing information and lessons presented by Japanese experts with experts from the region, the International Atomic Energy Agency (IAEA) and the European Commission. The aim of the symposium, unlike many other events organized in connection with the events in Fukushima Daichi NPP, was a summary of the results of stress tests and measures update adopted by the international community, especially within Europe. Panel discussion was included to the program of the symposium for this aim was, mainly focused on the current state of implementation of the National Action Plan of the Slovak Republic, the Czech Republic, Poland, Ukraine and Switzerland and the IAEA Action Plan.

  4. Proceeding of the Fifth Scientific Presentation on Nuclear Safety Technology

    International Nuclear Information System (INIS)

    Suhaemi, Tj.; Sudarno; Sunaryo, G. R.; Supriatna, P.; Antariksawan, A. R.; Sumijanto; Febrianto; Histori; Aliq

    2000-01-01

    The proceedings includes the result of research and development activities on nuclear safety technology that have been done by research Center for Nuclear Safety Technology in 2000 and was presented on June 28, 2000. The proceedings is expected to give illustration of the research result on Nuclear Safety Technology

  5. Innovation research on the safety supervision system of nuclear and radiation safety in Jiangsu province

    International Nuclear Information System (INIS)

    Zhang Qihong; Lu Jigen; Zhang Ping; Wang Wanping; Dai Xia

    2012-01-01

    As the rapid development of nuclear technology, the safety supervision of nuclear and radiation becomes very important. The safety radiation frame system should be constructed, the safety super- vision ability for nuclear and radiation should be improved. How to implement effectively above mission should be a new subject of Provincial environmental protection department. Through investigating the innovation of nuclear and radiation supervision system, innovation of mechanism, innovation of capacity, innovation of informatization and so on, the provincial nuclear and radiation safety supervision model is proposed, and the safety framework of nuclear and radiation in Jiangsu is elementally established in the paper. (authors)

  6. Nuclear safety and regulation

    International Nuclear Information System (INIS)

    Kim, Hho Jung

    2000-03-01

    This book contains 12 chapters, which are atom and radiation, nuclear reactor and kinds of nuclear power plant, safeguard actuation system and stability evaluation for rock foundation of nuclear power plant, nuclear safety and principle, safety analysis and classification of incident, probabilistic safety assessment and major incident, nuclear safety regulation, system of nuclear safety regulation, main function and subject of safety regulation in nuclear facilities, regulation of fuel cycle and a nuclear dump site, protection of radiation and, safety supervision and, safety supervision and measurement of environmental radioactivity.

  7. Seismic safety in nuclear-waste disposal

    International Nuclear Information System (INIS)

    Carpenter, D.W.; Towse, D.

    1979-01-01

    Seismic safety is one of the factors that must be considered in the disposal of nuclear waste in deep geologic media. This report reviews the data on damage to underground equipment and structures from earthquakes, the record of associated motions, and the conventional methods of seismic safety-analysis and engineering. Safety considerations may be divided into two classes: those during the operational life of a disposal facility, and those pertinent to the post-decommissioning life of the facility. Operational hazards may be mitigated by conventional construction practices and site selection criteria. Events that would materially affect the long-term integrity of a decommissioned facility appear to be highly unlikely and can be substantially avoided by conservative site selection and facility design. These events include substantial fault movement within the disposal facility and severe ground shaking in an earthquake epicentral region. Techniques need to be developed to address the question of long-term earthquake probability in relatively aseismic regions, and for discriminating between active and extinct faults in regions where earthquake activity does not result in surface ruptures

  8. Seismic safety in nuclear-waste disposal

    Energy Technology Data Exchange (ETDEWEB)

    Carpenter, D.W.; Towse, D.

    1979-04-26

    Seismic safety is one of the factors that must be considered in the disposal of nuclear waste in deep geologic media. This report reviews the data on damage to underground equipment and structures from earthquakes, the record of associated motions, and the conventional methods of seismic safety-analysis and engineering. Safety considerations may be divided into two classes: those during the operational life of a disposal facility, and those pertinent to the post-decommissioning life of the facility. Operational hazards may be mitigated by conventional construction practices and site selection criteria. Events that would materially affect the long-term integrity of a decommissioned facility appear to be highly unlikely and can be substantially avoided by conservative site selection and facility design. These events include substantial fault movement within the disposal facility and severe ground shaking in an earthquake epicentral region. Techniques need to be developed to address the question of long-term earthquake probability in relatively aseismic regions, and for discriminating between active and extinct faults in regions where earthquake activity does not result in surface ruptures.

  9. Nuclear Safety Review for the Year 2008

    International Nuclear Information System (INIS)

    2009-07-01

    's Response Assistance Network. In July 2008, an emergency exercise, hosted by Mexico and known as ConvEx3 (2008), tested the international response to a simulated accident at a nuclear power plant. The Agency used its Incident and during the exercise. The importance of having effective civil liability mechanisms in place to insure against harm to human health and the environment, as well as actual economic loss caused by nuclear damage, receives continued attention among Member States. The deposit by the USA of its instrument of ratification of the Convention on Supplementary Compensation for Nuclear Damage (CSC) marked an important milestone towards bringing the entry into force of the CSC. The International Expert Group on Nuclear Liability (INLEX) continues to serve as the Agency's main forum dealing with questions related to nuclear liability. In 2008, INLEX discussed, inter alia, outreach activities and the ongoing European Commission's impact assessment on nuclear liability. Nuclear power plant operators continued to show strong safety performance in 2008, with no serious accidents or significant radiation exposure to workers or the public to report. During the Agency's International Conference on Topical Issues in Nuclear Installation Safety, held in Mumbai, India in November 2008, participants concluded that an integrated nuclear safety approach based on the defence in depth principle and deterministic criteria, when properly applied and complemented with probabilistic analyses and operational experience feedback, continues to be successful. The reevaluation of the integrity of existing nuclear installations, taking into account the increased magnitude observed during recent severe earthquakes and extreme natural events, has begun. At the request of Member States, the Agency has conducted generic reactor safety reviews to assess new nuclear power plant designs for consistency with the Agency's safety standards.

  10. Reflections on current nuclear safety problems

    International Nuclear Information System (INIS)

    Teillac, J.

    1981-01-01

    After operations totalling more than 2000 reactor-years, the safety balance is undeniably positive: no nuclear power plant in the world has so far caused significant damage to populations or to the environment. The paper reviews the darker and brighter aspects of recent analyses, in particular since the Harrisburg accident, and suggests three general lines of action: maintenance of a high level of technical competence in safety, systematic analysis of operational incidents and, finally, increased attention to the ''human factor'' as regards both the man/machine relationship and the training of personnel. With regard to the last-mentioned point, it is suggested that the greatest possible profit should be drawn from the tests carried out at the time of plant commissioning. International collaboration is particularly necessary both to ensure progress in the technical aspects of safety and to place the credibility of specialists on a firmer foundation. Finally, it is essential to assist countries which are embarking on nuclear power programmes. Nuclear safety is not always correctly perceived by public opinion, which will not definitively accept this new source of energy without having complete confidence in those who are promoting it. A clear and firm position on the part of those in positions of political responsibility is an important element in gaining public confidence. (author)

  11. Report on nuclear safety on the operation of nuclear facilities in 1989

    International Nuclear Information System (INIS)

    Gregoric, M.; Levstek, M. F.; Horvat, D.; Kocuvan, M.; Cresnar, N.

    1990-01-01

    Currently Yugoslavia has one 632 MWe nuclear power plant (NPP) of PWR design, located at Krsko in the Socialist Republic (SR) of Slovenia. Krsko NPP, which is a two-loop plant, started power operation in 1981. In general, reactor safety activities in the SR of Slovenia are mostly related to upgrading the safety of our Krsko NPP and to developing capabilities for use in future units. This report presents the nuclear safety related legislation and organization of the corresponding regulatory body, and the activities related to nuclear safety of the participating organizations in the SR of Slovenia in 1989.

  12. Report on nuclear safety on the operation of nuclear facilities in 1990

    International Nuclear Information System (INIS)

    Gregoric, M.; Grlicarev, I.; Horvat, D.; Levstek, M.F.; Lukacs, E.; Kocuvan, M.; Skraban, A.

    1991-06-01

    Currently Yugoslavia has one 632 MWe nuclear power plant (NPP) of PWR design, located at Krsko in the Socialist Republic (SR) of Slovenia. Krsko NPP, which is a two-loop plant, started power operation in 1981. In general, reactor safety activities in the SR of Slovenia are mostly related to upgrading the safety of our Krsko NPP and to developing capabilities for use in future units. This report presents the nuclear safety related legislation and organization of the corresponding regulatory body, and the activities related to nuclear safety of the participating organizations in the SR of Slovenia in 1990.

  13. Nuclear power and nuclear safety 2008

    International Nuclear Information System (INIS)

    Lauritzen, B.; Oelgaard, P.L.; Kampmann, D.

    2009-06-01

    The report is the fifth report in a series of annual reports on the international development of nuclear power production, with special emphasis on safety issues and nuclear emergency preparedness. The report is written in collaboration between Risoe DTU and the Danish Emergency Management Agency. The report for 2008 covers the following topics: status of nuclear power production, regional trends, reactor development, safety related events of nuclear power, and international relations and conflicts. (LN)

  14. Transfrontier nuclear civil liability without international conventions

    International Nuclear Information System (INIS)

    Dogauchi, M.

    1992-01-01

    Japan is not a contracting party of any international convention in the field of nuclear civil liability, and neither are other east Asian countries who have or will soon have nuclear plants. Therefore, the ordinary rules on private international law will play an important role in dealing with transfrontier nuclear civil liability. Above all, the problems on judicial jurisdiction and governing law are crucial points. With regard to the relations between the above countries and the countries whose legal systems are within the framework of Paris or Vienna Conventions, geographical scopes of these conventions are to be considered. There are two different parts in the international civil liability conventions: uniform civil liability law and mutual funds. As to the first, it is important that, even without the conventions, the basic structure of the nuclear civil liability laws in non-member countries are almost the same with those of members. In any event, considering that the establishment of a single international regime to cover all countries will be hardly possible, legal consequences under the private international law will be explored. (author)

  15. Self-assessment of operational safety for nuclear power plants

    International Nuclear Information System (INIS)

    1999-12-01

    Self-assessment processes have been continuously developed by nuclear organizations, including nuclear power plants. Currently, the nuclear industry and governmental organizations are showing an increasing interest in the implementation of this process as an effective way for improving safety performance. Self-assessment involves the use of different types of tools and mechanisms to assist the organizations in assessing their own safety performance against given standards. This helps to enhance the understanding of the need for improvements, the feeling of ownership in achieving them and the safety culture as a whole. Although the primary beneficiaries of the self-assessment process are the plant and operating organization, the results of the self-assessments are also used, for example, to increase the confidence of the regulator in the safe operation of an installation, and could be used to assist in meeting obligations under the Convention on Nuclear Safety. Such considerations influence the form of assessment, as well as the type and detail of the results. The concepts developed in this report present the basic approach to self-assessment, taking into consideration experience gained during Operational Safety Review Team (OSART) missions, from organizations and utilities which have successfully implemented parts of a self-assessment programme and from meetings organized to discuss the subject. This report will be used in IAEA sponsored workshops and seminars on operational safety that include the topic of self-assessment

  16. Joint Convention on the Safety of Spent Fuel Management and on the Safety of Radioactive Waste Management. National Report from Norway

    International Nuclear Information System (INIS)

    2006-05-01

    This report is the Norwegian report to the second review meeting to the Joint Convention on the Safety of Spent Fuel Management and on the Safety of Radioactive Waste Management. The comments, questions and remarks given to Norway's initial national report and Norway's presentation given at the first review meeting have been incorporated in this report. The second report is a full revision of the first report. This report concludes that Norway meets the obligations of the Joint Convention. However, Norwegian authorities will aim for development in the waste management policy and Norway will continue to improve its existing systems to further enhance safety, in line with the aims of the Joint Convention

  17. Nuclear safety

    International Nuclear Information System (INIS)

    1991-02-01

    This book reviews the accomplishments, operations, and problems faced by the defense Nuclear Facilities Safety Board. Specifically, it discusses the recommendations that the Safety Board made to improve safety and health conditions at the Department of Energy's defense nuclear facilities, problems the Safety Board has encountered in hiring technical staff, and management problems that could affect the Safety Board's independence and credibility

  18. Nuclear safety in France

    International Nuclear Information System (INIS)

    Servant, J.

    1979-12-01

    The main areas of nuclear safety are considered in this paper, recalling the laws and resolutions in force and also the appropriate authority in each case. The following topics are reviewed: radiological protection, protection of workers, measures to be taken in case of an accident, radioactive effluents, impact on the environment of non-nuclear pollution, nuclear plant safety, protection against malicious acts, control and safeguard of nuclear materials, radioisotopes, transport of radioactive substances, naval propulsion, waste management, nuclear plant decommissioning and export of nuclear equipment and materials. Finally, the author describes the role of the general Secretariat of the Interdepartmental Committee on Nuclear Safety

  19. Ukraine International cooperation in nuclear and radiation safety: public-administrative aspect

    Directory of Open Access Journals (Sweden)

    I. P. Krynychnay

    2017-03-01

    Full Text Available The article examines international cooperation of Ukraine with other States in the sphere of ensuring nuclear and radiation safety and highlights the main directions of development and improvement of nuclear and radiation safety in Ukraine based on international experience, with the aim of preventing the risks of accidents and contamination areas radiological substances. Illuminated that for more than half a century of experience in the use of nuclear energy by the international community under the auspices of the UN, IAEA and other international organizations initiated and monitored the implementation of key national and international programs on nuclear and radiation safety. Of the Convention in the field of nuclear safety and the related independent peer review, effective national regulatory infrastructures, current nuclear safety standards and policy documents, as well as mechanisms of evaluation in the framework of the IAEA constitute important prerequisites for the creation of a world community, the global regime of nuclear and radiation safety. For analysis of the state of international cooperation of Ukraine with other States in the sphere of nuclear and radiation safety, highlighted the legal substance of nuclear and radiation safety of Ukraine, which is enshrined in the domestic Law of Ukraine «On nuclear energy use and radiation safety». Considered the most relevant legal relations. It is established that, despite the current complex international instruments, existing domestic legislation on nuclear and radiation safety, partly there is a threat of emergency nuclear radiation nature, in connection with the failure of fixed rules and programs, lack of funding from the state is not always on time and in full allows you to perform fixed strategy for overcoming the consequences of radiation accidents, the prevention of the threat of environmental pollution. Found that to improve and further ensuring nuclear and radiation safety of

  20. PSA methodology including new design, operational and safety factors, 'Level of recognition of phenomena with a presumed dominant influence upon operational safety' (failures of conventional as well as non-conventional passive components, dependent failures, influence of operator, fires and external threats, digital control, organizational factors)

    International Nuclear Information System (INIS)

    Jirsa, P.

    2001-10-01

    The document represents a specific type of discussion of existing methodologies for the creation and application of probabilistic safety assessment (PSA) in light of the EUR document summarizing requirements placed by Western European NPP operators on the future design of nuclear power plants. A partial goal of this discussion consists in mapping, from the PSA point of view, those selected design, operational and/or safety factors of future NPPs that may be entirely new or, at least, newly addressed. Therefore, the terms of reference for this stage were formulated as follows: Assess current level of knowledge and procedures in the analysis of factors and phenomena with a dominant influence upon operational safety of new generation reactors, especially in the following areas: (1) Phenomenology of failure types and mechanisms and reliability of conventional passive safety system components; (2) Phenomenology of failure types and mechanisms and reliability of non-conventional passive components of newly designed safety systems; (3) Phenomenology of types and mechanisms of dependent failures; (4) Human factor role in new generation reactors and its effect upon safety; (5) Fire safety and other external threats to new nuclear installations; (6) Reliability of the digital systems of the I and C system and their effect upon safety; and (7) Organizational factors in new nuclear installations. (P.A.)

  1. Conference on Techniques of Nuclear and Conventional Analysis and Applications

    International Nuclear Information System (INIS)

    2012-01-01

    Full text : With their wide scope, particularly in the areas of environment, geology, mining, industry and life sciences; analysis techniques are of great importance in research as fundamental and applied. The Conference on Techniques for Nuclear and Conventional Analysis and Applications (TANCA) are Registered in the national strategy of opening of the University and national research centers on their local, national and international levels. This conference aims to: Promoting nuclear and conventional analytical techniques; Contribute to the creation of synergy between the different players involved in these techniques include, Universities, Research Organizations, Regulatory Authorities, Economic Operators, NGOs and others; Inform and educate potential users of the performance of these techniques; Strengthen exchanges and links between researchers, industry and policy makers; Implement a program of inter-laboratory comparison between Moroccan one hand, and their foreign counterparts on the other; Contribute to the research training of doctoral students and postdoctoral scholars. Given the relevance and importance of the issues related to environment and impact on cultural heritage, this fourth edition of TANCA is devoted to the application of analytical techniques for conventional and nuclear Questions ied to environment and its impact on cultural heritage.

  2. INSAG's ongoing work on nuclear, radiation and waste safety

    International Nuclear Information System (INIS)

    Baer, A.J.

    1999-01-01

    The International Nuclear Safety Advisory Group (INSAG) is an advisory group to the Director General of the IAEA. It identifies current nuclear safety issues, draws conclusions from its analyses and gives advice on those issues. INSAG is currently working on four documents: a complete revision of INSAG-3, the classical paper on safety principles for nuclear plants, published in 1988; 'Safety Management', the effective system for the management of operational strategy; 'Safe Management of the Life Cycle of Nuclear Power Plants'; and the fourth document in preparation entitled 'The Safe Management of Sources of Radiation: Principles and Strategies'. The fourth document is aimed primarily at political decision makers who have no knowledge of radiation safety or of nuclear matters generally but are called upon to make important decisions in this field. INSAG has attempted to present them with a 'unified doctrine' of the management of all radiation sources, even though, for historical reasons radiation protection and nuclear safety have evolved largely independently of each other. The major conclusion to be drawn from the paper is that a systematic application of protection and safety principles, and of appropriate strategies, goes a long way towards ensuring the safe management of technologies involving radiation. Furthermore, the management of sources of radiation could benefit from the experience accumulated in other industries facing comparable challenges

  3. Report on nuclear safety in EU applicant countries

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    1999-03-01

    Nuclear safety in the candidate countries to the European Union is a major issue which needs to be addressed in the frame of the enlargement process. The Heads of the nuclear safety Regulatory Bodies of the European Union member states having nuclear power plants, i.e. Belgium, Finland, France, Germany, Italy, the Netherlands, Spain, Sweden and the United Kingdom thought it was their duty to offer their assistance to the European Union institutions at a moment when the expansion of the Union is being considered. As a consequence, they decided to issue a report giving their collective opinion on nuclear safety in those applicant countries having at least one nuclear power reactor (Bulgaria, Czech Republic, Hungary, Lithuania, Romania, Slovak Republic, Slovenia) and covering: the status of the regulatory regime and regulatory body and the nuclear power plant safety status. This report is based on the knowledge they gained through multilateral assistance programmes, in particular the Phare programmes, and also through bilateral contacts. It must be stressed that in some cases, they recognised that their current knowledge was not sufficient to express a clear and exhaustive opinion. Also, it should be pointed out that the judgements are based on widely applied Western European design standards for the defence-in-depth and associated barriers. Quantitative comparisons of Probabilistic Safety Assessments have not been used as the available results are of widely different depth and quality. They also recognised that such a report could only present the situation at a given moment and they intend to periodically update it so as to reflect the changes which may occur in these countries. At this stage, the report does not cover radioactive waste or radiation protection issues in any detail. After they had taken the decision to issue this report, they decided to create an association, the Western European Nuclear Regulators Association (WENRA) in order to increase the co

  4. Report on nuclear safety in EU applicant countries

    International Nuclear Information System (INIS)

    1999-03-01

    Nuclear safety in the candidate countries to the European Union is a major issue which needs to be addressed in the frame of the enlargement process. The Heads of the nuclear safety Regulatory Bodies of the European Union member states having nuclear power plants, i.e. Belgium, Finland, France, Germany, Italy, the Netherlands, Spain, Sweden and the United Kingdom thought it was their duty to offer their assistance to the European Union institutions at a moment when the expansion of the Union is being considered. As a consequence, they decided to issue a report giving their collective opinion on nuclear safety in those applicant countries having at least one nuclear power reactor (Bulgaria, Czech Republic, Hungary, Lithuania, Romania, Slovak Republic, Slovenia) and covering: the status of the regulatory regime and regulatory body and the nuclear power plant safety status. This report is based on the knowledge they gained through multilateral assistance programmes, in particular the Phare programmes, and also through bilateral contacts. It must be stressed that in some cases, they recognised that their current knowledge was not sufficient to express a clear and exhaustive opinion. Also, it should be pointed out that the judgements are based on widely applied Western European design standards for the defence-in-depth and associated barriers. Quantitative comparisons of Probabilistic Safety Assessments have not been used as the available results are of widely different depth and quality. They also recognised that such a report could only present the situation at a given moment and they intend to periodically update it so as to reflect the changes which may occur in these countries. At this stage, the report does not cover radioactive waste or radiation protection issues in any detail. After they had taken the decision to issue this report, they decided to create an association, the Western European Nuclear Regulators Association (WENRA) in order to increase the co

  5. Nuclear Safety Charter

    International Nuclear Information System (INIS)

    2008-01-01

    The AREVA 'Values Charter' reaffirmed the priority that must be given to the requirement for a very high level of safety, which applies in particular to the nuclear field. The purpose of this Nuclear Safety Charter is to set forth the group's commitments in the field of nuclear safety and radiation protection so as to ensure that this requirement is met throughout the life cycle of the facilities. It should enable each of us, in carrying out our duties, to commit to this requirement personally, for the company, and for all stakeholders. These commitments are anchored in organizational and action principles and in complete transparency. They build on a safety culture shared by all personnel and maintained by periodic refresher training. They are implemented through Safety, Health, and Environmental management systems. The purpose of these commitments, beyond strict compliance with the laws and regulations in force in countries in which we operate as a group, is to foster a continuous improvement initiative aimed at continually enhancing our overall performance as a group. Content: 1 - Organization: responsibility of the group's executive management and subsidiaries, prime responsibility of the operator, a system of clearly defined responsibilities that draws on skilled support and on independent control of operating personnel, the general inspectorate: a shared expertise and an independent control of the operating organization, an organization that can be adapted for emergency management. 2 - Action principles: nuclear safety applies to every stage in the plant life cycle, lessons learned are analyzed and capitalized through the continuous improvement initiative, analyzing risks in advance is the basis of Areva's safety culture, employees are empowered to improve nuclear Safety, the group is committed to a voluntary radiation protection initiative And a sustained effort in reducing waste and effluent from facility Operations, employees and subcontractors are treated

  6. Nuclear safety. Seguranca nuclear

    Energy Technology Data Exchange (ETDEWEB)

    Aveline, A [Rio Grande do Sul Univ., Porto Alegre, RS (Brazil). Inst. de Fisica

    1981-01-01

    What is nuclear safety Is there any technical way to reduce risks Is it possible to put them at reasonable levels Are there competitiveness and economic reliability to employ the nuclear energy by means of safety technics Looking for answers to these questions the author describes the sources of potential risks to nuclear reactors and tries to apply the answers to the Brazilian Nuclear Programme. (author).

  7. Meetings of all the contracting parties of agreements on Nuclear Safety of the IAEA; Las reuniones de todas las partes contratantes de los convenios sobre seguridad nuclear del OIEA

    Energy Technology Data Exchange (ETDEWEB)

    Ripoll Carulla, S.

    2003-07-01

    One of the most original aspects at the Convention on Nuclear Safety was the incorporation of the mechanism for Meetings with Contracting States into Chapter III. This mechanism has become one of the most characteristic elements at the convention, which is usually defined as a motivational convention, due in large part to the actual existence of these meetings. (Author)

  8. Nuclear Safety Review for the Year 2009

    International Nuclear Information System (INIS)

    2010-07-01

    . A growing number of Member States are considering or have expressed interest in developing nuclear power programmes for the first time. Several countries have also embarked on ambitious plans for expanding their current programmes. The Agency's latest projections for the future of nuclear power by 2030 are higher than they were last year. Emerging international cooperative efforts in support of new and expanding nuclear power programmes have focused on many key issues. Such issues include gaps in national safety infrastructures, safety and security synergy and integration, and safety responsibilities and capacities for the various participants in a nuclear power programme, which include operators, regulators, government, suppliers, technical support organizations and relevant international organizations. Continued focus on cooperation for new and expanding nuclear power programmes is underscored by the fact that in some cases plans for nuclear programme development are moving faster than the establishment of the necessary safety infrastructure and capacity. Therefore, it is important that those countries of new and expanding nuclear power programmes actively participate in the global nuclear safety and security regime. As a result of the increasingly multinational nature of today's nuclear business and activities and associated technical and economic benefits, suppliers, operators, regulators and experts communities are making significant efforts towards the standardization and harmonization of equipment, components, methods and processes. As an example, the adoption by the European Union of a nuclear towards a harmonized approach to sustainable nuclear safety infrastructure worldwide. Similarly, international cooperation through conventions and codes of conduct, including associated peer review mechanisms, also provide for harmonized approaches to safety. Establishing and maintaining a regulatory body which is effectively independent in its decision making

  9. Research on the improvement of nuclear safety

    International Nuclear Information System (INIS)

    Yoo, Keon Joong; Kim, Dong Soo; Kim, Hui Dong; Park, Chang Kyu

    1993-06-01

    To improve the nuclear safety, this project is divided into three areas which are the development of safety analysis technology, the development of severe accident analysis technology and the development of integrated safety assessment technology. 1. The development of safety analysis technology. The present research aims at the development of necessary technologies for nuclear safety analysis in Korea. Establishment of the safety analysis technologies enables to reduce the expenditure both by eliminating excessive conservatisms incorporated in nuclear reactor design and by increasing safety margins in operation. It also contributes to improving plant safety through realistic analyses of the Emergency Operating Procedures (EOP). 2. The development of severe accident analysis technology. By the computer codes (MELCOR and CONTAIN), the in-vessel and the ex-vessel severe accident phenomena are simulated. 3. The development of integrated safety assessment technology. In the development of integrated safety assessment techniques, the included research areas are the improvement of PSA computer codes, the basic study on the methodology for human reliability analysis (HRA) and common cause failure (CCF). For the development of the level 2 PSA computer code, the basic research for the interface between level 1 and 2 PSA, the methodology for the treatment of containment event tree are performed. Also the new technologies such as artificial intelligence, object-oriented programming techniques are used for the improvement of computer code and the assessment techniques

  10. Proceedings of second JAERI-JNC joint conference on nuclear safety research

    International Nuclear Information System (INIS)

    Sugimoto, Jun; Anoda, Yoshinari; Araya, Fumimasa; Yamaguchi, Toshio

    2004-08-01

    The second JAERI-JNC Joint Conference on Nuclear Safety Research was held on February 6, 2004 in Tokyo for those who are relevant to nuclear industries and regulatory organizations, and general public. The nuclear safety research has been conducted in both institutes according to the Five-Year Program for Nuclear Safety Research established periodically by the Nuclear Safety Commission (NSC) and needs from the regulatory organizations. The objectives of the conference are to present its recent results and to collect views and opinions from the participants for its future program through the discussion after each presentation and panel discussion on how to conduct efficiently the nuclear safety in the New Organization. A total of 259 people participated in the conference mainly from the nuclear industries and regulatory organizations and the number was much larger than that in the last conference of 188. The conference consisted of presentations on the safety research results, a special lecture and a panel discussion. First, the overview of safety research results was presented from each institute. Then, the results in the field of nuclear installations, environmental radioactivity and radioactive waste were presented from each institute. Then, Dr. Higashi, the Nuclear Safety Commissioner, made a special lecture on the radiation protection from the high-level radioactive waste disposal. Finally, a panel discussion was conducted with the title of ''how to conduct efficiently the nuclear safety research in the New Organization'' chaired by Prof. Kimura, the chairperson of Standing Committee on Nuclear Safety Research under the NSC. The panelists from the regulatory organizations, nuclear industry, JAERI and JNC discussed the subject together with the participants on the floor. The panelists not from JAERI and JNC expressed their views and opinions on how to conduct efficiently the nuclear safety research in the New Organization that were valuable inputs for developing

  11. Vienna convention on civil liability for nuclear damage

    International Nuclear Information System (INIS)

    1996-01-01

    The Vienna Convention on Civil Liability for Nuclear Damage was adopted on 21 May 1963 and was opened for signature on the same day. It entered into force on 12 November 1977, i.e. three months after the date of deposit with the Director General of the fifth instrument of ratification, in accordance with Article 23

  12. Vienna convention on civil liability for nuclear damage

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    1996-03-20

    The Vienna Convention on Civil Liability for Nuclear Damage was adopted on 21 May 1963 and was opened for signature on the same day. It entered into force on 12 November 1977, i.e. three months after the date of deposit with the Director General of the fifth instrument of ratification, in accordance with Article 23.

  13. Guidelines regarding National Reports under the Convention on Nuclear Safety

    International Nuclear Information System (INIS)

    1999-01-01

    These guidelines, established by the Contracting Parties pursuant to Article 22 of the Convention, are intended to be read in conjunction with the text of the Convention. Their purpose is to provide guidance to the Contracting Parties regarding material which it may be useful to include in the national reports required by Article 5 and thereby to facilitate the most efficient review of implementation by the Contracting Parties of their obligations under the Convention

  14. Guidelines regarding national reports under the convention on nuclear safety

    International Nuclear Information System (INIS)

    1998-01-01

    These guidelines, established by the Contracting Parties pursuant to Article 22 of the Convention, are intended to be read in conjunction with the text of the Convention. Their purpose is to provide guidance to the Contracting Parties regarding material which it may be useful to include in the national reports required by Article 5 and thereby to facilitate the most efficient review of implementation by the Contracting Parties of their obligations under the Convention

  15. Guidelines regarding National Reports under the Convention on Nuclear Safety

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    1999-10-15

    These guidelines, established by the Contracting Parties pursuant to Article 22 of the Convention, are intended to be read in conjunction with the text of the Convention. Their purpose is to provide guidance to the Contracting Parties regarding material which it may be useful to include in the national reports required by Article 5 and thereby to facilitate the most efficient review of implementation by the Contracting Parties of their obligations under the Convention.

  16. Radiation protection aspects in the design of nuclear power plants. Safety guide

    International Nuclear Information System (INIS)

    2008-01-01

    The IAEA's Statute authorizes the Agency to establish safety standards to protect health and minimize danger to life and property - standards which the IAEA must use in its own operations, and which a State can apply by means of its regulatory provisions for nuclear and radiation safety. A comprehensive body of safety standards under regular review, together with the IAEA's assistance in their application, has become a key element in a global safety regime. In the mid-1990s, a major overhaul of the IAEA's safety standards programme was initiated, with a revised oversight committee structure and a systematic approach to updating the entire corpus of standards. The new standards that have resulted are of a high calibre and reflect best practices in Member States. With the assistance of the Commission on Safety Standards, the IAEA is working to promote the global acceptance and use of its safety standards. Safety standards are only effective, however, if they are properly applied in practice. The IAEA's safety services - which range in scope from engineering safety, operational safety, and radiation, transport and waste safety to regulatory matters and safety culture in organizations - assist Member States in applying the standards and appraise their effectiveness. These safety services enable valuable insights to be shared and continue to urge all Member States to make use of them. Regulating nuclear and radiation safety is a national responsibility, and many Member States have decided to adopt the IAEA's safety standards for use in their national regulations. For the Contracting Parties to the various international safety conventions, IAEA standards provide a consistent, reliable means of ensuring the effective fulfilment of obligations under the conventions. The standards are also applied by designers, manufacturers and operators around the world to enhance nuclear and radiation safety in power generation, medicine, industry, agriculture, research and education

  17. Current Activities on Nuclear Safety Culture in Korea. How to meet the challenges for Safety and Safety Culture?

    Energy Technology Data Exchange (ETDEWEB)

    Oh, Chaewoon [International Policy Department Policy and Standard Division, Korea Institute of Nuclear Safety, 19 Gusung-Dong Yuseong-Ku, 305-338 DAEJEON (Korea, Republic of)

    2008-07-01

    'Statement of Nuclear Safety Policy' declared by the Korean Government elucidates adherence to the principle of 'priority to safety'. The 3. Comprehensive Nuclear Energy Promotion Plan (2007-2011) more specifically addressed the necessity to develop and apply 'safety culture evaluation criteria' and to strengthen safety management of concerned organizations in an autonomous way. Putting these policies as a backdrop, Korean Government has taken diverse safety culture initiatives and has encouraged the relevant organizations to develop safety culture practices of their own accord. Accordingly, KHNP, the operating organization in Korea, developed a 'safety culture performance indicator', which has been used to evaluate safety mind of employees and the evaluation results have been continuously reflected in operational management and training programs. Furthermore, KHNP inserted 'nuclear safety culture subject' into every course of more than two week length, and provided employees with special lectures on safety culture. KINS, the regulatory organization, developed indicators for the safety culture evaluation based on the IAEA Guidelines. Also, KINS has hosted an annual Nuclear Safety Technology Information Meeting to share information between regulatory organizations and industries. Furthermore, KINS provided a nuclear safety culture class to the new employees and they are given a chance to participate in performance of a role-reversal socio-drama. Additionally, KINS developed a safety culture training program, published training materials and conducted a 'Nuclear Safety Culture Basic Course' in October 2007, 4 times of which are planed this year. In conclusion, from Government to relevant organizations, 'nuclear safety culture' concept is embraced as important and has been put into practice on a variety of forms. Specifically, 'education and training' is a starting line and sharing

  18. Nuclear Safety Review for the Year 2007

    International Nuclear Information System (INIS)

    2008-07-01

    In 2007, the 50th anniversary year of the Agency, the safety performance of the nuclear industry, on the whole, remained high, although incidents and accidents with no significant impact on public health and safety continue to make news headlines and challenge operators and regulators. It is therefore essential to maintain vigilance, continuously improve safety culture and enhance the international sharing and utilization of operating and other safety experience, including that resulting from natural events. The establishment and sustainability of infrastructures for all aspects of nuclear, radiation, transport and waste safety will remain a high priority. Member States embarking on nuclear power programmes will need to be active participants in the global nuclear safety regime. Harmonized safety standards, the peer review mechanism among contracting parties of the safety conventions, and sharing safety knowledge and best practices through networking are key elements for the continuous strengthening of the global nuclear safety regime. Technical and scientific support organizations (TSOs), whether part of the regulatory body or a separate organization, are gaining increased importance by providing the technical and scientific basis for safety related decisions and activities. There is a need for enhanced interaction and cooperation between TSOs. Academic and industrial expert communities also play a vital role in improving safety cooperation and capacity building. Countries embarking on nuclear power programmes, as well as countries expanding existing programmes, have to meet the challenge of building a technically qualified workforce. A vigorous knowledge transfer programme is key to capacity building - particularly in view of the ageing of experienced professionals in the nuclear field. National and regional safety networks, and ultimately a global safety network will greatly help these efforts. Changes in world markets and technology are having an impact on both

  19. Nuclear power and nuclear safety 2006

    International Nuclear Information System (INIS)

    Lauritzen, B.; Oelgaard, P.L.; Kampmann, D.; Majborn, B.; Nonboel, E.; Nystrup, P.E.

    2007-04-01

    The report is the fourth report in a series of annual reports on the international development of nuclear power production, with special emphasis on safety issues and nuclear emergency preparedness. The report is written in collaboration between Risoe National Laboratory and the Danish Emergency Management Agency. The report for 2006 covers the following topics: status of nuclear power production, regional trends, reactor development and development of emergency management systems, safety related events of nuclear power, and international relations and conflicts. (LN)

  20. Nuclear power and nuclear safety 2004

    International Nuclear Information System (INIS)

    2005-03-01

    The report is the second report in a new series of annual reports on the international development of nuclear power production, with special emphasis on safety issues and nuclear emergency preparedness. The report is written in collaboration between Risoe National Laboratory and the Danish Emergency Management Agency. The report for 2004 covers the following topics: status of nuclear power production, regional trends, reactor development and development of emergency management systems, safety related events of nuclear power and international relations and conflicts. (ln)

  1. Nuclear power and nuclear safety 2005

    International Nuclear Information System (INIS)

    Lauritzen, B.; Oelgaard, P.L.; Kampman, D.; Majborn, B.; Nonboel, E.; Nystrup, P.E.

    2006-03-01

    The report is the third report in a series of annual reports on the international development of nuclear power production, with special emphasis on safety issues and nuclear emergency preparedness. The report is written in collaboration between Risoe National Laboratory and the Danish Emergency Management Agency. The report for 2005 covers the following topics: status of nuclear power production, regional trends, reactor development and development of emergency management systems, safety related events of nuclear power and international relations and conflicts. (ln)

  2. Joint Convention on the Safety of Spent Fuel Management and on the Safety of Radioactive Waste Management. National Report of the Kingdom of the Netherlands

    International Nuclear Information System (INIS)

    2005-10-01

    On 10 March 1999, the Netherlands signed the Joint Convention on the Safety of Spent Fuel Management and on the Safety of Radioactive Waste Management, which was subsequently formally ratified on 26 April 2000 and entered into force on 18 June 2001. The Joint Convention obliges each contracting party to apply widely recognized principles and tools in order to achieve and maintain high standards of safety during management of spent fuel and radioactive waste. The Joint Convention also requires each party to report on the national implementation of these principles to review meetings of the parties to this Convention. This report describes the manner in which the Netherlands is fulfilling its obligations under the Joint Convention

  3. Prerequisites for a nuclear weapons convention

    International Nuclear Information System (INIS)

    Liebert, W.

    1999-01-01

    A Nuclear Weapons Convention (NWC) would prohibit the research, development, production, testing, stockpiling, transfer, use and threat of use of nuclear weapons and would serve their total elimination.' In this fashion it follows the model laid out by the biological and chemical weapons conventions. The NWC would encompass a few other treaties and while replacing them should learn from their experiences. The Nuclear Weapons Convention should at some given point in the future replace the Non-Proliferation Treaty (NPT) and so resolve its contradictions and shortcomings. The main objectives of an NWC Would be: reduction of the nuclear arsenals of the 'five' nuclear weapons powers down to zero within a set of fixed periods of time; elimination of stockpiles of weapons-usable materials and, where existent, nuclear warheads in de-facto nuclear weapon and threshold states; providing assurance that all states will retain their non-nuclear status forever

  4. Confusion in practice: on nuclear safety responsibility subject of our nation

    International Nuclear Information System (INIS)

    Wang Jia

    2014-01-01

    Nuclear safety responsibility subject seems a unquestionable issue, but when I took part in the CNNC searching team of 'nuclear law legislation', I found that there are confusions on understanding of this concept and in application. The paper focuses on the content of nuclear safety responsibility, using legal and practical method to dig out the differences with the related and frequently confusing concepts, on which basis to analyze the situation of nuclear safety responsibility subject of our nation. In conclusion, I give suggestions on who shall be the nuclear safety responsibility subject. (author)

  5. SFEN Annual Convention 2012 - The nuclear energy one year after Fukushima. Proceedings; Convention SFEN 2012 - Le nucleaire un an apres Fukushima. Recueil des presentations

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    2012-03-15

    This document brings together the available presentations given at the 2012 edition of the Annual Convention of the French society of nuclear energy (SFEN) on the topic of nuclear energy one year after Fukushima. Twenty four presentations (slides) are compiled in this document: 1 - Presentation and introduction of the Annual Convention (Luc Oursel - SFEN President); 2 - Status of onsite/offsite remedial actions, key lessons learned (Akira Omoto, Tokyo univ., Japan Atomic Energy Commission); 3 - Complementary Safety Assessments (CSA) of the French NPP fleet (Dominique Miniere, EDF); 4 - Speech of M. Francois Fillon - Prime Minister; 5 - CSA of the fuel cycle facilities (Philippe Knoche, Areva); 6 - CSA of the EPR (Bertrand de l'Epinois, Areva; Jean-Luc Foret, EDF CNEN); 7 - The collective responsibility of the operators: the action of WANO (Laurent Stricker, WANO); 8 - Conclusions of French Nuclear Safety Authority (ASN) - Safety measures to be strengthened; 9 - Opinion no. 2012-AV-013 from January 3, 2012 of the French Nuclear Safety Authority - ASN (Sophie Mourlon, ASN; Caroline Lavarenne, IRSN); 10 - Nuclear energy: an energy for the future (Bernard Bigot, CEA); 11 - The nuclear phaseout in Germany from the view of German industry (Eberhard von Rottenburg, BDI); 12 - Prospects in China (Wei Lu, CGNP Europe); 13 - Industry Current Status and its Prospects in the United States (J. Spina, CENG); 14 - Nuclear energy prospects in France: recommendations of the Commission 'Energy 2050' (Jacques Percebois, Creden); 15 - Electrical generation system efficiency and economy (Yves Giraud, EDF); 16 - Electrical generation systems and distribution networks (Herve Mignon, Rte); 17 - Prospects in the UK (Tim Stone, DECC/OND, Senior Adviser to the Secretary of State); 18 - Climatic changes and energy policy (Laura Cozzi, IEA); 19 - The young nuclear professionals network (Boris Supiot, SFEN Young Generation Group); 20 - Socio-economic impacts of the nuclear power

  6. International Cooperation of the Republic of Croatia in the Field of Radiological and Nuclear Safety

    International Nuclear Information System (INIS)

    Novosel, N.

    2011-01-01

    International cooperation of the Republic of Croatia in the field of radiological and nuclear safety can be divided in two parts - political part, for which the Ministry of Foreign Affairs and European Integration is responsible, and technical part, for which the State Office for Radiological and Nuclear Safety is responsible. According to the Radiological and Nuclear Safety Act (OG 28/10) the State Office for Radiological and Nuclear Safety: ''coordinates technical cooperation with the International Atomic Energy Agency for all participants from the Republic of Croatia''; ''fulfils the obligations which the Republic of Croatia has assumed through international conventions and bilateral agreements concerning protection against ionising radiation, nuclear safety and the application of protective measures aimed at the non-proliferation of nuclear weapons'' and ''cooperates with international and domestic organisations and associations in the area of protection against ionising radiation and nuclear safety, and appoints its own expert representatives to take part in the work of such organisations and associations or to monitor their work''. In this paper various aspects of the technical cooperation with the International Atomic Energy Agency, as well as international conventions and bilateral agreements in the field of radiological and nuclear safety, are presented. Also, cooperation with other international organizations and associations in the area of radiological and nuclear safety, such as Nuclear Suppliers Group, the Zangger Committee, the Wassenaar Arrangement, Comprehensive Nuclear-Test-Ban Treaty Organization, Euratom and certain civil expert groups of NATO, is described. (author)

  7. EUROSAFE Forum for nuclear safety. Towards Convergence of Technical Nuclear Safety Practices in Europe. Safety Improvements - Reasons, Strategies, Implementation

    Energy Technology Data Exchange (ETDEWEB)

    Erven, Ulrich (ed.) [Gesellschaft fuer Anlagen- und Reaktorsicherheit, GRS mbH, Schwertnergasse 1, 50667 Koeln (Germany); Cherie, Jean-Bernard (ed.) [Institut de Radioprotection et de Surete Nucleaire, IRSN, BP 17, 92262 Fontenay-aux-Roses Cedex (France); Boeck, Benoit De (ed.) [Association Vincotte Nuclear, AVN, Rue Walcourt 148, 1070 Bruxelles (Belgium)

    2005-07-01

    The EUROSAFE Forum for Nuclear Safety is part of the EUROSAFE approach, which consists of two further elements: the EUROSAFE Tribune and the EUROSAFE Web site. The general aim of EUROSAFE is to contribute to fostering the convergence of technical nuclear safety practices in a broad European context. This is done by providing technical safety and research organisations, safety authorities, power utilities, the rest of the industry and non-governmental organisations mainly from the European Union and East-European countries, and international organisations with a platform for the presentation of recent analyses and R and D in the field of nuclear safety. The goal is to share experiences, to exchange technical and scientific opinions, and to conduct debates on key issues in the fields of nuclear safety and radiation protection. The EUROSAFE Forum on 2005 focused on Safety Improvements, Reasons - Strategies - Implementation, from the point of view of the authorities, TSOs and industry. Latest work in nuclear installation safety and research, waste management, radiation safety as well as nuclear material and nuclear facilities security carried out by GRS, IRSN, AVN and their partners in the European Union, Switzerland and Eastern Europe are presented. A high level of nuclear safety is a priority for the countries of Europe. The technical safety organisations play an important role in contributing to that objective through appropriate approaches to major safety issues as part of their assessments and research activities. The challenges to nuclear safety are international. Changes in underlying technologies such as instrumentation and control, the impact of electricity market deregulation, demands for improved safety and safety management, the ageing of nuclear facilities, waste management, maintaining and improving scientific and technical knowledge, and the need for greater transparency - these are all issues where the value of an international approach is gaining

  8. EUROSAFE Forum for nuclear safety. Towards Convergence of Technical Nuclear Safety Practices in Europe. Safety Improvements - Reasons, Strategies, Implementation

    Energy Technology Data Exchange (ETDEWEB)

    Erven, Ulrich [Gesellschaft fuer Anlagen- und Reaktorsicherheit, GRS mbH, Schwertnergasse 1, 50667 Koeln (Germany); Cherie, Jean-Bernard [Institut de Radioprotection et de Surete Nucleaire, IRSN, BP 17, 92262 Fontenay-aux-Roses Cedex (France); Boeck, Benoit De [Association Vincotte Nuclear, AVN, Rue Walcourt 148, 1070 Bruxelles (Belgium)

    2005-07-01

    The EUROSAFE Forum for Nuclear Safety is part of the EUROSAFE approach, which consists of two further elements: the EUROSAFE Tribune and the EUROSAFE Web site. The general aim of EUROSAFE is to contribute to fostering the convergence of technical nuclear safety practices in a broad European context. This is done by providing technical safety and research organisations, safety authorities, power utilities, the rest of the industry and non-governmental organisations mainly from the European Union and East-European countries, and international organisations with a platform for the presentation of recent analyses and R and D in the field of nuclear safety. The goal is to share experiences, to exchange technical and scientific opinions, and to conduct debates on key issues in the fields of nuclear safety and radiation protection. The EUROSAFE Forum on 2005 focused on Safety Improvements, Reasons - Strategies - Implementation, from the point of view of the authorities, TSOs and industry. Latest work in nuclear installation safety and research, waste management, radiation safety as well as nuclear material and nuclear facilities security carried out by GRS, IRSN, AVN and their partners in the European Union, Switzerland and Eastern Europe are presented. A high level of nuclear safety is a priority for the countries of Europe. The technical safety organisations play an important role in contributing to that objective through appropriate approaches to major safety issues as part of their assessments and research activities. The challenges to nuclear safety are international. Changes in underlying technologies such as instrumentation and control, the impact of electricity market deregulation, demands for improved safety and safety management, the ageing of nuclear facilities, waste management, maintaining and improving scientific and technical knowledge, and the need for greater transparency - these are all issues where the value of an international approach is gaining

  9. Safety of nuclear power plants: Operation. Safety requirements

    International Nuclear Information System (INIS)

    2004-01-01

    The safety of a nuclear power plant is ensured by means of its proper siting, design, construction and commissioning, followed by the proper management and operation of the plant. In a later phase, proper decommissioning is required. This Safety Requirements publication supersedes the Code on the Safety of Nuclear Power Plants: Operation, which was issued in 1988 as Safety Series No. 50-C-O (Rev. 1). The purpose of this revision was: to restructure Safety Series No. 50-C-O (Rev. 1) in the light of the basic objectives, concepts and principles in the Safety Fundamentals publication The Safety of Nuclear Installations. To be consistent with the requirements of the International Basic Safety Standards for Protection against Ionizing Radiation and for the Safety of Radiation Sources. And to reflect current practice and new concepts and technical developments. Guidance on fulfillment of these Safety Requirements may be found in the appropriate Safety Guides relating to plant operation. The objective of this publication is to establish the requirements which, in the light of experience and the present state of technology, must be satisfied to ensure the safe operation of nuclear power plants. These requirements are governed by the basic objectives, concepts and principles that are presented in the Safety Fundamentals publication The Safety of Nuclear Installations. This publication deals with matters specific to the safe operation of land based stationary thermal neutron nuclear power plants, and also covers their commissioning and subsequent decommissioning

  10. Safety of nuclear power plants: Operation. Safety requirements

    International Nuclear Information System (INIS)

    2003-01-01

    The safety of a nuclear power plant is ensured by means of its proper siting, design, construction and commissioning, followed by the proper management and operation of the plant. In a later phase, proper decommissioning is required. This Safety Requirements publication supersedes the Code on the Safety of Nuclear Power Plants: Operation, which was issued in 1988 as Safety Series No. 50-C-O (Rev. 1). The purpose of this revision was: to restructure Safety Series No. 50-C-O (Rev. 1) in the light of the basic objectives, concepts and principles in the Safety Fundamentals publication The Safety of Nuclear Installations. To be consistent with the requirements of the International Basic Safety Standards for Protection against Ionizing Radiation and for the Safety of Radiation Sources. And to reflect current practice and new concepts and technical developments. Guidance on fulfillment of these Safety Requirements may be found in the appropriate Safety Guides relating to plant operation. The objective of this publication is to establish the requirements which, in the light of experience and the present state of technology, must be satisfied to ensure the safe operation of nuclear power plants. These requirements are governed by the basic objectives, concepts and principles that are presented in the Safety Fundamentals publication The Safety of Nuclear Installations. This publication deals with matters specific to the safe operation of land based stationary thermal neutron nuclear power plants, and also covers their commissioning and subsequent decommissioning

  11. Safety of nuclear power plants: Operation. Safety requirements

    International Nuclear Information System (INIS)

    2000-01-01

    The safety of a nuclear power plant is ensured by means of its proper siting, design, construction and commissioning, followed by the proper management and operation of the plant. In a later phase, proper decommissioning is required. This Safety Requirements publication supersedes the Code on the Safety of Nuclear Power Plants: Operation, which was issued in 1988 as Safety Series No. 50-C-O (Rev. 1). The purpose of this revision was: to restructure Safety Series No. 50-C-O (Rev. 1) in the light of the basic objectives, concepts and principles in the Safety Fundamentals publication The Safety of Nuclear Installations; to be consistent with the requirements of the International Basic Safety Standards for Protection against Ionizing Radiation and for the Safety of Radiation Sources; and to reflect current practice and new concepts and technical developments. Guidance on fulfillment of these Safety Requirements may be found in the appropriate Safety Guides relating to plant operation. The objective of this publication is to establish the requirements which, in the light of experience and the present state of technology, must be satisfied to ensure the safe operation of nuclear power plants. These requirements are governed by the basic objectives, concepts and principles that are presented in the Safety Fundamentals publication The Safety of Nuclear Installations. This publication deals with matters specific to the safe operation of land based stationary thermal neutron nuclear power plants, and also covers their commissioning and subsequent decommissioning

  12. Enlightenment on international cooperation for nuclear safety in China in light of Fukushima nuclear accident

    International Nuclear Information System (INIS)

    Fu Jie; Feng Yi; Luan Haiyan; Meng Yue; Zhang Ou

    2013-01-01

    This thesis elaborates on the impact of Fukushima nuclear accident on global nuclear power development and subsequent international activities carried out by major countries. It analyses significance of international cooperation in ensuring nuclear safety and promoting nuclear power development and makes some suggestions to further strengthen the international cooperation on nuclear safety in China. (authors)

  13. Convention on nuclear safety report by the government of the Federal Republic of Germany for the second extraordinary meeting in August 2012

    International Nuclear Information System (INIS)

    2012-01-01

    The nuclear consequences of the earthquake disaster in Japan represent a profound change for the peaceful use of nuclear power, also in Germany. In the light of these events, the German Federal Government, together with the Prime Ministers of the Laender in which NPPs are operated had reviewed the safety of all German NPPs by the German Reactor Safety Commission in close collaboration with the competent nuclear regulatory authorities of the Laender and, through an Ethics Commission on ''Secure Energy Supply'', also started a dialogue among the German society on the risks involved in the use of nuclear power and on the possibility of an accelerated transition to the age of renewable energies. Taking into account the results of the Reactor Safety Commission and the Ethics Commission on ''Secure Energy Supply'' as well as the absolute priority of nuclear safety, the Federal Government decided to terminate the use of nuclear power at the earliest possible date. The amendments in the Atomic Energy Act that went into force in August 2011 induce the progressive abandonment of electricity generation by NPPs in Germany by the end of 2022 at the latest. Germany took an active part in the assessment of the robustness of the NPPs in Europe (EU stress test) under the leadership of the European Nuclear Safety Regulators Group (ENSREG). The results of these reviews show that the German plants partly have considerable safety margins and that additional precautionary measures have been taken in order to prevent (preventive measures) or limit (mitigative measures) the effects of the beyond-design-basis events considered in the reviews. Based on the results of the plant-specific reviews, the RSK has derived first recommendations for further examinations. Some plant-specific improvement measures are already in implementation or planned. The results of the EU stress test will be taken into account in future RSK recommendations. On behalf of the BMU, the Gesellschaft fuer Anlagen- und

  14. Nuclear ships and their safety

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    1961-04-15

    Several aspects of nuclear ship propulsion, with special reference to nuclear safety, were discussed at an international symposium at Taormina, Italy, from 14-18 November 1960. Discussions on specific topics are conducted, grouped under the following headings: Economics and National Activities in Nuclear Ship Propulsion; International Problems and General Aspects of Safety for Nuclear Ships; Nuclear Ship Projects from the Angle of Safety; Ship Reactor Problems; Sea Motion and Hull Problems; Maintenance and Refuelling Problems; and Safety Aspects of Nuclear Ship Operation.

  15. Proceedings of third JAERI-JNC joint conference on nuclear safety research

    International Nuclear Information System (INIS)

    Anoda, Yoshinari; Oikawa, Tetsukuni; Araya, Fumimasa; Suzuki, Tsugio

    2006-03-01

    The present report is the proceedings of the third JAERI-JNC joint conference on nuclear safety research held on July 29, 2005 in Tokyo before integration of JAERI and JNC to JAEA. The conference was held for those who are relevant to nuclear industries and regulatory organizations, and general public. The nuclear safety research has been conducted in both institutes according to the Five-Year Program for Nuclear Safety Research established periodically by the Nuclear Safety Commission (NSC) and needs from the regulatory organizations. The objectives of the conference are to present its recent results and to collect views and opinions from the participants for its future program through the discussion after each presentation and panel discussion on how to conduct efficiently the nuclear safety research in the new organization. A total of 234 people participated in the conference mainly from the nuclear industries and regulatory organizations. The conference consisted of presentations on the safety research results, a special lecture and a panel discussion. First, the overview of safety research results was presented from each institute. Then, the results in the field of nuclear installations, environmental radioactivity and radioactive waste were presented from each institute. Then, Dr. Suzuki, deputy chairperson of NSC, made a special lecture on recent trends in nuclear safety regulation and expectation for the new organization. Finally, a panel discussion was conducted with the title of 'how to conduct efficiently the nuclear safety research in the new organization' chaired by Prof. Kimura, the chairperson of Standing Committee on Nuclear Safety Research under the NSC. The panelists from JAERI and JNC presented and discussed the subject together with the participants on the floor. Through vigorous exchange of views in the panel discussion and descriptions on the questionnaires, it was obviously expressed that expectation to the safety research of the new

  16. Main features of the convention on supplementary compensation for nuclear damage - an over view

    International Nuclear Information System (INIS)

    Boulanenkov, V.

    2000-01-01

    The Chernobyl accident prompted widespread awareness of the need for improved protection of the public from the consequences of nuclear accidents. It was generally recognised that urgent efforts should be undertaken to strengthen the international nuclear liability regime based on two civil law conventions, namely the 1963 Vienna Convention on Civil Liability for Nuclear Damage and the 1960 Paris Convention on Third Party Liability in the Field of Nuclear Energy. The work initiated by the Agency - it was assigned to the Standing Committee established in 1990 - followed a two-track approach: to improve the existing civil liability regime, including revision of the Vienna Convention for which the IAEA is depositary; and, to develop a comprehensive international liability regime. The issue of compensation additional to that available under the two basic conventions received full attention in the negotiations. In the latter context, this work resulted in the adoption by a diplomatic conference convened by the IAEA in September 1997 of a new instrument, i.e. the Convention on Supplementary Compensation for Nuclear Damage (the CSC). The CSC is a product of many years of multilateral negotiations and represents a balance of various legal, economic and political considerations. While not all concerns may have been fully met, it represents a significant improvement in the protection of the public from the consequences of nuclear accidents. (author)

  17. Alternative off-site power supply improves nuclear power plant safety

    International Nuclear Information System (INIS)

    Gjorgiev, Blaže; Volkanovski, Andrija; Kančev, Duško; Čepin, Marko

    2014-01-01

    Highlights: • Additional power supply for mitigation of the station blackout event in NPP is used. • A hydro power plant is considered as an off-site alternative power supply. • An upgrade of the probabilistic safety assessment from its traditional use is made. • The obtained results show improvement of nuclear power plant safety. - Abstract: A reliable power system is important for safe operation of the nuclear power plants. The station blackout event is of great importance for nuclear power plant safety. This event is caused by the loss of all alternating current power supply to the safety and non-safety buses of the nuclear power plant. In this study an independent electrical connection between a pumped-storage hydro power plant and a nuclear power plant is assumed as a standpoint for safety and reliability analysis. The pumped-storage hydro power plant is considered as an alternative power supply. The connection with conventional accumulation type of hydro power plant is analysed in addition. The objective of this paper is to investigate the improvement of nuclear power plant safety resulting from the consideration of the alternative power supplies. The safety of the nuclear power plant is analysed through the core damage frequency, a risk measure assess by the probabilistic safety assessment. The presented method upgrades the probabilistic safety assessment from its common traditional use in sense that it considers non-plant sited systems. The obtained results show significant decrease of the core damage frequency, indicating improvement of nuclear safety if hydro power plant is introduced as an alternative off-site power source

  18. Nuclear Safety. 1997

    International Nuclear Information System (INIS)

    1998-01-01

    A quick review of the nuclear safety at EDF may be summarized as follows: - the nuclear safety at EDF maintains at a rather good standard; - none of the incidents that took place has had any direct impact upon safety; - the availability remained good; - initiation of the floor 4 reactor generation (N4 unit - 1450 MW) ensued without major difficulties (the Civaux 1 NPP has been coupled to the power network at 24 december 1997); - the analysis of the incidents interesting from the safety point of view presents many similarities with earlier ones. Significant progress has been recorded in promoting actively and directly a safe operation by making visible, evident and concrete the exertion of the nuclear operation responsibility and its control by the hierarchy. The report develops the following chapters and subjects: 1. An overview on 1997; 1.1. The technical issues of the nuclear sector; 1.2. General performances in safety; 1.3. The main incidents; 1.4. Wastes and radiation protection; 2. Nuclear safety management; 2.1. Dynamics and results; 2.2. Ameliorations to be consolidated; 3. Other important issues in safety; 3.1. Probabilistic safety studies; 3.2. Approach for safety re-evaluation; 3.3. The network safety; 3.4. Crisis management; 3.5. The Lifetime program; 3.6. PWR; 3.7. Documentation; 3.8. Competence; 4. Safety management in the future; 4.1. An open future; 4.2. The fast neutron NPP at Creys-Malville; 4.3. Stabilization of the PWR reference frame; 4.4. Implementing the EURATOM directive regarding the radiation protection standards; 4.5. Development of biomedical research and epidemiological studies; 4.6. New regulations concerning the liquid and gaseous effluents; 5. Visions of an open future; 5.1. Alternative views upon safety ay EDF; 5.2. Safety authority; 5.3. International considerations; 5.4. What happens abroad; 5.5. References from non-nuclear domain. Four appendices are added referring to policy of safety management, policy of human factors in NPPs

  19. National Report presented by the Mexican United States to satisfy the compromises of the Nuclear Safety Convention; Informe Nacional que presentan los Estados Unidos Mexicanos para satisfacer los compromisos de la Convencion de Seguridad Nuclear

    Energy Technology Data Exchange (ETDEWEB)

    National Commission of Nuclear Safety and Safeguards, Mexico City (Mexico); Federal Commission for Electricity, Mexico City (Mexico)

    1998-12-31

    In order to satisfy to the compromises derived of the ratification by part of the Mexican Government for the Nuclear Safety Convention it is presented this National Report which is based on the directives proposed as a result of the preparatory meetings held in the IAEA Headquarters in the city of Vienna, Austria. This National Report represents a document summary and activities realized at present in relation with the only nuclear facility in Mexico: the Nuclear Power Plant in Laguna Verde, Veracruz. This report consists of two parts: In the first one it is described how have been satisfied each one of the compromises. The second one talks about the Laws and Regulations on nuclear activities in the country. (Author)

  20. National Report presented by the Mexican United States to satisfy the compromises of the Nuclear Safety Convention; Informe Nacional que presentan los Estados Unidos Mexicanos para satisfacer los compromisos de la Convencion de Seguridad Nuclear

    Energy Technology Data Exchange (ETDEWEB)

    National Commission of Nuclear Safety and Safeguards, Mexico City (Mexico); Federal Commission for Electricity, Mexico City (Mexico)

    1999-12-31

    In order to satisfy to the compromises derived of the ratification by part of the Mexican Government for the Nuclear Safety Convention it is presented this National Report which is based on the directives proposed as a result of the preparatory meetings held in the IAEA Headquarters in the city of Vienna, Austria. This National Report represents a document summary and activities realized at present in relation with the only nuclear facility in Mexico: the Nuclear Power Plant in Laguna Verde, Veracruz. This report consists of two parts: In the first one it is described how have been satisfied each one of the compromises. The second one talks about the Laws and Regulations on nuclear activities in the country. (Author)

  1. Nuclear safety. Summary of the intermediate report of the special joint parliamentary committee on nuclear safety, present and future outlook of the nuclear industry

    International Nuclear Information System (INIS)

    Birraux, Claude; Bataille, Christian; Sido, Bruno

    2011-09-01

    Following the Fukushima events, the Parliamentary Office for Scientific and Technological Assessment (OPECST) was officially asked at the end of March 2011 - jointly by the National Assembly Bureau and by the Senate Committee on the economy, sustainable development, territorial and regional planning - to carry out a study on nuclear safety, and the present and future outlook of the nuclear industry. To carry out this study, seven members of the National Assembly economic affairs and sustainable development committees were also involved, as well as eight members of the Senate Committee on the economy, sustainable development, territorial and regional planning. The first part of this study, devoted to nuclear safety, was completed on 30 June 2011 by the publication of an intermediate report. This report assembles and summarises the information collected during six public hearings and seven trips to nuclear sites. France is one of the nuclear countries where the management of safety is both the most demanding and the most transparent. In this respect, the independence of the Safety Authority is the best guarantee of strictness in the safety field and the existence of pluralistic bodies, such as the Local Information Committees, is the best guarantee of the transparency of safety. But no country can pride itself on being totally safe from a natural disaster of an unexpected scale. The French nuclear industry must therefore ratchet up one more notch its investment in safety and strengthen the means of university research. It must imagine events of even greater intensity, cascading accidents, with interactions between neighbouring industrial sites. Investment must be made by placing safety requirements above any economic consideration and in strict compliance with the specifications of public authorities supervising safety. (authors)

  2. The protection against nuclear risks under the international nuclear liability law: the geographical and technical scope of the international conventions on third party liability for nuclear damage

    International Nuclear Information System (INIS)

    Kissich, S.J.

    2001-10-01

    This Ph.D.-research deals with the International Conventions on Third Party Liability for Nuclear Damage. In 1960, the Paris Convention was established with the aim of providing a special uniform nuclear third party liability regime for Western Europe. This Convention was supplemented in 1963 by the Brussels Supplementary Convention. Also in 1963, the Vienna Convention, which aimed to establish a world-wide system based on the same principles as the Paris Convention, was adopted. A further Convention was adopted in 1971 to ensure that nuclear third party liability law and not maritime law would apply to carriage of nuclear materials by sea. In 1988, the Paris and Vienna Conventions have been linked by the adoption of a Joint Protocol. In 1997, the process of amending the 1963 Vienna Convention was successfully concluded and a Convention on Supplementary Compensation was adopted. This Ph.D.-research consists of seven chapters: following an introduction, the second chapter gives a general view of the existing international legal sources. The third chapter describes the international civil nuclear liability law concept and its leading principles. The main element of this work is the question of the technical and geographical scope of the international nuclear liability conventions (chapter IV and V). The conventions are only applicable to nuclear incidents, which occur in a nuclear installation or incidental to the carriage or storage of nuclear material. The nuclear damage must arise out of the radioactive properties of nuclear substances which are also defined by legal terms. In addition, the scope of the conventions is limited by the nature of the installations. The geographical scope of application is established by the provisions on geographical coverage. Only the 1963 Vienna Convention does not contain any specific provision dealing with the territorial scope of its application. The geographical scope determines where the nuclear incident or the nuclear damage

  3. The convention on the physical protection of nuclear material

    International Nuclear Information System (INIS)

    1980-05-01

    This document contains the full text of a convention to facilitate the safe transfer of nuclear material, and to insure the physical protection of nuclear material in domestic use, storage, and transport. Two annexes are included, which establish categories of nuclear materials and levels of physical protection to be applied in international transport

  4. Nuclear power and nuclear safety 2011

    International Nuclear Information System (INIS)

    Lauritzen, B.; Oelgaard, P.L.; Aage, H.K.; Kampmann, D.; Nystrup, P.E.; Thomsen, J.

    2012-07-01

    The report is the ninth report in a series of annual reports on the international development of nuclear power production, with special emphasis on safety issues and nuclear emergency preparedness. The report is written in collaboration between Risoe DTU and the Danish Emergency Management Agency. The report for 2011 covers the following topics: status of nuclear power production, regional trends, reactor development, safety related events, international relations and conflicts, and the Fukushima accident. (LN)

  5. Norwegian national report. Joint convention on the safety of spent fuel management and on the safety of radioactive waste management

    International Nuclear Information System (INIS)

    2011-11-01

    This report contains the national report from Norway to the fourth review meeting of the JointConvention on the Safety of Spent Fuel Management and on the Safety of Radioactive Waste Management to be held 14-23 May 2012. (Author)

  6. Convention on the physical protection of nuclear material

    International Nuclear Information System (INIS)

    1991-09-01

    The document refers to the Convention on the Physical Protection of Nuclear Material (IAEA-INFCIRC-274). Part I contains the status list as of September 6, 1991; Part II contains the texts of reservations/declarations made upon expressing consent to be bound; Part III contains the texts of reservations/declarations made upon signature

  7. Nuclear safety policy statement in korea

    International Nuclear Information System (INIS)

    Kim, W.S.; Kim, H.J.; Choi, K.S.; Choi, Y.S.; Park, D.K.

    2006-01-01

    Full text: Wide varieties of programs to enhance nuclear safety have been established and implemented by the Korean government in accordance with the Nuclear Safety Policy Statement announced in September 1994. The policy statement was intended to set the long-term policy goals for maintaining and achieving high-level of nuclear safety and also help the public understand the national policy and a strong will of the government toward nuclear safety. It has been recognized as very effective in developing safety culture in nuclear-related organizations and also enhancing nuclear safety in Korea. However, ageing of operating nuclear power plants and increasing of new nuclear facilities have demanded a new comprehensive national safety policy to cover the coming decade, taking the implementation results of the policy statement of 1994 and the changing environment of nuclear industries into consideration. Therefore, the results of safety policy implementation have been reviewed and, considering changing environment and future prospects, a new nuclear safety policy statement as a highest level national policy has been developed. The implementation results of 11 regulatory policy directions such as the use of Probabilistic Safety Assessment, introduction of Periodic Safety Review, strengthening of safety research, introduction of Risk Based Regulation stipulated in the safety policy statement of 1994 were reviewed and measures taken after various symposia on nuclear safety held in Nuclear Safety Days since 1995 were evaluated. The changing international and domestic environment of nuclear industry were analysed and future prospects were explored. Based on the analysis and review results, a draft of new nuclear safety policy statement was developed. The draft was finalized after the review of many prominent experts in Korea. Considering changing environment and future prospects, new policy statement that will show government's persistent will for nuclear safety has been

  8. Progress of nuclear safety research. 2001

    Energy Technology Data Exchange (ETDEWEB)

    Anoda, Yoshinari; Sasajima, Hideo; Nishiyama, Yutaka (eds.) [Japan Atomic Energy Research Inst., Tokai, Ibaraki (Japan). Tokai Research Establishment] [and others

    2001-10-01

    JAERI is conducting nuclear safety research primarily at the Nuclear Safety Research Center in close cooperation with the related departments in accordance with the Long Term Plan for Development and Utilization of Nuclear Energy or the Safety Research Annual Plan issued by the Japanese government. The safety research at JAERI concerns the engineering safety of nuclear power plants and nuclear fuel cycle facilities, and radioactive waste management as well as advanced technology for safety improvement or assessment. Also, JAERI has conducted international collaboration to share the information on common global issues of nuclear safety. This report summarizes the nuclear safety research activities of JAERI from April 1999 through March 2001. (author)

  9. Nuclear safety in France

    International Nuclear Information System (INIS)

    Tanguy, P.

    1979-01-01

    A brief description of the main safety aspects of the French nuclear energy programme and of the general safety organization is followed by a discussion on the current thinking in CEA on some important safety issues. As far as methodology is concerned, the use of probabilistic analysis in the licensing procedure is being extensively developed. Reactor safety research is aimed at a better knowledge of the safety margins involved in the present designs of both PWRs and LMFBRs. A greater emphasis should be put during the next years in the safety of the nuclear fuel cycle installations, including waste disposals. Finally, it is suggested that further international cooperation in the field of nuclear safety should be developed in order to insure for all countries the very high safety level which has been achieved up till now. (author)

  10. Some views on nuclear reactor safety

    Energy Technology Data Exchange (ETDEWEB)

    Tanguy, P.Y. [Electricite de France, Paris (France)

    1995-04-01

    This document is the text of a speech given by Pierre Y. Tanguy (Electricite de France) at the 22nd Water Reactor Safety Meeting held in Bethesda, MD in 1994. He describes the EDF nuclear program in broad terms and proceeds to discuss operational safety results with EDF plants. The speaker also outlines actions to enhance safety planned for the future, and he briefly mentions French cooperation with the Chinese on the Daya Bay project.

  11. Safety performance indicators used by the Russian Safety Regulatory Authority in its practical activities on nuclear power plant safety regulation

    International Nuclear Information System (INIS)

    Khazanov, A.L.

    2005-01-01

    The Sixth Department of the Nuclear, Industrial and Environmental Regulatory Authority of Russia, Scientific and Engineering Centre for Nuclear and Radiation Safety process, analyse and use the information on nuclear power plants (NPPs) operational experience or NPPs safety improvement. Safety performance indicators (SPIs), derived from processing of information on operational violations and analysis of annual NPP Safety Reports, are used as tools to determination of trends towards changing of characteristics of operational safety, to assess the effectiveness of corrective measures, to monitor and evaluate the current operational safety level of NPPs, to regulate NPP safety. This report includes a list of the basic SPIs, those used by the Russian safety regulatory authority in regulatory activity. Some of them are absent in list of IAEA-TECDOC-1141 ('Operational safety performance indicators for nuclear power plants'). (author)

  12. Control of Nuclear Materials and Special Equipment (Nuclear Safety Regulations)

    International Nuclear Information System (INIS)

    Cizmek, A.; Prah, M.; Medakovic, S.; Ilijas, B.

    2008-01-01

    Based on Nuclear Safety Act (OG 173/03) the State Office for Nuclear Safety (SONS) in 2008 adopted beside Ordinance on performing nuclear activities (OG 74/06) and Ordinance on special conditions for individual activities to be performed by expert organizations which perform activities in the area of nuclear safety (OG 74/06) the new Ordinance on the control of nuclear material and special equipment (OG 15/08). Ordinance on the control of nuclear material and special equipment lays down the list of nuclear materials and special equipment as well as of nuclear activities covered by the system of control of production of special equipment and non-nuclear material, the procedure for notifying the intention to and filing the application for a license to carry out nuclear activities, and the format and contents of the forms for doing so. This Ordinance also lays down the manner in which nuclear material records have to be kept, the procedure for notifying the State administration organization (regulatory body) responsible for nuclear safety by the nuclear material user, and the keeping of registers of nuclear activities, nuclear material and special equipment by the State administration organization (regulatory body) responsible for nuclear safety, as well as the form and content of official nuclear safety inspector identification card and badge.(author)

  13. The internationalization of nuclear safety

    International Nuclear Information System (INIS)

    Rosen, M.

    1989-01-01

    Nuclear safety is interlinked in many ways with the themes of this conference. In searching for co-operative activities that touch on global energy and environmental problems and on initiatives that relieve international tensions, the ongoing developments in nuclear power safety offer a number of successful examples. Commercial nuclear power has been with us for more than 30 years, and with 26 countries operating plants in addition to 6 more constructing their first, there has been an ongoing global co-operation, coinciding of Chernobyl with Glasnost, along with the increasing awareness of the benefits of common solutions to safety issues, have brought about an internationalization of nuclear safety. Although the main responsibility for safety rests with each operator and its government, a primary driving force expanding international co-operation is the transboundary aspects of nuclear energy, as vividly demonstrated by Chernobyl accident. In this presentation we focus on the mechanisms already in place that foster cooperation in the nuclear safety area

  14. Preliminary report on safety aspects on nuclear power generation in Sri Lanka

    International Nuclear Information System (INIS)

    Jayamanne, D.; Fernando, W.L.W.; Ariyadasa

    1988-01-01

    This document is intended as background information on nuclear energy to contribute to Sri Lanka's comparative study of alternative sources of energy. This study has considered the safety and environmental effects of nuclear power reactors. Basic concepts of nuclear physics are introduced and providing and appreciation of safety considerations and safety aspects of nuclear power plants and the personnel. Radioactive waste management, storage and disposal are also discussed. Natural radiation levels in Sri Lanka are provided as well as information on biological effects of radiation especially occupational exposure licensing procedures for nuclear power plants are outlined strategy for public awareness of nuclear power is proposed

  15. Legislation for the countermeasures on special issues of nuclear safety regulations

    International Nuclear Information System (INIS)

    Cho, Byung Sun; Lee, Mo Sung; Chung, Gum Chun; Kim, Hak Man; Oh, Ho Chul

    2003-02-01

    Since the present legal system on nuclear safety regulation has some problems that refer to contents of regulatory provisions, this mid-report has preformed research on the legal basic theory of nuclear safety regulation. And then secondly this report analyzed the problems of each provisions and suggested the revision drafts on the basis of analyzing problems and the undergoing theory of nuclear safety regulation. In order to interpret easily this report finally took the cases of judicial precedents on nuclear safety regulation in USA, Germany, Japan and Korea

  16. Legislation for the countermeasures on special issues of nuclear safety regulations

    Energy Technology Data Exchange (ETDEWEB)

    Cho, Byung Sun; Lee, Mo Sung; Chung, Gum Chun; Kim, Hak Man; Oh, Ho Chul [Chongju Univ., Cheongju (Korea, Republic of)

    2003-02-15

    Since the present legal system on nuclear safety regulation has some problems that refer to contents of regulatory provisions, this mid-report has preformed research on the legal basic theory of nuclear safety regulation. And then secondly this report analyzed the problems of each provisions and suggested the revision drafts on the basis of analyzing problems and the undergoing theory of nuclear safety regulation. In order to interpret easily this report finally took the cases of judicial precedents on nuclear safety regulation in USA, Germany, Japan and Korea.

  17. 4th ASEM Seminar on Knowledge Management to Enhance Nuclear Safety

    International Nuclear Information System (INIS)

    Castello, F.; Reyes, A. de los; Sobari, M. P. Mohd; Istiyanto, J. E.; Faross, P.; Delarosa, A.

    2016-01-01

    Full text: The 4th Asia-Europe Meeting (ASEM) Seminar on Nuclear Safety was convened in Madrid, Spain on 29th–30th October 2015, hosted by the Spanish Nuclear Safety Council. The seminar’s theme was “Knowledge management to enhance nuclear safety”, which aimed to continue discussing on nuclear safety to foster Asia-Europe capacity-building and cooperation in nuclear safety. The seminar was attended by representatives from national governments, nuclear regulators, energy companies, radiation protection and nuclear safety authorities, research institutes and universities. According to such model, proposed by the IAEA, the national capacity building requires an integrated approach based on four pillars: human resources development, education and training, knowledge management and knowledge networking. In this context, Nuclear Knowledge Management (KM) has become a high priority in many countries and international organizations and it has been taken into account to develop and implement specific strategies in ensuring safe and sustainable operation of nuclear facilities. At national level, a sustainable approach should include the necessary Nuclear Knowledge Management actions to ensure that every actor having a significant role in the national nuclear programmes infrastructure acquires, preserves and improves its corporate and individual knowledge. (author

  18. Nuclear power and nuclear safety 2012

    International Nuclear Information System (INIS)

    Lauritzen, B.; Nonboel, E.; Israelson, C.; Kampmann, D.; Nystrup, P.E.; Thomsen, J.

    2013-11-01

    The report is the tenth report in a series of annual reports on the international development of nuclear power production, with special emphasis on safety issues and nuclear emergency preparedness. The report is prepared in collaboration between DTU Nutech and the Danish Emergency Management Agency. The report for 2012 covers the following topics: status of nuclear power production, regional trends, reactor development, safety related events, international relations and conflicts, and the results of the EU stress test. (LN)

  19. Nuclear Safety through International Cooperation

    International Nuclear Information System (INIS)

    Flory, Denis

    2013-01-01

    The Fukushima Daiichi nuclear accident was the worst at a nuclear facility since the Chernobyl accident in 1986. It caused deep public anxiety and damaged confidence in nuclear power. Following this accident, strengthening nuclear safety standards and emergency response has become an imperative at the global level. The IAEA is leading in developing a global approach, and the IAEA Action Plan on Nuclear Safety is providing a comprehensive framework and acting as a significant driving force to identify lessons learned and to implement safety improvements. Strengthening nuclear safety is addressed through a number of measures proposed in the Action Plan including 12 main actions focusing on safety assessments in the light of the accident. Significant progress has been made in assessing safety vulnerabilities of nuclear power plants, strengthening the IAEA's peer review services, improvements in emergency preparedness and response capabilities, strengthening and maintaining capacity building, as well as widening the scope and enhancing communication and information sharing with Member States, international organizations and the public. Progress has also been made in reviewing the IAEA's safety standards, which continue to be widely applied by regulators, operators and the nuclear industry in general, with increased attention and focus on accident prevention, in particular severe accidents, and emergency preparedness and response.

  20. Strengthening the Convention on the Physical Protection of Nuclear Materials and Nuclear Facilities Regime: A Path Forward

    International Nuclear Information System (INIS)

    Pitts-Kiefer, S.; Nalabandian, M.

    2017-01-01

    With entry into force of the 2005 Amendment to the Convention on the Physical Protection of Nuclear Material (CPPNM) on May 8, 2016, and the culmination of the Nuclear Security Summits (NSS), the Convention on the Physical Protection of Nuclear Materials and Nuclear Facilities (CPP), as the amended convention is now known, can play an increasingly important role in efforts to strengthen the international nuclear security architecture. The CPP significantly enhances the international legal framework for nuclear security by expanding the scope of physical protection requirements and providing a direct linkage to International Atomic Energy Agency (IAEA) nuclear security guidance through incorporation of the Fundamental Principles.The CPP’s entry into force requires states parties to submit reports to the IAEA under Article 14 informing the IAEA of its laws and regulations giving effect to the convention—states parties were required to do so under the original CPPNM, but the scope of the reports will need to expand to reflect the expanded scope of the convention. Reporting builds confidence in the effectiveness of states’ security. In addition, entry into force of the CPP requires the IAEA, under Article 16, to convene a review conference in five years to assess the implementation and adequacy of the convention “in light of the then prevailing situation.” The review conference will provide an opportunity for states parties to assess the status of nuclear security progress and will provide a forum for dialogue on how to strengthen the global architecture and address remaining gaps in the system. Article 16 also provides for additional review conferences at periods of at least five years if requested by a majority of states parties. Regular review conferences would be an important mechanism for sustaining attention on nuclear security and ensuring continued nuclear security progress. For the CPP to fulfill its potential to play an important role in

  1. Fire safety study of Dodewaard and Borssele nuclear power plants

    International Nuclear Information System (INIS)

    1988-03-01

    From the nuclear and conventional fire safety audits of both Dutch nuclear power plants performed under supervision of the Nuclear Safety Inspectorate and the Inspectorate for the Fire Services it turns out that the fire safety is sufficient however amenable for improvement. Besides a detailed description of the method of examination, the study 'Fire Safety' contains the results of the audit and 14 respectively 15 recommendations for improvement of the fire safety in Dodewaard and Borssele. The suggested recommendations which are applicable to both power plants are the following: fire fighting training for operators and guards, a complete emergency ventilation system of the control room, increase in the number of detectors and alarms, an increase in the quantity of water available for high-pressure fire fighting, improvement of fire barriers between several redundancies of nuclear safety systems, an investigation and possible improvement of the heat and radiation protection offered by presently used fire fighting suits. For Dodewaard a closed emergency staircase in the reactor building (secondary containment) is deemed necessary for personnel emergency escape routes and continued fire fighting if required

  2. Nuclear security - New challenge to the safety of nuclear power plants

    International Nuclear Information System (INIS)

    Li Ganjie

    2008-01-01

    The safety of nuclear power plants involves two aspects: one is to prevent nuclear accidents resulted from systems and equipments failure or human errors; the other is to refrain nuclear accidents from external intended attack. From this point of view, nuclear security is an organic part of the nuclear safety of power plants since they have basically the same goals and concrete measures with each other. In order to prevent malicious attacks; the concept of physical protection of nuclear facilities has been put forward. In many years, a series of codes and regulations as well as technical standard systems on physical protection had been developed at international level. The United Nations passed No. 1540 resolution as well as 'Convention on the Suppression of Acts of Nuclear terrorism', and revised 'Convention on Physical Protection of Nuclear Materials', which has enhanced a higher level capacity of preparedness by international community to deal with security issues of nuclear facilities. In China, in order to improve the capability of nuclear power plants on preventing and suppressing the external attacks, the Chinese government consecutively developed the related codes and standards as well as technical documents based on the existing laws and regulations, including 'Guide for the Nuclear Security of Nuclear Power Plants' and 'Guide for the Physical Protection of Nuclear Materials', so as to upgrade the legislative requirements for nuclear security in power plants. The government also made greater efforts to support the scientific research and staff training on physical protection, and satisfying the physical protection standards for newly-built nuclear facilities such as large scale nuclear power plants to meet requirement at international level. At the same time old facilities were renovated and the Chinese government established a nuclear emergency preparedness coordination mechanism, developed corresponding emergency preparedness plans, intensified the

  3. Prevent recurrence of nuclear disaster (3). Agenda on nuclear safety from earthquake engineering

    International Nuclear Information System (INIS)

    Kameda, Hiroyuki; Takada, Tsuyoshi; Ebisawa, Katsumi; Nakamura, Susumu

    2012-01-01

    Based on results of activities of committee on seismic safety of nuclear power plants (NPPs) of Japan Association for Earthquake Engineering, which started activities after Chuetsu-oki earthquake and then experienced Great East Japan Earthquake, (under close collaboration with the committee of Atomic Energy Society of Japan started activities simultaneously), and taking account of further development of concept, agenda on nuclear safety were proposed from earthquake engineering. In order to prevent recurrence of nuclear disaster, individual technical issues of earthquake engineering and comprehensive issues of integration technology, multidisciplinary collaboration and establishment of technology governance based on them were of prime importance. This article described important problems to be solved; (1) technical issues and mission of seismic safety of NPPs, (2) decision making based on risk assessment - basis of technical governance, (3) framework of risk, design and regulation - framework of required technology governance, (4) technical issues of earthquake engineering for nuclear safety, (5) role of earthquake engineering in nuclear power risk communication and (6) importance of multidisciplinary collaboration. Responsibility of engineering would be attributed to establishment of technology governance, cultivation of individual technology and integration technology, and social communications. (T. Tanaka)

  4. The Nordic Research programme on nuclear safety

    International Nuclear Information System (INIS)

    1992-06-01

    Only two of the five Nordic countries (Denmark, Iceland, Finland, Norway and Sweden) - Sweden and Finland - operate nuclear power plants, but there are a number of nuclear installations close to their borders. Regular 4-year programmes were initiated in 1977, designated NKS-programmes. (NKS: Nordisk KerneSikkerhedsforskning - Nordic nuclear-safety research). The current fourth NKS-programme is, influenced by the Chernobyl accident, dominated by the necessity for acquiring knowledge on unexpected events and release of radioactive material from nuclear installations. The present programme is divided into the areas of emergency preparedness, waste and decommissioning, radioecology and reactor safety. It comprises a total of 18 projects, the results of which will later be published in the form of handbooks for use in cases of emergency etc. The future of joint Nordic project work in the nuclear safety field must be seen in the light of changing conditions in and around the Nordic countries, such as the opening of relations to neighbours in the east, the move towards the European Communities and the need for training a new generation of specialists in the nuclear field etc. Each project is described in considerable detail and a list of reports resulting from the third NKS-programme 1985-1989 is given. (AB)

  5. Nuclear liability: Joint protocol relating to the application of the Vienna Convention and the Paris Convention, 1988

    International Nuclear Information System (INIS)

    1989-10-01

    The Joint Protocol Relating to the Application of the Vienna Convention and the Paris Convention was adopted by the Conference on the Relationship between the Paris Convention and the Vienna Convention, which met in Vienna, at the Headquarters of the International Atomic Energy Agency on 21 September 1988. The Joint Protocol establishes a link between the Paris Convention on Third Party Liability in the Field of Nuclear Energy of 1960 and the Vienna Convention on Civil Liability for Nuclear Damage of 1963. The Joint Protocol will extend to the States adhering to it the coverage of the two Conventions. It will also resolve potential conflicts of law, which could result from the simultaneous application of the two Conventions to the same nuclear accident. The Conference on the Relationship between the Paris Convention and the Vienna Convention was jointly organized by the International Atomic Energy Agency and the OECD Nuclear Energy Agency. This publication contains the text of the Final Act of the Conference in the six authentic languages, the Joint Protocol Relating to the Application of the Vienna Convention and the Paris Convention, also in the six authentic languages and an explanatory note, prepared by the IAEA and NEA Secretariats, providing background information on the content of the Joint Protocol

  6. Status of nuclear safety research - 2000

    International Nuclear Information System (INIS)

    Sobajima, Makoto; Sasajima, Hideo; Umemoto, Michitaka; Yamamoto, Toshihiro; Tanaka, Tadao; Togashi, Yoshihiro; Nakata, Masahito

    2000-11-01

    The nuclear safety research at JAERI is performed in accordance with the long term plan on nuclear research, development and use and the safety research yearly plan determined by the government and under close relationship to the related departments in and around the Nuclear Safety Research Center. The criticality accident having occurred in Tokai-mura in 1999 has been the highest level nuclear accident in Japan and ensuring safety in whole nuclear cycle is severely questioned. The causes of such an accident have to be clarified not only technical points but also organizational points, and it is extremely important to make efforts in preventing recurrence, to fulfill emergency plan and to improve the safety of whole nuclear fuel cycle for restoring the reliability by the people to nuclear energy system. The fields of conducting safety research are engineering safety research on reactor facilities and nuclear fuel cycle facilities including research on radioactive waste processing and disposal and research and development on future technology for safety improvement. Also, multinational cooperation and bilateral cooperation are promoted in international research organizations in the center to internationally share the recognition of world-common issues of nuclear safety and to attain efficient promotion of research and effective utilization of research resources. (author)

  7. Commentary on the cost of nuclear safety

    International Nuclear Information System (INIS)

    Mariani, L.P.

    1991-01-01

    Although adequate levels of nuclear safety have been attained, the societal and institutional approaches taken in the United States to safely harvest the fruits of nuclear power technology have been beset with economic inefficiencies. The paper discusses difficulties with nuclear regulation and complexity and politicization of overall decision-making process. Public acceptance is the key to more economical attainment of nuclear safety objectives. It alone will fuel the federal and state governments to more expeditiously move toward what they would perceive to be a public mandate for nuclear utilization

  8. The Fukushima nuclear accident: insights on the safety aspects

    Energy Technology Data Exchange (ETDEWEB)

    Thome, Zieli D.; Vellozo, Sergio O., E-mail: zielithome@gmail.com, E-mail: vellozo@cbpf.br [Instituto Militar de Engenharia (IME), Rio de Janeiro, RJ (Brazil). Secao de Engenharia Nuclear; Gomes, Rogerio S., E-mail: rogeriog@cnen.gov.br [Comissao Nacional de Energia Nuclear (CNEN), Rio de Janeiro, RJ (Brazil); Silva, Fernando C., E-mail: fernando@con.ufrj.br [Coordenacao do Programas de Pos-Graduacao em Engenharia (COPPE/UFRJ), Rio de Janeiro, RJ (Brazil)

    2013-07-01

    The Fukushima nuclear accident has generated doubts and questions which need to be properly understood and addressed. This scientific attitude became necessary to allow the use of the nuclear technology for electricity generation around the world. The nuclear stakeholders are working to obtain these technical answers for the Fukushima questions. We believe that, such challenges will be, certainly, implemented in the next reactor generation, following the technological evolution. The purpose of this work is to perform a critical analysis of the Fukushima nuclear accident, focusing at the common cause failures produced by tsunami, as well as an analysis of the main redundant systems. This work also assesses the mitigative procedures and the subsequent consequences of such actions, which gave results below expectations to avoid the progression of the accident, discussing the concept of sharing of structures, systems and components at multi-unit nuclear power plants, and its eventual inappropriate use in safety-related devices which can compromise the nuclear safety, as well as its consequent impact on the Fukushima accident scenario. The lessons from Fukushima must be better learned, aiming the development of new procedures and new safety systems. Thus, the nuclear technology could reach a higher evolution level in its safety requirements. This knowledge will establish a conceptual milestone in the safety system design, becoming necessary the review of the current acceptance criteria of safety-related systems. (author)

  9. The Fukushima nuclear accident: insights on the safety aspects

    International Nuclear Information System (INIS)

    Thome, Zieli D.; Vellozo, Sergio O.; Silva, Fernando C.

    2013-01-01

    The Fukushima nuclear accident has generated doubts and questions which need to be properly understood and addressed. This scientific attitude became necessary to allow the use of the nuclear technology for electricity generation around the world. The nuclear stakeholders are working to obtain these technical answers for the Fukushima questions. We believe that, such challenges will be, certainly, implemented in the next reactor generation, following the technological evolution. The purpose of this work is to perform a critical analysis of the Fukushima nuclear accident, focusing at the common cause failures produced by tsunami, as well as an analysis of the main redundant systems. This work also assesses the mitigative procedures and the subsequent consequences of such actions, which gave results below expectations to avoid the progression of the accident, discussing the concept of sharing of structures, systems and components at multi-unit nuclear power plants, and its eventual inappropriate use in safety-related devices which can compromise the nuclear safety, as well as its consequent impact on the Fukushima accident scenario. The lessons from Fukushima must be better learned, aiming the development of new procedures and new safety systems. Thus, the nuclear technology could reach a higher evolution level in its safety requirements. This knowledge will establish a conceptual milestone in the safety system design, becoming necessary the review of the current acceptance criteria of safety-related systems. (author)

  10. Sweden's fourth national report under the Joint Convention on the safety of spent fuel management and the safety of radioactive waste management. Swedish implementation of the obligations of the Joint Convention

    International Nuclear Information System (INIS)

    2011-01-01

    Sweden signed Joint Convention on the Safety of Spent Fuel Management and on the Safety of Radioactive Waste Management (Joint Convention) September 29, 1997. Sweden ratified the Joint Convention about two years later and is a Contracting Party to the Joint Convention since July 29, 1999. The Joint Convention entered into force on June 18, 2001. Each member nation having ratified the Joint Convention (Contracting Party) is obligated to prepare a National Report covering the scope of the Joint Convention and subject it to review by other Contracting Parties at Review Meetings held in Vienna, Austria. Sweden participated in the First Review Meeting in November 2003, the Second Review Meeting in May 2006 and the Third Review Meeting in May 2009. This report is the fourth Swedish National Report under the Joint Convention. This report satisfies the requirements of the Joint Convention for reporting on the status of safety at spent fuel and radioactive waste management facilities within Sweden. It constitutes an updated document with basically the same structure as the previous national reports under the terms of the Joint Convention and reflects developments in Sweden through December 2010. It will be subject to review at the Fourth Review Meeting of the Contracting Parties in Vienna, Austria, in May 2012

  11. Transport of nuclear material under the 1971 Brussels Convention

    International Nuclear Information System (INIS)

    Lagorce, M.

    1975-01-01

    The legal regime in force before entry into force of the 1971 Brussels Convention relating to civil liability for the maritime carriage of nuclear material created serious difficulties for maritime carriers, regarding both the financial risks entailed and restrictions on enjoyment of the rights granted by civil liability conventions. The 1971 Convention exonerates from liability any person likely to be held liable for nuclear damage under maritime law, provided another person is liable under the nuclear conventions or an equivalent national law. A problem remaining is that of compensation of nuclear damage to the means of transport for countries not having opted for re-inclusion of such damage in the nuclear law regime; this does not apply however to countries having ratified the Convention to date. A feature of the latter is that it establishes as extensively as possible the priority of nuclear law over maritime law. Furthermore the new regime continues to preserve efficiently the interests of victims of nuclear incidents. It is therefore to be hoped that insurers will no longer hesitate to cover international maritime carriage of nuclear material [fr

  12. Progress of nuclear safety research. 2002

    Energy Technology Data Exchange (ETDEWEB)

    Anoda, Yoshinari; Kudo, Tamotsu; Tobita, Tohru (eds.) [Japan Atomic Energy Research Inst., Tokai, Ibaraki (Japan). Tokai Research Establishment] (and others)

    2002-11-01

    JAERI is conducting nuclear safety research primarily at the Nuclear Safety Research Center in close cooperation with the related departments in accordance with the Long Term Plan for Development and Utilization of Nuclear Energy and Annual Plan for Safety Research issued by the Japanese government. The fields of conducting safety research at JAERI are the engineering safety of nuclear power plants and nuclear fuel cycle facilities, and radioactive waste management as well as advanced technology for safety improvement or assessment. Also, JAERI has conducted international collaboration to share the information on common global issues of nuclear safety and to supplement own research. Moreover, when accidents occurred at nuclear facilities, JAERI has taken a responsible role by providing technical experts and investigation for assistance to the government or local public body. This report summarizes the nuclear safety research activities of JAERI from April 2000 through April 2002 and utilized facilities. This report also summarizes the examination of the ruptured pipe performed for assistance to the Nuclear and Industrial Safety Agency (NISA) for investigation of the accident at the Hamaoka Nuclear Power Station Unit-1 on November, 2001. (author)

  13. On some aspects of nuclear safety surveillance and review

    International Nuclear Information System (INIS)

    Li Ganjie; Zhu Hong; Zhou Shanyuan

    2004-01-01

    Five aspects of the nuclear safety surveillance and review are discussed: Strict implementation of nuclear safety regulation, making the nuclear safety surveillance and review more normalization, procedurization, scientific decision-making; Strictly requiring the applicant to comply with the requirements of codes, do not allowing the utilization of mixing of codes; Properly controlling the strictness for the review on significant non-conformance; Strengthening the co-operation between regional offices and technical support units, Properly treat the relations between administrational management unit and technical support units. (authors)

  14. ICNC2003: Proceedings of the seventh international conference on nuclear criticality safety. Challenges in the pursuit of global nuclear criticality safety

    International Nuclear Information System (INIS)

    2003-10-01

    This proceedings contain (technical, oral and poster papers) presented papers at the Seventh International Conference on Nuclear Criticality Safety ICNC2003 held on 20-24 October 2003, in Tokai, Ibaraki, Japan, following ICNC'99 in Versailles, France. The theme of this conference is 'Challenges in the Pursuit of Global Nuclear Criticality Safety'. This proceedings represent the current status of nuclear criticality safety research throughout the world. The 81 of the presented papers are indexed individually. (J.P.N.)

  15. ICNC2003: Proceedings of the seventh international conference on nuclear criticality safety. Challenges in the pursuit of global nuclear criticality safety

    International Nuclear Information System (INIS)

    2003-10-01

    This proceedings contain (technical, oral and poster papers) presented papers at the Seventh International Conference on Nuclear Criticality Safety ICNC2003 held on 20-24 October 2003, in Tokai, Ibaraki, Japan, following ICNC'99 in Versailles, France. The theme of this conference is 'Challenges in the Pursuit of Global Nuclear Criticality Safety'. This proceedings represent the current status of nuclear criticality safety research throughout the world. The 79 of the presented papers are indexed individually. (J.P.N.)

  16. Criminal offences considered in the Convention on the Physical Protection of Nuclear Material

    International Nuclear Information System (INIS)

    Neira, C.C.

    1996-01-01

    The Convention on the Physical Protection of Nuclear Material was signed in Vienna, on April 3, 1980, approved by Law 23.620 on September 28, 1998, and published in the Official Bulletin of the Argentine Republic on November 2, 1988. This Convention considers some aspects of Criminal Law and Criminal Procedural Law and integrates the normative hierarchical structure of the article 31 of the National Constitution. The adequacy of this Convention to the Argentine law is considered through two aspects: The first one examines figures existing in the Argentine Legislation about larceny and robbery of nuclear materials, misappropriation of nuclear materials, obtainment and fraud of nuclear materials, exaction through threat or intimidation, etc., which are considered in different articles of the Argentine Criminal Law. The second one analyses behaviours not foreseen in the Criminal Law and which are not qualified by the current Argentina's Criminal Code, such as exaction of nuclear material through the use of violence, the international perpetration of an act consisting to receive, possess, use, vacate, scatter nuclear material without legal authorization, or in the case that the act causes death, serious injuries to persons and others. The purpose of the future enactment of a new Nuclear Law is to put in order and fill-in gaps referred to different aspects such as civil liability in nuclear damages, characteristics of the nuclear damages, etc [es

  17. International Law governing the Safe and Peaceful Uses of Nuclear Energy

    International Nuclear Information System (INIS)

    Jankowitsch-Prevor, O.

    2002-01-01

    1. The International Governmental Institutions. History and mandates: IAEA, OECD/NEA, EURATOM. 2. International Treaties and Conventions: The Peaceful Uses of Nuclear Energy: Commitment and Verification (the NPT, Safeguards Agreements with the IAEA, The Additional protocol, Regional Non-proliferation Treaties); the Physical protection of Nuclear Material (Convention on the Physical Protection of Nuclear Material); Civil Liability for Nuclear Damage (Vienna Convention on the Civil Liability for Nuclear Damage, Protocol to Amend the Vienna Convention, Paris Convention on Civil Liability, Joint Protocol relating to the Application of the Vienna Convention and the Paris Convention, Convention on Supplementary compensation for Nuclear Damage); In case of Nuclear Accident: Notification and Assistance (Convention on Early Notification of a Nuclear Accident, Convention on Assistance in the case of a Nuclear Accident or Radiological Emergency); International Law Governing Nuclear Safety (Nuclear Safety Convention, Joint Convention on the Safety of Spent Fuel Management and on the Safety of Radioactive Waste Management). 3. Relationship between International and National Law

  18. Regional cooperation on nuclear safety

    International Nuclear Information System (INIS)

    Kato, W.Y.; Chen, J.H.; Kim, D.H.; Simmons, R.B.V.; Surguri, S.

    1985-01-01

    A review has been conducted of a number of multi-national and bilateral arrangements between governments and between utility-sponsored organizations which provide the framework for international cooperation in the field of nuclear safety. These arrangements include the routine exchange operational data, experiences, technical reports and regulatory data, provision of special assistance when requested, collaboration in safety research, and the holding of international conferences and seminars. Areas which may be better suited for cooperation on a regional basis are identified. These areas include: exchange of operational data and experience, sharing of emergency planning information, and collaboration in safety research. Mechanisms to initiate regional cooperation in these areas are suggested

  19. Tutorial on nuclear thermal propulsion safety for Mars

    International Nuclear Information System (INIS)

    Buden, D.

    1992-01-01

    Safety is the prime design requirement for nuclear thermal propulsion (NTP). It must be built in at the initiation of the design process. An understanding of safety concerns is fundamental to the development of nuclear rockets for manned missions to Mars and many other applications that will be enabled or greatly enhanced by the use of nuclear propulsion. To provide an understanding of the basic issues, a tutorial has been prepared. This tutorial covers a range of topics including safety requirements and approaches to meet these requirements, risk and safety analysis methodology, NERVA reliability and safety approach, and life cycle risk assessments

  20. Study on European Nuclear Safety Practices during Planned Outages at Nuclear Power Plants

    International Nuclear Information System (INIS)

    2001-12-01

    The present project was aimed at providing: a description of the current status of nuclear safety practices during planned outages at nuclear power plants followed in Europe; the criteria for the safety analysis of future reactors at the design stage; proposing a set of recommendations on good practices and criteria leading to the improvement of nuclear safety during those conditions. The work was organised in 3 phases: Collecting data on current practices; Analysis of questionnaire answers and drawing up of safety good practices references and recommendations; Collecting relevant ideas related to the future reactors at design stage (European Pressurised Water Reactor, European Passive Plant project, European Utilities Requirements and Utilities Requirement Document project). The key element of the performed work was the detailed questionnaire, based on bibliographical review, expert experience and outage practices available in the working team. Different safety areas and activities were covered: outage context; nuclear safety; outage strategy, organisation and control; operating feedback; use of Probabilistic Safety Assessment. The questionnaire was answered by 12 European nuclear power plants, representing 9 different European countries and three different types of reactors (Pressurised Water Reactor, Boiling Water Reactor and Water Water Energy Reactor). Conclusions were drawn under the following headers: Organisational survey and generalities Organisational effectiveness Quality of maintenance Quality of operation Engineering support, management of modification Specific aspects Each analysed subject includes the following topics: Questions background with a summary and the aim of the questions. Current status, that describes common practices, as derived from the answers to the questionnaire, and some examples of good specific practices. Identified good practices. (author)

  1. Safety standards and safety record of nuclear power plants

    International Nuclear Information System (INIS)

    Davis, A.B.

    1984-01-01

    This paper focuses on the use of standards and the measurement and enforcement of these standards to achieve safe operation of nuclear power plants. Since a discussion of the safety standards that the Nuclear Regulatory Commission (NRC) uses to regulate the nuclear power industry can be a rather tedious subject, this discussion will provide you with not only a description of what safety standards are, but some examples of their application, and various indicators that provide an overall perspective on safety. These remarks are confined to the safety standards adopted by the NRC. There are other agencies such as the Environmental Protection Agency, the Occupational Safety and Health Administration, and the state regulatory agencies which impact on a nuclear power plant. The NRC has regulatory authority for the commercial use of the nuclear materials and facilities which are defined in the Atomic Energy Act of 1954 to assure that the public health and safety and national security are protected

  2. Revision of the Paris and Brussels Conventions of Nuclear Liability

    International Nuclear Information System (INIS)

    Reyners, P.

    2002-01-01

    The Contracting Parties to the 1960 Paris Convention on Third Party Liability in the Field of Nuclear Energy and to the 1963 Brussels Convention Supplementary to the Paris Convention, have concluded this Spring four years of negotiation on the revision of these instruments. This exercise was itself started as a logical consequence of the adoption in 1997 of a revised Vienna Convention on Civil Liability for Nuclear Damage and of a Convention on Supplementary Compensation for Nuclear Damage. The Contracting Parties have concluded that the existing regime established by these Conventions remains viable and sound but that it also warrants improvements to ensure that greater financial security will be available to compensate a potentially larger number of victims in respect of a broader range of nuclear damage. A number of more technical amendments have also been agreed, in particular to ensure compatibility with other existing Conventions in this field. When the revised Paris and Brussels Conventions come into force, the total amount of funds available for compensation, provided by the liable nuclear operator and by the States concerned, will be 1.5 billion euros. (author)

  3. Progress of nuclear safety research. 2003

    International Nuclear Information System (INIS)

    Anoda, Yoshinari; Amagai, Masaki; Tobita, Tohru

    2004-03-01

    JAERI is conducting nuclear safety research primarily at the Nuclear Safety Research Center in close cooperation with the related departments in accordance with the Long Term Plan for Development and Utilization of Nuclear Energy and Annual Plan for Safety Research issued by the Japanese government. The fields of conducting safety research at JAERI are the engineering safety of nuclear power plants and nuclear fuel cycle facilities, and radioactive waste management as well as advanced technology for safety improvement or assessment. Also, JAERI has conducted international collaboration to share the information on common global issues of nuclear safety and to supplement own research. Moreover, when accidents occurred at nuclear facilities, JAERI has taken a responsible role by providing technical experts and investigation for assistance to the government or local public body. This report summarizes the nuclear safety research activities of JAERI from April 2001 through March 2003 and utilized facilities. This report also summarizes the examination of the ruptured pipe performed for assistance to the Nuclear and Industrial Safety Agency (NISA) for investigation of the accident at the Hamaoka Nuclear Power Station Unit-1 on November, 2001, and the integrity evaluation of cracked core shroud of BWRs of the Tokyo Electric Power Company performed for assistance to the Nuclear Safety Commission in reviewing the evaluation reports by the licensees. (author)

  4. Nuclear Safety Project

    International Nuclear Information System (INIS)

    1978-11-01

    The 13th semi-annual report 1/78 is a description of work within the Nuclear Safety Project performed in the first six months of 1978 in the nuclear safety field by KFK institutes and departments and by external institutions on behalf of KfK. It includes for each individual research activity short summaries on - work completed, - essential results, - plans for the near future. (orig./RW) [de

  5. Safety guide on fire protection in nuclear power plants

    International Nuclear Information System (INIS)

    1976-01-01

    The purpose of the Safety Guide is to give specific design and operational guidance for protection from fire and explosion in nuclear power plants, based on the general guidance given in the relevant sections of the 'Safety Code of Practice - Design' and the 'Safety Code of Practice - Operation' of the International Atomic Energy Agency. The guide will confine itself to fire protection of safety systems and items important to safety, leaving the non-safety matters of fire protection in nuclear power plants to be decided upon the basis of the various available national and international practices and regulations. (HP) [de

  6. Research on integrated managing system based on CIMS for nuclear power plant safety

    International Nuclear Information System (INIS)

    Zhou Gang

    2006-01-01

    In order to improve safety, economy and reliability of operation for nuclear power plant (NPP), a novel integrated managing method was proposed based on the ideas of computer and contemporary integrated manufacturing system (CIMS). The application of CIMS to nuclear power plant safety management was researched. In order to design an integrated managing system to meet the needs of NPP safety management, all work related to nuclear safety is divided into different category according to its characters. On basis of this work, general integrated managing system was designed at first. Then subsystems were designed and every subsystem implements a category of nuclear safety management work. All subsystems are independent relatively on the one hand and are interrelated on other hand by global information system. (authors)

  7. Organization and conduct of IAEA fire safety reviews at nuclear power plants

    International Nuclear Information System (INIS)

    1998-01-01

    The importance of fire safety in the safe and productive operation of nuclear power plants is recognized worldwide. Lessons learned from experience in nuclear power plants indicate that fire poses a real threat to nuclear safety and that its significance extends far beyond the scope of a conventional fire hazard. With a growing understanding of the close correlation between the fire hazard in nuclear power plants and nuclear safety, backfitting for fire safety has become necessary for a number of operating plants. However, it has been recognized that the expertise necessary for a systematic independent assessment of fire safety of a NPP may not always be available to a number of Member States. In order to assist in enhancing fire safety, the IAEA has already started to offer various services to Member States in the area of fire safety. At the request of a Member State, the IAEA may provide a team of experts to conduct fire safety reviews of varying scope to evaluate the adequacy of fire safety at a specific nuclear power plant during various phases such as construction, operation and decommissioning. The IAEA nuclear safety publications related to fire protection and fire safety form a common basis for these reviews. This report provides guidance for the experts involved in the organization and conduct of fire safety review services to ensure consistency and comprehensiveness of the reviews

  8. HSE Nuclear Safety Research Program

    Energy Technology Data Exchange (ETDEWEB)

    Bagley, M.J. [Health and Safety Executive, Sheffield (United Kingdom)

    1995-12-31

    HSE funds two programmes of nuclear safety research: a programme of {approx} 2.2M of extramural research to support the Nuclear Safety Division`s regulatory activities and a programme of {approx} 11M of generic safety research managed by the Nuclear Safety Research Management Unit (NSRMU) in Sheffield, UK. This paper is concerned only with the latter programme; it describes how it is planned and procured and outlines some of the work on structural integrity problems. It also describes the changes that are taking place in the way nuclear safety research is procured in the UK. (author).

  9. HSE Nuclear Safety Research Program

    International Nuclear Information System (INIS)

    Bagley, M.J.

    1995-01-01

    HSE funds two programmes of nuclear safety research: a programme of ∼ 2.2M of extramural research to support the Nuclear Safety Division's regulatory activities and a programme of ∼ 11M of generic safety research managed by the Nuclear Safety Research Management Unit (NSRMU) in Sheffield, UK. This paper is concerned only with the latter programme; it describes how it is planned and procured and outlines some of the work on structural integrity problems. It also describes the changes that are taking place in the way nuclear safety research is procured in the UK. (author)

  10. Japan reforms its nuclear safety

    International Nuclear Information System (INIS)

    Anon.

    2013-01-01

    The Fukushima Daiichi NPP accident deeply questioned the bases of nuclear safety and nuclear safety regulation in Japan. It also resulted in a considerable loss of public confidence in the safety of nuclear power across the world. Although the accident was caused by natural phenomena, institutional and human factors also largely contributed to its devastating consequences, as shown by the Japanese Diet's and Government's investigation reports. 'Both regulators and licensees were held responsible and decided to fully reconsider the existing approaches to nuclear safety. Consequently, the regulatory system underwent extensive reform based on the lessons learned from the accident,' Yoshihiro Nakagome, the President of Japan Nuclear Energy Safety Organisation, an ETSON member TSO, explains. (orig.)

  11. Entry into force of the Convention on Supplementary Compensation for Nuclear Damage: Opening the umbrella

    International Nuclear Information System (INIS)

    McRae, Ben

    2015-01-01

    There are 431 commercial nuclear power plants around the world. On 14 April 2015, 193 of these power plants were covered by a nuclear liability instrument (118 power plants by the Paris Convention and 75 by the Vienna Convention). With the entry into force of the Convention on Supplementary Compensation for Nuclear Damage (CSC)4 on 15 April 2015, the number of power plants covered by a nuclear liability instrument increased to 340. Thus, the entry into force of the CSC marked a major milestone towards the establishment of a global nuclear liability regime. This article discusses several events that have promoted progress towards a global nuclear liability regime and then addresses several questions that may arise as countries consider actions necessary to achieve such a regime. (author)

  12. International conference on the operational safety performance in nuclear installations. Contributed papers

    International Nuclear Information System (INIS)

    2005-01-01

    In 2001, the IAEA organized an 'International Conference on Topical Issues in Nuclear Safety'. The issues discussed during the conference were: (1) risk- informed decision-making; (2) influence of external factors on safety; (3) safety of fuel cycle facilities; (4) safety of research reactors; and (5) safety performance indicators. Senior nuclear safety decision makers reviewed the issues and formulated recommendations for future actions by national and international organizations. In 2004, the IAEA organized an 'International Conference on Topical Issues in Nuclear Safety' in Beijing China. The issues discussed during the conference were: (1) changing environment - coping with diversity and globalization; (2) operating experience - managing changes effectively; (3) regulatory management systems - adapting to changes in the environment; and (4) long term operations - maintaining safety margins while extending plant lifetimes. The results of this conference confirmed the importance of operators and regulators of nuclear facilities meeting periodically to share experience and opinion on emerging issues and future challenges of the nuclear industry. Substantial progress has been made, and continues to be made by Member States in enhancing the safety of nuclear installations worldwide. At the same time, more attention is being given to other areas of nuclear safety. The safety standards for research reactors are being updated and new standards are planned on the safety of other facilities in the nuclear fuel cycle. The Agency has taken a lead role in this effort and is receiving much support from its Member States to gain international consensus in these areas. The objective of the conference is to foster the exchange of information on operational safety performance and operating experience in nuclear installations, with the aim of consolidating an international consensus on: - the present status of these issues; - emerging issues with international implications

  13. Advancement on safety management system of nuclear power for safety and non-anxiety of society

    International Nuclear Information System (INIS)

    Yoshikawa, Hidekazu

    2004-01-01

    Advancement on safety management system is investigated to improve safety and non-anxiety of society for nuclear power, from the standpoint of human machine system research. First, the recent progress of R and D works of human machine interface technologies since 1980 s are reviewed and then the necessity of introducing a new approach to promote technical risk communication activity to foster safety culture in nuclear industries. Finally, a new concept of Offsite Operation and Maintenance Support Center (OMSC) is proposed as the core facility to assemble human resources and their expertise in all organizations of nuclear power, for enhancing safety and non-anxiety of society for nuclear power. (author)

  14. Consequences of electricity deregulation on nuclear safety

    International Nuclear Information System (INIS)

    Podjavorsek, M.

    2007-01-01

    The evolution of deregulation of electricity market started a couple of years ago and has not been finished yet. Deregulation causes increased pressure to reduce the costs of electricity generation. This presents a new challenge to regulatory bodies. They have to assess the impact of these changes on the safety of nuclear power plants. Accordingly, it is important to identify the risks to the nuclear power industry resulting from the deregulation. Today's trend is that the number of electricity generating power companies will be reduced in Europe and also in Slovenia due to tough competition in the electricity market. The electricity price has decreased after the introduction of the deregulated market in most countries. This has been also the main reason for less investment to new generating capacities since the price has been lower than the generation costs. Investment problems are also present for the existing units, because of danger of inappropriate maintenance and reduction of the number of staff and their qualifications below the desired level that leads to loss of institutional memory. It is expected that only the biggest companies can stand the consequences of competition in electricity prices and consequential pressure to reduce the cost. In order to review the impact of deregulation of the electricity market some relevant points are discussed in this paper such as the need to cut costs of companies by reducing the number of their activities and increasing the efficiency in the remaining activities and /or outsourcing of activities, power station operating regime, safety culture, grid reliability, reliability and safety of operation, increased number of transients, ageing of components, outage duration, extended cycle and response of nuclear regulators. From a regulatory point of view the impact of deregulation on nuclear safety is an important issue. This paper also discusses analyses and evaluations of this impact and proposes some measures how to

  15. Progress of nuclear safety research-2004

    International Nuclear Information System (INIS)

    Anoda, Yoshinari; Ebine, Noriya; Chuto, Toshinori; Sato, Satoshi; Ishikawa, Jun; Yamamoto, Toshihiro; Munakata, Masahiro; Asakura, Toshihide; Yamaguchi, Tetsuji; Kida, Takashi; Matsui, Hiroki; Haneishi, Akihiro; Araya, Fumimasa

    2005-03-01

    JAERI is conducting nuclear safety research primarily at the Nuclear Safety Research Center in close cooperation with the related departments in accordance with the Long Term Plan for Development and Utilization of Nuclear Energy and Annual Plan for Safety Research issued by the Japanese government. The fields of conducting safety research at JAERI are the engineering safety of nuclear power plants and nuclear fuel cycle facilities, and radioactive waste management as well as advanced technology for safety improvement or assessment. Also, JAERI has conducted international collaboration to share the information on common global issues of nuclear safety and to supplement own research. Moreover, when accidents occurred at nuclear facilities, JAERI has taken a responsible role by providing technical experts and investigation for assistance to the government or local public body. This report summarizes the nuclear safety research activities of JAERI from April 2002 through March 2004 and utilized facilities. (author)

  16. Nuclear safety organisation in France

    International Nuclear Information System (INIS)

    1979-12-01

    This report outlines the public authorities responsible for the safety of nuclear installations in France. The composition and responsibilities of the Central Safety Service of Nuclear Installations within the Ministry of Industry, the Institute of Nuclear Protection and Safety within the CEA, the Central Service of Protection Against Ionising Radiation and the Interministerial Committee of Nuclear Safety are given. Other areas covered include the technical safety examination of large nuclear installations, the occurrence of accidents, treatment and control of release of radioactive wastes and decommissioning. The section on regulations covers the authorisation procedure, plant commissioning, release of radioactive effluents, surveillance and protection of workers exposed to ionising radiation. The situation is compared with the USA and the Federal Republic of Germany. A list of commercial nuclear installations in France is given

  17. On application of CFD codes to problems of nuclear reactor safety

    International Nuclear Information System (INIS)

    Muehlbauer, Petr

    2005-01-01

    The 'Exploratory Meeting of Experts to Define an Action Plan on the Application of Computational Fluid Dynamics (CFD) Codes to Nuclear Reactor Safety Problems' held in May 2002 at Aix-en-Province, France, recommended formation of writing groups to report the need of guidelines for use and assessment of CFD in single-phase nuclear reactor safety problems, and on recommended extensions to CFD codes to meet the needs of two-phase problems in nuclear reactor safety. This recommendations was supported also by Working Group on the Analysis and Management of Accidents and led to formation oaf three Writing Groups. The first writing Group prepared a summary of existing best practice guidelines for single phase CFD analysis and made a recommendation on the need for nuclear reactor safety specific guidelines. The second Writing Group selected those nuclear reactor safety applications for which understanding requires or is significantly enhanced by single-phase CFD analysis, and proposed a methodology for establishing assesment matrices relevant to nuclear reactor safety applications. The third writing group performed a classification of nuclear reactor safety problems where extension of CFD to two-phase flow may bring real benefit, a classification of different modeling approaches, and specification and analysis of needs in terms of physical and numerical assessments. This presentation provides a review of these activities with the most important conclusions and recommendations (Authors)

  18. French nuclear safety authorities: for a harmonization of nuclear safety at the European level

    International Nuclear Information System (INIS)

    Anon.

    2004-01-01

    The European Commission is working on 2 directives concerning nuclear energy: the first one is dedicated to nuclear safety and the second to the management of radioactive wastes and spent fuels. In the context of the widening of the European Union and of the inter-connection of the different electric power grids throughout Europe, the harmonization of the rules in the nuclear safety field is seen by manufacturers as a mean to achieve a fair competition between nuclear equipment supplying companies and by the French nuclear safety authorities (FNSA) as a mean to keep on improving nuclear safety and to be sure that competitiveness does not drive safety standards down. According to FNSA the 2 European directives could give a legal framework to the harmonization and should contain principles that reinforce the responsibility of each state. FNSA considers that the EPR (European pressurized water reactor) may be an efficient tool for the harmonization because of existing industrial cooperation programs between France and Germany and between France and Finland. (A.C.)

  19. Nuclear power and safety

    International Nuclear Information System (INIS)

    Chidambaram, R.

    1992-01-01

    Some aspects of safety of nuclear power with special reference to Indian nuclear power programme are discussed. India must develop technology to protect herself from the adverse economic impact arising out of the restrictive regime which is being created through globalization of safety and environmental issues. Though the studies done and experience gained so far have shown that the PHWR system adopted by India has a number of superior safety features, research work is needed in the field of operation and maintenance of reactors and also in the field of reactor life extension through delaying of ageing effects. Public relations work must be pursued to convince the public at large of the safety of nuclear power programme. The new reactor designs in the second stage of evolution are based on either further improvement of existing well-proven designs or adoptions of more innovative ideas based on physical principles to ensure a higher level of safety. The development of Indian nuclear power programme is characterised by a balanced approach in the matter of assuring safety. Safety enforcement is not just looked upon as a pure administrative matter, but experts with independent minds are also involved in safety related matters. (M.G.B.)

  20. Nuclear safety

    International Nuclear Information System (INIS)

    2014-01-01

    The Program on Nuclear Safety comprehends Radioprotection, Radioactive Waste Management and Nuclear Material Control. These activities are developed at the Nuclear Safety Directory. The Radioactive Waste Management Department (GRR) was formally created in 1983, to promote research and development, teaching and service activities in the field of radioactive waste. Its mission is to develop and employ technologies to manage safely the radioactive wastes generated at IPEN and at its customer’s facilities all over the country, in order to protect the health and the environment of today's and future generations. The Radioprotection Service (GRP) aims primarily to establish requirements for the protection of people, as workers, contractors, students, members of the general public and the environment from harmful effects of ionizing radiation. Furthermore, it also aims to establish the primary criteria for the safety of radiation sources at IPEN and planning and preparing for response to nuclear and radiological emergencies. The procedures about the management and the control of exposures to ionizing radiation are in compliance with national standards and international recommendations. Research related to the main activities is also performed. The Nuclear Material Control has been performed by the Safeguard Service team, which manages the accountability and the control of nuclear material at IPEN facilities and provides information related to these activities to ABACC and IAEA. (author)

  1. Nuclear safety

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    2014-07-01

    The Program on Nuclear Safety comprehends Radioprotection, Radioactive Waste Management and Nuclear Material Control. These activities are developed at the Nuclear Safety Directory. The Radioactive Waste Management Department (GRR) was formally created in 1983, to promote research and development, teaching and service activities in the field of radioactive waste. Its mission is to develop and employ technologies to manage safely the radioactive wastes generated at IPEN and at its customer’s facilities all over the country, in order to protect the health and the environment of today's and future generations. The Radioprotection Service (GRP) aims primarily to establish requirements for the protection of people, as workers, contractors, students, members of the general public and the environment from harmful effects of ionizing radiation. Furthermore, it also aims to establish the primary criteria for the safety of radiation sources at IPEN and planning and preparing for response to nuclear and radiological emergencies. The procedures about the management and the control of exposures to ionizing radiation are in compliance with national standards and international recommendations. Research related to the main activities is also performed. The Nuclear Material Control has been performed by the Safeguard Service team, which manages the accountability and the control of nuclear material at IPEN facilities and provides information related to these activities to ABACC and IAEA. (author)

  2. Safety provisions of nuclear power plants

    International Nuclear Information System (INIS)

    Niehaus, F.

    1994-01-01

    Safety of nuclear power plants is determined by a deterministic approach complemented by probabilistic considerations. Much use has been made of the wealth of information from more than 6000 years of reactor operation. Design, construction and operation is governed by national and international safety standards and practices. The IAEA has prepared a set of Nuclear Safety Standards as recommendations to its Member States, covering the areas of siting, design, operations, quality assurance, and governmental organisations. In 1988 the IAEA published a report by the International Nuclear Safety Advisory Group on Basic Safety Principles for Nuclear Power Plants, summarizing the underlying objectives and principles of excellence in nuclear safety and the way in which its aspects are interrelated. The paper will summarize some of the key safety principles and provisions, and results and uses of Probabilistic Safety Assessments. Some comments will be made on the safety of WWER 440/230 and WWER-1000 reactors which are operated on Bulgaria. 8 figs

  3. A nuclear safety in 21 century

    International Nuclear Information System (INIS)

    Osmachkin, V.S.

    2003-01-01

    In the paper some topics of nuclear safety are discussed, namely current situation in the world energetics and a potential of nuclear energy for sustainable development of the world, Nuclear Safety Standards and modern trends in Safety Regulation, Radiation Protection Standards are rather conservative, are based on disputable approaches and have to be more pragmatic, necessity to overcome the syndromes of awful consequences of nuclear accidents at nuclear plants, residual risks of nuclear accidents have to be covered by clear compulsory insurance actions. It is shown, that now it is worthwhile to consider efficiency of existing methods of nuclear safety regulation. It is possible, that an idea of guaranteed safety [1] could become a new approach to nuclear safety. It is based on practically total elimination of severe accidents and insurance of residual risks of nuclear accidents. The realization of such idea necessitates the consideration of all spectrum of initiating events, human errors and man-made actions, more realistically predicting consequences of accidents and the probable economical detriments. It will be a benefit for gaining public support to nuclear power. (author)

  4. Nuclear safety legislation and supervision in China

    International Nuclear Information System (INIS)

    Zhang Shiguan

    1991-02-01

    The cause for the urgent need of nuclear safety legislation and supervision in China is firstly described, and then a brief introduction to the basic principle and guideline of nuclear safety is presented. Finally the elaboration on the establishment of nuclear safety regulatory system, the enactment of a series of regulations and safety guides, and the implementation of licencing, nuclear safety supervision and research for ensuring the safety of nuclear energy, since the founding of the National Nuclear Safety Administration, are introduced

  5. Report on nuclear and radiation safety in Slovenia in 1997

    International Nuclear Information System (INIS)

    1998-06-01

    The Slovenian Nuclear Safety Administration (SNSA), in co-operation with the Health Inspectorate of the Republic of Slovenia, the Administration for Civil Protection and Disaster Relief and the Ministry of the Interior, has prepared a Report on Nuclear and Radiation Safety in the Republic of Slovenia for 1997. This is one of the regular forms of reporting on the work of the Administration to the Government and National Assembly of the Republic of Slovenia. Contributions to the report were furthermore prepared by competent authorities in the field of nuclear safety: the Agency for Radwaste Management (ARAO), the Milan Copic Nuclear Training Centre, etc. The report contains 19 chapters.

  6. Text of the Convention on the Physical Protection of Nuclear Material

    International Nuclear Information System (INIS)

    1979-11-01

    The Final Act of the Meeting of Governmental Representatives to Consider the Drafting of a Convention on the Physical Protection of Nuclear Material was signed on 26 October 1979. According to paragraph 11 of the Final Act, ''The Meeting recommended that the text of the Convention be transmitted for information to the Twenty-Third General Conference of the International Atomic Energy Agency.''

  7. Legislation for the countermeasures on special issues of nuclear safety regulations

    International Nuclear Information System (INIS)

    Cho, Byung Sun; Lee, Mo Sung; Chung, Gum Chun; Kim, Heon Jin; Oh, Ho Chul

    2004-02-01

    Since the present nuclear safety regulation has some legal problems that refer to special issues and contents of regulatory provisions, this report has preformed research on the legal basic theory of nuclear safety regulation to solve the problems. In addition, this report analyzed the problems of each provisions and suggested the revision drafts on the basis of analyzing problems and the undergoing theory of nuclear safety regulation

  8. Legislation for the countermeasures on special issues of nuclear safety regulations

    Energy Technology Data Exchange (ETDEWEB)

    Cho, Byung Sun; Lee, Mo Sung; Chung, Gum Chun; Kim, Heon Jin; Oh, Ho Chul [Chongju Univ., Cheongju (Korea, Republic of)

    2004-02-15

    Since the present nuclear safety regulation has some legal problems that refer to special issues and contents of regulatory provisions, this report has preformed research on the legal basic theory of nuclear safety regulation to solve the problems. In addition, this report analyzed the problems of each provisions and suggested the revision drafts on the basis of analyzing problems and the undergoing theory of nuclear safety regulation.

  9. Nuclear health and safety

    International Nuclear Information System (INIS)

    1991-04-01

    Numerous environmental, safety, and health problems found at other Department of Energy (DOE) defense nuclear facilities precipitated a review of these conditions at DOE's contractor-operated Pantex Plant, where our nation's nuclear weapons are assembled. This book focuses the review on examining key safety and health problems at Pantex and determining the need for external safety oversight of the plant

  10. Nuclear safety project

    International Nuclear Information System (INIS)

    1982-06-01

    The Annual Report 1981 is a detailed description (in German language) of work within the Nuclear Safety Project performed in 1981 in the nuclear safety field by KfK institutes and departments and by external institutes on behalf of KfK. It includes for each individual research activity short summaries in English language on - work completed - results obtained - plans for future work. This report was compiled by the project management. (orig.) [de

  11. Convention on the physical protection of nuclear material

    International Nuclear Information System (INIS)

    1990-08-01

    The document refers to the Convention on the Physical Protection of Nuclear Material (INFCIRC/274). Part I contains reservations/declarations made upon or following signature and Part II contains reservations/declarations made upon or following deposit of instrument of consent to be bound. The status of signature, ratification, acceptance, approval or accession by States or organizations as of 31 July 1990 is presented in an attachment

  12. The work of the OECD Nuclear Energy Agency on safety and licensing of nuclear installations

    International Nuclear Information System (INIS)

    Strohl, P.

    1975-01-01

    The acceleration of nuclear power programmes in OECD Member countries is reflected in the emphasis given by OECD/NEA to its activities in nuclear safety and regulatory matters. Particular effort is devoted to work on radiation protection and radioactive waste management, safety of nuclear installations and nuclear law development. A Committee on the Safety of Nuclear Installations reviews the state of the art and identifies areas for research and co-ordination of national programmes. A Sub-Committee on Licensing collates information and data on licensing standards and practices of different countries with a view to considering problems of common interest. Comparative studies of various licensing systems and discussions between licensing authorities should help to improve regulatory control of nuclear installations for which there appears to be a need for internationally accepted standards in the long run. (author)

  13. Nuclear safety research

    International Nuclear Information System (INIS)

    1996-01-01

    The topics 'Large-sized PWR-NPP Safety Techniques Research',and 'The Key Techniques Research on the Safety Supervision and Control for Operation of Nuclear Installations' have been adopted as an apart of 'the National 9th five Year Programs for Tacking the Key Scientific and Technical Topics' which are organized by the State Planning Commission (SPC) and State Science and Technology Commission (SSTC) respectively, and have obtained a financial support from them. To play a better role with the limited fund, the NNSA laid special stress on selecting key sub-topics on nuclear safety, and carefully choosing units which would undertake sub-topics and signing technical contracts with them

  14. Nuclear safety regulations

    International Nuclear Information System (INIS)

    1998-01-01

    The Departmental Rules and The Safety Guides were issued by the NNSA in 1998. The NNSA performed the activities of propagation and implementation of nuclear safety regulations at QTNPP in order to improve the nuclear safety culture of operating organization and construct and contract organizations

  15. Revised Paris and Vienna Nuclear Liability Conventions - Challenges for Nuclear Insurers

    International Nuclear Information System (INIS)

    Tetley, M.

    2006-01-01

    The revisions recently implemented to both the Vienna and Paris nuclear liability Conventions are intended to widen significantly the amount and scope of compensation payable in the event of a nuclear accident. Whilst this is a laudable objective, the final extent of the revisions leaves nuclear site operators and their insurers with greater uncertainty as a result of the wider and unquantifiable nature of some aspects of the revised nuclear damage definition, in particular where reference is made to environmental reinstatement and extended prescription periods. Incorporating broader definitions in the Convention revisions will therefore leave gaps in the insurance cover where insurers are unable to insure the new, wider scope of cover. If no insurance is available, then the liability for the revised scope of cover must fall upon either the operator or the national Government. This presentation will give an overview of where and why the major gaps in nuclear liability insurance cover will occur in the revised Conventions; it will also examine the problems in defining the revised scope of cover and will look at where these unquantifiable risks should now reside, to ensure there is equity between the liabilities imposed on the nuclear industry and those imposed on other industrial sectors. (author)

  16. Information report on nuclear safety and radiation protection of the Manche storage Centre - 2012

    International Nuclear Information System (INIS)

    2013-06-01

    After a presentation of the Manche Storage Centre (CSM), the first French centre of surface storage of weakly and moderately radioactive wastes, of its history, its buildings and activities, of the multi-layer cover, of the water management system (installation, controls, sampling), this report describes the measures related to nuclear safety (principles and objectives, prevention measures, technical measures, regulatory plan of control of the Centre and of its environment, control of releases from storage installations, quality organisation, archiving system). It describes measures related to radiation protection: principles, staff dosimetry, and personnel safety. The next part presents the nuclear event scale (INES) and indicates that no incident occurred. The effluents and releases from the Centre are then addressed: origin, locations and results of radiological controls of rainfalls, of risky effluents, of underground waters, of rivers, impacts of the Centre on its environment (releases in the sea, in rivers). The management of conventional and nuclear wastes produced by the Centre is reviewed as well as the actions related to information and transparency. Recommendations of the CHSCT are reported

  17. Nuclear safety research collaborations between the US and Russian Federation international nuclear safety centers

    International Nuclear Information System (INIS)

    Hill, D.J; Braun, J.C; Klickman, A.E.; Bugaenko, S.E; Kabanov, L.P; Kraev, A.G.

    2000-01-01

    The Russian Federation Ministry for Atomic Energy (MINATOM) and the U.S. Department of Energy (USDOE) have formed International Nuclear Safety Centers to collaborate on nuclear safety research. USDOE established the U. S. Center at Argonne National Laboratory in October 1995. MINATOM established the Russian Center at the Research and Development Institute of Power Engineering in Moscow in July 1996. In April 1998 the Russian center became an independent, autonomous organization under MINATOM. The goals of the centers are to: cooperate in the development of technologies associated with nuclear safety in nuclear power engineering. be international centers for the collection of information important for safety and technical improvements in nuclear power engineering. maintain a base for fundamental knowledge needed to design nuclear reactors.The strategic approach that is being used to accomplish these goals is for the two centers to work together to use the resources and the talents of the scientists associated with the US Center and the Russian Center to do collaborative research to improve the safety of Russian-designed nuclear reactors

  18. Deliberations on nuclear safety regulatory system in a changing industrial environment

    International Nuclear Information System (INIS)

    Kim, H.J.

    2001-01-01

    Nuclear safety concern, which may accompany such external environmental factors as privatization and restructuring of the electric power industry, is emerging as an international issue. In order to cope with the concern about nuclear safety, it is important to feedback valuable experiences of advanced countries that restructured their electric power industries earlier and further to reflect the current safety issues, which are raised internationally, fully into the nuclear safety regulatory system. This paper is to review the safety issues that might take place in the process of increasing competition in the nuclear power industry, and further to present a basic direction and effective measures for ensuring nuclear safety in response thereto from the viewpoint of safety regulation. It includes a political direction for a regulatory body's efforts to rationalize and enforce efficiently its regulation. It proposes to ensure that regulatory specialty and regulatory cost are stably secured. Also, this paper proposes maintaining a sound nuclear safety regulatory system to monitor thoroughly the safety management activities of the industry, which might be neglected as a result of focusing on reduction of the cost for producing electric power. (author)

  19. Nuclear safety research in HGF 2011

    International Nuclear Information System (INIS)

    Tromm, Walter

    2012-01-01

    After the events at the Japanese nuclear power plant of Fukushima Daiichi, the German federal government decided that Germany will give up electricity generation from nuclear power within a decade. The last reactor will be disconnected from the power grid in 2022. Helping to make this opt-out as safe as possible is one of the duties of the Helmholtz Association with its Nuclear Safety Research Program within the Energy Research Area. Also the demolition of nuclear power plants and the repository problem will keep society, and thus also research, busy for a number of decades to come. Giving up electricity production from nuclear power thus must not mean giving up the required nuclear technology competences. In the fields of reactor safety, demolition, final storage, radiation protection, and crisis management, in critical support of international developments, and for competent evaluation of nuclear facilities around Germany, these competences will be in demand far beyond the German opt-out. This is the reason why the final report by the Ethics Committee on 'Safe Energy Supply' emphasizes the importance of nuclear technology research. Close cooperation on national, European and international levels is indispensable in this effort. Also nuclear safety research in the Helmholtz Association is aligned with the challenges posed by the opt-out of the use of nuclear power. It is important that the high competences in the areas of plant safety and demolition, handling of radioactive waste, and safe final storage as well as radiation protection be preserved. The Nuclear Safety Research Program within the Energy Research Area of the Helmholtz Association therefore will continue studying scientific and technical aspects of the safety of nuclear reactors and the safety of nuclear waste management. These research activities are provident research conducted for society and must be preserved for a long period of time. The work is closely harmonized with the activities of the

  20. Report on nuclear and radiation safety in Slovenia in 1999

    International Nuclear Information System (INIS)

    Lovincic, D.

    2000-09-01

    The Slovenian Nuclear Safety Administration (SNSA) has prepared Report on Nuclear and Radiation Safety in Slovenia in 1999. This is one of the regular forms of reporting on the work of the Administration to the Government and National Assembly of the Republic of Slovenia.

  1. Improving versus maintaining nuclear safety

    International Nuclear Information System (INIS)

    2002-01-01

    The concept of improving nuclear safety versus maintaining it has been discussed at a number of nuclear regulators meetings in recent years. National reports have indicated that there are philosophical differences between NEA member countries about whether their regulatory approaches require licensees to continuously improve nuclear safety or to continuously maintain it. It has been concluded that, while the actual level of safety achieved in all member countries is probably much the same, this is difficult to prove in a quantitative way. In practice, all regulatory approaches require improvements to be made to correct deficiencies and when otherwise warranted. Based on contributions from members of the NEA Committee on Nuclear Regulatory Activities (CNRA), this publication provides an overview of current nuclear regulatory philosophies and approaches, as well as insights into a selection of public perception issues. This publication's intended audience is primarily nuclear safety regulators, but government authorities, nuclear power plant operators and the general public may also be interested. (author)

  2. Progress of nuclear safety research - 2005

    International Nuclear Information System (INIS)

    Anoda, Yoshinari; Amaya, Masaki; Saito, Junichi; Sato, Atsushi; Sono, Hiroki; Tamaki, Hitoshi; Tonoike, Kotaro; Nemoto, Yoshiyuki; Motoki, Yasuo; Moriyama, Kiyofumi; Yamaguchi, Tetsuji; Araya, Fumimasa

    2006-03-01

    The Japan Atomic Energy Research Institute (JAERI), one of the predecessors of the Japan Atomic Energy Agency (JAEA), had conducted nuclear safety research primarily at the Nuclear Safety Research Center in close cooperation with the related departments in accordance with the Long Term Plan for Development and Utilization of Nuclear Energy and Five-Years Program for Safety Research issued by the Japanese government. The fields of conducting safety research at JAERI were the engineering safety of nuclear power plants and nuclear fuel cycle facilities, and radioactive waste management as well as advanced technology for safety improvement or assessment. Also, JAERI had conducted international collaboration to share the information on common global issues of nuclear safety and to supplement own research. Moreover, when accidents occurred at nuclear facilities, JAERI had taken a responsible role by providing experts in assistance to conducting accident investigations or emergency responses by the government or local government. These nuclear safety research and technical assistance to the government have been taken over as an important role by JAEA. This report summarizes the nuclear safety research activities of JAERI from April 2003 through September 2005 and utilized facilities. (author)

  3. 75 FR 64717 - Convention on Supplementary Compensation for Nuclear Damage Contingent Cost Allocation

    Science.gov (United States)

    2010-10-20

    ... DEPARTMENT OF ENERGY Convention on Supplementary Compensation for Nuclear Damage Contingent Cost... Supplementary Compensation for Nuclear Damage (``CSC'') including its obligation to contribute to an international supplementary fund in the event of certain nuclear incidents. The NOI provided a September 27...

  4. Business of Nuclear Safety Analysis Office, Nuclear Technology Test Center

    International Nuclear Information System (INIS)

    Hayakawa, Masahiko

    1981-01-01

    The Nuclear Technology Test Center established the Nuclear Safety Analysis Office to execute newly the works concerning nuclear safety analysis in addition to the works related to the proving tests of nuclear machinery and equipments. The regulations for the Nuclear Safety Analysis Office concerning its organization, business and others were specially decided, and it started the business formally in August, 1980. It is a most important subject to secure the safety of nuclear facilities in nuclear fuel cycle as the premise of developing atomic energy. In Japan, the strict regulation of safety is executed by the government at each stage of the installation, construction, operation and maintenance of nuclear facilities, based on the responsibility for the security of installers themselves. The Nuclear Safety Analysis Office was established as the special organ to help the safety examination related to the installation of nuclear power stations and others by the government. It improves and puts in order the safety analysis codes required for the cross checking in the safety examination, and carries out safety analysis calculation. It is operated by the cooperation of the Science and Technology Agency and the Agency of Natural Resources and Energy. The purpose of establishment, the operation and the business of the Nuclear Safety Analysis Office, the plan of improving and putting in order of analysis codes, and the state of the similar organs in foreign countries are described. (Kako, I.)

  5. Global nuclear safety culture

    International Nuclear Information System (INIS)

    1997-01-01

    As stated in the Nuclear Safety Review 1996, three components characterize the global nuclear safety culture infrastructure: (i) legally binding international agreements; (ii) non-binding common safety standards; and (iii) the application of safety standards. The IAEA has continued to foster the global nuclear safety culture by supporting intergovernmental collaborative efforts; it has facilitated extensive information exchange, promoted the drafting of international legal agreements and the development of common safety standards, and provided for the application of safety standards by organizing a wide variety of expert services

  6. Topical opinion paper - Apparent Discrepancies Between Nuclear and Conventional Seismic Standards

    International Nuclear Information System (INIS)

    Donald, John; Smith, Ian

    2003-01-01

    The differences between nuclear and conventional seismic standards are considered and their potential significance discussed. The approach to the design of nuclear facilities is appropriately both more rigorous and conservative than that required by conventional seismic standards and codes. For nuclear seismic design the requirements can be presented as assessment principles, e.g., NII SAPs or a safety guide e.g. IAEA; Seismic Design and Qualification for Nuclear Power Plants. The adoption of novel methods or designs are required to be supported by appropriate research and development with the ability to cite a precedent within the industry being a powerful endorsement. The method adopted must reliably predict the seismic response of the item to be qualified, including the seismic response of attached or supported Structures, Systems and Components. (SSC's) The traditional method adopted for seismic qualification by analysis has been based on linear elastic analyses. This is justified on the basis that the response is reliably predicted and realistic, provided that the elements remain elastic. In contrast the benefit of ductile behaviour of conventional structures within the design envelope has long been recognised and used as the basis to justify significant reductions in the seismic demand. Provided the acceptance criteria are met, the SAPs do not preclude and the IAEA safety guide specifically permits non linear behaviour within the design envelope for category 1 items. Both the current nuclear practice and the current conventional seismic standards can be classified as 'force based'. The displacement based approach, also referred to as performance based engineering (PBE), has been developed as a powerful tool in the evaluation and seismic retrofit of existing structures. This approach could be equally valid to the design of new structures and can be used to represent elastic or non linear behaviour although the full benefit will only be realised in the latter

  7. Redefining interrelationship between nuclear safety, nuclear security and safeguards

    International Nuclear Information System (INIS)

    Irie, Kazutomo

    2012-01-01

    Since the beginning of this century, the so-called 3Ss (Nuclear Safety, Nuclear Security and Safeguards) have become major regulatory areas for peaceful uses of nuclear energy. In order to rationalize the allocation of regulatory resources, interrelationship of the 3Ss should be investigated. From the viewpoint of the number of the parties concerned in regulation, nuclear security is peculiar with having “aggressors” as the third party. From the viewpoint of final goal of regulation, nuclear security in general and safeguards share the goal of preventing non-peaceful uses of nuclear energy, though the goal of anti-sabotage within nuclear security is rather similar to nuclear safety. As often recognized, safeguards are representative of various policy tools for nuclear non-proliferation. Strictly speaking, it is not safeguards as a policy tool but nuclear non-proliferation as a policy purpose that should be parallel to other policy purposes (nuclear safety and nuclear security). That suggests “SSN” which stands for Safety, Security and Non-proliferation is a better abbreviation rather than 3Ss. Safeguards as a policy tool should be enumerated along with nuclear safety regulation, nuclear security measures and trade controls on nuclear-related items. Trade controls have been playing an important role for nuclear non-proliferation. These policy tools can be called “SSST” in which Trade controls are also emphasized along with Safety regulation, Security measures and Safeguards. (author)

  8. A proposal for an international convention on radiation safety

    International Nuclear Information System (INIS)

    Ahmed, J.U.

    1998-01-01

    One century has passed since harmful effects of radiation on living tissues were recognized. Organized efforts to reduce radiation hazards began in early 1920s. Major efforts by the ICRP since 1928, aided by ICRU, greatly helped in formulating principles, policies and guidance for radiation protection. The WHO formally recognized ICRP in 1956 and began implementing ICRP recommendations and guidance throughout the world. The IAEA, after it took office in 1957, began to establish or adopt standards of safety based on ICRP recommendations and provide for application of these standards in the field of atomic energy. Later on, other pertinent international organizations joined IAEA in establishing the Basic Safety Standards on radiation safety. The IAEA has issued, until now, nearly couple of hundred safety related documents on radiation safety and waste management. However, in spite of all such international efforts for three quarter of a century, there has been no effective universal control in radiation safety. Problems exist at the user, national, international and manufacturers and suppliers levels. Other problems are management of spent sources and smuggling of sources across international borders. Although, radiation and radionuclides are used by all countries of the world, regulatory and technical control measures in many countries are either lacking or inadequate. The recommendations and technical guidance provided by the international organizations are only advisory and carry no mandatory force to oblige countries to apply them. Member States approve IAEA safety standards and guides at the technical meetings and General Conference, but many of them do not apply these. An International Convention is, therefore, essential to establish international instrument to ensure universal application of radiation safety. (author)

  9. Public information on nuclear safety and incidents at nuclear installations in the UK

    International Nuclear Information System (INIS)

    Gausen, R.; Gronow, W.S.

    1977-01-01

    In recent years public interest in the safety aspects of the use of nuclear energy has been increasing in the UK as in other countries. The Government considers public involvement on this subject to be important and has taken action to promote and encourage public debate. As a result of a Government requirement, the Health and Safety Executive (HSE) now publish a quarterly statement which gives particulars of incidents at nuclear installations reported to the HSE under the Nuclear Installations Act 1965, Dangerous Occurrences Regulations and under conditions attached to nuclear site licences granted that Act. The range of incidents covered in the quarterly statement and the present state and background of the public debate on nuclear energy in the UK are described. (author)

  10. Factor Analysis and Framework Development for Incorporating Public Trust on Nuclear Safety issues

    Energy Technology Data Exchange (ETDEWEB)

    Cho, Seongkyung; Lee, Gyebong [The Myongji Univ., Seoul (Korea, Republic of); Lee, Gihyung; Lee, Gyehwi; Jeong, Jina [Korea Institute of Nuclear Safety, Daejeon (Korea, Republic of)

    2014-05-15

    The Korea Institute of Nuclear Safety (KINS), a regulatory expert organization in charge of nuclear safety in Korea, realized that a more fundamental and systematic analysis of activities is needed to actively meet the greater variety of concerns people have and increase the reliability of the results of regulation. Nuclear safety, a highly specialized field, has previously been discussed primarily from the viewpoint of the engineers who deal with the technology, but now 'public trust in nuclear safety' has to be viewed from the standpoint of the general public and from the socio-cultural perspective. Specific measures must be taken to examine which factors affect public trust and how we can secure and reproduce those factors to gain it. Also, an efficient system for incorporating public trust in nuclear safety must be established. In this study, various case studies were examined to identify the factors that affect public trust in nuclear safety. First, nuclear safety laws and information disclosure systems of major countries were examined by investigating data and conducting in-depth interviews. To explore a public framework concerning nuclear safety, big data of social media were analyzed. Also, Q methodology was used to analyze the risk schemata of the opinion leaders living in areas near nuclear power plants. Several surveys were conducted to analyze the amount of trust the public had in nuclear safety as well as their awareness of nuclear safety issues. Based on these analyses, factors affecting public trust in nuclear safety were extracted, and measures to build systems incorporating public trust in nuclear safety were proposed. This study addresses the public trust in nuclear safety on condition that the safety is ensured technically and mechanically.

  11. Factor Analysis and Framework Development for Incorporating Public Trust on Nuclear Safety issues

    International Nuclear Information System (INIS)

    Cho, Seongkyung; Lee, Gyebong; Lee, Gihyung; Lee, Gyehwi; Jeong, Jina

    2014-01-01

    The Korea Institute of Nuclear Safety (KINS), a regulatory expert organization in charge of nuclear safety in Korea, realized that a more fundamental and systematic analysis of activities is needed to actively meet the greater variety of concerns people have and increase the reliability of the results of regulation. Nuclear safety, a highly specialized field, has previously been discussed primarily from the viewpoint of the engineers who deal with the technology, but now 'public trust in nuclear safety' has to be viewed from the standpoint of the general public and from the socio-cultural perspective. Specific measures must be taken to examine which factors affect public trust and how we can secure and reproduce those factors to gain it. Also, an efficient system for incorporating public trust in nuclear safety must be established. In this study, various case studies were examined to identify the factors that affect public trust in nuclear safety. First, nuclear safety laws and information disclosure systems of major countries were examined by investigating data and conducting in-depth interviews. To explore a public framework concerning nuclear safety, big data of social media were analyzed. Also, Q methodology was used to analyze the risk schemata of the opinion leaders living in areas near nuclear power plants. Several surveys were conducted to analyze the amount of trust the public had in nuclear safety as well as their awareness of nuclear safety issues. Based on these analyses, factors affecting public trust in nuclear safety were extracted, and measures to build systems incorporating public trust in nuclear safety were proposed. This study addresses the public trust in nuclear safety on condition that the safety is ensured technically and mechanically

  12. Nuclear Safety Project

    International Nuclear Information System (INIS)

    1983-12-01

    The semiannual progress report 1983/1 is a description of work within the Nuclear Safety Project performed in the first six month of 1983 in the nuclear safety field by KfK institutes and departments and by external institutions on behalf of KfK. The chosen kind of this report is that of short summaries, containing the topics work performed, results obtained and plans for future work. (orig./RW) [de

  13. Nuclear safety project

    International Nuclear Information System (INIS)

    Anon.

    1980-11-01

    The 17th semi-annual report 1980/1 is a description of work within the Nuclear Safety Project performed in the first six months of 1980 in the nuclear safety field by KfK institutes and departments and by external institutions on behalf of KfK. The chosen kind of this report is that of short summaries, containing the topics - work performed, results obtained, plans for future work. (orig.) [de

  14. Convention on the physical protection of nuclear materials

    International Nuclear Information System (INIS)

    1997-01-01

    The document refers to the Convention on the Physical Protection of Nuclear Material (IAEA-INFCIRC-274), including in Part I the status list of signature, ratification, acceptance, approval, accession or succession by States or organizations as of 31 December 1996, in Part II the texts of reservations/declarations made upon or following expressing consent to be bound, and in Part III the texts of reservations/declarations made upon signature

  15. Nuclear Safety Culture & Leadership in Slovenske Elektrarne

    International Nuclear Information System (INIS)

    Janko, P.

    2016-01-01

    This presentation shows practically how nuclear safety culture is maintained and assessed in Slovenske elektrarne, supported by human performance program and leadership model. Safety is the highest priority and it must be driven by the Leaders in the field. Human Performance is key to safety and therefore key to our success. Safety Policy of our operating organization—licence holder, is in line with international best practices and nuclear technology is recognised as special and unique. All nuclear facilities adopt a clear safety policy and are operated with overriding priority to nuclear safety, the protection of nuclear workers, the general public and the environment from risk of harm. The focus is on nuclear safety, although the same principles apply to radiological safety, industrial safety and environmental safety. Safety culture is assessed regularly based (every two years) on eight principles for strong safety culture in nuclear utilities. Encourage excellence in all plant activities and to go beyond compliance with applicable laws and regulations. Adopt management approaches embodying the principles of Continuous Improvement and risk Management is never ending activity for us. (author)

  16. Investigation of nuclear power safety objects

    International Nuclear Information System (INIS)

    2003-09-01

    It is a report of ground and concept of nuclear safety objects and future issues in Japan, which has investigated by the Committee of Experts on Investigation of Nuclear Safety Objects in the Nuclear Safety Research Association. The report consisted of member of committee, main conclusions and five chapters. The first chapter contains construction of safety objects and range of object, the second chapter qualitative safety objects, the third chapter quantitative safety objects, the forth subsiding objects and the fifth other items under consideration. The qualitative safety objects on individual and society, the quantitative one on effects on health and social cost, aspect of safety objects, relation between radiation protection and safety objects, practical objective values and earthquake are stated. (S.Y.)

  17. Nuclear safety in France in 2001

    International Nuclear Information System (INIS)

    Anon.

    2002-01-01

    This article presents the milestones of 2001 concerning nuclear safety in France: 1) the new organization of nuclear safety in France, IPSN (institute of protection and nuclear safety) and OPRI (office for protection against ionizing radiation) have merged into an independent organization: IRSN (institute of radiation protection and nuclear safety); 2) a draft bill has been proposed by the government to impose to nuclear operators new obligations concerning the transfer of information to the public; 3) nuclear safety authorities have drafted a new procedure in order to cope with the demand concerning modification of nuclear fuel management particularly the increase of the burn-up; 4) new evolutions concerning the management of a major nuclear crisis as a consequence of the terrorist attack on New-york and the accident at the AZF plant in Toulouse; 5) a point is made concerning the work of the WENRA association about the harmonization of the nuclear safety policies of its different members. (A.C.)

  18. Protocol to amend the Vienna convention on civil liability for nuclear damage

    International Nuclear Information System (INIS)

    1998-01-01

    The document reproduces the text of the Protocol to Amend the Vienna Convention on Civil Liability for Nuclear Damage which was adopted by a Diplomatic Conference, 8-12 September 1997, and the consolidated text of the 1963 Vienna Convention as amended by the Protocol

  19. Protocol to amend the Vienna convention on civil liability for nuclear damage

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    1998-07-22

    The document reproduces the text of the Protocol to Amend the Vienna Convention on Civil Liability for Nuclear Damage which was adopted by a Diplomatic Conference, 8-12 September 1997, and the consolidated text of the 1963 Vienna Convention as amended by the Protocol

  20. Diet discussion begins for signing convention on physical protection

    International Nuclear Information System (INIS)

    Anon.

    1988-01-01

    As a part of the amendment of the domestic laws required for signing the 'Convention on the Physical Protection of Nuclear Materials', the government placed the bill for the partial amendment of the 'Law for the Regulations of Nuclear Source Materials, Nuclear Fuel Materials and Reactors' to the current session of the Diet, following the formal approval by the Cabinet on March 11. This bill provides for punishment in the case of endangering or threat related to the handling and use of nuclear materials. The Atomic Energy Commission proposed in December, last year the early signing of the Convention and the legislation on the antiterrorism and physical protection measures required for the signing. The amendment consists mainly of two parts: one stipulates the obligation for those who manage the handling of nuclear materials to take the proper measures for their physical protection, and the other stipulates the punishment of the crimes related to nuclear materials. Regarding the other amendment of the relevant domestic laws, the Criminal Law was partially amended in June, last year. The Aviation Act and the Ships Safety Act, both related to the transport of nuclear materials, will not be amended, but only the relevant Ministerial Ordinances will be revised. The Convention on the Physical Protection of Nuclear Materials came into force in February, 1987, and consists of 23 articles. (Kako, I.)

  1. International Legal Framework for Nuclear Security

    International Nuclear Information System (INIS)

    Moore, G.M.

    2010-01-01

    The responsibility for nuclear security rests entirely with each State. There is no single international instrument that addresses nuclear security in a comprehensive manner. The legal foundation for nuclear security comprises international instruments and recognized principles that are implemented by national authorities. Security systems at the national level will contribute to a strengthened and more universal system of nuclear security at the international level. The binding security treaties are; Convention on the Physical Protection of Nuclear Material, the 2005 amendment thereto, Safeguards Agreements between the Agency and states required in Connection with the Treaty on the Non-Proliferation of Nuclear Weapons. Model Protocol additional to agreement(s) between State(s) and the Agency for the application of Safeguards Convention on Early Notification of a Nuclear Accident, Convention on Assistance in the Case of a Nuclear Accident or Radiological Emergency, Convention on Nuclear Safety, Joint Convention on the Safety of Spent Fuel Management and on the Safety of Radioactive Waste Management

  2. Japan's international cooperation programs on seismic safety of nuclear power plants

    International Nuclear Information System (INIS)

    Sanada, Akira

    1997-01-01

    MITI is promoting many international cooperation programs on nuclear safety area. The seismic safety of nuclear power plants (NPPs) is a one of most important cooperation areas. Experts from MITI and related organization join the multilateral cooperation programs carried out by international organization such as IAEA, OECD/NEA etc. MITI is also promoting bilateral cooperation programs such as information exchange meetings, training programs and seminars on nuclear safety with several countries. Concerning to the cooperation programs on seismic safety of NPPs such as information exchange and training, MITI shall continue and expand these programs. (J.P.N.)

  3. Public opinion poll on safety and regulations of nuclear energy

    Energy Technology Data Exchange (ETDEWEB)

    Park, M. I.; Park, B. I.; Lee, S. M. [Gallup Korea, Seoul (Korea, Republic of)

    2004-02-15

    The purpose of this poll is not only to research understanding on safety and regulations of nuclear energy and to compare the result by time series followed 2003 to 2002 years, also to establish the public relations strategies and to offer information for developing long-term policies. The contents of the study are on the general perception, safety, management of nuclear power station, regulations and surroundings about nuclear energy.

  4. Specific safety aspects of the water-steam cycle important to nuclear power plant project

    International Nuclear Information System (INIS)

    Lobo, C.G.

    1986-01-01

    The water-steam cycle in a nuclear power plant is similar to that used in conventional power plants. Some systems and components are required for the safe nuclear power plant operation and therefore are designed according to the safety criteria, rules and regulations applied in nuclear installations. The aim of this report is to present the safety characteristics of the water-steam cycle of a nuclear power plant with pressurized water reactor, as applied for the design of the nuclear power plants Angra 2 and Angra 3. (Author) [pt

  5. Preparation of Act on State Surveillance of Nuclear Safety of Nuclear Installations

    International Nuclear Information System (INIS)

    Kyncl, J.

    1983-01-01

    The Czechoslovak Government Decree no. 179 of June 1982 approved the principles underlying the first Czechoslovak legal norm to complexly resolve the problem of State surveillance of nuclear safety of nuclear installations. In the introduction the law will define the concept of nuclear safety of nuclear installations and will justify the reasons for which it has to be assured. The individual parts of the law will deal with the establishment of State surveillance of nuclear safety, the tasks of the Czechoslovak Atomic Energy Commission in this area, the control activity of Commission personnel, the measures taken against responsible organizations and personnel for failing to observe their duties, the obligations of bodies and organizations, and the cooperation between inspection bodies. (A.K.)

  6. Fukushima Ministerial Conference Urges Continued Work to Strengthen Nuclear Safety

    International Nuclear Information System (INIS)

    2012-01-01

    sustaining competent national regulatory authorities with effective independence and adequate human and financial resources''. It also emphasized the importance of measures to prevent and mitigate severe accidents, including protection against extreme natural hazards, saying that ''nuclear power plants should be designed, constructed and operated with the objectives of preventing accidents, and, should an accident occur, mitigating its effects and especially avoiding off-site contamination.'' The statement said emergency preparedness and response plans and capabilities should be strengthened at all levels, and emphasized the importance of international cooperation in assessing the environmental and human impact of radioactive releases from a nuclear accident. It stressed the importance of broadest adherence to the relevant international instruments, particularly the Convention on Nuclear Safety, and of further developing and strengthening communication with the public. The statement also welcomed the IAEA's release at the Conference of reports on three International Experts' Meetings held this year, on reactor and spent fuel safety, protection against extreme earthquakes and tsunamis and communication in the event of a nuclear or radiological emergency. Some 114 countries and 11 international organisations are attending the Conference, which aims to share knowledge and lessons from the Fukushima Daiichi accident, further enhance transparency and discuss the progress of international efforts to strengthen nuclear safety. Forty-four of these are attending at the level of minister or equivalent high rank, or head of organization. (IAEA)

  7. Safety principles for nuclear power plants

    International Nuclear Information System (INIS)

    Vuorinen, A.

    1993-01-01

    The role and purpose of safety principles for nuclear power plants are discussed. A brief information is presented on safety objectives as given in the INSAG documents. The possible linkage is discussed between the two mentioned elements of nuclear safety and safety culture. Safety culture is a rather new concept and there is more than one interpretation of the definition given by INSAG. The defence in depth is defined by INSAG as a fundamental principle of safety technology of nuclear power. Discussed is the overall strategy for safety measures, and features of nuclear power plants provided by the defence-in-depth concept. (Z.S.) 7 refs

  8. The role of probabilistic safety assessment and probabilistic safety criteria in nuclear power plant safety

    International Nuclear Information System (INIS)

    1992-01-01

    The purpose of this Safety Report is to provide guidelines on the role of probabilistic safety assessment (PSA) and a range of associated reference points, collectively referred to as probabilistic safety criteria (PSC), in nuclear safety. The application of this Safety Report and the supporting Safety Practice publication should help to ensure that PSA methodology is used appropriately to assess and enhance the safety of nuclear power plants. The guidelines are intended for use by nuclear power plant designers, operators and regulators. While these guidelines have been prepared with nuclear power plants in mind, the principles involved have wide application to other nuclear and non-nuclear facilities. In Section 2 of this Safety Report guidelines are established on the role PSA can play as part of an overall safety assurance programme. Section 3 summarizes guidelines for the conduct of PSAs, and in Section 4 a PSC framework is recommended and guidance is provided for the establishment of PSC values

  9. Discussion on the safety classification of nuclear safety mechanical equipment

    International Nuclear Information System (INIS)

    Shen Wei

    2010-01-01

    The purpose and definition of the equipment safety classification in nuclear plant are introduced. The differences of several safety classification criterions are compared, and the object of safety classification is determined. According to the regulation, the definition and category of the safety functions are represented. The safety classification method, safety classification process, safety class interface, and the requirement for the safety class mechanical equipment are explored. At last, the relation of the safety classification between the mechanical and electrical equipment is presented, and the relation of the safety classification between mechanical equipment and system is also presented. (author)

  10. Importance of human factors on nuclear installations safety

    International Nuclear Information System (INIS)

    Caruso, G.J.

    1990-01-01

    Actually, installations safety and, in particular the nuclear installations infer a strong incidence in human factors related to the design and operation of such installations. In general, the experience aims to that the most important accidents have happened as result of the components' failures combination and human failures in the operation of safety systems. Human factors in the nuclear installations may be divided into two areas: economy and human reliability. Human factors treatments for the safety evaluation of the nuclear installations allow to diagnose the weak points of man-machine interaction. (Author) [es

  11. White paper on nuclear safety in 1993. 1993 ed.

    International Nuclear Information System (INIS)

    1994-01-01

    When the development and utilization of nuclear power are advanced, the securing of safety is the prerequisite. The Nuclear Safety Commission has promoted the various important measures which become the basis for securing the safety, such as the execution of strict safety examination, the preparation and perfection of the guidelines which are used for safety examination, the holding of public hearings, the investigation of failures and troubles, and the reflection of the obtained learnings to the countermeasures for securing the safety. Since nuclear power facilities contain radioactive substances, the prevention of their abnormal release to surrounding environment is the fundamental of securing the safety. The policy of coping with severe accidents was determined after Three Mile Island accident and Chernobyl accident, and the concrete investigation is carried out. In this year, the abandonment of radioactive waste in ocean by Russia was a large problem. In this book, the Nuclear Safety Commission in the last one year and the securing of safety related to the utilization of plutonium for power reactors are reported. Various related materials are attached. (K.I.)

  12. IAEA activities on communication of nuclear safety issues

    International Nuclear Information System (INIS)

    Wieland, P.

    2001-01-01

    The regulatory authorities in several countries have taken the initiative to overcome the renowned difficulties of communicating nuclear safety issues. They communicate with segments of the public specially in case of nuclear/radiological accidents, waste disposal, transport of radioactive material or food irradiation. This reflects the full recognition of the importance of the topic. However it is also recognized that there is hitherto a need of international assistance in order to develop a regulatory communication strategy that could be harmonized and at the same time customized to the different needs. Communications on nuclear, radiation, transport and radioactive waste safety are needed to: disseminate information on safety to the public in both routine and emergency situations ; be attentive to public concerns, and address them; maintain social trust and confidence by keeping society informed on the established safety standards and how they are enforced; facilitate the decision-making process on nuclear matters by promptly presenting factual information in a clear manner; integrate and maintain an information network at both the national and international levels; improve co-operation with other countries and international organizations; encourage the dissemination of factual information on nuclear issues in schools. A major factor in addressing all of these questions is understanding the audience(s). A two way communication process is needed to establish what particular audiences want to know and in what form they prefer to receive information. This will differ depending on the audience and circumstances. For example, the information on a routine day-to-day basis will be different from what might be needed at the time of an accident. Communication with the news media is a matter of particular importance, as they are both an audience in themselves and a channel for communicating with wider audiences. (author)

  13. Safety implications of computerized process control in nuclear power plants

    International Nuclear Information System (INIS)

    1991-02-01

    Modern nuclear power plants are making increasing use of computerized process control because of the number of potential benefits that accrue. This practice not only applies to new plants but also to those in operation. Here, the replacement of both conventional process control systems and outdated computerized systems is seen to be of benefit. Whilst this contribution is obviously of great importance to the viability of nuclear electricity generation, it must be recognized that there are major safety concerns in taking this route. However, there is the potential for enhancing the safety of nuclear power plants if the full power of microcomputers and the associated electronics is applied correctly through well designed, engineered, installed and maintained systems. It is essential that areas where safety can be improved be identified and that the pitfalls are clearly marked so that they can be avoided. The deliberations of this Technical Committee Meeting are a step on the road to this goal of improved safety through computerized process control. This report also contains the papers presented at the technical committee meeting by participants. A separate abstract was prepared for each of these 15 presentations. Refs, figs and tabs

  14. New nuclear package. At last a breakthrough for a European legal framework on nuclear safety?

    International Nuclear Information System (INIS)

    Schneider, Horst

    2009-01-01

    In 2003, the European Commission presented what it referred to as a nuclear package. Two draft directives were to cover nuclear safety and nuclear waste management in a legally binding sense on the level of the European Union. A separate directive on funds for decommissioning nuclear power plants and for waste management up to final storage, which had still been included in preliminary drafts in 2002, had been dropped and turned into recommendations in 2006. However, the nuclear package with the 2 draft directives found no sufficient majority in the Council in 2004. In November 2008, the Commission presented a new draft directive on nuclear safety, especially the safety of nuclear power plants. The Commission demands a European legal framework for the political acceptance of nuclear power. As far as procedures were concerned, the Commission had expressed its hope that the directive could be adopted by the summer of 2009. The draft directive has been thoroughly revised over the past four months. Shaping the European Union is a difficult matter. The improvement seems to be in the field of nuclear safety. It is to be hoped that a directive will be adopted in the end which will result in more acceptance, not just in arguments exchanged between the Commission and the member countries when it comes to transposition into national law and its execution. (orig.)

  15. Nuclear safety review for the year 2002

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    2003-08-01

    The Nuclear Safety Review reports on worldwide efforts to strengthen nuclear, radiation and transport safety and the safety of radioactive waste management. The final version of the Nuclear Safety Review for the Year 2002 was prepared in the light of the discussion by the Board of Governors in March 2002. This report presents an overview of the current issues and trends in nuclear, radiation, transport and radioactive waste safety at the end of 2002. This overview is supported by a more detailed factual account of safety-related events and issues worldwide during 2002. National authorities and the international community continued to reflect and act upon the implications of the events of II September 2001 for nuclear, radiation, transport and waste safety. In the light of this, the Agency has decided to transfer the organizational unit on nuclear security from the Department of Safeguards to the Department of Nuclear Safety (which thereby becomes the Department of Nuclear Safety and Security). By better exploiting the synergies between safety and security and promoting further cross-fertilization of approaches, the Agency is trying to help build up mutually reinforcing global regimes of safety and security. However, the Nuclear Safety Review for the Year 2002 addresses only those areas already in the safety programme. This short analytical overview is supported by a second part (corresponding to Part I of the Nuclear Safety Reviews of previous years), which describes significant safety-related events and issues worldwide during 2002. A Draft Nuclear Safety Review for the Year 2002 was submitted to the March 2003 session of the Board of Governors in document GOV/2003/6.

  16. Nuclear safety review for the year 2002

    International Nuclear Information System (INIS)

    2003-08-01

    The Nuclear Safety Review reports on worldwide efforts to strengthen nuclear, radiation and transport safety and the safety of radioactive waste management. The final version of the Nuclear Safety Review for the Year 2002 was prepared in the light of the discussion by the Board of Governors in March 2002. This report presents an overview of the current issues and trends in nuclear, radiation, transport and radioactive waste safety at the end of 2002. This overview is supported by a more detailed factual account of safety-related events and issues worldwide during 2002. National authorities and the international community continued to reflect and act upon the implications of the events of II September 2001 for nuclear, radiation, transport and waste safety. In the light of this, the Agency has decided to transfer the organizational unit on nuclear security from the Department of Safeguards to the Department of Nuclear Safety (which thereby becomes the Department of Nuclear Safety and Security). By better exploiting the synergies between safety and security and promoting further cross-fertilization of approaches, the Agency is trying to help build up mutually reinforcing global regimes of safety and security. However, the Nuclear Safety Review for the Year 2002 addresses only those areas already in the safety programme. This short analytical overview is supported by a second part (corresponding to Part I of the Nuclear Safety Reviews of previous years), which describes significant safety-related events and issues worldwide during 2002. A Draft Nuclear Safety Review for the Year 2002 was submitted to the March 2003 session of the Board of Governors in document GOV/2003/6

  17. Reliability of computerized safety systems at nuclear power plants. Report of a technical committee meeting held in Vienna, 21-25 June 1993

    International Nuclear Information System (INIS)

    1995-03-01

    Computer based technology is increasingly used in order to perform safety functions. In some recently designed nuclear power plants the whole safety system is computerized. In older plants replacement of conventional technology based system is seen to be of benefit. If the new technology is to be used, it must meet at least the same level of quality and reliability requirements as specified for conventional technology. However, there is a potential for enhancing the safety of nuclear power plants if the full power of computer technology is applied correctly through well designed, engineered and tested systems which are properly installed and maintained. It is essential that areas where reliability and quality can be improved are identified and that methods for assessing and assuring reliability are developed. The results of the Technical Committee Meeting on Reliability of Computerized Safety Systems at Nuclear Power Plants presented in this report are a step on the road to this goal of improved nuclear safety. Refs, figs and tabs

  18. The nuclear safety authority (ASN) presents its report on the status of nuclear safety and radiation protection in France in 2010

    International Nuclear Information System (INIS)

    2011-01-01

    After a presentation of the French nuclear safety authority (ASN) and of some events which occurred in 2010, this report present the actions performed by the ASN in different fields: nuclear activities (ionizing radiations and risks for health and for the environment), principles and actors of control of nuclear safety, radiation protection and environment protection, regulation, control of nuclear activities and of exposures to ionizing radiations, emergency situations, public information and transparency, international relationship. It proposes a regional overview of nuclear safety and radiation protection in France. It addresses the activities controlled by the ASN: medical and non medical usages of ionizing radiations, transportation of radioactive materials, electronuclear power stations, installations involved in the nuclear fuel cycle, research nuclear installations and other nuclear installations, safety in basic nuclear installation dismantling, radioactive wastes and polluted sites

  19. Safety and nuclear power

    International Nuclear Information System (INIS)

    Gittus, John; Gunning, Angela.

    1988-01-01

    Representatives of the supporters and opponents of civil nuclear power put forward the arguments they feel the public should consider when making up their mind about the nuclear industry. The main argument in favour of nuclear power is about the low risk in comparison with other risks and the amount of radiation received on average by the population in the United Kingdom from different sources. The aim is to show that the nuclear industry is fully committed to the cause of safety and this has resulted in a healthy workforce and a safe environment for the public. The arguments against are that the nuclear industry is deceitful, secretive and politically motivated and thus its arguments about safety, risks, etc, cannot be trusted. The question of safety is considered further - in particular the perceptions, definitions and responsibility. The economic case for nuclear electricity is not accepted. (U.K.)

  20. Nuclear Safety Culture

    International Nuclear Information System (INIS)

    2017-01-01

    Ethics is caring about people and Safety is caring that no physical harm comes to people.Therefore Safety is a type of Ethical Behavior. Culture: is The Way We Do Things Here.Safety Culture is mixture of organization traditions, values, attitudes and behaviors modeled by Its leaders and internalized by its members that serve to make nuclear safety the overriding priority. Safety Culture is that assembly of characteristics and attitudes in Organisations and individuals which established that, as an overriding priority, nuclear plant safety issues receive the attention warranted by their significance

  1. Leadership Actions to Improve Nuclear Safety Culture

    International Nuclear Information System (INIS)

    Clewett, L.K.

    2016-01-01

    The challenge many leaders face is how to effectively implement and then utilise the results of Safety Culture surveys. Bruce Power has recently successfully implemented changes to the Safety Culture survey process including how corrective actions were identified and implemented. The actions taken in response to the latest survey have proven effective with step change performance noted. Nuclear Safety is a core value for Bruce Power. Nuclear Safety at Bruce Power is based on the following four pillars: reactor safety, industrial safety, radiological safety and environmental safety. Processes and practices are in place to achieve a healthy Nuclear Safety Culture within Bruce Power such that nuclear safety is the overriding priority. This governance is based on industry leading practices which monitor, asses and take action to drive continual improvements in the Nuclear Safety Culture within Bruce Power.

  2. Reflections on a future international convention on safety in radioactive waste management - September 1994

    International Nuclear Information System (INIS)

    Arias Canete, A.

    1995-01-01

    This probably is a suitable moment for work to begin on an international Convention in this area, although it is a difficult task. Generally speaking, the RADWASS (Radioactive Waste Safety Standards) Programme has achieved sufficient consensus, and might serve as an important basis for work in relation to the Convention. The Convention should not go into highly technical details since consensus at this level is more difficult at the present moment, although this will undoubtedly be achieved in the medium term. An important element of the Convention should be the regulation of movements of radioactive wastes at international level. (orig./HP)

  3. Nuclear safety in perspective

    DEFF Research Database (Denmark)

    Andersson, K.; Sjöberg, B.M.D.; Lauridsen, Kurt

    2003-01-01

    The aim of the NKS/SOS-1 project has been to enhance common understanding about requirements for nuclear safety by finding improved means of communicat-ing on the subject in society. The project, which has been built around a number of seminars, wassupported by limited research in three sub......-projects: Risk assessment Safety analysis Strategies for safety management The report describes an industry in change due to societal factors. The concepts of risk and safety, safety management and systems forregulatory oversight are de-scribed in the nuclear area and also, to widen the perspective, for other...

  4. The convention on supplementary compensation for nuclear damage (CSC). A cornerstone of a global nuclear liability regime?

    International Nuclear Information System (INIS)

    Pelzer, Norbert

    2015-01-01

    International discussions on compensation of nuclear damage seem to be governed by the magic word ''global nuclear liability regime''. It is said that only such regime promises to guarantee full and timely compensation at conditions acceptable and favourable for both the victims and the operator liable and at the same time promotes nuclear industry. Surely, nuclear incidents may have worldwide implications, and a globally unified legal framework appears to be desirable or is even necessitated. But until today we have not yet achieved a global regime. There are international nuclear liability conventions some of which may be qualified to form such regime. But which of them is best qualified and which one could be accepted by all States? Mainly the USA opt for, and strongly support, the 1997 ''Convention on Supplementary Compensation for Nuclear Damage'' (CSC) to be the only international instrument which is apt to form a global regime. This paper will deal with the question whether this assertion is convincing. It will also be asked whether we need a global regime.

  5. The convention on supplementary compensation for nuclear damage (CSC). A cornerstone of a global nuclear liability regime?

    Energy Technology Data Exchange (ETDEWEB)

    Pelzer, Norbert

    2015-06-15

    International discussions on compensation of nuclear damage seem to be governed by the magic word ''global nuclear liability regime''. It is said that only such regime promises to guarantee full and timely compensation at conditions acceptable and favourable for both the victims and the operator liable and at the same time promotes nuclear industry. Surely, nuclear incidents may have worldwide implications, and a globally unified legal framework appears to be desirable or is even necessitated. But until today we have not yet achieved a global regime. There are international nuclear liability conventions some of which may be qualified to form such regime. But which of them is best qualified and which one could be accepted by all States? Mainly the USA opt for, and strongly support, the 1997 ''Convention on Supplementary Compensation for Nuclear Damage'' (CSC) to be the only international instrument which is apt to form a global regime. This paper will deal with the question whether this assertion is convincing. It will also be asked whether we need a global regime.

  6. Researches on nuclear criticality safety evaluation

    Energy Technology Data Exchange (ETDEWEB)

    Okuno, Hiroshi; Suyama, Kenya; Nomura, Yasushi [Japan Atomic Energy Research Inst., Tokai, Ibaraki (Japan). Tokai Research Establishment

    2003-10-01

    For criticality safety evaluation of burnup fuel, the general-purpose burnup calculation code, SWAT, was revised, and its precision was confirmed through comparison with other results from OECD/NEA's burnup credit benchmarks. Effect by replacing the evaluated nuclear data from JENDL-3.2 to ENDF/B-VI and JEF-2.2 was also studied. Correction factors were derived for conservative evaluation of nuclide concentrations obtained with the simplified burnup code ORIGEN2.1. The critical masses of curium were calculated and evaluated for nuclear criticality safety management of minor actinides. (author)

  7. Researches on nuclear criticality safety evaluation

    International Nuclear Information System (INIS)

    Okuno, Hiroshi; Suyama, Kenya; Nomura, Yasushi

    2003-01-01

    For criticality safety evaluation of burnup fuel, the general-purpose burnup calculation code, SWAT, was revised, and its precision was confirmed through comparison with other results from OECD/NEA's burnup credit benchmarks. Effect by replacing the evaluated nuclear data from JENDL-3.2 to ENDF/B-VI and JEF-2.2 was also studied. Correction factors were derived for conservative evaluation of nuclide concentrations obtained with the simplified burnup code ORIGEN2.1. The critical masses of curium were calculated and evaluated for nuclear criticality safety management of minor actinides. (author)

  8. Increasing Uncertainty: The Dangers of Relying on Conventional Forces for Nuclear Deterrence

    Science.gov (United States)

    2016-03-14

    72 | Air & Space Power Journal Increasing Uncertainty The Dangers of Relying on Conventional Forces for Nuclear Deterrence Jennifer Bradley To put...relationships and should serve as the cornerstone of US nuclear deterrence policy. Although Russia and China are not identified as adversaries of...exactly what has happened over the past year. The US decision to meet the needs of deterrence by relying less on nuclear weapons and instead devel- oping

  9. Framework of nuclear safety and safety assessment

    International Nuclear Information System (INIS)

    Furuta, Kazuo

    2007-01-01

    Since enormous energy is released by nuclear chain reaction mainly as a form of radiation, a great potential risk accompanies utilization of nuclear energy. Safety has been continuously a critical issue therefore from the very beginning of its development. Though the framework of nuclear safety that has been established at an early developmental stage of nuclear engineering is still valid, more comprehensive approaches are required having experienced several events such as Three Mile Island, Chernobyl, and JCO. This article gives a brief view of the most basic principles how nuclear safety is achieved, which were introduced and sophisticated in nuclear engineering but applicable also to other engineering domains in general. (author)

  10. Advanced research workshop: nuclear materials safety

    International Nuclear Information System (INIS)

    Jardine, L J; Moshkov, M M.

    1999-01-01

    The Advanced Research Workshop (ARW) on Nuclear Materials Safety held June 8-10, 1998, in St. Petersburg, Russia, was attended by 27 Russian experts from 14 different Russian organizations, seven European experts from six different organizations, and 14 U.S. experts from seven different organizations. The ARW was conducted at the State Education Center (SEC), a former Minatom nuclear training center in St. Petersburg. Thirty-three technical presentations were made using simultaneous translations. These presentations are reprinted in this volume as a formal ARW Proceedings in the NATO Science Series. The representative technical papers contained here cover nuclear material safety topics on the storage and disposition of excess plutonium and high enriched uranium (HEU) fissile materials, including vitrification, mixed oxide (MOX) fuel fabrication, plutonium ceramics, reprocessing, geologic disposal, transportation, and Russian regulatory processes. This ARW completed discussions by experts of the nuclear materials safety topics that were not covered in the previous, companion ARW on Nuclear Materials Safety held in Amarillo, Texas, in March 1997. These two workshops, when viewed together as a set, have addressed most nuclear material aspects of the storage and disposition operations required for excess HEU and plutonium. As a result, specific experts in nuclear materials safety have been identified, know each other from their participation in t he two ARW interactions, and have developed a partial consensus and dialogue on the most urgent nuclear materials safety topics to be addressed in a formal bilateral program on t he subject. A strong basis now exists for maintaining and developing a continuing dialogue between Russian, European, and U.S. experts in nuclear materials safety that will improve the safety of future nuclear materials operations in all the countries involved because of t he positive synergistic effects of focusing these diverse backgrounds of

  11. Nuclear Safety in Central and Eastern Europe

    International Nuclear Information System (INIS)

    2001-04-01

    Nuclear safety is one of the critical issues with respect to the enlargement of the European Union towards the countries of Central and Eastern Europe. In the context of the enlargement process, the European Commission overall strategy on nuclear safety matters has been to bring the general standard of nuclear safety in the pre-accession countries up to a level that would be comparable to the safety levels in the countries of the European Union. In this context, the primary objective of the project was to develop a common format and general guidance for the evaluation of the current nuclear safety status in countries that operate commercial nuclear power plants. Therefore, one of the project team first undertakings was to develop an approach that would allow for a consistent and comprehensive overview of the nuclear safety status in the CEEC, enabling an equal treatment of the countries to be evaluated. Such an approach, which did not exist, should also ensure identification of the most important safety issues of the individual nuclear power plants. The efforts resulted in the development of the ''Performance Evaluation Guide'', which focuses on important nuclear safety issues such as plant design and operation, the practice of performing safety assessments, and nuclear legislation and regulation, in particular the role of the national regulatory body. Another important aspect of the project was the validation of the Performance Evaluation Guide (PEG) by performing a preliminary evaluation of nuclear safety in the CEEC, namely in Bulgaria, Czech Republic, Hungary, Lithuania, Romania, Slovak Republic, and Slovenia. The nuclear safety evaluation of each country was performed as a desktop exercise, using solely available documents that had been prepared by various Western institutions and the countries themselves. Therefore, the evaluation is only of a preliminary nature. The project did not intend to re-assess nuclear safety, but to focus on a comprehensive summary

  12. Safety culture in nuclear installations: Bangladesh perspectives and key lessons learned from major events

    International Nuclear Information System (INIS)

    Jalil, A.; Rabbani, G.

    2002-01-01

    Steps necessary to be taken to ensure safety in nuclear installations are suggested. One of the steps suggested is enhancing the safety culture. It is necessary to gain a common understanding of the concept itself, the development stages of safety culture by way of good management practices and leadership for safety culture improvement in the long-term. International topical meetings on safety culture may serve as an important forum for exchange of experiences. From such conventions new initiatives and programmes may crop up which when implemented around the world is very likely to improve safety management and thus boost up the safety culture in nuclear installations. International co-operation and learning are to be prompted to facilitate the sharing of the achievements to face the challenges involved in the management of safety and fixing priorities for future work and identify areas of co-operations. Key lessons learned from some major events have been reported. Present status and future trend of nuclear safety culture in Bangladesh have been dealt with. (author)

  13. High committee for nuclear safety transparency and information. March 17, 2009 meeting

    International Nuclear Information System (INIS)

    2009-03-01

    The high committee for the nuclear safety transparency and information (HCTISN) is an information, consultation and debate authority devoted to the assessment of the risks linked with nuclear activities and to the analysis of their impact on public health, on the environment and on nuclear safety. Each year, the HCTISN organizes several ordinary meetings in order to analyze some specific topics of the moment. This meeting was organized around 9 main topics: 1 - presentation by the French nuclear safety authority (ASN) of a dismantling strategy for nuclear facilities, in particular taking into account a final state for the site and the information of populations; 2 - status of the next campaign of iodine tablets distribution; 3 - the management of ancient uranium mines and in particular the long-term environmental and health impact of mine tailings; 4 - the implementation of the high committee's recommendations; 5 - work progress of the working group on information transparency; 6 - Areva's invitation of the working group on information transparency to assist to the organisation of a Mox fuel convoy between Cherbourg and Japan; 7 - progress of the working group on the elaboration of a 'communication scale' comparable to the INES scale; 8 - presentation of the meetings organized by the ANCLI (French national association of local information commissions) about the implementation of the Aarhus convention; 9 - presentation by the IRSN (Institute of radiation protection and nuclear safety) of its communication approach towards the public. (J.S.)

  14. Nuclear safety in perspective

    International Nuclear Information System (INIS)

    Andersson, K.; Sjoeberg, B.M.D.; Lauridsen, K.; Wahlstroem, B.

    2002-06-01

    The aim of the NKS/SOS-1 project has been to enhance common understanding about requirements for nuclear safety by finding improved means of communicating on the subject in society. The project, which has been built around a number of seminars, was supported by limited research in three sub-projects: 1) Risk assessment, 2) Safety analysis, and 3) Strategies for safety management. The report describes an industry in change due to societal factors. The concepts of risk and safety, safety management and systems for regulatory oversight are described in the nuclear area and also, to widen the perspective, for other industrial areas. Transparency and public participation are described as key elements in good risk communication, and case studies are given. Environmental Impact Assessment and Strategic Environmental Assessment are described as important overall processes within which risk communication can take place. Safety culture, safety indicators and quality systems are important concepts in the nuclear safety area are very useful, but also offer important challenges for the future. They have been subject to special attention in the project. (au)

  15. Safety of Nuclear Power Plants: Design. Specific Safety Requirements

    International Nuclear Information System (INIS)

    2012-01-01

    On the basis of the principles included in the Fundamental Safety Principles, IAEA Safety Standards Series No. SF-1, this Safety Requirements publication establishes requirements applicable to the design of nuclear power plants. It covers the design phase and provides input for the safe operation of the power plant. It elaborates on the safety objective, safety principles and concepts that provide the basis for deriving the safety requirements that must be met for the design of a nuclear power plant. Contents: 1. Introduction; 2. Applying the safety principles and concepts; 3. Management of safety in design; 4. Principal technical requirements; 5. General plant design; 6. Design of specific plant systems.

  16. The IAEA Conventions on Early Notification of a Nuclear Accident and on Assistance in the Case of a Nuclear Accident or Radiological Emergency

    International Nuclear Information System (INIS)

    Moser, B.

    1989-01-01

    This article provides a comprehensive analysis of the provisions of both IAEA Conventions. Special attention is paid to the rules of the Convention on Early Notification which identify the events subject to notification and the content and addresses of the information to be provided with regard to a nuclear accident, as well as to the provisions of the Convention on Assistance concerning the request and grant of international assistance with regard to a nuclear accident and the duties attributed in this field to the IAEA. The author also considers the liability questions raised by that Convention. (NEA) [fr

  17. No nuclear safety without security

    International Nuclear Information System (INIS)

    Anon.

    2016-01-01

    ead of Health and Safety - Nuclear Safety and Corporate Security at ENGIE Benelux, Pierre Doumont has the delicate job of defining and implementing measures, including cybersecurity, to prevent the risk of malevolent acts against tangible and intangible assets. He gives some hints on the contribution of nuclear security to safety.

  18. Current trends in codal requirements for safety in operation of nuclear power plants

    International Nuclear Information System (INIS)

    Srivasista, K.; Shah, Y.K.; Gupta, S.K.

    2006-01-01

    The Code of practice on safety in nuclear power plant operation states the requirements to be met during operation of a nuclear power plant for assuring safety. Among various stages of authorization, regulatory body issues authorization for operation of a nuclear power plant, monitors and enforces regulatory requirements. The responsible organization shall have overall responsibility and the plant management shall have the primary responsibility for ensuring safe and efficient operation of its nuclear power plants. A set of codal requirements covering technical and administrative aspects are mandatory for the plant management to implement to ensure that the nuclear power plant is operated in accordance with the design intent. Requirements on operating procedures and instructions establish operation and maintenance, inspection and testing of the plant in a planned and systematic way. The requirements on emergency preparedness programme establish with a reasonable assurance that, in the event of an emergency situation, appropriate measures can be taken to mitigate the consequences. Commissioning requirements verify performance criteria during commissioning to ensure that the design intent and QA requirements are met. Several modifications in systems important to safety required during operation of a nuclear power plant are regulated. However new operational codal requirements arising out of periodic safety review, operational experience feedback, life management, probabilistic safety assessment, physical security, safety convention and obligations and decommissioning are not covered in the present code of practice for safety in nuclear power plant operation. Codal provisions on 'Review by operating organization on aspects of design having implications on operability' are also required to be addressed. The merits in developing such a methodology include acceptance of the design by operating organization, ensuring maintainability, proper layout etc. in the new designs

  19. Risk communication activities toward nuclear safety in Tokai: your safety is our safety

    International Nuclear Information System (INIS)

    Tsuchiya, T.

    2007-01-01

    As several decades have passed since the construction of nuclear power plants began, residents have become gradually less interested in nuclear safety. The Tokai criticality accident in 1909, however, had roused residents in Tokai-Mura to realize that they live with nuclear technology risks. To prepare a field of risk communication, the Tokai-Mura C 3 project began as a pilot research project supported by NISA. Alter the project ended, we are continuing risk. communication activities as a non-profit organisation. The most important activity of C 3 project is the citizen's inspection programme for nuclear related facilities. This programme was decided by participants who voluntarily applied to the project. The concept of the citizen's inspection programme is 'not the usual facility tours'. Participants are involved from the planning stage and continue to communicate with workers of the inspected nuclear facility. Since 2003, we have conducted six programmes for five nuclear related organisations. Participants evaluated that radiation protection measures were near good but there were some problems concerning the worker's safety and safety culture, and proposed a mixture of advice based on personal experience. Some advice was accepted and it did improve the facility's safety measures. Other suggestions were not agreed upon by nuclear organisations. The reason lies in the difference of concept between the nuclear expert's 'safety' and the citizen's 'safety'. Residents do not worry about radiation only, but also about the facility's safety as a whole including the worker's safety. They say, 'If the workers are not safe, you also are unable to protect us'. Although the disagreement remained, the participants and the nuclear industry learned much about each other. Participating citizens received a substantial amount of knowledge about the nuclear industry and its safety measures, and feel the credibility and openness of the nuclear industry. On the other hand, the nuclear

  20. Nuclear safety in Slovak Republic. Regulatory aspects of NPP nuclear safety

    International Nuclear Information System (INIS)

    Lipar, M.

    1999-01-01

    Regulatory Authority (UJD) is appointed by the Slovak Republic National Council as an Executive Authority for nuclear safety supervision. Nuclear safety legislation, organisation and resources of UJD, its role and responsibilities are described together with its inspection and licensing functions and International cooperation concerning improvements of safety effectiveness. Achievements of UJD are listed in detail

  1. Analysis of effect of safety classification on DCS design in nuclear power plants

    International Nuclear Information System (INIS)

    Gou Guokai; Li Guomin; Wang Qunfeng

    2011-01-01

    By analyzing the safety classification for the systems and functions of nuclear power plants based on the general design requirements for nuclear power plants, especially the requirement of availability and reliability of I and C systems, the characteristics of modem DCS technology and I and C products currently applied in nuclear power field are interpreted. According to the requirements on the safety operation of nuclear power plants and the regulations for safety audit, the effect of different safety classifications on DCS design in nuclear power plants is analyzed, by considering the actual design process of different DCS solutions in the nuclear power plants under construction. (authors)

  2. Nuclear safety project

    International Nuclear Information System (INIS)

    1984-11-01

    The semiannual progress report 1984/1 is a description of work within the Nuclear Safety Project performed in the first six month of 1984 in the nuclear safety field by KfK institutes and departements and by external institutions on behalf of KfK. The chosen kind of this report is that of short summaries, containing the topics work performed, results obtained and plans for future work. This report was compiled by the project management. (orig./RW) [de

  3. Project Nuclear Safety

    International Nuclear Information System (INIS)

    1981-11-01

    The semiannual progress report 1981/1 is a description of work within the Nuclear Safety Project performed in the first six month of 1981 in the nuclear safety field by KfK institutes and departments and by external institutions on behalf of KfK. The chosen kind of this report is that of short summaries, containing the topics, work performed, results obtained, plans for future work. This report was compiled by the project management. (orig.) [de

  4. Nuclear safety research master plan

    Energy Technology Data Exchange (ETDEWEB)

    Ha, Jae Joo; Yang, J. U.; Jun, Y. S. and others

    2001-06-01

    The SRMP (Safety Research Master Plan) is established to cope with the changes of nuclear industry environments. The tech. tree is developed according to the accident progress of the nuclear reactor. The 11 research fields are derived to cover the necessary technologies to ensure the safety of nuclear reactors. Based on the developed tech. tree, the following four main research fields are derived as the main safety research areas: 1. Integrated nuclear safety enhancement, 2. Thermal hydraulic experiment and assessment, 3. Severe accident management and experiment, and 4. The integrity of equipment and structure. The research frame and strategies are also recommended to enhance the efficiency of research activity, and to extend the applicability of research output.

  5. 11-th International conference Nuclear power safety and nuclear education - 2009. Abstracts. Part 1. Session: Safety of nuclear technology; Innovative nuclear systems and fuel cycle; Nuclear knowledge management

    International Nuclear Information System (INIS)

    2009-01-01

    The book includes abstracts of the 11-th International conference Nuclear power safety and nuclear education - 2009 (29 Sep - 2 Oct, 2009, Obninsk). Problems of safety of nuclear technology are discussed, innovative nuclear systems and fuel cycles are treated. Abstracts on professional education for nuclear power and industry are presented. Nuclear knowledge management are discussed

  6. Study on team characteristics influencing on nuclear safety culture in Korea based on Bayesian networks

    International Nuclear Information System (INIS)

    Young-gab, K.; Chan-ho, S.; Jeong-jin, P.

    2014-01-01

    The safety culture of Korean nuclear power plants has been settled down as an organizational culture since the Chernobyl accident in 1986. Reason (1997) proposed that safety culture is a sub-culture of corporate culture and sub-culture is a term that can be used interchangeably to a sub-group of people (i.e., department, workgroup). Therefore, the safety culture of organization comprised of various teams can be told as a culture to reflect team characteristics and interact with each other. Team characteristics have something to do with a successful task performance and task efficiency. However, the team characteristics in nuclear power plant have to consider safety preferentially rather than performance. Team characteristics for a safety are necessary to ensure and enhance the safety of safety-critical system. This paper proposed team characteristics for a safety which influence on the strong and vulnerable area of safety culture. These characteristics were analyzed on the basis of the safety culture evaluation which was performed to measure the level of plant workers' safety culture in 2013. The model of team characteristics was constructed considering Bayesian inference and the result was proposed according to workers' awareness. Safety team characteristics have a direct or indirect effect on the safety of nuclear power plants. Therefore, if they are improved and trained continuously, the safety of nuclear power plants might be enhanced. (author)

  7. Study on team characteristics influencing on nuclear safety culture in Korea based on Bayesian networks

    Energy Technology Data Exchange (ETDEWEB)

    Young-gab, K.; Chan-ho, S.; Jeong-jin, P., E-mail: iamkyg@khnp.co.kr, E-mail: chsung@khnp.co.kr, E-mail: jjpark82@khnp.co.kr [Korea Hydro & Nuclear Power Co., Central Research Inst., Yuseong-gu, Daejeon (Korea, Republic of)

    2014-07-01

    The safety culture of Korean nuclear power plants has been settled down as an organizational culture since the Chernobyl accident in 1986. Reason (1997) proposed that safety culture is a sub-culture of corporate culture and sub-culture is a term that can be used interchangeably to a sub-group of people (i.e., department, workgroup). Therefore, the safety culture of organization comprised of various teams can be told as a culture to reflect team characteristics and interact with each other. Team characteristics have something to do with a successful task performance and task efficiency. However, the team characteristics in nuclear power plant have to consider safety preferentially rather than performance. Team characteristics for a safety are necessary to ensure and enhance the safety of safety-critical system. This paper proposed team characteristics for a safety which influence on the strong and vulnerable area of safety culture. These characteristics were analyzed on the basis of the safety culture evaluation which was performed to measure the level of plant workers' safety culture in 2013. The model of team characteristics was constructed considering Bayesian inference and the result was proposed according to workers' awareness. Safety team characteristics have a direct or indirect effect on the safety of nuclear power plants. Therefore, if they are improved and trained continuously, the safety of nuclear power plants might be enhanced. (author)

  8. Progress of nuclear safety research, (1)

    International Nuclear Information System (INIS)

    Amano, Hiroshi; Nakamura, Hiroei; Nozawa, Masao

    1981-01-01

    The Japan Atomic Energy Research Institute was established in 1956 in conformity with the national policy to extensively conduct the research associated with nuclear energy. Since then, the research on nuclear energy safety has been conducted. In 1978, the Division of Reactor Safety was organized to conduct the large research programs with large scale test facilities. Thereafter, the Divisions of Reactor Safety Evaluation, Environmental Safety Research and Reactor Fuel Examination were organized successively in the Reactor Safety Research Center. The subjects of research have ranged from the safety of nuclear reactors to that in the recycling of nuclear fuel. In this pamphlet, the activities in JAERI associated with the safety research are reported, which have been carried out in the past two years. Also, the international cooperation research program in which JAERI participated is included. This pamphlet consists of two parts, and in this Part 1, the reactor safety research is described. The safety of nuclear fuel, the integrity and safety of pressure boundary components, the engineered safety in LOCA, fuel behavior in accident and others are reported. (Kako, I.)

  9. Status of Nuclear Safety evaluation in China

    International Nuclear Information System (INIS)

    Tian Jiashu

    1999-01-01

    Chinese nuclear safety management and control follows international practice, the regulations are mainly from IAEA with the Chinese condition. The regulatory body is National Nuclear Safety Administration (NNSA). The nuclear safety management, surveillance, safety review and evaluation are guided by NNSA with technical support by several units. Beijing Review Center of Nuclear Safety is one of these units, which was founded in 1987 within Beijing Institute of nuclear Engineering (BINE), co-directed by NNSA and BINE, it is the first technical support team to NNSA. Most of the safety reviews and evaluations of Chinese nuclear installations has been finished by this unit. It is described briefly in this paper that the NNSA's main function and organization, regulations on the nuclear safety, procedure of application and issuing of license, the main activities performed by Beijing Review Center of Nuclear Safety, the situation of severe accident analyses in China, etc. (author)

  10. Nuclear safety endeavour in Korea

    International Nuclear Information System (INIS)

    Sang-hoon lee

    1987-01-01

    Korea's nuclear power plant program is growing. As it grows, nuclear safety becomes an important issue. This article traces the development of Korean nuclear power program, the structure of the nuclear industries, the Nuclear Safety Center and its roles in the regulation and licensing of nuclear power plant, and also identifies some of the activities carried out to enhance the safety of nuclear power plants. (author)

  11. Nuclear power safety economics

    International Nuclear Information System (INIS)

    Legasov, V.A.; Demin, V.F.; Shevelev, Ya.V.

    1984-01-01

    The existing conceptual and methodical basis for the decision-making process insuring safety of the nuclear power and other (industrial and non-industrial) human activities is critically analyzed. Necessity of development a generalized economic safety analysis method (GESAM) is shown. Its purpose is justifying safety measures. Problems of GESAM development are considered including the problem of costing human risk. A number of suggestions on solving them are given. Using the discounting procedure in the assessment of risk or detriment caused by harmful impact on human health is substantiated. Examples of analyzing some safety systems in the nuclear power and other spheres of human activity are given

  12. The directive establishing a community framework for the nuclear safety of nuclear installations: the European Union approach to nuclear safety

    International Nuclear Information System (INIS)

    Garribba, M.; Chirtes, A.; Nauduzaite, M.

    2009-01-01

    This article aims at explaining the evolution leading to the adoption of the recent Council Directive 2009/71/EURATOM establishing a Community framework for the nuclear safety of nuclear installations adopted with the consent of all 27 members states following the overwhelming support of the European Parliament, that creates for the first time, a binding legal framework that brings legal certainty to European Union citizens and reinforces the role and independence of national regulators. The paper is divided into three sections. The first section addresses the competence of the European Atomic energy Community to legislate in the area of nuclear safety. It focuses on the 2002 landmark ruling of the European Court of justice that confirmed this competence by recognizing the intrinsic link between radiation protection and nuclear safety. The second part describes the history of the Nuclear safety directive from the initial 2003 European Commission proposal to today 's text in force. The third part is dedicated to a description of the content of the Directive and its implications on the further development of nuclear safety in the European Union. (N.C.)

  13. Manche storage Centre. Information report on nuclear safety and radiation protection 2014. Annual report 2014

    International Nuclear Information System (INIS)

    2015-06-01

    After a presentation of the Manche Storage Centre (CSM), the first French centre of surface storage of weakly and moderately radioactive wastes, of its history, its buildings and activities, of the multi-layer cover, of the water management system (installation, controls, sampling), this report then describes the measures related to nuclear safety (principles and objectives), the management of conventional and nuclear wastes produced by the Centre and its other environmental impacts. The follow up of the installations and of their effluents and releases are then addressed: origin, locations and results of radiological controls of rainfalls, of risky effluents, of underground waters, of rivers, impacts of the Centre on its environment (releases in the sea, in rivers, in sediments). The measures related to radiation protection are described: principles, staff dosimetry, and personnel safety. The next part presents the nuclear event scale (INES) and indicates that no incident occurred in 2014. Finally the actions related to public information and transparency are summarized. Recommendations of the CHSCT are reported at the end

  14. NPP Mochovce nuclear safety enhancement program

    International Nuclear Information System (INIS)

    Cech, J.; Baumester, P.

    1997-01-01

    Nuclear power plant Mochovce is currently under construction and an extensive nuclear safety enhancement programme is under way. The upgrading and modifications are based on IAEA documents and on those of the Nuclear Regulatory Authority of the Slovak Republic. Based on a contract concluded with Riskaudit from the CEC, safety examinations of the Mochovce design were performed. An extensive list of technical specifications of safety measures is given. (M.D.)

  15. Progress of nuclear safety research, 1990

    International Nuclear Information System (INIS)

    1990-07-01

    Since the Japan Atomic Energy Research Institute (JAERI) was founded as a nonprofit, general research and development organization for the peaceful use of nuclear energy, it has actively pursued the research and development of nuclear energy. Nuclear energy is the primary source of energy in Japan where energy resources are scarce. The safety research is recognized at JAERI as one of the important issues to be clarified, and the safety research on nuclear power generation, nuclear fuel cycle, waste management and environmental safety has been conducted systematically since 1973. As of the end of 1989, 38 reactors were in operation in Japan, and the nuclear electric power generated in 1988 reached 29 % of the total electric power generated. 50 years have passed since nuclear fission was discovered in 1939. The objective of the safety research at JAERI is to earn public support and trust for the use of nuclear energy. The overview of the safety research at JAERI, fuel behavior, reliability of reactor structures and components, reactor thermal-hydraulics during LOCA, safety assessment of nuclear power plants and nuclear fuel cycle facilities, radioactive waste management and environmental radioactivity are reported. (K.I.)

  16. Safety Aspects of Radioactive Waste Management in Different Nuclear Fuel Cycle Policies, a Comparative Study

    International Nuclear Information System (INIS)

    Gad Allah, A.A.

    2009-01-01

    With the increasing demand of energy worldwide, and due to the depletion of conventional natural energy resources, energy policies in many countries have been devoted to nuclear energy option. On the other hand, adopting a safe and reliable nuclear fuel cycle concept guarantees future nuclear energy sustain ability is a vital request from environmental and economic point of views. The safety aspects of radioactive waste management in the nuclear fuel cycle is a topic of great importance relevant to public acceptance of nuclear energy and the development of nuclear technology. As a part of nuclear fuel cycle safety evaluation studies in the department of nuclear fuel cycle safety, National Center for Nuclear Safety and Radiation Control (NCNSRC), this study evaluates the radioactive waste management policies and radiological safety aspects of three different nuclear fuel cycle policies. The once-through fuel cycle (OT- fuel cycle) or the direct spent fuel disposal concept for both pressurized light water reactor ( PWR) and pressurized heavy water reactor (PHWR or CANDU) systems and the s elf-generated o r recycling fuel cycle concept in PWR have been considered in the assessment. The environmental radiological safety aspects of different nuclear fuel cycle options have been evaluated and discussed throughout the estimation of radioactive waste generated from spent fuel from these fuel cycle options. The decay heat stored in the spent fuel was estimated and a comparative safety study between the three fuel cycle policies has been implemented

  17. Statement to IAEA Ministerial Conference on Nuclear Safety, 20 June 2011, Vienna, Austria

    International Nuclear Information System (INIS)

    Amano, Y.

    2011-01-01

    This Ministerial Conference is the first high-level global gathering on nuclear safety since the Fukushima Daiichi accident in Japan. We have a very important task before us, which is to pave the way for a post-Fukushima nuclear safety framework, based on lessons learned from that accident. This Conference is crucial for the future of nuclear power. The presence of so many ministers and over one thousand participants shows how seriously the IAEA Member States take nuclear safety. The eyes of the world will be upon us in the next few days. Public confidence in the safety of nuclear power has been badly shaken. However, nuclear power will remain important for many countries, so it is imperative that the most stringent safety measures are implemented everywhere. This is also true for countries opting to phase out their nuclear power programmes, whose plants will continue to operate for many years. We need to respond urgently to the public anxiety caused by the accident, while maintaining a firm long-term commitment to continuously improving nuclear safety. 'Business as usual' is not an option. Nuclear accidents respect no borders, so an international approach to nuclear safety is essential. The IAEA is the global body which you, our Member States, have created to help ensure that the most robust international nuclear safety framework is established, implemented and continuously updated

  18. Nuclear safety infrastructure

    International Nuclear Information System (INIS)

    Moffitt, R.L.

    2010-01-01

    The introduction of nuclear power in any country requires the early establishment of a long term nuclear safety infrastructure. This is necessary to ensure that the siting, design, construction, commissioning, operation and dismantling of the nuclear power plant and any other related installations, as well as the long term management of radioactive waste and spent fuel, are conducted in a safe and secure manner. The decision to undertake a nuclear power program is a major commitment requiring strict attention to nuclear safety. This commitment is a responsibility to not only the citizens of the country developing such a program, but also a responsibility to the international community. Nobody can take on this responsibility or make the critical decisions except the host country. It is important to make sure that the decision making process and the development activities are done in as open a manner as possible allowing interested stakeholders the opportunity to review and comment on the actions and plans. It cannot be overemphasized that everyone involved in a program to develop nuclear power carries a responsibility for ensuring safety. While it is clear that the key decisions and activities are the responsibility of the host country, it is also very important to recognize that help is available. The IAEA, OECD-NEA, WANO and other international organizations along with countries with established nuclear power programs are available to provide information and assistance. In particular, the IAEA and OECD-NEA have published several documents regarding the development of a nuclear power program and they have been and continue to support many meetings and seminars regarding the development of nuclear power programs

  19. Progress of nuclear safety research, (2)

    International Nuclear Information System (INIS)

    Amano, Hiroshi; Nakamura, Hiroei; Nozawa, Masao

    1981-01-01

    The Japan Atomic Energy Research Institute was established in 1956 in conformity with the national policy to extensively conduct the research associated with nuclear energy. Since then, the research on nuclear energy safety has been conducted. In 1978, the Division of Reactor Safety was organized to conduct the large research programs with large scale test facilities. Thereafter, the Divisions of Reactor Safety Evaluation, Environmental Safety Research and Reactor Fuel Examination were organized successevely in the Reactor Safety Research Center. The subjects of research have ranged from the safety of nuclear reactors to that in the recycling of nuclear fuel. In this pamphlet, the activities in JAERI associated with the safety research are reported, which have been carried out in the past two years. Also the international cooperation research program in which JAERI participated is included. This pamphlet consists of two parts and in this Part 2, the environmental safety research is described. The evaluation and analysis of environmental radioactivity, the study on radioactive waste management and the studies on various subjects related to environmental safety are reported. (Kako, I.)

  20. Global Nuclear Safety and Security Network

    International Nuclear Information System (INIS)

    Guo Lingquan

    2013-01-01

    The objectives of the Regulatory Network are: - to contribute to the effectiveness of nuclear regulatory systems; - to contribute to continuous enhancements, and - to achieve and promote radiation and nuclear safety and security by: • Enhancing the effectiveness and efficiency of international cooperation in the regulation of nuclear and radiation safety of facilities and activities; • Enabling adequate access by regulators to relevant safety and security information; • Promoting dissemination of information on safety and security issues as well as information of good practices for addressing and resolving these issues; • Enabling synergies among different web based networks with a view to strengthening and enhancing the global nuclear safety framework and serving the specific needs of regulators and international organizations; • Providing additional information to the public on international regulatory cooperation in safety and security matters

  1. Management of operational safety in nuclear power plants. INSAG-13. A report by the International Nuclear Safety Advisory Group

    International Nuclear Information System (INIS)

    1999-01-01

    The International Atomic Energy Agency's activities relating to nuclear safety are based upon a number of premises. First and foremost, each Member State bears full responsibility for the safety of its nuclear facilities. States can be advised, but they cannot be relieved of this responsibility. Secondly, much can be gained by exchanging experience; lessons learned can prevent accidents. Finally, the image of nuclear safety is international; a serious accident anywhere affects the public's view of nuclear power everywhere. With the intention of strengthening its contribution to ensuring the safety of nuclear power plants, the IAEA established the International Nuclear Safety Advisory Group (INSAG), whose duties include serving as a forum for the exchange of information on nuclear safety issues of international significance and formulating, where possible, commonly shared safety principles. Engineering issues have received close attention from the nuclear community over many years. However, it is only in the last decade or so that organizational and cultural issues have been identified as vital to achieving safe operation. INSAG's publication No. 4 has been widely recognized as a milestone in advancing thinking about safety culture in the nuclear community and more widely. The present report deals with the framework for safety management that is necessary in organizations in order to promote safety culture. It deals with the general principles underlying the management of operational safety in a systematic way and provides guidance on good practices. It also draws on the results of audits and reviews to highlight how shortfalls in safety management have led to incidents at nuclear power plants. In addition, several specific issues are raised which are particularly topical in view of organizational changes that are taking place in the nuclear industry in various countries. Advice is given on how safety can be managed during organizational change, how safety

  2. Code on the safety of civilian nuclear fuel cycle installations

    International Nuclear Information System (INIS)

    1996-01-01

    The 'Code' was promulgated by the National Nuclear Safety Administration (NSSA) on June 17, 1993, which is applicable to civilian nuclear fuel fabrication, processing, storage and reprocessing installations, not including the safety requirements for the use of nuclear fuel in reactors. The contents of the 'Code' involve siting, design, construction, commissioning, operation and decommissioning of fuel cycle installation. The NNSA shall be responsible for the interpretation of this 'Code'

  3. Nuclear safety research collaborations between the U.S. and Russian Federation International Nuclear Safety Centers

    International Nuclear Information System (INIS)

    Hill, D. J.; Braun, J. C.; Klickman, A. E.; Bougaenko, S. E.; Kabonov, L. P.; Kraev, A. G.

    2000-01-01

    The Russian Federation Ministry for Atomic Energy (MINATOM) and the US Department of Energy (USDOE) have formed International Nuclear Safety Centers to collaborate on nuclear safety research. USDOE established the US Center (ISINSC) at Argonne National Laboratory (ANL) in October 1995. MINATOM established the Russian Center (RINSC) at the Research and Development Institute of Power Engineering (RDIPE) in Moscow in July 1996. In April 1998 the Russian center became a semi-independent, autonomous organization under MINATOM. The goals of the center are to: Cooperate in the development of technologies associated with nuclear safety in nuclear power engineering; Be international centers for the collection of information important for safety and technical improvements in nuclear power engineering; and Maintain a base for fundamental knowledge needed to design nuclear reactors. The strategic approach is being used to accomplish these goals is for the two centers to work together to use the resources and the talents of the scientists associated with the US Center and the Russian Center to do collaborative research to improve the safety of Russian-designed nuclear reactors. The two centers started conducting joint research and development projects in January 1997. Since that time the following ten joint projects have been initiated: INSC databases--web server and computing center; Coupled codes--Neutronic and thermal-hydraulic; Severe accident management for Soviet-designed reactors; Transient management and advanced control; Survey of relevant nuclear safety research facilities in the Russian Federation; Computer code validation for transient analysis of VVER and RBMK reactors; Advanced structural analysis; Development of a nuclear safety research and development plan for MINATOM; Properties and applications of heavy liquid metal coolants; and Material properties measurement and assessment. Currently, there is activity in eight of these projects. Details on each of these

  4. Safety management in nuclear technology. Proceedings

    International Nuclear Information System (INIS)

    2008-01-01

    At the symposium of TueV Sued AG (Munich, Federal Republic of Germany) held in Munich on 28 and 29 October 2008, the following lectures were held: (1) Fundamental requirements of the management system in nuclear technology - Experiences from the international developments at IAEA and WENRA (M. Herttrich); (2) Information from a comparison of requirements of safety management systems (B. Kallenbach-Herbert); (3) Requirements of a modern management system in German nuclear power plants from the view of nuclear safety (D. Majer); (4) Requirements on safety management in module 8 of the regulations project (M. Maqua); (5) Requirements on the management system in nuclear power plants according to GRS-229 and developments at the KTA 1402 ''Integrated management system for safe operation of nuclear power plants (in progress)'' (C. Verstegen); (6) Experiences from the development and implementation of safety management systems in connection with the works management of a nuclear power plant (K. Ramler); (7) Design of a safety management system of a nuclear power plant in consideration of existing management systems (U. Naumann); (8) Experiences in the utilization and evaluation of a safety management system (J. Ritter); (9) Aspects of leadership of safety management systems (S. Seitz); (10) Management of safety or safety management system? Prevailing or administration? (A. Frischknecht); (11) Change management - strategies for successful transfer of new projects: How can I motivate co-workers for a further development of the safety management system? (U. Schnabel); (12) Requirements concerning indicators in integrated management systems and safety management systems (J. Stiller); (13) Integration of proactive and reactive indicators in the safety management system (B. Fahlbruch); (14) What do indicators show? About the use of indicators by regulatory authorities (A. Kern); (15) Safety management and radiation protection in nuclear technology (K. Grantner); (16) Any more

  5. Discussion on unpacking inspection of imported civil nuclear safety equipment

    International Nuclear Information System (INIS)

    Li Chan; Zhang Wenguang; Li Maolin; Li Shixin; Jin Gang; Yao Yuan

    2014-01-01

    This paper introduces the purpose, contents, process and requirements of unpacking inspection which is the second stage of safety inspection of imported civil nuclear safety equipment, expresses review key points on application documents of unpacking inspection, processes of witness on-the-spot before unpacking inspection outside the civil nuclear facilities by the test agency, discusses understanding of unpacking inspection, supervision of manufacture, inspection prior to shipment, supervision of loading and acceptance by the unit operating civil nuclear facilities, reports on unpacking inspection. Some suggestions on reinforcing the unpacking inspection in China are concerned. (authors)

  6. Nuclear safety in France

    International Nuclear Information System (INIS)

    Queniart, D.

    1989-12-01

    This paper outlines the organizational and technical aspects of nuclear safety in France. From the organization point of view, the roles of the operator, of the safety authority and of the Institute for Protection and Nuclear Safety are developed. From the technical viewpoint, the evolution of safety since the beginning of the French nuclear programme, the roles of deterministic and probabilistic methods and the severe accident policy (prevention and mitigation, venting containment) in France are explained

  7. The International Atomic Energy Agency (IAEA) standards and recommendations on radioactive waste and transport safety

    International Nuclear Information System (INIS)

    Warnecke, E.; Rawl, R.

    1996-01-01

    The International Atomic Energy Agency (IAEA) publishes standards and recommendations on all aspects of nuclear safety in its Safety Series, which includes radioactive waste management and transport of radioactive materials. Safety Series documents may be adopted by a State into its national legal framework. Most of the States used the IAEA transport regulations (Safety Series No. 6) as a basis for their national regulation. The two highest ranking documents of the Radioactive Waste Safety Standards (RADWASS) programme, the Safety Fundamentals and the Safety Standard on the national waste management system, have been published. Both provide impetus into the waste management safety convention, a legally binding document for signatory states, which is being drafted. The already existing Convention on Nuclear Safety covers the management of radioactive waste at land-based civil nuclear power plants. (author) 1 fig., 18 refs

  8. Report on transparency and nuclear safety. Saclay 2010

    International Nuclear Information System (INIS)

    2010-01-01

    After a presentation of the Saclay site, this report indicates the measures implemented regarding nuclear safety in the different Saclay basic nuclear installations, in terms of organization, general technical aspects, technical aspects associated with the different risks, emergency situation management, inspections, audits, and controls. It indicates the organisation of radiation protection, reports important events which occurred in 2010, and comments dose measurements performed on the different personnel (belonging to the CEA or out-sourced personnel). It reports and comments significant events about nuclear safety and radiation protection, and which occurred in the different installations. It reports and comments results of release measurements and of the impact of the centre on the environment (gas and liquid releases and their impacts on the environment, impacts due to radionuclide gas releases, gas and liquid radiological impact, chemical impact of gas and liquid releases, environment monitoring). It addresses the issue of radioactive wastes which are stored in the Saclay nuclear installations (measures to limit their volume and their impact on health and on the environment, notably soils and waters, nature and quantities of stored wastes)

  9. Report on transparency and nuclear safety. Saclay 2009

    International Nuclear Information System (INIS)

    2009-01-01

    After a presentation of the Saclay site, this report indicates the measures implemented regarding nuclear safety in the different Saclay basic nuclear installations, in terms of organization, general technical aspects, technical aspects associated with the different risks, emergency situation management, inspections, audits, and controls. It indicates the organisation of radiation protection, reports important events which occurred in 2009, and comments dose measurements performed on different personnel (belonging to the CEA or out-sourced). It reports and comments significant events about nuclear safety and radiation protection, and which occurred in the different installations. It reports and comments results of release measurements and of the impact of the centre on the environment (gas and liquid releases and their impacts on the environment, impacts due to radionuclide gas releases, gas and liquid radiological impact, chemical impact of gas and liquid releases, environment monitoring). It addresses the issue of radioactive wastes which are stored in the Saclay nuclear installations (measures to limit their volume and their impact on health and on the environment, notably soils and waters, nature and quantities of stored wastes)

  10. Report on transparency and nuclear safety 2015 - Saclay

    International Nuclear Information System (INIS)

    2016-06-01

    This document proposes, first, a presentation of the Saclay CEA centre, of its activities and installations. Then it gives a rather detailed overview of measures related to safety and to radiation protection within these activities and installations. Next, it reports significant events related to safety and to radiation protection which occurred in 2015 and which have been declared to the French nuclear safety authority (ASN). It discusses the results of release measurements (liquid and gaseous effluents, radiological assessment, and chemical assessment for various installations) and the control of the chemical and radiological impact of these gaseous and liquid effluents on the environment. Finally, it addresses the issue of radioactive wastes which are stored in the different nuclear base installations of the Centre. It indicates the different measures aimed at limiting the volume of these warehoused wastes and addresses their impact on health and environment. Nature and quantities of warehoused wastes are specified. Remarks and recommendations of the Health, Safety and Working Conditions Committee (CHSCT) are given

  11. Report on transparency and nuclear safety 2015 - Grenoble

    International Nuclear Information System (INIS)

    2016-06-01

    This document proposes, first, a presentation of the Grenoble CEA centre, of its activities and installations. Then it gives a rather detailed overview of measures related to safety and to radiation protection within these activities and installations. Next, it reports significant events related to safety and to radiation protection which occurred in 2015 and which have been declared to the French nuclear safety authority (ASN). It discusses the results of release measurements (liquid and gaseous effluents, radiological assessment, and chemical assessment for various installations) and the control of the chemical and radiological impact of these gaseous and liquid effluents on the environment. Finally, it addresses the issue of radioactive wastes which are stored in the different nuclear base installations of the Centre. It indicates the different measures aimed at limiting the volume of these warehoused wastes and addresses their impact on health and environment. Nature and quantities of warehoused wastes are specified. Remarks and recommendations of the Health, Safety and Working Conditions Committee (CHSCT) are given

  12. IAEA Issues Report on Mission to Review Japan's Nuclear Power Plant Safety Assessment Process

    International Nuclear Information System (INIS)

    2012-01-01

    Full text: A team of international nuclear safety experts has delivered its report on a mission it conducted from 21-31 January 2012 to review Japan's process for assessing nuclear safety at the nation's nuclear power plants. International Atomic Energy Agency (IAEA) officials delivered the IAEA Mission Report to Japanese officials yesterday and made it publicly available today. Following the 11 March 2011 accident at TEPCO's Fukushima Daiichi Nuclear Power Station, Japan's Nuclear and Industrial Safety Agency (NISA) announced the development of a revised safety assessment process for the nation's nuclear power reactors. At the request of the Government of Japan, the IAEA organized a team of five IAEA and three international nuclear safety experts and visited Japan to review NISA's approach to the Comprehensive Assessments for the Safety of Existing Power Reactor Facilities and how NISA examines the results submitted by nuclear operators. A Preliminary Summary Report was issued on 31 January. 'The mission report provides additional information regarding the team's recommendations and overall finding that NISA's instructions to power plants and its review process for the Comprehensive Safety Assessments are generally consistent with IAEA Safety Standards', said team leader James Lyons, Director of the IAEA's Nuclear Installation Safety Division. National safety assessments and their peer review by the IAEA are a key component of the IAEA Action Plan on Nuclear Safety, which was approved by the Agency's Member States following last year's nuclear accident at Fukushima Daiichi Nuclear Power Station. The IAEA safety review mission held meetings in Tokyo with officials from NISA, the Japanese Nuclear Energy Safety Organization (JNES), and the Kansai Electric Power Company (KEPCO), and the team visited the Ohi Nuclear Power Station to see an example of how Japan's Comprehensive Safety Assessment is being implemented by nuclear operators. In its report delivered today

  13. Redefining interrelationship between nuclear safety, nuclear security and safeguards

    International Nuclear Information System (INIS)

    Irie, Kazutomo

    2011-01-01

    Since the beginning of this century, the so-called 3Ss (Nuclear Safety, Nuclear Security and Safeguards) have become major regulatory areas for peaceful uses of nuclear energy. The importance of the 3Ss is now emphasized to countries which are newly introducing nuclear power generation. However, as role models for those newcomers, existing nuclear power countries are also required to strengthen their regulatory infrastructure for the 3Ss. In order to rationalize the allocation of regulatory resources, interrelationship of the 3Ss should be investigated. From the viewpoint of the number of the parties concerned in regulation, nuclear security is peculiar with having 'aggressors' as the third party. From the viewpoint of final goal of regulation, nuclear security in general and safeguards share the goal of preventing non-peaceful uses of nuclear energy, though the goal of anti-sabotage within nuclear security is rather similar to nuclear safety. As often recognized, safeguards are representative of various policy tools for nuclear non-proliferation. Strictly speaking, it is not safeguards as a policy tool but nuclear non-proliferation as a policy purpose that should be parallel to other policy purposes (nuclear safety and nuclear security). That suggests 'SSN' which stands for Safety, Security and Non-proliferation is a better abbreviation rather than 3Ss. Safeguards as a policy tool should be enumerated along with nuclear safety regulation, nuclear security measures and trade controls on nuclear-related items. Trade controls have been playing an important role for nuclear non-proliferation. These policy tools can be called 'SSST' in which Trade controls are also emphasized along with Safety regulation, Security measures and Safeguards. Recently, it becomes quite difficult to clearly demarcate these policy tools. As nuclear security concept is expanding, the denotation of nuclear security measures is also expanding. Nuclear security measures are more and more

  14. Safety of Nuclear Power Plants: Design. Specific Safety Requirements (Spanish Edition)

    International Nuclear Information System (INIS)

    2012-01-01

    This publication is a revision of Safety Requirements No. NS-R-1, Safety of Nuclear Power Plants: Design. It establishes requirements applicable to the design of nuclear power plants and elaborates on the safety objective, safety principles and concepts that provide the basis for deriving the safety requirements that must be met for the design of a nuclear power plant. It will be useful for organizations involved in the design, manufacture, construction, modification, maintenance, operation and decommissioning of nuclear power plants, as well as for regulatory bodies. Contents: 1. Introduction; 2. Applying the safety principles and concepts; 3. Management of safety in design; 4. Principal technical requirements; 5. General plant design; 6. Design of specific plant systems.

  15. Safety of Nuclear Power Plants: Design. Specific Safety Requirements (Russian Edition)

    International Nuclear Information System (INIS)

    2012-01-01

    This publication is a revision of Safety Requirements No. NS-R-1, Safety of Nuclear Power Plants: Design. It establishes requirements applicable to the design of nuclear power plants and elaborates on the safety objective, safety principles and concepts that provide the basis for deriving the safety requirements that must be met for the design of a nuclear power plant. It will be useful for organizations involved in the design, manufacture, construction, modification, maintenance, operation and decommissioning of nuclear power plants, as well as for regulatory bodies. Contents: 1. Introduction; 2. Applying the safety principles and concepts; 3. Management of safety in design; 4. Principal technical requirements; 5. General plant design; 6. Design of specific plant systems.

  16. Joint nuclear safety research projects between the US and Russian Federation International Nuclear Safety Centers

    International Nuclear Information System (INIS)

    Bougaenko, S.E.; Kraev, A.E.; Hill, D.L.; Braun, J.C.; Klickman, A.E.

    1998-01-01

    The Russian Federation Ministry for Atomic Energy (MINATOM) and the US Department of Energy (USDOE) formed international Nuclear Safety Centers in October 1995 and July 1996, respectively, to collaborate on nuclear safety research. Since January 1997, the two centers have initiated the following nine joint research projects: (1) INSC web servers and databases; (2) Material properties measurement and assessment; (3) Coupled codes: Neutronic, thermal-hydraulic, mechanical and other; (4) Severe accident management for Soviet-designed reactors; (5) Transient management and advanced control; (6) Survey of relevant nuclear safety research facilities in the Russian Federation; (8) Advanced structural analysis; and (9) Development of a nuclear safety research and development plan for MINATOM. The joint projects were selected on the basis of recommendations from two groups of experts convened by NEA and from evaluations of safety impact, cost, and deployment potential. The paper summarizes the projects, including the long-term goals, the implementing strategy and some recent accomplishments for each project

  17. Selecting of key safety parameters in reactor nuclear safety supervision

    International Nuclear Information System (INIS)

    He Fan; Yu Hong

    2014-01-01

    The safety parameters indicate the operational states and safety of research reactor are the basis of nuclear safety supervision institution to carry out effective supervision to nuclear facilities. In this paper, the selecting of key safety parameters presented by the research reactor operating unit to National Nuclear Safety Administration that can express the research reactor operational states and safety when operational occurrence or nuclear accident happens, and the interrelationship between them are discussed. Analysis shows that, the key parameters to nuclear safety supervision of research reactor including design limits, operational limits and conditions, safety system settings, safety limits, acceptable limits and emergency action level etc. (authors)

  18. Political economy and social psychology of nuclear safety

    International Nuclear Information System (INIS)

    Choe, Gwang Sik

    2009-03-01

    The contents of this book are consideration on independence of nuclear safety regulations, analysis of trend in internal and external on effectualness of nuclear safety regulations, political psychology of a hard whistle, how to deal with trust and distrust on regulation institute, international trend and domestic trend of nuclear safe culture, policy for building of trust of people on nuclear safety and regulations, measurement and conception of nuclear safety and for who imposes legal controls?

  19. Political economy and social psychology of nuclear safety

    Energy Technology Data Exchange (ETDEWEB)

    Choe, Gwang Sik

    2009-03-15

    The contents of this book are consideration on independence of nuclear safety regulations, analysis of trend in internal and external on effectualness of nuclear safety regulations, political psychology of a hard whistle, how to deal with trust and distrust on regulation institute, international trend and domestic trend of nuclear safe culture, policy for building of trust of people on nuclear safety and regulations, measurement and conception of nuclear safety and for who imposes legal controls?.

  20. Reducing nuclear danger through intergovernmental technical exchanges on nuclear materials safety management

    International Nuclear Information System (INIS)

    Jardine, L.J.; Peddicord, K.L.; Witmer, F.E.; Krumpe, P.F.; Lazarev, L.; Moshkov, M.

    1997-01-01

    The United States and Russia are dismantling nuclear weapons and generating hundreds of tons of excess plutonium and high enriched uranium fissile nuclear materials that require disposition. The U.S. Department of Energy and Russian Minatom organizations.are planning and implementing safe, secure storage and disposition operations for these materials in numerous facilities. This provides a new opportunity for technical exchanges between Russian and Western scientists that can establish an improved and sustained common safety culture for handling these materials. An initiative that develops and uses personal relationships and joint projects among Russian and Western participants involved in fissile nuclear materials safety management contributes to improving nuclear materials nonproliferation and to making a safer world. Technical exchanges and workshops are being used to systematically identify opportunities in the nuclear fissile materials facilities to improve and ensure the safety of workers, the public, and the environment