WorldWideScience

Sample records for convection fluid mechanics

  1. Problems in Microgravity Fluid Mechanics: G-Jitter Convection

    Science.gov (United States)

    Homsy, G. M.

    2005-01-01

    This is the final report on our NASA grant, Problems in Microgravity Fluid Mechanics NAG3-2513: 12/14/2000 - 11/30/2003, extended through 11/30/2004. This grant was made to Stanford University and then transferred to the University of California at Santa Barbara when the PI relocated there in January 2001. Our main activity has been to conduct both experimental and theoretical studies of instabilities in fluids that are relevant to the microgravity environment, i.e. those that do not involve the action of buoyancy due to a steady gravitational field. Full details of the work accomplished under this grant are given below. Our work has focused on: (i) Theoretical and computational studies of the effect of g-jitter on instabilities of convective states where the convection is driven by forces other than buoyancy (ii) Experimental studies of instabilities during displacements of miscible fluid pairs in tubes, with a focus on the degree to which these mimic those found in immiscible fluids. (iii) Theoretical and experimental studies of the effect of time dependent electrohydrodynamic forces on chaotic advection in drops immersed in a second dielectric liquid. Our objectives are to acquire insight and understanding into microgravity fluid mechanics problems that bear on either fundamental issues or applications in fluid physics. We are interested in the response of fluids to either a fluctuating acceleration environment or to forces other than gravity that cause fluid mixing and convection. We have been active in several general areas.

  2. Fluid Mechanics.

    Science.gov (United States)

    Drazin, Philip

    1987-01-01

    Outlines the contents of Volume II of "Principia" by Sir Isaac Newton. Reviews the contributions of subsequent scientists to the physics of fluid dynamics. Discusses the treatment of fluid mechanics in physics curricula. Highlights a few of the problems of modern research in fluid dynamics. Shows that problems still remain. (CW)

  3. Fluid Mechanics.

    Science.gov (United States)

    Drazin, Philip

    1987-01-01

    Outlines the contents of Volume II of "Principia" by Sir Isaac Newton. Reviews the contributions of subsequent scientists to the physics of fluid dynamics. Discusses the treatment of fluid mechanics in physics curricula. Highlights a few of the problems of modern research in fluid dynamics. Shows that problems still remain. (CW)

  4. Fluid mechanics

    CERN Document Server

    Kundu, Pijush K; Dowling, David R

    2011-01-01

    Fluid mechanics, the study of how fluids behave and interact under various forces and in various applied situations-whether in the liquid or gaseous state or both-is introduced and comprehensively covered in this widely adopted text. Revised and updated by Dr. David Dowling, Fluid Mechanics, 5e is suitable for both a first or second course in fluid mechanics at the graduate or advanced undergraduate level. Along with more than 100 new figures, the text has been reorganized and consolidated to provide a better flow and more cohesion of topics.Changes made to the

  5. Rotating convection in a viscoelastic magnetic fluid

    Energy Technology Data Exchange (ETDEWEB)

    Pérez, L.M. [Departamento de Fíisica y Matemática Aplicada, Universidad de Navarra, 31080 Pamplona (Spain); Laroze, D., E-mail: dlarozen@uta.cl [Instituto de Alta Investigación, Universidad de Tarapacá, Casilla 7D, Arica (Chile); Díaz, P. [Departamento de Ciencias Físicas, Universidad de La Frontera, Casilla 54 D, Temuco (Chile); Martinez-Mardones, J. [Instituto de Física, Pontificia Universidad Católica de Valparaíso, Casilla 4059, Valparaíso (Chile); Mancini, H.L. [Departamento de Fíisica y Matemática Aplicada, Universidad de Navarra, 31080 Pamplona (Spain)

    2014-09-01

    We report theoretical and numerical results on convection for a magnetic fluid in a viscoelastic carrier liquid under rotation. The viscoelastic properties are given by the Oldroyd model. We obtain explicit expressions for the convective thresholds in terms of the parameters of the system in the case of idealized boundary conditions. We also calculate numerically the convective thresholds for the case of realistic boundary conditions. The effects of the rheology and of the rotation rate on the instability thresholds for a diluted magnetic suspension are emphasized. - Highlights: • Ferrofluids. • Thermal convection. • Viscoelastic model. • Realistic boundary conditions.

  6. Magnetogenesis through convection in barotropic fluids

    Energy Technology Data Exchange (ETDEWEB)

    Miller, E., E-mail: evan.d.miller@dartmouth.edu; Rogers, B., E-mail: barret.n.rogers@dartmouth.edu [Department of Physics and Astronomy, Dartmouth College, Hanover, New Hampshire 03755 (United States)

    2015-04-15

    It is shown that an unmagnetized plasma with non-uniform bulk velocity can generate magnetic fields through consideration of the non-relativistic isentropic two-fluid equations, even when the initial conditions contain with no fields or currents, uniform densities and pressures, and a divergence-free bulk velocity. This effect does not depend on the baroclinicity of the plasma and is therefore relevant even in barotropic flows, where the Biermann battery is absent. It also does not rely on kinetic effects or shear discontinuities. Instead, our magnetogenesis effect arises from convection terms proportional to the electron mass in the generalized Ohm's law. The resulting magnetic fields are typically weak but may still serve as seed fields for dynamo mechanisms.

  7. Computational fluid mechanical study of the convective heat transfer in a closed space simulating an infant incubator.

    Science.gov (United States)

    Yamaguchi, T; Taylor, T W; Okino, H; Horio, H; Hasegawa, T

    1996-01-01

    The uneven distribution of the ambient temperature in a model of an infant incubator was demonstrated using the computational fluid mechanical (CFM) simulation of the air flow. A finite volume method of CFM calculation was performed on a three-dimensional (3D) model of an infant incubator including a model baby. The time course of the temperature distribution was computed solving the heat transfer equations simultaneously with the momentum equations. An uneven temperature distribution was observed for a long period (60 s) after the warm inflow was introduced into the incubator chamber. The temperature distribution was complex in 3D space and unsteady even after a long time, suggesting that it may take a considerable time to settle and may continue to be unsteady even if the inflow velocity is steady.

  8. Convective heat transport in compressible fluids.

    Science.gov (United States)

    Furukawa, Akira; Onuki, Akira

    2002-07-01

    We present hydrodynamic equations of compressible fluids in gravity as a generalization of those in the Boussinesq approximation used for nearly incompressible fluids. They account for adiabatic processes taking place throughout the cell (the piston effect) and those taking place within plumes (the adiabatic temperature gradient effect). Performing two-dimensional numerical analysis, we reveal some unique features of plume generation and convection in transient and steady states of compressible fluids. As the critical point is approached, the overall temperature changes induced by plume arrivals at the boundary walls are amplified, giving rise to overshoot behavior in transient states and significant noise in the temperature in steady states. The velocity field is suggested to assume a logarithmic profile within boundary layers. Random reversal of macroscopic shear flow is examined in a cell with unit aspect ratio. We also present a simple scaling theory for moderate Rayleigh numbers.

  9. Natural convection in superposed fluid-porous layers

    CERN Document Server

    Bagchi, Aniruddha

    2013-01-01

    Natural Convection in Composite Fluid-Porous Domains provides a timely overview of the current state of understanding on the phenomenon of convection in composite fluid-porous layers. Natural convection in horizontal fluid-porous layers has received renewed attention because of engineering problems such as post-accident cooling of nuclear reactors, contaminant transport in groundwater, and convection in fibrous insulation systems. Because applications of the problem span many scientific domains, the book serves as a valuable resource for a wide audience.

  10. Mixed convection in fluid superposed porous layers

    CERN Document Server

    Dixon, John M

    2017-01-01

    This Brief describes and analyzes flow and heat transport over a liquid-saturated porous bed. The porous bed is saturated by a liquid layer and heating takes place from a section of the bottom. The effect on flow patterns of heating from the bottom is shown by calculation, and when the heating is sufficiently strong, the flow is affected through the porous and upper liquid layers. Measurements of the heat transfer rate from the heated section confirm calculations. General heat transfer laws are developed for varying porous bed depths for applications to process industry needs, environmental sciences, and materials processing. Addressing a topic of considerable interest to the research community, the brief features an up-to-date literature review of mixed convection energy transport in fluid superposed porous layers.

  11. Mechanisms for convection triggering by cold pools

    CERN Document Server

    Torri, Giuseppe; Tian, Yang

    2015-01-01

    Cold pools are fundamental ingredients of deep convection. They contribute to organizing the sub-cloud layer and are considered key elements in triggering convective cells. It was long known that this could happen mechanically, through lifting by the cold pools' fronts. More recently, it has been suggested that convection could also be triggered thermodynamically, by accumulation of moisture around the edges of cold pools. A method based on Lagrangian tracking is here proposed to disentangle the signatures of both forcings and quantify their importance in a given environment. Results from a simulation of radiative-convective equilibrium over the ocean show that parcels reach their level of free convection through a combination of both forcings, each being dominant at different stages of the ascent. Mechanical forcing is an important player in lifting parcels from the surface, whereas thermodynamic forcing reduces the inhibition encountered by parcels before they reach their level of free convection.

  12. Lectures on fluid mechanics

    CERN Document Server

    Shinbrot, Marvin

    2012-01-01

    Readable and user-friendly, this high-level introduction explores the derivation of the equations of fluid motion from statistical mechanics, classical theory, and a portion of the modern mathematical theory of viscous, incompressible fluids. 1973 edition.

  13. Fluid and particle mechanics

    CERN Document Server

    Michell, S J

    2013-01-01

    Fluid and Particle Mechanics provides information pertinent to hydraulics or fluid mechanics. This book discusses the properties and behavior of liquids and gases in motion and at rest. Organized into nine chapters, this book begins with an overview of the science of fluid mechanics that is subdivided accordingly into two main branches, namely, fluid statics and fluid dynamics. This text then examines the flowmeter devices used for the measurement of flow of liquids and gases. Other chapters consider the principle of resistance in open channel flow, which is based on improper application of th

  14. Fluid mechanics in the perivascular space.

    Science.gov (United States)

    Wang, Peng; Olbricht, William L

    2011-04-07

    Perivascular space (PVS) within the brain is an important pathway for interstitial fluid (ISF) and solute transport. Fluid flowing in the PVS can affect these transport processes and has significant impacts on physiology. In this paper, we carry out a theoretical analysis to investigate the fluid mechanics in the PVS. With certain assumptions and approximations, we are able to find an analytical solution to the problem. We discuss the physical meanings of the solution and particularly examine the consequences of the induced fluid flow in the context of convection-enhanced delivery (CED). We conclude that peristaltic motions of the blood vessel walls can facilitate fluid and solute transport in the PVS.

  15. 2-D traveling-wave patterns in binary fluid convection

    Energy Technology Data Exchange (ETDEWEB)

    Surko, C.M.; Porta, A.L. [Univ. of California, La Jolla, CA (United States)

    1996-12-31

    An overview is presented of recent experiments designed to study two-dimensional traveling-wave convection in binary fluid convection in a large aspect ratio container. Disordered patterns are observed when convection is initiated. As time proceeds, they evolve to more ordered patterns, consisting of several domains of traveling-waves separated by well-defined domain boundaries. The detailed character of the patterns depends sensitively on the Rayleigh number. Numerical techniques are described which were developed to provide a quantitative characterization of the traveling-wave patterns. Applications of complex demodulation techniques are also described, which make a detailed study of the structure and dynamics of the domain boundaries possible.

  16. Two-dimensional convection and interchange motions in fluids and magnetized plasmas

    DEFF Research Database (Denmark)

    Garcia, O.E.; Bian, N.H.; Naulin, V.

    2006-01-01

    In this contribution some recent investigations of two- dimensional thermal convection relevant to ordinary fluids as well as magnetized plasmas are reviewed. An introductory discussion is given of the physical mechanism for baroclinic vorticity generation and convective motions in stratified...... fluids, emphasizing its relation to interchange motions of non- uniformly magnetized plasmas. This is followed by a review of the theories for the onset of convection and quasi-linear saturation in driven-dissipative systems. Non-linear numerical simulations which result in stationary convective states....... The global bursting is interpreted in terms of a predator-prey regulation from the point of view of energetics. Finally, a discussion is given of the relevance of these phenomena to a variety of magnetized plasma experiments....

  17. Mechanism and control of convective heat transfer-- Coordination of velocity and heat flow fields

    Institute of Scientific and Technical Information of China (English)

    2001-01-01

    A second look has been given at the mechanism of convective heat transfer based on the analogy between convection and conduction with heat sources. The strength of convective heat transfer depends not only on the fluid velocity and fluid properties, but also on the coordination of fluid velocity and heat flow fields. Hence, based on the included angle of velocity and temperature gradient vectors, the presence of fluid motion may enhance or reduce heat transfer. With this concept, the known heat transfer phenomena may be understood in a deeper way. More important is that some novel approaches of heat transfer control can be developed.

  18. Thermal convection of viscoelastic shear-thinning fluids

    Science.gov (United States)

    Albaalbaki, Bashar; Khayat, Roger E.; Ahmed, Zahir U.

    2016-12-01

    The Rayleigh-Bénard convection for non-Newtonian fluids possessing both viscoelastic and shear-thinning behaviours is examined. The Phan-Thien-Tanner (PTT) constitutive equation is implemented to model the non-Newtonian character of the fluid. It is found that while the shear-thinning and viscoelastic effects could annihilate one another for the steady roll flow, presence of both behaviours restricts the roll stability limit significantly compared to the cases when the fluid is either inelastic shear-thinning or purely viscoelastic with constant viscosity.

  19. Micromachined Inclinometer Based on Fluid Convection

    CERN Document Server

    Crespy, N; Combette, P; Boyer, P Temple; Giani, A; Foucaran, A

    2008-01-01

    This paper presents a numerical simulation and experimental results of a one-dimensional thermal inclinometer with the cavity filled of gas and liquid. The sensor principle consists of one heating resistor placed between two detectors. When the resistor is electrically powered, it creates a symmetrical temperature profile inside a micromachined silicon cavity. By applying a tilt to the sensor, the profile shifts in the same direction of the sensible axis corresponding to the horizontal one to one. The temperature profile and the sensitivity according to the CO2 gas and mineral oil SAE50 have been studied using numerical resolution of fluid dynamics equations with the computational fluid dynamics (CFD) software package Fluent V6.2. We have shown that the sensitivity of liquid sensors is higher than the gas sensors one. By using micromachined silicon technique, a thermal inclinometer with one pair of detectors placed at 300 um from the heater has been made. Experimental measurements corroborate with the numeric...

  20. Mechanics of fluid flow

    CERN Document Server

    Basniev, Kaplan S; Chilingar, George V 0

    2012-01-01

    The mechanics of fluid flow is a fundamental engineering discipline explaining both natural phenomena and human-induced processes, and a thorough understanding of it is central to the operations of the oil and gas industry.  This book, written by some of the world's best-known and respected petroleum engineers, covers the concepts, theories, and applications of the mechanics of fluid flow for the veteran engineer working in the field and the student, alike.  It is a must-have for any engineer working in the oil and gas industry.

  1. Relativistic viscoelastic fluid mechanics.

    Science.gov (United States)

    Fukuma, Masafumi; Sakatani, Yuho

    2011-08-01

    A detailed study is carried out for the relativistic theory of viscoelasticity which was recently constructed on the basis of Onsager's linear nonequilibrium thermodynamics. After rederiving the theory using a local argument with the entropy current, we show that this theory universally reduces to the standard relativistic Navier-Stokes fluid mechanics in the long time limit. Since effects of elasticity are taken into account, the dynamics at short time scales is modified from that given by the Navier-Stokes equations, so that acausal problems intrinsic to relativistic Navier-Stokes fluids are significantly remedied. We in particular show that the wave equations for the propagation of disturbance around a hydrostatic equilibrium in Minkowski space-time become symmetric hyperbolic for some range of parameters, so that the model is free of acausality problems. This observation suggests that the relativistic viscoelastic model with such parameters can be regarded as a causal completion of relativistic Navier-Stokes fluid mechanics. By adjusting parameters to various values, this theory can treat a wide variety of materials including elastic materials, Maxwell materials, Kelvin-Voigt materials, and (a nonlinearly generalized version of) simplified Israel-Stewart fluids, and thus we expect the theory to be the most universal description of single-component relativistic continuum materials. We also show that the presence of strains and the corresponding change in temperature are naturally unified through the Tolman law in a generally covariant description of continuum mechanics.

  2. Natural convective boundary layer flow of a nano-fluid past a convectively heated vertical plate

    Energy Technology Data Exchange (ETDEWEB)

    Aziz, A. [Department of Mechanical Engineering, School of Engineering and Applied Science, Gonzaga University, Spokane, WA 99258 (United States); Khan, W.A. [Department of Engineering Sciences, PN Engineering College, National University of Sciences and Technology, Karachi 75350 (Pakistan)

    2012-03-15

    Natural convective flow of a nano-fluid over a convectively heated vertical plate is investigated using a similarity analysis of the transport equations followed by their numerical computations. The transport model employed includes the effect of Brownian motion and thermophoresis. The analysis shows that velocity, temperature and solid volume fraction of the nano-fluid profiles in the respective boundary layers depend, besides the Prandtl and Lewis numbers, on four additional dimensionless parameters, namely a Brownian motion parameter Nb, a thermophoresis parameter Nt, a buoyancy-ratio parameter Nr and convective parameter Nc. In addition to the study of these parameters on the boundary layer flow characteristics (velocity, temperature, solid volume fraction of the nano-fluid, skin friction, and heat transfer), correlations for the Nusselt and Sherwood numbers have been developed based on a regression analysis of the data. These linear regression models provide a highly accurate (with a maximum standard error of 0.004) representation of the numerical data and can be conveniently used in engineering practice. (authors)

  3. Salt tectonics and shallow subseafloor fluid convection: models of coupled fluid-heat-salt transport

    Science.gov (United States)

    Wilson, A.; Ruppel, C.

    2007-01-01

    Thermohaline convection associated with salt domes has the potential to drive significant fluid flow and mass and heat transport in continental margins, but previous studies of fluid flow associated with salt structures have focused on continental settings or deep flow systems of importance to petroleum exploration. Motivated by recent geophysical and geochemical observations that suggest a convective pattern to near-seafloor pore fluid flow in the northern Gulf of Mexico (GoMex), we devise numerical models that fully couple thermal and chemical processes to quantify the effects of salt geometry and seafloor relief on fluid flow beneath the seafloor. Steady-state models that ignore halite dissolution demonstrate that seafloor relief plays an important role in the evolution of shallow geothermal convection cells and that salt at depth can contribute a thermal component to this convection. The inclusion of faults causes significant, but highly localized, increases in flow rates at seafloor discharge zones. Transient models that include halite dissolution show the evolution of flow during brine formation from early salt-driven convection to later geothermal convection, characteristics of which are controlled by the interplay of seafloor relief and salt geometry. Predicted flow rates are on the order of a few millimeters per year or less for homogeneous sediments with a permeability of 10−15 m2, comparable to compaction-driven flow rates. Sediment permeabilities likely fall below 10−15 m2 at depth in the GoMex basin, but such thermohaline convection can drive pervasive mass transport across the seafloor, affecting sediment diagenesis in shallow sediments. In more permeable settings, such flow could affect methane hydrate stability, seafloor chemosynthetic communities, and the longevity of fluid seeps.

  4. Fluid mechanics in fluids at rest.

    Science.gov (United States)

    Brenner, Howard

    2012-07-01

    Using readily available experimental thermophoretic particle-velocity data it is shown, contrary to current teachings, that for the case of compressible flows independent dye- and particle-tracer velocity measurements of the local fluid velocity at a point in a flowing fluid do not generally result in the same fluid velocity measure. Rather, tracer-velocity equality holds only for incompressible flows. For compressible fluids, each type of tracer is shown to monitor a fundamentally different fluid velocity, with (i) a dye (or any other such molecular-tagging scheme) measuring the fluid's mass velocity v appearing in the continuity equation and (ii) a small, physicochemically and thermally inert, macroscopic (i.e., non-Brownian), solid particle measuring the fluid's volume velocity v(v). The term "compressibility" as used here includes not only pressure effects on density, but also temperature effects thereon. (For example, owing to a liquid's generally nonzero isobaric coefficient of thermal expansion, nonisothermal liquid flows are to be regarded as compressible despite the general perception of liquids as being incompressible.) Recognition of the fact that two independent fluid velocities, mass- and volume-based, are formally required to model continuum fluid behavior impacts on the foundations of contemporary (monovelocity) fluid mechanics. Included therein are the Navier-Stokes-Fourier equations, which are now seen to apply only to incompressible fluids (a fact well-known, empirically, to experimental gas kineticists). The findings of a difference in tracer velocities heralds the introduction into fluid mechanics of a general bipartite theory of fluid mechanics, bivelocity hydrodynamics [Brenner, Int. J. Eng. Sci. 54, 67 (2012)], differing from conventional hydrodynamics in situations entailing compressible flows and reducing to conventional hydrodynamics when the flow is incompressible, while being applicable to both liquids and gases.

  5. Pattern formation in biological fluids II: cell deformation in shear fields evidences convective membrane organisation

    CERN Document Server

    Lofthouse, J

    2004-01-01

    The mechanical behaviour and symmetry-breaking shape deformation of red blood cells subjected to shear flows is used to demonstrate that far from being random fluids, both the membrane and cytoplasm of every biological cell undergo spatially organised convective and shear driven flows when the cell maintains a Near Equilibrium state through continuousmetabolic activity. The model demonstrates that fluid bifurcation events drive cell shape changes, rather than a Meccano like cytoskeletal structure, and represents a significant Gestalt shift in models of cell mechanics.

  6. Convection in Binary Fluid Mixtures; 2, Localized Traveling Waves

    CERN Document Server

    Barten, W; Kamps, M; Schmitz, R

    1995-01-01

    Nonlinear, spatially localized structures of traveling convection rolls are investigated in quantitative detail as a function of Rayleigh number for two different Soret coupling strengths (separation ratios) with Lewis and Prandtl numbers characterizing ethanol-water mixtures. A finite-difference method was used to solve the full hydrodynamic field equations numerically. Structure and dynamics of these localized traveling waves (LTW) are dominated by the concentration field. Like in the spatially extended convective states ( cf. accompanying paper), the Soret-induced concentration variations strongly influence, via density changes, the buoyancy forces that drive convection. The spatio-temporal properties of this feed-back mechanism, involving boundary layers and concentration plumes, show that LTW's are strongly nonlinear states. Light intensity distributions are determined that can be observed in side-view shadowgraphs. Detailed analyses of all fields are made using colour-coded isoplots, among others. In th...

  7. Hyperchaotic Intermittent Convection in a Magnetized Viscous Fluid

    CERN Document Server

    Macek, Wieslaw M

    2014-01-01

    We consider a low-dimensional model of convection in a horizontally magnetized layer of a viscous fluid heated from below. We analyze in detail the stability of hydromagnetic convection for a wide range of two control parameters. Namely, when changing the initially applied temperature difference or magnetic field strength, one can see transitions from regular to irregular long-term behavior of the system, switching between chaotic, periodic, and equilibrium asymptotic solutions. It is worth noting that owing to the induced magnetic field a transition to hyperchaotic dynamics is possible for some parameters of the model. We also reveal new features of the generalized Lorenz model, including both type I and III intermittency.

  8. Double-diffusive convection in a viscoelastic fluid

    Directory of Open Access Journals (Sweden)

    Pardeep Kumar

    2012-09-01

    Full Text Available The double-diffusive convection in an Oldroydian viscoelastic fluid is mathematical investigated under the simultaneous effects of magnetic field and suspended particles through porous medium. A sufficient condition for the invalidity of the `principle of exchange of stabilities' is derived, in the context, which states that the exchange principle is not valid provided the thermal Rayleigh number $R$, solutal Rayleigh number$R_S$, the medium permeability $P_1$ and the suspended particles parameter $B$ are restricted by the inequality $\\frac{BP_1}{\\pi^2}(R+R_S<1$.

  9. Respiratory fluid mechanics.

    Science.gov (United States)

    Grotberg, James B

    2011-02-01

    This article covers several aspects of respiratory fluid mechanics that have been actively investigated by our group over the years. For the most part, the topics involve two-phase flows in the respiratory system with applications to normal and diseased lungs, as well as therapeutic interventions. Specifically, the topics include liquid plug flow in airways and at airway bifurcations as it relates to surfactant, drug, gene, or stem cell delivery into the lung; liquid plug rupture and its damaging effects on underlying airway epithelial cells as well as a source of crackling sounds in the lung; airway closure from "capillary-elastic instabilities," as well as nonlinear stabilization from oscillatory core flow which we call the "oscillating butter knife;" liquid film, and surfactant dynamics in an oscillating alveolus and the steady streaming, and surfactant spreading on thin viscous films including our discovery of the Grotberg-Borgas-Gaver shock.

  10. Fluid mechanics fundamentals and applications

    CERN Document Server

    Cengel, Yunus

    2013-01-01

    Cengel and Cimbala's Fluid Mechanics Fundamentals and Applications, communicates directly with tomorrow's engineers in a simple yet precise manner. The text covers the basic principles and equations of fluid mechanics in the context of numerous and diverse real-world engineering examples. The text helps students develop an intuitive understanding of fluid mechanics by emphasizing the physics, using figures, numerous photographs and visual aids to reinforce the physics. The highly visual approach enhances the learning of Fluid mechanics by students. This text distinguishes itself from others by the way the material is presented - in a progressive order from simple to more difficult, building each chapter upon foundations laid down in previous chapters. In this way, even the traditionally challenging aspects of fluid mechanics can be learned effectively. McGraw-Hill is also proud to offer ConnectPlus powered by Maple with the third edition of Cengel/Cimbabla, Fluid Mechanics. This innovative and powerful new sy...

  11. Fluid friction in incompressible laminar convection: Reynolds' analogy revisited for variable fluid properties

    Science.gov (United States)

    Mahulikar, S. P.; Herwig, H.

    2008-03-01

    The Reynolds' analogy between the Stanton number (St) and the skin friction coefficient (cf) is popularly believed to hold when St increases with increasing cf, for simple situations. In this investigation, the validity of Reynolds' analogy between St and cf for micro-convection of liquids with variations in fluid properties is re-examined. It is found that the Sieder-Tate's property-ratio method for obtaining Nusselt number corrections is theoretically based on the validity of Reynolds' analogy. The inverse dependence of Reynolds number and skin friction coefficient is the basis for validity of the Reynolds' analogy, in convective flows with fluid property variations. This leads to the unexpected outcome that Reynolds' analogy now results in St increasing with decreasing cf. These results and their analyses indicate that the validity of Reynolds' analogy is based on deeper foundations, and the well-known validity criterion is a special case.

  12. Convective heat transfer for viscoelastic fluid in a curved pipe

    Energy Technology Data Exchange (ETDEWEB)

    Norouzi, M.; Kayhani, M.H. [Shahrood University of Technology, Mechanical Engineering Department, Shahrood (Iran); Nobari, M.R.H. [Amirkabir University of Technology, Mechanical Engineering Department, Tehran (Iran); Joneidi, A.A. [Eindhoven University of Technology, Mechanical-Polymer Technology Group, Eindhoven (Netherlands)

    2010-10-15

    In this paper, fully developed convective heat transfer of viscoelastic flow in a curved pipe under the constant heat flux at the wall is investigated analytically using a perturbation method. Here, the curvature ratio is used as the perturbation parameter and the Oldroyd-B model is applied as the constitutive equation. In the previous studies, the Dirichlet boundary condition for the temperature at the wall has been used to simplify the solution, but here exactly the non-homogenous Neumann boundary condition is considered to solve the problem. Based on this solution, the non-axisymmetric temperature distribution of Dean flow is obtained analytically and the effect of flow parameters on the flow field is investigated in detail. The current analytical results indicate that increasing the Weissenberg number, viscosity ratio, curvature ratio, and Prandtl number lead to the increase of the heat transfer in the Oldroyd-B fluid flow. (orig.)

  13. New Directions in Mathematical Fluid Mechanics

    CERN Document Server

    Fursikov, Andrei V

    2010-01-01

    The scientific interests of Professor A.V. Kazhikhov were fundamentally devoted to Mathematical Fluid Mechanics, where he achieved outstanding results that had, and still have, a significant influence on this field. This volume, dedicated to the memory of A.V. Kazhikhov, presents the latest contributions from renowned world specialists in a number of new important directions of Mathematical Physics, mostly of Mathematical Fluid Mechanics, and, more generally, in the field of nonlinear partial differential equations. These results are mostly related to boundary value problems and to control problems for the Navier-Stokes equations, and for equations of heat convection. Other important topics include non-equilibrium processes, Poisson-Boltzmann equations, dynamics of elastic body, and related problems of function theory and nonlinear analysis.

  14. Topology optimization of fluid mechanics problems

    DEFF Research Database (Denmark)

    Gersborg-Hansen, Allan

    While topology optimization for solid continuum structures have been studied for about 20 years and for the special case of trusses for many more years, topology optimization of fluid mechanics problems is more recent. Borrvall and Petersson [1] is the seminal reference for topology optimization...... with respect to minimizing the energy loss, characteristic properties of the velocity field or mixing properties. To reduce the computational complexity of the topology optimization problems the primary focus is put on the Stokes equation in 2D and in 3D. However, the the talk also contains examples with the 2......D Navier-Stokes equation as well as an example with convection dominated transport in 2D Stokes flow. Using Stokes flow limits the range of applications; nonetheless, the present work gives a proof-of-concept for the application of the method within fluid mechanics problems and it remains...

  15. Penetrative convection in stratified fluids: velocity and temperature measurements

    Directory of Open Access Journals (Sweden)

    M. Moroni

    2006-01-01

    Full Text Available The flux through the interface between a mixing layer and a stable layer plays a fundamental role in characterizing and forecasting the quality of water in stratified lakes and in the oceans, and the quality of air in the atmosphere. The evolution of the mixing layer in a stably stratified fluid body is simulated in the laboratory when "Penetrative Convection" occurs. The laboratory model consists of a tank filled with water and subjected to heating from below. The methods employed to detect the mixing layer growth were thermocouples for temperature data and two image analysis techniques, namely Laser Induced Fluorescence (LIF and Feature Tracking (FT. LIF allows the mixing layer evolution to be visualized. Feature Tracking is used to detect tracer particle trajectories moving within the measurement volume. Pollutant dispersion phenomena are naturally described in the Lagrangian approach as the pollutant acts as a tag of the fluid particles. The transilient matrix represents one of the possible tools available for quantifying particle dispersion during the evolution of the phenomenon.

  16. Effects of temperature gradient induced nanoparticle motion on conduction and convection of fluid

    Energy Technology Data Exchange (ETDEWEB)

    Zhou Leping, E-mail: lpzhou@ncepu.edu.cn [North China Electric Power University, Key Laboratory of Condition Monitoring and Control for Power Plant Equipment of Ministry of Education, School of Energy, Power and Mechanical Engineering (China); Peterson, George P.; Yoda, Minani [Georgia Institute of Technology, George W. Woodruff School of Mechanical Engineering (United States); Wang Buxuan [Tsinghua University, Department of Thermal Engineering (China)

    2012-03-15

    The role of temperature gradient induced nanoparticle motion on conduction and convection was investigated. Possible mechanisms for variations resulting from variations in the thermophysical properties are theoretically and experimentally discussed. The effect of the nanoparticle motion on conduction is demonstrated through thermal conductivity measurement of deionized water with suspended CuO nanoparticles (50 nm in diameter) and correlated with the contributions of Brownian diffusion, thermophoresis, etc. The tendencies observed is that the magnitude of and the variation in the thermal conductivity increases with increasing volume fraction for a given temperature, which is due primarily to the Brownian diffusion of the nanoparticles. Using dimensional analysis, the thermal conductivity is correlated and both the interfacial thermal resistance and near-field radiation are found to be essentially negligible. A modification term that incorporates the contributions of Brownian motion and thermophoresis is proposed. The effect of nanoscale convection is illustrated through an experimental investigation that utilized fluorescent polystyrene nanoparticle tracers (200 nm in diameter) and multilayer nanoparticle image velocimetry. The results indicate that both the magnitude and the deviation of the fluid motion increased with increasing heat flux in the near-wall region. Meanwhile, the fluid motion tended to decrease with the off-wall distance for a given heating power. A corresponding numerical study of convection of pure deionized water shows that the velocity along the off-wall direction is several orders of magnitude lower than that of deionized water, which indicates that Brownian motion in the near-wall region is crucial for fluid with suspended nanoparticles in convection.

  17. Mixed convection heat transfer from a vertical plate to non-Newtonian fluids

    Science.gov (United States)

    Wang, T.-Y.

    1995-02-01

    The nonsimilar boundary-layer analysis of steady laminar mixed-convection heat transfer between a vertical plate and non-Newtonian fluids is extended and unified. A mixed-convection parameter zeta is proposed to replace the conventional Richardson number, Gr/Re(exp 2/(2 - n)) and to serve as a controlling parameter that determines the relative importance of the forced and the free convection. The value of mixed-convection parameter lies between 0 and 1. In addition, the power-law model is used for non-Newtonian fluids with exponent n less than 1 for pseudoplastics; n = 1 for Newtonian fluids; and n greater than 1 for dilatant fluids. Furthermore, the coordinates and dependent variables are transformed to yield computationally efficient numerical solutions that are valid over the entire range of mixed convection, from the pure forced-convection limit to the pure free-convection limit, and the whole domain of non-Newtonian fluids, from pseudoplastics to dilatant fluids. The effects of the mixed-convection parameter, the power-law viscosity index, and the generalized Prandtl number on the velocity profiles, the temperature profiles, as well as on the wall skin friction and heat transfer rate are clearly illustrated for both cases of buoyancy assisting and opposing flow conditions.

  18. Adiabatic heating and convection in a porous medium filled with a near-critical fluid.

    Science.gov (United States)

    Soboleva, E B

    2009-04-01

    Dynamics and heat transfer in a porous medium filled with a fluid phase at parameters near the gas-liquid critical point are studied. A two-dimensional numerical solver based on the hydrodynamic model for a porous medium with a high compressible fluid phase including the van der Waals equation of state is used. In weightlessness, adiabatic heating of fluid phase under the step-temperature heat supply is investigated analytically and numerically. In terrestrial conditions, gravity-driven convection in vertical rectangular cells generated by lateral heating in unsteady and steady-state regimes is simulated. The effects of high compressibility of near-critical fluid phase on convection are studied. Convective motions and heat transfer in horizontal rectangular cells consisting of two porous layers at different porosity and permeability heated from below are simulated as well. Adiabatic heating subjected to hydrostatic compressibility effects, the onset and development of convection, and convective structures in a steady-state regime are analyzed.

  19. Finite element computational fluid mechanics

    Science.gov (United States)

    Baker, A. J.

    1983-01-01

    Finite element analysis as applied to the broad spectrum of computational fluid mechanics is analyzed. The finite element solution methodology is derived, developed, and applied directly to the differential equation systems governing classes of problems in fluid mechanics. The heat conduction equation is used to reveal the essence and elegance of finite element theory, including higher order accuracy and convergence. The algorithm is extended to the pervasive nonlinearity of the Navier-Stokes equations. A specific fluid mechanics problem class is analyzed with an even mix of theory and applications, including turbulence closure and the solution of turbulent flows.

  20. Joseph Boussinesq's legacy in fluid mechanics

    Science.gov (United States)

    Darrigol, Olivier

    2017-07-01

    Joseph Boussinesq was the most prolific of all French contributors to nineteenth-century fluid mechanics. His scientific production included a novel theory of solitary waves, the KdV equation for finite deformations of the water surface in an open channel, a systematic study of open channel and pipe flow based on the concept of effective viscosity, pioneering derivations of boundary layers and entrance effects, new exact solutions of the Navier-Stokes equation under geometrically simple boundary conditions, and the 'Boussinesq approximation' for heat convection in a moving fluid under gravity. Although his extraordinary skills were quickly recognized and rewarded, other experts in the field were often unaware even of his most important results and they ended up rediscovering some of them. Boussinesq's unusual background and the resulting peculiarities of his style explain this problematic diffusion. They also account for the richness of his legacy.

  1. Galilean relativistic fluid mechanics

    CERN Document Server

    Ván, Péter

    2015-01-01

    Single component Galilean-relativistic (nonrelativistic) fluids are treated independently of reference frames. The basic fields are given, their balances, thermodynamic relations and the entropy production is calculated. The usual relative basic fields, the mass, momentum and energy densities, the diffusion current density, the pressure tensor and the heat flux are the time- and spacelike components of the third order mass-momentum-energy density tensor according to a velocity field. The transformation rules of the basic fields are derived and prove that the non-equilibrium thermodynamic background theory, that is the Gibbs relation, extensivity condition and the entropy production is absolute, that is independent of the reference frame and also of the fluid velocity. --- Az egykomponensu Galilei-relativisztikus (azaz nemrelativisztikus) disszipativ folyadekokat vonatkoztatasi rendszertol fuggetlenul targyaljuk. Megadjuk az alapmennyisegeket, ezek merlegeit, a termodinamikai osszefuggeseket es kiszamoljuk az ...

  2. Galilean relativistic fluid mechanics

    OpenAIRE

    Ván, Péter

    2015-01-01

    Single component nonrelativistic dissipative fluids are treated independently of reference frames and flow-frames. First the basic fields and their balances, then the related thermodynamic relations and the entropy production are calculated and the linear constitutive relations are given. The usual basic fields of mass, momentum, energy and their current densities, the heat flux, pressure tensor and diffusion flux are the time- and spacelike components of the third order mass-momentum-energy ...

  3. Galilean relativistic fluid mechanics

    Science.gov (United States)

    Ván, P.

    2017-01-01

    Single-component nonrelativistic dissipative fluids are treated independently of reference frames and flow-frames. First the basic fields and their balances are derived, then the related thermodynamic relations and the entropy production are calculated and the linear constitutive relations are given. The usual basic fields of mass, momentum, energy and their current densities, the heat flux, pressure tensor and diffusion flux are the time- and spacelike components of the third-order mass-momentum-energy density-flux four-tensor. The corresponding Galilean transformation rules of the physical quantities are derived. It is proved that the non-equilibrium thermodynamic frame theory, including the thermostatic Gibbs relation and extensivity condition and also the entropy production, is independent of the reference frame and also the flow-frame of the fluid. The continuity-Fourier-Navier-Stokes equations are obtained almost in the traditional form if the flow of the fluid is fixed to the temperature. This choice of the flow-frame is the thermo-flow. A simple consequence of the theory is that the relation between the total, kinetic and internal energies is a Galilean transformation rule.

  4. First identification of sub- and supercritical convection patterns from ‘GeoFlow’, the geophysical flow simulation experiment integrated in Fluid Science Laboratory

    Science.gov (United States)

    Futterer, B.; Egbers, C.; Dahley, N.; Koch, S.; Jehring, L.

    2010-01-01

    Physical mechanisms of thermally driven rotating fluids are important for a large number of geophysical problems, e.g. to explain the convection of the Earth's liquid outer core. Objective of the 'GeoFlow' experiment is to study stability, pattern formation, and transition to chaos of thermal convection in fluid-filled concentric, co-axially rotating spheres. This experiment is integrated in the Fluid Science Laboratory of the European COLUMBUS module on International Space Station. Fluid dynamics of the experiment was predicted with numerical simulations by means of a spectral code. In the non-rotating case the onset of convection bifurcated into steady fluid flow. Here patterns of convection showed co-existing states with axisymmetric, cubic and pentagonal modes. Transition to chaos was in the form of sudden onset. For the thermal convection in rotating spheres the onset of first instability showed an increase of modes for higher parameter regime. Transition was from steady via periodic to chaotic behaviour. Convection patterns of the experiment are observed with the Wollaston shearing interferometry. Images are in terms of interferograms with fringe patterns corresponding to special convective flows. A first glance at the images showed the classification of sub- and supercritical flow regimes. Aligned with numerical data a shift between experiment and numerical simulation was identified. Identification of convection patterns in interferograms was demonstrated for the example of a supercritical flow.

  5. Fluid Mechanics Can Be Fun.

    Science.gov (United States)

    Blanks, Robert F.

    1979-01-01

    A humanistic approach to teaching fluid mechanics is described which minimizes lecturing, increases professor-student interaction, uses group and individual problem solving sessions, and allows for student response. (BB)

  6. Fluid Mechanics Can Be Fun.

    Science.gov (United States)

    Blanks, Robert F.

    1979-01-01

    A humanistic approach to teaching fluid mechanics is described which minimizes lecturing, increases professor-student interaction, uses group and individual problem solving sessions, and allows for student response. (BB)

  7. Spectral quasi-linearisation method for nonlinear thermal convection flow of a micropolar fluid under convective boundary condition

    Science.gov (United States)

    RamReddy, Ch.; Pradeepa, T.

    2016-09-01

    The significance of nonlinear temperaturedependent density relation and convective boundary condition on natural convection flow of an incompressible micropolar fluid with homogeneous-heterogeneous reactions is analyzed. In spite of the complicated nonlinear structure of the present setup and to allow all the essential features, the representation of similarity transformations for the system of non-dimensional fluid flow equations is attained through Lie group transformations and hence the governing similarity equations are worked out by a numerical approach known as spectral quasi-linearization method. It is noticed that in the presence of the nonlinear convection parameter enhance the velocity, species concentration, heat transfer rate, skin friction, but decreases the temperature and wall couple stress.

  8. PREFACE: XXI Fluid Mechanics Conference

    Science.gov (United States)

    Szmyd, Janusz S.; Fornalik-Wajs, Elzbieta; Jaszczur, Marek

    2014-08-01

    This Conference Volume contains the papers presented at the 21st Fluid Mechanics Conference (XXI FMC) held at AGH - University of Science and Technology in Krakow, Poland, 15-18 June 2014, and accepted for Proceedings published in the Journal of Physics: Conference Series. The Fluid Mechanics Conferences have been taking place every two years since 1974, a total of forty years. The 21st Fluid Mechanics Conference (XXI FMC) is being organized under the auspices of the Polish Academy of Sciences, Committee of Mechanics. The goal of this conference is to provide a forum for the exposure and exchange of ideas, methods and results in fluid mechanics. Conference topics include, but are not limited to Aerodynamics, Atmospheric Science, Bio-Fluids, Combustion and Reacting Flows, Computational Fluid Dynamics, Experimental Fluid Mechanics, Flow Machinery, General Fluid Dynamics, Hydromechanics, Heat and Fluid Flow, Measurement Techniques, Micro- and Nano- Flow, Multi-Phase Flow, Non-Newtonian Fluids, Rotating and Stratified Flows, Turbulence. Within the general subjects of this conference, the Professor Janusz W. Elsner Competition for the best fluid mechanics paper presented during the Conference is organized. Authors holding a M.Sc. or a Ph.D. degree and who are not older than 35 years of age may enter the Competition. Authors with a Ph.D. degree must present individual papers; authors with a M.Sc. degree may present papers with their supervisor as coauthor, including original results of experimental, numerical or analytic research. Six state-of-the-art keynote papers were delivered by world leading experts. All contributed papers were peer reviewed. Recommendations were received from the International Scientific Committee, reviewers and the advisory board. Accordingly, of the 163 eligible extended abstracts submitted, after a review process by the International Scientific Committee, 137 papers were selected for presentation at the 21st Fluid Mechanics Conference, 68

  9. Advances in Environmental Fluid Mechanics

    CERN Document Server

    Mihailovic, Dragutin T

    2010-01-01

    Environmental fluid mechanics (EFM) is the scientific study of transport, dispersion and transformation processes in natural fluid flows on our planet Earth, from the microscale to the planetary scale. This book brings together scientists and engineers working in research institutions, universities and academia, who engage in the study of theoretical, modeling, measuring and software aspects in environmental fluid mechanics. It provides a forum for the participants, and exchanges new ideas and expertise through the presentations of up-to-date and recent overall achievements in this field.

  10. Applied fluid mechanics; Mecanique des fluides appliquee

    Energy Technology Data Exchange (ETDEWEB)

    Viollet, P.L.; Chabard, J.P.; Esposito, P.; Laurence, D. [Ecole Nationale des Ponts et Chaussees (ENPC), 75 - Paris (France)]|[Electricite de France (EDF), 75 - Paris (France). Direction des Etudes et Recherches

    2002-07-01

    Computational hydraulics, computational fluid dynamics, and hydro-informatics have invaded virtually all domains of research and application in hydro-science and fluids engineering. To the extent that this invasion has led to improved understanding of complex fluid phenomena and provided a frame of reference for testing and verifying designs and operational schemes, we have all benefited from it. But to the extent that it has shifted attention away from fundamental descriptions and understanding of fluid phenomena, and toward computational and numerical issues, this invasion has left avoid in the scientific and technical literature. This void exists somewhere between student exposure to first principles of solid and fluid mechanics on the one hand, and advanced-student and researcher/practitioner exposure to computational techniques and applications on the other. This new text naturally and refreshingly steps in to fill this void, and as such is a most welcome addition to the literature and to personal and institutional libraries. The text is refreshing in its innovative and careful attention to setting the historical framework of general and specific topics. This is most notable in the first chapter, which very gracefully and efficiently leads the reader through historical developments to contemporary mathematical statements of basic fluid phenomena. Once the authors have established this foundation of fundamental principles, they tie each succeeding chapter back into the introduction with appropriate and supportive historical contexts. Although the text does not shy away from rigorous analytical descriptions of fluid phenomena, it is unique in providing this delightful historical context for each topic. The authors have also made a special effort to tie the chapters together into a unified whole, with ample references forward and back; this is indeed rare, and much appreciated, in a text of multiple authorship. The topics treated and chapter structures reflect

  11. Effect of thermal dispersion on free convection in a fluid saturated porous medium

    Energy Technology Data Exchange (ETDEWEB)

    Abbas, Ibrahim A. [Mathematics Department, Faculty of Science, Sohag University, Sohag 82524 (Egypt)], E-mail: ibrabbas7@yahoo.com; El-Amin, M.F. [Mathematics Department, Aswan Faculty of Science, South Valley University, Aswan 81258 (Egypt)], E-mail: mfam2000@yahoo.com; Salama, Amgad [Environmental Engineering Department, Konkuk University, Seoul 143-701 (Korea, Republic of)], E-mail: asalama@konkuk.ac.kr

    2009-04-15

    The present article considers a numerical study of thermal dispersion effect on the non-Darcy natural convection over a vertical flat plate in a fluid saturated porous medium. Forchheimer extension is considered in the flow equations. The coefficient of thermal diffusivity has been assumed to be the sum of molecular diffusivity and the dispersion thermal diffusivity due to mechanical dispersion. The non-dimensional governing equations are solved by the finite element method (FEM) with a Newton-Raphson solver. Numerical results for the details of the stream function, velocity and temperature contours and profiles as well as heat transfer rates in terms of Nusselt number are obtained. The study shows that the increase in thermal dispersion coefficient of the porous medium results in more heat energy to disperse away in the normal direction to the wall. This induces more fluid to flow along the wall, enhancing the heat transfer coefficient particularly near the wall.

  12. Mechanisms initiating deep convection over complex terrain during COPS

    Directory of Open Access Journals (Sweden)

    Christoph Kottmeier

    2008-12-01

    Full Text Available Precipitating convection in a mountain region of moderate topography is investigated, with particular emphasis on its initiation in response to boundary-layer and mid- and upper-tropospheric forcing mechanisms. The data used in the study are from COPS (Convective and Orographically-induced Precipitation Study that took place in southwestern Germany and eastern France in the summer of 2007. It is found that the initiation of precipitating convection can be roughly classified as being due to either: (i surface heating and low-level flow convergence; (ii surface heating and moisture supply overcoming convective inhibition during latent and/or potential instability; or (iii mid-tropospheric dynamical processes due to mesoscale convergence lines and forced mean vertical motion. These phenomena have to be adequately represented in models in order to improve quantitative precipitation forecast. Selected COPS cases are analysed and classified into these initiation categories. Although only a subset of COPS data (mainly radiosondes, surface weather stations, radar and satellite data are used here, it is shown that convective systems are captured in considerable detail by sensor synergy. Convergence lines were observed by Doppler radar in the location where deep convection is triggered several hours later. The results suggest that in many situations, observations of the location and timing of convergence lines will facilitate the nowcasting of convection. Further on, forecasting of the initiation of convection is significantly complicated if advection of potentially convective air masses over changing terrain features plays a major role. The passage of a frontal structure over the Vosges - Rhine valley - Black Forest orography was accompanied by an intermediate suppression of convection over the wide Rhine valley. Further downstream, an intensification of convection was observed over the Black Forest due to differential surface heating, a convergence line

  13. Natural Convection in Enclosed Porous or Fluid Media

    Science.gov (United States)

    Saatdjian, Esteban; Lesage, François; Mota, José Paulo B.

    2014-01-01

    In Saatdjian, E., Lesage, F., and Mota, J.P.B, "Transport Phenomena Projects: A Method to Learn and to Innovate, Natural Convection Between Porous, Horizontal Cylinders," "Chemical Engineering Education," 47(1), 59-64, (2013), the numerical solution of natural convection between two porous, concentric, impermeable cylinders was…

  14. Double MRT Thermal Lattice Boltzmann Method for Simulating Natural Convection of Low Prandtl Number Fluids

    CERN Document Server

    Li, Zheng; Zhang, Yuwen

    2016-01-01

    The purposes of this paper are testing an efficiency algorithm based on LBM and using it to analyze two-dimensional natural convection with low Prandtl number. Steady state or oscillatory results are obtained using double multiple-relaxation-time thermal lattice Boltzmann method. The velocity and temperature fields are solved using D2Q9 and D2Q5 models, respectively. With different Rayleigh number, the tested natural convection can either achieve to steady state or oscillatory. With fixed Rayleigh number, lower Prandtl number leads to a weaker convection effect, longer oscillation period and higher oscillation amplitude for the cases reaching oscillatory solutions. At fixed Prandtl number, higher Rayleigh number leads to a more notable convection effect and longer oscillation period. Double multiple-relaxation-time thermal lattice Boltzmann method is applied to simulate the low Prandtl number fluid natural convection. Rayleigh number and Prandtl number effects are also investigated when the natural convection...

  15. Fluid mechanics problems and solutions

    CERN Document Server

    Spurk, Joseph H

    1997-01-01

    his collection of over 200 detailed worked exercises adds to and complements the textbook Fluid Mechanics by the same author, and illustrates the teaching material through examples. In the exercises the fundamental concepts of Fluid Mechanics are applied to obtaining the solution of diverse concrete problems, and in doing this the student's skill in the mathematical modeling of practical problems is developed. In addition, 30 challenging questions without detailed solutions have been included, and while lecturers will find these questions suitable for examinations and tests, the student himself can use them to check his understanding of the subject.

  16. Respiratory Fluid Mechanics

    Science.gov (United States)

    Grotberg, James

    2005-11-01

    This brief overview of our groups activities includes liquid plug propagation in single and bifurcating tubes, a subject which pertains to surfactant delivery, liquid ventilation, pulmonary edema, and drowning. As the plug propagates, a variety of flow patterns may emerge depending on the parameters. It splits unevenly at airway bifurcations and can rupture, which reopens the airway to gas flow. Both propagation and rupture may damage the underlying airway wall cells. Another topic is surfactant dynamics and flow in a model of an oscillating alveolus. The analysis shows a nontrivial cycle-averaged surfactant concentration gradient along the interface that generates steady streaming. The steady streaming patterns particularly depend on the ratio of inspiration to expiration time periods and the sorption parameter. Vortices, single and multiple, may be achieved, as well as a saddle point configuration. Potential applications are pulmonary drug administration, cell-cell signaling pathways, and gene therapy. Finally, capillary instabilities which cause airway closure, and strategies for stabilization, will be presented. This involves the core-annular flow of a liquid-lined tube, where the core (air) is forced to oscillate axially. The stabilization mechanism is similar to that of a reversing butter knife, where the core shear wipes the growing liquid bulge, from the Rayleigh instability, back on to the tube wall during the main tidal volume stroke, but allows it to grow back as the stroke and shear turn around.

  17. Fluid Mechanics in Sommerfeld's School

    Science.gov (United States)

    Eckert, Michael

    2015-01-01

    Sommerfeld's affiliation with fluid mechanics started when he began his career as an assistant of the mathematician Felix Klein at Göttingen. He always regarded fluid mechanics as a particular challenge. In 1904, he published a theory of hydrodynamic lubrication. Four years later, he conceived an approach for the analysis of flow instability (the Orr-Sommerfeld approach) as an attempt to account for the transition from laminar to turbulent flow. The onset of turbulence also became a major challenge for some of his pupils, in particular Ludwig Hopf and Fritz Noether. Both contributed considerably to elaborate the Orr-Sommerfeld theory. Heisenberg's doctoral work was another attempt in this quest. When Sommerfeld published his lectures on theoretical physics during World War II, he dedicated one of the six volumes to the mechanics of continuous media. With chapters on boundary layer theory and turbulence, it exceeded the scope of contemporary theoretical physics—revealing Sommerfeld's persistent appreciation of fluid mechanics. He resorted to Prandtl's Göttingen school of fluid mechanics in order to stay abreast of the rapid development of these specialties.

  18. Fluid mechanics of mathematics testing in Texas

    Science.gov (United States)

    Marder, Michael

    2010-03-01

    The performance of Texas high school students on mathematics exams is tightly connected to the level of poverty in the school. I will employ the coarse-graining techniques that lead from molecular motions to fluid mechanics in order to find how student scores evolve over time. I will show that the points of divergence between well-off and low-income kids are particularly clear when viewed as streamlines of a flow in the space of grade-level and score. The results can also be cast in the form of a Fokker-Planck equation, which highlights the separate roles of convection and diffusion. I will use the results the assess the plausibility of using charter schools, highly qualified teachers, and accountability systems as primary agents of school reform.

  19. A new model for analyzing laminar forced convective enhanced heat transfer in latent functionally thermal fluid

    Institute of Scientific and Technical Information of China (English)

    LU Wenqiang; BAI Fengwu

    2004-01-01

    In this paper, a new model to analyze laminar forced convective enhanced heat transfer in latent functionally thermal fluid is developed. The main characteristics of the model are: I) a new formula of the specific heat at constant pressure is used; ii) a real heat transfer process is considered; that is, heat transfer processes occur not only between working fluid and microcapsules, but also between the mixture and tube wall; iii) the new method, which combines the newly developed axisymmetrical dual reciprocity boundary element method (DRBEM) with finite difference method (FDM), is used to solve the control equations of this problem. The new model is validated by experimental data.Some new physical results on the variational characteristics of the specific heat at constant pressure with space and time during phase-change process, the time-marching history of the phase-change interfaces and so on are obtained. Several main physical factors that affect enhanced heat transfer in latent functionally thermal fluid are numerically analyzed.Some new understandings for the mechanism of enhanced heat transfer in the functionally fluid are obtained.

  20. Free Thermal Convection Inside a Stably Stratified FLUID:A Study by Means of Three Dimensional Particle Tracking Velocimetry

    Science.gov (United States)

    Cenedese, A.; Dore, V.; Moroni, M.

    2009-05-01

    Free thermal convection refers to the motion of vertical turbulent plumes or domes, which can occur when, an initially in-rest stratified fluid, is submitted to buoyancy forces, caused by a permanent perturbation associated to a heat transfer mechanism. When a fluid, in equilibrium, is stably stratified the external forcing can produce an unstable configuration ensuing the increasing in amplitude of internal waves, and, if it has strength enough, it can definitely erode the stratification, involving an increasing thickness of fluid volume. The entrainment phenomenon justifies the penetrative feature of convection and causes the growth of a convective boundary layer of well mixed fluid (Convective Mixing Layer) against the adjacent stable stratified layer. The non-steady phenomenon of penetrative convection in a stably stratified fluid has been reproduced in laboratory employing a tank filled with water and subjected to heating from below. The goal in the experiment is predicting the convective boundary layer growth as a function of initial and boundary conditions and describing the fate of a tracer dissolved in the fluid phase. The motivations of the research are mostly related to its connections to environmental topics. In nature the dynamics of penetrative convection influences the transport and mixing features of stratified fluids, playing a fundamental role in characterizing and forecasting the distribution of chemical species, with implication for water or air quality in the upper oceans and lakes or in the lower troposphere. When studying turbulent convective phenomenon, dispersion is mostly due to transport by large organized structures while molecular diffusion can be neglected. The knowledge of the horizontal and vertical extension of the structures dominating the flow field appears to be mandatory. In order to better understanding and likely describing the evolution of turbulent structures inside the convective layer, a fully three dimensional

  1. Geothermal convection: a mechanism for dolomitization at Enewetak Atoll?

    Science.gov (United States)

    Wilson, A.M.; Sanford, W.; Whitaker, F.; Smart, P.

    2000-01-01

    Geothermal convection in carbonate platforms could drive massive dolomitization by supplying mass transport of magnesium over long periods and at temperatures high enough to overcome kinetic limitations. Reactive-transport simulations based on Enewetak Atoll show dolomitization in a thin band at a permeability contrast near the base of the platform, which is consistent with field observations of dolomitized Eocene deposits. Dolomitization is predicted at approximately 6% per My at temperatures of 45–60°C, and complete dolomitization could be accomplished in ∼16 My. Calcium enrichment of pore fluids and upward transport of these fluids is established early, prior to 30 ky.

  2. Hall Effect on Bénard Convection of Compressible Viscoelastic Fluid through Porous Medium

    Directory of Open Access Journals (Sweden)

    Mahinder Singh

    2013-01-01

    Full Text Available An investigation made on the effect of Hall currents on thermal instability of a compressible Walter’s B′ elasticoviscous fluid through porous medium is considered. The analysis is carried out within the framework of linear stability theory and normal mode technique. For the case of stationary convection, Hall currents and compressibility have postponed the onset of convection through porous medium. Moreover, medium permeability hasten postpone the onset of convection, and magnetic field has duel character on the onset of convection. The critical Rayleigh numbers and the wave numbers of the associated disturbances for the onset of instability as stationary convection have been obtained and the behavior of various parameters on critical thermal Rayleigh numbers has been depicted graphically. The magnetic field, Hall currents found to introduce oscillatory modes, in the absence of these effects the principle of exchange of stabilities is valid.

  3. Convective stability analysis of a micropolar fluid layer by variational method

    Institute of Scientific and Technical Information of China (English)

    2011-01-01

    This paper studies Rayleigh-B'enard convection of micropolar fluid layer heated from below with realistic boundary conditions.A specific approach for stability analysis of a convective problem based on variational principle is applied to characterize the Rayleigh number for quite general nature of bounding surfaces.The analysis consists of replacing the set of field equations by a variational principle and the expressions for Rayleigh number are then obtained by using trial function satisfying the essential...

  4. Effects of Magnetic Field and Nonlinear Temperature Profile on Marangoni Convection in Micropolar Fluid

    Directory of Open Access Journals (Sweden)

    M. N. Mahmud

    2009-01-01

    Full Text Available The combined effects of a uniform vertical magnetic field and a nonuniform basic temperature profile on the onset of steady Marangoni convection in a horizontal layer of micropolar fluid are studied. The closed-form expression for the Marangoni number M for the onset of convection, valid for polynomial-type basic temperature profiles upto a third order, is obtained by the use of the single-term Galerkin technique. The critical conditions for the onset of convection have been presented graphically.

  5. Influences of Hall current and chemical reaction in mixed convective peristaltic flow of Prandtl fluid

    Science.gov (United States)

    Hayat, T.; Zahir, Hina; Tanveer, Anum; Alsaedi, A.

    2016-06-01

    The objective of present analysis is to address the mixed convective peristaltic flow of Prandtl fluid in a planar channel with compliant walls. Effects of applied magnetic field and Hall current are retained. Heat transfer in fluid flow is characterized through convective boundary conditions. Impact of first order chemical reaction together with Soret effect is examined. Problems formulation in view of long wavelength and low Reynolds number consideration is developed. The graphs are obtained numerically for the velocity, temperature, concentration and heat transfer coefficient. Results for Hall parameter and Hartman number on velocity have opposite characteristics.

  6. Experimental study of 3D Rayleigh-Taylor convection between miscible fluids in a porous medium

    Science.gov (United States)

    Nakanishi, Yuji; Hyodo, Akimitsu; Wang, Lei; Suekane, Tetsuya

    2016-11-01

    The natural convection of miscible fluids in porous media has applications in several fields, such as geoscience and geoengineering, and can be employed for the geological storage of CO2. In this study, we used X-ray computer tomography to visualize 3D fingering structures associated with the Rayleigh-Taylor instability between miscible fluids in a porous medium. In the early stages of the onset of the Rayleigh-Taylor instability, a fine crinkling pattern gradually appeared at the interface. As the wavelength and amplitude increased, descending fingers formed on the interface and extended vertically downward; in addition, ascending and highly symmetric fingers formed. The adjacent fingers were cylindrical in shape and coalesced to form large fingers. The fingers appearing on the interface tended to become finer with increasing Rayleigh number, which is consistent with linear perturbation theory. When the Péclet number exceeded 10, transverse dispersion increased the finger diameter and enhanced the finger coalescence, strongly impacting the decrease in finger number density. When mechanical dispersion was negligible, the finger-extension velocity and the dimensionless mass-transfer rate scaled with the characteristic velocity and the Rayleigh number with an appropriate length scale. Mechanical dispersion not only reduced the onset time but also enhanced the mass transport.

  7. Convective instability in a two-layer system of reacting fluids with concentration-dependent diffusion

    Science.gov (United States)

    Aitova, E. V.; Bratsun, D. A.; Kostarev, K. G.; Mizev, A. I.; Mosheva, E. A.

    2016-12-01

    The development of convective instability in a two-layer system of miscible fluids placed in a narrow vertical gap has been studied theoretically and experimentally. The upper and lower layers are formed with aqueous solutions of acid and base, respectively. When the layers are brought into contact, the frontal neutralization reaction begins. We have found experimentally a new type of convective instability, which is characterized by the spatial localization and the periodicity of the structure observed for the first time in the miscible systems. We have tested a number of different acid-base systems and have found a similar patterning there. In our opinion, it may indicate that the discovered effect is of a general nature and should be taken into account in reaction-diffusion-convection problems as another tool with which the reaction can govern the movement of the reacting fluids. We have shown that, at least in one case (aqueous solutions of nitric acid and sodium hydroxide), a new type of instability called as the concentration-dependent diffusion convection is responsible for the onset of the fluid flow. It arises when the diffusion coefficients of species are different and depend on their concentrations. This type of instability can be attributed to a variety of double-diffusion convection. A mathematical model of the new phenomenon has been developed using the system of reaction-diffusion-convection equations written in the Hele-Shaw approximation. It is shown that the instability can be reproduced in the numerical experiment if only one takes into account the concentration dependence of the diffusion coefficients of the reagents. The dynamics of the base state, its linear stability and nonlinear development of the instability are presented. It is also shown that by varying the concentration of acid in the upper layer one can achieve the occurrence of chemo-convective solitary cell in the bulk of an almost immobile fluid. Good agreement between the

  8. Heat transfer mechanisms in bubbly Rayleigh-Bénard convection

    NARCIS (Netherlands)

    Oresta, Paolo; Verzicco, Roberto; Lohse, Detlef; Presperetti, Andrea

    2009-01-01

    The heat transfer mechanism in Rayleigh-Bénard convection in a liquid with a mean temperature close to its boiling point is studied through numerical simulations with pointlike vapor bubbles, which are allowed to grow or shrink through evaporation and condensation and which act back on the flow both

  9. The Effect Of A Magnetic Field Dependent Viscosity On The Thermal Convection In A Ferromagnetic Fluid In A Porous Medium

    National Research Council Canada - National Science Library

    Sunil; Pavan Kumar Bharti; Divya Sharma; R. C. Sharma

    2004-01-01

    The effect of the magnetic field dependent (MFD) viscosity on the thermal convection in a ferromagnetic fluid in the presence of a uniform vertical magnetic field is considered for a fluid layer in a porous medium, heated from below...

  10. Selected topics of fluid mechanics

    Science.gov (United States)

    Kindsvater, Carl E.

    1958-01-01

    The fundamental equations of fluid mechanics are specific expressions of the principles of motion which are ascribed to Isaac Newton. Thus, the equations which form the framework of applied fluid mechanics or hydraulics are, in addition to the equation of continuity, the Newtonian equations of energy and momentum. These basic relationships are also the foundations of river hydraulics. The fundamental equations are developed in this report with sufficient rigor to support critical examinations of their applicability to most problems met by hydraulic engineers of the Water Resources Division of the United States Geological Survey. Physical concepts are emphasized, and mathematical procedures are the simplest consistent with the specific requirements of the derivations. In lieu of numerical examples, analogies, and alternative procedures, this treatment stresses a brief methodical exposition of the essential principles. An important objective of this report is to prepare the user to read the literature of the science. Thus, it begins With a basic vocabulary of technical symbols, terms, and concepts. Throughout, emphasis is placed on the language of modern fluid mechanics as it pertains to hydraulic engineering. The basic differential and integral equations of simple fluid motion are derived, and these equations are, in turn, used to describe the essential characteristics of hydrostatics and piezometry. The one-dimensional equations of continuity and motion are defined and are used to derive the general discharge equation. The flow net is described as a means of demonstrating significant characteristics of two-dimensional irrotational flow patterns. A typical flow net is examined in detail. The influence of fluid viscosity is described as an obstacle to the derivation of general, integral equations of motion. It is observed that the part played by viscosity is one which is usually dependent on experimental evaluation. It follows that the dimensionless ratios known as

  11. Convective stability of a vertical layer of magnetizable fluid in a uniform magnetic field

    Energy Technology Data Exchange (ETDEWEB)

    Bashtovoy, V.G.; Pavlinov, M.I.

    1978-01-01

    An infinitely large plane vertical layer of magnetizable fluid is considered, this layer being heated from below and bounded on both lateral surfaces by ferromagnetic half-spaces. The fluid and the ferromagnetic material on both sides have the same pyromagnetic coefficient. The possibility of overcoming a convective instability of such a fluid layer in a uniform magnetic field is demonstrated by a solution of the equilibrium equation. The result indicates that such a magnetic field raises the stability threshold to full stabilization of the fluid layer, with the instability range in terms of the Rayleigh number now having both a lower and an upper limit. 3 references.

  12. Multiscale Turbulence Models Based on Convected Fluid Microstructure

    CERN Document Server

    Holm, Darryl D

    2012-01-01

    The Euler-Poincar\\'e approach to complex fluids is used to derive multiscale equations for computationally modelling Euler flows as a basis for modelling turbulence. The model is based on a \\emph{kinematic sweeping ansatz} (KSA) which assumes that the mean fluid flow serves as a Lagrangian frame of motion for the fluctuation dynamics. Thus, we regard the motion of a fluid parcel on the computationally resolvable length scales as a moving Lagrange coordinate for the fluctuating (zero-mean) motion of fluid parcels at the unresolved scales. Even in the simplest 2-scale version on which we concentrate here, the contributions of the fluctuating motion under the KSA to the mean motion yields a system of equations that extends known results and appears to be suitable for modelling nonlinear backscatter (energy transfer from smaller to larger scales) in turbulence using multiscale methods.

  13. Convective heat transfer to Sisko fluid over a rotating disk

    CERN Document Server

    Munir, Asif

    2016-01-01

    This article deals with study of the steady flow and heat transfer characteristics of Sisko fluid over a rotating infinite disk. The flow and heat transfer aspects are thoroughly investigated encompassing highly shear thinning/thickening Sisko fluids. The modeled boundary layer equations are reduced to a system of nonlinear ordinary differential equations using the appropriate transformation. The resulting equations are then solved numerically by shooting method in the domain . The numerical data for the velocity and temperature fields are graphically sketched and effects of the relevant parameters are discussed in detail. In addition, the velocity gradients at the disk surface and the local Nusselt number for different values of the pertaining parameters are given in tabulated form. Further, the flow and temperature fields of power-law and Newtonian fluids are also compared with those Sisko fluid. Moreover, a comparison with previously published work, as a special case of the problem, has been provided and t...

  14. Convective Heat Transfer Analysis on Prandtl Fluid Model with Peristalsis

    Directory of Open Access Journals (Sweden)

    A. Alsaedi

    2013-01-01

    Full Text Available The effects of magnetohydrodynamic (MHD on peristaltic transport of Prandtl fluid in a symmetric channel have been studied under the assumptions of long wave length and low-Reynolds number. Channel walls are considered compliant in nature. Series solutions of axial velocity, stream function and temperature are given by using regular perturbation technique for small values of Prandtl fluid parameter. The effects of physical parameters on the velocity, streamlines and temperature are examined by plotting graphs.

  15. Retrieval of dispersive and convective transport phenomena in fluids using stationary and nonstationary time domain analysis

    Science.gov (United States)

    Stephens, J. B.; St.john, R. M.

    1973-01-01

    Simultaneously occuring dispersive and convective components of fluid kinematics are obtained by a time domain analysis of optically retrieved temporal histories of the transport phenomena. Utilizing triangulation of collimated optical fields of view from two radiometers to obtain the temporal histories of the intensity fluctuations associated with the transport phenomena has enabled investigators to retrieve the local convective transport by employing correlation statistics. The location of the peak in the covariance curve determines the transit time from which the convection velocity is calculated; whereas, the change in shape of the peak in the covariance curve determines the change in average frequency of the wave packet from which the dispersion velocity is calculated. Thus, two-component analysis requires the maximum possible enhancement of the delineation for the transport. The convection velocity is the result of a fixed reference frame calculation whereas, the dispersion velocity is the result of a moving reference frame calcuation.

  16. Fundamental fluid mechanics and magnetohydrodynamics

    CERN Document Server

    Hosking, Roger J

    2016-01-01

    This book is primarily intended to enable postgraduate research students to enhance their understanding and expertise in Fluid Mechanics and Magnetohydrodynamics (MHD), subjects no longer treated in isolation. The exercises throughout the book often serve to provide additional and quite significant knowledge or to develop selected mathematical skills, and may also fill in certain details or enhance readers’ understanding of essential concepts. A previous background or some preliminary reading in either of the two core subjects would be advantageous, and prior knowledge of multivariate calculus and differential equations is expected.

  17. Chaotic convective behavior and stability analysis of a fractional viscoelastic fluids model in porous media

    KAUST Repository

    N'Doye, Ibrahima

    2015-05-25

    In this paper, a dynamical fractional viscoelastic fluids convection model in porous media is proposed and its chaotic behavior is studied. A preformed equilibrium points analysis indicates the conditions where chaotic dynamics can be observed, and show the existence of chaos. The behavior and stability analysis of the integer-order and the fractional commensurate and non-commensurate orders of a fractional viscoelastic fluids system, which exhibits chaos, are presented as well.

  18. Convective Heat Transfer Analysis in Fluid Flow with Turbulence Promoters with Heat Pipes

    Directory of Open Access Journals (Sweden)

    Theodor Mateescu

    2007-01-01

    Full Text Available The present paper proposes the analysis and the simulation of the convection heat transfer into the fluid flow with turbulence promoters utilizing heat pipes. The study is based on the necesity of the unconventional energy forms capitalization, increasing of the energy efficiency and leads to the energy consumtion decrease in concordance with the sustainable development concept.

  19. A computational fluid dynamics model for designing heat exchangers based on natural convection

    NARCIS (Netherlands)

    Dirkse, M.H.; Loon, van W.K.P.; Walle, van der T.; Speetjens, S.L.; Bot, G.P.A.

    2006-01-01

    A computational fluid dynamics model was created for the design of a natural convection shell-and-tube heat exchanger with baffles. The flow regime proved to be turbulent and this was modelled using the k¿¿ turbulence model. The features of the complex geometry were simplified considerably resulting

  20. A scientific report on heat transfer analysis in mixed convection flow of Maxwell fluid over an oscillating vertical plate

    Science.gov (United States)

    Khan, Ilyas; Shah, Nehad Ali; Dennis, L. C. C.

    2017-03-01

    This scientific report investigates the heat transfer analysis in mixed convection flow of Maxwell fluid over an oscillating vertical plate with constant wall temperature. The problem is modelled in terms of coupled partial differential equations with initial and boundary conditions. Some suitable non-dimensional variables are introduced in order to transform the governing problem into dimensionless form. The resulting problem is solved via Laplace transform method and exact solutions for velocity, shear stress and temperature are obtained. These solutions are greatly influenced with the variation of embedded parameters which include the Prandtl number and Grashof number for various times. In the absence of free convection, the corresponding solutions representing the mechanical part of velocity reduced to the well known solutions in the literature. The total velocity is presented as a sum of both cosine and sine velocities. The unsteady velocity in each case is arranged in the form of transient and post transient parts. It is found that the post transient parts are independent of time. The solutions corresponding to Newtonian fluids are recovered as a special case and comparison between Newtonian fluid and Maxwell fluid is shown graphically.

  1. A scientific report on heat transfer analysis in mixed convection flow of Maxwell fluid over an oscillating vertical plate

    Science.gov (United States)

    Khan, Ilyas; Shah, Nehad Ali; Dennis, L. C. C.

    2017-01-01

    This scientific report investigates the heat transfer analysis in mixed convection flow of Maxwell fluid over an oscillating vertical plate with constant wall temperature. The problem is modelled in terms of coupled partial differential equations with initial and boundary conditions. Some suitable non-dimensional variables are introduced in order to transform the governing problem into dimensionless form. The resulting problem is solved via Laplace transform method and exact solutions for velocity, shear stress and temperature are obtained. These solutions are greatly influenced with the variation of embedded parameters which include the Prandtl number and Grashof number for various times. In the absence of free convection, the corresponding solutions representing the mechanical part of velocity reduced to the well known solutions in the literature. The total velocity is presented as a sum of both cosine and sine velocities. The unsteady velocity in each case is arranged in the form of transient and post transient parts. It is found that the post transient parts are independent of time. The solutions corresponding to Newtonian fluids are recovered as a special case and comparison between Newtonian fluid and Maxwell fluid is shown graphically. PMID:28294186

  2. Mixed convection boundary layer flow over a horizontal circular cylinder in a Jeffrey fluid

    Science.gov (United States)

    Zokri, S. M.; Arifin, N. S.; Mohamed, M. K. A.; Salleh, M. Z.; Kasim, A. R. M.; Mohammad, N. F.

    2017-05-01

    In this paper, the mixed convection boundary layer flow and heat transfer of Jeffrey fluid past a horizontal circular cylinder with viscous dissipation effect and constant heat flux is discussed. The governing nonlinear partial differential equations are transformed into dimensionless forms using the appropriate non-similar transformation. Numerical solutions are obtained by using the Keller-box method, which is proven well-tested, flexible, implicit and unconditionally stable. The numerical results for the velocity, temperature, skin friction coefficient and local Nusselt number are attained for various values of mixed convection parameter.

  3. Thermal Marangoni Convection of Two-phase Dusty Fluid Flow along a Vertical Wavy Surface

    Directory of Open Access Journals (Sweden)

    S. Siddiqa

    2017-01-01

    Full Text Available The paper considers the influence of thermal Marangoni convection on boundary layer flow of two-phase dusty fluid along a vertical wavy surface. The dimensionless boundary layer equations for two-phase problem are reduced to a convenient form by primitive variable transformations (PVF and then integrated numerically by employing the implicit finite difference method along with the Thomas Algorithm. The effect of thermal Marangoni convection, dusty water and sinusoidal waveform are discussed in detail in terms of local heat transfer rate, skin friction coefficient, velocity and temperature distributions. This investigation reveals the fact that the water-particle mixture reduces the rate of heat transfer, significantly.

  4. Visualization Study of Supercritical Fluid Convection and Heat Transfer in Weightlessness by Interferometry: A Brief Review

    Science.gov (United States)

    Deng, Bi-Li; Kanda, Yuki; Chen, Lin; Okajima, Junnosuke; Komiya, Atsuki; Maruyama, Shigenao

    2017-08-01

    Supercritical fluids have become a hot topic in recent years, due to their wide applications in chemical and energy systems. With its sensitive thermal-transport properties in the near-critical region, supercritical/near-critical fluids behaviors, under both microgravity and terrestrial conditions, have become very interesting and challenging topic. This brief review is focused on the visualization experiments of fluid convection and heat transfer related critical phenomena by interferometer. Due to the sensitive property changes of critical fluids, it is very difficult to control and measure the supercritical fluid behaviors. In this review, non-intrusive visualization systems by interferometry are introduced and analyzed for experimental studies of fluids in the near-critical region. For near-critical and supercritical experiments, the temperature/density control and parameter analysis are of critical importance. The analysis of boundary conditions, convection behaviors and energy transfer modes of critical fluids, mainly under weightlessness, are also reviewed with recent opinions toward future development. It is hoped that this review could be helpful for related studies.

  5. Plate-like convection induced by symmetries in fluids with temperature-dependent viscosity

    CERN Document Server

    Curbelo, Jezabel

    2014-01-01

    The study of instabilities in fluids in which viscosity experiences a transition at a certain temperature range is of great interest for the understanding of planetary interiors, since this phenomena models the melting and solidification of a magma ocean and thus is suitable for representing a lithosphere over a convecting mantle. To this end, we study a 2D convection problem in which viscosity depends on temperature by abruptly changing its value by a factor 400 within a narrow temperature gap at which magma melts. We perform a study which combines bifurcation analysis and time dependent simulations. Solutions such as limit cycles are found that are fundamentally related to the presence of symmetry. Sporadically during these cycles, through abrupt bursts, spontaneous plate-like behaviors that rapidly evolve towards a stagnant lid regime emerge. The plate-like evolution alternates motions towards either right or left, introducing temporary asymmetries on the convecting styles. Further time dependent regimes w...

  6. Mixed convective heat transfer to Sisko fluid over a radially stretching sheet in the presence of convective boundary conditions

    Energy Technology Data Exchange (ETDEWEB)

    Khan, Masood; Malik, Rabia, E-mail: rabiamalik.qau@gmail.com; Munir, Asif [Department of Mathematics, Quaid-i-Azam University, Islamabad 44000 (Pakistan)

    2015-08-15

    In this article, the mixed convective heat transfer to Sisko fluid over a radially stretching surface in the presence of convective boundary conditions is investigated. The viscous dissipation and thermal radiation effects are also taken into account. The suitable transformations are applied to convert the governing partial differential equations into a set of nonlinear coupled ordinary differential equations. The analytical solution of the governing problem is obtained by using the homotopy analysis method (HAM). Additionally, these analytical results are compared with the numerical results obtained by the shooting technique. The obtained results for the velocity and temperature are analyzed graphically for several physical parameters for the assisting and opposing flows. It is found that the effect of buoyancy parameter is more prominent in case of the assisting flow as compared to the opposing flow. Further, in tabular form the numerical values are given for the local skin friction coefficient and local Nusselt number. A remarkable agreement is noticed by comparing the present results with the results reported in the literature as a special case.

  7. Convective flow of sisko fluid over a bidirectional stretching sheet

    CERN Document Server

    Munir, Asif; Khan, Masood

    2014-01-01

    The present investigation discusses the flow and heat transfer characteristics of a steady three dimensional Sisko fluid. The flow is induced due to bidirectional stretching sheet. The influence of power-law index and stretching ratio on flow and heat transfer is studied thoroughly. Governing partial differential equations are reduced to coupled ordinary differential equations by suitable similarity variable. The resulting equations are then solved numerically by shooting method using adaptive Runge Kutta algorithm in combination with Broyden's method in the domain . The numerical results for the velocity and temperature fields are graphically presented and effects of the relevant parameters are discussed in detail. Moreover, the skin-friction coefficient and local Nusselt number for different values of the power-law index and stretching ratio are presented through tabulated data. The numerical results are verified with the results obtained by HAM. Additionally, the results are also validated with previously ...

  8. Cubic Spline Collocation Method for the Simulation of Turbulent Thermal Convection in Compressible Fluids

    Energy Technology Data Exchange (ETDEWEB)

    Castillo, Victor Manuel [Univ. of California, Davis, CA (United States)

    1999-01-01

    A collocation method using cubic splines is developed and applied to simulate steady and time-dependent, including turbulent, thermally convecting flows for two-dimensional compressible fluids. The state variables and the fluxes of the conserved quantities are approximated by cubic splines in both space direction. This method is shown to be numerically conservative and to have a local truncation error proportional to the fourth power of the grid spacing. A ''dual-staggered'' Cartesian grid, where energy and momentum are updated on one grid and mass density on the other, is used to discretize the flux form of the compressible Navier-Stokes equations. Each grid-line is staggered so that the fluxes, in each direction, are calculated at the grid midpoints. This numerical method is validated by simulating thermally convecting flows, from steady to turbulent, reproducing known results. Once validated, the method is used to investigate many aspects of thermal convection with high numerical accuracy. Simulations demonstrate that multiple steady solutions can coexist at the same Rayleigh number for compressible convection. As a system is driven further from equilibrium, a drop in the time-averaged dimensionless heat flux (and the dimensionless internal entropy production rate) occurs at the transition from laminar-periodic to chaotic flow. This observation is consistent with experiments of real convecting fluids. Near this transition, both harmonic and chaotic solutions may exist for the same Rayleigh number. The chaotic flow loses phase-space information at a greater rate, while the periodic flow transports heat (produces entropy) more effectively. A linear sum of the dimensionless forms of these rates connects the two flow morphologies over the entire range for which they coexist. For simulations of systems with higher Rayleigh numbers, a scaling relation exists relating the dimensionless heat flux to the two-seventh's power of the Rayleigh number

  9. Cubic Spline Collocation Method for the Simulation of Turbulent Thermal Convection in Compressible Fluids

    Energy Technology Data Exchange (ETDEWEB)

    Castillo, V M

    2005-01-12

    A collocation method using cubic splines is developed and applied to simulate steady and time-dependent, including turbulent, thermally convecting flows for two-dimensional compressible fluids. The state variables and the fluxes of the conserved quantities are approximated by cubic splines in both space direction. This method is shown to be numerically conservative and to have a local truncation error proportional to the fourth power of the grid spacing. A ''dual-staggered'' Cartesian grid, where energy and momentum are updated on one grid and mass density on the other, is used to discretize the flux form of the compressible Navier-Stokes equations. Each grid-line is staggered so that the fluxes, in each direction, are calculated at the grid midpoints. This numerical method is validated by simulating thermally convecting flows, from steady to turbulent, reproducing known results. Once validated, the method is used to investigate many aspects of thermal convection with high numerical accuracy. Simulations demonstrate that multiple steady solutions can coexist at the same Rayleigh number for compressible convection. As a system is driven further from equilibrium, a drop in the time-averaged dimensionless heat flux (and the dimensionless internal entropy production rate) occurs at the transition from laminar-periodic to chaotic flow. This observation is consistent with experiments of real convecting fluids. Near this transition, both harmonic and chaotic solutions may exist for the same Rayleigh number. The chaotic flow loses phase-space information at a greater rate, while the periodic flow transports heat (produces entropy) more effectively. A linear sum of the dimensionless forms of these rates connects the two flow morphologies over the entire range for which they coexist. For simulations of systems with higher Rayleigh numbers, a scaling relation exists relating the dimensionless heat flux to the two-seventh's power of the Rayleigh number

  10. Heat transfer within hydrodissection fluids: An analysis of thermal conduction and convection using liquid and gel materials.

    Science.gov (United States)

    Johnson, Alexander; Brace, Christopher

    2015-01-01

    Interventional oncology procedures such as thermal ablation are becoming widely used for many tumours in the liver, kidney and lung. Thermal ablation refers to the focal destruction of tissue by generating cytotoxic temperatures in the treatment zone. Hydrodissection - separating tissues with fluids - protects healthy tissues adjacent to the ablation treatment zone to improve procedural safety, and facilitate more aggressive power application or applicator placement. However, fluids such as normal saline and 5% dextrose in water (D5W) can migrate into the peritoneum, reducing their protective efficacy. As an alternative, a thermo-gelable poloxamer 407 (P407) solution has been recently developed to facilitate hydrodissection procedures. We hypothesise that the P407 gel material does not provide convective heat dissipation from the ablation site, and therefore may alter the heat transfer dynamics compared to liquid materials during hydrodissection-assisted thermal ablation. The purpose of this study was to investigate the heat dissipation mechanics within D5W, liquid P407 and gel P407 hydrodissection barriers. Overall it was shown that the gel P407 dissipated heat primarily through conduction, whereas the liquid P407 and D5W dissipated heat through convection. Furthermore, the rate of temperature change within the gel P407 was greater than liquid P407 and D5W. Testing to evaluate the in vivo efficacy of the fluids with different modes of heat dissipation seems warranted for further study.

  11. Computational fluid dynamics analysis of drag and convective heat transfer of individual body segments for different cyclist positions.

    Science.gov (United States)

    Defraeye, Thijs; Blocken, Bert; Koninckx, Erwin; Hespel, Peter; Carmeliet, Jan

    2011-06-03

    This study aims at investigating drag and convective heat transfer for cyclists at a high spatial resolution. Such an increased spatial resolution, when combined with flow-field data, can increase insight in drag reduction mechanisms and in the thermo-physiological response of cyclists related to heat stress and hygrothermal performance of clothing. Computational fluid dynamics (steady Reynolds-averaged Navier-Stokes) is used to evaluate the drag and convective heat transfer of 19 body segments of a cyclist for three different cyclist positions. The influence of wind speed on the drag is analysed, indicating a pronounced Reynolds number dependency on the drag, where more streamlined positions show a dependency up to higher Reynolds numbers. The drag and convective heat transfer coefficient (CHTC) of the body segments and the entire cyclist are compared for all positions at racing speeds, showing high drag values for the head, legs and arms and high CHTCs for the legs, arms, hands and feet. The drag areas of individual body segments differ markedly for different cyclist positions whereas the convective heat losses of the body segments are found to be less sensitive to the position. CHTC-wind speed correlations are derived, in which the power-law exponent does not differ significantly for the individual body segments for all positions, where an average value of 0.84 is found. Similar CFD studies can be performed to assess drag and CHTCs at a higher spatial resolution for applications in other sport disciplines, bicycle equipment design or to assess convective moisture transfer.

  12. Chemically reacting dusty viscoelastic fluid flow in an irregular channel with convective boundary

    Directory of Open Access Journals (Sweden)

    R. Sivaraj

    2013-03-01

    Full Text Available In this paper, we have studied the combined effects of free convective heat and mass transfer on an unsteady MHD dusty viscoelastic (Walters liquid model-B fluid flow between a vertical long wavy wall and a parallel flat wall saturated with porous medium subject to the convective boundary condition. The coupled partial differential equations are solved analytically using perturbation technique. The velocity, temperature and concentration fields have been studied for various combinations of physical parameters such as magnetic field, heat absorption, thermal radiation, radiation absorption, Biot number and chemical reaction parameters. The skin friction, Nusselt number and Sherwood number are also presented and displayed graphically. Further, it is observed that the velocity profiles of dusty fluid are higher than the dust particles.

  13. Controlling mechanisms of moisture diffusion in convective drying of leather

    Science.gov (United States)

    Benmakhlouf, Naima; Azzouz, Soufien; Monzó-Cabrera, Juan; Khdhira, Hechmi; ELCafsi, Afif

    2017-04-01

    Leather manufacturing involves a crucial energy-intensive drying stage in the finishing process to remove its residual moisture. It occurs several times in the tanning course. As it is the target of this paper to depict an experimental way to determine moisture diffusion in the convective drying of leather. The effective diffusion coefficient is estimated by a method derived from Fick's law and by analytic method. The effective diffusion coefficients are obtained from drying tests and the diffusivity behaviour is studied versus the controlling parameter such as the convective airflow temperature. The experiments were conducted at hot air temperatures of 40, 45, 50, 55 and 60 °C and hot air speed of 1 m/s. The hot air temperature had significant effect on the effective moisture diffusivity of the leather sample. The average effective moisture diffusivity in rosehip ranged between 5.87 × 10-11 and 14.48 × 10-11 m2/s for leather at the temperatures studied. Activation energy for convective drying was found to be 38.46 kJ/mol for leather. The obtained results fully confirm the theoretical study in which an exponentially increasing relationship between effective diffusivity and temperature is predicted. The results of this study provide a better understanding of the drying mechanisms and may lead to a series of recommendations for leather drying optimization. It opens the possibility for further investigations on the description of drying conditions.

  14. Controlling mechanisms of moisture diffusion in convective drying of leather

    Science.gov (United States)

    Benmakhlouf, Naima; Azzouz, Soufien; Monzó-Cabrera, Juan; Khdhira, Hechmi; ELCafsi, Afif

    2016-08-01

    Leather manufacturing involves a crucial energy-intensive drying stage in the finishing process to remove its residual moisture. It occurs several times in the tanning course. As it is the target of this paper to depict an experimental way to determine moisture diffusion in the convective drying of leather. The effective diffusion coefficient is estimated by a method derived from Fick's law and by analytic method. The effective diffusion coefficients are obtained from drying tests and the diffusivity behaviour is studied versus the controlling parameter such as the convective airflow temperature. The experiments were conducted at hot air temperatures of 40, 45, 50, 55 and 60 °C and hot air speed of 1 m/s. The hot air temperature had significant effect on the effective moisture diffusivity of the leather sample. The average effective moisture diffusivity in rosehip ranged between 5.87 × 10-11 and 14.48 × 10-11 m2/s for leather at the temperatures studied. Activation energy for convective drying was found to be 38.46 kJ/mol for leather. The obtained results fully confirm the theoretical study in which an exponentially increasing relationship between effective diffusivity and temperature is predicted. The results of this study provide a better understanding of the drying mechanisms and may lead to a series of recommendations for leather drying optimization. It opens the possibility for further investigations on the description of drying conditions.

  15. ANALYSIS OF MARANGONI CONVECTION OF NON-NEWTONIAN POWER LAW FLUIDS WITH LINEAR TEMPERATURE DISTRIBUTION

    Directory of Open Access Journals (Sweden)

    Yan Zhang

    2011-01-01

    Full Text Available The problem of steady, laminar, thermal Marangoni convection flow of non-Newtonian power law fluid along a horizontal surface with variable surface temperature is studied. The partial differential equations are transformed into ordinary differential equations by using a suitable similarity transformation and analytical approximate solutions are obtained by an efficient transformation, asymptotic expansion and Padé approximants technique. The effects of power law index and Marangoni number on velocity and temperature profiles are examined and discussed.

  16. A p-version finite element method for steady incompressible fluid flow and convective heat transfer

    Science.gov (United States)

    Winterscheidt, Daniel L.

    1993-01-01

    A new p-version finite element formulation for steady, incompressible fluid flow and convective heat transfer problems is presented. The steady-state residual equations are obtained by considering a limiting case of the least-squares formulation for the transient problem. The method circumvents the Babuska-Brezzi condition, permitting the use of equal-order interpolation for velocity and pressure, without requiring the use of arbitrary parameters. Numerical results are presented to demonstrate the accuracy and generality of the method.

  17. Spectral Method for Solving Time Dependent Flow of Upper-Convected Maxwell Fluid in Tube

    Institute of Scientific and Technical Information of China (English)

    2001-01-01

    The time dependent flow of upper-convected Maxwell fluid in a horizontal circular pipe is studied by spectral method. The time dependent problem is mathematically reduced to a partial differential equation of second order. By using spectral method the partial differential equation can be reduced to a system of ordinary differential equations for different terms of Chebyshev polynomials approximations. The ordinary differential equations are solved by Laplace transform and the eigenvalue method that leads to an analytical form of the solutions.

  18. Mixed Convection Flow of Couple Stress Fluid in a Vertical Channel with Radiation and Soret Effects

    Directory of Open Access Journals (Sweden)

    Kaladhar Kolla

    2016-01-01

    Full Text Available The radiation and thermal diffusion effects on mixed convection flow of couple stress fluid through a channel are investigated. The governing non-linear partial differential equations are transformed into a system of ordinary differential equations using similarity transformations. The resulting equations are then solved using the Spectral Quasi-linearization Method (QLM. The results, which are discussed with the aid of the dimensionless parameters entering the problem, are seen to depend sensitively on the parameters.

  19. Applied Fluid Mechanics. Lecture Notes.

    Science.gov (United States)

    Gregg, Newton D.

    This set of lecture notes is used as a supplemental text for the teaching of fluid dynamics, as one component of a thermodynamics course for engineering technologists. The major text for the course covered basic fluids concepts such as pressure, mass flow, and specific weight. The objective of this document was to present additional fluids…

  20. Applied Fluid Mechanics. Lecture Notes.

    Science.gov (United States)

    Gregg, Newton D.

    This set of lecture notes is used as a supplemental text for the teaching of fluid dynamics, as one component of a thermodynamics course for engineering technologists. The major text for the course covered basic fluids concepts such as pressure, mass flow, and specific weight. The objective of this document was to present additional fluids…

  1. Unsteady Mixed Convection Boundary Layer from a Circular Cylinder in a Micropolar Fluid

    Directory of Open Access Journals (Sweden)

    Anati Ali

    2010-01-01

    Full Text Available Most industrial fluids such as polymers, liquid crystals, and colloids contain suspensions of rigid particles that undergo rotation. However, the classical Navier-Stokes theory normally associated with Newtonian fluids is inadequate to describe such fluids as it does not take into account the effects of these microstructures. In this paper, the unsteady mixed convection boundary layer flow of a micropolar fluid past an isothermal horizontal circular cylinder is numerically studied, where the unsteadiness is due to an impulsive motion of the free stream. Both the assisting (heated cylinder and opposing cases (cooled cylinder are considered. Thus, both small and large time solutions as well as the occurrence of flow separation, followed by the flow reversal are studied. The flow along the entire surface of a cylinder is solved numerically using the Keller-box scheme. The obtained results are compared with the ones from the open literature, and it is shown that the agreement is very good.

  2. NASA Ames Fluid Mechanics Laboratory research briefs

    Science.gov (United States)

    Davis, Sanford (Editor)

    1994-01-01

    The Ames Fluid Mechanics Laboratory research program is presented in a series of research briefs. Nineteen projects covering aeronautical fluid mechanics and related areas are discussed and augmented with the publication and presentation output of the Branch for the period 1990-1993.

  3. EFFECTS OF CONVECTIVE FLUID MOTION UPON OXIDE CRYSTAL GROWTH IN HIGH TEMPERATURE SOLUTION

    Institute of Scientific and Technical Information of China (English)

    2002-01-01

    @@ For understanding of the influence of convective flow on crystal growth, space high temperature in situ observation instrument (SHITISOI) is dedicated to visualize and record the whole growth process of oxide crystals in high temperature up to 1000°C. Model experiments using transparent liquids such as KNbO3 and a mix ture of Li2B4O7+KNbO3 were chosen to investigate effects on ground and in space.On the earth, an investigation of growth kinetics of KNbO3 crystal related to two different states of convection: diffusive-advective flow and diffusive-convective flow,has been performed. The per unit length of a step e is calculated from the exper imental data for two different states of convection. Analyses of these data show the effect of buoyancy convection is to enhance the sharpness of the interface. The growth of KNbO3 crystals from solution of KNbO3+Li2B4O7 was investigated in space. The streamlines of the steady thermocapillary convection in Li2B4O7 solvent was observed. Due to thermocapillary convection, KNbO3 crystal grains grew and filled the whole solution homogeneously. Earth-based quenching experiments are de signed in order to study polyhedral instability of KNbO3 crystal, which is controlled by diffusion mechanism limitation. In all cases, when the crystal was nucleated near air/solution surface, it lost its polyhedral stability and varied from polyhedrons to dedrites. The thickness of diffusion mechanism limitation layer is about 60μm.

  4. Thermo capillary and buoyancy convection in a fluid locally heated on its free surface; Convection thermocapillaire et thermogravitaire dans un fluide chauffe localement sur sa surface libre

    Energy Technology Data Exchange (ETDEWEB)

    Favre, E.

    1997-09-26

    coupled buoyancy and thermo-capillary convection lead to a convective motion of the interface liquid/gas which drastically changes the heat and mass transfer across the liquid layer. Two experiments were considered, depending on the fluid: oil or mercury. The liquid is set in a cooled cylindrical vessel, and heated by a heat flux across the center of the free surface. The basic flow, in the case of oil, is a torus. When the heat parameter increases, a stationary flow appears as petals or rays when the aspect ratio. The lateral confinement selects the azimuthal wavelength. In the case of petals-like flow, a sub-critical Hopf bifurcation is underlined. The turbulence is found to be `weak`, even for the largest values of the Marangoni number (Ma = 1.3 10{sup 5}). In the case of mercury, the thermo-capillary effect is reduced to zero to impurities at the surface which have special trajectories we describe and compare to a simpler experiment. Only the buoyancy forces induce a unstationary, weakly turbulent flow as soon as the heating power exceeds 4W (Ra = 4.5 10{sup 3}, calculated with h = 1 mm). The past part concerns the analysis of the effect on the flow of the boundary conditions, the geometry, the Prandtl number and the buoyancy force with the help of the literature. Results concerning heat transfer, in particular the exponent of the law Nusselt number vs. heating power, were compared with available data. (author) 115 refs.

  5. Large-scale thermal convection of viscous fluids in a faulted system: 3D test case for numerical codes

    Science.gov (United States)

    Magri, Fabien; Cacace, Mauro; Fischer, Thomas; Kolditz, Olaf; Wang, Wenqing; Watanabe, Norihiro

    2017-04-01

    In contrast to simple homogeneous 1D and 2D systems, no appropriate analytical solutions exist to test onset of thermal convection against numerical models of complex 3D systems that account for variable fluid density and viscosity as well as permeability heterogeneity (e.g. presence of faults). Owing to the importance of thermal convection for the transport of energy and minerals, the development of a benchmark test for density/viscosity driven flow is crucial to ensure that the applied numerical models accurately simulate the physical processes at hands. The presented study proposes a 3D test case for the simulation of thermal convection in a faulted system that accounts for temperature dependent fluid density and viscosity. The linear stability analysis recently developed by Malkovsky and Magri (2016) is used to estimate the critical Rayleigh number above which thermal convection of viscous fluids is triggered. The numerical simulations are carried out using the finite element technique. OpenGeoSys (Kolditz et al., 2012) and Moose (Gaston et al., 2009) results are compared to those obtained using the commercial software FEFLOW (Diersch, 2014) to test the ability of widely applied codes in matching both the critical Rayleigh number and the dynamical features of convective processes. The methodology and Rayleigh expressions given in this study can be applied to any numerical model that deals with 3D geothermal processes in faulted basins as by example the Tiberas Basin (Magri et al., 2016). References Kolditz, O., Bauer, S., Bilke, L., Böttcher, N., Delfs, J. O., Fischer, T., U. J. Görke, T. Kalbacher, G. Kosakowski, McDermott, C. I., Park, C. H., Radu, F., Rink, K., Shao, H., Shao, H.B., Sun, F., Sun, Y., Sun, A., Singh, K., Taron, J., Walther, M., Wang,W., Watanabe, N., Wu, Y., Xie, M., Xu, W., Zehner, B., 2012. OpenGeoSys: an open-source initiative for numerical simulation of thermo-hydro-mechanical/chemical (THM/C) processes in porous media. Environmental

  6. Experimental container shape dependence and heat transport scaling of Rayleigh-Bénard convection of high-Prandtl-number fluids

    Science.gov (United States)

    Johnston, Stephen; Fonda, Enrico; Sreenivasan, Katepalli R.; Ranjan, Devesh

    2016-11-01

    Both experiments and simulations on Rayleigh-Bénard convection with fluids of Prandtl numbers 5 and below have shown that the container shape influences the flow structure. Here, we investigate similar dependences of convection of fluids with Prandtl numbers of up to 104. The convection cells have aspect ratio of order unity, and we use cubic and cylindrical shapes. Visual analysis using a noninvasive photochromic dye technique indicates the distinct large-scale flow patterns in both square and cylindrical test cells. The stability of these flow patterns is explored. Also presented are results on the Nusselt-Rayleigh scaling for moderate Rayleigh numbers.

  7. Convection's enhancement in thermal micro pipes using extra fluid and shape memory material

    Science.gov (United States)

    Mihai, Ioan; Sprinceana, Siviu

    2016-12-01

    Up to now, there have been developed various applications of thermal micro pipes[1-3], such as refrigerating systems, high heat flux electronics cooling, and biological devices etc., based on vacuum vaporization followed by a convective phenomenon that allows vapor transfer from the vaporization area to the condensation one. This article presents studies carried out on the enhancement of the convective phenomenon taking place in flat thermal micro pipes. The proposed method[4] is aimed at the cooling of power electronics components, such as microprocessors. The conducted research focused on the use of shape memory materials that allow, by a semi-active method, to bring extra fluid in the vaporization area of the thermal micro pipe. The conducted investigations analyzed the variation of the liquid layer thickness in the trapezoidal micro channels and the thermal flow change over time. The modification of liquid flow was studied in correlation with the capacity of the polysynthetic material to retain the most extra fluid in its pores. The enhancement of the convective heat transfer phenomenon in flat thermal micro pipes was investigated in correspondence to the increase of liquid quantity in the vaporization zone. The charts obtained by aid of Mathcad[5] allowed to represent the evolution during a period of time (or with the pipe's length) of the liquid film thickness, the flow and the thermal flow, as a function of the liquid supply variation due to the shape memory materials and the modification of the working temperature.

  8. Coupling between lower-tropospheric convective mixing and low-level clouds: Physical mechanisms and dependence on convection scheme.

    Science.gov (United States)

    Vial, Jessica; Bony, Sandrine; Dufresne, Jean-Louis; Roehrig, Romain

    2016-12-01

    Several studies have pointed out the dependence of low-cloud feedbacks on the strength of the lower-tropospheric convective mixing. By analyzing a series of single-column model experiments run by a climate model using two different convective parametrizations, this study elucidates the physical mechanisms through which marine boundary-layer clouds depend on this mixing in the present-day climate and under surface warming. An increased lower-tropospheric convective mixing leads to a reduction of low-cloud fraction. However, the rate of decrease strongly depends on how the surface latent heat flux couples to the convective mixing and to boundary-layer cloud radiative effects: (i) on the one hand, the latent heat flux is enhanced by the lower-tropospheric drying induced by the convective mixing, which damps the reduction of the low-cloud fraction, (ii) on the other hand, the latent heat flux is reduced as the lower troposphere stabilizes under the effect of reduced low-cloud radiative cooling, which enhances the reduction of the low-cloud fraction. The relative importance of these two different processes depends on the closure of the convective parameterization. The convective scheme that favors the coupling between latent heat flux and low-cloud radiative cooling exhibits a stronger sensitivity of low-clouds to convective mixing in the present-day climate, and a stronger low-cloud feedback in response to surface warming. In this model, the low-cloud feedback is stronger when the present-day convective mixing is weaker and when present-day clouds are shallower and more radiatively active. The implications of these insights for constraining the strength of low-cloud feedbacks observationally is discussed.

  9. Convective heat transfer enhancement of laminar flow of latent functionally thermal fluid in a circular tube with constant heat flux: internal heat source model and its application

    Institute of Scientific and Technical Information of China (English)

    张寅平; 胡先旭; 郝磬; 王馨

    2003-01-01

    This paper analyzes the convective heat transfer enhancement mechanism of latent heat functionally thermal fluid. By using the proposed internal heat source model, the influence of each factor affecting the heat transfer enhancement of laminar flow in a circular tube with constant heat flux is analyzed. The main influencing factors and the mechanisms of heat transfer enhancement are clarified, and the influences of the main factors on the heat transfer enhancement are quantitatively analyzed. A modified Nusselt number for internal flow is introduced to describe more effectively the degree of heat transfer enhancement for latent functionally thermal fluid.

  10. Radiative flow of a tangent hyperbolic fluid with convective conditions and chemical reaction

    Science.gov (United States)

    Hayat, Tasawar; Qayyum, Sajid; Ahmad, Bashir; Waqas, Muhammad

    2016-12-01

    The objective of present paper is to examine the thermal radiation effects in the two-dimensional mixed convection flow of a tangent hyperbolic fluid near a stagnation point. The analysis is performed in the presence of heat generation/absorption and chemical reaction. Convective boundary conditions for heat and mass transfer are employed. The resulting partial differential equations are reduced into nonlinear ordinary differential equations using appropriate transformations. Series solutions of momentum, energy and concentration equations are computed. The characteristics of various physical parameters on the distributions of velocity, temperature and concentration are analyzed graphically. Numerical values of skin friction coefficient, local Nusselt and Sherwood numbers are computed and examined. It is observed that larger values of thermal and concentration Biot numbers enhance the temperature and concentration distributions.

  11. The onset of nonpenetrative convection in a suddenly cooled layer of fluid

    Energy Technology Data Exchange (ETDEWEB)

    Ihle, Christian F. [Program in Fluid Dynamics, Facultad de Ciencias Fisicas y Matematicas, Universidad de Chile, Blanco Encalada 2002 Of. 327, Santiago (Chile); Nino, Yarko [Departamento de Ingenieria Civil, Division de Recursos Hidricos y Medio Ambiente, Universidad de Chile, Av. Blanco Encalada 2002, Santiago (Chile)

    2006-04-15

    Conditions for the onset of nonpenetrative convection in a horizontal Boussinesq fluid layer subject to a step change in temperature are studied using propagation theory. A wide range of Prandtl numbers and two different kinematic boundary conditions are considered. It is shown that for high Rayleigh numbers, critical conditions for the onset of convective motion reproduce exactly those for the unsteady Rayleigh-Benard instability. Present results extend those of previous research and show a tendency of the rigid-rigid and free-rigid critical curves to converge for low Prandtl numbers. Comparison between present and previously reported results on critical conditions for the onset of instabilities and onset time using different methods yields good agreement on a middle to high Prandtl number range. A ratio of 10 between experimentally measured and theoretically predicted onset times is suggested for stress-free bounded systems. (author)

  12. Review of fluid flow and convective heat transfer within rotating disk cavities with impinging jet

    CERN Document Server

    Harmand, Souad; Poncet, Sébastien; Shevchuk, Igor V; 10.1016/j.ijthermalsci.2012.11.009

    2013-01-01

    Fluid flow and convective heat transfer in rotor-stator configurations, which are of great importance in different engineering applications, are treated in details in this review. The review focuses on convective heat transfer in predominantly outward air flow in the rotor-stator geometries with and without impinging jets and incorporates two main parts, namely, experimental/theoretical methodologies and geometries/results. Experimental methodologies include naphthalene sublimation techniques, steady state (thin layer) and transient (thermochromic liquid crystals) thermal measurements, thermocouples and infra-red cameras, hot-wire anemometry, laser Doppler and particle image velocimetry, laser plane and smoke generator. Theoretical approaches incorporate modern CFD computational tools (DNS, LES, RANS etc). Geometries and results part being mentioned starting from simple to complex elucidates cases of a free rotating disk, a single disk in the crossflow, single jets impinging onto stationary and rotating disk,...

  13. Fluid Mechanics of Spinning Rockets.

    Science.gov (United States)

    1987-01-01

    internal energy dissipation is present. A classic case was the instability exhibited by the first American earth satellite, the Explorer I, which...measure the pressure fluctuations. Water was used as the working fluid. This is acceptable in these simulations, since compressibility is not a...nozzle are responsible for the the apparition of the instability late in the motor bum. In conclusion, it has been shown that an unsteady internal gas

  14. Conjugate Heat Transfer of Mixed Convection for Viscoelastic Fluid Past a Stretching Sheet

    Directory of Open Access Journals (Sweden)

    Kai-Long Hsiao

    2007-01-01

    Full Text Available A conjugate heat transfer problem of a second-grade viscoelastic fluid past a stretching sheet has been studied. Governing equations include heat conduction equation of a stretching sheet, continuity equation, momentum equation, and energy equation of a second-grade fluid, analyzed by a combination of a series expansion method, the similarity transformation, and a second-order accurate finite-difference method. These solutions are used to iterate with the heat conduction equation of the stretching sheet to obtain distributions of the local convective heat transfer coefficient and the stretching sheet temperature. Ranges of dimensionless parameters, the Prandtl number Pr, the elastic number E and the conduction-convection coefficient Ncc are from 0.001 to 10, 0.0001 to 0.01, and 0.5 to 2.0, respectively. A parameter G, which is used to represent the dominance of the buoyant effect, is present in governing equations. Results indicated that elastic effect in the flow could increase the local heat transfer coefficient and enhance the heat transfer of a stretching sheet. In addition, same as the results from Newtonian fluid flow and conduction analysis of a stretching sheet, a better heat transfer is obtained with a larger Ncc, G, and E.

  15. CIME school Topics in Mathematical Fluid Mechanics

    CERN Document Server

    Constantin, Peter; Galdi, Giovanni P; Růžička, Michael; Seregin, Gregory

    2013-01-01

    This volume brings together five contributions to mathematical fluid mechanics, a classical but still very active research field which overlaps with physics and engineering. The contributions cover not only the classical Navier-Stokes equations for an incompressible Newtonian fluid, but also generalized Newtonian fluids, fluids interacting with particles and with solids, and stochastic models. The questions addressed in the lectures range from the basic problems of existence of weak and more regular solutions, the local regularity theory and analysis of potential singularities, qualitative and quantitative results about the behavior in special cases, asymptotic behavior, statistical properties and ergodicity.

  16. Fluid Mechanics An Introduction to the Theory of Fluid Flows

    CERN Document Server

    Durst, Franz

    2008-01-01

    Advancements of fluid flow measuring techniques and of computational methods have led to new ways to treat laminar and turbulent flows. These methods are extensively used these days in research and engineering practise. This also requires new ways to teach the subject to students at higher educational institutions in an introductory manner. The book provides the knowledge to students in engineering and natural science needed to enter fluid mechanics applications in various fields. Analytical treatments are provided, based on the Navier-Stokes equations. Introductions are also given into numerical and experimental methods applied to flows. The main benefit the reader will derive from the book is a sound introduction into all aspects of fluid mechanics covering all relevant subfields.

  17. ISS COLUMBUS laboratory experiment `GeoFlow I and II' -fluid physics research in microgravity environment to study convection phenomena inside deep Earth and mantle

    Science.gov (United States)

    Futterer, Birgit; Egbers, Christoph; Chossat, Pascal; Hollerbach, Rainer; Breuer, Doris; Feudel, Fred; Mutabazi, Innocent; Tuckerman, Laurette

    Overall driving mechanism of flow in inner Earth is convection in its gravitational buoyancy field. A lot of effort has been involved in theoretical prediction and numerical simulation of both the geodynamo, which is maintained by convection, and mantle convection, which is the main cause for plate tectonics. Especially resolution of convective patterns and heat transfer mechanisms has been in focus to reach the real, highly turbulent conditions inside Earth. To study specific phenomena experimentally different approaches has been observed, against the background of magneto-hydrodynamic but also on the pure hydrodynamic physics of fluids. With the experiment `GeoFlow' (Geophysical Flow Simulation) instability and transition of convection in spherical shells under the influence of central-symmetry buoyancy force field are traced for a wide range of rotation regimes within the limits between non-rotating and rapid rotating spheres. The special set-up of high voltage potential between inner and outer sphere and use of a dielectric fluid as working fluid induce an electro-hydrodynamic force, which is comparable to gravitational buoyancy force inside Earth. To reduce overall gravity in a laboratory this technique requires microgravity conditions. The `GeoFlow I' experiment was accomplished on International Space Station's module COLUM-BUS inside Fluid Science Laboratory FSL und supported by EADS Astrium, Friedrichshafen, User Support und Operations Centre E-USOC in Madrid, Microgravity Advanced Research and Support Centre MARS in Naples, as well as COLUMBUS Control Center COL-CC Munich. Running from August 2008 until January 2009 it delivered 100.000 images from FSL's optical diagnostics module; here more precisely the Wollaston shearing interferometry was used. Here we present the experimental alignment with numerical prediction for the non-rotating and rapid rotation case. The non-rotating case is characterized by a co-existence of several stationary supercritical

  18. A Course in Fluid Mechanics of Suspensions.

    Science.gov (United States)

    Davis, Robert H.

    1989-01-01

    Discusses a course focusing on fluid mechanics and physical chemistry of suspensions. Describes the main themes of the lectures and includes a list of course outlines. Possible textbooks and many journal articles are listed. (YP)

  19. A Course in Fluid Mechanics of Suspensions.

    Science.gov (United States)

    Davis, Robert H.

    1989-01-01

    Discusses a course focusing on fluid mechanics and physical chemistry of suspensions. Describes the main themes of the lectures and includes a list of course outlines. Possible textbooks and many journal articles are listed. (YP)

  20. Mechanics of couple-stress fluid coatings

    Science.gov (United States)

    Waxman, A. M.

    1982-01-01

    The formal development of a theory of viscoelastic surface fluids with bending resistance - their kinematics, dynamics, and rheology are discussed. It is relevant to the mechanics of fluid drops and jets coated by a thin layer of immiscible fluid with rather general rheology. This approach unifies the hydrodynamics of two-dimensional fluids with the mechanics of an elastic shell in the spirit of a Cosserat continuum. There are three distinct facets to the formulation of surface continuum mechanics. Outlined are the important ideas and results associated with each: the kinematics of evolving surface geometries, the conservation laws governing the mechanics of surface continua, and the rheological equations of state governing the surface stress and moment tensors.

  1. Stability of Natural Convection of Power-law Fluid and non-Darcy Flow in Porous Media

    Institute of Scientific and Technical Information of China (English)

    Kong Xiangyan; Chen Guoquan; Wu Jianbing; Li Peichao; Lu Detang; Xu Xianzhi

    2001-01-01

    In the present work the effect of the power law exponent of power-law fluid and non-Darcy number of non-Darcy flow on stability of natural convection in porous media are studied. The computation analysis of effect of power law exponent of power-law fluid and non-Darcy number of non-Darcy flow in the rectangular duct on the transition Rayleigh number Ra*, which means the convective model transiting from stationary state to periodic solution. The duct has filled a porous medium saturated with the power-law non-Newtonian fluid or Newtonian fluid for non-Darcy flow, in which there is uniform internal heat generation per unit volume q. In this paper the relationship between the transition Rayleigh number Ra* and the power-law exponent n, Ra* and non-Darcy number Be, are shown .To these two aspects, the transition route from steady to chaotic convection is also obtained.

  2. Entropy generation of micropolar fluid flow in an inclined porous pipe with convective boundary conditions

    Indian Academy of Sciences (India)

    D SRINIVASACHARYA; K HIMA BINDU

    2017-05-01

    The objective of this paper is to examine the nature of irreversibilities in the form of entropy generation for a micropolar fluid flow through an inclined porous pipe with convective boundary conditions. The governing equations are non-dimensionlized and then linearized using a quasilinearization method. The resulting linearized equations are solved by Chebyshev spectral collocation method. The velocity, microrotation and temperature profiles are presented graphically for various values of governing parameters. Further, these profilesare used to evaluate the entropy generation and Bejan number

  3. Parametric numerical investigaion of natural convection in a heat-generating fluid with phase transitions

    Energy Technology Data Exchange (ETDEWEB)

    Aksenova, A.E.; Chudanov, V.V.; Strizhov, V.F.; Vabishchevich, P.N. [Institute of Nuclear Safety Russian Academy Science, Moscow (Russian Federation)

    1995-09-01

    Unsteady natural convection of a heat-generating fluid with phase transitions in the enclosures of a square section with isothermal rigid walls is investigated numerically for a wide range of dimensionless parameters. The quasisteady state solutions of conjugate heat and mass transfer problem are compared with available experimental results. Correlation relations for heat flux distributions at the domain boundaries depending on Rayleigh and Ostrogradskii numbers are obtained. It is shown that generally heat transfer is governed both by natural circulation and crust formation phenomena. Results of this paper may be used for analysis of experiments with prototypic core materials.

  4. Peristaltic flow of Johnson-Segalman fluid in asymmetric channel with convective boundary conditions

    Institute of Scientific and Technical Information of China (English)

    H YASMIN; T HAYAT; A ALSAEDI; HH ALSULAMI

    2014-01-01

    This work is concerned with the peristaltic transport of the Johnson-Segalman fluid in an asymmetric channel with convective boundary conditions. The mathematical modeling is based upon the conservation laws of mass, linear momentum, and energy. The resulting equations are solved after long wavelength and low Reynolds number are used. The results for the axial pressure gradient, velocity, and temperature profiles are obtained for small Weissenberg number. The expressions of the pressure gra-dient, velocity, and temperature are analyzed for various embedded parameters. Pumping and trapping phenomena are also explored.

  5. Mixed convection radiative flow of three dimensional Maxwell fluid over an inclined stretching sheet in presence of thermophoresis and convective condition

    Energy Technology Data Exchange (ETDEWEB)

    Ashraf, M. Bilal, E-mail: bilalashraf-qau@yahoo.com [Department of Mathematics, COMSATS Institute of Information Technology, Wah Cantt 47040 (Pakistan); Hayat, T. [Department of Mathematics, Quaid-I-Azam University 45320, Islamabad 44000 (Pakistan); Department of Mathematics, Faculty of Science, King Abdulaziz University, P. O. Box 80257, Jeddah 21589 (Saudi Arabia); Shehzad, S. A. [Department of Mathematics, COMSATS Institute of Information Technology, Sahiwal 57000 (Pakistan); Alsaedi, A. [Department of Mathematics, Faculty of Science, King Abdulaziz University, P. O. Box 80257, Jeddah 21589 (Saudi Arabia)

    2015-02-15

    Three dimensional radiative flow of Maxwell fluid over an inclined stretching surface with convective boundary condition is investigated. Heat and mass transfer analysis is taken into account with thermophoresis effects. Similarity transformations are utilized to reduce the partial differential equations into ordinary differential equations. Series solutions of velocity, temperature and concentration are developed. Influence of different parameters Biot number, therrmophoretic parameter, Deborah number, ratio parameter, inclined stretching angle, radiation parameter, mixed convection parameter and concentration buoyancy parameter on the non-dimensional velocity components, temperature and concentration are plotted and discussed in detail. Physical quantities of interests are tabulated and examined.

  6. Mixed convection radiative flow of three dimensional Maxwell fluid over an inclined stretching sheet in presence of thermophoresis and convective condition

    Directory of Open Access Journals (Sweden)

    M. Bilal Ashraf

    2015-02-01

    Full Text Available Three dimensional radiative flow of Maxwell fluid over an inclined stretching surface with convective boundary condition is investigated. Heat and mass transfer analysis is taken into account with thermophoresis effects. Similarity transformations are utilized to reduce the partial differential equations into ordinary differential equations. Series solutions of velocity, temperature and concentration are developed. Influence of different parameters Biot number, therrmophoretic parameter, Deborah number, ratio parameter, inclined stretching angle, radiation parameter, mixed convection parameter and concentration buoyancy parameter on the non-dimensional velocity components, temperature and concentration are plotted and discussed in detail. Physical quantities of interests are tabulated and examined.

  7. On the fluid mechanics of fires

    Energy Technology Data Exchange (ETDEWEB)

    TIESZEN,SHELDON R.

    2000-02-29

    Fluid mechanics research related to fire is reviewed with focus on canonical flows, multiphysics coupling aspects, experimental and numerical techniques. Fire is a low-speed, chemically-reacting, flow in which buoyancy plans an important role. Fire research has focused on two canonical flows, the reacting boundary-layer and the reacting free plume. There is rich, multi-lateral, bi-directional, coupling among fluid mechanics and scalar transport, combustion, and radiation. There is only a limited experimental fluid-mechanics database for fire due to measurement difficulties in the harsh environment, and the focus within the fire community on thermal/chemical consequences. Increasingly, computational fluid dynamics techniques are being used to provide engineering guidance on thermal/chemical consequences and to study fire phenomenology.

  8. Analogy between fluid cavitation and fracture mechanics

    Science.gov (United States)

    Hendricks, R. C.; Mullen, R. L.; Braun, M. J.

    1983-01-01

    When the stresses imposed on a fluid are sufficiently large, rupture or cavitation can occur. Such conditions can exist in many two-phase flow applications, such as the choked flows, which can occur in seals and bearings. Nonspherical bubbles with large aspect ratios have been observed in fluids under rapid acceleration and high shear fields. These bubbles are geometrically similar to fracture surface patterns (Griffith crack model) existing in solids. Analogies between crack growth in solid and fluid cavitation are proposed and supported by analysis and observation (photographs). Healing phenomena (void condensation), well accepted in fluid mechanics, have been observed in some polymers and hypothesized in solid mechanics. By drawing on the strengths of the theories of solid mechanics and cavitation, a more complete unified theory can be developed.

  9. Unsteady Hydromagnetic Flow of Radiating Fluid Past a Convectively Heated Vertical Plate with the Navier Slip

    Directory of Open Access Journals (Sweden)

    O. D. Makinde

    2014-01-01

    Full Text Available This paper investigates the unsteady hydromagnetic-free convection of an incompressible electrical conducting Boussinesq’s radiating fluid past a moving vertical plate in an optically thin environment with the Navier slip, viscous dissipation, and Ohmic and Newtonian heating. The nonlinear partial differential equations governing the transient problem are obtained and tackled numerically using a semidiscretization finite difference method coupled with Runge-Kutta Fehlberg integration technique. Numerical data for the local skin friction coefficient and the Nusselt number have been tabulated for various values of parametric conditions. Graphical results for the fluid velocity, temperature, skin friction, and the Nusselt number are presented and discussed. The results indicate that the skin friction coefficient decreases while the heat transfer rate at the plate surface increases as the slip parameter and Newtonian heating increase.

  10. Properties of forced convection experimental with silicon carbide based nano-fluids

    Science.gov (United States)

    Soanker, Abhinay

    . The nano-fluid properties were tested at three different volume concentrations; 0.55%, 1% and 1.6%. Thermal conductivity was measured for the three-volume concentration as function of temperature. Thermal conductivity enhancement increased with the temperature and may be attributed to increased Brownian motion of colloidal particles at higher temperatures. Measured thermal conductivity values are compared with results obtained by theoretical model derived in this work. Effect of temperature and volume concentration on viscosity was also measured and reported. Viscosity increase and related consequences are important issues for the use of nano-fluids. Extensive measurements of heat transfer and pressure drop for forced convection in circular pipes with nano-fluids was also conducted. Parameters such as heat transfer coefficient, Nusselt number, pressure drop and a thermal hydraulic performance factor that takes into account the gains made by increase in thermal conductivity as well as penalties related to increase in pressure drop are evaluated for laminar and transition flow regimes. No significant improvement in heat transfer (Nusselt number) compared to its based fluid was observed. It is also observed that the values evaluated for the thermal-hydraulic performance factor (change in heat transfer/change in pressure drop) was under unity for many flow conditions indicating poor overall applicability of SiC based nano-fluids.

  11. Convection of geothermal fluids in the Timanfaya volcanic area, Lanzarote, Canary Islands

    Energy Technology Data Exchange (ETDEWEB)

    Arana, V.; Diez, J.L.; Ortiz, R.; Yuguero, J.

    1984-01-01

    A mathematical model has been derived to study the superficial thermal anomalies to be found in Lanzarote (605 C at 13 m depth) in association with the convection of geothermal fluids. The model is valid for a wide range of conditions, in particular for those found beneath the Timanfaya volcano (active between 1730 and 1736). Geological and geophysical data suggest that the heat source is related to a cylindrical magma body with a radius of 200 +/- 100 m and a top temperature of 850 +/- 100 C at a depth of 4 +/- 1 km. Energy is transported through fractures by magmatic volatiles and/or by water vapor coming from a deeply located water table: in such a convection system, a fluid flow of 10 1/m/sup 2/ day, which corresponds to a thermal flux of 130 W/m/sup 2/, is sufficient to explain the temperature anomalies observed at the surface. The relationships between gas flow and the surface temperatures, as well as the thermal gradients in the conducting fracture are also discussed. 27 references.

  12. Computational fluid dynamics modeling of mixed convection flows in buildings enclosures

    Directory of Open Access Journals (Sweden)

    Alexander Kayne, Ramesh K. Agarwal

    2013-01-01

    Full Text Available In recent years Computational Fluid Dynamics (CFD simulations are increasingly used to model the air circulation and temperature environment inside the rooms of residential and office buildings to gain insight into the relative energy consumptions of various HVAC systems for cooling/heating for climate control and thermal comfort. This requires accurate simulation of turbulent flow and heat transfer for various types of ventilation systems using the Reynolds-Averaged Navier-Stokes (RANS equations of fluid dynamics. Large Eddy Simulation (LES or Direct Numerical Simulation (DNS of Navier-Stokes equations is computationally intensive and expensive for simulations of this kind. As a result, vast majority of CFD simulations employ RANS equations in conjunction with a turbulence model. In order to assess the modeling requirements (mesh, numerical algorithm, turbulence model etc. for accurate simulations, it is critical to validate the calculations against the experimental data. For this purpose, we use three well known benchmark validation cases, one for natural convection in 2D closed vertical cavity, second for forced convection in a 2D rectangular cavity and the third for mixed convection in a 2D square cavity. The simulations are performed on a number of meshes of different density using a number of turbulence models. It is found that k-epsilon two-equation turbulence model with a second-order algorithm on a reasonable mesh gives the best results. This information is then used to determine the modeling requirements (mesh, numerical algorithm, turbulence model etc. for flows in 3D enclosures with different ventilation systems. In particular two cases are considered for which the experimental data is available. These cases are (1 air flow and heat transfer in a naturally ventilated room and (2 airflow and temperature distribution in an atrium. Good agreement with the experimental data and computations of other investigators is obtained.

  13. Computational fluid dynamics modeling of mixed convection flows in buildings enclosures

    Energy Technology Data Exchange (ETDEWEB)

    Kayne, Alexander; Agarwal, Ramesh K. [Department of Mechanical Engineering and Materials Science, Washington University, St. Louis, MO 63130 (United States)

    2013-07-01

    In recent years Computational Fluid Dynamics (CFD) simulations are increasingly used to model the air circulation and temperature environment inside the rooms of residential and office buildings to gain insight into the relative energy consumptions of various HVAC systems for cooling/heating for climate control and thermal comfort. This requires accurate simulation of turbulent flow and heat transfer for various types of ventilation systems using the Reynolds-Averaged Navier-Stokes (RANS) equations of fluid dynamics. Large Eddy Simulation (LES) or Direct Numerical Simulation (DNS) of Navier-Stokes equations is computationally intensive and expensive for simulations of this kind. As a result, vast majority of CFD simulations employ RANS equations in conjunction with a turbulence model. In order to assess the modeling requirements (mesh, numerical algorithm, turbulence model etc.) for accurate simulations, it is critical to validate the calculations against the experimental data. For this purpose, we use three well known benchmark validation cases, one for natural convection in 2D closed vertical cavity, second for forced convection in a 2D rectangular cavity and the third for mixed convection in a 2D square cavity. The simulations are performed on a number of meshes of different density using a number of turbulence models. It is found that k-epsilon two-equation turbulence model with a second-order algorithm on a reasonable mesh gives the best results. This information is then used to determine the modeling requirements (mesh, numerical algorithm, turbulence model etc.) for flows in 3D enclosures with different ventilation systems. In particular two cases are considered for which the experimental data is available. These cases are (1) air flow and heat transfer in a naturally ventilated room and (2) airflow and temperature distribution in an atrium. Good agreement with the experimental data and computations of other investigators is obtained.

  14. Thermal radiation effect on a mixed convection flow and heat transfer of the Williamson fluid past an exponentially shrinking permeable sheet with a convective boundary condition

    Science.gov (United States)

    Zaib, A.; Bhattacharyya, K.; Khalid, M.; Shafie, S.

    2017-05-01

    The thermal radiation effect on a steady mixed convective flow with heat transfer of a nonlinear (non-Newtonian) Williamson fluid past an exponentially shrinking porous sheet with a convective boundary condition is investigated numerically. In this study, both an assisting flow and an opposing flow are considered. The governing equations are converted into nonlinear ordinary differential equations by using a suitable transformation. A numerical solution of the problem is obtained by using the Matlab software package for different values of the governing parameters. The results show that dual nonsimilar solutions exist for the opposing flow, whereas the solution for the assisting flow is unique. It is also observed that the dual nonsimilar solutions exist only if a certain amount of mass suction is applied through the porous sheet, which depends on the Williamson parameter, convective parameter, and radiation parameter.

  15. Convective heat and mass transfer in three-dimensional mixed convection flow of viscoelastic fluid in presence of chemical reaction and heat source/sink

    Science.gov (United States)

    Bilal Ashraf, M.; Alsaedi, A.; Hayat, T.; Shehzad, S. A.

    2017-06-01

    Heat and mass transfer effects in the three-dimensional mixed convection flow of a viscoelastic fluid with internal heat source/sink and chemical reaction have been investigated in the present work. The flow generation is because of an exponentially stretching surface. Magnetic field normal to the direction of flow is considered. Convective conditions at the surface are also encountered. Appropriate similarity transformations are utilized to reduce the boundary layer partial differential equations into the ordinary differential equations. The homotopy analysis method is used to develop the solution expressions. Impacts of different controlling parameters such as ratio parameter, Hartman number, internal heat source/sink, chemical reaction, mixed convection, concentration buoyancy parameter and Biot numbers on the velocity, temperature and concentration profiles are analyzed. The local Nusselt and Sherwood numbers are sketched and examined.

  16. Conformal higher-order viscoelastic fluid mechanics

    CERN Document Server

    Fukuma, Masafumi

    2012-01-01

    We present a generally covariant formulation of conformal higher-order viscoelastic fluid mechanics with strain allowed to take arbitrarily large values. We give a general prescription to determine the dynamics of a relativistic viscoelastic fluid in a way consistent with the hypothesis of local thermodynamic equilibrium and the second law of thermodynamics. We then elaborately study the transient time scales at which the strain almost relaxes and becomes proportional to the gradients of velocity. We particularly show that a conformal second-order fluid with all possible parameters in the constitutive equations can be obtained without breaking the hypothesis of local thermodynamic equilibrium, if the conformal fluid is defined as the long time limit of a conformal second-order viscoelastic system. We also discuss how local thermodynamic equilibrium could be understood in the context of the fluid/gravity correspondence.

  17. Conformal higher-order viscoelastic fluid mechanics

    Science.gov (United States)

    Fukuma, Masafumi; Sakatani, Yuho

    2012-06-01

    We present a generally covariant formulation of conformal higher-order viscoelastic fluid mechanics with strain allowed to take arbitrarily large values. We give a general prescription to determine the dynamics of a relativistic viscoelastic fluid in a way consistent with the hypothesis of local thermodynamic equilibrium and the second law of thermodynamics. We then elaborately study the transient time scales at which the strain almost relaxes and becomes proportional to the gradients of velocity. We particularly show that a conformal second-order fluid with all possible parameters in the constitutive equations can be obtained without breaking the hypothesis of local thermodynamic equilibrium, if the conformal fluid is defined as the long time limit of a conformal second-order viscoelastic system. We also discuss how local thermodynamic equilibrium could be understood in the context of the fluid/gravity correspondence.

  18. Fluid Mechanics of Blood Clot Formation.

    Science.gov (United States)

    Fogelson, Aaron L; Neeves, Keith B

    2015-01-01

    Intravascular blood clots form in an environment in which hydrodynamic forces dominate and in which fluid-mediated transport is the primary means of moving material. The clotting system has evolved to exploit fluid dynamic mechanisms and to overcome fluid dynamic challenges to ensure that clots that preserve vascular integrity can form over the wide range of flow conditions found in the circulation. Fluid-mediated interactions between the many large deformable red blood cells and the few small rigid platelets lead to high platelet concentrations near vessel walls where platelets contribute to clotting. Receptor-ligand pairs with diverse kinetic and mechanical characteristics work synergistically to arrest rapidly flowing cells on an injured vessel. Variations in hydrodynamic stresses switch on and off the function of key clotting polymers. Protein transport to, from, and within a developing clot determines whether and how fast it grows. We review ongoing experimental and modeling research to understand these and related phenomena.

  19. Indicators of Student Engagement in Fluid Mechanics

    Science.gov (United States)

    Hertzberg, Jean; Goodman, Katherine

    2015-11-01

    Many engineering programs require a fluids course. Standards such as ABET ensure that it is technically accurate. To keep students engaged, however, we need to ask: does this course present our discipline in its most salient and meaningful form? As part of an ongoing investigation of a technical elective called Flow Visualization, we compare student surveys from both Flow Vis and a required Fluid Mechanics course. Surveys going back to 2008-2012 found that Fluid Mechanics students in Mechanical Engineering at the University of Colorado Boulder tended to have a negative shift in affect. That is, they were less likely to believe studying fluids was important to them as engineers and to society in general by the end of the course. More recent surveys find that this has become neutral among our students: from the beginning to the end of the course, they do not report any change in the importance of fluids. The recent survey also reveals that they are now noticing fluids in everyday life significantly more often. This expanded perception is a hallmark of the Deweyan transformative experience, a framework to evaluate the motivational and affective aspects of a course. Suggestions of why these changes have taken place are drawn from open-response survey items and student interviews. This material is based upon work supported by the National Science Foundation under Grant No. EC-1240294.

  20. An introduction to the mechanics of fluids

    CERN Document Server

    Truesdell, C

    2000-01-01

    The authors have backgrounds which are ideally suited for writing this book. The late C. Truesdell is well known for his monumental treatises on continuum thermomechanics. K.R. Rajagopal has made many important contributions to the mechanics of continua in general, and to nonlinear fluids in particular. They have produced a compact, moderately general book which encompasses many fluid models of current interest…The book is written very clearly and contains a large number of exercises and their solutions. The level of mathematics is that commonly taught to undergraduates in mathematics departments. This is an excellent book which is highly recommended to students and researchers in fluid mechanics. —Mathematical Reviews The writing style is quintessential Truesdellania: purely mathematical, breathtaking, irrepressible, irreverent, uncompromising, taking no prisoners...The book is filled with historical nuggets…Its pure, exact mathematics will baptize, enlighten and exhilarate. —Applied Mechanics Review...

  1. Mechanics of coupled granular/fluid flows

    Science.gov (United States)

    Vinningland, J.; Toussaint, R.; Johnsen, O.; Flekkoy, E. G.; Maloy, K. J.

    2006-12-01

    We introduce a hybrid numerical model for coupled flow of solid grains and intersticial fluid, which renders for complex hydrodynamic interactions between mobile grains. This model treats the solid phase as discrete particles, interacting mechanically with the other particles and with the intersticial flowing fluid. The fluid is described by continuum equations rendering for its advection by the local grains, superposed to a pressure diffusion ruled by a Darcy flow with a permeability depending on the local solid fraction. This model is aimed at describing accurately such coupled flow. This model is tested for two model situations, where it is compared to experimental results: 1/ Injection of a localized overpressure in a grain/fluid filled cell lying horizontally, where gravity is unimportant. 2/ Sedimentation of heavy grains falling into an initially grain-free fluid region. The development of pattern-forming instabilities is obtained in these two situations, corresponding to granular/fluid equivalents of the two-fluids Saffman-Taylor and Rayleigh-Taylor instabilities. Numerical and experimental results are shown to be consistent with each other.

  2. Laminar Natural Convection of Newtonian and Non – Newtonian Fluids Inside Triangular Enclosure

    Directory of Open Access Journals (Sweden)

    Ala?a Abbas Muhadi

    2007-01-01

    Full Text Available In the present work, steady two – dimensional laminar natural convection heat transfer of Newtonian and non-Newtonian fluids inside isosceles triangular enclosure has been analyzed numerically for a wide range of the modified Rayleigh numbers of (103 ≤ Ra ≤ 105, with non-dimensional parameter (NE of Prandtl – Eyring model ranging from (0 to 10, and modified Prandtl number take in the range (Pr* =1,10, and 100. Two types of boundary conditions have been considered. The first, when the inclined walls are heated with different uniform temperatures and the lower wall is insulated. The second, when the bottom wall is heated by applying a uniform heat flux while the inclined walls at the constant cold temperature. Also, the non-Newtonian fluids under consideration were assumed to obey the Prandtl – Eyring model..The results are presented in terms of isotherms and streamlines to show the behavior of the fluid flow and temperature fields. In addition, some graphics are presented the relation between average Nusselt number and the various parameters. The results show the effect of non – dimensional parameter (NE on the velocity and temperature profiles. They also show that the average Nusselt number is a strong function of modified Rayleigh number, modified Prandtl number, non-dimensional parameter, and the boundary conditions. Four different correlations have been made to show the dependence of the average Nusselt number on the non-dimensional parameter, the modified Rayleigh and Prandtl numbers.

  3. Prandtl number scaling of unsteady natural convection boundary layers for Pr>1 fluids under isothermal heating.

    Science.gov (United States)

    Lin, Wenxian; Armfield, S W; Patterson, J C; Lei, Chengwang

    2009-06-01

    In this paper, the scalings incorporating the Prandtl number (Pr) dependence have been obtained by a scaling analysis for the unsteady natural convection boundary layer of an initially quiescent isothermal Newtonian fluid of Pr>1 produced by the sudden imposition of a higher temperature on a vertical plate. It is shown that the transient flow behavior of the resulting boundary layer can be described by a three-region structure and at the start-up stage the boundary layer development is one dimensional and independent of height due to the dominance of pure conduction; however, at steady state it becomes two dimensional and height dependent as the flow becomes dominated by convection. Numerical results demonstrate that the scalings representing the thermal boundary layer development accurately represent their Pr dependence over the whole stage of flow development. The scalings representing the viscous boundary layer development are generally in good agreement with the numerical results with the Pr variation over the whole stage of flow development, although there are small deviations from the numerical results with the Pr variation that are within acceptable limits for scaling.

  4. Influence of aligned MHD on convective boundary layer flow of viscoelastic fluid

    Science.gov (United States)

    Aziz, Laila Amera; Kasim, Abdul Rahman Mohd; Al-Sharifi, H. A. M.; Salleh, Mohd Zuki; Mohammad, Nurul Farahain; Shafie, Sharidan; Ali, Anati

    2017-05-01

    Effects of aligned Magnetohydrodynamics (MHD) on the mixed convection boundary layer flow of viscoelastic fluid past a circular cylinder with Newtonian heating is investigated. Appropriate transformation is applied to the governing partial differential equations to transform them into dimensionless forms which are then solved using finite difference method known as Keller box. For verification purpose, the preliminary numerical solutions of the model are compared with previous study with a particular condition that the magnetic and viscosity effect are both absent. With strong agreement between the previous and current results, the authors believe that the extended outcome produced from the present model is accurate. Findings from the study will be presented in tabular and graphical form.

  5. Forced convection of power-law fluids flow over a rotating nonisothermal body

    Science.gov (United States)

    Kim, H. W.; Essemyi, A. J.

    1993-10-01

    Presented is an analysis of steady laminar flow of power-law fluids past a rotating body with nonisothermal surfaces. A coordinate transformation combined with the Merk-type series expansion is employed to transform the governing momentum equations into a set of coupled ordinary differential equations. The equations are numerically integrated to obtain the axial and tangential velocity gradients for determining the friction coefficient. For forced convection, a generalized coordinate transformation is used to analyze the temperature field of the power-law flow. Solutions to the transformed energy equations are obtained in the form of universal functions. The heat transfer coefficients in terms of NuRe(sup 1/(n + 1)) are presented for a rotating sphere. The effects of power-law index, rotation sphere, Prandtl number, and the location of step discontinuity in surface temperature on the local Nusselt number are fully investigated and demonstrated.

  6. ANALYTICAL MODEL OF MHD MIXED CONVECTIVE RADIATING FLUID WITH VISCOUS DISSIPATIVE HEAT

    Directory of Open Access Journals (Sweden)

    Sahin Ahmed,

    2010-09-01

    Full Text Available The objective of this investigation is to study the influence of thermal radiation and magnetic Prandtl number on the steady MHD heat and mass transfer by mixed convection flow of a viscous, incompressible, electrically-conducting, Newtonian fluid which is an optically thin gray gas over a vertical porous plate taking into account the induced magnetic field. The similarity solutions of the transformed dimensionless governing equations are obtained by seriessolution. It is found that, velocity is reduced considerably with a rise in conduction-radiation parameter (R or Hartmann number (M whereas the rate of heat transfer is found to be markedly boosted with an increase in Hartmann number (M or radiation (R or Eckert number (

  7. Characteristics of convective heat transfer in the MHD peristalsis of Carreau fluid with Joule heating

    Science.gov (United States)

    Hayat, T.; Farooq, S.; Ahmad, B.; Alsaedi, A.

    2016-04-01

    This article addresses the characteristics of convective heat transfer and radially imposed magnetic field on peristaltic flow of an incompressible Carreau fluid in a curved channel. Joule heating is also present. Mathematical analysis has been carried out under long wavelength and low Reynolds number considerations. Solutions of the resulting non-linear system for small values of Weissenberg number are constructed. The salient features of flow quantities are pointed out with particular focus to pumping, velocity, temperature and trapping. It is observed pressure gradient enhances for larger values of power law index parameter. The velocity and temperature are decreasing functions of radial magnetic field parameter. Further the impact of Weissenberg and Biot numbers on the temperature are opposite.

  8. Free convective flow of a stratified fluid through a porous medium bounded by a vertical plane

    Directory of Open Access Journals (Sweden)

    H. K. Mondal

    1994-01-01

    Full Text Available Steady two-dimensional free convection flow of a thermally stratified viscous fluid through a highly porous medium bounded by a vertical plane surface of varying temperature, is considered. Analytical expressions for the velocity, temperature and the rate of heat transfer are obtained by perturbation method. Velocity distribution and rate of heat transfer for different values of parameters are shown in graphs. Velocity distribution is also obtained for certain values of the parameters by integrating the coupled differential equations by Runge-Kutta method and compared with the analytical solution. The chief concern of the paper is to study the effect of equilibrium temperature gradient on the velocity and the rate of heat transfer.

  9. A note on convective heat transfer of an MHD Jeffrey fluid over a stretching sheet

    Science.gov (United States)

    Ahmed, Jawad; Shahzad, Azeem; Khan, Masood; Ali, Ramzan

    2015-11-01

    This article focuses on the exact solution regarding convective heat transfer of a magnetohydrodynamic (MHD) Jeffrey fluid over a stretching sheet. The effects of joule and viscous dissipation, internal heat source/sink and thermal radiation on the heat transfer characteristics are taken in account in the presence of a transverse magnetic field for two types of boundary heating process namely prescribed power law surface temperature (PST) and prescribed heat flux (PHF). Similarity transformations are used to reduce the governing non-linear momentum and thermal boundary layer equations into a set of ordinary differential equations. The exact solutions of the reduced ordinary differential equations are developed in the form of confluent hypergeometric function. The influence of the pertinent parameters on the temperature profile is examined. In addition the results for the wall temperature gradient are also discussed in detail.

  10. A note on convective heat transfer of an MHD Jeffrey fluid over a stretching sheet

    Energy Technology Data Exchange (ETDEWEB)

    Ahmed, Jawad; Shahzad, Azeem [Department of Basic Sciences, University of Engineering and Technology, Taxila 47050 (Pakistan); Khan, Masood [Department of Mathematics, Quaid-i-Azam University, Islamabad 44000 (Pakistan); Ali, Ramzan, E-mail: alian.qau@gmail.com [Department of Applied Mathematics, TU-Dortmund (Germany); University of Central Asia, 720001 Bishkek (Kyrgyzstan)

    2015-11-15

    This article focuses on the exact solution regarding convective heat transfer of a magnetohydrodynamic (MHD) Jeffrey fluid over a stretching sheet. The effects of joule and viscous dissipation, internal heat source/sink and thermal radiation on the heat transfer characteristics are taken in account in the presence of a transverse magnetic field for two types of boundary heating process namely prescribed power law surface temperature (PST) and prescribed heat flux (PHF). Similarity transformations are used to reduce the governing non-linear momentum and thermal boundary layer equations into a set of ordinary differential equations. The exact solutions of the reduced ordinary differential equations are developed in the form of confluent hypergeometric function. The influence of the pertinent parameters on the temperature profile is examined. In addition the results for the wall temperature gradient are also discussed in detail.

  11. A note on convective heat transfer of an MHD Jeffrey fluid over a stretching sheet

    Directory of Open Access Journals (Sweden)

    Jawad Ahmed

    2015-11-01

    Full Text Available This article focuses on the exact solution regarding convective heat transfer of a magnetohydrodynamic (MHD Jeffrey fluid over a stretching sheet. The effects of joule and viscous dissipation, internal heat source/sink and thermal radiation on the heat transfer characteristics are taken in account in the presence of a transverse magnetic field for two types of boundary heating process namely prescribed power law surface temperature (PST and prescribed heat flux (PHF. Similarity transformations are used to reduce the governing non-linear momentum and thermal boundary layer equations into a set of ordinary differential equations. The exact solutions of the reduced ordinary differential equations are developed in the form of confluent hypergeometric function. The influence of the pertinent parameters on the temperature profile is examined. In addition the results for the wall temperature gradient are also discussed in detail.

  12. Peristaltic flow of a reactive viscous fluid through a porous saturated channel and convective cooling conditions

    Science.gov (United States)

    Asghar, S.; Hussain, Q.; Hayat, T.; Alsaedi, A.

    2015-07-01

    This article addresses the heat transfer in a peristaltic flow of a reactive combustible viscous fluid through a porous saturated medium. The flow here is induced because of travelling waves along the channel walls. It is assumed that exothermic chemical reactions take place within the channel under the Arrhenius kinetics and the convective heat exchange with the ambient medium at the surfaces of the channel walls follows Newton's law of cooling. The analysis is carried out in the presence of viscous dissipation and without consumption of the material. The governing equations are formulated by employing the long-wavelength approximation. Closed-form solutions for the stream function, axial velocity, and axial pressure gradient are obtained. It is found that the temperature decreases at high Biot numbers, and the Nusselt number increases with increasing reaction parameter. The Biot number and reaction parameter produce the opposite effects on the Nusselt number.

  13. Computational Fluid Dynamics (CFD Analysis of Natural Convection of Convergent-Divergent Fins in Marine Environments

    Directory of Open Access Journals (Sweden)

    K. Alawadhi

    2014-12-01

    Full Text Available Computational Fluid Dynamics (CFD analysis was carried out for the convergent-divergent fins arranged inline and staggered on the base plate as per the experimental setup provided in the technical paper [1]. This paper reports on the validation of results of modeling and simulation in CFD. The simulation was carried out using the ANSYS 12.0 as the CFD modeling software. The main objective of the CFD analysis was to calculate the temperature distribution on the surface of the base plate and surface of the convergent-divergent fins for the given inline and staggered arrangement of fins due to the effect of natural convection heat transfer for different heat power inputs, and also to compare the CFD results with the experimental results.

  14. Stability of convective flow of a conducting fluid in a magnetic field

    Energy Technology Data Exchange (ETDEWEB)

    Birikh, R.V.; Gershuni, G.Z.; Zhukhovitskii, E.M.; Rudakov, R.N.

    1978-01-01

    The steady plane-parallel convective flow of a conducting fluid through a flat vertical channel, with constant wall temperatures, is analyzed with necessary approximations by the Galerkin perturbation method and the Runge-Kutta method of stepwise orthogonalization. The differential equation for the amplitude of flow and temperature perturbations, first in a transverse and then in a longitudinal magnetic field, is solved and, on this basis, the stability limits are calculated in terms of the Grashof number as well as the Hartmann number. Plane perturbations are found to be most dangerous to stability in a longitudinal field, but no definite conclusion has been arrived at concerning the effect of spatial perturbations in a transverse field. 5 references, 6 figures.

  15. Introductory fluid mechanics for physicists and mathematicians

    CERN Document Server

    Pert, Geoffrey J

    2013-01-01

    This textbook presents essential methodology for physicists of the theory and applications of fluid mechanics within a single volume.  Building steadily through a syllabus, it will be relevant to almost all undergraduate physics degrees which include an option on hydrodynamics, or a course in which hydrodynamics figures prominently.

  16. Topological fluid mechanics of Axisymmetric Flow

    DEFF Research Database (Denmark)

    Brøns, Morten

    1998-01-01

    to the authors knowledge has not been used systematically to high orders in topological fluid mechanics. We compare the general results with experimental and computational results on the Vogel-Ronneberg flow. We show that the topology changes observed when recirculating bubbles on the vortex axis are created...

  17. Isogeometric shape optimization in fluid mechanics

    DEFF Research Database (Denmark)

    Nørtoft, Peter; Gravesen, Jens

    2013-01-01

    The subject of this work is numerical shape optimization in fluid mechanics, based on isogeometric analysis. The generic goal is to design the shape of a 2-dimensional flow domain to minimize some prescribed objective while satisfying given geometric constraints. As part of the design problem...

  18. Double-diffusive natural convective boundary-layer flow of a nano-fluid past a vertical plate

    Energy Technology Data Exchange (ETDEWEB)

    Kuznetsov, A.V. [Department of Mechanical and Aerospace Engineering, North Carolina State University, Campus Box 7910, Raleigh, NC 27695-7910 (United States); Nield, D.A. [Department of Engineering Science, University of Auckland, Private Bag 92019, Auckland 1142 (New Zealand)

    2011-05-15

    The double-diffusive natural convective boundary-layer flow of a nano-fluid past a vertical plate is studied analytically. The model used for the binary nano-fluid incorporates the effects of Brownian motion and thermophoresis. In addition the thermal energy equations include regular diffusion and cross-diffusion terms. A similarity solution is presented. Numerical calculations were performed in order to obtain correlation formulas giving the reduced Nusselt number as a function of the various relevant parameters. (authors)

  19. Thermal convection of an internally heated infinite Prandtl number fluid in a spherical shell. [earth core-mantle-surface model

    Science.gov (United States)

    Schubert, G.; Zebib, A.

    1980-01-01

    A Galerkin technique is used to study the finite-amplitude axisymmetric steady convective motions of an infinite Prandtl number Boussinesq fluid in a spherical shell. Two types of heating are considered: in one case, convection is driven both by internal heat sources in the fluid and by an externally imposed temperature drop across the shell boundaries; in the other case, only internal heat sources drive convection and the lower boundary of the shell is adiabatic. Two distinct classes of axisymmetric steady states are found to be possible: states characterized by temperature and radial velocity fields that are symmetric about an equatorial plane; and a class of solutions that does not possess any symmetry properties about the equatorial plane.

  20. THE SPATIO-TEMPORAL STRUCTURE OF BINARY FLUID CONVECTION WITH HORIZONTAL FLOW

    Institute of Scientific and Technical Information of China (English)

    NING Li-zhong; YOSHIFUMI Harada; HIDEO Yahata; LI Jian-zhong

    2004-01-01

    The convection structure in a rectangular channel with a horizontal flow forΓ= 12 was studied. The simulations were preformed by solving the hydrodynamic equations using the SIMPLE method. The convective behavior in an absolutely and convectively unstable regime was studied. The results show that the two types of convection patterns in this system appear depending on the convection intensity and horizontal flow. A periodically localized traveling wave state was found in this system.

  1. Neural Control Mechanisms and Body Fluid Homeostasis

    Science.gov (United States)

    Johnson, Alan Kim

    1998-01-01

    The goal of the proposed research was to study the nature of afferent signals to the brain that reflect the status of body fluid balance and to investigate the central neural mechanisms that process this information for the activation of response systems which restore body fluid homeostasis. That is, in the face of loss of fluids from intracellular or extracellular fluid compartments, animals seek and ingest water and ionic solutions (particularly Na(+) solutions) to restore the intracellular and extracellular spaces. Over recent years, our laboratory has generated a substantial body of information indicating that: (1) a fall in systemic arterial pressure facilitates the ingestion of rehydrating solutions and (2) that the actions of brain amine systems (e.g., norepinephrine; serotonin) are critical for precise correction of fluid losses. Because both acute and chronic dehydration are associated with physiological stresses, such as exercise and sustained exposure to microgravity, the present research will aid in achieving a better understanding of how vital information is handled by the nervous system for maintenance of the body's fluid matrix which is critical for health and well-being.

  2. Interfacial Fluid Mechanics A Mathematical Modeling Approach

    CERN Document Server

    Ajaev, Vladimir S

    2012-01-01

    Interfacial Fluid Mechanics: A Mathematical Modeling Approach provides an introduction to mathematical models of viscous flow used in rapidly developing fields of microfluidics and microscale heat transfer. The basic physical effects are first introduced in the context of simple configurations and their relative importance in typical microscale applications is discussed. Then,several configurations of importance to microfluidics, most notably thin films/droplets on substrates and confined bubbles, are discussed in detail.  Topics from current research on electrokinetic phenomena, liquid flow near structured solid surfaces, evaporation/condensation, and surfactant phenomena are discussed in the later chapters. This book also:  Discusses mathematical models in the context of actual applications such as electrowetting Includes unique material on fluid flow near structured surfaces and phase change phenomena Shows readers how to solve modeling problems related to microscale multiphase flows Interfacial Fluid Me...

  3. Forced convective heat transfer in boundary layer flow of Sisko fluid over a nonlinear stretching sheet.

    Science.gov (United States)

    Munir, Asif; Shahzad, Azeem; Khan, Masood

    2014-01-01

    The major focus of this article is to analyze the forced convective heat transfer in a steady boundary layer flow of Sisko fluid over a nonlinear stretching sheet. Two cases are studied, namely (i) the sheet with variable temperature (PST case) and (ii) the sheet with variable heat flux (PHF case). The heat transfer aspects are investigated for both integer and non-integer values of the power-law index. The governing partial differential equations are reduced to a system of nonlinear ordinary differential equations using appropriate similarity variables and solved numerically. The numerical results are obtained by the shooting method using adaptive Runge Kutta method with Broyden's method in the domain[Formula: see text]. The numerical results for the temperature field are found to be strongly dependent upon the power-law index, stretching parameter, wall temperature parameter, material parameter of the Sisko fluid and Prandtl number. In addition, the local Nusselt number versus wall temperature parameter is also graphed and tabulated for different values of pertaining parameters. Further, numerical results are validated by comparison with exact solutions as well as previously published results in the literature.

  4. Forced Convective Heat Transfer in Boundary Layer Flow of Sisko Fluid over a Nonlinear Stretching Sheet

    Science.gov (United States)

    Munir, Asif; Shahzad, Azeem; Khan, Masood

    2014-01-01

    The major focus of this article is to analyze the forced convective heat transfer in a steady boundary layer flow of Sisko fluid over a nonlinear stretching sheet. Two cases are studied, namely (i) the sheet with variable temperature (PST case) and (ii) the sheet with variable heat flux (PHF case). The heat transfer aspects are investigated for both integer and non-integer values of the power-law index. The governing partial differential equations are reduced to a system of nonlinear ordinary differential equations using appropriate similarity variables and solved numerically. The numerical results are obtained by the shooting method using adaptive Runge Kutta method with Broyden’s method in the domain. The numerical results for the temperature field are found to be strongly dependent upon the power-law index, stretching parameter, wall temperature parameter, material parameter of the Sisko fluid and Prandtl number. In addition, the local Nusselt number versus wall temperature parameter is also graphed and tabulated for different values of pertaining parameters. Further, numerical results are validated by comparison with exact solutions as well as previously published results in the literature. PMID:24949738

  5. A Fundamental Study of Convective Mixing of CO2 in Layered Heterogeneous Saline Aquifers with Low Permeability Zones using Surrogate Fluids and Numerical Modeling

    Science.gov (United States)

    Agartan, E.; Illangasekare, T. H.; Cihan, A.; Birkholzer, J. T.; Zhou, Q.; Trevisan, L.

    2013-12-01

    Dissolution trapping is one of the primary mechanisms contributing to long-term and stable storage of supercritical CO2 (scCO2) in deep saline geologic formations. When entrapped scCO2 dissolves in formation brine, density-driven convective fingers are expected to be generated due to the higher density of the solution compared to brine. These fingers enhance mixing of dissolved scCO2 in brine (Ennis-King & Paterson, 2003). The goal of this study is to evaluate the contribution of convective mixing to dissolution trapping of CO2 in naturally layered heterogeneous formations with low permeability zones via experimental and numerical analyses. To understand the fundamental process of dissolution trapping in the laboratory under ambient pressure and temperature conditions, a group of surrogate fluids were selected according to their density and viscosity values before and after dissolution. Fluids were tested in a variety of porous media systems. After selection of the appropriate fluid mixture based on the closest behavior to scCO2 brine systems, a set of experiments in a small homogeneously packed test tank was performed to analyze the fingering behaviors. A second set of experiments was conducted in the same test tank with layered soil systems to study the effects of formation heterogeneity on convective mixing. A finite volume method based numerical code was developed to capture the dominant processes observed in the experiments. This model was then used to simulate more complex heterogeneous systems that were not represented in the limited set of experiments. Results of these analyses suggest that convective fingers developed in homogeneous formations may not be significantly contributing to mixing and hence dissolution trapping in heterogeneous formations depending on the permeability contrasts and thickness of the low permeability layers.

  6. Linear analysis on the onset of thermal convection of highly compressible fluids: implications for the mantle convection of super-Earths

    Science.gov (United States)

    Kameyama, Masanori; Miyagoshi, Takehiro; Ogawa, Masaki

    2015-02-01

    A series of linear analysis was performed on the onset of thermal convection of highly compressible fluids, in order to deepen the fundamental insights into the mantle convection of massive super-Earths in the presence of strong adiabatic compression. We consider the temporal evolution (growth or decay) of an infinitesimal perturbation superimposed to a highly compressible fluid which is in a hydrostatic (motionless) and conductive state in a basally heated horizontal layer. As a model of pressure-dependence in material properties, we employed an exponential decrease in thermal expansivity α and exponential increase in (reference) density ρ with depth. The linearized equations for conservation of mass, momentum and internal (thermal) energy are numerically solved for the critical Rayleigh number as well as the vertical profiles of eigenfunctions for infinitesimal perturbations. The above calculations are repeatedly carried out by systematically varying (i) the dissipation number (Di), (ii) the temperature at the top surface and (iii) the magnitude of pressure-dependence in α and ρ. Our analysis demonstrated that the onset of thermal convection is strongly affected by the adiabatic compression, in response to the changes in the static stability of thermal stratification in the fluid layer. For sufficiently large Di where a thick sublayer of stable stratification develops in the layer, for example, the critical Rayleigh number explosively increases with Di, together with drastic decreases in the length scales of perturbations both in vertical and horizontal directions. In particular, for very large Di, a thick `stratosphere' occurs in the fluid layer where the vertical motion is significantly suppressed, resulting in a shrink of the incipient convection in a thin sublayer of unstable thermal stratification. In addition, when Di exceeds a threshold value above which a thermal stratification becomes stable in the entire layer, no perturbation is allowed to grow

  7. Unsteady magnetohydrodynamic free convection flow of a second grade fluid in a porous medium with ramped wall temperature.

    Science.gov (United States)

    Samiulhaq; Ahmad, Sohail; Vieru, Dumitru; Khan, Ilyas; Shafie, Sharidan

    2014-01-01

    Magnetic field influence on unsteady free convection flow of a second grade fluid near an infinite vertical flat plate with ramped wall temperature embedded in a porous medium is studied. It has been observed that magnitude of velocity as well as skin friction in case of ramped temperature is quite less than the isothermal temperature. Some special cases namely: (i) second grade fluid in the absence of magnetic field and porous medium and (ii) Newtonian fluid in the presence of magnetic field and porous medium, performing the same motion are obtained. Finally, the influence of various parameters is graphically shown.

  8. Three-dimensional natural convection of a fluid with temperature-dependent viscosity in an enclosure with localized heating

    Science.gov (United States)

    Torczynski, J. R.; Henderson, J. A.; Ohern, T. J.; Chu, T. Y.; Blanchat, T. K.

    Three-dimensional natural convection of a fluid in an enclosure is examined. The geometry is motivated by a possible magmaenergy extraction system, and the fluid is a magma simulant and has a highly temperature-dependent viscosity. Flow simulations are performed for enclosures with and without a cylinder, which represents the extractor, using the finite-element code FIDAP (Fluid Dynamics International). The presence of the cylinder completely alters the flow pattern. Flow-visualization and PIV experiments are in qualitative agreement with the simulations.

  9. Unsteady Magnetohydrodynamic Free Convection Flow of a Second Grade Fluid in a Porous Medium with Ramped Wall Temperature

    Science.gov (United States)

    Samiulhaq; Ahmad, Sohail; Vieru, Dumitru; Khan, Ilyas; Shafie, Sharidan

    2014-01-01

    Magnetic field influence on unsteady free convection flow of a second grade fluid near an infinite vertical flat plate with ramped wall temperature embedded in a porous medium is studied. It has been observed that magnitude of velocity as well as skin friction in case of ramped temperature is quite less than the isothermal temperature. Some special cases namely: (i) second grade fluid in the absence of magnetic field and porous medium and (ii) Newtonian fluid in the presence of magnetic field and porous medium, performing the same motion are obtained. Finally, the influence of various parameters is graphically shown. PMID:24785147

  10. Investigation of the two-layer fluid flows with evaporation at interface on the basis of the exact solutions of the 3D problems of convection

    Science.gov (United States)

    Goncharova, O. N.; Kabov, O. A.

    2016-10-01

    New physical experiments in the Institute of Thermophysics SB RAS allow one to investigate structure of the flows of liquid layers being under action of the co-current gas flux. The flow topology is determined by four main mechanisms: natural and thermocapillary convection, tangential stresses induced by the flow of gas and mass transfer due to evaporation at the interface. Mathematical modeling of the fluid flows in an infinite channel of the rectangular cross section is carried out on the basis of a solution of special type of the convection equations. The effects of thermodiffusion and diffusive thermal conductivity in the gas phase and evaporation at the thermocapillary interface are taken into consideration. Numerical investigations are performed for the liquid-gas (ethanol-nitrogen) system under normal and low gravity.

  11. Do tropical wetland plants possess a convective gas flow mechanism?

    DEFF Research Database (Denmark)

    Jensen, Dennis Konnerup; Sorrell, Brian Keith; Brix, Hans

    2011-01-01

    in 20 common wetland plants from the Mekong Delta in Vietnam. The diel variation in pressurization in culms and the convective flow and gas composition from stubbles were examined for Eleocharis dulcis, Phragmites vallatoria and Hymenachne acutigluma, and related to light, humidity and air temperature...

  12. Falsification of dark energy by fluid mechanics

    CERN Document Server

    Gibson, Carl H

    2012-01-01

    The 2011 Nobel Prize in Physics was awarded for the discovery of accelerating supernovae dimness, suggesting a remarkable change in the expansion rate of the Universe from a decrease since the big bang to an increase, driven by anti-gravity forces of a mysterious dark energy material comprising 70% of the Universe mass-energy. Fluid mechanical considerations falsify both the accelerating expansion and dark energy concepts. Kinematic viscosity is neglected in current standard models of self-gravitational structure formation, which rely on cold dark matter CDM condensations and clusterings that are also falsified by fluid mechanics. Weakly collisional CDM particles do not condense but diffuse away. Photon viscosity predicts superclustervoid fragmentation early in the plasma epoch and protogalaxies at the end. At the plasma-gas transition, the plasma fragments into Earth-mass gas planets in trillion planet clumps (proto-globular-star-cluster PGCs). The hydrogen planets freeze to form the dark matter of galaxies ...

  13. Adiabatic heating and convection caused by a fixed-heat-flux source in a near-critical fluid.

    Science.gov (United States)

    Soboleva, E B

    2003-10-01

    Dynamics and heat transfer in a near-critical fluid in a square cavity with a finite heat source located at the bottom are studied numerically. A thermally insulated enclosure and a fixed-heat-flux source are considered. The two-dimensional simulation is based on the full Navier-Stokes equations with two-scale splitting of the pressure and the van der Waals equation of state. It is shown that the piston effect is independent of convection. Near the critical point, this effect becomes independent of criticality and convective motions are damped.

  14. MHD mixed convection flow of power law non-Newtonian fluids over an isothermal vertical wavy plate

    Science.gov (United States)

    Mirzaei Nejad, Mehrzad; Javaherdeh, K.; Moslemi, M.

    2015-09-01

    Mixed convection flow of electrically conducting power law fluids along a vertical wavy surface in the presence of a transverse magnetic field is studied numerically. Prandtl coordinate transformation together with the spline alternating direction implicit method is employed to solve the boundary layer equations. The influences of both flow structure and dominant convection mode on the overall parameters of flow and heat transfer are well discussed. Also, the role of magnetic field in controlling the boundary layers is investigated. The variation of Nusselt number and skin friction coefficient are studied as functions of wavy geometry, magnetic field, buoyancy force and material parameters. Results reveal the interrelation of the contributing factors.

  15. Buoyancy Effects on Unsteady MHD Flow of a Reactive Third-Grade Fluid with Asymmetric Convective Cooling

    Directory of Open Access Journals (Sweden)

    Tirivanhu Chinyoka

    2015-01-01

    Full Text Available This article examines the combined effects of buoyancy force and asymmetrical convective cooling on unsteady MHD channel flow and heat transfer characteristics of an incompressible, reactive, variable viscosity and electrically conducting third grade fluid. The chemical kinetics in the flow system is exothermic and the asymmetric convective heat transfers at the channel walls follow the Newton’s law of cooling. The coupled nonlinear partial differential equations governing the problem are derived and solved numerically using a semi-implicit finite difference scheme. Graphical results are presented and physical aspects of the problem are discussed with respect to various parameters embedded in the system.

  16. Modelling of large-scale structures arising under developed turbulent convection in a horizontal fluid layer (with application to the problem of tropical cyclone origination

    Directory of Open Access Journals (Sweden)

    G. V. Levina

    2000-01-01

    Full Text Available The work is concerned with the results of theoretical and laboratory modelling the processes of the large-scale structure generation under turbulent convection in the rotating-plane horizontal layer of an incompressible fluid with unstable stratification. The theoretical model describes three alternative ways of creating unstable stratification: a layer heating from below, a volumetric heating of a fluid with internal heat sources and combination of both factors. The analysis of the model equations show that under conditions of high intensity of the small-scale convection and low level of heat loss through the horizontal layer boundaries a long wave instability may arise. The condition for the existence of an instability and criterion identifying the threshold of its initiation have been determined. The principle of action of the discovered instability mechanism has been described. Theoretical predictions have been verified by a series of experiments on a laboratory model. The horizontal dimensions of the experimentally-obtained long-lived vortices are 4÷6 times larger than the thickness of the fluid layer. This work presents a description of the laboratory setup and experimental procedure. From the geophysical viewpoint the examined mechanism of the long wave instability is supposed to be adequate to allow a description of the initial step in the evolution of such large-scale vortices as tropical cyclones - a transition form the small-scale cumulus clouds to the state of the atmosphere involving cloud clusters (the stage of initial tropical perturbation.

  17. Falsification of dark energy by fluid mechanics

    OpenAIRE

    Carl H. Gibson

    2012-01-01

    The 2011 Nobel Prize in Physics was awarded for the discovery of accelerating supernovae dimness, suggesting a remarkable change in the expansion rate of the Universe from a decrease since the big bang to an increase, driven by anti-gravity forces of a mysterious dark energy material comprising 70% of the Universe mass-energy. Fluid mechanical considerations falsify both the accelerating expansion and dark energy concepts. Kinematic viscosity is neglected in current standard models of self-gr...

  18. Attracting Students to Fluid Mechanics with Coffee

    Science.gov (United States)

    Ristenpart, William

    2016-11-01

    We describe a new class developed at U.C. Davis titled "The Design of Coffee," which serves as a nonmathematical introduction to chemical engineering as illustrated by the process of roasting and brewing coffee. Hands-on coffee experiments demonstrate key engineering principles, including material balances, chemical kinetics, mass transfer, conservation of energy, and fluid mechanics. The experiments lead to an engineering design competition where students strive to make the best tasting coffee using the least amount of energy - a classic engineering optimization problem, but one that is both fun and tasty. "The Design of Coffee" started as a freshmen seminar in 2013, and it has exploded in popularity: it now serves 1,533 students per year, and is the largest and most popular elective course at U.C. Davis. In this talk we focus on the class pedagogy as applied to fluid mechanics, with an emphasis on how coffee serves as an engaging and exciting topic for teaching students about fluid mechanics in an approachable, hands-on manner.

  19. Statistical mechanical theory of fluid mixtures

    Science.gov (United States)

    Zhao, Yueqiang; Wu, Zhengming; Liu, Weiwei

    2014-01-01

    A general statistical mechanical theory of fluid mixtures (liquid mixtures and gas mixtures) is developed based on the statistical mechanical expression of chemical potential of components in the grand canonical ensemble, which gives some new relationships between thermodynamic quantities (equilibrium ratio Ki, separation factor α and activity coefficient γi) and ensemble average potential energy u for one molecule. The statistical mechanical expressions of separation factor α and activity coefficient γi derived in this work make the fluid phase equilibrium calculations can be performed by molecular simulation simply and efficiently, or by the statistical thermodynamic approach (based on the saturated-vapor pressure of pure substance) that does not need microscopic intermolecular pair potential functions. The physical meaning of activity coefficient γi in the liquid phase is discussed in detail from a viewpoint of molecular thermodynamics. The calculated Vapor-Liquid Equilibrium (VLE) properties of argon-methane, methanol-water and n-hexane-benzene systems by this model fit well with experimental data in references, which indicates that this model is accurate and reliable in the prediction of VLE properties for small, large and strongly associating molecules; furthermore the statistical mechanical expressions of separation factor α and activity coefficient γi have good compatibility with classical thermodynamic equations and quantum mechanical COSMO-SAC approach.

  20. Convection flow study within a horizontal fluid layer under the action of gas flow

    Directory of Open Access Journals (Sweden)

    Kreta Aleksei

    2016-01-01

    Full Text Available Experimental investigation of convective processes within horizontal evaporating liquid layer under shear–stress of gas flow is presented. It is found the structures of the convection, which move in opposite direction relative to each other. First convective structure moves in reverse direction with the flow of gas, and the second convective structure moves towards the gas flow. Convection flow within the liquid layer is registered with help of PIV technique. Average evaporation flow rate of Ethanol liquid layer under Air gas flow is measured. Influence of the gas velocity, at a constant temperature of 20 °C, on the evaporation flow rate has been studied.

  1. A Fundamental Study of Convective Mixing Contributing to Dissolution Trapping of CO2 in Heterogeneous Geologic Media using Surrogate Fluids and Numerical Modeling

    Science.gov (United States)

    Illangasekare, Tissa; Agartan, Eliff; Trevisan, Luca; Cihan, Abdullah; Birkholzer, Jens; Zhou, Quanlin

    2013-04-01

    Geologic sequestration of carbon dioxide is considered as an important strategy to slow down global warming and hence climate change. Dissolution trapping is one of the primary mechanisms contributing to long-term storage of supercritical CO2 (scCO2) in deep saline geologic formations. When liquid scCO2 is injected into the formation, its density is less than density of brine. During the movement of injected scCO2 under the effect of buoyancy forces, it is immobilized due to capillary forces. With the progress of time, entrapped scCO2 dissolves in formation brine, and density-driven convective fingers are expected to be generated due to the higher density of the solute compared to brine. These fingers enhance mixing of dissolved CO2 in brine. The development and role of these convective fingers in mixing in homogeneous formations have been studied in past investigations. The goal of this study is to evaluate the contribution of convective mixing to dissolution trapping of scCO2 in naturally heterogeneous geologic formations via laboratory experiments and numerical analyses. To mimic the dissolution of scCO2 in formation brine under ambient laboratory conditions, a group of surrogate fluids were selected according to their density and viscosity ratios, and tested in different fluid/fluid mixtures and variety of porous media test systems. After selection of the appropriate fluid mixture, a set of experiments in a small test tank packed in homogeneous configurations was performed in order to analyze the fingering behavior. A second set of experiments was conducted for layered systems to study the effects of formation heterogeneity on convective mixing. To capture the dominant processes observed in the experiments, a Finite Volume based numerical code was developed. The model was then used to simulate more complex heterogeneous systems that were not represented in the experiments. Results of these analyses suggest that density-driven convective fingers that contributes

  2. Hydrodynamics and convection enhanced macromolecular fluid transport in soft biological tissues: Application to solid tumor.

    Science.gov (United States)

    Dey, Bibaswan; Sekhar, G P Raja

    2016-04-21

    This work addresses a theoretical framework for transvascular exchange and extravascular transport of solute macromolecules through soft interstitial space inside a solid tumor. Most of the soft biological tissues show materialistic properties similar to deformable porous material. They exhibit mechanical behavior towards the fluid motion since the solid phase of the tumor tissue gets compressed by the drag force that is associated with the extracellular fluid flow. This paper presents a general view about the transvascular and interstitial transport of solute nutrients inside a tumor in the macroscopic level. Modified Starling׳s equation is used to describe transvascular nutrient transport. On the macroscopic level, motion of extracellular fluid within the tumor interstitium is modeled with the help of biphasic mixture theory and a spherical symmetry solution is given as a simpler case. This present model describes the average interstitial fluid pressure (IFP), extracellular fluid velocity (EFV) and flow rate of extracellular fluid, as well as the deformation of the solid phase of the tumor tissue as an immediate cause of extracellular fluid flow. When the interstitial transport is diffusion dominated, an analytical treatment of advection-diffusion-reaction equation finds the overall nutrient distribution. We propose suitable criteria for the formation of necrosis within the tumor interstitium. This study introduces some parameters that represent the nutrient supply from tumor blood vessels into the tumor extracellular space. These transport parameters compete with the reversible nutrient metabolism of the tumor cells present in the interstitium. The present study also shows that the effectiveness factor corresponding to a first order nutrient metabolism may reach beyond unity if the strength of the distributive solute source assumes positive non-zero values.

  3. Finite Element Solution of Unsteady Mixed Convection Flow of Micropolar Fluid over a Porous Shrinking Sheet

    Directory of Open Access Journals (Sweden)

    Diksha Gupta

    2014-01-01

    Full Text Available The objective of this investigation is to analyze the effect of unsteadiness on the mixed convection boundary layer flow of micropolar fluid over a permeable shrinking sheet in the presence of viscous dissipation. At the sheet a variable distribution of suction is assumed. The unsteadiness in the flow and temperature fields is caused by the time dependence of the shrinking velocity and surface temperature. With the aid of similarity transformations, the governing partial differential equations are transformed into a set of nonlinear ordinary differential equations, which are solved numerically, using variational finite element method. The influence of important physical parameters, namely, suction parameter, unsteadiness parameter, buoyancy parameter and Eckert number on the velocity, microrotation, and temperature functions is investigated and analyzed with the help of their graphical representations. Additionally skin friction and the rate of heat transfer have also been computed. Under special conditions, an exact solution for the flow velocity is compared with the numerical results obtained by finite element method. An excellent agreement is observed for the two sets of solutions. Furthermore, to verify the convergence of numerical results, calculations are conducted with increasing number of elements.

  4. Unsteady MHD Mixed Convection Flow of a Micropolar Fluid Over a Vertical Wedge

    Science.gov (United States)

    Roy, N. C.; Gorla, R. S. R.

    2017-05-01

    An analysis is presented to investigate the unsteady magnetohydrodynamic (MHD) mixed convection boundary-layer flow of a micropolar fluid over a vertical wedge in the presence of thermal radiation and heat generation or absorption. The free-stream velocity and surface temperature are assumed to be oscillating in magnitude but not in the direction of the oncoming flow velocity. The governing equations have been solved by two distinct methods, namely, the finite difference method for the entire frequency range, and the series solution for low frequency range and the asymptotic series expansion method for the high frequency range. Numerical solutions provide a good agreement with the series solutions. The amplitudes of skin friction and couple stress coefficients are found to be strongly dependent on the Richardson number and the vortex viscosity parameter. The Prandtl number, the conduction-radiation parameter, the surface temperature parameter and the pressure gradient parameter significantly affect the amplitudes of skin friction, couple stress and surface heat transfer rates. However, the amplitudes of skin friction coefficient are considerably affected by the magnetic field parameter, whereas the amplitudes of heat transfer rate are appreciably changed with the heat generation or absorption parameter. In addition, results are presented for the transient skin friction, couple stress and heat transfer rate with the variations of the Richardson number, the vortex viscosity parameter, the pressure gradient parameter and the magnetic field parameter.

  5. Flow and heat transfer in Sisko fluid with convective boundary condition.

    Science.gov (United States)

    Malik, Rabia; Khan, Masood; Munir, Asif; Khan, Waqar Azeem

    2014-01-01

    In this article, we have studied the flow and heat transfer in Sisko fluid with convective boundary condition over a nonisothermal stretching sheet. The flow is influenced by non-linearly stretching sheet in the presence of a uniform transverse magnetic field. The partial differential equations governing the problem have been reduced by similarity transformations into the ordinary differential equations. The transformed coupled ordinary differential equations are then solved analytically by using the homotopy analysis method (HAM) and numerically by the shooting method. Effects of different parameters like power-law index n, magnetic parameter M, stretching parameter s, generalized Prandtl number Pr and generalized Biot number γ are presented graphically. It is found that temperature profile increases with the increasing value of M and γ whereas it decreases for Pr. Numerical values of the skin-friction coefficient and local Nusselt number are tabulated at various physical situations. In addition, a comparison between the HAM and exact solutions is also made as a special case and excellent agreement between results enhance a confidence in the HAM results.

  6. Finite element solution of unsteady mixed convection flow of micropolar fluid over a porous shrinking sheet.

    Science.gov (United States)

    Gupta, Diksha; Kumar, Lokendra; Singh, Bani

    2014-01-01

    The objective of this investigation is to analyze the effect of unsteadiness on the mixed convection boundary layer flow of micropolar fluid over a permeable shrinking sheet in the presence of viscous dissipation. At the sheet a variable distribution of suction is assumed. The unsteadiness in the flow and temperature fields is caused by the time dependence of the shrinking velocity and surface temperature. With the aid of similarity transformations, the governing partial differential equations are transformed into a set of nonlinear ordinary differential equations, which are solved numerically, using variational finite element method. The influence of important physical parameters, namely, suction parameter, unsteadiness parameter, buoyancy parameter and Eckert number on the velocity, microrotation, and temperature functions is investigated and analyzed with the help of their graphical representations. Additionally skin friction and the rate of heat transfer have also been computed. Under special conditions, an exact solution for the flow velocity is compared with the numerical results obtained by finite element method. An excellent agreement is observed for the two sets of solutions. Furthermore, to verify the convergence of numerical results, calculations are conducted with increasing number of elements.

  7. Fluid dynamics and convective heat transfer in impinging jets through implementation of a high resolution liquid crystal technique

    Science.gov (United States)

    Kim, K.; Wiedner, B.; Camci, C.

    1993-01-01

    A combined convective heat transfer and fluid dynamics investigation in a turbulent round jet impinging on a flat surface is presented. The experimental study uses a high resolution liquid crystal technique for the determination of the convective heat transfer coefficients on the impingement plate. The heat transfer experiments are performed using a transient heat transfer method. The mean flow and the character of turbulent flow in the free jet is presented through five hole probe and hot wire measurements, respectively. The flow field character of the region near the impingement plate plays an important role in the amount of convective heat transfer. Detailed surveys obtained from five hole probe and hot wire measurements are provided. An extensive validation of the liquid crystal based heat transfer method against a conventional technique is also presented. After a complete documentation of the mean and turbulent flow field, the convective heat transfer coefficient distributions on the impingement plate are presented. The near wall of the impingement plate and the free jet region is treated separately. The current heat transfer distributions are compared to other studies available from the literature. The present paper contains complete sets of information on the three dimensional mean flow, turbulent velocity fluctuations, and convective heat transfer to the plate. The experiments also prove that the present nonintrusive heat transfer method is highly effective in obtaining high resolution heat transfer maps with a heat transfer coefficient uncertainty of 5.7 percent.

  8. Nonlinear convection stagnation point heat transfer and MHD fluid flow in porous medium towards a permeable shrinking sheet

    CERN Document Server

    Kumar, Rakesh

    2015-01-01

    This investigation deals with the analysis of stagnation point heat transfer and corresponding flow features of hydromagnetic viscous incompressible fluid over a vertical shrinking sheet. The considered sheet is assumed to be permeable and subject to addition of stagnation point to control the generated vorticity in the boundary layer. The sheet is placed on the right side of the fluid saturated porous medium which is having permeability of specified form. Nonlinear convection waves in the flow field are realized due to the envisaged nonlinear relation between density and temperature. The equations governing the nonlinear convection boundary layer flow are modeled and simplified using similarity transformations. The economized equations are solved for numerical solutions by employing the implicit finite difference scheme also known as Keller-box method. The influence of the associated parameters of the problem on velocity and temperature distributions, skin friction and rate of heat transfer are presented thr...

  9. Simultaneous effects of Hall and convective conditions on peristaltic flow of couple-stress fluid in an inclined asymmetric channel

    Indian Academy of Sciences (India)

    T Hayat; Maryam Iqbal; Humaira Yasmin; Fuad E Alsaadi; Huijun Gao

    2015-07-01

    A mathematical model is developed to analyse the peristaltic flow of couple-stress fluid in an inclined asymmetric channel with convective conditions. Soret and Dufour and Hall effects are taken into account. Analysis has been carried out in a wave frame of reference. Expressions for velocity, pressure gradient, temperature and concentration are constructed. Pumping and trapping phenomena are examined. Impact of sundry parameters on the velocity, temperature and concentration is discussed.

  10. Heat transfer in a couple stress fluid over a continuous moving surface with internal hat generation and convective boundary conditions

    Energy Technology Data Exchange (ETDEWEB)

    Hayat, Tasawar [Quaid-i-Azam Univ., Islamabad (Pakistan). Dept. of Mathematics; King Saud Univ., Riyadh (Saudi Arabia). Dept. of Physics; Iqbal, Zahid [Quaid-i-Azam Univ., Islamabad (Pakistan). Dept. of Mathematics; Qasim, Muhammad [COMSATS Institute of Information Technology (CIIT), Islamabad (Pakistan). Dept. of Mathematics; Aldossary, Omar M. [King Saud Univ., Riyadh (Saudi Arabia). Dept. of Physics

    2012-05-15

    This investigation reports the boundary layer flow and heat transfer characteristics in a couple stress fluid flow over a continuos moving surface with a parallel free stream. The effects of heat generation in the presence of convective boundary conditions are also investigated. Series solutions for the velocity and temperature distributions are obtained by the homotopy analysis method (HAM). Convergence of obtained series solutions are analyzed. The results are obtained and discussed through graphs for physical parameters of interest. (orig.)

  11. Geometric aspect and buoyancy effects on nature convection flow in the complex annuli filled with micropolar fluids

    Science.gov (United States)

    Chen, Wen Ruey

    2016-10-01

    This paper studies the steady laminar natural convection of micropolar fluids in the complex annuli between the inner sphere and outer vertical cylinder to present a numerical analysis of the flow and heat transfer characteristics with buoyancy effects. Computations were carried out systematically by the several different parameters of geometric ratio, micropolar material parameter and Rayleigh number to determine the average Nusselt number and the skin friction coefficient on the flow and the thermal fields.

  12. Gray's paradox: A fluid mechanical perspective

    Science.gov (United States)

    Bale, Rahul; Hao, Max; Bhalla, Amneet Pal Singh; Patel, Namrata; Patankar, Neelesh A.

    2014-01-01

    Nearly eighty years ago, Gray reported that the drag power experienced by a dolphin was larger than the estimated muscle power – this is termed as Gray's paradox. We provide a fluid mechanical perspective of this paradox. The viewpoint that swimmers necessarily spend muscle energy to overcome drag in the direction of swimming needs revision. For example, in undulatory swimming most of the muscle energy is directly expended to generate lateral undulations of the body, and the drag power is balanced not by the muscle power but by the thrust power. Depending on drag model utilized, the drag power may be greater than muscle power without being paradoxical. PMID:25082341

  13. Recent developments of mathematical fluid mechanics

    CERN Document Server

    Giga, Yoshikazu; Kozono, Hideo; Okamoto, Hisashi; Yamazaki, Masao

    2016-01-01

    The book addresses recent developments of the mathematical research on the Navier-Stokes and Euler equations as well as on related problems. In particular, there are covered:   1) existence, uniqueness, and the regularity of weak solutions; 2) stability of the motion in rest and the asymptotic behavior of solutions; 3) singularity and blow-up of weak and strong solutions; 4) vorticity and energy conservation; 5) motions of rotating fluids, or of fluids surrounding a rotating body; 6) free boundary problems; 7) maximal regularity theory and other abstract results for mathematical fluid mechanics.   For this quarter century, these topics have been playing a central role in both pure and applied mathematics and having a great influence to the developm ent of the functional analysis, harmonic analysis and numerical analysis whose tools make a a substantial contribution to the investigation of nonlinear partial differential equations, particularly the Navier-Stokes and the Euler equations.      There are 24...

  14. Novel models on fluid's variable thermo-physical properties for extensive study on convection heat and mass transfer

    Science.gov (United States)

    Shang, De-Yi; Zhong, Liang-Cai

    2016-04-01

    Our novel models for fluid's variable physical properties are improved and reported systematically in this work for enhancement of theoretical and practical value on study of convection heat and mass transfer. It consists of three models, namely (1) temperature parameter model, (2) polynomial model, and (3) weighted-sum model, respectively for treatment of temperature-dependent physical properties of gases, temperature-dependent physical properties of liquids, and concentration- and temperature-dependent physical properties of vapour-gas mixture. Two related components are proposed, and involved in each model for fluid's variable physical properties. They are basic physic property equations and theoretical similarity equations on physical property factors. The former, as the foundation of the latter, is based on the typical experimental data and physical analysis. The latter is built up by similarity analysis and mathematical derivation based on the former basic physical properties equations. These models are available for smooth simulation and treatment of fluid's variable physical properties for assurance of theoretical and practical value of study on convection of heat and mass transfer. Especially, so far, there has been lack of available study on heat and mass transfer of film condensation convection of vapour-gas mixture, and the wrong heat transfer results existed in widespread studies on the related research topics, due to ignorance of proper consideration of the concentration- and temperature-dependent physical properties of vapour-gas mixture. For resolving such difficult issues, the present novel physical property models have their special advantages.

  15. Influence of size, shape, type of nanoparticles, type and temperature of the base fluid on natural convection MHD of na

    Directory of Open Access Journals (Sweden)

    P. Sudarsana Reddy

    2016-03-01

    Full Text Available In this paper, we have presented MHD natural convection boundary layer flow, heat and mass transfer characteristics of nanofluid through porous media over a vertical cone influenced by different aspects of nanoparticles such as size, shape, type of nanoparticles and type of the base fluid and working temperature of base fluid. To increase the physical significance of the problem, we have taken dynamic viscosity and thermal conductivity as the functions of local volume fraction of nanoparticles. The drift-flux model of nanofluids, Brownian motion, thermophoresis, and enhancement ratio parameters are also considered in the present analysis. The influence of non-dimensional parameters such as magnetic field (M, buoyancy ratio parameter (Nr, conductivity parameter (Nc, viscosity parameter (Nv, Brownian motion parameter (Nb, thermophoresis parameter (Nt, Lewis number (Le on velocity, temperature and volume fraction of nanoparticles in the boundary layer region is examined in detail. Furthermore the impact of these parameters on local Nusselt number (Nux and enhancement ratio hnfhbf is also investigated. The results of present study reveal that significant natural convection heat transfer enhancement is noticed as the size of nanoparticles decreases. Moreover, type of the nanoparticles and type of the base fluid also influenced the natural convection heat transfer.

  16. Novel models on fluid's variable thermo-physical properties for extensive study on convection heat and mass transfer

    Science.gov (United States)

    Shang, De-Yi; Zhong, Liang-Cai

    2017-01-01

    Our novel models for fluid's variable physical properties are improved and reported systematically in this work for enhancement of theoretical and practical value on study of convection heat and mass transfer. It consists of three models, namely (1) temperature parameter model, (2) polynomial model, and (3) weighted-sum model, respectively for treatment of temperature-dependent physical properties of gases, temperature-dependent physical properties of liquids, and concentration- and temperature-dependent physical properties of vapour-gas mixture. Two related components are proposed, and involved in each model for fluid's variable physical properties. They are basic physic property equations and theoretical similarity equations on physical property factors. The former, as the foundation of the latter, is based on the typical experimental data and physical analysis. The latter is built up by similarity analysis and mathematical derivation based on the former basic physical properties equations. These models are available for smooth simulation and treatment of fluid's variable physical properties for assurance of theoretical and practical value of study on convection of heat and mass transfer. Especially, so far, there has been lack of available study on heat and mass transfer of film condensation convection of vapour-gas mixture, and the wrong heat transfer results existed in widespread studies on the related research topics, due to ignorance of proper consideration of the concentration- and temperature-dependent physical properties of vapour-gas mixture. For resolving such difficult issues, the present novel physical property models have their special advantages.

  17. Series solution of a natural convection flow for a Carreau fluid in a vertical channel with peristalsis

    Institute of Scientific and Technical Information of China (English)

    ABD ELMABOUD Y; MEKHEIMER Kh S; MOHAMED Mohamed S

    2015-01-01

    An analysis has been achieved to study the natural convection of a non-Newtonian fluid (namely a Carreau fluid) in a vertical channel with rhythmically contracting walls. The Navier-Stokes and the energy equations are reduced to a system of non- linear PDE by using the long wavelength approximation. The optimal homotopy analysis method (OHAM) is introduced to obtain the exact solutions for velocity and temperature fields. The convergence of the obtained OHAM solution is discussed explicitly. Numerical calculations are carried out for the pressure rise and the features of the flow and temperature characteristics are analyzed by plotting graphs and discussed in detail.

  18. The viscoelastic effects on thermal convection of an Oldroyd-B fluid in open-top porous media

    Institute of Scientific and Technical Information of China (English)

    NIU Jun; SHI Zai-hong; TAN Wen-chang

    2013-01-01

    The effects of two viscoelastic parameters on the thermal convection of a viscoelastic Oldroyd-B fluid in an open-top porous square box with constant heat flux are investigated.The results show that the increase of relaxation time is able to destabilize the fluid flow leading to a higher heat transfer rate,while the increase of retardation time tends to stabilize the flow and suppress the heat transfer.The flow bifurcation appears earlier with the increase of the relaxation time and the decrease of the retardation time,resulting in more complicated flow patterns in the porous medium.

  19. The Mechanism of First Raindrops Formation in Deep Convective Clouds

    Energy Technology Data Exchange (ETDEWEB)

    Khain, Alexander; Prabha, Thara; Benmoshe, Nir; Pandithurai, G.; Ovchinnikov, Mikhail

    2013-08-22

    The formation of first raindrops in deep convective clouds is investigated. A combination of observational data analysis and 2-D and 3-D numerical bin microphysical simulations of deep convective clouds suggests that the first raindrops form at the top of undiluted or slightly diluted cores. It is shown that droplet size distributions in these regions are wider and contain more large droplets than in diluted volumes. The results of the study indicate that the initial raindrop formation is determined by the basic microphysical processes within ascending adiabatic volumes. It allows one to predict the height of the formation of first raindrops considering the processes of nucleation, diffusion growth and collisions. The results obtained in the study explain observational results reported by Freud and Rosenfeld (2012) according to which the height of first raindrop formation depends linearly on the droplet number concentration at cloud base. The results also explain why a simple adiabatic parcel model can reproduce this dependence. The present study provides a physical basis for retrieval algorithms of cloud microphysical properties and aerosol properties using satellites proposed by Rosenfeld et al. ( 2012). The study indicates that the role of mixing and entrainment in the formation of the first raindrops is not of crucial importance. It is also shown that low variability of effective and mean volume radii along horizontal traverses, as regularly observed by in situ measurements, can be simulated by high-resolution cloud models, in which mixing is parameterized by a traditional 1.5 order turbulence closure scheme.

  20. Detection and optical imaging of induced convection under the action of static gradient magnetic field in a non-conducting diamagnetic fluid

    CERN Document Server

    Morarka, Amit R

    2016-01-01

    The report elaborates experimental observations of magnetically induced convection in a non- conducting diamagnetic fluid. Suspension of Deionized (DI) water and Lycopodium pollen grains was used as the fluid in a test tube. Permanent magnets having field strength of 0.12T each were used to provide the static gradient magnetic field. The convections were visually observed and recorded using travelling microscope attached with a web camera. Various geometrical configurations of magnets in the vicinity of test tube were used which provided different types of orientation of convective flows in the test tube. Convections were observed over a range of fluid volumes from 0.2ml-10ml. The experimentally observed results provide proof of concept that irrespective of the weak interactions of diamagnetic fluids with magnetic fields, these effects can be easily observed and recorded with the use of low tech laboratory equipments.

  1. Statistical mechanics and the physics of fluids

    CERN Document Server

    Tosi, Mario

    This volume collects the lecture notes of a course on statistical mechanics, held at Scuola Normale Superiore di Pisa for third-to-fifth year students in physics and chemistry. Three main themes are covered in the book. The first part gives a compact presentation of the foundations of statistical mechanics and their connections with thermodynamics. Applications to ideal gases of material particles and of excitation quanta are followed by a brief introduction to a real classical gas and to a weakly coupled classical plasma, and by a broad overview on the three states of matter.The second part is devoted to fluctuations around equilibrium and their correlations. Coverage of liquid structure and critical phenomena is followed by a discussion of irreversible processes as exemplified by diffusive motions and by the dynamics of density and heat fluctuations. Finally, the third part is an introduction to some advanced themes: supercooling and the glassy state, non-Newtonian fluids including polymers and liquid cryst...

  2. Art & Science duality in Fluid Mechanics

    Science.gov (United States)

    Chomaz, Jean-Marc

    2014-11-01

    The connections between Art & Science is analysed through examples of my research both in Fluid Mechanics and in Art & Science. Working as a member of the artist group Labofactory and collaborating with more than twenty different artists, I have been exploring for more than twenty-four years a path between art and science that mixes both scientific and artistic imaginations. Formulating questions in science is pure imagination and intuition that does not involve only the sensible side of the brain but the sensitive side, which is able to be non incremental, to understand faster and anticipate. Instead of showing scientific proof or technique, it is possible with Art & Science to directly attempt to share this sensitive side. I will show ten recent installations that involve vortex rings, tornado generators, music propagated in shallow layers, wave tanks used as silent soft drums, boundary layer on a rotating sphere to question climate change, plum ever evolving over a nuclear plan in an water tank, a bubbly fountain in microfluidic... Two installations on the thermohaline circulation staged in a stratified tank and on the generation of earthquake are part of the exhibit ``LOST IN FATHOMS'' with the artist Anaïs Tondeur from 17 October until 29 November 2014 at the GV Art gallery, London. These pieces are like writing poems using fluid mechanics and by doing so re-interrogating our scientific practice and the societal role of science. They symmetrize the relation with the public that involve not only ``outreach'' but ``inreach'' or sharing.

  3. Fluid-mechanical Representation of Plate Boundaries - Trench-Ridge System -

    Science.gov (United States)

    Takaku, M.; Fukao, Y.

    2005-12-01

    Seismic tomography models have been used extensively to simulate mantle convection driven by density heterogeneity. Such simulation to date has been unsuccessful to reconcile itself with the most obvious convection-related phenomenon of plate motions. Here we present a theoretical framework for tomography-based convection modeling to include the plates as an integral part of the mantle convection. We model the lithosphere as a highly viscous, incompressible, Newtonian fluid layer and plate boundaries as faults across which tangential velocities are discontinuous. Fluid-mechanical expressions of such faults have their exact analogies in the seismic source representation theory and can be derived by referring to it. We test this idea against the simplest two-dimensional case with only trench and ridge as plate boundaries, and with only subducting slab as mass anomaly. We model ridge (trench) as the horizontal (vertical) tensile fault that comprises of a conjugate pair of 45-degree dip normal (reverse) faults extending over the entire thickness of the surface layer. The system comprises of three elementary convections, slab mass-driven convection, trench fault-driven convection and ridge fault-driven convection. Flow due to the slab excess mass imposes vertical tensile stress on trench, which is released by flow driven by trench faulting. This faulting converts efficiently the vertical tensile stress to the horizontal tensile stress, which can transmit to extreme distances through the surface viscous layer. This horizontal tensile stress is relieved by flow driven by ridge faulting. The three elementary convections are thus coupled through the stress minimum conditions at ridge and trench. The resultant coupled flow is very plate-like in the surface viscous layer. In this system the horizontal surface velocity depends little on the relative distance between the ridge and trench and depends mostly on the excess weight of the subducting slab. The horizontal speed can be

  4. Thermal convection in a cylinder and the problem of planform selection in an internally heated fluid layer

    Science.gov (United States)

    Kolmychkov, V. V.; Shcheritsa, O. V.; Mazhorova, O. S.

    2016-12-01

    The paper deals with the hexagonal convective flow near the stability threshold in an internally heated fluid layer. In our previous numerical study of convection near the stability threshold in a square box with internal heat generation [Phys. Lett. A 377, 2111 (2013)], 10.1016/j.physleta.2013.06.013 for a region of large horizontal extent, it has been shown that at small values of Prandtl number (Pr), convection sets in as a pattern of hexagonal cells with upward motion in the center (up-hexagons), whereas at large Pr, a stable flow pattern is formed by hexagonal cells with a downward motion in the center (down-hexagons). Here, we study axisymmetric convection in a cylinder as a model of motion in a single hexagonal cell. The radius of the cylinder matches the size of hexagons observed in our three-dimensional simulation. The lateral boundary of the cylinder is free and heat insulated. Horizontal bounding surfaces are rigid. The upper boundary is maintained at a constant temperature; the lower one is insulated. Two stable, steady-state motions with the upward and downward flow at the cylinder axis have been attained in calculations, irrespective of Pr. Cylindrical motion with the same direction of circulation as in the stable hexagons has a maximum temperature drop measured along the radius at the bottom of the cell. We suggest maximization of the temperature drop as a selection criterion, which determines the preferred state of motion in an internally heated fluid layer. This new selection principle is validated by the comparative analysis of the dominant nonlinear effects in low- and high-Prandtl number convection.

  5. Natural convection in Bingham plastic fluids from an isothermal spheroid: Effects of fluid yield stress, viscous dissipation and temperature-dependent viscosity

    Science.gov (United States)

    Gupta, Anoop Kumar; Gupta, Sanjay; Chhabra, Rajendra Prasad

    2017-08-01

    In this work, the buoyancy-induced convection from an isothermal spheroid is studied in a Bingham plastic fluid. Extensive results on the morphology of approximate yield surfaces, temperature profiles, and the local and average Nusselt numbers are reported to elucidate the effects of the pertinent dimensionless parameters: Rayleigh number, 102 ≤ Ra ≤ 106; Prandtl number, 20 ≤ Pr ≤ 100; Bingham number, 0 ≤ Bn ≤ 103, and aspect ratio, 0.2 ≤ e ≤ 5. Due to the fluid yield stress, fluid-like (yielded) and solid-like (unyielded) regions coexist in the flow domain depending upon the prevailing stress levels vis-a-vis the value of the fluid yield stress. The yielded parts progressively grow in size with the rising Rayleigh number while this tendency is countered by the increasing Bingham and Prandtl numbers. Due to these two competing effects, a limiting value of the Bingham number ( Bn max) is observed beyond which heat transfer occurs solely by conduction due to the solid-like behaviour of the fluid everywhere in the domain. Such limiting values bear a positive dependence on the Rayleigh number ( Ra) and aspect ratio ( e). In addition to this, oblate shapes ( e 1) impede it. Finally, simple predictive expressions for the maximum Bingham number and the average Nusselt number are developed which can be used to predict a priori the overall heat transfer coefficient in a new application. Also, a criterion is developed in terms of the composite parameter Bn• Gr-1/2 which predicts the onset of convection in such fluids. Similarly, another criterion is developed which delineates the conditions for the onset of settling due to buoyancy effects. The paper is concluded by presenting limited results to delineate the effects of viscous dissipation and the temperature-dependent viscosity on the Nusselt number. Both these effects are seen to be rather small in Bingham plastic fluids.

  6. Fluid mechanics of artificial heart valves.

    Science.gov (United States)

    Dasi, Lakshmi P; Simon, Helene A; Sucosky, Philippe; Yoganathan, Ajit P

    2009-02-01

    1. Artificial heart valves have been in use for over five decades to replace diseased heart valves. Since the first heart valve replacement performed with a caged-ball valve, more than 50 valve designs have been developed, differing principally in valve geometry, number of leaflets and material. To date, all artificial heart valves are plagued with complications associated with haemolysis, coagulation for mechanical heart valves and leaflet tearing for tissue-based valve prosthesis. For mechanical heart valves, these complications are believed to be associated with non-physiological blood flow patterns. 2. In the present review, we provide a bird's-eye view of fluid mechanics for the major artificial heart valve types and highlight how the engineering approach has shaped this rapidly diversifying area of research. 3. Mechanical heart valve designs have evolved significantly, with the most recent designs providing relatively superior haemodynamics with very low aerodynamic resistance. However, high shearing of blood cells and platelets still pose significant design challenges and patients must undergo life-long anticoagulation therapy. Bioprosthetic or tissue valves do not require anticoagulants due to their distinct similarity to the native valve geometry and haemodynamics, but many of these valves fail structurally within the first 10-15 years of implantation. 4. These shortcomings have directed present and future research in three main directions in attempts to design superior artificial valves: (i) engineering living tissue heart valves; (ii) development of advanced computational tools; and (iii) blood experiments to establish the link between flow and blood damage.

  7. Quadratic Convective Flow of a Micropolar Fluid along an Inclined Plate in a Non-Darcy Porous Medium with Convective Boundary Condition

    Science.gov (United States)

    RamReddy, Ch.; Naveen, P.; Srinivasacharya, D.

    2017-06-01

    The objective of the present study is to investigate the effect of nonlinear variation of density with temperature and concentration on the mixed convective flow of a micropolar fluid over an inclined flat plate in a non-Darcy porous medium in the presence of the convective boundary condition. In order to analyze all the essential features, the governing non-dimensional partial differential equations are transformed into a system of ordinary differential equations using a local non-similarity procedure and then the resulting boundary value problem is solved using a successive linearisation method (SLM). By insisting the comparison between vertical, horizontal and inclined plates, the physical quantities of the flow and its characteristics are exhibited graphically and quantitatively with various parameters. An increase in the micropolar parameter and non-Darcy parameter tend to increase the skin friction and the reverse change is observed in wall couple stress, mass and heat transfer rates. The influence of the nonlinear concentration parameter is more prominent on all the physical characteristics of the present model, compared with that of nonlinear temperature parameter.

  8. Isogeometric shape optimization in fluid mechanics

    DEFF Research Database (Denmark)

    Nørtoft, Peter; Gravesen, Jens

    2013-01-01

    , the steady-state, incompressible Navier-Stokes equations, governing a laminar flow in the domain, must be solved. Based on isogeometric analysis, we use B-splines as the basis for both the design optimization and the flow analysis, thereby unifying the models for geometry and analysis, and, at the same time......The subject of this work is numerical shape optimization in fluid mechanics, based on isogeometric analysis. The generic goal is to design the shape of a 2-dimensional flow domain to minimize some prescribed objective while satisfying given geometric constraints. As part of the design problem......, facilitating a compact representation of complex geometries and smooth approximations of the flow fields. To drive the shape optimization, we use a gradient-based approach, and to avoid inappropriate parametrizations during optimization, we regularize the optimization problem by adding to the objective...

  9. Teaching Technical Competencies for Fluid Mechanics Research

    Science.gov (United States)

    Tagg, Randall

    2014-11-01

    We are developing an ``on demand'' framework for students to learn techniques used in fluid mechanics research. The site for this work is a university-grade laboratory situated next to Gateway High School in Aurora, Colorado. Undergraduate university students work with K-12 students on research and technical innovation projects. Both groups need customized training as their projects proceed. A modular approach allows particular competencies such as pump selection, construction of flow piping and channels, flow visualization, and specific flow measurement methods to be acquired through focused lessons. These lessons can be learned in either a stand-alone fashion or assembled into units for formal courses. A research example was a student project on diffusion of infectious material in micro-gravity in the event of an intestinal puncture wound. A curriculum example is a 9-week quarter of high-school instruction on instrumentation that uses small-scale water treatment systems as a case study.

  10. Effects of external environment on thermocapillary convection of high prandtl number fluid

    Directory of Open Access Journals (Sweden)

    Liang Ruquan

    2016-01-01

    Full Text Available Numerical simulations have been carried out to investigate the influence of external environment on thermocapillary convection in high Prandtl number (Pr=68 liquid. The geometric model of physical problem is that the the liquid bridge surrounded by ambient air under zero or ground gravity. The interface velocity, temperature, heat flux and flow pattern in the liquid bridge are presented and discussed under different conditions by changing the external environment. The buoyancy convection produces a symmetrical vortex in the liquid bridge. The ambient air affects the distributions of the temperature velocity and heat flux on the interface by changing the thermocapillary convection.

  11. Onset of Vibrational Convection in a Binary Fluid Saturated Non-Darcy Porous Layer Heated from Above

    Directory of Open Access Journals (Sweden)

    Saravanan S.

    2012-07-01

    Full Text Available A linear stability analysis is used to investigate the influence of mechanical vibration on the onset of thermosolutal convection in a horizontal porous layer heated and salted from above. Vibrations are considered with arbitrary amplitude and frequency. The Brinkman extended Darcy model is used to describe the flow and the Oberbeck-Boussinesq approximation is employed. Continued fraction method and Floquet theory are used to determine the convective instability threshold. It is found that the solutal Rayleigh number has the stabilizing effect. The existence of a closed disconnected loop of synchronous mode is predicted in the marginal curve for moderate values of solutal Rayleigh number and vibration amplitude.

  12. Convective heat transfer

    CERN Document Server

    Kakac, Sadik; Pramuanjaroenkij, Anchasa

    2014-01-01

    Intended for readers who have taken a basic heat transfer course and have a basic knowledge of thermodynamics, heat transfer, fluid mechanics, and differential equations, Convective Heat Transfer, Third Edition provides an overview of phenomenological convective heat transfer. This book combines applications of engineering with the basic concepts of convection. It offers a clear and balanced presentation of essential topics using both traditional and numerical methods. The text addresses emerging science and technology matters, and highlights biomedical applications and energy technologies. What’s New in the Third Edition: Includes updated chapters and two new chapters on heat transfer in microchannels and heat transfer with nanofluids Expands problem sets and introduces new correlations and solved examples Provides more coverage of numerical/computer methods The third edition details the new research areas of heat transfer in microchannels and the enhancement of convective heat transfer with nanofluids....

  13. Hydromagnetic Non-Darcian Free-Convective Flow of a Non-Newtonian Fluid with Temperature Jump

    Directory of Open Access Journals (Sweden)

    Ahmed M. Salem

    2013-01-01

    Full Text Available In the present study, the effect of viscous dissipation on magnetohydrodynamic (MHD non-Darcian free-convection flow of a non-Newtonian power-law fluid past a vertical flat plate in a saturated porous medium with variable viscosity and temperature jump is considered. The fluid is permeated by a transverse magnetic field imposed perpendicularly to the plate on the assumption of a small magnetic Reynolds number. The fluid viscosity is assumed to vary as a reciprocal of linear function of temperature. The governing boundary layer equations and boundary conditions are cast into a dimensionless form and simplified by using a similarity transformation into a system of nonlinear ordinary differential equations and solved numerically. The effects of the governing parameters on the flow fields and heat transfer are shown in graphs and tabular form.

  14. CEE3500 - Fluid Mechanics, Spring 2006

    OpenAIRE

    Urroz, Gilberto E.

    2006-01-01

    Explores fluid properties, hydrostatics, fluid dynamics, similitude, energy and momentum principles, closed conduit flow, open channel flow, and flow measurement. Includes laboratory exercises in flow measurement, open channel flow, pipe friction, physical modeling, and data collection.

  15. Influence of viscous dissipation and thermophoresis on Darcy-Forchheimer mixed convection in a fluid saturated porous media.

    Science.gov (United States)

    Seddeek, M A

    2006-01-01

    Mixed convection flow, heat, and mass transfer about an isothermal vertical flat plate embedded in a fluid-saturated porous medium and the effects of viscous dissipation and thermophoresis in both aiding and opposing flows are analyzed. The similarity solution is used to transform the problem under consideration into a boundary value problem of coupled ordinary differential equations, which are solved numerically by using the shooting method. Numerical computations are carried out for the non-dimensional physical parameter. The results are analyzed for the effect of different physical parameters such as thermophoretic, mixed convection, inertia parameter, buoyancy ratio, and Schmid number on the flow, heat, and mass transfer characteristics. Two cases are considered, one corresponding to the presence of viscous dissipation and the other to the absence of it.

  16. Stability Analysis and Internal Heating Effect on Oscillatory Convection in a Viscoelastic Fluid Saturated Porous Medium Under Gravity Modulation

    Directory of Open Access Journals (Sweden)

    Bhadauria B.S.

    2016-12-01

    Full Text Available In this paper, we investigate the combined effect of internal heating and time periodic gravity modulation in a viscoelastic fluid saturated porous medium by reducing the problem into a complex non-autonomous Ginzgburg-Landau equation. Weak nonlinear stability analysis has been performed by using power series expansion in terms of the amplitude of gravity modulation, which is assumed to be small. The Nusselt number is obtained in terms of the amplitude for oscillatory mode of convection. The influence of viscoelastic parameters on heat transfer has been discussed. Gravity modulation is found to have a destabilizing effect at low frequencies and a stabilizing effect at high frequencies. Finally, it is found that overstability advances the onset of convection, more with internal heating. The conditions for which the complex Ginzgburg-Landau equation undergoes Hopf bifurcation and the amplitude equation undergoes supercritical pitchfork bifurcation are studied.

  17. An introduction to theoretical fluid mechanics

    CERN Document Server

    Childress, Stephen

    2009-01-01

    This book gives an overview of classical topics in fluid dynamics, focusing on the kinematics and dynamics of incompressible inviscid and Newtonian viscous fluids, but also including some material on compressible flow. The topics are chosen to illustrate the mathematical methods of classical fluid dynamics. The book is intended to prepare the reader for more advanced topics of current research interest.

  18. Fluid mechanics aspects of magnetic drug targeting.

    Science.gov (United States)

    Odenbach, Stefan

    2015-10-01

    Experiments and numerical simulations using a flow phantom for magnetic drug targeting have been undertaken. The flow phantom is a half y-branched tube configuration where the main tube represents an artery from which a tumour-supplying artery, which is simulated by the side branch of the flow phantom, branches off. In the experiments a quantification of the amount of magnetic particles targeted towards the branch by a magnetic field applied via a permanent magnet is achieved by impedance measurement using sensor coils. Measuring the targeting efficiency, i.e. the relative amount of particles targeted to the side branch, for different field configurations one obtains targeting maps which combine the targeting efficiency with the magnetic force densities in characteristic points in the flow phantom. It could be shown that targeting efficiency depends strongly on the magnetic field configuration. A corresponding numerical model has been set up, which allows the simulation of targeting efficiency for variable field configuration. With this simulation good agreement of targeting efficiency with experimental data has been found. Thus, the basis has been laid for future calculations of optimal field configurations in clinical applications of magnetic drug targeting. Moreover, the numerical model allows the variation of additional parameters of the drug targeting process and thus an estimation of the influence, e.g. of the fluid properties on the targeting efficiency. Corresponding calculations have shown that the non-Newtonian behaviour of the fluid will significantly influence the targeting process, an aspect which has to be taken into account, especially recalling the fact that the viscosity of magnetic suspensions depends strongly on the magnetic field strength and the mechanical load.

  19. Convection of Paramagnetic Fluid in a Cube Heated and Cooled from Side Walls and Placed below a Superconducting Magnet

    Science.gov (United States)

    Bednarz, Tomasz; Fornalik, Elzbieta; Tagawa, Toshio; Ozoe, Hiroyuki; Szmyd, Janusz S.

    The magnetic convection of paramagnetic fluid is studied in a strong magnetic field. The fluid in a cubic enclosure is heated from one vertical wall and cooled from the opposite one. The fluid is the 80% mass aqueous solution of glycerol with 0.8 mol/kg concentration of gadolinium nitrate hexahydrate to make the working fluid paramagnetic. The small amount of liquid crystal slurry is added to the fluid in order to visualize the temperature profiles in a vertical cross-section. This system is placed directly below the solenoid of the superconducting magnet which is oriented vertically. The temperature of cold wall is constantly controlled by the water flowing from a thermostating bath. On the other hand, the hot wall is heated by a nichrome wire from a DC power supply. In the numerical computations, the configuration of the system is modeled to be as close as possible to the real system. The physical properties of the working fluid are used to compute dimensionless parameters in the numerical model and the computations are carried out for corresponding cases. Later, the numerical and experimental results are compared with each other.

  20. Effects of finiteness on the thermo-fluid-dynamics of natural convection above horizontal plates

    Science.gov (United States)

    Guha, Abhijit; Sengupta, Sayantan

    2016-06-01

    A rigorous and systematic computational and theoretical study, the first of its kind, for the laminar natural convective flow above rectangular horizontal surfaces of various aspect ratios ϕ (from 1 to ∞) is presented. Two-dimensional computational fluid dynamic (CFD) simulations (for ϕ → ∞) and three-dimensional CFD simulations (for 1 ≤ ϕ cases, with the complex three-dimensional solutions revealed here. The present computational study establishes the region of a high-aspect-ratio planform over which the results of the similarity theory are approximately valid, the extent of this region depending on the Grashof number. There is, however, a region near the edge of the plate and another region near the centre of the plate (where a plume forms) in which the similarity theory results do not apply. The sizes of these non-compliance zones decrease as the Grashof number is increased. The present study also shows that the similarity velocity profile is not strictly obtained at any location over the plate because of the entrainment effect of the central plume. The 3-D CFD simulations of the present paper are coordinated to clearly reveal the separate and combined effects of three important aspects of finiteness: the presence of leading edges, the presence of planform centre, and the presence of physical corners in the planform. It is realised that the finiteness due to the presence of physical corners in the planform arises only for a finite value of ϕ in the case of 3-D CFD simulations (and not in 2-D CFD simulations or similarity theory). The presence of physical corners is related here to several significant aspects of the solution - the conversion of in-plane velocity to out-of-plane velocity near the diagonals, the star-like non-uniform distribution of surface heat flux on heated planforms, the three-dimensionality of the temperature field, and the complex spatial structure of the velocity iso-surfaces. A generic theoretical correlation for the Nusselt

  1. The Status of Fluid Mechanics in Bioengineering Curricula.

    Science.gov (United States)

    Miller, Gerald E.; Hyman, William A.

    1981-01-01

    Describes the status of fluid mechanics courses in bioengineering curricula. A survey of institutions offering bioengineering degrees indicates that over half do not require fluid mechanics courses. Suggests increasing number of mechanics courses to increase the quality of bioengineering students and to prepare students for graduate work and more…

  2. The Status of Fluid Mechanics in Bioengineering Curricula.

    Science.gov (United States)

    Miller, Gerald E.; Hyman, William A.

    1981-01-01

    Describes the status of fluid mechanics courses in bioengineering curricula. A survey of institutions offering bioengineering degrees indicates that over half do not require fluid mechanics courses. Suggests increasing number of mechanics courses to increase the quality of bioengineering students and to prepare students for graduate work and more…

  3. Fluid Mechanics of Cricket and Tennis Balls

    Science.gov (United States)

    Mehta, Rabindra D.

    2009-11-01

    Aerodynamics plays a prominent role in defining the flight of a ball that is struck or thrown through the air in almost all ball sports. The main interest is in the fact that the ball can often deviate from its initial straight path, resulting in a curved, or sometimes an unpredictable, flight path. It is particularly fascinating that that not all the parameters that affect the flight of a ball are always under human influence. Lateral deflection in flight, commonly known as swing, swerve or curve, is well recognized in cricket and tennis. In tennis, the lateral deflection is produced by spinning the ball about an axis perpendicular to the line of flight, which gives rise to what is commonly known as the Magnus effect. It is now well recognized that the aerodynamics of sports balls are strongly dependent on the detailed development and behavior of the boundary layer on the ball's surface. A side force, which makes a ball curve through the air, can also be generated in the absence of the Magnus effect. In one of the cricket deliveries, the ball is released with the seam angled, which trips the laminar boundary layer into a turbulent state on that side. The turbulent boundary layer separates relatively late compared to the laminar layer on the other side, thereby creating a pressure difference and hence side force. The fluid mechanics of a cricket ball become very interesting at the higher Reynolds numbers and this will be discussed in detail. Of all the round sports balls, a tennis ball has the highest drag coefficient. This will be explained in terms of the contribution of the ``fuzz" drag and how that changes with Reynolds number and ball surface wear. It is particularly fascinating that, purely through historical accidents, small disturbances on the ball surface, such as the stitching on cricket balls and the felt cover on tennis balls are all about the right size to affect boundary layer transition and development in the Reynolds numbers of interest. The fluid

  4. Potential mechanisms of pore-fluid movement from continental lithospheric mantle into upper continental crust

    Institute of Scientific and Technical Information of China (English)

    ZHAO Chong-bin; PENG Sheng-lin; LIU Liang-ming; B.E.HOBBS; A.ORD

    2008-01-01

    Through integrating the state of the art scientific knowledge in different research fields, some potential mechanisms of large-scale movements of underground pore-fluids such as H2O and CO2 in the continental lithosphere were presented and discussed. The results show that the generation and propagation of porosity waves are important mechanisms to transport mass and heat fluxes from the continental lithospheric mantle into the lower continental crust; the generation and propagation of porosity waves, pore-fluid flow focusing through lower and middle crustal faults, aclvection of pore-fluids through the lower and middle crust, and whole-crustconvection in some particular cases are important mechanisms to transport mass and heat fluxes from the lower into the upper continental crust; heat and mass transport through convective pore-fluid flow is the most effective mechanism of ore body formation and mineralization in hydrothermal systems; due to heat and mass exchange at the interface between the earth surface, hydrosphere and atmosphere, it is very important to consider the hydro-geological effect of the deep earth pore-fluids such as H2O and CO2 on the global warming and climate change in future investigations.

  5. Radiation effects on MHD stagnation point flow of nano fluid towards a stretching surface with convective boundary condition

    Institute of Scientific and Technical Information of China (English)

    Noreen Sher Akbar; S. Nadeem; Rizwan Ul Haq; Z.H. Khan

    2013-01-01

    The aim of the present paper is to study the numerical solutions of the steady MHD two dimensional stagnation point flow of an incompressible nano fluid towards a stretching cylinder. The effects of radiation and convective boundary condition are also taken into account. The model used for the nanofluid incorporates the effects of Brownian motion and thermophoresis. The result-ing nonlinear momentum, energy and nano particle equations are simplified using similarity trans-formations. Numerical solutions have been obtained for the velocity, temperature and nanoparticle fraction profiles. The influence of physical parameters on the velocity, temperature, nanoparticle fraction, rates of heat transfer and nanoparticle fraction are shown graphically.

  6. MHD Natural Convection Flow of an incompressible electrically conducting viscous fluid through porous medium from a vertical flat plate

    Directory of Open Access Journals (Sweden)

    Dr. G. Prabhakara Rao,

    2015-04-01

    Full Text Available We consider a two-dimensional MHD natural convection flow of an incompressible viscous and electrically conducting fluid through porous medium past a vertical impermeable flat plate is considered in presence of a uniform transverse magnetic field. The governing equations of velocity and temperature fields with appropriate boundary conditions are solved by the ordinary differential equations by introducing appropriate coordinate transformations. We solve that ordinary differential equations and find the velocity profiles, temperature profile, the skin friction and nusselt number. The effects of Grashof number (Gr, Hartmann number (M and Prandtl number (Pr, Darcy parameter (D-1 on velocity profiles and temperature profiles are shown graphically.

  7. Closed form solutions for unsteady free convection flow of a second grade fluid over an oscillating vertical plate.

    Directory of Open Access Journals (Sweden)

    Farhad Ali

    Full Text Available Closed form solutions for unsteady free convection flows of a second grade fluid near an isothermal vertical plate oscillating in its plane using the Laplace transform technique are established. Expressions for velocity and temperature are obtained and displayed graphically for different values of Prandtl number Pr, thermal Grashof number Gr, viscoelastic parameter α, phase angle ωτ and time τ. Numerical values of skin friction τ 0 and Nusselt number Nu are shown in tables. Some well-known solutions in literature are reduced as the limiting cases of the present solutions.

  8. Mixed convection effects on heat and mass transfer in a non Newtonian fluid with chemical reaction over a vertical plate

    Institute of Scientific and Technical Information of China (English)

    2011-01-01

    This paper studies mixed convection,double dispersion and chemical reaction effects on heat and mass transfer in a non-Darcy non-Newtonian fluid over a vertical surface in a porous medium under the constant temperature and concentration.The governing boundary layer equations,namely,momentum,energy and concentration,are converted to ordinary differential equations by introducing similarity variables and then are solved numerically by means of fourth-order Runge-Kutta method coupled with double-shooting techn...

  9. Effects of Convective Heat and Mass Transfer in Flow of Powell-Eyring Fluid Past an Exponentially Stretching Sheet.

    Science.gov (United States)

    Hayat, T; Saeed, Yusra; Alsaedi, A; Asad, Sadia

    2015-01-01

    The aim here is to investigate the effects of convective heat and mass transfer in the flow of Eyring-Powell fluid past an inclined exponential stretching surface. Mathematical formulation and analysis have been performed in the presence of Soret, Dufour and thermal radiation effects. The governing partial differential equations corresponding to the momentum, energy and concentration are reduced to a set of non-linear ordinary differential equations. Resulting nonlinear system is computed for the series solutions. Interval of convergence is determined. Physical interpretation is seen for the embedded parameters of interest. Skin friction coefficient, local Nusselt number and local Sherwood number are numerically computed and examined.

  10. Entropic Lattice Boltzmann Methods for Fluid Mechanics

    Science.gov (United States)

    Chikatamarla, Shyam; Boesch, Fabian; Sichau, David; Karlin, Ilya

    2013-11-01

    With its roots in statistical mechanics and kinetic theory, the lattice Boltzmann method (LBM) is a paradigm-changing innovation, offering for the first time an intrinsically parallel CFD algorithm. Over the past two decades, LBM has achieved numerous results in the field of CFD and is now in a position to challenge state-of-the art CFD techniques. Our major restyling of LBM resulted in an unconditionally stable entropic LBM which restored Second Law (Boltzmann H theorem) in the LBM kinetics and thus enabled affordable direct simulations of fluid turbulence. We review here recent advances in ELBM as a practical, modeling-free tool for simulation of turbulent flows in complex geometries. We shall present recent simulations including turbulent channel flow, flow past a circular cylinder, knotted vortex tubes, and flow past a surface mounted cube. ELBM listed all admissible lattices supporting a discrete entropy function and has classified them in hierarchically increasing order of accuracy. Applications of these higher-order lattices to simulations of turbulence and thermal flows shall also be presented. This work was supported CSCS grant s437.

  11. Collective fluid mechanics of honeybee nest ventilation

    Science.gov (United States)

    Gravish, Nick; Combes, Stacey; Wood, Robert J.; Peters, Jacob

    2014-11-01

    Honeybees thermoregulate their brood in the warm summer months by collectively fanning their wings and creating air flow through the nest. During nest ventilation workers flap their wings in close proximity in which wings continuously operate in unsteady oncoming flows (i.e. the wake of neighboring worker bees) and near the ground. The fluid mechanics of this collective aerodynamic phenomena are unstudied and may play an important role in the physiology of colony life. We have performed field and laboratory observations of the nest ventilation wing kinematics and air flow generated by individuals and groups of honeybee workers. Inspired from these field observations we describe here a robotic model system to study collective flapping wing aerodynamics. We microfabricate arrays of 1.4 cm long flapping wings and observe the air flow generated by arrays of two or more fanning robotic wings. We vary phase, frequency, and separation distance among wings and find that net output flow is enhanced when wings operate at the appropriate phase-distance relationship to catch shed vortices from neighboring wings. These results suggest that by varying position within the fanning array honeybee workers may benefit from collective aerodynamic interactions during nest ventilation.

  12. Lymphatic fluid: exchange mechanisms and regulation

    Science.gov (United States)

    Huxley, Virginia H; Scallan, Joshua

    2011-01-01

    Abstract Regulation of fluid and material movement between the vascular space of microvessels penetrating functioning organs and the cells therein has been studied extensively. Unanswered questions as to the regulatory mechanisms and routes remain. Significantly less is known about the lymphatic vascular system given the difficulties in seeing, no less isolating, these vessels lying deeper in these same tissues. It has become evident that the exchange microvasculature is not simply a passive biophysical barrier separating the vascular and interstitial compartments but a dynamic, multicellular structure subject to acute regulation and chronic adaptation to stimuli including inflammation, sepsis, diabetes, injury, hypoxia and exercise. Similarly lymphatic vessels range, in their simplest form, from lymphatic endothelium attached to the interstitial matrix, to endothelia and phasic lymphatic smooth muscle that act as Starling resistors. Recent work has demonstrated that among the microvascular lymphatic elements, the collecting lymphatics have barrier properties similar to venules, and thus participate in exchange. As with venules, vasoactive agents can alter both the permeability and contractile properties thereby setting up previously unanticipated gradients in the tissue space and providing potential targets for the pharmacological prevention and/or resolution of oedema. PMID:21521763

  13. Falsification of Dark Energy by Fluid Mechanics

    Science.gov (United States)

    Gibson, Carl H.

    2012-03-01

    The 2011 Nobel Prize in Physics was awarded for the discovery of accelerating super- novae dimness, suggesting a remarkable reversal in the expansion rate of the Universe from a decrease to an increase, driven by anti-gravity forces of a mysterious dark energy material comprising 70% of the Universe mass-energy. Fluid mechanics and Herschel- Planck-Spitzer-Hubble etc. space telescope observations falsify both the accelerating ex- pansion rate and dark energy concepts. Kinematic viscosity is neglected in models of self-gravitational structure formation. Large plasma photon viscosity predicts protosu- perclustervoid fragmentation early in the plasma epoch and protogalaxies at the end. At the plasma-gas transition, the gas protogalaxies fragment into Earth-mass rogue plan- ets in highly persistent, trillion-planet clumps (proto-globular-star-cluster PGCs). PGC planets freeze to form the dark matter of galaxies and merge to form their stars, giving the hydrogen triple-point (14 K) infrared emissions observed. Dark energy is a system- atic dimming error for Supernovae Ia caused by partially evaporated planets feeding hot white dwarf stars at the Chandrasekhar carbon limit. Planet atmospheres may or may not dim light from SNe-Ia events depending on the line of sight.

  14. Heat Transfer and Flows of Thermal Convection in a Fluid-Saturated Rotating Porous Medium

    Directory of Open Access Journals (Sweden)

    Jianhong Kang

    2015-01-01

    Full Text Available Thermal convection at the steady state for high Rayleigh number in a rotating porous half space is investigated. Taking into account the effect of rotation, Darcy equation is extended to incorporate the Coriolis force term in a rotating reference frame. The velocity and temperature fields of thermal convection are obtained by using the homotopy analysis method. The influences of Taylor number and Rayleigh number on the Nusselt number, velocity profile, and temperature distribution are discussed in detail. It is found that the Nusselt number decreases rapidly with the increase of Taylor number but tends to have an asymptotic value. Besides, the rotation can give rise to downward flow in contrast with the upward thermal convection.

  15. Convection in Binary Fluid Mixtures; 1, Extended Traveling Wave and Stationary States

    CERN Document Server

    Barten, W; Kamps, M; Schmitz, R

    1995-01-01

    Nonlinear convection structures are investigated in quantitative detail as a function of Rayleigh number for several negative and positive Soret coupling strengths (separation ratios) and different Lewis and Prandtl numbers characterizing different mixtures. A finite difference method was used to solve the full hydrodynamic field equations in a range of experimentally accessible parameters. We elucidate the important role that the concentration field plays in the nonlinear states of stationary overturning convection (SOC) and of traveling wave (TW) convection. Structural differences in the concentration boundary layers and of the concentration plumes in TW's and SOC's and their physical consequences are discussed. These properties show that the states con- sidered here are indeed strongly nonlinear, as expected from the magnitude of advection and diffusion in the concentration balance. The bifurcation behaviour of the states is analysed using different order parameters such as flow intensity, Nusselt number, ...

  16. Electrical imaging and fluid modeling of convective fingering in a shallow water-table aquifer

    Science.gov (United States)

    Dam, Remke L.; Eustice, Brian P.; Hyndman, David W.; Wood, Warren W.; Simmons, Craig T.

    2014-02-01

    Unstable density-driven flow can lead to enhanced solute transport in groundwater. Only recently has the complex fingering pattern associated with free convection been documented in field settings. Electrical resistivity (ER) tomography has been used to capture a snapshot of convective instabilities at a single point in time, but a thorough transient analysis is still lacking in the literature. We present the results of a 2 year experimental study at a shallow aquifer in the United Arab Emirates that was designed to specifically explore the transient nature of free convection. ER tomography data documented the presence of convective fingers following a significant rainfall event. We demonstrate that the complex fingering pattern had completely disappeared a year after the rainfall event. The observation is supported by an analysis of the aquifer halite budget and hydrodynamic modeling of the transient character of the fingering instabilities. Modeling results show that the transient dynamics of the gravitational instabilities (their initial development, infiltration into the underlying lower-density groundwater, and subsequent decay) are in agreement with the timing observed in the time-lapse ER measurements. All experimental observations and modeling results are consistent with the hypothesis that a dense brine that infiltrated into the aquifer from a surficial source was the cause of free convection at this site, and that the finite nature of the dense brine source and dispersive mixing led to the decay of instabilities with time. This study highlights the importance of the transience of free convection phenomena and suggests that these processes are more rapid than was previously understood.

  17. Unsteady MHD Mixed Convection Slip Flow of Casson Fluid over Nonlinearly Stretching Sheet Embedded in a Porous Medium with Chemical Reaction, Thermal Radiation, Heat Generation/Absorption and Convective Boundary Conditions.

    Science.gov (United States)

    Ullah, Imran; Bhattacharyya, Krishnendu; Shafie, Sharidan; Khan, Ilyas

    2016-01-01

    Numerical results are presented for the effect of first order chemical reaction and thermal radiation on mixed convection flow of Casson fluid in the presence of magnetic field. The flow is generated due to unsteady nonlinearly stretching sheet placed inside a porous medium. Convective conditions on wall temperature and wall concentration are also employed in the investigation. The governing partial differential equations are converted to ordinary differential equations using suitable transformations and then solved numerically via Keller-box method. It is noticed that fluid velocity rises with increase in radiation parameter in the case of assisting flow and is opposite in the case of opposing fluid while radiation parameter has no effect on fluid velocity in the forced convection. It is also seen that fluid velocity and concentration enhances in the case of generative chemical reaction whereas both profiles reduces in the case of destructive chemical reaction. Further, increase in local unsteadiness parameter reduces fluid velocity, temperature and concentration. Over all the effects of physical parameters on fluid velocity, temperature and concentration distribution as well as on the wall shear stress, heat and mass transfer rates are discussed in detail.

  18. On the stability of natural convection in a porous vertical slab saturated with an Oldroyd-B fluid

    Science.gov (United States)

    Shankar, B. M.; Shivakumara, I. S.

    2017-06-01

    The stability of the conduction regime of natural convection in a porous vertical slab saturated with an Oldroyd-B fluid has been studied. A modified Darcy's law is utilized to describe the flow in a porous medium. The eigenvalue problem is solved using Chebyshev collocation method and the critical Darcy-Rayleigh number with respect to the wave number is extracted for different values of physical parameters. Despite the basic state being the same for Newtonian and Oldroyd-B fluids, it is observed that the basic flow is unstable for viscoelastic fluids—a result of contrast compared to Newtonian as well as for power-law fluids. It is found that the viscoelasticity parameters exhibit both stabilizing and destabilizing influence on the system. Increase in the value of strain retardation parameter Λ _2 portrays stabilizing influence on the system while increasing stress relaxation parameter Λ _1 displays an opposite trend. Also, the effect of increasing ratio of heat capacities is to delay the onset of instability. The results for Maxwell fluid obtained as a particular case from the present study indicate that the system is more unstable compared to Oldroyd-B fluid.

  19. Fluid Mechanics of Liquid-Liquid Systems.

    Science.gov (United States)

    Richards, John Reed

    The detailed hydrodynamics of selected liquid -liquid flow systems are investigated to provide a firm foundation for the rational design of separation processes. The implementation of this objective centers on the development of a robust code to simulate liquid-liquid flows. We have applied this code to the realistic simulation of aspects of the complex fluid mechanical behavior, and developed quantitative insight into the underlying processes involved. The Volume of Fluid (VOF) method is combined with the Continuous Surface Force (CSF) algorithm to provide a numerically stable code capable of solving high Reynolds numbers free surface flows. One of the developments during the testing was an efficient method for solving the Young-Laplace equation describing the shape of the meniscus in a vertical cylinder for a constrained liquid volume. The steady-state region near the nozzle for the laminar flow of a Newtonian liquid jet injected vertically into another immiscible Newtonian liquid is investigated for various Reynolds numbers by solving the axisymmetric transient equations of motion and continuity. The analysis takes into account pressure, viscous, inertial, gravitational, and surface tension forces, and comparison with previous experimental measurements shows good agreement. Comparisons of the present numerical method with the numerical results of previous boundary-layer methods help establish their range of validity. A new approximate equation for the shape of the interface of the steady jet, based on an overall momentum balance, is also developed. The full transient from liquid-liquid jet startup to breakup into drops is also simulated numerically. In comparison with experiment, the results of the present numerical method show a greater sensitivity of the jet length to the Reynolds number than the best predictions of previous linear stability analyses. The formation of drops is investigated at low to high Reynolds numbers before and after jet formation. The

  20. Influences of rotation and thermophoresis on MHD peristaltic transport of Jeffrey fluid with convective conditions and wall properties

    Science.gov (United States)

    Hayat, T.; Rafiq, M.; Ahmad, B.

    2016-07-01

    This article aims to predict the effects of convective condition and particle deposition on peristaltic transport of Jeffrey fluid in a channel. The whole system is in a rotating frame of reference. The walls of channel are taken flexible. The fluid is electrically conducting in the presence of uniform magnetic field. Non-uniform heat source/sink parameter is also considered. Mass transfer with chemical reaction is considered. Relevant equations for the problems under consideration are first modeled and then simplified using lubrication approach. Resulting equations for stream function and temperature are solved exactly whereas mass transfer equation is solved numerically. Impacts of various involved parameters appearing in the solutions are carefully analyzed.

  1. Soret and Dufour effects on MHD peristaltic transport of Jeffrey fluid in a curved channel with convective boundary conditions

    Science.gov (United States)

    Alsaedi, Ahmad

    2017-01-01

    The purpose of present article is to examine the peristaltic flow of Jeffrey fluid in a curved channel. An electrically conducting fluid in the presence of radial applied magnetic field is considered. Analysis of heat and mass transfer is carried out. More generalized realistic constraints namely the convective conditions are utilized. Soret and Dufour effects are retained. Problems formulation is given for long wavelength and low Reynolds number assumptions. The expressions of velocity, temperature, heat transfer coefficient, concentration and stream function are computed. Effects of emerging parameters arising in solutions are analyzed in detail. It is found that velocity is not symmetric about centreline for curvature parameter. Also maximum velocity decreases with an increase in the strength of magnetic field. Further it is noticed that Soret and Dufour numbers have opposite behavior for temperature and concentration. PMID:28222160

  2. Mixed convection boundary layer flow over a moving vertical flat plate in an external fluid flow with viscous dissipation effect.

    Directory of Open Access Journals (Sweden)

    Norfifah Bachok

    Full Text Available The steady boundary layer flow of a viscous and incompressible fluid over a moving vertical flat plate in an external moving fluid with viscous dissipation is theoretically investigated. Using appropriate similarity variables, the governing system of partial differential equations is transformed into a system of ordinary (similarity differential equations, which is then solved numerically using a Maple software. Results for the skin friction or shear stress coefficient, local Nusselt number, velocity and temperature profiles are presented for different values of the governing parameters. It is found that the set of the similarity equations has unique solutions, dual solutions or no solutions, depending on the values of the mixed convection parameter, the velocity ratio parameter and the Eckert number. The Eckert number significantly affects the surface shear stress as well as the heat transfer rate at the surface.

  3. Prime modes of fluid circulation in large-aspect-ratio turbulent Rayleigh-Bénard convection

    NARCIS (Netherlands)

    Verdoold, J.; Tummers, M.J.; Hanjalić, K.

    2009-01-01

    Based on a detailed experimental investigation in an aspect-ratio-4 rectangular cell in the range 3.7×107≤Ra≤3.7×109, we present evidence of possible scenarios of the long-term dynamics of large-scale circulations (LSC) in bounded large-aspect-ratio turbulent Rayleigh-Bénard convection. Karhunen-Loè

  4. Cooling of Water in a Flask: Convection Currents in a Fluid with a Density Maximum

    Science.gov (United States)

    Velasco, S.; White, J. A.; Roman, F. L.

    2010-01-01

    The effect of density inversion on the convective flow of water in a spherical glass flask cooled with the help of an ice-water bath is shown. The experiment was carried out by temperature measurements (cooling curves) taken at three different heights along the vertical diameter of the flask. Flows inside the flask are visualized by seeding the…

  5. Cooling of Water in a Flask: Convection Currents in a Fluid with a Density Maximum

    Science.gov (United States)

    Velasco, S.; White, J. A.; Roman, F. L.

    2010-01-01

    The effect of density inversion on the convective flow of water in a spherical glass flask cooled with the help of an ice-water bath is shown. The experiment was carried out by temperature measurements (cooling curves) taken at three different heights along the vertical diameter of the flask. Flows inside the flask are visualized by seeding the…

  6. A New Mechanism of Convective Cell Regeneration and Development Within a Two-Dimensional Multicell Storm

    Institute of Scientific and Technical Information of China (English)

    BAO Xuwei; TAN Zhemin

    2009-01-01

    In this study, based on simulations of a two-dimensional multicell storm under a ground-layer upshear (Uz< 0) by a mesoscale numerical model, a new mechanism of cell regeneration and development within the multicell storm at the "less than optimal shear" state.is proposed.In the presence of a ground-layer upshear, the circulation associated with the surface cold pool is not counteracted by that associated with the ambient wind shear, and the density current extends out faster, making the multicell storm stay at the "less than optimal shear" state. As a result, a new cell is triggered by the strong vertical perturbation ahead of the mature convection, rather than by the split-up from the updraft at the leading edge of the surface cold pool as well as the gust front. The latter is the mechanism at the "optimal" state proposed by Lin et al. in 1998. In the new mechanism, the regenerated cell grows fast with the incident warm moist air from the upstream of the multicell storm, and tends to cut off the moist airflow into the mature convection at its western sector. Consequently, the mature convection would weaken, be replaced, and eventually decay.Actually, these two different mechanisms come into play in a way depending on the relationship between the circulation of the low-level shear and that of the cold pool. When the circulation of the cold pool is stronger than that of the wind shear, the multicell storm is at the "less than optimal shear" state, and the new convective cell is produced by the disturbance ahead of the mature cell. When the circulation of the cold pool is weaker, the cell regeneration is dominated by the mechanism at the "optimal" state, and the new cell is split from the gust front updraft. Therefore, these two mechanisms are not contradictive. With a moderate ground-layer upsheax, they can alternately operate within a multicell storm.

  7. Coupled Heat and Fluid Flow Modeling of the Earth's Largest Zinc Ore Deposit at Red Dog, Alaska: Implications for Structurally-Focused, Free Convection in Submarine Sedimentary Basins

    Science.gov (United States)

    Garven, G.; Dumoulin, J. A.; Bradley, D. A.; Young, L. E.; Kelley, K. D.; Leach, D. L.

    2002-12-01

    Crustal heat flow can provide a strong mechanism for driving groundwater flow, particularly in submarine basins where other mechanisms for driving pore fluid flow such as topography, compaction and crustal deformation are too weak or too slow to have a significant effect on disturbing conductive heat flow. Fault zones appear to play a crucial role in focusing fluid migration in basins, as inferred in ancient rocks by many examples of hydrothermal deposits of sediment-hosted ores worldwide. Many rift-hosted deposits of lead, zinc, and barite ore appear to have formed at or near the seafloor by focused venting of hot basinal fluids and modified seawater, although the geophysical nature of these systems is not so well known. For example, the upper Kuna Formation, a finely laminated, black, organic-rich siliceous mudstone and shale in the Western Brooks Range of northwest Alaska, is host to the largest resources of zinc yet discovered in the Earth's crust, containing ore reserves in excess of 175 Mt averaging about 16% Zn and 5% Pb. Although situated today in a highly-deformed series of structural allocthonous plates thrusted during the Jurassic to Cretaceous Brookian Orogeny, the stratiform ores are thought to have formed much earlier in the anoxic, mud-rich Carboniferous-age Kuna Basin when adjacent carbonate platforms were drowned by rifting and tectonic subsidence. Fluid inclusion studies of ore-stage sphalerite and gangue minerals indicate sub-seafloor mineralization temperatures less than 200oC and most likely between 120 to 150 oC, during a period of sediment diagenesis and extensional faulting. We have constructed fully-coupled numerical models of heat and fluid flow to test hydrologic theories for free convection, submarine venting and subsequent ore formation, as constrained by paleoheat flow and petrologic observations. A finite element grid was designed and adapted for a cross section of the Kuna Basin, geologically restored to latest Mississippian time

  8. Gelled Complex Fluids: Combining Unique Structures with Mechanical Stability.

    Science.gov (United States)

    Stubenrauch, Cosima; Gießelmann, Frank

    2016-03-01

    Gelled complex fluids are soft materials in which the microstructure of the complex fluid is combined with the mechanical stability of a gel. To obtain a gelled complex fluid one either adds a gelator to a complex fluid or replaces the solvent in a gel by a complex fluid. The most prominent example of a "natural" gelled complex fluid is the cell. There are various strategies by which one can form a gelled complex fluid; one such strategy is orthogonal self-assembly, that is, the independent but simultaneous formation of two coexisting self-assembled structures within one system. The aim of this Review is to describe the structure and potential applications of various man-made gelled complex fluids and to clarify whether or not the respective system is formed by orthogonal self-assembly.

  9. Quantitative image processing in fluid mechanics

    Science.gov (United States)

    Hesselink, Lambertus; Helman, James; Ning, Paul

    1992-01-01

    The current status of digital image processing in fluid flow research is reviewed. In particular, attention is given to a comprehensive approach to the extraction of quantitative data from multivariate databases and examples of recent developments. The discussion covers numerical simulations and experiments, data processing, generation and dissemination of knowledge, traditional image processing, hybrid processing, fluid flow vector field topology, and isosurface analysis using Marching Cubes.

  10. Geophysical Aspects of Non-Newtonian Fluid Mechanics

    Science.gov (United States)

    Balmforth, N. J.; Craster, R. V.

    Non-Newtonian fluid mechanics is a vast subject that has several journals partly, or primarily, dedicated to its investigation (Journal of Non-Newtonian Fluid Mechanics, Rheologica Acta, Journal of Fluid Mechanics, Journal of Rheology, amongst others). It is an area of active research, both for industrial fluid problems and for applications elsewhere, notably geophysically motivated issues such as the flow of lava and ice, mud slides, snow avalanches and debris flows. The main motivati on for this research activity is that, apart from some annoyingly common fluids such as air and water, virtually no fluid is actually Newtonian (that is, having a simple linear relation between stress and strain-rate characterized by a constant viscosity). Several textbooks are useful sources of information; for example, [1-3] are standard texts giving mathematical and engineering perspectives upon the subject. In these lecture notes, Ancey's chapter on rheology (Chap. 3) gives further introduction.

  11. Sensitivity of hydrothermal wave instability of Marangoni convection to the interfacial heat transfer in long liquid bridges of high Prandtl number fluids

    Science.gov (United States)

    Yano, T.; Nishino, K.; Ueno, I.; Matsumoto, S.; Kamotani, Y.

    2017-04-01

    This paper reports the sensitivity of hydrothermal wave (HTW) instability of Marangoni convection to the interfacial heat transfer in liquid bridges (LBs) of high Prandtl number fluids (Pr = 67, 112, and 207) formed under the microgravity environment on the International Space Station. The data for instability are collected for a wide range of AR and for TC = 15 and 20 °C, where AR is the aspect ratio (=height/diameter) of the LB and TC is the cooled disk temperature. A significant decrease in critical oscillation frequency as well as an appreciable decrease in the critical Marangoni number is observed for AR > 1.25. This drastic change of instability mechanisms is associated with the reversal of axial traveling direction of HTWs and roll-structures as reported previously. It is found that this reversal is closely related to the interfacial heat transfer, which is evaluated numerically through accounting for both convective and radiative components. A heat transfer ratio, QI/QH, is introduced as a dimensionless parameter for interfacial heat transfer, where QI and QH are the heat transfer rates at the LB-gas and LB-heated disk interfaces, respectively. It is found that HTWs travel in the same direction as the surface flow for QI/QH > 0 (heat-loss condition) while in the opposite direction for QI/QH alters slightly but appreciably the basic temperature and flow field, the alteration that is not accounted for in the previous linear stability analyses for an infinite LB.

  12. Application of the principle of similarity fluid mechanics

    Science.gov (United States)

    Hendricks, R. C.; Sengers, J. V.

    1979-01-01

    Possible applications of the principle of similarity to fluid mechanics is described and illustrated. In correlating thermophysical properties of fluids, the similarity principle transcends the traditional corresponding states principle. In fluid mechanics the similarity principle is useful in correlating flow processes that can be modeled adequately with one independent variable (i.e., one-dimensional flows). In this paper we explore the concept of transforming the conservation equations by combining similarity principles for thermophysical properties with those for fluid flow. We illustrate the usefulness of the procedure by applying such a transformation to calculate two phase critical mass flow through a nozzle.

  13. Multiple solutions in MHD flow and heat transfer of Sisko fluid containing nanoparticles migration with a convective boundary condition: Critical points

    Science.gov (United States)

    Dhanai, Ruchika; Rana, Puneet; Kumar, Lokendra

    2016-05-01

    The motivation behind the present analysis is to focus on magneto-hydrodynamic flow and heat transfer characteristics of non-Newtonian fluid (Sisko fluid) past a permeable nonlinear shrinking sheet utilizing nanoparticles involving convective boundary condition. The non-homogenous nanofluid transport model considering the effect of Brownian motion, thermophoresis, suction/injection and no nanoparticle flux at the sheet with convective boundary condition has been solved numerically by the RKF45 method with shooting technique. Critical points for various pertinent parameters are evaluated in this study. The dual solutions (both first and second solutions) are captured in certain range of material constant (ncthermophoresis parameter.

  14. A Study on Mixed Convective, MHD Flow from a Vertical Plate Embedded in Non-Newtonian Fluid Saturated Non- Darcy Porous Medium with Melting Effect

    Directory of Open Access Journals (Sweden)

    J. Siva Ram Prasad

    2016-01-01

    Full Text Available We analyzed in this paper the problem of mixed convection along a vertical plate in a non-Newtonian fluid saturated non-Darcy porous medium in the presence of melting and thermal dispersion-radiation effects for aiding and opposing external flows. Similarity solution for the governing equations is obtained for the flow equations in steady state. The equations are numerically solved by using Runge-kutta fourth order method coupled with shooting technique. The effects of melting (M, thermal dispersion (D, radiation (R, magnetic field (MH, viscosity index (n and mixed convection (Ra/Pe on fluid velocity and temperature are examined for aiding and opposing external flows.

  15. On the Onset of Thermal Convection in a Layer of Oldroydian Visco-Elastic Fluid Saturated by Brinkman–Darcy Porous Medium

    Directory of Open Access Journals (Sweden)

    Chand Ramesh

    2015-12-01

    Full Text Available Thermal instability in a horizontal layer of Oldroydian visco-elastic fluid in a porous medium is investigated. For porous medium the Brinkman–Darcy model is considered. A linear stability analysis based upon perturbation method and normal mode technique is used to find solution of the fluid layer confined between two free-free boundaries. The onset criterion for stationary and oscillatory convection is derived analytically. The influence of the Brinkman–Darcy, Prandtl–Darcy number, stress relaxation parameter on the stationary and oscillatory convection is studied both analytically and graphically. The sufficient condition for the validity of PES has also been derived.

  16. Thermal Vibrational Convection

    Science.gov (United States)

    Gershuni, G. Z.; Lyubimov, D. V.

    1998-08-01

    Recent increasing awareness of the ways in which vibrational effects can affect low-gravity experiments have renewed interest in the study of thermal vibrational convection across a wide range of fields. For example, in applications where vibrational effects are used to provide active control of heat and mass transfer, such as in heat exchangers, stirrers, mineral separators and crystal growth, a sound understanding of the fundamental theory is required. In Thermal Vibrational Convection, the authors present the theory of vibrational effects caused by a static gravity field, and of fluid flows which appear under vibration in fluid-filled cavities. The first part of the book discusses fluid-filled cavities where the fluid motion only appears in the presence of temperature non-uniformities, while the second considers those situations where the vibrational effects are caused by a non-uniform field. Throughout, the authors concentrate on consideration of high frequency vibrations, where averaging methods can be successfully applied in the study of the phenomena. Written by two of the pioneers in this field, Thermal Vibrational Convection will be of great interest to scientists and engineers working in the many areas that are concerned with vibration, and its effect on heat and mass transfer. These include hydrodynamics, hydro-mechanics, low gravity physics and mechanics, and geophysics. The rigorous approach adopted in presenting the theory of this fascinating and highly topical area will facilitate a greater understanding of the phenomena involved, and will lead to the development of more and better-designed experiments.

  17. A Convective Coordinate Approach to Continuum Mechanics with Application to Electrodynamics

    Science.gov (United States)

    2013-01-01

    nonunique theories may be constructed via other means; this is the approach taken here to illustrate the convective form of reference 3. This work aimed to... Engineering ; Springer-Verlag: Berlin, 1984. 12. Truesdell, C.; Noll, W. The non-linear field theories of mechanics. In Encyclopedia of Physics; Vol. 3... ENGINEERS USACEGSL P PAPADOS 7701 TELEGRAPH RD ALEXANDRIA VA 22315 5 DIRECTOR LANL P MAUDLIN R GRAY W R THISSELL A ZUREK F ADDESSIO PO BOX 1663 LOS ALAMOS NM

  18. Diffuse-Interface Methods in Fluid Mechanics

    Science.gov (United States)

    Anderson, D. M.; McFadden, G. B.; Wheeler, A. A.

    1997-01-01

    The authors review the development of diffuse-interface models of hydrodynamics and their application to a wide variety of interfacial phenomena. The authors discuss the issues involved in formulating diffuse-interface models for single-component and binary fluids. Recent applications and computations using these models are discussed in each case. Further, the authors address issues including sharp-interface analyses that relate these models to the classical free-boundary problem, related computational approaches to describe interfacial phenomena, and related approaches describing fully-miscible fluids.

  19. Convective heat transfer characters of nanoparticle enhanced latent functionally thermal fluid

    Institute of Scientific and Technical Information of China (English)

    2009-01-01

    The latent heat of the microencapsulated phase change material(MPCM)increases the effective ther-mal capacity of latent functionally thermal fluid.However,researchers found that the heat transfer performance of such fluids was diminished due to the reduction of the low thermal conductivity of MPCM.For this reason,the nanoparticle enhanced latent functionally thermal fluids were formulated and the heat transfer behaviors of these fluids in a vertical circular tube at the laminar regime were conducted.The result showed that slurries containing 0.5% TiO2 nanoparticles by mass and 5%―20% MPCM by mass exhibited improved heat transfer rates in comparison with the conventional latent functionally thermal fluid and that the enhancement increased with the increasing MPCM concentration and up to 18.9% of the dimensionless wall temperature was reduced.

  20. Convective heat transfer characters of nanoparticle enhanced latent functionally thermal fluid

    Institute of Scientific and Technical Information of China (English)

    WANG Liang; LIN GuiPing; CHEN HaiSheng; DING YuLong

    2009-01-01

    The latent heat of the microencapsulated phase change material (MPCM) increases the effective ther-mal capacity of latent functionally thermal fluid. However, researchers found that the heat transfer performance of such fluids was diminished due to the reduction of the low thermal conductivity of MPCM. For this reason, the nanoparticle enhanced latent functionally thermal fluids were formulated and the heat transfer behaviors of these fluids in a vertical circular tube at the laminar regime were conducted. The result showed that slurries containing 0.5% TiO2 nanoparticles by mass and 5%-20% MPCM by mass exhibited improved heat transfer rates in comparison with the conventional latent functionally thermal fluid and that the enhancement increased with the increasing MPCM concentration and up to 18.9% of the dimensionless wall temperature was reduced.

  1. Convective heat transfer between a fluid-saturated porous medium and a permeable wall with fluid injection or withdrawal

    NARCIS (Netherlands)

    Brouwers, Jos

    1994-01-01

    The present paper addresses heat and mass transfer between a permeable wall and a fluid-saturated porous medium. To assess the effect of wall suction or injection on sensible heat transfer, a stagnant film model is developed. The model yields a thermal correction factor accounting for the effect of

  2. The Role of CFD in Undergraduate Fluid Mechanics Education

    Science.gov (United States)

    Cimbala, John

    2006-11-01

    Instruction of undergraduate fluid mechanics is greatly enhanced through integration of computational fluid dynamics (CFD) into fluid mechanics courses and labs. Specifically, students are able to visualize fluid flows with CFD and are better able to understand those flows by performing parametric studies. At Penn State, CFD has been carefully integrated into our introductory junior-level fluid mechanics course, yet displaces only about one class period. The key is to show demonstrations and assign homework that use CFD as a tool that helps students learn the basic concepts of fluid mechanics. The application of CFD (grid generation, boundary conditions, etc.), rather than numerical algorithms, is stressed. This is done through use of short, pre-defined templates for FlowLab, a student-friendly analysis and visualization package created by Fluent, Inc. The textbook by Cengel and Cimbala (McGraw-Hill 2006) contains 46 end-of-chapter homework problems that are used in conjunction with 42 FlowLab templates. Each exercise has been designed with two major learning objectives in mind: (1) enhance student understanding of a specific fluid mechanics concept, and (2) introduce the student to a specific capability and/or limitation of CFD through hands-on practice. More templates are being developed that emphasize the first objective. The flow of fluid between two concentric rotating cylinders is a good example of a problem that is solved approximately, analytically, and with CFD, and the results are compared to enhance learning.

  3. Bernoulli and Newton in Fluid Mechanics

    Science.gov (United States)

    Smith, Norman F.

    1972-01-01

    Bernoulli's theorem can be better understood with the aid of Newton's laws and the law of conservation of energy. Application of this theorem should involve only cases dealing with an interchange of velocity and pressure within a fluid under isentropic conditions. (DF)

  4. Bernoulli and Newton in Fluid Mechanics

    Science.gov (United States)

    Smith, Norman F.

    1972-01-01

    Bernoulli's theorem can be better understood with the aid of Newton's laws and the law of conservation of energy. Application of this theorem should involve only cases dealing with an interchange of velocity and pressure within a fluid under isentropic conditions. (DF)

  5. Fluid catalytic cracking : feedstocks and reaction mechanism

    NARCIS (Netherlands)

    Dupain, X.

    2006-01-01

    The Fluid Catalytic Cracking (FCC) process is one of the key units in a modern refinery. Traditionally, its design is primarily aimed for the production of gasoline from heavy oil fractions, but as co-products also diesel blends and valuable gasses (e.g. propene and butenes) are formed in

  6. Natural convection in nano-fluids: Are the thermophoresis and Brownian motion effects significant in nano-fluid heat transfer enhancement?

    Energy Technology Data Exchange (ETDEWEB)

    Haddad, Zoubida [Department of Mechanical Engineering, Technology Faculty, Firat University, TR-23119, Elazig (Turkey); Department of Fluid Mechanics, Faculty of Physics, University of Sciences and Technology-Houari Boumediene, Algiers (Algeria); Abu-Nada, Eiyad [Department of Mechanical Engineering, King Faisal University, Al-Ahsa 31982 (Saudi Arabia); Oztop, Hakan F. [Department of Mechanical Engineering, Technology Faculty, Firat University, TR-23119, Elazig (Turkey); Mataoui, Amina [Department of Fluid Mechanics, Faculty of Physics, University of Sciences and Technology-Houari Boumediene, Algiers (Algeria)

    2012-07-15

    Natural convection heat transfer and fluid flow of CuO-Water nano-fluids is studied using the Rayleigh-Benard problem. A two component non-homogenous equilibrium model is used for the nano-fluid that incorporates the effects of Brownian motion and thermophoresis. Variable thermal conductivity and variable viscosity are taken into account in this work. Finite volume method is used to solve governing equations. Results are presented by streamlines, isotherms, nano-particle distribution, local and mean Nusselt numbers and nano-particle profiles at top and bottom side. Comparison of two cases as absence of Brownian and thermophoresis effects and presence of Brownian and thermophoresis effects showed that higher heat transfer is formed with the presence of Brownian and thermophoresis effect. In general, by considering the role of thermophoresis and Brownian motion, an enhancement in heat transfer is observed at any volume fraction of nano-particles. However, the enhancement is more pronounced at low volume fraction of nano-particles and the heat transfer decreases by increasing nano-particle volume fraction. On the other hand, by neglecting the role of thermophoresis and Brownian motion, deterioration in heat transfer is observed and this deterioration elevates by increasing the volume fraction of nano-particles. (authors)

  7. Magnetohydrodynamic flow of Carreau fluid over a convectively heated surface in the presence of non-linear radiation

    Energy Technology Data Exchange (ETDEWEB)

    Khan, Masood [Department of Mathematics, Quaid-i-Azam University, Islamabad 44000 (Pakistan); Hashim, E-mail: hashim_alik@yahoo.com [Department of Mathematics, Quaid-i-Azam University, Islamabad 44000 (Pakistan); Hussain, M. [Department of Sciences and Humanities, National University of Computer and Emerging Sciences, Islamabad 44000 (Pakistan); Azam, M. [Department of Mathematics, Quaid-i-Azam University, Islamabad 44000 (Pakistan)

    2016-08-15

    This paper presents a study of the magnetohydrodynamic (MHD) boundary layer flow of a non-Newtonian Carreau fluid over a convectively heated surface. The analysis of heat transfer is further performed in the presence of non-linear thermal radiation. The appropriate transformations are employed to bring the governing equations into dimensionless form. The numerical solutions of the partially coupled non-linear ordinary differential equations are obtained by using the Runge-Kutta Fehlberg integration scheme. The influence of non-dimensional governing parameters on the velocity, temperature, local skin friction coefficient and local Nusselt number is studied and discussed with the help of graphs and tables. Results proved that there is significant decrease in the velocity and the corresponding momentum boundary layer thickness with the growth in the magnetic parameter. However, a quite the opposite is true for the temperature and the corresponding thermal boundary layer thickness. - Highlights: • We investigated the Magnetohydrodynamic flow of Carreau constitutive fluid model. • Impact of non-linear thermal radiation is further taken into account. • Runge-Kutta Fehlberg method is employed to obtain the numerical solutions. • Fluid velocity is higher in case of hydromagnetic flow in comparison with hydrodynamic flow. • The local Nusselt number is a decreasing function of the thermal radiation parameter.

  8. Coriolis effect on thermal convection in a couple-stress fluid-saturated rotating rigid porous layer

    Energy Technology Data Exchange (ETDEWEB)

    Shivakumara, I.S.; Devaraju, N. [Bangalore University, UGC-Centre for Advanced studies in Fluid Mechanics, Department of Mathematics, Bangalore (India); Sureshkumar, S. [Siddaganga Institute of Technology, Department of Mathematics, Tumkur (India)

    2011-04-15

    Both linear and weakly nonlinear stability analyses are performed to study thermal convection in a rotating couple-stress fluid-saturated rigid porous layer. In the case of linear stability analysis, conditions for the occurrence of possible bifurcations are obtained. It is shown that Hopf bifurcation is possible due to Coriolis force, and it occurs at a lower value of the Rayleigh number at which the simple bifurcation occurs. In contrast to the nonrotating case, it is found that the couple-stress parameter plays a dual role in deciding the stability characteristics of the system, depending on the strength of rotation. Nonlinear stability analysis is carried out by constructing a set of coupled nonlinear ordinary differential equations using truncated representation of Fourier series. Sub-critical finite amplitude steady motions occur depending on the choice of physical parameters but at higher rotation rates oscillatory convection is found to be the preferred mode of instability. Besides, the stability of steady bifurcating equilibrium solution is discussed using modified perturbation theory. Heat transfer is calculated in terms of Nusselt number. Also, the transient behavior of the Nusselt number is investigated by solving the nonlinear differential equations numerically using the Runge-Kutta-Gill method. It is noted that increase in the value of Taylor number and the couple-stress parameter is to dampen the oscillations of Nusselt number and thereby to decrease the heat transfer. (orig.)

  9. Radiative Squeezing Flow of Second Grade Fluid with Convective Boundary Conditions

    Science.gov (United States)

    Hayat, T.; Jabeen, Sumaira; Shafiq, Anum; Alsaedi, A.

    2016-01-01

    Influence of magnetohydrodynamic (MHD) flow between two parallel disks is considered. Heat transfer analysis is disclosed due to thermal radiation and convective boundary condition. Appropriate transformations are invoked to obtain the ordinary differential system. This system is solved using homotopic approach. Convergence of the obtained solution is discussed. Variations of embedded parameters into the governing problems are graphically discussed. Skin friction coefficient and Nusselt number are numerically computed and analyzed. It is noticed that temperature profile is increasing function of radiation parameter. PMID:27096616

  10. Entropy generation analysis of thermally developing forced convection in fluid-saturated porous medium

    Institute of Scientific and Technical Information of China (English)

    2008-01-01

    Entropy generation for thermally developing forced convection in a porous medium bounded by two isothermal parallel plates is investigated analytically on the basis of the Darcy flow model where the viscous dissipation effects had also been taken into account.A parametric study showed that decreasing the group parameter and the Péclet number increases the entropy generation while for the Brinkman number the converse is true.Heatline visualization technique is applied with an emphasis on the Br < 0 case where there is somewhere that heat transfer changes direction at some streamwise location to the wall instead of its original direction,i.e.,from the wall.

  11. Fluid Mechanics, Arterial Disease, and Gene Expression.

    Science.gov (United States)

    Tarbell, John M; Shi, Zhong-Dong; Dunn, Jessilyn; Jo, Hanjoong

    2014-01-01

    This review places modern research developments in vascular mechanobiology in the context of hemodynamic phenomena in the cardiovascular system and the discrete localization of vascular disease. The modern origins of this field are traced, beginning in the 1960s when associations between flow characteristics, particularly blood flow-induced wall shear stress, and the localization of atherosclerotic plaques were uncovered, and continuing to fluid shear stress effects on the vascular lining endothelial) cells (ECs), including their effects on EC morphology, biochemical production, and gene expression. The earliest single-gene studies and genome-wide analyses are considered. The final section moves from the ECs lining the vessel wall to the smooth muscle cells and fibroblasts within the wall that are fluid me chanically activated by interstitial flow that imposes shear stresses on their surfaces comparable with those of flowing blood on EC surfaces. Interstitial flow stimulates biochemical production and gene expression, much like blood flow on ECs.

  12. Forced convection heat transfer of Couette-Poiseuille flow of nonlinear viscoelastic fluids between parallel plates

    Energy Technology Data Exchange (ETDEWEB)

    Hashemabadi, S.H. [Iran Univ. of Science and Technology, Dept. of Chemical Engineering, Tehran (Iran); Etemad, S.Gh. [Isfahan Univ. of Technology, Dept. of Chemical Engineering, Isfahan (Israel); Thibault, J. [Ottawa Univ., Dept. of Chemical Engineering, Ottawa, ON (Canada)

    2004-08-01

    Heat transfer to viscoelastic fluids is frequently encountered in various industrial processing. In this investigation an analytical solution was obtained to predict the fully developed, steady and laminar heat transfer of viscoelastic fluids between parallel plates. One of the plates was stationary and was subjected to a constant heat flux. The other plate moved with constant velocity and was insulated. The simplified Phan-Thien-Tanner (SPTT) model, believed to be a more realistic model for viscoelastic fluids, was used to represent the rheological behavior of the fluid. The energy equation was solved for a wide range of Brinkman number, dimensionless viscoelastic group, and dimensionless pressure drop. Results highlight the strong effects of these parameters on the heat transfer rate. (Author)

  13. A mathematical model for mixed convective flow of chemically reactive Oldroyd-B fluid between isothermal stretching disks

    Science.gov (United States)

    Hashmi, M. S.; Khan, N.; Ullah Khan, Sami; Rashidi, M. M.

    In this study, we have constructed a mathematical model to investigate the heat source/sink effects in mixed convection axisymmetric flow of an incompressible, electrically conducting Oldroyd-B fluid between two infinite isothermal stretching disks. The effects of viscous dissipation and Joule heating are also considered in the heat equation. The governing partial differential equations are converted into ordinary differential equations by using appropriate similarity variables. The series solution of these dimensionless equations is constructed by using homotopy analysis method. The convergence of the obtained solution is carefully examined. The effects of various involved parameters on pressure, velocity and temperature profiles are comprehensively studied. A graphical analysis has been presented for various values of problem parameters. The numerical values of wall shear stress and Nusselt number are computed at both upper and lower disks. Moreover, a graphical and tabular explanation for critical values of Frank-Kamenetskii regarding other flow parameters.

  14. Natural convection flow of a nano-fluid over a vertical plate with uniform surface heat flux

    Energy Technology Data Exchange (ETDEWEB)

    Khan, W.A. [Department of Engineering Sciences, National University of Sciences and Technology, Karachi 75350 (Pakistan); Aziz, A. [Department of Mechanical Engineering, School of Engineering and Applied Science, Gonzaga University, Spokane, WA 99258 (United States)

    2011-07-15

    Natural convective flow of a nano-fluid over a vertical plate with a constant surface heat flux is investigated numerically, following a similarity analysis of the transport equations. The transport model employed includes the effect of Brownian motion and thermophoresis. The analysis shows that velocity, temperature and concentration profiles in the respective boundary layers depend, besides the Prandtl and Lewis numbers, on three additional dimensionless parameters, namely a Brownian motion parameter Nb, a thermophoresis parameter Nt, a buoyancy ratio parameter Nr. In addition to the study of these parameters on the boundary layer flow characteristics (velocity, temperature, nano-particle concentration, skin friction, and heat transfer), correlations for the Nusselt and Sherwood numbers have been developed based on a regression analysis of the data. These correlations predict the numerical results with a maximum error of 5.5% for the reduced Nusselt number and 3.2% for the reduced Sherwood number. (authors)

  15. EFFECTS OF BUOYANCY RATIO ON CONVECTIVE HEAT AND SOLUTE TRANSFER IN NEWTONIAN FLUID SATURATED INCLINED POROUS CAVITY

    Directory of Open Access Journals (Sweden)

    A LATRECHE

    2014-12-01

    Full Text Available This paper summarizes a numerical study of the effects of buoyancy ratio on double-diffusive natural convection in square inclined cavity filled with fluid saturated porous media. Transverse gradients of heat and solute are applied on the two horizontal walls of the cavity, while the other two walls are impermeable and adiabatic. The Darcy model with the Boussinesq approximation is used to solve the governing equations. The flow is driven by a combined buoyancy effect due to both temperature and concentration variations. A finite volume approach has been used to solve the non-dimensional governing equations. The results are presented in streamline, isothermal, iso-concentration, Nusselt and Sherwood contours for different values of the non-dimensional governing parameters.

  16. Mixed convection flow of a viscoelastic fluid near the orthogonal stagnation-point on a vertical surface

    Energy Technology Data Exchange (ETDEWEB)

    Li, D. [Department of Mathematics and Statistics, University of Regina, Regina, SK S4S 0A2 (Canada); Labropulu, F. [Luther College e Mathematics, University of Regina, Regina, SK S4S 0A2 (Canada); Pop, I. [Faculty of Mathematics, University of Cluj, R-3400 Cluj, CP 253 (Romania)

    2011-09-15

    An analysis of the steady mixed convection flow of a viscoelastic fluid stagnating orthogonally on a heated or cooled vertical flat plate has been studied. Using similarity variables, the governing equations are transformed into a system of two coupled non-linear ordinary differential equations. The resulting equations are then solved numerically using the spectral method. It is observed that the skin friction coefficient and the local heat transfer are decreasing when the Weissenberg number We is increasing in both assisting and opposing flow cases. On the other hand, the skin friction is decreasing and the local heat transfer is increasing when the Prandtl number Pr is increasing in the case of assisting flow. In the case of opposing flow, the skin friction and the local heat transfer are increasing as Pr is increasing. (authors)

  17. Numerical analysis of natural convection for non-Newtonian fluid conveying nanoparticles between two vertical parallel plates

    Science.gov (United States)

    Sahebi, S. A. R.; Pourziaei, H.; Feizi, A. R.; Taheri, M. H.; Rostamiyan, Y.; Ganji, D. D.

    2015-12-01

    In this paper, natural convection of non-Newtonian bio-nanofluids flow between two vertical flat plates is investigated numerically. Sodium Alginate (SA) and Sodium Carboxymethyl Cellulose (SCMC) are considered as the base non-Newtonian fluid, and nanoparticles such as Titania ( TiO2 and Alumina ( Al2O3 were added to them. The effective thermal conductivity and viscosity of nanofluids are calculated through Maxwell-Garnetts (MG) and Brinkman models, respectively. A fourth-order Runge-Kutta numerical method (NUM) and three Weighted Residual Methods (WRMs), Collocation (CM), Galerkin (GM) and Least-Square Method (LSM) and Finite-Element Method (FEM), are used to solve the present problem. The influence of some physical parameters such as nanofluid volume friction on non-dimensional velocity and temperature profiles are discussed. The results show that SCMC- TiO2 has higher velocity and temperature values than other nanofluid structures.

  18. NUMERICAL METHOD FOR THREE-DIMENSIONAL NONLINEAR CONVECTION-DOMINATED PROBLEM OF DYNAMICS OF FLUIDS IN POROUS MEDIA

    Institute of Scientific and Technical Information of China (English)

    YUAN Yi-rang; DU Ning; WANG Wen-qia; CHENG Ai-jie; HAN Yu-ji

    2006-01-01

    For the three-dimensional convection-dominated problem of dynamics of fluids in porous media, the second order upwind finite difference fractional steps schemes applicable to parallel arithmetic are put forward. Fractional steps techniques are needed to convert a multi-dimensional problem into a series of successive one-dimensional problems.Some techniques, such as calculus of variations, energy method, multiplicative commutation rule of difference operators, decomposition of high order difference operators, and the theory of prior estimates are adopted. Optimal order estimates are derived to determine the error in the second order approximate solution. These methods have already been applied to the numerical simulation of migration-accumulation of oil resources and predicting the consequences of seawater intrusion and protection projects.

  19. The role of the thermal convection of fluids in the formation of unconformity-type uranium deposits: the Athabasca Basin, Canada

    Science.gov (United States)

    Pek, A. A.; Malkovsky, V. I.

    2017-05-01

    In the global production of uranium, 18% belong to the unconformity-type Canadian deposits localized in the Athabasca Basin. These deposits, which are unique in terms of their ore quality, were primarily studied by Canadian and French scientists. They have elaborated the diagenetic-hydrothermal hypothesis of ore formation, which suggests that (1) the deposits were formed within a sedimentary basin near an unconformity surface dividing the folded Archean-Proterozoic metamorphic basement and a gently dipping sedimentary cover, which is not affected by metamorphism; (2) the spatial accommodation of the deposits is controlled by the rejuvenated faults in the basement at their exit into the overlying sedimentary sequence; the ore bodies are localized above and below the unconformity surface; (3) the occurrence of graphite-bearing rocks is an important factor in controlling the local structural mineralization; (4) the ore bodies are the products of uranium precipitation on a reducing barrier. The mechanism that drives the circulation of ore-forming hydrothermal solutions has remained one of the main unclear questions in the general genetic concept. The ore was deposited above the surface of the unconformity due to the upflow discharge of the solution from the fault zones into the overlying conglomerate and sandstone. The ore formation below this surface is a result of the downflow migration of the solutions along the fault zones from sandstone into the basement rocks. A thermal convective system with the conjugated convection cells in the basement and sedimentary fill of the basin may be a possible explanation of why the hydrotherms circulate in the opposite directions. The results of our computations in the model setting of the free thermal convection of fluids are consistent with the conceptual reasoning about the conditions of the formation of unique uranium deposits in the Athabasca Basin. The calculated rates of the focused solution circulation through the fault

  20. Vectors, tensors and the basic equations of fluid mechanics

    CERN Document Server

    Aris, Rutherford

    1962-01-01

    Introductory text, geared toward advanced undergraduate and graduate students, applies mathematics of Cartesian and general tensors to physical field theories and demonstrates them in terms of the theory of fluid mechanics. 1962 edition.

  1. Mechanics of undulatory swimming in a frictional fluid

    National Research Council Canada - National Science Library

    Ding, Yang; Sharpe, Sarah S; Masse, Andrew; Goldman, Daniel I

    2012-01-01

    .... In this paper, we use the simulation to study the detailed mechanics of undulatory swimming in a "granular frictional fluid" and compare the predictions to our previously developed resistive force theory (RFT...

  2. [Research activities in applied mathematics, fluid mechanics, and computer science

    Science.gov (United States)

    1995-01-01

    This report summarizes research conducted at the Institute for Computer Applications in Science and Engineering in applied mathematics, fluid mechanics, and computer science during the period April 1, 1995 through September 30, 1995.

  3. Research in Applied Mathematics, Fluid Mechanics and Computer Science

    Science.gov (United States)

    1999-01-01

    This report summarizes research conducted at the Institute for Computer Applications in Science and Engineering in applied mathematics, fluid mechanics, and computer science during the period October 1, 1998 through March 31, 1999.

  4. Zero-G fluid mechanics in animal and man

    Science.gov (United States)

    Sandler, H.

    1986-01-01

    Significant cardiovascular change occurs with spaceflight. Loss of normal hydrostatic pressure gradients (head-to-foot), present while upright on earth, results in significant headward fluid shift of vascular and interstitial fluids. The resultant fluid change also shifts the hydrostatic indifference point for the circulation. The persistent distention of neck veins and change in upper body tissue compliance initiates steps to adapt to and compensate for the sensed excess fluid. These result in a loss of intravascular volume through neuro-humoral mechanisms and the presence of a smaller heart size, leading to a state where the subject has a reduced adaptive capacity to stress, particularly to fluid shifts to the lower body as occurs when once again returning to earth. This article reviews what is known about the weightlessness-induced headward fluid shift and its effects on cardiovascular function.

  5. Simulations for Maxwell fluid flow past a convectively heated exponentially stretching sheet with nanoparticles

    Directory of Open Access Journals (Sweden)

    M. Mustafa

    2015-03-01

    Full Text Available This article addresses steady flow of Maxwell nanofluid induced by an exponentially stretching sheet subject to convective heating. The revised model of passively controlled wall nanoparticle volume fraction is taken into account. Numerical solutions of the arising non-linear boundary value problem (BVP are obtained by using MATLAB built-in function bvp4c. Simulations are performed for various values of embedded parameters which include local Deborah number, Prandtl number, Biot number, Brownian motion parameter and thermophoresis parameter. The results are consistent with the previous studies in some limiting cases. It is found that velocity decreases and temperature increases when the local Deborah number is increased. Moreover the influence of Brownian diffusion on temperature and heat transfer rate is found to be insignificant.

  6. The fluid mechanics of root canal irrigation.

    Science.gov (United States)

    Gulabivala, K; Ng, Y-L; Gilbertson, M; Eames, I

    2010-12-01

    Root canal treatment is a common dental operation aimed at removing the contents of the geometrically complex canal chambers within teeth; its purpose is to remove diseased or infected tissue. The complex chamber is first enlarged and shaped by instruments to a size sufficient to deliver antibacterial fluids. These irrigants help to dissolve dying tissue, disinfect the canal walls and space and flush out debris. The effectiveness of the procedure is limited by access to the canal terminus. Endodontic research is focused on finding the instruments and clinical procedures that might improve success rates by more effectively reaching the apical anatomy. The individual factors affecting treatment outcome have not been unequivocally deciphered, partly because of the difficulty in isolating them and in making the link between simplified, general experimental models and the complex biological objects that are teeth. Explicitly considering the physical processes within the root canal can contribute to the resolution of these problems. The central problem is one of fluid motion in a confined geometry, which makes the dispersion and mixing of irrigant more difficult because of the absence of turbulence over much of the canal volume. The effects of treatments can be understood through the use of scale models, mathematical modelling and numerical computations. A particular concern in treatment is that caustic irrigant may penetrate beyond the root canal, causing chemical damage to the jawbone. In fact, a stagnation plane exists beyond the needle tip, which the irrigant cannot penetrate. The goal is therefore to shift the stagnation plane apically to be coincident with the canal terminus without extending beyond it. Needle design may solve some of the problems but the best design for irrigant penetration conflicts with that for optimal removal of the bacterial biofilm from the canal wall. Both irrigant penetration and biofilm removal may be improved through canal fluid

  7. The Contact Angle in Inviscid Fluid Mechanics

    Indian Academy of Sciences (India)

    P N Shankar; R Kidambi

    2005-05-01

    We show that in general, the specification of a contact angle condition at the contact line in inviscid fluid motions is incompatible with the classical field equations and boundary conditions generally applicable to them. The limited conditions under which such a specification is permissible are derived;however, these include cases where the static meniscus is not flat. In view of this situation, the status of the many `solutions’ in the literature which prescribe a contact angle in potential flows comes into question. We suggest that these solutions which attempt to incorporate a phenomenological, but incompatible, condition are in some, imprecise sense `weak-type solutions’;they satisfy or are likely to satisfy, at least in the limit, the governing equations and boundary conditions everywhere except in the neighbourhood of the contact line. We discuss the implications of the result for the analysis of inviscid flows with free surfaces.

  8. Entropy analysis of convective MHD flow of third grade non-Newtonian fluid over a stretching sheet

    Directory of Open Access Journals (Sweden)

    M.M. Rashidi

    2017-03-01

    Full Text Available The purpose of this article is to study and analyze the convective flow of a third grade non-Newtonian fluid due to a linearly stretching sheet subject to a magnetic field. The dimensionless entropy generation equation is obtained by solving the reduced momentum and energy equations. The momentum and energy equations are reduced to a system of ordinary differential equations by a similarity method. The optimal homotopy analysis method (OHAM is used to solve the resulting system of ordinary differential equations. The effects of the magnetic field, Biot number and Prandtl number on the velocity component and temperature are studied. The results show that the thermal boundary-layer thickness gets decreased with increasing the Prandtl number. In addition, Brownian motion plays an important role to improve thermal conductivity of the fluid. The main purpose of the paper is to study the effects of Reynolds number, dimensionless temperature difference, Brinkman number, Hartmann number and other physical parameters on the entropy generation. These results are analyzed and discussed.

  9. MHD Stagnation-Point Flow of a Carreau Fluid and Heat Transfer in the Presence of Convective Boundary Conditions.

    Directory of Open Access Journals (Sweden)

    Masood Khan

    Full Text Available In the present investigation we analyze the impact of magnetic field on the stagnation-point flow of a generalized Newtonian Carreau fluid. The convective surface boundary conditions are considered to investigate the thermal boundary layer. The leading partial differential equations of the current problem are altered to a set of ordinary differential equations by picking local similarity transformations. The developed non-linear ordinary differential equations are then numerically integrated via Runge-Kutta Fehlberg method after changing into initial value problems. This investigation explores that the momentum and thermal boundary layers are significantly influenced by various pertinent parameters like the Hartmann number M, velocity shear ratio parameter α, Weissenberg number We, power law index n, Biot number γ and Prandtl number Pr. The analysis further reveals that the fluid velocity as well as the skin friction is raised by the velocity shear ratio parameter. Moreover, strong values of the Hartmann number correspond to thinning of the momentum boundary layer thickness while quite the opposite is true for the thermal boundary layer thickness. Additionally, it is seen that the numerical computations are in splendid consent with previously reported studies.

  10. MHD Stagnation-Point Flow of a Carreau Fluid and Heat Transfer in the Presence of Convective Boundary Conditions.

    Science.gov (United States)

    Khan, Masood; Hashim; Alshomrani, Ali Saleh

    2016-01-01

    In the present investigation we analyze the impact of magnetic field on the stagnation-point flow of a generalized Newtonian Carreau fluid. The convective surface boundary conditions are considered to investigate the thermal boundary layer. The leading partial differential equations of the current problem are altered to a set of ordinary differential equations by picking local similarity transformations. The developed non-linear ordinary differential equations are then numerically integrated via Runge-Kutta Fehlberg method after changing into initial value problems. This investigation explores that the momentum and thermal boundary layers are significantly influenced by various pertinent parameters like the Hartmann number M, velocity shear ratio parameter α, Weissenberg number We, power law index n, Biot number γ and Prandtl number Pr. The analysis further reveals that the fluid velocity as well as the skin friction is raised by the velocity shear ratio parameter. Moreover, strong values of the Hartmann number correspond to thinning of the momentum boundary layer thickness while quite the opposite is true for the thermal boundary layer thickness. Additionally, it is seen that the numerical computations are in splendid consent with previously reported studies.

  11. MHD mixed convection analysis in an open channel by obstructed Poiseuille flow of non-Newtonian power law fluid

    Science.gov (United States)

    Rabbi, Khan Md.; Rakib, Tawfiqur; Das, Sourav; Mojumder, Satyajit; Saha, Sourav

    2016-07-01

    This paper demonstrates magneto-hydrodynamic (MHD) mixed convection flow through a channel with a rectangular obstacle at the entrance region using non-Newtonian power law fluid. The obstacle is kept at uniformly high temperature whereas the inlet and top wall of the channel are maintained at a temperature lower than obstacle temperature. Poiseuille flow is implemented as the inlet velocity boundary condition. Grid independency test and code validation are performed to justify the computational accuracy before solving the present problem. Galerkin weighted residual method has been appointed to solve the continuity, momentum and energy equations. The problem has been solved for wide range of pertinent parameters like Richardson number (Ri = 0.1 - 10) at a constant Reynolds number (Re = 100), Hartmann number (Ha = 0 - 100), power index (n = 0.6 - 1.6). The flow and thermal field have been thoroughly discussed through streamline and isothermal lines respectively. The heat transfer performance of the given study has been illustrated by average Nusselt number plots. It is observed that increment of Hartmann number (Ha) tends to decrease the heat transfer rate up to a critical value (Ha = 20) and then let increase the heat transfer performance. Thus maximum heat transfer rate has been recorded for higher Hartmann number and Rayleigh number in case of pseudo-plastic (n = 0.6) non-Newtonian fluid flow.

  12. EVALUATION OF AN IMPROVED CONVECTION TRIGGERING MECHANISM IN THE NCAR COMMUNITY ATMOSPHERE MODEL CAM2 UNDER CAPT FRAMEWORK

    Energy Technology Data Exchange (ETDEWEB)

    Xie, S; Boyle, J S; Cederwall, R T; Potter, G L; Zhang, M

    2003-10-15

    The problem that convection over land is overactive during warm-season daytime in the National Center for Atmospheric Research (NCAR) Community Atmosphere Model CAM2 and its previous version (CCM3) has been found both in its single-column model (SCM) simulations (Xie and Zhang 2000; Ghan et al. 2000; Xie et al. 2002) and in its full general circulation model (GCM) short-range weather forecasts (Phillips et al. 2003) and climate simulations (Dai and Trenberth 2003). These studies showed that this problem is closely related to the convection triggering mechanism used in its deep convection scheme (Zhang and McFarlane 1995), which assumes that convection is triggered whenever there is positive convective available potential energy (CAPE). The positive CAPE triggering mechanism initiates model convection too often during the day because of the strong diurnal variations in the surface isolation and the induced CAPE diurnal change over land in the warm season. To reduce the problem, Xie and Zhang (2000) introduced a dynamic constraint, i.e., a dynamic CAPE generation rate (DCAPE) determined by the large-scale advective tendencies of temperature and moisture, to control the onset of deep convection. They showed that positive DCAPE is closely associated with convection in observations and the dynamic constraint could largely reduce the effect of the strong diurnal variations in the surface fluxes on the initiation of convection. Using the SCM version of CCM3, which has the same deep convection scheme as CAM2, Xie and Zhang (2000) showed that considerable improvements can be obtained in the model simulation of precipitation and other thermodynamic fields when the dynamic constraint was applied to the model triggering function. However, the performance of the improved convection triggering mechanism in the full GCM has not been tested. In this study, we will test the improved convection trigger mechanism in CAM2 under the U.S. Department of Energy's Climate Change

  13. Molecular mechanics and structure of the fluid-solid interface in simple fluids

    Science.gov (United States)

    Wang, Gerald J.; Hadjiconstantinou, Nicolas G.

    2017-09-01

    Near a fluid-solid interface, the fluid spatial density profile is highly nonuniform at the molecular scale. This nonuniformity can have profound effects on the dynamical behavior of the fluid and has been shown to play an especially important role when modeling a wide variety of nanoscale heat and momentum transfer phenomena. We use molecular-mechanics arguments and molecular-dynamics (MD) simulations to develop a better understanding of the structure of the first fluid layer directly adjacent to the solid in the layering regime, as delineated by a nondimensional number that compares the effects of wall-fluid interaction to thermal energy. Using asymptotic analysis of the Nernst-Planck equation, we show that features of the fluid density profile close to the wall, such as the areal density of the first layer ΣFL (defined as the number of atoms in this layer per unit of fluid-solid interfacial area), can be expressed as polynomial functions of the fluid average density ρave. This is found to be in agreement with MD simulations, which also show that the width of the first layer hFL is a linear function of the average density and only a weak function of the temperature T . These results can be combined to show that, for system average densities corresponding to a dense fluid (ρave≥0.7 ), the ratio C ≡ΣFLρavehFL, representing a density enhancement with respect to the bulk fluid, depends only weakly on temperature and is essentially independent of density. Further MD simulations suggest that the above results, nominally valid for large systems (solid in contact with semi-infinite fluid), also describe fluid-solid interfaces under considerable nanoconfinement, provided ρave is appropriately defined.

  14. Multiple Solutions of Mixed Convective MHD Casson Fluid Flow in a Channel

    Directory of Open Access Journals (Sweden)

    Jawad Raza

    2016-01-01

    Full Text Available A numerical investigation is made to determine the occurrence of the multiple solutions of MHD Casson fluid in a porous channel. Governing partial differential equation of the proposed problem converted into nonlinear ordinary differential equations by using similarity transformation. Numerical technique known as shooting method is used to investigate the existence of the multiple solutions for the variations of different parameters. Effects of physical parameters on velocity profile, temperature, concentration, and skin friction are presented in pictorial and tabulation representation.

  15. Multifield Problems in Solid and Fluid Mechanics

    CERN Document Server

    Helmig, Rainer; Wohlmuth, Barbara I

    2006-01-01

    Many phenomena cannot be described by concentrating on them in isolation - therefore multifield models and concepts are needed. This book summarizes the scientific results of the Collaborative Research Center on Multifield Problems in Continuum Mechanics funded by the German Research Foundation (DFG) from 1995-2006.

  16. Active Learning in Fluid Mechanics: Youtube Tube Flow and Puzzling Fluids Questions

    Science.gov (United States)

    Hrenya, Christine M.

    2011-01-01

    Active-learning exercises appropriate for a course in undergraduate fluid mechanics are presented. The first exercise involves an experiment in gravity-driven tube flow, with small groups of students partaking in a contest to predict the experimental flow rates using the mechanical energy balance. The second exercise takes the form of an…

  17. Active Learning in Fluid Mechanics: Youtube Tube Flow and Puzzling Fluids Questions

    Science.gov (United States)

    Hrenya, Christine M.

    2011-01-01

    Active-learning exercises appropriate for a course in undergraduate fluid mechanics are presented. The first exercise involves an experiment in gravity-driven tube flow, with small groups of students partaking in a contest to predict the experimental flow rates using the mechanical energy balance. The second exercise takes the form of an…

  18. Some connections between fluid mechanics and the solving of industrial and environmental fluid-flow problems

    Science.gov (United States)

    Hunt, J. C. R.

    1981-05-01

    The ways in which advances in fluid mechanics have led to improvements in engineering design are discussed, with attention to the stimulation of fluid mechanics research by industrial and environmental problems. The development of many practical uses of fluid flow without the benefit of scientific study is also emphasized. Among the topics discussed are vortices and coherent structures in turbulent flows, lubrication, jet and multiphase flows, the control and exploitation of waves, the effect of unsteady forces on structures, and dispersion phenomena. Among the practical achievements covered are the use of bluff shields to control separated flow over truck bodies and reduce aerodynamic drag, ink-jet printing, hovercraft stability, fluidized-bed combustion, the fluid/solid instabilities caused by air flow around a computer memory floppy disc, and various wind turbines.

  19. Influence of thermophoresis and joule heating on the radiative flow of jeffrey fluid with mixed convection

    Directory of Open Access Journals (Sweden)

    S. A. Shehzad

    2013-12-01

    Full Text Available The aim of the present study is to address the magnetohydrodynamic (MHD radiative flow of an incompressible Jeffrey fluid over a linearly stretched surface. Heat and mass transfer characteristics are accounted for in the presence of Joule heating and thermophoretic effects. Series solutions by the homotopy analysis method are constructed for the velocity, temperature and concentration fields. A convergence criterion for the series solutions is discussed. In addition, the numerical values of the skin friction coefficient, local Nusselt and Sherwood numbers are first computed and then analyzed.

  20. An Analytical Method for Determining the Convection Heat Transfer Coefficient Between Flowing Fluid and Rock Fracture Walls

    Science.gov (United States)

    Bai, Bing; He, Yuanyuan; Hu, Shaobin; Li, Xiaochun

    2017-07-01

    The convective heat transfer coefficient (HTC) is a useful indicator that characterizes the convective heat transfer properties between flowing fluid and hot dry rock. An analytical method is developed to explore a more realistic formula for the HTC. First, a heat transfer model is described that can be used to determine the general expression of the HTC. As one of the novel elements, the new model can consider an arbitrary function of temperature distribution on the fracture wall along the direction of the rock radius. The resulting Dirichlet problem of the Laplace equation on a semi-disk is successfully solved with the Green's function method. Four specific formulas for the HTC are derived and compared by assuming the temperature distributions along the radius of the fracture wall to be zeroth-, first-, second-, and third-order polynomials. Comparative verification of the four specific formulas based on the test data shows that the formula A corresponding to the zeroth-order polynomial always predicts stable HTC values. At low flow rates, the four formulas predict similar values of HTC, but at higher flow rates, formulas B and D, respectively, corresponding to the first- and third-order polynomials, predict either too large or too small values of the HTC, while formula C, corresponding to the second-order polynomial, predicts relatively acceptable HTC values. However, we cannot tell which one is the more rational formula between formulas A and C due to the limited information measured. One of the clear advantages of formula C is that it can avoid the drawbacks of the discontinuity of temperature and the singular integral of HTC at the points (± R, 0). Further experimental work to measure the actual temperature distribution of water in the fracture will be of great value. It is also found that the absorbed heat of the fluid, Q, has a significant impact on the prediction results of the HTC. The temperatures at the inlet and the outlet used for Q should be

  1. 3D features of delayed thermal convection in fault zones: consequences for deep fluid processes in the Tiberias Basin, Jordan Rift Valley

    Science.gov (United States)

    Magri, Fabien; Möller, Sebastian; Inbar, Nimrod; Siebert, Christian; Möller, Peter; Rosenthal, Eliyahu; Kühn, Michael

    2015-04-01

    It has been shown that thermal convection in faults can also occur for subcritical Rayleigh conditions. This type of convection develops after a certain period and is referred to as "delayed convection" (Murphy, 1979). The delay in the onset is due to the heat exchange between the damage zone and the surrounding units that adds a thermal buffer along the fault walls. Few numerical studies investigated delayed thermal convection in fractured zones, despite it has the potential to transport energy and minerals over large spatial scales (Tournier, 2000). Here 3D numerical simulations of thermally driven flow in faults are presented in order to investigate the impact of delayed convection on deep fluid processes at basin-scale. The Tiberias Basin (TB), in the Jordan Rift Valley, serves as study area. The TB is characterized by upsurge of deep-seated hot waters along the faulted shores of Lake Tiberias and high temperature gradient that can locally reach 46 °C/km, as in the Lower Yarmouk Gorge (LYG). 3D simulations show that buoyant flow ascend in permeable faults which hydraulic conductivity is estimated to vary between 30 m/yr and 140 m/yr. Delayed convection starts respectively at 46 and 200 kyrs and generate temperature anomalies in agreement with observations. It turned out that delayed convective cells are transient. Cellular patterns that initially develop in permeable units surrounding the faults can trigger convection also within the fault plane. The combination of these two convective modes lead to helicoidal-like flow patterns. This complex flow can explain the location of springs along different fault traces of the TB. Besides being of importance for understanding the hydrogeological processes of the TB (Magri et al., 2015), the presented simulations provide a scenario illustrating fault-induced 3D cells that could develop in any geothermal system. References Magri, F., Inbar, N., Siebert, C., Rosenthal, E., Guttman, J., Möller, P., 2015. Transient

  2. A couple stress fluid modeling on free convection oscillatory hydromagnetic flow in an inclined rotating channel

    Directory of Open Access Journals (Sweden)

    Sahin Ahmed

    2014-12-01

    Full Text Available This study focuses analytically on the oscillatory hydromagnetic flow of a viscous, incompressible, electrically-conducting, non-Newtonian fluid in an inclined, rotating channel with non-conducting walls, incorporating couple stress effects. The model is then non-dimensionalized with appropriate variables and shown to be controlled by the inverse Ekman number (K2 = 1/Ek, the hydromagnetic body force parameter (M, channel inclination (α, Grashof number (Gr, Prandtl number (Pr, oscillation frequency (ω and time variable (ωT. Analytical solutions are derived using complex variables. Excellent agreement is obtained between both previous and present work. The influence of the governing parameters on the primary velocity, secondary velocity, temperature (θ, primary and secondary flow discharges per unit depth in the channel, and frictional shear stresses due to primary and secondary flow, is studied graphically and using tables. Applications of the study arise in the simulation of the manufacture of electrically-conducting polymeric liquids and hydromagnetic energy systems exploiting rheological working fluids.

  3. Effect of mechanical convection on the partitioning of an anionic iodinated contrast agent in intact patellar cartilage.

    Science.gov (United States)

    Entezari, Vahid; Bansal, Prashant N; Stewart, Rachel C; Lakin, Benjamin A; Grinstaff, Mark W; Snyder, Brian D

    2014-10-01

    To determine if mechanical convection accelerates partitioning of an anionic contrast agent into cartilage while maintaining its ability to reflect the glycosaminoglycan (GAG) content in contrast-enhanced computed tomography (CECT) of cartilage. Bovine patellae (N = 4) were immersed in iothalamate and serially imaged over 24 h of passive diffusion at 34°C. Following saline washing for 14 h, each patella was serially imaged over 2.5 h of mechanical convection by cyclic compressive loading (120N, 1 Hz) while immersed in iothalamate at 34°C. After similar saline washing, each patella was sectioned into 15 blocks (n = 60) and contrast concentration per time point as well as GAG content were determined for each cartilage block. Mechanical convection produced 70.6%, 34.4%, and 16.4% higher contrast concentration at 30, 60, and 90 min, respectively, compared to passive diffusion (p correlation between contrast concentration and GAG content was significant at all time points and correlation coefficients improved with time, reaching R(2)  = 0.60 after 180 min of passive diffusion and 22.5 min of mechanical convection. Mechanical convection significantly accelerated partitioning of a contrast agent into healthy cartilage while maintaining strong correlations with GAG content, providing an evidence-based rationale for adopting walking regimens in CECT imaging protocols.

  4. Ludwig Prandtl and the growth of fluid mechanics in Germany

    Science.gov (United States)

    Eckert, Michael

    2017-07-01

    Ludwig Prandtl (1875-1953) has been called the father of modern aerodynamics. His name is associated most famously with the boundary layer concept, but also with several other topics in 20th-century fluid mechanics, particularly turbulence (Prandtl's mixing length). Among his disciples are pioneers of modern fluid mechanics like Heinrich Blasius, Theodore von Kármán, and Walter Tollmien. Furthermore, Prandtl founded the Aerodynamische Versuchsanstalt (AVA) and the Kaiser-Wilhelm-Institut für Strömungsforschung in Göttingen, nuclei for the growth of fluid mechanics in Germany. In this article I trace this development on the basis of my recent biography of Prandtl.

  5. Using an Interactive Lattice Boltzmann Solver in Fluid Mechanics Instruction

    Directory of Open Access Journals (Sweden)

    Mirjam S. Glessmer

    2017-07-01

    Full Text Available This article gives an overview of the diverse range of teaching applications that can be realized using an interactive lattice Boltzmann simulation tool in fluid mechanics instruction and outreach. In an inquiry-based learning framework, examples are given of learning scenarios that address instruction on scientific results, scientific methods or the scientific process at varying levels of student activity, from consuming to applying to researching. Interactive live demonstrations on portable hardware enable new and innovative teaching concepts for fluid mechanics, also for large audiences and in the early stages of the university education. Moreover, selected examples successfully demonstrate that the integration of high-fidelity CFD methods into fluid mechanics teaching facilitates high-quality student research work within reach of the current state of the art in the respective field of research.

  6. Respiratory fluid mechanics and transport processes.

    Science.gov (United States)

    Grotberg, J B

    2001-01-01

    The field of respiratory flow and transport has experienced significant research activity over the past several years. Important contributions to the knowledge base come from pulmonary and critical care medicine, surgery, physiology, environmental health sciences, biophysics, and engineering. Several disciplines within engineering have strong and historical ties to respiration including mechanical, chemical, civil/environmental, aerospace and, of course, biomedical engineering. This review draws from a wide variety of scientific literature that reflects the diverse constituency and audience that respiratory science has developed. The subject areas covered include nasal flow and transport, airway gas flow, alternative modes of ventilation, nonrespiratory gas transport, aerosol transport, airway stability, mucus transport, pulmonary acoustics, surfactant dynamics and delivery, and pleural liquid flow. Within each area are a number of subtopics whose exploration can provide the opportunity of both depth and breadth for the interested reader.

  7. Cross-diffusive effects on the onset of double-diffusive convection in a horizontal saturated porous fluid layer heated and salted from above

    Institute of Scientific and Technical Information of China (English)

    Rajib Basu; G.C.Layek

    2013-01-01

    Double-diffusive stationary and oscillatory instabilities at the marginal state in a saturated porous horizontal fluid layer heated and salted from above are investigated theoretically under the Darcy's framework for a porous medium.The contributions of Soret and Dufour coefficients are taken into account in the analysis.Linear stability analysis shows that the critical value of the Darcy-Rayleigh number depends on cross-diffusive parameters at marginally stationary convection,while the marginal state characterized by oscillatory convection does not depend on the cross-diffusion terms even if the condition and frequency of oscillatory convection depends on the cross-diffusive parameters.The critical value of the Darcy-Rayleigh number increases with increasing value of the solutal Darcy-Rayleigh number in the absence of crossdiffusive parameters.The critical Darcy-Rayleigh number decreases with increasing Soret number,resulting in destabilization of the system,while its value increases with increasing Dufour number,resulting in stabilization of the system at the marginal state characterized by stationary convection.The analysis reveals that the Dufour and Soret parameters as well as the porosity parameter play an important role in deciding the type of instability at the onset.This analysis also indicates that the stationary convection is followed by the oscillatory convection for certain fluid mixtures.It is interesting to note that the roles of cross-diffusive parameters on the double-diffusive system heated and salted from above are reciprocal to the double-diffusive system heated and salted from below.

  8. An Introduction to Computational Fluid Mechanics by Example

    CERN Document Server

    Biringen, Sedat

    2011-01-01

    This new book builds on the original classic textbook entitled: An Introduction to Computational Fluid Mechanics by C. Y. Chow which was originally published in 1979. In the decades that have passed since this book was published the field of computational fluid dynamics has seen a number of changes in both the sophistication of the algorithms used but also advances in the computer hardware and software available. This new book incorporates the latest algorithms in the solution techniques and supports this by using numerous examples of applications to a broad range of industries from mechanical

  9. Multimedia Fluid Mechanics - Multilingual Version CD-ROM

    Science.gov (United States)

    Homsy, G. M.; Aref, H.; Breuer, K. S.; Hochgreb, S.; Koseff, J. R.; Munson, B. R.; Powell, K. G.; Robertson, C. R.; Thoroddsen, S. T.

    2004-07-01

    This CD-ROM offers an interactive tool for teaching undergraduate fluid mechanics. It features experiments that demonstrate fluid mechanical phenomena, animations of important principles and concepts, virtual laboratories in which students acquire data from the images, interactive computational exercises in which parameters can be varied, and other descriptive and illuminating material on applications. The material may be accessed randomly through a hyperlinked text, a search engine, a video library, and a glossary of terms. The new edition has been thoroughly updated and includes versions in English, Spanish and French.

  10. Shocks, singularities and oscillations in nonlinear optics and fluid mechanics

    CERN Document Server

    Santo, Daniele; Lannes, David

    2017-01-01

    The book collects the most relevant results from the INdAM Workshop "Shocks, Singularities and Oscillations in Nonlinear Optics and Fluid Mechanics" held in Rome, September 14-18, 2015. The contributions discuss recent major advances in the study of nonlinear hyperbolic systems, addressing general theoretical issues such as symmetrizability, singularities, low regularity or dispersive perturbations. It also investigates several physical phenomena where such systems are relevant, such as nonlinear optics, shock theory (stability, relaxation) and fluid mechanics (boundary layers, water waves, Euler equations, geophysical flows, etc.). It is a valuable resource for researchers in these fields. .

  11. Numerical investigation of forced convection of nano fluid flow in horizontal U-longitudinal finned tube heat exchanger

    Science.gov (United States)

    Qasim, S. M.; Sahar, A. F. A.; Firas, A. A.

    2015-11-01

    A numerical study has been carried out to investigate the heat transfer by laminar forced convection of nanofluid taking Titania (TiO2) and Alumina (Al2O3) as nanoparticles and the water as based fluid in a three dimensional plain and U-longitudinal finned tube heat exchanger. A Solid WORKS PREMIUM 2012 is used to draw the geometries of plain tube heat exchanger or U-longitudinal copper finned tube heat exchanger. Four U-longitudinal copper fins have 100 cm long, 3.8cm height and 1mm thickness are attached to a straight copper tube of 100 cm length, 2.2 cm inner diameter and 2.39 cm outer diameter. The governing equations which used as continuity, momentum and energy equations under assumptions are utilized to predict the flow field, temperature distribution, and heat transfer of the heat exchanger. The finite volume approach is used to obtain all the computational results using commercial ANSYS Fluent copy package 14.0 with assist of solid works and Gambit software program. The effect of various parameters on the performance of heat exchanger are investigated numerically such as Reynolds' number (ranging from 270 to 1900), volume consternation of nanoparticles (0.2%, 0.4%, 0.6%, 0.8%), type of nanoparticles, and mass flow rate of nanofluid in the hot region of heat exchanger. For 0.8% consternation of nanoparticles, heat transfer has significant enhancement in both nanofluids. It can be found about 7.3% for TiO2 and about 7.5% for Al2O3 compared with the water only as a working fluid.

  12. Mechanics and mathematics of fluids of the differential type

    CERN Document Server

    Cioranescu, D; Rajagopal, K R

    2016-01-01

    This text is the first of its kind to bring together both the thermomechanics and mathematical analysis of Reiner-Rivlin fluids and fluids of grades 2 and 3 in a single book. Each part of the book can be considered as being self-contained. The first part of the book is devoted to a description of the mechanics, thermodynamics, and stability of flows of fluids of grade 2 and grade 3. The second part of the book is dedicated to the development of rigorous mathematical results concerning the equations governing the motion of a family of fluids of the differential type. Finally, the proofs of a number of useful results are collected in an appendix.

  13. Numerical study of entropy generation for forced convection flow and heat transfer of a Jeffrey fluid over a stretching sheet

    Directory of Open Access Journals (Sweden)

    Nemat Dalir

    2014-12-01

    Full Text Available Entropy generation for the steady two-dimensional laminar forced convection flow and heat transfer of an incompressible Jeffrey non-Newtonian fluid over a linearly stretching, impermeable and isothermal sheet is numerically investigated. The governing differential equations of continuity, momentum and energy are transformed using suitable similarity transformations to two nonlinear coupled ordinary differential equations (ODEs. Then the ODEs are solved by applying the numerical implicit Keller’s box method. The effects of various parameters of the flow and heat transfer including Deborah number, ratio of relaxation to retardation times, Prandtl number, Eckert number, Reynolds number and Brinkman number on dimensionless velocity, temperature and entropy generation number profiles are analyzed. The results reveal that the entropy generation number increases with the increase of Deborah number while the increase of ratio of relaxation to retardation times causes the entropy generation number to reduce. A comparative study of the numerical results with the results from an exact solution for the dimensionless velocity gradient at the sheet surface is also performed. The comparison shows excellent agreement within 0.05% error.

  14. Unsteady mixed convection flow of a micro-polar fluid near the stagnation point on a vertical surface

    Energy Technology Data Exchange (ETDEWEB)

    Lok, Y.Y. [Center for Academic Services, Kolej Universiti Teknikal Kebangsaan Malaysia, 75450 Ayer Keroh, Melaka (Malaysia); Amin, N. [Department of Mathematics, Universiti Teknologi Malaysia, 81310 Johor Bahru, Johor (Malaysia); Pop, I. [Faculty of Mathematics, University of Cluj, R-3400 Cluj, CP 253 (Romania)

    2006-12-15

    The unsteady mixed convection boundary-layer flow of a micro-polar fluid near the region of the stagnation point on a double-infinite vertical flat plate is studied. It is assumed that the unsteadiness is caused by the impulsive motion of the free stream velocity and by sudden increase or sudden decrease in the surface temperature from the uniform ambient temperature. The problem is reduced to a system of non-dimensional partial differential equations, which is solved numerically using the Keller-box method. This method may present well-behaved solutions for the transient (small time) solution and those of the steady-state flow (large time) solution. It was found that there is a smooth transition from the small-time solution (initial unsteady-state flow) to the large-time solution (final steady-state flow). Further, it is shown that for both assisting and opposing cases and a fixed value of the Prandtl number, the reduced steady-state skin friction and the steady-state heat transfer from the wall (or Nusselt number) decrease with the increase of the material parameter. On the other hand, it is shown that with the increase of the Prandtl number and a fixed value of the material parameter, the reduced steady-state skin friction decreases when the flow is assisting and it increases when the flow is opposing. (author)

  15. Micro-mechanisms of residual oil mobilization by viscoelastic fluids

    Institute of Scientific and Technical Information of China (English)

    Zhang Lijuan; Yue Xiang'an; Guo Fenqiao

    2008-01-01

    Four typical types of residual oil, residual oil trapped in dead ends, oil ganglia in pore throats,oil at pore comers and oil film adhered to pore walls, were studied. According to main pore structure characteristics and the fundamental morphological features of residual oil, four displacement models for residual oil were proposed, in which pore-scale flow behavior of viscoelastic fluid was analyzed by a numerical method and micro-mechanisms for mobilization of residual oil were discussed. Calculated results indicate that the viscoelastic effect enhances micro displacement efficiency and increases swept volume. For residual oil trapped in dead ends, the flow field of viscoelastic fluid is developed in dead ends more deeply, resulting in more contact with oil by the displacing fluid, and consequently increasing swept volume. In addition, intense viscoelastic vortex has great stress, under which residual oil becomes small oil ganglia, and finally be carried into main channels. For residual oil at pore throats, its displacement mechanisms are similar to the oil trapped in dead ends. Vortices are developed in the depths of the throats and oil ganglia become smaller. Besides, viscoelastic fluid causes higher pressure drop on oil ganglia, as a driving force, which can overcome capillary force, consequently, flow direction can be changed and the displacing fluid enter smaller throats. For oil at pore comers, viscoelastic fluid can enhance displacement efficiency as a result of greater velocity and stress near the comers. For residual oil adhered to pore wall,viscoelastic fluid can provide a greater displacing force on the interface between viscoelastic fluid and oil,thus, making it easier to exceed the minimum interfacial tension for mobilizing the oil film.

  16. Comment on Effects of transverse magnetic field on mixed convection in wall plume of power-law fluids, by Gorla, Lee, Nakamura and Pop, IJES, 1993

    CERN Document Server

    Pantokratoras, Asterios

    2007-01-01

    Comment on Effects of transverse magnetic field on mixed convection in wall plume of power-law fluids, by Rama Subba Reddy Gorla, Jin Kook Lee, Shoichiro Nakamura and Ioan Pop [International Journal of Engineering Science, 31 (1993) 1035-1045]. In the above paper the authors treat the boundary layer mixed convection flow of a power-law fluid along a vertical adiabatic surface in a transverse magnetic field with a steady thermal source at the leading edge. The governing non-similar equations are solved by means of a novel finite difference scheme. However, there are two fundamental errors in this paper and the presented results do not have any practical value.

  17. Internal fluid mechanics research on supercomputers for aerospace propulsion systems

    Science.gov (United States)

    Miller, Brent A.; Anderson, Bernhard H.; Szuch, John R.

    1988-01-01

    The Internal Fluid Mechanics Division of the NASA Lewis Research Center is combining the key elements of computational fluid dynamics, aerothermodynamic experiments, and advanced computational technology to bring internal computational fluid mechanics (ICFM) to a state of practical application for aerospace propulsion systems. The strategies used to achieve this goal are to: (1) pursue an understanding of flow physics, surface heat transfer, and combustion via analysis and fundamental experiments, (2) incorporate improved understanding of these phenomena into verified 3-D CFD codes, and (3) utilize state-of-the-art computational technology to enhance experimental and CFD research. Presented is an overview of the ICFM program in high-speed propulsion, including work in inlets, turbomachinery, and chemical reacting flows. Ongoing efforts to integrate new computer technologies, such as parallel computing and artificial intelligence, into high-speed aeropropulsion research are described.

  18. A Blended Learning Approach to Teach Fluid Mechanics in Engineering

    Science.gov (United States)

    Rahman, Ataur

    2017-01-01

    This paper presents a case study on the teaching and learning of fluid mechanics at the University of Western Sydney (UWS), Australia, by applying a blended learning approach (BLA). In the adopted BLA, various flexible learning materials have been made available to the students such as online recorded lectures, online recorded tutorials, hand…

  19. Instructor's Guide for Fluid Mechanics: A Modular Approach.

    Science.gov (United States)

    Cox, John S.

    This guide is designed to assist engineering teachers in developing an understanding of fluid mechanics in their students. The course is designed around a set of nine self-paced learning modules, each of which contains a discussion of the subject matter; incremental objectives; problem index, set and answers; resource materials; and a quiz with…

  20. Fluid Mechanics of Wing Adaptation for Separation Control

    Science.gov (United States)

    Chandrasekhara, M. S.; Wilder, M. C.; Carr, L. W.; Davis, Sanford S. (Technical Monitor)

    1997-01-01

    The unsteady fluid mechanics associated with use of a dynamically deforming leading edge airfoil for achieving compressible flow separation control has been experimentally studied. Changing the leading edge curvature at rapid rates dramatically alters the flow vorticity dynamics which is responsible for the many effects observed in the flow.

  1. Leonhard Euler and his contributions to fluid mechanics

    Science.gov (United States)

    Salas, M. D.

    1988-01-01

    The career of Leonhard Euler, one of the world's most gifted scientists, is reviewed. The paper focuses on Euler's contributions to fluid mechanics and gives a perspective of how this science was born. A bibliography is included to provide the history enthusiast with a starting point for further study.

  2. Escape response of planktonic protists to fluid mechanical signals

    DEFF Research Database (Denmark)

    Jakobsen, Hans Henrik

    2001-01-01

    The escape response to fluid mechanical signals was examined in 6 protists, 4 ciliates and 2 dinoflagellates. When exposed to a siphon flow. 3 species of ciliates, Balanion comatum, Strobilidium sp., and Mesodinium pulex, responded with escape jumps. The threshold deformation rates required...

  3. Flippin' Fluid Mechanics--Comparison Using Two Groups

    Science.gov (United States)

    Webster, Donald R.; Majerich, David M.; Madden, Amanda G.

    2016-01-01

    A flipped classroom approach was implemented in an undergraduate fluid mechanics course. Students watched short, online video lectures before class, participated in active in-class problem solving sessions (in pairs), and completed individualized online quizzes weekly. In-class activities were designed to develop problem-solving skills and teach…

  4. Instructor's Guide for Fluid Mechanics: A Modular Approach.

    Science.gov (United States)

    Cox, John S.

    This guide is designed to assist engineering teachers in developing an understanding of fluid mechanics in their students. The course is designed around a set of nine self-paced learning modules, each of which contains a discussion of the subject matter; incremental objectives; problem index, set and answers; resource materials; and a quiz with…

  5. Effect of Suction/Injection on Unsteady Hydromagnetic Convective Flow of Reactive Viscous Fluid between Vertical Porous Plates with Thermal Diffusion

    Science.gov (United States)

    Uwanta, I. J.; Hamza, M. M.

    2014-01-01

    An investigation is performed to study the effect of suction/injection on unsteady hydromagnetic natural convection flow of viscous reactive fluid between two vertical porous plates in the presence of thermal diffusion. The partial differential equations governing the flow have been solved numerically using semi-implicit finite-difference scheme. For steady case, analytical solutions have been derived using perturbation series method. Suction/injection is used to control the fluid flow in the channel, and an exothermic chemical reaction of Arrhenius kinetic is considered. Numerical results are presented graphically and discussed quantitatively with respect to various parameters embedded in the problem. PMID:27382632

  6. Oscillatory fluid flow influences primary cilia and microtubule mechanics.

    Science.gov (United States)

    Espinha, Lina C; Hoey, David A; Fernandes, Paulo R; Rodrigues, Hélder C; Jacobs, Christopher R

    2014-07-01

    Many tissues are sensitive to mechanical stimuli; however, the mechanotransduction mechanism used by cells remains unknown in many cases. The primary cilium is a solitary, immotile microtubule-based extension present on nearly every mammalian cell which extends from the basal body. The cilium is a mechanosensitive organelle and has been shown to transduce fluid flow-induced shear stress in tissues, such as the kidney and bone. The majority of microtubules assemble from the mother centriole (basal body), contributing significantly to the anchoring of the primary cilium. Several studies have attempted to quantify the number of microtubules emanating from the basal body and the results vary depending on the cell type. It has also been shown that cellular response to shear stress depends on microtubular integrity. This study hypothesizes that changing the microtubule attachment of primary cilia in response to a mechanical stimulus could change primary cilia mechanics and, possibly, mechanosensitivity. Oscillatory fluid flow was applied to two different cell types and the microtubule attachment to the ciliary base was quantified. For the first time, an increase in microtubules around primary cilia both with time and shear rate in response to oscillatory fluid flow stimulation was demonstrated. Moreover, it is presented that the primary cilium is required for this loading-induced cellular response. This study has demonstrated a new role for the cilium in regulating alterations in the cytoplasmic microtubule network in response to mechanical stimulation, and therefore provides a new insight into how cilia may regulate its mechanics and thus the cells mechanosensitivity.

  7. Non-Darcy Free Convection of Power-Law Fluids Over a Two-Dimensional Body Embedded in a Porous Medium

    KAUST Repository

    El-Amin, Mohamed

    2010-11-27

    A boundary layer analysis was presented to study the non-Darcy-free convection of a power-law fluid over a non-isothermal two-dimensional body embedded in a porous medium. The Ostwald-de Waele power-law model was used to characterize the non-Newtonian fluid behavior. Similarity solutions were obtained with variations in surface temperature or surface heat flux. In view of the fact that most of the non-Newtonian fluids have large Prandtl numbers, this study was directed toward such fluids. The effects of the porous medium parameters, k1 and k2, body shape parameter, m, and surface thermal variations parameter, p, as well as the power-law index, n, were examined. © 2010 Springer Science+Business Media B.V.

  8. Application of computational fluid mechanics to atmospheric pollution problems

    Science.gov (United States)

    Hung, R. J.; Liaw, G. S.; Smith, R. E.

    1986-01-01

    One of the most noticeable effects of air pollution on the properties of the atmosphere is the reduction in visibility. This paper reports the results of investigations of the fluid dynamical and microphysical processes involved in the formation of advection fog on aerosols from combustion-related pollutants, as condensation nuclei. The effects of a polydisperse aerosol distribution, on the condensation/nucleation processes which cause the reduction in visibility are studied. This study demonstrates how computational fluid mechanics and heat transfer modeling can be applied to simulate the life cycle of the atmosphereic pollution problems.

  9. CISM course on stochastic methods in fluid mechanics

    CERN Document Server

    Chibbaro, Sergio

    2013-01-01

    Since their first introduction in natural sciences through the work of Einstein on Brownian motion in 1905 and further works, in particular by Langevin, Smoluchowski and others, stochastic processes have been used in several areas of science and technology. For example, they have been applied in chemical studies, or in fluid turbulence and for combustion and reactive flows. The articles in this book provide a general and unified framework in which stochastic processes are presented as modeling tools for various issues in engineering, physics and chemistry, with particular focus on fluid mechan

  10. Bilateral patching in retinal detachment: fluid mechanics and retinal "settling".

    Science.gov (United States)

    Foster, William J

    2011-07-20

    When a patient suffers a retinal detachment and surgery is delayed, it is known clinically that bilaterally patching the patient may allow the retina to partially reattach or "settle." Although this procedure has been performed since the 1860s, there is still debate as to how such a maneuver facilitates the reattachment of the retina. Finite element calculations using commercially available analysis software are used to elucidate the influence of reduction in eye movement caused by bilateral patching on the flow of subretinal fluid in a physical model of retinal detachment. It was found that by coupling fluid mechanics with structural mechanics, a physically consistent explanation of increased retinal detachment with eye movements can be found in the case of traction on the retinal hole. Large eye movements increase vitreous traction and detachment forces on the edge of the retinal hole, creating a subretinal vacuum and facilitating increased subretinal fluid. Alternative models, in which intraocular fluid flow is redirected into the subretinal space, are not consistent with these simulations. The results of these simulations explain the physical principles behind bilateral patching and provide insight that can be used clinically. In particular, as is known clinically, bilateral patching may facilitate a decrease in the height of a retinal detachment. The results described here provide a description of a physical mechanism underlying this technique. The findings of this study may aid in deciding whether to bilaterally patch patients and in counseling patients on pre- and postoperative care.

  11. Fluid mechanics mechanisms in the stall process of helicopters

    Science.gov (United States)

    Young, W. H., Jr.

    1981-01-01

    Recent experimental results from airfoils in the Mach number, Reynolds number, or reduced frequency ranges typical of helicopter rotor blades have identified the most influential flow mechanisms in the dynamic stall process. The importance of secondary shed vortices, downstream wake action, and the flow in the separated region is generally acknowledged but poorly understood. By means of surface pressure cross-correlations and flow field measurements in static stall, several new hypotheses have been generated. It is proposed that vortex shedding may be caused by acoustic disturbances propagating forward in the lower (pressure) surface boundary layer, that wake closure is a misnomer, and that the shed vortex leaves a trail of vorticity that forms a turbulent free shear layer. The known dynamic stall flow mechanisms are reviewed and the potential importance of recently proposed and hypothetical flow phenomena with respect to helicopter blade aeroelastic response are assessed.

  12. A fluid mechanical model for current-generating-feeding jellyfish

    Science.gov (United States)

    Peng, Jifeng; Dabiri, John

    2008-11-01

    Many jellyfish species, e.g. moon jellyfish Aurelia aurita, use body motion to generate fluid currents which carry their prey to the vicinity of their capture appendages. In this study, a model was developed to understand the fluid mechanics for this current-generating-feeding mode of jellyfish. The flow generated by free-swimming Aurelia aurita was measured using digital particle image velocimetry. The dynamics of prey (e.g., brine shrimp Artemia) in the flow field were described by a modified Maxey-Riley equation which takes into consideration the inertia of prey and the escape forces, which prey exert in the presence of predator. A Lagrangian analysis was used to identify the region of the flow in which prey can be captured by the jellyfish and the clearance rate was quantified. The study provides a new methodology to study biological current-generating-feeding and the transport and mixing of particles in fluid flow in general.

  13. Internal Wave Generation by Convection

    OpenAIRE

    Lecoanet, Daniel

    2016-01-01

    In nature, it is not unusual to find stably stratified fluid adjacent to convectively unstable fluid. This can occur in the Earth's atmosphere, where the troposphere is convective and the stratosphere is stably stratified; in lakes, where surface solar heating can drive convection above stably stratified fresh water; in the oceans, where geothermal heating can drive convection near the ocean floor, but the water above is stably stratified due to salinity gradients; possible in the Earth's liq...

  14. Fluid coupling in a discrete model of cochlear mechanics.

    Science.gov (United States)

    Elliott, Stephen J; Lineton, Ben; Ni, Guangjian

    2011-09-01

    A discrete model of cochlear mechanics is introduced that includes a full, three-dimensional, description of fluid coupling. This formulation allows the fluid coupling and basilar membrane dynamics to be analyzed separately and then coupled together with a simple piece of linear algebra. The fluid coupling is initially analyzed using a wavenumber formulation and is separated into one component due to one-dimensional fluid coupling and one comprising all the other contributions. Using the theory of acoustic waves in a duct, however, these two components of the pressure can also be associated with a far field, due to the plane wave, and a near field, due to the evanescent, higher order, modes. The near field components are then seen as one of a number of sources of additional longitudinal coupling in the cochlea. The effects of non-uniformity and asymmetry in the fluid chamber areas can also be taken into account, to predict both the pressure difference between the chambers and the mean pressure. This allows the calculation, for example, of the effect of a short cochlear implant on the coupled response of the cochlea.

  15. Fluid mechanics of directional solidification at reduced gravity

    Science.gov (United States)

    Chen, C. F.

    1992-01-01

    The primary objective of the proposed research is to provide additional groundbased support for the flight experiment 'Casting and Solidification Technology' (CAST). This experiment is to be performed in the International Microgravity Laboratory-1 (IML-1) scheduled to be flown on a space shuttle mission scheduled for 1992. In particular, we will provide data on the convective motion and freckle formation during directional solidification of NH4Cl from its aqueous solution at simulated parameter ranges equivalent to reducing the gravity from the sea-level value down to 0.1 g or lower. The secondary objectives of the proposed research are to examine the stability phenomena associated with the onset of freckles and the mechanisms for their subsequent growth and decline (to eventual demise of some) by state-of-the-art imaging techniques and to formulate mathematical models for the prediction of the observed phenomena.

  16. Stanley Corrsin Award Talk: Fluid Mechanics of Fungi and Slime

    Science.gov (United States)

    Brenner, Michael

    2013-11-01

    There are interesting fluid mechanics problems everywhere, even in the most lowly and hidden corners of forest floors. Here I discuss some questions we have been working on in recent years involving fungi and slime. A critical issue for the ecology of fungi and slime is nutrient availability: nutrient sources are highly heterogeneous, and strategies are necessary to find food when it runs out. In the fungal phylum Ascomycota, spore dispersal is the primary mechanism for finding new food sources. The defining feature of this phylum is the ascus, a fluid filled sac from which spores are ejected, through a build up in osmotic pressure. We outline the (largely fluid mechanical) design constraints on this ejection strategy, and demonstrate how it provides strong constraints for the diverse morphologies of spores and asci found in nature. The core of the argument revisits a classical problem in elastohydrodynamic lubrication from a different perspective. A completely different strategy for finding new nutrient is found by slime molds and fungi that stretch out - as a single organism- over enormous areas (up to hectares) over forest floors. As a model problem we study the slime mold Physarum polycephalum, which forages with a large network of connected tubes on the forest floors. Localized regions in the network find nutrient sources and then pump the nutrients throughout the entire organism. We discuss fluid mechanical mechanisms for coordinating this transport, which generalize peristalsis to pumping in a heterogeneous network. We give a preliminary discussion to how physarum can detect a nutrient source and pump the nutrient throughout the organism.

  17. Fluid mechanics as a driver of tissue-scale mechanical signaling in organogenesis.

    Science.gov (United States)

    Gilbert, Rachel M; Morgan, Joshua T; Marcin, Elizabeth S; Gleghorn, Jason P

    2016-12-01

    Organogenesis is the process during development by which cells self-assemble into complex, multi-scale tissues. Whereas significant focus and research effort has demonstrated the importance of solid mechanics in organogenesis, less attention has been given to the fluid forces that provide mechanical cues over tissue length scales. Fluid motion and pressure is capable of creating spatial gradients of forces acting on cells, thus eliciting distinct and localized signaling patterns essential for proper organ formation. Understanding the multi-scale nature of the mechanics is critically important to decipher how mechanical signals sculpt developing organs. This review outlines various mechanisms by which tissues generate, regulate, and sense fluid forces and highlights the impact of these forces and mechanisms in case studies of normal and pathological development.

  18. Radiation Effect on Mixed Convection Boundary Layer Flow of a Viscoelastic Fluid over a Horizontal Circular Cylinder with Constant Heat Flux

    Directory of Open Access Journals (Sweden)

    Hussain Ahmad

    2016-01-01

    Full Text Available In the present article, radiation effect on mixed convection boundary layer flow of a viscoelastic fluid over a horizontal circular cylinder with constant heat flux has been numerically analyzed. The governing boundary layer equations are transformed to dimensionless nonlinear partial differential equations. The equations are solved numerically by using Keller-box method. The computed results are in excellent agreement with the previous studies. Skin friction coefficient and Nusselt number are emphasized specifically. These quantities are displayed against the curvature parameter. The effects of pertinent parameters involved in the problem namely effective Prandtl number and mixed convection parameter on skin friction coefficient and Nusselt number are shown through graphs and table. Boundary layer separation points are also calculated with and without radiation and a comparison is shown. The presence of radiation helps to decrease or increase the skin friction coefficient for the negative or positive values of the mixed convection parameter accordingly. The decrease in value of effective Prandtl number helps to increase the value of skin friction coefficient and Nusselt number for viscoelastic fluids.

  19. Friction mechanisms and interfacial slip at fluid-solid interfaces

    CERN Document Server

    Leger, L

    2003-01-01

    We present series of experiments based on near field laser velocimetry, developed to characterize the friction mechanisms at fluid-solid interfaces. For polymers, entangled polymer melts are sheared against smooth solid surfaces, covered by surface attached polymer chains of the same chemical species, having a controlled surface density. Direct measurements of the interfacial velocity and of the shear force allow identification of the molecular mechanisms of friction. Depending on the value of the inverse of the shear rate experienced by the polymer compared to the reptation time, the transition between a regime of high and a regime of low friction observed when increasing the shear rate can be related to disentanglement or to the extraction of the surface chains from the bulk polymer. Surfaces with adjusted friction properties can thus be designed by choosing chain anchored length and surface density. For simple fluids, the direct measurements of the interfacial velocity show that, contrary to the usual hypo...

  20. Effect of Chamber Backpressure on Swirl Injector Fluid Mechanics

    Science.gov (United States)

    Kenny, R. Jeremy; Hulka, James R.; Moser, Marlow D.; Rhys, Noah O.

    2008-01-01

    A common propellant combination used for high thrust generation is GH2/LOX. Historical GH2/LOX injection elements have been of the shear-coaxial type. Element type has a large heritage of research work to aid in element design. The swirl-coaxial element, despite its many performance benefits, has a relatively small amount of historical, LRE-oriented work to draw from. Design features of interest are grounded in the fluid mechanics of the liquid swirl process itself, are based on data from low-pressure, low mass flow rate experiments. There is a need to investigate how high ambient pressures and mass flow rates influence internal and external swirl features. The objective of this research is to determine influence of varying liquid mass flow rate and ambient chamber pressure on the intact-length fluid mechanics of a liquid swirl element.

  1. A Study on the Fluid Mechanics Performance of Aquatics Equipment

    Directory of Open Access Journals (Sweden)

    Jiao Jian

    2015-01-01

    Based on the theoretical foundation of fluid mechanics performance, this paper carries out an analysis on mechanical characteristics of aquatic sports. First, basic features of windsurfing are studied in this paper. Performance of windsurfing changes with its parameters, requiring a lot for windsurfers. It can be known from variance analysis that the best performance of NP plate and a relatively small resistance should be the direction of sail-board design. Meanwhile, by building up a mathematical model with fuzzy comprehensive evaluation and correlation analysis, it can be also found that the fluid resistance characteristic is a key factor that influences the performance of windsurfers. Besides, this paper also takes into account external factors, including the influences of regional difference on aquatic events. Different regions with various geographical conditions have different influences on aquatic events.

  2. A cyber-physical approach to experimental fluid mechanics

    Science.gov (United States)

    Mackowski, Andrew Williams

    This Thesis documents the design, implementation, and use of a novel type of experimental apparatus, termed Cyber-Physical Fluid Dynamics (CPFD). Unlike traditional fluid mechanics experiments, CPFD is a general-purpose technique that allows one to impose arbitrary forces on an object submerged in a fluid. By combining fluid mechanics with robotics, we can perform experiments that would otherwise be incredibly difficult or time-consuming. More generally, CPFD allows a high degree of automation and control of the experimental process, allowing for much more efficient use of experimental facilities. Examples of CPFD's capabilites include imposing a gravitational force in the horizontal direction (allowing a test object to "fall" sideways in a water channel), simulating nonlinear springs for a vibrating fluid-structure system, or allowing a self-propelled body to move forward under its own force. Because experimental parameters (including forces and even the mass of the test object) are defined in software, one can define entire ensembles of experiments to run autonomously. CPFD additionally integrates related systems such as water channel speed control, LDV flow speed measurements, and PIV flowfield measurements. The end result is a general-purpose experimental system that opens the door to a vast array of fluid-structure interaction problems. We begin by describing the design and implementation of CPFD, the heart of which is a high-performance force-feedback control system. Precise measurement of time-varying forces (including removing effects of the test object's inertia) is more critical here than in typical robotic force-feedback applications. CPFD is based on an integration of ideas from control theory, fluid dynamics, computer science, electrical engineering, and solid mechanics. We also describe experiments using the CPFD experimental apparatus to study vortex-induced vibration (VIV) and oscillating-airfoil propulsion. We show how CPFD can be used to simulate

  3. Weakly nonlinear analysis of Rayleigh-Bénard convection in a non-Newtonian fluid between plates of finite conductivity: Influence of shear-thinning effects.

    Science.gov (United States)

    Bouteraa, Mondher; Nouar, Chérif

    2015-12-01

    Finite-amplitude thermal convection in a shear-thinning fluid layer between two horizontal plates of finite thermal conductivity is considered. Weakly nonlinear analysis is adopted as a first approach to investigate nonlinear effects. The rheological behavior of the fluid is described by the Carreau model. As a first step, the critical conditions for the onset of convection are computed as a function of the ratio ξ of the thermal conductivity of the plates to the thermal conductivity of the fluid. In agreement with the literature, the critical Rayleigh number Ra(c) and the critical wave number k(c) decrease from 1708 to 720 and from 3.11 to 0, when ξ decreases from infinity to zero. In the second step, the critical value α(c) of the shear-thinning degree above which the bifurcation becomes subcritical is determined. It is shown that α(c) increases with decreasing ξ. The stability of rolls and squares is then investigated as a function of ξ and the rheological parameters. The limit value ξ(c), below which squares are stable, decreases with increasing shear-thinning effects. This is related to the fact that shear-thinning effects increase the nonlinear interactions between sets of rolls that constitute the square patterns [M. Bouteraa et al., J. Fluid Mech. 767, 696 (2015)]. For a significant deviation from the critical conditions, nonlinear convection terms and nonlinear viscous terms become stronger, leading to a further diminution of ξ(c). The dependency of the heat transfer on ξ and the rheological parameters is reported. It is consistent with the maximum heat transfer principle. Finally, the flow structure and the viscosity field are represented for weakly and highly conducting plates.

  4. A UNIVERSAL VARIATIONAL FORMULATION FOR TWO DIMENSIONAL FLUID MECHANICS

    Institute of Scientific and Technical Information of China (English)

    何吉欢

    2001-01-01

    A universal variational formulation for two dimensional fluid mechanics is obtained, which is subject to the so-called parameter-constrained equations (the relationship between parameters in two governing equations). By eliminating the constraints, the generalized variational principle (GVPs) can be readily derived from the formulation. The formulation can be applied to any conditions in case the governing equations can be converted into conservative forms. Some illustrative examples are given to testify the effectiveness and simplicity of the method.

  5. Immunosensor with Fluid Control Mechanism for Salivary Cortisol Analysis

    OpenAIRE

    Yamaguchi, Masaki; Matsuda, Yohei; Sasaki, Shohei; Sasaki, Makoto; Kadoma, Yoshihiro; Imai, Yoshikatsu; Niwa, Daisuke; Shetty, Vivek

    2012-01-01

    The purpose of this research is to demonstrate a new design for a cortisol immunosensor for the noninvasive and quantitative analysis of salivary cortisol. We propose a cortisol immunosensor with a fluid control mechanism which has both a vertical flow and a lateral flow. The detected current resulting from a competitive reaction between the sample cortisol and a glucose oxidase (GOD)-labeled cortisol conjugate was found to be inversely related to the concentration of cortisol in the sample s...

  6. A statistical mechanics approach to mixing in stratified fluids

    Science.gov (United States)

    Venaille, A.; Gostiaux, L.; Sommeria, J.

    2017-01-01

    Predicting how much mixing occurs when a given amount of energy is injected into a Boussinesq fluid is a longstanding problem in stratified turbulence. The huge number of degrees of freedom involved in those processes renders extremely difficult a deterministic approach to the problem. Here we present a statistical mechanics approach yielding prediction for a cumulative, global mixing efficiency as a function of a global Richardson number and the background buoyancy profile.

  7. Fluid mechanics and solidification investigations in low-gravity environments

    Science.gov (United States)

    Fichtl, G. H.; Lundquist, C. A.; Naumann, R. J.

    1980-01-01

    Fluid mechanics of gases and liquids and solidification processes were investigated under microgravity conditions during Skylab and Apollo-Soyuz missions. Electromagnetic, acoustic, and aerodynamic levitation devices, drop tubes, aircraft parabolic flight trajectories, and vertical sounding rockets were developed for low-g simulation. The Spacelab 3 mission will be carried out in a gravity gradient flight attitude; analyses of sources of vehicle dynamic accelerations with associated g-levels and angular rates will produce results for future specific experiments.

  8. Aeropropulsion 1987. Session 3: Internal Fluid Mechanics Research

    Science.gov (United States)

    1987-01-01

    Internal fluid mechanics research at Lewis is directed toward an improved understanding of the important flow physics affecting aerospace propulsion systems, and applying this improved understanding to formulate accurate predictive codes. To this end, research is conducted involving detailed experimentation and analysis. The presentations in this session summarize ongoing work and indicated future emphasis in three major research thrusts: namely, inlets, ducts, and nozzles; turbomachinery; and chemical reacting flows.

  9. Double-diffusive natural convective boundary layer flow in a porous medium saturated with a nano-fluid over a vertical plate: Prescribed surface heat, solute and nano-particle fluxes

    Energy Technology Data Exchange (ETDEWEB)

    Khan, W.A. [Department of Engineering Sciences, National University of Sciences and Technology, Karachi 75350 (Pakistan); Aziz, A. [Department of Mechanical Engineering, School of Engineering and Applied Science, Gonzaga University, Spokane, WA 99258 (United States)

    2011-11-15

    The Buongiorno model [16] has been used to study the double-diffusive natural convection from a vertical plate to a porous medium saturated with a binary base fluid containing nano-particles. The model identifies the Brownian motion and thermophoresis as the primary mechanisms for enhanced convection characteristics of the nano-fluid. The behavior of the porous medium is described by the Darcy model. The vertical surface has the heat, mass and nano-particle fluxes each prescribed as a power law function of the distance along the wall. The transport equations are transformed into four nonlinear, coupled similarity equations containing eight dimensionless parameters. These equations are solved numerically to obtain the velocity, temperature, solute concentration and nano-particle concentration in the respective boundary layers. Results are presented to illustrate the effects of various parameters including the exponent of the power law describing the imposed surface fluxes on the heat and mass transfer characteristics of the flow. These results are supplemented with the data for the reduced Nusselt number and the two reduced Sherwood numbers, one for the solute and the other for the nano-particles. (authors)

  10. Fluid mechanics mechanisms in the stall process of airfoils for helicopters

    Science.gov (United States)

    Young, W. H., Jr.

    1981-01-01

    Phenomena that control the flow during the stall portion of a dynamic stall cycle are analyzed, and their effect on blade motion is outlined. Four mechanisms by which dynamic stall may be initiated are identified: (1) bursting of the separation bubble, (2) flow reversal in the turbulent boundary layer on the airfoil upper surface, (3) shock wave-boundary layer interaction behind the airfoil crest, and (4) acoustic wave propagation below the airfoil. The fluid mechanics that contribute to the identified flow phenomena are summarized, and the usefulness of a model that incorporates the required fluid mechanics mechanisms is discussed.

  11. Aligned Magnetic Field Effects on Flow and Heat Transfer of the Upper-Convected Maxwell Fluid over a Stretching/Shrinking Sheet

    Directory of Open Access Journals (Sweden)

    Waini Iskandar

    2017-01-01

    Full Text Available In this paper, the effect of aligned magnetic field towards the flow and heat transfer of the upper-convected Maxwell (UCM fluid over a stretching/shrinking sheet is numerically studied. The governing partial differential equations are reduced into a system of ordinary differential equations using a similarity transformation, which are then solved numerically using the shooting method. The skin friction and heat transfer coefficients, the velocity, as well as the temperature profiles of the fluid are presented and discussed. Results indicate that an increase in the aligned angle strengthens the applied magnetic field which decrease the velocity and increase the temperature profiles of the fluid. This implies that an increase in the aligned angle increases the skin friction coefficient and decreases the heat transfer coefficients.

  12. Advances in cardiovascular fluid mechanics: bench to bedside.

    Science.gov (United States)

    Dasi, Lakshmi P; Sucosky, Philippe; de Zelicourt, Diane; Sundareswaran, Kartik; Jimenez, Jorge; Yoganathan, Ajit P

    2009-04-01

    This paper presents recent advances in cardiovascular fluid mechanics that define the current state of the art. These studies include complex multimodal investigations with advanced measurement and simulation techniques. We first discuss the complex flows within the total cavopulmonary connection in Fontan patients. We emphasize the quantification of energy losses by studying the importance of caval offsets as well as the differences among various Fontan surgical protocols. In our studies of the fluid mechanics of prosthetic heart valves, we reveal for the first time the full three-dimensional complexity of flow fields in the vicinity of bileaflet and trileaflet valves and the microscopic hinge flow dynamics. We also present results of these valves functioning in a patient-specific native aorta geometry. Our in vitro mitral valve studies show the complex mechanism of the native mitral valve apparatus. We demonstrate that the different components of the mitral valve have independent and synergistically complex functions that allow the valve to operate efficiently. We also show how valve mechanics change under pathological and repair conditions associated with enlarged ventricles. Finally, our ex vivo studies on the interactions between the aortic valve and its surrounding hemodynamic environment are aimed at providing insights into normal valve function and valve pathology. We describe the development of organ- and tissue-culture systems and the biological response of the tissue subjected to their respective simulated mechanical environment. The studies noted above have enhanced our understanding of the complex fluid mechanics associated with the cardiovascular system and have led to new translational technologies.

  13. Numerical Investigations of Mixed Convection of Incompressible Viscous Fluid in LNG Storage with a Various Locations of Input and Output Mass

    Directory of Open Access Journals (Sweden)

    Sklyarenko Kristina A.

    2015-01-01

    Full Text Available The article shows the results of mathematical simulation of mixed convection in the low-temperature storage of liquefied natural gas with a regenerative cooling. The regimes of mixed convection in a closed area with the different arrangement of the input and output sections of the masses are investigated. Two-dimensional nonstationary problem in the model of the Navier-Stokes in dimensionless variables “vorticity - stream function - temperature” was examined. Are obtained distributions of the hydrodynamic parameters and temperatures, characteristic basic laws governing the processes being investigated. Detailed circulating currents and carried out analysis of the mechanism of vortices formation and the temperature distribution in the solution for mixed convection mode with low Reynolds and Grashof numbers (Gr = 106, 100

  14. Fluid mechanics of eating, swallowing and digestion - overview and perspectives.

    Science.gov (United States)

    Engmann, Jan; Burbidge, Adam S

    2013-02-26

    From a very simplistic viewpoint, the human digestive system can be regarded as a long tube (with dramatic variations in diameter, cross-section, wall properties, pumping mechanisms, regulating valves and in-line sensors). We single out a few fluid mechanical phenomena along the trajectory of a food bolus from the mouth to the small intestine and discuss how they influence sensorial perception, safe transport, and nutrient absorption from a bolus. The focus is on lubrication flows between the tongue and palate, the oropharyngeal stage of swallowing and effects of flow on absorption in the small intestine. Specific challenges and opportunities in this research area are highlighted.

  15. A new paradigm for variable-fidelity stochastic simulation and information fusion in fluid mechanics

    Science.gov (United States)

    Venturi, Daniele; Parussini, Lucia; Perdikaris, Paris; Karniadakis, George

    2015-11-01

    Predicting the statistical properties of fluid systems based on stochastic simulations and experimental data is a problem of major interest across many disciplines. Even with recent theoretical and computational advancements, no broadly applicable techniques exist that could deal effectively with uncertainty propagation and model inadequacy in high-dimensions. To address these problems, we propose a new paradigm for variable-fidelity stochastic modeling, simulation and information fusion in fluid mechanics. The key idea relies in employing recursive Bayesian networks and multi-fidelity information sources (e.g., stochastic simulations at different resolution) to construct optimal predictors for quantities of interest, e.g., the random temperature field in stochastic Rayleigh-Bénard convection. The object of inference is the quantity of interest at the highest possible level of fidelity, for which we can usually afford only few simulations. To compute the optimal predictors, we developed a multivariate recursive co-kriging approach that simultaneously takes into account variable fidelity in the space of models (e.g., DNS vs. potential flow solvers), as well as variable-fidelity in probability space. Numerical applications are presented and discussed. This research was supported by AFOSR and DARPA.

  16. The fluid mechanics of the inner-ear disorder BPPV

    Science.gov (United States)

    Weidman, Michael; Squires, Todd; Stone, Howard

    2001-11-01

    The inner ear of mammals contains fluid-filled semi-circular canals with a flexible sensory membrane (called a cupula) which detects rotational acceleration. Benign Paroxysmal Positional Vertigo (BPPV) is one of the most common disorders of this system diagnosed today, and is characterized by symptoms of dizziness and nausea brought on by sudden changes in head orientation. BPPV is believed to have a mechanical (rather than nervous) origin, in which dense particles called otoconia settle into the canals and trigger false sensations of rotational acceleration. Several qualitative mechanisms have been proposed by the medical community, which we examine from a fluid mechanical standpoint. Traditionally, the semicircular canal and the cupula are modeled as an over-damped torsional pendulum with a driving force provided by rotational acceleration. We extend this model to include the time-dependent mechanical response owing to sedimentation of the otoconia. We make qualitative and quantitative predictions associated with the proposed mechanisms, with an eye towards differentiating between them and perhaps towards more effective diagnostic and therapeutic methods.

  17. Dynamical density functional theory for molecular and colloidal fluids: a microscopic approach to fluid mechanics.

    Science.gov (United States)

    Archer, A J

    2009-01-07

    In recent years, a number of dynamical density functional theories (DDFTs) have been developed for describing the dynamics of the one-body density of both colloidal and atomic fluids. In the colloidal case, the particles are assumed to have stochastic equations of motion and theories exist for both the case when the particle motion is overdamped and also in the regime where inertial effects are relevant. In this paper, we extend the theory and explore the connections between the microscopic DDFT and the equations of motion from continuum fluid mechanics. In particular, starting from the Kramers equation, which governs the dynamics of the phase space probability distribution function for the system, we show that one may obtain an approximate DDFT that is a generalization of the Euler equation. This DDFT is capable of describing the dynamics of the fluid density profile down to the scale of the individual particles. As with previous DDFTs, the dynamical equations require as input the Helmholtz free energy functional from equilibrium density functional theory (DFT). For an equilibrium system, the theory predicts the same fluid one-body density profile as one would obtain from DFT. Making further approximations, we show that the theory may be used to obtain the mode coupling theory that is widely used for describing the transition from a liquid to a glassy state.

  18. Topological Fluid Mechanics with Applications to Free Surfaces and Axisymmetric Flows

    DEFF Research Database (Denmark)

    Brøns, Morten

    1996-01-01

    Topological fluid mechanics is the study of qualitative features of fluid patterns. We discuss applications to the flow beneath a stagnant surface film, and to patterns in axisymmetric flow.......Topological fluid mechanics is the study of qualitative features of fluid patterns. We discuss applications to the flow beneath a stagnant surface film, and to patterns in axisymmetric flow....

  19. Interpreting Students’ Perceptions in Fluid Mechanics Learning Outcomes

    Directory of Open Access Journals (Sweden)

    Filomena SOARES

    2015-11-01

    Full Text Available The objective of this study is to analyse the impact of introducing a practical work in the learning process of the Fluid Transport Systems course in Chemical Engineering degree. The students, in groups of two or three elements, were free to choose the application case in order to develop the practical work proposed by the responsible teachers. The students selected a centrifugal pump to supply water to houses or buildings and designed the piping system. The practical work was evaluated through the written report. The students’ perceptions were analysed through a questionnaire. The learning outcomes were also considered in order to understand how the fluid mechanics concepts were acquired. In the teachers’ point of view the teamwork should enable the development of students’ soft skills and competencies, promoting the ability to integrate and work in teams. The students changed their learning processing and perception becoming more reflective and less accommodative, forcing them to think critically and share opinions. Regarding the Fluid Mechanics assessment, the practical work increased, in average, the final grade at least one value.

  20. Mechanical design problems associated with turbopump fluid film bearings

    Science.gov (United States)

    Evces, Charles R.

    1990-01-01

    Most high speed cryogenic turbopumps for liquid propulsion rocket engines currently use ball or roller contact bearings for rotor support. The operating speeds, loads, clearances, and environments of these pumps combine to make bearing wear a limiting factor on turbopump life. An example is the high pressure oxygen turbopump (HPOTP) used in the Space Shuttle Main Engine (SSME). Although the HPOTP design life is 27,000 seconds at 30,000 rpms, or approximately 50 missions, bearings must currently be replaced after 2 missions. One solution to the bearing wear problem in the HPOTP, as well as in future turbopump designs, is the utilization of fluid film bearings in lieu of continuous contact bearings. Hydrostatic, hydrodynamic, and damping seal bearings are all replacement candidates for contact bearings in rocket engine high speed turbomachinery. These three types of fluid film bearings have different operating characteristics, but they share a common set of mechanical design opportunities and difficulties. Results of research to define some of the mechanical design issues are given. Problems considered include transient strat/stop rub, non-operational rotor support, bearing wear inspection and measurement, and bearing fluid supply route. Emphasis is given to the HPOTP preburner pump (PBP) bearing, but the results are pertinent to high-speed cryogenic turbomachinery in general.

  1. Isogeometric Analysis and Shape Optimization in Fluid Mechanics

    DEFF Research Database (Denmark)

    Nielsen, Peter Nørtoft

    unites the power to solve complex engineering problems from finite element analysis (FEA) with the ability to effectively represent complex shapes from computer aided design (CAD). The methodology is appealing for flow modeling purposes also due to the inherent high regularity of velocity and pressure......This thesis brings together the fields of fluid mechanics, as the study of fluids and flows, isogeometric analysis, as a numerical method to solve engineering problems using computers, and shape optimization, as the art of finding "best" shapes of objects based on some notion of goodness. The flow...... is given of how isogeometric analysis is applied to flow problems. We present several new discretizations of the velocity and pressure spaces, we investigate these in terms of stability and error convergence properties, and a benchmark flow problem is analyzed. As the second contribution, we show how...

  2. Otto Laporte Award Talk - In light of Fluid Mechanics

    Science.gov (United States)

    Gharib, Morteza

    2015-11-01

    Fluid mechanics, in its inherent non-linear beauty, has been its own laboratory, testing our perseverance and dedication to a branch of science that, despite its perceived maturity, still has many surprises to offer. For many of us, the study of fluid flow has been our path to understanding the complexity of nature. My journey has taken me through many interesting projects including the development of new visualization tools, scrutinizing the rhythms of the human heart, observing flow vortices and studying the dynamics of soap films. But this lecture is mainly devoted to a new example of my research activities where light and flow physics interweave to display another intriguing multi-physics beauty of nature.

  3. Fluid Mechanics, Drag Reduction and Advanced Configuration Aeronautics

    Science.gov (United States)

    Bushnell, Dennis M.

    2000-01-01

    This paper discusses Advanced Aircraft configurational approaches across the speed range, which are either enabled, or greatly enhanced, by clever Flow Control. Configurations considered include Channel Wings with circulation control for VTOL (but non-hovering) operation with high cruise speed, strut-braced CTOL transports with wingtip engines and extensive ('natural') laminar flow control, a midwing double fuselage CTOL approach utilizing several synergistic methods for drag-due-to-lift reduction, a supersonic strut-braced configuration with order of twice the L/D of current approaches and a very advanced, highly engine flow-path-integrated hypersonic cruise machine. This paper indicates both the promise of synergistic flow control approaches as enablers for 'Revolutions' in aircraft performance and fluid mechanic 'areas of ignorance' which impede their realization and provide 'target-rich' opportunities for Fluids Research.

  4. On the Use of Computers for Teaching Fluid Mechanics

    Science.gov (United States)

    Benson, Thomas J.

    1994-01-01

    Several approaches for improving the teaching of basic fluid mechanics using computers are presented. There are two objectives to these approaches: to increase the involvement of the student in the learning process and to present information to the student in a variety of forms. Items discussed include: the preparation of educational videos using the results of computational fluid dynamics (CFD) calculations, the analysis of CFD flow solutions using workstation based post-processing graphics packages, and the development of workstation or personal computer based simulators which behave like desk top wind tunnels. Examples of these approaches are presented along with observations from working with undergraduate co-ops. Possible problems in the implementation of these approaches as well as solutions to these problems are also discussed.

  5. Fluid mechanics in crystal growth - The 1982 Freeman scholar lecture

    Science.gov (United States)

    Ostrach, S.

    1983-01-01

    An attempt is made to unify the current state of knowledge in crystal growth techniques and fluid mechanics. After identifying important fluid dynamic problems for such representative crystal growth processes as closed tube vapor transport, open reactor vapor deposition, and the Czochralski and floating zone melt growth techniques, research results obtained to date are presented. It is noted that the major effort to date has been directed to the description of the nature and extent of bulk transport under realistic conditions, where bulk flow determines the heat and solute transport which strongly influence the temperature and concentration fields in the vicinity of the growth interface. Proper treatment of near field, or interface, problems cannot be given until the far field, or global flow, involved in a given crystal growth technique has been adequately described.

  6. Stochastic Convection Parameterizations

    Science.gov (United States)

    Teixeira, Joao; Reynolds, Carolyn; Suselj, Kay; Matheou, Georgios

    2012-01-01

    computational fluid dynamics, radiation, clouds, turbulence, convection, gravity waves, surface interaction, radiation interaction, cloud and aerosol microphysics, complexity (vegetation, biogeochemistry, radiation versus turbulence/convection stochastic approach, non-linearities, Monte Carlo, high resolutions, large-Eddy Simulations, cloud structure, plumes, saturation in tropics, forecasting, parameterizations, stochastic, radiation-clod interaction, hurricane forecasts

  7. 施工条件下CO2泡沫压裂液的对流换热特性%CONVECTIVE HEAT TRANSFER OF CO2 FOAM FRACTURING FLUID UNDER DOWNHOLE CONDITIONS

    Institute of Scientific and Technical Information of China (English)

    王树众; 王斌; 林宗虎; 王志刚; 张爱舟; 昝元峰

    2004-01-01

    Foam fracturing is an important technology in the development of low permeability oil/gas reservoirs. The heat transfer characteristics of foam fracturing fluid are directly relevant to the calculation of pressure drop in the well, the optimum choice of fracturing parameters and the accurate evaluation of fracturing results. CO2 foam fracturing fluid behaves as a non-Newtonian fluid. The convective heat transfer characteristics of CO2 foam fracturing fluid were experimentally investigated on the newly constructed large-scale test loop under downhole conditions with CO2 in supercritical state, the pressure up to 40MPa. From the test data, corresponding correlations for convective heat transfer were obtained and the influences of pressure, temperature and flow rate were also studied. The convective heat transfer coefficient increased with the increase of temperature and flow rate, while the effect of pressure was much more complicated. In most cases, with the increase of pressure the coefficient tended to decrease.

  8. Numerical solution on mixed convection boundary layer flow past a horizontal circular cylinder in a Jeffrey fluid with constant heat flux

    Science.gov (United States)

    Zokri, S. M.; Arifin, N. S.; Mohamed, M. K. A.; Salleh, M. Z.; Kasim, A. R. M.; Mohammad, N. F.

    2017-08-01

    This paper discusses the viscous dissipation effect with constant heat flux on the mixed convection boundary layer flow past a horizontal circular cylinder in a Jeffrey fluid. The transformed partial differential equations are solved numerically by using the well-tested, flexible, implicit and unconditionally stable Keller-box method. Numerical results for the velocity and temperature profiles are attained in the form of graph for different values of parameters such as Prandtl number, ratio of relaxation to retardation times and Deborah number. It is found that the velocity profile is noticeably decreased with an increase in Deborah number while the temperature profile is slightly increased.

  9. Influence of soret effect on mhd mixed convection flow of visco-elastic fluid past a vertical surface with hall effect

    Directory of Open Access Journals (Sweden)

    Jha A.K.

    2014-02-01

    Full Text Available The present paper deals with the unsteady motion of an MHD free convection flow of an incompressible non- Newtonian viscoelastic fluid past an infinite vertical plate in the presence of a heat source and Soret effect. A parametric study illustrating the influence of various parameters on the temperature, velocity as well as on the skin-friction and rate of heat transfer is conducted. The results of the effect of the magnetic field, the parameter describing the non-Newtonian behavior, and the velocity of suction and injection on both the velocity and temperature distributions are examined and shown graphically

  10. Hall and radial magnetic field effects on radiative peristaltic flow of Carreau-Yasuda fluid in a channel with convective heat and mass transfer

    Science.gov (United States)

    Hayat, T.; Farooq, S.; Alsaedi, A.; Ahmad, B.

    2016-08-01

    The purpose of present investigation is to study the Hall and MHD effects on peristaltic flow of Carreau-Yasuda fluid in a convectively curved configuration. Thermal radiation, Soret and Dufour effects are also accounted. The channel walls comprised the no slip and compliant properties. Constitutive equations for mass, momentum, energy and concentration are first modeled in view of considered assumptions and then simplified under long wavelength and low Reynolds number approximation. Solution of the resulting system of equations is carried out via a regular perturbation technique. Physical behaviors of velocity, temperature, concentration and streamlines are discussed with the help of graphical representation.

  11. Simultaneous Effects of MHD and Thermal Radiation on the Mixed Convection Stagnation-Point Flow of a Power-Law Fluid

    Institute of Scientific and Technical Information of China (English)

    T. Hayat; M. Mustafa; S. Obaidat

    2011-01-01

    Magnetohydrodynamic (MHD) mixed convection stagnation-point flow and heat transfer of power-law fluids towards a stretching surface is investigated.The homotopy analysis method (HAM) is used in finding the series solution for a nonlinear problem.Closed form solutions for velocity and temperature fields are presented in the limiting cases.Graphical results are shown.It is found that velocity and temperature are decreasing functions of power law index.Numerical computations for shear stress coefficient and local Nusselt number are reported.The present results are also compared with the existing numerical solution in a limiting sense.

  12. Chemical Reaction Effects on an Unsteady MHD Free Convection Fluid Flow past a Semi-Infinite Vertical Plate Embedded in a Porous Medium with Heat Absorption

    Directory of Open Access Journals (Sweden)

    J. Anand Rao

    2012-01-01

    Full Text Available In the present paper , an analysis is carried out the chemical reaction effects on an unsteady magneto hydrodynamics (MHD free convection fluid flow past a semi-infinite vertical plate embedded in a porous medium with heat absorption was formulated. The non dimensional governing equations are formed with the help of suitable dimensionless governing parameter. The resultant coupled non dimensional governing equations are solved by a finite element method. The effect of important physical parameters on the velocity, temperature and concentration are shown graphically and also discussed the skin-friction coefficient, Nusselt number and Sherwood number are shown in tables.

  13. Mass transfer effects on an unsteady MHD free convective flow of an incompressible viscous dissipative fluid past an infinite vertical porous plate

    Directory of Open Access Journals (Sweden)

    Prabhakar Reddy B.

    2016-02-01

    Full Text Available In this paper, a numerical solution of mass transfer effects on an unsteady free convection flow of an incompressible electrically conducting viscous dissipative fluid past an infinite vertical porous plate under the influence of a uniform magnetic field considered normal to the plate has been obtained. The non-dimensional governing equations for this investigation are solved numerically by using the Ritz finite element method. The effects of flow parameters on the velocity, temperature and concentration fields are presented through the graphs and numerical data for the skin-friction, Nusselt and Sherwood numbers are presented in tables and then discussed.

  14. Modeling Chemical Mechanical Polishing with Couple Stress Fluids

    Institute of Scientific and Technical Information of China (English)

    张朝辉; 雒建斌; 温诗铸

    2004-01-01

    Chemical mechanical polishing (CMP) is a manufacturing process used to achieve high levels of global and local planarity.Currently, the slurries used in CMP usually contain nanoscale particles to accelerate the removal ratio and to optimize the planarity, whose rheological properties can no longer be accurately modeled with Newtonian fluids.The Reynolds equation, including the couple stress effects, was derived in this paper.The equation describes the mechanism to solve the CMP lubrication equation with the couple stress effects.The effects on load and moments resulting from the various parameters, such as pivot height, roll angle, and pitch angle, were subsequently simulated.The results show that the couple stress can provide higher load and angular moments.This study sheds some lights into the mechanism of the CMP process.

  15. Crust-Mantle Structures and Gold Enrichment Mechanism of Mantle Fluid System

    Institute of Scientific and Technical Information of China (English)

    邓军; 孙忠实; 王庆飞; 韦延光

    2003-01-01

    Gold enrichment mechanism of ore-forming fluid is the essence of gold metallization.This paper summarizes the distinguishing symbols of mantle fluid and effect of crust-mantlestructure on fluid movement. Fluid moving processes include osmosis, surge, gas-liquid alterna-tion and mutation of fluid speed. During fluid movement, gold will be enriched gradually. Final-ly, a layered circulatory system is illustrated in this paper.

  16. Laser metrology in fluid mechanics granulometry, temperature and concentration measurements

    CERN Document Server

    Boutier, Alain

    2013-01-01

    In fluid mechanics, non-intrusive measurements are fundamental in order to improve knowledge of the behavior and main physical phenomena of flows in order to further validate codes.The principles and characteristics of the different techniques available in laser metrology are described in detail in this book.Velocity, temperature and concentration measurements by spectroscopic techniques based on light scattered by molecules are achieved by different techniques: laser-induced fluorescence, coherent anti-Stokes Raman scattering using lasers and parametric sources, and absorption sp

  17. The Fluid Mechanics of Cancer and Its Therapy

    Science.gov (United States)

    Koumoutsakos, Petros; Pivkin, Igor; Milde, Florian

    2013-01-01

    Fluid mechanics is involved in the growth, progression, metastasis, and therapy of cancer. Blood vessels transport oxygen and nutrients to cancerous tissues, provide a route for metastasizing cancer cells to distant organs, and deliver drugs to tumors. The irregular and leaky tumor vasculature is responsible for increased interstitial pressure in the tumor microenvironment, whereas multiscale flow-structure interaction processes control tumor growth, metastasis, and nanoparticle-mediated drug delivery. We outline these flow-mediated processes, along with related experimental and computational methods for the diagnosis, predictive modeling, and therapy of cancer.

  18. Review of coaxial flow gas core nuclear rocket fluid mechanics

    Science.gov (United States)

    Weinstein, H.

    1976-01-01

    Almost all of the fluid mechanics research associated with the coaxial flow gas core reactor ended abruptly with the interruption of NASA's space nuclear program because of policy and budgetary considerations in 1973. An overview of program accomplishments is presented through a review of the experiments conducted and the analyses performed. Areas are indicated where additional research is required for a fuller understanding of cavity flow and of the factors which influence cold and hot flow containment. A bibliography is included with graphic material.

  19. Impact of a Revised Convective Triggering Mechanism on CAM2 Model Simulations: Results from Short-Range Weather Forecasts

    Energy Technology Data Exchange (ETDEWEB)

    Xie, S; Boyle, J S; Cederwall, R T; Potter, G L; Zhang, M; Lin, W

    2004-02-19

    This study implements a revised convective triggering condition in the National Center for Atmospheric Research (NCAR) Community Atmosphere Model (CAM2) model to reduce its excessive warm season daytime precipitation over land. The new triggering mechanism introduces a simple dynamic constraint on the initiation of convection that emulates the collective effects of lower level moistening and upward motion of the large-scale circulation. It requires a positive contribution from the large-scale advection of temperature and moisture to the existing positive Convective Available Potential Energy (CAPE) for model convection to start. In contrast, the original convection triggering function in CAM2 assumes that convection is triggered whenever there is positive CAPE, which results in too frequent warm season convection over land arising from strong diurnal variation of solar radiation. We examine the impact of the new trigger on CAM2 simulations by running the climate model in Numerical Weather Prediction (NWP) mode so that more available observations and high-frequency NWP analysis data can be used to evaluate model performance. We show that the modified triggering mechanism has led to considerable improvements in the simulation of precipitation, temperature, moisture, clouds, radiations, surface temperature, and surface sensible and latent heat fluxes when compared to the data collected from the Atmospheric Radiation Measurement (ARM) program at its South Great Plains (SGP) site. Similar improvements are also seen over other parts of the globe. In particular, the surface precipitation simulation has been significantly improved over both the continental United States and around the globe; the overestimation of high clouds in the equatorial tropics has been substantially reduced; and the temperature, moisture, and zonal wind are more realistically simulated. Results from this study also show that some systematic errors in the CAM2 climate simulations can be detected in

  20. Partitioned fluid-solid coupling for cardiovascular blood flow: left-ventricular fluid mechanics.

    Science.gov (United States)

    Krittian, Sebastian; Janoske, Uwe; Oertel, Herbert; Böhlke, Thomas

    2010-04-01

    We present a 3D code-coupling approach which has been specialized towards cardiovascular blood flow. For the first time, the prescribed geometry movement of the cardiovascular flow model KaHMo (Karlsruhe Heart Model) has been replaced by a myocardial composite model. Deformation is driven by fluid forces and myocardial response, i.e., both its contractile and constitutive behavior. Whereas the arbitrary Lagrangian-Eulerian formulation (ALE) of the Navier-Stokes equations is discretized by finite volumes (FVM), the solid mechanical finite elasticity equations are discretized by a finite element (FEM) approach. Taking advantage of specialized numerical solution strategies for non-matching fluid and solid domain meshes, an iterative data-exchange guarantees the interface equilibrium of the underlying governing equations. The focus of this work is on left-ventricular fluid-structure interaction based on patient-specific magnetic resonance imaging datasets. Multi-physical phenomena are described by temporal visualization and characteristic FSI numbers. The results gained show flow patterns that are in good agreement with previous observations. A deeper understanding of cavity deformation, blood flow, and their vital interaction can help to improve surgical treatment and clinical therapy planning.

  1. Solar convection and oscillations in magnetic regions

    CERN Document Server

    Jacoutot, L; Wray, A; Mansour, N N

    2008-01-01

    The goal of this research is to investigate how magnetic field affects the dynamics of granular convection and excitation of solar oscillations by means of realistic numerical simulations. We have used a 3D, compressible, non-linear radiative magnetohydrodynamics code developed at the NASA Ames Research Center. This code takes into account several physical phenomena: compressible fluid flow in a highly stratified medium, sub-grid scale turbulence models, radiative energy transfer between the fluid elements, and a real-gas equation of state. We have studied the influence of the magnetic field of various strength on the convective cells and on the excitation mechanisms of the acoustic oscillations by calculating spectral properties of the convective motions and oscillations. The results reveal substantial changes of the granulation structure with increased magnetic field, and a frequency-dependent reduction in the oscillation power in a good agreement with solar observations. These simulations suggest that the ...

  2. Introducing CFD in Introductory Undergraduate Fluid Mechanics Courses

    Science.gov (United States)

    Cimbala, John M.

    2005-11-01

    Many instructors want to introduce CFD into their introductory junior-level fluid mechanics course, but cannot because it requires several hours of class time at the cost of displacement of other basic material. A simple but effective method is now available that has been used successfully at Penn State since Spring 2005. It requires minimal instructor preparation time and only about one class period. Namely, immediately after solving the Navier-Stokes equation analytically for simple flows such as Couette and Poiseuille flow, CFD is introduced as a modern tool for solving the same equations numerically. The application of CFD (grid generation, boundary conditions, etc.), rather than numerical algorithms, is stressed. Homework problems are then assigned using pre-defined templates for FlowLab, a student-friendly analysis and visualization package created by Fluent, Inc. The templates and exercises are designed to support and emphasize the theory and concepts taught in class and in the textbook. For example, the new textbook by Cengel and Cimbala (McGraw-Hill 2006) contains 46 end-of-chapter homework problems that are used in conjunction with 42 FlowLab templates. Each exercise has been designed with two major learning objectives in mind: (1) enhance student understanding of a specific fluid mechanics concept, and (2) introduce the student to a specific capability and/or limitation of CFD through hands-on practice.

  3. Respiratory mechanics and fluid dynamics after lung resection surgery.

    Science.gov (United States)

    Miserocchi, Giuseppe; Beretta, Egidio; Rivolta, Ilaria

    2010-08-01

    Thoracic surgery that requires resection of a portion of lung or of a whole lung profoundly alters the mechanical and fluid dynamic setting of the lung-chest wall coupling, as well as the water balance in the pleural space and in the remaining lung. The most frequent postoperative complications are of a respiratory nature, and their incidence increases the more the preoperative respiratory condition seems compromised. There is an obvious need to identify risk factors concerning mainly the respiratory function, without neglecting the importance of other comorbidities, such as coronary disease. At present, however, a satisfactory predictor of postoperative cardiopulmonary complications is lacking; postoperative morbidity and mortality have remained unchanged in the last 10 years. The aim of this review is to provide a pathophysiologic interpretation of the main respiratory complications of a respiratory nature by relying on new concepts relating to lung fluid dynamics and mechanics. New parameters are proposed to improve evaluation of respiratory function from pre- to the early postoperative period when most of the complications occur.

  4. Fluid mechanics experiments in oscillatory flow. Volume 2: Tabulated data

    Science.gov (United States)

    Seume, J.; Friedman, G.; Simon, T. W.

    1992-01-01

    Results of a fluid mechanics measurement program in oscillating flow within a circular duct are presented. The program began with a survey of transition behavior over a range of oscillation frequency and magnitude and continued with a detailed study at a single operating point. Such measurements were made in support of Stirling engine development. Values of three dimensionless parameters, Re sub max, Re sub w, and A sub R, embody the velocity amplitude, frequency of oscillation, and mean fluid displacement of the cycle, respectively. Measurements were first made over a range of these parameters that are representative of the heat exchanger tubes in the heater section of NASA's Stirling cycle Space Power Research Engine (SPRE). Measurements were taken of the axial and radial components of ensemble-averaged velocity and rms velocity fluctuation and the dominant Reynolds shear stress, at various radial positions for each of four axial stations. In each run, transition from laminar to turbulent flow, and its reverse, were identified and sufficient data was gathered to propose the transition mechanism. Volume 2 contains data reduction program listings and tabulated data (including its graphics).

  5. 100 volumes of 'notes on numerical fluid mechanics' 40 years of numerical fluid mechanics and aerodynamics in retrospect

    CERN Document Server

    Hirschel, Ernst Heinrich; Fujii, Kozo

    2009-01-01

    This volume contains 37 invited contributions, collected to celebrate one hundred volumes of the ""NNFM Series"". After a general introduction, overviews are given in five parts of the developments in numerical fluid mechanics and related fields. In the first part information about the series is given, its origins are discussed, as well as its environment and the German and European high-performance computer scene. In Part II the co-editors of the series give short surveys over developments in their countries. Current applications, mainly in the aerospace sector, but also in the automotive sec

  6. [Present status and trend of heart fluid mechanics research based on medical image analysis].

    Science.gov (United States)

    Gan, Jianhong; Yin, Lixue; Xie, Shenghua; Li, Wenhua; Lu, Jing; Luo, Anguo

    2014-06-01

    With introduction of current main methods for heart fluid mechanics researches, we studied the characteristics and weakness for three primary analysis methods based on magnetic resonance imaging, color Doppler ultrasound and grayscale ultrasound image, respectively. It is pointed out that particle image velocity (PIV), speckle tracking and block match have the same nature, and three algorithms all adopt block correlation. The further analysis shows that, with the development of information technology and sensor, the research for cardiac function and fluid mechanics will focus on energy transfer process of heart fluid, characteristics of Chamber wall related to blood fluid and Fluid-structure interaction in the future heart fluid mechanics fields.

  7. Serious Fun: Using Toys to Demonstrate Fluid Mechanics Principles

    Science.gov (United States)

    Saviz, Camilla M.; Shakerin, Said

    2014-01-01

    Many students have owned or seen fluids toys in which two immiscible fluids within a closed container can be tilted to generate waves. These types of inexpensive and readily available toys are fun to play with, but they are also useful for provoking student learning about fluid properties or complex fluid behavior, including drop formation and…

  8. Serious Fun: Using Toys to Demonstrate Fluid Mechanics Principles

    Science.gov (United States)

    Saviz, Camilla M.; Shakerin, Said

    2014-01-01

    Many students have owned or seen fluids toys in which two immiscible fluids within a closed container can be tilted to generate waves. These types of inexpensive and readily available toys are fun to play with, but they are also useful for provoking student learning about fluid properties or complex fluid behavior, including drop formation and…

  9. Computational thermal, chemical, fluid, and solid mechanics for geosystems management.

    Energy Technology Data Exchange (ETDEWEB)

    Davison, Scott; Alger, Nicholas; Turner, Daniel Zack; Subia, Samuel Ramirez; Carnes, Brian; Martinez, Mario J.; Notz, Patrick K.; Klise, Katherine A.; Stone, Charles Michael; Field, Richard V., Jr.; Newell, Pania; Jove-Colon, Carlos F.; Red-Horse, John Robert; Bishop, Joseph E.; Dewers, Thomas A.; Hopkins, Polly L.; Mesh, Mikhail; Bean, James E.; Moffat, Harry K.; Yoon, Hongkyu

    2011-09-01

    This document summarizes research performed under the SNL LDRD entitled - Computational Mechanics for Geosystems Management to Support the Energy and Natural Resources Mission. The main accomplishment was development of a foundational SNL capability for computational thermal, chemical, fluid, and solid mechanics analysis of geosystems. The code was developed within the SNL Sierra software system. This report summarizes the capabilities of the simulation code and the supporting research and development conducted under this LDRD. The main goal of this project was the development of a foundational capability for coupled thermal, hydrological, mechanical, chemical (THMC) simulation of heterogeneous geosystems utilizing massively parallel processing. To solve these complex issues, this project integrated research in numerical mathematics and algorithms for chemically reactive multiphase systems with computer science research in adaptive coupled solution control and framework architecture. This report summarizes and demonstrates the capabilities that were developed together with the supporting research underlying the models. Key accomplishments are: (1) General capability for modeling nonisothermal, multiphase, multicomponent flow in heterogeneous porous geologic materials; (2) General capability to model multiphase reactive transport of species in heterogeneous porous media; (3) Constitutive models for describing real, general geomaterials under multiphase conditions utilizing laboratory data; (4) General capability to couple nonisothermal reactive flow with geomechanics (THMC); (5) Phase behavior thermodynamics for the CO2-H2O-NaCl system. General implementation enables modeling of other fluid mixtures. Adaptive look-up tables enable thermodynamic capability to other simulators; (6) Capability for statistical modeling of heterogeneity in geologic materials; and (7) Simulator utilizes unstructured grids on parallel processing computers.

  10. Links between fluid mechanics and quantum mechanics: a model for information in economics?

    Science.gov (United States)

    Haven, Emmanuel

    2016-05-28

    This paper tallies the links between fluid mechanics and quantum mechanics, and attempts to show whether those links can aid in beginning to build a formal template which is usable in economics models where time is (a)symmetric and memory is absent or present. An objective of this paper is to contemplate whether those formalisms can allow us to model information in economics in a novel way.

  11. Statistical mechanical description of supercritical fluid extraction and retrograde condensation

    Science.gov (United States)

    Park, S. J.; Kwak, T. Y.; Mansoori, G. A.

    1987-07-01

    The phenomena of supercritical fluid extraction (SFE) and its reverse effect, which is known as retrograde condensation (RC), have found new and important applications in industrial separation of chemical compounds and recovery and processing of natural products and fossil fuels. Full-scale industrial utilization of SFE/RC processes requires knowledge about thermodynamic and transport characteristics of the asymmetric mixtures involved and the development of predictive modeling and correlation techniques for performance of the SFE/RC system under consideration. In this report, through the application of statistical mechanical techniques, the reasons for the lack of accuracy of existing predictive approaches are described and they are improved. It is demonstrated that these techniques also allow us to study the effect of mixed supercritical solvents on the solubility of heavy solutes (solids) at different compositions of the solvents, pressures, and temperatures. Fluid phase equilibrium algorithms based on the conformal solution van der Waals mixing rules and different equations of state are presented for the prediction of solubilities of heavy liquid in supercritical gases. It is shown that the Peng-Robinson equation of state based on conformal solution theory can predict solubilites of heavy liquid in supercritical gases more accurately than the van der Waals and Redlich-Kwong equations of state.

  12. Fluid Mechanics of Biological Surfaces and their Technological Application

    Science.gov (United States)

    Bechert, D. W.; Bruse, M.; Hage, W.; Meyer, R.

    A survey is given on fluid-dynamic effects caused by the structure and properties of biological surfaces. It is demonstrated that the results of investigations aiming at technological applications can also provide insights into biophysical phenomena. Techniques are described both for reducing wall shear stresses and for controlling boundary-layer separation. (a) Wall shear stress reduction was investigated experimentally for various riblet surfaces including a shark skin replica. The latter consists of 800 plastic model scales with compliant anchoring. Hairy surfaces are also considered, and surfaces in which the no-slip condition is modified. Self-cleaning surfaces such as that of lotus leaves represent an interesting option to avoid fluid-dynamic deterioration by the agglomeration of dirt. An example of technological implementation is discussed for riblets in long-range commercial aircraft. (b) Separation control is also an important issue in biology. After a few brief comments on vortex generators, the mechanism of separation control by bird feathers is described in detail. Self-activated movable flaps (=artificial bird feathers) represent a high-lift system enhancing the maximum lift of airfoils by about 20%. This is achieved without perceivable deleterious effects under cruise conditions. Finally, flight experiments on an aircraft with laminar wing and movable flaps are presented.

  13. Internal Wave Generation by Convection

    Science.gov (United States)

    Lecoanet, Daniel Michael

    In nature, it is not unusual to find stably stratified fluid adjacent to convectively unstable fluid. This can occur in the Earth's atmosphere, where the troposphere is convective and the stratosphere is stably stratified; in lakes, where surface solar heating can drive convection above stably stratified fresh water; in the oceans, where geothermal heating can drive convection near the ocean floor, but the water above is stably stratified due to salinity gradients; possible in the Earth's liquid core, where gradients in thermal conductivity and composition diffusivities maybe lead to different layers of stable or unstable liquid metal; and, in stars, as most stars contain at least one convective and at least one radiative (stably stratified) zone. Internal waves propagate in stably stratified fluids. The characterization of the internal waves generated by convection is an open problem in geophysical and astrophysical fluid dynamics. Internal waves can play a dynamically important role via nonlocal transport. Momentum transport by convectively excited internal waves is thought to generate the quasi-biennial oscillation of zonal wind in the equatorial stratosphere, an important physical phenomenon used to calibrate global climate models. Angular momentum transport by convectively excited internal waves may play a crucial role in setting the initial rotation rates of neutron stars. In the last year of life of a massive star, convectively excited internal waves may transport even energy to the surface layers to unbind them, launching a wind. In each of these cases, internal waves are able to transport some quantity--momentum, angular momentum, energy--across large, stable buoyancy gradients. Thus, internal waves represent an important, if unusual, transport mechanism. This thesis advances our understanding of internal wave generation by convection. Chapter 2 provides an underlying theoretical framework to study this problem. It describes a detailed calculation of the

  14. MHD Flow of a Non-Newtonian Power Law Fluid over a Vertical Stretching Sheet with the Convective Boundary Condition

    Directory of Open Access Journals (Sweden)

    Azeem SHAHZAD

    2013-02-01

    Full Text Available In this article, we study the power law model of steady state, viscous, incompressible MHD flow over a vertically stretching sheet. Furthermore, heat transfer is also addressed by using the convective boundary conditions. The coupled partial differential equations are transformed into ordinary differential equations (ODEs using similarity transformations. The transformed highly non-linear ODEs are solved by using the Homotopy Analysis Method (HAM. The influence of different parameters on the velocity and temperature fields are analyzed and discussed.

  15. Selection principles and pattern formation in fluid mechanics and nonlinear shell theory

    Science.gov (United States)

    Sather, Duane P.

    1987-01-01

    Research accomplishments are summarized and publications generated under the contract are listed. The general purpose of the research was to investigate various symmetry breaking problems in fluid mechanics by the use of structure parameters and selection principles. Although all of the nonlinear problems studied involved systems of partial differential equations, many of these problems led to the study of a single nonlinear operator equation of the form F(w, lambda, gamma) = 0, (w is an element of H), (lambda is an element of R1), (gamma is an element of R1). Instead of varying only the load parameter lambda, as is often done in the study of such equations, one of the main ideas used was to vary the structure parameter gamma in such a way that stable solutions were obtained. In this way one determines detailed stability results by making use of the structure of the model equations and the known physical parameters of the problem. The approach was carried out successfully for Benard-type convection problems, Taylor-like problems for short cylinders, rotating Couette-Poiseuille channel flows, and plane Couette flows. The main focus of the research was on wave theory of vortex breakdown in a tube. A number of preliminary results for inviscid axisymmetric flows were obtained.

  16. An application of computational fluid mechanics to the air flow in an infant incubator.

    Science.gov (United States)

    Yamaguchi, T; Hanai, S; Horio, H; Hasegawa, T

    1992-01-01

    An application of the computational fluid mechanical method to the air flow in a two-dimensional model of an infant incubator was described. The air flow in a numerical model was simulated and the Navier-Stokes equations were directly solved using a finite-volume method incorporating a body-fitted coordinate system on a mini-supercomputer. The model was based on a real infant incubator, slightly simplified for the sake of computing speed, and included a model of a baby. The number of computation grids was 101 x 61 = 6161. The calculation was carried out under the condition of unsteady, starting airflow and the results were examined by the means of color graphics animation. There were several very large scale eddies in the incubator free space, and their global structure did not show strong changes once they were established. Although the global structure did not change, small scale eddies were shown to be produced around the air inlet and convected down through the free space of the incubator. From these results, we believe that assuming steady and uniform flow in the incubator may not always be relevant when considering heat loss of a baby in an incubator. The steady and uniform flow has been previously assumed either implicitly or explicitly by most of the authors.

  17. Laminar flow and convective transport processes scaling principles and asymptotic analysis

    CERN Document Server

    Brenner, Howard

    1992-01-01

    Laminar Flow and Convective Transport Processes: Scaling Principles and Asymptotic Analysis presents analytic methods for the solution of fluid mechanics and convective transport processes, all in the laminar flow regime. This book brings together the results of almost 30 years of research on the use of nondimensionalization, scaling principles, and asymptotic analysis into a comprehensive form suitable for presentation in a core graduate-level course on fluid mechanics and the convective transport of heat. A considerable amount of material on viscous-dominated flows is covered.A unique feat

  18. STUDY ON FLUID MECHANICS OF HYPERVELOCITY LIQUID JETS

    Institute of Scientific and Technical Information of China (English)

    Shi Hong-hui; Tetsu Sakakura

    2003-01-01

    The fluid mechanics in the generation of hypervelocity water jets, light oil jets and glycerin jets was studied. Framing high-speed photography and single-shot photography were used to observe the jets directly. The purposes of this study is to investigate the disintegration and atomization processes at the velocity of 2km/s-3km/s as well as the auto-ignition and self-combustion of the light oil jets. Therefore, in the jet velocity measurement in addition to the high-speed photography, the results by other methods such as the laser beams cutting method and the shock wave detection using pressure transducers were also given. In the observation of the jets events, the illumination phenomenon was found, which may be regarded as the result of the auto-ignition and combustion of the light oil jets. Finally, the Munroe jet was studied.

  19. Application of ICT supported learning in fluid mechanics

    DEFF Research Database (Denmark)

    Brohus, Henrik; Svidt, Kjeld

    2004-01-01

    This paper focuses on the application of ICT, Information & Communication Technology, supported learning in the area of fluid mechanics education. Taking a starting point in a course in Ventilation Technology, including room air flow and contaminant distribution, it explains how ICT may be used...... actively in the learning environment to increase efficiency in the learning process. The paper comprises past experiences and lessons learnt as well as prospect for future development in the area. A model is presented that describes a high efficiency learning environment where ICT plays an important role....... Traditionally, education in Ventilation Technology has been a combination of teacher performance at the blackboard combined with student exercises by paper and pencils. Sometimes a visit to a building has been included to see how things look like in the real world. In order to increase learning efficiency...

  20. Fluid-Structure Interaction Mechanisms for Close-In Explosions

    Directory of Open Access Journals (Sweden)

    Andrew B. Wardlaw Jr.

    2000-01-01

    Full Text Available This paper examines fluid-structure interaction for close-in internal and external underwater explosions. The resulting flow field is impacted by the interaction between the reflected explosion shock and the explosion bubble. This shock reflects off the bubble as an expansion that reduces the pressure level between the bubble and the target, inducing cavitation and its subsequent collapse that reloads the target. Computational examples of several close-in interaction cases are presented to document the occurrence of these mechanisms. By comparing deformable and rigid body simulations, it is shown that cavitation collapse can occur solely from the shock-bubble interaction without the benefit of target deformation. Addition of a deforming target lowers the flow field pressure, facilitates cavitation and cavitation collapse, as well as reducing the impulse of the initial shock loading.

  1. Fluid mechanics relevant to flow through pretreatment of cellulosic biomass.

    Science.gov (United States)

    Archambault-Léger, Véronique; Lynd, Lee R

    2014-04-01

    The present study investigates fluid mechanical properties of cellulosic feedstocks relevant to flow through (FT) pretreatment for biological conversion of cellulosic biomass. The results inform identifying conditions for which FT pretreatment can be implemented in a practical context. Measurements of pressure drop across packed beds, viscous compaction and water absorption are reported for milled and not milled sugarcane bagasse, switchgrass and poplar, and important factors impacting viscous flow are deduced. Using biomass knife-milled to pass through a 2mm sieve, the observed pressure drop was highest for bagasse, intermediate for switchgrass and lowest for poplar. The highest pressure drop was associated with the presence of more fine particles, greater viscous compaction and the degree of water absorption. Using bagasse without particle size reduction, the instability of the reactor during pretreatment above 140kg/m(3) sets an upper bound on the allowable concentration for continuous stable flow.

  2. An explicit example of Hopf bifurcation in fluid mechanics

    Science.gov (United States)

    Kloeden, P.; Wells, R.

    1983-01-01

    It is observed that a complete and explicit example of Hopf bifurcation appears not to be known in fluid mechanics. Such an example is presented for the rotating Benard problem with free boundary conditions on the upper and lower faces, and horizontally periodic solutions. Normal modes are found for the linearization, and the Veronis computation of the wave numbers is modified to take into account the imposed horizontal periodicity. An invariant subspace of the phase space is found in which the hypotheses of the Joseph-Sattinger theorem are verified, thus demonstrating the Hopf bifurcation. The criticality calculations are carried through to demonstrate rigorously, that the bifurcation is subcritical for certain cases, and to demonstrate numerically that it is subcritical for all the cases in the paper.

  3. An intelligent data acquisition system for fluid mechanics research

    Science.gov (United States)

    Cantwell, E. R.; Zilliac, G.; Fukunishi, Y.

    1989-01-01

    This paper describes a novel data acquisition system for use with wind-tunnel probe-based measurements, which incorporates a degree of specific fluid dynamics knowledge into a simple expert system-like control program. The concept was developed with a rudimentary expert system coupled to a probe positioning mechanism operating in a small-scale research wind tunnel. The software consisted of two basic elements, a general-purpose data acquisition system and the rulebased control element to take and analyze data and supplying decisions as to where to measure, how many data points to take, and when to stop. The system was validated in an experiment involving a vortical flow field, showing that it was possible to increase the resolution of the experiment or, alternatively, reduce the total number of data points required, to achieve parity with the results of most conventional data acquisition approaches.

  4. Introduction to the internal fluid mechanics research session

    Science.gov (United States)

    Miller, Brent A.; Povinelli, Louis A.

    1990-01-01

    Internal fluid mechanics research at LeRC is directed toward an improved understanding of the important flow physics affecting aerospace propulsion systems, and applying this improved understanding to formulate accurate predictive codes. To this end, research is conducted involving detailed experimentation and analysis. The following three papers summarize ongoing work and indicate future emphasis in three major research thrusts: inlets, ducts, and nozzles; turbomachinery; and chemical reacting flows. The underlying goal of the research in each of these areas is to bring internal computational fluid mechanic to a state of practical application for aerospace propulsion systems. Achievement of this goal requires that carefully planned and executed experiments be conducted in order to develop and validate useful codes. It is critical that numerical code development work and experimental work be closely coupled. The insights gained are represented by mathematical models that form the basis for code development. The resultant codes are then tested by comparing them with appropriate experiments in order to ensure their validity and determine their applicable range. The ultimate user community must be a part of this process to assure relevancy of the work and to hasten its practical application. Propulsion systems are characterized by highly complex and dynamic internal flows. Many complex, 3-D flow phenomena may be present, including unsteadiness, shocks, and chemical reactions. By focusing on specific portions of a propulsion system, it is often possible to identify the dominant phenomena that must be understood and modeled for obtaining accurate predictive capability. The three major research thrusts serve as a focus leading to greater understanding of the relevant physics and to an improvement in analytic tools. This in turn will hasten continued advancements in propulsion system performance and capability.

  5. Fluid mechanics experiments in oscillatory flow. Volume 1: Report

    Science.gov (United States)

    Seume, J.; Friedman, G.; Simon, T. W.

    1992-01-01

    Results of a fluid mechanics measurement program in oscillating flow within a circular duct are presented. The program began with a survey of transition behavior over a range of oscillation frequency and magnitude and continued with a detailed study at a single operating point. Such measurements were made in support of Stirling engine development. Values of three dimensionless parameters, Re(sub max), Re(sub w), and A(sub R), embody the velocity amplitude, frequency of oscillation and mean fluid displacement of the cycle, respectively. Measurements were first made over a range of these parameters which included operating points of all Stirling engines. Next, a case was studied with values of these parameters that are representative of the heat exchanger tubes in the heater section of NASA's Stirling cycle Space Power Research Engine (SPRE). Measurements were taken of the axial and radial components of ensemble-averaged velocity and rms-velocity fluctuation and the dominant Reynolds shear stress, at various radial positions for each of four axial stations. In each run, transition from laminar to turbulent flow, and its reverse, were identified and sufficient data was gathered to propose the transition mechanism. Models of laminar and turbulent boundary layers were used to process the data into wall coordinates and to evaluate skin friction coefficients. Such data aids in validating computational models and is useful in comparing oscillatory flow characteristics to those of fully-developed steady flow. Data were taken with a contoured entry to each end of the test section and with flush square inlets so that the effects of test section inlet geometry on transition and turbulence are documented. Volume 1 contains the text of the report including figures and supporting appendices. Volume 2 contains data reduction program listings and tabulated data (including its graphical presentation).

  6. Mechanobiology and the microcirculation: cellular, nuclear and fluid mechanics.

    Science.gov (United States)

    Dahl, Kris Noel; Kalinowski, Agnieszka; Pekkan, Kerem

    2010-04-01

    Endothelial cells are stimulated by shear stress throughout the vasculature and respond with changes in gene expression and by morphological reorganization. Mechanical sensors of the cell are varied and include cell surface sensors that activate intracellular chemical signaling pathways. Here, possible mechanical sensors of the cell including reorganization of the cytoskeleton and the nucleus are discussed in relation to shear flow. A mutation in the nuclear structural protein lamin A, related to Hutchinson-Gilford progeria syndrome, is reviewed specifically as the mutation results in altered nuclear structure and stiffer nuclei; animal models also suggest significantly altered vascular structure. Nuclear and cellular deformation of endothelial cells in response to shear stress provides partial understanding of possible mechanical regulation in the microcirculation. Increasing sophistication of fluid flow simulations inside the vessel is also an emerging area relevant to the microcirculation as visualization in situ is difficult. This integrated approach to study--including medicine, molecular and cell biology, biophysics and engineering--provides a unique understanding of multi-scale interactions in the microcirculation.

  7. Magnetic particle translation as a surrogate measure for synovial fluid mechanics.

    Science.gov (United States)

    Shah, Yash Y; Maldonado-Camargo, Lorena; Patel, Neal S; Biedrzycki, Adam H; Yarmola, Elena G; Dobson, Jon; Rinaldi, Carlos; Allen, Kyle D

    2017-07-26

    The mechanics of synovial fluid vary with disease progression, but are difficult to quantify quickly in a clinical setting due to small sample volumes. In this study, a novel technique to measure synovial fluid mechanics using magnetic nanoparticles is introduced. Briefly, microspheres embedded with superparamagnetic iron oxide nanoparticles, termed magnetic particles, are distributed through a 100μL synovial fluid sample. Then, a permanent magnet inside a protective sheath is inserted into the synovial fluid sample. Magnetic particles translate toward the permanent magnet and the percentage of magnetic particles collected by the magnet in a given time can be related to synovial fluid viscosity. To validate this relationship, magnetic particle translation was demonstrated in three phases. First, magnetic particle translation was assessed in glycerol solutions with known viscosities, demonstrating that as fluid viscosity increased, magnetic particle translation decreased. Next, the relationship between magnetic particle translation and synovial fluid viscosity was assessed using bovine synovial fluid that was progressively degenerated via ultrasonication. Here, particle collection in a given amount of time increased as fluid degenerated, demonstrating that the relationship between particle collection and fluid mechanics holds in non-Newtonian synovial fluid. Finally, magnetic particle translation was used to assess differences between healthy and OA affected joints in equine synovial fluid. Here, particle collection in a given time was higher in OA joints relative to healthy horses (pmagnetic particle translation in a clinical setting to evaluate synovial fluid mechanics in limited volumes of synovial fluid sample. Copyright © 2017 Elsevier Ltd. All rights reserved.

  8. Laser induced ponderomotive convection in water

    CERN Document Server

    Shneider, M N

    2015-01-01

    A new mechanism for inducing convection during IR laser interaction with water or any absorbing polar liquid is described theoretically. The numerical simulations performed using the developed model show that the ponderomotive force produces water flow in the direction of the laser beam propagation. In the later stage of interaction, when water temperature rises, the Archimedes force becomes first comparable and then dominant producing convection directed against the vector of gravitational acceleration (upward). The theoretical estimates and the numerical simulations predict fluid dynamics that is similar to the observed in the previous experiments.

  9. An Investigation of Neutrino-Driven Convection and the Core Collapse Supernova Mechanism Using Multigroup Neutrino Transport

    CERN Document Server

    Mezzacappa, A; Bruenn, S W; Blondin, J M; Guidry, M W; Strayer, M R; Umar, A S

    1996-01-01

    We investigate neutrino-driven convection in core collapse supernovae and its ramifications for the explosion mechanism. We begin with an ``optimistic'' 15 solar mass precollapse model, which is representative of the class of stars with compact iron cores. This model is evolved through core collapse and bounce in one dimension using multigroup (neutrino-energy--dependent) flux-limited diffusion (MGFLD) neutrino transport and Lagrangian hydrodynamics, providing realistic initial conditions for the postbounce convection and evolution. Our two-dimensional simulation begins at 106 ms after bounce at a time when there is a well-developed gain region, and proceeds for 400 ms. We couple two-dimensional (PPM) hydrodynamics to one-dimensional MGFLD neutrino transport. At 225 ms after bounce we see large-scale convection behind the shock, characterized by high-entropy, mushroom-like, expanding upflows and dense, low-entropy, finger-like downflows. The upflows reach the shock and distort it from sphericity. The radial c...

  10. Nonequilibrium Statistical Mechanics and Hydrodynamics for a Granular Fluid

    OpenAIRE

    Dufty, James W.

    2007-01-01

    Granular fluids consist of collections of activated mesoscopic or macroscopic particles (e.g., powders or grains) whose flows often appear similar to those of normal fluids. To explore the qualitative and quantitative description of these flows an idealized model for such fluids, a system of smooth inelastic hard spheres, is considered. The single feature distinguishing granular and normal fluids being explored in this way is the inelasticity of collisions. The dominant differences observed i...

  11. Yielding to stress: Recent developments in viscoplastic fluid mechanics

    OpenAIRE

    Balmforth, Neil; Frigaard, Ian A.; Ovarlez, Guillaume

    2014-01-01

    The archetypal feature of a viscoplastic fluid is its yield stress: If the material is not sufficiently stressed, it behaves like a solid, but once the yield stress is exceeded, the material flows like a fluid. Such behavior characterizes materials common in industries such as petroleum and chemical processing, cosmetics, and food processing and in geophysical fluid dynamics. The most common idealization of a viscoplastic fluid is the Bingham model, which has been widely used to rationalize e...

  12. Convection with local thermal non-equilibrium and microfluidic effects

    CERN Document Server

    Straughan, Brian

    2015-01-01

    This book is one of the first devoted to an account of theories of thermal convection which involve local thermal non-equilibrium effects, including a concentration on microfluidic effects. The text introduces convection with local thermal non-equilibrium effects in extraordinary detail, making it easy for readers newer to the subject area to understand. This book is unique in the fact that it addresses a large number of convection theories and provides many new results which are not available elsewhere. This book will be useful to researchers from engineering, fluid mechanics, and applied mathematics, particularly those interested in microfluidics and porous media.

  13. Advanced subgrid-scale modeling for convection-dominated species transport at fluid interfaces with application to mass transfer from rising bubbles

    Science.gov (United States)

    Weiner, Andre; Bothe, Dieter

    2017-10-01

    This paper presents a novel subgrid scale (SGS) model for simulating convection-dominated species transport at deformable fluid interfaces. One possible application is the Direct Numerical Simulation (DNS) of mass transfer from rising bubbles. The transport of a dissolving gas along the bubble-liquid interface is determined by two transport phenomena: convection in streamwise direction and diffusion in interface normal direction. The convective transport for technical bubble sizes is several orders of magnitude higher, leading to a thin concentration boundary layer around the bubble. A true DNS, fully resolving hydrodynamic and mass transfer length scales results in infeasible computational costs. Our approach is therefore a DNS of the flow field combined with a SGS model to compute the mass transfer between bubble and liquid. An appropriate model-function is used to compute the numerical fluxes on all cell faces of an interface cell. This allows to predict the mass transfer correctly even if the concentration boundary layer is fully contained in a single cell layer around the interface. We show that the SGS-model reduces the resolution requirements at the interface by a factor of ten and more. The integral flux correction is also applicable to other thin boundary layer problems. Two flow regimes are investigated to validate the model. A semi-analytical solution for creeping flow is used to assess local and global mass transfer quantities. For higher Reynolds numbers ranging from Re = 100 to Re = 460 and Péclet numbers between Pe =104 and Pe = 4 ṡ106 we compare the global Sherwood number against correlations from literature. In terms of accuracy, the predicted mass transfer never deviates more than 4% from the reference values.

  14. Influence of Thermal Radiation on Unsteady Free Convection MHD Flow of Brinkman Type Fluid in a Porous Medium with Newtonian Heating

    Directory of Open Access Journals (Sweden)

    Farhad Ali

    2013-01-01

    Full Text Available The focus of this paper is to analyze the influence of thermal radiation on some unsteady magnetohydrodynamic (MHD free convection flows of an incompressible Brinkman type fluid past a vertical flat plate embedded in a porous medium with the Newtonian heating boundary condition. The fluid is considered as a gray absorbing-emitting but nonscattering medium and the Rosseland approximation in the energy equations is used to describe the radiative heat flux for optically thick fluid. For a detailed analysis of the problem, four important situations of flow due to (i impulsive motion of the plate (ii uniform acceleration of the plate (iii nonuniform acceleration of the plate, and (iv highly nonuniform acceleration of the plate are considered. The governing equations are first transformed into a system of dimensionless equations and then solved analytically using the Laplace transform technique. Numerical results for temperature and velocity are shown graphically, while skin friction and Nusselt number are computed in tables. The results show that temperature and velocity increase on increasing radiation and Newtonian heating parameters. However, the results of magnetic and porosity parameters on velocity are found quite opposite.

  15. An experimental study of convective heat transfer, friction, and rheology for non-Newtonian fluids: Polymer solutions, suspensions of fibers, and suspensions of particulates

    Science.gov (United States)

    Matthys, E. F.

    The convective heat transfer, friction, and rheological properties of various types of nonNewtonian fluid in circular tube flows were investigated. If an apparent Reynolds number is used and if the temperature and degradation effects are properly taken into account, the reduced turbulent friction and heat transfer results, respectively, are then shown to be well correlated by the same expressions for different fluids, regardless of the nature of the fluids and whether they are shear-thinning or shear-thickening. This representation can also separate the reductions in turbulent heat transfer and friction that are induced by viscoelasticity from those induced by pseudoplasticity. Polyacrylamide solutions inducing asymptotic and intermediate drag reduction regimes were investigated over a broad range of Reynolds numbers. A kerosene-based antimisting polymer solution was also studied. Suspensions of bentonite of various concentrations were investigated in laminar and turbulent regimes, and the results for fully developed and entrance flows were well correlated by Newtonian relationships when an adequate wall viscosity concept was used.

  16. Non-axisymmetric vertical shear and convective instabilities as a mechanism of angular momentum transport

    CERN Document Server

    Volponi, Francesco

    2013-01-01

    Discs with a rotation profile depending on radius and height are subject to an axisymmetric linear instability, the vertical shear instability. Here we show that non-axisymmetric perturbations, while eventually stabilized, can sustain huge exponential amplifications with growth rate close to the axisymmetric one. Transient growths are therefore to all effects genuine instabilities. The ensuing angular momentum transport is positive. These growths occur when the product of the radial times the vertical wavenumbers (both evolving with time) is positive for a positive local vertical shear, or negative for a negative local vertical shear. We studied, as well, the interaction of these vertical shear induced growths with a convective instability. The asymptotic behaviour depends on the relative strength of the axisymmetric vertical shear (s_v) and convective (s_c) growth rates. For s_v > s_c we observed the same type of behaviour described above - large growths occur with asymptotic stabilization. When s_c > s_v th...

  17. Obstructive renal injury: from fluid mechanics to molecular cell biology

    Directory of Open Access Journals (Sweden)

    Alvaro C Ucero

    2010-04-01

    Full Text Available Alvaro C Ucero1,*, Sara Gonçalves2,*, Alberto Benito-Martin1, Beatriz Santamaría1, Adrian M Ramos1, Sergio Berzal1, Marta Ruiz-Ortega1, Jesus Egido1, Alberto Ortiz11Fundación Jiménez Díaz, Universidad Autónoma de Madrid, Fundación Renal Iñigo Alvarez de Toledo, Madrid, Spain; 2Nefrologia e Transplantação Renal, Hospital de Santa Maria EPE, Lisbon, Portugal *Both authors contributed equally to the manuscriptAbstract: Urinary tract obstruction is a frequent cause of renal impairment. The physiopathology of obstructive nephropathy has long been viewed as a mere mechanical problem. However, recent advances in cell and systems biology have disclosed a complex physiopathology involving a high number of molecular mediators of injury that lead to cellular processes of apoptotic cell death, cell injury leading to inflammation and resultant fibrosis. Functional studies in animal models of ureteral obstruction using a variety of techniques that include genetically modified animals have disclosed an important role for the renin-angiotensin system, transforming growth factor-β1 (TGF-β1 and other mediators of inflammation in this process. In addition, high throughput techniques such as proteomics and transcriptomics have identified potential biomarkers that may guide clinical decision-making.Keywords: urinary tract obstruction, renal injury, fluid mechanics, molecular cell biology

  18. Unsteady mixed convection of a micropolar fluid past a circular cylinder due to time-dependent free stream velocity and temperature

    Directory of Open Access Journals (Sweden)

    Nepal C. Roy

    2016-06-01

    Full Text Available Unsteady mixed convection boundary-layer flow of an electrically conducting micropolar fluid past a circular cylinder is investigated taking into account the effect of thermal radiation and heat generation or absorption. The reduced non-similar boundary-layer equations are solved using the finite difference method. It is found that the magnitude of the friction factor and the couple stress significantly increases due to the increase of the mixed convection parameter, the conduction-radiation parameter, the surface temperature parameter, the heat absorption parameter and the frequency parameter. However the magnitude of the heat transfer rate decreases with these parameters. The converse characteristics are observed for the Prandtl number. The magnitude of the couple stress and the heat transfer rate is seen to decrease whereas the magnitude of the skin factor increases with increasing the vortex viscosity parameter. The magnetic field parameter reduces the skin factor, couple stress and heat transfer rate. The amplitude of oscillation of the transient skin factor and couple stress gradually increases owing to an increase of $\\xi$. But the transient heat transfer rate is found to be oscillating with almost the same amplitude for any value of $\\xi$. The amplitude of oscillation of the transient skin factor and couple stress increases with an increase of $S$ and $\\xi$ while the amplitude of the transient heat transfer rate increases with increasing Pr and $S$.

  19. Unsteady Free Convection Fluid Flow over an Inclined Plate in the Presence of a Magnetic Field with Thermally Stratified High Porosity Medium

    Directory of Open Access Journals (Sweden)

    Abdullah Ahmed Foisal

    2016-01-01

    Full Text Available MHD free convection over an inclined plate in a thermally stratified high porous medium in the presence of a magnetic field has been studied. The dimensionless momentum and temperature equations have been solved numerically by explicit finite difference technique with the help of a computer programming language Compaq Visual Fortran 6.6a. The obtained results of these studies have been discussed for the different values of well known parameters with different time steps. Also, the stability conditions and convergence criteria of the explicit finite difference scheme has been analyzed for finding the restriction of the values of various parameters to get more accuracy. The effects of various governing parameters on the fluid velocity, temperature, local and average shear stress and Nusselt number has been investigated and presented graphically.

  20. Perturbation analysis of magnetohydrodynamics oscillatory flow on convective-radiative heat and mass transfer of micropolar fluid in a porous medium with chemical reaction

    Directory of Open Access Journals (Sweden)

    Dulal Pal

    2016-03-01

    Full Text Available This paper deals with the perturbation analysis of mixed convection heat and mass transfer of an oscillatory viscous electrically conducting micropolar fluid over an infinite moving permeable plate embedded in a saturated porous medium in the presence of transverse magnetic field. Analytical solutions are obtained for the governing basic equations. The effects of permeability, chemical reaction, viscous dissipation, magnetic field parameter and thermal radiation on the velocity distribution, micro-rotation, skin friction and wall couple stress coefficients are analyzed in detail. The results indicate that the effect of increasing the chemical reaction has a tendency to decrease the skin friction coefficient at the wall, while opposite trend is seen by increasing the permeability parameter of the porous medium. Also micro-rotational velocity distribution increases with an increase in the magnetic field parameter.

  1. Effects of Thermal Radiation on Mixed Convection Flow of a Micropolar Fluid from an Unsteady Stretching Surface with Viscous Dissipation and Heat Generation/Absorption

    Directory of Open Access Journals (Sweden)

    Khilap Singh

    2016-01-01

    Full Text Available A numerical model is developed to examine the effects of thermal radiation on unsteady mixed convection flow of a viscous dissipating incompressible micropolar fluid adjacent to a heated vertical stretching surface in the presence of the buoyancy force and heat generation/absorption. The Rosseland approximation is used to describe the radiative heat flux in the energy equation. The model contains nonlinear coupled partial differential equations which have been converted into ordinary differential equation by using the similarity transformations. The dimensionless governing equations for this investigation are solved by Runge-Kutta-Fehlberg fourth fifth-order method with shooting technique. Numerical solutions are then obtained and investigated in detail for different interesting parameters such as the local skin-friction coefficient, wall couple stress, and Nusselt number as well as other parametric values such as the velocity, angular velocity, and temperature.

  2. Dual solutions for unsteady mixed convection flow of MHD micropolar fluid over a stretching/shrinking sheet with non-uniform heat source/sink

    Directory of Open Access Journals (Sweden)

    N. Sandeep

    2015-12-01

    Full Text Available The aim of the present study is to investigate the influence of non-uniform heat source/sink, mass transfer and chemical reaction on an unsteady mixed convection boundary layer flow of a magneto-micropolar fluid past a stretching/shrinking sheet in the presence of viscous dissipation and suction/injection. The governing equations of the flow, heat and mass transfer are transformed into system of nonlinear ordinary differential equations by using similarity transformation and then solved numerically using Shooting technique with Matlab Package. The influence of non-dimensional governing parameters on velocity, microrotation, temperature and concentration profiles are discussed and presented with the help of their graphical representations. Also, friction factor, heat and mass transfer rates have been computed and presented through tables. Under some special conditions, present results are compared with the existed results to check the accuracy and validity of the present study. An excellent agreement is observed with the existed results.

  3. Effect of Viscous Dissipation on MHD Free Convection Flow Heat and Mass Transfer of Non-Newtonian Fluids along a Continuously Moving Stretching Sheet

    Directory of Open Access Journals (Sweden)

    K.C. Saha

    2015-04-01

    Full Text Available The effects of MHD free convection heat and mass transfer of power-law Non-Newtonian fluids along a stretching sheet with viscous dissipation has been analyzed. This has been done under the simultaneous action of suction, thermal radiation and uniform transverse magnetic field. The stretching sheet is assumed to continuously moving with a power-law velocity and maintaining a uniform surface heat-flux. The governing non-linear partial differential equations are transformed into non-linear ordinary differential equations, using appropriate similarity transformations and the resulting problem is solved numerically using Nachtsheim-Swigert shooting iteration technique along with sixth order Runge-Kutta integration scheme. A parametric study of the parameters arising in the problem such as the Eckert number due to viscous dissipation, radiation number, buoyancy parameter, Schmidt number, Prandtl number etc are studied and the obtained results are shown graphically and the physical aspects of the problem are discussed.

  4. Convection mixte lors de l'écoulement d'un fluide de Bingham au sein d'une conduite cylindrique horizontale

    Directory of Open Access Journals (Sweden)

    N. LABSI

    2015-03-01

    Full Text Available La présente étude traite du transfert thermique en mode de convection mixte lors de l'écoulement d'un fluide viscoplastique de Bingham au sein d'une conduite cylindrique horizontale à section droite circulaire, maintenue à température constante et uniforme. Le travail numérique, basé sur la méthode des volumes finis, se focalise sur l'impact de l'intensité des forces de poussée sur le comportement hydrodynamique et thermique de l'écoulement. Les résultats montrent que la structure de l'écoulement se modifie avec l'augmentation du nombre de Grashof. Cette augmentation entraine l'amélioration du transfert thermique et l'augmentation de a perte de charge et ce, dans la zone intermédiaire de la conduite.

  5. Effects of thermophoresis and variable properties on mixed convection along a vertical wavy surface in a fluid saturated porous medium

    Directory of Open Access Journals (Sweden)

    Darbhasayanam Srinivasacharya

    2016-06-01

    Full Text Available This paper investigates the influence of thermophoresis on mixed convection heat and mass transfer flow over a vertical wavy surface in a porous medium with variable properties, namely variable viscosity and variable thermal conductivity. The effect of wavy surface is incorporated into non-dimensional equations by using suitable transformations and then transformed into non-linear ordinary differential equations by employing the similarity transformations and then solved numerically. The transport process of flow, heat and mass transfer in the boundary layer for aiding and opposing flow cases is discussed. The structure of flow, temperature and concentration fields in the Darcy porous media are more pronounced by complex interactions among variable viscosity, variable thermal conductivity, mixed convective parameter, thermophoresis and amplitude of the wavy surface. Increasing thermophoresis parameter enhances velocity profile, concentration distribution and Sherwood number while reduces Nusselt number. As increase in variable viscosity, temperature and concentration distributions are enhanced while velocity profile, Nusselt number and Sherwood numbers are reduced. This study finds applications in aerosol Technology, space technology and processes involving high temperatures.

  6. Fundamental Studies of Fluid Mechanics: Stability in Porous Media

    Energy Technology Data Exchange (ETDEWEB)

    George M. Homsy

    2005-04-28

    This work has been concerned with theoretical, computational and experimental studies of a variety of flow and transport problems that are of generic interest and applicability in energy-related and energy-intensive processes. These include the following. (1) Problems associated with oil recovery: the global economy continues to be dependent on the stable and predictable supply of oil and fossil fuels. This will remain the case for the near term, as current estimates are that world production of oil will peak between 2025 and 2100, depending on assumptions regarding growth. Most of these resources reside in porous rocks and other naturally occurring media. Studies of flow-induced instabilities are relevant to the areas of secondary and enhanced oil recovery. (2) Small scale and Stokes flows: flows in microgeometries and involving interfaces and surfactants are of interest in a myriad of energy-related contexts. These include: pore-level modeling of the fundamental processes by which oil held in porous materials is mobilized and produced; heating and cooling energy cycles involving significant expenditure of energy in conditioning of human environments, heat pipes, and compact heat exchangers; and energy efficiency in large scale separation processes such as distillation and absorption-processes that underlie the chemical process industries. (3) Coating flows: these are of interest in information technologies, including the manufacture of integrated circuits and data storage and retrieval devices. It is estimated that 50-70% of the starting raw materials and intermediate devices in information technology processes must be discarded as a result of imperfections and failure to meet specifications. These in turn are often the result of the inability to control fluid-mechanical processes and flow instabilities. Our work over the grant period is primarily fundamental in nature. We are interested in establishing general principles and behaviors that relate to a variety of

  7. WE-AB-204-07: Spatiotemporal Distribution of the FDG PET Tracer in Solid Tumors: Contributions of Diffusion and Convection Mechanisms

    Energy Technology Data Exchange (ETDEWEB)

    Soltani, M [Johns Hopkins University School of Medicine, Baltimore, MD and KNT university, Tehran (Iran, Islamic Republic of); Sefidgar, M [IKI University, Qazvin (Iran, Islamic Republic of); Bazmara, H [KNT university, Tehran (Iran, Islamic Republic of); Sheikhbahaei, S; Marcus, C; Ashrafinia, S; Subramaniam, R; Rahmim, A M [Johns Hopkins University School of Medicine, Baltimore, MD (United States)

    2015-06-15

    Purpose: In this study, a mathematical model is utilized to simulate FDG distribution in tumor tissue. In contrast to conventional compartmental modeling, tracer distributions across space and time are directly linked together (i.e. moving beyond ordinary differential equations (ODEs) to utilizing partial differential equations (PDEs) coupling space and time). The diffusion and convection transport mechanisms are both incorporated to model tracer distribution. We aimed to investigate the contributions of these two mechanisms on FDG distribution for various tumor geometries obtained from PET/CT images. Methods: FDG transport was simulated via a spatiotemporal distribution model (SDM). The model is based on a 5K compartmental model. We model the fact that tracer concentration in the second compartment (extracellular space) is modulated via convection and diffusion. Data from n=45 patients with pancreatic tumors as imaged using clinical FDG PET/CT imaging were analyzed, and geometrical information from the tumors including size, shape, and aspect ratios were classified. Tumors with varying shapes and sizes were assessed in order to investigate the effects of convection and diffusion mechanisms on FDG transport. Numerical methods simulating interstitial flow and solute transport in tissue were utilized. Results: We have shown the convection mechanism to depend on the shape and size of tumors whereas diffusion mechanism is seen to exhibit low dependency on shape and size. Results show that concentration distribution of FDG is relatively similar for the considered tumors; and that the diffusion mechanism of FDG transport significantly dominates the convection mechanism. The Peclet number which shows the ratio of convection to diffusion rates was shown to be of the order of 10−{sup 3} for all considered tumors. Conclusion: We have demonstrated that even though convection leads to varying tracer distribution profiles depending on tumor shape and size, the domination of

  8. Introducing Non-Newtonian Fluid Mechanics Computations with Mathematica in the Undergraduate Curriculum

    Science.gov (United States)

    Binous, Housam

    2007-01-01

    We study four non-Newtonian fluid mechanics problems using Mathematica[R]. Constitutive equations describing the behavior of power-law, Bingham and Carreau models are recalled. The velocity profile is obtained for the horizontal flow of power-law fluids in pipes and annuli. For the vertical laminar film flow of a Bingham fluid we determine the…

  9. Introducing Non-Newtonian Fluid Mechanics Computations with Mathematica in the Undergraduate Curriculum

    Science.gov (United States)

    Binous, Housam

    2007-01-01

    We study four non-Newtonian fluid mechanics problems using Mathematica[R]. Constitutive equations describing the behavior of power-law, Bingham and Carreau models are recalled. The velocity profile is obtained for the horizontal flow of power-law fluids in pipes and annuli. For the vertical laminar film flow of a Bingham fluid we determine the…

  10. Statistical mechanics of homogeneous partly pinned fluid systems.

    Science.gov (United States)

    Krakoviack, Vincent

    2010-12-01

    The homogeneous partly pinned fluid systems are simple models of a fluid confined in a disordered porous matrix obtained by arresting randomly chosen particles in a one-component bulk fluid or one of the two components of a binary mixture. In this paper, their configurational properties are investigated. It is shown that a peculiar complementarity exists between the mobile and immobile phases, which originates from the fact that the solid is prepared in presence of and in equilibrium with the adsorbed fluid. Simple identities follow, which connect different types of configurational averages, either relative to the fluid-matrix system or to the bulk fluid from which it is prepared. Crucial simplifications result for the computation of important structural quantities, both in computer simulations and in theoretical approaches. Finally, possible applications of the model in the field of dynamics in confinement or in strongly asymmetric mixtures are suggested.

  11. Convection in porous media

    CERN Document Server

    Nield, Donald A

    1992-01-01

    This book provides a user-friendly introduction to the topic of convection in porous media The authors as- sume that the reader is familiar with the basic elements of fluid mechanics and heat transfer, but otherwise the book is self-contained The book will be useful both as a review (for reference) and as a tutorial work, suitable as a textbook in a graduate course or seminar The book brings into perspective the voluminous research that has been performed during the last two decades The field has recently exploded because of worldwide concern with issues such as energy self-sufficiency and pollution of the environment Areas of application include the insulation of buildings and equipment, energy storage and recovery, geothermal reservoirs, nuclear waste disposal, chemical reactor engineering, and the storage of heat-generating materials such as grain and coal Geophysical applications range from the flow of groundwater around hot intrusions to the stability of snow against avalanches

  12. Convection in Porous Media

    CERN Document Server

    Nield, Donald A

    2013-01-01

    Convection in Porous Media, 4th Edition, provides a user-friendly introduction to the subject, covering a wide range of topics, such as fibrous insulation, geological strata, and catalytic reactors. The presentation is self-contained, requiring only routine mathematics and the basic elements of fluid mechanics and heat transfer. The book will be of use not only to researchers and practicing engineers as a review and reference, but also to graduate students and others entering the field. The new edition features approximately 1,750 new references and covers current research in nanofluids, cellular porous materials, strong heterogeneity, pulsating flow, and more. Recognized as the standard reference in the field Includes a comprehensive, 250-page reference list Cited over 2300 times to date in its various editions Serves as an introduction for those entering the field and as a comprehensive reference for experienced researchers Features new sections on nanofluids, carbon dioxide sequestration, and applications...

  13. NUMERICAL STUDY OF NON-DARCIAN NATURAL CONVECTION HEAT TRANSFER IN A RECTANGULAR ENCLOSURE FILLED WITH POROUS MEDIUM SATURATED WITH VISCOUS FLUID

    Directory of Open Access Journals (Sweden)

    Mahmood H. Ali

    2013-05-01

    Full Text Available A numerical study of non-Darcian natural convection heat transfer in a rectangular enclosure filled with porous medium saturated with viscous fluid was carried out. The effects of medium Rayleigh number, porosity, particle to fluid thermal conductivity ratio, Darcy number and enclosure aspect ratio on heat transfer were examined to demonstrate the ability of using this construction in thermal insulation of buildings walls.A modified Brinkman-Forchheimer-extended Darcy flow model was used and no-slip boundary conditions were imposed for velocity at the walls and the governing equations were expressed in dimensionless stream function, vorticity, and temperature formulation. The resulting algebraic equations obtained from finite difference discritization of vorticity and temperature equations are solved using (ADI method which uses Three Diagonal Matrix Algorithm (TDMA in each direction, while that of the stream function equation solved using successive iteration method.The study was done for the range of enclosure aspect ratio ( which is in the tall layers region at medium Rayleigh number ( , Darcy number (Da=10-3, 10-4, 10-5 , porosity (e=0.35, 0.45, 0.55, particle to fluid thermal conductivity (kS/kf=5.77, 38.5, 1385.5.The results showed that the Nusselt number is direct proportional to medium Rayleigh number and porosity and reversely proportional to Darcy number, ratio of particle to fluid thermal conductivity and enclosure aspect ratio. The variables that affect the heat transfer in the above arrangement was correlated in a mathematical equation that account better for their affects on heat transfer which is represented by mean Nusselt number (Nu.

  14. Computational estimation of fluid mechanical benefits from a fluid deflector at the distal end of artificial vascular grafts.

    Science.gov (United States)

    Roos, M W; Wadbro, E; Berggren, M

    2013-02-01

    Intimal hyperplasia at the distal anastomosis is considered to be an important determinant for arterial and arteriovenous graft failure. The connection between unhealthy hemodynamics and intimal hyperplasia motivates the use of computational fluid dynamics modeling to search for improved graft design. However, studies on the fluid mechanical impact on intimal hyperplasia at the suture line intrusion have previously been scanty. In the present work, we focus on intimal hyperplasia at the suture line and illustrate potential benefits from the introduction of a fluid deflector to shield the suture line from unhealthily high wall shear stress.

  15. Exact Solutions for Unsteady Free Convection Flow of Casson Fluid over an Oscillating Vertical Plate with Constant Wall Temperature

    Directory of Open Access Journals (Sweden)

    Asma Khalid

    2015-01-01

    Full Text Available The unsteady free flow of a Casson fluid past an oscillating vertical plate with constant wall temperature has been studied. The Casson fluid model is used to distinguish the non-Newtonian fluid behaviour. The governing partial differential equations corresponding to the momentum and energy equations are transformed into linear ordinary differential equations by using nondimensional variables. Laplace transform method is used to find the exact solutions of these equations. Expressions for shear stress in terms of skin friction and the rate of heat transfer in terms of Nusselt number are also obtained. Numerical results of velocity and temperature profiles with various values of embedded flow parameters are shown graphically and their effects are discussed in detail.

  16. Numerical solution for Sakiadis flow of upper-convected Maxwell fluid using Cattaneo-Christov heat flux model

    Directory of Open Access Journals (Sweden)

    A. Mushtaq

    2016-01-01

    Full Text Available Present work studies the well-known Sakiadis flow of Maxwell fluid along a moving plate in a calm fluid by considering the Cattaneo-Christov heat flux model. This recently developed model has the tendency to describe the characteristics of relaxation time for heat flux. Some numerical local similarity solutions of the associated problem are computed by two approaches namely (i the shooting method and (ii the Keller-box method. The solution is dependent on some interesting parameters which include the viscoelastic fluid parameter β, the dimensionless thermal relaxation time γ and the Prandtl number Pr. Our simulations indicate that variation in the temperature distribution with an increase in local Deborah number γ is non-monotonic. The results for the Fourier’s heat conduction law can be obtained as special cases of the present study.

  17. Effect of variable viscosity on laminar convection flow of an electrically conducting fluid in uniform magnetic field

    Directory of Open Access Journals (Sweden)

    Chakraborty S.

    2002-01-01

    Full Text Available The flow of a viscous incompressible electrically conducting fluid on a continuous moving flat plate in presence of uniform transverse magnetic field, is studied. The flat plate which is continuously moving in its own plane with a constant speed is considered to be isothermally heated. Assuming the fluid viscosity as an inverse linear function of temperature, the nature of fluid velocity and temperature in presence of uniform magnetic field are shown for changing viscosity parameter at different layers of the medium. Numerical solutions are obtained by using Runge-Kutta and Shooting method. The coefficient of skin friction and the rate of heat transfer are calculated at different viscosity parameter and Prandt l number. .

  18. Immunosensor with fluid control mechanism for salivary cortisol analysis.

    Science.gov (United States)

    Yamaguchi, Masaki; Matsuda, Yohei; Sasaki, Shohei; Sasaki, Makoto; Kadoma, Yoshihiro; Imai, Yoshikatsu; Niwa, Daisuke; Shetty, Vivek

    2013-03-15

    The purpose of this research is to demonstrate a new design for a cortisol immunosensor for the noninvasive and quantitative analysis of salivary cortisol. We propose a cortisol immunosensor with a fluid control mechanism which has both a vertical flow and a lateral flow. The detected current resulting from a competitive reaction between the sample cortisol and a glucose oxidase (GOD)-labeled cortisol conjugate was found to be inversely related to the concentration of cortisol in the sample solution. A calibration curve using the relative detected current showed a R(2)=0.98 and CV=14% for a range of standard cortisol solutions corresponding to the concentrations of native salivary cortisol (0.1-10 ng/ml). The measurement could be accomplished within 35 min and the cortisol immunosensor could be reused. These results show promise for realizing an on-site and easy-to-use biosensor for cortisol. Used for evaluation of human salivary cortisol levels, the cortisol immunosensor measurement corresponded closely with commercially available ELISA method (R(2)=0.92). Our results indicate the promise of the new cortisol immunosensor for noninvasive, point of care measurement of human salivary cortisol levels.

  19. A fluid-mechanical model of elastocapillary coalescence

    KAUST Repository

    Singh, Kiran

    2014-03-25

    © 2014 Cambridge University Press. We present a fluid-mechanical model of the coalescence of a number of elastic objects due to surface tension. We consider an array of spring-block elements separated by thin liquid films, whose dynamics are modelled using lubrication theory. With this simplified model of elastocapillary coalescence, we present the results of numerical simulations for a large number of elements, N = O(104). A linear stability analysis shows that pairwise coalescence is always the most unstable mode of deformation. However, the numerical simulations show that the cluster sizes actually produced by coalescence from a small white-noise perturbation have a distribution that depends on the relative strength of surface tension and elasticity, as measured by an elastocapillary number K. Both the maximum cluster size and the mean cluster size scale like K-1/2 for small K. An analytical solution for the response of the system to a localized perturbation shows that such perturbations generate propagating disturbance fronts, which leave behind \\'frozen-in\\' clusters of a predictable size that also depends on K. A good quantitative comparison between the cluster-size statistics from noisy perturbations and this \\'frozen-in\\' cluster size suggests that propagating fronts may play a crucial role in the dynamics of coalescence.

  20. Dynamics of fluid and light intensity in mechanically stirred photobioreactor.

    Science.gov (United States)

    Zhang, T

    2013-10-10

    Turbulent flows in a single-stage and a two-stage impeller-stirred photobioreactor with a simple geometric configuration were analyzed using computational fluid dynamics. The trajectories of the microorganisms entrained in the flow field were traced by the particle tracking method. By projecting these trajectories onto a radial-axial (r-z) plane with a given azimuth angle, we were able to observe four different dynamics zones: circulation, pure rotation, trap, and slow-motion. Within the pure rotation zone, turbulence can be observed near the edges of the impeller. The light intensity and the light/dark cycles subjected by the microorganisms differ significantly in these zones. These differences can be further changed by providing different incident light illuminations on the reactor surface. The dynamics zones can be altered by modifying the geometric configuration of the reactor and the impeller stirring mechanism. In combination with the utilization of different incident light illuminations, the light intensity dynamics and the light/dark cycles subjected by the microorganisms can be controlled such that an optimal photobioreactor design with a high efficiency of light utilization and a high formation rate of the biochemical products can be realized.

  1. Separation mechanisms and fluid flow in oil/water separation

    Energy Technology Data Exchange (ETDEWEB)

    Celius, H.K.; Knudsen, B. [IKU Petroleumsforskning A/S, Trondheim (Norway); Hafskjold, B.; Hansen, E.W. [Selskapet for Industriell og Teknisk Forskning, Trondheim (Norway)

    1996-12-31

    This paper describes work aimed at physical and numerical modeling of separation rates of oil/water systems in order to establish better tools for design and operation of offshore operators. This work aims to integrate the chemical and physical phenomena behind coalescence and settling with those of fluid flow in the system, in order to develop tools for design and operational analysis of separation equipment. The work includes the development of a high pressure, bench-scale test rig to perform separation tests on live oil and water samples, and a rationale in the form of a computer code that can be used to interpret the test results and transform them to a form siutable for operational purposes. This involves a formulation of a mathematical description of the chemical and physical mechanisms behind the emulsification and separation process, and to establish a link to the hydrdynamic properties of the separator vessel. The Emucol computer program is used in the analysis. 12 refs., 5 figs.

  2. Left ventricular muscle and fluid mechanics in acute myocardial infarction.

    Science.gov (United States)

    Nucifora, Gaetano; Delgado, Victoria; Bertini, Matteo; Marsan, Nina Ajmone; Van de Veire, Nico R; Ng, Arnold C T; Siebelink, Hans-Marc J; Schalij, Martin J; Holman, Eduard R; Sengupta, Partho P; Bax, Jeroen J

    2010-11-15

    Left ventricular (LV) diastolic filling is characterized by the formation of intraventricular rotational bodies of fluid (termed "vortex rings") that optimize the efficiency of LV ejection. The aim of the present study was to evaluate the morphology and dynamics of LV diastolic vortex ring formation early after acute myocardial infarction (AMI), in relation to LV diastolic function and infarct size. A total of 94 patients with a first ST-segment elevation AMI (59 ± 11 years; 78% men) were included. All patients underwent primary percutaneous coronary intervention. After 48 hours, the following examinations were performed: 2-dimensional echocardiography with speckle-tracking analysis to assess the LV systolic and diastolic function, the vortex formation time (VFT, a dimensionless index for characterizing vortex formation), and the LV untwisting rate; contrast echocardiography to assess LV vortex morphology; and myocardial contrast echocardiography to identify the infarct size. Patients with a large infarct size (≥ 3 LV segments) had a significantly lower VFT (p mechanical sequence of diastolic restoration play key roles in modulating the morphology and dynamics of early diastolic vortex ring formation.

  3. A fluid-mechanical model of elastocapillary coalescence

    CERN Document Server

    Singh, Kiran; Vella, Dominic

    2013-01-01

    We present a fluid-mechanical model of the coalescence of a number of elastic objects due to surface tension. We consider an array of spring-block elements separated by thin liquid films, whose dynamics are modelled using lubrication theory. With this simplified model of elastocapillary coalescence, we present the results of numerical simulations for a large number of elements, $N=O(10^4)$. A linear stability analysis shows that pairwise coalescence is always the most unstable mode of deformation. However, the numerical simulations show that the cluster sizes actually produced by coalescence from a small white-noise perturbation have a distribution that depends on the relative strength of surface tension and elasticity, as measured by an elastocapillary number $K$. Both the maximum cluster size and the mean cluster size scale like $K^{-1/2}$ for small $K$. An analytical solution for the response of the system to a localized perturbation shows that such perturbations generate propagating disturbance fronts, wh...

  4. Cold Dark Matter Cosmology Conflicts with Fluid Mechanics and Observations

    Directory of Open Access Journals (Sweden)

    Carl H. Gibson

    2008-01-01

    Full Text Available Cold dark matter (CDM cosmology based on the Jeans 1902 criterion for gravitational instability gives predictions about the early universe contrary to fluid mechanics and observations. Jeans neglected viscosity, diffusivity, and turbulence: factors that determine gravitational structure formation and contradict small structures (CDM halos forming from non-baryonic dark matter particle candidates. From hydro-gravitational-dynamics (HGD cosmology, viscous-gravitational fragmentation produced supercluster (10^46 kg, cluster, and galaxy-mass (10^42 kg clouds in the primordial plasma with the large fossil density turbulence (3 ×10 ^ -17 kg m ^ -3 of the first fragmentation at 10^12 s, and a protogalaxy linear morphology reflecting maximum stretching on vortex lines of the plasma turbulence at plasma-gas transition at 10^13 s. Gas protogalaxies fragmented into proto-globular-star-cluster mass (10 ^36 kg clumps of protoplanet gas clouds that are now frozen as earth-mass (10^ 24-25 kg Jovian planets of the baryonic dark matter, about 30,000,000 rogue planets per star. Observations contradict the prediction of CDM hierarchical clustering cosmology that massive Population III first stars at 10^16 s existed but support the HGD prediction of gentle formation of small first stars in globular-star-clusters soon after 10^13 s.

  5. Fluid Shearing for Accelerated Chemical Reactions - Fluid Mechanics in the VFD

    Science.gov (United States)

    Leivadarou, Evgenia; Dalziel, Stuart; G. K. Batchelor Laboratory, Department of Applied Mathematics; Theoretical Physics Team

    2016-11-01

    The Vortex Fluidic Device (VFD) is a rapidly rotating tube that can operate under continuous flow with a jet feeding liquid reactants to the tube's hemispherical base. It is a new 'green' approach to the organic synthesis with many industrial applications in cosmetics, protein folding and pharmaceutical production. The rate of reaction in the VFD is enhanced when the collision rate is increased. The aim of the project is to explain the fluid mechanics and optimize the performance of the device. One contribution to the increased yield is believed to be the high levels of shear stress. We attempt to enhance the shear stress by achieving high velocity gradients in the boundary layers. Another factor is the uncontrolled vibrations due to imperfections in the bearings and therefore it is important to assess their influence in the initial spreading. The surface area of the film should be maximized with respect to the rotation rate, geometry and orientation of the tube, flow rate, wettability and contact line dynamics. Experiments are presented for a flat disk and a curved bowl, establishing the optimum height of release, rotation rate and tube orientation. Vibrations were imposed to investigate the changes in the film formation. We discuss the implications of our results in the VFD.

  6. Effect of magnetic field on unsteady natural convective flow of a micropolar fluid between two vertical walls

    Directory of Open Access Journals (Sweden)

    Hari R. Kataria

    2017-03-01

    Full Text Available We study theoretically the boundary layer flow of an incompressible micropolar fluid under uniform magnetic field and motion takes place due to the buoyancy force between vertical walls. The governing unsteady boundary layer momentum, angular momentum and energy equations of micropolar fluid are nondimensionalized and solved numerically. Analytic result for steady state case is also discussed. The effects of magnetic parameter (M, vortex viscosity parameter (R, Prandtl number (Pr and material parameter (b on velocity, micro-rotation and Temperature profiles are discussed through several figures.

  7. Time Dependent MHD Nano-Second Grade Fluid Flow Induced by Permeable Vertical Sheet with Mixed Convection and Thermal Radiation.

    Directory of Open Access Journals (Sweden)

    Muhammad Ramzan

    Full Text Available The aim of present paper is to study the series solution of time dependent MHD second grade incompressible nanofluid towards a stretching sheet. The effects of mixed convection and thermal radiation are also taken into account. Because of nanofluid model, effects Brownian motion and thermophoresis are encountered. The resulting nonlinear momentum, heat and concentration equations are simplified using appropriate transformations. Series solutions have been obtained for velocity, temperature and nanoparticle fraction profiles using Homotopy Analysis Method (HAM. Convergence of the acquired solution is discussed critically. Behavior of velocity, temperature and concentration profiles on the prominent parameters is depicted and argued graphically. It is observed that temperature and concentration profiles show similar behavior for thermophoresis parameter Νt but opposite tendency is noted in case of Brownian motion parameter Νb. It is further analyzed that suction parameter S and Hartman number Μ depict decreasing behavior on velocity profile.

  8. Improving Microstructure and Mechanical Properties for Large-Diameter 7075 Aluminum Alloy Ingots by a Forced Convection Stirring Casting Process

    Science.gov (United States)

    Qi, Mingfan; Kang, Yonglin; Zhu, Guoming; Li, Yangde; Li, Weirong

    2017-01-01

    A simple process so-called forced convection stirring casting (FCSC) was proposed to prepare large-diameter 7075 Al alloy ingots. The flow behavior, temperature, and composition fields of the melt in the FCSC process were simulated. The macromorphology, macrosegregation, microstructure, and mechanical properties of the ingots prepared by the FCSC were studied and compared with those prepared by normal casting (NC). The results showed that in the FCS device, the strong convection caused by the axial flow and circular flow rapidly promoted the uniformity of the temperature and composition fields of the melt. Microstructures of the FCSC ingots from the edge to the center were all nearly spherical grains, which were much finer and more uniform than that of the NC ingots. The rotation speed played an important role in the microstructure of the FCSC ingots, and the grains became finer and rounder as the speed increasing. The FCSC process effectively eliminated cracks, improved macrosegregation, and decreased the eutectic phase area fraction and the average grain boundary thickness of ingots. Mechanical properties of the ingots prepared by the FCSC are far better than that of the NC ingots.

  9. Fluid mechanics a concise introduction to the theory

    CERN Document Server

    Yih, Chia-Shun

    1969-01-01

    Fundamentals ; the basic equations ; general theorems for the flow of an inviscid fluid ; irrotational flows of an inviscid fluid of constant density ; waves in an incompressible ; effects of viscosity ; heat transfer and boundary layers of a gas ; hydrodynamic stability ; turbulence ; basic thermodynamics ; curvilinear coordinates.

  10. HPM-Pade Method on Natural Convection of Darcian Fluid about a Vertical Full Cone Embedded in Porous Media

    DEFF Research Database (Denmark)

    Bararnia, H.; Ghasemi, E.; Soleimanikutanaei, Soheil

    2011-01-01

    In this paper, fluid flow and heat transfer of a vertical full cone embedded in porous media have been studied. A similarity solution for a full cone subjected to wall temperature boundary conditions gives us a nonlinear ordinary differential equation (ODE), which has been solved through......, the Nusselt number, which is an important parameter in heat transfer, has been calculated by HFM-Fade....

  11. Dual stratified mixed convection flow of Eyring-Powell fluid over an inclined stretching cylinder with heat generation/absorption effect

    Science.gov (United States)

    Rehman, Khalil Ur; Malik, M. Y.; Salahuddin, T.; Naseer, M.

    2016-07-01

    Present work is made to study the effects of double stratified medium on the mixed convection boundary layer flow of Eyring-Powell fluid induced by an inclined stretching cylinder. Flow analysis is conceded in the presence of heat generation/absorption. Temperature and concentration are supposed to be higher than ambient fluid across the surface of cylinder. The arising flow conducting system of partial differential equations is primarily transformed into coupled non-linear ordinary differential equations with the aid of suitable transformations. Numerical solutions of resulting intricate non-linear boundary value problem are computed successfully by utilizing fifth order Runge-Kutta algorithm with shooting technique. The effect logs of physical flow controlling parameters on velocity, temperature and concentration profiles are examined graphically. Further, numerical findings are obtained for two distinct cases namely, zero (plate) and non-zero (cylinder) values of curvature parameter and the behaviour are presented through graphs for skin-friction coefficient, Nusselt number and Sherwood number. The current analysis is validated by developing comparison with previously published work, which sets a benchmark of quality of numerical approach.

  12. Combined Influence of Thermal Diffusion and Diffusion Thermo on Unsteady MHD Free Convective Fluid Flow Past an Infinite Vertical Porous Plate in Presence of Chemical Reaction

    Science.gov (United States)

    Srinivasa Raju, Rallabandi

    2016-10-01

    The present investigation is concerned with the effects of thermal diffusion (Soret) and diffusion thermo (Dufour) on an unsteady MHD free convective flow with heat and mass transfer of an electrically conducting fluid in the presence of chemical reaction. A uniform magnetic field acts perpendicular to the porous surface, which absorbs the fluid with a suction velocity varying with time. The problem is governed by coupled non-linear partial differential equations with appropriate boundary conditions. A finite element numerical solution is developed to solve the resulting well-posed two-point boundary value problem. The present numerical results are compared with available data and are found in an excellent agreement. The expressions for velocity, temperature and concentration fields are obtained. With the aid of these, the expressions for the coefficient of skin-friction, the rate of heat transfer in the form of Nusselt number and the rate of mass transfer in the form of Sherwood number are derived. Finally the effects of various physical parameters of the flow quantities are studied with the help of graphs and tables.

  13. MHD Heat and Mass Transfer of Chemical Reaction Fluid Flow over a Moving Vertical Plate in Presence of Heat Source with Convective Surface Boundary Condition

    Directory of Open Access Journals (Sweden)

    B. R. Rout

    2013-01-01

    Full Text Available This paper aims to investigate the influence of chemical reaction and the combined effects of internal heat generation and a convective boundary condition on the laminar boundary layer MHD heat and mass transfer flow over a moving vertical flat plate. The lower surface of the plate is in contact with a hot fluid while the stream of cold fluid flows over the upper surface with heat source and chemical reaction. The basic equations governing the flow, heat transfer, and concentration are reduced to a set of ordinary differential equations by using appropriate transformation for variables and solved numerically by Runge-Kutta fourth-order integration scheme in association with shooting method. The effects of physical parameters on the velocity, temperature, and concentration profiles are illustrated graphically. A table recording the values of skin friction, heat transfer, and mass transfer at the plate is also presented. The discussion focuses on the physical interpretation of the results as well as their comparison with previous studies which shows good agreement as a special case of the problem.

  14. Magnetic field generation by intermittent convection

    CERN Document Server

    Chertovskih, R; Chimanski, E V

    2016-01-01

    Magnetic field generation by convective flows in transition to weak turbulence is studied numerically. By fixing the Prandtl number at P=0.3 and varying the Rayleigh number (Ra) as a control parameter in three-dimensional Rayleigh-Benard convection of an electrically conducting fluid, a recently reported route to hyperchaos involving quasiperiodic regimes, crises and chaotic intermittent attractors is followed, and the critical magnetic Prandtl number ($P_m^c$) for dynamo action is determined as a function of Ra. A mechanism for the onset of on-off intermittency in the magnetic energy is described, the most beneficial convective regimes for dynamo action are identified, and how intermittency affects the dependence of $P_m^c$ on Ra is discussed.

  15. Take-Home Experiments in Undergraduate Fluid Mechanics Education

    Science.gov (United States)

    Cimbala, John

    2007-11-01

    Hands-on take-home experiments, assigned as homework, are useful as supplements to traditional in-class demonstrations and laboratories. Students borrow the equipment from the department's equipment room, and perform the experiment either at home or in the student lounge or student shop work area. Advantages include: (1) easy implementation, especially for large classes, (2) low cost and easy duplication of multiple units, (3) no loss of lecture time since the take-home experiment is self-contained with all necessary instructions, and (4) negligible increase in student or teaching assistant work load since the experiment is assigned as a homework problem in place of a traditional pen and paper problem. As an example, a pump flow take-home experiment was developed, implemented, and assessed in our introductory junior-level fluid mechanics course at Penn State. The experimental apparatus consists of a bucket, tape measure, submersible aquarium pump, tubing, measuring cup, and extension cord. We put together twenty sets at a total cost of less than 20 dollars per set. Students connect the tube to the pump outlet, submerge the pump in water, and measure the volume flow rate produced at various outflow elevations. They record and plot volume flow rate as a function of outlet elevation, and compare with predictions based on the manufacturer's pump performance curve (head versus volume flow rate) and flow losses. The homework assignment includes an online pre-test and post-test to assess the change in students' understanding of the principles of pump performance. The results of the assessment support a significant learning gain following the completion of the take-home experiment.

  16. Mechanics of undulatory swimming in a frictional fluid.

    Directory of Open Access Journals (Sweden)

    Yang Ding

    Full Text Available The sandfish lizard (Scincus scincus swims within granular media (sand using axial body undulations to propel itself without the use of limbs. In previous work we predicted average swimming speed by developing a numerical simulation that incorporated experimentally measured biological kinematics into a multibody sandfish model. The model was coupled to an experimentally validated soft sphere discrete element method simulation of the granular medium. In this paper, we use the simulation to study the detailed mechanics of undulatory swimming in a "granular frictional fluid" and compare the predictions to our previously developed resistive force theory (RFT which models sand-swimming using empirically determined granular drag laws. The simulation reveals that the forward speed of the center of mass (CoM oscillates about its average speed in antiphase with head drag. The coupling between overall body motion and body deformation results in a non-trivial pattern in the magnitude of lateral displacement of the segments along the body. The actuator torque and segment power are maximal near the center of the body and decrease to zero toward the head and the tail. Approximately 30% of the net swimming power is dissipated in head drag. The power consumption is proportional to the frequency in the biologically relevant range, which confirms that frictional forces dominate during sand-swimming by the sandfish. Comparison of the segmental forces measured in simulation with the force on a laterally oscillating rod reveals that a granular hysteresis effect causes the overestimation of the body thrust forces in the RFT. Our models provide detailed testable predictions for biological locomotion in a granular environment.

  17. Mechanics of undulatory swimming in a frictional fluid.

    Science.gov (United States)

    Ding, Yang; Sharpe, Sarah S; Masse, Andrew; Goldman, Daniel I

    2012-01-01

    The sandfish lizard (Scincus scincus) swims within granular media (sand) using axial body undulations to propel itself without the use of limbs. In previous work we predicted average swimming speed by developing a numerical simulation that incorporated experimentally measured biological kinematics into a multibody sandfish model. The model was coupled to an experimentally validated soft sphere discrete element method simulation of the granular medium. In this paper, we use the simulation to study the detailed mechanics of undulatory swimming in a "granular frictional fluid" and compare the predictions to our previously developed resistive force theory (RFT) which models sand-swimming using empirically determined granular drag laws. The simulation reveals that the forward speed of the center of mass (CoM) oscillates about its average speed in antiphase with head drag. The coupling between overall body motion and body deformation results in a non-trivial pattern in the magnitude of lateral displacement of the segments along the body. The actuator torque and segment power are maximal near the center of the body and decrease to zero toward the head and the tail. Approximately 30% of the net swimming power is dissipated in head drag. The power consumption is proportional to the frequency in the biologically relevant range, which confirms that frictional forces dominate during sand-swimming by the sandfish. Comparison of the segmental forces measured in simulation with the force on a laterally oscillating rod reveals that a granular hysteresis effect causes the overestimation of the body thrust forces in the RFT. Our models provide detailed testable predictions for biological locomotion in a granular environment.

  18. The early years of the Journal of Fluid Mechanics. Style and international impact

    Science.gov (United States)

    Moffatt, H. Keith

    2017-07-01

    The origins of the Journal of Fluid Mechanics, of which the first volume was published in 1956, are discussed, with reference to editorial correspondence during the early years of the Journal. This paper is based on a lecture given at the colloquium: A Century of Fluid Mechanics, 1870-1970, IMFT, Toulouse, France, 19-21 October 2016.

  19. Teaching Fluid Mechanics to the Beginning Graduate Student--An Objective-Oriented Approach.

    Science.gov (United States)

    Liu, Henry

    A premature embarkation in specialized areas of fluid mechanics by the beginning graduate student, without having first thoroughly learned the basics, leads to learning difficulties and destroys zeal for learning. To avoid these problems, many schools in the U.S. offer beginning graduate courses in fluid mechanics (BGCFM). Because the success or…

  20. HPM-Pade Method on Natural Convection of Darcian Fluid about a Vertical Full Cone Embedded in Porous Media

    DEFF Research Database (Denmark)

    Bararnia, H.; Ghasemi, E.; Soleimanikutanaei, Soheil;

    2011-01-01

    In this paper, fluid flow and heat transfer of a vertical full cone embedded in porous media have been studied. A similarity solution for a full cone subjected to wall temperature boundary conditions gives us a nonlinear ordinary differential equation (ODE), which has been solved through the homo......In this paper, fluid flow and heat transfer of a vertical full cone embedded in porous media have been studied. A similarity solution for a full cone subjected to wall temperature boundary conditions gives us a nonlinear ordinary differential equation (ODE), which has been solved through...... the homotopy perturbation method (HPM) and the Fade approximation. The obtained analytical solution in comparison with the numerical ones represents remarkable accuracy. The results also indicate that HFM-Fade can provide us with a convenient way to control and adjust the convergence region. Finally...

  1. Similarity Solution for High Weissenberg Number Flow of Upper-Convected Maxwell Fluid on a Linearly Stretching Sheet

    OpenAIRE

    Mohamadali, Meysam; Ashrafi, Nariman

    2016-01-01

    High Weissenberg boundary layer flow of viscoelastic fluids on a stretching surface has been studied. The flow is considered to be steady, low inertial, and two-dimensional. Upon proper scaling and by means of an exact similarity transformation, the nonlinear momentum and constitutive equations of each layer transform into the respective system of highly nonlinear and coupled ordinary differential equations. Numerical solutions to the resulting boundary value problem are obtained using an eff...

  2. Numerical analysis of Al2O3/water nano-fluids natural convection and entropy generation in enclosures

    Science.gov (United States)

    Warda, Boudaoud; Amina, Sabeur; Souad, Morsli

    2017-05-01

    The aim of this work is to analyze the natural convection phenomena and entropy generation of water-based Al2O3 nanofluids in square enclosure. The simulated domain corresponds to a square cavity heated from below and cooled from the top. The left and right walls are heated up to a height H = (3/4 W) and are adiabatic in the remaining part (1-H). Numerical investigations have been carried out based on coupled partial differential equations of momentum and energy which are solved using finite volume method. The effective thermal conductivity of the nanofluid was expressed by the Maxwell-Garnetts model however the dynamic viscosity was calculated according to the Brinkman formula. The obtained results were presented by average Nusselt number, streamlines, isotherms and entropy generation with various pertinent parameters, namely, Rayleigh number (100 ≤ Ra ≤ 106), volumetric fraction of nanoparticles (1% ≤ ϕ ≤ 4% ). It was found that the heat transfer increases with the increase of Rayleigh number and volume fraction. The choice of these parameters is important to obtain maximum enhancement of heat transfer with minimum entropy generation. Contribution to the topical issue "Materials for Energy harvesting, conversion and storage II (ICOME 2016)", edited by Jean-Michel Nunzi, Rachid Bennacer and Mohammed El Ganaoui

  3. Computational fluid dynamics for modeling the turbulent natural convection in a double air-channel solar chimney system

    Science.gov (United States)

    Zavala-Guillén, I.; Xamán, J.; Álvarez, G.; Arce, J.; Hernández-Pérez, I.; Gijón-Rivera, M.

    2016-03-01

    This study reports the modeling of the turbulent natural convection in a double air-channel solar chimney (SC-DC) and its comparison with a single air-channel solar chimney (SC-C). Prediction of the mass flow and the thermal behavior of the SC-DC were obtained under three different climates of Mexico during one summer day. The climates correspond to: tropical savannah (Mérida), arid desert (Hermosillo) and temperate with warm summer (Mexico City). A code based on the Finite Volume Method was developed and a k-ω turbulence model has been used to model air turbulence in the solar chimney (SC). The code was validated against experimental data. The results indicate that during the day the SC-DC extracts about 50% more mass flow than the SC-C. When the SC-DC is located in Mérida, Hermosillo and Mexico City, the air-changes extracted along the day were 60, 63 and 52, respectively. The air temperature at the outlet of the chimney increased up to 33%, 38% and 61% with respect to the temperature it has at the inlet for Mérida, Hermosillo and Mexico City, respectively.

  4. CHARACTERISTCS OF FLUID FILM IN OPTIMIZED SPIRAL GROOVE MECHANICAL SEAL

    Institute of Scientific and Technical Information of China (English)

    2007-01-01

    In order to investigate the sealing performance variation resulted from the thermal deformation of the end faces, the equations to calculate the fluid film pressure distribution, the bearing force and the leakage rate are derived, for the fluid film both in parallel gap and in wedgy gap. The geometrical parameters of the sealing members are optimized by means of heat transfer analysis and complex method. The analysis results indicate that the shallow spiral grooves can generate hydrodynamic pressure while the rotating ring rotates and the bearing force of the fluid film in spiral groove end faces is much larger than that in the flat end faces. The deformation increases the bearing force of the fluid film in flat end faces, but it decreases the hydrodynamic pressure of the fluid film in spiral groove end faces. The gap dimensions which determine the characteristics of the fluid film is obtained by coupling analysis of the frictional heat and the thermal deformation in consideration of the equilibrium condition of the bearing force and the closing force. For different gap dimensions, the relationship between the closing force and the leakage rate is also investigated, based on which the leakage rate can be controlled by adjusting the closing force.

  5. Effect of microscale protrusions on local fluid flow and mass transport in the presence of forced convection

    Energy Technology Data Exchange (ETDEWEB)

    Matzen, Gehard W. [Univ. of California, Berkeley, CA (United States)

    1997-01-01

    Three-dimensional creeping flow around single, axisymmetric protrusions is studied numerically using the boundary-integral technique. Emphasis is placed upon cylindrical protrusions on plane walls for various height-to-radius (h-to-a) aspect ratios, but cones and sections of spheres protruding from plane walls are also briefly examined. The presented items include shear-stress distributions, shear-stress contours, extents of the fluid-flow disturbance, total forces and torques on the cylinders, streamlines, and skin-friction lines. Also included is a discussion of flow topology around axisymmetric geometries. No flow reversal is observed for cylindrical protrusions with aspect ratios greater than 2.4 to 2.6. At higher aspect ratios, the fluid tends to be swept around cylindrical protrusions with little vertical motion. At lower aspect ratios, the strength of the recirculation increases, and the recirculation region becomes wider in the transverse direction and narrower in the flow direction. Also, the recirculation pattern begins to resemble the closed streamline patterns in two-dimensional flow over square ridges. However, unlike two-dimensional flow, closed streamline patterns are not observed. For arbitrary axisymmetric geometries, the extent of the fluid-flow disturbance can be estimated with the total force that is exerted on the protrusion. When the same force is exerted on protrusions with different aspect ratios, the protrusion with the higher aspect ratio tends to have a greater disturbance in the flow direction and a smaller disturbance in the transverse direction. The total force exerted on cylindrical protrusions with rounded corners is only slightly lower than the total force exerted on cylindrical protrusions with sharp corners.

  6. Free convection heat and mass transfer in a power law fluid past an inclined surface with thermophoresis

    Directory of Open Access Journals (Sweden)

    Medhat M. Helal

    2013-10-01

    Full Text Available The problem of heat and mass transfer in a power law, two-dimensional, laminar, boundary layer flow of a viscous incompressible fluid over an inclined plate with heat generation and thermophoresis is investigated by the characteristic function method. The governing non-linear partial differential equations describing the flow and heat transfer problem are transformed into a set of coupled non-linear ordinary differential equation which was solved using Runge–Kutta shooting method. Exact solutions for the dimensionless temperature and concentration profiles, are presented graphically for different physical parameters and for the different power law exponents 0  0.5.

  7. Convective heat and mass transfer on MHD peristaltic flow of Williamson fluid with the effect of inclined magnetic field

    Science.gov (United States)

    Veera Krishna, M.; Swarnalathamma, B. V.

    2016-05-01

    In this paper, we discussed the peristaltic MHD flow of an incompressible and electrically conducting Williamson fluid in a symmetric planar channel with heat and mass transfer under the effect of inclined magnetic field. Viscous dissipation and Joule heating are also taken into consideration. Mathematical model is presented by using the long wavelength and low Reynolds number approximations. The differential equations governing the flow are highly nonlinear and thus perturbation solution for small Weissenberg number (We Effects of the heat and mass transfer on the longitudinal velocity, temperature and concentration are studied in detail. Main observations are presented in the concluding section. The streamlines pattern is also given due attention.

  8. Yielding to Stress: Recent Developments in Viscoplastic Fluid Mechanics

    Science.gov (United States)

    Balmforth, Neil J.; Frigaard, Ian A.; Ovarlez, Guillaume

    2014-01-01

    The archetypal feature of a viscoplastic fluid is its yield stress: If the material is not sufficiently stressed, it behaves like a solid, but once the yield stress is exceeded, the material flows like a fluid. Such behavior characterizes materials common in industries such as petroleum and chemical processing, cosmetics, and food processing and in geophysical fluid dynamics. The most common idealization of a viscoplastic fluid is the Bingham model, which has been widely used to rationalize experimental data, even though it is a crude oversimplification of true rheological behavior. The popularity of the model is in its apparent simplicity. Despite this, the sudden transition between solid-like behavior and flow introduces significant complications into the dynamics, which, as a result, has resisted much analysis. Over recent decades, theoretical developments, both analytical and computational, have provided a better understanding of the effect of the yield stress. Simultaneously, greater insight into the material behavior of real fluids has been afforded by advances in rheometry. These developments have primed us for a better understanding of the various applications in the natural and engineering sciences.

  9. Sensing fluid viscosity and density through mechanical impedance measurement using a whisker transducer

    Science.gov (United States)

    Ju, Feng; Ling, Shih-Fu

    2013-05-01

    This paper presents a new technique for fluid viscosity and density sensing through measuring the mechanical impedance of the fluid load applied on a sphere. A piezoelectric whisker transducer (WT) is proposed which acts simultaneously as both the actuator to excite the sphere tip to oscillate in the fluid and the sensor to measure the force, velocity and mechanical impedance. The relationship between mechanical impedance of the fluid load and electrical impedance of the WT is derived based on a transduction matrix model which characterizes the electro-mechanical transduction process of the WT in both directions. The mechanical impedance is further related to the fluid viscosity and density using a theoretical model. The establishment of this fluid-mechanical-electrical relationship allows the WT to extract the fluid viscosity and density conveniently and accurately just from its electrical impedance. Experimental studies are carried out to calibrate the WT and test its performance using glycerol-water mixtures. It is concluded that the WT is capable of providing results comparable to those of standard viscometers within a wide measurement range due to its low working frequency and large vibration amplitude. Its unique self-actuation-and-sensing feature makes it a suitable solution for online fluid sensing.

  10. Convective Heat Transfer Coefficients of Automatic Transmission Fluid Jets with Implications for Electric Machine Thermal Management: Preprint

    Energy Technology Data Exchange (ETDEWEB)

    Bennion, Kevin; Moreno, Gilberto

    2015-09-29

    Thermal management for electric machines (motors/ generators) is important as the automotive industry continues to transition to more electrically dominant vehicle propulsion systems. Cooling of the electric machine(s) in some electric vehicle traction drive applications is accomplished by impinging automatic transmission fluid (ATF) jets onto the machine's copper windings. In this study, we provide the results of experiments characterizing the thermal performance of ATF jets on surfaces representative of windings, using Ford's Mercon LV ATF. Experiments were carried out at various ATF temperatures and jet velocities to quantify the influence of these parameters on heat transfer coefficients. Fluid temperatures were varied from 50 degrees C to 90 degrees C to encompass potential operating temperatures within an automotive transaxle environment. The jet nozzle velocities were varied from 0.5 to 10 m/s. The experimental ATF heat transfer coefficient results provided in this report are a useful resource for understanding factors that influence the performance of ATF-based cooling systems for electric machines.

  11. Convective flow, heat and mass transfer of Ostwald-de Waele fluid over a vertical stretching sheet

    Directory of Open Access Journals (Sweden)

    K. Vajravelu

    2017-01-01

    Full Text Available In this paper we study the combined buoyancy (due to thermal and species diffusion effects on the flow, heat and mass transfer of a viscous, incompressible, Ostwald-de Waele fluid over a vertical stretching surface in the presence of a chemical reaction. The effects of variable thermal conductivity and the variable mass diffusivity are also considered. A similarity transformation is used to convert the partial differential equations into coupled nonlinear ordinary differential equations. Numerical solutions are obtained by the Keller-box method. The influences of sundry parameters on the velocity, temperature and the concentration fields are presented in figures and discussed in detail. The values of the skin friction coefficient, Nusselt number and the surface mass transfer for various values of the governing parameters are presented in tables. One of the interesting observations is that the influence of the buoyancy parameters increases the velocity. However, quite the opposite is true with the temperature and the mass concentration, for all values of the power law index and the reaction rate parameter. The results obtained reveal many interesting behaviors that warrant a further study of the non-Newtonian fluid phenomena, especially shear thinning phenomena. Shear thinning reduces the wall shear stress.

  12. Mixed convection flow of couple stress fluid between rotating discs with chemical reaction and double diffusion effects

    Science.gov (United States)

    Kaladhar, K.; Srinivasacharya, D.

    2016-12-01

    The chemical reaction, Soret and Dufour effects on steady flow of a couple stress fluid between two rotating disks are studied. The lower disc is rotating with angular velocity Ω1 where as the upper disc is rotating with Ω2. The density variation in centrifugal and Coriolis force terms are taken into consideration by invoking a linear density-temperature relation and Boussinesq approximation to account the buoyancy effects. The non-linear governing partial differential equations are transformed into system of ordinary differential equations by using the similarity transformations. Homotopy Analysis Method (HAM) has been used to solve the resulting equations. Graphical illustrations of the dimensionless velocity, concentration and temperature profiles are presented at different values of the emerging parameter of the present study. It has been found that as an increase in couple stresses leads to the decrease in velocity, temperature and increase in concentration of the fluid. Flow velocities, temperature and concentration profiles are decreases with an increase in reaction parameter.

  13. Onset of Soret-driven convection of binary fluid in square cavity heated from above at different gravity levels

    Science.gov (United States)

    Lyubimova, Tatyana; Zubova, Nadezhda

    The instability of incompressible viscous binary fluid with the Soret effect in square cavity heated from above is studied for different gravity levels. The no slip and zero mass flux conditions are imposed on all the boundaries. The horizontal boundaries are perfectly conductive, they are maintained at constant different temperatures and vertical boundaries are adiabatic. The calculations are performed for water - isopropanol mixture 90:10. Initial conditions correspond to the motionless state with uniform distribution of components and uniform temperature gradient directed upward. For binary fluid under consideration the separation parameter is negative therefore the Soret effect leads to the accumulation of heavy component in the upper part of cavity, moreover, the rate of accumulation is independent of the gravity level. The linear stability of the unsteady motionless state is studied numerically by solving linearized equations for small perturbations. To determine the time t* for the onset of instability, the criterion suggested in [1] is used. The dependence of t* on the gravity level is obtained. The work was done under financial support of Government of Perm Region, Russia (Contract C-26/212). 1. Shliomis M.I., Souhar M. Europhysics Letters. 2000. Vol. 49 (1), pp. 55-61.

  14. Teaching Fluid Mechanics for Undergraduate Students in Applied Industrial Biology: from Theory to Atypical Experiments

    CERN Document Server

    Absi, Rafik; Dufour, Florence; Huet, Denis; Bennacer, Rachid; Absi, Tahar

    2011-01-01

    EBI is a further education establishment which provides education in applied industrial biology at level of MSc engineering degree. Fluid mechanics at EBI was considered by students as difficult who seemed somewhat unmotivated. In order to motivate them, we applied a new play-based pedagogy. Students were asked to draw inspiration from everyday life situations to find applications of fluid mechanics and to do experiments to verify and validate some theoretical results obtained in course. In this paper, we present an innovative teaching/learning pedagogy which includes the concept of learning through play and its implications in fluid mechanics for engineering. Examples of atypical experiments in fluid mechanics made by students are presented. Based on teaching evaluation by students, it is possible to know how students feel the course. The effectiveness of this approach to motivate students is presented through an analysis of students' teaching assessment. Learning through play proved a great success in fluid...

  15. Mechanisms Responsible for the Observed Thermodynamic Structure in a Convective Boundary Layer Over the Hudson Valley of New York State

    Science.gov (United States)

    Freedman, Jeffrey M.; Fitzjarrald, David R.

    2017-02-01

    We examine cases of a regional elevated mixed layer (EML) observed during the Hudson Valley Ambient Meteorology Study (HVAMS) conducted in New York State, USA in 2003. Previously observed EMLs referred to topographic domains on scales of 105 -106 km2 . Here, we present observational evidence of the mechanisms responsible for the development and maintenance of regional EMLs overlying a valley-based convective boundary layer (CBL) on much smaller spatial scales (deployed during the HVAMS, we show that cross-valley horizontal advection, along-valley channelling, and fog-induced cold-air pooling are responsible for the formation and maintenance of the EML and valley-CBL coupling over New York State's Hudson Valley. The upper layer stability of the overlying EML constrains growth of the valley CBL, and this has important implications for air dispersion, aviation interests, and fog forecasting.

  16. Heat Transfer Analysis for Peristaltic Mechanism in Variable Viscosity Fluid

    Institute of Scientific and Technical Information of China (English)

    T.Hayat; F.M.Abbasi; Awatif A.Hendi

    2011-01-01

    An analysis is carried out for a peristaltic flow of a third-order fluid with heat transfer and variable viscosity when no-slip condition does not hold. Perturbation solution is discussed and a comparative study between the cases of constant and variable viscosities is presented and analyzed.%@@ An analysis is carried out for a peristaltic flow of a third-order fluid with heat transfer and variable viscosity when no-slip condition does not hold.Perturbation solution is discussed and a comparative stuity between the cases of constant and variable viscosities is presented and analyzed.

  17. Fundamental Studies of Fluid Mechanics: Stability in Porous Media

    Energy Technology Data Exchange (ETDEWEB)

    Homsy, George M. [University of California, Santa Barbara

    2014-02-12

    We summarize our research results in three main areas: coating flows; electrohydrodynamics of drops; and wetting and spreading of drops. Experimental, computational and analytical methods are used to address a variety of issues. Coating flow studies include the effect of roughness, surfactants, and adsorbed particles on the dynamics of dip-coating. Electrohydrodynamic studies include drop deformation in uniform electric fields, shape distortion due to charge convection in sedimenting drops, and driving chaotic advection by either an electric field inclined to the direction of drop motion or time-periodic changes in the direction of the electric field. Heat and mass transport from chaotically mixed droplets exhibit unexpected and remarkable increases in the rates of transport. Finally, we develop an analytical solution to the problem of a static droplet, and use numerical techniques to predict its migration due to surface tension gradients.

  18. Wide range instantaneous temperature measurements of convective fluid flows by using a schlieren system based in color images

    Science.gov (United States)

    Martínez-González, A.; Moreno-Hernández, D.; Monzón-Hernández, D.; León-Rodríguez, M.

    2017-06-01

    In the schlieren method, the deflection of light by the presence of an inhomogeneous medium is proportional to the gradient of its refractive index. Such deflection, in a schlieren system, is represented by light intensity variations on the observation plane. Then, for a digital camera, the intensity level registered by each pixel depends mainly on the variation of the medium refractive index and the status of the digital camera settings. Therefore, in this study, we regulate the intensity value of each pixel by controlling the camera settings such as exposure time, gamma and gain values in order to calibrate the image obtained to the actual temperature values of a particular medium. In our approach, we use a color digital camera. The images obtained with a color digital camera can be separated on three different color-channels. Each channel corresponds to red, green, and blue color, moreover, each one has its own sensitivity. The differences in sensitivity allow us to obtain a range of temperature values for each color channel. Thus, high, medium and low sensitivity correspond to green, blue, and red color channel respectively. Therefore, by adding up the temperature contribution of each color channel we obtain a wide range of temperature values. Hence, the basic idea in our approach to measure temperature, using a schlieren system, is to relate the intensity level of each pixel in a schlieren image to the corresponding knife-edge position measured at the exit focal plane of the system. Our approach was applied to the measurement of instantaneous temperature fields of the air convection caused by a heated rectangular metal plate and a candle flame. We found that for the metal plate temperature measurements only the green and blue color-channels were required to sense the entire phenomena. On the other hand, for the candle case, the three color-channels were needed to obtain a complete measurement of temperature. In our study, the candle temperature was took as

  19. CONVECTIVE INSTABILITY IN A RAPIDLY ROTATING FLUID LAYER IN THE PRESENCE OF A NON-UNIFORM MAGNETIC FIELD

    Institute of Scientific and Technical Information of China (English)

    陈出新; 郭孝城

    2003-01-01

    Magnetoconvective instabilities in a rapidly rotating, electrically conducting fluid layer heated from below in the presence of a non-uniform, horizontal magnetic field are investigated. It was first shown by Chandrasekhar that an overall minimum of the Rayleigh number may be reached at the onset of magnetoconvection when a uniform basic magnetic field is imposed. In this paper, we show that the properties of instability can be quite different when a non-uniform basic magnetic field is applied. It is shown that there is an optimum value of the Elsasser number provided that the basic magnetic field is a monotonically decreasing or increasing function of the vertical coordinate. However,there exist no optimum values of the Elsasser number that can give rise to an overall minimum of the Rayleigh number at the onset of magnetoconvection if the imposed basic magnetic field has an infiexion point.

  20. Similarity Solution for High Weissenberg Number Flow of Upper-Convected Maxwell Fluid on a Linearly Stretching Sheet

    Directory of Open Access Journals (Sweden)

    Meysam Mohamadali

    2016-01-01

    Full Text Available High Weissenberg boundary layer flow of viscoelastic fluids on a stretching surface has been studied. The flow is considered to be steady, low inertial, and two-dimensional. Upon proper scaling and by means of an exact similarity transformation, the nonlinear momentum and constitutive equations of each layer transform into the respective system of highly nonlinear and coupled ordinary differential equations. Numerical solutions to the resulting boundary value problem are obtained using an efficient shooting technique in conjunction with a variable stepping method for different values of pressure gradients. It is observed that, unlike the Newtonian flows, in order to maintain a potential flow, normal stresses must inevitably develop. The velocity field and stresses distributions over plate are presented for difference values of pressure gradient and Weissenberg numbers.

  1. The Influence of Fluid Overload on the Length of Mechanical Ventilation in Pediatric Congenital Heart Surgery.

    Science.gov (United States)

    Sampaio, Tatiana Z A L; O'Hearn, Katie; Reddy, Deepti; Menon, Kusum

    2015-12-01

    Fluid overload and prolonged mechanical ventilation lead to worse outcomes in critically ill children. However, the association between these variables in children following congenital heart surgery is unknown. The objectives of this study were to describe the association between fluid overload and duration of mechanical ventilation, oxygen requirement and radiologic findings of pulmonary and chest wall edema. This study is a retrospective chart review of patients who underwent congenital heart surgery between June 2010 and December 2013. Univariate and multivariate associations between maximum cumulative fluid balance and length of mechanical ventilation and OI were tested using the Spearman correlation test and multiple linear regression models, respectively. There were 85 eligible patients. Maximum cumulative fluid balance was associated with duration of mechanical ventilation (adjusted analysis beta coefficient = 0.53, CI 0.38-0.66, P Fluid overload is associated with prolonged duration of mechanical ventilation and PICU length of stay after congenital heart surgery. Fluid overload was also associated with physiological markers of respiratory restriction. A randomized controlled trial of a restrictive versus liberal fluid replacement strategy is necessary in this patient population, but in the meantime, accumulating observational evidence suggests that cautious use of fluid in the postoperative care may be warranted.

  2. Active control of convection

    Energy Technology Data Exchange (ETDEWEB)

    Bau, H.H. [Univ. of Pennsylvania, Philadelphia, PA (United States)

    1995-12-31

    Using stability theory, numerical simulations, and in some instances experiments, it is demonstrated that the critical Rayleigh number for the bifurcation (1) from the no-motion (conduction) state to the motion state and (2) from time-independent convection to time-dependent, oscillatory convection in the thermal convection loop and Rayleigh-Benard problems can be significantly increased or decreased. This is accomplished through the use of a feedback controller effectuating small perturbations in the boundary data. The controller consists of sensors which detect deviations in the fluid`s temperature from the motionless, conductive values and then direct actuators to respond to these deviations in such a way as to suppress the naturally occurring flow instabilities. Actuators which modify the boundary`s temperature/heat flux are considered. The feedback controller can also be used to control flow patterns and generate complex dynamic behavior at relatively low Rayleigh numbers.

  3. Polymeric liquids in extension: fluid mechanics or rheometry?

    DEFF Research Database (Denmark)

    Hassager, Ole; Marin, Jose Martin Roman; Yu, Kaijia

    2010-01-01

    We use a transient 3D free surface finite element method to simulate flow of entangled polymer fluids in the dual cylinder wind-up extensional rheometer. The constitutive equations are K-BKZ integral representations of the Doi-Edwards models with and without the independent alignment approximatio...

  4. Some applications of magnetic resonance imaging in fluid mechanics: Complex flows and complex fluids

    NARCIS (Netherlands)

    Bonn, D.; Rodts, S.; Groenink, M.; Rafaï, S.; Shahidzadeh-Bonn, N.; Coussot, P.

    2008-01-01

    The review deals with applications of magnetic resonance imaging (MRI) techniques to study flow. We first briefly discuss the principles of flow measurement by MRI and give examples of some applications, such as multiphase flows, the MRI rheology of complex fluid flows, and blood flows in the human

  5. Numerical investigation of MHD free convection flow of a non-Newtonian fluid past an impulsively started vertical plate in the presence of thermal diffusion and radiation absorption

    Directory of Open Access Journals (Sweden)

    M. Umamaheswar

    2016-09-01

    Full Text Available A numerical investigation is carried out on an unsteady MHD free convection flow of a well-known non-Newtonian visco elastic second order Rivlin-Erickson fluid past an impulsively started semi-infinite vertical plate in the presence of homogeneous chemical reaction, thermal radiation, thermal diffusion, radiation absorption and heat absorption with constant mass flux. The presence of viscous dissipation is also considered at the plate under the influence of uniform transverse magnetic field. The flow is governed by a coupled nonlinear system of partial differential equations which are solved numerically by using finite difference method. The effects of various physical parameters on the flow quantities viz. velocity, temperature, concentration, Skin friction, Nusselt number and Sherwood number are studied numerically. The results are discussed with the help of graphs. We observed that the velocity decreases with an increase in magnetic field parameter, Schmidt number, and Prandtl number while it increases with an increase in Grashof number, modified Grashof number, visco-elastic parameter and Soret number. Temperature increases with an increase in radiation absorption parameter, Eckert number and visco-elastic parameter while it decreases with increasing values of radiation parameter, Prandtl number and heat absorption parameter. Concentration increases with increase in Soret number while it decreases with an increase in Schmidt number and chemical reaction parameter.

  6. A comparative study of Atangana-Baleanu and Caputo-Fabrizio fractional derivatives to the convective flow of a generalized Casson fluid

    Science.gov (United States)

    Sheikh, Nadeem Ahmad; Ali, Farhad; Saqib, Muhammad; Khan, Ilyas; Jan, Syed Aftab Alam

    2017-01-01

    Based on exponential kernel, Caputo and Fabrizio suggested a new definition for fractional order derivatives in 2015. Recently, in 2016, Atangana and Baleanu proposed another version of fractional derivatives, which uses the generalized Mittag-Leffler function as the non-singular and non-local kernel. Moreover, the Atangana-Balaenu (AB) version has all properties of fractional derivatives. Therefore, this articles aims to use the AB fractional derivative idea for the first time to study the free convection flow of a generalized Casson fluid due to the combined gradients of temperature and concentration. Hence, heat and mass transfer are considered together. For the sake of comparison, this problem is also solved via the Caputo-Fabrizio (CF) derivatives technique. Exact solutions in both cases (AB and CF derivatives) are obtained via the Laplace transform and compared graphically as well as in tabular form. In the case of AB approach, the influence of pertinent parameters on velocity field is displayed in plots and discussed. It is found that for unit time, the velocities obtained via AB and CF derivatives are identical. Velocities for time less than 1 show little variation and, for time higher than 1, this variation increases.

  7. Effects of Soret and Non-Uniform Heat Source on MHD Non-Darcian Convective Flow over a Stretching Sheet in a Dissipative Micropolar Fluid with Radiation

    Directory of Open Access Journals (Sweden)

    Fazle Mabood

    2016-01-01

    Full Text Available This study presents a numerical analysis on the effects of Soret, variable thermal conductivity, viscous-Ohmic dissipation, non-uniform heat sources, on steady two-dimensional hydromagnetic mixed convective heat and mass transfer flow of a micropolar fluid over a stretching sheet embedded in a non-Darcian porous medium with thermal radiation and chemical reaction. The governing differential equations are transformed into a set of non-linear coupled ordinary differential equations which are then solved numerically by using the fifth-order Runge-Kutta-Fehlberg method with shooting technique. Numerical solutions are obtained for the velocity, angular velocity, temperature and concentration profiles for various parametric values, and then results are presented graphically as well as skin-friction coefficient, and also local Nusselt number and local Sherwood number for different physical parameters are shown graphically and in tabular form. A critical analysis with earlier published papers was done, and the results were found to be in accordance with each other.

  8. Oscillatory MHD Convective Flow of Second Order Fluid Through Porous Medium in a Vertical Rotating Channel in Slip-Flow Regime with Heat Radiation

    Directory of Open Access Journals (Sweden)

    Garg B.P.

    2015-02-01

    Full Text Available An analysis of an oscillatory magnetohydrodynamic (MHD convective flow of a second order (viscoelastic, incompressible, and electrically conducting fluid through a porous medium bounded by two infinite vertical parallel porous plates is presented. The two porous plates with slip-flow condition and the no-slip condition are subjected respectively to a constant injection and suction velocity. The pressure gradient in the channel varies periodically with time. A magnetic field of uniform strength is applied in the direction perpendicular to the planes of the plates. The induced magnetic field is neglected due to the assumption of a small magnetic Reynolds number. The temperature of the plate with no-slip condition is non-uniform and oscillates periodically with time and the temperature difference of the two plates is assumed high enough to induce heat radiation. The entire system rotates in unison about the axis perpendicular to the planes of the plates. Adopting complex variable notations, a closed form solution of the problem is obtained. The analytical results are evaluated numerically and then presented graphically to discuss in detail the effects of different parameters of the problem. The velocity, temperature and the skin-friction in terms of its amplitude and phase angle have been shown graphically to observe the effects of the viscoelastic parameter γ, rotation parameter Ω, suction parameter λ , Grashof number Gr, Hartmann number M, the pressure A, Prandtl number Pr, radiation parameter N and the frequency of oscillation ω .

  9. Analysis of fluid-solid interaction in MHD natural convection in a square cavity equally partitioned by a vertical flexible membrane

    Science.gov (United States)

    Mehryan, S. A. M.; Ghalambaz, Mohammad; Ismael, Muneer A.; Chamkha, Ali J.

    2017-02-01

    This paper investigates numerically the problem of unsteady natural convection inside a square cavity partitioned by a flexible impermeable membrane. The finite element method with the arbitrary Lagrangian-Eulerian (ALE) technique has been used to model the interaction of the fluid and the membrane. The horizontal walls of the cavity are kept adiabatic while the vertical walls are kept isothermal at different temperatures. A uniform magnetic field is applied onto the cavity with different orientations. The cavity has been provided by two eyelets to compensate volume changes due the movement of the flexible membrane. A parametric study is carried out for the pertinent parameters, which are the Rayleigh number (105-108), Hartmann number (0-200) and the orientation of the magnetic field (0-180°). The change in the Hartmann number affects the shape of the membrane and the heat transfer in the cavity. The angle of the magnetic field orientation also significantly affects the shape of the membrane and the heat transfer in the cavity.

  10. Thermo-fluid analysis of water cooled research reactors in natural convection; Analise termofluidodinamica de reatores nucleares de pesquisa refrigerados a agua em regime de conveccao natural

    Energy Technology Data Exchange (ETDEWEB)

    Veloso, Maria Auxiliadora Fortini

    2004-07-01

    The STHIRP-1 computer program, which fundamentals are described in this work, uses the principles of the subchannels analysis and has the capacity to simulate, under steady state and transient conditions, the thermal and hydraulic phenomena which occur inside the core of a water-refrigerated research reactor under a natural convection regime. The models and empirical correlations necessary to describe the flow phenomena which can not be described by theoretical relations were selected according to the characteristics of the reactor operation. Although the primary objective is the calculation of research reactors, the formulation used to describe the fluid flow and the thermal conduction in the heater elements is sufficiently generalized to extend the use of the program for applications in power reactors and other thermal systems with the same features represented by the program formulations. To demonstrate the analytical capacity of STHIRP-l, there were made comparisons between the results calculated and measured in the research reactor TRIGA IPR-R1 of CDTN/CNEN. The comparisons indicate that the program reproduces the experimental data with good precision. Nevertheless, in the future there must be used more consistent experimental data to corroborate the validation of the program. (author)

  11. Mechanical and chemical behavior of intergranular fluids in nonhydrostatically stressed rocks at low temperature

    Institute of Scientific and Technical Information of China (English)

    刘亮明; 彭省临

    2001-01-01

    Intergranular fluids within the nonhydrostatically stressed solids are a sort of important fluids in the crust. Research on the mechanical and chemical behavior of the intergranular fluids in nonhydrostatically stressed rocks at low temperature is a key for understanding deformation and syntectonic geochemical processes in mid to shallow crust. Theoretically, it is suggested that the fluid film sandwiched between solid grains is one of the main states of intergranular fluids in the nonhydrostatically stressed solids. Their superthin thickness makes the fluid films have the mechanical and chemical behavior very different from the common fluids. Because of hydration force, double-layer repulsive force or osmotic pressure due to double-layer, the fluid films can transmit nonhydrostatic stress. The solid minerals-intergranular fluids interaction and mass transfer by intergranular fluids is stress-related, because the stress in solid minerals can enhance the free energy of solid matter on the interfaces. The thermodynamic and kinetic equations for the simple case of stress induced processes are derived.

  12. Thermodynamics of a tropical cyclone: generation and dissipation of mechanical energy in a self-driven convection system

    OpenAIRE

    OZAWA,Hisashi; SHIMOKAWA, Shinya

    2015-01-01

    The formation process of circulatory motion of a tropical cyclone is investigated from a thermodynamic viewpoint. The generation rate of mechanical energy by a fluid motion under diabatic heating and cooling, and the dissipation rate of this energy due to irreversible processes are formulated from the first and second laws of thermodynamics. This formulation is applied to a tropical cyclone, and the formation process of the circulatory motion is examined from a balance between the generation ...

  13. Fluid mechanics phenomena in microgravity; ASME Winter Annual Meeting, Anaheim, CA, Nov. 8-13, 1992

    Science.gov (United States)

    Siginer, Dennis A. (Editor); Weislogel, Mark M. (Editor)

    1992-01-01

    This paper is the first in a series of symposia presenting research activity in microgravity fluid mechanics. General topics addressed include two-phase flow and transport phenomena, thermo-capillary flow, and interfacial stability. Papers present mathmatical models of fluid dynamics in the microgravity environment. Applications suggested include space manufacturing and storage of liquids in low gravity.

  14. Revisiting Newtonian and Non-Newtonian Fluid Mechanics Using Computer Algebra

    Science.gov (United States)

    Knight, D. G.

    2006-01-01

    This article illustrates how a computer algebra system, such as Maple[R], can assist in the study of theoretical fluid mechanics, for both Newtonian and non-Newtonian fluids. The continuity equation, the stress equations of motion, the Navier-Stokes equations, and various constitutive equations are treated, using a full, but straightforward,…

  15. Revisiting Newtonian and Non-Newtonian Fluid Mechanics Using Computer Algebra

    Science.gov (United States)

    Knight, D. G.

    2006-01-01

    This article illustrates how a computer algebra system, such as Maple[R], can assist in the study of theoretical fluid mechanics, for both Newtonian and non-Newtonian fluids. The continuity equation, the stress equations of motion, the Navier-Stokes equations, and various constitutive equations are treated, using a full, but straightforward,…

  16. Fluid mechanics phenomena in microgravity; ASME Winter Annual Meeting, Anaheim, CA, Nov. 8-13, 1992

    Science.gov (United States)

    Siginer, Dennis A. (Editor); Weislogel, Mark M. (Editor)

    1992-01-01

    This paper is the first in a series of symposia presenting research activity in microgravity fluid mechanics. General topics addressed include two-phase flow and transport phenomena, thermo-capillary flow, and interfacial stability. Papers present mathmatical models of fluid dynamics in the microgravity environment. Applications suggested include space manufacturing and storage of liquids in low gravity.

  17. Mechanics of magnetic fluid column in strong magnetic fields

    Science.gov (United States)

    Polunin, V. M.; Ryapolov, P. A.; Platonov, V. B.

    2017-06-01

    Elastic-and magnetic properties of magnetic fluid confined by ponderomotive force in a tube fixed in horizontal position are considered. The system is placed in a strong magnetic field under the influence of external static and dynamic perturbations. An experimental setup has been developed. A theoretical basis of the processes of magnetic colloid elastic deformation has been proposed. The values of the static ponderomotive elasticity coefficient and the elasticity coefficient under dynamic action are experimentally determined. The calculations of the saturation magnetization for two magnetic fluid samples, carried out according to the equation containing the dynamic elasticity coefficient, are in good agreement with the experimental magnetization curve. The described method is of interest when studying magnetophoresis and aggregation of nanoparticles in magnetic colloids.

  18. Cerebrospinal Fluid Mechanics and Its Coupling to Cerebrovascular Dynamics

    Science.gov (United States)

    Linninger, Andreas A.; Tangen, Kevin; Hsu, Chih-Yang; Frim, David

    2016-01-01

    Cerebrospinal fluid (CSF) is not stagnant but displays fascinating oscillatory flow patterns inside the ventricular system and reversing fluid exchange between the cranial vault and spinal compartment. This review provides an overview of the current knowledge of pulsatile CSF motion. Observations contradicting classical views about its bulk production and clearance are highlighted. A clinical account of diseases of abnormal CSF flow dynamics, including hydrocephalus, syringomyelia, Chiari malformation type 1, and pseudotumor cerebri, is also given. We survey medical imaging modalities used to observe intracranial dynamics in vivo. Additionally, we assess the state of the art in predictive models of CSF dynamics. The discussion addresses open questions regarding CSF dynamics as they relate to the understanding and management of diseases.

  19. A mathematical model of post-instability in fluid mechanics

    Science.gov (United States)

    Zak, M. A.

    1982-01-01

    Postinstability of fluids is eliminated in numerical models by introducing multivalued velocity fields after discarding the principle of impenetrability. Smooth functions are shown to be incapable of keeping the derivatives from going towards infinity when iterating solutions for the governing equations such as those defined by Navier-Stokes. Enlarging the class of functions is shown to be necessary to eliminate the appearance of imaginary characteristic roots in the systems of arbitrary partial differential equations, a condition which leads to physically impossible motions. The enlarging is demonstrated to be achievable by allowing several individual particles with different velocities to appear at the same point of space, and the subsequent multivaluedness of the solutions is purely a mathematical concern, rather than one of actual physical existence. Applications are provided for an inviscid fluid and for turbulence.

  20. Siquieros accidental painting technique: a fluid mechanics point of view

    CERN Document Server

    Zetina, Sandra

    2012-01-01

    This is an entry for the Gallery of Fluid Motion of the 65th Annual Meeting of the APS-DFD (fluid dynamics video). This video shows an analysis of the 'accidental painting' technique developed by D.A. Siqueiros, a famous Mexican muralist. We reproduced the technique that he used: pouring layers of paint of different colors on top of each other. We found that the layers mix, creating aesthetically pleasing patterns, as a result of a Rayleigh-Taylor instability. Due to the pigments used to give paints their color, they can have different densities. When poured on top of each other, if the top layer is denser than the lower one, the viscous gravity current undergoes unstable as it spread radially. We photograph the process and produced slowed-down video to visualize the process.