WorldWideScience

Sample records for convective atmospheric cells

  1. Convective cells of internal gravity waves in the earth's atmosphere with finite temperature gradient

    Directory of Open Access Journals (Sweden)

    O. Onishchenko

    2013-03-01

    Full Text Available In this paper, we have investigated vortex structures (e.g. convective cells of internal gravity waves (IGWs in the earth's atmosphere with a finite vertical temperature gradient. A closed system of nonlinear equations for these waves and the condition for existence of solitary convective cells are obtained. In the atmosphere layers where the temperature decreases with height, the presence of IGW convective cells is shown. The typical parameters of such structures in the earth's atmosphere are discussed.

  2. CONVECTION IN CONDENSIBLE-RICH ATMOSPHERES

    Energy Technology Data Exchange (ETDEWEB)

    Ding, F. [Department of the Geophysical Sciences, University of Chicago, Chicago, IL 60637 (United States); Pierrehumbert, R. T., E-mail: fding@uchicago.edu [Department of Physics, University of Oxford, Oxford OX1 3PU (United Kingdom)

    2016-05-01

    Condensible substances are nearly ubiquitous in planetary atmospheres. For the most familiar case—water vapor in Earth’s present climate—the condensible gas is dilute, in the sense that its concentration is everywhere small relative to the noncondensible background gases. A wide variety of important planetary climate problems involve nondilute condensible substances. These include planets near or undergoing a water vapor runaway and planets near the outer edge of the conventional habitable zone, for which CO{sub 2} is the condensible. Standard representations of convection in climate models rely on several approximations appropriate only to the dilute limit, while nondilute convection differs in fundamental ways from dilute convection. In this paper, a simple parameterization of convection valid in the nondilute as well as dilute limits is derived and used to discuss the basic character of nondilute convection. The energy conservation properties of the scheme are discussed in detail and are verified in radiative-convective simulations. As a further illustration of the behavior of the scheme, results for a runaway greenhouse atmosphere for both steady instellation and seasonally varying instellation corresponding to a highly eccentric orbit are presented. The latter case illustrates that the high thermal inertia associated with latent heat in nondilute atmospheres can damp out the effects of even extreme seasonal forcing.

  3. Convection Cells in the Atmospheric Boundary Layer

    Science.gov (United States)

    Fodor, Katherine; Mellado, Juan-Pedro

    2017-04-01

    In dry, shear-free convective boundary layers (CBLs), the turbulent flow of air is known to organise itself on large scales into coherent, cellular patterns, or superstructures, consisting of fast, narrow updraughts and slow, wide downdraughts which together form circulations. Superstructures act as transport mechanisms from the surface to the top of the boundary layer and vice-versa, as opposed to small-scale turbulence, which only modifies conditions locally. This suggests that a thorough investigation into superstructure properties may help us better understand transport across the atmospheric boundary layer as a whole. Whilst their existence has been noted, detailed studies into superstructures in the CBL have been scarce. By applying methods which are known to successfully isolate similar large-scale patterns in turbulent Rayleigh-Bénard convection, we can assess the efficacy of those detection techniques in the CBL. In addition, through non-dimensional analysis, we can systematically compare superstructures in various convective regimes. We use direct numerical simulation of four different cases for intercomparison: Rayleigh-Bénard convection (steady), Rayleigh-Bénard convection with an adiabatic top lid (quasi-steady), a stably-stratified CBL (quasi-steady) and a neutrally-stratified CBL (unsteady). The first two are non-penetrative and the latter two penetrative. We find that although superstructures clearly emerge from the time-mean flow in the non-penetrative cases, they become obscured by temporal averaging in the CBL. This is because a rigid lid acts to direct the flow into counter-rotating circulation cells whose axis of rotation remains stationary, whereas a boundary layer that grows in time and is able to entrain fluid from above causes the circulations to not only grow in vertical extent, but also to move horizontally and merge with neighbouring circulations. Spatial filtering is a useful comparative technique as it can be performed on boundary

  4. AN ANALYTIC RADIATIVE-CONVECTIVE MODEL FOR PLANETARY ATMOSPHERES

    International Nuclear Information System (INIS)

    Robinson, Tyler D.; Catling, David C.

    2012-01-01

    We present an analytic one-dimensional radiative-convective model of the thermal structure of planetary atmospheres. Our model assumes that thermal radiative transfer is gray and can be represented by the two-stream approximation. Model atmospheres are assumed to be in hydrostatic equilibrium, with a power-law scaling between the atmospheric pressure and the gray thermal optical depth. The convective portions of our models are taken to follow adiabats that account for condensation of volatiles through a scaling parameter to the dry adiabat. By combining these assumptions, we produce simple, analytic expressions that allow calculations of the atmospheric-pressure-temperature profile, as well as expressions for the profiles of thermal radiative flux and convective flux. We explore the general behaviors of our model. These investigations encompass (1) worlds where atmospheric attenuation of sunlight is weak, which we show tend to have relatively high radiative-convective boundaries; (2) worlds with some attenuation of sunlight throughout the atmosphere, which we show can produce either shallow or deep radiative-convective boundaries, depending on the strength of sunlight attenuation; and (3) strongly irradiated giant planets (including hot Jupiters), where we explore the conditions under which these worlds acquire detached convective regions in their mid-tropospheres. Finally, we validate our model and demonstrate its utility through comparisons to the average observed thermal structure of Venus, Jupiter, and Titan, and by comparing computed flux profiles to more complex models.

  5. Theories for convection in stellar atmospheres

    International Nuclear Information System (INIS)

    Nordlund, Aa.

    1976-02-01

    A discussion of the fundamental differences between laboratory convection in a stellar atmosphere is presented. The shortcomings of laterally homogeneous model atmospheres are analysed, and the extent to which these shortcoming are avoided in the two-component representation is discussed. Finally a qualitative discussion on the scaling properties of stellar granulation is presented. (Auth.)

  6. Global 3D radiation-hydrodynamics models of AGB stars. Effects of convection and radial pulsations on atmospheric structures

    Science.gov (United States)

    Freytag, B.; Liljegren, S.; Höfner, S.

    2017-04-01

    Context. Observations of asymptotic giant branch (AGB) stars with increasing spatial resolution reveal new layers of complexity of atmospheric processes on a variety of scales. Aims: To analyze the physical mechanisms that cause asymmetries and surface structures in observed images, we use detailed 3D dynamical simulations of AGB stars; these simulations self-consistently describe convection and pulsations. Methods: We used the CO5BOLD radiation-hydrodynamics code to produce an exploratory grid of global "star-in-a-box" models of the outer convective envelope and the inner atmosphere of AGB stars to study convection, pulsations, and shock waves and their dependence on stellar and numerical parameters. Results: The model dynamics are governed by the interaction of long-lasting giant convection cells, short-lived surface granules, and strong, radial, fundamental-mode pulsations. Radial pulsations and shorter wavelength, traveling, acoustic waves induce shocks on various scales in the atmosphere. Convection, waves, and shocks all contribute to the dynamical pressure and, thus, to an increase of the stellar radius and to a levitation of material into layers where dust can form. Consequently, the resulting relation of pulsation period and stellar radius is shifted toward larger radii compared to that of non-linear 1D models. The dependence of pulsation period on luminosity agrees well with observed relations. The interaction of the pulsation mode with the non-stationary convective flow causes occasional amplitude changes and phase shifts. The regularity of the pulsations decreases with decreasing gravity as the relative size of convection cells increases. The model stars do not have a well-defined surface. Instead, the light is emitted from a very extended inhomogeneous atmosphere with a complex dynamic pattern of high-contrast features. Conclusions: Our models self-consistently describe convection, convectively generated acoustic noise, fundamental-mode radial

  7. Characterizing Convection in Stellar Atmospheres

    International Nuclear Information System (INIS)

    Tanner, Joel; Basu, Sarbani; Demarque, Pierre; Robinson, Frank

    2011-01-01

    We perform 3D radiative hydrodynamic simulations to study the properties of convection in the superadiabatic layer of stars. The simulations show differences in both the stratification and turbulent quantities for different types of stars. We extract turbulent pressure and eddy sizes, as well as the T-τ relation for different stars and find that they are sensitive to the energy flux and gravity. We also show that contrary to what is usually assumed in the field of stellar atmospheres, the structure and gas dynamics of simulations of turbulent atmospheres cannot be parameterized with T eff and log(g) alone.

  8. Tropical teleconnections via the ocean and atmosphere induced by Southern Ocean deep convective events

    Science.gov (United States)

    Marinov, I.; Cabre, A.; Gunn, A.; Gnanadesikan, A.

    2016-12-01

    The current generation (CMIP5) of Earth System Models (ESMs) shows a huge variability in their ability to represent Southern Ocean (SO) deep-ocean convection and Antarctic Bottom Water, with a preference for open-sea convection in the Weddell and Ross gyres. A long control simulation in a coarse 3o resolution ESM (the GFDL CM2Mc model) shows a highly regular multi-decadal oscillation between periods of SO open sea convection and non-convective periods. This process also happens naturally, with different frequencies and durations of convection across most CMIP5 models under preindustrial forcing (deLavergne et al, 2014). Here we assess the impact of SO deep convection and resulting sea surface temperature (SST) anomalies on the tropical atmosphere and ocean via teleconnections, with a focus on interannual to multi-decadal timescales. We combine analysis of our low-resolution coupled model with inter-model analysis across historical CMIP5 simulations. SST cooling south of 60S during non-convective decades triggers a stronger, northward shifted SH Hadley cell, which results in intensified northward cross-equatorial moist heat transport and a poleward shift in the ITCZ. Resulting correlations between the cross-equatorial atmospheric heat transport and ITCZ location are in good agreement with recent theories (e.g. Frierson et al. 2013; Donohoe et al. 2014). Lagged correlations between a SO convective index and cross-equatorial heat transports (in the atmosphere and ocean), as well as various tropical (and ENSO) climate indices are analyzed. In the ocean realm, we find that non-convective decades result in weaker AABW formation and weaker ACC but stronger Antarctic Intermediate Water (AAIW) formation, likely as a result of stronger SO westerlies (more positive SAM). The signals of AABW and AAIW are seen in the tropics on short timescales of years to decades in the temperature, heat storage and heat transport anomalies and also in deep and intermediate ocean oxygen. Most

  9. Toward a Unified Representation of Atmospheric Convection in Variable-Resolution Climate Models

    Energy Technology Data Exchange (ETDEWEB)

    Walko, Robert [Univ. of Miami, Coral Gables, FL (United States)

    2016-11-07

    The purpose of this project was to improve the representation of convection in atmospheric weather and climate models that employ computational grids with spatially-variable resolution. Specifically, our work targeted models whose grids are fine enough over selected regions that convection is resolved explicitly, while over other regions the grid is coarser and convection is represented as a subgrid-scale process. The working criterion for a successful scheme for representing convection over this range of grid resolution was that identical convective environments must produce very similar convective responses (i.e., the same precipitation amount, rate, and timing, and the same modification of the atmospheric profile) regardless of grid scale. The need for such a convective scheme has increased in recent years as more global weather and climate models have adopted variable resolution meshes that are often extended into the range of resolving convection in selected locations.

  10. Initial investigations of microscale cellular convection in an equatorial marine atmospheric boundary layer revealed by lidar

    Science.gov (United States)

    Cooper, D. I.; Eichinger, W. E.; Ecke, R. E.; Kao, J. C. Y.; Reisner, J. M.; Tellier, L. L.

    During the Combined Sensor Program (CSP) in March of 1996, the Los Alamos National Laboratory (LANL) fielded an advanced scanning Raman lidar. The lidar was part of a larger suite of micrometeorological sensors to quantify processes associated with the ocean-atmosphere interface, including intermittency and coherent atmospheric features in the “warm pool” of the Tropical Western Pacific (TWP) near Manus Island (2° S. lat, 147° E. long). Initial inspection of the data has revealed excellent information on the microscale vertical and horizontal spatial and temporal structure of the equatorial Marine Atmospheric Boundary Layer (MABL). The data from this experiment have added to the increasing body of measurements on surface layer convection and intermittency including, for the first time, the observation of microscale cellular convective structures such as hexagonal patterns associated with Rayleigh-Bénard cells.

  11. Understanding dynamics of large-scale atmospheric vortices with moist-convective shallow water model

    International Nuclear Information System (INIS)

    Rostami, M.; Zeitlin, V.

    2016-01-01

    Atmospheric jets and vortices which, together with inertia-gravity waves, constitute the principal dynamical entities of large-scale atmospheric motions, are well described in the framework of one- or multi-layer rotating shallow water models, which are obtained by vertically averaging of full “primitive” equations. There is a simple and physically consistent way to include moist convection in these models by adding a relaxational parameterization of precipitation and coupling precipitation with convective fluxes with the help of moist enthalpy conservation. We recall the construction of moist-convective rotating shallow water model (mcRSW) model and give an example of application to upper-layer atmospheric vortices. (paper)

  12. The Double ITCZ Syndrome in GCMs: A Coupled Problem among Convection, Atmospheric and Ocean Circulations

    Science.gov (United States)

    Zhang, G. J.; Song, X.

    2017-12-01

    The double ITCZ bias has been a long-standing problem in coupled atmosphere-ocean models. A previous study indicates that uncertainty in the projection of global warming due to doubling of CO2 is closely related to the double ITCZ biases in global climate models. Thus, reducing the double ITCZ biases is not only important to getting the current climate features right, but also important to narrowing the uncertainty in future climate projection. In this work, we will first review the possible factors contributing to the ITCZ problem. Then, we will focus on atmospheric convection, presenting recent progress in alleviating the double ITCZ problem and its sensitivity to details of convective parameterization, including trigger conditions for convection onset, convective memory, entrainment rate, updraft model and closure in the NCAR CESM1. These changes together can result in dramatic improvements in the simulation of ITCZ. Results based on both atmospheric only and coupled simulations with incremental changes of convection scheme will be shown to demonstrate the roles of convection parameterization and coupled interaction between convection, atmospheric circulation and ocean circulation in the simulation of ITCZ.

  13. How Many Convective Zones Are There in the Atmosphere of Venus?

    Science.gov (United States)

    Moroz, V. I.; Rodin, A. V.

    2002-11-01

    The qualitative characteristics of the vertical structure of the atmospheres of Venus and the Earth essentially differ. For instance, there are at least two, instead of one, zones with normal (thermal) convection on Venus. The first one is near the surface (a boundary layer); the second is at the altitudes of the lower part of the main cloud layer between 49 and 55 km. Contrary to the hypotheses proposed by Izakov (2001, 2002), the upper convective zone prevents energy transfer from the upper clouds to the subcloud atmosphere by ``anomalous turbulent heat conductivity.'' It is possible, however, that the anomalous turbulent heat conductivity takes part in the redistribution of the heat fluxes within the lower (subcloud) atmosphere.

  14. Atmospheric and Oceanic Response to Southern Ocean Deep Convection Oscillations on Decadal to Centennial Time Scales in Climate Models

    Science.gov (United States)

    Martin, T.; Reintges, A.; Park, W.; Latif, M.

    2014-12-01

    oceanic responses among CMIP5 models. Since open ocean convection is the dominant mode of AABW formation in these models, the northward extent and strength of the AABW cell in the Atlantic correlates with the deep convection intensity but varies between models. Likewise, atmospheric response patterns outside the Southern Ocean region are not consistent among models.

  15. Influence of tropical atmospheric variability on Weddell Sea deep water convection

    Science.gov (United States)

    Kleppin, H.

    2016-02-01

    Climate reconstructions from ice core records in Greenland and Antarctica have revealed a series of abrupt climate transitions, showing a distinct relationship between northern and southern hemisphere climate during the last glacial period. The recent ice core records from West Antarctica (WAIS) point towards an atmospheric teleconnection as a possible trigger for the interhemispheric climate variability (Markle et al., 2015). An unforced simulation of the Community Climate System Model, version 4 (CCSM4) reveals Greenland warming and cooling events, caused by stochastic atmospheric forcing, that resemble Dansgaard-Oeschger cycles in pattern and magnitude (Kleppin et al., 2015). Anti-phased temperature changes in the Southern Hemisphere are small in magnitude and have a spatially varying pattern. We argue that both north and south high latitude climate variability is triggered by changes in tropical atmospheric deep convection in the western tropical Pacific. The atmospheric wave guide provides a fast communication pathway connecting the deep tropics and the polar regions. In the Southern Hemisphere this is manifested as a distinct pressure pattern over West Antarctica. These altered atmospheric surface conditions over the convective region can lead to destabilization of the water column and thus to convective overturning in the Weddell Sea. However, opposed to what is seen in the Northern Hemisphere no centennial scale variability can establish, due to the absence of a strong feedback mechanism between ocean, atmosphere and sea ice. Kleppin, H., Jochum, M., Otto-Bliesner, B., Shields, C. A., & Yeager, S. (2015). Stochastic Atmospheric Forcing as a Cause of Greenland Climate Transitions. Journal of Climate, (2015). Markle, B. and Coauthors (2015, April). Atmospheric teleconnections between the tropics and high southern latitudes during millennial climate change. In EGU General Assembly Conference Abstracts (Vol. 17, p. 2569).

  16. A Numerical Study of Nonlinear Nonhydrostatic Conditional Symmetric Instability in a Convectively Unstable Atmosphere.

    Science.gov (United States)

    Seman, Charles J.

    1994-06-01

    Nonlinear nonhydrostatic conditional symmetric instability (CSI) is studied as an initial value problem using a two-dimensional (y, z)nonlinear, nonhydrostatic numerical mesoscale/cloud model. The initial atmosphere for the rotating, baroclinic (BCF) simulation contains large convective available potential energy (CAPE). Analytical theory, various model output diagnostics, and a companion nonrotating barotropic (BTNF) simulation are used to interpret the results from the BCF simulation. A single warm moist thermal initiates convection for the two 8-h simulations.The BCF simulation exhibited a very intricate life cycle. Following the initial convection, a series of discrete convective cells developed within a growing mesoscale circulation. Between hours 4 and 8, the circulation grew upscale into a structure resembling that of a squall-line mesoscale convective system (MCS). The mesoscale updrafts were nearly vertical and the circulation was strongest on the baroclinically cool side of the initial convection, as predicted by a two-dimensional Lagrangian parcel model of CSI with CAPE. The cool-side mesoscale circulation grew nearly exponentially over the last 5 h as it slowly propagated toward the warm air. Significant vertical transport of zonal momentum occurred in the (multicellular) convection that developed, resulting in local subgeostrophic zonal wind anomalies aloft. Over time, geostrophic adjustment acted to balance these anomalies. The system became warm core, with mesohigh pressure aloft and mesolow pressure at the surface. A positive zonal wind anomaly also formed downstream from the mesohigh.Analysis of the BCF simulation showed that convective momentum transport played a key role in the evolution of the simulated MCS, in that it fostered the development of the nonlinear CSI on mesoscale time scales. The vertical momentum transport in the initial deep convection generated a subgeostrophic zonal momentum anomaly aloft; the resulting imbalance in pressure

  17. Tropical Cyclone Signatures in Atmospheric Convective Available Potential Energy

    Science.gov (United States)

    Studholme, Joshua; Gulev, Sergey

    2016-04-01

    Tropical cyclones play an important role in the climate system providing transports of energy and water vapor, forcing the ocean, and also affecting mid-latitude circulation phenomena. Tropical cyclone tracks experience strong interannual variability and in addition, longer term trend-like changes in all ocean basins. Analysis of recent historical data reveal a poleward shift in the locations of tropical cyclone tracks in both the Northern and Southern Hemispheres (Kossin et al. 2014, Nature, 509, 349-352). The physical consequences of these alterations are largely unconstrained. For example, the increasing encroachment of tropical cyclone activity into the extra-tropical environment presents a novel and still poorly understood paradigm for tropical-extratropical interactions. In this respect, the role that the atmospheric convective available potential energy (CAPE) plays in the dynamics of tropical cyclones is highly interesting. The two characteristic global-scale spatial patterns in CAPE are identified using EOF analysis. The first pattern shows an abundance of CAPE in the centre of the Pacific and corresponds to the El Nino Southern Oscillation. The second one is capturing positive CAPE anomalies in the oceanic tropics and negative anomalies over equatorial Africa. Associated with these buoyancy patterns, alterations in tropical cyclone activity occur in all basins forming both zonal and meridional patterns. Atmospheric buoyancy is the trigger for deep convection, and subsequently cyclone genesis. This is the mechanism of impact upon location at the start of cyclone tracks. It is found to have less impact upon where cyclones subsequently move, whether or not they undergo extratropical transition and when and where they experience lysis. It is shown that CAPE plays a critical role in the general circulation in the tropics which in turn is the larger steering context for embedded systems within the Walker and Hadley cells. So this lack of `latter life' impact

  18. Atmosphere-ionosphere coupling from convectively generated gravity waves

    Science.gov (United States)

    Azeem, Irfan; Barlage, Michael

    2018-04-01

    Ionospheric variability impacts operational performances of a variety of technological systems, such as HF communication, Global Positioning System (GPS) navigation, and radar surveillance. The ionosphere is not only perturbed by geomagnetic inputs but is also influenced by atmospheric tides and other wave disturbances propagating from the troposphere to high altitudes. Atmospheric Gravity Waves (AGWs) excited by meteorological sources are one of the largest sources of mesoscale variability in the ionosphere. In this paper, Total Electron Content (TEC) data from networks of GPS receivers in the United States are analyzed to investigate AGWs in the ionosphere generated by convective thunderstorms. Two case studies of convectively generated gravity waves are presented. On April 4, 2014 two distinct large convective systems in Texas and Arkansas generated two sets of concentric AGWs that were observed in the ionosphere as Traveling Ionospheric Disturbances (TIDs). The period of the observed TIDs was 20.8 min, the horizontal wavelength was 182.4 km, and the horizontal phase speed was 146.4 m/s. The second case study shows TIDs generated from an extended squall line on December 23, 2015 stretching from the Gulf of Mexico to the Great Lakes in North America. Unlike the concentric wave features seen in the first case study, the extended squall line generated TIDs, which exhibited almost plane-parallel phase fronts. The TID period was 20.1 min, its horizontal wavelength was 209.6 km, and the horizontal phase speed was 180.1 m/s. The AGWs generated by both of these meteorological events have large vertical wavelength (>100 km), which are larger than the F2 layer thickness, thus allowing them to be discernible in the TEC dataset.

  19. Near-Surface Effects of Free Atmosphere Stratification in Free Convection

    NARCIS (Netherlands)

    Mellado, Juan Pedro; Heerwaarden, van C.C.; Garcia, Jade Rachele

    2016-01-01

    The effect of a linear stratification in the free atmosphere on near-surface properties in a free convective boundary layer (CBL) is investigated by means of direct numerical simulation. We consider two regimes: a neutral stratification regime, which represents a CBL that grows into a residual

  20. Improved scheme for parametrization of convection in the Met Office's Numerical Atmospheric-dispersion Modelling Environment (NAME)

    Science.gov (United States)

    Meneguz, Elena; Thomson, David; Witham, Claire; Kusmierczyk-Michulec, Jolanta

    2015-04-01

    NAME is a Lagrangian atmospheric dispersion model used by the Met Office to predict the dispersion of both natural and man-made contaminants in the atmosphere, e.g. volcanic ash, radioactive particles and chemical species. Atmospheric convection is responsible for transport and mixing of air resulting in a large exchange of heat and energy above the boundary layer. Although convection can transport material through the whole troposphere, convective clouds have a small horizontal length scale (of the order of few kilometres). Therefore, for large-scale transport the horizontal scale on which the convection exists is below the global NWP resolution used as input to NAME and convection must be parametrized. Prior to the work presented here, the enhanced vertical mixing generated by non-resolved convection was reproduced by randomly redistributing Lagrangian particles between the cloud base and cloud top with probability equal to 1/25th of the NWP predicted convective cloud fraction. Such a scheme is essentially diffusive and it does not make optimal use of all the information provided by the driving meteorological model. To make up for these shortcomings and make the parametrization more physically based, the convection scheme has been recently revised. The resulting version, presented in this paper, is now based on the balance equation between upward, entrainment and detrainment fluxes. In particular, upward mass fluxes are calculated with empirical formulas derived from Cloud Resolving Models and using the NWP convective precipitation diagnostic as closure. The fluxes are used to estimate how many particles entrain, move upward and detrain. Lastly, the scheme is completed by applying a compensating subsidence flux. The performance of the updated convection scheme is benchmarked against available observational data of passive tracers. In particular, radioxenon is a noble gas that can undergo significant long range transport: this study makes use of observations of

  1. Convection and waves on Small Earth and Deep Atmosphere

    Directory of Open Access Journals (Sweden)

    Noureddine Semane

    2015-06-01

    Full Text Available A scaled version of the European Centre for Medium-Range Weather Forecasts (ECMWF spectral hydrostatic forecast model (IFS has been developed with full physics using an Aqua planet configuration. This includes Kuang et al.'s Small Earth Diabatic Acceleration and REscaling (DARE/SE approach bringing the synoptic scale a factor γ closer to the convective scale by reducing the Earth radius by γ, and increasing the rotation rate and all diabatic processes by the same factor. Furthermore, the scaled version also provides an alternative system to DARE/SE, dubbed ‘Deep Atmosphere Diabatic Acceleration and REscaling’ (DARE/DA, which reduces gravity by a factor γ and thereby increases the horizontal scale of convection by γ, while only weakly affecting the large-scale flow. The two approaches have been evaluated using a T159 spectral truncation and γ = 8 with the deep convection scheme switched off. The evaluation is against the baseline unscaled model at T1279 spectral resolution without deep convection parametrisation, as well as the unscaled T159 model using the deep convection parametrisation. It is shown that the DARE/SE and DARE/DA systems provide fairly equivalent results, while the DARE/DA system seems to be the preferred choice as it damps divergent modes, providing a better climatology, and is technically easier to implement. However, neither of the systems could reproduce the motion range and modes of the high-resolution spectral model. Higher equivalent horizontal resolution in the 1–10 km range and the full non-hydrostatic system might be necessary to successfully simulate the convective and large-scale explicitly at reduced cost.

  2. Inferring convective responses to El Niño with atmospheric electricity measurements at Shetland

    International Nuclear Information System (INIS)

    Harrison, R G; Pascoe, K; Joshi, M

    2011-01-01

    Pacific ocean temperature anomalies associated with the El Niño–Southern Oscillation (ENSO) modulate atmospheric convection and hence thunderstorm electrification. The generated current flows globally via the atmospheric electric circuit, which can be monitored anywhere on Earth. Atmospheric electricity measurements made at Shetland (in Scotland) display a mean global circuit response to ENSO that is characterized by strengthening during ‘El Niño’ conditions, and weakening during ‘La Niña’ conditions. Examining the hourly varying response indicates that a potential gradient (PG) increase around noon UT is likely to be associated with a change in atmospheric convection and resultant lightning activity over equatorial Africa and Eastern Asia. A secondary increase in PG just after midnight UT can be attributed to more shower clouds in the central Pacific ocean during an ‘El Niño’.

  3. Convective cells and transport in toroidal plasmas

    International Nuclear Information System (INIS)

    Hassam, A.B.; Kulsrud, R.M.

    1978-12-01

    The properties of convective cells and the diffusion resulting from such cells are significantly influenced by an inhomogeneity in the extermal confining magnetic field, such as that in toroidal plasmas. The convective diffusion in the presence of a field inhomogeneity is estimated. For a thermal background, this diffusion is shown to be substantially smaller than classical collisional diffusion. For a model nonthermal background, the diffusion is estimated, for typical parameters, to be at most of the order of collisional diffusion. The model background employed is based on spectra observed in numerical simulations of drift-wave-driven convective cells

  4. Soil-plant-atmosphere conditions regulating convective cloud formation above southeastern US pine plantations.

    Science.gov (United States)

    Manoli, Gabriele; Domec, Jean-Christophe; Novick, Kimberly; Oishi, Andrew Christopher; Noormets, Asko; Marani, Marco; Katul, Gabriel

    2016-06-01

    Loblolly pine trees (Pinus taeda L.) occupy more than 20% of the forested area in the southern United States, represent more than 50% of the standing pine volume in this region, and remove from the atmosphere about 500 g C m-2 per year through net ecosystem exchange. Hence, their significance as a major regional carbon sink can hardly be disputed. What is disputed is whether the proliferation of young plantations replacing old forest in the southern United States will alter key aspects of the hydrologic cycle, including convective rainfall, which is the focus of the present work. Ecosystem fluxes of sensible (Hs) and latent heat (LE) and large-scale, slowly evolving free atmospheric temperature and water vapor content are known to be first-order controls on the formation of convective clouds in the atmospheric boundary layer. These controlling processes are here described by a zero-order analytical model aimed at assessing how plantations of different ages may regulate the persistence and transition of the atmospheric system between cloudy and cloudless conditions. Using the analytical model together with field observations, the roles of ecosystem Hs and LE on convective cloud formation are explored relative to the entrainment of heat and moisture from the free atmosphere. Our results demonstrate that cloudy-cloudless regimes at the land surface are regulated by a nonlinear relation between the Bowen ratio Bo=Hs/LE and root-zone soil water content, suggesting that young/mature pines ecosystems have the ability to recirculate available water (through rainfall predisposition mechanisms). Such nonlinearity was not detected in a much older pine stand, suggesting a higher tolerance to drought but a limited control on boundary layer dynamics. These results enable the generation of hypotheses about the impacts on convective cloud formation driven by afforestation/deforestation and groundwater depletion projected to increase following increased human population in the

  5. FINGERING CONVECTION AND CLOUDLESS MODELS FOR COOL BROWN DWARF ATMOSPHERES

    International Nuclear Information System (INIS)

    Tremblin, P.; Amundsen, D. S.; Mourier, P.; Baraffe, I.; Chabrier, G.; Drummond, B.; Homeier, D.; Venot, O.

    2015-01-01

    This work aims to improve the current understanding of the atmospheres of brown dwarfs, especially cold ones with spectral types T and Y, whose modeling is a current challenge. Silicate and iron clouds are believed to disappear at the photosphere at the L/T transition, but cloudless models fail to reproduce correctly the spectra of T dwarfs, advocating for the addition of more physics, e.g., other types of clouds or internal energy transport mechanisms. We use a one-dimensional radiative/convective equilibrium code ATMO to investigate this issue. This code includes both equilibrium and out-of-equilibrium chemistry and solves consistently the PT structure. Included opacity sources are H 2 -H 2 , H 2 -He, H 2 O, CO, CO 2 , CH 4 , NH 3 , K, Na, and TiO, VO if they are present in the atmosphere. We show that the spectra of Y dwarfs can be accurately reproduced with a cloudless model if vertical mixing and NH 3 quenching are taken into account. T dwarf spectra still have some reddening in, e.g., J–H, compared to cloudless models. This reddening can be reproduced by slightly reducing the temperature gradient in the atmosphere. We propose that this reduction of the stabilizing temperature gradient in these layers, leading to cooler structures, is due to the onset of fingering convection, triggered by the destabilizing impact of condensation of very thin dust

  6. FINGERING CONVECTION AND CLOUDLESS MODELS FOR COOL BROWN DWARF ATMOSPHERES

    Energy Technology Data Exchange (ETDEWEB)

    Tremblin, P.; Amundsen, D. S.; Mourier, P.; Baraffe, I.; Chabrier, G.; Drummond, B. [Astrophysics Group, University of Exeter, EX4 4QL Exeter (United Kingdom); Homeier, D. [Ecole Normale Supérieure de Lyon, CRAL, UMR CNRS 5574, F-69364 Lyon Cedex 07 (France); Venot, O., E-mail: tremblin@astro.ex.ac.uk, E-mail: pascal.tremblin@cea.fr [Instituut voor Sterrenkunde, Katholieke Universiteit Leuven, Celestijnenlaan 200D, B-3001 Leuven (Belgium)

    2015-05-01

    This work aims to improve the current understanding of the atmospheres of brown dwarfs, especially cold ones with spectral types T and Y, whose modeling is a current challenge. Silicate and iron clouds are believed to disappear at the photosphere at the L/T transition, but cloudless models fail to reproduce correctly the spectra of T dwarfs, advocating for the addition of more physics, e.g., other types of clouds or internal energy transport mechanisms. We use a one-dimensional radiative/convective equilibrium code ATMO to investigate this issue. This code includes both equilibrium and out-of-equilibrium chemistry and solves consistently the PT structure. Included opacity sources are H{sub 2}-H{sub 2}, H{sub 2}-He, H{sub 2}O, CO, CO{sub 2}, CH{sub 4}, NH{sub 3}, K, Na, and TiO, VO if they are present in the atmosphere. We show that the spectra of Y dwarfs can be accurately reproduced with a cloudless model if vertical mixing and NH{sub 3} quenching are taken into account. T dwarf spectra still have some reddening in, e.g., J–H, compared to cloudless models. This reddening can be reproduced by slightly reducing the temperature gradient in the atmosphere. We propose that this reduction of the stabilizing temperature gradient in these layers, leading to cooler structures, is due to the onset of fingering convection, triggered by the destabilizing impact of condensation of very thin dust.

  7. REVERSALS IN THE 6-CELLS CONVECTION DRIVEN

    Directory of Open Access Journals (Sweden)

    G.M. Vodinchar

    2015-12-01

    Full Text Available We describe the large-scale model geodynamo, which based on indirect data of inhomogeneities in the density of the Earth’s core. Convection structure is associated with spherical harmonic Y24 , which defines the basic poloidal component of velocity. Coriolis drift of this mode determines the toroidal component of velocity. Thus, 6 convective cells are formed. The model takes into account the feedback effect of the magnetic field on convection. It was ascertained that the model contains stable regimes of field generation. The velocity of convection and the dipole component of the magnetic field are close to the observed ones.

  8. The Roles of Convection Parameterization in the Formation of Double ITCZ Syndrome in the NCAR CESM: I. Atmospheric Processes

    Science.gov (United States)

    Song, Xiaoliang; Zhang, Guang J.

    2018-03-01

    Several improvements are implemented in the Zhang-McFarlane (ZM) convection scheme to investigate the roles of convection parameterization in the formation of double intertropical convergence zone (ITCZ) bias in the NCAR CESM1.2.1. It is shown that the prominent double ITCZ biases of precipitation, sea surface temperature (SST), and wind stress in the standard CESM1.2.1 are largely eliminated in all seasons with the use of these improvements in convection scheme. This study for the first time demonstrates that the modifications of convection scheme can eliminate the double ITCZ biases in all seasons, including boreal winter and spring. Further analysis shows that the elimination of the double ITCZ bias is achieved not by improving other possible contributors, such as stratus cloud bias off the west coast of South America and cloud/radiation biases over the Southern Ocean, but by modifying the convection scheme itself. This study demonstrates that convection scheme is the primary contributor to the double ITCZ bias in the CESM1.2.1, and provides a possible solution to the long-standing double ITCZ problem. The atmospheric model simulations forced by observed SST show that the original ZM convection scheme tends to produce double ITCZ bias in high SST scenario, while the modified convection scheme does not. The impact of changes in each core component of convection scheme on the double ITCZ bias in atmospheric model is identified and further investigated.

  9. National Convective Weather Diagnostic

    Data.gov (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — Current convective hazards identified by the National Convective Weather Detection algorithm. The National Convective Weather Diagnostic (NCWD) is an automatically...

  10. Convective transport in ATM simulations and its relation to the atmospheric stability conditions

    Science.gov (United States)

    Kusmierczyk-Michulec, Jolanta

    2017-04-01

    The International Monitoring System (IMS) developed by the Comprehensive Nuclear-Test-Ban Treaty Organization (CTBTO) is a global system of monitoring stations, using four complementary technologies: seismic, hydroacoustic, infrasound and radionuclide. Data from all stations, belonging to IMS, are collected and transmitted to the International Data Centre (IDC) in Vienna, Austria. The radionuclide network comprises 80 stations, of which more than 60 are certified. The aim of radionuclide stations is a global monitoring of radioactive aerosols and radioactive noble gases, in particular xenon isotopes, supported by the atmospheric transport modeling (ATM). One of the important noble gases, monitored on a daily basis, is radioxenon. It can be produced either during a nuclear explosion with a high fission yield, and thus be considered as an important tracer to prove the nuclear character of an explosion, or be emitted from nuclear power plants (NPPs) or from isotope production facilities (IPFs). To investigate the transport of xenon emissions, the Provisional Technical Secretariat (PTS) operates an Atmospheric Transport Modelling (ATM) system based on the Lagrangian Particle Dispersion Model FLEXPART. To address the question whether including the convective transport in ATM simulations will change the results significantly, the differences between the outputs with the convective transport turned off and turned on, were computed and further investigated taking into account the atmospheric stability conditions. For that purpose series of 14 days forward simulations, with convective transport and without it, released daily in the period January 2011 to February 2012, were analysed. The release point was at the ANSTO facility in Australia. The unique opportunity of having access to both daily emission values for ANSTO as well as measured Xe-133 activity concentration (AC) values at the IMS stations, gave a chance to validate the simulations.

  11. Assessing the impact of aerosol-atmosphere interactions in convection-permitting regional climate simulations: the Rolf medicane in 2011

    Science.gov (United States)

    José Gómez-Navarro, Juan; María López-Romero, José; Palacios-Peña, Laura; Montávez, Juan Pedro; Jiménez-Guerrero, Pedro

    2017-04-01

    A critical challenge for assessing regional climate change projections relies on improving the estimate of atmospheric aerosol impact on clouds and reducing the uncertainty associated with the use of parameterizations. In this sense, the horizontal grid spacing implemented in state-of-the-art regional climate simulations is typically 10-25 kilometers, meaning that very important processes such as convective precipitation are smaller than a grid box, and therefore need to be parameterized. This causes large uncertainties, as closure assumptions and a number of parameters have to be established by model tuning. Convection is a physical process that may be strongly conditioned by atmospheric aerosols, although the solution of aerosol-cloud interactions in warm convective clouds remains nowadays a very important scientific challenge, rendering parametrization of these complex processes an important bottleneck that is responsible from a great part of the uncertainty in current climate change projections. Therefore, the explicit simulation of convective processes might improve the quality and reliability of the simulations of the aerosol-cloud interactions in a wide range of atmospheric phenomena. Particularly over the Mediterranean, the role of aerosol particles is very important, being this a crossroad that fuels the mixing of particles from different sources (sea-salt, biomass burning, anthropogenic, Saharan dust, etc). Still, the role of aerosols in extreme events in this area such as medicanes has been barely addressed. This work aims at assessing the role of aerosol-atmosphere interaction in medicanes with the help of the regional chemistry/climate on-line coupled model WRF-CHEM run at a convection-permitting resolution. The analysis is exemplary based on the "Rolf" medicane (6-8 November 2011). Using this case study as reference, four sets of simulations are run with two spatial resolutions: one at a convection-permitting configuration of 4 km, and other at the

  12. Evolution of Excited Convective Cells in Plasmas

    DEFF Research Database (Denmark)

    Pécseli, Hans; Juul Rasmussen, Jens; Sugai, H.

    1984-01-01

    Convective cells are excited externally in a fully ionized magnetized plasma and their space-time evolution is investigated by two-dimensional potential measurements. A positive cell is excited externally by control of the end losses in the 'scrape off' layer of a plasma column produced by surface...

  13. Southern Ocean Convection and tropical telleconnections

    Science.gov (United States)

    Marinov, I.; Cabre, A.; Gnanadesikan, A.

    2014-12-01

    We show that Southern Ocean (SO) temperatures in the latest generation of Earth System Models exhibit two major modes of variation, one driven by deep convection, the other by tropical variability. We perform a CMIP5 model intercomparison to understand why different climate models represent SO variability so differently in long, control simulations. We show that multiyear variability in Southern Ocean sea surface temperatures (SSTs) can in turn influence oceanic and atmospheric conditions in the tropics on short (atmospheric) time-scales. We argue that the strength and pattern of SO-tropical teleconnections depends on the intensity of SO deep convection. Periodic convection in the SO is a feature of most CMIP5 models under preindustrial forcing (deLavergne et al., 2014). Models show a wide distribution in the spatial extent, periodicity and intensity of their SO convection, with some models convecting most of the time, and some showing very little convection. In a highly convective coupled model, we find that multidecadal variability in SO and global SSTs, as well as SO heat storage are driven by Weddell Sea convective variability, with convective decades relatively warm due to the heat released from the deep southern ocean and non-convective decades cold due to the subsurface storage of heat. Furthermore, pulses of SO convection drive SST and sea ice variations, influencing absorbed shortwave and emitted longwave radiation, wind, cloud and precipitation patterns, with climatic implications for the low latitudes via fast atmospheric teleconnections. We suggest that these high-low latitude teleconnection mechanisms are relevant for understanding hiatus decades. Additionally, Southern Ocean deep convection varied significantly during past, natural climate changes such as during the last deglaciation. Weddell Sea open convection was recently weakened, likely as a consequence of anthropogenic forcing and the resulting surface freshening. Our study opens up the

  14. For how long can we predict the weather? - Insights into atmospheric predictability from global convection-allowing simulations

    Science.gov (United States)

    Judt, Falko

    2017-04-01

    A tremendous increase in computing power has facilitated the advent of global convection-resolving numerical weather prediction (NWP) models. Although this technological breakthrough allows for the seamless prediction of weather from local to global scales, the predictability of multiscale weather phenomena in these models is not very well known. To address this issue, we conducted a global high-resolution (4-km) predictability experiment using the Model for Prediction Across Scales (MPAS), a state-of-the-art global NWP model developed at the National Center for Atmospheric Research. The goals of this experiment are to investigate error growth from convective to planetary scales and to quantify the intrinsic, scale-dependent predictability limits of atmospheric motions. The globally uniform resolution of 4 km allows for the explicit treatment of organized deep moist convection, alleviating grave limitations of previous predictability studies that either used high-resolution limited-area models or global simulations with coarser grids and cumulus parameterization. Error growth is analyzed within the context of an "identical twin" experiment setup: the error is defined as the difference between a 20-day long "nature run" and a simulation that was perturbed with small-amplitude noise, but is otherwise identical. It is found that in convectively active regions, errors grow by several orders of magnitude within the first 24 h ("super-exponential growth"). The errors then spread to larger scales and begin a phase of exponential growth after 2-3 days when contaminating the baroclinic zones. After 16 days, the globally averaged error saturates—suggesting that the intrinsic limit of atmospheric predictability (in a general sense) is about two weeks, which is in line with earlier estimates. However, error growth rates differ between the tropics and mid-latitudes as well as between the troposphere and stratosphere, highlighting that atmospheric predictability is a complex

  15. Revisiting coupled Shukla-Varma and convective cell mode in classical and quantum dusty magnetoplasmas

    Science.gov (United States)

    Masood, W.; Mirza, Arshad M.; Nargis, Shahida

    2010-08-01

    The coupled Shukla-Varma (SV) and convective cell mode is revisited in classical and quantum dusty magnetoplasmas. It is shown that the inclusion of electron thermal effects modifies the original coupled SV and convective cell mode. It is also discussed how the quantum effects can be incorporated in the coupled SV and convective cell mode.

  16. Multiscale eddy simulation for moist atmospheric convection: Preliminary investigation

    Energy Technology Data Exchange (ETDEWEB)

    Stechmann, Samuel N., E-mail: stechmann@wisc.edu [Department of Mathematics, University of Wisconsin-Madison (United States); Department of Atmospheric and Oceanic Sciences, University of Wisconsin-Madison (United States)

    2014-08-15

    A multiscale computational framework is designed for simulating atmospheric convection and clouds. In this multiscale framework, large eddy simulation (LES) is used to model the coarse scales of 100 m and larger, and a stochastic, one-dimensional turbulence (ODT) model is used to represent the fine scales of 100 m and smaller. Coupled and evolving together, these two components provide a multiscale eddy simulation (MES). Through its fine-scale turbulence and moist thermodynamics, MES allows coarse grid cells to be partially cloudy and to encompass cloudy–clear air mixing on scales down to 1 m; in contrast, in typical LES such fine-scale processes are not represented or are parameterized using bulk deterministic closures. To illustrate MES and investigate its multiscale dynamics, a shallow cumulus cloud field is simulated. The fine-scale variability is seen to take a plausible form, with partially cloudy grid cells prominent near cloud edges and cloud top. From earlier theoretical work, this mixing of cloudy and clear air is believed to have an important impact on buoyancy. However, contrary to expectations based on earlier theoretical studies, the mean statistics of the bulk cloud field are essentially the same in MES and LES; possible reasons for this are discussed, including possible limitations in the present formulation of MES. One difference between LES and MES is seen in the coarse-scale turbulent kinetic energy, which appears to grow slowly in time due to incoherent stochastic fluctuations in the buoyancy. This and other considerations suggest the need for some type of spatial and/or temporal filtering to attenuate undersampling of the stochastic fine-scale processes.

  17. Multiscale eddy simulation for moist atmospheric convection: Preliminary investigation

    International Nuclear Information System (INIS)

    Stechmann, Samuel N.

    2014-01-01

    A multiscale computational framework is designed for simulating atmospheric convection and clouds. In this multiscale framework, large eddy simulation (LES) is used to model the coarse scales of 100 m and larger, and a stochastic, one-dimensional turbulence (ODT) model is used to represent the fine scales of 100 m and smaller. Coupled and evolving together, these two components provide a multiscale eddy simulation (MES). Through its fine-scale turbulence and moist thermodynamics, MES allows coarse grid cells to be partially cloudy and to encompass cloudy–clear air mixing on scales down to 1 m; in contrast, in typical LES such fine-scale processes are not represented or are parameterized using bulk deterministic closures. To illustrate MES and investigate its multiscale dynamics, a shallow cumulus cloud field is simulated. The fine-scale variability is seen to take a plausible form, with partially cloudy grid cells prominent near cloud edges and cloud top. From earlier theoretical work, this mixing of cloudy and clear air is believed to have an important impact on buoyancy. However, contrary to expectations based on earlier theoretical studies, the mean statistics of the bulk cloud field are essentially the same in MES and LES; possible reasons for this are discussed, including possible limitations in the present formulation of MES. One difference between LES and MES is seen in the coarse-scale turbulent kinetic energy, which appears to grow slowly in time due to incoherent stochastic fluctuations in the buoyancy. This and other considerations suggest the need for some type of spatial and/or temporal filtering to attenuate undersampling of the stochastic fine-scale processes

  18. Convection and stellar oscillations

    DEFF Research Database (Denmark)

    Aarslev, Magnus Johan

    2017-01-01

    for asteroseismology, because of the challenges inherent in modelling turbulent convection in 1D stellar models. As a result of oversimplifying the physics near the surface, theoretical calculations systematically overestimate the oscillation frequencies. This has become known as the asteroseismic surface effect. Due...... to lacking better options, this frequency difference is typically corrected for with ad-hoc formulae. The topic of this thesis is the improvement of 1D stellar convection models and the effects this has on asteroseismic properties. The source of improvements is 3D simulations of radiation...... atmospheres to replace the outer layers of stellar models. The additional turbulent pressure and asymmetrical opacity effects in the atmosphere model, compared to convection in stellar evolution models, serve to expand the atmosphere. The enlarged acoustic cavity lowers the pulsation frequencies bringing them...

  19. Simulating deep convection with a shallow convection scheme

    Directory of Open Access Journals (Sweden)

    C. Hohenegger

    2011-10-01

    Full Text Available Convective processes profoundly affect the global water and energy balance of our planet but remain a challenge for global climate modeling. Here we develop and investigate the suitability of a unified convection scheme, capable of handling both shallow and deep convection, to simulate cases of tropical oceanic convection, mid-latitude continental convection, and maritime shallow convection. To that aim, we employ large-eddy simulations (LES as a benchmark to test and refine a unified convection scheme implemented in the Single-column Community Atmosphere Model (SCAM. Our approach is motivated by previous cloud-resolving modeling studies, which have documented the gradual transition between shallow and deep convection and its possible importance for the simulated precipitation diurnal cycle.

    Analysis of the LES reveals that differences between shallow and deep convection, regarding cloud-base properties as well as entrainment/detrainment rates, can be related to the evaporation of precipitation. Parameterizing such effects and accordingly modifying the University of Washington shallow convection scheme, it is found that the new unified scheme can represent both shallow and deep convection as well as tropical and mid-latitude continental convection. Compared to the default SCAM version, the new scheme especially improves relative humidity, cloud cover and mass flux profiles. The new unified scheme also removes the well-known too early onset and peak of convective precipitation over mid-latitude continental areas.

  20. National Convective Weather Forecast

    Data.gov (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — The NCWF is an automatically generated depiction of: (1) current convection and (2) extrapolated signficant current convection. It is a supplement to, but does NOT...

  1. On the Impact of Wind Farms on a Convective Atmospheric Boundary Layer

    Science.gov (United States)

    Lu, Hao; Porté-Agel, Fernando

    2015-10-01

    With the rapid growth in the number of wind turbines installed worldwide, a demand exists for a clear understanding of how wind farms modify land-atmosphere exchanges. Here, we conduct three-dimensional large-eddy simulations to investigate the impact of wind farms on a convective atmospheric boundary layer. Surface temperature and heat flux are determined using a surface thermal energy balance approach, coupled with the solution of a three-dimensional heat equation in the soil. We study several cases of aligned and staggered wind farms with different streamwise and spanwise spacings. The farms consist of Siemens SWT-2.3-93 wind turbines. Results reveal that, in the presence of wind turbines, the stability of the atmospheric boundary layer is modified, the boundary-layer height is increased, and the magnitude of the surface heat flux is slightly reduced. Results also show an increase in land-surface temperature, a slight reduction in the vertically-integrated temperature, and a heterogeneous spatial distribution of the surface heat flux.

  2. A thermodynamically general theory for convective vortices

    Science.gov (United States)

    Renno, Nilton O.

    2008-08-01

    Convective vortices are common features of atmospheres that absorb lower-entropy-energy at higher temperatures than they reject higher-entropy-energy to space. These vortices range from small to large-scale and play an important role in the vertical transport of heat, momentum, and tracer species. Thus, the development of theoretical models for convective vortices is important to our understanding of some of the basic features of planetary atmospheres. The heat engine framework is a useful tool for studying convective vortices. However, current theories assume that convective vortices are reversible heat engines. Since there are questions about how reversible real atmospheric heat engines are, their usefulness for studying real atmospheric vortices is somewhat controversial. In order to reduce this problem, a theory for convective vortices that includes irreversible processes is proposed. The paper's main result is that the proposed theory provides an expression for the pressure drop along streamlines that includes the effects of irreversible processes. It is shown that a simplified version of this expression is a generalization of Bernoulli's equation to convective circulations. It is speculated that the proposed theory not only explains the intensity, but also sheds light on other basic features of convective vortices such as their physical appearance.

  3. Rayleigh-Benard Natural Convection Cell Formation and Nusselt number

    International Nuclear Information System (INIS)

    Moon, Je Young; Chung, Bum Jin

    2013-01-01

    The experimental results lie within the predictions of the existing heat transfer correlations for the Rayleigh-Benard natural convections even though the material properties were different. For shorter separation distances, the heat transfers enhance due to the active interaction between heated and cooled plumes. For a step temperature difference, the time dependent Nusselt number variations were investigated. Both experimental and numerical results showed that with time the Nusselt number decreases monotonically to a minimum point presenting the onset of convection. As the hot and cold plumes increase and convey the heat to the other plates, the Nusselt number increases to the local maximum point, presenting the vertical movements of the plumes. Then, the Nusselt number fluctuates with the formation of square cells and larger vortices. This also predicted by the mass transfer experiment. The experiments and calculations show similar trend but the timings were different. These discrepancies are caused by the disturbances inherent in both systems. The molten pool is formed in a hypothetical severe accident condition at the lower head of reactor vessel and is stratified into two layers by the density difference: an upper metallic layer and a lower oxide pool. Rayleigh-Benard natural convection occurs in the metallic layer of relocated molten pool. This study aimed at the investigation of the time-dependent cell formation and Nusselt number variation in Rayleigh-Benard natural convection. Time dependent variation of Nusselt number was also measured experimentally and analyzed numerically to investigate the relationship between the cell formation and Nusselt number. Based on the analogy, heat transfer experiments were replaced by mass transfer experiments using a sulfuric acid-copper sulfate (H 2 SO 4 -CuSO 4 ) electroplating system. Numerical analysis using the commercial CFD program FLUENT 6.3 were carried out with the same material properties and heating conditions

  4. Feedback control and heat transfer measurements in a Rayleigh-Bénard convection cell

    Science.gov (United States)

    Vial, M.; Hernández, R. H.

    2017-07-01

    We report experimental results on the heat transfer and instability onset of a Rayleigh-Bénard convection cell of aspect ratios 6:3:1 filled with a high Prandtl aqueous solution of glycerol under feedback control. We investigate the transient and stationary response of both local temperature readings and heat transfer fluxes on the Rayleigh Bénard cell in both conductive and convective states when we perform two independent feedback control actions on both hot and cold walls. We evaluate the performance of both controllers to maintain a temperature gradient independently if the system is below or above the convection threshold. As the convection cell can be rotated at 180° about the shorter axis of the cell, it was possible to perform transitions between thermal conduction and convection regimes and vice versa under a constant temperature difference maintained by both independent controllers. The experimental setup provided an accurate measurement of the critical Rayleigh number and the evolution of the Nusselt number as a function of the Rayleigh number in the moderately supercritical regime (R a cellular convection pattern formed by 6 transverse rolls throughout the range of Rayleigh numbers.

  5. Scrape-off layer profile modifications by convective cells

    International Nuclear Information System (INIS)

    Myra, J.R.; DIppolito, D.A.

    1996-01-01

    Convective cells (CC close-quote s) are important in understanding density profile modifications induced by ion cyclotron range of frequencies (ICRF) antennas. This has motivated the present work in which the effect of CC close-quote s on transport in the scrape-off layer is studied, in the regime where the density gradient scale length L n and the cell size L are comparable. Monte Carlo simulations show that closed cell convection acts to flatten the density profile, and that open cells enhance the particle flow to the wall, depleting the density and yielding profiles similar to those measured near ICRF antennas. A new one-dimensional, two-branch model of CC transport is shown to agree well with the simulations. The model gives rise to two characteristic scale lengths, only one of which is retained in the enhanced diffusion models that are applicable for L n >L. The two-branch model is expected to be useful in analyzing ICRF experiments. copyright 1996 American Institute of Physics

  6. Convective Propagation Characteristics Using a Simple Representation of Convective Organization

    Science.gov (United States)

    Neale, R. B.; Mapes, B. E.

    2016-12-01

    Observed equatorial wave propagation is intimately linked to convective organization and it's coupling to features of the larger-scale flow. In this talk we a use simple 4 level model to accommodate vertical modes of a mass flux convection scheme (shallow, mid-level and deep). Two paradigms of convection are used to represent convective processes. One that has only both random (unorganized) diagnosed fluctuations of convective properties and one with organized fluctuations of convective properties that are amplified by previously existing convection and has an explicit moistening impact on the local convecting environment We show a series of model simulations in single-column, 2D and 3D configurations, where the role of convective organization in wave propagation is shown to be fundamental. For the optimal choice of parameters linking organization to local atmospheric state, a broad array of convective wave propagation emerges. Interestingly the key characteristics of propagating modes are the low-level moistening followed by deep convection followed by mature 'large-scale' heating. This organization structure appears to hold firm across timescales from 5-day wave disturbances to MJO-like wave propagation.

  7. Coupled interactions of organized deep convection over the tropical western pacific

    Energy Technology Data Exchange (ETDEWEB)

    Hong, X.; Raman, S. [North Carolina State Univ., Raleigh, NC (United States)

    1996-04-01

    The relationship between sea surface temperature (SST) and deep convection is complex. In general, deep convection occurs more frequently and with more intensity as SSTs become higher. This theory assumes that the atmospheric stability is sufficiently reduced to allow the onset of moist convection. However, the amount and intensity of convection observed tends to decrease with increasing SST because very warm SSTs. A reason for such decrease is the enhancements to surface fluxes of heat and moisture out of the ocean surface because of the vertical overturning associated with deep convection. Early studies used the radiative-convective models of the atmosphere to examine the role of the convective exchange of heat and moisture in maintaining the vertical temperature profile. In this paper we use a Coupled Ocean/Atmosphere Mesoscale Prediction System (COAMPS) to simulate a squall line over a tropical ocean global atmosphere/coupled ocean atmosphere response experiment (TOGA/COARE) area and to investigate how the ocean cooling mechanisms associated with organized deep convection act to limit tropical SSTs.

  8. The Effect of Thermal Convection on Earth-Atmosphere CO2 Gas Exchange in Aggregated Soil

    Science.gov (United States)

    Ganot, Y.; Weisbrod, N.; Dragila, M. I.

    2011-12-01

    Gas transport in soils and surface-atmosphere gas exchange are important processes that affect different aspects of soil science such as soil aeration, nutrient bio-availability, sorption kinetics, soil and groundwater pollution and soil remediation. Diffusion and convection are the two main mechanisms that affect gas transport, fate and emissions in the soils and in the upper vadose zone. In this work we studied CO2 soil-atmosphere gas exchange under both day-time and night-time conditions, focusing on the impact of thermal convection (TCV) during the night. Experiments were performed in a climate-controlled laboratory. One meter long columns were packed with matrix of different grain size (sand, gravel and soil aggregates). Air with 2000 ppm CO2 was injected into the bottom of the columns and CO2 concentration within the columns was continuously monitored by an Infra Red Gas Analyzer. Two scenarios were compared for each soil: (1) isothermal conditions, representing day time conditions; and (2) thermal gradient conditions, i.e., atmosphere colder than the soil, representing night time conditions. Our results show that under isothermal conditions, diffusion is the major mechanism for surface-atmosphere gas exchange for all grain sizes; while under night time conditions the prevailing mechanism is dependent on the air permeability of the matrix: for sand and gravel it is diffusion, and for soil aggregates it is TCV. Calculated CO2 flux for the soil aggregates column shows that the TCV flux was three orders of magnitude higher than the diffusive flux.

  9. A model study of mixing and entrainment in the horizontally evolving atmospheric convective boundary layer

    Energy Technology Data Exchange (ETDEWEB)

    Fedorovich, E.; Kaiser, R. [Univ. Karlsruhe, Inst. fuer Hydrologie und Wasserwirtschaft (Germany)

    1997-10-01

    We present results from a parallel wind-tunnel/large-eddy simulation (LES) model study of mixing and entrainment in the atmospheric convective boundary layer (CBL) longitudinally developing over a heated surface. The advection-type entrainment of warmer air from upper turbulence-free layers into the growing CBL has been investigated. Most of numerical and laboratory model studies of the CBL carried out so far dealt with another type of entrainment, namely the non-steady one, regarding the CBL growth as a non-stationary process. In the atmosphere, both types of the CBL development can take place, often being superimposed. (au)

  10. Effect of thermal-convection-induced defects on the performance of perovskite solar cells

    Science.gov (United States)

    Ye, Fei; Xie, Fengxian; Yin, Maoshu; He, Jinjin; Wang, Yanbo; Tang, Wentao; Chen, Han; Yang, Xudong; Han, Liyuan

    2017-07-01

    Thermal-convection-induced defects can cause huge loss in the power conversion efficiency of solution-processed perovskite solar cells. We investigated two types of convection in perovskite solution during the formation of perovskite films. By balancing the convection via special configurations of surface tension and boiling point in mixed γ-butyrolactone (GBL) and dimethylsulfoxide (DMSO), we removed microscopic defects such as rings, bumps, and crevices. The deposited perovskite films were smooth and dense, which enabled a high power conversion efficiency of 17.7% in a 1 cm2 cell area. We believe that the present strategy for controlling the convection can be helpful in improving the perovskite film quality for solvent-rich scalable solution processes of solar cells such as doctor blading, soft-cover deposition, printing, and slot-die coating.

  11. CDM Convective Forecast Planning guidance

    Data.gov (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — The CDM Convective Forecast Planning (CCFP) guidance product provides a foreast of en-route aviation convective hazards. The forecasts are updated every 2 hours and...

  12. Atmospheric Convective Organization: Self-Organized Criticality or Homeostasis?

    Science.gov (United States)

    Yano, Jun-Ichi

    2015-04-01

    Atmospheric convection has a tendency organized on a hierarchy of scales ranging from the mesoscale to the planetary scales, with the latter especially manifested by the Madden-Julian oscillation. The present talk examines two major possible mechanisms of self-organization identified in wider literature from a phenomenological thermodynamic point of view by analysing a planetary-scale cloud-resolving model simulation. The first mechanism is self-organized criticality. A saturation tendency of precipitation rate with the increasing column-integrated water, reminiscence of critical phenomena, indicates self-organized criticality. The second is a self-regulation mechanism that is known as homeostasis in biology. A thermodynamic argument suggests that such self-regulation maintains the column-integrated water below a threshold by increasing the precipitation rate. Previous analyses of both observational data as well as cloud-resolving model (CRM) experiments give mixed results. A satellite data analysis suggests self-organized criticality. Some observational data as well as CRM experiments support homeostasis. Other analyses point to a combination of these two interpretations. In this study, a CRM experiment over a planetary-scale domain with a constant sea-surface temperature is analyzed. This analysis shows that the relation between the column-integrated total water and precipitation suggests self-organized criticality, whereas the one between the column-integrated water vapor and precipitation suggests homeostasis. The concurrent presence of these two mechanisms are further elaborated by detailed statistical and budget analyses. These statistics are scale invariant, reflecting a spatial scaling of precipitation processes. These self-organization mechanisms are most likely be best theoretically understood by the energy cycle of the convective systems consisting of the kinetic energy and the cloud-work function. The author has already investigated the behavior of this

  13. Cell structures caused by settling particles in turbulent Rayleigh-Bénard convection

    Science.gov (United States)

    Lee, Changhoon; Park, Sangro

    2016-11-01

    Turbulent thermal convection is an important phenomenon frequently found in nature and industrial processes, often with laden particles. In the last several decades, the vast majority of studies have addressed single phase convective flow with focus on the scaling relation of flow parameters associated with heat transfer. Particle-laden Rayleigh-Bénard convection, however, has not been sufficiently studied. In this study, modulation of cell structures by settling particles in turbulent Rayleigh-Bénard convection in a doubly periodic square channel is investigated using direct numerical simulation with a point particle approach. Flow parameters are fixed at Rayleigh number=106, Prandtl number=0.7, the aspect ratio=6, and Froude number=0.19. We report from the simulations that settling heavy particles modulate irregular large-scale thermal plume structures into organized polygonal cell structures. Different shapes of flow structures are obtained for different particle diameters and mass loadings. We found that polygonal cell structures arise due to asymmetric feedback force exerted by particles onto hot and cold plumes. Increasing the number of particles augments the asymmetry and the polygonal cell structures become smaller, eventually going to the hexagonal structures.

  14. Heating-insensitive scale increase caused by convective precipitation

    Science.gov (United States)

    Haerter, Jan; Moseley, Christopher; Berg, Peter

    2017-04-01

    The origin of intense convective extremes and their unusual temperature dependence has recently challenged traditional thermodynamic arguments, based on the Clausius-Clapeyron relation. In a sequence of studies (Lenderink and v. Mejgaard, Nat Geosc, 2008; Berg, Haerter, Moseley, Nat Geosc, 2013; and Moseley, Hohenegger, Berg, Haerter, Nat Geosc, 2016) the argument of convective-type precipitation overcoming the 7%/K increase in extremes by dynamical, rather than thermodynamic, processes has been promoted. How can the role of dynamical processes be approached for precipitating convective cloud? One-phase, non-precipitating Rayleigh-Bénard convection is a classical problem in complex systems science. When a fluid between two horizontal plates is sufficiently heated from below, convective rolls spontaneously form. In shallow, non-precipitating atmospheric convection, rolls are also known to form under specific conditions, with horizontal scales roughly proportional to the boundary layer height. Here we explore within idealized large-eddy simulations, how the scale of convection is modified, when precipitation sets in and intensifies in the course of diurnal solar heating. Before onset of precipitation, Bénard cells with relatively constant diameter form, roughly on the scale of the atmospheric boundary layer. We find that the onset of precipitation then signals an approximately linear (in time) increase in horizontal scale. This scale increase progresses at a speed which is rather insensitive to changes in surface temperature or changes in the rate at which boundary conditions change, hinting at spatial characteristics, rather than temperature, as a possible control on spatial scales of convection. When exploring the depth of spatial correlations, we find that precipitation onset causes a sudden disruption of order and a subsequent complete disintegration of organization —until precipitation eventually ceases. Returning to the initial question of convective

  15. Comparing convective heat fluxes derived from thermodynamics to a radiative-convective model and GCMs

    Science.gov (United States)

    Dhara, Chirag; Renner, Maik; Kleidon, Axel

    2015-04-01

    The convective transport of heat and moisture plays a key role in the climate system, but the transport is typically parameterized in models. Here, we aim at the simplest possible physical representation and treat convective heat fluxes as the result of a heat engine. We combine the well-known Carnot limit of this heat engine with the energy balances of the surface-atmosphere system that describe how the temperature difference is affected by convective heat transport, yielding a maximum power limit of convection. This results in a simple analytic expression for convective strength that depends primarily on surface solar absorption. We compare this expression with an idealized grey atmosphere radiative-convective (RC) model as well as Global Circulation Model (GCM) simulations at the grid scale. We find that our simple expression as well as the RC model can explain much of the geographic variation of the GCM output, resulting in strong linear correlations among the three approaches. The RC model, however, shows a lower bias than our simple expression. We identify the use of the prescribed convective adjustment in RC-like models as the reason for the lower bias. The strength of our model lies in its ability to capture the geographic variation of convective strength with a parameter-free expression. On the other hand, the comparison with the RC model indicates a method for improving the formulation of radiative transfer in our simple approach. We also find that the latent heat fluxes compare very well among the approaches, as well as their sensitivity to surface warming. What our comparison suggests is that the strength of convection and their sensitivity in the climatic mean can be estimated relatively robustly by rather simple approaches.

  16. Interaction of Convective Organization and Monsoon Precipitation, Atmosphere, Surface and Sea (INCOMPASS)

    Science.gov (United States)

    Turner, A. G.; Bhat, G. S.; Evans, J. G.; Madan, R.; Marsham, J. H.; Martin, G.; Mitra, A. K.; Mrudula, G.; Parker, D. J.; Pattnaik, S.; Rajagopal, E. N.; Taylor, C.; Tripathi, S. N.

    2016-12-01

    INCOMPASS will build on a field and aircraft measurement campaign from the 2016 monsoon onset to better understand and predict monsoon rainfall. The monsoon supplies the majority of water in South Asia, however modelling and forecasting the monsoon from days to the season ahead is limited by large model errors that develop quickly. Likely problems lie in physical parametrizations such as convection, the boundary layer and land surface. At the same time, lack of detailed observations prevents more thorough understanding of monsoon circulation and its interaction with the land surface; a process governed by boundary layer and convective cloud dynamics. From May to July 2016, INCOMPASS used a modified BAe-146 jet aircraft operated by the UK Facility for Airborne Atmospheric Measurements (FAAM), for the first project of this scale in India. The India and UK team flew around 100 hours of science sorties from bases in northern and southern India. Flights from Lucknow in the northern plains took measurements to the west and southeast to allow sampling of the complete contrast from dry desert air to the humid environment over the north Bay of Bengal. These routes were repeated in the pre-monsoon and monsoon phases, measuring contrasting surface and boundary layer structures. In addition, flights from the southern base in Bengaluru measured contrasts from the Arabian Sea, across the intense rains of the Western Ghats mountains, over the rain shadow in southeast India and over the southern Bay of Bengal. Flight planning was performed with the aid of forecasts from a new UK Met Office 4km limited area model. INCOMPASS also installed a network of surface flux towers, as well as operating a cloud-base ceilometer and performing intensive radiosonde launches from a supersite in Kanpur. This presentation will outline preliminary results from the field campaign including new observations of the surface, boundary layer structure and atmospheric profiles together with detailed

  17. A Lagrangian stochastic model to demonstrate multi-scale interactions between convection and land surface heterogeneity in the atmospheric boundary layer

    Science.gov (United States)

    Parsakhoo, Zahra; Shao, Yaping

    2017-04-01

    Near-surface turbulent mixing has considerable effect on surface fluxes, cloud formation and convection in the atmospheric boundary layer (ABL). Its quantifications is however a modeling and computational challenge since the small eddies are not fully resolved in Eulerian models directly. We have developed a Lagrangian stochastic model to demonstrate multi-scale interactions between convection and land surface heterogeneity in the atmospheric boundary layer based on the Ito Stochastic Differential Equation (SDE) for air parcels (particles). Due to the complexity of the mixing in the ABL, we find that linear Ito SDE cannot represent convections properly. Three strategies have been tested to solve the problem: 1) to make the deterministic term in the Ito equation non-linear; 2) to change the random term in the Ito equation fractional, and 3) to modify the Ito equation by including Levy flights. We focus on the third strategy and interpret mixing as interaction between at least two stochastic processes with different Lagrangian time scales. The model is in progress to include the collisions among the particles with different characteristic and to apply the 3D model for real cases. One application of the model is emphasized: some land surface patterns are generated and then coupled with the Large Eddy Simulation (LES).

  18. On interpreting studies of tracer transport by deep cumulus convection and its effects on atmospheric chemistry

    Directory of Open Access Journals (Sweden)

    M. G. Lawrence

    2008-10-01

    Full Text Available Global chemistry-transport models (CTMs and chemistry-GCMs (CGCMs generally simulate vertical tracer transport by deep convection separately from the advective transport by the mean winds, even though a component of the mean transport, for instance in the Hadley and Walker cells, occurs in deep convective updrafts. This split treatment of vertical transport has various implications for CTM simulations. In particular, it has led to a misinterpretation of several sensitivity simulations in previous studies in which the parameterized convective transport of one or more tracers is neglected. We describe this issue in terms of simulated fluxes and fractions of these fluxes representing various physical and non-physical processes. We then show that there is a significant overlap between the convective and large-scale mean advective vertical air mass fluxes in the CTM MATCH, and discuss the implications which this has for interpreting previous and future sensitivity simulations, as well as briefly noting other related implications such as numerical diffusion.

  19. Parameterizing convective organization

    Directory of Open Access Journals (Sweden)

    Brian Earle Mapes

    2011-06-01

    Full Text Available Lateral mixing parameters in buoyancy-driven deep convection schemes are among the most sensitive and important unknowns in atmosphere models. Unfortunately, there is not a true optimum value for plume mixing rate, but rather a dilemma or tradeoff: Excessive dilution of updrafts leads to unstable stratification bias in the mean state, while inadequate dilution allows deep convection to occur too easily, causing poor space and time distributions and variability. In this too-small parameter space, compromises are made based on competing metrics of model performance. We attempt to escape this “entrainment dilemma” by making bulk plume parameters (chiefly entrainment rate depend on a new prognostic variable (“organization,” org meant to reflect the rectified effects of subgrid-scale structure in meteorological fields. We test an org scheme in the Community Atmosphere Model (CAM5 with a new unified shallow-deep convection scheme (UW-ens, a 2-plume version of the University of Washington scheme. Since buoyant ascent involves natural selection, subgrid structure makes convection systematically deeper and stronger than the pure unorganized case: plumes of average (or randomly sampled air rising in the average environment. To reflect this, org is nonnegative, but we leave it dimensionless. A time scale characterizes its behavior (here ∼3 h for a 2o model. Currently its source is rain evaporation, but other sources can be added easily. We also let org be horizontally transported by advection, as a mass-weighted mean over the convecting layer. Linear coefficients link org to a plume ensemble, which it assists via: 1 plume base warmth above the mean temperature 2 plume radius enhancement (reduced mixing, and 3 increased probability of overlap in a multi-plume scheme, where interactions benefit later generations (this part has only been implemented in an offline toy column model. Since rain evaporation is a source for org, it functions as a time

  20. Theory of modulational interaction of trapped ion convective cells and drift wave turbulence

    International Nuclear Information System (INIS)

    Shapiro, V.D.; Diamond, P.H.; Lebedev, V.; Soloviev, G.; Shevchenko, V.

    1993-01-01

    Theoretical and computational studies of the modulational interaction between trapped ion convective cells and short wavelength drift wave turbulence are discussed. These studies are motivated by the fact that cells and drift waves are expected to coexist in tokamaks so that: (a) cells strain and modulate drift waves, and (b) drift waves open-quote ride on close-quote a background of cells. The results of the authors' investigation indicate that: (1) (nonlinear) parametric growth rates of trapped ion convective cells can exceed linear predictions (for drift wave levels at the mixing length limit); (2) a set of coupled envelope equations, akin to the Zakharov equations from Langmuir turbulence, can be derived and used to predict the formation of a dipole pair of convective cells trapped by the drift wave envelope. This dipole pair is strongly anisotropic, due to the structure of the drift wave Reynolds stress which drives the cell flow. Numerical solutions of the envelope equations are in good agreement with theoretical predictions, and indicate the persistence of the structure in time; (3) strong modulation and trapping of drift waves with k perpendicular ρ > 1 occurs. Extensions to magnetically sheared systems and the broader implications of this work as a paradigm for the dynamics of persistent structures in shearing flows are discussed

  1. Hamiltonian Description of Convective-cell Generation

    International Nuclear Information System (INIS)

    Krommes, J.A.; Kolesnikov, R.A.

    2004-01-01

    The nonlinear statistical growth rate eq for convective cells driven by drift-wave (DW) interactions is studied with the aid of a covariant Hamiltonian formalism for the gyrofluid nonlinearities. A statistical energy theorem is proven that relates eq to a second functional tensor derivative of the DW energy. This generalizes to a wide class of systems of coupled partial differential equations a previous result for scalar dynamics. Applications to (i) electrostatic ion-temperature-gradient-driven modes at small ion temperature, and (ii) weakly electromagnetic collisional DW's are noted

  2. probing the atmosphere with high power, high resolution radars

    Science.gov (United States)

    Hardy, K. R.; Katz, I.

    1969-01-01

    Observations of radar echoes from the clear atmosphere are presented and the scattering mechanisms responsible for the two basic types of clear-air echoes are discussed. The commonly observed dot echo originates from a point in space and usually shows little variation in echo intensity over periods of about 0.1 second. The second type of clear-air radar echo appears diffuse in space, and signal intensities vary considerably over periods of less than 0.1 second. The echoes often occur in thin horizontal layers or as boundaries of convective activity; these are characterized by sharp gradients of refractive index. Some features of clear-air atmospheric structures as observed with radar are presented. These structures include thin stable inversions, convective thermals, Benard convection cells, breaking gravity waves, and high tropospheric layers which are sufficiently turbulent to affect aircraft.

  3. A Thermodynamically General Theory for Convective Circulations and Vortices

    Science.gov (United States)

    Renno, N. O.

    2007-12-01

    Convective circulations and vortices are common features of atmospheres that absorb low-entropy-energy at higher temperatures than they reject high-entropy-energy to space. These circulations range from small to planetary-scale and play an important role in the vertical transport of heat, momentum, and tracer species. Thus, the development of theoretical models for convective phenomena is important to our understanding of many basic features of planetary atmospheres. A thermodynamically general theory for convective circulations and vortices is proposed. The theory includes irreversible processes and quantifies the pressure drop between the environment and any point in a convective updraft. The article's main result is that the proposed theory provides an expression for the pressure drop along streamlines or streamtubes that is a generalization of Bernoulli's equation to convective circulations. We speculate that the proposed theory not only explains the intensity, but also shed light on other basic features of convective circulations and vortices.

  4. Impacts of Groundwater on the Atmospheric Convection in Amazon using Multi-GCM Simulations from I-GEM project

    Science.gov (United States)

    Lo, M. H.; Chien, R. Y.; Ducharne, A.; Decharme, B.; Lan, C. W.; Wang, F.; Cheruy, F.; Colin, J.

    2017-12-01

    Previous research indicated that groundwater plays an important role in hydrological cycle and is a major source of water vapor in climate models, which may result in modifications of atmospheric convection. For instance, our previous study showed that when considering the groundwater dynamics in a GCM, the wet soil induced surface cooling effect can further reduce the Amazon dry season convection and precipitation. However, the main mechanisms of the interaction among groundwater, soil moisture, and precipitation are still unclear, and they need to be examined in several climate models. In this study, we further examine the influence of the surface cooling effects due to the groundwater on the convection over the Amazon. To this end, we use idealized simulations of the IGEM (Impact of Groundwater in Earth system Models) project, with 3 GCMs (CESM, CNRM, and IPSL): in each of them, we prescribed a water table at a constant depth throughout all land areas, to create globally wet conditions. Preliminary analysis shows a contradict result of the tendency of precipitation in the three models with wet condition which indicates a great uncertainty of the groundwater's impacts in coupled GCMs.

  5. VHF/UHF radar observations of tropical mesoscale convective systems over southern India

    Directory of Open Access Journals (Sweden)

    K. Kishore Kumar

    2005-07-01

    Full Text Available Several campaigns have been carried out to study the convective systems over Gadanki (13.5° N, 79.2° E, a tropical station in India, using VHF and UHF radars. The height-time sections of several convective systems are investigated in detail to study reflectivity, turbulence and vertical velocity structure. Structure and dynamics of the convective systems are the main objectives of these campaigns. The observed systems are classified into single- and multi-cell systems. It has been observed that most of the convective systems at this latitude are multi-cellular in nature. Simultaneous VHF and UHF radar observations are used to classify the observed precipitating systems as convective, intermediary and stratiform regions. Composite height profiles of vertical velocities in these regions were obtained and the same were compared with the profiles obtained at other geographical locations. These composite profiles of vertical velocity in the convective regions have shown their peaks in the mid troposphere, indicating that the maximum latent heat is being released at those heights. These profiles are very important for numerical simulations of the convective systems, which vary significantly from one geographical location to the other.

    Keywords. Meteorology and atmospheric dynamics (Mesoscale meteorology; Convective processes – Radio science (Remote sensing

  6. VHF/UHF radar observations of tropical mesoscale convective systems over southern India

    Directory of Open Access Journals (Sweden)

    K. Kishore Kumar

    2005-07-01

    Full Text Available Several campaigns have been carried out to study the convective systems over Gadanki (13.5° N, 79.2° E, a tropical station in India, using VHF and UHF radars. The height-time sections of several convective systems are investigated in detail to study reflectivity, turbulence and vertical velocity structure. Structure and dynamics of the convective systems are the main objectives of these campaigns. The observed systems are classified into single- and multi-cell systems. It has been observed that most of the convective systems at this latitude are multi-cellular in nature. Simultaneous VHF and UHF radar observations are used to classify the observed precipitating systems as convective, intermediary and stratiform regions. Composite height profiles of vertical velocities in these regions were obtained and the same were compared with the profiles obtained at other geographical locations. These composite profiles of vertical velocity in the convective regions have shown their peaks in the mid troposphere, indicating that the maximum latent heat is being released at those heights. These profiles are very important for numerical simulations of the convective systems, which vary significantly from one geographical location to the other. Keywords. Meteorology and atmospheric dynamics (Mesoscale meteorology; Convective processes – Radio science (Remote sensing

  7. Convection in a colloidal suspension in a closed horizontal cell

    International Nuclear Information System (INIS)

    Smorodin, B. L.; Cherepanov, I. N.

    2015-01-01

    The experimentally detected [1] oscillatory regimes of convection in a colloidal suspension of nanoparticles with a large anomalous thermal diffusivity in a closed horizontal cell heated from below have been simulated numerically. The concentration inhomogeneity near the vertical cavity boundaries arising from the interaction of thermal-diffusion separation and convective mixing has been proven to serve as a source of oscillatory regimes (traveling waves). The dependence of the Rayleigh number at the boundary of existence of the traveling-wave regime on the aspect ratio of the closed cavity has been established. The spatial characteristics of the emerging traveling waves have been determined

  8. Sea surface temperature as a proxy for convective gravity wave excitation: a study based on global gravity wave observations in the middle atmosphere

    Directory of Open Access Journals (Sweden)

    J. Y. Jia

    2014-11-01

    Full Text Available Absolute values of gravity wave momentum flux (GWMF deduced from satellite measurements by the Sounding of the Atmosphere using Broadband Emission Radiometry (SABER instrument and the High Resolution Dynamics Limb Sounder (HIRDLS are correlated with sea surface temperature (SST with the aim of identifying those oceanic regions for which convection is a major source of gravity waves (GWs. Our study identifies those latitude bands where high correlation coefficients indicate convective excitation with confidence. This is based on a global ray-tracing simulation, which is used to delineate the source and wind-filtering effects. Convective GWs are identified at the eastern coasts of the continents and over the warm water regions formed by the warm ocean currents, in particular the Gulf Stream and the Kuroshio. Potential contributions of tropical cyclones to the excitation of the GWs are discussed. Convective excitation can be identified well into the mid-mesosphere. In propagating upward, the centers of GWMF formed by convection shift poleward. Some indications of the main forcing regions are even shown for the upper mesosphere/lower thermosphere (MLT.

  9. Covariability in the Monthly Mean Convective and Radiative Diurnal Cycles in the Amazon

    Science.gov (United States)

    Dodson, Jason B.; Taylor, Patrick C.

    2015-01-01

    The diurnal cycle of convective clouds greatly influences the radiative energy balance in convectively active regions of Earth, through both direct presence, and the production of anvil and stratiform clouds. Previous studies show that the frequency and properties of convective clouds can vary on monthly timescales as a result of variability in the monthly mean atmospheric state. Furthermore, the radiative budget in convectively active regions also varies by up to 7 Wm-2 in convectively active regions. These facts suggest that convective clouds connect atmospheric state variability and radiation variability beyond clear sky effects alone. Previous research has identified monthly covariability between the diurnal cycle of CERES-observed top-of-atmosphere radiative fluxes and multiple atmospheric state variables from reanalysis over the Amazon region. ASVs that enhance (reduce) deep convection, such as CAPE (LTS), tend to shift the daily OLR and cloud albedo maxima earlier (later) in the day by 2-3 hr. We first test the analysis method using multiple reanalysis products for both the dry and wet seasons to further investigate the robustness of the preliminary results. We then use CloudSat data as an independent cloud observing system to further evaluate the relationships of cloud properties to variability in radiation and atmospheric states. While CERES can decompose OLR variability into clear sky and cloud effects, it cannot determine what variability in cloud properties lead to variability in the radiative cloud effects. Cloud frequency, cloud top height, and cloud microphysics all contribute to the cloud radiative effect, all of which are observable by CloudSat. In addition, CloudSat can also observe the presence and variability of deep convective cores responsible for the production of anvil clouds. We use these capabilities to determine the covariability of convective cloud properties and the radiative diurnal cycle.

  10. Current advances in polymer electrolyte fuel cells based on the promotional role of under-rib convection

    Energy Technology Data Exchange (ETDEWEB)

    Choi, K.S. [Industrial Technology Cooperation Center, Korea Institute of Energy Research, 152 Gajeong-ro, Yuseong-gu, Daejeon 305-343 (Korea, Republic of); Kim, B.G.; Park, K.; Kim, H.M. [Department of Mechanical Engineering and High Safety Vehicle Core Technology Research Center, INJE University, 607 Eobang-dong, Gimhae, Gyeongnam 621-749 (Korea, Republic of)

    2012-12-15

    Literature data on the promotional role of under-rib convection for polymer electrolyte fuel cells (PEFCs) fueled by hydrogen and methanol are structured and analyzed, thus providing a guide to improving fuel cell performance through the optimization of flow field interaction. Data are presented for both physical and electrochemical performance showing reactant mass transport, electrochemical reaction, water behavior, and power density enhanced by under-rib convection. Performance improvement studies ranging from single cell to stack are presented for measuring the performance of real operating conditions and large-scale setups. The flow field optimization techniques by under-rib convection are derived from the collected data over a wide range of experiments and modeling studies with a variety of components including both single cell and stack arrangements. Numerical models for PEFCs are presented with an emphasis on mass transfer and electrochemical reaction inside the fuel cell. The models are primarily used here as a tool in the parametric analysis of significant design features and to permit the design of the experiment. Enhanced flow field design that utilizes the promotional role of under-rib convection can contribute to commercializing PEFCs. (Copyright copyright 2012 WILEY-VCH Verlag GmbH and Co. KGaA, Weinheim)

  11. The pattern of convection in the Sun

    International Nuclear Information System (INIS)

    Weiss, N.O.

    1976-01-01

    The structure of solar magnetic fields is dominated by the effects of convection, which should be incorporated in any model of the solar cycle. Although mixing length theory is adequate for calculating the structure of main sequence stars, a better description of convection is needed for any detailed dynamo model. Recent work on nonlinear convection at low Prandt numbers is reviewed. There has been some progress towards a theory of compressible convection, though there is still no firm theoretical evidence for cells with scales less than the depth of the convecting layer. However, it remains likely that the pattern of solar convection is dominated by granules, supergranules and giant cells. The effects of rotation on these cells are briefly considered. (Auth.)

  12. Convective aggregation in realistic convective-scale simulations

    Science.gov (United States)

    Holloway, Christopher E.

    2017-06-01

    To investigate the real-world relevance of idealized-model convective self-aggregation, five 15 day cases of real organized convection in the tropics are simulated. These include multiple simulations of each case to test sensitivities of the convective organization and mean states to interactive radiation, interactive surface fluxes, and evaporation of rain. These simulations are compared to self-aggregation seen in the same model configured to run in idealized radiative-convective equilibrium. Analysis of the budget of the spatial variance of column-integrated frozen moist static energy shows that control runs have significant positive contributions to organization from radiation and negative contributions from surface fluxes and transport, similar to idealized runs once they become aggregated. Despite identical lateral boundary conditions for all experiments in each case, systematic differences in mean column water vapor (CWV), CWV distribution shape, and CWV autocorrelation length scale are found between the different sensitivity runs, particularly for those without interactive radiation, showing that there are at least some similarities in sensitivities to these feedbacks in both idealized and realistic simulations (although the organization of precipitation shows less sensitivity to interactive radiation). The magnitudes and signs of these systematic differences are consistent with a rough equilibrium between (1) equalization due to advection from the lateral boundaries and (2) disaggregation due to the absence of interactive radiation, implying disaggregation rates comparable to those in idealized runs with aggregated initial conditions and noninteractive radiation. This points to a plausible similarity in the way that radiation feedbacks maintain aggregated convection in both idealized simulations and the real world.Plain Language SummaryUnderstanding the processes that lead to the organization of tropical rainstorms is an important challenge for weather

  13. Tropical continental downdraft characteristics: mesoscale systems versus unorganized convection

    Science.gov (United States)

    Schiro, Kathleen A.; Neelin, J. David

    2018-02-01

    Downdrafts and cold pool characteristics for strong mesoscale convective systems (MCSs) and isolated, unorganized deep precipitating convection are analyzed using multi-instrument data from the DOE Atmospheric Radiation Measurement (ARM) GoAmazon2014/5 campaign. Increases in column water vapor (CWV) are observed leading convection, with higher CWV preceding MCSs than for isolated cells. For both MCSs and isolated cells, increases in wind speed, decreases in surface moisture and temperature, and increases in relative humidity occur coincidentally with system passages. Composites of vertical velocity data and radar reflectivity from a radar wind profiler show that the downdrafts associated with the sharpest decreases in surface equivalent potential temperature (θe) have a probability of occurrence that increases with decreasing height below the freezing level. Both MCSs and unorganized convection show similar mean downdraft magnitudes and probabilities with height. Mixing computations suggest that, on average, air originating at heights greater than 3 km must undergo substantial mixing, particularly in the case of isolated cells, to match the observed cold pool θe, implying a low typical origin level. Precipitation conditionally averaged on decreases in surface equivalent potential temperature (Δθe) exhibits a strong relationship because the most negative Δθe values are associated with a high probability of precipitation. The more physically motivated conditional average of Δθe on precipitation shows that decreases in θe level off with increasing precipitation rate, bounded by the maximum difference between surface θe and its minimum in the profile aloft. Robustness of these statistics observed across scales and regions suggests their potential use as model diagnostic tools for the improvement of downdraft parameterizations in climate models.

  14. On the Sensitivity of the Diurnal Cycle in the Amazon to Convective Intensity

    Science.gov (United States)

    Itterly, Kyle; Taylor, Patrick

    2015-01-01

    This presentation uses publicly available CERES and radiosonde data to investigate the sensitivity of thetropical convective diurnal cycle to atmosphere state. Averaging surface observations into regimes of convective intensitydefined by satellite shows great promise for physical understandingof convection.• Convective processes in the Amazon are highly variable seasonallyand locally.• Buoyancy/CIN more important JJA– Mesoscale/synoptic features easier to separate– Length/depth of buoyancy layer very important in DJF (EL).• Moisture more important DJF, esp. UTH– Humidity of lower atmosphere significantly impacts LTS, LCL and abilityfor parcels to reach LFC.• Lower level jet strength/direction important• Convective initiation correlated with LTS, LR, LTH, EL• Duration/Phase better correlated with humidity variables• Surface Flux amplitude well correlated with convection

  15. Observing Convective Aggregation

    Science.gov (United States)

    Holloway, Christopher E.; Wing, Allison A.; Bony, Sandrine; Muller, Caroline; Masunaga, Hirohiko; L'Ecuyer, Tristan S.; Turner, David D.; Zuidema, Paquita

    2017-11-01

    Convective self-aggregation, the spontaneous organization of initially scattered convection into isolated convective clusters despite spatially homogeneous boundary conditions and forcing, was first recognized and studied in idealized numerical simulations. While there is a rich history of observational work on convective clustering and organization, there have been only a few studies that have analyzed observations to look specifically for processes related to self-aggregation in models. Here we review observational work in both of these categories and motivate the need for more of this work. We acknowledge that self-aggregation may appear to be far-removed from observed convective organization in terms of time scales, initial conditions, initiation processes, and mean state extremes, but we argue that these differences vary greatly across the diverse range of model simulations in the literature and that these comparisons are already offering important insights into real tropical phenomena. Some preliminary new findings are presented, including results showing that a self-aggregation simulation with square geometry has too broad distribution of humidity and is too dry in the driest regions when compared with radiosonde records from Nauru, while an elongated channel simulation has realistic representations of atmospheric humidity and its variability. We discuss recent work increasing our understanding of how organized convection and climate change may interact, and how model discrepancies related to this question are prompting interest in observational comparisons. We also propose possible future directions for observational work related to convective aggregation, including novel satellite approaches and a ground-based observational network.

  16. Onset of oscillatory binary fluid convection in three-dimensional cells

    Energy Technology Data Exchange (ETDEWEB)

    Alonso, Arantxa; Batiste, Oriol [Universitat Politecnica de Catalunya, Departament de Fisica Aplicada, Barcelona (Spain)

    2004-11-01

    The purpose of this work is to investigate the influence of the transverse walls on the onset of convection in a horizontal rectangular cavity of infinite length filled with a binary mixture when heated from below. For the first time we take into account the effect of the third dimension without making any approximation and considering realistic boundary conditions. In previous numerical works the width of the cell was either taken to be infinity (bulk mixtures) or different approximations usually valid in the narrow cell limit were assumed (i.e., Hele-Shaw and non-ideal Hele-Shaw approximations). The results we find show that the presence of the walls has a considerable effect on the onset of convection even for intermediate transverse aspect ratio cells. They also show that the approximations generally assumed fail to reproduce the correct behaviour of the critical parameters in an important range of aspect ratio values when the primary bifurcation is oscillatory. We have compared the critical values of the Rayleigh number and the frequency with those reported in the literature (Ohlsen et al. [1]) and we find a quantitative agreement within the experimental error. (orig.)

  17. Atmospheric Habitable Zones in Y Dwarf Atmospheres

    Energy Technology Data Exchange (ETDEWEB)

    Yates, Jack S.; Palmer, Paul I. [School of GeoSciences, University of Edinburgh (United Kingdom); Biller, Beth; Cockell, Charles S., E-mail: j.s.yates@ed.ac.uk [Centre for Exoplanet Science, University of Edinburgh (United Kingdom)

    2017-02-20

    We use a simple organism lifecycle model to explore the viability of an atmospheric habitable zone (AHZ), with temperatures that could support Earth-centric life, which sits above an environment that does not support life. To illustrate our model, we use a cool Y dwarf atmosphere, such as WISE J085510.83–0714442.5, whose 4.5–5.2 μ m spectrum shows absorption features consistent with water vapor and clouds. We allow organisms to adapt to their atmospheric environment (described by temperature, convection, and gravity) by adopting different growth strategies that maximize their chance of survival and proliferation. We assume a constant upward vertical velocity through the AHZ. We found that the organism growth strategy is most sensitive to the magnitude of the atmospheric convection. Stronger convection supports the evolution of more massive organisms. For a purely radiative environment, we find that evolved organisms have a mass that is an order of magnitude smaller than terrestrial microbes, thereby defining a dynamical constraint on the dimensions of life that an AHZ can support. Based on a previously defined statistical approach, we infer that there are of the order of 10{sup 9} cool Y brown dwarfs in the Milky Way, and likely a few tens of these objects are within 10 pc from Earth. Our work also has implications for exploring life in the atmospheres of temperate gas giants. Consideration of the habitable volumes in planetary atmospheres significantly increases the volume of habitable space in the galaxy.

  18. VARIATION OF STELLAR ENVELOPE CONVECTION AND OVERSHOOT WITH METALLICITY

    International Nuclear Information System (INIS)

    Tanner, Joel D.; Basu, Sarbani; Demarque, Pierre

    2013-01-01

    We examine how metallicity affects convection and overshoot in the superadiabatic layer of main sequence stars. We present results from a grid of three-dimensional radiation hydrodynamic simulations with four metallicities (Z = 0.040, 0.020, 0.010, 0.001), and spanning a range in effective temperature (4950 eff < 6230). We show that changing the metallicity alters properties of the convective gas dynamics, and the structure of the superadiabatic layer and atmosphere. Our grid of simulations shows that the amount of superadiabaticity, which tracks the transition from efficient to inefficient convection, is sensitive to changes in metallicity. We find that increasing the metallicity forces the location of the transition region to lower densities and pressures, and results in larger mean and turbulent velocities throughout the superadiabatic region. We also quantify the degree of convective overshoot in the atmosphere, and show that it increases with metallicity as well.

  19. Development of charge structure in a short live convective cell observed by a 3D lightning mapper and a phased array radar

    Science.gov (United States)

    Yoshida, S.; Adachi, T.; Kusunoki, K.; Wu, T.; Ushio, T.; Yoshikawa, E.

    2015-12-01

    Thunderstorm observation has been conducted in Osaka, Japan, with a use of a 3D lightning mapper, called Broadband Observation network for Lightning and Thunderstorm (BOLT), and an X-band phased array radar (PAR). BOLT is a LF sensor network that receives LF emission associated with lightning discharges and locates LF radiation sources in 3D. PAR employs mechanical and electrical scans, respectively, in azimuthal and elevation direction, succeeding in quite high volume scan rate. In this presentation, we focus on lightning activity and charge structure in convective cells that lasted only short time (15 minutes or so). Thunderstorms that consisted of several convective cells developed near the radar site. Precipitation structure of a convective cell in the thunderstorm was clearly observed by PAR. A reflectivity core of the convective cell appeared at an altitude of 6 km at 2245 (JST). After that the core descended and reached the ground at 2256 (JST), resulting in heavy precipitation on surface. The echo top height (30dBZ) increased intermittently between 2245 (JST) and 2253 (JST) and it reached at the altitude of 12 km. The convective cell dissipated at 2300. Many intra-cloud (IC) flashes were initiated within the convective cell. Most IC flashes that were initiated in the convective cell occurred during the time when the echo top height increased, while a few IC flashes were initiated in the convective cell after the cease of the echo top vertical development. These facts indicate that strong updraft at upper levels (about 8 km or higher) plays an important role on thunderstorm electrification for IC flashes. Moreover, initiation altitudes of the IC flashes and the positive charge regions removed by the IC flashes increased, as the echo top height increased. This fact implies that the strong updraft at the upper levels blew up positively-charged ice pellets and negatively-charged graupel, and lifted IC flash initiation altitudes and positive charge regions

  20. Thermally driven convective cells and tokamak edge turbulence

    International Nuclear Information System (INIS)

    Thayer, D.R.; Diamond, P.H.

    1987-07-01

    A unified theory for the dynamics of thermally driven convective cell turbulence is presented. The cells are excited by the combined effects of radiative cooling and resistivity gradient drive. The model also includes impurity dynamics. Parallel thermal and impurity flows enhanced by turbulent radial duffusion regulate and saturate overlapping cells, even in regimes dominated by thermal instability. Transport coefficients and fluctuation levels characteristic of the saturated turbulence are calculated. It is found that the impurity radiation increases transport coefficients for high density plasmas, while the parallel conduction damping, elevated by radial diffusion, in turn quenches the thermal instability. The enhancement due to radiative cooling provides a resolution to the dilemma of explaining the experimental observation that potential fluctuations exceed density fluctuations in the edge plasma (e PHI/T/sub e/ > n/n 0 )

  1. The sensitivity of Alpine summer convection to surrogate climate change: an intercomparison between convection-parameterizing and convection-resolving models

    Directory of Open Access Journals (Sweden)

    M. Keller

    2018-04-01

    Full Text Available Climate models project an increase in heavy precipitation events in response to greenhouse gas forcing. Important elements of such events are rain showers and thunderstorms, which are poorly represented in models with parameterized convection. In this study, simulations with 12 km horizontal grid spacing (convection-parameterizing model, CPM and 2 km grid spacing (convection-resolving model, CRM are employed to investigate the change in the diurnal cycle of convection with warmer climate. For this purpose, simulations of 11 days in June 2007 with a pronounced diurnal cycle of convection are compared with surrogate simulations from the same period. The surrogate climate simulations mimic a future climate with increased temperatures but unchanged relative humidity and similar synoptic-scale circulation. Two temperature scenarios are compared: one with homogeneous warming (HW using a vertically uniform warming and the other with vertically dependent warming (VW that enables changes in lapse rate.The two sets of simulations with parameterized and explicit convection exhibit substantial differences, some of which are well known from the literature. These include differences in the timing and amplitude of the diurnal cycle of convection, and the frequency of precipitation with low intensities. The response to climate change is much less studied. We can show that stratification changes have a strong influence on the changes in convection. Precipitation is strongly increasing for HW but decreasing for the VW simulations. For cloud type frequencies, virtually no changes are found for HW, but a substantial reduction in high clouds is found for VW. Further, we can show that the climate change signal strongly depends upon the horizontal resolution. In particular, significant differences between CPM and CRM are found in terms of the radiative feedbacks, with CRM exhibiting a stronger negative feedback in the top-of-the-atmosphere energy budget.

  2. The sensitivity of Alpine summer convection to surrogate climate change: an intercomparison between convection-parameterizing and convection-resolving models

    Science.gov (United States)

    Keller, Michael; Kröner, Nico; Fuhrer, Oliver; Lüthi, Daniel; Schmidli, Juerg; Stengel, Martin; Stöckli, Reto; Schär, Christoph

    2018-04-01

    Climate models project an increase in heavy precipitation events in response to greenhouse gas forcing. Important elements of such events are rain showers and thunderstorms, which are poorly represented in models with parameterized convection. In this study, simulations with 12 km horizontal grid spacing (convection-parameterizing model, CPM) and 2 km grid spacing (convection-resolving model, CRM) are employed to investigate the change in the diurnal cycle of convection with warmer climate. For this purpose, simulations of 11 days in June 2007 with a pronounced diurnal cycle of convection are compared with surrogate simulations from the same period. The surrogate climate simulations mimic a future climate with increased temperatures but unchanged relative humidity and similar synoptic-scale circulation. Two temperature scenarios are compared: one with homogeneous warming (HW) using a vertically uniform warming and the other with vertically dependent warming (VW) that enables changes in lapse rate. The two sets of simulations with parameterized and explicit convection exhibit substantial differences, some of which are well known from the literature. These include differences in the timing and amplitude of the diurnal cycle of convection, and the frequency of precipitation with low intensities. The response to climate change is much less studied. We can show that stratification changes have a strong influence on the changes in convection. Precipitation is strongly increasing for HW but decreasing for the VW simulations. For cloud type frequencies, virtually no changes are found for HW, but a substantial reduction in high clouds is found for VW. Further, we can show that the climate change signal strongly depends upon the horizontal resolution. In particular, significant differences between CPM and CRM are found in terms of the radiative feedbacks, with CRM exhibiting a stronger negative feedback in the top-of-the-atmosphere energy budget.

  3. Models of surface convection and dust clouds in brown dwarfs

    International Nuclear Information System (INIS)

    Freytag, B; Allard, F; Ludwig, H-G; Homeier, D; Steffen, M

    2008-01-01

    The influence of dust grains on the atmospheres of brown dwarfs is visible in observed spectra. To investigate what prevents the dust grains from falling down, or how fresh condensable material is mixed up in the atmosphere to allow new grains to form, we performed 2D radiation-hydrodynamics simulations with CO5BOLD of the upper part of the convection zone and the atmosphere containing the dust cloud layers. We find that unlike in models of Cepheids, the convective overshoot does not play a major role. Instead, the mixing in the dust clouds is controlled by gravity waves.

  4. Tropical convection regimes in climate models: evaluation with satellite observations

    Directory of Open Access Journals (Sweden)

    A. K. Steiner

    2018-04-01

    Full Text Available High-quality observations are powerful tools for the evaluation of climate models towards improvement and reduction of uncertainty. Particularly at low latitudes, the most uncertain aspect lies in the representation of moist convection and interaction with dynamics, where rising motion is tied to deep convection and sinking motion to dry regimes. Since humidity is closely coupled with temperature feedbacks in the tropical troposphere, a proper representation of this region is essential. Here we demonstrate the evaluation of atmospheric climate models with satellite-based observations from Global Positioning System (GPS radio occultation (RO, which feature high vertical resolution and accuracy in the troposphere to lower stratosphere. We focus on the representation of the vertical atmospheric structure in tropical convection regimes, defined by high updraft velocity over warm surfaces, and investigate atmospheric temperature and humidity profiles. Results reveal that some models do not fully capture convection regions, particularly over land, and only partly represent strong vertical wind classes. Models show large biases in tropical mean temperature of more than 4 K in the tropopause region and the lower stratosphere. Reasonable agreement with observations is given in mean specific humidity in the lower to mid-troposphere. In moist convection regions, models tend to underestimate moisture by 10 to 40 % over oceans, whereas in dry downdraft regions they overestimate moisture by 100 %. Our findings provide evidence that RO observations are a unique source of information, with a range of further atmospheric variables to be exploited, for the evaluation and advancement of next-generation climate models.

  5. Tropical convection regimes in climate models: evaluation with satellite observations

    Science.gov (United States)

    Steiner, Andrea K.; Lackner, Bettina C.; Ringer, Mark A.

    2018-04-01

    High-quality observations are powerful tools for the evaluation of climate models towards improvement and reduction of uncertainty. Particularly at low latitudes, the most uncertain aspect lies in the representation of moist convection and interaction with dynamics, where rising motion is tied to deep convection and sinking motion to dry regimes. Since humidity is closely coupled with temperature feedbacks in the tropical troposphere, a proper representation of this region is essential. Here we demonstrate the evaluation of atmospheric climate models with satellite-based observations from Global Positioning System (GPS) radio occultation (RO), which feature high vertical resolution and accuracy in the troposphere to lower stratosphere. We focus on the representation of the vertical atmospheric structure in tropical convection regimes, defined by high updraft velocity over warm surfaces, and investigate atmospheric temperature and humidity profiles. Results reveal that some models do not fully capture convection regions, particularly over land, and only partly represent strong vertical wind classes. Models show large biases in tropical mean temperature of more than 4 K in the tropopause region and the lower stratosphere. Reasonable agreement with observations is given in mean specific humidity in the lower to mid-troposphere. In moist convection regions, models tend to underestimate moisture by 10 to 40 % over oceans, whereas in dry downdraft regions they overestimate moisture by 100 %. Our findings provide evidence that RO observations are a unique source of information, with a range of further atmospheric variables to be exploited, for the evaluation and advancement of next-generation climate models.

  6. Convective flows of colloidal suspension in an inclined closed cell

    Energy Technology Data Exchange (ETDEWEB)

    Smorodin, Boris; Ishutov, Sergey [Department of Physics of Phase Transitions, Perm State University, Perm (Russian Federation); Cherepanov, Ivan, E-mail: bsmorodin@yandex.ru [Department of Radio Electronics and Information Security, Perm State University, Perm (Russian Federation)

    2016-12-15

    The nonlinear spatiotemporal evolution of convective flows is numerically investigated in the case of colloidal suspension filling an inclined closed cell heated from below. The bifurcation diagram (the dependency of the Nusselt number on the Rayleigh number) is obtained. The characteristics of the wave and steady patterns are investigated depending on heat intensity. The travelling wave changing travel direction and the non-regular oscillatory flow are found to be stable solutions within a certain interval of the Rayleigh number. Temporal Fourier decomposition is used together with other diagnostic tools to analyse the complex bifurcation and spatiotemporal properties caused by the interplay of the gravity-induced gradient of concentration and convective mixing of the fluid. It is shown that a more complex flow structure exists at a lower heating intensity (Rayleigh number). (paper)

  7. Cumulus convection and the terrestrial water-vapor distribution

    Science.gov (United States)

    Donner, Leo J.

    1988-01-01

    Cumulus convection plays a significant role in determining the structure of the terrestrial water vapor field. Cumulus convection acts directly on the moisture field by condensing and precipitating water vapor and by redistributing water vapor through cumulus induced eddy circulations. The mechanisms by which cumulus convection influences the terrestrial water vapor distribution is outlined. Calculations using a theory due to Kuo is used to illustrate the mechanisms by which cumulus convection works. Understanding of these processes greatly aids the ability of researchers to interpret the seasonal and spatial distribution of atmospheric water vapor by providing information on the nature of sources and sinks and the global circulation.

  8. Snow precipitation on Mars driven by cloud-induced night-time convection

    Science.gov (United States)

    Spiga, Aymeric; Hinson, David P.; Madeleine, Jean-Baptiste; Navarro, Thomas; Millour, Ehouarn; Forget, François; Montmessin, Franck

    2017-09-01

    Although it contains less water vapour than Earth's atmosphere, the Martian atmosphere hosts clouds. These clouds, composed of water-ice particles, influence the global transport of water vapour and the seasonal variations of ice deposits. However, the influence of water-ice clouds on local weather is unclear: it is thought that Martian clouds are devoid of moist convective motions, and snow precipitation occurs only by the slow sedimentation of individual particles. Here we present numerical simulations of the meteorology in Martian cloudy regions that demonstrate that localized convective snowstorms can occur on Mars. We show that such snowstorms--or ice microbursts--can explain deep night-time mixing layers detected from orbit and precipitation signatures detected below water-ice clouds by the Phoenix lander. In our simulations, convective snowstorms occur only during the Martian night, and result from atmospheric instability due to radiative cooling of water-ice cloud particles. This triggers strong convective plumes within and below clouds, with fast snow precipitation resulting from the vigorous descending currents. Night-time convection in Martian water-ice clouds and the associated snow precipitation lead to transport of water both above and below the mixing layers, and thus would affect Mars' water cycle past and present, especially under the high-obliquity conditions associated with a more intense water cycle.

  9. Simulation of convection-stabilized low-current glow and arc discharges in atmospheric-pressure air

    International Nuclear Information System (INIS)

    Naidis, G V

    2007-01-01

    A two-dimensional model of stationary convection-stabilized low-current glow and arc discharge columns in atmospheric-pressure air is developed which accounts for deviation of the plasma state from the local thermodynamic equilibrium (LTE). In addition to equations of energy, continuity and momentum (analogous to those used in LTE arc models), the non-LTE model includes balance equations for plasma species and for the vibrational energy of nitrogen molecules. The kinetic scheme is used which was developed recently for the simulation of low-current wall-stabilized discharges in air. Results of calculation of discharge parameters over a wide current range are presented. It is shown that the non-equilibrium effects are substantial at currents lower than ∼ 100 mA. The calculated plasma parameters agree with available experimental data

  10. Convective model of a microwave discharge in a gas at atmospheric pressure in the form of a spatially localized plasma

    International Nuclear Information System (INIS)

    Skovoroda, A.A.

    1997-01-01

    Experiments and a theoretical model consistent with them are presented which show that a stationary microwave discharge in a gas at atmospheric pressure under the action of free convection due to the action of the buoyant force on the heated air can be spatially localized, taking a spheroidal shape. Vortex motion inside the spheroid gives this localized plasma formation some of the properties of a material body which are manifested in a distinct material isolation from the surrounding space, in the formation of a narrow thermal boundary layer and flow separation, and in the formation of secondary vortices in the wake region. The characteristic radius of the stationary localized plasma is governed mainly by the wavelength of the microwave radiation a∼0.137λ. Energy balance is established to a significant degree by convective cooling of the microwave-heated structure

  11. Changes in the convective population and thermodynamic environments in convection-permitting regional climate simulations over the United States

    Science.gov (United States)

    Rasmussen, K. L.; Prein, A. F.; Rasmussen, R. M.; Ikeda, K.; Liu, C.

    2017-11-01

    Novel high-resolution convection-permitting regional climate simulations over the US employing the pseudo-global warming approach are used to investigate changes in the convective population and thermodynamic environments in a future climate. Two continuous 13-year simulations were conducted using (1) ERA-Interim reanalysis and (2) ERA-Interim reanalysis plus a climate perturbation for the RCP8.5 scenario. The simulations adequately reproduce the observed precipitation diurnal cycle, indicating that they capture organized and propagating convection that most climate models cannot adequately represent. This study shows that weak to moderate convection will decrease and strong convection will increase in frequency in a future climate. Analysis of the thermodynamic environments supporting convection shows that both convective available potential energy (CAPE) and convective inhibition (CIN) increase downstream of the Rockies in a future climate. Previous studies suggest that CAPE will increase in a warming climate, however a corresponding increase in CIN acts as a balancing force to shift the convective population by suppressing weak to moderate convection and provides an environment where CAPE can build to extreme levels that may result in more frequent severe convection. An idealized investigation of fundamental changes in the thermodynamic environment was conducted by shifting a standard atmospheric profile by ± 5 °C. When temperature is increased, both CAPE and CIN increase in magnitude, while the opposite is true for decreased temperatures. Thus, even in the absence of synoptic and mesoscale variations, a warmer climate will provide more CAPE and CIN that will shift the convective population, likely impacting water and energy budgets on Earth.

  12. Characterization of a boreal convective boundary layer and its impact on atmospheric chemistry during HUMPPA-COPEC-2010

    Directory of Open Access Journals (Sweden)

    H. G. Ouwersloot

    2012-10-01

    Full Text Available We studied the atmospheric boundary layer (ABL dynamics and the impact on atmospheric chemistry during the HUMPPA-COPEC-2010 campaign. We used vertical profiles of potential temperature and specific moisture, obtained from 132 radio soundings, to determine the main boundary layer characteristics during the campaign. We propose a classification according to several main ABL prototypes. Further, we performed a case study of a single day, focusing on the convective boundary layer, to analyse the influence of the dynamics on the chemical evolution of the ABL. We used a mixed layer model, initialized and constrained by observations. In particular, we investigated the role of large scale atmospheric dynamics (subsidence and advection on the ABL development and the evolution of chemical species concentrations. We find that, if the large scale forcings are taken into account, the ABL dynamics are represented satisfactorily. Subsequently, we studied the impact of mixing with a residual layer aloft during the morning transition on atmospheric chemistry. The time evolution of NOx and O3 concentrations, including morning peaks, can be explained and accurately simulated by incorporating the transition of the ABL dynamics from night to day. We demonstrate the importance of the ABL height evolution for the representation of atmospheric chemistry. Our findings underscore the need to couple the dynamics and chemistry at different spatial scales (from turbulence to mesoscale in chemistry-transport models and in the interpretation of observational data.

  13. Anomalous convection diffusion and wave coupling transport of cells on comb frame with fractional Cattaneo-Christov flux

    Science.gov (United States)

    Liu, Lin; Zheng, Liancun; Liu, Fawang; Zhang, Xinxin

    2016-09-01

    An improved Cattaneo-Christov flux model is proposed which can be used to capture the effects of the time and spatial relaxations, the time and spatial inhomogeneous diffusion and the spatial transition probability of cell transport in a highly non-homogeneous medium. Solutions are obtained by numerical discretization method where the time and spatial fractional derivative are discretized by the L1-approximation and shifted Grünwald definition, respectively. The solvability, stability and convergence of the numerical method for the special case of the Cattaneo-Christov equation are proved. Results indicate that the fractional convection diffusion-wave equation is an evolution equation which displays the coexisting characteristics of parabolicity and hyperbolicity. In other words, for α in (0, 1), the cells transport occupies the characteristics of coupling convection diffusion and wave spreading. Moreover, the effects of pertinent time parameter, time and spatial fractional derivative parameters, relaxation parameter, weight coefficient and the convection velocity on the anomalous transport of cells are shown graphically and analyzed in detail.

  14. Midlatitude Continental Convective Clouds Experiment (MC3E)

    Energy Technology Data Exchange (ETDEWEB)

    Jensen, MP; Petersen, WA; Del Genio, AD; Giangrande, SE; Heymsfield, A; Heymsfield, G; Hou, AY; Kollias, P; Orr, B; Rutledge, SA; Schwaller, MR; Zipser, E

    2010-04-01

    Convective processes play a critical role in the Earth’s energy balance through the redistribution of heat and moisture in the atmosphere and subsequent impacts on the hydrologic cycle. Global observation and accurate representation of these processes in numerical models is vital to improving our current understanding and future simulations of Earth’s climate system. Despite improvements in computing power, current operational weather and global climate models are unable to resolve the natural temporal and spatial scales that are associated with convective and stratiform precipitation processes; therefore, they must turn to parameterization schemes to represent these processes. In turn, the physical basis for these parameterization schemes needs to be evaluated for general application under a variety of atmospheric conditions. Analogously, space-based remote sensing algorithms designed to retrieve related cloud and precipitation information for use in hydrological, climate, and numerical weather prediction applications often rely on physical “parameterizations” that reliably translate indirectly related instrument measurements to the physical quantity of interest (e.g., precipitation rate). Importantly, both spaceborne retrieval algorithms and model convective parameterization schemes traditionally rely on field campaign data sets as a basis for evaluating and improving the physics of their respective approaches. The Midlatitude Continental Convective Clouds Experiment (MC3E) will take place in central Oklahoma during the April–May 2011 period. The experiment is a collaborative effort between the U.S. Department of Energy (DOE) Atmospheric Radiation Measurement (ARM) Climate Research Facility and the National Aeronautics and Space Administration’s (NASA) Global Precipitation Measurement (GPM) mission Ground Validation (GV) program. The field campaign leverages the unprecedented observing infrastructure currently available in the central United States

  15. A Stochastic Framework for Modeling the Population Dynamics of Convective Clouds

    Science.gov (United States)

    Hagos, Samson; Feng, Zhe; Plant, Robert S.; Houze, Robert A.; Xiao, Heng

    2018-02-01

    A stochastic prognostic framework for modeling the population dynamics of convective clouds and representing them in climate models is proposed. The framework follows the nonequilibrium statistical mechanical approach to constructing a master equation for representing the evolution of the number of convective cells of a specific size and their associated cloud-base mass flux, given a large-scale forcing. In this framework, referred to as STOchastic framework for Modeling Population dynamics of convective clouds (STOMP), the evolution of convective cell size is predicted from three key characteristics of convective cells: (i) the probability of growth, (ii) the probability of decay, and (iii) the cloud-base mass flux. STOMP models are constructed and evaluated against CPOL radar observations at Darwin and convection permitting model (CPM) simulations. Multiple models are constructed under various assumptions regarding these three key parameters and the realisms of these models are evaluated. It is shown that in a model where convective plumes prefer to aggregate spatially and the cloud-base mass flux is a nonlinear function of convective cell area, the mass flux manifests a recharge-discharge behavior under steady forcing. Such a model also produces observed behavior of convective cell populations and CPM simulated cloud-base mass flux variability under diurnally varying forcing. In addition to its use in developing understanding of convection processes and the controls on convective cell size distributions, this modeling framework is also designed to serve as a nonequilibrium closure formulations for spectral mass flux parameterizations.

  16. Examining Chaotic Convection with Super-Parameterization Ensembles

    Science.gov (United States)

    Jones, Todd R.

    This study investigates a variety of features present in a new configuration of the Community Atmosphere Model (CAM) variant, SP-CAM 2.0. The new configuration (multiple-parameterization-CAM, MP-CAM) changes the manner in which the super-parameterization (SP) concept represents physical tendency feedbacks to the large-scale by using the mean of 10 independent two-dimensional cloud-permitting model (CPM) curtains in each global model column instead of the conventional single CPM curtain. The climates of the SP and MP configurations are examined to investigate any significant differences caused by the application of convective physical tendencies that are more deterministic in nature, paying particular attention to extreme precipitation events and large-scale weather systems, such as the Madden-Julian Oscillation (MJO). A number of small but significant changes in the mean state climate are uncovered, and it is found that the new formulation degrades MJO performance. Despite these deficiencies, the ensemble of possible realizations of convective states in the MP configuration allows for analysis of uncertainty in the small-scale solution, lending to examination of those weather regimes and physical mechanisms associated with strong, chaotic convection. Methods of quantifying precipitation predictability are explored, and use of the most reliable of these leads to the conclusion that poor precipitation predictability is most directly related to the proximity of the global climate model column state to atmospheric critical points. Secondarily, the predictability is tied to the availability of potential convective energy, the presence of mesoscale convective organization on the CPM grid, and the directive power of the large-scale.

  17. Numerical simulations of convectively excited gravity waves

    International Nuclear Information System (INIS)

    Glatzmaier, G.A.

    1983-01-01

    Magneto-convection and gravity waves are numerically simulated with a nonlinear, three-dimensional, time-dependent model of a stratified, rotating, spherical fluid shell heated from below. A Solar-like reference state is specified while global velocity, magnetic field, and thermodynamic perturbations are computed from the anelastic magnetohydrodynamic equations. Convective overshooting from the upper (superadiabatic) part of the shell excites gravity waves in the lower (subadiabatic) part. Due to differential rotation and Coriolis forces, convective cell patterns propagate eastward with a latitudinally dependent phase velocity. The structure of the excited wave motions in the stable region is more time-dependent than that of the convective motions above. The magnetic field tends to be concentrated over giant-cell downdrafts in the convective zone but is affected very little by the wave motion in the stable region

  18. Micro-Physical characterisation of Convective & Stratiform Rainfall at Tropics

    Science.gov (United States)

    Sreekanth, T. S.

    Large Micro-Physical characterisation of Convective & Stratiform Rainfall at Tropics begin{center} begin{center} Sreekanth T S*, Suby Symon*, G. Mohan Kumar (1) , and V Sasi Kumar (2) *Centre for Earth Science Studies, Akkulam, Thiruvananthapuram (1) D-330, Swathi Nagar, West Fort, Thiruvananthapuram 695023 (2) 32. NCC Nagar, Peroorkada, Thiruvananthapuram ABSTRACT Micro-physical parameters of rainfall such as rain drop size & fall speed distribution, mass weighted mean diameter, Total no. of rain drops, Normalisation parameters for rain intensity, maximum & minimum drop diameter from different rain intensity ranges, from both stratiform and convective rain events were analysed. Convective -Stratiform classification was done by the method followed by Testud et al (2001) and as an additional information electrical behaviour of clouds from Atmospheric Electric Field Mill was also used. Events which cannot be included in both types are termed as 'mixed precipitation' and identified separately. For the three years 2011, 2012 & 2013, rain events from both convective & stratiform origin are identified from three seasons viz Pre-Monsoon (March-May), Monsoon (June-September) and Post-Monsoon (October-December). Micro-physical characterisation was done for each rain events and analysed. Ground based and radar observations were made and classification of stratiform and convective rainfall was done by the method followed by Testud et al (2001). Radar bright band and non bright band analysis was done for confimation of stratifom and convective rain respectievely. Atmospheric electric field data from electric field mill is also used for confirmation of convection during convective events. Statistical analyses revealed that the standard deviation of rain drop size in higher rain rates are higher than in lower rain rates. Normalised drop size distribution is ploted for selected events from both forms. Inter relations between various precipitation parameters were analysed in three

  19. Life Cycle of Tropical Convection and Anvil in Observations and Models

    Science.gov (United States)

    McFarlane, S. A.; Hagos, S. M.; Comstock, J. M.

    2011-12-01

    Tropical convective clouds are important elements of the hydrological cycle and produce extensive cirrus anvils that strongly affect the tropical radiative energy balance. To improve simulations of the global water and energy cycles and accurately predict both precipitation and cloud radiative feedbacks, models need to realistically simulate the lifecycle of tropical convection, including the formation and radiative properties of ice anvil clouds. By combining remote sensing datasets from precipitation and cloud radars at the Atmospheric Radiation Measurement (ARM) Darwin site with geostationary satellite data, we can develop observational understanding of the lifetime of convective systems and the links between the properties of convective systems and their associated anvil clouds. The relationships between convection and anvil in model simulations can then be compared to those seen in the observations to identify areas for improvement in the model simulations. We identify and track tropical convective systems in the Tropical Western Pacific using geostationary satellite observations. We present statistics of the tropical convective systems including size, age, and intensity and classify the lifecycle stage of each system as developing, mature, or dissipating. For systems that cross over the ARM Darwin site, information on convective intensity and anvil properties are obtained from the C-Pol precipitation radar and MMCR cloud radar, respectively, and are examined as a function of the system lifecycle. Initial results from applying the convective identification and tracking algorithm to a tropical simulation from the Weather Research and Forecasting (WRF) model run show that the model produces reasonable overall statistics of convective systems, but details of the life cycle (such as diurnal cycle, system tracks) differ from the observations. Further work will focus on the role of atmospheric temperature and moisture profiles in the model's convective life cycle.

  20. Towards Adaptive Grids for Atmospheric Boundary-Layer Simulations

    Science.gov (United States)

    van Hooft, J. Antoon; Popinet, Stéphane; van Heerwaarden, Chiel C.; van der Linden, Steven J. A.; de Roode, Stephan R.; van de Wiel, Bas J. H.

    2018-02-01

    We present a proof-of-concept for the adaptive mesh refinement method applied to atmospheric boundary-layer simulations. Such a method may form an attractive alternative to static grids for studies on atmospheric flows that have a high degree of scale separation in space and/or time. Examples include the diurnal cycle and a convective boundary layer capped by a strong inversion. For such cases, large-eddy simulations using regular grids often have to rely on a subgrid-scale closure for the most challenging regions in the spatial and/or temporal domain. Here we analyze a flow configuration that describes the growth and subsequent decay of a convective boundary layer using direct numerical simulation (DNS). We validate the obtained results and benchmark the performance of the adaptive solver against two runs using fixed regular grids. It appears that the adaptive-mesh algorithm is able to coarsen and refine the grid dynamically whilst maintaining an accurate solution. In particular, during the initial growth of the convective boundary layer a high resolution is required compared to the subsequent stage of decaying turbulence. More specifically, the number of grid cells varies by two orders of magnitude over the course of the simulation. For this specific DNS case, the adaptive solver was not yet more efficient than the more traditional solver that is dedicated to these types of flows. However, the overall analysis shows that the method has a clear potential for numerical investigations of the most challenging atmospheric cases.

  1. Estimating Convection Parameters in the GFDL CM2.1 Model Using Ensemble Data Assimilation

    Science.gov (United States)

    Li, Shan; Zhang, Shaoqing; Liu, Zhengyu; Lu, Lv; Zhu, Jiang; Zhang, Xuefeng; Wu, Xinrong; Zhao, Ming; Vecchi, Gabriel A.; Zhang, Rong-Hua; Lin, Xiaopei

    2018-04-01

    Parametric uncertainty in convection parameterization is one major source of model errors that cause model climate drift. Convection parameter tuning has been widely studied in atmospheric models to help mitigate the problem. However, in a fully coupled general circulation model (CGCM), convection parameters which impact the ocean as well as the climate simulation may have different optimal values. This study explores the possibility of estimating convection parameters with an ensemble coupled data assimilation method in a CGCM. Impacts of the convection parameter estimation on climate analysis and forecast are analyzed. In a twin experiment framework, five convection parameters in the GFDL coupled model CM2.1 are estimated individually and simultaneously under both perfect and imperfect model regimes. Results show that the ensemble data assimilation method can help reduce the bias in convection parameters. With estimated convection parameters, the analyses and forecasts for both the atmosphere and the ocean are generally improved. It is also found that information in low latitudes is relatively more important for estimating convection parameters. This study further suggests that when important parameters in appropriate physical parameterizations are identified, incorporating their estimation into traditional ensemble data assimilation procedure could improve the final analysis and climate prediction.

  2. Heat transfer in the atmosphere

    NARCIS (Netherlands)

    Oerlemans, J.

    1982-01-01

    The atmosphere is almost transparent to solar radiation and almost opaque to terrestrial radiation. This implies that in the mean the atmosphere cools while the earth's surface is heated. Convection in the lower atmosphere must therefore occur. The upward flux of energy associated with it

  3. Physics of greenhouse effect and convection in warm oceans

    Science.gov (United States)

    Inamdar, A. K.; Ramanathan, V.

    1994-01-01

    Sea surface temperature (SST) in roughly 50% of the tropical Pacific Ocean is warm enough (SST greater than 300 K) to permit deep convection. This paper examines the effects of deep convection on the climatological mean vertical distributions of water vapor and its greenhouse effect over such warm oceans. The study, which uses a combination of satellite radiation budget observations, atmospheric soundings deployed from ships, and radiation model calculations, also examines the link between SST, vertical distribution of water vapor, and its greenhouse effect in the tropical oceans. Since the focus of the study is on the radiative effects of water vapor, the radiation model calculations do not include the effects of clouds. The data are grouped into nonconvective and convective categories using SST as an index for convective activity. On average, convective regions are more humid, trap significantly more longwave radiation, and emit more radiation to the sea surface. The greenhouse effect in regions of convection operates as per classical ideas, that is, as the SST increases, the atmosphere traps the excess longwave energy emitted by the surface and reradiates it locally back to the ocean surface. The important departure from the classical picture is that the net (up minus down) fluxes at the surface and at the top of the atmosphere decrease with an increase in SST; that is, the surface and the surface-troposphere column lose the ability to radiate the excess energy to space. The cause of this super greenhouse effect at the surface is the rapid increase in the lower-troposphere humidity with SST; that of the column is due to a combination of increase in humidity in the entire column and increase in the lapse rate within the lower troposphere. The increase in the vertical distribution of humidity far exceeds that which can be attributed to the temperature dependence of saturation vapor pressure; that is, the tropospheric relative humidity is larger in convective

  4. A stochastic parameterization for deep convection using cellular automata

    Science.gov (United States)

    Bengtsson, L.; Steinheimer, M.; Bechtold, P.; Geleyn, J.

    2012-12-01

    Cumulus parameterizations used in most operational weather and climate models today are based on the mass-flux concept which took form in the early 1970's. In such schemes it is assumed that a unique relationship exists between the ensemble-average of the sub-grid convection, and the instantaneous state of the atmosphere in a vertical grid box column. However, such a relationship is unlikely to be described by a simple deterministic function (Palmer, 2011). Thus, because of the statistical nature of the parameterization challenge, it has been recognized by the community that it is important to introduce stochastic elements to the parameterizations (for instance: Plant and Craig, 2008, Khouider et al. 2010, Frenkel et al. 2011, Bentsson et al. 2011, but the list is far from exhaustive). There are undoubtedly many ways in which stochastisity can enter new developments. In this study we use a two-way interacting cellular automata (CA), as its intrinsic nature possesses many qualities interesting for deep convection parameterization. In the one-dimensional entraining plume approach, there is no parameterization of horizontal transport of heat, moisture or momentum due to cumulus convection. In reality, mass transport due to gravity waves that propagate in the horizontal can trigger new convection, important for the organization of deep convection (Huang, 1988). The self-organizational characteristics of the CA allows for lateral communication between adjacent NWP model grid-boxes, and temporal memory. Thus the CA scheme used in this study contain three interesting components for representation of cumulus convection, which are not present in the traditional one-dimensional bulk entraining plume method: horizontal communication, memory and stochastisity. The scheme is implemented in the high resolution regional NWP model ALARO, and simulations show enhanced organization of convective activity along squall-lines. Probabilistic evaluation demonstrate an enhanced spread in

  5. Theoretical study of the high-latitude ionosphere's response to multicell convection patterns

    International Nuclear Information System (INIS)

    Sojka, J.J.; Schunk, R.W.

    1987-01-01

    It is well known that the convection electric fields have an important effect on the ionosphere at high latitudes and that a quantitative understanding of their effect requires a knowledge of the plasma convection pattern. When the interplanetary magnetic field (IMF) is southward, plasma convection at F region altitudes displays a two-cell pattern with antisunward flow over the polar cap and return flow at lower latitudes. However, when the IMF is northward, multiple convection cells can exist, with both sunward flow and auroral precipitation (theta aurora) in the polar cap. The characteristic ionospheric signatures associated with multicell convection patterns were studied with the aid of a three-dimensional time-dependent ionospheric model. Two-, three-, and four-cell patterns were considered and the ionosphere's response was calculated for the same cross-tail potential and for solar maximum and winter conditions in the northern hemisphere. As expected, there are major distinguishing ionospheric features associated with the different convection patterns, particularly in the polar cap. For two-cell convection the antisunward flow the plasma from the dayside into the polar cap. For two-cell convection the antisunward flow of plasma from the dayside into the polar cap acts to maintain the densities in this region in winter. For four-cell convection, on the other hand, the two aditional convection cells in the polar cap are in darkness most of the time, and the resulting O + decay acts to produce twin polar holes that are separated by a sun-aligned ridge of enhanced ionization due to theta aurora precipitation

  6. Dynamics of Massive Atmospheres

    Energy Technology Data Exchange (ETDEWEB)

    Chemke, Rei; Kaspi, Yohai, E-mail: rei.chemke@weizmann.ac.il [Department of Earth and Planetary Sciences, Weizmann Institute of Science, 234 Herzl st., 76100, Rehovot (Israel)

    2017-08-10

    The many recently discovered terrestrial exoplanets are expected to hold a wide range of atmospheric masses. Here the dynamic-thermodynamic effects of atmospheric mass on atmospheric circulation are studied using an idealized global circulation model by systematically varying the atmospheric surface pressure. On an Earth analog planet, an increase in atmospheric mass weakens the Hadley circulation and decreases its latitudinal extent. These changes are found to be related to the reduction of the convective fluxes and net radiative cooling (due to the higher atmospheric heat capacity), which, respectively, cool the upper troposphere at mid-low latitudes and warm the troposphere at high latitudes. These together decrease the meridional temperature gradient, tropopause height and static stability. The reduction of these parameters, which play a key role in affecting the flow properties of the tropical circulation, weakens and contracts the Hadley circulation. The reduction of the meridional temperature gradient also decreases the extraction of mean potential energy to the eddy fields and the mean kinetic energy, which weakens the extratropical circulation. The decrease of the eddy kinetic energy decreases the Rhines wavelength, which is found to follow the meridional jet scale. The contraction of the jet scale in the extratropics results in multiple jets and meridional circulation cells as the atmospheric mass increases.

  7. Convective equilibrium and mixing-length theory for stellarator reactors

    International Nuclear Information System (INIS)

    Ho, D.D.M.; Kulsrud, R.M.

    1985-09-01

    In high β stellarator and tokamak reactors, the plasma pressure gradient in some regions of the plasma may exceed the critical pressure gradient set by ballooning instabilities. In these regions, convective cells break out to enhance the transport. As a result, the pressure gradient can rise only slightly above the critical gradient and the plasma is in another state of equilibrium - ''convective equilibrium'' - in these regions. Although the convective transport cannot be calculated precisely, it is shown that the density and temperature profiles in the convective region can still be estimated. A simple mixing-length theory, similar to that used for convection in stellar interiors, is introduced in this paper to provide a qualitative description of the convective cells and to show that the convective transport is highly efficient. A numerical example for obtaining the density and temperature profiles in a stellarator reactor is given

  8. Seasonal Scale Convective-Stratiform Pricipitation Variabilities at Tropics

    Science.gov (United States)

    S, Sreekanth T.

    begin{center} Large Seasonal Scale Convective-Stratiform Pricipitation Variabilities at Tropics Sreekanth T S*, Suby Symon*, G. Mohan Kumar (1) and V Sasi Kumar (2) *Centre for Earth Science Studies, Akkulam, Thiruvananthapuram (1) D-330, Swathi Nagar, West Fort, Thiruvananthapuram 695023 (2) 32. NCC Nagar Peroorkada, Thiruvananthapuram ABSTRACT This study investigates the variabilities of convective and stratiform rainfall from 2011 to 2013 at a tropical coastal station in three seasons viz Pre-Monsoon (March-May), Monsoon (June-September) and Post-Monsoon (October-December). Understanding the climatological variability of these two dominant forms of precipitation and their implications in the total rainfall were the main objectives of this investigation. Variabilities in the frequency & duration of events, rain rate & total number of rain drops distribution in different events and the accumulated amount of rain water were analysed. Based on the ground & radar observations from optical & impact disdrometers, Micro Rain Radar and Atmospheric Electric Field Mill, precipitation events were classified into convective and stratiform in three seasons. Classification was done by the method followed by Testud et al (2001) and as an additional information electrical behaviour of clouds from Atmospheric Electric Field Mill is also used. Events which could not be included in both types were termed as 'mixed precipitation' and were included separately. Diurnal variability of the total rainfall in each seasons were also examined. For both convective and stratiform rainfall there exist distinct day-night differences. During nocturnal hours convective rain draged more attention. In all seasons almost 70% of rain duration and 60% of rain events of convective origin were confined to nocturnal hours. But stratiform rain was not affected by diurnal variations greatly because night time occurrences of stratiform duration and events were less than 50%. Also in Monsoon above 35% of

  9. Numerical modeling of the effects of fire-induced convection and fire-atmosphere interactions on wildfire spread and fire plume dynamics

    Science.gov (United States)

    Sun, Ruiyu

    It is possible due to present day computing power to produce a fluid dynamical physically-based numerical solution to wildfire behavior, at least in the research mode. This type of wildfire modeling affords a flexibility and produces details that are not available in either current operational wildfire behavior models or field experiments. However before using these models to study wildfire, validation is necessary, and model results need to be systematically and objectively analyzed and compared to real fires. Plume theory and data from the Meteotron experiment, which was specially designed to provide results from measurements for the theoretical study of a convective plume produced by a high heat source at the ground, are used here to evaluate the fire plume properties simulated by two numerical wildfire models, the Fire Dynamics Simulator or FDS, and the Clark coupled atmosphere-fire model. The study indicates that the FDS produces good agreement with the plume theory and the Meteotron results. The study also suggests that the coupled atmosphere-fire model, a less explicit and ideally less computationally demanding model than the FDS; can produce good agreement, but that the agreement is sensitive to the method of putting the energy released from the fire into the atmosphere. The WFDS (Wildfire and wildland-urban interface FDS), an extension of the FDS to the vegetative fuel, and the Australian grass fire experiments are used to evaluate and improve the UULES-wildfire coupled model. Despite the simple fire parameterization in the UULES-wildfire coupled model, the fireline is fairly well predicted in terms of both shape and location in the simulation of Australian grass fire experiment F19. Finally, the UULES-wildfire coupled model is used to examine how the turbulent flow in the atmospheric boundary layer (ABL) affects the growth of the grass fires. The model fires showed significant randomness in fire growth: Fire spread is not deterministic in the ABL, and a

  10. Comparison of convective clouds observed by spaceborne W-band radar and simulated by cloud-resolving atmospheric models

    Science.gov (United States)

    Dodson, Jason B.

    Deep convective clouds (DCCs) play an important role in regulating global climate through vertical mass flux, vertical water transport, and radiation. For general circulation models (GCMs) to simulate the global climate realistically, they must simulate DCCs realistically. GCMs have traditionally used cumulus parameterizations (CPs). Much recent research has shown that multiple persistent unrealistic behaviors in GCMs are related to limitations of CPs. Two alternatives to CPs exist: the global cloud-resolving model (GCRM), and the multiscale modeling framework (MMF). Both can directly simulate the coarser features of DCCs because of their multi-kilometer horizontal resolutions, and can simulate large-scale meteorological processes more realistically than GCMs. However, the question of realistic behavior of simulated DCCs remains. How closely do simulated DCCs resemble observed DCCs? In this study I examine the behavior of DCCs in the Nonhydrostatic Icosahedral Atmospheric Model (NICAM) and Superparameterized Community Atmospheric Model (SP-CAM), the latter with both single-moment and double-moment microphysics. I place particular emphasis on the relationship between cloud vertical structure and convective environment. I also emphasize the transition between shallow clouds and mature DCCs. The spatial domains used are the tropical oceans and the contiguous United States (CONUS), the latter of which produces frequent vigorous convection during the summer. CloudSat is used to observe DCCs, and A-Train and reanalysis data are used to represent the large-scale environment in which the clouds form. The CloudSat cloud mask and radar reflectivity profiles for CONUS cumuliform clouds (defined as clouds with a base within the planetary boundary layer) during boreal summer are first averaged and compared. Both NICAM and SP-CAM greatly underestimate the vertical growth of cumuliform clouds. Then they are sorted by three large-scale environmental variables: total preciptable

  11. Impact of Convection on Surface Fluxes Observed During LASP/DYNAMO 2011

    Science.gov (United States)

    2014-12-01

    20  Figure 8.  FFM maneuver used in the LASP/DYNAMO experiment (from Wang et al. 2013...Atmosphere Response Experiment DYNAMO Dynamics of Madden-Julian Oscillation EM electro-magnetic EO electro-optical FFM flight-level flux mapping FVS...level flux mapping ( FFM ) modules. Convection modules consisted of dropsonde cloud survey or radar convective element maneuver. Dropsonde modules

  12. Upper Troposphere Lower Stratosphere structure during convective systems using GPS radio occultations

    DEFF Research Database (Denmark)

    Biondi, Riccardo

    The deep convective systems play a fundamental role in atmospheric circulation and climate. Thunderstorms and meso-scale convective systems produce fast vertical transport, redistributing water vapor and trace gases and influencing the thermal structure of the upper troposphere and lower...... stratosphere (UTLS) contributing to the troposphere-stratosphere transport and affecting the Earth global circulation and the climate changes. The Global Positioning System (GPS) Radio Occultation (RO) technique enables measurement of atmospheric density structure in any meteorological condition...... to the analysis of tropical storms for the future mission ACES will also be evaluated. Using data from the past and ongoing GPS RO missions we have defined an algorithm to detect the clouds top of the convective systems and their thermal structure. Other satellite and in-situ measurements co-located with GPS ROs...

  13. Condition of damping of anomalous radial transport, determined by ordered convective electron dynamics

    International Nuclear Information System (INIS)

    Maslov, V.I.; Barchuk, S.V.; Lapshin, V.I.; Volkov, E.D.; Melentsov, Yu.V.

    2006-01-01

    It is shown, that at development of instability due to a radial gradient of density in the crossed electric and magnetic fields in nuclear fusion installations ordering convective cells can be excited. It provides anomalous particle transport. The spatial structures of these convective cells have been constructed. The radial dimensions of these convective cells depend on their amplitudes and on a radial gradient of density. The convective-diffusion equation for radial dynamics of the electrons has been derived. At the certain value of the universal controlling parameter, the convective cell excitation and the anomalous radial transport are suppressed. (author)

  14. Convective cell excitation by inertial Alfven waves in a low density plasma

    International Nuclear Information System (INIS)

    Pokhotelov, O.A.; Onishchenko, O.G.; Sagdeev, R.Z.; Srenflo, L.; Balikhin, M.A.

    2005-01-01

    The parametric interaction of inertial Alfven waves with large-scale convective cells in a low-density plasma is investigated. It is shown that, in plasmas where the Alfven velocity is comparable to or exceeds the speed of light, the parametric interaction is substantially suppressed. A compact expression for the optimal scale and instability growth rate of the fastest growing mode is obtained [ru

  15. The influence of convective current generator on the global current

    Directory of Open Access Journals (Sweden)

    V. N. Morozov

    2006-01-01

    Full Text Available The mathematical generalization of classical model of the global circuit with taking into account the convective current generator, working in the planetary boundary layer was considered. Convective current generator may be interpreted as generator, in which the electromotive force is generated by processes, of the turbulent transport of electrical charge. It is shown that the average potential of ionosphere is defined not only by the thunderstorm current generators, working at the present moment, but by the convective current generator also. The influence of the convective processes in the boundary layer on the electrical parameters of the atmosphere is not only local, but has global character as well. The numerical estimations, made for the case of the convective-unstable boundary layer demonstrate that the increase of the average potential of ionosphere may be of the order of 10% to 40%.

  16. The structure and dynamics of patterns of Benard convection cells

    International Nuclear Information System (INIS)

    Rivier, N.; Imperial Coll. of Science and Technology, London; Lausanne Univ.

    1990-08-01

    Benard-Marangoni convection, in containers with large aspect ratio, exhibits space-filling cellular structures, highly deformable, but crystallized. They contain dislocations and grain boundaries generated and moved by elementary topological transformations, and are subjected to a weak shear stress due to the earth's rotation. The cellular structure and its fluctuations are analyzed from a crystallographic viewpoint, by using two complementary approaches. One is a global analysis of cellular structures in cylindrical symmetry. Their structural stability and defect pattern are obtained as topological mode-locking of a continuous structural parameter. The other, a local, molecular dynamics of the cells, gives a realistic parametrization of the forces and the transformations by generalizing the Voronoi cell construction in one extra dimension. 23 refs., 8 figs

  17. Radiative-convective equilibrium model intercomparison project

    Science.gov (United States)

    Wing, Allison A.; Reed, Kevin A.; Satoh, Masaki; Stevens, Bjorn; Bony, Sandrine; Ohno, Tomoki

    2018-03-01

    RCEMIP, an intercomparison of multiple types of models configured in radiative-convective equilibrium (RCE), is proposed. RCE is an idealization of the climate system in which there is a balance between radiative cooling of the atmosphere and heating by convection. The scientific objectives of RCEMIP are three-fold. First, clouds and climate sensitivity will be investigated in the RCE setting. This includes determining how cloud fraction changes with warming and the role of self-aggregation of convection in climate sensitivity. Second, RCEMIP will quantify the dependence of the degree of convective aggregation and tropical circulation regimes on temperature. Finally, by providing a common baseline, RCEMIP will allow the robustness of the RCE state across the spectrum of models to be assessed, which is essential for interpreting the results found regarding clouds, climate sensitivity, and aggregation, and more generally, determining which features of tropical climate a RCE framework is useful for. A novel aspect and major advantage of RCEMIP is the accessibility of the RCE framework to a variety of models, including cloud-resolving models, general circulation models, global cloud-resolving models, single-column models, and large-eddy simulation models.

  18. A shallow convection parameterization for the non-hydrostatic MM5 mesoscale model

    Energy Technology Data Exchange (ETDEWEB)

    Seaman, N.L.; Kain, J.S.; Deng, A. [Pennsylvania State Univ., University Park, PA (United States)

    1996-04-01

    A shallow convection parameterization suitable for the Pennsylvannia State University (PSU)/National Center for Atmospheric Research nonhydrostatic mesoscale model (MM5) is being developed at PSU. The parameterization is based on parcel perturbation theory developed in conjunction with a 1-D Mellor Yamada 1.5-order planetary boundary layer scheme and the Kain-Fritsch deep convection model.

  19. Dispersion of effluents in the atmosphere; Dispersion des effluents dans l`atmosphere

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    1999-12-31

    This conference day was organized by the `convection` section of the French association of thermal engineers with the support of the environment and energy mastery agency (ADEME). This book of proceedings contains 10 papers entitled: `physical modeling of atmospheric dispersion in wind tunnels. Some industrial examples`; `modeling of the noxious effects of a fire on the environment of an industrial site: importance of thermal engineering related hypotheses`; `atmospheric diffusion of a noxious cloud: fast evaluation method of safety areas around refrigerating installations that use ammonia`; `modeling of atmospheric flows in urban areas in order to study the dispersion of pollutants`; `use of a dispersion parameter to characterize the evolution of a diffusion process downstream of a linear source of passive contaminant placed inside a turbulent boundary layer`; `elements of reflexion around the development of an analytical methodology applied to the elaboration of measurement strategies of air quality in ambient and outdoor atmospheres around industrial sites`; `state-of-the-art about treatment techniques for VOC-rich gaseous effluents`; `characteristics of the time variation of the atmospheric pollution in the Paris region and visualization of its space distribution`; `mass-spectrometry for the measurement of atmospheric pollutants`; `volume variations in natural convection turbulence`. (J.S.)

  20. Dispersion of effluents in the atmosphere; Dispersion des effluents dans l`atmosphere

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    1998-12-31

    This conference day was organized by the `convection` section of the French association of thermal engineers with the support of the environment and energy mastery agency (ADEME). This book of proceedings contains 10 papers entitled: `physical modeling of atmospheric dispersion in wind tunnels. Some industrial examples`; `modeling of the noxious effects of a fire on the environment of an industrial site: importance of thermal engineering related hypotheses`; `atmospheric diffusion of a noxious cloud: fast evaluation method of safety areas around refrigerating installations that use ammonia`; `modeling of atmospheric flows in urban areas in order to study the dispersion of pollutants`; `use of a dispersion parameter to characterize the evolution of a diffusion process downstream of a linear source of passive contaminant placed inside a turbulent boundary layer`; `elements of reflexion around the development of an analytical methodology applied to the elaboration of measurement strategies of air quality in ambient and outdoor atmospheres around industrial sites`; `state-of-the-art about treatment techniques for VOC-rich gaseous effluents`; `characteristics of the time variation of the atmospheric pollution in the Paris region and visualization of its space distribution`; `mass-spectrometry for the measurement of atmospheric pollutants`; `volume variations in natural convection turbulence`. (J.S.)

  1. Analysis of Summertime Convective Initiation in Central Alabama Using the Land Information System

    Science.gov (United States)

    James, Robert S.; Case, Jonathan L.; Molthan, Andrew L.; Jedlovec, Gary J.

    2011-01-01

    During the summer months in the southeastern United States, convective initiation presents a frequent challenge to operational forecasters. Thunderstorm development has traditionally been referred to as random due to their disorganized, sporadic appearance and lack of atmospheric forcing. Horizontal variations in land surface characteristics such as soil moisture, soil type, land and vegetation cover could possibly be a focus mechanism for afternoon convection during the summer months. The NASA Land Information System (LIS) provides a stand-alone land surface modeling framework that incorporates these varying soil and vegetation properties, antecedent precipitation, and atmospheric forcing to represent the soil state at high resolution. The use of LIS as a diagnostic tool may help forecasters to identify boundaries in land surface characteristics that could correlate to favored regions of convection initiation. The NASA Shortterm Prediction Research and Transition (SPoRT) team has been collaborating with the National Weather Service Office in Birmingham, AL to help incorporate LIS products into their operational forecasting methods. This paper highlights selected convective case dates from summer 2009 when synoptic forcing was weak, and identifies any boundaries in land surface characteristics that may have contributed to convective initiation. The LIS output depicts the effects of increased sensible heat flux from urban areas on the development of convection, as well as convection along gradients in land surface characteristics and surface sensible and latent heat fluxes. These features may promote mesoscale circulations and/or feedback processes that can either enhance or inhibit convection. With this output previously unavailable to operational forecasters, LIS provides a new tool to forecasters in order to help eliminate the randomness of summertime convective initiation.

  2. Variability in warm-season atmospheric circulation and precipitation patterns over subtropical South America: relationships between the South Atlantic convergence zone and large-scale organized convection over the La Plata basin

    Science.gov (United States)

    Mattingly, Kyle S.; Mote, Thomas L.

    2017-01-01

    Warm-season precipitation variability over subtropical South America is characterized by an inverse relationship between the South Atlantic convergence zone (SACZ) and precipitation over the central and western La Plata basin of southeastern South America. This study extends the analysis of this "South American Seesaw" precipitation dipole to relationships between the SACZ and large, long-lived mesoscale convective systems (LLCSs) over the La Plata basin. By classifying SACZ events into distinct continental and oceanic categories and building a logistic regression model that relates LLCS activity across the region to continental and oceanic SACZ precipitation, a detailed account of spatial variability in the out-of-phase coupling between the SACZ and large-scale organized convection over the La Plata basin is provided. Enhanced precipitation in the continental SACZ is found to result in increased LLCS activity over northern, northeastern, and western sections of the La Plata basin, in association with poleward atmospheric moisture flux from the Amazon basin toward these regions, and a decrease in the probability of LLCS occurrence over the southeastern La Plata basin. Increased oceanic SACZ precipitation, however, was strongly related to reduced atmospheric moisture and decreased probability of LLCS occurrence over nearly the entire La Plata basin. These results suggest that continental SACZ activity and large-scale organized convection over the northern and eastern sections of the La Plata basin are closely tied to atmospheric moisture transport from the Amazon basin, while the warm coastal Brazil Current may also play an important role as an evaporative moisture source for LLCSs over the central and western La Plata basin.

  3. Multiple Convective Cell Identification and Tracking Algorithm for documenting time-height evolution of measured polarimetric radar and lightning properties

    Science.gov (United States)

    Rosenfeld, D.; Hu, J.; Zhang, P.; Snyder, J.; Orville, R. E.; Ryzhkov, A.; Zrnic, D.; Williams, E.; Zhang, R.

    2017-12-01

    A methodology to track the evolution of the hydrometeors and electrification of convective cells is presented and applied to various convective clouds from warm showers to super-cells. The input radar data are obtained from the polarimetric NEXRAD weather radars, The information on cloud electrification is obtained from Lightning Mapping Arrays (LMA). The development time and height of the hydrometeors and electrification requires tracking the evolution and lifecycle of convective cells. A new methodology for Multi-Cell Identification and Tracking (MCIT) is presented in this study. This new algorithm is applied to time series of radar volume scans. A cell is defined as a local maximum in the Vertical Integrated Liquid (VIL), and the echo area is divided between cells using a watershed algorithm. The tracking of the cells between radar volume scans is done by identifying the two cells in consecutive radar scans that have maximum common VIL. The vertical profile of the polarimetric radar properties are used for constructing the time-height cross section of the cell properties around the peak reflectivity as a function of height. The LMA sources that occur within the cell area are integrated as a function of height as well for each time step, as determined by the radar volume scans. The result of the tracking can provide insights to the evolution of storms, hydrometer types, precipitation initiation and cloud electrification under different thermodynamic, aerosol and geographic conditions. The details of the MCIT algorithm, its products and their performance for different types of storm are described in this poster.

  4. Convective-stratiform rainfall separation of Typhoon Fitow (2013: A 3D WRF modeling study

    Directory of Open Access Journals (Sweden)

    Huiyan Xu

    2018-01-01

    Full Text Available Surface precipitation budget equation in a three-dimensional (3D WRF model framework is derived. By applying the convective-stratiform partition method to the surface precipitation budget equation in the 3D model, this study separated convective and stratiform rainfall of typhoon Fitow (2013. The separations are further verified by examining statistics of vertical velocity, surface precipitation budget, and cloud microphysical budget. Results show that water vapor convergence moistens local atmosphere and offsets hydrometeor divergence, and producing convective rainfall, while hydrometeor convergence primarily supports stratiform rainfall, since water vapor divergence and local atmospheric drying generally cancelled out. Mean ascending motions are prevailing in the entire troposphere in the convective region, whereas mean descending motions occur below 5 km and mean ascending motions occur above in the stratiform region. The frequency distribution of vertical velocity shows vertical velocity has wide distribution with the maximum values up to 13 m s-1 in the convective regions, whereas it has narrow distribution with absolute values confined within 7 m s-1 in the stratiform region. Liquid cloud microphysics is dominant in convective regions and ice cloud microphysics is dominant in stratiform regions. These indicate that the statistics results are generally consistent with the corresponding physical characteristics of the convective-stratiform rainfall structures generalized by previous studies.

  5. Nighttime Convection, Temperature Inversions, and Diurnal Variations at Low Altitudes in the Martian Tropics

    Science.gov (United States)

    Hinson, D. P.; Haberle, R. M.; Spiga, A.; Tellmann, S.; Paetzold, M.; Asmar, S. W.; Haeusler, B.

    2014-07-01

    We are using radio occultation measurements and numerical simulations to explore the atmospheric structure and diurnal variations in the lowest few scale heights of the martian atmosphere, with emphasis on nighttime convective layers.

  6. Effects of variable thermal diffusivity on the structure of convection

    Science.gov (United States)

    Shcheritsa, O. V.; Getling, A. V.; Mazhorova, O. S.

    2018-03-01

    The structure of multiscale convection in a thermally stratified plane horizontal fluid layer is investigated by means of numerical simulations. The thermal diffusivity is assumed to produce a thin boundary sublayer convectively much more unstable than the bulk of the layer. The simulated flow is a superposition of cellular structures with three different characteristic scales. In contrast to the largest convection cells, the smaller ones are localised in the upper portion of the layer. The smallest cells are advected by the larger-scale convective flows. The simulated flow pattern qualitatively resembles that observed on the Sun.

  7. Convective boundary layer heights over mountainous terrain - A review of concepts -

    Science.gov (United States)

    De Wekker, Stephan; Kossmann, Meinolf

    2015-12-01

    Mountainous terrain exerts an important influence on the Earth's atmosphere and affects atmospheric transport and mixing at a wide range of temporal and spatial scales. The vertical scale of this transport and mixing is determined by the height of the atmospheric boundary layer, which is therefore an important parameter in air pollution studies, weather forecasting, climate modeling, and many other applications. It is recognized that the spatio-temporal structure of the daytime convective boundary layer (CBL) height is strongly modified and more complex in hilly and mountainous terrain compared to flat terrain. While the CBL over flat terrain is mostly dominated by turbulent convection, advection from multi-scale thermally driven flows plays an important role for the CBL evolution over mountainous terrain. However, detailed observations of the CBL structure and understanding of the underlying processes are still limited. Characteristics of CBL heights in mountainous terrain are reviewed for dry, convective conditions. CBLs in valleys and basins, where hazardous accumulation of pollutants is of particular concern, are relatively well-understood compared to CBLs over slopes, ridges, or mountain peaks. Interests in the initiation of shallow and deep convection, and of budgets and long-range transport of air pollutants and trace gases, have triggered some recent studies on terrain induced exchange processes between the CBL and the overlying atmosphere. These studies have helped to gain more insight into CBL structure over complex mountainous terrain, but also show that the universal definition of CBL height over mountains remains an unresolved issue. The review summarizes the progress that has been made in documenting and understanding spatio-temporal behavior of CBL heights in mountainous terrain and concludes with a discussion of open research questions and opportunities for future research.

  8. Sunspots and the physics of magnetic flux tubes. VI - Convective propulsion. VII - Heat flow in a convective downdraft

    Science.gov (United States)

    Parker, E. N.

    1979-01-01

    The effect of negative aerodynamic drag in an ideal fluid subject to convective instability is considered. It is shown that a cylinder moving in such a fluid is propelled forward in its motion by the convective forces and that the characteristic acceleration time is comparable to the onset time of convective motions in the fluid. It is suggested that convective propulsion plays an important role in the dynamics of flux tubes extending through the surface of the sun. The suppression of the upward heat flow in a Boussinesq convective cell with free upper and lower boundaries by a downdraft is then analyzed. Application to the solar convection zone indicates that downdrafts of 1 to 2 km/s at depths of 1000 to 4000 km beneath the visible surface of the sun are sufficient to reduce the upward heat flux to a small fraction of the ambient value.

  9. Improving Convection and Cloud Parameterization Using ARM Observations and NCAR Community Atmosphere Model CAM5

    Energy Technology Data Exchange (ETDEWEB)

    Zhang, Guang J. [Univ. of California, San Diego, CA (United States)

    2016-11-07

    The fundamental scientific objectives of our research are to use ARM observations and the NCAR CAM5 to understand the large-scale control on convection, and to develop improved convection and cloud parameterizations for use in GCMs.

  10. Boundary-layer diabatic processes, the virtual effect, and convective self-aggregation

    Science.gov (United States)

    Yang, D.

    2017-12-01

    The atmosphere can self-organize into long-lasting large-scale overturning circulations over an ocean surface with uniform temperature. This phenomenon is referred to as convective self-aggregation and has been argued to be important for tropical weather and climate systems. Here we use a 1D shallow water model and a 2D cloud-resolving model (CRM) to show that boundary-layer diabatic processes are essential for convective self-aggregation. We will show that boundary-layer radiative cooling, convective heating, and surface buoyancy flux help convection self-aggregate because they generate available potential energy (APE), which sustains the overturning circulation. We will also show that evaporative cooling in the boundary layer (cold pool) inhibits convective self-aggregation by reducing APE. Both the shallow water model and CRM results suggest that the enhanced virtual effect of water vapor can lead to convective self-aggregation, and this effect is mainly in the boundary layer. This study proposes new dynamical feedbacks for convective self-aggregation and complements current studies that focus on thermodynamic feedbacks.

  11. Precipitation in a boiling soup: is microphysics driving the statistical properties of intense turbulent convection?

    Science.gov (United States)

    Parodi, A.; von Hardenberg, J.; Provenzale, A.

    2012-04-01

    Intense precipitation events are often associated with strong convective phenomena in the atmosphere. A deeper understanding of how microphysics affects the spatial and temporal variability of convective processes is relevant for many hydro-meteorological applications, such as the estimation of rainfall using remote sensing techniques and the ability to predict severe precipitation processes. In this paper, high-resolution simulations (0.1-1 km) of an atmosphere in radiative-convective equilibrium are performed using the Weather Research and Forecasting (WRF) model by prescribing different microphysical parameterizations. The dependence of fine-scale spatio-temporal properties of convective structures on microphysical details are investigated and the simulation results are compared with the known properties of radar maps of precipitation fields. We analyze and discuss similarities and differences and, based also on previous results on the dependence of precipitation statistics on the raindrop terminal velocity, try to draw some general inferences.

  12. Sublimation pit distribution indicates convection cell surface velocities of ∼10 cm per year in Sputnik Planitia, Pluto

    Science.gov (United States)

    Buhler, Peter B.; Ingersoll, Andrew P.

    2018-01-01

    The ∼106 km2 Sputnik Planitia, Pluto is the upper surface of a vast basin of nitrogen ice. Cellular landforms in Sputnik Planitia with areas in the range of a few × 102-103 km2 are likely the surface manifestation of convective overturn in the nitrogen ice. The cells have sublimation pits on them, with smaller pits near their centers and larger pits near their edges. We map pits on seven cells and find that the pit radii increase by between 2.1 ± 0.4 × 10-3 and 5.9 ± 0.8 × 10-3 m m-1 away from the cell center, depending on the cell. This is a lower bound on the size increase because of the finite resolution of the data. Accounting for resolution yields upper bounds on the size vs. distance distribution of between 4.2 ± 0.2 × 10-3 and 23.4 ± 1.5 × 10-3 m m-1. We then use an analytic model to calculate that pit radii grow via sublimation at a rate of 3.6-0.6+2.1 ×10-4 m yr-1, which allows us to convert the pit size vs. distance distribution into a pit age vs. distance distribution. This yields surface velocities between 1.5-0.2+1.0 and 6.2-1.4+3.4 cm yr-1 for the slowest cell and surface velocities between 8.1-1.0+5.5 and 17.9-5.1+8.9 cm yr-1 for the fastest cell. These convection rates imply that the surface ages at the edge of cells reach ∼4.2-8.9 × 105 yr. The rates are comparable to rates of ∼6 cm yr-1 that were previously obtained from modeling of the convective overturn in Sputnik Planitia (McKinnon et al., 2016). Finally, we investigate the surface rheology of the convection cells and estimate that the minimum ice viscosity necessary to support the geometry of the observed pits is of order 1016-1017 Pa s, based on the argument that pits would relax away before growing to their observed radii of several hundred meters if the viscosity were lower than this value.

  13. Heat transfer by natural convection into an horizontal cavity

    International Nuclear Information System (INIS)

    Arevalo J, P.

    1998-01-01

    At this thesis it is studied the heat transfer by natural convection in an horizontal cavity, it is involved a boiling's part that is described the regimes and correlations differences for boiling's curve. It is designed a horizontal cavity for realize the experimental part and it's mention from equipment or instrumentation to succeed in a experimentation that permits to realize the analysis of heat transfer, handling as water fluid at atmospheric pressure and where it's present process from natural convection involving part boiling's subcooled. The system consists of heater zone submerged in a horizontal cavity with water. Once part finished experimental with information to obtained it's proceeded to obtain a correlation, realized starting from analysis dimensionless such as: Jakob, Bond and Grasoft (Boiling) besides of knows in natural convection: Prandtl and Nusselt. The mathematical model explains the behavior for natural convection continued part boiling's subcooled. It is realize analysis graphics too where it's show comparing with Globe Dropkin and Catton equations by natural convection with bottom heating. (Author)

  14. Heat transfer measurements of internally heated liquids in cylindrical convection cells

    International Nuclear Information System (INIS)

    Fieg, G.

    1978-10-01

    In hypothetical reactor accidents, the thermohydraulic behaviour of core melts heated by the after-heat must be analyzed. For this purpose model experiments have been performed to study the stationary, natural convective heat transfer of internally heated fluids in cylindrical convertion cells investigating also the influence of geometry (aspect ratio) as well as of difference thermal wall conditions on to the heat transport characteristics. Axial temperature profiles, local heat flux densities at the vertical walls and their dependence, on the external Rayleigh number ar in detail reported, besides the Nusselt vs Rayleigh correlations for the aspect ratios HID=1 and 0,25. The results of these experiments are compared, as for ar possible, with existing thermohydraulic codes and simpler model asoumptions like the zone-model of Baker et. al. and after experimental verification, be used to study realistic PAHR situations. Velocity measurements by means of Laser-Doppler-Method yield information about the flow characteristics near the vertical walls and within the central part of the convecting fluid. (GL) [de

  15. Improvement in the Modeled Representation of North American Monsoon Precipitation Using a Modified Kain–Fritsch Convective Parameterization Scheme

    KAUST Repository

    Luong, Thang

    2018-01-22

    A commonly noted problem in the simulation of warm season convection in the North American monsoon region has been the inability of atmospheric models at the meso-β scales (10 s to 100 s of kilometers) to simulate organized convection, principally mesoscale convective systems. With the use of convective parameterization, high precipitation biases in model simulations are typically observed over the peaks of mountain ranges. To address this issue, the Kain–Fritsch (KF) cumulus parameterization scheme has been modified with new diagnostic equations to compute the updraft velocity, the convective available potential energy closure assumption, and the convective trigger function. The scheme has been adapted for use in the Weather Research and Forecasting (WRF). A numerical weather prediction-type simulation is conducted for the North American Monsoon Experiment Intensive Observing Period 2 and a regional climate simulation is performed, by dynamically downscaling. In both of these applications, there are notable improvements in the WRF model-simulated precipitation due to the better representation of organized, propagating convection. The use of the modified KF scheme for atmospheric model simulations may provide a more computationally economical alternative to improve the representation of organized convection, as compared to convective-permitting simulations at the kilometer scale or a super-parameterization approach.

  16. A continuous and prognostic convection scheme based on buoyancy, PCMT

    Science.gov (United States)

    Guérémy, Jean-François; Piriou, Jean-Marcel

    2016-04-01

    A new and consistent convection scheme (PCMT: Prognostic Condensates Microphysics and Transport), providing a continuous and prognostic treatment of this atmospheric process, is described. The main concept ensuring the consistency of the whole system is the buoyancy, key element of any vertical motion. The buoyancy constitutes the forcing term of the convective vertical velocity, which is then used to define the triggering condition, the mass flux, and the rates of entrainment-detrainment. The buoyancy is also used in its vertically integrated form (CAPE) to determine the closure condition. The continuous treatment of convection, from dry thermals to deep precipitating convection, is achieved with the help of a continuous formulation of the entrainment-detrainment rates (depending on the convective vertical velocity) and of the CAPE relaxation time (depending on the convective over-turning time). The convective tendencies are directly expressed in terms of condensation and transport. Finally, the convective vertical velocity and condensates are fully prognostic, the latter being treated using the same microphysics scheme as for the resolved condensates but considering the convective environment. A Single Column Model (SCM) validation of this scheme is shown, allowing detailed comparisons with observed and explicitly simulated data. Four cases covering the convective spectrum are considered: over ocean, sensitivity to environmental moisture (S. Derbyshire) non precipitating shallow convection to deep precipitating convection, trade wind shallow convection (BOMEX) and strato-cumulus (FIRE), together with an entire continental diurnal cycle of convection (ARM). The emphasis is put on the characteristics of the scheme which enable a continuous treatment of convection. Then, a 3D LAM validation is presented considering an AMMA case with both observations and a CRM simulation using the same initial and lateral conditions as for the parameterized one. Finally, global

  17. Electron thermal effect on linear and nonlinear coupled Shukla-Varma and convective cell modes in dust-contaminated magnetoplasma

    Science.gov (United States)

    Masood, W.; Mirza, Arshad M.

    2010-11-01

    Linear and nonlinear properties of coupled Shukla-Varma (SV) and convective cell modes in the presence of electron thermal effects are studied in a nonuniform magnetoplasma composed of electrons, ions, and extremely massive and negatively charged immobile dust grains. In the linear case, the modified dispersion relation is given and, in the nonlinear case, stationary solutions of the nonlinear equations that govern the dynamics of coupled SV and convective cell modes are obtained. It is found that electrostatic dipolar and vortex street type solutions can appear in such a plasma. The relevance of the present investigation with regard to the Earth's mesosphere as well as in ionospheric plasmas is also pointed out.

  18. Electron thermal effect on linear and nonlinear coupled Shukla-Varma and convective cell modes in dust-contaminated magnetoplasma

    International Nuclear Information System (INIS)

    Masood, W.; Mirza, Arshad M.

    2010-01-01

    Linear and nonlinear properties of coupled Shukla-Varma (SV) and convective cell modes in the presence of electron thermal effects are studied in a nonuniform magnetoplasma composed of electrons, ions, and extremely massive and negatively charged immobile dust grains. In the linear case, the modified dispersion relation is given and, in the nonlinear case, stationary solutions of the nonlinear equations that govern the dynamics of coupled SV and convective cell modes are obtained. It is found that electrostatic dipolar and vortex street type solutions can appear in such a plasma. The relevance of the present investigation with regard to the Earth's mesosphere as well as in ionospheric plasmas is also pointed out.

  19. Plume structure in high-Rayleigh-number convection

    Science.gov (United States)

    Puthenveettil, Baburaj A.; Arakeri, Jaywant H.

    2005-10-01

    Near-wall structures in turbulent natural convection at Rayleigh numbers of 10^{10} to 10^{11} at A Schmidt number of 602 are visualized by a new method of driving the convection across a fine membrane using concentration differences of sodium chloride. The visualizations show the near-wall flow to consist of sheet plumes. A wide variety of large-scale flow cells, scaling with the cross-section dimension, are observed. Multiple large-scale flow cells are seen at aspect ratio (AR)= 0.65, while only a single circulation cell is detected at AR= 0.435. The cells (or the mean wind) are driven by plumes coming together to form columns of rising lighter fluid. The wind in turn aligns the sheet plumes along the direction of shear. the mean wind direction is seen to change with time. The near-wall dynamics show plumes initiated at points, which elongate to form sheets and then merge. Increase in rayleigh number results in a larger number of closely and regularly spaced plumes. The plume spacings show a common log normal probability distribution function, independent of the rayleigh number and the aspect ratio. We propose that the near-wall structure is made of laminar natural-convection boundary layers, which become unstable to give rise to sheet plumes, and show that the predictions of a model constructed on this hypothesis match the experiments. Based on these findings, we conclude that in the presence of a mean wind, the local near-wall boundary layers associated with each sheet plume in high-rayleigh-number turbulent natural convection are likely to be laminar mixed convection type.

  20. Flux ropes in the magnetic solar convection zone

    DEFF Research Database (Denmark)

    Dorch, S. B. F.

    2006-01-01

    In this contribution results are presented on how twisted magnetic flux ropes interact with a magnetized model envelope similar to the solar convection zone. Both the flux ropes and the atmosphere are modelled as idealized 2.5-dimensional concepts using high resolution numerical MHD simulations (on...

  1. Ionospheric convection response to changes of interplanetary magnetic field B-z component during strong B-y component

    DEFF Research Database (Denmark)

    Huang, C.S.; Murr, D.; Sofko, G.J.

    2000-01-01

    response to IMF Bz changes during strong IMF BZ. On March 23, 1995, B-x was small, B-y was strongly positive (7-11 nT), and the B-z polarity changed several times after 1300 UT. The dayside ionospheric convection is dominated by a large clockwise convection cell. The cell focus (the "eye" of the convection...... cell, or the largest change in the convection pattern, is limited roughly to the region between the previous cell focus and the new cell focus. Outside this region, the ionospheric flows could be greatly enhanced or weakened, while the convection pattern shape changes very little. When B-y is strong...... the dawn-dusk meridian plane, which is interpreted as propagation or expansion of newly generated convection cells in the cusp region. Other studies showed that the change in convection pattern in response to IMF reorientations is spatially fixed. In this paper, we investigate the ionospheric convection...

  2. On the nature of rainfall in dry climate: Space-time patterns of convective rain cells over the Dead Sea region and their relations with synoptic state and flash flood generation

    Science.gov (United States)

    Belachsen, Idit; Marra, Francesco; Peleg, Nadav; Morin, Efrat

    2017-04-01

    Space-time patterns of rainfall are important climatic characteristics that influence runoff generation and flash flood magnitude. Their derivation requires high-resolution measurements to adequately represent the rainfall distribution, and is best provided by remote sensing tools. This need is further emphasized in dry climate regions, where rainfall is scarce and, often, local and highly variable. Our research is focused on understanding the nature of rainfall events in the dry Dead Sea region (Eastern Mediterranean) by identifying and characterizing the spatial structure and the dynamics of convective storm cores (known as rain cells). To do so, we take advantage of 25 years of corrected and gauge-adjusted weather radar data. A statistical analysis of convective rain-cells spatial and temporal characteristics was performed with respect to synoptic pattern, geographical location, and flash flood generation. Rain cells were extracted from radar data using a cell segmentation method and a tracking algorithm and were divided into rain events. A total of 10,500 rain cells, 2650 cell tracks and 424 rain events were elicited. Rain cell properties, such as mean areal and maximal rain intensity, area, life span, direction and speed, were derived. Rain events were clustered, according to several ERA-Interim atmospheric parameters, and associated with three main synoptic patterns: Cyprus Low, Low to the East of the study region and Active Red Sea Trough. The first two originate from the Mediterranean Sea, while the third is an extension of the African monsoon. On average, the convective rain cells in the region are 90 km2 in size, moving from West to East in 13 ms-1 and living 18 minutes. Several significant differences between rain cells of the various synoptic types were observed. In particular, Active Red Sea Trough rain cells are characterized by higher rain intensities and lower speeds, suggesting a higher flooding potential for small catchments. The north

  3. Multi-Scale Models for the Scale Interaction of Organized Tropical Convection

    Science.gov (United States)

    Yang, Qiu

    Assessing the upscale impact of organized tropical convection from small spatial and temporal scales is a research imperative, not only for having a better understanding of the multi-scale structures of dynamical and convective fields in the tropics, but also for eventually helping in the design of new parameterization strategies to improve the next-generation global climate models. Here self-consistent multi-scale models are derived systematically by following the multi-scale asymptotic methods and used to describe the hierarchical structures of tropical atmospheric flows. The advantages of using these multi-scale models lie in isolating the essential components of multi-scale interaction and providing assessment of the upscale impact of the small-scale fluctuations onto the large-scale mean flow through eddy flux divergences of momentum and temperature in a transparent fashion. Specifically, this thesis includes three research projects about multi-scale interaction of organized tropical convection, involving tropical flows at different scaling regimes and utilizing different multi-scale models correspondingly. Inspired by the observed variability of tropical convection on multiple temporal scales, including daily and intraseasonal time scales, the goal of the first project is to assess the intraseasonal impact of the diurnal cycle on the planetary-scale circulation such as the Hadley cell. As an extension of the first project, the goal of the second project is to assess the intraseasonal impact of the diurnal cycle over the Maritime Continent on the Madden-Julian Oscillation. In the third project, the goals are to simulate the baroclinic aspects of the ITCZ breakdown and assess its upscale impact on the planetary-scale circulation over the eastern Pacific. These simple multi-scale models should be useful to understand the scale interaction of organized tropical convection and help improve the parameterization of unresolved processes in global climate models.

  4. The Stochastic Multicloud Model as part of an operational convection parameterisation in a comprehensive GCM

    Science.gov (United States)

    Peters, Karsten; Jakob, Christian; Möbis, Benjamin

    2015-04-01

    An adequate representation of convective processes in numerical models of the atmospheric circulation (general circulation models, GCMs) remains one of the grand challenges in atmospheric science. In particular, the models struggle with correctly representing the spatial distribution and high variability of tropical convection. It is thought that this model deficiency partly results from formulating current convection parameterisation schemes in a purely deterministic manner. Here, we use observations of tropical convection to inform the design of a novel convection parameterisation with stochastic elements. The novel scheme is built around the Stochastic MultiCloud Model (SMCM, Khouider et al 2010). We present the progress made in utilising SMCM-based estimates of updraft area fractions at cloud base as part of the deep convection scheme of a GCM. The updraft area fractions are used to yield one part of the cloud base mass-flux used in the closure assumption of convective mass-flux schemes. The closure thus receives a stochastic component, potentially improving modeled convective variability and coherence. For initial investigations, we apply the above methodology to the operational convective parameterisation of the ECHAM6 GCM. We perform 5-year AMIP simulations, i.e. with prescribed observed SSTs. We find that with the SMCM, convection is weaker and more coherent and continuous from timestep to timestep compared to the standard model. Total global precipitation is reduced in the SMCM run, but this reduces i) the overall error compared to observed global precipitation (GPCP) and ii) middle tropical tropospheric temperature biases compared to ERA-Interim. Hovmoeller diagrams indicate a slightly higher degree of convective organisation compared to the base case and Wheeler-Kiladis frequency wavenumber diagrams indicate slightly more spectral power in the MJO range.

  5. Is Convection Sensitive to Model Vertical Resolution and Why?

    Science.gov (United States)

    Xie, S.; Lin, W.; Zhang, G. J.

    2017-12-01

    Model sensitivity to horizontal resolutions has been studied extensively, whereas model sensitivity to vertical resolution is much less explored. In this study, we use the US Department of Energy (DOE)'s Accelerated Climate Modeling for Energy (ACME) atmosphere model to examine the sensitivity of clouds and precipitation to the increase of vertical resolution of the model. We attempt to understand what results in the behavior change (if any) of convective processes represented by the unified shallow and turbulent scheme named CLUBB (Cloud Layers Unified by Binormals) and the Zhang-McFarlane deep convection scheme in ACME. A short-term hindcast approach is used to isolate parameterization issues from the large-scale circulation. The analysis emphasizes on how the change of vertical resolution could affect precipitation partitioning between convective- and grid-scale as well as the vertical profiles of convection-related quantities such as temperature, humidity, clouds, convective heating and drying, and entrainment and detrainment. The goal is to provide physical insight into potential issues with model convective processes associated with the increase of model vertical resolution. This work performed under the auspices of the U.S. Department of Energy by Lawrence Livermore National Laboratory under Contract DE-AC52-07NA27344.

  6. Stellar convection and dynamo theory

    Energy Technology Data Exchange (ETDEWEB)

    Jennings, R L

    1989-10-01

    In considering the large scale stellar convection problem the outer layers of a star are modelled as two co-rotating plane layers coupled at a fluid/fluid interface. Heating from below causes only the upper fluid to convect, although this convection can penetrate into the lower fluid. Stability analysis is then used to find the most unstable mode of convection. With parameters appropriate to the Sun the most unstable mode is steady convection in thin cells (aspect ratio {approx equal} 0.2) filling the convection zone. There is negligible vertical motion in the lower fluid, but considerable thermal penetration, and a large jump in helicity at the interface, which has implications for dynamo theory. An {alpha}{omega} dynamo is investigated in isolation from the convection problem. Complexity is included by allowing both latitudinal and time dependence in the magnetic fields. The nonlinear dynamics of the resulting partial differential equations are analysed in considerable detail. On varying the main control parameter D (the dynamo number), many transitions of behaviour are found involving many forms of time dependence, but not chaos. Further, solutions which break equatorial symmetry are common and provide a theoretical explanation of solar observations which have this symmetry. Overall the behaviour was more complicated than expected. In particular, there were multiple stable solutions at fixed D, meaning that similar stars can have very different magnetic patterns, depending upon their history. (author).

  7. Environmental Characteristics of Convective Systems During TRMM-LBA

    Science.gov (United States)

    Halverson, Jeffrey B.; Rickenbach, Thomas; Roy, Biswadev; Pierce, Harold; Williams, Earle; Einaudi, Franco (Technical Monitor)

    2001-01-01

    In this paper, data collected from 51 days of continual upper atmospheric soundings and TOGA radar at ABRACOS Hill during the TRMM-LBA experiment are used to describe the mean thermodynamic and kinematic airmass properties of wet season convection over Rondonia, Brazil. Distinct multi-day easterly and westerly lower tropospheric wind regimes occurred during the campaign with contrasting airmass characteristics. Westerly wind periods featured modest CAPE (1000 J/kg), moist conditions (>90% RH) extending through 700 mb and shallow (900 mb) speed shear on the order of 10(exp -4)/s. This combination of characteristics promoted convective systems that featured a relatively large fraction of stratiform rainfall and weak convection nearly devoid of lightning. The environment is very similar to the general airmass conditions experienced during the Darwin, Australia monsoon convective regime. In contrast, easterly regime convective systems were more strongly electrified and featured larger convective rain rates and reduced stratiform rainfall fraction. These systems formed in an environment with significantly larger CAPE (1500 J/kg), drier lower and middle level humidities (in the lowest 1-2 km, thus contributing to a more explosive growth of convection. The time series of low- and mid-level averaged humidity exhibited marked variability between westerly and easterly regimes and was characterized by low frequency (i.e., multi-day to weekly) oscillations. The synoptic scale origins of these moisture fluctuations are examined, which include the effects of variable low-level airmass trajectories and upper-level, westward migrating cyclonic vortices. The results reported herein provide an environmental context for ongoing dual Doppler analyses and numerical modeling case studies of individual TRMM-LBA convective systems.

  8. Rayleigh-Benard convection in a Hele-Shaw cell - a numerical study

    International Nuclear Information System (INIS)

    Guenther, C.; Mueller, U.

    1987-05-01

    Free convection in narrow vertical gaps heated from below gives rise to several different flow patterns as has been demonstrated by previous experimental investigations. A numerical study is presented aimed at simulating the observed flow phenomena in Hele-Shaw cells of small lateral extend. The numerical study is based on the assumption that the flow is essentially two-dimensional. This allows an approach using a one-term Galerkin approximation with respect to the direction perpendicular to the gap and a finite difference scheme with regard to the coordinates in the plane of the gap. The calculations result in realistic values of the critical Rayleigh numbers for the onset of steady and oscillatory convection. Most of the observed unsteady flow patterns can be simulated numerically. It is shown that five different stable flow patterns can occur at one particular Rayleigh number. The different stable flow patterns are coupled by a variety of complex transitions. Moreover the calculations show that a realistic description of the observed flow phenomena can not be obtained by a simplified model using the Darcy law in the momentum equation and implying slip flow at the small confining boundaries. (orig.) [de

  9. Idealized Mesoscale Model Simulations of Open Cellular Convection Over the Sea

    DEFF Research Database (Denmark)

    Vincent, Claire Louise; Hahmann, Andrea N.; Kelly, Mark C.

    2012-01-01

    The atmospheric conditions during an observed case of open cellular convection over the North Sea were simulated using the Weather Research and Forecasting (WRF) numerical model. Wind, temperature and water vapour mixing ratio profiles from the WRF simulation were used to initialize an idealized...... version of the model, which excluded the effects of topography, surface inhomogeneities and large-scale weather forcing. Cells with an average diameter of 17.4 km developed. Simulations both with and without a capping inversion were made, and the cell-scale kinetic energy budget was calculated for each...... case. By considering all sources of explicit diffusion in the model, the budgets were balanced. In comparison with previous work based on observational studies, the use of three-dimensional, gridded model data afforded the possibility of calculating all terms in the budgets, which showed...

  10. Carbon Sequestration in Saline Aquifers: Modeling Diffusive and Convective Transport Of a Carbon-­Dioxide Cap

    KAUST Repository

    Allen, Rebecca

    2011-05-01

    An increase in the earth’s surface temperature has been directly linked to the rise of carbon dioxide (CO2) levels In the atmosphere and an enhanced greenhouse effect. CO2 sequestration is one of the proposed mitigation Strategies in the effort to reduce atmospheric CO2 concentrations. Globally speaking, saline aquifers provide an adequate storage capacity for the world’s carbon emissions, and CO2 sequestration projects are currently underway in countries such as Norway, Germany, Japan, USA, and others. Numerical simulators serve as predictive tools for CO2 storage, yet must model fluid transport behavior while coupling different transport processes together accurately. With regards to CO2 sequestration, an extensive amount of research has been done on the diffusive-convective transport that occurs under a cap of CO2-saturated fluid, which results after CO2 is injected into an aquifer and spreads laterally under an area of low permeability. The diffusive-convective modeling reveals an enhanced storage capacity in saline aquifers, due to the density increase between pure fluid and CO2‐saturated fluid. This work presents the transport modeling equations that are used for diffusive- convective modeling. A cell-centered finite difference method is used, and simulations are run using MATLAB. Two cases are explored in order to compare the results from this work’s self-generated code with the results published in literature. Simulation results match relatively well, and the discrepancy for a delayed onset time of convective transport observed in this work is attributed to numerical artifacts. In fact, onset time in this work is directly attributed to the instability of the physical system: this instability arises from non-linear coupling of fluid flow, transport, and convection, but is triggered by numerical errors in these simulations. Results from this work enable the computation of a value for the numerical constant that appears in the onset time equation that

  11. Convective aggregation in realistic convective-scale simulations

    OpenAIRE

    Holloway, Christopher E.

    2017-01-01

    To investigate the real-world relevance of idealized-model convective self-aggregation, five 15-day cases of real organized convection in the tropics are simulated. These include multiple simulations of each case to test sensitivities of the convective organization and mean states to interactive radiation, interactive surface fluxes, and evaporation of rain. These simulations are compared to self-aggregation seen in the same model configured to run in idealized radiative-convective equilibriu...

  12. A Decade-Long European-Scale Convection-Resolving Climate Simulation on GPUs

    Science.gov (United States)

    Leutwyler, D.; Fuhrer, O.; Ban, N.; Lapillonne, X.; Lüthi, D.; Schar, C.

    2016-12-01

    Convection-resolving models have proven to be very useful tools in numerical weather prediction and in climate research. However, due to their extremely demanding computational requirements, they have so far been limited to short simulations and/or small computational domains. Innovations in the supercomputing domain have led to new supercomputer designs that involve conventional multi-core CPUs and accelerators such as graphics processing units (GPUs). One of the first atmospheric models that has been fully ported to GPUs is the Consortium for Small-Scale Modeling weather and climate model COSMO. This new version allows us to expand the size of the simulation domain to areas spanning continents and the time period up to one decade. We present results from a decade-long, convection-resolving climate simulation over Europe using the GPU-enabled COSMO version on a computational domain with 1536x1536x60 gridpoints. The simulation is driven by the ERA-interim reanalysis. The results illustrate how the approach allows for the representation of interactions between synoptic-scale and meso-scale atmospheric circulations at scales ranging from 1000 to 10 km. We discuss some of the advantages and prospects from using GPUs, and focus on the performance of the convection-resolving modeling approach on the European scale. Specifically we investigate the organization of convective clouds and on validate hourly rainfall distributions with various high-resolution data sets.

  13. Evaluation of convection-resolving models using satellite data: The diurnal cycle of summer convection over the Alps

    Directory of Open Access Journals (Sweden)

    Michael Keller

    2016-05-01

    Full Text Available Diurnal moist convection is an important element of summer precipitation over Central Europe and the Alps. It is poorly represented in models using parameterized convection. In this study, we investigate the diurnal cycle of convection during 11 days in June 2007 using the COSMO model. The numerical simulations are compared with satellite measurements of GERB and SEVIRI, AVHRR satellite-based cloud properties and ground-based precipitation and temperature measurements. The simulations use horizontal resolutions of 12 km (convection-parameterizing model, CPM and 2 km (convection-resolving model, CRM and either a one-moment microphysics scheme (1M or a two-moment microphysics scheme (2M.They are conducted for a computational domain that covers an extended Alpine area from Northern Italy to Northern Germany. The CPM with 1M exhibits a significant overestimation of high cloud cover. This results in a compensation effect in the top of the atmosphere energy budget due to an underestimation of outgoing longwave radiation (OLR and an overestimation of reflected solar radiation (RSR. The CRM reduces high cloud cover and improves the OLR bias from a domain mean of −20.1 to −2.6 W/m2. When using 2M with ice sedimentation in the CRM, high cloud cover is further reduced. The stronger diurnal cycle of high cloud cover and associated convection over the Alps, compared to less mountainous regions, is well represented by the CRM but underestimated by the CPM. Despite substantial differences in high cloud cover, the use of a 2M has no significant impact on the diurnal cycle of precipitation. Furthermore, a negative mid-level cloud bias is found for all simulations.

  14. Formation of convective cells in the scrape-off layer of the Castor tokamak

    International Nuclear Information System (INIS)

    Stoeckel, J.; Hron, M.; Adamek, J.; Brotankova, J.; Dejarnac, R.; Duran, I.; Panek, R.; Stejskal, P.; Zacek, F.; Devynck, P.; Gunn, J.; Martines, E.; Bonhomme, G.; Van Oost, G.; Hansen, T.; Gorler, T.; Svoboda, V.

    2004-01-01

    We describe experiments with a biased electrode inserted into the scrape-off layer (SOL) of the CASTOR tokamak. The resulting radial and poloidal electric field and plasma density modification are measured by means of Langmuir probe arrays with high temporal and spatial resolutions. Poloidally and radially localized stationary structures of the electric field (convective cells) are identified and a related significant modification of the particle transport in the SOL is observed. (authors)

  15. Evidence for Gravity Wave Seeding of Convective Ionosphere Storms Initiated by Deep Troposphere Convection

    Science.gov (United States)

    Kelley, M. C.; Pfaff, R. F., Jr.; Dao, E. V.; Holzworth, R. H., II

    2014-12-01

    With the increase in solar activity, the Communications/Outage Forecast System satellite (C/NOFS) now goes below the F peak. As such, we now can study the development of Convective Ionospheric Storms (CIS) and, most importantly, large-scale seeding of the low growth-rate Rayleigh-Taylor (R-T) instability. Two mechanisms have been suggested for such seeding: the Collisional Kelvin-Helmholtz Instability (CKHI) and internal atmospheric gravity waves. A number of observations have shown that the spectrum of fully developed topside structures peaks at 600 km and extends to over 1000 km. These structures are exceedingly difficult to explain by CKHI. Here we show that sinusoidal plasma oscillations on the bottomside during daytime develop classical R-T structures on the nightside with the background 600 km structure still apparent. In two case studies, thunderstorm activity was observed east of the sinusoidal features in the two hours preceding the C/NOFS passes. Thus, we argue that convective tropospheric storms are a likely source of these sinusoidal features.

  16. Improvement in the Modeled Representation of North American Monsoon Precipitation Using a Modified Kain–Fritsch Convective Parameterization Scheme

    KAUST Repository

    Luong, Thang; Castro, Christopher; Nguyen, Truong; Cassell, William; Chang, Hsin-I

    2018-01-01

    A commonly noted problem in the simulation of warm season convection in the North American monsoon region has been the inability of atmospheric models at the meso-β scales (10 s to 100 s of kilometers) to simulate organized convection, principally

  17. Heat transport in bubbling turbulent convection.

    Science.gov (United States)

    Lakkaraju, Rajaram; Stevens, Richard J A M; Oresta, Paolo; Verzicco, Roberto; Lohse, Detlef; Prosperetti, Andrea

    2013-06-04

    Boiling is an extremely effective way to promote heat transfer from a hot surface to a liquid due to numerous mechanisms, many of which are not understood in quantitative detail. An important component of the overall process is that the buoyancy of the bubble compounds with that of the liquid to give rise to a much-enhanced natural convection. In this article, we focus specifically on this enhancement and present a numerical study of the resulting two-phase Rayleigh-Bénard convection process in a cylindrical cell with a diameter equal to its height. We make no attempt to model other aspects of the boiling process such as bubble nucleation and detachment. The cell base and top are held at temperatures above and below the boiling point of the liquid, respectively. By keeping this difference constant, we study the effect of the liquid superheat in a Rayleigh number range that, in the absence of boiling, would be between 2 × 10(6) and 5 × 10(9). We find a considerable enhancement of the heat transfer and study its dependence on the number of bubbles, the degree of superheat of the hot cell bottom, and the Rayleigh number. The increased buoyancy provided by the bubbles leads to more energetic hot plumes detaching from the cell bottom, and the strength of the circulation in the cell is significantly increased. Our results are in general agreement with recent experiments on boiling Rayleigh-Bénard convection.

  18. Application of ground-based, multi-channel microwave radiometer in the nowcasting of intense convective weather through instability indices of the atmosphere

    Energy Technology Data Exchange (ETDEWEB)

    Chan, P.W.; Hon, K.K. [Hong Kong Observatory, Hong Kong (China)

    2011-08-15

    A ground-based microwave radiometer gives the possibility of providing continuously available temperature and humidity profiles of the troposphere, from which instability indices of the atmosphere could be derived. This paper studies the possibility of correlating the radiometer-based instability indices with the occurrence of intense convective activity, namely, the occurrence of lightning. The correlation so established could be useful for the nowcasting of convective weather: the weather forecaster follows the evolution of the radiometer-based instability indices in order to access the chance for lightning to occur. The quality of the radiometer-based instability indices is first established by comparing with the radiosonde-based indices. Though there are biases and spreads in the scatter plots of the two datasets, the radiometer-based indices appear to follow the trend of the radiosonde-based indices in spite of the differences in measurement locations and working principles of the two instruments. The thresholds of instability indices for the occurrence of lightning (using 1 discharge) are then determined, specifically for the radiometer in use and the climatological condition in Hong Kong. It turns out that, among all the indices considered in this paper, KI has the best performance in terms of probability of detection of lightning occurrence, particularly for non-summer months, by using an optimum threshold. Finally, the correlation between the instability index and the amount of lightning strokes (within a certain distance from the radiometer) is established. It turns out that the correlation is the best using the minimum value of humidity index, with correlation coefficient of 0.55. The distance from the radiometer considered is about 30 km (having the best correlation between the number of lightning discharges and the instability index), which may be taken as the area over which the radiometer's measurement is considered to be representative of the

  19. Convection Weather Detection by General Aviation Pilots with Convectional and Data-Linked Graphical Weather Information Sources

    Science.gov (United States)

    Chamberlain, James P.; Latorella, Kara A.

    2001-01-01

    This study compares how well general aviation (GA) pilots detect convective weather in flight with different weather information sources. A flight test was conducted in which GA pilot test subjects were given different in-flight weather information cues and flown toward convective weather of moderate or greater intensity. The test subjects were not actually flying the aircraft, but were given pilot tasks representative of the workload and position awareness requirements of the en route portion of a cross country GA flight. On each flight, one test subject received weather cues typical of a flight in visual meteorological conditions (VMC), another received cues typical of flight in instrument meteorological conditions (IMC), and a third received cues typical of flight in IMC but augmented with a graphical weather information system (GWIS). The GWIS provided the subject with near real time data-linked weather products, including a weather radar mosaic superimposed on a moving map with a symbol depicting the aircraft's present position and direction of track. At several points during each flight, the test subjects completed short questionnaires which included items addressing their weather situation awareness and flight decisions. In particular, test subjects were asked to identify the location of the nearest convective cells. After the point of nearest approach to convective weather, the test subjects were asked to draw the location of convective weather on an aeronautical chart, along with the aircraft's present position. This paper reports preliminary results on how accurately test subjects provided with these different weather sources could identify the nearest cell of moderate or greater intensity along their route of flight. Additional flight tests are currently being conducted to complete the data set.

  20. A model of the solar cycle driven by the dynamo action of the global convection in the solar convection zone

    International Nuclear Information System (INIS)

    Yoshimura, H.

    1976-01-01

    Extensive numerical studies of the dynamo equations due to the global convection are presented to simulate the solar cycle and to open the way to study general stellar magnetic cycles. The dynamo equations which represent the longitudinally-averaged magnetohydrodynamical action (mean magnetohydrodynamics) of the global convection under the influence of the rotation in the solar convection zone are considered here as an initial boundary-value problem. The latitudinal and radial structure of the dynamo action consisting of a generation action due to the differential rotation and a regeneration action due to the global convection is parameterized in accordance with the structure of the rotation and of the global convection. This is done especially in such a way as to represent the presence of the two cells of the regeneration action in the radial direction in which the action has opposite signs, which is typical of the regeneration action of the global convection. The effects of the dynamics of the global convection (e.g., the effects of the stratification of the physical conditions in the solar convection zone) are presumed to be all included in those parameters used in the model and they are presumed not to alter the results drastically since these effects are only to change the structure of the regeneration action topologically. (Auth.)

  1. A novel approach to modeling atmospheric convection

    Science.gov (United States)

    Goodman, A.

    2016-12-01

    The inadequate representation of clouds continues to be a large source of uncertainty in the projections from global climate models (GCMs). With continuous advances in computational power, however, the ability for GCMs to explicitly resolve cumulus convection will soon be realized. For this purpose, Jung and Arakawa (2008) proposed the Vector Vorticity Model (VVM), in which vorticity is the predicted variable instead of momentum. This has the advantage of eliminating the pressure gradient force within the framework of an anelastic system. However, the VVM was designed for use on a planar quadrilateral grid, making it unsuitable for implementation in global models discretized on the sphere. Here we have proposed a modification to the VVM where instead the curl of the horizontal vorticity is the primary predicted variable. This allows us to maintain the benefits of the original VVM while working within the constraints of a non-quadrilateral mesh. We found that our proposed model produced results from a warm bubble simulation that were consistent with the VVM. Further improvements that can be made to the VVM are also discussed.

  2. The INCOMPASS project field and modelling campaign: Interaction of Convective Organization and Monsoon Precipitation, Atmosphere, Surface and Sea

    Science.gov (United States)

    Turner, Andrew; Bhat, Ganapati; Evans, Jonathan; Madan, Ranju; Marsham, John; Martin, Gill; Mitra, Ashis; Mrudula, Gm; Parker, Douglas; Pattnaik, Sandeep; Rajagopal, En; Taylor, Christopher; Tripathi, Sachchida

    2017-04-01

    The INCOMPASS project uses data from a field and aircraft measurement campaign during the 2016 monsoon onset to better understand and predict monsoon rainfall. The monsoon supplies the majority of water in South Asia, however modelling and forecasting the monsoon from days to the season ahead is limited by large model errors that develop quickly. Likely problems lie in physical parametrizations such as convection, the boundary layer and land surface. At the same time, lack of detailed observations prevents more thorough understanding of monsoon circulation and its interaction with the land surface; a process governed by boundary layer and convective cloud dynamics. From May to July 2016, INCOMPASS used a modified BAe-146 jet aircraft operated by the UK Facility for Airborne Atmospheric Measurements (FAAM), for the first project of this scale in India. The India and UK team flew around 100 hours of science sorties from bases in northern and southern India. Flights from Lucknow in the northern plains took measurements to the west and southeast to allow sampling of the complete contrast from dry desert air to the humid environment over the north Bay of Bengal. These routes were repeated in the pre-monsoon and monsoon phases, measuring contrasting surface and boundary layer structures. In addition, flights from the southern base in Bengaluru measured contrasts from the Arabian Sea, across the intense rains of the Western Ghats mountains, over the rain shadow in southeast India and over the southern Bay of Bengal. Flight planning was performed with the aid of forecasts from a new UK Met Office 4km limited area model. INCOMPASS also installed a network of surface flux towers, as well as operating a cloud-base ceilometer and performing intensive radiosonde launches from a supersite in Kanpur. Here we will outline preliminary results from the field campaign including new observations of the surface, boundary layer structure and atmospheric profiles from aircraft data. We

  3. Original deep convection in the atmosphere of Mars driven by the radiative impact of dust and water-ice particles

    Science.gov (United States)

    Spiga, A.; Madeleine, J. B.; Hinson, D.; Millour, E.; Forget, F.; Navarro, T.; Määttänen, A.; Montmessin, F.

    2017-09-01

    We unveil two examples of deep convection on Mars - in dust storms and water-ice clouds - to demonstrate that the radiative effect of aerosols and clouds can lead to powerful convective motions just as much as the release of latent heat in moist convection

  4. Convective Cold Pool Structure and Boundary Layer Recovery in DYNAMO

    Science.gov (United States)

    Savarin, A.; Chen, S. S.; Kerns, B. W.; Lee, C.; Jorgensen, D. P.

    2012-12-01

    One of the key factors controlling convective cloud systems in the Madden-Julian Oscillation (MJO) over the tropical Indian Ocean is the property of the atmospheric boundary layer. Convective downdrafts and precipitation from the cloud systems produce cold pools in the boundary layer, which can inhibit subsequent development of convection. The recovery time is the time it takes for the boundary layer to return to pre convective conditions. It may affect the variability of the convection on various time scales during the initiation of MJO. This study examines the convective cold pool structure and boundary layer recovery using the NOAA WP-3D aircraft observations, include the flight-level, Doppler radar, and GPS dropsonde data, collected during the Dynamics of MJO (DYNAMO) field campaign from November-December 2011. The depth and strength of convective cold pools are defined by the negative buoyancy, which can be computed from the dropsonde data. Convective downdraft can be affected by environmental water vapor due to entrainment. Mid-level dry air observed during the convectively suppressed phase of MJO seems to enhance convective downdraft, making the cold pools stronger and deeper. Recovery of the cold pools in the boundary layer is determined by the strength and depth of the cold pools and also the air-sea heat and moisture fluxes. Given that the water vapor and surface winds are distinct for the convectively active and suppressed phases of MJO over the Indian Ocean, the aircraft data are stratified by the two different large-scale regimes of MJO. Preliminary results show that the strength and depth of the cold pools are inversely correlated with the surrounding mid-level moisture. During the convectively suppressed phase, the recovery time is ~5-20 hours in relative weak wind condition with small air-sea fluxes. The recovery time is generally less than 6 hours during the active phase of MJO with moist mid-levels and stronger surface wind and air-sea fluxes.

  5. The thermal structure of Titan's atmosphere

    Science.gov (United States)

    Mckay, Christopher P.; Pollack, James B.; Courtin, Regis

    1989-01-01

    The present radiative-convective model of the Titan atmosphere thermal structure obtains the solar and IR radiation in a series of spectral intervals with vertical resolution. Haze properties have been determined with a microphysics model encompassing a minimum of free parameters. It is determined that gas and haze opacity alone, using temperatures established by Voyager observations, yields a model that is within a few percent of the radiative convective balance throughout the Titan atmosphere. Model calculations of the surface temperature are generally colder than the observed value by 5-10 K; better agreement is obtained through adjustment of the model parameters. Sunlight absorption by stratospheric haze and pressure-induced gas opacity in the IR are the most important thermal structure-controlling factors.

  6. Relationships Between Tropical Deep Convection, Tropospheric Mean Temperature and Cloud-Induced Radiative Fluxes on Intraseasonal Time Scales

    Science.gov (United States)

    Ramey, Holly S.; Robertson, Franklin R.

    2010-01-01

    Intraseasonal variability of deep convection represents a fundamental mode of variability in the organization of tropical convection. While most studies of intraseasonal oscillations (ISOs) have focused on the spatial propagation and dynamics of convectively coupled circulations, we examine the projection of ISOs on the tropically-averaged temperature and energy budget. The area of interest is the global oceans between 20degN/S. Our analysis then focuses on these questions: (i) How is tropospheric temperature related to tropical deep convection and the associated ice cloud fractional amount (ICF) and ice water path (IWP)? (ii) What is the source of moisture sustaining the convection and what role does deep convection play in mediating the PBL - free atmospheric temperature equilibration? (iii) What affect do convectively generated upper-tropospheric clouds have on the TOA radiation budget? Our methodology is similar to that of Spencer et al., (2007) with some modifications and some additional diagnostics of both clouds and boundary layer thermodynamics. A composite ISO time series of cloud, precipitation and radiation quantities built from nearly 40 events during a six-year period is referenced to the atmospheric temperature signal. The increase of convective precipitation cannot be sustained by evaporation within the domain, implying strong moisture transports into the tropical ocean area. While there is a decrease in net TOA radiation that develops after the peak in deep convective rainfall, there seems little evidence that an "Infrared Iris"- like mechanism is dominant. Rather, the cloud-induced OLR increase seems largely produced by weakened convection with warmer cloud tops. Tropical ISO events offer an accessible target for studying ISOs not just in terms of propagation mechanisms, but on their global signals of heat, moisture and radiative flux feedback processes.

  7. Condensation: Passenger Not Driver in Atmospheric Thermodynamics

    Directory of Open Access Journals (Sweden)

    Jack Denur

    2016-11-01

    Full Text Available The second law of thermodynamics states that processes yielding work or at least capable of yielding work are thermodynamically spontaneous, and that those costing work are thermodynamically nonspontaneous. Whether a process yields or costs heat is irrelevant. Condensation of water vapor yields work and hence is thermodynamically spontaneous only in a supersaturated atmosphere; in an unsaturated atmosphere it costs work and hence is thermodynamically nonspontaneous. Far more of Earth’s atmosphere is unsaturated than supersaturated; based on this alone evaporation is far more often work-yielding and hence thermodynamically spontaneous than condensation in Earth’s atmosphere—despite condensation always yielding heat and evaporation always costing heat. Furthermore, establishment of the unstable or at best metastable condition of supersaturation, and its maintenance in the face of condensation that would wipe it out, is always work-costing and hence thermodynamically nonspontaneous in Earth’s atmosphere or anywhere else. The work required to enable supersaturation is most usually provided at the expense of temperature differences that enable cooling to below the dew point. In the case of most interest to us, convective weather systems and storms, it is provided at the expense of vertical temperature gradients exceeding the moist adiabatic. Thus, ultimately, condensation is a work-costing and hence thermodynamically nonspontaneous process even in supersaturated regions of Earth’s or any other atmosphere. While heat engines in general can in principle extract all of the work represented by any temperature difference until it is totally neutralized to isothermality, convective weather systems and storms in particular cannot. They can extract only the work represented by partial neutralization of super-moist-adiabatic lapse rates to moist-adiabaticity. Super-moist-adiabatic lapse rates are required to enable convection of saturated air

  8. Convergence behavior of idealized convection-resolving simulations of summertime deep moist convection over land

    Science.gov (United States)

    Panosetti, Davide; Schlemmer, Linda; Schär, Christoph

    2018-05-01

    Convection-resolving models (CRMs) can explicitly simulate deep convection and resolve interactions between convective updrafts. They are thus increasingly used in numerous weather and climate applications. However, the truncation of the continuous energy cascade at scales of O (1 km) poses a serious challenge, as in kilometer-scale simulations the size and properties of the simulated convective cells are often determined by the horizontal grid spacing (Δ x ).In this study, idealized simulations of deep moist convection over land are performed to assess the convergence behavior of a CRM at Δ x = 8, 4, 2, 1 km and 500 m. Two types of convergence estimates are investigated: bulk convergence addressing domain-averaged and integrated variables related to the water and energy budgets, and structural convergence addressing the statistics and scales of individual clouds and updrafts. Results show that bulk convergence generally begins at Δ x =4 km, while structural convergence is not yet fully achieved at the kilometer scale, despite some evidence that the resolution sensitivity of updraft velocities and convective mass fluxes decreases at finer resolution. In particular, at finer grid spacings the maximum updraft velocity generally increases, and the size of the smallest clouds is mostly determined by Δ x . A number of different experiments are conducted, and it is found that the presence of orography and environmental vertical wind shear yields more energetic structures at scales much larger than Δ x , sometimes reducing the resolution sensitivity. Overall the results lend support to the use of kilometer-scale resolutions in CRMs, despite the inability of these models to fully resolve the associated cloud field.

  9. Introductory analysis of Benard-Marangoni convection

    International Nuclear Information System (INIS)

    Maroto, J A; Perez-Munuzuri, V; Romero-Cano, M S

    2007-01-01

    We describe experiments on Benard-Marangoni convection which permit a useful understanding of the main concepts involved in this phenomenon such as, for example, Benard cells, aspect ratio, Rayleigh and Marangoni numbers, Crispation number and critical conditions. In spite of the complexity of convection theory, we carry out a simple and introductory analysis which has the additional advantage of providing very suggestive experiments. As a consequence, we recommend our device for use as a laboratory experiment for undergraduate students of the thermodynamics of nonlinear and fluid physics

  10. Introductory analysis of Benard-Marangoni convection

    Energy Technology Data Exchange (ETDEWEB)

    Maroto, J A [Group of Physics and Chemistry of Linares, Escuela Politecnica Superior, St Alfonso X El Sabio, 28, University of Jaen, E-23700 Linares, Jaen (Spain); Perez-Munuzuri, V [Group of Nonlinear Physics, University of Santiago de Compostela, E-15782 Santiago de Compostela (Spain); Romero-Cano, M S [Group of Complex Fluids Physics, Department of Applied Physics, University of Almeria, E-04120 Almeria (Spain)

    2007-03-15

    We describe experiments on Benard-Marangoni convection which permit a useful understanding of the main concepts involved in this phenomenon such as, for example, Benard cells, aspect ratio, Rayleigh and Marangoni numbers, Crispation number and critical conditions. In spite of the complexity of convection theory, we carry out a simple and introductory analysis which has the additional advantage of providing very suggestive experiments. As a consequence, we recommend our device for use as a laboratory experiment for undergraduate students of the thermodynamics of nonlinear and fluid physics.

  11. Surface and atmospheric controls on the onset of moist convection over land

    NARCIS (Netherlands)

    Gentine, P.; Holtslag, A.A.M.; Andrea, D' F.; Ek, M.

    2013-01-01

    The onset of moist convection over land is investigated using a conceptual approach with a slab boundary layer model. We here determine the essential factors for the onset of boundary layer clouds over land, and study their relative importance. They are: 1) the ratio of the temperature to the

  12. Global Coupled Model Studies of The Jovian Upper Atmosphere In Response To Electron Precipitation and Ionospheric Convection Within The Auroral Region.

    Science.gov (United States)

    Millward, G. H.; Miller, S.; Aylward, A. D.

    The Jovian Ionospheric Model (JIM) is a global three-dimensional model of Jupiter's coupled ionosphere and thermosphere, developed at University College London. Re- cently, the model has been used to investigate the atmospheric response to electron precipitation within the high-latitude auroral region. A series of simulations have been performed in which the model atmosphere is subjected to monochromatic precipitat- ing electrons of varying number flux and initial energy and, in addition, to various degrees of ionospheric convection. The auroral ionospheric conductivity which re- sults is shown to be strongly non-linear with respect to the incoming electron energy, with a maximum observed for incident particles of initial energy 60 KeV. Electrons with higher energies penetrate the thermospheric region completely, whilst electrons of lower energy (say 10 keV) produce ionisation at higher levels in the atmosphere which are less less condusive to the creation of ionospheric conductivity. Studies of the thermospheric winds with the auroral region show that zonal winds (around the auroral oval) can attain values of around 70% of the driving zonal ion velocity. Also the results show that these large neutral winds are limited in vertical extent to the region of large ionospheric conductivity, tailing off markedly at altitudes above this. The latest results from this work will be presented, and the implications for Jovian magnetospheric-ionospheric coupling will be discussed.

  13. The atmospheric heat engine response to climate change

    Science.gov (United States)

    Pauluis, O. M.

    2014-12-01

    Moist convection is characterized by complex interactions between dynamics and thermodynamics. As air parcels within the atmosphere, they experience multiple thermodynamic transformations, such as compression and expansion, diabatic heating and cooling, condensation and mixing. These transformations correspond to those of a heat engine that produces kinetic energy while transporting energy from a warm source to a colder sink. This atmospheric heat engine is however directly affected by moist processes. First, falling precipitation acts as a break on the circulation by dissipating a significant amount of kinetic energy. Second, evaporation of unsaturated water and diffusion of water vapor are irrevesible processes that also reduce the amount of work that can be produced. An important challenge is to quantify the impacts that these two effects have on the generation of kinetic energy. Here, I will introduce a new technique - the Mean Air Flow As Lagragian Dynamics Approximation (MAFALDA) - that can be used to systematically analyze the thermodynamic behavior of complex atmospheric flows. This approach relies on sorting the upward mass transport in terms of the equivalent potential temperature of the air parcels to obtain an isentropic streamfunction. This streamfunction is then used to determine the thermodynamic evolution of air parcels as they move through the atmosphere. This approach is applied to analyze how convective systems would behave in a warmer climate. It is shown that an increase in atmospheric temperature lead to a significant increase of the amount of kinetic energy that is produced per unit of mass of air transported. At the same time, the total generation of kinetic energy is only slightly affected. Taken together, these findings imply that, in a warming atmosphere, the number of intense convective events will be reduced, while their intensity should increase. I will also discuss the new possibility of systematically studying the thermodynamic

  14. RELATIONSHIPS BETWEEN SEA SURFACE TEMPERATURE, LARGE-SCALE ATMOSPHERIC CIRCULATION, AND CONVECTION OVER THE TROPICAL INDIAN AND PACIFIC OCEANS

    Directory of Open Access Journals (Sweden)

    Orbita Roswintiarti

    2008-07-01

    Full Text Available In this paper, the quantitative estimates of the effect of large-scale circulations on the sea surface temperature (SST-tropical convection relationship and the effect of SST on the large-scale circulation-convection relationship over the tropical Indian and Pacific Oceans are presented. Although convection tends to maximize at warm SSTs, increased deep convection is also determined by the divergence (DIV associated with large-scale circulation. An analysis of the relationship between SST and deep convection shows that under subsidence and clear conditions, there is a decrease in convection or increase in Outgoing Longwave Radiation (OLR at a maximum rate of 3.4 Wm-2 °C-1. In the SST range of 25°C to 29.5°C, a large increase in deep convection (decrease in OLR occurs in the tropical Indian and Pacific Oceans. The OLR reduction is found to be a strong function of the large-scale circulation in the Indian and western Pacific Oceans. Under a weak large-scale circulation, the rate of OLR reduction is about    -3.5 Wm-2 °C-1 to -8.1 Wm-2 °C-1. Under the influence of strong rising motions, the rate can increase to about -12.5 Wm-2 °C-1 for the same SST range. The overall relationship between large-scale circulation and deep convection is nearly linear. A maximum rate of OLR reduction with respect to DIV is -6.1 Wm-2 (10-6 s-1 in the western Pacific Ocean. It is also found that the DIV-OLR relationship is less dependent on SST. For example, the rate of OLR reduction over the western Pacific Ocean for 26°C < SST £ 27°C is -4.2 Wm-2 (10-6 s-1, while that for 28°C < SST £ 29°C is  -5.1 Wm-2 (10-6 s-1. These results are expected to have a great importance for climate feedback mechanisms associated with clouds and SST and for climate predictability.

  15. Importance of Rain Evaporation and Continental Convection in the Tropical Water Cycle

    Science.gov (United States)

    Worden, John; Noone, David; Bowman, Kevin; Beer, R.; Eldering, A.; Fisher, B.; Gunson, M.; Goldman, Aaron; Kulawik, S. S.; Lampel, Michael; hide

    2007-01-01

    Atmospheric moisture cycling is an important aspect of the Earth's climate system, yet the processes determining atmospheric humidity are poorly understood. For example, direct evaporation of rain contributes significantly to the heat and moisture budgets of clouds, but few observations of these processes are available. Similarly, the relative contributions to atmospheric moisture over land from local evaporation and humidity from oceanic sources are uncertain. Lighter isotopes of water vapour preferentially evaporate whereas heavier isotopes preferentially condense and the isotopic composition of ocean water is known. Here we use this information combined with global measurements of the isotopic composition of tropospheric water vapour from the Tropospheric Emission Spectrometer (TES) aboard the Aura spacecraft, to investigate aspects of the atmospheric hydrological cycle that are not well constrained by observations of precipitation or atmospheric vapour content. Our measurements of the isotopic composition of water vapour near tropical clouds suggest that rainfall evaporation contributes significantly to lower troposphere humidity, with typically 20% and up to 50% of rainfall evaporating near convective clouds. Over the tropical continents the isotopic signature of tropospheric water vapour differs significantly from that of precipitation, suggesting that convection of vapour from both oceanic sources and evapotranspiration are the dominant moisture sources. Our measurements allow an assessment of the intensity of the present hydrological cycle and will help identify any future changes as they occur.

  16. Water-induced convection in the Earth's mantle transition zone

    Science.gov (United States)

    Richard, Guillaume C.; Bercovici, David

    2009-01-01

    Water enters the Earth's mantle by subduction of oceanic lithosphere. Most of this water immediately returns to the atmosphere through arc volcanism, but a part of it is expected as deep as the mantle transition zone (410-660 km depth). There, slabs can be deflected and linger before sinking into the lower mantle. Because it lowers the density and viscosity of the transition zone minerals (i.e., wadsleyite and ringwoodite), water is likely to affect the dynamics of the transition zone mantle overlying stagnant slabs. The consequences of water exchange between a floating slab and the transition zone are investigated. In particular, we focus on the possible onset of small-scale convection despite the adverse thermal gradient (i.e., mantle is cooled from below by the slab). The competition between thermal and hydrous effects on the density and thus on the convective stability of the top layer of the slab is examined numerically, including water-dependent density and viscosity and temperature-dependent water solubility. For plausible initial water content in a slab (≥0.5 wt %), an episode of convection is likely to occur after a relatively short time delay (5-20 Ma) after the slab enters the transition zone. However, water induced rheological weakening is seen to be a controlling parameter for the onset time of convection. Moreover, small-scale convection above a stagnant slab greatly enhances the rate of slab dehydration. Small-scale convection also facilitates heating of the slab, which in itself may prolong the residence time of the slab in the transition zone.

  17. Momentum, heat, and neutral mass transport in convective atmospheric pressure plasma-liquid systems and implications for aqueous targets

    Science.gov (United States)

    Lindsay, Alexander; Anderson, Carly; Slikboer, Elmar; Shannon, Steven; Graves, David

    2015-10-01

    There is a growing interest in the study of plasma-liquid interactions with application to biomedicine, chemical disinfection, agriculture, and other fields. This work models the momentum, heat, and neutral species mass transfer between gas and aqueous phases in the context of a streamer discharge; the qualitative conclusions are generally applicable to plasma-liquid systems. The problem domain is discretized using the finite element method. The most interesting and relevant model result for application purposes is the steep gradients in reactive species at the interface. At the center of where the reactive gas stream impinges on the water surface, the aqueous concentrations of OH and ONOOH decrease by roughly 9 and 4 orders of magnitude respectively within 50 μ m of the interface. Recognizing the limited penetration of reactive plasma species into the aqueous phase is critical to discussions about the therapeutic mechanisms for direct plasma treatment of biological solutions. Other interesting results from this study include the presence of a 10 K temperature drop in the gas boundary layer adjacent to the interface that arises from convective cooling. Though the temperature magnitudes may vary among atmospheric discharge types (different amounts of plasma-gas heating), this relative difference between gas and liquid bulk temperatures is expected to be present for any system in which convection is significant. Accounting for the resulting difference between gas and liquid bulk temperatures has a significant impact on reaction kinetics; factor of two changes in terminal aqueous species concentrations like H2O2, NO2- , and NO3- are observed in this study if the effect of evaporative cooling is not included.

  18. Modeling the overall heat conductive and convective properties of open-cell graphite foam

    International Nuclear Information System (INIS)

    Tee, C C; Yu, N; Li, H

    2008-01-01

    This work develops analytic models on the overall thermal conductivity, pressure drop and overall convective heat transfer coefficient of graphite foam. The models study the relationship between the overall heat conductive and convective properties, and foam microstructure, temperature, foam surface friction characteristics and cooling fluid properties. The predicted thermal conductivity, convective heat transfer coefficient and pressure drop agree well with experimental data

  19. Toward Quantitative Understanding of the Atmospheric Heating over the Tibetan Plateau (Invited)

    Science.gov (United States)

    Koike, T.; Tamura, T.; Rasmy, M.; Seto, R.

    2010-12-01

    There are different ideas on the atmospheric heating over the Tibetan Plateau. Yanai et al. (1992) and Yanai and Li (1994) concluded this sensible heat flux from the surface is the major source of heating on the plateau before the summer rain commences. On the other hand, Ueda et al. (2003) also showed the importance of condensation heating in the heat balance during the pre-onset-phase of the summer monsoon over the western part of the Tibetan Plateau. The first intensive in situ observation in early spring was implemented on the plateau in April 2004 under the framework of the Coordinated Enhanced Observing Period (CEOP) (Koike, 2004). Taniguchi and Koike (2007) revealed the importance of cumulus activity in atmospheric temperature increases in the upper troposphere even in April by in situ and satellite observations and numerical simulations. They concluded that sensible heat transfer by dry convection is insufficient to warm the upper layer over the plateau and that the development of cloud convection is indispensable for atmospheric heating in the upper troposphere over the plateau during early spring. Then, Taniguchi and Koike (2008) investigated the seasonal variation in the cloud activity over the eastern part of the Tibetan Plateau, and the vertical profile of the atmosphere and moist condition causing the cloud. They showed cumulus convections easily occur under the adiabatically neutral condition of the first phase of the active convections in April. During a resting phase before the second active phase, the atmosphere is conditionally unstable but an unsaturated condition restrains cloud activity, while during second phase, the atmosphere is inclined to be saturated and cloud activity begins again. From early May to mid June, there is a resting period of cumulus convective activity. However, the tropospheric temperature at 200 hPa increases rapidly from late April. Such rapid tropospheric warming without significant cumulus convective activity is

  20. Ten Year Analysis of Tropopause-Overshooting Convection Using GridRad Data

    Science.gov (United States)

    Cooney, John W.; Bowman, Kenneth P.; Homeyer, Cameron R.; Fenske, Tyler M.

    2018-01-01

    Convection that penetrates the tropopause (overshooting convection) rapidly transports air from the lower troposphere to the lower stratosphere, potentially mixing air between the two layers. This exchange of air can have a substantial impact on the composition, radiation, and chemistry of the upper troposphere and lower stratosphere (UTLS). In order to improve our understanding of the role convection plays in the transport of trace gases across the tropopause, this study presents a 10 year analysis of overshooting convection for the eastern two thirds of the contiguous United States for March through August of 2004 to 2013 based on radar observations. Echo top altitudes are estimated at hourly intervals using high-resolution, three-dimensional, gridded, radar reflectivity fields created by merging observations from available radars in the National Oceanic and Atmospheric Administration Next Generation Weather Radar (NEXRAD) network. Overshooting convection is identified by comparing echo top altitudes with tropopause altitudes derived from the ERA-Interim reanalysis. It is found that overshooting convection is most common in the central United States, with a weak secondary maximum along the southeast coast. The maximum number of overshooting events occur consistently between 2200 and 0200 UTC. Most overshooting events occur in May, June, and July when convection is deepest and the tropopause altitude is relatively low. Approximately 45% of the analyzed overshooting events (those with echo tops at least 1 km above the tropopause) have echo tops extending above the 380 K level into the stratospheric overworld.

  1. NATO Advanced Study Institute on Buoyant Convection in Geophysical Flows

    CERN Document Server

    Fedorovich, E; Viegas, D; Wyngaard, J

    1998-01-01

    Studies of convection in geophysical flows constitute an advanced and rapidly developing area of research that is relevant to problems of the natural environment. During the last decade, significant progress has been achieved in the field as a result of both experimental studies and numerical modelling. This led to the principal revision of the widely held view on buoyancy-driven turbulent flows comprising an organised mean component with superimposed chaotic turbulence. An intermediate type of motion, represented by coherent structures, has been found to play a key role in geophysical boundary layers and in larger scale atmospheric and hydrospheric circulations driven by buoyant forcing. New aspects of the interaction between convective motions and rotation have recently been discovered and investigated. Extensive experimental data have also been collected on the role of convection in cloud dynamics and microphysics. New theoretical concepts and approaches have been outlined regarding scaling and parameteriz...

  2. Plume dynamics in quasi-2D turbulent convection

    International Nuclear Information System (INIS)

    Bizon, C.; Werne, J.; Predtechensky, A.A.; Julien, K.; McCormick, W.D.; Swift, J.B.; Swinney, H.L.

    1997-01-01

    We have studied turbulent convection in a vertical thin (Hele-Shaw) cell at very high Rayleigh numbers (up to 7x10 4 times the value for convective onset) through experiment, simulation, and analysis. Experimentally, convection is driven by an imposed concentration gradient in an isothermal cell. Model equations treat the fields in two dimensions, with the reduced dimension exerting its influence through a linear wall friction. Linear stability analysis of these equations demonstrates that as the thickness of the cell tends to zero, the critical Rayleigh number and wave number for convective onset do not depend on the velocity conditions at the top and bottom boundaries (i.e., no-slip or stress-free). At finite cell thickness δ, however, solutions with different boundary conditions behave differently. We simulate the model equations numerically for both types of boundary conditions. Time sequences of the full concentration fields from experiment and simulation display a large number of solutal plumes that are born in thin concentration boundary layers, merge to form vertical channels, and sometimes split at their tips via a Rayleigh-Taylor instability. Power spectra of the concentration field reveal scaling regions with slopes that depend on the Rayleigh number. We examine the scaling of nondimensional heat flux (the Nusselt number, Nu) and rms vertical velocity (the Pacute eclet number, Pe) with the Rayleigh number (Ra * ) for the simulations. Both no-slip and stress-free solutions exhibit the scaling NuRa * ∼Pe 2 that we develop from simple arguments involving dynamics in the interior, away from cell boundaries. In addition, for stress-free solutions a second relation, Nu∼√(nPe), is dictated by stagnation-point flows occurring at the horizontal boundaries; n is the number of plumes per unit length. (Abstract Truncated)

  3. Carbon dioxide sequestration: Modeling the diffusive and convective transport under a CO2 cap

    KAUST Repository

    Allen, Rebecca

    2012-01-01

    A rise in carbon dioxide levels from industrial emissions is contributing to the greenhouse effect and global warming. CO2 sequestration in saline aquifers is a strategy to reduce atmospheric CO2 levels. Scientists and researchers rely on numerical simulators to predict CO2 storage by modeling the fluid transport behaviour. Studies have shown that after CO2 is injected into a saline aquifer, undissolved CO2 rises due to buoyant forces and will spread laterally away from the injection site under an area of low permeability. CO2 from this ‘capped\\' region diffuses into the fluid underlying it, and the resulting CO2-fluid mixture increases in density. This increase in density leads to gravity-driven convection. Accordingly, diffusive-convective transport is important to model since it predicts an enhanced storage capacity of the saline aquifer. This work incorporates the diffusive and convective transport processes into the transport modeling equation, and uses a self-generated code. Discretization of the domain is done with a cell-centered finite difference method. Cases are set up using similar parameters from published literature in order to compare results. Enhanced storage capacity is predicted in this work, similar to work done by others. A difference in the onset of convective transport between this work and published results is noticed and discussed in this paper. A sensitivity analysis is performed on the density model used in this work, and on the diffusivity value assumed. The analysis shows that the density model and diffusivity value is a key component on simulation results. Also, perturbations are added to porosity and permeability in order to see the effect of perturbations on the onset of convection, and results agree with similar findings by others. This work provides a basis for studying other cases, such as the impact of heterogeneity on the diffusion-convective transport. An extension of this work may involve the use of an equation of state to

  4. Impact of Aerosols on Convective Clouds and Precipitation

    Science.gov (United States)

    Tao, Wei-Kuo; Chen, Jen-Ping; Li, Zhanqing; Wang, Chien; Zhang, Chidong; Li, Xiaowen

    2012-01-01

    Aerosols are a critical.factor in the atmospheric hydrological cycle and radiation budget. As a major agent for clouds to form and a significant attenuator of solar radiation, aerosols affect climate in several ways. Current research suggests that aerosols have a major impact on the dynamics, microphysics, and electrification properties of continental mixed-phase convective clouds. In addition, high aerosol concentrations in urban environments could affect precipitation variability by providing a significant source of cloud condensation nuclei (CCN). Such pollution . effects on precipitation potentially have enormous climatic consequences both in terms of feedbacks involving the land surface via rainfall as well as the surface energy budget and changes in latent heat input to the atmosphere. Basically, aerosol concentrations can influence cloud droplet size distributions, the warm-rain process, the cold-rain process, cloud-top heights, the depth of the mixed-phase region, and the occurrence of lightning. Recently, many cloud resolution models (CRMs) have been used to examine the role of aerosols on mixed-phase convective clouds. These modeling studies have many differences in terms of model configuration (two- or three-dimensional), domain size, grid spacing (150-3000 m), microphysics (two-moment bulk, simple or sophisticated spectral-bin), turbulence (1st or 1.5 order turbulent kinetic energy (TKE)), radiation, lateral boundary conditions (i.e., closed, radiative open or cyclic), cases (isolated convection, tropical or midlatitude squall lines) and model integration time (e.g., 2.5 to 48 hours). Among these modeling studies, the most striking difference is that cumulative precipitation can either increase or decrease in response to higher concentrations of CCN. In this presentation, we review past efforts and summarize our current understanding of the effect of aerosols on convective precipitation processes. Specifically, this paper addresses the following topics

  5. Dynamics and Chemistry in Jovian Atmospheres: 2D Hydrodynamical Simulations

    Science.gov (United States)

    Bordwell, B. R.; Brown, B. P.; Oishi, J.

    2016-12-01

    A key component of our understanding of the formation and evolution of planetary systems is chemical composition. Problematically, however, in the atmospheres of cooler gas giants, dynamics on the same timescale as chemical reactions pull molecular abundances out of thermochemical equilibrium. These disequilibrium abundances are treated using what is known as the "quench" approximation, based upon the mixing length theory of convection. The validity of this approximation is questionable, though, as the atmospheres of gas giants encompass two distinct dynamic regimes: convective and radiative. To resolve this issue, we conduct 2D hydrodynamical simulations using the state-of-the-art pseudospectral simulation framework Dedalus. In these simulations, we solve the fully compressible equations of fluid motion in a local slab geometry that mimics the structure of a planetary atmosphere (convective zone underlying a radiative zone). Through the inclusion of passive tracers, we explore the transport properties of both regimes, and assess the validity of the classical eddy diffusion parameterization. With the addition of active tracers, we examine the interactions between dynamical and chemical processes, and generate prescriptions for the observational community. By providing insight into mixing and feedback mechanisms in Jovian atmospheres, this research lays a solid foundation for future global simulations and the construction of physically-sound models for current and future observations.

  6. Improved nowcasting of precipitation based on convective analysis fields

    Directory of Open Access Journals (Sweden)

    T. Haiden

    2007-04-01

    Full Text Available The high-resolution analysis and nowcasting system INCA (Integrated Nowcasting through Comprehensive Analysis developed at the Austrian national weather service provides three-dimensional fields of temperature, humidity, and wind on an hourly basis, and two-dimensional fields of precipitation rate in 15 min intervals. The system operates on a horizontal resolution of 1 km and a vertical resolution of 100–200 m. It combines surface station data, remote sensing data (radar, satellite, forecast fields of the numerical weather prediction model ALADIN, and high-resolution topographic data. An important application of the INCA system is nowcasting of convective precipitation. Based on fine-scale temperature, humidity, and wind analyses a number of convective analysis fields are routinely generated. These fields include convective boundary layer (CBL flow convergence and specific humidity, lifted condensation level (LCL, convective available potential energy (CAPE, convective inhibition (CIN, and various convective stability indices. Based on the verification of areal precipitation nowcasts it is shown that the pure translational forecast of convective cells can be improved by using a decision algorithm which is based on a subset of the above fields, combined with satellite products.

  7. Preparing for Exascale: Towards convection-permitting, global atmospheric simulations with the Model for Prediction Across Scales (MPAS)

    Science.gov (United States)

    Heinzeller, Dominikus; Duda, Michael G.; Kunstmann, Harald

    2017-04-01

    With strong financial and political support from national and international initiatives, exascale computing is projected for the end of this decade. Energy requirements and physical limitations imply the use of accelerators and the scaling out to orders of magnitudes larger numbers of cores then today to achieve this milestone. In order to fully exploit the capabilities of these Exascale computing systems, existing applications need to undergo significant development. The Model for Prediction Across Scales (MPAS) is a novel set of Earth system simulation components and consists of an atmospheric core, an ocean core, a land-ice core and a sea-ice core. Its distinct features are the use of unstructured Voronoi meshes and C-grid discretisation to address shortcomings of global models on regular grids and the use of limited area models nested in a forcing data set, with respect to parallel scalability, numerical accuracy and physical consistency. Here, we present work towards the application of the atmospheric core (MPAS-A) on current and future high performance computing systems for problems at extreme scale. In particular, we address the issue of massively parallel I/O by extending the model to support the highly scalable SIONlib library. Using global uniform meshes with a convection-permitting resolution of 2-3km, we demonstrate the ability of MPAS-A to scale out to half a million cores while maintaining a high parallel efficiency. We also demonstrate the potential benefit of a hybrid parallelisation of the code (MPI/OpenMP) on the latest generation of Intel's Many Integrated Core Architecture, the Intel Xeon Phi Knights Landing.

  8. Atmospheres of Brown Dwarfs

    Science.gov (United States)

    Wang, Ruoyan; Seay, Christopher

    2018-01-01

    We construct a grid of brown dwarf model atmospheres spanning a wide range of atmospheric metallicity (0.3x ≤ met ≤ 100x), C/O ratios (0.25x ≤ C/O ≤ 2.5x), and cloud properties, encompassing atmospheres of effective temperatures 200 ≤ Teff ≤ 2400 K and gravities 2.5 ≤ log g ≤ 5.5. We produce the expected temperature-pressure profiles and emergent spectra from an atmosphere in radiative-convective equilibrium. We can then compare our predicted spectra to observations and retrieval results to aid in their predictions and influence future missions and telescopic observations. In our poster we briefly describe our modeling methodology and present our progress on model grid construction, spanning solar and subsolar C/O and metallicity.

  9. Compressible Convection Experiment using Xenon Gas in a Centrifuge

    Science.gov (United States)

    Menaut, R.; Alboussiere, T.; Corre, Y.; Huguet, L.; Labrosse, S.; Deguen, R.; Moulin, M.

    2017-12-01

    We present here an experiment especially designed to study compressible convection in the lab. For significant compressible convection effects, the parameters of the experiment have to be optimized: we use xenon gaz in a cubic cell. This cell is placed in a centrifuge to artificially increase the apparent gravity and heated from below. With these choices, we are able to reach a dissipation number close to Earth's outer core value. We will present our results for different heating fluxes and rotation rates. We success to observe an adiabatic gradient of 3K/cm in the cell. Studies of pressure and temperature fluctuations lead us to think that the convection takes place under the form of a single roll in the cell for high heating flux. Moreover, these fluctuations show that the flow is geostrophic due to the high rotation speed. This important role of rotation, via Coriolis force effects, in our experimental setup leads us to develop a 2D quasigeostrophic compressible model in the anelastic liquid approximation. We test numerically this model with the finite element solver FreeFem++ and compare its results with our experimental data. In conclusion, we will present our project for the next experiment in which the cubic cell will be replace by a annulus cell. We will discuss the new expected effects due to this geometry as Rossby waves and zonal flows.

  10. Numerical simulation of convective generated gravity waves in the stratosphere and MLT regions.

    Science.gov (United States)

    Heale, C. J.; Snively, J. B.

    2017-12-01

    Convection is an important source of gravity wave generation, especially in the summer tropics and midlatitudes, and coherent wave fields above convection are now routinely measured in the stratosphere and mesosphere [e.g. Hoffmann et al., JGR, 118, 2013; Gong et al., JGR, 120, 2015; Perwitasari et al., GRL, 42, 22, 2016]. Numerical studies have been performed to investigate the generation mechanisms, source spectra, and their effects on the middle and upper atmosphere [e.g. Fovell et al., AMS, 49,16, 1992; Alexander and Holton, Atmos. Chem. Phys., 4 2004; Vincent et al., JGR, 1118, 2013], however there is still considerable work needed to fully describe these parameters. GCMs currently lack the resolution to explicitly simulate convection generation and rely on simplified parameterizations while full cloud resolving models are computationally expensive and often only extend into the stratosphere. More recent studies have improved the realism of these simulations by using radar derived precipitation rates to drive latent heating in models that simulate convection [Grimsdell et al., AMS, 67, 2010; Stephan and Alexander., J. Adv. Model. Earth. Syst, 7, 2015], however they too only consider wave propagation in the troposphere and stratosphere. We use a 2D nonlinear, fully compressible model [Snively and Pasko., JGR, 113, 2008] to excite convectively generated waves, based on NEXRAD radar data, using the Stephan and Alexander [2015] algorithms. We study the propagation, and spectral evolution of the generated waves up into the MLT region. Ambient atmosphere parameters are derived from observations and MERRA-2 reanalysis data, and stratospheric (AIRS) and mesospheric (Lidar, OH airglow) observations enable comparisons with simulation results.

  11. Intensive probing of a clear air convective field by radar and instrumental drone aircraft.

    Science.gov (United States)

    Rowland, J. R.

    1973-01-01

    An instrumented drone aircraft was used in conjunction with ultrasensitive radar to study the development of a convective field in the clear air. Radar data are presented which show an initial constant growth rate in the height of the convective field of 3.8 m/min, followed by a short period marked by condensation and rapid growth at a rate in excess of 6.1 m/min. Drone aircraft soundings show general features of a convective field including progressive lifting of the inversion at the top of the convection and a cooling of the air at the top of the field. Calculations of vertical heat flux as a function of time and altitude during the early stages of convection show a linear decrease in heat flux with altitude to near the top of the convective field and a negative heat flux at the top. Evidence is presented which supports previous observations that convective cells overshoot their neutral buoyancy level into a region where they are cool and moist compared to their surroundings. Furthermore, only that portion of the convective cell that has overshot its neutral buoyancy level is generally visible to the radar.

  12. Analysis of changes in tornadogenesis conditions over Northern Eurasia based on a simple index of atmospheric convective instability

    Science.gov (United States)

    Chernokulsky, A. V.; Kurgansky, M. V.; Mokhov, I. I.

    2017-12-01

    A simple index of convective instability (3D-index) is used for analysis of weather and climate processes that favor to the occurrence of severe convective events including tornadoes. The index is based on information on the surface air temperature and humidity. The prognostic ability of the index to reproduce severe convective events (thunderstorms, showers, tornadoes) is analyzed. It is shown that most tornadoes in North Eurasia are characterized by high values of the 3D-index; furthermore, the 3D-index is significantly correlated with the available convective potential energy. Reanalysis data (for recent decades) and global climate model simulations (for the 21st century) show an increase in the frequency of occurrence of favorable for tornado formation meteorological conditions in the regions of Northern Eurasia. The most significant increase is found on the Black Sea coast and in the south of the Far East.

  13. Excitation of transient lobe cell convection and auroral arc at the cusp poleward boundary during a transition of the interplanetary magnetic field from south to north

    Directory of Open Access Journals (Sweden)

    P. E. Sandholt

    2001-05-01

    Full Text Available We document the activation of transient polar arcs emanating from the cusp within a 15 min long intermediate phase during the transition from a standard two-cell convection pattern, representative of a strongly southward interplanetary magnetic field (IMF, to a "reverse" two-cell pattern, representative of strongly northward IMF conditions. During the 2–3 min lifetime of the arc, its base in the cusp, appearing as a bright spot, moved eastward toward noon by ~ 300 km. As the arc moved, it left in its "wake" enhanced cusp precipitation. The polar arc is a tracer of the activation of a lobe convection cell with clockwise vorticity, intruding into the previously established large-scale distorted two-cell pattern, due to an episode of localized lobe reconnection. The lobe cell gives rise to strong flow shear (converging electric field and an associated sheet of outflowing field-aligned current, which is manifested by the polar arc. The enhanced cusp precipitation represents, in our view, the ionospheric footprint of the lobe reconnection process.Key words. Magnetospheric physics (auroral phenomena; magnetopause, cusp, and boundary layers; plasma convection

  14. Sustainable land cover and terrain modification to enhance convection and precipitation in the arid region of the United Arab Emirates

    Science.gov (United States)

    Wulfmeyer, V.; Branch, O.; Adebabseh, A.; Temimi, M.

    2017-12-01

    Irrigated plantations and modified terrain can provide a sustainable means of enhancing convective rainfall in arid regions like the United Arab Emirates, or UAE, and can be used to aid ongoing cloud seeding operations through the geographic-localization of seedable cloud formation. The first method, the planting of vast irrigated plantations of hardy desert shrubs, can lead to wind convergence and vertical mixing through increased roughness and modified radiative balances. When upper-air atmospheric instability is present, these phenomena can initiate convection. The second method, increasing the elevation of moderate-sized mountains, is based on the correlation between elevation and the number of summertime convection initiation events observed in the mountains of the UAE and Oman. This augmentation of existing orographic features should therefore increase the likelihood and geographic range of convection initiation events. High-resolution simulations provide a powerful means of assessing the likely impacts of land surface modifications. Previous convection-permitting simulations have yielded some evidential support for these hypotheses, but higher resolutions down to 1 km provide more detail regarding convective processes and land surface representation. Using seasonal simulations with the WRF-NOAHMP land-atmosphere model at a 2.5 km resolution, we identify frequent zones of convergence and atmospheric instability in the UAE and select interesting cases. Using these results, as well as an agricultural feasibility study, we identify optimal plantation positions within the UAE. We then run realistic plantation scenarios for single case studies at 1 km resolution. Using the same cases, we simulate the impact of augmenting mountain elevations on convective processes, with the augmentation being achieved through GIS-based modification of the terrain data. For both methods, we assess the impacts quantitatively and qualitatively, and assess key processes and

  15. New Treatment Options for Osteosarcoma - Inactivation of Osteosarcoma Cells by Cold Atmospheric Plasma.

    Science.gov (United States)

    Gümbel, Denis; Gelbrich, Nadine; Weiss, Martin; Napp, Matthias; Daeschlein, Georg; Sckell, Axel; Ender, Stephan A; Kramer, Axel; Burchardt, Martin; Ekkernkamp, Axel; Stope, Matthias B

    2016-11-01

    Cold atmospheric plasma has been shown to inhibit tumor cell growth and induce tumor cell death. The aim of the study was to investigate the effects of cold atmospheric plasma treatment on proliferation of human osteosarcoma cells and to characterize the underlying cellular mechanisms. Human osteosarcoma cells (U2-OS and MNNG/HOS) were treated with cold atmospheric plasma and seeded in culture plates. Cell proliferation, p53 and phospho-p53 protein expression and nuclear morphology were assessed. The treated human osteosarcoma cell lines exhibited attenuated proliferation rates by up to 66%. The cells revealed an induction of p53, as well as phospho-p53 expression, by 2.3-fold and 4.5-fold, respectively, compared to controls. 4',6-diamidino-2-phenylindole staining demonstrated apoptotic nuclear condensation following cold atmospheric plasma treatment. Cold atmospheric plasma treatment significantly attenuated cell proliferation in a preclinical in vitro osteosarcoma model. The resulting increase in p53 expression and phospho-activation in combination with characteristic nuclear changes indicate this was through induction of apoptosis. Copyright© 2016 International Institute of Anticancer Research (Dr. John G. Delinassios), All rights reserved.

  16. Numerical simulation in three space dimensions of time-dependent thermal convection in a rotating fluid

    International Nuclear Information System (INIS)

    Hathaway, D.H.; Somerville, R.C.J.; National Solar Observatory, Sunspot, NM; California Univ., La Jolla)

    1985-01-01

    Three-dimensional, time-dependent convection in a plane layer of fluid, uniformly heated from below and subject to vertical shear and to rotation about an axis tilted from the vertical, was simulated by the numerical solution of the Boussinesq equations, including all Coriolis terms. Rotation about a vertical axis produces smaller convection cells with diminished heat fluxes and considerable vorticity. When the rotation axis is tilted from the vertical to represent tropical latitudes, the convection cells become elongated in a N-S direction. Imposed flows with constant vertical shear produce convective rolls aligned with the mean flow. When the rotation vector is tilted from the vertical, the competing effects due to rotation and shear can stabilize the convective motions. 15 references

  17. Moistening of the northern North American Great Plains enhances land-atmosphere coupling

    Science.gov (United States)

    Gerken, T.; Bromley, G. T.; Stoy, P. C.

    2017-12-01

    Land use change impacts planetary boundary layer processes and regional climate by altering the magnitude and timing of water and energy flux into the atmosphere. In the North American Great Plains (NGP), a decline in the practice of summer fallow on the order of 20 Mha from the 1970s until the present has coincided with a decrease in summertime radiative forcing, on the order of 6 W m-2. MERRA 2 (Modern-Era Retrospective analysis for Research and Applications) for the area near Fort Peck, Montana, (a FLUXNET site established in 2000) shows a decrease of summertime (June-August) sensible heat fluxes ranging from -3.6 to -8.5 W m-2 decade-1, associated with an increase of latent heat fluxes (5.2-9.1 W m-2 decade-1) since the 1980s. Net radiation changed little. The result was a strong decrease of summer Bowen ratios from 1.5-2 in 1980 to approximately 1 in 2015. Findings are consistent with the effects on increased summertime evapotranspiration due to reduction in summer fallow that should lead to smaller Bowen ratios and a larger build-up of moist static energy. We use a mixed-layer (ML) atmospheric modeling framework to further investigate the impact of the surface energy balance on convective development and local land-atmosphere coupling in the NGP. Using summertime eddy covariance data from Fort Peck and atmospheric soundings from the nearby Glasgow airport, we compare the development of modeled ML and lifted condensation level (LCL) to find times of ML exceeding LCL, a necessary but not sufficient condition for the occurrence of convective precipitation. We establish that the ML model adequately captures ML heights and timing of locally triggered convection at the site and that there is a c. 10% increase in modeled convection permitting conditions today compared to 1975-85 in response to ML-moistening and decreasing Bo. We find that growing season land-atmosphere coupling develops from wet preference in May to dry coupling in July and atmospheric suppression

  18. Increased risk of a shutdown of ocean convection posed by warm North Atlantic summers

    Science.gov (United States)

    Oltmanns, Marilena; Karstensen, Johannes; Fischer, Jürgen

    2018-04-01

    A shutdown of ocean convection in the subpolar North Atlantic, triggered by enhanced melting over Greenland, is regarded as a potential transition point into a fundamentally different climate regime1-3. Noting that a key uncertainty for future convection resides in the relative importance of melting in summer and atmospheric forcing in winter, we investigate the extent to which summer conditions constrain convection with a comprehensive dataset, including hydrographic records that are over a decade in length from the convection regions. We find that warm and fresh summers, characterized by increased sea surface temperatures, freshwater concentrations and melting, are accompanied by reduced heat and buoyancy losses in winter, which entail a longer persistence of the freshwater near the surface and contribute to delaying convection. By shortening the time span for the convective freshwater export, the identified seasonal dynamics introduce a potentially critical threshold that is crossed when substantial amounts of freshwater from one summer are carried over into the next and accumulate. Warm and fresh summers in the Irminger Sea are followed by particularly short convection periods. We estimate that in the winter 2010-2011, after the warmest and freshest Irminger Sea summer on our record, 40% of the surface freshwater was retained.

  19. Coupled atmosphere-wildland fire modelling

    Directory of Open Access Journals (Sweden)

    Jacques Henri Balbi

    2009-10-01

    Full Text Available Simulating the interaction between fire and atmosphere is critical to the estimation of the rate of spread of the fire. Wildfire’s convection (i.e., entire plume can modify the local meteorology throughout the atmospheric boundary layer and consequently affect the fire propagation speed and behaviour. In this study, we use for the first time the Méso-NH meso-scale numerical model coupled to the point functional ForeFire simplified physical front-tracking wildfire model to investigate the differences introduced by the atmospheric feedback in propagation speed and behaviour. Both numerical models have been developed as research tools for operational models and are currently used to forecast localized extreme events. These models have been selected because they can be run coupled and support decisions in wildfire management in France and Europe. The main originalities of this combination reside in the fact that Méso-NH is run in a Large Eddy Simulation (LES configuration and that the rate of spread model used in ForeFire provides a physical formulation to take into account the effect of wind and slope. Simulations of typical experimental configurations show that the numerical atmospheric model is able to reproduce plausible convective effects of the heat produced by the fire. Numerical results are comparable to estimated values for fire-induced winds and present behaviour similar to other existing numerical approaches.

  20. Introduction to modeling convection in planets and stars magnetic field, density stratification, rotation

    CERN Document Server

    Glatzmaier, Gary

    2013-01-01

    This book provides readers with the skills they need to write computer codes that simulate convection, internal gravity waves, and magnetic field generation in the interiors and atmospheres of rotating planets and stars. Using a teaching method perfected in the classroom, Gary Glatzmaier begins by offering a step-by-step guide on how to design codes for simulating nonlinear time-dependent thermal convection in a two-dimensional box using Fourier expansions in the horizontal direction and finite differences in the vertical direction. He then describes how to implement more efficient and accura

  1. Lagrangian evaluation of convective shower characteristics in a convection-permitting model

    Directory of Open Access Journals (Sweden)

    Erwan Brisson

    2018-01-01

    Full Text Available Convection-permitting models (CPMs have proven their usefulness in representing precipitation on a sub-daily scale. However, investigations on sub-hourly scales are still lacking, even though these are the scales for which showers exhibit the most variability. A Lagrangian approach is implemented here to evaluate the representation of showers in a CPM, using the limited-area climate model COSMO-CLM. This approach consists of tracking 5‑min precipitation fields to retrieve different features of showers (e.g., temporal pattern, horizontal speed, lifetime. In total, 312 cases are simulated at a resolution of 0.01 ° over Central Germany, and among these cases, 78 are evaluated against a radar dataset. The model is able to represent most observed features for different types of convective cells. In addition, the CPM reproduced well the observed relationship between the precipitation characteristics and temperature indicating that the COSMO-CLM model is sophisticated enough to represent the climatological features of showers.

  2. Stirring up a storm: convective climate variability on tidally locked exoplanets

    Science.gov (United States)

    Koll, D. D. B.; Cronin, T.

    2017-12-01

    Earth-sized exoplanets are extremely common in the galaxy and many of them are likely tidally locked, such that they have permanent day- and nightsides. Astronomers have started to probe the atmospheres of such planets, which raises the question: can tidally locked planets support habitable climates and life?Several studies have explored this question using global circulation models (GCMs). Not only did these studies find that tidally locked Earth analogs can indeed sustain habitable climates, their large day-night contrast should also create a distinct cloud structure that could help astronomers identify such planets. These studies, however, relied on GCMs which do not explicitly resolve convection, raising the question of how robust their results are.Here we consider the dynamics of clouds and convection on a tidally locked planet using the System for Atmospheric Modeling (SAM) cloud-resolving model. We simulate a 3d `channel', representing an equatorial strip that covers both day- and nightside of a tidally locked planet. We use interactive radiation and an interactive slab ocean surface and investigate the response to changes in the stellar constant. We find mean climates that are broadly comparable to those produced by a GCM. However, when the slab ocean is shallow, we also find internal variability that is far bigger than in a GCM. Convection in a tidally locked domain can self-organize in a dramatic fashion, with large outbursts of convection followed by periods of relative calm. We show that one of the timescales for this behavior is set by the time it takes for a dry gravity wave to travel between day- and nightside. The quasi-periodic self-organization of clouds can vary the planetary albedo by up to 50%. Changes this large are potentially detectable with future space telescopes, which raises the prospect of using convectively driven variability to identify high priority targets in the search for life around other stars.

  3. The morphological evolution and internal convection of ExB-drifting plasma clouds: Theory, dielectric-in-cell simulations, and N-body dielectric simulations

    International Nuclear Information System (INIS)

    Borovsky, J.E.; Hansen, P.J.

    1998-01-01

    The evolution of ExB-drifting plasma clouds is investigated with the aid of a computational technique denoted here as open-quotes dielectric-in-cell.close quotes Many of the familiar phenomena associated with clouds of collisionless plasma are seen and explained and less-well-known phenomena associated with convection patterns, with the stripping of cloud material, and with the evolution of plasma clouds composed of differing ion species are investigated. The effects of spatially uniform diffusion are studied with the dielectric-in-cell technique and with another computational technique denoted as open-quotes N-body dielectric;close quotes the suppression of convection, the suppression of structure growth, the increase in material stripping, and the evolution of cloud anisotropy are examined. copyright 1998 American Institute of Physics

  4. Gregarious Convection and Radiative Feedbacks in Idealized Worlds

    Science.gov (United States)

    2016-08-29

    water,’’ PW, a very strong predictor of deep moist convection [Bretherton et al., 2004; Neelin et al., 2009]. These papers freely interchange VIMSE and...exist neither on the globe nor within the cloud model. Since mesoscales impose great computational costs on atmosphere models, as well as inconven...continuity. Bottom-heavy or ‘‘ shallow ’’ circulations are especially effective at transporting moisture (since it is concen- trated at low altitudes

  5. Effects of Convective Aggregation on Radiative Cooling and Precipitation in a CRM

    Science.gov (United States)

    Naegele, A. C.; Randall, D. A.

    2017-12-01

    In the global energy budget, the atmospheric radiative cooling (ARC) is approximately balanced by latent heating, but on regional scales, the ARC and precipitation rates are inversely related. We use a cloud-resolving model to explore how the relationship between precipitation and the ARC is affected by convective aggregation, in which the convective activity is confined to a small portion of the domain that is surrounded by a much larger region of dry, subsiding air. Sensitivity tests show that the precipitation rate and ARC are highly sensitive to both SST and microphysics; a higher SST and 1-moment microphysics both act to increase the domain-averaged ARC and precipitation rates. In all simulations, both the domain-averaged ARC and precipitation rates increased due to convective aggregation, resulting in a positive temporal correlation. Furthermore, the radiative effect of clouds in these simulations is to decrease the ARC. This finding is consistent with our observational results of the cloud effect on the ARC, and has implications for convective aggregation and the geographic extent in which it can occur.

  6. Classification of Clouds and Deep Convection from GEOS-5 Using Satellite Observations

    Science.gov (United States)

    Putman, William; Suarez, Max

    2010-01-01

    With the increased resolution of global atmospheric models and the push toward global cloud resolving models, the resemblance of model output to satellite observations has become strikingly similar. As we progress with our adaptation of the Goddard Earth Observing System Model, Version 5 (GEOS-5) as a high resolution cloud system resolving model, evaluation of cloud properties and deep convection require in-depth analysis beyond a visual comparison. Outgoing long-wave radiation (OLR) provides a sufficient comparison with infrared (IR) satellite imagery to isolate areas of deep convection. We have adopted a binning technique to generate a series of histograms for OLR which classify the presence and fraction of clear sky versus deep convection in the tropics that can be compared with a similar analyses of IR imagery from composite Geostationary Operational Environmental Satellite (GOES) observations. We will present initial results that have been used to evaluate the amount of deep convective parameterization required within the model as we move toward cloud system resolving resolutions of 10- to 1-km globally.

  7. Magnetospheric convection and current system in the dayside polar cap

    International Nuclear Information System (INIS)

    Nishida, A.; Mukai, T.; Tsuruda, K.; Hayakawa, H.

    1992-01-01

    Field and particle observations on EXOS-D (Akebono) have yielded new information on convection and current system in the dayside polar cap. Convection patterns are distinctly different depending upon whether IMF B z is northward or southward. The number of convection cells is two when B z is southward but four when B z is northward. Lobe cells in which plasma flows sunward in the region of open field lines are observed as a pair (of which one is in the dawn and the other in the dusk sector) for any polarity of IMF B y and B z . Ions in the keV range precipitate not only in the dayside cusp region but also along the sunward directed streamlines of the dawn and dusk lobe cells. These observations require reconsideration on the position and the extent of the reconnection region on the magnetopause. They also suggest that the magnetotail plays a vital role in some phenomena which have been ascribed to dayside magnetopause processes. We have not been able to find evidence to prove the presence of the viscous cell under southward IMF

  8. Evaluation and Improvement of Cloud and Convective Parameterizations from Analyses of ARM Observations and Models

    Energy Technology Data Exchange (ETDEWEB)

    Del Genio, Anthony D. [NASA Goddard Inst. for Space Studies (GISS), New York, NY (United States)

    2016-03-11

    Over this period the PI and his performed a broad range of data analysis, model evaluation, and model improvement studies using ARM data. These included cloud regimes in the TWP and their evolution over the MJO; M-PACE IOP SCM-CRM intercomparisons; simulations of convective updraft strength and depth during TWP-ICE; evaluation of convective entrainment parameterizations using TWP-ICE simulations; evaluation of GISS GCM cloud behavior vs. long-term SGP cloud statistics; classification of aerosol semi-direct effects on cloud cover; depolarization lidar constraints on cloud phase; preferred states of the winter Arctic atmosphere, surface, and sub-surface; sensitivity of convection to tropospheric humidity; constraints on the parameterization of mesoscale organization from TWP-ICE WRF simulations; updraft and downdraft properties in TWP-ICE simulated convection; insights from long-term ARM records at Manus and Nauru.

  9. Impacts of initial convective structure on subsequent squall line evolution

    Science.gov (United States)

    Varble, A.; Morrison, H.; Zipser, E. J.

    2017-12-01

    A Weather Research and Forecasting simulation of the 20 May 2011 MC3E squall line using 750-m horizontal grid spacing produces wide convective regions with strongly upshear tilted convective updrafts and mesoscale bowing segments that are not produced in radar observations. Similar features occur across several different bulk microphysics schemes, despite surface observations exhibiting cold pool equivalent potential temperature drops that are similar to and pressure rises that are greater than those in the simulation. Observed rear inflow remains more elevated than simulated, partly counteracting the cold pool circulation, whereas the simulated rear inflow descends to low levels, maintaining its strength and reinforcing the cold pool circulation that overpowers the pre-squall line low level vertical wind shear. The descent and strength of the simulated rear inflow is fueled by strong latent cooling caused by large ice water contents detrained from upshear tilted convective cores that accumulate at the rear of the stratiform region. This simulated squall evolution is sensitive to model resolution, which is too coarse to resolve individual convective drafts. Nesting a 250-m horizontal grid spacing domain into the 750-m domain substantially alters the initial convective cells with reduced latent cooling, weaker convective downdrafts, and a weaker initial cold pool. As the initial convective cells develop into a squall line, the rear inflow remains more elevated in the 250-m domain with a cold pool that eventually develops to be just as strong and deeper than the one in the 750-m run. Despite this, the convective cores remain more upright in the 250-m run with the rear inflow partly counteracting the cold pool circulation, whereas the 750-m rear inflow near the surface reinforces the shallower cold pool and causes bowing in the squall line. The different structure in the 750-m run produces excessive mid-level front-to-rear detrainment that widens the convective region

  10. Kinematic structure of convective-scale elements in the rainbands of Hurricanes Katrina and Rita (2005)

    Science.gov (United States)

    Hence, Deanna A.; Houze, Robert A.

    2008-08-01

    Airborne Doppler radar data collected during the Hurricane Rainband and Intensity Change Experiment (RAINEX) show the convective-scale air motions embedded in the principal rainbands of hurricanes Katrina and Rita. These embedded convective cells have overturning updrafts and low-level downdrafts (originating at 2-4 km) that enter the rainband on its radially outward side and cross over each other within the rainband as well as a strong downdraft emanating from upper levels (6+ km) on the radially inward side. These vertical motion structures repeat from one convective cell to another along each rainband. The resulting net vertical mass transport is upward in the upwind portion of the band and greatest in the middle sector of the principal rainband, where the updraft motions contribute generally to an increase of potential vorticity below the 3-4 km level. Because the convective cells in the middle sector are systematically located radially just inside the secondary horizontal wind maximum (SHWM), the local increase in vorticity implied by the convective mass transport is manifest locally as an increase in the strength of the SHWM at midlevels (˜4 km). The overturning updrafts of the convective cells tilt, stretch, and vertically transport vorticity such that the convergence of the vertical flux of vorticity strengthens the vorticity anomaly associated with the SHWM. This process could strengthen the SHWM by several meters per second per hour, and may explain how high wave number convective-scale features can influence a low wave number feature such as the principal rainband, and subsequently influence the primary vortex.

  11. Experimental investigation of natural convection induced by internal heat generation

    International Nuclear Information System (INIS)

    Tasaka, Y; Kudoh, Y; Takeda, Y; Yanagisawa, T

    2005-01-01

    Dilatation of a convection cell with respect to its Rayleigh number, one of the problems in internally heated convection, was quantitatively investigated by analyzing temperature field in a cell. The temperature field visualized by a thermo-chromic liquid crystal (TLC) expresses the cell dilatation. A calibration system was developed to convert the visualized photographs of the temperature field to the temperature field. A calibration curve correlating color information extracted from the photograph and temperature was determined from the approximately linear temperature distribution in the horizontal fluid layer using the hue method. Photos taken at various internal Rayleigh numbers were converted to the temperature field by the obtained curve. Extracting individual cells from a temperature field achieves a quantitative expression of the cell dilatation as the variation of the wavenumber of the cell with Rayleigh number increases. The temperature profile in a cell shows that high temperature areas appear at the apexes of the cell, largely different from the profile obtained by linear theory

  12. Representation of tropical deep convection in atmospheric models – Part 2: Tracer transport

    Directory of Open Access Journals (Sweden)

    C. R. Hoyle

    2011-08-01

    Full Text Available The tropical transport processes of 14 different models or model versions were compared, within the framework of the SCOUT-O3 (Stratospheric-Climate Links with Emphasis on the Upper Troposphere and Lower Stratosphere project. The tested models range from the regional to the global scale, and include numerical weather prediction (NWP, chemical transport, and chemistry-climate models. Idealised tracers were used in order to prevent the model's chemistry schemes from influencing the results substantially, so that the effects of modelled transport could be isolated. We find large differences in the vertical transport of very short-lived tracers (with a lifetime of 6 h within the tropical troposphere. Peak convective outflow altitudes range from around 300 hPa to almost 100 hPa among the different models, and the upper tropospheric tracer mixing ratios differ by up to an order of magnitude. The timing of convective events is found to be different between the models, even among those which source their forcing data from the same NWP model (ECMWF. The differences are less pronounced for longer lived tracers, however they could have implications for modelling the halogen burden of the lowermost stratosphere through transport of species such as bromoform, or short-lived hydrocarbons into the lowermost stratosphere. The modelled tracer profiles are strongly influenced by the convective transport parameterisations, and different boundary layer mixing parameterisations also have a large impact on the modelled tracer profiles. Preferential locations for rapid transport from the surface into the upper troposphere are similar in all models, and are mostly concentrated over the western Pacific, the Maritime Continent and the Indian Ocean. In contrast, models do not indicate that upward transport is highest over western Africa.

  13. Review Article: Atmospheric conditions inducing extreme precipitation over the eastern and western Mediterranean

    Science.gov (United States)

    Dayan, U.; Nissen, K.; Ulbrich, U.

    2015-11-01

    This review discusses published studies of heavy rainfall events over the Mediterranean Basin, combining them in a more general picture of the dynamic and thermodynamic factors and processes that produce heavy rain storms. It distinguishes the western and eastern Mediterranean in order to point out specific regional peculiarities. The crucial moisture for developing intensive convection over these regions can be originated not only from the adjacent Mediterranean Sea but also from distant upwind sources. Transport from remote sources is usually in the mid-tropospheric layers and associated with specific features and patterns of the larger-scale circulations. The synoptic systems (tropical and extratropical) that account for most of the major extreme precipitation events and the coupling of circulation and extreme rainfall patterns are presented. Heavy rainfall over the Mediterranean Basin is caused at times in concert by several atmospheric processes working at different atmospheric scales, such as local convection, upper synoptic-scale-level troughs, and mesoscale convective systems. Under tropical air-mass intrusions, convection generated by static instability seems to play a more important role than synoptic-scale vertical motions. Locally, the occurrence of torrential rains and their intensity is dependent on factors such as temperature profiles and implied instability, atmospheric moisture, and lower-level convergence.

  14. Modulation of invasive phenotype by interstitial pressure-driven convection in aggregates of human breast cancer cells.

    Directory of Open Access Journals (Sweden)

    Joe Tien

    Full Text Available This paper reports the effect of elevated pressure on the invasive phenotype of patterned three-dimensional (3D aggregates of MDA-MB-231 human breast cancer cells. We found that the directionality of the interstitial pressure profile altered the frequency of invasion by cells located at the surface of an aggregate. In particular, application of pressure at one end of an aggregate suppressed invasion at the opposite end. Experimental alteration of the configuration of cell aggregates and computational modeling of the resulting flow and solute concentration profiles revealed that elevated pressure inhibited invasion by altering the chemical composition of the interstitial fluid near the surface of the aggregate. Our data reveal a link between hydrostatic pressure, interstitial convection, and invasion.

  15. Strong increase in convective precipitation in response to higher temperatures

    DEFF Research Database (Denmark)

    Berg, P.; Moseley, C.; Härter, Jan Olaf Mirko

    2013-01-01

    Precipitation changes can affect society more directly than variations in most other meteorological observables, but precipitation is difficult to characterize because of fluctuations on nearly all temporal and spatial scales. In addition, the intensity of extreme precipitation rises markedly...... at higher temperature, faster than the rate of increase in the atmosphere's water-holding capacity, termed the Clausius-Clapeyron rate. Invigoration of convective precipitation (such as thunderstorms) has been favoured over a rise in stratiform precipitation (such as large-scale frontal precipitation......) as a cause for this increase , but the relative contributions of these two types of precipitation have been difficult to disentangle. Here we combine large data sets from radar measurements and rain gauges over Germany with corresponding synoptic observations and temperature records, and separate convective...

  16. Satellite Sounder Observations of Contrasting Tropospheric Moisture Transport Regimes: Saharan Air Layers, Hadley Cells, and Atmospheric Rivers

    Energy Technology Data Exchange (ETDEWEB)

    Nalli, Nicholas R.; Barnet, Christopher D.; Reale, Tony; Liu, Quanhua; Morris, Vernon R.; Spackman, J. Ryan; Joseph, Everette; Tan, Changyi; Sun, Bomin; Tilley, Frank; Leung, L. Ruby; Wolfe, Daniel

    2016-12-01

    This paper examines the performance of satellite sounder atmospheric vertical moisture proles (AVMP) under tropospheric conditions encompassing moisture contrasts driven by convection and advection transport mechanisms, specifically Atlantic Ocean Saharan air layers (SALs) and Pacific Ocean moisture conveyer belts (MCBs) commonly referred to as atmospheric rivers (ARs), both of these being mesoscale to synoptic meteorological phenomena within the vicinity of subtropical Hadley subsidence zones. Operational AVMP environmental data records retrieved from the Suomi National Polar-orbiting Partnership (SNPP) NOAA-Unique Combined Atmospheric Processing System (NUCAPS) are collocated with dedicated radiosonde observations (RAOBs) obtained from ocean-based intensive field campaigns; these RAOBs provide uniquely independent correlative truth data not assimilated into numerical weather prediction models for satellite sounder validation over open ocean. Using these marine-based data, we empirically assess the performance of the operational NUCAPS AVMP product for detecting and resolving these tropospheric moisture features over otherwise RAOB-sparse regions.

  17. Pattern selection near the onset of convection in binary mixtures in cylindrical cells

    International Nuclear Information System (INIS)

    Alonso, Arantxa; Mercader, Isabel; Batiste, Oriol

    2014-01-01

    We report numerical investigations of three-dimensional pattern formation of binary mixtures in a vertical cylindrical container heated from below. Negative separation ratio mixtures, for which the onset of convection occurs via a subcritical Hopf bifurcation, are considered. We focus on the dynamics in the neighbourhood of the initial oscillatory instability and analyze the spatio-temporal properties of the patterns for different values of the aspect ratio of the cell, 0.25≲Γ≲11 (Γ≡R/d, where R is the radius of the cell and d its height). Despite the oscillatory nature of the primary instability, for highly constrained geometries, Γ≲2.5, only pure thermal stationary modes are selected after long transients. As the aspect ratio of the cell increases, for intermediate aspect ratio cells such as Γ=3, multistability and coexistence of stationary and time-dependent patterns is observed. In highly extended cylinders, Γ≈11, the dynamics near the onset is completely different from the pure fluid case, and a startling diversity of confined patterns is observed. Many of these patterns are consistent with experimental observations. Remarkably, though, we have obtained persistent large amplitude highly localized states not reported previously. (paper)

  18. Pattern selection near the onset of convection in binary mixtures in cylindrical cells

    Energy Technology Data Exchange (ETDEWEB)

    Alonso, Arantxa; Mercader, Isabel; Batiste, Oriol, E-mail: arantxa@fa.upc.edu [Departament de Física Aplicada, Universitat Politècnica de Catalunya, Mòdul B4, 08034 Barcelona (Spain)

    2014-08-01

    We report numerical investigations of three-dimensional pattern formation of binary mixtures in a vertical cylindrical container heated from below. Negative separation ratio mixtures, for which the onset of convection occurs via a subcritical Hopf bifurcation, are considered. We focus on the dynamics in the neighbourhood of the initial oscillatory instability and analyze the spatio-temporal properties of the patterns for different values of the aspect ratio of the cell, 0.25≲Γ≲11 (Γ≡R/d, where R is the radius of the cell and d its height). Despite the oscillatory nature of the primary instability, for highly constrained geometries, Γ≲2.5, only pure thermal stationary modes are selected after long transients. As the aspect ratio of the cell increases, for intermediate aspect ratio cells such as Γ=3, multistability and coexistence of stationary and time-dependent patterns is observed. In highly extended cylinders, Γ≈11, the dynamics near the onset is completely different from the pure fluid case, and a startling diversity of confined patterns is observed. Many of these patterns are consistent with experimental observations. Remarkably, though, we have obtained persistent large amplitude highly localized states not reported previously. (paper)

  19. Model Based Analysis of Forced and Natural Convection Effects in an Electrochemical Cell

    Directory of Open Access Journals (Sweden)

    D Brunner

    2017-03-01

    Full Text Available High purity copper, suitable for electrical applications, can only be obtained by electro-winning. The hallmark of this process is its self-induced natural convection through density variations of the electrolyte at both anode and cathode. In order to do this, first the full dynamic complexity of the process needs to be understood. Thus an OpenFoam®-based 2D model of the process has been created. This finite-volume multiphysics approach solves the laminar momentum and copper-ion species conservation equations, as well as local copper-ion conversion kinetics. It uses a Boussinesq approximation to simulate the species-momentum coupling, namely natural draft forces induced by variations of the spatial copper concentration within the fluid. The model shows good agreement with benchmark-cases of real-life electrochemical cells found in literature. An additional flow was imposed at the bottom of a small scale electrochemical cell in order to increase the ionic transport and thereby increase the overall performance of the cell. In a small scale electrochemical cell in strictly laminar flow, the overall performance could be increased and stratification decreased.

  20. Midlatitude Continental Convective Clouds Experiment (MC3E)

    Energy Technology Data Exchange (ETDEWEB)

    Jensen, MP; Petersen, WA; Del Genio, AD; Giangrande, SE; Heymsfield, A; Heymsfield, G; Hou, AY; Kollias, P; Orr, B; Rutledge, SA; Schwaller, MR; Zipser, E

    2010-04-10

    The Midlatitude Continental Convective Clouds Experiment (MC3E) will take place in central Oklahoma during the April–May 2011 period. The experiment is a collaborative effort between the U.S. Department of Energy (DOE) Atmospheric Radiation Measurement (ARM) Climate Research Facility and the National Aeronautics and Space Administration’s (NASA) Global Precipitation Measurement (GPM) mission Ground Validation (GV) program. The field campaign leverages the unprecedented observing infrastructure currently available in the central United States, combined with an extensive sounding array, remote sensing and in situ aircraft observations, NASA GPM ground validation remote sensors, and new ARM instrumentation purchased with American Recovery and Reinvestment Act funding. The overarching goal is to provide the most complete characterization of convective cloud systems, precipitation, and the environment that has ever been obtained, providing constraints for model cumulus parameterizations and space-based rainfall retrieval algorithms over land that have never before been available.

  1. Non-Boussinesq Dissolution-Driven Convection in Porous Media

    Science.gov (United States)

    Amooie, M. A.; Soltanian, M. R.; Moortgat, J.

    2017-12-01

    Geological carbon dioxide (CO2) sequestration in deep saline aquifers has been increasingly recognized as a feasible technology to stabilize the atmospheric carbon concentrations and subsequently mitigate the global warming. Solubility trapping is one of the most effective storage mechanisms, which is associated initially with diffusion-driven slow dissolution of gaseous CO2 into the aqueous phase, followed by density-driven convective mixing of CO2 throughout the aquifer. The convection includes both diffusion and fast advective transport of the dissolved CO2. We study the fluid dynamics of CO2 convection in the underlying single aqueous-phase region. Two modeling approaches are employed to define the system: (i) a constant-concentration condition for CO2 in aqueous phase at the top boundary, and (ii) a sufficiently low, constant injection-rate for CO2 from top boundary. The latter allows for thermodynamically consistent evolution of the CO2 composition and the aqueous phase density against the rate at which the dissolved CO2 convects. Here we accurately model the full nonlinear phase behavior of brine-CO2 mixture in a confined domain altered by dissolution and compressibility, while relaxing the common Boussinesq approximation. We discover new flow regimes and present quantitative scaling relations for global characters of spreading, mixing, and dissolution flux in two- and three-dimensional media for the both model types. We then revisit the universal Sherwood-Rayleigh scaling that is under debate for porous media convective flows. Our findings confirm the sublinear scaling for the constant-concentration case, while reconciling the classical linear scaling for the constant-injection model problem. The results provide a detailed perspective into how the available modeling strategies affect the prediction ability for the total amount of CO2 dissolved in the long term within saline aquifers of different permeabilities.

  2. A novel convective-scale regional reanalysis COSMO-REA2: Improving the representation of precipitation

    Directory of Open Access Journals (Sweden)

    Sabrina Wahl

    2017-10-01

    Full Text Available Atmospheric reanalyses are a state-of-the-art tool to generate consistent and realistic state estimates of the atmospheric system. They provide a synthesis of various heterogeneous observational systems and model simulations using a physical model together with a data assimilation scheme. Current reanalyses are mainly global, while regional reanalyses are emerging for North America, the polar region, and most recently for Europe. However, deep convection is still parameterized even in the regional reanalyses. A novel convective-scale regional reanalysis system for Central Europe (COSMO-REA2 has been developed by the Hans-Ertel Center for Weather Research – Climate Monitoring Branch. The system is based on the COSMO model and uses observational nudging for regional data assimilation. In addition to conventional observations, radar-derived rain rates are assimilated using latent heat nudging. With a horizontal grid-spacing of 2 km, the model runs without parameterization of deep moist convection. COSMO-REA2 produces horizontal wind fields that represent a realistic energy spectrum for horizontal scales above 14 km. COSMO-REA2 is currently available for seven years from 2007 to 2013.This study illustrates the improved representation of local precipitation over Germany by the convective-scale reanalysis COSMO-REA2 compared to coarser gridded European and global reanalyses. A systematic verification using rain gauge data reveals the added value of high-resolution regional atmospheric reanalyses on different time scales. On monthly to annual time scales, regional reanalyses yield better estimates of the spatial variability of precipitation patterns which can not be provided by coarser gridded global models. On hourly to daily time scales, the convective-scale reanalysis substantially improves the representation of local precipitation in two ways. On the one hand, COSMO-REA2 shows an enhanced representation of observed frequencies of local

  3. Comparison of Numerical and Experimental Studies for Flow-Field Optimization Based on Under-Rib Convection in Polymer Electrolyte Membrane Fuel Cells

    Directory of Open Access Journals (Sweden)

    Nguyen Duy Vinh

    2016-10-01

    Full Text Available The flow-field design based on under-rib convection plays an important role in enhancing the performance of polymer electrolyte membrane fuel cells (PEMFCs because it ensures the uniform distribution of the reacting gas and the facilitation of water. This research focused on developing suitable configurations of the anode and cathode bipolar plates to enhance the fuel cell performance based on under-rib convection. The work here evaluated the effects of flow-field designs, including a serpentine flow field with sub channel and by pass and a conventional serpentine flow-field on single-cell performance. Both the experiment and computer simulation indicated that the serpentine flow field with sub channel and by pass (SFFSB configuration enables more effective utilization of the electrocatalysts since it improves reactant transformation rate from the channel to the catalyst layer, thereby dramatically improving the fuel cell performance. The simulation and experimental results indicated that the power densities are increased by up to 16.74% and 18.21%, respectively, when applying suitable flow-field configurations to the anode and cathode bipolar plates. The findings in this are the foundation for enhancing efficient PEMFCs based on flow field design.

  4. Engineering Multifunctional Living Paints: Thin, Convectively-Assembled Biocomposite Coatings of Live Cells and Colloidal Latex Particles Deposited by Continuous Convective-Sedimentation Assembly

    Science.gov (United States)

    Jenkins, Jessica Shawn

    Advanced composite materials could be revolutionized by the development of methods to incorporate living cells into functional materials and devices. This could be accomplished by continuously and rapidly depositing thin ordered arrays of adhesive colloidal latex particles and live cells that maintain stability and preserve microbial reactivity. Convective assembly is one method of rapidly assembling colloidal particles into thin (advantages over thicker randomly ordered composites, including enhanced cell stability and increased reactivity through minimized diffusion resistance to nutrients and reduced light scattering. This method can be used to precisely deposit live bacteria, cyanobacteria, yeast, and algae into biocomposite coatings, forming reactive biosensors, photoabsorbers, or advanced biocatalysts. This dissertation developed new continuous deposition and coating characterization methods for fabricating and characterizing 90 hours) photohydrogen production under anoxygenic conditions. Nutrient reduction slows cell division, minimizing coating outgrowth, and promotes photohydrogen generation, improving coating reactivity. Scanning electron microscopy of microstructure revealed how coating reactivity can be controlled by the size and distribution of the nanopores in the biocomposite layers. Variations in colloid microsphere size and suspension composition do not affect coating reactivity, but both parameters alter coating microstructure. Porous paper coated with thin coatings of colloidal particles and cells to enable coatings to be used in a gas-phase without dehydration may offer higher volumetric productivity for hydrogen production. Future work should focus on optimization of cell density, light intensity, media cycling, and acetate concentration.

  5. A hybrid convection scheme for use in non-hydrostatic numerical weather prediction models

    Directory of Open Access Journals (Sweden)

    Volker Kuell

    2008-12-01

    Full Text Available The correct representation of convection in numerical weather prediction (NWP models is essential for quantitative precipitation forecasts. Due to its small horizontal scale convection usually has to be parameterized, e.g. by mass flux convection schemes. Classical schemes originally developed for use in coarse grid NWP models assume zero net convective mass flux, because the whole circulation of a convective cell is confined to the local grid column and all convective mass fluxes cancel out. However, in contemporary NWP models with grid sizes of a few kilometers this assumption becomes questionable, because here convection is partially resolved on the grid. To overcome this conceptual problem we propose a hybrid mass flux convection scheme (HYMACS in which only the convective updrafts and downdrafts are parameterized. The generation of the larger scale environmental subsidence, which may cover several grid columns, is transferred to the grid scale equations. This means that the convection scheme now has to generate a net convective mass flux exerting a direct dynamical forcing to the grid scale model via pressure gradient forces. The hybrid convection scheme implemented into the COSMO model of Deutscher Wetterdienst (DWD is tested in an idealized simulation of a sea breeze circulation initiating convection in a realistic manner. The results are compared with analogous simulations with the classical Tiedtke and Kain-Fritsch convection schemes.

  6. High-latitude plasma convection during Northward IMF as derived from in-situ magnetospheric Cluster EDI measurements

    Directory of Open Access Journals (Sweden)

    M. Förster

    2008-09-01

    Full Text Available In this study, we investigate statistical, systematic variations of the high-latitude convection cell structure during northward IMF. Using 1-min-averages of Cluster/EDI electron drift observations above the Northern and Southern polar cap areas for six and a half years (February 2001 till July 2007, and mapping the spatially distributed measurements to a common reference plane at ionospheric level in a magnetic latitude/MLT grid, we obtained regular drift patterns according to the various IMF conditions. We focus on the particular conditions during northward IMF, where lobe cells at magnetic latitudes >80° with opposite (sunward convection over the central polar cap are a permanent feature in addition to the main convection cells at lower latitudes. They are due to reconnection processes at the magnetopause boundary poleward of the cusp regions. Mapped EDI data have a particular good coverage within the central part of the polar cap, so that these patterns and their dependence on various solar wind conditions are well verified in a statistical sense. On average, 4-cell convection pattern are shown as regular structures during periods of nearly northward IMF with the tendency of a small shift toward negative clock angles. The positions of these high-latitude convection foci are within 79° to 85° magnetic latitude and 09:00–15:00 MLT. The MLT positions are approximately symmetric ±2 h about 11:30 MLT, i.e. slightly offset from midday toward prenoon hours, while the maximum (minimum potential of the high-latitude cells is at higher magnetic latitudes near their maximum potential difference at ≈−10° to −15° clock angle for the North (South Hemisphere. With increasing clock angle distances from ≈IMFBz+, a gradual transition occurs from the 4-cell pattern via a 3-cell to the common 2-cell convection pattern, in the course of which one of the medium-scale high-latitude dayside cells diminishes and disappears while the

  7. Delayed effects of cold atmospheric plasma on vascular cells

    NARCIS (Netherlands)

    Stoffels, Eva; Roks, Anton J. M.; Deelmm, Leo E.

    2008-01-01

    We investigated the long-term behaviour of vascular cells (endothelial and smooth muscle) after exposure to a cold atmospheric plasma source. The cells were treated through a gas-permeable membrane, in order to simulate intravenous treatment with a gas plasma-filled catheter. Such indirect treatment

  8. Lightning-based propagation of convective rain fields

    Directory of Open Access Journals (Sweden)

    S. Dietrich

    2011-05-01

    Full Text Available This paper describes a new multi-sensor approach for continuously monitoring convective rain cells. It exploits lightning data from surface networks to propagate rain fields estimated from multi-frequency brightness temperature measurements taken by the AMSU/MHS microwave radiometers onboard NOAA/EUMETSAT low Earth orbiting operational satellites. Specifically, the method allows inferring the development (movement, morphology and intensity of convective rain cells from the spatial and temporal distribution of lightning strokes following any observation by a satellite-borne microwave radiometer. Obviously, this is particularly attractive for real-time operational purposes, due to the sporadic nature of the low Earth orbiting satellite measurements and the continuous availability of ground-based lightning measurements – as is the case in most of the Mediterranean region. A preliminary assessment of the lightning-based rainfall propagation algorithm has been successfully made by using two pairs of consecutive AMSU observations, in conjunction with lightning measurements from the ZEUS network, for two convective events. Specifically, we show that the evolving rain fields, which are estimated by applying the algorithm to the satellite-based rainfall estimates for the first AMSU overpass, show an overall agreement with the satellite-based rainfall estimates for the second AMSU overpass.

  9. Effects of a Simple Convective Organization Scheme in a Two-Plume GCM

    Science.gov (United States)

    Chen, Baohua; Mapes, Brian E.

    2018-03-01

    A set of experiments is described with the Community Atmosphere Model (CAM5) using a two-plume convection scheme. To represent the differences of organized convection from General Circulation Model (GCM) assumptions of isolated plumes in uniform environments, a dimensionless prognostic "organization" tracer Ω is invoked to lend the second plume a buoyancy advantage relative to the first, as described in Mapes and Neale (2016). When low-entrainment plumes are unconditionally available (Ω = 1 everywhere), deep convection occurs too easily, with consequences including premature (upstream) rainfall in inflows to the deep tropics, excessive convective versus large-scale rainfall, poor relationships to the vapor field, stable bias in the mean state, weak and poor tropical variability, and midday peak in diurnal rainfall over land. Some of these are shown to also be characteristic of CAM4 with its separated deep and shallow convection schemes. When low-entrainment plumes are forbidden by setting Ω = 0 everywhere, some opposite problems can be discerned. In between those extreme cases, an interactive Ω driven by the evaporation of precipitation acts as a local positive feedback loop, concentrating deep convection: In areas of little recent rain, only highly entraining plumes can occur, unfavorable for rain production. This tunable mechanism steadily increases precipitation variance in both space and time, as illustrated here with maps, time-longitude series, and spectra, while avoiding some mean state biases as illustrated with process-oriented diagnostics such as conserved variable profiles and vapor-binned precipitation curves.

  10. Assessing Intraseasonal Variability Produced by Several Deep Convection Schemes in the NCAR CCM3.6

    Science.gov (United States)

    Maloney, E. D.

    2001-05-01

    The Hack, Zhang/McFarlane, and McRAS convection schemes produce very different simulations of intraseasonal variability in the NCAR CCM3.6. A robust analysis of simulation performance requires an expanded set of diagnostics. The use of only one criterion to analyze model Madden-Julian oscillation (MJO) variability, such as equatorial zonal wind variability, may give a misleading impression of model performance. Schemes that produce strong variability in zonal winds may sometimes lack a corresponding coherent signal in precipitation, suggesting that model convection and the large-scale circulation are not as strongly coupled as observed. The McRAS scheme, which includes a parametrization of unsaturated convective downdrafts, produces the best simulation of intraseasonal variability of the three schemes used. Downdrafts in McRAS create a moister equatorial troposphere, which increases equatorial convection. Composite analysis indicates a strong dependence of model intraseasonal variability on the frictional convergence mechanism, which may also be important in nature. The McRAS simulation has limitations, however. Indian Ocean variability is weak, and anomalous convection extends too far east across the Pacific. The dependence of convection on surface friction is too strong, and causes enhanced MJO convection to be associated with low-level easterly wind perturbations, unlike observed MJO convection. Anomalous vertical advection associated with surface convergence influences model convection by moistening the lower troposphere. Based on the work of Hendon (2000), coupling to an interactive ocean is unlikely to change the performance of the CCM3 with McRAS, due to the phase relationship between anomalous convection and zonal winds. Use of the analysis tools presented here indicates areas for improvement in the parametrization of deep convection by atmospheric GCMs.

  11. Inhibition of ordinary and diffusive convection in the water condensation zone of the ice giants and implications for their thermal evolution

    Science.gov (United States)

    Friedson, A. James; Gonzales, Erica J.

    2017-11-01

    We explore the conditions under which ordinary and double-diffusive thermal convection may be inhibited by water condensation in the hydrogen atmospheres of the ice giants and examine the consequences. The saturation of vapor in the condensation layer induces a vertical gradient in the mean molecular weight that stabilizes the layer against convective instability when the abundance of vapor exceeds a critical value. In this instance, the layer temperature gradient can become superadiabatic and heat must be transported vertically by another mechanism. On Uranus and Neptune, water is inferred to be sufficiently abundant for inhibition of ordinary convection to take place in their respective condensation zones. We find that suppression of double-diffusive convection is sensitive to the ratio of the sedimentation time scale of the condensates to the buoyancy period in the condensation layer. In the limit of rapid sedimentation, the layer is found to be stable to diffusive convection. In the opposite limit, diffusive convection can occur. However, if the fluid remains saturated, then layered convection is generally suppressed and the motion is restricted in form to weak, homogeneous, oscillatory turbulence. This form of diffusive convection is a relatively inefficient mechanism for transporting heat, characterized by low Nusselt numbers. When both ordinary and layered convection are suppressed, the condensation zone acts effectively as a thermal insulator, with the heat flux transported across it only slightly greater than the small value that can be supported by radiative diffusion. This may allow a large superadiabatic temperature gradient to develop in the layer over time. Once the layer has formed, however, it is vulnerable to persistent erosion by entrainment of fluid into the overlying convective envelope of the cooling planet, potentially leading to its collapse. We discuss the implications of our results for thermal evolution models of the ice giants, for

  12. Modeling the Solar Convective Dynamo and Emerging Flux

    Science.gov (United States)

    Fan, Y.

    2017-12-01

    Significant advances have been made in recent years in global-scale fully dynamic three-dimensional convective dynamo simulations of the solar/stellar convective envelopes to reproduce some of the basic features of the Sun's large-scale cyclic magnetic field. It is found that the presence of the dynamo-generated magnetic fields plays an important role for the maintenance of the solar differential rotation, without which the differential rotation tends to become anti-solar (with a faster rotating pole instead of the observed faster rotation at the equator). Convective dynamo simulations are also found to produce emergence of coherent super-equipartition toroidal flux bundles with a statistically significant mean tilt angle that is consistent with the mean tilt of solar active regions. The emerging flux bundles are sheared by the giant cell convection into a forward leaning loop shape with its leading side (in the direction of rotation) pushed closer to the strong downflow lanes. Such asymmetric emerging flux pattern may lead to the observed asymmetric properties of solar active regions.

  13. Dry storage systems with free convection air cooling

    International Nuclear Information System (INIS)

    Kioes, S.R.

    1980-01-01

    Several design principles to remove heat from the spent fuel by free air convection are illustrated and described. The key safety considerations were felt to be: loss of coolant is impossible as the passive system uses air as a coolant; overheating is precluded because as the temperatures of the containers rises the coolant flow rate increases; mass of the storage building provides a large heat sink and therefore a rapid temperature rise is impossible; and lack of any active external support requirements makes the cooling process less likely to equipment or operator failures. An example of this type of storage already exists. The German HTGR is operated with spherical graphite fuel elements which are stored in canister and in storage cells. The concept is a double cooling system with free convection inside the cells and heat exchange via two side walls of the cell to the ambient air in the cooling ducts. Technical description of the TN 1300 cask is also presented

  14. Variations in tropical convection as an amplifier of global climate change at the millennial scale

    NARCIS (Netherlands)

    Ivanochkoa, T.S.; Ganeshram, R.S.; Brummer, G.J.A.; Ganssen, G.M.; Jung, S.J.A.; Moreton, S.G.; Kroon, D.

    2005-01-01

    The global expression of millennial-scale climatic change during the glacial period and the persistence of this signal in Holocene records point to atmospheric teleconnections as the mechanism propagating rapid climate variations. We suggest rearrangements in the tropical convection system globally

  15. Convection in Slab and Spheroidal Geometries

    Science.gov (United States)

    Porter, David H.; Woodward, Paul R.; Jacobs, Michael L.

    2000-01-01

    Three-dimensional numerical simulations of compressible turbulent thermally driven convection, in both slab and spheroidal geometries, are reviewed and analyzed in terms of velocity spectra and mixing-length theory. The same ideal gas model is used in both geometries, and resulting flows are compared. The piecewise-parabolic method (PPM), with either thermal conductivity or photospheric boundary conditions, is used to solve the fluid equations of motion. Fluid motions in both geometries exhibit a Kolmogorov-like k(sup -5/3) range in their velocity spectra. The longest wavelength modes are energetically dominant in both geometries, typically leading to one convection cell dominating the flow. In spheroidal geometry, a dipolar flow dominates the largest scale convective motions. Downflows are intensely turbulent and up drafts are relatively laminar in both geometries. In slab geometry, correlations between temperature and velocity fluctuations, which lead to the enthalpy flux, are fairly independent of depth. In spheroidal geometry this same correlation increases linearly with radius over the inner 70 percent by radius, in which the local pressure scale heights are a sizable fraction of the radius. The effects from the impenetrable boundary conditions in the slab geometry models are confused with the effects from non-local convection. In spheroidal geometry nonlocal effects, due to coherent plumes, are seen as far as several pressure scale heights from the lower boundary and are clearly distinguishable from boundary effects.

  16. Exploring the potential of machine learning to break deadlock in convection parameterization

    Science.gov (United States)

    Pritchard, M. S.; Gentine, P.

    2017-12-01

    We explore the potential of modern machine learning tools (via TensorFlow) to replace parameterization of deep convection in climate models. Our strategy begins by generating a large ( 1 Tb) training dataset from time-step level (30-min) output harvested from a one-year integration of a zonally symmetric, uniform-SST aquaplanet integration of the SuperParameterized Community Atmosphere Model (SPCAM). We harvest the inputs and outputs connecting each of SPCAM's 8,192 embedded cloud-resolving model (CRM) arrays to its host climate model's arterial thermodynamic state variables to afford 143M independent training instances. We demonstrate that this dataset is sufficiently large to induce preliminary convergence for neural network prediction of desired outputs of SP, i.e. CRM-mean convective heating and moistening profiles. Sensitivity of the machine learning convergence to the nuances of the TensorFlow implementation are discussed, as well as results from pilot tests from the neural network operating inline within the SPCAM as a replacement to the (super)parameterization of convection.

  17. The LMDZ4 general circulation model: climate performance and sensitivity to parametrized physics with emphasis on tropical convection

    Energy Technology Data Exchange (ETDEWEB)

    Hourdin, Frederic; Musat, Ionela; Bony, Sandrine; Codron, Francis; Dufresne, Jean-Louis; Fairhead, Laurent; Grandpeix, Jean-Yves; LeVan, Phu; Li, Zhao-Xin; Lott, Francois [CNRS/UPMC, Laboratoire de Meteorologie Dynamique (LMD/IPSL), Paris Cedex 05 (France); Braconnot, Pascale; Friedlingstein, Pierre [Laboratoire des Sciences du Climat et de l' Environnement (LSCE/IPSL), Saclay (France); Filiberti, Marie-Angele [Institut Pierre Simon Laplace (IPSL), Paris (France); Krinner, Gerhard [Laboratoire de Glaciologie et Geophysique de l' Environnement, Grenoble (France)

    2006-12-15

    The LMDZ4 general circulation model is the atmospheric component of the IPSL-CM4 coupled model which has been used to perform climate change simulations for the 4th IPCC assessment report. The main aspects of the model climatology (forced by observed sea surface temperature) are documented here, as well as the major improvements with respect to the previous versions, which mainly come form the parametrization of tropical convection. A methodology is proposed to help analyse the sensitivity of the tropical Hadley-Walker circulation to the parametrization of cumulus convection and clouds. The tropical circulation is characterized using scalar potentials associated with the horizontal wind and horizontal transport of geopotential (the Laplacian of which is proportional to the total vertical momentum in the atmospheric column). The effect of parametrized physics is analysed in a regime sorted framework using the vertical velocity at 500 hPa as a proxy for large scale vertical motion. Compared to Tiedtke's convection scheme, used in previous versions, the Emanuel's scheme improves the representation of the Hadley-Walker circulation, with a relatively stronger and deeper large scale vertical ascent over tropical continents, and suppresses the marked patterns of concentrated rainfall over oceans. Thanks to the regime sorted analyses, these differences are attributed to intrinsic differences in the vertical distribution of convective heating, and to the lack of self-inhibition by precipitating downdraughts in Tiedtke's parametrization. Both the convection and cloud schemes are shown to control the relative importance of large scale convection over land and ocean, an important point for the behaviour of the coupled model. (orig.)

  18. Sensitivity of convective precipitation to soil moisture and vegetation during break spell of Indian summer monsoon

    Science.gov (United States)

    Kutty, Govindan; Sandeep, S.; Vinodkumar; Nhaloor, Sreejith

    2017-07-01

    Indian summer monsoon rainfall is characterized by large intra-seasonal fluctuations in the form of active and break spells in rainfall. This study investigates the role of soil moisture and vegetation on 30-h precipitation forecasts during the break monsoon period using Weather Research and Forecast (WRF) model. The working hypothesis is that reduced rainfall, clear skies, and wet soil condition during the break monsoon period enhance land-atmosphere coupling over central India. Sensitivity experiments are conducted with modified initial soil moisture and vegetation. The results suggest that an increase in antecedent soil moisture would lead to an increase in precipitation, in general. The precipitation over the core monsoon region has increased by enhancing forest cover in the model simulations. Parameters such as Lifting Condensation Level, Level of Free Convection, and Convective Available Potential Energy indicate favorable atmospheric conditions for convection over forests, when wet soil conditions prevail. On spatial scales, the precipitation is more sensitive to soil moisture conditions over northeastern parts of India. Strong horizontal gradient in soil moisture and orographic uplift along the upslopes of Himalaya enhanced rainfall over the east of Indian subcontinent.

  19. Atmospheric effects on the photovoltaic performance of hybrid perovskite solar cells

    KAUST Repository

    Sheikh, Arif D.

    2015-06-01

    Organometal trihalide perovskite solar cells have recently attracted lots of attention in the photovoltaic community due to their escalating efficiency and solution processability. The most efficient organometallic mixed-halide sensitized solar cells often employ 2,2′7,7′-tetrakis-(N,N-di-p-methoxyphenyl-amine)-9,9′-spirobifluorene (spiro-MeOTAD) as the hole-transporting material. In this work, we investigated the effect of different atmospheric storage conditions, particularly vacuum, dry nitrogen, and dry air, on the photovoltaic performance of TiO2-CH3NH3PbI3-xClx-spiro-MeOTAD solar cells. We found that spin coating of spiro-MeOTAD in an oxygen atmosphere alone was not adequate to functionalize its hole-transport property completely, and our systematic experiments revealed that the device efficiency depends on the ambient atmospheric conditions during the drying process of spiro-MeOTAD. Complementary incident photon to current conversion efficiency (IPCE), light absorption and photoluminescence quenching measurements allowed us to attribute the atmosphere-dependent efficiency to the improved electronic characteristics of the solar cells. Furthermore, our Fourier transform infrared and electrical impedance measurements unambiguously detected modifications in the spiro-MeOTAD after the drying processes in different gas environments. Our findings demonstrate that proper oxidization and p-doping in functionalizing spiro-MeOTAD play a very critical role in determining device performance. These findings will facilitate the search for alternative hole-transporting materials in high-performance perovskite solar cells with long-term stability.

  20. Constraints on the properties of Pluto's nitrogen-ice rich layer from convection simulations

    Science.gov (United States)

    Wong, T.; McKinnon, W. B.; Schenk, P.

    2016-12-01

    Pluto's Sputnik Planum basin (informally named) displays regular cellular patterns strongly suggesting that solid-state convection is occurring in a several-kilometers-deep nitrogen-ice rich layer (McKinnon et al., Convection in a volatile nitrogen-ice-rich layer drives Pluto's geological vigour, Nature 534, 82-85, 2016). We investigate the behavior of thermal convection in 2-D that covers a range of parameters applicable to the nitrogen ice layer to constrain its properties such that these long-wavelength surface features can be explained. We perform a suite of numerical simulations of convection with basal heating and temperature-dependent viscosity in either exponential form or Arrhenius form. For a plausible range of Rayleigh numbers and viscosity contrasts for solid nitrogen, convection can occur in all possible regimes: sluggish lid, transitional, or stagnant lid, or the layer could be purely conducting. We suggest the range of depth and temperature difference across the layer for convection to occur. We observe that the plume dynamics can be widely different in terms of the aspect ratio of convecting cells, or the width and spacing of plumes, and also in the lateral movement of plumes. These differences depend on the regime of convection determined by the Rayleigh number and the actual viscosity contrast across the layer, but is not sensitive to whether the viscosity is in Arrhenius or exponential form. The variations in plume dynamics result in different types of dynamic topography, which can be compared with the observed horizontal and vertical scales of the cells in Sputnik Planum. Based on these simulations we suggest several different possibilities for the formation and evolution of Sputnik Planum, which may be a consequence of the time-dependent behavior of thermal convection.

  1. Comparison of Large Eddy Simulations of a convective boundary layer with wind LIDAR measurements

    DEFF Research Database (Denmark)

    Pedersen, Jesper Grønnegaard; Kelly, Mark C.; Gryning, Sven-Erik

    2012-01-01

    Vertical profiles of the horizontal wind speed and of the standard deviation of vertical wind speed from Large Eddy Simulations of a convective atmospheric boundary layer are compared to wind LIDAR measurements up to 1400 m. Fair agreement regarding both types of profiles is observed only when...

  2. IDENTIFYING POTENTIAL MARKERS OF THE SUN'S GIANT CONVECTIVE SCALE

    Energy Technology Data Exchange (ETDEWEB)

    McIntosh, Scott W.; Wang, Xin [High Altitude Observatory, National Center for Atmospheric Research, P.O. Box 3000, Boulder, CO 80307 (United States); Leamon, Robert J. [Department of Physics, Montana State University, Bozeman, MT 59717 (United States); Scherrer, Philip H. [W. W. Hansen Experimental Physics Laboratory, Stanford University, Stanford, CA 94305 (United States)

    2014-04-01

    Line-of-sight magnetograms from the Helioseismic and Magnetic Imager (HMI) of the Solar Dynamics Observatory (SDO) are analyzed using a diagnostic known as the magnetic range of influence (MRoI). The MRoI is a measure of the length over which a photospheric magnetogram is balanced and so its application gives the user a sense of the connective length scales in the outer solar atmosphere. The MRoI maps and histograms inferred from the SDO/HMI magnetograms primarily exhibit four scales: a scale of a few megameters that can be associated with granulation, a scale of a few tens of megameters that can be associated with super-granulation, a scale of many hundreds to thousands of megameters that can be associated with coronal holes and active regions, and a hitherto unnoticed scale that ranges from 100 to 250 Mm. We infer that this final scale is an imprint of the (rotationally driven) giant convective scale on photospheric magnetism. This scale appears in MRoI maps as well-defined, spatially distributed concentrations that we have dubbed ''g-nodes''. Furthermore, using coronal observations from the Atmospheric Imaging Assembly on SDO, we see that the vicinity of these g-nodes appears to be a preferred location for the formation of extreme-ultraviolet (and likely X-Ray) brightpoints. These observations and straightforward diagnostics offer the potential of a near real-time mapping of the Sun's largest convective scale, a scale that possibly reaches to the very bottom of the convective zone.

  3. Stability characteristics of a single-phase free convection loop

    Science.gov (United States)

    Creveling, H. F.; De Paz, J. F.; Baladi, J. Y.; Schoenhals, R. J.

    1975-01-01

    Experiments investigating the stability characteristics of a single-phase free convection loop are reported. Results of the study confirm the contention made by previous workers that instabilities near the thermodynamic critical point can occur for ordinary fluids as well as those with unusual behavior in the near-critical region. Such a claim runs counter to traditional beliefs, but it is supported by the observation of such instabilities for water at atmospheric pressure and moderate temperatures in the present work.

  4. Mechanisms affecting the transition from shallow to deep convection over land: Inferences from observations collected at the ARM Southern Great Plains site

    Science.gov (United States)

    Zhang, Y.; Klein, S. A.

    2009-12-01

    11 years of summertime observations at the Atmospheric Radiation Measurement (ARM) Climate Research Facility Southern Great Plains (SGP) site are used to investigate mechanisms controlling the transition from shallow to deep convection over land. A more humid environment above the boundary layer favors the occurrence of late-afternoon heavy precipitation events. The higher moisture content is brought by wind from south. Greater boundary layer inhomogeneity in moist static energy (MSE) is correlated to larger rain rates at the initial stage of precipitation. MSE inhomogeneity is attributed to both moisture and temperature fields, and is correlated with westerly winds. In an examination of afternoon rain statistics, higher relative humidity above the boundary layer is correlated to an earlier onset and longer duration of precipitation, while greater boundary layer inhomogeneity and atmospheric instability are positively correlated to the total rain amount and the maximum rain rate. On balance, these observations favor theories for the transition that involve a moist free troposphere and boundary layer heterogeneity in preference to those that involve convective available potential energy or convective inhibition. Thus the evidence presented here supports the current emphasis in the modeling community on the entraining nature of convection and the role of boundary layer cold pools in triggering new convection.

  5. Three caveats for linear stability theory: Rayleigh-Benard convection

    International Nuclear Information System (INIS)

    Greenside, H.S.

    1984-06-01

    Recent theories and experiments challenge the applicability of linear stability theory near the onset of buoyancy-driven (Rayleigh-Benard) convection. This stability theory, based on small perturbations of infinite parallel rolls, is found to miss several important features of the convective flow. The reason is that the lateral boundaries have a profound influence on the possible wave numbers and flow patterns even for the largest cells studied. Also, the nonlinear growth of incoherent unstable modes distorts the rolls, leading to a spatially disordered and sometimes temporally nonperiodic flow. Finally, the relation of the skewed varicose instability to the onset of turbulence (nonperiodic time dependence) is examined. Linear stability theory may not suffice to predict the onset of time dependence in large cells close to threshold

  6. Evaluating the Contribution of NASA Remotely-Sensed Data Sets on a Convection-Allowing Forecast Model

    Science.gov (United States)

    Zavodsky, Bradley T.; Case, Jonathan L.; Molthan, Andrew L.

    2012-01-01

    The Short-term Prediction Research and Transition (SPoRT) Center is a collaborative partnership between NASA and operational forecasting partners, including a number of National Weather Service forecast offices. SPoRT provides real-time NASA products and capabilities to help its partners address specific operational forecast challenges. One challenge that forecasters face is using guidance from local and regional deterministic numerical models configured at convection-allowing resolution to help assess a variety of mesoscale/convective-scale phenomena such as sea-breezes, local wind circulations, and mesoscale convective weather potential on a given day. While guidance from convection-allowing models has proven valuable in many circumstances, the potential exists for model improvements by incorporating more representative land-water surface datasets, and by assimilating retrieved temperature and moisture profiles from hyper-spectral sounders. In order to help increase the accuracy of deterministic convection-allowing models, SPoRT produces real-time, 4-km CONUS forecasts using a configuration of the Weather Research and Forecasting (WRF) model (hereafter SPoRT-WRF) that includes unique NASA products and capabilities including 4-km resolution soil initialization data from the Land Information System (LIS), 2-km resolution SPoRT SST composites over oceans and large water bodies, high-resolution real-time Green Vegetation Fraction (GVF) composites derived from the Moderate-resolution Imaging Spectroradiometer (MODIS) instrument, and retrieved temperature and moisture profiles from the Atmospheric Infrared Sounder (AIRS) and Infrared Atmospheric Sounding Interferometer (IASI). NCAR's Model Evaluation Tools (MET) verification package is used to generate statistics of model performance compared to in situ observations and rainfall analyses for three months during the summer of 2012 (June-August). Detailed analyses of specific severe weather outbreaks during the summer

  7. Cloudless Atmospheres for Young Low-Gravity Substellar Objects

    Science.gov (United States)

    Tremblin, P.; Chabrier, G.; Baraffe, I.; Liu, Michael C.; Magnier, E. A.; Lagage, P.-O.; De Oliveira, C. Alves; Burgasser, A. J.; Amundsen, D. S.; Drummond, B.

    2017-01-01

    Atmospheric modeling of low-gravity (VL-G) young brown dwarfs remains challenging. The presence of very thick clouds is a possible source of this challenge, because of their extremely red near-infrared (NIR) spectra, but no cloud models provide a good fit to the data with a radius compatible with the evolutionary models for these objects. We show that cloudless atmospheres assuming a temperature gradient reduction caused by fingering convection provide a very good model to match the observed VL-G NIR spectra. The sequence of extremely red colors in the NIR for atmospheres with effective temperatures from approx. 2000 K down to approx. 1200 K is very well reproduced with predicted radii typical of young low-gravity objects. Future observations with NIRSPEC and MIRI on the James Webb Space Telescope (JWST) will provide more constraints in the mid-infrared, helping to confirm or refute whether or not the NIR reddening is caused by fingering convection. We suggest that the presence or absence of clouds will be directly determined by the silicate absorption features that can be observed with MIRI. JWST will therefore be able to better characterize the atmosphere of these hot young brown dwarfs and their low-gravity exoplanet analogs.

  8. Uranus atmospheric dynamics and circulation

    Science.gov (United States)

    Allison, Michael; Beebe, Reta F.; Conrath, Barney J.; Hinson, David P.; Ingersoll, Andrew P.

    1991-01-01

    The observations, models, and theories relevant to the atmospheric dynamics and meteorology of Uranus are discussed. The available models for the large-scale heat transport and atmospheric dynamics as well as diagnostic interpretations of the Voyager data are reviewed. Some pertinent ideas and questions regarding the global circulation balance are considered, partly in comparison with other planetary atmospheres. The available data indicate atmospheric rotation at midlatitudes nearly 200 m/s faster than that of the planetary magnetic field. Analysis of the dynamical deformation of the shape and size of isobaric surfaces measured by the Voyager radio-occultation experiment suggests a subrotating equator at comparable altitudes. Infrared temperature retrievals above the cloud deck indicate a smaller equator-to-pole contrast than expected for purely radiative-convective equilibrium, but show local variations implying a latitudinally correlated decrease with altitude in the cloud-tracked wind.

  9. ARM Support for the Plains Elevated Convection at Night (AS-PECAN) Field Campaign Report

    Energy Technology Data Exchange (ETDEWEB)

    Turner, D. D. [National Oceanic and Atmospheric Administration (NOAA), Silver Spring, MD (United States); Geerts, B. [Univ. of Wyoming, Laramie, WY (United States)

    2016-04-01

    The Plains Elevated Convection at Night (PECAN) field campaign was a large multi-agency/multi-institutional experiment that targeted nighttime convection events in the central plains of the United States in order to better understand a range of processes that lead to the initiation and upscale growth of deep convection. Both weather and climate models struggle to properly represent the timing and intensity of precipitation in the central United States in their simulations. These models must be able to represent the interactions between the nocturnal stable boundary layer (SBL), the nocturnal low-level jet (LLJ), and a reservoir of convectively available potential energy (CAPE) that frequently exists above the SBL. Furthermore, a large fraction of the nocturnal precipitation is due to the organization of mesoscale convective systems (MCSs). In particular, there were four research foci for the PECAN campaign: •The initiation of elevated nocturnal convection focus seeks to elucidate the mesoscaleenvironmental characteristics and processes that lead to convection initiation (CI) and provide baseline data on the early evolution of mesoscale convective clusters. •The dynamics and internal structure and microphysics of nocturnal MCSs focus will investigatethe transition from surface-based to elevated storm structure, the interaction of cold pools generated by MCSs with the nocturnal stable boundary layer, and how the organization and evolution of elevated convection is influenced by the SBL and the vertical profile of wind and stability above the LLJ. •The bores and wave-like disturbances focus seeks to advance knowledge of the initiation of boredisturbances by convection, how the vertical profile of stability and winds modulate bore structure, the role of these disturbances in the initiation, maintenance, and organization of deep convection, and their impact on the LLJ and SBL. •The LLJ focus seeks to understand the processes that influence the spatial and

  10. Rapid decadal convective precipitation increase over Eurasia during the last three decades of the 20th century.

    Science.gov (United States)

    Ye, Hengchun; Fetzer, Eric J; Wong, Sun; Lambrigtsen, Bjorn H

    2017-01-01

    Convective precipitation-localized, short-lived, intense, and sometimes violent-is at the root of challenges associated with observation, simulation, and prediction of precipitation. The understanding of long-term changes in convective precipitation characteristics and their role in precipitation extremes and intensity over extratropical regions are imperative to future water resource management; however, they have been studied very little. We show that annual convective precipitation total has been increasing astonishingly fast, at a rate of 18.4%/°C, of which 16% is attributable to an increase in convective precipitation occurrence, and 2.4% is attributable to increased daily intensity based on the 35 years of two (combined) historical data sets of 3-hourly synoptic observations and daily precipitation. We also reveal that annual daily precipitation extreme has been increasing at a rate of about 7.4%/°C in convective events only. Concurrently, the overall increase in mean daily precipitation intensity is mostly due to increased convective precipitation, possibly at the expanse of nonconvective precipitation. As a result, transitional seasons are becoming more summer-like as convective becomes the dominant precipitation type that has accompanied higher daily extremes and intensity since the late 1980s. The data also demonstrate that increasing convective precipitation and daily extremes appear to be directly linearly associated with higher atmospheric water vapor accompanying a warming climate over northern Eurasia.

  11. Numerical study of natural convection in porous media (metals) using Lattice Boltzmann Method (LBM)

    Energy Technology Data Exchange (ETDEWEB)

    Zhao, C.Y., E-mail: c.y.zhao@warwick.ac.u [School of Engineering, University of Warwick, Coventry CV4 7AL (United Kingdom); School of Energy and Power Engineering, Xi' an Jiaotong University, Xi' an, Shaanxi 710049 (China); Dai, L.N.; Tang, G.H.; Qu, Z.G.; Li, Z.Y. [School of Energy and Power Engineering, Xi' an Jiaotong University, Xi' an, Shaanxi 710049 (China)

    2010-10-15

    A thermal lattice BGK model with doubled populations is proposed to simulate the two-dimensional natural convection flow in porous media (porous metals). The accuracy of this method is validated by the benchmark solutions. The detailed flow and heat transfer at the pore level are revealed. The effects of pore density (cell size) and porosity on the natural convection are examined. Also the effect of porous media configuration (shape) on natural convection is investigated. The results showed that the overall heat transfer will be enhanced by lowering the porosity and cell size. The square porous medium can have a higher heat transfer performance than spheres due to the strong flow mixing and more surface area.

  12. Evaluation of a Mesoscale Convective System in Variable-Resolution CESM

    Science.gov (United States)

    Payne, A. E.; Jablonowski, C.

    2017-12-01

    Warm season precipitation over the Southern Great Plains (SGP) follows a well observed diurnal pattern of variability, peaking at night-time, due to the eastward propagation of mesoscale convection systems that develop over the eastern slopes of the Rockies in the late afternoon. While most climate models are unable to adequately capture the organization of convection and characteristic pattern of precipitation over this region, models with high enough resolution to explicitly resolve convection show improvement. However, high resolution simulations are computationally expensive and, in the case of regional climate models, are subject to boundary conditions. Newly developed variable resolution global climate models strike a balance between the benefits of high-resolution regional climate models and the large-scale dynamics of global climate models and low computational cost. Recently developed parameterizations that are insensitive to the model grid scale provide a way to improve model performance. Here, we present an evaluation of the newly available Cloud Layers Unified by Binormals (CLUBB) parameterization scheme in a suite of variable-resolution CESM simulations with resolutions ranging from 110 km to 7 km within a regionally refined region centered over the SGP Atmospheric Radiation Measurement (ARM) site. Simulations utilize the hindcast approach developed by the Department of Energy's Cloud-Associated Parameterizations Testbed (CAPT) for the assessment of climate models. We limit our evaluation to a single mesoscale convective system that passed over the region on May 24, 2008. The effects of grid-resolution on the timing and intensity of precipitation, as well as, on the transition from shallow to deep convection are assessed against ground-based observations from the SGP ARM site, satellite observations and ERA-Interim reanalysis.

  13. Short climatology of the atmospheric boundary layer using acoustic methods

    International Nuclear Information System (INIS)

    Schubert, J.F.

    1975-06-01

    A climatology of the boundary layer of the atmosphere at the Savannah River Laboratory is being compiled using acoustic methods. The atmospheric phenomenon as depicted on the facsimile recorder is classified and then placed into one of sixteen categories. After classification, the height of the boundary layer is measured. From this information, frequency tables of boundary layer height and category are created and then analyzed for the percentage of time that each category was detected by the acoustic sounder. The sounder also accurately depicts the diurnal cycle of the boundary layer and, depending on the sensitivity of the system, shows microstructure that is normally unavailable using other methods of profiling. The acoustic sounder provides a means for continuous, real time measurements of the time rate of change of the depth of the boundary layer. This continuous record of the boundary layer with its convective cells, gravity waves, inversions, and frontal system passages permits the synoptic and complex climatology of the local area to be compiled. (U.S.)

  14. Magnetic particle mixing with magnetic micro-convection for microfluidics

    International Nuclear Information System (INIS)

    Kitenbergs, Guntars; Erglis, Kaspars; Perzynski, Régine; Cēbers, Andrejs

    2015-01-01

    In this paper we discuss the magnetic micro-convection phenomenon as a tool for mixing enhancement in microfluidics systems in cases when one of the miscible fluids is a magnetic particle colloid. A system of a water-based magnetic fluid and water is investigated experimentally under homogeneous magnetic field in a Hele–Shaw cell. Subsequent image analysis both qualitatively and quantitatively reveals the high enhancement of mixing efficiency provided by this method. The mixing efficiency dependence on the magnetic field and the physical limits is discussed. A suitable model for a continuous-flow microfluidics setup for mixing with magnetic micro-convection is also proposed and justified with an experiment. In addition, possible applications in improving the speed of ferrohydrodynamic sorting and magnetic label or selected tracer mixing in lab on a chip systems are noted. - Highlights: • We study the magnetic micro-convection as a mixing method in microfluidics. • We show that the method enhances mixing with magnetic field squared dependency. • We propose a flow cell setup for mixing and justify it with a sample experiment. • The mixing method can be easily implemented in an existing microfluidics setup

  15. A 10-year Ground-Based Radar Climatology of Convective Penetration of Stratospheric Intrusions and Associated Large-Scale Transport over the CONUS

    Science.gov (United States)

    Homeyer, C. R.

    2017-12-01

    Deep convection reaching the upper troposphere and lower stratosphere (UTLS) and its impact on atmospheric composition through rapid vertical transport of lower troposphere air and stratosphere-troposphere exchange has received increasing attention in the past 5-10 years. Most efforts focused on convection have been directed toward storms that reach and/or penetrate the coincident environmental lapse-rate tropopause. However, convection has also been shown to reach into large-scale stratospheric intrusions (depressions of stratospheric air lying well below the lapse-rate tropopause on the cyclonic side of upper troposphere jet streams). Such convective penetration of stratospheric intrusions is not captured by studies of lapse-rate tropopause-penetrating convection. In this presentation, it will be shown using hourly, high-quality mergers of ground-based radar observations from 2004 to 2013 in the contiguous United States (CONUS) and forward large-scale trajectory analysis that convective penetration of stratospheric intrusions: 1) is more frequent than lapse-rate tropopause-penetrating convection, 2) occurs over a broader area of the CONUS than lapse-rate tropopause-penetrating convection, and 3) can influence the composition of the lower stratosphere through large-scale advection of convectively influenced air to altitudes above the lapse-rate tropopause, which we find to occur for about 8.5% of the intrusion volumes reached by convection.

  16. Physics of the Sun's Hot Atmosphere B. N. Dwivedi

    Indian Academy of Sciences (India)

    an Earth-like planet and its atmosphere (cf., Fig. 1). ... the radiative zone (where energy travels outward by radiation through about 70% of the Sun), and the convection .... (1990) carried out rocket-borne experiments to observe off-limb linewidth.

  17. Impact of the Assimilation of Hyperspectral Infrared Profiles on Advanced Weather and Research Model Simulations of a Non-Convective Wind Event

    Science.gov (United States)

    Berndt, Emily B.; Zavodsky, Bradley T; Jedlovec, Gary J.; Elmer, Nicholas J.

    2013-01-01

    Non-convective wind events commonly occur with passing extratropical cyclones and have significant societal and economic impacts. Since non-convective winds often occur in the absence of specific phenomena such as a thunderstorm, tornado, or hurricane, the public are less likely to heed high wind warnings and continue daily activities. Thus non-convective wind events result in as many fatalities as straight line thunderstorm winds. One physical explanation for non-convective winds includes tropopause folds. Improved model representation of stratospheric air and associated non-convective wind events could improve non-convective wind forecasts and associated warnings. In recent years, satellite data assimilation has improved skill in forecasting extratropical cyclones; however errors still remain in forecasting the position and strength of extratropical cyclones as well as the tropopause folding process. The goal of this study is to determine the impact of assimilating satellite temperature and moisture retrieved profiles from hyperspectral infrared (IR) sounders (i.e. Atmospheric Infrared Sounder (AIRS), Cross-track Infrared and Microwave Sounding Suite (CrIMSS), and Infrared Atmospheric Sounding Interferometer (IASI)) on the model representation of the tropopause fold and an associated high wind event that impacted the Northeast United States on 09 February 2013. Model simulations using the Advanced Research Weather Research and Forecasting Model (ARW) were conducted on a 12-km grid with cycled data assimilation mimicking the operational North American Model (NAM). The results from the satellite assimilation run are compared to a control experiment (without hyperspectral IR retrievals), North American Regional Reanalysis (NARR) reanalysis, and Rapid Refresh analyses.

  18. Metallisation Technology of Silicon Solar Cells Using the Convectional and Laser Technique

    Directory of Open Access Journals (Sweden)

    Leszek A. Dobrzanski

    2013-07-01

    Full Text Available The aim of the paper was to optimize the Selective Laser Sintering (SLS and co-firing in the infrared conveyor furnace parameters in front Screen Printed (SP contacts. The co-firing in the infrared conveyor furnace was carried out at various temperature. The SLS was carried out at various a laser beam, scanning speed of the laser beam and front electrode thickness. The investigations were carried out on monocrystalline silicon wafers. During investigations was applied a silver powder with the grain size of 40 μm. The contacts parameters are obtained according to the Transmission Line Model (TLM measurements. Firstly, this paper shows the comparison between the convectional an unconventional method of manufacturing front contacts of monocrystalline silicon solar cells with the different morphology of silicon for comparative purposes. Secondly, the papers shows technological recommendations for both methods in relation to parameters such as: the optimal paste composition, the morphology of the silicon substrate to produce the front electrode of silicon solar cells, which were selected experimentally in order to produce a uniformly melted structure, well adhering to the substrate, with the low resistance of the front electrode-to-substrate joint zone.

  19. The role of convective tracer transport for the NO{sub x} content in the North Atlantic flight corridor

    Energy Technology Data Exchange (ETDEWEB)

    Koehler, I.; Sausen, R. [Deutsche Forschungs- und Versuchsanstalt fuer Luft- und Raumfahrt e.V., Oberpfaffenhofen (Germany). Inst. fuer Physik der Atmosphaere

    1997-12-31

    The effect of convective tracer transport on the NO{sub x} distribution at cruising altitudes is studied by means of the atmosphere general circulation model ECHAM which was extended by a simplified (linear) NO{sub x} chemistry module. NO{sub x} originates from several sources including aircraft emissions. Two numerical simulations have been performed: one including convective tracer transport and one without this process. The differences in the NO{sub x} distribution of these two runs are discussed. (author) 8 refs.

  20. The role of convective tracer transport for the NO{sub x} content in the North Atlantic flight corridor

    Energy Technology Data Exchange (ETDEWEB)

    Koehler, I; Sausen, R [Deutsche Forschungs- und Versuchsanstalt fuer Luft- und Raumfahrt e.V., Oberpfaffenhofen (Germany). Inst. fuer Physik der Atmosphaere

    1998-12-31

    The effect of convective tracer transport on the NO{sub x} distribution at cruising altitudes is studied by means of the atmosphere general circulation model ECHAM which was extended by a simplified (linear) NO{sub x} chemistry module. NO{sub x} originates from several sources including aircraft emissions. Two numerical simulations have been performed: one including convective tracer transport and one without this process. The differences in the NO{sub x} distribution of these two runs are discussed. (author) 8 refs.

  1. Evaluation of the Atmospheric Boundary-Layer Electrical Variability

    Science.gov (United States)

    Anisimov, Sergey V.; Galichenko, Sergey V.; Aphinogenov, Konstantin V.; Prokhorchuk, Aleksandr A.

    2017-12-01

    Due to the chaotic motion of charged particles carried by turbulent eddies, electrical quantities in the atmospheric boundary layer (ABL) have short-term variability superimposed on long-term variability caused by sources from regional to global scales. In this study the influence of radon exhalation rate, aerosol distribution and turbulent transport efficiency on the variability of fair-weather atmospheric electricity is investigated via Lagrangian stochastic modelling. For the mid-latitude lower atmosphere undisturbed by precipitation, electrified clouds, or thunderstorms, the model is capable of reproducing the diurnal variation in atmospheric electrical parameters detected by ground-based measurements. Based on the analysis of field observations and numerical simulation it is found that the development of the convective boundary layer, accompanied by an increase in turbulent kinetic energy, forms the vertical distribution of radon and its decaying short-lived daughters to be approximately coincident with the barometric law for several eddy turnover times. In the daytime ABL the vertical distribution of atmospheric electrical conductivity tends to be uniform except within the surface layer, due to convective mixing of radon and its radioactive decay products. At the same time, a decrease in the conductivity near the ground is usually observed. This effect leads to an enhanced ground-level atmospheric electric field compared to that normally observed in the nocturnal stably-stratified boundary layer. The simulation showed that the variability of atmospheric electric field in the ABL associated with internal origins is significant in comparison to the variability related to changes in global parameters. It is suggested that vertical profiles of electrical quantities can serve as informative parameters on ABL turbulent dynamics and can even more broadly characterize the state of the environment.

  2. Impact of the Diurnal Cycle of the Atmospheric Boundary Layer on Wind-Turbine Wakes: A Numerical Modelling Study

    Science.gov (United States)

    Englberger, Antonia; Dörnbrack, Andreas

    2018-03-01

    The wake characteristics of a wind turbine for different regimes occurring throughout the diurnal cycle are investigated systematically by means of large-eddy simulation. Idealized diurnal cycle simulations of the atmospheric boundary layer are performed with the geophysical flow solver EULAG over both homogeneous and heterogeneous terrain. Under homogeneous conditions, the diurnal cycle significantly affects the low-level wind shear and atmospheric turbulence. A strong vertical wind shear and veering with height occur in the nocturnal stable boundary layer and in the morning boundary layer, whereas atmospheric turbulence is much larger in the convective boundary layer and in the evening boundary layer. The increased shear under heterogeneous conditions changes these wind characteristics, counteracting the formation of the night-time Ekman spiral. The convective, stable, evening, and morning regimes of the atmospheric boundary layer over a homogeneous surface as well as the convective and stable regimes over a heterogeneous surface are used to study the flow in a wind-turbine wake. Synchronized turbulent inflow data from the idealized atmospheric boundary-layer simulations with periodic horizontal boundary conditions are applied to the wind-turbine simulations with open streamwise boundary conditions. The resulting wake is strongly influenced by the stability of the atmosphere. In both cases, the flow in the wake recovers more rapidly under convective conditions during the day than under stable conditions at night. The simulated wakes produced for the night-time situation completely differ between heterogeneous and homogeneous surface conditions. The wake characteristics of the transitional periods are influenced by the flow regime prior to the transition. Furthermore, there are different wake deflections over the height of the rotor, which reflect the incoming wind direction.

  3. Hydrodynamic theory of convective transport across a dynamically stabilized diffuse boundary layer

    International Nuclear Information System (INIS)

    Gerhauser, H.

    1983-09-01

    The diffuse boundary layer between miscible liquids is subject to Rayleigh-Taylor instabilities if the heavy fluid is supported by the light one. The resulting rapid interchange of the liquids can be suppressed by enforcing vertical oscillations on the whole system. This dynamic stabilization is incomplete and produces some peculiar novel transport phenomena such as decay off the density profile into several steps, periodic peeling of density sheets of the boundary layer and the appearance of steady vortex flow. The theory presented in this paper identifies the basic mechanism as formation of convective cells leading to enhanced diffusion, and explains previous experimental results with water and ZnJ 2 -solutions. A nonlinear treatment of the stationary convective flow problem gives the saturation amplitude of the ground mode and provides an upper bound for the maximum convective transport. The hydrodynamic model can be used for visualizing similar transport processes in the plasma of toroidal confinement devices such as sawtooth oscillations in soft disruptions of tokamak discharges and anomalous diffusion by excitation of convective cells. The latter process is investigated here in some detail, leading to the result that the maximum possible transport is of the order of Bohm diffusion. (orig.)

  4. Regionally strong feedbacks between the atmosphere and terrestrial biosphere

    Science.gov (United States)

    Green, Julia K.; Konings, Alexandra G.; Alemohammad, Seyed Hamed; Berry, Joseph; Entekhabi, Dara; Kolassa, Jana; Lee, Jung-Eun; Gentine, Pierre

    2017-06-01

    The terrestrial biosphere and atmosphere interact through a series of feedback loops. Variability in terrestrial vegetation growth and phenology can modulate fluxes of water and energy to the atmosphere, and thus affect the climatic conditions that in turn regulate vegetation dynamics. Here we analyse satellite observations of solar-induced fluorescence, precipitation, and radiation using a multivariate statistical technique. We find that biosphere-atmosphere feedbacks are globally widespread and regionally strong: they explain up to 30% of precipitation and surface radiation variance in regions where feedbacks occur. Substantial biosphere-precipitation feedbacks are often found in regions that are transitional between energy and water limitation, such as semi-arid or monsoonal regions. Substantial biosphere-radiation feedbacks are often present in several moderately wet regions and in the Mediterranean, where precipitation and radiation increase vegetation growth. Enhancement of latent and sensible heat transfer from vegetation accompanies this growth, which increases boundary layer height and convection, affecting cloudiness, and consequently incident surface radiation. Enhanced evapotranspiration can increase moist convection, leading to increased precipitation. Earth system models underestimate these precipitation and radiation feedbacks mainly because they underestimate the biosphere response to radiation and water availability. We conclude that biosphere-atmosphere feedbacks cluster in specific climatic regions that help determine the net CO2 balance of the biosphere.

  5. Fusing Multiple Satellite Datasets Toward Defining and Understanding Organized Convection

    Science.gov (United States)

    Elsaesser, G.; Del Genio, A. D.

    2017-12-01

    How do we differentiate unorganized from organized convection? We might think of organized convection as being long lasting (at least longer than the lifetime of any individual cumulus cell), clustered at larger spatial scales (>100 km), and responsible for substantial rainfall accumulation. Organized convection is sustained on such scales due to the arrangement of moist/dry and buoyant/non-buoyant mesoscale circulations. The nature of these circulations is tied to system diabatic heating profiles; in particular, the 2nd baroclinic (top-heavy), stratiform heating mode is thought to be important for organized convection maintenance/propagation. We investigate the extent to which these characteristics are jointly found in propagating convective systems. Lifecycle information comes from hi-res IR data. Diabatic heating profiles, convective fractions and rainfall are provided by GPM retrievals mapped to convective system tracks. Moisture is provided by AIRS/AMSU and passive microwave retrievals. Instead of compositing heating profile information along a system track, where information is smoothed out, we sort system heating profile structures according to their "top heaviness" and then analyze PDFs of system rainfall, system sizes, durations, convective/stratiform ratios, etc. as a function of diabatic heating structure. Perhaps contrary to expectation, we find only small differences in PDFs of rainfall rates, system sizes, and system duration for different heating profile structures. If organization is defined according to heating structures, then one possible interpretation of these results is that organization is independent of system size, duration, and many times, even lifecycle stage. Is it possible that most systems "hobble" along and exhibit varying degrees of organization, dependent on local environment moisture/buoyancy variations, unlike the archetypical MCS paradigm? This presentation will also discuss the questions posed above within the context of

  6. The relationship between large-scale and convective states in the tropics - Towards an improved representation of convection in large-scale models

    Energy Technology Data Exchange (ETDEWEB)

    Jakob, Christian [Monash Univ., Melbourne, VIC (Australia)

    2015-02-26

    This report summarises an investigation into the relationship of tropical thunderstorms to the atmospheric conditions they are embedded in. The study is based on the use of radar observations at the Atmospheric Radiation Measurement site in Darwin run under the auspices of the DOE Atmospheric Systems Research program. Linking the larger scales of the atmosphere with the smaller scales of thunderstorms is crucial for the development of the representation of thunderstorms in weather and climate models, which is carried out by a process termed parametrisation. Through the analysis of radar and wind profiler observations the project made several fundamental discoveries about tropical storms and quantified the relationship of the occurrence and intensity of these storms to the large-scale atmosphere. We were able to show that the rainfall averaged over an area the size of a typical climate model grid-box is largely controlled by the number of storms in the area, and less so by the storm intensity. This allows us to completely rethink the way we represent such storms in climate models. We also found that storms occur in three distinct categories based on their depth and that the transition between these categories is strongly related to the larger scale dynamical features of the atmosphere more so than its thermodynamic state. Finally, we used our observational findings to test and refine a new approach to cumulus parametrisation which relies on the stochastic modelling of the area covered by different convective cloud types.

  7. Impact of the Assimilation of Hyperspectral Infrared Retrieved Profiles on Advanced Weather and Research Model Simulations of a Non-Convective Wind Event

    Science.gov (United States)

    Berndt, E. B.; Zavodsky, B. T.; Folmer, M. J.; Jedlovec, G. J.

    2014-01-01

    Non-convective wind events commonly occur with passing extratropical cyclones and have significant societal and economic impacts. Since non-convective winds often occur in the absence of specific phenomena such as a thunderstorm, tornado, or hurricane, the public are less likely to heed high wind warnings and continue daily activities. Thus non-convective wind events result in as many fatalities as straight line thunderstorm winds. One physical explanation for non-convective winds includes tropopause folds. Improved model representation of stratospheric air and associated non-convective wind events could improve non-convective wind forecasts and associated warnings. In recent years, satellite data assimilation has improved skill in forecasting extratropical cyclones; however errors still remain in forecasting the position and strength of extratropical cyclones as well as the tropopause folding process. The goal of this study is to determine the impact of assimilating satellite temperature and moisture retrieved profiles from hyperspectral infrared (IR) sounders (i.e. Atmospheric Infrared Sounder (AIRS), Cross-track Infrared and Microwave Sounding Suite (CrIMSS), and Infrared Atmospheric Sounding Interferometer (IASI)) on the model representation of the tropopause fold and an associated high wind event that impacted the Northeast United States on 09 February 2013. Model simulations using the Advanced Research Weather Research and Forecasting Model (ARW) were conducted on a 12-km grid with cycled data assimilation mimicking the operational North American Model (NAM). The results from the satellite assimilation run are compared to a control experiment (without hyperspectral IR retrievals), 32-km North American Regional Reanalysis (NARR) interpolated to a 12-km grid, and 13-km Rapid Refresh analyses.

  8. The Use of Red Green Blue Air Mass Imagery to Investigate the Role of Stratospheric Air in a Non-convective Wind Event

    Science.gov (United States)

    Berndt, E. B.; Zavodsky, B. T.; Jedlovec, G. J.; Molthan, A. L.

    2013-01-01

    Non-convective wind events commonly occur with passing extratropical cyclones and have significant societal and economic impacts. Since non-convective winds often occur in the absence of specific phenomena such as a thunderstorm, tornado, or hurricane, the public are less likely to heed high wind warnings and continue daily activities. Thus non-convective wind events result in as many fatalities as straight line thunderstorm winds. One physical explanation for non-convective winds includes tropopause folds. Improved model representation of stratospheric air and associated non-convective wind events could improve non-convective wind forecasts and associated warnings. In recent years, satellite data assimilation has improved skill in forecasting extratropical cyclones; however errors still remain in forecasting the position and strength of extratropical cyclones as well as the tropopause folding process. The goal of this study is to determine the impact of assimilating satellite temperature and moisture retrieved profiles from hyperspectral infrared (IR) sounders (i.e. Atmospheric Infrared Sounder (AIRS), Cross-track Infrared and Microwave Sounding Suite (CrIMSS), and Infrared Atmospheric Sounding Interferometer (IASI)) on the model representation of the tropopause fold and an associated high wind event that impacted the Northeast United States on 09 February 2013. Model simulations using the Advanced Research Weather Research and Forecasting Model (ARW) were conducted on a 12-km grid with cycled data assimilation mimicking the operational North American Model (NAM). The results from the satellite assimilation run are compared to a control experiment (without hyperspectral IR retrievals), Modern Era-Retrospective Analysis for Research and Applications (MERRA) reanalysis, and Rapid Refresh analyses.

  9. Natural convection in horizontal fluid layers

    International Nuclear Information System (INIS)

    Suo-Antilla, A.J.

    1977-02-01

    The experimental work includes developing and using a thermal convection cell to obtain measurements of the heat flux and turbulent core temperature of a horizontal layer of fluid heated internally and subject to both stabilizing and destabilizing temperature differences. The ranges of Rayleigh numbers tested were 10 7 equal to or less than R/sub I/ equal to or less than 10 13 and -10 10 equal to or less than R/sub E/ equal to or less than 10 10 . Power integral methods were found to be adequate for interpolating and extrapolating the data. The theoretical work consists of the derivation, solution and use of the mean field equations for study of thermally driven convection in horizontal layers of infinite extent. The equations were derived by a separation of variables technique where the horizontal directions were described by periodic structures and the vertical being some function of z. The derivation resulted in a coupled set of momentum and energy equations. The equations were simplified by using the infinite Prandtl number limit and neglecting direct intermodal interaction. Solutions to these equations are used to predict the existence of multi-wavenumber flows at all supercritical Rayleigh numbers. Subsequent inspection of existing experimental photographs of convecting fluids confirms their existence. The onset of time dependence is found to coincide with the onset of the second convective mode. Each mode is found to consist of two wavenumbers and typically the velocity and temperature fields of the right modal branch are found to be out of phase

  10. Rotating thermal convection at very large Rayleigh numbers

    Science.gov (United States)

    Weiss, Stephan; van Gils, Dennis; Ahlers, Guenter; Bodenschatz, Eberhard

    2016-11-01

    The large scale thermal convection systems in geo- and astrophysics are usually influenced by Coriolis forces caused by the rotation of their celestial bodies. To better understand the influence of rotation on the convective flow field and the heat transport at these conditions, we study Rayleigh-Bénard convection, using pressurized sulfur hexaflouride (SF6) at up to 19 bars in a cylinder of diameter D=1.12 m and a height of L=2.24 m. The gas is heated from below and cooled from above and the convection cell sits on a rotating table inside a large pressure vessel (the "Uboot of Göttingen"). With this setup Rayleigh numbers of up to Ra =1015 can be reached, while Ekman numbers as low as Ek =10-8 are possible. The Prandtl number in these experiment is kept constant at Pr = 0 . 8 . We report on heat flux measurements (expressed by the Nusselt number Nu) as well as measurements from more than 150 temperature probes inside the flow. We thank the Deutsche Forschungsgemeinschaft (DFG) for financial support through SFB963: "Astrophysical Flow Instabilities and Turbulence". The work of GA was supported in part by the US National Science Foundation through Grant DMR11-58514.

  11. Overview of the Deep Convective Clouds and Chemistry Experiment

    Science.gov (United States)

    Barth, M. C.; Brune, W. H.; Cantrell, C. A.; Rutledge, S. A.; Crawford, J. H.; Flocke, F. M.; Huntrieser, H.

    2012-12-01

    The Deep Convective Clouds and Chemistry (DC3) project conducted a 7-week field campaign during May and June 2012 to study thunderstorm dynamical, physical, and electrical characteristics, as well as their effects on the atmosphere's composition, especially ozone and particles in the climate-sensitive upper troposphere near the thunderstorm tops. The NSF/NCAR Gulfstream V (GV) and the NASA DC-8 aircraft flew 17 coordinated flights to sample low-level inflow and upper troposphere outflow air near thunderstorms and to sample convective outflow air as it chemically aged during the next 24 hours. The DLR Falcon aircraft observed the fresh storm outflow and also obtained measurements of aged outflow. In total, 19 cases of active thunderstorms and over 6 cases of photochemical aging were flown. The DC3 aircraft, based in Salina, Kansas, were equipped with instruments to measure a variety of gases, aerosols, and cloud particle characteristics in situ as well as the NASA DC-8 measuring the ozone and aerosol distribution by lidar. The aircraft targeted storms predicted to occur within range of coverage by ground-based radar pairs, lightning mapping arrays (LMAs), and frequent launches of balloon-borne instruments that could measure the storm's physical, kinematic, and lightning characteristics. This coverage occurred in three regions: 1) northeastern Colorado, 2) central Oklahoma to western Texas, and 3) northern Alabama. DC3 demonstrated that it is possible to sample with two aircraft the inflow and outflow of storms, which were simultaneously sampled by the ground radars, LMAs, and soundings. The DC3 data set is extensive and rich. This presentation will summarize the overall statistics of the DC3 measurements giving a general idea of storm characteristics, transport of trace gases, and photochemical aging of species. Examples will be given of specific thunderstorm cases, including a Colorado case where a biomass-burning plume was ingested by a storm, and of sampling a

  12. Cold pool organization and the merging of convective updrafts in a Large Eddy Simulation

    Science.gov (United States)

    Glenn, I. B.; Krueger, S. K.

    2016-12-01

    Cold pool organization is a process that accelerates the transition from shallow to deep cumulus convection, and leads to higher deep convective cloud top heights. The mechanism by which cold pool organization enhances convection remains not well understood, but the basic idea is that since precipitation evaporation and a low equivalent potential temperature in the mid-troposphere lead to strong cold pools, the net cold pool effect can be accounted for in a cumulus parameterization as a relationship involving those factors. Understanding the actual physical mechanism at work will help quantify the strength of the relationship between cold pools and enhanced deep convection. One proposed mechanism of enhancement is that cold pool organization leads to reduced distances between updrafts, creating a local environment more conducive to convection as updrafts entrain parcels of air recently detrained by their neighbors. We take this hypothesis one step further and propose that convective updrafts actually merge, not just exchange recently processed air. Because entrainment and detrainment around an updraft draws nearby air in or pushes it out, respectively, they act like dynamic flow sources and sinks, drawing each other in or pushing each other away. The acceleration is proportional to the inverse square of the distance between two updrafts, so a small reduction in distance can make a big difference in the rate of merging. We have shown in previous research how merging can be seen as collisions between different updraft air parcels using Lagrangian Parcel Trajectories (LPTs) released in a Large Eddy Simulation (LES) during a period with organized deep convection. Now we use a Eulerian frame of reference to examine the updraft merging process during the transition from shallow to organized deep convection. We use a case based on the Large-Scale Biosphere-Atmosphere Experiment in Amazonia (LBA) for our LES. We directly measure the rate of entrainment and the properties

  13. Off-line algorithm for calculation of vertical tracer transport in the troposphere due to deep convection

    NARCIS (Netherlands)

    Belikov, D.A.; Maksyutov, S.; Krol, M.C.; Fraser, A.; Rigby, M.; Bian, H.; Agusti-Panareda, A.; Bergmann, D.; Bousquet, P.; Cameron-Smith, P.; Chipperfield, M.P.; Fortems-Cheiney, A.; Gloor, E.; Haynes, K.; Hess, P.; Houweling, S.; Kawa, S.R.; Law, R.M.; Loh, Z.; Meng, L.; Palmer, P.I.; Patra, P.K.; Prinn, R.G.; Saito, R.; Wilson, C.

    2013-01-01

    A modified cumulus convection parametrisation scheme is presented. This scheme computes the mass of air transported upward in a cumulus cell using conservation of moisture and a detailed distribution of convective precipitation provided by a reanalysis dataset. The representation of vertical

  14. Mass transport in propagating patterns of convection

    International Nuclear Information System (INIS)

    Moses, E.; Steinberg, V.

    1988-01-01

    Recent studies of propagating waves in an oscillatory convection of binary mixtures arise questions about transport properties of this flow. Optical visualization of a field of refraction index due to a shadowgraph technique gives information on the temperature and concentration fields. However, experimental observation of rolls propagating along the cell as travelling waves (TW) does not necessarily imply that mass is transferred hydrodynamically by the convective motion along the cell. One of the possibilities discussed, e.g., is that TW observed is only a phase propagation. The traditional examples of such situations come from the domain of linear, superposition-oriented physics. Acoustic waves transfer momentum and energy, but do not cause the mass to make excursions for their equilibrium point that are larger than the oscillation amplitude. In the case of nonlinear physics we were aware that small amplitude surface waves cause only small oscillatory motion round the equilibrium point, while larger amplitudes can cause the mass to start moving in the direction of the TW. This paper discussed the different possibilities of mass transfer by TW. 27 refs., 20 figs

  15. The Radiation Environment of Exoplanet Atmospheres

    Directory of Open Access Journals (Sweden)

    Jeffrey L. Linsky

    2014-10-01

    Full Text Available Exoplanets are born and evolve in the radiation and particle environment created by their host star. The host star’s optical and infrared radiation heats the exoplanet’s lower atmosphere and surface, while the ultraviolet, extreme ultraviolet and X-radiation control the photochemistry and mass loss from the exoplanet’s upper atmosphere. Stellar radiation, especially at the shorter wavelengths, changes dramatically as a host star evolves leading to changes in the planet’s atmosphere and habitability. This paper reviews the present state of our knowledge concerning the time-dependent radiation emitted by stars with convective zones, that is stars with spectral types F, G, K, and M, which comprise nearly all of the host stars of detected exoplanets.

  16. Intracellular effects of atmospheric-pressure plasmas on melanoma cancer cells

    Energy Technology Data Exchange (ETDEWEB)

    Ishaq, M., E-mail: ishaqmusarat@gmail.com [Peter MacCallum Cancer Centre, East Melbourne, VIC 3002 (Australia); Comonwealth Scientific and Industrial Research Organization, Sydney, New South Wales (Australia); Bazaka, K. [Institute for Health and Biomedical Innovation, School of Chemistry, Physics and Mechanical Engineering, Queensland University of Technology, Brisbane, QLD 4000 (Australia); Ostrikov, K. [Comonwealth Scientific and Industrial Research Organization, Sydney, New South Wales (Australia); Institute for Health and Biomedical Innovation, School of Chemistry, Physics and Mechanical Engineering, Queensland University of Technology, Brisbane, QLD 4000 (Australia)

    2015-12-15

    Gas discharge plasmas formed at atmospheric pressure and near room temperature have recently been shown as a promising tool for cancer treatment. The mechanism of the plasma action is attributed to generation of reactive oxygen and nitrogen species, electric fields, charges, and photons. The relative importance of different modes of action of atmospheric-pressure plasmas depends on the process parameters and specific treatment objects. Hence, an in-depth understanding of biological mechanisms that underpin plasma-induced death in cancer cells is required to optimise plasma processing conditions. Here, the intracellular factors involved in the observed anti-cancer activity in melanoma Mel007 cells are studied, focusing on the effect of the plasma treatment dose on the expression of tumour suppressor protein TP73. Over-expression of TP73 causes cell growth arrest and/or apoptosis, and hence can potentially be targeted to enhance killing efficacy and selectivity of the plasma treatment. It is shown that the plasma treatment induces dose-dependent up-regulation of TP73 gene expression, resulting in significantly elevated levels of TP73 RNA and protein in plasma-treated melanoma cells. Silencing of TP73 expression by means of RNA interference inhibited the anticancer effects of the plasma, similar to the effect of caspase inhibitor z-VAD or ROS scavenger N-acetyl cysteine. These results confirm the role of TP73 protein in dose-dependent regulation of anticancer activity of atmospheric-pressure plasmas.

  17. Microphysical variability of vigorous Amazonian deep convection observed by CloudSat, and relevance for cloud-resolving model

    Science.gov (United States)

    Dodson, J. B.; Taylor, P. C.

    2017-12-01

    The number and varieties of both satellite cloud observations and cloud simulations are increasing rapidly. This create a challenge in identifying the best methods for quantifying the physical processes associated with deep convection, and then comparing convective observations with simulations. The use of satellite simulators in conjunction with model output is an increasingly popular method of comparison studies. However, the complexity of deep convective systems renders simplistic comparison metrics hazardous, possibly resulting is misleading or even contradicting conclusions. To investigate this, CloudSat observations of Amazonian deep convective cores (DCCs) and associated anvils are compared and contrasted with output from cloud resolving models in a manner that both highlights microphysical proprties of observed convection, and displays the effects of microphysical parameterizations on allowing robust comparisons. First, contoured frequency by altitude diagrams (CFAD) are calculated from the reflectivity fields of DCCs observed by CloudSat. This reveals two distinct modes of hydrometeor variability in the high level cloud region, with one dominated by snow and aggregates, and the other by large graupel and hail. Second, output from the superparameterized Community Atmospheric Model (SP-CAM) data are processed with the Quickbeam radar simulator to produce CFADs which can be compared with the observed CFADs. Two versions of SP-CAM are used, with one (version 4) having single-moment microphysics which excludes graupel/hail, and the other (version 5) a double-moment scheme with graupel. The change from version 4 to 5 improves the reflectivity CFAD, even without corresponding changes to non-hydrometeor fields such as vertical velocity. However, it does not produce a realistic double hydrometeor mode. Finally, the influences of microphysics are further tested in the System for Atmospheric Modeling (SAM), which allows for higher control over model parameters than

  18. WRF nested large-eddy simulations of deep convection during SEAC4RS

    Science.gov (United States)

    Heath, Nicholas K.; Fuelberg, Henry E.; Tanelli, Simone; Turk, F. Joseph; Lawson, R. Paul; Woods, Sarah; Freeman, Sean

    2017-04-01

    Large-eddy simulations (LES) and observations are often combined to increase our understanding and improve the simulation of deep convection. This study evaluates a nested LES method that uses the Weather Research and Forecasting (WRF) model and, specifically, tests whether the nested LES approach is useful for studying deep convection during a real-world case. The method was applied on 2 September 2013, a day of continental convection that occurred during the Studies of Emissions and Atmospheric Composition, Clouds and Climate Coupling by Regional Surveys (SEAC4RS) campaign. Mesoscale WRF output (1.35 km grid length) was used to drive a nested LES with 450 m grid spacing, which then drove a 150 m domain. Results reveal that the 450 m nested LES reasonably simulates observed reflectivity distributions and aircraft-observed in-cloud vertical velocities during the study period. However, when examining convective updrafts, reducing the grid spacing to 150 m worsened results. We find that the simulated updrafts in the 150 m run become too diluted by entrainment, thereby generating updrafts that are weaker than observed. Lastly, the 450 m simulation is combined with observations to study the processes forcing strong midlevel cloud/updraft edge downdrafts that were observed on 2 September. Results suggest that these strong downdrafts are forced by evaporative cooling due to mixing and by perturbation pressure forces acting to restore mass continuity around neighboring updrafts. We conclude that the WRF nested LES approach, with further development and evaluation, could potentially provide an effective method for studying deep convection in real-world cases.

  19. CONVECTIVE BURSTS AND THE COUPLING OF SATURN'S EQUATORIAL STORMS AND INTERIOR ROTATION

    International Nuclear Information System (INIS)

    Heimpel, Moritz; Aurnou, Jonathan M.

    2012-01-01

    Temporal variations of Saturn's equatorial jet and magnetic field hint at rich dynamics coupling the atmosphere and the deep interior. However, it has been assumed that rotation of the interior dynamo must be steady over tens of years of modern observations. Here we use a numerical convection model and scaling estimates to show how equatorial convective bursts can transfer angular momentum to the deeper interior. The numerical model allows angular momentum transfer between a fluid outer spherical shell and a rigid inner sphere. Convection drives a prograde equatorial jet exhibiting quasiperiodic bursts that fill the equatorial volume outside the tangent cylinder. For each burst strong changes in the equatorial surface velocity are associated with retrograde torque on the inner sphere. Our results suggest that Saturn's Great White Spot, a giant storm that was observed to fill the equatorial region in 1990, could mobilize a volume of fluid carrying roughly 15% of Saturn's moment of inertia. Conservation of angular momentum then implies that a 20% change in the equatorial jet angular velocity could change the average interior rotation rate by about 0.1%—roughly an order of magnitude less than the apparent rotation rate changes associated with Saturn's kilometric radio (SKR) signal. However, if the SKR signal originates outside the liquid metal core in a 'planetary tachocline' that separates the layer of fast zonal flow from the magnetically controlled and slowly convecting deep interior, then convective bursts can provide a possible mechanism for the observed ∼1% SKR changes.

  20. Measurement of the temperature of density maximum of water solutions using a convective flow technique

    OpenAIRE

    Cawley, M.F.; McGlynn, D.; Mooney, P.A.

    2006-01-01

    A technique is described which yields an accurate measurement of the temperature of density maximum of fluids which exhibit such anomalous behaviour. The method relies on the detection of changes in convective flow in a rectangular cavity containing the test fluid.The normal single-cell convection which occurs in the presence of a horizontal temperature gradient changes to a double cell configuration in the vicinity of the density maximum, and this transition manifests itself in changes in th...

  1. Convective heat transfer

    CERN Document Server

    Kakac, Sadik; Pramuanjaroenkij, Anchasa

    2014-01-01

    Intended for readers who have taken a basic heat transfer course and have a basic knowledge of thermodynamics, heat transfer, fluid mechanics, and differential equations, Convective Heat Transfer, Third Edition provides an overview of phenomenological convective heat transfer. This book combines applications of engineering with the basic concepts of convection. It offers a clear and balanced presentation of essential topics using both traditional and numerical methods. The text addresses emerging science and technology matters, and highlights biomedical applications and energy technologies. What’s New in the Third Edition: Includes updated chapters and two new chapters on heat transfer in microchannels and heat transfer with nanofluids Expands problem sets and introduces new correlations and solved examples Provides more coverage of numerical/computer methods The third edition details the new research areas of heat transfer in microchannels and the enhancement of convective heat transfer with nanofluids....

  2. Robustness and sensitivities of central U.S. summer convection in the super-parameterized CAM: Multi-model intercomparison with a new regional EOF index

    Science.gov (United States)

    Kooperman, Gabriel J.; Pritchard, Michael S.; Somerville, Richard C. J.

    2013-06-01

    Mesoscale convective systems (MCSs) can bring up to 60% of summer rainfall to the central United States but are not simulated by most global climate models. In this study, a new empirical orthogonal function based index is developed to isolate the MCS activity, similar to that developed by Wheeler and Hendon (2004) for the Madden-Julian Oscillation. The index is applied to compactly compare three conventional- and super-parameterized (SP) versions (3.0, 3.5, and 5.0) of the National Center for Atmospheric Research Community Atmosphere Model (CAM). Results show that nocturnal, eastward propagating convection is a robust effect of super-parameterization but is sensitive to its specific implementation. MCS composites based on the index show that in SP-CAM3.5, convective MCS anomalies are unrealistically large scale and concentrated, while surface precipitation is too weak. These aspects of the MCS signal are improved in the latest version (SP-CAM5.0), which uses high-order microphysics.

  3. The boundary layer moist static energy budget: Convection picks up moisture and leaves footprints in the marine boundary layer

    Science.gov (United States)

    de Szoeke, S. P.

    2017-12-01

    Averaged over the tropical marine boundary layer (BL), 130 W m-2 turbulent surface moist static energy (MSE) flux, 120 W m-2 of which is evaporation, is balanced by upward MSE flux at the BL top due to 1) incorporation of cold air by downdrafts from deep convective clouds, and 2) turbulent entrainment of dry air into the BL. Cold saturated downdraft air, and warm clear air entrained into the BL have distinct thermodynamic properties. This work observationally quantifies their respective MSE fluxes in the central Indian Ocean in 2011, under different convective conditions of the intraseasonal (40-90 day) Madden Julian oscillation (MJO). Under convectively suppressed conditions, entrainment and downdraft fluxes export equal shares (60 W m-2) of MSE from the BL. Downdraft fluxes are more variable, increasing for stronger convection. In the convectively active phase of the MJO, downdrafts export 90 W m-2 from the BL, compared to 40 W m-2 by entrainment. These processes that control the internal, latent (condensation), and MSE of the tropical marine atmospheric BL determine the parcel buoyancy and strength of tropical deep convection.

  4. Double-moment cloud microphysics scheme for the deep convection parameterization in the GFDL AM3

    Science.gov (United States)

    Belochitski, A.; Donner, L.

    2014-12-01

    A double-moment cloud microphysical scheme originally developed by Morrision and Gettelman (2008) for the stratiform clouds and later adopted for the deep convection by Song and Zhang (2011) has been implemented in to the Geophysical Fluid Dynamics Laboratory's atmospheric general circulation model AM3. The scheme treats cloud drop, cloud ice, rain, and snow number concentrations and mixing ratios as diagnostic variables and incorporates processes of autoconversion, self-collection, collection between hydrometeor species, sedimentation, ice nucleation, drop activation, homogeneous and heterogeneous freezing, and the Bergeron-Findeisen process. Such detailed representation of microphysical processes makes the scheme suitable for studying the interactions between aerosols and convection, as well as aerosols' indirect effects on clouds and their roles in climate change. The scheme is first tested in the single column version of the GFDL AM3 using forcing data obtained at the U.S. Department of Energy Atmospheric Radiation Measurment project's Southern Great Planes site. Scheme's impact on SCM simulations is discussed. As the next step, runs of the full atmospheric GCM incorporating the new parameterization are compared to the unmodified version of GFDL AM3. Global climatological fields and their variability are contrasted with those of the original version of the GCM. Impact on cloud radiative forcing and climate sensitivity is investigated.

  5. Planform structure and heat transfer in turbulent free convection over horizontal surfaces

    Science.gov (United States)

    Theerthan, S. Ananda; Arakeri, Jaywant H.

    2000-04-01

    This paper deals with turbulent free convection in a horizontal fluid layer above a heated surface. Experiments have been carried out on a heated surface to obtain and analyze the planform structure and the heat transfer under different conditions. Water is the working fluid and the range of flux Rayleigh numbers (Ra) covered is 3×107-2×1010. The different conditions correspond to Rayleigh-Bénard convection, convection with either the top water surface open to atmosphere or covered with an insulating plate, and with an imposed external flow on the heated boundary. Without the external flow the planform is one of randomly oriented line plumes. At large Rayleigh number Ra and small aspect ratio (AR), these line plumes seem to align along the diagonal, presumably due to a large scale flow. The side views show inclined dyelines, again indicating a large scale flow. When the external flow is imposed, the line plumes clearly align in the direction of external flow. The nondimensional average plume spacing, Raλ1/3, varies between 40 and 90. The heat transfer rate, for all the experiments conducted, represented as RaδT-1/3, where δT is the conduction layer thickness, varies only between 0.1-0.2, showing that in turbulent convection the heat transfer rates are similar under the different conditions.

  6. Convection in complex shaped vessel; Convection dans des enceintes de forme complexe

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    2000-07-01

    The 8 november 2000, the SFT (Societe Francaise de Thermique) organized a technical day on the convection in complex shaped vessels. Nine papers have been presented in the domains of the heat transfers, the natural convection, the fluid distribution, the thermosyphon effect, the steam flow in a sterilization cycle and the transformers cooling. Eight papers are analyzed in ETDE and one paper dealing with the natural convection in spent fuels depository is analyzed in INIS. (A.L.B.)

  7. The Impact of the Assimilation of Hyperspectral Infrared Retrieved Profiles on Advanced Weather and Research Model Simulations of a Non-Convective Wind Event

    Science.gov (United States)

    Berndt, Emily; Zavodsky, Bradley; Jedlovec, Gary; Elmer, Nicholas

    2013-01-01

    Non-convective wind events commonly occur with passing extratropical cyclones and have significant societal and economic impacts. Since non-convective winds often occur in the absence of specific phenomena such as a thunderstorm, tornado, or hurricane, the public are less likely to heed high wind warnings and continue daily activities. Thus non-convective wind events result in as many fatalities as straight line thunderstorm winds. One physical explanation for non-convective winds includes tropopause folds. Improved model representation of stratospheric air and associated non-convective wind events could improve non-convective wind forecasts and associated warnings. In recent years, satellite data assimilation has improved skill in forecasting extratropical cyclones; however errors still remain in forecasting the position and strength of extratropical cyclones as well as the tropopause folding process. The goal of this study is to determine the impact of assimilating satellite temperature and moisture retrieved profiles from hyperspectral infrared (IR) sounders (i.e. Atmospheric Infrared Sounder (AIRS), Cross-track Infrared and Microwave Sounding Suite (CrIMSS), and Infrared Atmospheric Sounding Interferometer (IASI)) on the model representation of the tropopause fold and an associated high wind event that impacted the Northeast United States on 09 February 2013. Model simulations using the Advanced Research Weather Research and Forecasting Model (ARW) were conducted on a 12-km grid with cycled data assimilation mimicking the operational North American Model (NAM). The results from the satellite assimilation run are compared to a control experiment (without hyperspectral IR retrievals), Modern Era-Retrospective Analysis for Research and Applications (MERRA) reanalysis, and Rapid Refresh analyses.

  8. TEMPERATURE STRUCTURE AND ATMOSPHERIC CIRCULATION OF DRY TIDALLY LOCKED ROCKY EXOPLANETS

    Energy Technology Data Exchange (ETDEWEB)

    Koll, Daniel D. B.; Abbot, Dorian S., E-mail: dkoll@uchicago.edu [Department of the Geophysical Sciences, University of Chicago, Chicago, IL 60637 (United States)

    2016-07-10

    Next-generation space telescopes will observe the atmospheres of rocky planets orbiting nearby M-dwarfs. Understanding these observations will require well-developed theory in addition to numerical simulations. Here we present theoretical models for the temperature structure and atmospheric circulation of dry, tidally locked rocky exoplanets with gray radiative transfer and test them using a general circulation model (GCM). First, we develop a radiative-convective (RC) model that captures surface temperatures of slowly rotating and cool atmospheres. Second, we show that the atmospheric circulation acts as a global heat engine, which places strong constraints on large-scale wind speeds. Third, we develop an RC-subsiding model which extends our RC model to hot and thin atmospheres. We find that rocky planets develop large day–night temperature gradients at a ratio of wave-to-radiative timescales up to two orders of magnitude smaller than the value suggested by work on hot Jupiters. The small ratio is due to the heat engine inefficiency and asymmetry between updrafts and subsidence in convecting atmospheres. Fourth, we show, using GCM simulations, that rotation only has a strong effect on temperature structure if the atmosphere is hot or thin. Our models let us map out atmospheric scenarios for planets such as GJ 1132b, and show how thermal phase curves could constrain them. Measuring phase curves of short-period planets will require similar amounts of time on the James Webb Space Telescope as detecting molecules via transit spectroscopy, so future observations should pursue both techniques.

  9. Do convection-permitting models improve the representation of the impact of LUC?

    Science.gov (United States)

    Vanden Broucke, Sam; Van Lipzig, Nicole

    2017-10-01

    In this study we assess the added value of convection permitting scale (CPS) simulations in studies using regional climate models to quantify the bio-geophysical climate impact of land-use change (LUC). To accomplish this, a comprehensive model evaluation methodology is applied to both non-CPS and CPS simulations. The main characteristics of the evaluation methodology are (1) the use of paired eddy-covariance site observations (forest vs open land) and (2) a simultaneous evaluation of all surface energy budget components. Results show that although generally satisfactory, non-CPS simulations fall short of completely reproducing the observed LUC signal because of three key biases. CPS scale simulations succeed at significantly reducing two of these biases, namely, those in daytime shortwave radiation and daytime sensible heat flux. Also, CPS slightly reduces a third bias in nighttime incoming longwave radiation. The daytime improvements can be attributed partially to the switch from parameterized to explicit convection, the associated improvement in the simulation of afternoon convective clouds, and resulting surface energy budget and atmospheric feedbacks. Also responsible for the improvements during daytime is a better representation of surface heterogeneity and thus, surface roughness. Meanwhile, the modest nighttime longwave improvement can be attributed to increased vertical atmospheric resolution. However, the model still fails at reproducing the magnitude of the observed nighttime longwave difference. One possible explanation for this persistent bias is the nighttime radiative effect of biogenic volatile organic compound emissions over the forest site. A correlation between estimated emission rates and the observed nighttime longwave difference, as well as the persistence of the longwave bias provide support for this hypothesis. However, more research is needed to conclusively determine if the effect indeed exists.

  10. Heat transfer by natural convection into an horizontal cavity; Transferencia de calor por conveccion natural en una cavidad horizontal

    Energy Technology Data Exchange (ETDEWEB)

    Arevalo J, P

    1998-12-31

    At this thesis it is studied the heat transfer by natural convection in an horizontal cavity, it is involved a boiling`s part that is described the regimes and correlations differences for boiling`s curve. It is designed a horizontal cavity for realize the experimental part and it`s mention from equipment or instrumentation to succeed in a experimentation that permits to realize the analysis of heat transfer, handling as water fluid at atmospheric pressure and where it`s present process from natural convection involving part boiling`s subcooled. The system consists of heater zone submerged in a horizontal cavity with water. Once part finished experimental with information to obtained it`s proceeded to obtain a correlation, realized starting from analysis dimensionless such as: Jakob, Bond and Grasoft (Boiling) besides of knows in natural convection: Prandtl and Nusselt. The mathematical model explains the behavior for natural convection continued part boiling`s subcooled. It is realize analysis graphics too where it`s show comparing with Globe Dropkin and Catton equations by natural convection with bottom heating. (Author)

  11. Heat transfer by natural convection into an horizontal cavity; Transferencia de calor por conveccion natural en una cavidad horizontal

    Energy Technology Data Exchange (ETDEWEB)

    Arevalo J, P

    1999-12-31

    At this thesis it is studied the heat transfer by natural convection in an horizontal cavity, it is involved a boiling`s part that is described the regimes and correlations differences for boiling`s curve. It is designed a horizontal cavity for realize the experimental part and it`s mention from equipment or instrumentation to succeed in a experimentation that permits to realize the analysis of heat transfer, handling as water fluid at atmospheric pressure and where it`s present process from natural convection involving part boiling`s subcooled. The system consists of heater zone submerged in a horizontal cavity with water. Once part finished experimental with information to obtained it`s proceeded to obtain a correlation, realized starting from analysis dimensionless such as: Jakob, Bond and Grasoft (Boiling) besides of knows in natural convection: Prandtl and Nusselt. The mathematical model explains the behavior for natural convection continued part boiling`s subcooled. It is realize analysis graphics too where it`s show comparing with Globe Dropkin and Catton equations by natural convection with bottom heating. (Author)

  12. Turbulent boundary layer in high Rayleigh number convection in air.

    Science.gov (United States)

    du Puits, Ronald; Li, Ling; Resagk, Christian; Thess, André; Willert, Christian

    2014-03-28

    Flow visualizations and particle image velocimetry measurements in the boundary layer of a Rayleigh-Bénard experiment are presented for the Rayleigh number Ra=1.4×1010. Our visualizations indicate that the appearance of the flow structures is similar to ordinary (isothermal) turbulent boundary layers. Our particle image velocimetry measurements show that vorticity with both positive and negative sign is generated and that the smallest flow structures are 1 order of magnitude smaller than the boundary layer thickness. Additional local measurements using laser Doppler velocimetry yield turbulence intensities up to I=0.4 as in turbulent atmospheric boundary layers. From our observations, we conclude that the convective boundary layer becomes turbulent locally and temporarily although its Reynolds number Re≈200 is considerably smaller than the value 420 underlying existing phenomenological theories. We think that, in turbulent Rayleigh-Bénard convection, the transition of the boundary layer towards turbulence depends on subtle details of the flow field and is therefore not universal.

  13. Nonlinear 2D convection and enhanced cross-field plasma transport near the MHD instability threshold

    International Nuclear Information System (INIS)

    Pastukhov, V.P.; Chudin, N.V.

    2003-01-01

    Results of theoretical study and computer simulations of nonlinear 2D convection induced by a convective MHD instability near its threshold in FRC-like non-paraxial magnetic confinement system are presented. An appropriate closed set of weakly nonideal reduced MHD equations is derived to describe the self-consistent plasma dynamics. It is shown that the convection forms nonlinear large scale stochastic vortices (convective cells), which tend to restore and to maintain the marginally stable pressure pro e and result in an essentially nonlocal enhanced heat transport. A large amount of data on the structure of the nascent convective flows is obtained and analyzed. The computer simulations of long time plasma evolutions demonstrate such features of the resulting anomalous transport as pro e consistency, L-H transition, external transport barrier, pinch of impurities, etc. (author)

  14. Long-term unsteadiness and large-scale structures in Rayleigh-Bénard convection with and without electromagnetic forcing

    NARCIS (Netherlands)

    Verdoold, J.

    2010-01-01

    This dissertation focuses on turbulent thermal convection, which occurs in a wide range of (geo)physical situations, like in the atmosphere, the oceans, the interior of stars or planets, and engineering applications, like metal casting or crystal growth processes. In this work, a special type of

  15. Time-dependent patterns in quasivertical cylindrical binary convection

    Science.gov (United States)

    Alonso, Arantxa; Mercader, Isabel; Batiste, Oriol

    2018-02-01

    This paper reports on numerical investigations of the effect of a slight inclination α on pattern formation in a shallow vertical cylindrical cell heated from below for binary mixtures with a positive value of the Soret coefficient. By using direct numerical simulation of the three-dimensional Boussinesq equations with Soret effect in cylindrical geometry, we show that a slight inclination of the cell in the range α ≈0.036 rad =2∘ strongly influences pattern selection. The large-scale shear flow (LSSF) induced by the small tilt of gravity overcomes the squarelike arrangements observed in noninclined cylinders in the Soret regime, stratifies the fluid along the direction of inclination, and produces an enhanced separation of the two components of the mixture. The competition between shear effects and horizontal and vertical buoyancy alters significantly the dynamics observed in noninclined convection. Additional unexpected time-dependent patterns coexist with the basic LSSF. We focus on an unsual periodic state recently discovered in an experiment, the so-called superhighway convection state (SHC), in which ascending and descending regions of fluid move in opposite directions. We provide numerical confirmation that Boussinesq Navier-Stokes equations with standard boundary conditions contain the essential ingredients that allow for the existence of such a state. Also, we obtain a persistent heteroclinic structure where regular oscillations between a SHC pattern and a state of nearly stationary longitudinal rolls take place. We characterize numerically these time-dependent patterns and investigate the dynamics around the threshold of convection.

  16. Moisture Vertical Structure, Deep Convective Organization, and Convective Transition in the Amazon

    Science.gov (United States)

    Schiro, K. A.; Neelin, J. D.

    2017-12-01

    Constraining precipitation processes in climate models with observations is crucial to accurately simulating current climate and reducing uncertainties in future projections. Results from the Green Ocean Amazon (GOAmazon) field campaign (2014-2015) provide evidence that deep convection is strongly controlled by the availability of moisture in the free troposphere over the Amazon, much like over tropical oceans. Entraining plume buoyancy calculations confirm that CWV is a good proxy for the conditional instability of the environment, yet differences in convective onset as a function of CWV exist over land and ocean, as well as seasonally and diurnally over land. This is largely due to variability in the contribution of lower tropospheric humidity to the total column moisture. Boundary layer moisture shows a strong relationship to the onset during the day, which largely disappears during nighttime. Using S-Band radar, these transition statistics are examined separately for unorganized and mesoscale-organized convection, which exhibit sharp increases in probability of occurrence with increasing moisture throughout the column, particularly in the lower free troposphere. Retrievals of vertical velocity from a radar wind profiler indicate updraft velocity and mass flux increasing with height through the lower troposphere. A deep-inflow mixing scheme motivated by this — corresponding to deep inflow of environmental air into a plume that grows with height — provides a weighting of boundary layer and free tropospheric air that yields buoyancies consistent with the observed onset of deep convection across seasons and times of day, across land and ocean sites, and for all convection types. This provides a substantial improvement relative to more traditional constant mixing assumptions, and a dramatic improvement relative to no mixing. Furthermore, it provides relationships that are as strong or stronger for mesoscale-organized convection as for unorganized convection.

  17. Characteristics of atmospheric gravity waves observed using the MU (Middle and Upper atmosphere) radar and GPS (Global Positioning System) radio occultation.

    Science.gov (United States)

    Tsuda, Toshitaka

    2014-01-01

    The wind velocity and temperature profiles observed in the middle atmosphere (altitude: 10-100 km) show perturbations resulting from superposition of various atmospheric waves, including atmospheric gravity waves. Atmospheric gravity waves are known to play an important role in determining the general circulation in the middle atmosphere by dynamical stresses caused by gravity wave breaking. In this paper, we summarize the characteristics of atmospheric gravity waves observed using the middle and upper atmosphere (MU) radar in Japan, as well as novel satellite data obtained from global positioning system radio occultation (GPS RO) measurements. In particular, we focus on the behavior of gravity waves in the mesosphere (50-90 km), where considerable gravity wave attenuation occurs. We also report on the global distribution of gravity wave activity in the stratosphere (10-50 km), highlighting various excitation mechanisms such as orographic effects, convection in the tropics, meteorological disturbances, the subtropical jet and the polar night jet.

  18. Basic Concepts for Convection Parameterization in Weather Forecast and Climate Models: COST Action ES0905 Final Report

    Directory of Open Access Journals (Sweden)

    Jun–Ichi Yano

    2014-12-01

    Full Text Available The research network “Basic Concepts for Convection Parameterization in Weather Forecast and Climate Models” was organized with European funding (COST Action ES0905 for the period of 2010–2014. Its extensive brainstorming suggests how the subgrid-scale parameterization problem in atmospheric modeling, especially for convection, can be examined and developed from the point of view of a robust theoretical basis. Our main cautions are current emphasis on massive observational data analyses and process studies. The closure and the entrainment–detrainment problems are identified as the two highest priorities for convection parameterization under the mass–flux formulation. The need for a drastic change of the current European research culture as concerns policies and funding in order not to further deplete the visions of the European researchers focusing on those basic issues is emphasized.

  19. Influence of Superparameterization and a Higher-Order Turbulence Closure on Rainfall Bias Over Amazonia in Community Atmosphere Model Version 5: How Parameterization Changes Rainfall

    Energy Technology Data Exchange (ETDEWEB)

    Zhang, Kai [Jackson School of Geosciences, University of Texas at Austin, Austin TX USA; Fu, Rong [Jackson School of Geosciences, University of Texas at Austin, Austin TX USA; Department of Atmospheric and Oceanic Sciences, University of California, Los Angeles CA USA; Shaikh, Muhammad J. [Jackson School of Geosciences, University of Texas at Austin, Austin TX USA; Ghan, Steven [Pacific Northwest National Laboratory, Richland WA USA; Wang, Minghuai [Institute for Climate and Global Change Research and School of Atmospheric Sciences, Nanjing University, Nanjing China; Collaborative Innovation Center of Climate Change, Nanjing China; Leung, L. Ruby [Pacific Northwest National Laboratory, Richland WA USA; Dickinson, Robert E. [Jackson School of Geosciences, University of Texas at Austin, Austin TX USA; Marengo, Jose [Centro Nacional de Monitoramento e Alertas aos Desastres Naturais, São Jose dos Campos Brazil

    2017-09-21

    We evaluate the Community Atmosphere Model Version 5 (CAM5) with a higher-order turbulence closure scheme, named Cloud Layers Unified By Binomials (CLUBB), and a Multiscale Modeling Framework (MMF) with two different microphysics configurations to investigate their influences on rainfall simulations over Southern Amazonia. The two different microphysics configurations in MMF are the one-moment cloud microphysics without aerosol treatment (SAM1MOM) and two-moment cloud microphysics coupled with aerosol treatment (SAM2MOM). Results show that both MMF-SAM2MOM and CLUBB effectively reduce the low biases of rainfall, mainly during the wet season. The CLUBB reduces low biases of humidity in the lower troposphere with further reduced shallow clouds. The latter enables more surface solar flux, leading to stronger convection and more rainfall. MMF, especially MMF-SAM2MOM, unstablizes the atmosphere with more moisture and higher atmospheric temperatures in the atmospheric boundary layer, allowing the growth of more extreme convection and further generating more deep convection. MMF-SAM2MOM significantly increases rainfall in the afternoon, but it does not reduce the early bias of the diurnal rainfall peak; LUBB, on the other hand, delays the afternoon peak time and produces more precipitation in the early morning, due to more realistic gradual transition between shallow and deep convection. MMF appears to be able to realistically capture the observed increase of relative humidity prior to deep convection, especially with its two-moment configuration. In contrast, in CAM5 and CAM5 with CLUBB, occurrence of deep convection in these models appears to be a result of stronger heating rather than higher relative humidity.

  20. Vertical natural convection: application of the unifying theory of thermal convection

    NARCIS (Netherlands)

    Ng, C.S.; Ooi, A.; Lohse, Detlef; Chung, D.

    2015-01-01

    Results from direct numerical simulations of vertical natural convection at Rayleigh numbers 1.0×10 5 –1.0×10 9 and Prandtl number 0.709 support a generalised applicability of the Grossmann–Lohse (GL) theory, which was originally developed for horizontal natural (Rayleigh–Bénard) convection. In

  1. One-dimensional model of oxygen transport impedance accounting for convection perpendicular to the electrode

    Energy Technology Data Exchange (ETDEWEB)

    Mainka, J. [Laboratorio Nacional de Computacao Cientifica (LNCC), CMC 6097, Av. Getulio Vargas 333, 25651-075 Petropolis, RJ, Caixa Postal 95113 (Brazil); Maranzana, G.; Thomas, A.; Dillet, J.; Didierjean, S.; Lottin, O. [Laboratoire d' Energetique et de Mecanique Theorique et Appliquee (LEMTA), Universite de Lorraine, 2, avenue de la Foret de Haye, 54504 Vandoeuvre-les-Nancy (France); LEMTA, CNRS, 2, avenue de la Foret de Haye, 54504 Vandoeuvre-les-Nancy (France)

    2012-10-15

    A one-dimensional (1D) model of oxygen transport in the diffusion media of proton exchange membrane fuel cells (PEMFC) is presented, which considers convection perpendicular to the electrode in addition to diffusion. The resulting analytical expression of the convecto-diffusive impedance is obtained using a convection-diffusion equation instead of a diffusion equation in the case of classical Warburg impedance. The main hypothesis of the model is that the convective flux is generated by the evacuation of water produced at the cathode which flows through the porous media in vapor phase. This allows the expression of the convective flux velocity as a function of the current density and of the water transport coefficient {alpha} (the fraction of water being evacuated at the cathode outlet). The resulting 1D oxygen transport impedance neglects processes occurring in the direction parallel to the electrode that could have a significant impact on the cell impedance, like gas consumption or concentration oscillations induced by the measuring signal. However, it enables us to estimate the impact of convection perpendicular to the electrode on PEMFC impedance spectra and to determine in which conditions the approximation of a purely diffusive oxygen transport is valid. Experimental observations confirm the numerical results. (Copyright copyright 2012 WILEY-VCH Verlag GmbH and Co. KGaA, Weinheim)

  2. Analysis of the convective timescale during the major floods in the NE Iberian Peninsula since 1871

    Science.gov (United States)

    Pino, David; Reynés, Artur; Mazon, Jordi; Carles Balasch, Josep; Lluis Ruiz-Bellet, Josep; Tuset, Jordi; Barriendos, Mariano; Castelltort, Xavier

    2016-04-01

    Floods are the most severe natural hazard in the western Mediterranean basin. They cause most of the damages and most of the victims. Some of the selected floods caused more than one hundred casualties each and a large quantity of damages in infrastructures. In a previous work (Balasch, et al., 2015), using the PREDIFLOOD database (Barriendos et al., 2014) we studied the atmospheric conditions that occurred during some of the most important floods occurred in the north-east of the Iberian Peninsula in the last centuries: 1874, 1875, 1894, 1897, 1898, 1901, 1907, 1913, 1919, 1932, 1937, 1940, 1962, 1963, 1977, 1994, 1996, and 2000. We analyzed the atmospheric synoptic situations at the time of each flood from the data provided by NOAA 20th Century Reanalysis and we compared it to the rainfall spatial distributions obtained with the hydrological modeling. In this work we enlarge the previous investigation by analyzing the evolution of a convective index proposed by Done et al. (2006) and modified by Molini et al. (2011). This index, called convective time scale, is obtained from the evolution of CAPE and is used to separate equilibrium and non-equilibrium convection. In the former, CAPE generated by large-scale processes is balanced by the consumption due to convection. In the second case, CAPE is created by large-scale processes over a long time and is rapidly consumed during outbreaks of convection. Both situations produced a totally different evolution of CAPE with low and approximately constant values in the first case and large and variable values in the second. Additionally, from this index it can be estimated the rainfall rate. We use data provided by NOAA 20th Century Reanalysis, to calculate the convective time scale and to analyze its evolution and horizontal distribution. We study the correspondence between the convective timescale, the season when the flood occurred, duration of the rainfall, and the specific peak flow rate of the flood. Finally, for the

  3. Three-dimensional modeling of radiative and convective exchanges in the urban atmosphere

    International Nuclear Information System (INIS)

    Qu, Yongfeng

    2011-01-01

    In many micro-meteorological studies, building resolving models usually assume a neutral atmosphere. Nevertheless, urban radiative transfers play an important role because of their influence on the energy budget. In order to take into account atmospheric radiation and the thermal effects of the buildings in simulations of atmospheric flow and pollutant dispersion in urban areas, we have developed a three-dimensional (3D) atmospheric radiative scheme, in the atmospheric module of the Computational Fluid Dynamics model Code-Saturne. The radiative scheme was previously validated with idealized cases, using as a first step, a constant 3D wind field. In this work, the full coupling of the radiative and thermal schemes with the dynamical model is evaluated. The aim of the first part is to validate the full coupling with the measurements of the simple geometry from the 'Mock Urban Setting Test' (MUST) experiment. The second part discusses two different approaches to model the radiative exchanges in urban area with a comparison between Code-Saturne and SOLENE. The third part applies the full coupling scheme to show the contribution of the radiative transfer model on the airflow pattern in low wind speed conditions in a 3D urban canopy. In the last part we use the radiative-dynamics coupling to simulate a real urban environment and validate the modeling approach with field measurements from the 'Canopy and Aerosol Particles Interactions in Toulouse Urban Layer' (CAPITOUL). (author) [fr

  4. Lightning characteristics of derecho producing mesoscale convective systems

    Science.gov (United States)

    Bentley, Mace L.; Franks, John R.; Suranovic, Katelyn R.; Barbachem, Brent; Cannon, Declan; Cooper, Stonie R.

    2016-06-01

    Derechos, or widespread, convectively induced wind storms, are a common warm season phenomenon in the Central and Eastern United States. These damaging and severe weather events are known to sweep quickly across large spatial regions of more than 400 km and produce wind speeds exceeding 121 km h-1. Although extensive research concerning derechos and their parent mesoscale convective systems already exists, there have been few investigations of the spatial and temporal distribution of associated cloud-to-ground lightning with these events. This study analyzes twenty warm season (May through August) derecho events between 2003 and 2013 in an effort to discern their lightning characteristics. Data used in the study included cloud-to-ground flash data derived from the National Lightning Detection Network, WSR-88D imagery from the University Corporation for Atmospheric Research, and damaging wind report data obtained from the Storm Prediction Center. A spatial and temporal analysis was conducted by incorporating these data into a geographic information system to determine the distribution and lightning characteristics of the environments of derecho producing mesoscale convective systems. Primary foci of this research include: (1) finding the approximate size of the lightning activity region for individual and combined event(s); (2) determining the intensity of each event by examining the density and polarity of lightning flashes; (3) locating areas of highest lightning flash density; and (4) to provide a lightning spatial analysis that outlines the temporal and spatial distribution of flash activity for particularly strong derecho producing thunderstorm episodes.

  5. Study of natural convection heat transfer characteristics. (1) Influence of ventilation duct height

    International Nuclear Information System (INIS)

    Wakamatsu, Mitsuo; Iwaki, Chikako; Ikeda, Tatsumi; Morooka, Shinichi; Ikeda, Hiroshi; Nakada, Kotaro; Masaki, Yoshikazu

    2008-01-01

    Natural cooling system has been investigated in waste storage. It is important to evaluate the flow by natural draft enough to removal the decay heat from the waste. In this study, we carried out the fundamental experiment of ventilation duct height effect for natural convection on vertical cylindrical heater in atmospheric air. The scale of test facility is about 4m height with single heater. The heating value is varied in the range of 33-110W, where Rayleigh number is over 10 10 . Natural convection flow rate were calculated by measured velocity with thermo anemometer in the inlet duct. The temperature of the cylindrical heater wall and fluid were measured with thermocouples. It was found that the heat transfer coefficient difference between long duct and short duct is small in this experiment. (author)

  6. Observations of Coastally Transitioning West African Mesoscale Convective Systems during NAMMA

    Directory of Open Access Journals (Sweden)

    Bradley W. Klotz

    2012-01-01

    Full Text Available Observations from the NASA 10 cm polarimetric Doppler weather radar (NPOL were used to examine structure, development, and oceanic transition of West African Mesoscale Convective Systems (MCSs during the NASA African Monsoon Multidisciplinary Analysis (NAMMA to determine possible indicators leading to downstream tropical cyclogenesis. Characteristics examined from the NPOL data include echo-top heights, maximum radar reflectivity, height of maximum radar reflectivity, and convective and stratiform coverage areas. Atmospheric radiosondes launched during NAMMA were used to investigate environmental stability characteristics that the MCSs encountered while over land and ocean, respectively. Strengths of African Easterly Waves (AEWs were examined along with the MCSs in order to improve the analysis of MCS characteristics. Mean structural and environmental characteristics were calculated for systems that produced TCs and for those that did not in order to determine differences between the two types. Echo-top heights were similar between the two types, but maximum reflectivity and height and coverage of intense convection (>50 dBZ are all larger than for the TC producing cases. Striking differences in environmental conditions related to future TC formation include stronger African Easterly Jet, increased moisture especially at middle and upper levels, and increased stability as the MCSs coastally transition.

  7. Progress in Understanding Land-Surface-Atmosphere Coupling from LBA Research

    Directory of Open Access Journals (Sweden)

    Alan K Betts

    2010-06-01

    Full Text Available LBA research has deepened our understanding of the role of soil water storage, clouds and aerosols in land-atmosphere coupling. We show how the reformulation of cloud forcing in terms of an effective cloud albedo per unit area of surface gives a useful measure of the role of clouds in the surface energy budget over the Amazon. We show that the diurnal temperature range has a quasi-linear relation to the daily mean longwave cooling; and to effective cloud albedo because of the tight coupling between the near-surface climate, the boundary layer and the cloud field. The coupling of surface and atmospheric processes is critical to the seasonal cycle: deep forest rooting systems make water available throughout the year, whereas in the dry season the shortwave cloud forcing is reduced by regional scale subsidence, so that more light is available for photosynthesis. At sites with an annual precipitation above 1900 mm and a dry season length less than 4 months, evaporation rates increased in the dry season, coincident with increased radiation. In contrast, ecosystems with precipitation less than 1700 mm and a longer dry season showed clear evidence of reduced evaporation in the dry season coming from water stress. In all these sites, the seasonal variation of the effective cloud albedo is a major factor in determining the surface available energy. Dry season fires add substantial aerosol to the atmosphere. Aerosol scattering and absorption both reduce the total downward surface radiative flux, but increase the diffuse/direct flux ratio, which increases photosynthetic efficiency. Convective plumes produced by fires enhance the vertical transport of aerosols over the Amazon, and effectively inject smoke aerosol and gases directly into the middle troposphere with substantial impacts on mid- tropospheric dispersion. In the rainy season in Rondônia, convection in low-level westerly flows with low aerosol content resembles oceanic convection with

  8. Heat transfer in melt ponds with convection and radiative heating: observationally-inspired modelling

    Science.gov (United States)

    Wells, A.; Langton, T.; Rees Jones, D. W.; Moon, W.; Kim, J. H.; Wilkinson, J.

    2016-12-01

    Melt ponds have key impacts on the evolution of Arctic sea ice and summer ice melt. Small changes to the energy budget can have significant consequences, with a net heat-flux perturbation of only a few Watts per square metre sufficient to explain the thinning of sea ice over recent decades. Whilst parameterisations of melt-pond thermodynamics often assume that pond temperatures remain close to the freezing point, recent in-situ observations show more complex thermal structure with significant diurnal and synoptic variability. We here consider the energy budget of melt ponds and explore the role of internal convective heat transfer in determining the thermal structure within the pond in relatively calm conditions with low winds. We quantify the energy fluxes and temperature variability using two-dimensional direct numerical simulations of convective turbulence within a melt pond, driven by internal radiative heating and surface fluxes. Our results show that the convective flow dynamics are modulated by changes to the incoming radiative flux and sensible heat flux at the pond surface. The evolving pond surface temperature controls the outgoing longwave emissions from the pond. Hence the convective flow modifies the net energy balance of a melt pond, modulating the relative fractions of the incoming heat flux that is re-emitted to the atmosphere or transferred downward into the sea ice to drive melt.

  9. Measurement of buoyancy driven convection and microaccelerations on board International Space Station with the use of convection sensor Dacon-M

    Science.gov (United States)

    Putin, Gennady; Belyaev, Mikhail; Babushkin, Igor; Glukhov, Alexander; Zilberman, Evgeny; Maksimova, Marina; Ivanov, Alexander; Sazonov, Viktor; Nikitin, Sergey; Zavalishin, Denis; Polezhaev, Vadim

    The system for studying buoyancy driven convection and low-frequency microaccelerations aboard spacecraft is described. The system consists of: 1. facility for experimentation on a spaceship - the convection sensor and electronic equipment for apparatus control and for acquisition and processing of relevant information; 2. facility for ground-based laboratory modeling of various fluid motion mechanisms in application to orbital flight environment; 3. the system for computer simulations of convection processes in a fluid cell of a sensor using the data on microaccelerations obtained by accelerometers and another devices aboard the orbital station. The arrangement and functioning of the sensor and control hardware are expounded. The results of terrestrial experiments performed in order to determine the sensitivity of the sensor are described. The results of experiments carried out in 2008 - 2011 with the “DACON-M” apparatus in different modules of the Russian Segment of International Space Station and for various regimes of Station activity are reported. Experimental data recorded by “DACON-M” apparatus have been compared with the calculations of acceleration components based on the telemetry information about the orientation of the Station.

  10. Hydrothermal convection and uranium deposits in abnormally radioactive plutons

    International Nuclear Information System (INIS)

    1978-09-01

    Hydrothermal uranium deposits are often closely associated with granites of abnormally high uranium content. We have studied the question whether the heat generated within such granites can cause fluid convection of sufficient magnitude to develop hydrothermal uranium deposits. Numerical models of flow through porous media were used to calculate temperatures and fluid flow in and around plutons similar to the Conway Granite, New Hampshire, i.e. with a halfwidth of 17 km, a thickness of 6.25 km, and with a uniform internal heat generation rate of 20 x 10 -13 cal/cm 3 -sec. Fluid convection was computed for plutons with permeabilities between 0.01 and 5 millidarcies (1 x10 -13 cm 2 to 5 x 10 -11 cm 2 . Flow rates and the size and location of convection cells in and around radioactive plutons like the Conway Granite were found to depend critically on the permeability distribution within the pluton and in adjacent country rocks. The depth of burial, the distribution of heat sources within the pluton, and small rates of heat generation in the country rock are only of minor importance. Topographic relief is unlikely to effect flow rates significantly, but can have a major influence on the distribution of recharge and discharge areas. Within a few million years, the mass of water transported by steady state convection through such radioactive plutons can equal the mass of water which can convect through them during initial cooling from magmatic temperatures. If the permeability in a Conway-type pluton is on the order of 0.5 millidarcies, the rate of fluid convection is probably sufficient to develop a hydrothermal ore deposit containing 10,000 tons of uranium in a period of two million years. Such a uranium deposit is most likely to develop in an area of strong upwelling or strong downwelling flow

  11. Jovian meterology: Large-scale moist convection without a lower boundary

    Science.gov (United States)

    Gierasch, P. J.

    1975-01-01

    It is proposed that Jupiter's cloud bands represent large scale convection whose character is determined by the phase change of water at a level where the temperature is about 275K. It is argued that there are three important layers in the atmosphere: a tropopause layer where emission to space occurs; an intermediate layer between the tropopause and the water cloud base; and the deep layer below the water cloud. All arguments are only semi-quantitative. It is pointed out that these ingredients are essential to Jovian meteorology.

  12. Presentation on Tropical Mesoscale convective Systems and ...

    Indian Academy of Sciences (India)

    IAS Admin

    Shallow convection- 70% of the storm heights are below 6 km. ♢ Deep convection ... Decay convection, the convective top is found at a higher altitude than deep .... Stratospheric Fountain – Two step process. Warm tropopause- preferable for.

  13. A transilient matrix for moist convection

    Energy Technology Data Exchange (ETDEWEB)

    Romps, D.; Kuang, Z.

    2011-08-15

    A method is introduced for diagnosing a transilient matrix for moist convection. This transilient matrix quantifies the nonlocal transport of air by convective eddies: for every height z, it gives the distribution of starting heights z{prime} for the eddies that arrive at z. In a cloud-resolving simulation of deep convection, the transilient matrix shows that two-thirds of the subcloud air convecting into the free troposphere originates from within 100 m of the surface. This finding clarifies which initial height to use when calculating convective available potential energy from soundings of the tropical troposphere.

  14. Para hydrogen equilibration in the atmospheres of the outer planets

    International Nuclear Information System (INIS)

    Conrath, B.J.

    1986-01-01

    The thermodynamic behavior of the atmospheres of the Jovian planets is strongly dependent on the extent to which local thermal equilibration of the ortho and para states of molecular hydrogen is achieved. Voyager IRIS data from Jupiter imply substantial departures of the para hydrogen fraction from equilibrium in the upper troposphere at low latitudes, but with values approaching equilibrium at higher latitudes. Data from Saturn are less sensitive to the orth-para ratio, but suggest para hydrogen fractions near the equilibrium value. Above approximately the 200 K temperature level, para hydrogen conversion can enhance the efficiency of convection, resulting in a substantial increase in overturning times on all of the outer planets. Currently available data cannot definitively establish the ortho-para ratios in the atmospheres of Uranus and Neptune, but suggest values closer to local equilibrium than to the 3.1 normal ratio. Modeling of sub-millimeter wavelength measurements of these planets suggest thermal structures with frozen equilibrium lapse rates in their convective regions

  15. The configuration of the auroral distribution for interplanetary magnetic field Bz northward. 2. Ionospheric convection consistent with Viking observations

    International Nuclear Information System (INIS)

    Jankowska, K.; Elphinstone, R.D.; Murphree, J.S.; Cogger, L.L.; Hearn, D.; Marklund, G.

    1990-01-01

    Views of the northern hemisphere auroral distribution obtained by the Viking satellite present a qualitative means of inferring the convective patterns which occur during interplanetary magnetic field (IMF) B z northward. The approach is taken whereby upward field-aligned currents are assumed to be coincident with large-scale discrete auroral features and on this basis possible convective patterns are deduced. While the patterns are not unique solutions, they are found to be consistent with merging theory predictions. That is, for B z northward the auroral observations support the possibility of three and/or four cell patterns. When the IMF azimuthal angle is 90 degree (270 degree), a clockwise (anticlockwise) cell is found to be located in the polar region between the two standard viscous cells. When IMF B x dominates and is in a toward orientation, convection stagnates, whereas if B x is negative, a four-cell pattern may form with sunward flow at very high latitudes. The concept of using global auroral images as an additional tool when developing convection models could prove to be necessary in order to extend beyond the few isolated measurements taken in situ by satellites

  16. Why does tropical convective available potential energy (CAPE) increase with warming?

    Science.gov (United States)

    Seeley, Jacob T.; Romps, David M.

    2015-12-01

    Recent work has produced a theory for tropical convective available potential energy (CAPE) that highlights the Clausius-Clapeyron (CC) scaling of the atmosphere's saturation deficit as a driver of increases in CAPE with warming. Here we test this so-called "zero-buoyancy" theory for CAPE by modulating the saturation deficit of cloud-resolving simulations of radiative-convective equilibrium in two ways: changing the sea surface temperature (SST) and changing the environmental relative humidity (RH). For earthlike and warmer SSTs, undilute parcel buoyancy in the lower troposphere is insensitive to increasing SST because of a countervailing CC scaling that balances the increase in the saturation deficit; however, buoyancy increases dramatically with SST in the upper troposphere. Conversely, in the RH experiment, undilute buoyancy throughout the troposphere increases monotonically with decreasing RH. We show that the zero-buoyancy theory successfully predicts these contrasting behaviors, building confidence that it describes the fundamental physics of CAPE and its response to warming.

  17. Heat Convection

    Science.gov (United States)

    Jiji, Latif M.

    Professor Jiji's broad teaching experience lead him to select the topics for this book to provide a firm foundation for convection heat transfer with emphasis on fundamentals, physical phenomena, and mathematical modelling of a wide range of engineering applications. Reflecting recent developments, this textbook is the first to include an introduction to the challenging topic of microchannels. The strong pedagogic potential of Heat Convection is enhanced by the follow ing ancillary materials: (1) Power Point lectures, (2) Problem Solutions, (3) Homework Facilitator, and, (4) Summary of Sections and Chapters.

  18. Analysis and simulation of mesoscale convective systems accompanying heavy rainfall: The goyang case

    Science.gov (United States)

    Choi, Hyun-Young; Ha, Ji-Hyun; Lee, Dong-Kyou; Kuo, Ying-Hwa

    2011-05-01

    We investigated a torrential rainfall case with a daily rainfall amount of 379 mm and a maximum hourly rain rate of 77.5 mm that took place on 12 July 2006 at Goyang in the middlewestern part of the Korean Peninsula. The heavy rainfall was responsible for flash flooding and was highly localized. High-resolution Doppler radar data from 5 radar sites located over central Korea were analyzed. Numerical simulations using the Weather Research and Forecasting (WRF) model were also performed to complement the high-resolution observations and to further investigate the thermodynamic structure and development of the convective system. The grid nudging method using the Global Final (FNL) Analyses data was applied to the coarse model domain (30 km) in order to provide a more realistic and desirable initial and boundary conditions for the nested model domains (10 km, 3.3 km). The mesoscale convective system (MCS) which caused flash flooding was initiated by the strong low level jet (LLJ) at the frontal region of high equivalent potential temperature (θe) near the west coast over the Yellow Sea. The ascending of the warm and moist air was induced dynamically by the LLJ. The convective cells were triggered by small thermal perturbations and abruptly developed by the warm θe inflow. Within the MCS, several convective cells responsible for the rainfall peak at Goyang simultaneously developed with neighboring cells and interacted with each other. Moist absolutely unstable layers (MAULs) were seen at the lower troposphere with the very moist environment adding the instability for the development of the MCS.

  19. Tracking the MJO Convection and its Impact on the Diurnal Cycle over the Maritime Continent Using Satellite Observations

    Science.gov (United States)

    Kerns, B. W.; Chen, S. S.

    2017-12-01

    The Indo-Pacific Maritime Continent (MC) is the most active convection center in the tropics, and the most important modes of variability are the diurnal cycle and the Madden-Julian Oscillation (MJO). Previous studies have shown that the MC has strong diurnal variability compared with the rest of the tropics, and the diurnal cycle of convection over the MC is amplified during the passage of an MJO. One outstanding science question is how the passage of the active MJO affects the diurnal cycle. The atmospheric, upper ocean, and land surface forcing factors contributing to the diurnal cycle need to be clarified. In order to address this, large scale precipitation tracking (LPT) is used to identify MJO active and suppressed periods for 2000-2015. To document the diurnal cycle of convection during the active and suppressed periods, TRMM/GPM and mesoscale cloud cluster tracking are used. Finally, the LPT tracking is used to composite the satellite-estimated surface wind, humidity, temperature, cloud cover, and soil moisture over the islands for active versus suppressed MJO periods. In active MJO periods, the diurnal convection in the surrounding marginal seas is enhanced and the diurnal convection over land is decreased. The islands of the MC have greater soil moisture, more cloud cover, and do not warm up as much during the day, leading to a weaker afternoon maximum over land. But how is nocturnal convection over the sea increased? The largest, most mature convective cloud systems are found over the marginal seas in the early morning. This is hypothesized to mainly be a consequence of the longer life cycle of convective systems in the favorable large-scale active MJO. The propagation of the MJO across the MC is facilitated by the enhanced nocturnal deep convection over the sea. In contrast, In the suppressed period the convection is mostly daytime forced convection over land which is locked to the terrain.

  20. Empirical links between the local runaway greenhouse, super-greenhouse, and deep convection in Earth's tropics

    Science.gov (United States)

    Dewey, M. C.; Goldblatt, C.

    2017-12-01

    Energy balance requires that energy absorbed and emitted at the top of the atmosphere equal; this is maintained via the Planck feedback whereby outgoing longwave radiation (OLR) increases as surface temperature increases. There are two cases where this breaks down: the runaway greenhouse (known from planetary sciences theory) characterized by an asymptotic limit on OLR from moist atmospheres, and the super-greenhouse (known from tropical meteorology observations) where OLR decreases with surface temperature when the atmosphere is moist aloft. Here we show that the runaway greenhouse limit can be empirically observed and constrained in Earth's tropics, that the runaway and super-greenhouse occur as part of the same physical phenomenon, and that the transition through the super-greenhouse to a local runaway greenhouse is intimately linked to the onset of deep convection. A runaway greenhouse occurs when water vapour causes the troposphere to become optically thick to thermal radiation from the surface and a limit on OLR emerges as thermal emission is from a constant temperature level aloft. This limit is modelled as 282 W/m/m [Goldblatt et al, 2013]. Using satellite data from Earth's tropics, we find an empirical value of this limit of 280 W/m/m, in excellent agreement with the model.A column transitioning to a runaway greenhouse typically overshoots the runaway limit and then OLR decreases with increasing surface temperature until the runaway limit is reached after which OLR remains constant. The term super-greenhouse effect (SGE) has been used to describe OLR decreasing with surface warming, observed in these satellite measurements. We show the SGE is one and the same as the transition to a local runaway greenhouse, and represents a fundamental shift in the radiation response of the earth system, rather than simply an extension of water vapour feedback. This transition via SGE from an optically thin to optically thick troposphere is facilitated by enhanced

  1. Climatology and Impact of Convection on the Tropical Tropopause Layer

    Science.gov (United States)

    Robertson, Franklin; Pittman, Jasna

    2007-01-01

    Water vapor plays an important role in controlling the radiative balance and the chemical composition of the Tropical Tropopause Layer (TTL). Mechanisms ranging from slow transport and dehydration under thermodynamic equilibrium conditions to fast transport in convection have been proposed as regulators of the amount of water vapor in this layer. However,.details of these mechanisms and their relative importance remain poorly understood, The recently completed Tropical Composition, Cloud, and Climate Coupling (TC4) campaign had the opportunity to sample the.TTL over the Eastern Tropical Pacific using ground-based, airborne, and spaceborne instruments. The main goal of this study is to provide the climatological context for this campaign of deep and overshooting convective activity using various satellite observations collected during the summertime. We use the Microwave Humidity Sensor (MRS) aboard the NOAA-18 satellite to investigate the horizontal extent.and the frequency of convection reaching and penetrating into the TTL. We use the Moderate Resolution I1l1aging Spectroradiometer (MODIS) aboard the Aqua satellite to investigate the frequency distribution of daytime cirrus clouds. We use the Tropical Rainfall Measuring Mission(TRMM) and CloudSat to investigate the vertical structure and distribution of hydrometeors in the convective cells, In addition to cloud measurements; we investigate the impact that convection has on the concentration of radiatively important gases such as water vapor and ozone in the TTL by examining satellite measurement obtained from the Microwave Limb Sounder(MLS) aboard the Aura satellite.

  2. Sunspots and the physics of magnetic flux tubes. IV - Aerodynamic lift on a thin cylinder in convective flows

    Science.gov (United States)

    Tsinganos, K. C.

    1979-01-01

    The aerodynamic lift exerted on a long circular cylinder immersed in a convective flow pattern in an ideal fluid is calculated to establish the equilibrium position of the cylinder. The calculations establish the surprising result that the cylinder is pushed out the upwellings and the downdrafts of the convective cell, into a location midway between them. The implications for the intense magnetic flux tubes in the convection beneath the surface of the sun are considered.

  3. Biomass Smoke Influences on Deep Convection during the 2011 Midlatitude Continental Convective Clouds Experiment (MC3E)

    Science.gov (United States)

    Dong, X.; Logan, T.; Xi, B.

    2015-12-01

    Three deep convective cloud cases were selected during the 2011 Mid-Latitude Continental Convective Clouds Experiment (MC3E). Although biomass burning smoke advected from Mexico and Central America was the dominant source of cloud condensation nuclei (CCN) for deep convective cloud formation, the 11 May, 20 May, and 23 May cases exhibited different convective characteristics. The convection in the 11 May and 23 May cases formed in smoke laden environments in the presence of convective available potential energy (CAPE) values exceeding 1000 m2 s-2 and 3000 m2 s-2 along with low-level (0-1 km) shear of 10.3 m s-1 and 5.1 m s-1, respectively. The 11 May case had linear convection while the 23 May case featured discrete supercells. The 20 May case featured elevated linear convection that formed in a more moist environment with cleaner aerosol conditions, weak CAPE (9 km) suggesting a warm rain suppression mechanism caused by a combination of strong aerosol loading, large CAPE, and weak low-level wind shear. The observed results for the 20 May and 23 May cases agree well with recent modeling studies that simulated the convection and precipitation in these cases. Furthermore, the modeling of the 11 May case is suggested since the abundant amount of smoke CCN did not greatly enhance the overall precipitation amount and could be a possible aerosol-induced precipitation suppression case.

  4. Convection shapes the trade-off between antibiotic efficacy and the selection for resistance in spatial gradients

    Science.gov (United States)

    Gralka, Matti; Fusco, Diana; Martis, Stephen; Hallatschek, Oskar

    2017-08-01

    Since penicillin was discovered about 90 years ago, we have become used to using drugs to eradicate unwanted pathogenic cells. However, using drugs to kill bacteria, viruses or cancer cells has the serious side effect of selecting for mutant types that survive the drug attack. A crucial question therefore is how one could eradicate as many cells as possible for a given acceptable risk of drug resistance evolution. We address this general question in a model of drug resistance evolution in spatial drug gradients, which recent experiments and theories have suggested as key drivers of drug resistance. Importantly, our model takes into account the influence of convection, resulting for instance from blood flow. Using stochastic simulations, we study the fates of individual resistance mutations and quantify the trade-off between the killing of wild-type cells and the rise of resistance mutations: shallow gradients and convection into the antibiotic region promote wild-type death, at the cost of increasing the establishment probability of resistance mutations. We can explain these observed trends by modeling the adaptation process as a branching random walk. Our analysis reveals that the trade-off between death and adaptation depends on the relative length scales of the spatial drug gradient and random dispersal, and the strength of convection. Our results show that convection can have a momentous effect on the rate of establishment of new mutations, and may heavily impact the efficiency of antibiotic treatment.

  5. Air-cooled volcanoes ? New insights on convective airflow process within Miyakejima and Piton de la Fournaise volcanoes

    Science.gov (United States)

    Antoine, R.; Geshi, N.; Kurita, K.; Aoki, Y.; Ichihara, M.; Staudacher, T.; Bachelery, P.

    2012-04-01

    Subsurface airflow in the unsaturated zone of the soil has been extensively investigated in a variety of disciplines such as mining, nuclear waste or agriculture science. In volcanology, the recent discovery of subsurface airflow close to the terminal cone of Piton de La Fournaise volcano (La Réunion Island, France) provides for the first time insights into the convective behavior of air within the unsaturated layer [1]. The characteristics of the aerothermal system, its occurrence in other volcanoes, its ability to transport heat during quiescent periods and the perturbation of this system before eruptions are the key questions we want to address following this discovery. In this study, we present observations of subsurface convective airflow within opened fractures located at the summit of Miyakejima and Piton de la Fournaise volcanoes from anemometric and temperature data. Two anemometers and thermocouples were placed at the surface and at the center of the fracture at two-meter depth during a diurnal cycle. Six thermocouples also measured the temperature at 1 meter-depth, on a profile set perpendicularly to the fracture. Finally, a thermal camera was used to make punctual measurements of the surface temperature of the fracture. At Miyakejima, two surveys were realized in winter 2010 and summer 2011. During the winter, mild air exit was detected from the fracture with a central vertical velocity of 20 to 50 cm/s. The temperature of the site was constant during the diurnal cycle (~ 22°C), leading to a maximum temperature contrast of 15°C between the fracture and the atmosphere just before sunrise. During summer, a different hydrodynamic behavior was observed: Air inflow was detected during the whole diurnal cycle with a mean velocity of 20 cm/s. The temperature of the fracture followed the temperature of the atmosphere at 2 meters-depth. In the case of Piton de la Fournaise volcano, the same convective behavior was observed at two different fractures during

  6. Well-balanced compressible cut-cell simulation of atmospheric flow.

    Science.gov (United States)

    Klein, R; Bates, K R; Nikiforakis, N

    2009-11-28

    Cut-cell meshes present an attractive alternative to terrain-following coordinates for the representation of topography within atmospheric flow simulations, particularly in regions of steep topographic gradients. In this paper, we present an explicit two-dimensional method for the numerical solution on such meshes of atmospheric flow equations including gravitational sources. This method is fully conservative and allows for time steps determined by the regular grid spacing, avoiding potential stability issues due to arbitrarily small boundary cells. We believe that the scheme is unique in that it is developed within a dimensionally split framework, in which each coordinate direction in the flow is solved independently at each time step. Other notable features of the scheme are: (i) its conceptual and practical simplicity, (ii) its flexibility with regard to the one-dimensional flux approximation scheme employed, and (iii) the well-balancing of the gravitational sources allowing for stable simulation of near-hydrostatic flows. The presented method is applied to a selection of test problems including buoyant bubble rise interacting with geometry and lee-wave generation due to topography.

  7. The effect of convection and semi-convection on the C/O yield of massive stars

    International Nuclear Information System (INIS)

    Dearborn, D.S.

    1979-01-01

    The C/O ratio produced during core helium burning affects the future evolution and nucleosynthetic yield of massive stars. This ratio is shown to be sensitive to the treatment of convection as well as uncertainties in nuclear rates. By minimizing the effect of semi-convection and reducing the size of the convective core, mass loss in OB stars increases the C/O ratio. (Author)

  8. Design of Multijunction Photovoltaic Cells Optimized for Varied Atmospheric Conditions

    Directory of Open Access Journals (Sweden)

    C. Zhang

    2014-01-01

    Full Text Available Band gap engineering provides an opportunity to not only provide higher overall conversion efficiencies of the reference AM1.5 spectra but also customize PV device design for specific geographic locations and microenvironments based on atmospheric conditions characteristic to that particular location. Indium gallium nitride and other PV materials offer the opportunity for limited bandgap engineering to match spectra. The effects of atmospheric conditions such as aerosols, cloud cover, water vapor, and air mass have been shown to cause variations in spectral radiance that alters PV system performance due to both overrating and underrating. Designing PV devices optimized for spectral radiance of a particular region can result in improved PV system performance. This paper presents a new method for designing geographically optimized PV cells with using a numerical model for bandgap optimization. The geographic microclimate spectrally resolved solar flux for twelve representative atmospheric conditions for the incident radiation angle (zenith angle of 48.1° and fixed array angle of 40° is used to iteratively optimize the band gap for tandem, triple, and quad-layer of InGaN-based multijunction cells. The results of this method are illustrated for the case study of solar farms in the New York region and discussed.

  9. Simulation benchmark based on THAI-experiment on dissolution of a steam stratification by natural convection

    Energy Technology Data Exchange (ETDEWEB)

    Freitag, M., E-mail: freitag@becker-technologies.com; Schmidt, E.; Gupta, S.; Poss, G.

    2016-04-01

    Highlights: . • We studied the generation and dissolution of steam stratification in natural convection. • We performed a computer code benchmark including blind and open phases. • The dissolution of stratification predicted only qualitatively by LP and CFD models during the blind simulation phase. - Abstract: Locally enriched hydrogen as in stratification may contribute to early containment failure in the course of severe nuclear reactor accidents. During accident sequences steam might accumulate as well to stratifications which can directly influence the distribution and ignitability of hydrogen mixtures in containments. An international code benchmark including Computational Fluid Dynamics (CFD) and Lumped Parameter (LP) codes was conducted in the frame of the German THAI program. Basis for the benchmark was experiment TH24.3 which investigates the dissolution of a steam layer subject to natural convection in the steam-air atmosphere of the THAI vessel. The test provides validation data for the development of CFD and LP models to simulate the atmosphere in the containment of a nuclear reactor installation. In test TH24.3 saturated steam is injected into the upper third of the vessel forming a stratification layer which is then mixed by a superposed thermal convection. In this paper the simulation benchmark will be evaluated in addition to the general discussion about the experimental transient of test TH24.3. Concerning the steam stratification build-up and dilution of the stratification, the numerical programs showed very different results during the blind evaluation phase, but improved noticeable during open simulation phase.

  10. Anelastic Models of Fully-Convective Stars: Differential Rotation, Meridional Circulation and Residual Entropy

    Science.gov (United States)

    Sainsbury-Martinez, Felix; Browning, Matthew; Miesch, Mark; Featherstone, Nicholas A.

    2018-01-01

    Low-Mass stars are typically fully convective, and as such their dynamics may differ significantly from sun-like stars. Here we present a series of 3D anelastic HD and MHD simulations of fully convective stars, designed to investigate how the meridional circulation, the differential rotation, and residual entropy are affected by both varying stellar parameters, such as the luminosity or the rotation rate, and by the presence of a magnetic field. We also investigate, more specifically, a theoretical model in which isorotation contours and residual entropy (σ‧ = σ ‑ σ(r)) are intrinsically linked via the thermal wind equation (as proposed in the Solar context by Balbus in 2009). We have selected our simulation parameters in such as way as to span the transition between Solar-like differential rotation (fast equator + slow poles) and ‘anti-Solar’ differential rotation (slow equator + fast poles), as characterised by the convective Rossby number and △Ω. We illustrate the transition from single-celled to multi-celled MC profiles, and from positive to negative latitudinal entropy gradients. We show that an extrapolation involving both TWB and the σ‧/Ω link provides a reasonable estimate for the interior profile of our fully convective stars. Finally, we also present a selection of MHD simulations which exhibit an almost unsuppressed differential rotation profile, with energy balances remaining dominated by kinetic components.

  11. Investigation of tropical diurnal convection biases in a climate model using TWP-ICE observations and convection-permitting simulations

    Science.gov (United States)

    Lin, W.; Xie, S.; Jackson, R. C.; Endo, S.; Vogelmann, A. M.; Collis, S. M.; Golaz, J. C.

    2017-12-01

    Climate models are known to have difficulty in simulating tropical diurnal convections that exhibit distinct characteristics over land and open ocean. While the causes are rooted in deficiencies in convective parameterization in general, lack of representations of mesoscale dynamics in terms of land-sea breeze, convective organization, and propagation of convection-induced gravity waves also play critical roles. In this study, the problem is investigated at the process-level with the U.S. Department of Energy Accelerated Climate Modeling for Energy (ACME) model in short-term hindcast mode using the Cloud Associated Parameterization Testbed (CAPT) framework. Convective-scale radar retrievals and observation-driven convection-permitting simulations for the Tropical Warm Pool-International Cloud Experiment (TWP-ICE) cases are used to guide the analysis of the underlying processes. The emphasis will be on linking deficiencies in representation of detailed process elements to the model biases in diurnal convective properties and their contrast among inland, coastal and open ocean conditions.

  12. The Midlatitude Continental Convective Clouds Experiment (MC3E)

    Energy Technology Data Exchange (ETDEWEB)

    Jensen, Mark P.; Petersen, Walt A.; Bansemer, Aaron; Bharadwaj, Nitin; Carey, Larry; Cecil, D. J.; Collis, Scott M.; Del Genio, Anthony D.; Dolan, Brenda A.; Gerlach, J.; Giangrande, Scott; Heymsfield, Andrew J.; Heymsfield, Gerald; Kollias, Pavlos; Lang, T. J.; Nesbitt, Steve W.; Neumann, Andrea; Poellot, M. R.; Rutledge, Steven A.; Schwaller, Mathew R.; Tokay, Ali; Williams, C. R.; Wolff, D. B.; Xie, Shaocheng; Zipser, Edward J.

    2016-10-18

    The Midlatitude Continental Convective Clouds Experiment (MC3E), a field program jointly led by the U.S. Department of Energy’s Atmospheric Radiation Measurement program and the NASA Global Precipitation Measurement (GPM) Mission, was conducted in south-central Oklahoma during April – May 2011. MC3E science objectives were motivated by the need to improve understanding of midlatitude continental convective cloud system lifecycles, microphysics, and GPM precipitation retrieval algorithms. To achieve these objectives a multi-scale surface- and aircraft-based in situ and remote sensing observing strategy was employed. A variety of cloud and precipitation events were sampled during the MC3E, of which results from three deep convective events are highlighted. Vertical structure, air motions, precipitation drop-size distributions and ice properties were retrieved from multi-wavelength radar, profiler, and aircraft observations for an MCS on 11 May. Aircraft observations for another MCS observed on 20 May were used to test agreement between observed radar reflectivities and those calculated with forward-modeled reflectivity and microwave brightness temperatures using in situ particle size distributions and ice water content. Multi-platform observations of a supercell that occurred on 23 May allowed for an integrated analysis of kinematic and microphysical interactions. A core updraft of 25 ms-1 supported growth of hail and large rain drops. Data collected during the MC3E campaign is being used in a number of current and ongoing research projects and is available through the DOE ARM and NASA data archives.

  13. Convective instability of internal modes in accelerated compressible plasmas

    International Nuclear Information System (INIS)

    Gratton, Julio; Gratton, F.T.; Gonzalez, A.G.; Buenos Aires Univ.

    1988-01-01

    A compact second order differential equation for small amplitude magnetohydrodynamic modes of a plasma stratification in a uniform effective gravity field is derived. The steady state includes non uniform density, mass motion, magnetic shear and non isotropic pressure, given by arbitrary profiles. The perturbation treatment is of the magnetohydrodynamic class, with two closure equations for the time evolution of the pressure, in order to encompass ideal MHD, the Chew, Goldberger and Low, and other non isotropic models. As an application a detailed study of the compressible, convective-gravity modes in the ideal isotropic MHD case is presented. Local criteria for the convective instability are first obtained by means of physically intuitive arguments for unidirectional and for sheared magnetic field. In both instances a rigorous variational energy treatment is then provided. In the second case, a criterion analogous to that of Suydam for the pinch is shown to hold for plasma atmospheres. Global internal modes for an isothermal equilibrium with unidirectional magnetic field are then analysed. Stability criteria and growth rates of the unstable modes are studied. Areas of application of the reported results are indicated. (author)

  14. Convective overshoot at the solar tachocline

    Science.gov (United States)

    Brown, Benjamin; Oishi, Jeffrey S.; Anders, Evan H.; Lecoanet, Daniel; Burns, Keaton; Vasil, Geoffrey M.

    2017-08-01

    At the base of the solar convection zone lies the solar tachocline. This internal interface is where motions from the unstable convection zone above overshoot and penetrate downward into the stiffly stable radiative zone below, driving gravity waves, mixing, and possibly pumping and storing magnetic fields. Here we study the dynamics of convective overshoot across very stiff interfaces with some properties similar to the internal boundary layer within the Sun. We use the Dedalus pseudospectral framework and study fully compressible dynamics at moderate to high Peclet number and low Mach number, probing a regime where turbulent transport is important, and where the compressible dynamics are similar to those of convective motions in the deep solar interior. We find that the depth of convective overshoot is well described by a simple buoyancy equilibration model, and we consider implications for dynamics at the solar tachocline and for the storage of magnetic fields there by overshooting convection.

  15. Sunspots and the physics of magnetic flux tubes. IV. Aerodynamic lift on a thin cylinder in convective flows

    International Nuclear Information System (INIS)

    Tsinganos, K.C.

    1979-01-01

    The aerodynamic lift exerted on a long circular cylinder immersed in a convective flow pattern in an ideal fluid is calculated to establish the equilibrium position of the cylinder. The calculations establish the surprising result that the cylinder is pushed out of the upwellings and the downdrafts of the convective cell, into a location midway between them.The implications for the intense magnetic flux tubes in the convection beneath the surface of the Sun are considered

  16. A case study of microphysical structures and hydrometeor phase in convection using radar Doppler spectra at Darwin, Australia

    Energy Technology Data Exchange (ETDEWEB)

    Riihimaki, Laura D.; Comstock, Jennifer M.; Luke, Edward; Thorsen, Tyler J.; Fu, Qiang

    2017-07-28

    To understand the microphysical processes that impact diabatic heating and cloud lifetimes in convection, we need to characterize the spatial distribution of supercooled liquid water. To address this observational challenge, vertically pointing active sensors at the Darwin Atmospheric Radiation Measurement (ARM) site are used to classify cloud phase within a deep convective cloud in a shallow to deep convection transitional case. The cloud cannot be fully observed by a lidar due to signal attenuation. Thus we develop an objective method for identifying hydrometeor classes, including mixed-phase conditions, using k-means clustering on parameters that describe the shape of the Doppler spectra from vertically pointing Ka band cloud radar. This approach shows that multiple, overlapping mixed-phase layers exist within the cloud, rather than a single region of supercooled liquid, indicating complexity to how ice growth and diabatic heating occurs in the vertical structure of the cloud.

  17. Dynamo action and magnetic buoyancy in convection simulations with vertical shear

    Science.gov (United States)

    Guerrero, G.; Käpylä, P.

    2011-10-01

    A hypothesis for sunspot formation is the buoyant emergence of magnetic flux tubes created by the strong radial shear at the tachocline. In this scenario, the magnetic field has to exceed a threshold value before it becomes buoyant and emerges through the whole convection zone. In this work we present the results of direct numerical simulations of compressible turbulent convection that include a vertical shear layer. Like the solar tachocline, the shear is located at the interface between convective and stable layers. We follow the evolution of a random seed magnetic field with the aim of study under what conditions it is possible to excite the dynamo instability and whether the dynamo generated magnetic field becomes buoyantly unstable and emerges to the surface as expected in the flux-tube context. We find that shear and convection are able to amplify the initial magnetic field and form large-scale elongated magnetic structures. The magnetic field strength depends on several parameters such as the shear amplitude, the thickness and location of the shear layer, and the magnetic Reynolds number (Rm). Models with deeper and thicker shear layers allow longer storage and are more favorable for generating a mean magnetic field. Models with higher Rm grow faster but saturate at slightly lower levels. Whenever the toroidal magnetic field reaches amplitudes greater a threshold value which is close to the equipartition value, it becomes buoyant and rises into the convection zone where it expands and forms mushroom shape structures. Some events of emergence, i.e., those with the largest amplitudes of the amplified field, are able to reach the very uppermost layers of the domain. These episodes are able to modify the convective pattern forming either broader convection cells or convective eddies elongated in the direction of the field. However, in none of these events the field preserves its initial structure. The back-reaction of the magnetic field on the fluid is also

  18. Coupling of magnetospheric electrical effects into the global atmospheric electrical circuit

    International Nuclear Information System (INIS)

    Hays, P.B.; Roble, R.G.

    1979-01-01

    A quasi-static model of global atmospheric electricity has been constructed (Hays and Roble, 1978) to study the electrical processes in the lower atmosphere and the coupling between solar- and upper- atmosphere-induced variations superimposed upon the global electrical circuit. The paper reviews the essential features of this model and discusses the results obtained thus far on the effects of magnetospheric convection and substorms on the global atmospheric electrical circuit. A schematic diagram of the global quasi-static model is given. It is assumed that thunderstorms act as dipole generators, each with a positive center at the top of the cloud and a negative center a few kilometers lower than the positive center

  19. A global climatology of stratospheric gravity waves from Atmospheric Infrared Sounder observations

    Science.gov (United States)

    Hoffmann, Lars; Xue, Xianghui; Alexander, M. Joan

    2014-05-01

    We present the results of a new study that aims on the detection and classification of `hotspots' of stratospheric gravity waves on a global scale. The analysis is based on a nine-year record (2003 to 2011) of radiance measurements by the Atmospheric Infrared Sounder (AIRS) aboard NASA's Aqua satellite. We detect the presence of stratospheric gravity waves based on 4.3 micron brightness temperature variances. Our method is optimized for peak events, i.e., strong gravity wave events for which the local variance considerably exceeds background levels. We estimated the occurrence frequencies of these peak events for different seasons and time of day and used the results to find local maxima of gravity wave activity. In addition, we use AIRS radiances at 8.1 micron to simultaneously detect convective events, including deep convection in the tropics and mesoscale convective systems at mid latitudes. We classified the gravity waves according to their sources, based on seasonal occurrence frequencies for convection and by means of topographic data. Our study reproduces well-known hotspots of gravity waves, e.g., the mountain wave hotspots at the Andes and the Antarctic Peninsula or the convective hotspot during the thunderstorm season over the North American Great Plains. However, the high horizontal resolution of the AIRS observations also helped us to locate several smaller hotspots, which were partly unknown or poorly studied so far. Most of these smaller hotspots are found near orographic features like small mountain ranges, in coastal regions, in desert areas, or near isolated islands. This new study will help to select the most promising regions and seasons for future observational studies of gravity waves. Reference: Hoffmann, L., X. Xue, and M. J. Alexander, A global view of stratospheric gravity wave hotspots located with Atmospheric Infrared Sounder observations, J. Geophys. Res., 118, 416-434, doi:10.1029/2012JD018658, 2013.

  20. Dynamics of acoustic-convective drying of sunflower cake

    Science.gov (United States)

    Zhilin, A. A.

    2017-10-01

    The dynamics of drying sunflower cake by a new acoustic-convective method has been studied. Unlike the conventional (thermal-convective) method, the proposed method allows moisture to be extracted from porous materials without applying heat to the sample to be dried. Kinetic curves of drying by the thermal-convective and acoustic-convective methods were obtained and analyzed. The advantages of the acoustic-convective extraction of moisture over the thermal-convective method are discussed. The relaxation times of drying were determined for both drying methods. An intermittent drying mode which improves the efficiency of acoustic-convective extraction of moisture is considered.

  1. Reynolds number scaling in cryogenic turbulent Rayleigh-Benard convection in a cylindrical aspect ratio one cell

    Czech Academy of Sciences Publication Activity Database

    Musilová, Věra; Králík, Tomáš; La Mantia, M.; Macek, Michal; Urban, Pavel; Skrbek, L.

    2017-01-01

    Roč. 832, OCT 26 (2017), s. 721-744 ISSN 0022-1120 R&D Projects: GA ČR(CZ) GA17-03572S; GA MŠk(CZ) LO1212 Institutional support: RVO:68081731 Keywords : Benard convection * turbulent convection * turbulent flows Subject RIV: BK - Fluid Dynamics OBOR OECD: Fluids and plasma physics (including surface physics) Impact factor: 2.821, year: 2016

  2. ATom observations of new particle formation in the tropical upper troposphere. The role of convection and nucleation mechanisms

    Science.gov (United States)

    Kupc, A.; Williamson, C.; Hodshire, A. L.; Pierce, J. R.; Ray, E. A.; Froyd, K. D.; Richardson, M.; Weinzierl, B.; Dollner, M.; Erdesz, F.; Bui, T. V.; Diskin, G. S.; Brock, C. A.

    2017-12-01

    Measurements of size distributions during the Atmospheric Tomography Mission (ATom) reveal high number concentrations (>>1000 cm-3) of nucleation mode particles at high altitudes in the tropics and subtropics under low condensation sink conditions and are associated with upwelling in convective clouds. The broad spatial extent of these newly formed particles shows that the upper free troposphere (FT) of the tropics and subtropics is a globally significant source. In this study, we investigate the link between convection and new particle formation (NPF) by exploring the processes that govern NPF and growth in the tropical and subtropical FT of the Pacific and Atlantic Oceans. We use measurements of the size distributions made with a suite of fast-response instruments on board of a NASA DC-8 aircraft during ATom mission. ATom maps the remote atmosphere over the Pacific and Atlantic basins ( 80 °N and 65 °S) in continuous ascents and descents (0.2 and 13 km), providing the latitudinal and vertical information on the greenhouse gases, reactive and tracer species and aerosol properties and their seasonal variability. We couple measurements of size distributions between 0.003 and 4.8 µm and potential aerosol precursor vapors measured on ATom (August 2016 and February 2017) with calculated air mass back trajectories and the TwO-Moment Aerosol Sectional (TOMAS) box model. The back trajectories identify air masses potentially influenced by recent convection. We then use TOMAS to model particle nucleation, condensation and coagulation along that trajectory to investigate the link between convection and NPF. Through TOMAS, we explore the influence of different nucleation mechanisms (such as binary, ternary or the one with organics) and gas-phase aerosol precursors (such as sulfur dioxide) on observed particle size distributions. We discuss similarities and differences in NPF over the Pacific and Atlantic Oceans and their relationship to convection, examine particle

  3. The interaction of a magnetic cloud with the Earth - Ionospheric convection in the Northern and Southern Hemispheres for a wide range of quasi-steady interplanetary magnetic field conditions

    Science.gov (United States)

    Freeman, M. P.; Farrugia, C. J.; Burlaga, L. F.; Hairston, M. R.; Greenspan, M. E.; Ruohoniemi, J. M.; Lepping, R. P.

    1993-01-01

    Observations are presented of the ionospheric convection in cross sections of the polar cap and auroral zone as part of the study of the interaction of the Earth's magnetosphere with the magnetic cloud of January 13-15, 1988. For strongly northward IMF, the convection in the Southern Hemisphere is characterized by a two-cell convection pattern comfined to high latitudes with sunward flow over the pole. The strength of the flows is comparable to that later seen under southward IMF. Superimposed on this convection pattern there are clear dawn-dusk asymmetries associated with a one-cell convection component whose sense depends on the polarity of the magnetic cloud's large east-west magnetic field component. When the cloud's magnetic field turns southward, the convection is characterized by a two-cell pattern extending to lower latitude with antisunward flow over the pole. There is no evident interhemispheric difference in the structure and strength of the convection. Superimposed dawn-dusk asymmetries in the flow patterns are observed which are only in part attributable to the east-west component of the magnetic field.

  4. Upscale Impact of Mesoscale Disturbances of Tropical Convection on Convectively Coupled Kelvin Waves

    Science.gov (United States)

    Yang, Q.; Majda, A.

    2017-12-01

    Tropical convection associated with convectively coupled Kelvin waves (CCKWs) is typically organized by an eastward-moving synoptic-scale convective envelope with numerous embedded westward-moving mesoscale disturbances. It is of central importance to assess upscale impact of mesoscale disturbances on CCKWs as mesoscale disturbances propagate at various tilt angles and speeds. Here a simple multi-scale model is used to capture this multi-scale structure, where mesoscale fluctuations are directly driven by mesoscale heating and synoptic-scale circulation is forced by mean heating and eddy transfer of momentum and temperature. The two-dimensional version of the multi-scale model drives the synoptic-scale circulation, successfully reproduces key features of flow fields with a front-to-rear tilt and compares well with results from a cloud resolving model. In the scenario with an elevated upright mean heating, the tilted vertical structure of synoptic-scale circulation is still induced by the upscale impact of mesoscale disturbances. In a faster propagation scenario, the upscale impact becomes less important, while the synoptic-scale circulation response to mean heating dominates. In the unrealistic scenario with upward/westward tilted mesoscale heating, positive potential temperature anomalies are induced in the leading edge, which will suppress shallow convection in a moist environment. In its three-dimensional version, results show that upscale impact of mesoscale disturbances that propagate at tilt angles (110o 250o) induces negative lower-tropospheric potential temperature anomalies in the leading edge, providing favorable conditions for shallow convection in a moist environment, while the remaining tilt angle cases have opposite effects. Even in the presence of upright mean heating, the front-to-rear tilted synoptic-scale circulation can still be induced by eddy terms at tilt angles (120o 240o). In the case with fast propagating mesoscale heating, positive

  5. Convection measurement package for space processing sounding rocket flights. [low gravity manufacturing - fluid dynamics

    Science.gov (United States)

    Spradley, L. W.

    1975-01-01

    The effects on heated fluids of nonconstant accelerations, rocket vibrations, and spin rates, was studied. A system is discussed which can determine the influence of the convective effects on fluid experiments. The general suitability of sounding rockets for performing these experiments is treated. An analytical investigation of convection in an enclosure which is heated in low gravity is examined. The gravitational body force was taken as a time-varying function using anticipated sounding rocket accelerations, since accelerometer flight data were not available. A computer program was used to calculate the flow rates and heat transfer in fluids with geometries and boundary conditions typical of space processing configurations. Results of the analytical investigation identify the configurations, fluids and boundary values which are most suitable for measuring the convective environment of sounding rockets. A short description of fabricated fluid cells and the convection measurement package is given. Photographs are included.

  6. Off-line algorithm for calculation of vertical tracer transport in the troposphere due to deep convection

    Directory of Open Access Journals (Sweden)

    D. A. Belikov

    2013-02-01

    Full Text Available A modified cumulus convection parametrisation scheme is presented. This scheme computes the mass of air transported upward in a cumulus cell using conservation of moisture and a detailed distribution of convective precipitation provided by a reanalysis dataset. The representation of vertical transport within the scheme includes entrainment and detrainment processes in convective updrafts and downdrafts. Output from the proposed parametrisation scheme is employed in the National Institute for Environmental Studies (NIES global chemical transport model driven by JRA-25/JCDAS reanalysis. The simulated convective precipitation rate and mass fluxes are compared with observations and reanalysis data. A simulation of the short-lived tracer 222Rn is used to further evaluate the performance of the cumulus convection scheme. Simulated distributions of 222Rn are evaluated against observations at the surface and in the free troposphere, and compared with output from models that participated in the TransCom-CH4 Transport Model Intercomparison. From this comparison, we demonstrate that the proposed convective scheme in general is consistent with observed and modeled results.

  7. Convection index as a tool for trend analysis of intense summer storms in Switzerland

    Science.gov (United States)

    Gaal, Ladislav; Molnar, Peter; Szolgay, Jan

    2013-04-01

    number of summer storms exceeding the threshold I* also shows an increasing tendency with a similar percentage of statistically significant changes. Although our analysis indicates an increasing tendency in the intensity and frequency of summer storms with convective character in Switzerland, it is not yet clear whether these can be traced to causal factors such as atmospheric warming, etc. This remains an open research question.

  8. Coupling of convection and circulation at various resolutions

    Directory of Open Access Journals (Sweden)

    Cathy Hohenegger

    2015-03-01

    Full Text Available A correct representation of the coupling between convection and circulation constitutes a prerequisite for a correct representation of precipitation at all scales. In this study, the coupling between convection and a sea breeze is investigated across three main resolutions: large-eddy resolution where convection is fully explicit, convection-permitting resolution where convection is partly explicit and coarse resolution where convection is parameterised. The considered models are the UCLA-LES, COSMO and ICON. Despite the use of prescribed surface fluxes, comparison of the simulations reveals that typical biases associated with a misrepresentation of convection at convection-permitting and coarser resolutions significantly alter the characteristics of the sea breeze. The coarse-resolution simulations integrated without convective parameterisation and the convection-permitting simulations simulate a too slow propagation of the breeze front as compared to the large-eddy simulations. From the various factors affecting the propagation, a delayed onset and intensification of cold pools primarily explains the differences. This is a direct consequence of a delayed development of convection when the grid spacing is coarsened. Scaling the time the sea breeze reaches the centre of the land patch by the time precipitation exceeds 2 mm day−1, used as a measure for significant evaporation, yields a collapse of the simulations onto a simple linear relationship although subtle differences remain due to the use of different turbulence and microphysical schemes. Turning on the convection scheme significantly disrupts the propagation of the sea breeze due to a misrepresented timing (too early triggering and magnitude (too strong precipitation evaporation in one of the tested convection schemes of the convective processes.

  9. Utilizing CLASIC observations and multiscale models to study the impact of improved Land surface representation on modeling cloud- convection

    Energy Technology Data Exchange (ETDEWEB)

    Niyogi, Devdutta S. [Purdue

    2013-06-07

    The CLASIC experiment was conducted over the US southern great plains (SGP) in June 2007 with an objective to lead an enhanced understanding of the cumulus convection particularly as it relates to land surface conditions. This project was design to help assist with understanding the overall improvement of land atmosphere convection initiation representation of which is important for global and regional models. The study helped address one of the critical documented deficiency in the models central to the ARM objectives for cumulus convection initiation and particularly under summer time conditions. This project was guided by the scientific question building on the CLASIC theme questions: What is the effect of improved land surface representation on the ability of coupled models to simulate cumulus and convection initiation? The focus was on the US Southern Great Plains region. Since the CLASIC period was anomalously wet the strategy has been to use other periods and domains to develop the comparative assessment for the CLASIC data period, and to understand the mechanisms of the anomalous wet conditions on the tropical systems and convection over land. The data periods include the IHOP 2002 field experiment that was over roughly same domain as the CLASIC in the SGP, and some of the DOE funded Ameriflux datasets.

  10. Wind Energy-Related Atmospheric Boundary Layer Large-Eddy Simulation Using OpenFOAM: Preprint

    Energy Technology Data Exchange (ETDEWEB)

    Churchfield, M.J.; Vijayakumar, G.; Brasseur, J.G.; Moriarty, P.J.

    2010-08-01

    This paper develops and evaluates the performance of a large-eddy simulation (LES) solver in computing the atmospheric boundary layer (ABL) over flat terrain under a variety of stability conditions, ranging from shear driven (neutral stratification) to moderately convective (unstable stratification).

  11. Frost formation under different gaseous atmospheres

    International Nuclear Information System (INIS)

    Fukada, Satoshi; Tsuru, Hisanori; Nishikawa, Masabumi

    1995-01-01

    Rates of water frost growth in a vessel with a cooled horizontal plate were experimentally determined under reduced pressure atmospheres of hydrogen, helium, methane and nitrogen. The mass deposited on the cooled surface under each of the atmospheres was almost in proportion to time. The Sherwood number under the condition of no mist formation, Sh 0 , in the atmospheres of methane and nitrogen was in good agreement with Catton's equation for natural convection between horizontal parallel plates. Sh 0 in a hydrogen atmosphere was unity, which corresponds to control by molecular diffusion in the stagnant gas. The tendency of the decrease in Sh due to mist formation could be evaluated well by multiplying Sh 0 by a factor ζ CSM . The ζ CSM value was calculated based on the critical supersaturation model as a function of the two interface temperatures and the total pressure. Frost growth rates under each atmosphere were in proportion to [(T S1 -T W1 )t/(1+1/A S1 )] 0.5 . The proportional constant for hydrogen was greater than that for any other tested gas. Agreement and disagreement of the frost effective thermal conductivity with previous models were discussed. (author)

  12. Topology Optimisation for Coupled Convection Problems

    DEFF Research Database (Denmark)

    Alexandersen, Joe

    This thesis deals with topology optimisation for coupled convection problems. The aim is to extend and apply topology optimisation to steady-state conjugate heat transfer problems, where the heat conduction equation governs the heat transfer in a solid and is coupled to thermal transport...... in a surrounding uid, governed by a convection-diffusion equation, where the convective velocity field is found from solving the isothermal incompressible steady-state Navier-Stokes equations. Topology optimisation is also applied to steady-state natural convection problems. The modelling is done using stabilised...... finite elements, the formulation and implementation of which was done partly during a special course as prepatory work for this thesis. The formulation is extended with a Brinkman friction term in order to facilitate the topology optimisation of fluid flow and convective cooling problems. The derived...

  13. Convective penetration in a young sun

    Science.gov (United States)

    Pratt, Jane; Baraffe, Isabelle; Goffrey, Tom; MUSIC developers group

    2018-01-01

    To interpret the high-quality data produced from recent space-missions it is necessary to study convection under realistic stellar conditions. We describe the multi-dimensional, time implicit, fully compressible, hydrodynamic, implicit large eddy simulation code MUSIC. We use MUSIC to study convection during an early stage in the evolution of our sun where the convection zone covers approximately half of the solar radius. This model of the young sun possesses a realistic stratification in density, temperature, and luminosity. We approach convection in a stellar context using extreme value theory and derive a new model for convective penetration, targeted for one-dimensional stellar evolution calculations. This model provides a scenario that can explain the observed lithium abundance in the sun and in solar-like stars at a range of ages.

  14. Numerical investigation of natural convection heat transfer of nano ...

    African Journals Online (AJOL)

    An enhanced cell-centered finite-volume procedure has been presented for solving the natural convection of the laminar Al O /Water nanofluid flow in a Γ shaped micro-channel in the slip flow region, including the effects of velocity slip and temperature jump at the wall, which are the main characteristics of flow in the slip ...

  15. Bifurcation and stability of forced convection in tightly coiled ducts: multiplicity

    International Nuclear Information System (INIS)

    Wang Liqiu; Pang, Ophelia; Cheng Lin

    2005-01-01

    A numerical study is made on the fully developed bifurcation structure of the forced convection in tightly coiled ducts of square cross-section. In addition to the examination of structural changes of three known solution branches found in loosely coiled ducts, three new solution branches are found. These new branches are isolated from the three known branches. The flows on these new branches are in a symmetric 4-cell state, a symmetric 8-cell state, an asymmetric 2-cell state, an asymmetric 5-cell state, an asymmetric 7-cell state, or an asymmetric 8-cell structure

  16. Convection and dendrite crystallization. [during coasting phase of sounding rocket flight

    Science.gov (United States)

    Grodzka, P. G.; Johnston, M. H.; Griner, C. S.

    1977-01-01

    The convection and thermal conditions in aqueous and metallic liquid systems under conditions of the Dendrite Remelting Rocket Experiment were assessed to help establish the relevance of the rocket experiment to the metals casting phenomena. The results of the study indicate that aqueous or metallic convection velocities in the cell are of insignificant magnitudes at the 0.0001 to 0.00001 g levels of the experiment. The crystallization phenomena observed in the rocket experiment, therefore, may be indicative of how metals will solidify in low-g. The influence of possibly differing thermal fields, however, remains to be assessed. The rocket experiment may also be relevant to how metals solidify on the ground at temperature differences and in cell configurations such that the flow velocities are not high enough to break or bend delicate dendrite arms. Again, however, the influence of the thermal fields must be assessed.

  17. Measuring Convective Mass Fluxes Over Tropical Oceans

    Science.gov (United States)

    Raymond, David

    2017-04-01

    Deep convection forms the upward branches of all large-scale circulations in the tropics. Understanding what controls the form and intensity of vertical convective mass fluxes is thus key to understanding tropical weather and climate. These mass fluxes and the corresponding conditions supporting them have been measured by recent field programs (TPARC/TCS08, PREDICT, HS3) in tropical disturbances considered to be possible tropical storm precursors. In reality, this encompasses most strong convection in the tropics. The measurements were made with arrays of dropsondes deployed from high altitude. In some cases Doppler radar provided additional measurements. The results are in some ways surprising. Three factors were found to control the mass flux profiles, the strength of total surface heat fluxes, the column-integrated relative humidity, and the low to mid-tropospheric moist convective instability. The first two act as expected, with larger heat fluxes and higher humidity producing more precipitation and stronger lower tropospheric mass fluxes. However, unexpectedly, smaller (but still positive) convective instability produces more precipitation as well as more bottom-heavy convective mass flux profiles. Furthermore, the column humidity and the convective instability are anti-correlated, at least in the presence of strong convection. On spatial scales of a few hundred kilometers, the virtual temperature structure appears to be in dynamic balance with the pattern of potential vorticity. Since potential vorticity typically evolves on longer time scales than convection, the potential vorticity pattern plus the surface heat fluxes then become the immediate controlling factors for average convective properties. All measurements so far have taken place in regions with relatively flat sea surface temperature (SST) distributions. We are currently seeking funding for a measurement program in the tropical east Pacific, a region that exhibits strong SST gradients and

  18. A model of the solar cycle driven by the dynamo action of the global convection in the solar convection zone

    International Nuclear Information System (INIS)

    Yoshimura, H.

    1975-01-01

    The dynamo equation which represents the longitudinally averaged magnetohydrodynamical action of the global convection influenced by the rotation in the solar convection zone is solved numerically to simulate the solar cycle as an initial boundary-value problem. The radial and latitudinal structure of the dynamo action is parametrized in accordance with the structure of the rotation, and of the global convection especially in such a way as to represent the presence of the two cells of the regeneration action in the radial direction in which the action has opposite signs, which is typical of the regeneration action of the global convection. A nonlinear process is included by assuming that part of the magnetic field energy is dissipated when the magnetic field strength exceeds some critical value; the formation of active regions and subsequent dissipations are thus simulated. By adjusting the parameters within a reasonable range, oscillatory solutions are obtained to simulate the solar cycle with the period of the right order of magnitude and with the patterns of evolution of the latitudinal distribution of the toroidal component of the magnetic field similar to the observed Butterfly Diagram of sunspots. The evolution of the latitudinal distribution of the radial component of the magnetic field shows patterns similar to the Butterfly Diagram, but having two branches of different polarity in each hemisphere. The development of the radial structure of the magnetic field associated with the solar cycle is presented. The importance of the poleward migrating branch of the Butterfly Diagram is emphasized in relation to the relative importance of the role of the latitudinal and radial shears of the differential rotation

  19. A two-column formalism for time-dependent modelling of stellar convection. I. Description of the method

    Science.gov (United States)

    Stökl, A.

    2008-11-01

    Context: In spite of all the advances in multi-dimensional hydrodynamics, investigations of stellar evolution and stellar pulsations still depend on one-dimensional computations. This paper devises an alternative to the mixing-length theory or turbulence models usually adopted in modelling convective transport in such studies. Aims: The present work attempts to develop a time-dependent description of convection, which reflects the essential physics of convection and that is only moderately dependent on numerical parameters and far less time consuming than existing multi-dimensional hydrodynamics computations. Methods: Assuming that the most extensive convective patterns generate the majority of convective transport, the convective velocity field is described using two parallel, radial columns to represent up- and downstream flows. Horizontal exchange, in the form of fluid flow and radiation, over their connecting interface couples the two columns and allows a simple circulating motion. The main parameters of this convective description have straightforward geometrical meanings, namely the diameter of the columns (corresponding to the size of the convective cells) and the ratio of the cross-section between up- and downdrafts. For this geometrical setup, the time-dependent solution of the equations of radiation hydrodynamics is computed from an implicit scheme that has the advantage of being unaffected by the Courant-Friedrichs-Lewy time-step limit. This implementation is part of the TAPIR-Code (short for The adaptive, implicit RHD-Code). Results: To demonstrate the approach, results for convection zones in Cepheids are presented. The convective energy transport and convective velocities agree with expectations for Cepheids and the scheme reproduces both the kinetic energy flux and convective overshoot. A study of the parameter influence shows that the type of solution derived for these stars is in fact fairly robust with respect to the constitutive numerical

  20. The cloud-radiative forcing of the U.S. landfalling atmospheric rivers

    Science.gov (United States)

    Luo, Qianwen

    Atmospheric rivers (ARs) are narrow channels in the atmosphere that transport an enormous amount of moisture from the tropics to the higher latitudes. Streaks of highly reflective clouds are observed along with the ARs in satellite imagery. These clouds both influence the moisture transport of ARs, as well as modify the Earth-Atmospheric energy budget through pathways such as cloud-radiative forcing (CRF). This dissertation studies the CRF of the U.S. Landfalling ARs in weather and climate scales. Three crucial questions are addressed. First, how do clouds produced by the ARs modulate the moisture and heat balance of the Earth-Atmospheric system? Even though studies of ARs date back to the 90s, past research has been primarily focused on their hydrological impacts. We addressed this research gap by comparing the dominant types of precipitating clouds and convection of two ARs. Through quantifying their effects on the energy balance in the midlatitudes, we found that when deep convection was the dominant cloud types of an AR, impressive CRF cooling was produced. Second, what are the sufficient climate conditions for the extensive CRF in the continental U.S.? We studied 60 ARs that reached the California coast (the Southwest ARs) and 60 ARs that reached Pacific Northwest during Nov-Mar, 2000-2008. It was found that when these West-Coast ARs were followed by the moisture surge from the Gulf of Mexico (the Gulf-Coast AR), it resulted in apparent statewide CRF. Such condition happened more frequently in the Southwest-AR scenario. Third, how does the subgrid-scale-convection-induced CRF influence the moisture transport of ARs?We ran two WRF ARW simulations for a Southwest-AR that was followed by a Gulf-Coast AR. The only difference between the two simulations was one considered the CRF of subgrid-scale clouds while the other did not. By comparing the two simulations, we found that the subgrid-scale-convection-induced CRF helped prolong the lifespan of clouds in an AR

  1. Deep convective cloud characterizations from both broadband imager and hyperspectral infrared sounder measurements

    Science.gov (United States)

    Ai, Yufei; Li, Jun; Shi, Wenjing; Schmit, Timothy J.; Cao, Changyong; Li, Wanbiao

    2017-02-01

    Deep convective storms have contributed to airplane accidents, making them a threat to aviation safety. The most common method to identify deep convective clouds (DCCs) is using the brightness temperature difference (BTD) between the atmospheric infrared (IR) window band and the water vapor (WV) absorption band. The effectiveness of the BTD method for DCC detection is highly related to the spectral resolution and signal-to-noise ratio (SNR) of the WV band. In order to understand the sensitivity of BTD to spectral resolution and SNR for DCC detection, a BTD to noise ratio method using the difference between the WV and IR window radiances is developed to assess the uncertainty of DCC identification for different instruments. We examined the case of AirAsia Flight QZ8501. The brightness temperatures (Tbs) over DCCs from this case are simulated for BTD sensitivity studies by a fast forward radiative transfer model with an opaque cloud assumption for both broadband imager (e.g., Multifunction Transport Satellite imager, MTSAT-2 imager) and hyperspectral IR sounder (e.g., Atmospheric Infrared Sounder) instruments; we also examined the relationship between the simulated Tb and the cloud top height. Results show that despite the coarser spatial resolution, BTDs measured by a hyperspectral IR sounder are much more sensitive to high cloud tops than broadband BTDs. As demonstrated in this study, a hyperspectral IR sounder can identify DCCs with better accuracy.

  2. Predicting insect migration density and speed in the daytime convective boundary layer.

    Directory of Open Access Journals (Sweden)

    James R Bell

    Full Text Available Insect migration needs to be quantified if spatial and temporal patterns in populations are to be resolved. Yet so little ecology is understood above the flight boundary layer (i.e. >10 m where in north-west Europe an estimated 3 billion insects km(-1 month(-1 comprising pests, beneficial insects and other species that contribute to biodiversity use the atmosphere to migrate. Consequently, we elucidate meteorological mechanisms principally related to wind speed and temperature that drive variation in daytime aerial density and insect displacements speeds with increasing altitude (150-1200 m above ground level. We derived average aerial densities and displacement speeds of 1.7 million insects in the daytime convective atmospheric boundary layer using vertical-looking entomological radars. We first studied patterns of insect aerial densities and displacements speeds over a decade and linked these with average temperatures and wind velocities from a numerical weather prediction model. Generalized linear mixed models showed that average insect densities decline with increasing wind speed and increase with increasing temperatures and that the relationship between displacement speed and density was negative. We then sought to derive how general these patterns were over space using a paired site approach in which the relationship between sites was examined using simple linear regression. Both average speeds and densities were predicted remotely from a site over 100 km away, although insect densities were much noisier due to local 'spiking'. By late morning and afternoon when insects are migrating in a well-developed convective atmosphere at high altitude, they become much more difficult to predict remotely than during the early morning and at lower altitudes. Overall, our findings suggest that predicting migrating insects at altitude at distances of ≈ 100 km is promising, but additional radars are needed to parameterise spatial covariance.

  3. Steamworlds: Atmospheric Structure and Critical Mass of Planets Accreting Icy Pebbles

    International Nuclear Information System (INIS)

    Chambers, John

    2017-01-01

    In the core accretion model, gas-giant planets first form a solid core, which then accretes gas from a protoplanetary disk when the core exceeds a critical mass. Here, we model the atmosphere of a core that grows by accreting ice-rich pebbles. The ice fraction of pebbles evaporates in warm regions of the atmosphere, saturating it with water vapor. Excess water precipitates to lower altitudes. Beneath an outer radiative region, the atmosphere is convective, following a moist adiabat in saturated regions due to water condensation and precipitation. Atmospheric mass, density, and temperature increase with core mass. For nominal model parameters, planets with core masses (ice + rock) between 0.08 and 0.16 Earth masses have surface temperatures between 273 and 647 K and form an ocean. In more massive planets, water exists as a supercritical convecting fluid mixed with gas from the disk. Typically, the core mass reaches a maximum (the critical mass) as a function of the total mass when the core is 2–5 Earth masses. The critical mass depends in a complicated way on pebble size, mass flux, and dust opacity due to the occasional appearance of multiple core-mass maxima. The core mass for an atmosphere of 50% hydrogen and helium may be a more robust indicator of the onset of gas accretion. This mass is typically 1–3 Earth masses for pebbles that are 50% ice by mass, increasing with opacity and pebble flux and decreasing with pebble ice/rock ratio.

  4. Steamworlds: Atmospheric Structure and Critical Mass of Planets Accreting Icy Pebbles

    Energy Technology Data Exchange (ETDEWEB)

    Chambers, John, E-mail: jchambers@carnegiescience.edu [Carnegie Institution for Science Department of Terrestrial Magnetism, 5241 Broad Branch Road, NW, Washington, DC 20015 (United States)

    2017-11-01

    In the core accretion model, gas-giant planets first form a solid core, which then accretes gas from a protoplanetary disk when the core exceeds a critical mass. Here, we model the atmosphere of a core that grows by accreting ice-rich pebbles. The ice fraction of pebbles evaporates in warm regions of the atmosphere, saturating it with water vapor. Excess water precipitates to lower altitudes. Beneath an outer radiative region, the atmosphere is convective, following a moist adiabat in saturated regions due to water condensation and precipitation. Atmospheric mass, density, and temperature increase with core mass. For nominal model parameters, planets with core masses (ice + rock) between 0.08 and 0.16 Earth masses have surface temperatures between 273 and 647 K and form an ocean. In more massive planets, water exists as a supercritical convecting fluid mixed with gas from the disk. Typically, the core mass reaches a maximum (the critical mass) as a function of the total mass when the core is 2–5 Earth masses. The critical mass depends in a complicated way on pebble size, mass flux, and dust opacity due to the occasional appearance of multiple core-mass maxima. The core mass for an atmosphere of 50% hydrogen and helium may be a more robust indicator of the onset of gas accretion. This mass is typically 1–3 Earth masses for pebbles that are 50% ice by mass, increasing with opacity and pebble flux and decreasing with pebble ice/rock ratio.

  5. Investigation of a natural convection in a small slot using a finite difference method

    International Nuclear Information System (INIS)

    Schira, P.; Guenther, C.; Mueller, U.

    1984-07-01

    Experimental results by Koster who studied natural convection processes in slender Hele-Shaw cells are simulated with an existing two-dimensional natural convection code. This investigation yields the following results: The basic model of the calculations, which assumes a constant temperature across the gap (smallest extent of the Hele-Shaw cell) and thus without heat exchange with the Plexiglas windows, leads to an underestimation of the experimentally obtained critical Rayleigh numbers (onset of convection, onset of oscillatory convection) by one order of magnitude and an overestimation of the nondimensional period compared to experimental findings. Another version of the code, which permits heat exchange with the windows reveals an overestimation of the critical Rayleigh numbers and smaller dimensionless periods than the experiments. By these two different approaches a twoside bounding the Koster's experiments are achieved. As the modified version overestimates the real heat transfer from and to the windows it may be concluded that using a suitably adapted heat transfer coefficient for the thermal coupling of the fluid and the windows numerical simulation would also reproduce quantitatively the results of Koster. The reason for the break down of the steady flow solution and the onset of transient flow was studied numerically by examining a model proposed by Howard. At this time no really satisfying answer to this question is available. (orig./GL) [de

  6. Hydrogen escape from Mars enhanced by deep convection in dust storms

    Science.gov (United States)

    Heavens, Nicholas G.; Kleinböhl, Armin; Chaffin, Michael S.; Halekas, Jasper S.; Kass, David M.; Hayne, Paul O.; McCleese, Daniel J.; Piqueux, Sylvain; Shirley, James H.; Schofield, John T.

    2018-02-01

    Present-day water loss from Mars provides insight into Mars's past habitability1-3. Its main mechanism is thought to be Jeans escape of a steady hydrogen reservoir sourced from odd-oxygen reactions with near-surface water vapour2, 4,5. The observed escape rate, however, is strongly variable and correlates poorly with solar extreme-ultraviolet radiation flux6-8, which was predicted to modulate escape9. This variability has recently been attributed to hydrogen sourced from photolysed middle atmospheric water vapour10, whose vertical and seasonal distribution is only partly characterized and understood11-13. Here, we report multi-annual observational estimates of water content and dust and water transport to the middle atmosphere from Mars Climate Sounder data. We provide strong evidence that the transport of water vapour and ice to the middle atmosphere by deep convection in Martian dust storms can enhance hydrogen escape. Planet-encircling dust storms can raise the effective hygropause (where water content rapidly decreases to effectively zero) from 50 to 80 km above the areoid (the reference equipotential surface). Smaller dust storms contribute to an annual mode in water content at 40-50 km that may explain seasonal variability in escape. Our results imply that Martian atmospheric chemistry and evolution can be strongly affected by the meteorology of the lower and middle atmosphere of Mars.

  7. The thermal structure of Triton's atmosphere - Pre-Voyager models

    Science.gov (United States)

    Mckay, Christopher P.; Pollack, James B.; Zent, Aaron P.; Cruikshank, Dale P.; Courtin, Regis

    1989-01-01

    Spectral data from earth observations have indicated the presence of N2 and CH4 on Triton. This paper outlines the use of the 1-D radiative-convective model developed for Titan to calculate the current pressure of N2 and CH4 on Triton. The production of haze material is obtained by scaling down from the Titan value. Results and predictions for the Voyager Triton encounter are as follows: A N2-CH4 atmosphere on Triton is thermodynamically self consistent and would have a surface pressure of approximately 50 millibar; due to the chemically produced haze, Triton has a hot atmosphere with a temperature of approximately 130 K; Triton's troposphere is a region of saturation of the major constituent of the atmosphere, N2.

  8. Convective Heat Transfer Coefficients of the Human Body under Forced Convection from Ceiling

    DEFF Research Database (Denmark)

    Kurazumi, Yoshihito; Rezgals, Lauris; Melikov, Arsen Krikor

    2014-01-01

    The average convective heat transfer coefficient for a seated human body exposed to downward flow from above was determined. Thermal manikin with complex body shape and size of an average Scandinavian female was used. The surface temperature distribution of the manikin’s body was as the skin...... of the convective heat transfer coefficient of the whole body (hc [W/(m2•K)]) was proposed: hc=4.088+6.592V1.715 for a seated naked body at 20ºC and hc=2.874+7.427V1.345 for a seated naked body at 26ºC. Differences in the convective heat transfer coefficient of the whole body in low air velocity range, V

  9. Substorms and polar cap convection: the 10 January 2004 interplanetary CME case

    Directory of Open Access Journals (Sweden)

    Y. Andalsvik

    2012-01-01

    Full Text Available The expansion-contraction model of Dungey cell plasma convection has two different convection sources, i.e. reconnections at the magnetopause and in the magnetotail. The spatial-temporal structure of the nightside source is not yet well understood. In this study we shall identify temporal variations in the winter polar cap convection structure during substorm activity under steady interplanetary conditions. Substorm activity (electrojets and particle precipitations is monitored by excellent ground-satellite DMSP F15 conjunctions in the dusk-premidnight sector. We take advantage of the wide latitudinal coverage of the IMAGE chain of ground magnetometers in Svalbard – Scandinavia – Russia for the purpose of monitoring magnetic deflections associated with polar cap convection and substorm electrojets. These are augmented by direct observations of polar cap convection derived from SuperDARN radars and cross-track ion drift observations during traversals of polar cap along the dusk-dawn meridian by spacecraft DMSP F13. The interval we study is characterized by moderate, stable forcing of the magnetosphere-ionosphere system (EKL = 4.0–4.5 mV m−1; cross polar cap potential (CPCP, Φ (Boyle = 115 kV during Earth passage of an interplanetary CME (ICME, choosing an 4-h interval where the magnetic field pointed continuously south-west (Bz By By polarity of the ICME magnetic field, a clear indication of a nightside source.

  10. The convection electric field in auroral substorms

    DEFF Research Database (Denmark)

    Gjerløv, Jesper Wittendorff; Hoffman, R.A.

    2001-01-01

    Dynamics Explorer 2 (DE 2) electric field and ion drift data are used in a statistical study of the ionospheric convection electric field in bulge-type auroral substorms. Thirty-one individual DE 2 substorm crossings were carefully selected and organized by the use of global auroral images obtained...... this database enabled us to compile a model of the ionospheric convection electric field. The characteristics of the premidnight convection reversal show a pronounced local time dependency. Far west of the surge it is a fairly well defined point reversal or convection shear. Approaching the surge and within...... the surge it is a region of weak electric fields increasing in width toward midnight that separates regions of equatorward and poleward electric fields. Therefore we adopt the term Harang region rather than the Harang discontinuity for the premidnight convection reversal. A relatively narrow convection...

  11. Natural convection between parallel vertical plates; Convection naturelle entre plaques paralleles verticales

    Energy Technology Data Exchange (ETDEWEB)

    Robin, M; Schwab, B [Commissariat a l' Energie Atomique, Saclay (France). Centre d' Etudes Nucleaires

    1957-07-01

    In the thermal study of a 'swimming-pool' type of pile, the flow of water between vertical plates of 'combustible' material must be investigated. Therefore starting from general equations of natural convection, we have determined, the law of distribution of velocities, then that of temperatures, and finally the value of the Biot-Nusselt number, assuming steady-state conditions (both dynamic and thermal) and a constant heat flow at the surface. An abacus (fig. 7, 8 and 9) allows working power to be related to the average velocity and to the heating of the water which passes through the pile. For purposes of comparison, the curves on the calculation presented by S. GLASSTONE (31) have been drawn. (author) [French] L'etude thermique d'une pile du type 'piscine' necessite l'etude de l'ecoulement de l'eau entre les plaques verticales de materiau 'combustible'. Nous avons donc, a partir des equations generales de la convection naturelle, determine la loi de repartition des vitesses, puis celle des temperatures et enfin la valeur du nombre de Biot-Niisselt, en supposant les regimes, dynamique et thermique, etablis et la densite de flux calorifique a la paroi constante. Un abaque (fig. 7, 8 et 9) permet de relier a la puissance de fonctionnement, la vitesse moyenne de l'echauffement de l'eau qui traverse la pile. On a trace a titre de comparaison, les courbes du calcul presente par S. GLASSTONE (3). (auteur)

  12. Modified Laser Flash Method for Thermal Properties Measurements and the Influence of Heat Convection

    Science.gov (United States)

    Lin, Bochuan; Zhu, Shen; Ban, Heng; Li, Chao; Scripa, Rosalia N.; Su, Ching-Hua; Lehoczky, Sandor L.

    2003-01-01

    The study examined the effect of natural convection in applying the modified laser flash method to measure thermal properties of semiconductor melts. Common laser flash method uses a laser pulse to heat one side of a thin circular sample and measures the temperature response of the other side. Thermal diffusivity can be calculations based on a heat conduction analysis. For semiconductor melt, the sample is contained in a specially designed quartz cell with optical windows on both sides. When laser heats the vertical melt surface, the resulting natural convection can introduce errors in calculation based on heat conduction model alone. The effect of natural convection was studied by CFD simulations with experimental verification by temperature measurement. The CFD results indicated that natural convection would decrease the time needed for the rear side to reach its peak temperature, and also decrease the peak temperature slightly in our experimental configuration. Using the experimental data, the calculation using only heat conduction model resulted in a thermal diffusivity value is about 7.7% lower than that from the model with natural convection. Specific heat capacity was about the same, and the difference is within 1.6%, regardless of heat transfer models.

  13. Asymptotics for moist deep convection I: refined scalings and self-sustaining updrafts

    Science.gov (United States)

    Hittmeir, Sabine; Klein, Rupert

    2018-04-01

    Moist processes are among the most important drivers of atmospheric dynamics, and scale analysis and asymptotics are cornerstones of theoretical meteorology. Accounting for moist processes in systematic scale analyses therefore seems of considerable importance for the field. Klein and Majda (Theor Comput Fluid Dyn 20:525-551, 2006) proposed a scaling regime for the incorporation of moist bulk microphysics closures in multiscale asymptotic analyses of tropical deep convection. This regime is refined here to allow for mixtures of ideal gases and to establish consistency with a more general multiple scales modeling framework for atmospheric flows. Deep narrow updrafts, the so-called hot towers, constitute principal building blocks of larger scale storm systems. They are analyzed here in a sample application of the new scaling regime. A single quasi-one-dimensional upright columnar cloud is considered on the vertical advective (or tower life cycle) time scale. The refined asymptotic scaling regime is essential for this example as it reveals a new mechanism for the self-sustainance of such updrafts. Even for strongly positive convectively available potential energy, a vertical balance of buoyancy forces is found in the presence of precipitation. This balance induces a diagnostic equation for the vertical velocity, and it is responsible for the generation of self-sustained balanced updrafts. The time-dependent updraft structure is encoded in a Hamilton-Jacobi equation for the precipitation mixing ratio. Numerical solutions of this equation suggest that the self-sustained updrafts may strongly enhance hot tower life cycles.

  14. An infinite-dimensional model of free convection

    Energy Technology Data Exchange (ETDEWEB)

    Iudovich, V.I. (Rostovskii Gosudarstvennyi Universitet, Rostov-on-Don (USSR))

    1990-12-01

    An infinite-dimensional model is derived from the equations of free convection in the Boussinesq-Oberbeck approximation. The velocity field is approximated by a single mode, while the heat-conduction equation is conserved fully. It is shown that, for all supercritical Rayleigh numbers, there exist exactly two secondary convective regimes. The case of ideal convection with zero viscosity and thermal conductivity is examined. The averaging method is used to study convection regimes at high Reynolds numbers. 10 refs.

  15. Magnetic Fields in the Solar Convection Zone

    Directory of Open Access Journals (Sweden)

    Fan Yuhong

    2004-07-01

    Full Text Available Recent studies of the dynamic evolution of magnetic flux tubes in the solar convection zone are reviewed with focus on emerging flux tubes responsible for the formation of solar active regions. The current prevailing picture is that active regions on the solar surface originate from strong toroidal magnetic fields generated by the solar dynamo mechanism at the thin tachocline layer at the base of the solar convection zone. Thus the magnetic fields need to traverse the entire convection zone before they reach the photosphere to form the observed solar active regions. This review discusses results with regard to the following major topics: 1. the equilibrium properties of the toroidal magnetic fields stored in the stable overshoot region at the base of the convection zone, 2. the buoyancy instability associated with the toroidal magnetic fields and the formation of buoyant magnetic flux tubes, 3. the rise of emerging flux loops through the solar convective envelope as modeled by the thin flux tube calculations which infer that the field strength of the toroidal magnetic fields at the base of the solar convection zone is significantly higher than the value in equipartition with convection, 4. the minimum twist needed for maintaining cohesion of the rising flux tubes, 5. the rise of highly twisted kink unstable flux tubes as a possible origin of d -sunspots, 6. the evolution of buoyant magnetic flux tubes in 3D stratified convection, 7. turbulent pumping of magnetic flux by penetrative compressible convection, 8. an alternative mechanism for intensifying toroidal magnetic fields to significantly super-equipartition field strengths by conversion of the potential energy associated with the superadiabatic stratification of the solar convection zone, and finally 9. a brief overview of our current understanding of flux emergence at the surface and post-emergence evolution of the subsurface magnetic fields.

  16. Statistical thermodynamics and the size distributions of tropical convective clouds.

    Science.gov (United States)

    Garrett, T. J.; Glenn, I. B.; Krueger, S. K.; Ferlay, N.

    2017-12-01

    Parameterizations for sub-grid cloud dynamics are commonly developed by using fine scale modeling or measurements to explicitly resolve the mechanistic details of clouds to the best extent possible, and then to formulating these behaviors cloud state for use within a coarser grid. A second is to invoke physical intuition and some very general theoretical principles from equilibrium statistical thermodynamics. This second approach is quite widely used elsewhere in the atmospheric sciences: for example to explain the heat capacity of air, blackbody radiation, or even the density profile or air in the atmosphere. Here we describe how entrainment and detrainment across cloud perimeters is limited by the amount of available air and the range of moist static energy in the atmosphere, and that constrains cloud perimeter distributions to a power law with a -1 exponent along isentropes and to a Boltzmann distribution across isentropes. Further, the total cloud perimeter density in a cloud field is directly tied to the buoyancy frequency of the column. These simple results are shown to be reproduced within a complex dynamic simulation of a tropical convective cloud field and in passive satellite observations of cloud 3D structures. The implication is that equilibrium tropical cloud structures can be inferred from the bulk thermodynamic structure of the atmosphere without having to analyze computationally expensive dynamic simulations.

  17. Heating of the outer solar atmosphere

    International Nuclear Information System (INIS)

    Parker, E.N.

    1983-01-01

    The author discusses the idea that there must be a source of magnetic fields somewhere below the solar surface. He starts by considering present day ideas about the sun's internal structure. The sun has a radius of approximately 700,000 km, of which the outer 100,000 km or so is the convective zone, according to mixing-length models. The dynamo is believed to operate in the convective zone, across which there may be a 5-10% variation in the angular velocity. There are the stretched east-west fields similar to the ones in the earth's core. Associated with these are poloidal fields which contribute to a net dipole moment of the sun and are generated by a dynamo. The author shows that essentially no magnetic field configuration has an equilibrium; they dissipate quickly in spite of the high conductivity in fluid motions and heating. This is probably the major part of the heating of the sun's outer atmosphere. (Auth.)

  18. Simulated precipitation diurnal cycles over East Asia using different CAPE-based convective closure schemes in WRF model

    Science.gov (United States)

    Yang, Ben; Zhou, Yang; Zhang, Yaocun; Huang, Anning; Qian, Yun; Zhang, Lujun

    2018-03-01

    Closure assumption in convection parameterization is critical for reasonably modeling the precipitation diurnal variation in climate models. This study evaluates the precipitation diurnal cycles over East Asia during the summer of 2008 simulated with three convective available potential energy (CAPE) based closure assumptions, i.e. CAPE-relaxing (CR), quasi-equilibrium (QE), and free-troposphere QE (FTQE) and investigates the impacts of planetary boundary layer (PBL) mixing, advection, and radiation on the simulation by using the weather research and forecasting model. The sensitivity of precipitation diurnal cycle to PBL vertical resolution is also examined. Results show that the precipitation diurnal cycles simulated with different closures all exhibit large biases over land and the simulation with FTQE closure agrees best with observation. In the simulation with QE closure, the intensified PBL mixing after sunrise is responsible for the late-morning peak of convective precipitation, while in the simulation with FTQE closure, convective precipitation is mainly controlled by advection cooling. The relative contributions of different processes to precipitation formation are functions of rainfall intensity. In the simulation with CR closure, the dynamical equilibrium in the free troposphere still can be reached, implying the complex cause-effect relationship between atmospheric motion and convection. For simulations in which total CAPE is consumed for the closures, daytime precipitation decreases with increased PBL resolution because thinner model layer produces lower convection starting layer, leading to stronger downdraft cooling and CAPE consumption. The sensitivity of the diurnal peak time of precipitation to closure assumption can also be modulated by changes in PBL vertical resolution. The results of this study help us better understand the impacts of various processes on the precipitation diurnal cycle simulation.

  19. The roles of convection, extratropical mixing, and in-situ freeze-drying in the Tropical Tropopause Layer

    Directory of Open Access Journals (Sweden)

    W. G. Read

    2008-10-01

    Full Text Available Mechanisms for transporting and dehydrating air across the tropical tropopause layer (TTL are investigated with a conceptual two dimensional (2-D model. The 2-D TTL model combines the Holton and Gettelman cold trap dehydration mechanism (Holton and Gettelman, 2001 with the two column convection model of Folkins and Martin (2005. We investigate 3 possible transport scenarios through the TTL: 1 slow uniform ascent across the level of zero radiative heating without direct convective mixing, 2 convective mixing of H2O vapor at 100% relative humidity with respect to ice (RHi with no ice retention, and 3 convective mixing of extremely subsaturated air (100% RHi following the moist adiabatic temperature above the level of neutral buoyancy with sufficient ice retention such that total H2O is 100%RHi. The three mechanisms produce similar seasonal cycles for H2O that are in good quantitative agreement with the Aura Microwave Limb Sounder (MLS measurements. We use Aura MLS measurement of CO and Atmospheric Chemistry Experiment-Fourier Transform Spectrometer measurement of HDO to distinguish among the transport mechanisms. Model comparisons with the observations support the view that H2O is predominantly controlled by regions having the lowest cold point tropopause temperature but the trace species CO and HDO support the convective mixing of dry air and lofted ice. The model provides some insight into the processes affecting the long term trends observed in stratospheric H2O.

  20. THE MECHANICAL GREENHOUSE: BURIAL OF HEAT BY TURBULENCE IN HOT JUPITER ATMOSPHERES

    International Nuclear Information System (INIS)

    Youdin, Andrew N.; Mitchell, Jonathan L.

    2010-01-01

    The intense irradiation received by hot Jupiters suppresses convection in the outer layers of their atmospheres and lowers their cooling rates. 'Inflated' hot Jupiters, i.e., those with anomalously large transit radii, require additional sources of heat or suppressed cooling. We consider the effect of forced turbulent mixing in the radiative layer, which could be driven by atmospheric circulation or by another mechanism. Due to stable stratification in the atmosphere, forced turbulence drives a downward flux of heat. Weak turbulent mixing slows the cooling rate by this process, as if the planet were irradiated more intensely. Stronger turbulent mixing buries heat into the convective interior, provided the turbulence extends to the radiative-convective boundary. This inflates the planet until a balance is reached between the heat buried into and radiated from the interior. We also include the direct injection of heat due to the dissipation of turbulence or other effects. Such heating is already known to slow planetary cooling. We find that dissipation also enhances heat burial from mixing by lowering the threshold for turbulent mixing to drive heat into the interior. Strong turbulent mixing of heavy molecular species such as TiO may be necessary to explain stratospheric thermal inversions. We show that the amount of mixing required to loft TiO may overinflate the planet by our mechanism. This possible refutation of the TiO hypothesis deserves further study. Our inflation mechanism requires a deep stratified layer that only exists when the absorbed stellar flux greatly exceeds the intrinsic emitted flux. Thus, it would be less effective for more luminous brown dwarfs and for longer period gas giants, including Jupiter and Saturn.

  1. Natural convection in superposed fluid-porous layers

    CERN Document Server

    Bagchi, Aniruddha

    2013-01-01

    Natural Convection in Composite Fluid-Porous Domains provides a timely overview of the current state of understanding on the phenomenon of convection in composite fluid-porous layers. Natural convection in horizontal fluid-porous layers has received renewed attention because of engineering problems such as post-accident cooling of nuclear reactors, contaminant transport in groundwater, and convection in fibrous insulation systems. Because applications of the problem span many scientific domains, the book serves as a valuable resource for a wide audience.

  2. Software INCAS (Convective Clouds Indicator to Seeding Activities) to convective clouds class forecast in Mendoza (Argentina).

    Science.gov (United States)

    Pérez, R. C.

    2009-09-01

    With the objective of to get to forecast and operative determinations tool to seeding of hailstorm in the damage mitigations job that produces its precipitation in Mendoza (Argentina), we developed to software based in on surface and 500 mb. level atmospherics variable. We had used on surface dates because in this level exist to big amount of information, practically it is possible to get its measures continuously; in addition it is the level that data of damages are registered that the hail precipitation produces. The decision to use the level of 500 mb, it must to that it is the height in which the upset one of the air circulation takes place from the Pacific to Mendoza, who produces important changes and instability in the atmosphere of Mendoza, these data were obtained from the radiosonde of Santo Domingo in Santiago (Chile) and El Plumerillo (Mendoza). In the program is integrated the different indices and models obtained in ours works from investigation on the subject of last the five years. Since the October of 2004 to April of 2009 the values have been taken from the variables mentioned every day, hourly during the fight campaigns antihail (October-April). The results have integrated in the program INCAS, whom it is due to enter the surface variables: Temperature in °C, the dew point in °C, the atmospheric pressure in mb., the index of ultraviolet solar radiation, the direction and wind speed; whereas the variables of the level of 500 are due to introduce mb: height of the level of 500 mb in meters, temperature of the level in °C, the direction and wind speed to that height. From the process of these variables the type of convective process is obtained like exit of the program , that is more probable that it appears in Mendoza for these atmospheric conditions; the thresholds that trigger to the stormy processes and their possible severity. This year software was validated in his first version, obtaining itself very good results.

  3. Primary Issues of Mixed Convection Heat Transfer Phenomena

    Energy Technology Data Exchange (ETDEWEB)

    Chae, Myeong-Seon; Chung, Bum-Jin [Kyung Hee University, Yongin (Korea, Republic of)

    2015-10-15

    The computer code analyzing the system operating and transient behavior must distinguish flow conditions involved with convective heat transfer flow regimes. And the proper correlations must be supplied to those flow regimes. However the existing safety analysis codes are focused on the Light Water Reactor and they are skeptical to be applied to the GCRs (Gas Cooled Reactors). One of the technical issues raise by the development of the VHTR is the mixed convection, which occur when the driving forces of both forced and natural convection are of comparable magnitudes. It can be encountered as in channel of the stacked with fuel elements and a decay heat removal system and in VHTR. The mixed convection is not intermediate phenomena with natural convection and forced convection but independent complicated phenomena. Therefore, many researchers have been studied and some primary issues were propounded for phenomena mixed convection. This paper is to discuss some problems identified through reviewing the papers for mixed convection phenomena. And primary issues of mixed convection heat transfer were proposed respect to thermal hydraulic problems for VHTR. The VHTR thermal hydraulic study requires an indepth study of the mixed convection phenomena. In this study we reviewed the classical flow regime map of Metais and Eckert and derived further issues to be considered. The following issues were raised: (1) Buoyancy aided an opposed flows were not differentiated and plotted in a map. (2) Experimental results for UWT and UHF condition were also plotted in the same map without differentiation. (3) The buoyancy coefficient was not generalized for correlating with buoyancy coefficient. (4) The phenomenon analysis for laminarization and returbulization as buoyancy effects in turbulent mixed convection was not established. (5) The defining to transition in mixed convection regime was difficult.

  4. The convection patterns in microemulsions

    International Nuclear Information System (INIS)

    Korneta, W.; Lopez Quintela, M.A.; Fernandez Novoa, A.

    1991-07-01

    The Rayleigh-Benard convection in the microemulsion consisting of water (7.5%), cyclohexan (oil-61.7%) and diethylenglycolmonobutylether (surfactant-30.8%) is studied from the onset of convection to the phase separation. The five classes of convection patterns are observed and recorded on the video: localized travelling waves, travelling waves, travelling waves and localized steady rolls, steady rolls and steady polygons. The Fourier transforms and histograms of these patterns are presented. The origin of any pattern is discussed. The intermittent behaviour close to the phase separation was observed. Possible applications of the obtained results are suggested. (author). 6 refs, 4 figs

  5. An application of the unifying theory of thermal convection in vertical natural convection

    Science.gov (United States)

    Ng, Chong Shen; Ooi, Andrew; Lohse, Detlef; Chung, Daniel

    2014-11-01

    Using direct numerical simulations of vertical natural convection (VNC) at Rayleigh numbers 1 . 0 ×105 - 1 . 0 ×109 and Prandtl number 0 . 709 , we provide support for a generalised applicability of the Grossmann-Lohse (GL) theory, originally developed for horizontal natural (Rayleigh-Bénard) convection. In accordance with the theory, the boundary-layer thicknesses of the velocity and temperature fields in VNC obey laminar-like scaling, whereas away from the walls, the dissipation of the turbulent fluctuations obey the scaling for fully developed turbulence. In contrast to Rayleigh-Bénard convection, the direction of gravity in VNC is parallel to the mean flow. Thus, there no longer exists an exact relation linking the normalised global dissipations to the Nusselt, Rayleigh and Prandtl numbers. Nevertheless, we show that the unclosed term, namely the global-averaged buoyancy flux, also exhibits laminar and turbulent scaling, consistent with the GL theory. The findings suggest that, similar to Rayleigh-Bénard convection, a pure power-law relationship between the Nusselt, Rayleigh and Prandtl numbers is not the best description for VNC and existing empirical power-law relationships should be recalibrated to better reflect the underlying physics.

  6. Atmospheric activity in red dwarf stars

    International Nuclear Information System (INIS)

    Pettersen, B.R.

    1986-01-01

    Active and inactive stars of similar mass and luminosity have similar physical conditions in their photospheres, outside of magnetically disturbed regions. Such field structures give rise to stellar activity, which manifests itself at all heights of the atmosphere. Observations of uneven distributions of flux across the stellar disc have led to the disovery of photospheric starspots, chromospheric plage areas, and coronal holes. Localized transient behavior has been identified in both thermal and non-thermal sources, such as flares, shock waves and particle acceleration. The common element to all active regions is the presence of strong magnetic field structures connecting the violently turbulent deep layers in the convection zones of stars with the tenuous outer atmospheres. Transport and dissipation of energy into the chromospheric and coronal regions are still much debated topics

  7. Free surface deformation and heat transfer by thermocapillary convection

    Science.gov (United States)

    Fuhrmann, Eckart; Dreyer, Michael; Basting, Steffen; Bänsch, Eberhard

    2016-04-01

    Knowing the location of the free liquid/gas surface and the heat transfer from the wall towards the fluid is of paramount importance in the design and the optimization of cryogenic upper stage tanks for launchers with ballistic phases, where residual accelerations are smaller by up to four orders of magnitude compared to the gravity acceleration on earth. This changes the driving forces drastically: free surfaces become capillary dominated and natural or free convection is replaced by thermocapillary convection if a non-condensable gas is present. In this paper we report on a sounding rocket experiment that provided data of a liquid free surface with a nonisothermal boundary condition, i.e. a preheated test cell was filled with a cold but storable liquid in low gravity. The corresponding thermocapillary convection (driven by the temperature dependence of the surface tension) created a velocity field directed away from the hot wall towards the colder liquid and then in turn back at the bottom towards the wall. A deformation of the free surface resulting in an apparent contact angle rather different from the microscopic one could be observed. The thermocapillary flow convected the heat from the wall to the liquid and increased the heat transfer compared to pure conduction significantly. The paper presents results of the apparent contact angle as a function of the dimensionless numbers (Weber-Marangoni and Reynolds-Marangoni number) as well as heat transfer data in the form of a Nusselt number. Experimental results are complemented by corresponding numerical simulations with the commercial software Flow3D and the inhouse code Navier.

  8. Influence of convective conditions on three dimensional mixed convective hydromagnetic boundary layer flow of Casson nanofluid

    Energy Technology Data Exchange (ETDEWEB)

    Rauf, A., E-mail: raufamar@ciitsahiwal.edu.pk [Department of Mathematics, Comsats Institute of Information Technology, Sahiwal 57000 (Pakistan); Siddiq, M.K. [Centre for Advanced Studies in Pure and Applied Mathematics, Department of Mathematics, Bahauddin Zakariya University, Multan 63000 (Pakistan); Abbasi, F.M. [Department of Mathematics, Comsats Institute of Information Technology, Islamabad 44000 (Pakistan); Meraj, M.A. [Department of Mathematics, Comsats Institute of Information Technology, Sahiwal 57000 (Pakistan); Ashraf, M. [Centre for Advanced Studies in Pure and Applied Mathematics, Department of Mathematics, Bahauddin Zakariya University, Multan 63000 (Pakistan); Shehzad, S.A. [Department of Mathematics, Comsats Institute of Information Technology, Sahiwal 57000 (Pakistan)

    2016-10-15

    The present work deals with the steady laminar three-dimensional mixed convective magnetohydrodynamic (MHD) boundary layer flow of Casson nanofluid over a bidirectional stretching surface. A uniform magnetic field is applied normal to the flow direction. Similarity variables are implemented to convert the non-linear partial differential equations into ordinary ones. Convective boundary conditions are utilized at surface of the sheet. A numerical technique of Runge–Kutta–Fehlberg (RFK45) is used to obtain the results of velocity, temperature and concentration fields. The physical dimensionless parameters are discussed through tables and graphs. - Highlights: • Mixed convective boundary layer flow of Casson nanofluid is taken into account. • Impact of magnetic field is examined. • Convective heat and mass conditions are imposed. • Numerical solutions are presented and discussed.

  9. Boundary Layer Control of Rotating Convection Systems

    Science.gov (United States)

    King, E. M.; Stellmach, S.; Noir, J.; Hansen, U.; Aurnou, J. M.

    2008-12-01

    Rotating convection is ubiquitous in the natural universe, and is likely responsible for planetary processes such magnetic field generation. Rapidly rotating convection is typically organized by the Coriolis force into tall, thin, coherent convection columns which are aligned with the axis of rotation. This organizational effect of rotation is thought to be responsible for the strength and structure of magnetic fields generated by convecting planetary interiors. As thermal forcing is increased, the relative influence of rotation weakens, and fully three-dimensional convection can exist. It has long been assumed that rotational effects will dominate convection dynamics when the ratio of buoyancy to the Coriolis force, the convective Rossby number, Roc, is less than unity. We investigate the influence of rotation on turbulent Rayleigh-Benard convection via a suite of coupled laboratory and numerical experiments over a broad parameter range: Rayleigh number, 10310; Ekman number, 10-6≤ E ≤ ∞; and Prandtl number, 1≤ Pr ≤ 100. In particular, we measure heat transfer (as characterized by the Nusselt number, Nu) as a function of the Rayleigh number for several different Ekman and Prandtl numbers. Two distinct heat transfer scaling regimes are identified: non-rotating style heat transfer, Nu ~ Ra2/7, and quasigeostrophic style heat transfer, Nu~ Ra6/5. The transition between the non-rotating regime and the rotationally dominant regime is described as a function of the Ekman number, E. We show that the regime transition depends not on the global force balance Roc, but on the relative thicknesses of the thermal and Ekman boundary layers. The transition scaling provides a predictive criterion for the applicability of convection models to natural systems such as Earth's core.

  10. Approximate analytical solution to diurnal atmospheric boundary-layer growth under well-watered conditions

    Science.gov (United States)

    The system of governing equations of a simplified slab model of the uniformly-mixed, purely convective, diurnal atmospheric boundary layer (ABL) is shown to allow immediate solutions for the potential temperature and specific humidity as functions of the ABL height and net radiation when expressed i...

  11. Nowcasting of deep convective clouds and heavy precipitation: Comparison study between NWP model simulation and extrapolation

    Czech Academy of Sciences Publication Activity Database

    Bližňák, Vojtěch; Sokol, Zbyněk; Zacharov, Petr, jr.

    2017-01-01

    Roč. 184, February (2017), s. 24-34 ISSN 0169-8095 R&D Projects: GA ČR(CZ) GPP209/12/P701; GA ČR GA13-34856S Institutional support: RVO:68378289 Keywords : meteorological satellite * convective storm * NWP model * verification * Czech Republic Subject RIV: DG - Athmosphere Sciences, Meteorology OBOR OECD: Meteorology and atmospheric sciences Impact factor: 3.778, year: 2016 http://www.sciencedirect.com/science/article/pii/S0169809516304288

  12. Meridional flow in the solar convection zone. I. Measurements from gong data

    Energy Technology Data Exchange (ETDEWEB)

    Kholikov, S. [National Solar Observatories, Tucson, AZ 85719 (United States); Serebryanskiy, A. [Ulugh Beg Astronomical Institute, Uzbek Academy of Science, Tashkent 100052 (Uzbekistan); Jackiewicz, J., E-mail: kholikov@noao.edu [Department of Astronomy, New Mexico State University, Las Cruces, NM 88003 (United States)

    2014-04-01

    Large-scale plasma flows in the Sun's convection zone likely play a major role in solar dynamics on decadal timescales. In particular, quantifying meridional motions is a critical ingredient for understanding the solar cycle and the transport of magnetic flux. Because the signal of such features can be quite small in deep solar layers and be buried in systematics or noise, the true meridional velocity profile has remained elusive. We perform time-distance helioseismology measurements on several years worth of Global Oscillation Network Group Doppler data. A spherical harmonic decomposition technique is applied to a subset of acoustic modes to measure travel-time differences to try to obtain signatures of meridional flows throughout the solar convection zone. Center-to-limb systematics are taken into account in an intuitive yet ad hoc manner. Travel-time differences near the surface that are consistent with a poleward flow in each hemisphere and are similar to previous work are measured. Additionally, measurements in deep layers near the base of the convection zone suggest a possible equatorward flow, as well as partial evidence of a sign change in the travel-time differences at mid-convection zone depths. This analysis on an independent data set using different measurement techniques strengthens recent conclusions that the convection zone may have multiple 'cells' of meridional flow. The results may challenge the common understanding of one large conveyor belt operating in the solar convection zone. Further work with helioseismic inversions and a careful study of systematic effects are needed before firm conclusions of these large-scale flow structures can be made.

  13. Natural convection of nanofluids over a convectively heated vertical plate embedded in a porous medium

    Energy Technology Data Exchange (ETDEWEB)

    Ghalambaz, M.; Noghrehabadi, A.; Ghanbarzadeh, A., E-mail: m.ghalambaz@gmail.com, E-mail: ghanbarzadeh.a@scu.ac.ir [Department of Mechanical Engineering, Shahid Chamran University of Ahvaz, Ahvaz (Iran, Islamic Republic of)

    2014-04-15

    In this paper, the natural convective flow of nanofluids over a convectively heated vertical plate in a saturated Darcy porous medium is studied numerically. The governing equations are transformed into a set of ordinary differential equations by using appropriate similarity variables, and they are numerically solved using the fourth-order Runge-Kutta method associated with the Gauss-Newton method. The effects of parametric variation of the Brownian motion parameter (Nb), thermophoresis parameter (Nt) and the convective heating parameter (Nc) on the boundary layer profiles are investigated. Furthermore, the variation of the reduced Nusselt number and reduced Sherwood number, as important parameters of heat and mass transfer, as a function of the Brownian motion, thermophoresis and convective heating parameters is discussed in detail. The results show that the thickness of the concentration profiles is much lower than the temperature and velocity profiles. For low values of the convective heating parameter (Nc), as the Brownian motion parameter increases, the non-dimensional wall temperature increases. However, for high values of Nc, the effect of the Brownian motion parameter on the non-dimensional wall temperature is not significant. As the Brownian motion parameter increases, the reduced Sherwood number increases and the reduced Nusselt number decreases. (author)

  14. A synoptic climatology of derecho producing mesoscale convective systems in the North-Central Plains

    Science.gov (United States)

    Bentley, Mace L.; Mote, Thomas L.; Byrd, Stephen F.

    2000-09-01

    Synoptic-scale environments favourable for producing derechos, or widespread convectively induced windstorms, in the North-Central Plains are examined with the goal of providing pattern-recognition/diagnosis techniques. Fifteen derechos were identified across the North-Central Plains region during 1986-1995. The synoptic environment at the initiation, mid-point and decay of each derecho was then evaluated using surface, upper-air and National Center for Atmospheric Research (NCAR)/National Center for Environmental Prediction (NCEP) reanalysis datasets.Results suggest that the synoptic environment is critical in maintaining derecho producing mesoscale convective systems (DMCSs). The synoptic environment in place downstream of the MCS initiation region determines the movement and potential strength of the system. Circulation around surface low pressure increased the instability gradient and maximized leading edge convergence in the initiation region of nearly all events regardless of DMCS location or movement. Other commonalities in the environments of these events include the presence of a weak thermal boundary, high convective instability and a layer of dry low-to-mid-tropospheric air. Of the two corridors sampled, northeastward moving derechos tend to initiate east of synoptic-scale troughs, while southeastward moving derechos form on the northeast periphery of a synoptic-scale ridge. Other differences between these two DMCS events are also discussed.

  15. Diurnal Cycle of ITCZ Convection during the MJO Suppressed Phase in DYNAMO

    Science.gov (United States)

    Ciesielski, P. E.; Johnson, R. H.; Schubert, W. H.

    2017-12-01

    During the special observing period of the Dynamics of the MJO (DYNAMO) experiment, conducted over the Indian Ocean from 1 October to 30 November 2011, two sounding arrays - one north and one south of the equator, referred to here as the NSA and SSA, respectively - took 4-8 soundings/day. We augment this 3-h dataset with observations of radiation and rainfall to investigate the diurnal cycle of convection during the suppressed phase of the October MJO. During this 14-day period when convection was suppressed over the NSA but prominent over the SSA, the circulation over the sounding arrays could be characterized as a local Hadley cell embedded within a monsoonal flow. Strong rising motion was present within the ITCZ and compensating subsidence over the NSA. A prominent diurnal pulsing of this cell was observed, impacting conditions on both sides of the equator, with the cell running strongest in the early morning hours (05-08 LT) and notably weakening later in the day (17-20LT). The reduction in evening subsidence over the NSA may have assisted the moistening of the low to mid-troposphere there during the pre-onset stage of the MJO. Apparent heating Q1 within the ITCZ exhibits a diurnal evolution from early morning bottom-heavy profiles to weaker daytime top-heavy profiles. Making use of the weak temperature gradient approximation, results suggest that direct radiative effects played a dominant role in controlling diurnal variations of vertical motion and convection within the ITCZ while non-radiative processes were more prominent over the NSA.

  16. Simultaneous fingering, double-diffusive convection, and thermal plumes derived from autocatalytic exothermic reaction fronts

    Science.gov (United States)

    Eskew, Matthew W.; Harrison, Jason; Simoyi, Reuben H.

    2016-11-01

    Oxidation reactions of thiourea by chlorite in a Hele-Shaw cell are excitable, autocatalytic, exothermic, and generate a lateral instability upon being triggered by the autocatalyst. Reagent concentrations used to develop convective instabilities delivered a temperature jump at the wave front of 2.1 K. The reaction zone was 2 mm and due to normal cooling after the wave front, this generated a spike rather than the standard well-studied front propagation. The reaction front has solutal and thermal contributions to density changes that act in opposite directions due to the existence of a positive isothermal density change in the reaction. The competition between these effects generates thermal plumes. The fascinating feature of this system is the coexistence of plumes and fingering in the same solution which alternate in frequency as the front propagates, generating hot and cold spots within the Hele-Shaw cell, and subsequently spatiotemporal inhomogeneities. The small ΔT at the wave front generated thermocapillary convection which competed effectively with thermogravitational forces at low Eötvös Numbers. A simplified reaction-diffusion-convection model was derived for the system. Plume formation is heavily dependent on boundary effects from the cell dimensions. This work was supported by Grant No. CHE-1056366 from the NSF and a Research Professor Grant from the University of KwaZulu-Natal.

  17. All-weather volume imaging of the boundary layer and troposphere using the MU radar

    Directory of Open Access Journals (Sweden)

    R. M. Worthington

    2004-04-01

    Full Text Available This paper shows the first volume-imaging radar that can run in any weather, revealing the turbulent three-dimensional structure and airflow of convective cells, rain clouds, breaking waves and deep convection as they evolve and move. Precipitation and clear air can be volume-imaged independently. Birds are detected as small high-power echoes moving near horizontal, at different speeds and directions from background wind. The volume-imaging method could be used to create a real-time virtual-reality view of the atmosphere, in effect making the invisible atmosphere visible in any weather.Key words. Meteorology and atmospheric dynamics (convective processes, turbulence – Radio science (instruments and techniques

  18. Comparative numerical study of kaolin clay with three drying methods: Convective, convective–microwave and convective infrared modes

    International Nuclear Information System (INIS)

    Hammouda, I.; Mihoubi, D.

    2014-01-01

    Highlights: • Modelling of drying of deformable media. • Theoretical study of kaolin clay with three drying methods: convective, convective–microwave and convective infrared mode. • The stresses generated during convective, microwave/convective drying and infrared/convective drying. • The combined drying decrease the intensity of stresses developed during drying. - Abstract: A mathematical model is developed to simulate the response of a kaolin clay sample when subjected to convective, convective–microwave and convective–infrared mode. This model is proposed to describe heat, mass, and momentum transfers applied to a viscoelastic medium described by a Maxwell model with two branches. The combined drying methods were investigated to examine whether these types of drying may minimize cracking that can be generated in the product and to know whether the best enhancement is developed by the use of infra-red or microwave radiation. The numerical code allowed us to determine, and thus, compare the effect of the drying mode on drying rate, temperature, moisture content and mechanical stress evolutions during drying. The numerical results show that the combined drying decrease the intensity of stresses developed during drying and that convective–microwave drying is the best method that gives a good quality of dried product

  19. Model of oscillatory instability in vertically-homogeneous atmosphere

    Directory of Open Access Journals (Sweden)

    P. B. Rutkevich

    2009-02-01

    Full Text Available Existence and repeatability of tornadoes could be straightforwardly explained if there existed instability, responsible for their formation. However, it is well known that convection is the only instability in initially stable air, and the usual convective instability is not applicable for these phenomena. In the present paper we describe an instability in the atmosphere, which can be responsible for intense vortices. This instability appears in a fluid with Coriolis force and dissipation and has oscillatory behaviour, where the amplitude growth is accompanied by oscillations with frequency comparable to the growth rate of the instability. In the paper, both analytical analysis of the linear phase of the instability and nonlinear simulation of the developed stage of the air motion are addressed. This work was supported by the RFBR grant no. 09-05-00374-a.

  20. Enhancement of cell growth on honeycomb-structured polylactide surface using atmospheric-pressure plasma jet modification

    Energy Technology Data Exchange (ETDEWEB)

    Cheng, Kuang-Yao; Chang, Chia-Hsing; Yang, Yi-Wei; Liao, Guo-Chun; Liu, Chih-Tung; Wu, Jong-Shinn, E-mail: chongsin@faculty.nctu.edu.tw

    2017-02-01

    Graphical abstract: Atmospheric-pressure plasma enhances cell growth on two different pore sizes of honeycomb pattern on polylactide surface. - Highlights: • Different pore sizes of honeycomb pattern on PLA film are created. • The two-step plasma treatment provided the oxygen- and nitrogen-containing functional groups that had a major impact on cell cultivation. • The plasma treatment had a significant effect for cell proliferation. • The surface structures are the main influence on cell cultivation, while plasma treatment can indeed improve the growth environment. - Abstract: In this paper, we compare the cell growth results of NIH-3T3 and Neuro-2A cells over 72 h on flat and honeycomb structured PLA films without and with a two-step atmospheric-pressure nitrogen-based plasma jet treatment. We developed a fabrication system used for forming of a uniform honeycomb structure on PLA surface, which can produce two different pore sizes, 3–4 μm and 7–8 μm, of honeycomb pattern. We applied a previously developed nitrogen-based atmospheric-pressure dielectric barrier discharge (DBD) jet system to treat the PLA film without and with honeycomb structure. NIH-3T3 and a much smaller Neuro-2A cells were cultivated on the films under various surface conditions. The results show that the two-step plasma treatment in combination with a honeycomb structure can enhance cell growth on PLA film, should the cell size be not too smaller than the pore size of honeycomb structure, e.g., NIH-3T3. Otherwise, cell growth would be better on flat PLA film, e.g., Neuro-2A.

  1. High-Temperature, Dual-Atmosphere Corrosion of Solid-Oxide Fuel Cell Interconnects

    Science.gov (United States)

    Gannon, Paul; Amendola, Roberta

    2012-12-01

    High-temperature corrosion of ferritic stainless steel (FSS) surfaces can be accelerated and anomalous when it is simultaneously subjected to different gaseous environments, e.g., when separating fuel (hydrogen) and oxidant (air) streams, in comparison with single-atmosphere exposures, e.g., air only. This so-called "dual-atmosphere" exposure is realized in many energy-conversion systems including turbines, boilers, gasifiers, heat exchangers, and particularly in intermediate temperature (600-800°C) planar solid-oxide fuel cell (SOFC) stacks. It is generally accepted that hydrogen transport through the FSS (plate or tube) and its subsequent integration into the growing air-side surface oxide layer can promote accelerated and anomalous corrosion—relative to single-atmosphere exposure—via defect chemistry changes, such as increased cation vacancy concentrations, decreased oxygen activity, and steam formation within the growing surface oxide layers. Establishment of a continuous and dense surface oxide layer on the fuel side of the FSS can inhibit hydrogen transport and the associated effects on the air side. Minor differences in FSS composition, microstructure, and surface conditions can all have dramatic influences on dual-atmosphere corrosion behaviors. This article reviews high-temperature, dual-atmosphere corrosion phenomena and discusses implications for SOFC stacks, related applications, and future research.

  2. Atmospheric deposition and surface stratification as controls of contrasting chlorophyll abundance in the North Indian Ocean

    Digital Repository Service at National Institute of Oceanography (India)

    Patra, P.K.; DileepKumar, M.; Mahowald, N.; Sarma, V.V.S.S.

    Intense upwelling during summer and convection in winter are believed to drive higher biological productivity in the Arabian Sea than in the Bay of Bengal. Although the Arabian Sea receives substantial atmospheric deposition of dust aerosols, its...

  3. Numerical simulation of helical-vortex effects in Rayleigh-Bénard convection

    Directory of Open Access Journals (Sweden)

    G. V. Levina

    2006-01-01

    Full Text Available A numerical approach is substantiated for searching for the large-scale alpha-like instability in thermoconvective turbulence. The main idea of the search strategy is the application of a forcing function which can have a physical interpretation. The forcing simulates the influence of small-scale helical turbulence generated in a rotating fluid with internal heat sources and is applied to naturally induced fully developed convective flows. The strategy is tested using the Rayleigh-Bénard convection in an extended horizontal layer of incompressible fluid heated from below. The most important finding is an enlargement of the typical horizontal scale of the forming helical convective structures accompanied by a cells merging, an essential increase in the kinetic energy of flows and intensification of heat transfer. The results of modeling allow explaining how the helical feedback can work providing the non-zero mean helicity generation and the mutual intensification of horizontal and vertical circulation, and demonstrate how the energy of the additional helical source can be effectively converted into the energy of intensive large-scale vortex flow.

  4. Marangoni-buoyancy convection in binary fluids under varying noncondensable concentrations

    Science.gov (United States)

    Li, Yaofa; Yoda, Minami

    2014-11-01

    Marangoni-buoyancy convection in binary fluids in the presence of phase change is a complex and poorly understood problem. Nevertheless, this flow is of interest in evaporative cooling because solutocapillary stresses could reduce film dryout. Convection was therefore studied in methanol-water (MeOH-H2O) layers of depth h ~ 1 - 3 mm confined in a sealed rectangular cell driven by horizontal temperature differences of ~6° C applied over ~ 5 cm. Particle-image velocimetry (PIV) was used to study how varying the fraction of noncondensables (i.e., air) ca from ~ 7 mol% to ambient conditions in the vapor space affects soluto- and thermocapillary stresses in this flow. Although solutocapillary stresses can be used to drive the flow towards hot regions, solutocapillarity appears to have the greatest effect on the flow at small ca, because noncondensables suppress phase change and hence the gradient in the liquid-phase composition at the interface. Surprisingly, convection at ca ~ 50 % leads to a very weak flow and significant condensation in the central portion of the layer i.e., away from the heated and cooled walls). Supported by ONR.

  5. Magnetic inhibition of convection and the fundamental properties of low-mass stars. II. Fully convective main-sequence stars

    Energy Technology Data Exchange (ETDEWEB)

    Feiden, Gregory A. [Department of Physics and Astronomy, Uppsala University, Box 516, SE-751 20 Uppsala (Sweden); Chaboyer, Brian, E-mail: gregory.a.feiden@gmail.com, E-mail: brian.chaboyer@dartmouth.edu [Department of Physics and Astronomy, Dartmouth College, 6127 Wilder Laboratory, Hanover, NH 03755 (United States)

    2014-07-01

    We examine the hypothesis that magnetic fields are inflating the radii of fully convective main-sequence stars in detached eclipsing binaries (DEBs). The magnetic Dartmouth stellar evolution code is used to analyze two systems in particular: Kepler-16 and CM Draconis. Magneto-convection is treated assuming stabilization of convection and also by assuming reductions in convective efficiency due to a turbulent dynamo. We find that magnetic stellar models are unable to reproduce the properties of inflated fully convective main-sequence stars, unless strong interior magnetic fields in excess of 10 MG are present. Validation of the magnetic field hypothesis given the current generation of magnetic stellar evolution models therefore depends critically on whether the generation and maintenance of strong interior magnetic fields is physically possible. An examination of this requirement is provided. Additionally, an analysis of previous studies invoking the influence of star spots is presented to assess the suggestion that star spots are inflating stars and biasing light curve analyses toward larger radii. From our analysis, we find that there is not yet sufficient evidence to definitively support the hypothesis that magnetic fields are responsible for the observed inflation among fully convective main-sequence stars in DEBs.

  6. Theoretical study of the influence of chemical reactions and physical parameters on the convective dissolution of CO2 in aqueous solutions

    Science.gov (United States)

    Loodts, Vanessa; Rongy, Laurence; De Wit, Anne

    2014-05-01

    Subsurface carbon sequestration has emerged as a promising solution to the problem of increasing atmospheric carbon dioxide (CO2) levels. How does the efficiency of such a sequestration process depend on the physical and chemical characteristics of the storage site? This question is emblematic of the need to better understand the dynamics of CO2 in subsurface formations, and in particular, the properties of the convective dissolution of CO2 in the salt water of aquifers. This dissolution is known to improve the safety of the sequestration by reducing the risks of leaks of CO2 to the atmosphere. Buoyancy-driven convection makes this dissolution faster by transporting dissolved CO2 further away from the interface. Indeed, upon injection, the less dense CO2 phase rises above the aqueous layer where it starts to dissolve. The dissolved CO2 increases the density of the aqueous solution, thereby creating a layer of denser CO2-rich solution above less dense solution. This unstable density gradient in the gravity field is at the origin of convection. In this framework, we theoretically investigate the effect of CO2 pressure, salt concentration, temperature, and chemical reactions on the dissolution-driven convection of CO2 in aqueous solutions. On the basis of a linear stability analysis, we assess the stability of the time-dependent density profiles developing when CO2 dissolves in an aqueous layer below it. We predict that increasing CO2 pressure destabilizes the system with regard to buoyancy-driven convection, because it increases the density gradient at the origin of the instability. By contrast, increasing salt concentration or temperature stabilizes the system via effects on CO2 solubility, solutal expansion coefficient, diffusion coefficient and on the viscosity and density of the solution. We also show that a reaction of CO2 with chemical species dissolved in the aqueous solution can either enhance or decrease the amplitude of the convective dissolution compared

  7. Boundary-modulated Thermal Convection Model in the Mantle

    Science.gov (United States)

    Kurita, K.; Kumagai, I.

    2008-12-01

    Analog experiments have played an important role in the constructing ideas of mantle dynamics. The series of experiments by H. Ramberg is one of the successful examples. Recently, however the realm of the analog experiments seems to be overwhelmed by steady progress of computer simulations. Is there still room for the analog experiments? This might be a main and hidden subject of this session. Here we propose a working hypothesis how the convecting mantle behaves based on the analog experiments in the system of viscous fluid and particles. The essential part is the interaction of convecting flow with heterogeneities existing in the boundaries. It is proposed the preexisting topographical heterogeneity in the boundary could control the flow pattern of convecting fluid. If this kind of heterogeneity can be formed as a consequence of convective motion and mobilized by the flow, the convection also can control the heterogeneity. We can expect interactions in two ways, by which the system behaves in a self-organize fashion. To explore the mutual interactions between convection flow and heterogeneity the system of viscous fluid and particles with slightly higher density is selected as 2D Rayleigh-Benard type convection. The basic structure consists of a basal particulate layer where permeable convection transports heat and an upper viscous fluid layer. By reducing the magnitude of the density difference the convective flow can mobilize the particles and can erode the basal layer. The condition of this erosion can be identified in the phase diagram of the particle Shields"f and the Rayleigh numbers. At Ra greater than 107 the convection style drastically changed before and after the erosion. Before the erosion where the flat interface of the boundary is maintained small scaled turbulent convection pattern is dominant. After the erosion where the interface becomes bumpy the large scale convective motion is observed. The structure is coherent to that of the boundary. This

  8. Mantle Convection on Modern Supercomputers

    Science.gov (United States)

    Weismüller, J.; Gmeiner, B.; Huber, M.; John, L.; Mohr, M.; Rüde, U.; Wohlmuth, B.; Bunge, H. P.

    2015-12-01

    Mantle convection is the cause for plate tectonics, the formation of mountains and oceans, and the main driving mechanism behind earthquakes. The convection process is modeled by a system of partial differential equations describing the conservation of mass, momentum and energy. Characteristic to mantle flow is the vast disparity of length scales from global to microscopic, turning mantle convection simulations into a challenging application for high-performance computing. As system size and technical complexity of the simulations continue to increase, design and implementation of simulation models for next generation large-scale architectures is handled successfully only in an interdisciplinary context. A new priority program - named SPPEXA - by the German Research Foundation (DFG) addresses this issue, and brings together computer scientists, mathematicians and application scientists around grand challenges in HPC. Here we report from the TERRA-NEO project, which is part of the high visibility SPPEXA program, and a joint effort of four research groups. TERRA-NEO develops algorithms for future HPC infrastructures, focusing on high computational efficiency and resilience in next generation mantle convection models. We present software that can resolve the Earth's mantle with up to 1012 grid points and scales efficiently to massively parallel hardware with more than 50,000 processors. We use our simulations to explore the dynamic regime of mantle convection and assess the impact of small scale processes on global mantle flow.

  9. Convective Cloud and Rainfall Processes Over the Maritime Continent: Simulation and Analysis of the Diurnal Cycle

    Science.gov (United States)

    Gianotti, Rebecca L.

    The Maritime Continent experiences strong moist convection, which produces significant rainfall and drives large fluxes of heat and moisture to the upper troposphere. Despite the importance of these processes to global circulations, current predictions of climate change over this region are still highly uncertain, largely due to inadequate representation of the diurnally-varying processes related to convection. In this work, a coupled numerical model of the land-atmosphere system (RegCM3-IBIS) is used to investigate how more physically-realistic representations of these processes can be incorporated into large-scale climate models. In particular, this work improves simulations of convective-radiative feedbacks and the role of cumulus clouds in mediating the diurnal cycle of rainfall. Three key contributions are made to the development of RegCM3-IBIS. Two pieces of work relate directly to the formation and dissipation of convective clouds: a new representation of convective cloud cover, and a new parameterization of convective rainfall production. These formulations only contain parameters that can be directly quantified from observational data, are independent of model user choices such as domain size or resolution, and explicitly account for subgrid variability in cloud water content and nonlinearities in rainfall production. The third key piece of work introduces a new method for representation of cloud formation within the boundary layer. A comprehensive evaluation of the improved model was undertaken using a range of satellite-derived and ground-based datasets, including a new dataset from Singapore's Changi airport that documents diurnal variation of the local boundary layer height. The performance of RegCM3-IBIS with the new formulations is greatly improved across all evaluation metrics, including cloud cover, cloud liquid water, radiative fluxes and rainfall, indicating consistent improvement in physical realism throughout the simulation. This work

  10. Large-scale global convection in the mantle beneath Australia from 55 Ma to now

    International Nuclear Information System (INIS)

    Zhang, M.

    1999-01-01

    Full text: The global-scale mantle convection cells in the asthenosphere are not geochemically homogeneous. The heterogeneity is most prominently reflected in the isotopic compositions (Pb-Sr-Nd) of the mid-ocean ridge basalts (MORB) that are direct partial melts from the underlying asthenosphere. Of particular relevance to Australia's geodynamic evolution from about 100 million years, are the distinctive geochemical signatures of the asthenosphere beneath the Pacific Ocean (Pacific MORB) and Indian Ocean (Indian MORB). Therefore, delineation of the boundary between the two distinct mantle reservoirs and any change in that boundary with time provide information about the patterns of global-scale asthenospheric mantle convection. This information has also allowed us to track large-scale mantle chemical reservoirs such as the distinctive Gondwana lithospheric mantle, and hence better understand the geodynamic evolution of the Australian continent from the time of Gondwana dispersal. Pb-Sr-Nd isotope data for Cenozoic basalts in eastern Australia (Zhang et al, 1999) indicate that Pacific-MORB type isotopic signatures characterise the lava-field basalts (55-14 Ma) in southeastern Australia, whereas Indian-MORB type isotopic signatures characterise younger basalts (6-0 Ma) from northeastern Australia. This discovery helps to constrain the changing locus of the major asthenospheric mantle convection cells represented by the Pacific and Indian MORB sources during and following the breakup of the eastern part of Gondwana, and locates, for the first time, the boundary of these convection cells beneath the Australian continent. This extends previous work in the SW Pacific back-arc basins (eg Hickey-Vargas et al., 1995) and the Southern Ocean (Lanyon et al., 1995) that indicates that the 1- and P-MORB mantle convection cells have been moving in opposite directions since the early Tertiary. These new data also indicate that the Indian-MORB source is a long-term asthenospheric

  11. Thermo-electro-hydrodynamic convection under microgravity: a review

    Energy Technology Data Exchange (ETDEWEB)

    Mutabazi, Innocent; Yoshikawa, Harunori N; Fogaing, Mireille Tadie; Travnikov, Vadim; Crumeyrolle, Olivier [Laboratoire Ondes et Milieux Complexes, UMR 6294, CNRS-Université du Havre, CS 80450, F-76058 Le Havre Cedex (France); Futterer, Birgit; Egbers, Christoph, E-mail: Innocent.Mutabazi@univ-lehavre.fr [Department of Aerodynamics and Fluid Mechanics, Brandenburg University of Technology Cottbus-Senftenberg, Cottbus (Germany)

    2016-12-15

    Recent studies on thermo-electro-hydrodynamic (TEHD) convection are reviewed with focus on investigations motivated by the analogy with natural convection. TEHD convection originates in the action of the dielectrophoretic force generated by an alternating electric voltage applied to a dielectric fluid with a temperature gradient. This electrohydrodynamic force is analogous to Archimedean thermal buoyancy and can be regarded as a thermal buoyancy force in electric effective gravity. The review is concerned with TEHD convection in plane, cylindrical, and spherical capacitors under microgravity conditions, where the electric gravity can induce convection without any complexities arising from geometry or the buoyancy force due to the Earth’s gravity. We will highlight the convection in spherical geometry, comparing developed theories and numerical simulations with the GEOFLOW experiments performed on board the International Space Station (ISS). (paper)

  12. Temperature-Driven Convection

    Science.gov (United States)

    Bohan, Richard J.; Vandegrift, Guy

    2003-02-01

    Warm air aloft is stable. This explains the lack of strong winds in a warm front and how nighttime radiative cooling can lead to motionless air that can trap smog. The stability of stratospheric air can be attributed to the fact that it is heated from above as ultraviolet radiation strikes the ozone layer. On the other hand, fluid heated from below is unstable and can lead to Bernard convection cells. This explains the generally turbulent nature of the troposphere, which receives a significant fraction of its heat directly from the Earth's warmer surface. The instability of cold fluid aloft explains the violent nature of a cold front, as well as the motion of Earth's magma, which is driven by radioactive heating deep within the Earth's mantle. This paper describes how both effects can be demonstrated using four standard beakers, ice, and a bit of food coloring.

  13. Transient Mixed Convection Validation for NGNP

    Energy Technology Data Exchange (ETDEWEB)

    Smith, Barton [Utah State Univ., Logan, UT (United States); Schultz, Richard [Idaho National Lab. (INL), Idaho Falls, ID (United States)

    2015-10-19

    The results of this project are best described by the papers and dissertations that resulted from the work. They are included in their entirety in this document. They are: (1) Jeff Harris PhD dissertation (focused mainly on forced convection); (2) Blake Lance PhD dissertation (focused mainly on mixed and transient convection). This dissertation is in multi-paper format and includes the article currently submitted and one to be submitted shortly; and, (3) JFE paper on CFD Validation Benchmark for Forced Convection.

  14. Transient Mixed Convection Validation for NGNP

    International Nuclear Information System (INIS)

    Smith, Barton; Schultz, Richard

    2015-01-01

    The results of this project are best described by the papers and dissertations that resulted from the work. They are included in their entirety in this document. They are: (1) Jeff Harris PhD dissertation (focused mainly on forced convection); (2) Blake Lance PhD dissertation (focused mainly on mixed and transient convection). This dissertation is in multi-paper format and includes the article currently submitted and one to be submitted shortly; and, (3) JFE paper on CFD Validation Benchmark for Forced Convection.

  15. Heat transfer in pool boiling liquid neon, deuterium and hydrogen, and critical heat flux in forced convection of liquid neon

    International Nuclear Information System (INIS)

    Astruc, J.M.

    1967-12-01

    In the first part, free-convection and nucleate pool boiling heat transfer (up to burn-out heat flux) between a platinum wire of 0.15 mm in diameter in neon, deuterium and hydrogen has been studied at atmospheric pressure. These measurements were continued in liquid neon up to 23 bars (Pc ≅ 26.8 b). Film boiling heat transfer coefficients have been measured in pool boiling liquid neon at atmospheric pressure with three heating wires (diameters 0.2, 0.5, 2 mm). All the results have been compared with existing correlations. The second part is devoted to measurements of the critical heat flux limiting heat transfer with small temperature differences between the wall and the liquid neon flowing inside a tube (diameters 3 x 3.5 mm) heated by joule effect on 30 cm of length. Influences of flow stability, nature of electrical current, pressure, mass flow rate and subcooling are shown. In conclusion, the similarity of the heat transfer characteristics in pool boiling as well as in forced convection of liquid neon and hydrogen is emphasized. (author) [fr

  16. Segregation and convection in dendritic alloys

    Science.gov (United States)

    Poirier, D. R.

    1990-01-01

    Microsegregation in dentritic alloys is discussed, including solidification with and without thermal gradient, the convection of interdendritic liquid. The conservation of momentum, energy, and solute is considered. Directional solidification and thermosolutal convection are discussed.

  17. A global high-resolution model experiment on the predictability of the atmosphere

    Science.gov (United States)

    Judt, F.

    2016-12-01

    Forecasting high-impact weather phenomena is one of the most important aspects of numerical weather prediction (NWP). Over the last couple of years, a tremendous increase in computing power has facilitated the advent of global convection-resolving NWP models, which allow for the seamless prediction of weather from local to planetary scales. Unfortunately, the predictability of specific meteorological phenomena in these models is not very well known. This raises questions about which forecast problems are potentially tractable, and what is the value of global convection-resolving model predictions for the end user. To address this issue, we use the Yellowstone supercomputer to conduct a global high-resolution predictability experiment with the recently developed Model for Prediction Across Scales (MPAS). The computing power of Yellowstone enables the model to run at a globally uniform resolution of 4 km with 55 vertical levels (>2 billion grid cells). These simulations, which require 3 million core-hours for the entire experiment, allow for the explicit treatment of organized deep moist convection (i.e., thunderstorm systems). Resolving organized deep moist convection alleviates grave limitations of previous predictability studies, which either used high-resolution limited-area models or global simulations with coarser grids and cumulus parameterization. By computing the error growth characteristics in a set of "identical twin" model runs, the experiment will clarify the intrinsic predictability limits of atmospheric phenomena on a wide range of scales, from severe thunderstorms to global-scale wind patterns that affect the distribution of tropical rainfall. Although a major task by itself, this study is intended to be exploratory work for a future predictability experiment going beyond of what has so far been feasible. We hope to use CISL's new Cheyenne supercomputer to conduct a similar predictability experiments on a global mesh with 1-2 km resolution. This

  18. Using ARM Measurements to Understand and Reduce the Double ITCZ Biases in the Community Atmospheric Model

    Energy Technology Data Exchange (ETDEWEB)

    Zhang, Minghua [Stony Brook Univ., NY (United States)

    2016-12-08

    1. Understanding of the observed variability of ITCZ in the equatorial eastern Pacific. The annual mean precipitation in the eastern Pacific has a maximum zonal band north of the equator in the ITCZ where the maximum SST is located. During the boreal spring (referring to February, March, and April throughout the present paper), because of the accumulated solar radiation heating and oceanic heat transport, a secondary maximum of SST exists in the southeastern equatorial Pacific. Associated with this warm SST is also a seasonal transitional maximum of precipitation in the same region in boreal spring, exhibited as a weak double ITCZ pattern in the equatorial eastern Pacific. This climatological seasonal variation, however, varies greatly from year to year: double ITCZ in the boreal spring occurs in some years but not in other years; when there a single ITCZ, it can appear either north, south or at the equator. Understanding this observed variability is critical to find the ultimate cause of the double ITCZ in climate models. Seasonal variation of ITCZ south of the eastern equatorial Pacific: By analyzing data from satellites, field measurements and atmospheric reanalysis, we have found that in the region where spurious ITCZ in models occurs, there is a “seasonal cloud transition” — from stratocumulus to shallow cumulus and eventually to deep convection —in the South Equatorial Pacific (SEP) from September to April that is similar to the spatial cloud transition from the California coast to the equator. This seasonal transition is associated with increasing sea surface temperature (SST), decreasing lower tropospheric stability and large-scale subsidence. This finding of seasonal cloud transition points to the same source of model errors in the ITCZ simulations as in simulation of stratocumulus-cumulus-deep convection transition. It provides a test for climate models to simulate the relationships between clouds and large-scale atmospheric fields in a region

  19. Atmospheric effects on the photovoltaic performance of hybrid perovskite solar cells

    KAUST Repository

    Sheikh, Arif D.; Bera, Ashok; Haque, Mohammed; Baby, Rakhi Raghavan; Del Gobbo, Silvano; Alshareef, Husam N.; Wu, Tao

    2015-01-01

    nitrogen, and dry air, on the photovoltaic performance of TiO2-CH3NH3PbI3-xClx-spiro-MeOTAD solar cells. We found that spin coating of spiro-MeOTAD in an oxygen atmosphere alone was not adequate to functionalize its hole-transport property completely

  20. Performance Evaluation of PBL Schemes of ARW Model in Simulating Thermo-Dynamical Structure of Pre-Monsoon Convective Episodes over Kharagpur Using STORM Data Sets

    Science.gov (United States)

    Madala, Srikanth; Satyanarayana, A. N. V.; Srinivas, C. V.; Tyagi, Bhishma

    2016-05-01

    In the present study, advanced research WRF (ARW) model is employed to simulate convective thunderstorm episodes over Kharagpur (22°30'N, 87°20'E) region of Gangetic West Bengal, India. High-resolution simulations are conducted using 1 × 1 degree NCEP final analysis meteorological fields for initial and boundary conditions for events. The performance of two non-local [Yonsei University (YSU), Asymmetric Convective Model version 2 (ACM2)] and two local turbulence kinetic energy closures [Mellor-Yamada-Janjic (MYJ), Bougeault-Lacarrere (BouLac)] are evaluated in simulating planetary boundary layer (PBL) parameters and thermodynamic structure of the atmosphere. The model-simulated parameters are validated with available in situ meteorological observations obtained from micro-meteorological tower as well has high-resolution DigiCORA radiosonde ascents during STORM-2007 field experiment at the study location and Doppler Weather Radar (DWR) imageries. It has been found that the PBL structure simulated with the TKE closures MYJ and BouLac are in better agreement with observations than the non-local closures. The model simulations with these schemes also captured the reflectivity, surface pressure patterns such as wake-low, meso-high, pre-squall low and the convective updrafts and downdrafts reasonably well. Qualitative and quantitative comparisons reveal that the MYJ followed by BouLac schemes better simulated various features of the thunderstorm events over Kharagpur region. The better performance of MYJ followed by BouLac is evident in the lesser mean bias, mean absolute error, root mean square error and good correlation coefficient for various surface meteorological variables as well as thermo-dynamical structure of the atmosphere relative to other PBL schemes. The better performance of the TKE closures may be attributed to their higher mixing efficiency, larger convective energy and better simulation of humidity promoting moist convection relative to non

  1. Assessing the uncertainty of soil moisture impacts on convective precipitation using a new ensemble approach

    Directory of Open Access Journals (Sweden)

    O. Henneberg

    2018-05-01

    Full Text Available Soil moisture amount and distribution control evapotranspiration and thus impact the occurrence of convective precipitation. Many recent model studies demonstrate that changes in initial soil moisture content result in modified convective precipitation. However, to quantify the resulting precipitation changes, the chaotic behavior of the atmospheric system needs to be considered. Slight changes in the simulation setup, such as the chosen model domain, also result in modifications to the simulated precipitation field. This causes an uncertainty due to stochastic variability, which can be large compared to effects caused by soil moisture variations. By shifting the model domain, we estimate the uncertainty of the model results. Our novel uncertainty estimate includes 10 simulations with shifted model boundaries and is compared to the effects on precipitation caused by variations in soil moisture amount and local distribution. With this approach, the influence of soil moisture amount and distribution on convective precipitation is quantified. Deviations in simulated precipitation can only be attributed to soil moisture impacts if the systematic effects of soil moisture modifications are larger than the inherent simulation uncertainty at the convection-resolving scale.We performed seven experiments with modified soil moisture amount or distribution to address the effect of soil moisture on precipitation. Each of the experiments consists of 10 ensemble members using the deep convection-resolving COSMO model with a grid spacing of 2.8 km. Only in experiments with very strong modification in soil moisture do precipitation changes exceed the model spread in amplitude, location or structure. These changes are caused by a 50 % soil moisture increase in either the whole or part of the model domain or by drying the whole model domain. Increasing or decreasing soil moisture both predominantly results in reduced precipitation rates. Replacing the soil

  2. Rotating turbulent Rayleigh-Bénard convection subject to harmonically forced flow reversals

    NARCIS (Netherlands)

    Geurts, B.J.; Kunnen, R.P.J.

    2014-01-01

    The characteristics of turbulent flow in a cylindrical Rayleigh–B´enard convection cell which can be modified considerably in case rotation is included in the dynamics. By incorporating the additional effects of an Euler force, i.e., effects induced by nonconstant rotation rates, a remarkably strong

  3. Rotating turbulent Rayleigh–Bénard convection subject to harmonically forced flow reversals

    NARCIS (Netherlands)

    Geurts, Bernardus J.; Kunnen, Rudie P.J.

    2014-01-01

    The characteristics of turbulent flow in a cylindrical Rayleigh–Bénard convection cell which can be modified considerably in case rotation is included in the dynamics. By incorporating the additional effects of an Euler force, i.e., effects induced by non-constant rotation rates, a remarkably strong

  4. The Impact of the Aerosol Direct Radiative Forcing on Deep Convection and Air Quality in the Pearl River Delta Region

    Science.gov (United States)

    Liu, Z.; Yim, Steve H. L.; Wang, C.; Lau, N. C.

    2018-05-01

    Literature has reported the remarkable aerosol impact on low-level cloud by direct radiative forcing (DRF). Impacts on middle-upper troposphere cloud are not yet fully understood, even though this knowledge is important for regions with a large spatial heterogeneity of emissions and aerosol concentration. We assess the aerosol DRF and its cloud response in June (with strong convection) in Pearl River Delta region for 2008-2012 at cloud-resolving scale using an air quality-climate coupled model. Aerosols suppress deep convection by increasing atmospheric stability leading to less evaporation from the ground. The relative humidity is reduced in middle-upper troposphere due to induced reduction in both evaporation from the ground and upward motion. The cloud reduction offsets 20% of the aerosol DRF. The weaker vertical mixing further increases surface aerosol concentration by up to 2.90 μg/m3. These findings indicate the aerosol DRF impact on deep convection and in turn regional air quality.

  5. Trace gas composition in the free and upper troposphere over Asia: Examining the influence of long-range transport and convection of local pollution

    Science.gov (United States)

    Baker, A. K.; Traud, S.; Brenninkmeijer, C. A.; Hoor, P. M.; Neumaier, M.; Oram, D.; Rauthe-Schöch, A.; Schloegl, S.; Sprung, D.; Slemr, F.; van Velthoven, P.; Wernli, H.; Zahn, A.; Ziereis, H.

    2013-12-01

    Between May 2005 and March 2008 the CARIBIC observatory (Civil Aircraft for the Regular Investigation of the atmosphere Based on an Instrument Container) was deployed to make atmospheric observations during 21 round-trip flights between Frankfurt, Germany and Manila, the Philippines with a stopover in Guangzhou, China. This nearly 3 year flight series provides us with information about atmospheric composition in the free and upper troposphere over Asia during all seasons and was used to investigate seasonal and regional differences in trace gas distributions and the relative influences of long range transport and convected local air masses on composition. The flight route was separated into three different regions having unique characteristics in transport and composition; these were Western Asia (5°E to 70°E), Central Asia (70°E to 100°E) and East Asia (100°E to 125°E). The region over Western Asia was heavily influenced by long range transport of air masses from North America and had elevated levels of NOy and acetone, while the region over East Asia was mostly influenced by convected local (South East Asian) pollution, particularly from biomass/biofuel burning as indicated by high levels of acetonitrile and carbon monoxide. Air masses over Central Asia were found to be influenced by both recently convected air masses from the Indian subcontinent and mid-range transport from Eastern Europe and the Middle East. Elevated levels of propane and other non-methane hydrocarbons, both with and without concommitant elevations in other trace gases (i.e. carbon monoxide, acetonitrile) were a persisent feature of this region in all seasons except summer, and were particularly prominent in fall. Influences on composition over Central Asia were investigated more thoroughly in a case study from a series of flights in October 2006, and elevated levels of pollutants were found to be the result of convective transport of both biomass/biofuel burning and urban emissions from

  6. EFFECTS OF STELLAR FLUX ON TIDALLY LOCKED TERRESTRIAL PLANETS: DEGREE-1 MANTLE CONVECTION AND LOCAL MAGMA PONDS

    International Nuclear Information System (INIS)

    Gelman, S. E.; Elkins-Tanton, L. T.; Seager, S.

    2011-01-01

    We model the geodynamical evolution of super-Earth exoplanets in synchronous rotation about their star. While neglecting the effects of a potential atmosphere, we explore the parameter spaces of both the Rayleigh number and intensity of incoming stellar flux, and identify two main stages of mantle convection evolution. The first is a transient stage in which a lithospheric temperature and thickness dichotomy emerges between the substellar and the antistellar hemispheres, while the style of mantle convection is dictated by the Rayleigh number. The second stage is the development of degree-1 mantle convection. Depending on mantle properties, the timescale of onset of this second stage of mantle evolution varies from order 1 to 100 billion years of simulated planetary evolution. Planets with higher Rayleigh numbers (due to, for instance, larger planetary radii than the Earth) and planets whose incoming stellar flux is high (likely for most detectable exoplanets) will develop degree-1 mantle convection most quickly, on the order of 1 billion years, which is within the age of many planetary systems. Surface temperatures range from 220 K to 830 K, implying the possibility of liquid water in some regions near the surface. These results are discussed in the context of stable molten magma ponds on hotter planets, and the habitability of super-Earths which may lie outside the Habitable Zone.

  7. Fast wave experiments in LAPD: RF sheaths, convective cells and density modifications

    Science.gov (United States)

    Carter, T. A.; van Compernolle, B.; Martin, M.; Gekelman, W.; Pribyl, P.; van Eester, D.; Crombe, K.; Perkins, R.; Lau, C.; Martin, E.; Caughman, J.; Tripathi, S. K. P.; Vincena, S.

    2017-10-01

    An overview is presented of recent work on ICRF physics at the Large Plasma Device (LAPD) at UCLA. The LAPD has typical plasma parameters ne 1012 -1013 cm-3, Te 1 - 10 eV and B 1000 G. A new high-power ( 150 kW) RF system and fast wave antenna have been developed for LAPD. The source runs at a frequency of 2.4 MHz, corresponding to 1 - 7fci , depending on plasma parameters. Evidence of rectified RF sheaths is seen in large increases ( 10Te) in the plasma potential on field lines connected to the antenna. The rectified potential scales linearly with antenna current. The rectified RF sheaths set up convective cells of local E × B flows, measured indirectly by potential measurements, and measured directly with Mach probes. At high antenna powers substantial modifications of the density profile were observed. The plasma density profile initially exhibits transient low frequency oscillations (10 kHz). The amplitude of the fast wave fields in the core plasma is modulated at the same low frequency, suggesting fast wave coupling is affected by the density rearrangement. Work performed at the Basic Plasma Science Facility, supported jointly by the National Science Foundation and the Department of Energy.

  8. When is the Anelastic Approximation a Valid Model for Compressible Convection?

    Science.gov (United States)

    Alboussiere, T.; Curbelo, J.; Labrosse, S.; Ricard, Y. R.; Dubuffet, F.

    2017-12-01

    Compressible convection is ubiquitous in large natural systems such Planetary atmospheres, stellar and planetary interiors. Its modelling is notoriously more difficult than the case when the Boussinesq approximation applies. One reason for that difficulty has been put forward by Ogura and Phillips (1961): the compressible equations generate sound waves with very short time scales which need to be resolved. This is why they introduced an anelastic model, based on an expansion of the solution around an isentropic hydrostatic profile. How accurate is that anelastic model? What are the conditions for its validity? To answer these questions, we have developed a numerical model for the full set of compressible equations and compared its solutions with those of the corresponding anelastic model. We considered a simple rectangular 2D Rayleigh-Bénard configuration and decided to restrict the analysis to infinite Prandtl numbers. This choice is valid for convection in the mantles of rocky planets, but more importantly lead to a zero Mach number. So we got rid of the question of the interference of acoustic waves with convection. In that simplified context, we used the entropy balances (that of the full set of equations and that of the anelastic model) to investigate the differences between exact and anelastic solutions. We found that the validity of the anelastic model is dictated by two conditions: first, the superadiabatic temperature difference must be small compared with the adiabatic temperature difference (as expected) ɛ = Δ TSA / delta Ta << 1, and secondly that the product of ɛ with the Nusselt number must be small.

  9. Edge plasma density convection during ICRH on Tore Supra

    International Nuclear Information System (INIS)

    Becoulet, M.; Colas, L.; Gunn, J.; Ghendrih, Ph.; Becoulet, A.; Pecoul, S.; Heuraux, S.

    2001-11-01

    The 2D edge plasma density distribution around ion cyclotron resonance heating (ICRH) antennae is studied experimentally and numerically in the tokamak Tore Supra (TS). A local density decrease in front of the loaded ICRH antenna ('pump-out' effect) is demonstrated by Langmuir probe measurements in a low recycling regime. An up-down asymmetry in the heat-flux and in the antenna erosion is also observed, and is associated with poloidal variations of the local density. These density redistributions are ascribed to an ExB convection process linked with RF-sheaths. To assess this interpretation, the 2D transport code CELLS was developed for modeling the density distribution near an antenna. The code takes into account perpendicular diffusion, parallel transport and convection in RF-sheath-driven potentials given by the 3D-antenna code ICANT. The strong density differences obtained in simulations reproduce up-down asymmetries of the heat fluxes. (authors)

  10. Natural convection heat transfer of water in a horizontal circular gap

    Institute of Scientific and Technical Information of China (English)

    SU Guanghui; Kenichiro Sugiyama; WU Yingwei

    2007-01-01

    An experimental study on the natural convection heat transfer on a horizontal downward facing heated surface in a water gap was carried out under atmospheric pressure conditions. A total of 700 experimental data points were correlated using Rayleigh versus Nusselt number in various forms, based on different independent variables. The effects of different characteristic lengths and film temperatures were discussed. The results show that the buoyancy force acts as a resistance force for natural convecti on beat transfer ona downward facing horizontal heated surface in a confined space. For the estimation of the natural convection heat transfer under the present conditions, empirical correlations in which Nusselt number is expressed as a function of the Rayleigh number, or both Rayleigh and Prandtl numbers, may be used. When it is accurately predicted, the Nusselt number is expressed as a function of the Rayleigh and Prandtl numbers, as well as the gap width-to-heated surface diameter ratio; and uses the temperature difference between the heated surface and the ambient fluid in the definition of Rayleigh number. The characteristic length is the gap size and the film temperature is the average fluid temperature.

  11. Convection-enhanced water evaporation

    OpenAIRE

    B. M. Weon; J. H. Je; C. Poulard

    2011-01-01

    Water vapor is lighter than air; this can enhance water evaporation by triggering vapor convection but there is little evidence. We directly visualize evaporation of nanoliter (2 to 700 nL) water droplets resting on silicon wafer in calm air using a high-resolution dual X-ray imaging method. Temporal evolutions of contact radius and contact angle reveal that evaporation rate linearly changes with surface area, indicating convective (instead of diffusive) evaporation in nanoliter water droplet...

  12. Active control of convection

    Energy Technology Data Exchange (ETDEWEB)

    Bau, H.H. [Univ. of Pennsylvania, Philadelphia, PA (United States)

    1995-12-31

    Using stability theory, numerical simulations, and in some instances experiments, it is demonstrated that the critical Rayleigh number for the bifurcation (1) from the no-motion (conduction) state to the motion state and (2) from time-independent convection to time-dependent, oscillatory convection in the thermal convection loop and Rayleigh-Benard problems can be significantly increased or decreased. This is accomplished through the use of a feedback controller effectuating small perturbations in the boundary data. The controller consists of sensors which detect deviations in the fluid`s temperature from the motionless, conductive values and then direct actuators to respond to these deviations in such a way as to suppress the naturally occurring flow instabilities. Actuators which modify the boundary`s temperature/heat flux are considered. The feedback controller can also be used to control flow patterns and generate complex dynamic behavior at relatively low Rayleigh numbers.

  13. Mesoscale kinematics derived from X-band Doppler radar observations of convective versus stratiform precipitation and comparison with GPS radiosonde profiles

    Science.gov (United States)

    Deshpande, Sachin M.; Dhangar, N.; Das, S. K.; Kalapureddy, M. C. R.; Chakravarty, K.; Sonbawne, S.; Konwar, M.

    2015-11-01

    Single Doppler analysis techniques known as velocity azimuth display (VAD) and volume velocity processing (VVP) are used to analyze kinematics of mesoscale flow such as horizontal wind and divergence using X-band Doppler weather radar observations, for selected cases of convective, stratiform, and shallow cloud systems near tropical Indian sites Pune (18.58°N, 73.92°E, above sea level (asl) 560 m) and Mandhardev (18.51°N, 73.85°E, asl 1297 m). The vertical profiles of horizontal wind estimated from radar VVP/VAD methods agree well with GPS radiosonde profiles, with the low-level jet at about 1.5 km during monsoon season well depicted in both. The vertical structure and temporal variability of divergence and reflectivity profiles are indicative of the dynamical and microphysical characteristics of shallow convective, deep convective, and stratiform cloud systems. In shallow convective systems, vertical development of reflectivity profiles is limited below 5 km. In deep convective systems, reflectivity values as large as 55 dBZ were observed above freezing level. The stratiform system shows the presence of a reflectivity bright band (~35 dBZ) near the melting level. The diagnosed vertical profiles of divergence in convective and stratiform systems are distinct. In shallow convective conditions, convergence was seen below 4 km with divergence above. Low-level convergence and upper level divergence are observed in deep convective profiles, while stratiform precipitation has midlevel convergence present between lower level and upper level divergence. The divergence profiles in stratiform precipitation exhibit intense shallow layers of "melting convergence" at 0°C level, near 4.5 km altitude, with a steep gradient on the both sides of the peak. The level of nondivergence in stratiform situations is lower than that in convective situations. These observed vertical structures of divergence are largely indicative of latent heating profiles in the atmosphere, an

  14. Convectively coupled Kelvin waves in aquachannel simulations: 2. Life cycle and dynamical-convective coupling

    Science.gov (United States)

    Blanco, Joaquín. E.; Nolan, David S.; Mapes, Brian E.

    2016-10-01

    This second part of a two-part study uses Weather Research and Forecasting simulations with aquachannel and aquapatch domains to investigate the time evolution of convectively coupled Kelvin waves (CCKWs). Power spectra, filtering, and compositing are combined with object-tracking methods to assess the structure and phase speed propagation of CCKWs during their strengthening, mature, and decaying phases. In this regard, we introduce an innovative approach to more closely investigate the wave (Kelvin) versus entity (super cloud cluster or "SCC") dualism. In general, the composite CCKW structures represent a dynamical response to the organized convective activity. However, pressure and thermodynamic fields in the boundary layer behave differently. Further analysis of the time evolution of pressure and low-level moist static energy finds that these fields propagate eastward as a "moist" Kelvin wave (MKW), faster than the envelope of organized convection or SCC. When the separation is sufficiently large the SCC dissipates, and a new SCC generates to the east, in the region of strongest negative pressure perturbations. We revisit the concept itself of the "coupling" between convection and dynamics, and we also propose a conceptual model for CCKWs, with a clear distinction between the SCC and the MKW components.

  15. THE EFFECT OF SOLAR RADIATION ON AUTOMOBILE ENVIRONMENT THROUGH NATURAL CONVECTION AND MIXED CONVECTION

    Directory of Open Access Journals (Sweden)

    MD. FAISAL KADER

    2012-10-01

    Full Text Available In the present paper, the effect of solar radiation on automobiles has been studied by both experimentally and numerically. The numerical solution is done by an operation friendly and fast CFD code – SC/Tetra with a full scale model of a SM3 car and turbulence is modeled by the standard k-ε equation. Numerical analysis of the three-dimensional model predicts a detailed description of fluid flow and temperature distribution in the passenger compartment during both the natural convection due to the incoming solar radiation and mixed convection due to the flow from defrost nozzle and radiation. It can be seen that solar radiation is an important parameter to raise the compartment temperature above the ambient temperature during summer. During natural convection, the rate of heat transfer is fast at the initial period. In the mixed convection analyses, it is found that the temperature drops down to a comfortable range almost linearly at the initial stage. Experimental investigations are performed to determine the temperature contour on the windshield and the local temperature at a particular point for further validation of the numerical results.

  16. Scaling properties of velocity and temperature spectra above the surface friction layer in a convective atmospheric boundary layer

    Directory of Open Access Journals (Sweden)

    K. G. McNaughton

    2007-06-01

    Full Text Available We report velocity and temperature spectra measured at nine levels from 1.42 meters up to 25.7 m over a smooth playa in Western Utah. Data are from highly convective conditions when the magnitude of the Obukhov length (our proxy for the depth of the surface friction layer was less than 2 m. Our results are somewhat similar to the results reported from the Minnesota experiment of Kaimal et al. (1976, but show significant differences in detail. Our velocity spectra show no evidence of buoyant production of kinetic energy at at the scale of the thermal structures. We interpret our velocity spectra to be the result of outer eddies interacting with the ground, not "local free convection".

    We observe that velocity spectra represent the spectral distribution of the kinetic energy of the turbulence, so we use energy scales based on total turbulence energy in the convective boundary layer (CBL to collapse our spectra. For the horizontal velocity spectra this scale is (zi εo2/3, where zi is inversion height and εo is the dissipation rate in the bulk CBL. This scale functionally replaces the Deardorff convective velocity scale. Vertical motions are blocked by the ground, so the outer eddies most effective in creating vertical motions come from the inertial subrange of the outer turbulence. We deduce that the appropriate scale for the peak region of the vertical velocity spectra is (z εo2/3 where z is height above ground. Deviations from perfect spectral collapse under these scalings at large and small wavenumbers are explained in terms of the energy transport and the eddy structures of the flow.

    We find that the peaks of the temperature spectra collapse when wavenumbers are scaled using (z1/2 zi1/2. That is, the lengths of the thermal structures depend on both the lengths of the

  17. What Determines Upscale Growth of Oceanic Convection into MCSs?

    Science.gov (United States)

    Zipser, E. J.

    2017-12-01

    Over tropical oceans, widely scattered convection of various depths may or may not grow upscale into mesoscale convective systems (MCSs). But what distinguishes the large-scale environment that favors such upscale growth from that favoring "unorganized", scattered convection? Is it some combination of large-scale low-level convergence and ascending motion, combined with sufficient instability? We recently put this to a test with ERA-I reanalysis data, with disappointing results. The "usual suspects" of total column water vapor, large-scale ascent, and CAPE may all be required to some extent, but their differences between large MCSs and scattered convection are small. The main positive results from this work (already published) demonstrate that the strength of convection is well correlated with the size and perhaps "organization" of convective features over tropical oceans, in contrast to tropical land, where strong convection is common for large or small convective features. So, important questions remain: Over tropical oceans, how should we define "organized" convection? By size of the precipitation area? And what environmental conditions lead to larger and better organized MCSs? Some recent attempts to answer these questions will be described, but good answers may require more data, and more insights.

  18. Simulating the convective precipitation diurnal cycle in a North American scale convection-permitting model

    Science.gov (United States)

    Scaff, L.; Li, Y.; Prein, A. F.; Liu, C.; Rasmussen, R.; Ikeda, K.

    2017-12-01

    A better representation of the diurnal cycle of convective precipitation is essential for the analysis of the energy balance and the water budget components such as runoff, evaporation and infiltration. Convection-permitting regional climate modeling (CPM) has been shown to improve the models' performance of summer precipitation, allowing to: (1) simulate the mesoscale processes in more detail and (2) to provide more insights in future changes in convective precipitation under climate change. In this work we investigate the skill of the Weather Research and Forecast model (WRF) in simulating the summer precipitation diurnal cycle over most of North America. We use 4 km horizontal grid spacing in a 13-years long current and future period. The future scenario is assuming no significant changes in large-scale weather patterns and aims to answer how the weather of the current climate would change if it would reoccur at the end of the century under a high-end emission scenario (Pseudo Global Warming). We emphasize on a region centered on the lee side of the Canadian Rocky Mountains, where the summer precipitation amount shows a regional maximum. The historical simulations are capable to correctly represent the diurnal cycle. At the lee-side of the Canadian Rockies the increase in the convective available potential energy as well as pronounced low-level moisture flux from the southeast Prairies explains the local maximum in summer precipitation. The PGW scenario shows an increase in summer precipitation amount and intensity in this region, consistently with a stronger source of moisture and convective energy.

  19. Cold atmospheric plasma treatment inhibits growth in colorectal cancer cells.

    Science.gov (United States)

    Schneider, Christin; Arndt, Stephanie; Zimmermann, Julia L; Li, Yangfang; Karrer, Sigrid; Bosserhoff, Anja-Katrin

    2018-06-01

    Plasma oncology is a relatively new field of research. Recent developments have indicated that cold atmospheric plasma (CAP) technology is an interesting new therapeutic approach to cancer treatment. In this study, p53 wildtype (LoVo) and human p53 mutated (HT29 and SW480) colorectal cancer cells were treated with the miniFlatPlaSter - a device particularly developed for the treatment of tumor cells - that uses the Surface Micro Discharge (SMD) technology for plasma production in air. The present study analyzed the effects of plasma on colorectal cancer cells in vitro and on normal colon tissue ex vivo. Plasma treatment had strong effects on colon cancer cells, such as inhibition of cell proliferation, induction of cell death, and modulation of p21 expression. In contrast, CAP treatment of murine colon tissue ex vivo for up to 2 min did not show any toxic effect on normal colon cells compared to H2O2 positive control. In summary, these results suggest that the miniFlatPlaSter plasma device is able to kill colorectal cancer cells independent of their p53 mutation status. Thus, this device presents a promising new approach in colon cancer therapy.

  20. Convective Radio Occultations Final Campaign Summary

    Energy Technology Data Exchange (ETDEWEB)

    Biondi, R. [Atmospheric Radiation Measurement, Washington, DC (United States)

    2016-03-01

    Deep convective systems are destructive weather phenomena that annually cause many deaths and injuries as well as much damage, thereby accounting for major economic losses in several countries. The number and intensity of such phenomena have increased over the last decades in some areas of the globe. Damage is mostly caused by strong winds and heavy rain parameters that are strongly connected to the structure of the particular storm. Convection over land is usually stronger and deeper than over the ocean and some convective systems, known as supercells, also develop tornadoes through processes that remain mostly unclear. The intensity forecast and monitoring of convective systems is one of the major challenges for meteorology because in situ measurements during extreme events are too sparse or unreliable and most ongoing satellite missions do not provide suitable time/space coverage.

  1. Response of the ionospheric convection pattern to a rotation of the interplanetary magnetic field on January 14, 1988

    International Nuclear Information System (INIS)

    Cumnock, J.A.; Heelis, R.A.; Hairston, M.R.

    1992-01-01

    Ionospheric convection signatures observed over the polar regions are provided by the DMSP F8 satellite. The authors consider five passes over the southern summer hemisphere during a time when the z component of the interplantary magnetic field was stable and positive and the y component changed slowly from positive to negative. Large-scale regions of sunward flow are observed at very high latitudes consistent with a strong z component. When B y and B z are positive, but B y is greater than B z , strong evidence exists for dayside merging in a manner similar to that expected when B z is negative. This signature is diminished as B y decreases and becomes smaller than B z resulting in a four-cell convection pattern displaced toward the sunward side of the dawn-dusk meridian. In this case the sign of B y affects the relative sizes of the two highest-latitude cells. In the southern hemisphere the duskside high-latitude cell is dominant for B y positive and the dawnside high-latitude cell is dominant for B y negative. The relative importance of possible electric field sources in the low-latitude boundary layer, the dayside cusp, and the lobe all need to be considered to adequately explain the observed evolution of the convection pattern

  2. Vorticity imbalance and stability in relation to convection

    Science.gov (United States)

    Read, W. L.; Scoggins, J. R.

    1977-01-01

    A complete synoptic-scale vorticity budget was related to convection storm development in the eastern two-thirds of the United States. The 3-h sounding interval permitted a study of time changes of the vorticity budget in areas of convective storms. Results of analyses revealed significant changes in values of terms in the vorticity equation at different stages of squall line development. Average budgets for all areas of convection indicate systematic imbalance in the terms in the vorticity equation. This imbalance resulted primarily from sub-grid scale processes. Potential instability in the lower troposphere was analyzed in relation to the development of convective activity. Instability was related to areas of convection; however, instability alone was inadequate for forecast purposes. Combinations of stability and terms in the vorticity equation in the form of indices succeeded in depicting areas of convection better than any one item separately.

  3. Effects of Precipitation on Ocean Mixed-Layer Temperature and Salinity as Simulated in a 2-D Coupled Ocean-Cloud Resolving Atmosphere Model

    Science.gov (United States)

    Li, Xiaofan; Sui, C.-H.; Lau, K-M.; Adamec, D.

    1999-01-01

    A two-dimensional coupled ocean-cloud resolving atmosphere model is used to investigate possible roles of convective scale ocean disturbances induced by atmospheric precipitation on ocean mixed-layer heat and salt budgets. The model couples a cloud resolving model with an embedded mixed layer-ocean circulation model. Five experiment are performed under imposed large-scale atmospheric forcing in terms of vertical velocity derived from the TOGA COARE observations during a selected seven-day period. The dominant variability of mixed-layer temperature and salinity are simulated by the coupled model with imposed large-scale forcing. The mixed-layer temperatures in the coupled experiments with 1-D and 2-D ocean models show similar variations when salinity effects are not included. When salinity effects are included, however, differences in the domain-mean mixed-layer salinity and temperature between coupled experiments with 1-D and 2-D ocean models could be as large as 0.3 PSU and 0.4 C respectively. Without fresh water effects, the nocturnal heat loss over ocean surface causes deep mixed layers and weak cooling rates so that the nocturnal mixed-layer temperatures tend to be horizontally-uniform. The fresh water flux, however, causes shallow mixed layers over convective areas while the nocturnal heat loss causes deep mixed layer over convection-free areas so that the mixed-layer temperatures have large horizontal fluctuations. Furthermore, fresh water flux exhibits larger spatial fluctuations than surface heat flux because heavy rainfall occurs over convective areas embedded in broad non-convective or clear areas, whereas diurnal signals over whole model areas yield high spatial correlation of surface heat flux. As a result, mixed-layer salinities contribute more to the density differences than do mixed-layer temperatures.

  4. A Comparative Experimental Study of Fixed Temperature and Fixed Heat Flux Boundary Conditions in Turbulent Thermal Convection

    Science.gov (United States)

    Huang, Shi-Di; Wang, Fei; Xi, Heng-Dong; Xia, Ke-Qing

    2014-11-01

    We report an experimental study of the influences of thermal boundary condition in turbulent thermal convection. Two configurations were examined: one was fixed heat flux at the bottom boundary and fixed temperature at the top (HC cells); the other was fixed temperature at both boundaries (CC cells). It is found that the flow strength in the CC cells is on average 9% larger than that in the HC ones, which could be understood as change in plume emission ability under different boundary conditions. It is further found, rather surprisingly, that flow reversals of the large-scale circulation occur more frequently in the CC cell, despite a stronger large-scale flow and more uniform temperature distribution over the boundaries. These findings provide new insights into turbulent thermal convection and should stimulate further studies, especially experimental ones. This work is supported by the Hong Kong Research Grants Council under Grant No. CUHK 403712.

  5. Effective diffusion in laminar convective flows

    International Nuclear Information System (INIS)

    Rosenbluth, M.N.; Berk, H.L.; Doxas, I.; Horton, W.

    1987-03-01

    The effective diffusion coefficient D* of a passive component, such as test particles, dye, temperature, magnetic flux, etc., is derived for motion in periodic two-dimensional incompressible convective flow with characteristic velocity v and size d in the presence of an intrinsic local diffusivity D. Asymptotic solutions for effective diffusivity D*(P) in the large P limit, with P ∼ vd/D, is shown to be of the form D* = cDP/sup 1/2/ with c being a coefficient that is determined analytically. The constant c depends on the geometry of the convective cell and on an average of the flow speed along the separatrix. The asymptotic method of evaluation applies to both free boundary and rough boundary flow patterns and it is shown that the method can be extended to more complicated patterns such as the flows generated by rotating cylinders, as in the problem considered by Nadim, Cox, and Brenner [J. Fluid Mech., 164: 185 (1986)]. The diffusivity D* is readily calculated for small P, but the evaluation for arbitrary P requires numerical methods. Monte Carlo particle simulation codes are used to evaluate D* at arbitrary P, and thereby describe the transition for D* between the large and small P limits

  6. Organizational Modes of Severe Wind-producing Convective Systems over North China

    Science.gov (United States)

    Yang, Xinlin; Sun, Jianhua

    2018-05-01

    Severe weather reports and composite radar reflectivity data from 2010-14 over North China were used to analyze the distribution of severe convective wind (SCW) events and their organizational modes of radar reflectivity. The six organizational modes for SCW events (and their proportions) were cluster cells (35.4%), squall lines (18.4%), nonlinear-shaped systems (17.8%), broken lines (11.6%), individual cells (1.2%), and bow echoes (0.5%). The peak month for both squall lines and broken lines was June, whereas it was July for the other four modes. The highest numbers of SCW events were over the mountains, which were generally associated with disorganized systems of cluster cells. In contrast, SCW associated with linear systems occurred mainly over the plains, where stations recorded an average of less than one SCW event per year. Regions with a high frequency of SCW associated with nonlinear-shaped systems also experienced many SCW events associated with squall lines. Values of convective available potential energy, precipitable water, 0-3-km shear, and 0-6-km shear, were demonstrably larger over the plains than over the mountains, which had an evident effect on the organizational modes of SCW events. Therefore, topography may be an important factor in the organizational modes for SCW events over North China.

  7. Concepts of magnetospheric convection

    International Nuclear Information System (INIS)

    Vasyliunas, V.M.

    1975-01-01

    Magnetospheric physics, which grew out of attempts to understand the space environment of the Earth, is becoming increasingly applicable to other systems in the Universe. Among the planets, in addition to the Earth, Jupiter, Mercury, Mars and (in a somewhat different way) Venus are now known to have magnetospheres. The magnetospheres of pulsars have been regarded as an essential part of the pulsar phenomenon. Other astrophysical systems, such as supernova remnant shells or magnetic stars and binary star systems, may be describable as magnetospheres. The major concepts of magnetospheric physics thus need to be formulated in a general way not restricted to the geophysical context in which they may have originated. Magnetospheric convection has been one of the most important and fruitful concepts in the study of the Earth's magnetosphere. This paper describes the basic theoretical notions of convection in a manner applicable to magnetospheres generally and discusses the relative importance of convective corotational motions, with particular reference to the comparison of the Earth and Jupiter. (Auth.)

  8. Rocket and satellite observations of electric fields and ion convection in the dayside auroral ionosphere

    International Nuclear Information System (INIS)

    Marklund, G.; Heelis, R.A.

    1984-06-01

    Electric field observations from two high-altitude rocket flights in the polar cusp have been combined with satellite observations of ion drifts to infer details of the electric field and convection pattern of the dayside auroral ionosphere. A region of shear flow reversal can be inferred from the electric field observations on one flight near 15.30 MLT 20 minutes after the Dynamics Explorer 2 satellite crossed through the same region. The drift patterns observed by the two spacecrafts were very similar although shifted by 0.5 degrees, a shift which is expected from the observed change in the interplanetary magnetic field (IMF) B(sub)Z component during this time. A region of rotational flow reversal was covered by the other flight shortly after magnetic noon, at the same time the DE-2 satellite travelled along roughly the dawn-dusk meridian. By joining points of equal potential, integrated from the two datasets and assuming the reversal boundary to be an equipotential, the instantaneous convection pattern could be drawn showing crescent-shaped convection contours in the dusk cell and more circular shaped contours in the dawn cell. (author)

  9. Comparison of scale analysis and numerical simulation for saturated zone convective mixing processes

    International Nuclear Information System (INIS)

    Oldenburg, C.M.

    1998-01-01

    Scale analysis can be used to predict a variety of quantities arising from natural systems where processes are described by partial differential equations. For example, scale analysis can be applied to estimate the effectiveness of convective missing on the dilution of contaminants in groundwater. Scale analysis involves substituting simple quotients for partial derivatives and identifying and equating the dominant terms in an order-of-magnitude sense. For free convection due to sidewall heating of saturated porous media, scale analysis shows that vertical convective velocity in the thermal boundary layer region is proportional to the Rayleigh number, horizontal convective velocity is proportional to the square root of the Rayleigh number, and thermal boundary layer thickness is proportional to the inverse square root of the Rayleigh number. These scale analysis estimates are corroborated by numerical simulations of an idealized system. A scale analysis estimate of mixing time for a tracer mixing by hydrodynamic dispersion in a convection cell also agrees well with numerical simulation for two different Rayleigh numbers. Scale analysis for the heating-from-below scenario produces estimates of maximum velocity one-half as large as the sidewall case. At small values of the Rayleigh number, this estimate is confirmed by numerical simulation. For larger Rayleigh numbers, simulation results suggest maximum velocities are similar to the sidewall heating scenario. In general, agreement between scale analysis estimates and numerical simulation results serves to validate the method of scale analysis. Application is to radioactive repositories

  10. GPS radio occultation technique for measurement of the atmosphere above tropical cyclones

    DEFF Research Database (Denmark)

    Biondi, Riccardo; Neubert, Torsten; Syndergaard, Stig

    2009-01-01

    Water vapour transport to the upper troposphere (UT) and lower stratosphere (LS) by deep convective storms affects the radiation balance of the atmosphere and has been proposed as an important component of climate change. The aim of the work presented here is to understand if the GPS Radio Occult...... 2008 and reached a maximum intensity of Category 3....

  11. Modeling of plasma-sheet convection: implications for substorms

    International Nuclear Information System (INIS)

    Erickson, G.M.

    1985-01-01

    An answer is suggested to the question of why plasma and magnetic energy accumulate in the Earth's magnetotail to be released in sporadic events, namely substorms. It is shown that the idea of steady convection is inconsistent with the idea of slow, approximately lossless, plasma convection in a long, closed-field-line region that extends into a long magnetotail, such as occurs during Earthward convection in the Earth's plasma sheet. This inconsistency is argued generally and demonstrated specifically using several quantitative models of the Earth's magnetospheric magnetic field. These results suggest that plasma-sheet convection is necessarily time dependent. If flux tubes are to convect adiabatically earthward, the confining magnetic pressure in the tail lobes must increase with time, and the magnetotail must evolve into a more stretched configuration. Eventually, the magnetosphere must find some way to release plasma from inner-plasma-sheet flux tubes. This suggests an obvious role for the magnetospheric substorm in the convection process. To probe this process further, a two-dimensional, self-consistent, quasi-static convection model was developed. This model self consistently includes a dipole field and can reasonably account for the effects of inner-magnetospheric shielding

  12. All-weather volume imaging of the boundary layer and troposphere using the MU radar

    Directory of Open Access Journals (Sweden)

    R. M. Worthington

    2004-04-01

    Full Text Available This paper shows the first volume-imaging radar that can run in any weather, revealing the turbulent three-dimensional structure and airflow of convective cells, rain clouds, breaking waves and deep convection as they evolve and move. Precipitation and clear air can be volume-imaged independently. Birds are detected as small high-power echoes moving near horizontal, at different speeds and directions from background wind. The volume-imaging method could be used to create a real-time virtual-reality view of the atmosphere, in effect making the invisible atmosphere visible in any weather.

    Key words. Meteorology and atmospheric dynamics (convective processes, turbulence – Radio science (instruments and techniques

  13. Estimation of the effect of thermal convection and casing on the temperature regime of boreholes: a review

    International Nuclear Information System (INIS)

    Eppelbaum, L V; Kutasov, I M

    2011-01-01

    In a vertical borehole, free heat convection arises when the temperature gradient equals or exceeds the so-called critical gradient. The critical temperature gradient is expressed through the critical Rayleigh number and depends on two parameters: (a) the ratio of formation (casings) to fluid (gas) conductivities (λ f /λ) and (b) the convective parameter of the fluid. Both these parameters depend on the temperature (depth). An empirical equation for the critical Rayleigh number as a function of the ratio λ f /λ is suggested. For the 0–100 °C range, empirical equations for convective parameters of water and air are proposed. The analysis of the published results of field investigations in deep boreholes and modelling shows that the temperature disturbances caused by thermal convection do not exceed 0.01–0.05 °C. Thus, in deep wells the temperature deviations due to thermal convection are usually within the accuracy of the temperature surveys. However, due to convection cells the geothermal gradient cannot be determined with sufficient accuracy for short well sections. In shallow boreholes the effect of thermal convection is more essential (up to 3–5 °C). To reduce the effect of convection on the temperature regime in shallow observational wells, it is necessary to reduce the diameter of the wellbores and use well fillers (fluids and gases) with low values of the convective parameters. The field observations and numerical calculations indicate that the distorting effect due to casing pipes is small and its influence is localized to the ends of the pipes, and this effect is independent of time. (topical review)

  14. ANNEALING OF POLYCRYSTALLINE THIN FILM SILICON SOLAR CELLS IN WATER VAPOUR AT SUB-ATMOSPHERIC PRESSURES

    Directory of Open Access Journals (Sweden)

    Peter Pikna

    2014-10-01

    Full Text Available Thin film polycrystalline silicon (poly-Si solar cells were annealed in water vapour at pressures below atmospheric pressure. PN junction of the sample was contacted by measuring probes directly in the pressure chamber filled with steam during passivation. Suns-VOC method and a Lock-in detector were used to monitor an effect of water vapour to VOC of the solar cell during whole passivation process (in-situ. Tested temperature of the sample (55°C – 110°C was constant during the procedure. Open-circuit voltage of a solar cell at these temperatures is lower than at room temperature. Nevertheless, voltage response of the solar cell to the light flash used during Suns-VOC measurements was good observable. Temperature dependences for multicrystalline wafer-based and polycrystalline thin film solar cells were measured and compared. While no significant improvement of thin film poly-Si solar cell parameters by annealing in water vapour at under-atmospheric pressures was observed up to now, in-situ observation proved required sensitivity to changing VOC at elevated temperatures during the process.

  15. Using the CIFIST grid of CO5BOLD 3D model atmospheres to study the effects of stellar granulation on photometric colours. II. The role of convection across the H-R diagram

    Science.gov (United States)

    Kučinskas, A.; Klevas, J.; Ludwig, H.-G.; Bonifacio, P.; Steffen, M.; Caffau, E.

    2018-05-01

    Aims: We studied the influence of convection on the spectral energy distributions (SEDs), photometric magnitudes, and colour indices of different types of stars across the H-R diagram. Methods: The 3D hydrodynamical CO5BOLD, averaged ⟨3D⟩, and 1D hydrostatic LHD model atmospheres were used to compute SEDs of stars on the main sequence (MS), main sequence turn-off (TO), subgiant branch (SGB), and red giant branch (RGB), in each case at two different effective temperatures and two metallicities, [M/H] = 0.0 and - 2.0. Using the obtained SEDs, we calculated photometric magnitudes and colour indices in the broad-band Johnson-Cousins UBVRI and 2MASS JHKs, and the medium-band Strömgren uvby photometric systems. Results: The 3D-1D differences in photometric magnitudes and colour indices are small in both photometric systems and typically do not exceed ± 0.03 mag. Only in the case of the coolest giants located on the upper RGB are the differences in the U and u bands able reach ≈-0.2 mag at [M/H] = 0.0 and ≈-0.1 mag at [M/H] = -2.0. Generally, the 3D-1D differences are largest in the blue-UV part of the spectrum and decrease towards longer wavelengths. They are also sensitive to the effective temperature and are significantly smaller in hotter stars. Metallicity also plays a role and leads to slightly larger 3D-1D differences at [M/H] = 0.0. All these patterns are caused by a complex interplay between the radiation field, opacities, and horizontal temperature fluctuations that occur due to convective motions in stellar atmospheres. Although small, the 3D-1D differences in the magnitudes and colour indices are nevertheless comparable to or larger than typical photometric uncertainties and may therefore cause non-negligible systematic differences in the estimated effective temperatures.

  16. Improved boundary layer height measurement using a fuzzy logic method: Diurnal and seasonal variabilities of the convective boundary layer over a tropical station

    Science.gov (United States)

    Allabakash, S.; Yasodha, P.; Bianco, L.; Venkatramana Reddy, S.; Srinivasulu, P.; Lim, S.

    2017-09-01

    This paper presents the efficacy of a "tuned" fuzzy logic method at determining the height of the boundary layer using the measurements from a 1280 MHz lower atmospheric radar wind profiler located in Gadanki (13.5°N, 79°E, 375 mean sea level), India, and discusses the diurnal and seasonal variations of the measured convective boundary layer over this tropical station. The original fuzzy logic (FL) method estimates the height of the atmospheric boundary layer combining the information from the range-corrected signal-to-noise ratio, the Doppler spectral width of the vertical velocity, and the vertical velocity itself, measured by the radar, through a series of thresholds and rules, which did not prove to be optimal for our radar system and geographical location. For this reason the algorithm was tuned to perform better on our data set. Atmospheric boundary layer heights obtained by this tuned FL method, the original FL method, and by a "standard method" (that only uses the information from the range-corrected signal-to-noise ratio) are compared with those obtained from potential temperature profiles measured by collocated Global Positioning System Radio Sonde during years 2011 and 2013. The comparison shows that the tuned FL method is more accurate than the other methods. Maximum convective boundary layer heights are observed between 14:00 and 15:00 local time (LT = UTC + 5:30) for clear-sky days. These daily maxima are found to be lower during winter and postmonsoon seasons and higher during premonsoon and monsoon seasons, due to net surface radiation and convective processes over this region being more intense during premonsoon and monsoon seasons and less intense in winter and postmonsoon seasons.

  17. Clausius-Clapeyron Scaling of Convective Available Potential Energy (CAPE) in Cloud-Resolving Simulations

    Science.gov (United States)

    Seeley, J.; Romps, D. M.

    2015-12-01

    Recent work by Singh and O'Gorman has produced a theory for convective available potential energy (CAPE) in radiative-convective equilibrium. In this model, the atmosphere deviates from a moist adiabat—and, therefore, has positive CAPE—because entrainment causes evaporative cooling in cloud updrafts, thereby steepening their lapse rate. This has led to the proposal that CAPE increases with global warming because the strength of evaporative cooling scales according to the Clausius-Clapeyron (CC) relation. However, CAPE could also change due to changes in cloud buoyancy and changes in the entrainment rate, both of which could vary with global warming. To test the relative importance of changes in CAPE due to CC scaling of evaporative cooling, changes in cloud buoyancy, and changes in the entrainment rate, we subject a cloud-resolving model to a suite of natural (and unnatural) forcings. We find that CAPE changes are primarily driven by changes in the strength of evaporative cooling; the effect of changes in the entrainment rate and cloud buoyancy are comparatively small. This builds support for CC scaling of CAPE.

  18. Understanding and controlling plasmon-induced convection

    Science.gov (United States)

    Roxworthy, Brian J.; Bhuiya, Abdul M.; Vanka, Surya P.; Toussaint, Kimani C.

    2014-01-01

    The heat generation and fluid convection induced by plasmonic nanostructures is attractive for optofluidic applications. However, previously published theoretical studies predict only nanometre per second fluid velocities that are inadequate for microscale mass transport. Here we show both theoretically and experimentally that an array of plasmonic nanoantennas coupled to an optically absorptive indium-tin-oxide (ITO) substrate can generate >micrometre per second fluid convection. Crucially, the ITO distributes thermal energy created by the nanoantennas generating an order of magnitude increase in convection velocities compared with nanoantennas on a SiO2 base layer. In addition, the plasmonic array alters absorption in the ITO, causing a deviation from Beer-Lambert absorption that results in an optimum ITO thickness for a given system. This work elucidates the role of convection in plasmonic optical trapping and particle assembly, and opens up new avenues for controlling fluid and mass transport on the micro- and nanoscale.

  19. Is There Evidence that Mid-Latitude Stratospheric Ozone Depletion Occurs in Conjunction with North American Monsoon Convection?

    Science.gov (United States)

    Rosenlof, K. H.; Ray, E. A.; Portmann, R. W.

    2017-12-01

    A recent study suggests that during the period of the summertime North American Monsoon (NAM), ozone depletion could occur as a result of catalytic ozone destruction associated with the cold and wet conditions caused by overshooting convection. Aura Microwave Limb Sounder (MLS) water vapor measurements do show that the NAM region is wetter than other parts of the globe in regards to both the mean and extremes. However, definitive evidence of ozone depletion occurring in that region has not been presented. In this study, we examine coincident measurements of water vapor, ozone, and tropospheric tracers from aircraft data taken during the Studies of Emissions and Atmospheric Composition, Clouds and Climate Coupling by Regional Surveys (SEAC4RS) aircraft campaign looking specifically for ozone depletion in regions identified as impacted by overshooting convection. Although we do find evidence of lower ozone values in air impacted by convective overshoots, using tropospheric tracers we attribute those observations to input of tropospheric air rather than catalytic ozone destruction. Additionally, we explore the consequences of these lower ozone values on surface UV, and conclude that there is minimal impact on the UV index.

  20. Apparatus for real-time acoustic imaging of Rayleigh-Bénard convection

    Energy Technology Data Exchange (ETDEWEB)

    Kuehn, Kerry, K.

    2008-10-28

    We have successfully designed, built and tested an experimental apparatus which is capable of providing the first real-time ultrasound images of Rayleigh-B\\'{e}nard convection in optically opaque fluids confined to large aspect ratio experimental cells. The apparatus employs a modified version of a commercially available ultrasound camera to capture images (30 frames per second) of flow patterns in a fluid undergoing Rayleigh Bénard convection. The apparatus was validated by observing convection rolls in 5cSt polydimethylsiloxane (PDMS) polymer fluid. Our first objective, after having built the apparatus, was to use it to study the sequence of transitions from diffusive to time--dependent heat transport in liquid mercury. The aim was to provide important information on pattern formation in the largely unexplored regime of very low Prandtl number fluids. Based on the theoretical stability diagram for liquid mercury, we anticipated that straight rolls should be stable over a range of Rayleigh numbers, between 1708 and approximately 1900. Though some of our power spectral densities were suggestive of the existence of weak convection, we have been unable to unambiguously visualize stable convection rolls above the theoretical onset of convection in liquid mercury. Currently, we are seeking ways to increase the sensitivity of our apparatus, such as (i) improving the acoustic impedance matching between our materials in the ultrasound path and (ii) reducing the noise level in our acoustic images due to turbulence and cavitation in the cooling fluids circulating above and below our experimental cell. If we are able to convincingly improve the sensitivity of our apparatus, and we still do not observe stable convection rolls in liquid mercury, then it may be the case that the theoretical stability diagram requires revision. In that case, either (i) straight rolls are not stable in a large aspect ratio cell at the Prandtl numbers associated with liquid mercury, or (ii

  1. Experimental study of cooling BIPV modules by forced convection in the air channel

    International Nuclear Information System (INIS)

    Kaiser, A.S.; Zamora, B.; Mazón, R.; García, J.R.; Vera, F.

    2014-01-01

    Highlights: • An experimental setup for studying the effects of forced convection on cell temperature. • The induced velocity within the forced convection channel significantly affects the PV cooling. • Correlations for the Ross coefficient, module temperature, efficiency, and power output. • Prediction of the thermal behavior of the PV module in BIPV configurations. - Abstract: The efficiency of photovoltaic systems depends mainly on the cell temperature. Frequently, the PV collectors are installed on the top of the building. One cost effective method to regulate the temperature of rooftop integrated photovoltaic panels is to provide an open air channel beneath the panel. The cell temperature of these PV modules is very much influenced by the capability of ventilating this channel. The ventilation may be modified by different factors such as the wind velocity, the air gap size, and the forced convection induced by a fan or by a conventional air conditioning system. This paper describes an experimental setup to study the influence of the air gap size and the forced ventilation on the cell temperature (and consequently on the electrical efficiency of the PV module) of a BIPV configuration, for different values of the incident solar radiation, ambient temperatures, and aspect ratios, as well as for several forced ventilation conditions. Semi empirical correlations for the Ross coefficient, module temperature, electrical efficiency, and power output are proposed, showing a good agreement with respect to experimental measurements. A critical channel aspect ratio close to 0.11 can be considered to minimize overheating of PV devices. For a duct velocity V v = 6 m/s, a power output increase of 19% is observed over the natural ventilation case (V v = 0.5 m/s)

  2. Phenomenology of convection-parameterization closure

    Directory of Open Access Journals (Sweden)

    J.-I. Yano

    2013-04-01

    Full Text Available Closure is a problem of defining the convective intensity in a given parameterization. In spite of many years of efforts and progress, it is still considered an overall unresolved problem. The present article reviews this problem from phenomenological perspectives. The physical variables that may contribute in defining the convective intensity are listed, and their statistical significances identified by observational data analyses are reviewed. A possibility is discussed for identifying a correct closure hypothesis by performing a linear stability analysis of tropical convectively coupled waves with various different closure hypotheses. Various individual theoretical issues are considered from various different perspectives. The review also emphasizes that the dominant physical factors controlling convection differ between the tropics and extra-tropics, as well as between oceanic and land areas. Both observational as well as theoretical analyses, often focused on the tropics, do not necessarily lead to conclusions consistent with our operational experiences focused on midlatitudes. Though we emphasize the importance of the interplays between these observational, theoretical and operational perspectives, we also face challenges for establishing a solid research framework that is universally applicable. An energy cycle framework is suggested as such a candidate.

  3. LASE measurements of water vapor and aerosol profiles during the Plains Elevated Convection at Night (PECAN) field experiment

    Science.gov (United States)

    Nehrir, A. R.; Ferrare, R. A.; Kooi, S. A.; Butler, C. F.; Notari, A.; Hair, J. W.; Collins, J. E., Jr.; Ismail, S.

    2015-12-01

    The Lidar Atmospheric Sensing Experiment (LASE) system was deployed on the NASA DC-8 aircraft during the Plains Elevated Convection At Night (PECAN) field experiment, which was conducted during June-July 2015 over the central and southern plains. LASE is an active remote sensor that employs the differential absorption lidar (DIAL) technique to measure range resolved profiles of water vapor and aerosols above and below the aircraft. The DC-8 conducted nine local science flights from June 30- July 14 where LASE sampled water vapor and aerosol fields in support of the PECAN primary science objectives relating to better understanding nocturnal Mesoscale Convective Systems (MCSs), Convective Initiation (CI), the Low Level Jet (LLJ), bores, and to compare different airborne and ground based measurements. LASE observed large spatial and temporal variability in water vapor and aerosol distributions in advance of nocturnal MCSs, across bores resulting from MCS outflow boundaries, and across the LLJ associated with the development of MCSs and CI. An overview of the LASE data collected during the PECAN field experiment will be presented where emphasis will be placed on variability of water vapor profiles in the vicinity of severe storms and intense convection in the central and southern plains. Preliminary comparisons show good agreement between coincident LASE and radiosonde water vapor profiles. In addition, an advanced water vapor DIAL system being developed at NASA Langley will be discussed.

  4. Edge plasma density convection during ICRH on Tore Supra

    Energy Technology Data Exchange (ETDEWEB)

    Becoulet, M.; Colas, L.; Gunn, J.; Ghendrih, Ph.; Becoulet, A. [Association Euratom-CEA Cadarache, 13 - Saint-Paul-lez-Durance (France). Dept. de Recherches sur la Fusion Controlee; Pecoul, S.; Heuraux, S. [Nancy-1 Univ., 54 (France). Lab. de Physique des Milieux Ionises

    2001-11-01

    The 2D edge plasma density distribution around ion cyclotron resonance heating (ICRH) antennae is studied experimentally and numerically in the tokamak Tore Supra (TS). A local density decrease in front of the loaded ICRH antenna ('pump-out' effect) is demonstrated by Langmuir probe measurements in a low recycling regime. An up-down asymmetry in the heat-flux and in the antenna erosion is also observed, and is associated with poloidal variations of the local density. These density redistributions are ascribed to an ExB convection process linked with RF-sheaths. To assess this interpretation, the 2D transport code CELLS was developed for modeling the density distribution near an antenna. The code takes into account perpendicular diffusion, parallel transport and convection in RF-sheath-driven potentials given by the 3D-antenna code ICANT. The strong density differences obtained in simulations reproduce up-down asymmetries of the heat fluxes. (authors)

  5. High-latitude convection on open and closed field lines for large IMF B(y)

    Science.gov (United States)

    Moses, J. J.; Crooker, N. U.; Gorney, D. J.; Siscoe, G. L.

    1985-01-01

    S3-3 electric field observations for August 23, 1976, show a single convection cell engulfing the northern polar cap. The flow direction is that for a positive IMF B(y) component. The particle data indicate that nearly half the duskside sunward flow occurs on closed field lines whereas the dawnside flow is entirely on open field lines. This is interpreted in terms of an IMF B(y)-induced deformation in the polar cap boundary, where the deformation moves with the convective flow. Thus, convection streamlines cross the deformed polar cap boundary, but no flow crosses the boundary because it is carried by the flow. Since southern hemisphere convection is expected to occur with the opposite sense of rotation, closed field lines that will be forced to tilt azimuthally are predicted. On the nightside the tilt produces a y component of the magnetic field in the same direction as the IMF for either sign of IMF B(y). This interpretation is consistent with observations of a greater y component in the plasma sheet than the tail lobes, which are difficult to understand in terms of the common explanation of IMF penetration. Alternatives to this interpretation are also discussed.

  6. Sensitivity study of CFD turbulent models for natural convection analysis

    International Nuclear Information System (INIS)

    Yu sun, Park

    2007-01-01

    The buoyancy driven convective flow fields are steady circulatory flows which were made between surfaces maintained at two fixed temperatures. They are ubiquitous in nature and play an important role in many engineering applications. Application of a natural convection can reduce the costs and efforts remarkably. This paper focuses on the sensitivity study of turbulence analysis using CFD (Computational Fluid Dynamics) for a natural convection in a closed rectangular cavity. Using commercial CFD code, FLUENT and various turbulent models were applied to the turbulent flow. Results from each CFD model will be compared each other in the viewpoints of grid resolution and flow characteristics. It has been showed that: -) obtaining general flow characteristics is possible with relatively coarse grid; -) there is no significant difference between results from finer grid resolutions than grid with y + + is defined as y + = ρ*u*y/μ, u being the wall friction velocity, y being the normal distance from the center of the cell to the wall, ρ and μ being respectively the fluid density and the fluid viscosity; -) the K-ε models show a different flow characteristic from K-ω models or from the Reynolds Stress Model (RSM); and -) the y + parameter is crucial for the selection of the appropriate turbulence model to apply within the simulation

  7. Determination of boundary layer top on the basis of the characteristics of atmospheric particles

    Science.gov (United States)

    Liu, Boming; Ma, Yingying; Gong, Wei; Zhang, Ming; Yang, Jian

    2018-04-01

    The planetary boundary layer (PBL) is the lowest layer of the atmosphere that can be directly influenced with the Earth's surface. This layer can also respond to surface forcing. The determination of the PBL is significant to environmental and climate research. PBL can also serve as an input parameter for further data processing with atmospheric models. Traditional detection algorithms are susceptible to errors associated with the vertical distribution of aerosol concentrations. To overcome this limitation, a maximum difference search (MDS) algorithm was proposed to calculate the top of the boundary layer based on differences in particle characteristics. The top positions of the PBL from MDS algorithm under different convection states were compared with those from conventional methods. Experimental results demonstrated that the MDS method can determine the top of the boundary layer precisely. The proposed algorithm can also be used to calculate the top of the PBL accurately under weak convection conditions where the traditional methods cannot be applied. Finally, experimental data from June 2015 to December 2015 were analysed to verify the reliability of the MDS algorithm. The correlation coefficients R2 (RMSE) between the results of MDS algorithm and radiosonde measurements were 0.53 (115 m), 0.79 (141 m) and 0.96 (43 m) under weak, moderate and strong convections, respectively. These findings indicated that the proposed method possessed a good feasibility and stability.

  8. THE DOMINANCE OF NEUTRINO-DRIVEN CONVECTION IN CORE-COLLAPSE SUPERNOVAE

    International Nuclear Information System (INIS)

    Murphy, Jeremiah W.; Dolence, Joshua C.; Burrows, Adam

    2013-01-01

    Multi-dimensional instabilities have become an important ingredient in core-collapse supernova (CCSN) theory. Therefore, it is necessary to understand the driving mechanism of the dominant instability. We compare our parameterized three-dimensional CCSN simulations with other buoyancy-driven simulations and propose scaling relations for neutrino-driven convection. Through these comparisons, we infer that buoyancy-driven convection dominates post-shock turbulence in our simulations. In support of this inference, we present four major results. First, the convective fluxes and kinetic energies in the neutrino-heated region are consistent with expectations of buoyancy-driven convection. Second, the convective flux is positive where buoyancy actively drives convection, and the radial and tangential components of the kinetic energy are in rough equipartition (i.e., K r ∼ K θ + K φ ). Both results are natural consequences of buoyancy-driven convection, and are commonly observed in simulations of convection. Third, buoyant driving is balanced by turbulent dissipation. Fourth, the convective luminosity and turbulent dissipation scale with the driving neutrino power. In all, these four results suggest that in neutrino-driven explosions, the multi-dimensional motions are consistent with neutrino-driven convection.

  9. Airborne Atmospheric Aerosol Measurement System

    Science.gov (United States)

    Ahn, K.; Park, Y.; Eun, H.; Lee, H.

    2015-12-01

    It is important to understand the atmospheric aerosols compositions and size distributions since they greatly affect the environment and human health. Particles in the convection layer have been a great concern in global climate changes. To understand these characteristics satellite, aircraft, and radio sonde measurement methods have usually been used. An aircraft aerosol sampling using a filter and/or impactor was the method commonly used (Jay, 2003). However, the flight speed particle sampling had some technical limitations (Hermann, 2001). Moreover, the flight legal limit, altitude, prohibited airspace, flight time, and cost was another demerit. To overcome some of these restrictions, Tethered Balloon Package System (T.B.P.S.) and Recoverable Sonde System(R.S.S.) were developed with a very light optical particle counter (OPC), impactor, and condensation particle counter (CPC). Not only does it collect and measure atmospheric aerosols depending on altitudes, but it also monitors the atmospheric conditions, temperature, humidity, wind velocity, pressure, GPS data, during the measurement (Eun, 2013). In this research, atmospheric aerosol measurement using T.B.P.S. in Ansan area is performed and the measurement results will be presented. The system can also be mounted to an unmanned aerial vehicle (UAV) and create an aerial particle concentration map. Finally, we will present measurement data using Tethered Balloon Package System (T.B.P.S.) and R.S.S (Recoverable Sonde System).

  10. Natural convection in tunnels at Yucca Mountain and impact on drift seepage

    Energy Technology Data Exchange (ETDEWEB)

    Halecky, N.; Birkholzer, J.T.; Peterson, P.

    2010-04-15

    The decay heat from radioactive waste that is to be disposed in the once proposed geologic repository at Yucca Mountain (YM) will significantly influence the moisture conditions in the fractured rock near emplacement tunnels (drifts). Additionally, large-scale convective cells will form in the open-air drifts and will serve as an important mechanism for the transport of vaporized pore water from the fractured rock in the drift center to the drift end. Such convective processes would also impact drift seepage, as evaporation could reduce the build up of liquid water at the tunnel wall. Characterizing and understanding these liquid water and vapor transport processes is critical for evaluating the performance of the repository, in terms of water-induced canister corrosion and subsequent radionuclide containment. To study such processes, we previously developed and applied an enhanced version of TOUGH2 that solves for natural convection in the drift. We then used the results from this previous study as a time-dependent boundary condition in a high-resolution seepage model, allowing for a computationally efficient means for simulating these processes. The results from the seepage model show that cases with strong natural convection effects are expected to improve the performance of the repository, since smaller relative humidity values, with reduced local seepage, form a more desirable waste package environment.

  11. Transitional dispersive scenarios driven by mesoscale flows on complex terrain under strong dry convective conditions

    Directory of Open Access Journals (Sweden)

    J. L. Palau

    2009-01-01

    Full Text Available By experimentation and modelling, this paper analyses the atmospheric dispersion of the SO2 emissions from a power plant on complex terrain under strong convective conditions, describing the main dispersion features as an ensemble of "stationary dispersive scenarios" and reformulating some "classical" dispersive concepts to deal with the systematically monitored summer dispersive scenarios in inland Spain. The results and discussions presented arise from a statistically representative study of the physical processes associated with the multimodal distribution of pollutants aloft and around a 343-m-tall chimney under strong dry convective conditions in the Iberian Peninsula. This paper analyses the importance of the identification and physical implications of transitional periods for air quality applications. The indetermination of a transversal plume to the preferred transport direction during these transitional periods implies a small (or null physical significance of the classical definition of horizontal standard deviation of the concentration distribution.

  12. The impact of free convection on late morning ozone decreases on an Alpine foreland mountain summit

    Directory of Open Access Journals (Sweden)

    J.-C. Mayer

    2008-10-01

    Full Text Available Exceptional patterns in the diurnal course of ozone mixing ratio at a mountain top site (998 m a.s.l. were observed during a field experiment (September 2005. They manifested themselves as strong and sudden decreases of ozone mixing ratio with a subsequent return to previous levels. The evaluation of corresponding long-term time series (2000–2005 revealed that such events occur mainly during summer, and affect the mountain top site on about 18% of the summer days. Combining (a surface layer measurements at mountain summit and at the foot of the mountain, (b in-situ (tethered balloon and remote sensing (SODAR-RASS measurements within the atmospheric boundary layer, the origin of these events of sudden ozone decrease could be attributed to free convection. The free convection was triggered by a rather frequently occurring wind speed minimum around the location of the mountain.

  13. Behaviors and transitions along the path to magnetostrophic convection

    Science.gov (United States)

    Grannan, A. M.; Vogt, T.; Horn, S.; Hawkins, E. K.; Aggarwal, A.; Aurnou, J. M.

    2017-12-01

    The generation of magnetic fields in planetary and stellar interiors are believed to be controlled primarily by turbulent convection constrained by Coriolis and Lorentz forces in their electrically conducting fluid layers. Yet relatively few laboratory experiments are capable of investigating the different regimes of turbulent magnetohydrodynamic convection. In this work, we perform one laboratory experiment in a cylinder at a fixed heat flux using the liquid metal gallium in order to investigate, sequentially: Rayleigh-Bènard convection without any imposed constraints, magnetoconvection with a Lorentz constraint imposed by vertical magnetic field, rotating convection with a Coriolis constraint imposed by rotation, and finally the magnetostrophic convective regime where both Coriolis and Lorentz are imposed and equal. Using an array of internal and external temperature probes, we show that each regime along the path to magnetostrophic convection is unique. The behaviors and transitions in the dominant modes of convection as well as their fundamental frequencies and wavenumbers are investigated.

  14. Self-consistent atmosphere modeling with cloud formation for low-mass stars and exoplanets

    Science.gov (United States)

    Juncher, Diana; Jørgensen, Uffe G.; Helling, Christiane

    2017-12-01

    Context. Low-mass stars and extrasolar planets have ultra-cool atmospheres where a rich chemistry occurs and clouds form. The increasing amount of spectroscopic observations for extrasolar planets requires self-consistent model atmosphere simulations to consistently include the formation processes that determine cloud formation and their feedback onto the atmosphere. Aims: Our aim is to complement the MARCS model atmosphere suit with simulations applicable to low-mass stars and exoplanets in preparation of E-ELT, JWST, PLATO and other upcoming facilities. Methods: The MARCS code calculates stellar atmosphere models, providing self-consistent solutions of the radiative transfer and the atmospheric structure and chemistry. We combine MARCS with a kinetic model that describes cloud formation in ultra-cool atmospheres (seed formation, growth/evaporation, gravitational settling, convective mixing, element depletion). Results: We present a small grid of self-consistently calculated atmosphere models for Teff = 2000-3000 K with solar initial abundances and log (g) = 4.5. Cloud formation in stellar and sub-stellar atmospheres appears for Teff day-night energy transport and no temperature inversion.

  15. Benard convection in gaps and cavities

    International Nuclear Information System (INIS)

    Mueller, U.

    1981-04-01

    The article contains two parts. In the first part a condensed review of the most striking phenomena in Benard convection in laterally confined fluid layers is given. In the second part recent experimental and theoretical work on Benard convection in gaps is presented an analysed. (orig.) [de

  16. Convective transport in tokamaks

    International Nuclear Information System (INIS)

    D'Ippolito, D.A.; Myra, J.R.; Russell, D.A.; Krasheninnikov, S.I.; Pigarov, A.Yu.; Yu, G.Q.; Xu, X.Q.; Nevins, W.M.

    2005-01-01

    Scrape-off-layer (SOL) convection in fusion experiments appears to be a universal phenomenon that can 'short-circuit' the divertor in some cases. The theory of 'blob' transport provides a simple and robust physical paradigm for studying convective transport. This paper summarizes recent advances in the theory of blob transport and its comparison with 2D and 3D computer simulations. We also discuss the common physical basis relating radial transport of blobs, pellets, and ELMs and a new blob regime that may lead to a connection between blob transport and the density limit. (author)

  17. Mathematical models of convection

    CERN Document Server

    Andreev, Victor K; Goncharova, Olga N; Pukhnachev, Vladislav V

    2012-01-01

    Phenomena of convection are abundant in nature as well as in industry. This volume addresses the subject of convection from the point of view of both, theory and application. While the first three chapters provide a refresher on fluid dynamics and heat transfer theory, the rest of the book describes the modern developments in theory. Thus it brings the reader to the ""front"" of the modern research. This monograph provides the theoretical foundation on a topic relevant to metallurgy, ecology, meteorology, geo-and astrophysics, aerospace industry, chemistry, crystal physics, and many other fiel

  18. Convective behaviour in severe accidents

    International Nuclear Information System (INIS)

    Clement, C.F.

    1988-01-01

    The nature and magnitude of the hazard from radioactivity posed by a possible nuclear accident depend strongly on convective behaviour within and immediately adjacent to the plant in question. This behaviour depends upon the nature of the vapour-gas-aerosol mixture concerned, and can show unusual properties such as 'upside-down' convection in which hot mixtures fall and cold mixtures rise. Predictions and criteria as to the types of behaviour which could possibly occur are summarised. Possible applications to present reactors are considered, and ways in which presently expected convection could be drastically modified are described. In some circumstances these could be used to suppress the radioactive source term or to switch its effect between distant dilute contamination and severe local contamination. (author). 8 refs, 2 figs, 2 tabs

  19. Atmosphere-Ionosphere Electrodynamic Coupling

    Science.gov (United States)

    Sorokin, V. M.; Chmyrev, V. M.

    Numerous phenomena that occur in the mesosphere, ionosphere, and the magnetosphere of the Earth are caused by the sources located in the lower atmosphere and on the ground. We describe the effects produced by lightning activity and by ground-based transmitters operated in high frequency (HF) and very low frequency (VLF) ranges. Among these phenomena are the ionosphere heating and the formation of plasma density inhomogeneities, the excitation of gamma ray bursts and atmospheric emissions in different spectral bands, the generation of ULF/ELF/VLF electromagnetic waves and plasma turbulence in the ionosphere, the stimulation of radiation belt electron precipitations and the acceleration of ions in the upper ionosphere. The most interesting results of experimental and theoretical studies of these phenomena are discussed below. The ionosphere is subject to the action of the conductive electric current flowing in the atmosphere-ionosphere circuit. We present a physical model of DC electric field and current formation in this circuit. The key element of this model is an external current, which is formed with the occurrence of convective upward transport of charged aerosols and their gravitational sedimentation in the atmosphere. An increase in the level of atmospheric radioactivity results in the appearance of additional ionization and change of electrical conductivity. Variation of conductivity and external current in the lower atmosphere leads to perturbation of the electric current flowing in the global atmosphere-ionosphere circuit and to the associated DC electric field perturbation both on the Earth's surface and in the ionosphere. Description of these processes and some results of the electric field and current calculations are presented below. The seismic-induced electric field perturbations produce noticeable effects in the ionosphere by generating the electromagnetic field and plasma disturbances. We describe the generation mechanisms of such experimentally

  20. Steady, three-dimensional, internally heated convection

    International Nuclear Information System (INIS)

    Schubert, G.; Glatzmaier, G.A.; Travis, B.

    1993-01-01

    Numerical calculations have been carried out of steady, symmetric, three-dimensional modes of convection in internally heated, infinite Prandtl number, Boussinesq fluids at a Rayleigh number of 1.4x10 4 in a spherical shell with inner/outer radius of 0.55 and in a 3x3x1 rectangular box. Multiple patterns of convection occur in both geometries. In the Cartesian geometry the patterns are dominated by cylindrical cold downflows and a broad hot upwelling. In the spherical geometry the patterns consist of cylindrical cold downwellings centered either at the vertices of a tetrahedron or the centers of the faces of a cube. The cold downflow cylinders are immersed in a background of upwelling within which there are cylindrical hot concentrations (plumes) and hot halos around the downflows. The forced hot upflow return plumes of internally heated spherical convection are fundamentally different from the buoyancy-driven plumes of heated from below convection

  1. What favors convective aggregation and why?

    Science.gov (United States)

    Muller, Caroline; Bony, Sandrine

    2015-07-01

    The organization of convection is ubiquitous, but its physical understanding remains limited. One particular type of organization is the spatial self-aggregation of convection, taking the form of cloud clusters, or tropical cyclones in the presence of rotation. We show that several physical processes can give rise to self-aggregation and highlight the key features responsible for it, using idealized simulations. Longwave radiative feedbacks yield a "radiative aggregation." In that case, sufficient spatial variability of radiative cooling rates yields a low-level circulation, which induces the upgradient energy transport and radiative-convective instability. Not only do vertically integrated radiative budgets matter but the vertical profile of cooling is also crucial. Convective aggregation is facilitated when downdrafts below clouds are weak ("moisture-memory aggregation"), and this is sufficient to trigger aggregation in the absence of longwave radiative feedbacks. These results shed some light on the sensitivity of self-aggregation to various parameters, including resolution or domain size.

  2. Ocean-Atmosphere Coupling Processes Affecting Predictability in the Climate System

    Science.gov (United States)

    Miller, A. J.; Subramanian, A. C.; Seo, H.; Eliashiv, J. D.

    2017-12-01

    Predictions of the ocean and atmosphere are often sensitive to coupling at the air-sea interface in ways that depend on the temporal and spatial scales of the target fields. We will discuss several aspects of these types of coupled interactions including oceanic and atmospheric forecast applications. For oceanic mesoscale eddies, the coupling can influence the energetics of the oceanic flow itself. For Madden-Julian Oscillation onset, the coupling timestep should resolve the diurnal cycle to properly raise time-mean SST and latent heat flux prior to deep convection. For Atmospheric River events, the evolving SST field can alter the trajectory and intensity of precipitation anomalies along the California coast. Improvements in predictions will also rely on identifying and alleviating sources of biases in the climate states of the coupled system. Surprisingly, forecast skill can also be improved by enhancing stochastic variability in the atmospheric component of coupled models as found in a multiscale ensemble modeling approach.

  3. Atmospheric Signature of the Agulhas Current

    Science.gov (United States)

    Nkwinkwa Njouodo, Arielle Stela; Koseki, Shunya; Keenlyside, Noel; Rouault, Mathieu

    2018-05-01

    Western boundary currents play an important role in the climate system by transporting heat poleward and releasing it to the atmosphere. While their influence on extratropical storms and oceanic rainfall is becoming appreciated, their coastal influence is less known. Using satellite and climate reanalysis data sets and a regional atmospheric model, we show that the Agulhas Current is a driver of the observed band of rainfall along the southeastern African coast and above the Agulhas Current. The Agulhas current's warm core is associated with sharp gradients in sea surface temperature and sea level pressure, a convergence of low-level winds, and a co-located band of precipitation. Correlations among wind convergence, sea level pressure, and sea surface temperature indicate that these features show high degree of similarity to those in the Gulf Stream region. Model experiments further indicate that the Agulhas Current mostly impacts convective rainfall.

  4. Lithium spectral line formation in stellar atmospheres. The impact of convection and NLTE effects

    OpenAIRE

    Klevas, J.; Kučinskas, A.; Steffen, M.; Caffau, E.; Ludwig, H. -G.

    2015-01-01

    Different simplified approaches are used to account for the non-local thermodynamic equilibrium (NLTE) effects with 3D hydrodynamical model atmospheres. In certain cases, chemical abundances are derived in 1D NLTE and corrected for the 3D effects by adding 3D-1D LTE abundance corrections (3D+NLTE approach). Alternatively, average model atmospheres are sometimes used to substitute for the full 3D hydrodynamical models. We tested whether the results obtained using these simplified schemes (i.e...

  5. Microphysical effects determine macrophysical response for aerosol impacts on deep convective clouds

    Science.gov (United States)

    Fan, Jiwen; Leung, L. Ruby; Rosenfeld, Daniel; Chen, Qian; Li, Zhanqing; Zhang, Jinqiang; Yan, Hongru

    2013-11-01

    Deep convective clouds (DCCs) play a crucial role in the general circulation, energy, and hydrological cycle of our climate system. Aerosol particles can influence DCCs by altering cloud properties, precipitation regimes, and radiation balance. Previous studies reported both invigoration and suppression of DCCs by aerosols, but few were concerned with the whole life cycle of DCC. By conducting multiple monthlong cloud-resolving simulations with spectral-bin cloud microphysics that capture the observed macrophysical and microphysical properties of summer convective clouds and precipitation in the tropics and midlatitudes, this study provides a comprehensive view of how aerosols affect cloud cover, cloud top height, and radiative forcing. We found that although the widely accepted theory of DCC invigoration due to aerosol's thermodynamic effect (additional latent heat release from freezing of greater amount of cloud water) may work during the growing stage, it is microphysical effect influenced by aerosols that drives the dramatic increase in cloud cover, cloud top height, and cloud thickness at the mature and dissipation stages by inducing larger amounts of smaller but longer-lasting ice particles in the stratiform/anvils of DCCs, even when thermodynamic invigoration of convection is absent. The thermodynamic invigoration effect contributes up to ∼27% of total increase in cloud cover. The overall aerosol indirect effect is an atmospheric radiative warming (3-5 Wṡm-2) and a surface cooling (-5 to -8 Wṡm-2). The modeling findings are confirmed by the analyses of ample measurements made at three sites of distinctly different environments.

  6. Microphysical effects determine macrophysical response for aerosol impacts on deep convective clouds.

    Science.gov (United States)

    Fan, Jiwen; Leung, L Ruby; Rosenfeld, Daniel; Chen, Qian; Li, Zhanqing; Zhang, Jinqiang; Yan, Hongru

    2013-11-26

    Deep convective clouds (DCCs) play a crucial role in the general circulation, energy, and hydrological cycle of our climate system. Aerosol particles can influence DCCs by altering cloud properties, precipitation regimes, and radiation balance. Previous studies reported both invigoration and suppression of DCCs by aerosols, but few were concerned with the whole life cycle of DCC. By conducting multiple monthlong cloud-resolving simulations with spectral-bin cloud microphysics that capture the observed macrophysical and microphysical properties of summer convective clouds and precipitation in the tropics and midlatitudes, this study provides a comprehensive view of how aerosols affect cloud cover, cloud top height, and radiative forcing. We found that although the widely accepted theory of DCC invigoration due to aerosol's thermodynamic effect (additional latent heat release from freezing of greater amount of cloud water) may work during the growing stage, it is microphysical effect influenced by aerosols that drives the dramatic increase in cloud cover, cloud top height, and cloud thickness at the mature and dissipation stages by inducing larger amounts of smaller but longer-lasting ice particles in the stratiform/anvils of DCCs, even when thermodynamic invigoration of convection is absent. The thermodynamic invigoration effect contributes up to ~27% of total increase in cloud cover. The overall aerosol indirect effect is an atmospheric radiative warming (3-5 W m(-2)) and a surface cooling (-5 to -8 W m(-2)). The modeling findings are confirmed by the analyses of ample measurements made at three sites of distinctly different environments.

  7. Turbulence convective heat transfer for cooling the photovoltaic cells

    Science.gov (United States)

    Arianmehr, Iman

    Solar PV (photovoltaic) is a rapidly advancing renewable energy technology which converts sunlight directly into electricity. One of the outstanding challenges of the current PV technology is the reduction in its conversion efficiency with increasing PV panel temperature, which is closely associated with the increase in solar intensity and the ambient temperature surrounding the PV panels. To more effectively capture the available energy when the sun is most intense, significant efforts have been invested in active and passive cooling research over the last few years. While integrated cooling systems can lead to the highest total efficiencies, they are usually neither the most feasible nor the most cost effective solutions. This work examines some simple passive means of manipulating the prevailing wind turbulence to enhance convective heat transfer over a heated plate in a wind tunnel.

  8. The Dome C site testing from an atmospheric physicist view

    Science.gov (United States)

    Argentini, S.; Pietroni, I.

    Atmospheric field experiments were made at the French-Italian station of Concordia at Dome C during several years. These experiments were limited to the summer season. In 2005 Concordia has become a permanent base, this allowed to carry out STABLEDC (STudy of the Atmospheric Boundary Layer Environmental at Dome C plateau station) that is an atmospheric field experiment of the duration of one year. The aim of STABLEDC was to study the processes occurring in the long-lived stable and the weak convective atmospheric boundary layers, observed during winter and summer, respectively, and to collect the relevant parameters for the atmospheric models. Both in situ and ground based remote sensing instruments have been used to monitor the meteorological parameters. The first part of the paper gives a brief illustration of the objectives of the field experiment, and a description of site and instrumentation. The second part shows the behaviour of some micrometeorological parameters: temperature, wind speed, sensible heat flux. The surface radiation balance components are also shown. Finally some experimental activities are proposed.

  9. Free convection in a partially submerged fluid loop

    International Nuclear Information System (INIS)

    Britt, T.E.; Wood, D.C.

    1982-01-01

    Several natural convection loop systems are studied in order to determine the operational characteristics for a multiple loop container which is used to cool failed nuclear reactor assemblies. Both analytical and experimental studies were undertaken to examine flow in both circular and rectangular flow loops. It was found that when a circular loop is heated at the bottom and cooled at the top, recirculation cells form at all input power fluxes. At fluxes between 0.1 W/cm 2 and 0.7 W/cm 2 the cells caused flow oscillations and reversals. With the circular loop heated from the side, no recirculation cells were observed at the power fluxes up to 1.5 W/cm. Boiling did not occur in the circular loop. For a rectangular loop heated and cooled on its vertical sides, no recirculation cells or flow reversals were seen. At input power fluxes above 1.2 W/cm 2 , periodic boiling in the heated side caused flow oscillations

  10. Treatment of oral cancer cells with nonthermal atmospheric pressure plasma jet

    Science.gov (United States)

    Yurkovich, James; Han, Xu; Coffey, Benjamin; Klas, Matej; Ptasinska, Sylwia

    2012-10-01

    Non-thermal atmospheric pressure plasmas are specialized types of plasma that are proposed as a new agent to induce death in cancer cells. The experimental phase of this study will test the application of such plasma to SCC-25 oral cancer cells to determine if it is possible to induce apoptosis or necrosis. Different sources are used on the cells to find a configuration which kills cancer cells but has no effect on normal cells. The sources have been developed based on the dielectric barrier discharge between two external electrodes surrounding a dielectric tube; such a configuration has been shown to induce breaks in DNA strands. Each configuration is characterized using an optical emission spectrophotometer and iCCD camera to determine the optimal conditions for inducing cell death. The cells are incubated after irradiation with plasma, and cell death is determined using microscopy imaging to identify antibody interaction within the cells. These studies are important for better understanding of plasma species interactions with cancer cells and mechanisms of DNA damage and at latter stage they will be useful for the development of advanced cancer therapy.

  11. STRATOSPHERIC TEMPERATURES AND WATER LOSS FROM MOIST GREENHOUSE ATMOSPHERES OF EARTH-LIKE PLANETS

    Energy Technology Data Exchange (ETDEWEB)

    Kasting, James F.; Kopparapu, Ravi K. [Department of Geosciences, The Pennsylvania State University, State College, PA 16801 (United States); Chen, Howard, E-mail: jfk4@psu.edu, E-mail: hwchen@bu.edu [Department of Astronomy, Boston University, 725 Commonwealth Ave., Boston, MA 02215 (United States)

    2015-11-01

    A radiative-convective climate model is used to calculate stratospheric temperatures and water vapor concentrations for ozone-free atmospheres warmer than that of modern Earth. Cold, dry stratospheres are predicted at low surface temperatures, in agreement with recent 3D calculations. However, at surface temperatures above 350 K, the stratosphere warms and water vapor becomes a major upper atmospheric constituent, allowing water to be lost by photodissociation and hydrogen escape. Hence, a moist greenhouse explanation for loss of water from Venus, or some exoplanet receiving a comparable amount of stellar radiation, remains a viable hypothesis. Temperatures in the upper parts of such atmospheres are well below those estimated for a gray atmosphere, and this factor should be taken into account when performing inverse climate calculations to determine habitable zone boundaries using 1D models.

  12. STRATOSPHERIC TEMPERATURES AND WATER LOSS FROM MOIST GREENHOUSE ATMOSPHERES OF EARTH-LIKE PLANETS

    International Nuclear Information System (INIS)

    Kasting, James F.; Kopparapu, Ravi K.; Chen, Howard

    2015-01-01

    A radiative-convective climate model is used to calculate stratospheric temperatures and water vapor concentrations for ozone-free atmospheres warmer than that of modern Earth. Cold, dry stratospheres are predicted at low surface temperatures, in agreement with recent 3D calculations. However, at surface temperatures above 350 K, the stratosphere warms and water vapor becomes a major upper atmospheric constituent, allowing water to be lost by photodissociation and hydrogen escape. Hence, a moist greenhouse explanation for loss of water from Venus, or some exoplanet receiving a comparable amount of stellar radiation, remains a viable hypothesis. Temperatures in the upper parts of such atmospheres are well below those estimated for a gray atmosphere, and this factor should be taken into account when performing inverse climate calculations to determine habitable zone boundaries using 1D models

  13. Low-frequency oscillations in radiative-convective models

    Energy Technology Data Exchange (ETDEWEB)

    Hu, Qi; Randall, D.A.

    1991-12-31

    Although eastward propagation is usually regarded as an essential feature of the low-frequency ``Madden-Julian oscillation`` observed in the tropical atmosphere, many observations indicate that there is an important stationary or quasi-stationary component of the oscillation. Yasunari (1979), for example, investigated the stationary 30--60 day variation in upper tropospheric cloudiness in the Asian summer monsoon region. In a case study of the 30--60 day oscillation. Hsu et al. (1990) found a strong stationary oscillation of the divergence, outgoing longwave mdiadon and other fields. A recent observational study by Weickmann and Khalsa (1990) offers further evidence that the Madden-Julian oscillation has an important stationary component. In this paper, we present evidence that intraseasonal oscillations can be produced by local radiative and convective processes. This suggests that the observed propagating Madden-Julian wave is produced by interactions between these local processes and the large scale motion field, and is not essential for the existence of the observed oscillation.

  14. Low-frequency oscillations in radiative-convective models

    Energy Technology Data Exchange (ETDEWEB)

    Hu, Qi; Randall, D.A.

    1991-01-01

    Although eastward propagation is usually regarded as an essential feature of the low-frequency Madden-Julian oscillation'' observed in the tropical atmosphere, many observations indicate that there is an important stationary or quasi-stationary component of the oscillation. Yasunari (1979), for example, investigated the stationary 30--60 day variation in upper tropospheric cloudiness in the Asian summer monsoon region. In a case study of the 30--60 day oscillation. Hsu et al. (1990) found a strong stationary oscillation of the divergence, outgoing longwave mdiadon and other fields. A recent observational study by Weickmann and Khalsa (1990) offers further evidence that the Madden-Julian oscillation has an important stationary component. In this paper, we present evidence that intraseasonal oscillations can be produced by local radiative and convective processes. This suggests that the observed propagating Madden-Julian wave is produced by interactions between these local processes and the large scale motion field, and is not essential for the existence of the observed oscillation.

  15. Magnetic particle mixing with magnetic micro-convection for microfluidics

    OpenAIRE

    Kitenbergs , Guntars; Erglis , Kaspars; Perzynski , Régine; Cēbers , Andrejs

    2015-01-01

    International audience; In this paper we discuss the magnetic micro-convection phenomenon as a tool for mixing enhancement in microfluidics systems in cases when one of the mis-cible fluids is a magnetic particle colloid. A system of a water-based magnetic fluid and water is investigated experimentally under homogeneous magnetic field in a Hele-Shaw cell. Subsequent image analysis both qualitatively and quan-titatively reveals the high enhancement of mixing efficiency provided by this method....

  16. El Nino, from 1870 to 2014, and other Atmospheric Circulation Forcing by Extreme Apparitions of the Eight Annual, Continental Scale, Aerosol Plumes in the Satellite Era which Point to a Possible Cause for the Current Californian Drought

    Science.gov (United States)

    Potts, K. A.

    2015-12-01

    Eight continental scale aerosol plumes exist each year as the enclosed image shows. Apparitions of seven plumes only exist for a few months in the same season each year whilst the East Asian Plume is visible all year. The aerosol optical depth (AOD) of all the plumes varies enormously interannually with two studies showing the surface radiative forcing of the South East Asian Plume (SEAP) as -150W/m2 and -286W/m2/AOD. I show that the SEAP, created by volcanic aerosols (natural) and biomass burning and gas flares in the oil industry (anthropogenic), is the sole cause of all El Nino events, the greatest interannual perturbation of the atmospheric circulation system. The SEAP creates an El Nino by absorbing solar radiation at the top of the plume which heats the upper atmosphere and cools the surface. This creates a temperature inversion compared to periods without the plume and reduces convection. With reduced convection in SE Asia, the Maritime Continent, the Trade Winds blowing across the Pacific are forced to relax as their exit into the Hadley and Walker Cells is constrained and the reduced Trade Wind speed causes the Sea Surface Temperature (SST) to rise in the central tropical Pacific Ocean as there is a strong negative correlation between wind speed and SST. The warmer SST in the central Pacific creates convection in the region which further reduces the Trade Wind speed and causes the Walker Cell to reverse - a classic El Nino. Having established the ability of such extreme aerosol plumes to create El Nino events I will then show how the South American, West African, Middle East and SEAP plumes create drought in the Amazon, Spain, Darfur and Australia as well as causing the extremely warm autumn and winter in Europe in 2006-07. All these effects are created by the plumes reducing convection in the region of the plume which forces the regional Hadley Cells into anomalous positions thereby creating persistent high pressure cells in the mid latitudes. This

  17. Enhanced object-based tracking algorithm for convective rain storms and cells

    Science.gov (United States)

    Muñoz, Carlos; Wang, Li-Pen; Willems, Patrick

    2018-03-01

    This paper proposes a new object-based storm tracking algorithm, based upon TITAN (Thunderstorm Identification, Tracking, Analysis and Nowcasting). TITAN is a widely-used convective storm tracking algorithm but has limitations in handling small-scale yet high-intensity storm entities due to its single-threshold identification approach. It also has difficulties to effectively track fast-moving storms because of the employed matching approach that largely relies on the overlapping areas between successive storm entities. To address these deficiencies, a number of modifications are proposed and tested in this paper. These include a two-stage multi-threshold storm identification, a new formulation for characterizing storm's physical features, and an enhanced matching technique in synergy with an optical-flow storm field tracker, as well as, according to these modifications, a more complex merging and splitting scheme. High-resolution (5-min and 529-m) radar reflectivity data for 18 storm events over Belgium are used to calibrate and evaluate the algorithm. The performance of the proposed algorithm is compared with that of the original TITAN. The results suggest that the proposed algorithm can better isolate and match convective rainfall entities, as well as to provide more reliable and detailed motion estimates. Furthermore, the improvement is found to be more significant for higher rainfall intensities. The new algorithm has the potential to serve as a basis for further applications, such as storm nowcasting and long-term stochastic spatial and temporal rainfall generation.

  18. DNA damage in oral cancer cells induced by nitrogen atmospheric pressure plasma jets

    Science.gov (United States)

    Han, Xu; Klas, Matej; Liu, Yueying; Stack, M. Sharon; Ptasinska, Sylwia

    2013-09-01

    The nitrogen atmospheric pressure plasma jet (APPJ) has been shown to effectively induce DNA double strand breaks in SCC-25 oral cancer cells. The APPJ source constructed in our laboratory consists of two external electrodes wrapping around a quartz tube and nitrogen as a feed gas and operates based on dielectric barrier gas discharge. Generally, it is more challenging to ignite plasma in N2 atmosphere than in noble gases. However, this design provides additional advantages such as lower costs compared to the noble gases for future clinical operation. Different parameters of the APPJ configuration were tested in order to determine radiation dosage. To explore the effects of delayed damage and cell self-repairing, various incubation times of cells after plasma treatment were also performed. Reactive species generated in plasma jet and in liquid environment are essential to be identified and quantified, with the aim of unfolding the mystery of detailed mechanisms for plasma-induced cell apoptosis. Moreover, from the comparison of plasma treatment effect on normal oral cells OKF6T, an insight to the selectivity for cancer treatment by APPJ can be explored. All of these studies are critical to better understand the damage responses of normal and abnormal cellular systems to plasma radiation, which are useful for the development of advanced plasma therapy for cancer treatment at a later stage.

  19. Aerosol release from a hot sodium pool and behaviour in inert gas atmosphere

    International Nuclear Information System (INIS)

    Sauter, H.; Schuetz, W.

    1986-01-01

    In the KfK-NALA program, experiments were carried out on the subject of aerosol release from a contaminated sodium pool into inert gas atmosphere under various conditions. Besides the determination of retention factors for fuel and fission products, the sodium aerosol system was investigated and characterized, concerning aerosol generation (evaporation rate), particle size, mass concentration, and deposition behaviour. Pool temperatures were varied between 700 and 1000 K at different geometrical and convective conditions. Technical scale experiments with a 531-cm 2 pool surface area were performed at natural convection in a 2.2-m 3 heated vessel, as well as additional small scale experiments at forced convection and 38.5-cm 2 pool surface area. A best-fit formula is given for the specific evaporation rate into a 400 K argon atmosphere. Approximately, the very convenient relation (dm/dt) (kg/m 2 /h) = 0.1 p (mm Hg) was found. The sodium aerosol diameter lay between 0.6 μm, less than 1 sec after production, and 2.5 μm at maximum concentration. The deposition behaviour was characterized by very small quantities ( 80%) on the bottom cover of the vessel. In the model theoretic studies with the PARDISEKO code, calculations were performed of the mass concentration, particle diameter and deposition behaviour. Agreement with the experimental values could not be achieved until a modulus was introduced to allow for turbulent deposition. (author)

  20. On the Spectral Evolution of Helium-atmosphere White Dwarfs Showing Traces of Hydrogen

    Science.gov (United States)

    Rolland, B.; Bergeron, P.; Fontaine, G.

    2018-04-01

    We present a detailed spectroscopic analysis of 115 helium-line (DB) and 28 cool, He-rich hydrogen-line (DA) white dwarfs based on atmosphere fits to optical spectroscopy and photometry. We find that 63% of our DB population show hydrogen lines, making them DBA stars. We also demonstrate the persistence of pure DB white dwarfs with no detectable hydrogen feature at low effective temperatures. Using state-of-the art envelope models, we next compute the total quantity of hydrogen, M H, that is contained in the outer convection zone as a function of effective temperature and atmospheric H/He ratio. We find that some (T eff, M H) pairs cannot physically exist as a homogeneously mixed structure; such a combination can only occur as stratified objects of the DA spectral type. On that basis, we show that the values of M H inferred for the bulk of the DBA stars are too large and incompatible with the convective dilution scenario. We also present evidence that the hydrogen abundances measured in DBA and cool, helium-rich white dwarfs cannot be globally accounted for by any kind of accretion mechanism onto a pure DB star. We suggest that cool, He-rich DA white dwarfs are most likely created by the convective mixing of a DA star with a thin hydrogen envelope; they are not cooled down DBAs. We finally explore several scenarios that could account for the presence of hydrogen in DBA stars.