WorldWideScience

Sample records for controls plant architecture

  1. Widespread mechanosensing controls the structure behind the architecture in plants.

    Science.gov (United States)

    Hamant, Olivier

    2013-10-01

    Mechanical forces play an instructing role for many aspects of animal cell biology, such as division, polarity and fate. Although the associated mechanoperception pathways still remain largely elusive in plants, physical cues have long been thought to guide development in parallel to biochemical factors. With the development of new imaging techniques, micromechanics tools and modeling approaches, the role of mechanical signals in plant development is now re-examined and fully integrated with modern cell biology. Using recent examples from the literature, I propose to use a multiscale perspective, from the whole plant down to the cell wall, to fully appreciate the diversity of developmental processes that depend on mechanical signals. Incidentally, this also illustrates how conceptually rich this field is.

  2. Control of plant architecture by distinctive TALE homeobox gene interactions

    NARCIS (Netherlands)

    Bao, D.

    2009-01-01

    In eukaryotes, transcription factor (TF)-based network is a widely used mechanism to regulate fundamental developmental processes. Both animals and plants utilize three-amino-acid-loop-extension (TALE) homeodomain (HD) transcription factors to subdivide their body plan. In animals, MEIS/PBC TF heter

  3. Intelligent control of a cryogenic cooling plant based on blackboard system architecture.

    Science.gov (United States)

    Linkens, D A; Abbod, M F; Browne, A; Cade, N

    2000-01-01

    Intelligent system techniques have been rapidly assimilating into process control engineering, with many applications reported in the last decade. Intelligent control is bringing a new perspective as well as new challenges to process control. In this paper, a software architecture for a Blackboard for Integrated Intelligent Control Systems (BIICS) is described. The system is designed to simultaneously support multiple heterogeneous intelligent methodologies, such as neural networks. expert systems, fuzzy logic, neural networks and genetic algorithms. It will be shown how such methodologies can be readily assimilated into the software architecture. The BIICS system represents a multi-purpose platform for design and simulation of intelligent control paradigms for different kinds of processes. Currently the system utilizes intelligent control techniques (neuro-fuzzy and genetic optimization) for controlling a cryogenic plant used for superconductor testing at temperatures below 100 K.

  4. Development and Genetic Control of Plant Architecture and Biomass in the Panicoid Grass, Setaria.

    Directory of Open Access Journals (Sweden)

    Margarita Mauro-Herrera

    Full Text Available The architecture of a plant affects its ability to compete for light and to respond to environmental stresses, thus affecting overall fitness and productivity. Two components of architecture, branching and height, were studied in 182 F7 recombinant inbred lines (RILs at the vegetative, flowering and mature developmental stages in the panicoid C4 model grass system, Setaria. The RIL population was derived from a cross between domesticated S. italica (foxtail millet and its wild relative S. viridis (green foxtail. In both field and greenhouse trials the wild parent was taller initially, started branching earlier, and flowered earlier, while the domesticated parent was shorter initially, but flowered later, producing a robust tall plant architecture with more nodes and leaves on the main culm and few or no branches. Biomass was highly correlated with height of the plant and number of nodes on the main culm, and generally showed a negative relationship with branch number. However, several of the RILs with the highest biomass in both trials were significantly more branched than the domesticated parent of the cross. Quantitative trait loci (QTL analyses indicate that both height and branching are controlled by multiple genetic regions, often with QTL for both traits colocalizing in the same genomic regions. Genomic positions of several QTL colocalize with QTL in syntenic regions in other species and contain genes known to control branching and height in sorghum, maize, and switchgrass. Included in these is the ortholog of the rice SD-1 semi-dwarfing gene, which underlies one of the major Setaria height QTL. Understanding the relationships between height and branching patterns in Setaria, and their genetic control, is an important step to gaining a comprehensive knowledge of the development and genetic regulation of panicoid grass architecture.

  5. Shaping plant architecture

    Directory of Open Access Journals (Sweden)

    Thomas eTeichmann

    2015-04-01

    Full Text Available Plants exhibit phenotypical plasticity. Their general body plan is genetically determined, but plant architecture and branching patterns are variable and can be adjusted to the prevailing environmental conditions. The modular design of the plant facilitates such morphological adaptations. The prerequisite for the formation of a branch is the initiation of an axillary meristem. Here, we review the current knowledge about this process. After its establishment, the meristem can develop into a bud which can either become dormant or grow out and form a branch. Many endogenous factors, such as photoassimilate availability, and exogenous factors like nutrient availability or shading, have to be integrated in the decision whether a branch is formed. The underlying regulatory network is complex and involves phytohormones and transcription factors. The hormone auxin is derived from the shoot apex and inhibits bud outgrowth indirectly in a process termed apical dominance. Strigolactones appear to modulate apical dominance by modification of auxin fluxes. Furthermore, the transcription factor BRANCHED1 plays a central role. The exact interplay of all these factors still remains obscure and there are alternative models. We discuss recent findings in the field along with the major models.Plant architecture is economically significant because it affects important traits of crop and ornamental plants, as well as trees cultivated in forestry or on short rotation coppices. As a consequence, plant architecture has been modified during plant domestication. Research revealed that only few key genes have been the target of selection during plant domestication and in breeding programs. Here, we discuss such findings on the basis of various examples. Architectural ideotypes that provide advantages for crop plant management and yield are described. We also outline the potential of breeding and biotechnological approaches to further modify and improve plant architecture

  6. Gravity response mechanisms of lateral organs and the control of plant architecture in Arabidopsis

    Science.gov (United States)

    Mullen, J.; Hangarter, R.

    Most research on gravity responses in plants has focused on primary roots and shoots, which typically grow in a vertical orientation. However, the patterns of lateral organ formation and their growth orientation, which typically are not vertical, govern plant architecture. For example, in Arabidopsis, when lateral roots emerge from the primary root, they grow at a nearly horizontal orientation. As they elongate, the roots slowly curve until they eventually reach a vertical orientation. The regulation of this lateral root orientation is an important component affecting the overall root system architecture. We have found that this change in orientation is not simply due to the onset of gravitropic competence, as non-vertical lateral roots are capable of both positive and negative gravitropism. Thus, the horizontal growth of the new lateral roots is determined by what is called the gravitropic set-point angle (GSA). In Arabidopsis shoots, rosette leaves and inflorescence branches also display GSA-dependent developmental changes in their orientation. The developmental control of the GSA of lateral organs in Arabidopsis provides us with a useful system for investigating the components involved in regulating directionality of tropistic responses. We have identified several Arabidopsis mutants that have either altered lateral root orientations, altered orientation of lateral organs in the shoot, or both, but maintain normal primary organ orientation. The mgsa ({m}odified {g}ravitropic {s}et-point {a}ngle) mutants with both altered lateral root and shoot orientation show that there are common components in the regulation of growth orientation in the different organs. Rosette leaves and lateral roots also have in common a regulation of positioning by red light. Further molecular and physiological analyses of the GSA mutants will provide insight into the basis of GSA regulation and, thus, a better understanding of how gravity controls plant architecture. [This work was

  7. A Study of BUS Architecture Design for Controller of Nuclear Power Plant Using FPGA

    Energy Technology Data Exchange (ETDEWEB)

    Lee, Dongil; Yun, Donghwa; Hwang, Sungjae; Kim, Myeongyun; Lee, Dongyun [PONUTech Co. Ltd., Seoul (Korea, Republic of)

    2014-05-15

    CPU (Central Processing Unit) operating speed and communication rate have been more technically improved than before. However, whole system is been a degradation of performance by electronic and structural limitation of parallel bus. Transmission quantity and speed have a limit and need arbiter in order to do arbitration because several boards shared parallel bus. Arbiter is a high complexity in implementing so it increases component per chip. If a parallel bus uses, it will occurs some problems what are reflection noise, power/ground noise (or ground bounce) as SSN (Simultaneous Switching Noise) and crosstalk noise like magnetic coupling. In this paper, in order to solve a problem of parallel bus in controller of NPP (Nuclear Power Plant), proposes the bus architecture design using FPGA (Field Programmable Gate Array) based on LVDS (Low Voltage Differential Signaling)

  8. The ITER Fast Plant System Controller ATCA prototype Real-Time Software Architecture

    Energy Technology Data Exchange (ETDEWEB)

    Carvalho, B.B., E-mail: bernardo@ipfn.ist.utl.pt [Associacao EURATOM/IST Instituto de Plasmas e Fusao Nuclear, Instituto Superior Tecnico, Universidade Tecnica de Lisboa, P-1049-001 Lisboa (Portugal); Santos, B.; Carvalho, P.F.; Neto, A. [Associacao EURATOM/IST Instituto de Plasmas e Fusao Nuclear, Instituto Superior Tecnico, Universidade Tecnica de Lisboa, P-1049-001 Lisboa (Portugal); Boncagni, L. [Associazione Euratom-ENEA sulla Fusione, Frascati Research Centre, Division of Fusion Physics, Frascati, Rome (Italy); Batista, A.J.N.; Correia, M.; Sousa, J.; Gonçalves, B. [Associacao EURATOM/IST Instituto de Plasmas e Fusao Nuclear, Instituto Superior Tecnico, Universidade Tecnica de Lisboa, P-1049-001 Lisboa (Portugal)

    2013-10-15

    Highlights: ► High performance ATCA systems for fast control and data acquisition. ► IEEE1588 timing system and synchronization. ► Plasma control algorithms. ► Real-time control software frameworks. ► Targeted for nuclear fusion experiments with long duration discharges. -- Abstract: IPFN is developing a prototype Fast Plant System Controller (FPSC) based in ATCA embedded technologies dedicated to ITER CODAC data acquisition and control tasks in the sub-millisecond range. The main goal is to demonstrate the usability of the ATCA standard and its enhanced specifications for the high speed, very high density parallel data acquisition needs of the most demanding ITER tokamak plasma Instrumentation and Control (I and C) systems. This effort included the in-house development of a new family of high performance ATCA I/O and timing boards. The standard ITER software system CODAC Core System (CCS) v3.1, with the control based in the EPICS system does not cover yet the real-time requirements fulfilled by this hardware, so a new set of software components was developed for this specific platform, attempting to integrate and leverage the new features in CSS, for example the Multithreaded Application Real Time executor (MARTe) software framework, the new Data Archiving Network (DAN) solution, an ATCA IEEE-1588-2008 timing interface, and the Intelligent Platform Management Interface (IPMI) for system monitoring and remote management. This paper presents the overall software architecture for the ATCA FPSC, as well a discussion on the ITER constrains and design choices and finally a detailed description of the software components already developed.

  9. Control systems of fission reactors and of reprocessing plants: general architecture; Controle-commande des reacteurs et des usines: architecture generale

    Energy Technology Data Exchange (ETDEWEB)

    Appel, B.; Guesnier, G. [Electricite de France, 75 - Paris (France). Service Etudes et Projets Thermiques et Nucleaires; Chabert, J. [Cogema, 78 - Velizy-Villacoublay (France)

    1998-10-01

    As any industrial facility, nuclear power plants and fuel reprocessing centers need means to monitor and manage the physical processes that are involved in their activities. All these means form the control system. Control systems are made up of sensors, able to turn physical data into electric signals, of automatic control circuits dedicated to process these electric signals, of supervisor systems to give to the staff the possibility to intervene, and of actuators designed to transform electric signals into actions on the physical process. The general design of control systems has to conform to the requirements imposed by the physical process itself, by nuclear safety and by operating conditions. As for the physical process, requirements can be diverse according to the purpose of the nuclear facility but the continuity must be assured because of the permanent release of energy from irradiated materials. As for safety, we have to notice the stiff requirements for all the equipment that is concerned by the confinement of radioactivity. The general architecture of control systems is made up of 3 levels; i) level 0: sensors and actuators, ii) level 1: automatic control circuits and iii) level 2: the control room. The second and third levels are mainly based on computer and data processing systems. All the equipment is classified into 3 levels of demands. The first level is the stiffest which generally implies that devices are specially designed so that they satisfy all the requirements. (A.C.)

  10. SCADA Architecture for Natural Gas plant

    OpenAIRE

    Turc Traian; Grif Horaţiu

    2009-01-01

    The paper describes the Natural Gas Plant SCADA architecture. The main purpose of SCADA system is remote monitoring and controlling of any industrial plant. The SCADA hardware architecture is based on multi-dropping system allowing connecting a large number of different fiels devices. The SCADA Server gathers data from gas plant and stores data to a MtSQL database. The SCADA server is connected to other SCADA client application offers a intuitive and user-friendly HMI. The main benefit of us...

  11. The MADS-domain protein MPF1 of Physalis floridana controls plant architecture, seed development and flowering time.

    Science.gov (United States)

    He, Chaoying; Tian, Ying; Saedler, Rainer; Efremova, Nadia; Riss, Simone; Khan, Muhammad Ramzan; Yephremov, Alexander; Saedler, Heinz

    2010-02-01

    Floral and vegetative development of plants is dependent on the combinatorial action of MADS-domain transcription factors. Members of the STMADS11 subclade, such as MPF1 of Physalis, are abundantly expressed in leaves as well as in floral organs, but their function is not yet clear. Our studies with transgenic Arabidopsis that over-express MPF1 suggest that MPF1 interacts with SOC1 to determine flowering time. However, MPF1 RNAi-mediated knockdown Physalis plants revealed a complex phenotype with changes in flowering time, plant architecture and seed size. Flowering of these plants was delayed by about 20% as compared to wild type. Expression of PFLFY is upregulated in the MPF1 RNAi lines, while PFFT and MPF3 genes are strongly repressed. MPF1 interacts with a subset of MADS-domain factors, namely with PFSOC1 in planta, and with PFSEP3 and PFFUL in yeast, supporting a regulatory role for this protein in flowering. The average size of seeds produced by the transgenic MPF1 RNAi plants is increased almost twofold. The height of these plants is also increased about twofold, but most axillary buds are stunted when compared to controls. Taken together, this suggests that members of the STMADS11 subclade act as positive regulators of flowering but have diverse functions in plant growth.

  12. SCADA Architecture for Natural Gas plant

    Directory of Open Access Journals (Sweden)

    Turc Traian

    2009-12-01

    Full Text Available The paper describes the Natural Gas Plant SCADA architecture. The main purpose of SCADA system is remote monitoring and controlling of any industrial plant. The SCADA hardware architecture is based on multi-dropping system allowing connecting a large number of different fiels devices. The SCADA Server gathers data from gas plant and stores data to a MtSQL database. The SCADA server is connected to other SCADA client application offers a intuitive and user-friendly HMI. The main benefit of using SCADA is real time displaying of gas plant state. The main contriobution of the authors consists in designing SCADA architecture based on multi-dropping system and Human Machine Interface.

  13. Conceptual architecture of the plant system controller for the magnetics diagnostic of the ITER tokamak

    Energy Technology Data Exchange (ETDEWEB)

    Neto, A.C., E-mail: Andre.Neto@f4e.europa.eu [Fusion for Energy, 08019 Barcelona (Spain); Arshad, S.; Sartori, F. [Fusion for Energy, 08019 Barcelona (Spain); Vayakis, G. [ITER Organization, Route de Vinon sur Verdon, 13115 Saint Paul-lez-Durance (France); Ambrosino, G. [Consorzio CREATE/Dipartimento di Ingegneria Elettrica e delle Tecnologie dell’Informazione, Università degli Studi di Napoli Federico II, Via Claudio 21, 80125 Napoli (Italy); Batista, A. [Instituto de Plasmas e Fusão Nuclear, Instituto Superior Técnico, Universidade de Lisboa, 1049-001 Lisboa (Portugal); Bas, I. [GTD Sistemas de Información, 08005 Barcelona (Spain); Campagnolo, R. [Fusion for Energy, 08019 Barcelona (Spain); Carvalho, B.B. [Instituto de Plasmas e Fusão Nuclear, Instituto Superior Técnico, Universidade de Lisboa, 1049-001 Lisboa (Portugal); De Magneval, G. [GTD Sistemas de Información, 08005 Barcelona (Spain); De Tommasi, G. [Consorzio CREATE/Dipartimento di Ingegneria Elettrica e delle Tecnologie dell’Informazione, Università degli Studi di Napoli Federico II, Via Claudio 21, 80125 Napoli (Italy); Dominguez, O. [GTD Sistemas de Información, 08005 Barcelona (Spain); Fernandez-Hernando, J.L. [ITER Organization, Route de Vinon sur Verdon, 13115 Saint Paul-lez-Durance (France); Pironti, A. [Consorzio CREATE/Dipartimento di Ingegneria Elettrica e delle Tecnologie dell’Informazione, Università degli Studi di Napoli Federico II, Via Claudio 21, 80125 Napoli (Italy); Simrock, S. [ITER Organization, Route de Vinon sur Verdon, 13115 Saint Paul-lez-Durance (France); and others

    2015-10-15

    In a tokamak the magnetic diagnostics are key to the exploitation of the machine. They play a central role in the real-time control of fundamental plasma properties, such as the plasma shape and position, while also contributing with important data to a better understanding of the plasma physics. One of the particular challenges of the ITER magnetics diagnostic is the need to balance high system reliability with sufficient freedom to tune and improve the quality of the diagnostic physics output. This requirement calls for a design pattern where the functions related to plasma control and protection are loosely coupled with the functions related to the plasma science. This work reports on the current status of the magnetics plant system controller design and discusses some possible design solutions that address the aforementioned issue.

  14. Microgrids architectures and control

    CERN Document Server

    Hatziargyriou, Nikos

    2014-01-01

    Microgrids are the most innovative area in the electric power industry today. Future microgrids could exist as energy-balanced cells within existing power distribution grids or stand-alone power networks within small communities. A definitive presentation on all aspects of microgrids, this text examines the operation of microgrids - their control concepts and advanced architectures including multi-microgrids. It takes a logical approach to overview the purpose and the technical aspects of microgrids, discussing the social, economic and environmental benefits to power system operation. The bo

  15. Aspects of Wind Power Plant Collector Network Layout and Control Architecture

    DEFF Research Database (Denmark)

    Altin, Müfit; Teodorescu, Remus; Bak-Jensen, Birgitte;

    2010-01-01

    . Therefore, connection topology and control concepts of large WPPs should be carefully investigated to improve the overall performance of both the WPP and the power systems. This paper aims to present a general overview of the design considerations for the electrical layout of WPPs and the WPP control...

  16. Mobile Remote Control Architecture

    Directory of Open Access Journals (Sweden)

    George Stefan Bogdan

    2012-03-01

    Full Text Available When mobile device become more and more popular the need to have a software bridge between them and the old fashioned computers became evident. Many different solutions have appeared to fill the void but few offer more than file sinking or remote SSH (secure shell connections. For computer professionals and other alike a tool that can do more regarding this connectivity and control gap became necessary. With this paper it is described an architecture and an implementation for creating such a system, underlining the difficulties, challenges and the many choices regarding overall system design, security and implementation that need to be made in order to provide the user with a secure, reliable and professional solution.

  17. An architecture for implementation of multivariable controllers

    DEFF Research Database (Denmark)

    Niemann, Hans Henrik; Stoustrup, Jakob

    1999-01-01

    august 2002 Abstract An architecture for implementation of multivariable controllers is presented in this paper. The architecture is based on the Youla-Jabr-Bongiorno-Kucera parameterization of all stabilizing controllers. By using this architecture for implementation of multivariable controllers...

  18. Kernel methods for phenotyping complex plant architecture.

    Science.gov (United States)

    Kawamura, Koji; Hibrand-Saint Oyant, Laurence; Foucher, Fabrice; Thouroude, Tatiana; Loustau, Sébastien

    2014-02-07

    The Quantitative Trait Loci (QTL) mapping of plant architecture is a critical step for understanding the genetic determinism of plant architecture. Previous studies adopted simple measurements, such as plant-height, stem-diameter and branching-intensity for QTL mapping of plant architecture. Many of these quantitative traits were generally correlated to each other, which give rise to statistical problem in the detection of QTL. We aim to test the applicability of kernel methods to phenotyping inflorescence architecture and its QTL mapping. We first test Kernel Principal Component Analysis (KPCA) and Support Vector Machines (SVM) over an artificial dataset of simulated inflorescences with different types of flower distribution, which is coded as a sequence of flower-number per node along a shoot. The ability of discriminating the different inflorescence types by SVM and KPCA is illustrated. We then apply the KPCA representation to the real dataset of rose inflorescence shoots (n=1460) obtained from a 98 F1 hybrid mapping population. We find kernel principal components with high heritability (>0.7), and the QTL analysis identifies a new QTL, which was not detected by a trait-by-trait analysis of simple architectural measurements. The main tools developed in this paper could be use to tackle the general problem of QTL mapping of complex (sequences, 3D structure, graphs) phenotypic traits.

  19. Launch Vehicle Control Center Architectures

    Science.gov (United States)

    Watson, Michael D.; Epps, Amy; Woodruff, Van; Vachon, Michael Jacob; Monreal, Julio; Levesque, Marl; Williams, Randall; Mclaughlin, Tom

    2014-01-01

    Launch vehicles within the international community vary greatly in their configuration and processing. Each launch site has a unique processing flow based on the specific launch vehicle configuration. Launch and flight operations are managed through a set of control centers associated with each launch site. Each launch site has a control center for launch operations; however flight operations support varies from being co-located with the launch site to being shared with the space vehicle control center. There is also a nuance of some having an engineering support center which may be co-located with either the launch or flight control center, or in a separate geographical location altogether. A survey of control center architectures is presented for various launch vehicles including the NASA Space Launch System (SLS), United Launch Alliance (ULA) Atlas V and Delta IV, and the European Space Agency (ESA) Ariane 5. Each of these control center architectures shares some similarities in basic structure while differences in functional distribution also exist. The driving functions which lead to these factors are considered and a model of control center architectures is proposed which supports these commonalities and variations.

  20. TCP transcription factors: architectures of plant form.

    Science.gov (United States)

    Manassero, Nora G Uberti; Viola, Ivana L; Welchen, Elina; Gonzalez, Daniel H

    2013-04-01

    After its initial definition in 1999, the TCP family of transcription factors has become the focus of a multiplicity of studies related with plant development at the cellular, organ, and tissue levels. Evidence has accumulated indicating that TCP transcription factors are the main regulators of plant form and architecture and constitute a tool through which evolution shapes plant diversity. The TCP transcription factors act in a multiplicity of pathways related with cell proliferation and hormone responses. In recent years, the molecular pathways of TCP protein action and biochemical studies on their mode of interaction with DNA have begun to shed light on their mechanism of action. However, the available information is fragmented and a unifying view of TCP protein action is lacking, as well as detailed structural studies of the TCP-DNA complex. Also important, the possible role of TCP proteins as integrators of plant developmental responses to the environment has deserved little attention. In this review, we summarize the current knowledge about the structure and functions of TCP transcription factors and analyze future perspectives for the study of the role of these proteins and their use to modify plant development.

  1. On Control Strategies for Responsive Architectural Structures

    DEFF Research Database (Denmark)

    Kirkegaard, Poul Henning; Parigi, Dario

    2012-01-01

    The present paper considers control of responsive architectural structures for improvement of structural performance by recognizing changes in their environments and loads, adapting to meet goals, and using past events to improve future performance or maintain serviceability. The general scope...... of the paper is to discuss control strategies for responsive architectural structures, particularly reconfigurable architectural structures which can transform body shape, i.e. a transformation into more than one or two different shape alternatives....

  2. Supervisory Control System Architecture for Advanced Small Modular Reactors

    Energy Technology Data Exchange (ETDEWEB)

    Cetiner, Sacit M [ORNL; Cole, Daniel L [University of Pittsburgh; Fugate, David L [ORNL; Kisner, Roger A [ORNL; Melin, Alexander M [ORNL; Muhlheim, Michael David [ORNL; Rao, Nageswara S [ORNL; Wood, Richard Thomas [ORNL

    2013-08-01

    This technical report was generated as a product of the Supervisory Control for Multi-Modular SMR Plants project within the Instrumentation, Control and Human-Machine Interface technology area under the Advanced Small Modular Reactor (SMR) Research and Development Program of the U.S. Department of Energy. The report documents the definition of strategies, functional elements, and the structural architecture of a supervisory control system for multi-modular advanced SMR (AdvSMR) plants. This research activity advances the state-of-the art by incorporating decision making into the supervisory control system architectural layers through the introduction of a tiered-plant system approach. The report provides a brief history of hierarchical functional architectures and the current state-of-the-art, describes a reference AdvSMR to show the dependencies between systems, presents a hierarchical structure for supervisory control, indicates the importance of understanding trip setpoints, applies a new theoretic approach for comparing architectures, identifies cyber security controls that should be addressed early in system design, and describes ongoing work to develop system requirements and hardware/software configurations.

  3. An Improved Production Activity Control Architecture for Shop Floor Control

    Institute of Scientific and Technical Information of China (English)

    SHAHIDIkramullahButt; SUNHou-fang; HAMIDUllahKhanNiazi

    2005-01-01

    This paper presents a further improved Production Activity Control Architecture to deal with the complexity of information by creating Sub-Producers and Sub-Movers which will not only give a better control at workstation level but also reduce load on the Dispatcher. It also makes an analysis of the basic and improved PAC (Production Activity Control) Architecture in the Control System for Integrated Manufacturing. The PAC Architecture and the improvement will further enhance the flexibility and adaptability of the architecture in the ever changing environment of the Shop Floor Control (SFC) Systems.

  4. Using Service Oriented Architecture in a Generic Virtual Power Plant

    DEFF Research Database (Denmark)

    Andersen, Peter Bach; Poulsen, Bjarne; Træholt, Chresten;

    2009-01-01

    interesting properties that can influence the future shape of power markets. The concept holds many promises including cheaper power to the consumer, a more flexible and responsive power production and the support of a more environment-friendly development. In order to realize a software solution supporting...... the Generic Virtual Power Plant, an array of different software design principles, patterns and architectures must be applied. Especially Service Oriented Architecture (SOA) can aid in implementing the Generic Virtual Power Plant....

  5. Plant Growth Modelling and Applications: The Increasing Importance of Plant Architecture in Growth Models

    Science.gov (United States)

    Fourcaud, Thierry; Zhang, Xiaopeng; Stokes, Alexia; Lambers, Hans; Körner, Christian

    2008-01-01

    Background Modelling plant growth allows us to test hypotheses and carry out virtual experiments concerning plant growth processes that could otherwise take years in field conditions. The visualization of growth simulations allows us to see directly and vividly the outcome of a given model and provides us with an instructive tool useful for agronomists and foresters, as well as for teaching. Functional–structural (FS) plant growth models are nowadays particularly important for integrating biological processes with environmental conditions in 3-D virtual plants, and provide the basis for more advanced research in plant sciences. Scope In this viewpoint paper, we ask the following questions. Are we modelling the correct processes that drive plant growth, and is growth driven mostly by sink or source activity? In current models, is the importance of soil resources (nutrients, water, temperature and their interaction with meristematic activity) considered adequately? Do classic models account for architectural adjustment as well as integrating the fundamental principles of development? Whilst answering these questions with the available data in the literature, we put forward the opinion that plant architecture and sink activity must be pushed to the centre of plant growth models. In natural conditions, sinks will more often drive growth than source activity, because sink activity is often controlled by finite soil resources or developmental constraints. PMA06 This viewpoint paper also serves as an introduction to this Special Issue devoted to plant growth modelling, which includes new research covering areas stretching from cell growth to biomechanics. All papers were presented at the Second International Symposium on Plant Growth Modeling, Simulation, Visualization and Applications (PMA06), held in Beijing, China, from 13–17 November, 2006. Although a large number of papers are devoted to FS models of agricultural and forest crop species, physiological and genetic

  6. Architectural Considerations for Holonic Shop Floor Control

    DEFF Research Database (Denmark)

    Langer, Gilad; Bilberg, Arne

    1997-01-01

    as flexible. This is a highly de-manding task for the manufacturing control system. The emerging theory regarding Holonic Manufacturing Sys-tems (HMS) introduces an advantageous theoretical foundation for the control system of the manufacturing system of the future. This article presents an overview...... will present a model of both a holonic cell and multi-cell control architecture. The work is based on a theoretical study of new manufac-turing systems theories, practical test, development of a prototype, and two case studies. It is part of a research project which aims at developing a multi-cell control...... architecture based on the Holonic Manufacturing Sys-tem theory....

  7. Advanced control architecture for autonomous vehicles

    Science.gov (United States)

    Maurer, Markus; Dickmanns, Ernst D.

    1997-06-01

    An advanced control architecture for autonomous vehicles is presented. The hierarchical architecture consists of four levels: a vehicle level, a control level, a rule-based level and a knowledge-based level. A special focus is on forms of internal representation, which have to be chosen adequately for each level. The control scheme is applied to VaMP, a Mercedes passenger car which autonomously performs missions on German freeways. VaMP perceives the environment with its sense of vision and conventional sensors. It controls its actuators for locomotion and attention focusing. Modules for perception, cognition and action are discussed.

  8. Plant architecture and growth response of kudzu (fabaceae: Fabaceae) to simulated insect herbivory.

    Science.gov (United States)

    Frye, M J; Hough-Goldstein, J

    2013-10-01

    Kudzu [Pueraria montana variety lobata (Willd.) Maesen & S. M. Almeida] plant architecture and growth were compared for plants subjected to 4 wk of simulated herbivory (75% leaf cutting) and no damage. Simulated herbivory reduced above-ground and root biomass by 40 and 47%, respectively, whereas total vine length and average length of the 10 longest vines were reduced by 48 and 43%, respectively, compared with control plants. Plant architecture was also affected, with damaged plants showing a significantly reduced proportion of primary vines, shorter secondary vines, and reduced average internode distances compared with the control plants. In natural situations, these changes would reduce the ability of kudzu to compete for light and other resources by affecting the plant's climbing habit.

  9. Future control architecture and emerging observability needs

    DEFF Research Database (Denmark)

    Morch, Andrei Z.; Jakobsen, Sigurd Hofsmo; Visscher, Klaas

    2015-01-01

    or observing. The present practices of observing distribution networks are quite limited and vary from country to country. New network architectures are expected to evolve in the close future, including web-of-cells (concept defined in ELECTRA), which will result in new control schemes, significantly different...

  10. Computational Architecture For Control Of Remote Manipulator

    Science.gov (United States)

    Szakaly, Zoltan F.

    1989-01-01

    Synchronization done by hardware to reduce software overhead. Computing resources located at both master-arm node and slave-arm node. This architecture provides for effective control while reducing computational burden on host computer and reducing and balancing load on communication channel.

  11. Integrated computer control system architectural overview

    Energy Technology Data Exchange (ETDEWEB)

    Van Arsdall, P.

    1997-06-18

    This overview introduces the NIF Integrated Control System (ICCS) architecture. The design is abstract to allow the construction of many similar applications from a common framework. This summary lays the essential foundation for understanding the model-based engineering approach used to execute the design.

  12. An architecture for fault tolerant controllers

    DEFF Research Database (Denmark)

    Niemann, Hans Henrik; Stoustrup, Jakob

    2005-01-01

    degradation in the sense of guaranteed degraded performance. A number of fault diagnosis problems, fault tolerant control problems, and feedback control with fault rejection problems are formulated/considered, mainly from a fault modeling point of view. The method is illustrated on a servo example including......A general architecture for fault tolerant control is proposed. The architecture is based on the (primary) YJBK parameterization of all stabilizing compensators and uses the dual YJBK parameterization to quantify the performance of the fault tolerant system. The approach suggested can be applied...... for additive faults, parametric faults, and for system structural changes. The modeling for each of these fault classes is described. The method allows to design for passive as well as for active fault handling. Also, the related design method can be fitted either to guarantee stability or to achieve graceful...

  13. Passive Control Architecture for Virtual Humans

    CERN Document Server

    Rennuit, Antoine; Merlhiot, Xavier; Andriot, Claude; Guillaume, François; Chevassus, Nicolas; Chablat, Damien; Chedmail, Patrick

    2007-01-01

    In the present paper, we introduce a new control architecture aimed at driving virtual humans in interaction with virtual environments, by motion capture. It brings decoupling of functionalities, and also of stability thanks to passivity. We show projections can break passivity, and thus must be used carefully. Our control scheme enables task space and internal control, contact, and joint limits management. Thanks to passivity, it can be easily extended. Besides, we introduce a new tool as for manikin's control, which makes it able to build passive projections, so as to guide the virtual manikin when sharp movements are needed.

  14. Can we manipulate root system architecture to control soil erosion?

    Science.gov (United States)

    Ola, A.; Dodd, I. C.; Quinton, J. N.

    2015-09-01

    Soil erosion is a major threat to soil functioning. The use of vegetation to control erosion has long been a topic for research. Much of this research has focused on the above-ground properties of plants, demonstrating the important role that canopy structure and cover plays in the reduction of water erosion processes. Less attention has been paid to plant roots. Plant roots are a crucial yet under-researched factor for reducing water erosion through their ability to alter soil properties, such as aggregate stability, hydraulic function and shear strength. However, there have been few attempts to specifically manipulate plant root system properties to reduce soil erosion. Therefore, this review aims to explore the effects that plant roots have on soil erosion and hydrological processes, and how plant root architecture might be manipulated to enhance its erosion control properties. We demonstrate the importance of root system architecture for the control of soil erosion. We also show that some plant species respond to nutrient-enriched patches by increasing lateral root proliferation. The erosional response to root proliferation will depend upon its location: at the soil surface dense mats of roots may reduce soil erodibility but block soil pores thereby limiting infiltration, enhancing runoff. Additionally, in nutrient-deprived regions, root hair development may be stimulated and larger amounts of root exudates released, thereby improving aggregate stability and decreasing erodibility. Utilizing nutrient placement at specific depths may represent a potentially new, easily implemented, management strategy on nutrient-poor agricultural land or constructed slopes to control erosion, and further research in this area is needed.

  15. Controlling Functional Group Architecture in Artificial Cells

    Science.gov (United States)

    2015-07-02

    further enable enzyme encapsulation to improve the efficiency of light-driven hydrogen fuel production. 5. Changes in key personnel, if applicable : -None ...Controlling Functional Group Architecture in Artificial Cells 5a. CONTRACT NUMBER W9132T-14-2-0002 5b. GRANT NUMBER 5c. PROGRAM ELEMENT NUMBER 6...cycloadditions to modify reactive groups within the phospholipid membrane structure and how the nature of the reactive elements, the copper catalyst

  16. The meiotic transcriptome architecture of plants

    Directory of Open Access Journals (Sweden)

    Stefanie eDukowic-Schulze

    2014-06-01

    Full Text Available Although a number of genes that play key roles during the meiotic process have been characterized in great detail, the whole process of meiosis is still not completely unraveled. To gain insight into the bigger picture, large-scale approaches like RNA-seq and microarray can help to elucidate the transcriptome landscape during meiosis, discover co-regulated genes, enriched processes, and highly expressed known and unknown genes which might be important for meiosis. These high-throughput studies are gaining more and more popularity, but their beginnings reach back as far as the 1960´s. Frequently whole anthers or post-meiotic pollen were investigated, while less data is available on isolated cells during meiosis and only few studies that addressed the transcriptome of female meiosis. For this review, we compiled studies covering different plant species, and summarized and compared their key findings. Besides pointing to consistent as well as unique discoveries, we finally draw conclusions what can be learned from these studies and how to follow up on them in the future.

  17. Manufacturing plant control challenges and issues

    OpenAIRE

    Morel, Gérard; Valckenaers, Paul; Faure, Jean-Marc; Pereira, Carlos Eduardo; Diedrich, Christian

    2007-01-01

    International audience; Enterprise control system integration between business systems, manufacturing execution systems and shop-floor process-control systems remains a key issue for facilitating the deployment of plant-wide information control systems for practical e-business-to-manufacturing industry-led issues. Achievement of the integration-in-manufacturing paradigm based on centralized/distributed hardware/software automation architectures is evolving using the intelligence-in-manufactur...

  18. Protein domains and architectural innovation in plant-associated Proteobacteria

    Directory of Open Access Journals (Sweden)

    Downie J Allan

    2005-02-01

    Full Text Available Abstract Background Evolution of new complex biological behaviour tends to arise by novel combinations of existing building blocks. The functional and evolutionary building blocks of the proteome are protein domains, the function of a protein being dependent on its constituent domains. We clustered completely-sequenced proteomes of prokaryotes on the basis of their protein domain content, as defined by Pfam (release 16.0. This revealed that, although there was a correlation between phylogeny and domain content, other factors also have an influence. This observation motivated an investigation of the relationship between an organism's lifestyle and the complement of domains and domain architectures found within its proteome. Results We took a census of all protein domains and domain combinations (architectures encoded in the completely-sequenced proteobacterial genomes. Nine protein domain families were identified that are found in phylogenetically disparate plant-associated bacteria but are absent from non-plant-associated bacteria. Most of these are known to play a role in the plant-associated lifestyle, but they also included domain of unknown function DUF1427, which is found in plant symbionts and pathogens of the alpha-, beta- and gamma-Proteobacteria, but not known in any other organism. Further, several domains were identified as being restricted to phytobacteria and Eukaryotes. One example is the RolB/RolC glucosidase family, which is found only in Agrobacterium species and in plants. We identified the 0.5% of Pfam protein domain families that were most significantly over-represented in the plant-associated Proteobacteria with respect to the background frequencies in the whole set of available proteobacterial proteomes. These included guanylate cyclase, domains implicated in aromatic catabolism, cellulase and several domains of unknown function. We identified 459 unique domain architectures found in phylogenetically diverse plant pathogens

  19. Architecture of WEST plasma control system

    Energy Technology Data Exchange (ETDEWEB)

    Ravenel, N., E-mail: nathalie.ravenel@cea.fr [CEA, IRFM, F-13108 Saint-Paul-lez-Durance (France); Nouailletas, R.; Barana, O.; Brémond, S.; Moreau, P.; Guillerminet, B.; Balme, S.; Allegretti, L. [CEA, IRFM, F-13108 Saint-Paul-lez-Durance (France); Mannori, S. [ENEA C.R. Brasimone (Italy)

    2014-05-15

    To operate advanced plasma scenario (long pulse with high stored energy) in present and future tokamak devices under safe operation conditions, the control requirements of the plasma control system (PCS) leads to the development of advanced feedback control and real time handling exceptions. To develop these controllers and these exceptions handling strategies, a project aiming at setting up a flight simulator has started at CEA in 2009. Now, the new WEST (W Environment in Steady-state Tokamak) project deals with modifying Tore Supra into an ITER-like divertor tokamak. This upgrade impacts a lot of systems including Tore Supra PCS and is the opportunity to improve the current PCS architecture to implement the previous works and to fulfill the needs of modern tokamak operation. This paper is dealing with the description of the architecture of WEST PCS. Firstly, the requirements will be presented including the needs of new concepts (segments configuration, alternative (or backup) scenario, …). Then, the conceptual design of the PCS will be described including the main components and their functions. The third part will be dedicated to the proposal RT framework and to the technologies that we have to implement to reach the requirements.

  20. Diversity of maize shoot apical meristem architecture and its relationship to plant morphology.

    Science.gov (United States)

    Thompson, Addie M; Yu, Jianming; Timmermans, Marja C P; Schnable, Patrick; Crants, James C; Scanlon, Michael J; Muehlbauer, Gary J

    2015-03-05

    The shoot apical meristem contains a pool of undifferentiated stem cells and controls initiation of all aerial plant organs. In maize (Zea mays), leaves are formed throughout vegetative development; on transition to floral development, the shoot meristem forms the tassel. Due to the regulated balance between stem cell maintenance and organogenesis, the structure and morphology of the shoot meristem are constrained during vegetative development. Previous work identified loci controlling meristem architecture in a recombinant inbred line population. The study presented here expanded on this by investigating shoot apical meristem morphology across a diverse set of maize inbred lines. Crosses of these lines to common parents showed varying phenotypic expression in the F1, with some form of heterosis occasionally observed. An investigation of meristematic growth throughout vegetative development in diverse lines linked the timing of reproductive transition to flowering time. Phenotypic correlations of meristem morphology with adult plant traits showed an association between the meristem and flowering time, leaf shape, and yield traits, revealing links between the control and architecture of undifferentiated and differentiated plant organs. Finally, quantitative trait loci mapping was utilized to map the genetic architecture of these meristem traits in two divergent populations. Control of meristem architecture was mainly population-specific, with 15 total unique loci mapped across the two populations with only one locus identified in both populations. Copyright © 2015 Thompson et al.

  1. Architecture and evolution of a minute plant genome

    Science.gov (United States)

    Ibarra-Laclette, Enrique; Lyons, Eric; Hernández-Guzmán, Gustavo; Pérez-Torres, Claudia Anahí; Carretero-Paulet, Lorenzo; Chang, Tien-Hao; Lan, Tianying; Welch, Andreanna J.; Juárez, María Jazmín Abraham; Simpson, June; Fernández-Cortés, Araceli; Arteaga-Vázquez, Mario; Góngora-Castillo, Elsa; Acevedo-Hernández, Gustavo; Schuster, Stephan C.; Himmelbauer, Heinz; Minoche, André E.; Xu, Sen; Lynch, Michael; Oropeza-Aburto, Araceli; Cervantes-Pérez, Sergio Alan; de Jesús Ortega-Estrada, María; Cervantes-Luevano, Jacob Israel; Michael, Todd P.; Mockler, Todd; Bryant, Douglas; Herrera-Estrella, Alfredo; Albert, Victor A.; Herrera-Estrella, Luis

    2016-01-01

    It has been argued that the evolution of plant genome size is principally unidirectional and increasing owing to the varied action of whole-genome duplications (WGDs) and mobile element proliferation1. However, extreme genome size reductions have been reported in the angiosperm family tree. Here we report the sequence of the 82-megabase genome of the carnivorous bladderwort plant Utricularia gibba. Despite its tiny size, the U. gibba genome accommodates a typical number of genes for a plant, with the main difference from other plant genomes arising from a drastic reduction in non-genic DNA. Unexpectedly, we identified at least three rounds of WGD in U. gibba since common ancestry with tomato (Solanum) and grape (Vitis). The compressed architecture of the U. gibba genome indicates that a small fraction of intergenic DNA, with few or no active retrotransposons, is sufficient to regulate and integrate all the processes required for the development and reproduction of a complex organism. PMID:23665961

  2. Control Architecture for Future Power Systems

    DEFF Research Database (Denmark)

    Heussen, Kai

    This project looks at control of future electric power grids with a high proportion of wind power and a large number of decentralized power generation, consumption and storage units participating to form a reliable supply of electrical energy. The first objective is developing a method...... for assessment of control architecture of electric power systems with a means-ends perspective. Given this purpose-oriented understanding of a power system, the increasingly stochastic nature of this problem shall be addressed and approaches for robust, distributed control will be proposed and analyzed....... The introduction of close-to-real-time markets is envisioned to enable fast distributed resource allocation while guaranteeing system stability. Electric vehicles will be studied as a means of distributed reversible energy storage and a flexible power electronic interface, with application to the case...

  3. Controller Architecture Design for MMC-HVDC

    Directory of Open Access Journals (Sweden)

    ZHANG, B.

    2014-05-01

    Full Text Available Compared with high voltage direct current (HVDC, the primary and secondary systems of modular multilevel converter based HVDC (MMC-HVDC are complicated. And the characteristics of the control system determine the properties of the MMC-HVDC system to a certain extent. This paper investigates the design of control architecture. First, the structure and parameters of the 21-level MMC-HVDC are designed. Second, the framework of the control system is studied in details and a complete control system is established. The communication mode and content are built between each layer, and the control system program is developed and debugged. Then The steady state test platform of the sub-module and the relevant control system are designed. Finally, the steady-state tests and the system test of the physical MMC-HVDC simulation system are conducted, which prove that the SMC can control the sub-module (SM efficiently, and the control system could realize efficient start and stop of the physical system. Meanwhile, the capacitor voltage balance between the sub-modules and the basic fault protection and control of the DC voltage and power are verified to be effective.

  4. Contributions of nuclear architecture to transcriptional control.

    Science.gov (United States)

    Stein, G S; van Wijnen, A J; Stein, J; Lian, J B; Montecino, M

    1995-01-01

    Three parameters of nuclear structure contribute to transcriptional control. The linear representation of promoter elements provides competency for physiological responsiveness within the contexts of development as well as cycle- and phenotype-dependent regulation. Chromatin structure and nucleosome organization reduce distances between independent regulatory elements providing a basis for integrating components of transcriptional control. The nuclear matrix supports gene expression by imposing physical constraints on chromatin related to three-dimensional genomic organization. In addition, the nuclear matrix facilitates gene localization as well as the concentration and targeting of transcription factors. Several lines of evidence are presented that are consistent with involvement of multiple levels of nuclear architecture in cell growth and tissue-specific gene expression during differentiation. Growth factor and steroid hormone responsive modifications in chromatin structure, nucleosome organization, and the nuclear matrix that influence transcription of the cell cycle-regulated histone gene and the bone tissue-specific osteocalcin gene during progressive expression of the osteoblast phenotype are considered.

  5. Evolution and genome architecture in fungal plant pathogens.

    Science.gov (United States)

    Möller, Mareike; Stukenbrock, Eva H

    2017-08-07

    The fungal kingdom comprises some of the most devastating plant pathogens. Sequencing the genomes of fungal pathogens has shown a remarkable variability in genome size and architecture. Population genomic data enable us to understand the mechanisms and the history of changes in genome size and adaptive evolution in plant pathogens. Although transposable elements predominantly have negative effects on their host, fungal pathogens provide prominent examples of advantageous associations between rapidly evolving transposable elements and virulence genes that cause variation in virulence phenotypes. By providing homogeneous environments at large regional scales, managed ecosystems, such as modern agriculture, can be conducive for the rapid evolution and dispersal of pathogens. In this Review, we summarize key examples from fungal plant pathogen genomics and discuss evolutionary processes in pathogenic fungi in the context of molecular evolution, population genomics and agriculture.

  6. Root architecture characteristics of plant inlay in live slope grating

    Institute of Scientific and Technical Information of China (English)

    Gao Jia-rong; Wang Fang; Gao Yang; Rosemarie Stangl

    2007-01-01

    In the experimental garden of the Department of Soil Bioengineering and Landscape Construction, University of Applied Life Sciences in Vienna, Austria, coarse root systems of three different brush species were completely excavated and semi-automatically digitized. The species were Lonicera xylosteum, Ligustrum vulgare and Euonymus europaeus. The 3-D root architectures reveal different growth strategies between species, which are related to ecological characteristics and physical soil properties. The root architecture of Lonicera xylosteum and Ligustrum vulgare, planted in the under layer of the live slope grading, where the soil is very tight and the soil water content and fertility are relatively low, is shallow. However, the root distribution of E. europaeus, planted in the middle layer, where environmental conditions are better, is deeper. Most of the root biomass of the three species is concentrated in the 0-30 cm soil layer. A quarter of the root biomass ofLigustrum vulgare is distributed in the upper layer of the plant inlay. E. europaeus has a relatively even distribution in the 30-60 cm and 60-90 cm soil layer.

  7. Influence of plant architecture on maize physiology and yield in the Heilonggang River valley

    Directory of Open Access Journals (Sweden)

    Shoubing Huang

    2017-02-01

    Full Text Available The size and distribution of leaf area determine light interception in a crop canopy and influence overall photosynthesis and yield. Optimized plant architecture renders modern maize hybrids (Zea mays L. more productive, owing to their tolerance of high plant densities. To determine physiological and yield response to maize plant architecture, a field experiment was conducted in 2010 and 2011. With the modern maize hybrid ZD958, three plant architectures, namely triangle, diamond and original plants, were included at two plant densities, 60,000 and 90,000 plants ha−1. Triangle and diamond plants were derived from the original plant by spraying the chemical regulator Jindele (active ingredients, ethephon, and cycocel at different vegetative stages. To assess the effects of plant architecture, a light interception model was developed. Plant height, ear height, leaf size, and leaf orientation of the two regulated plant architectures were significantly reduced or altered compared with those of the original plants. On average across both plant densities and years, the original plants showed higher yield than the triangle and diamond plants, probably because of larger leaf area. The two-year mean grain yield of the original and diamond plants were almost the same at 90,000 plants ha−1 (8714 vs. 8798 kg ha−1. The yield increase (up to 5% of the diamonds plant at high plant densities was a result of increased kernel number per ear, which was likely a consequence of improved plant architecture in the top and middle canopy layers. The optimized light distribution within the canopy can delay leaf senescence, especially for triangle plants. The fraction of incident radiation simulated by the interception model successfully reflected plant architecture traits. Integration of canopy openness is expected to increase the simulation accuracy of the present model. Maize plant architecture with increased tolerance of high densities is probably

  8. An Open Specification for Space Project Mission Operations Control Architectures

    Science.gov (United States)

    Hooke, A.; Heuser, W. R.

    1995-01-01

    An 'open specification' for Space Project Mission Operations Control Architectures is under development in the Spacecraft Control Working Group of the American Institute for Aeronautics and Astro- nautics. This architecture identifies 5 basic elements incorporated in the design of similar operations systems: Data, System Management, Control Interface, Decision Support Engine, & Space Messaging Service.

  9. Research on Network Architecture with Trustworthiness and Controllability

    Institute of Scientific and Technical Information of China (English)

    Chuang Lin; Xue-Hai Peng

    2006-01-01

    In this paper, the architecture of trustworthy and controllable networks is discussed to meet arising application requirements. After reviewing the lessons and experiences of success and failure in the Internet and summarizing related work, we analyze the basic targets of providing trustworthiness and controllability. Then, the anticipant architecture is introduced. Based on the resulting design, several trustworthy and controllable mechanisms are also discussed.

  10. Multiple Estimation Architecture in Discrete-Time Adaptive Mixing Control

    Directory of Open Access Journals (Sweden)

    Simone Baldi

    2013-05-01

    Full Text Available Adaptive mixing control (AMC is a recently developed control scheme for uncertain plants, where the control action coming from a bank of precomputed controller is mixed based on the parameter estimates generated by an on-line parameter estimator. Even if the stability of the control scheme, also in the presence of modeling errors and disturbances, has been shown analytically, its transient performance might be sensitive to the initial conditions of the parameter estimator. In particular, for some initial conditions, transient oscillations may not be acceptable in practical applications. In order to account for such a possible phenomenon and to improve the learning capability of the adaptive scheme, in this paper a new mixing architecture is developed, involving the use of parallel parameter estimators, or multi-estimators, each one working on a small subset of the uncertainty set. A supervisory logic, using performance signals based on the past and present estimation error, selects the parameter estimate to determine the mixing of the controllers. The stability and robustness properties of the resulting approach, referred to as multi-estimator adaptive mixing control (Multi-AMC, are analytically established. Besides, extensive simulations demonstrate that the scheme improves the transient performance of the original AMC with a single estimator. The control scheme and the analysis are carried out in a discrete-time framework, for easier implementation of the method in digital control.

  11. Software architecture of INO340 telescope control system

    Science.gov (United States)

    Ravanmehr, Reza; Khosroshahi, Habib

    2016-08-01

    The software architecture plays an important role in distributed control system of astronomical projects because many subsystems and components must work together in a consistent and reliable way. We have utilized a customized architecture design approach based on "4+1 view model" in order to design INOCS software architecture. In this paper, after reviewing the top level INOCS architecture, we present the software architecture model of INOCS inspired by "4+1 model", for this purpose we provide logical, process, development, physical, and scenario views of our architecture using different UML diagrams and other illustrative visual charts. Each view presents INOCS software architecture from a different perspective. We finish the paper by science data operation of INO340 and the concluding remarks.

  12. Aquatic plant control research

    Energy Technology Data Exchange (ETDEWEB)

    Pryfogle, P.A.; Rinehart, B.N. [Idaho National Engineering Lab., Idaho Falls, ID (United States); Ghio, E.G. [Pacific Gas & Electric Company, San Francisco, CA (United States). Hydro Generation Engineering

    1997-05-01

    The Northwest region of the United States contains extensive canal systems that transport water for hydropower generation. Nuisance plants, including algae, that grow in these systems reduce their hydraulic capacity through water displacement and increased surface friction. Most control methods are applied in an ad hoc fashion. The goal of this work is to develop cost-effective, environmentally sound, long-term management strategies to prevent and control nuisance algal growth. This paper reports on a multi-year study, performed in collaboration with the Pacific Gas & Electric Company, to investigate algal growth in their canal systems, and to evaluate various control methodologies. Three types of controls, including mechanical, biological and chemical treatment, were selected for testing and evaluation. As part of this study, water quality data were collected and algal communities were sampled from numerous stations throughout the distribution system at regular intervals. This study resulted in a more comprehensive understanding of conditions leading to the development of nuisance algal growth, a better informed selection of treatment plans, and improved evaluation of the effectiveness for the control strategies selected for testing.

  13. Developing a System Architecture for Holonic Shop Floor Control

    DEFF Research Database (Denmark)

    Sørensen, Christian; Langer, Gilad; Alting, Leo

    1998-01-01

    This paper describes the results of research regarding the emerging theory of Holonic Manufacturing Systems. This theory and in particular its corresponding reference architecture serves as the basis for the development of a system-architecture for shop floor control systems in a multi-cellular c......This paper describes the results of research regarding the emerging theory of Holonic Manufacturing Systems. This theory and in particular its corresponding reference architecture serves as the basis for the development of a system-architecture for shop floor control systems in a multi...

  14. Aquatic Plants and their Control.

    Science.gov (United States)

    Michigan State Dept. of Natural Resources, Lansing.

    Aquatic plants can be divided into two types: algae and macrophytes. The goal of aquatic plant management is to maintain a proper balance of plants within a lake and still retain the lake's recreational and economic importance. Aquatic plant management programs have two phases: long-term management (nutrient control), and short-term management…

  15. Control architecture of power systems: Modeling of purpose and function

    DEFF Research Database (Denmark)

    Heussen, Kai; Saleem, Arshad; Lind, Morten

    2009-01-01

    for semantically consistent modeling of control architecture is presented. The method, called Multilevel Flow Modeling (MFM), is applied to the case of system balancing. It was found that MFM is capable of capturing implicit control knowledge, which is otherwise difficult to formalize. The method has possible...... of power systems and it is necessary to identify requirements and functions. How does new control architecture fit with the old architecture? How can power system functions be specified independent of technology? What is the purpose of control in power systems? In this paper, a method suitable...

  16. Molecular analysis of plant architecture in Arabidopsis thaliana using activation tagging.

    NARCIS (Netherlands)

    Chalfun Junior, A.

    2004-01-01

    Keywords: Arabidopsisthaliana, activation tagging, T-DNA, transposon, mutants, enhancer, DNA methylation, plant architecture, development, forward/reverse genetics, lateral organs, flower, vascular tissue, HLH, transmembrane, transcription factorsPlant development is one of the mos

  17. Ideal root architecture for phosphorus acquisition of plants under water and phosphorus coupled stresses: From simulation to application

    Institute of Scientific and Technical Information of China (English)

    2001-01-01

    Under water and phosphorus (P) coupledstresses, root architecture may be related to P acquisition efficiency of plants. Understanding the relationship between root architecture and P acquisition efficiency may provide basic information for improving P acquisition efficiency of plants. In the present study, we quantitatively described the effects of root architecture on P acquisition efficiency by computer simulation together with controlled biological experiments so as to determine an ideal root architecture for efficient P acquisition under water and P coupled stresses.Our results indicate that under given soil water conditions,the ideal root architecture for P acquisition efficiency of a tap root plant (as represented by common bean) is an "umbrella-shape'' root system whose basal roots tend to be shallow in the P-rich topsoil and tap roots tend to be deep for water in the subsoil. Meanwhile, the ideal root architecture for a fibrous root plant (as represented by upland rice) is a "beard-shape" root system with the moderately dispersed yet uniformly distributed adventitious and lateral roots so as to keep most roots in the topsoil for P and a few roots in the subsoil for water.

  18. [Alfalfa Planting as weed control

    Data.gov (United States)

    US Fish and Wildlife Service, Department of the Interior — This document is a letter to farming cooperators regarding the stipulations surrounding alfalfa plantings in lieu of small grain plantings to provide weed control,...

  19. Add Control: plant virtualization for control solutions in WWTP.

    Science.gov (United States)

    Maiza, M; Bengoechea, A; Grau, P; De Keyser, W; Nopens, I; Brockmann, D; Steyer, J P; Claeys, F; Urchegui, G; Fernández, O; Ayesa, E

    2013-01-01

    This paper summarizes part of the research work carried out in the Add Control project, which proposes an extension of the wastewater treatment plant (WWTP) models and modelling architectures used in traditional WWTP simulation tools, addressing, in addition to the classical mass transformations (transport, physico-chemical phenomena, biological reactions), all the instrumentation, actuation and automation & control components (sensors, actuators, controllers), considering their real behaviour (signal delays, noise, failures and power consumption of actuators). Its ultimate objective is to allow a rapid transition from the simulation of the control strategy to its implementation at full-scale plants. Thus, this paper presents the application of the Add Control simulation platform for the design and implementation of new control strategies at the WWTP of Mekolalde.

  20. An Architectural Style for Closed-loop Process-Control

    DEFF Research Database (Denmark)

    Christensen, Henrik Bærbak

    This report describes an architectural style for distributed closed-loop process control systems with high performance and hard real-time constraints. The style strikes a good balance between the architectural qualities of performance and modifiability/maintainability that traditionally are often...

  1. An Architectural Style for Closed-loop Process-Control

    DEFF Research Database (Denmark)

    Christensen, Henrik Bærbak; Eriksen, Ole

    2003-01-01

    This report describes an architectural style for distributed closed-loop process control systems with high performance and hard real-time constraints. The style strikes a good balance between the architectural qualities of performance and modifiability/maintainability that traditionally are often...

  2. A QoS Management and Control Architecture for Intranet

    Institute of Scientific and Technical Information of China (English)

    2002-01-01

    With the appearance of application, such as VoIP and VOD, traditional best-effort service of network cant meet the needs of these applications. This paper proposes a QoS management and control architecture for Intranet, through which guaranteed services of network can be implemented in Intranet. In this architecture, there is a QoS control server, which is responsible for QoS control and management,while the router forwards packets according to the command from it.

  3. The MADS-box gene SlMBP11 regulates plant architecture and affects reproductive development in tomato plants.

    Science.gov (United States)

    Guo, Xuhu; Chen, Guoping; Naeem, Muhammad; Yu, Xiaohu; Tang, Boyan; Li, Anzhou; Hu, Zongli

    2017-05-01

    MADS-domain proteins are important transcription factors that are involved in many biological processes of plants. In the present study, SlMBP11, a member of the AGL15 subfamily, was cloned in tomato plants (Solanum lycopersicon M.). SlMBP11 is ubiquitously expressed in all of the tissues we examined, whereas the SlMBP11 transcription levels were significantly higher in reproductive tissues than in vegetative tissues. Plants exhibiting increased SlMBP11 levels displayed reduced plant height, leaf size, and internode length as well as a loss of dominance in young seedlings, highly branched growth from each leaf axil, and increased number of nodes and leaves. Moreover, overexpression lines also exhibited reproductive phenotypes, such as those having a shorter style and split ovary, leading to polycarpous fruits, while the wild type showed normal floral organization. In addition, delayed perianth senescence was observed in transgenic tomatoes. These phenotypes were further confirmed by analyzing the morphological, anatomical and molecular features of lines exhibiting overexpression. These results suggest that SlMBP11 plays an important role in regulating plant architecture and reproductive development in tomato plants. These findings add a new class of transcription factors to the group of genes controlling axillary bud growth and illuminate a previously uncharacterized function of MADS-box genes in tomato plants. Copyright © 2017 Elsevier B.V. All rights reserved.

  4. An integrated architecture of adaptive neural network control for dynamic systems

    Energy Technology Data Exchange (ETDEWEB)

    Ke, Liu; Tokar, R.; Mcvey, B.

    1994-07-01

    In this study, an integrated neural network control architecture for nonlinear dynamic systems is presented. Most of the recent emphasis in the neural network control field has no error feedback as the control input which rises the adaptation problem. The integrated architecture in this paper combines feed forward control and error feedback adaptive control using neural networks. The paper reveals the different internal functionality of these two kinds of neural network controllers for certain input styles, e.g., state feedback and error feedback. Feed forward neural network controllers with state feedback establish fixed control mappings which can not adapt when model uncertainties present. With error feedbacks, neural network controllers learn the slopes or the gains respecting to the error feedbacks, which are error driven adaptive control systems. The results demonstrate that the two kinds of control scheme can be combined to realize their individual advantages. Testing with disturbances added to the plant shows good tracking and adaptation.

  5. Fine genetic mapping of Cp, a recessive gene for compact (dwarf) plant architecture in cucumber, cucumis sativus L

    Science.gov (United States)

    The compact or dwarf plant architecture is an important trait in cucumber breeding. Compact cucumber has the potential to be used in once-over mechanical harvest of pickling cucumber production. Compact growth habit is controlled by a simply inherited recessive gene. To facilitate markers assisted s...

  6. Distributed Control Architectures for Precision Spacecraft Formations Project

    Data.gov (United States)

    National Aeronautics and Space Administration — LaunchPoint Technologies, Inc. (LaunchPoint) proposes to develop synthesis methods and design architectures for distributed control systems in precision spacecraft...

  7. THE ARCHITECTURE OF THE REMOTE CONTROL SYSTEM OF ROBOTICS OBJECTS

    Directory of Open Access Journals (Sweden)

    S.V. Shavetov

    2014-03-01

    Full Text Available The paper deals with the architecture for the universal remote control system of robotics objects over the Internet global network. Control objects are assumed to be located at a considerable distance from a reference device or end-users. An overview of studies on the subject matter of remote control of technical objects is given. A structure chart of the architecture demonstrating the system usage in practice is suggested. Server software is considered that makes it possible to work with technical objects connected to the server as with a serial port and organize a stable tunnel connection between the controlled object and the end-user. The proposed architecture has been successfully tested on mobile robots Parallax Boe-Bot and Lego Mindstorms NXT. Experimental data about values of time delays are given demonstrating the effectiveness of the considered architecture.

  8. Modular reconfigurable machines incorporating modular open architecture control

    CSIR Research Space (South Africa)

    Padayachee, J

    2008-01-01

    Full Text Available degrees of freedom on a single platform. A corresponding modular Open Architecture Control (OAC) system is presented. OAC overcomes the inflexibility of fixed proprietary automation, ensuring that MRMs provide the reconfigurability and extensibility...

  9. [Quality control of plant extract].

    Science.gov (United States)

    Shao, Yun-dong; Gao, Wen-yuan; Liu, Dan; Jia, Wei; Duan, Hong-Quan; Zhang, Tie-jun

    2003-10-01

    The current situation of plant extract in domestic and international market was analyzed in the paper. The quality control of 20 plant extracts which have reasonably good sales in USA market was compared and analyzed. The analysis of the quality control of six plant extracts indicated that there were two main reasons leading to the varied quality specifications among different suppliers. One reason was that the plant species utilized by different companies were different. The other reason was that the extraction processes were different among different production plants. Comparing with the significant international suppliers of plant extracts, the product quality of Chinese companies were not satisfactory. It was suggested that chromatography and chromatographic fingerprint techniques should be applied to improve the quality control standard of plant extract in our country.

  10. A new flight control and management system architecture and configuration

    Science.gov (United States)

    Kong, Fan-e.; Chen, Zongji

    2006-11-01

    The advanced fighter should possess the performance such as super-sound cruising, stealth, agility, STOVL(Short Take-Off Vertical Landing),powerful communication and information processing. For this purpose, it is not enough only to improve the aerodynamic and propulsion system. More importantly, it is necessary to enhance the control system. A complete flight control system provides not only autopilot, auto-throttle and control augmentation, but also the given mission management. F-22 and JSF possess considerably outstanding flight control system on the basis of pave pillar and pave pace avionics architecture. But their control architecture is not enough integrated. The main purpose of this paper is to build a novel fighter control system architecture. The control system constructed on this architecture should be enough integrated, inexpensive, fault-tolerant, high safe, reliable and effective. And it will take charge of both the flight control and mission management. Starting from this purpose, this paper finishes the work as follows: First, based on the human nervous control, a three-leveled hierarchical control architecture is proposed. At the top of the architecture, decision level is in charge of decision-making works. In the middle, organization & coordination level will schedule resources, monitor the states of the fighter and switch the control modes etc. And the bottom is execution level which holds the concrete drive and measurement; then, according to their function and resources all the tasks involving flight control and mission management are sorted to individual level; at last, in order to validate the three-leveled architecture, a physical configuration is also showed. The configuration is distributed and applies some new advancement in information technology industry such line replaced module and cluster technology.

  11. Ultra-Stable Segmented Telescope Sensing and Control Architecture

    Science.gov (United States)

    Feinberg, Lee; Bolcar, Matthew; Knight, Scott; Redding, David

    2017-01-01

    The LUVOIR team is conducting two full architecture studies Architecture A 15 meter telescope that folds up in an 8.4m SLS Block 2 shroud is nearly complete. Architecture B 9.2 meter that uses an existing fairing size will begin study this Fall. This talk will summarize the ultra-stable architecture of the 15m segmented telescope including the basic requirements, the basic rationale for the architecture, the technologies employed, and the expected performance. This work builds on several dynamics and thermal studies performed for ATLAST segmented telescope configurations. The most important new element was an approach to actively control segments for segment to segment motions which will be discussed later.

  12. An Optimal Controller Architecture for Poset-Causal Systems

    CERN Document Server

    Shah, Parikshit

    2011-01-01

    We propose a novel and natural architecture for decentralized control that is applicable whenever the underlying system has the structure of a partially ordered set (poset). This controller architecture is based on the concept of Moebius inversion for posets, and enjoys simple and appealing separation properties, since the closed-loop dynamics can be analyzed in terms of decoupled subsystems. The controller structure provides rich and interesting connections between concepts from order theory such as Moebius inversion and control-theoretic concepts such as state prediction, correction, and separability. In addition, using our earlier results on H_2-optimal decentralized control for arbitrary posets, we prove that the H_2-optimal controller in fact possesses the proposed structure, thereby establishing the optimality of the new controller architecture.

  13. Chemical Control of Plant Growth.

    Science.gov (United States)

    Agricultural Research Center (USDA), Beltsville, MD.

    Seven experiments are presented in this Science Study Aid to help students investigate the control of plant growth with chemicals. Plant growth regulators, weed control, and chemical pruning are the topics studied in the experiments which are based on investigations that have been and are being conducted at the U. S. Agricultural Research Center,…

  14. Genome-Wide Binding Analysis of the Transcription Activator IDEAL PLANT ARCHITECTURE1 Reveals a Complex Network Regulating Rice Plant Architecture[W

    Science.gov (United States)

    Lu, Zefu; Yu, Hong; Xiong, Guosheng; Wang, Jing; Jiao, Yongqing; Liu, Guifu; Jing, Yanhui; Meng, Xiangbing; Hu, Xingming; Qian, Qian; Fu, Xiangdong; Wang, Yonghong; Li, Jiayang

    2013-01-01

    IDEAL PLANT ARCHITECTURE1 (IPA1) is critical in regulating rice (Oryza sativa) plant architecture and substantially enhances grain yield. To elucidate its molecular basis, we first confirmed IPA1 as a functional transcription activator and then identified 1067 and 2185 genes associated with IPA1 binding sites in shoot apices and young panicles, respectively, through chromatin immunoprecipitation sequencing assays. The SQUAMOSA PROMOTER BINDING PROTEIN-box direct binding core motif GTAC was highly enriched in IPA1 binding peaks; interestingly, a previously uncharacterized indirect binding motif TGGGCC/T was found to be significantly enriched through the interaction of IPA1 with proliferating cell nuclear antigen PROMOTER BINDING FACTOR1 or PROMOTER BINDING FACTOR2. Genome-wide expression profiling by RNA sequencing revealed IPA1 roles in diverse pathways. Moreover, our results demonstrated that IPA1 could directly bind to the promoter of rice TEOSINTE BRANCHED1, a negative regulator of tiller bud outgrowth, to suppress rice tillering, and directly and positively regulate DENSE AND ERECT PANICLE1, an important gene regulating panicle architecture, to influence plant height and panicle length. The elucidation of target genes of IPA1 genome-wide will contribute to understanding the molecular mechanisms underlying plant architecture and to facilitating the breeding of elite varieties with ideal plant architecture. PMID:24170127

  15. Genome-wide binding analysis of the transcription activator ideal plant architecture1 reveals a complex network regulating rice plant architecture.

    Science.gov (United States)

    Lu, Zefu; Yu, Hong; Xiong, Guosheng; Wang, Jing; Jiao, Yongqing; Liu, Guifu; Jing, Yanhui; Meng, Xiangbing; Hu, Xingming; Qian, Qian; Fu, Xiangdong; Wang, Yonghong; Li, Jiayang

    2013-10-01

    Ideal plant architecture1 (IPA1) is critical in regulating rice (Oryza sativa) plant architecture and substantially enhances grain yield. To elucidate its molecular basis, we first confirmed IPA1 as a functional transcription activator and then identified 1067 and 2185 genes associated with IPA1 binding sites in shoot apices and young panicles, respectively, through chromatin immunoprecipitation sequencing assays. The Squamosa promoter binding protein-box direct binding core motif GTAC was highly enriched in IPA1 binding peaks; interestingly, a previously uncharacterized indirect binding motif TGGGCC/T was found to be significantly enriched through the interaction of IPA1 with proliferating cell nuclear antigen promoter binding factor1 or promoter binding factor2. Genome-wide expression profiling by RNA sequencing revealed IPA1 roles in diverse pathways. Moreover, our results demonstrated that IPA1 could directly bind to the promoter of rice teosinte branched1, a negative regulator of tiller bud outgrowth, to suppress rice tillering, and directly and positively regulate dense and erect panicle1, an important gene regulating panicle architecture, to influence plant height and panicle length. The elucidation of target genes of IPA1 genome-wide will contribute to understanding the molecular mechanisms underlying plant architecture and to facilitating the breeding of elite varieties with ideal plant architecture.

  16. Transcriptomic Analysis Using Olive Varieties and Breeding Progenies Identifies Candidate Genes Involved in Plant Architecture.

    Science.gov (United States)

    González-Plaza, Juan J; Ortiz-Martín, Inmaculada; Muñoz-Mérida, Antonio; García-López, Carmen; Sánchez-Sevilla, José F; Luque, Francisco; Trelles, Oswaldo; Bejarano, Eduardo R; De La Rosa, Raúl; Valpuesta, Victoriano; Beuzón, Carmen R

    2016-01-01

    Plant architecture is a critical trait in fruit crops that can significantly influence yield, pruning, planting density and harvesting. Little is known about how plant architecture is genetically determined in olive, were most of the existing varieties are traditional with an architecture poorly suited for modern growing and harvesting systems. In the present study, we have carried out microarray analysis of meristematic tissue to compare expression profiles of olive varieties displaying differences in architecture, as well as seedlings from their cross pooled on the basis of their sharing architecture-related phenotypes. The microarray used, previously developed by our group has already been applied to identify candidates genes involved in regulating juvenile to adult transition in the shoot apex of seedlings. Varieties with distinct architecture phenotypes and individuals from segregating progenies displaying opposite architecture features were used to link phenotype to expression. Here, we identify 2252 differentially expressed genes (DEGs) associated to differences in plant architecture. Microarray results were validated by quantitative RT-PCR carried out on genes with functional annotation likely related to plant architecture. Twelve of these genes were further analyzed in individual seedlings of the corresponding pool. We also examined Arabidopsis mutants in putative orthologs of these targeted candidate genes, finding altered architecture for most of them. This supports a functional conservation between species and potential biological relevance of the candidate genes identified. This study is the first to identify genes associated to plant architecture in olive, and the results obtained could be of great help in future programs aimed at selecting phenotypes adapted to modern cultivation practices in this species.

  17. Transcriptomic analysis using olive varieties and breeding progenies identify candidate genes involved in plant architecture

    Directory of Open Access Journals (Sweden)

    Juan José eGonzález Plaza

    2016-03-01

    Full Text Available Plant architecture is a critical trait in fruit crops that can significantly influence yield, pruning, planting density and harvesting. Little is known about how plant architecture is genetically determined in olive, were most of the existing varieties are traditional with an architecture poorly suited for modern growing and harvesting systems. In the present study, we have carried out microarray analysis of meristematic tissue to compare expression profiles of olive varieties displaying differences in architecture, as well as seedlings from their cross pooled on the basis of their sharing architecture-related phenotypes. The microarray used, previously developed by our group has already been applied to identify candidates genes involved in regulating juvenile to adult transition in the shoot apex of seedlings. Varieties with distinct architecture phenotypes and individuals from segregating progenies displaying opposite architecture features were used to link phenotype to expression. Here, we identify 2,252 differentially expressed genes associated to differences in plant architecture. Microarray results were validated by quantitative RT-PCR carried out on genes with functional annotation likely related to plant architecture. Twelve of these genes were further analyzed in individual seedlings of the corresponding pool. We also examined Arabidopsis mutants in putative orthologs of these targeted candidate genes, finding altered architecture for most of them. This supports a functional conservation between species and potential biological relevance of the candidate genes identified. This study is the first to identify genes associated to plant architecture in olive, and the results obtained could be of great help in future programs aimed at selecting phenotypes adapted to modern cultivation practices in this species.

  18. Silicon in plant disease control

    Directory of Open Access Journals (Sweden)

    Edson Ampélio Pozza

    2015-06-01

    Full Text Available All essential nutrients can affect the incidence and severity of plant diseases. Although silicon (Si is not considered as an essential nutrient for plants, it stands out for its potential to decrease disease intensity in many crops. The mechanism of Si action in plant resistance is still unclear. Si deposition in plant cell walls raised the hypothesis of a possible physical barrier to pathogen penetration. However, the increased activity of phenolic compounds, polyphenol oxidases and peroxidases in plants treated with Si demonstrates the involvement of this element in the induction of plant defense responses. The studies examined in this review address the role of Si in disease control and the possible mechanisms involved in the mode of Si action in disease resistance in plants.

  19. Maize canopy architecture and adaptation to high plant density in long term selection programs

    Science.gov (United States)

    Grain yield since the 1930s has increased more than five-fold in large part due to improvements in adaptation to high plant density. Changes to plant architecture that associated with improved light interception have made a major contribution to improved adaptation to high plant density. Improved ...

  20. Olive Tree in the Genomic Era: Focus on Plant Architecture

    Directory of Open Access Journals (Sweden)

    Juan José González Plaza

    2016-05-01

    Full Text Available For centuries olive tree is an important crop in many Mediterranean countries because it provides appreciated oil with healthy properties. The lack of genomic tools, such as molecular markers or sequence information, has hindered the development of new cultivars adapted to the challenges that this species faces due to the change in modern cultivation practices, such as the increase in the number of trees per hectare. This tree has an excessive vigour that can be a serious economic limitation for intensive or super-intensive orchards. These and other issues have been recently addressed by a number of scientific efforts. This review will give a broad view over the recent genomic developments in olive tree, and the plant architecture as a complex trait. Normal 0 21 false false false HR X-NONE X-NONE /* Style Definitions */ table.MsoNormalTable {mso-style-name:"Tabla normal"; mso-tstyle-rowband-size:0; mso-tstyle-colband-size:0; mso-style-noshow:yes; mso-style-priority:99; mso-style-qformat:yes; mso-style-parent:""; mso-padding-alt:0cm 5.4pt 0cm 5.4pt; mso-para-margin-top:0cm; mso-para-margin-right:0cm; mso-para-margin-bottom:10.0pt; mso-para-margin-left:0cm; line-height:115%; mso-pagination:widow-orphan; font-size:11.0pt; font-family:"Calibri","sans-serif"; mso-ascii-font-family:Calibri; mso-ascii-theme-font:minor-latin; mso-hansi-font-family:Calibri; mso-hansi-theme-font:minor-latin;}

  1. Architecture for Combined Energy and Attitude Control System

    OpenAIRE

    Ibrahim M. Mehedi; Renuganth Varatharajoo; Harlisya Harun; Mohd N. Filipski

    2005-01-01

    Combining the energy and attitude control system is a feasible technology for small satellites to improve the space missions. In this Combined Energy and Attitude Control System (CEACS) a double rotating flywheel is used to replace the conventional battery for energy storage as well as to control the attitude of an earth oriented satellite. Each flywheel is to be controlled in the torque mode. The energy and attitude inputs for the flywheels' control architecture are also ...

  2. Genome-Wide Association Study for Nine Plant Architecture Traits in Sorghum

    Directory of Open Access Journals (Sweden)

    Jing Zhao

    2016-07-01

    Full Text Available Sorghum [ (L Moench], an important grain and forage crop, is receiving significant attention as a lignocellulosic feedstock because of its water-use efficiency and high biomass yield potential. Because of the advancement of genotyping and sequencing technologies, genome-wide association study (GWAS has become a routinely used method to investigate the genetic mechanisms underlying natural phenotypic variation. In this study, we performed a GWAS for nine grain and biomass-related plant architecture traits to determine their overall genetic architecture and the specific association of allelic variants in gibberellin (GA biosynthesis and signaling genes with these phenotypes. A total of 101 single-nucleotide polymorphism (SNP representative regions were associated with at least one of the nine traits, and two of the significant markers correspond to GA candidate genes, ( and (, affecting plant height and seed number, respectively. The resolution of a previously reported quantitative trait loci (QTL for leaf angle on chromosome 7 was increased to a 1.67 Mb region containing seven candidate genes with good prospects for further investigation. This study provides new knowledge of the association of GA genes with plant architecture traits and the genomic regions controlling variation in leaf angle, stem circumference, internode number, tiller number, seed number, panicle exsertion, and panicle length. The GA gene affecting seed number variation ( and the genomic region on chromosome 7 associated with variation in leaf angle are also important outcomes of this study and represent the foundation of future validation studies needed to apply this knowledge in breeding programs.

  3. Nova control system: goals, architecture, and system design

    Energy Technology Data Exchange (ETDEWEB)

    Suski, G.J.; Duffy, J.M.; Gritton, D.G.; Holloway, F.W.; Krammen, J.R.; Ozarski, R.G.; Severyn, J.R.; Van Arsdall, P.J.

    1982-05-19

    The control system for the Nova laser must operate reliably in a harsh pulse power environment and satisfy requirements of technical functionality, flexibility, maintainability and operability. It is composed of four fundamental subsystems: Power Conditioning, Alignment, Laser Diagnostics, and Target Diagnostics, together with a fifth, unifying subsystem called Central Controls. The system architecture utilizes a collection of distributed microcomputers, minicomputers, and components interconnected through high speed fiber optic communications systems. The design objectives, development strategy and architecture of the overall control system and each of its four fundamental subsystems are discussed. Specific hardware and software developments in several areas are also covered.

  4. S2 BHCA-Multiple AUVs cooperation oriented control architecture

    Institute of Scientific and Technical Information of China (English)

    2005-01-01

    Oceanographic survey, or other similar applications should be the applications of multiple AUVs. In this paper, the skill & simulation based hybrid control architecture (S2BHCA) as the controller's design reference was proposed. It is a multi-robot cooperation oriented intelligent control architecture based on hybrid ideas. The S2 BHCA attempts to incorporate the virtues of the reactive controller and of the deliberative controller by introducing the concept of the "skill". The additional online task simulation ability for cooperation is supported, too. As an application, a multiple AUV control system was developed with three "skills" for the MCM mission including two different cooperative tasks. The simulation and the sea trials show that simple task expression, fast reaction and better cooperation support can be achieved by realizing the AUV controller based on the S2 BHCA.

  5. A Biologically Inspired Cooperative Multi-Robot Control Architecture

    Science.gov (United States)

    Howsman, Tom; Craft, Mike; ONeil, Daniel; Howell, Joe T. (Technical Monitor)

    2002-01-01

    A prototype cooperative multi-robot control architecture suitable for the eventual construction of large space structures has been developed. In nature, there are numerous examples of complex architectures constructed by relatively simple insects, such as termites and wasps, which cooperatively assemble their nests. The prototype control architecture emulates this biological model. Actions of each of the autonomous robotic construction agents are only indirectly coordinated, thus mimicking the distributed construction processes of various social insects. The robotic construction agents perform their primary duties stigmergically i.e., without direct inter-agent communication and without a preprogrammed global blueprint of the final design. Communication and coordination between individual agents occurs indirectly through the sensed modifications that each agent makes to the structure. The global stigmergic building algorithm prototyped during the initial research assumes that the robotic builders only perceive the current state of the structure under construction. Simulation studies have established that an idealized form of the proposed architecture was indeed capable of producing representative large space structures with autonomous robots. This paper will explore the construction simulations in order to illustrate the multi-robot control architecture.

  6. Exploring high throughput phenotyping, plant architecture and plant-boll distribution for improving drought tolerance in cotton

    Science.gov (United States)

    There is a pressing need to identify and understand the effects of different irrigation regimes on plant-boll distribution, seed cotton yield, and plant architecture for improving yield and fiber quality under stress and/or drought tolerance of cotton (Gossypium spp.) cultivars. To identify the impa...

  7. INSTRUMENTATION CONTROLLING INDUSTRIAL PLANT

    Directory of Open Access Journals (Sweden)

    Chuvashlova Marina Vladimirovna

    2013-01-01

    Full Text Available The purpose of this study is to analyze theoretical and practical basis of controlling and to provide implementation guidelines for enterprise controlling. The problem of controlling implementation was considered by two criteria: sphere of application and time of validity. Taking into account sphere of application criterion the objectives can be achieved by certain tools, namely: management accounting in the form of profit and loss statement; information flow in the form of workflow system and mapping of business processes; planning which includes budgeting and monitoring that could in turn allow to compare performance to predetermined standards, plans or objectives; responsibility accounting. The second criterion that is time of validity is considered as strategic.

  8. INSTRUMENTATION CONTROLLING INDUSTRIAL PLANT

    Directory of Open Access Journals (Sweden)

    Марина Владимировна Чувашлова

    2013-04-01

    Full Text Available The purpose of this study is to analyze theoretical and practical basis of controlling and to provide implementation guidelines for enterprise controlling. The problem of controlling implementation was considered by two criteria: sphere of application and time of validity.Taking into account sphere of application criterion the objectives can be achieved by certain tools, namely: management accounting in the form of profit and loss statement; information flow in the form of workflow system and mapping of business processes; planning which includes budgeting and monitoring that could in turn allow to compare performance to predetermined standards, plans or objectives; responsibility accounting.The second criterion that is time of validity is considered as strategic.DOI: http://dx.doi.org/10.12731/2218-7405-2013-1-39

  9. Process control in biogas plants

    DEFF Research Database (Denmark)

    Holm-Nielsen, Jens Bo; Oleskowicz-Popiel, Piotr

    2013-01-01

    Efficient monitoring and control of anaerobic digestion (AD) processes are necessary in order to enhance biogas plant performance. The aim of monitoring and controlling the biological processes is to stabilise and optimise the production of biogas. The principles of process analytical technology...

  10. Genetic control of maize shoot apical meristem architecture.

    Science.gov (United States)

    Thompson, Addie M; Crants, James; Schnable, Patrick S; Yu, Jianming; Timmermans, Marja C P; Springer, Nathan M; Scanlon, Michael J; Muehlbauer, Gary J

    2014-05-22

    The shoot apical meristem contains a pool of undifferentiated stem cells and generates all above-ground organs of the plant. During vegetative growth, cells differentiate from the meristem to initiate leaves while the pool of meristematic cells is preserved; this balance is determined in part by genetic regulatory mechanisms. To assess vegetative meristem growth and genetic control in Zea mays, we investigated its morphology at multiple time points and identified three stages of growth. We measured meristem height, width, plastochron internode length, and associated traits from 86 individuals of the intermated B73 × Mo17 recombinant inbred line population. For meristem height-related traits, the parents exhibited markedly different phenotypes, with B73 being very tall, Mo17 short, and the population distributed between. In the outer cell layer, differences appeared to be related to number of cells rather than cell size. In contrast, B73 and Mo17 were similar in meristem width traits and plastochron internode length, with transgressive segregation in the population. Multiple loci (6-9 for each trait) were mapped, indicating meristem architecture is controlled by many regions; none of these coincided with previously described mutants impacting meristem development. Major loci for height and width explaining 16% and 19% of the variation were identified on chromosomes 5 and 8, respectively. Significant loci for related traits frequently coincided, whereas those for unrelated traits did not overlap. With the use of three near-isogenic lines, a locus explaining 16% of the parental variation in meristem height was validated. Published expression data were leveraged to identify candidate genes in significant regions. Copyright © 2014 Thompson et al.

  11. MPS Vax monitor and control software architecture

    Energy Technology Data Exchange (ETDEWEB)

    Allison, S.; Spencer, N.; Underwood, K.; VanOlst, D.; Zelanzy, M.

    1993-04-01

    The new Machine Protection System (MPS) now being tested at the SLAC Linear Collider (SLC) includes monitoring and controlling facilities integrated into the existing VAX control system. The actual machine protection is performed by VME micros which control the beam repetition rate on a pulse-by-pulse basis based on measurements from fault detectors. The VAX is used to control and configure the VME micros, configure custom CAMAC modules providing the fault detector inputs, monitor and report faults and system errors, update the SLC database, and interface with the user. The design goals of the VAX software include a database-driven system to allow configuration changes without code changes, use of a standard TCP/IP-based message service for communication, use of existing SLCNET micros for CAMAC configuration, security and verification features to prevent unauthorized access, error and alarm logging and display updates as quickly as possible, and use of touch panels and X-windows displays for the user interface.

  12. Control Architecture Modeling for Future Power Systems

    DEFF Research Database (Denmark)

    Heussen, Kai

    and operation structures; and finally the application to some concrete study cases, including a present system balancing, and proposed control structures such as Microgrids and Cells. In the second part, the main contributions are the outline of a formation strategy, integrating the design and model...

  13. A Flexible and Configurable Architecture for Automatic Control Remote Laboratories

    Science.gov (United States)

    Kalúz, Martin; García-Zubía, Javier; Fikar, Miroslav; Cirka, Luboš

    2015-01-01

    In this paper, we propose a novel approach in hardware and software architecture design for implementation of remote laboratories for automatic control. In our contribution, we show the solution with flexible connectivity at back-end, providing features of multipurpose usage with different types of experimental devices, and fully configurable…

  14. TCP-Call Admission Control Interaction in Multiplatform Space Architectures

    Directory of Open Access Journals (Sweden)

    Georgios Theodoridis

    2007-06-01

    Full Text Available The implementation of efficient call admission control (CAC algorithms is useful to prevent congestion and guarantee target quality of service (QoS. When TCP protocol is adopted, some inefficiencies can arise due to the peculiar evolution of the congestion window. The development of cross-layer techniques can greatly help to improve efficiency and flexibility for wireless networks. In this frame, the present paper addresses the introduction of TCP feedback into the CAC procedures in different nonterrestrial wireless architectures. CAC performance improvement is shown for different space-based architectures, including both satellites and high altitude platform (HAP systems.

  15. Bio-inspired adaptive feedback error learning architecture for motor control.

    Science.gov (United States)

    Tolu, Silvia; Vanegas, Mauricio; Luque, Niceto R; Garrido, Jesús A; Ros, Eduardo

    2012-10-01

    This study proposes an adaptive control architecture based on an accurate regression method called Locally Weighted Projection Regression (LWPR) and on a bio-inspired module, such as a cerebellar-like engine. This hybrid architecture takes full advantage of the machine learning module (LWPR kernel) to abstract an optimized representation of the sensorimotor space while the cerebellar component integrates this to generate corrective terms in the framework of a control task. Furthermore, we illustrate how the use of a simple adaptive error feedback term allows to use the proposed architecture even in the absence of an accurate analytic reference model. The presented approach achieves an accurate control with low gain corrective terms (for compliant control schemes). We evaluate the contribution of the different components of the proposed scheme comparing the obtained performance with alternative approaches. Then, we show that the presented architecture can be used for accurate manipulation of different objects when their physical properties are not directly known by the controller. We evaluate how the scheme scales for simulated plants of high Degrees of Freedom (7-DOFs).

  16. Flora robotica -- An Architectural System Combining Living Natural Plants and Distributed Robots

    DEFF Research Database (Denmark)

    Hamann, Heiko; Divband Soorati, Mohammad; Heinrich, Mary Katherine

    2017-01-01

    Key to our project flora robotica is the idea of creating a bio-hybrid system of tightly coupled natural plants and distributed robots to grow architectural artifacts and spaces. Our motivation with this ground research project is to lay a principled foundation towards the design and implementation...... of living architectural systems that provide functionalities beyond those of orthodox building practice, such as self-repair, material accumulation and self-organization. Plants and robots work together to create a living organism that is inhabited by human beings. User-defined design objectives help...... to steer the directional growth of the plants, but also the system's interactions with its inhabitants determine locations where growth is prohibited or desired (e.g., partitions, windows, occupiable space). We report our plant species selection process and aspects of living architecture. A leitmotif...

  17. Modelling and controlling hydropower plants

    CERN Document Server

    Munoz-Hernandez, German Ardul; Jones, Dewi Ieuan

    2013-01-01

    Hydroelectric power stations are a major source of electricity around the world; understanding their dynamics is crucial to achieving good performance.  Modelling and Controlling Hydropower Plants discusses practical and well-documented cases of modelling and controlling hydropower station modelling and control, focussing on a pumped storage scheme based in Dinorwig, North Wales.  Single-input-single-output and multiple-input-multiple-output models, which cover the linear and nonlinear characteristics of pump-storage hydroelectric power stations, are reviewed. The most important dynamic features are discussed, and the verification of these models by hardware in the loop simulation is described. To show how the performance of a pump-storage hydroelectric power station can be improved, classical and modern controllers are applied to simulated models of the Dinorwig power plant. These include PID, fuzzy approximation, feed-forward and model-based predictive control with linear and hybrid prediction models. Mod...

  18. Modeling, simulation, and high-autonomy control of a Martian oxygen production plant

    Science.gov (United States)

    Schooley, L. C.; Cellier, F. E.; Wang, F.-Y.; Zeigler, B. P.

    1992-01-01

    Progress on a project for the development of a high-autonomy intelligent command and control architecture for process plants used to produce oxygen from local planetary resources is reported. A distributed command and control architecture is being developed and implemented so that an oxygen production plant, or other equipment, can be reliably commanded and controlled over an extended time period in a high-autonomy mode with high-level task-oriented teleoperation from one or several remote locations. During the reporting period, progress was made at all levels of the architecture. At the remote site, several remote observers can now participate in monitoring the plant. At the local site, a command and control center was introduced for increased flexibility, reliability, and robustness. The local control architecture was enhanced to control multiple tubes in parallel, and was refined for increased robustness. The simulation model was enhanced to full dynamics descriptions.

  19. A Discussion on Drought Tolerance Through Hydraulic Architecture of Woody Plants

    Institute of Scientific and Technical Information of China (English)

    2002-01-01

    In this paper, ten woody plants grew on the campus of the Beijing Forestry University were selected for measuring hydraulic architecture parameters and water potential of one-year-old twigs. The results show that day and night change of water potential and hydraulic architecture parameters appear to be obviously convex trend. The relationship models between water potential and hydraulic conductivity, special conductivity and leaf special conductivity were respectively established, which were simulated b...

  20. [Root architecture of two desert plants in central Hexi Corridor of Northwest China].

    Science.gov (United States)

    Shan, Li-Shan; Li, Yi; Ren, Wei; Su, Shi-Ping; Dong, Qiu-Lian; Geng, Dong-Mei

    2013-01-01

    In this study, the root systems of desert plant species Reaumuria soongorica and Nitraria tangutorum in the central Hexi Corridor of Northwest China were excavated by shovel, and the characteristics of the plant root architecture were analyzed by using topology and fractal theory. The root topological indices of the two desert plants were small, and the root branching patterns were herringbone-like. The roots of the two desert plants had obvious fractal characteristics, with the fractal dimension of R. soongorica and N. tangutorum being (1.18 +/- 0.04) and (1.36 +/- 0.06), respectively. The root fractal dimension and fractal abundance were significantly positively correlated with the root average link length. The root average link lengths of the two plants were long, which enlarged the plants' effective nutrition space, and thus, made the plants adapt to the dry and infertile soil environment. The sums of the root cross-sectional areas before and after the root bifurcation of the two desert plants were equal, which verified the principle of Leonardo da Vinci. A total of 17 parameters of root architecture were analyzed by the principal component analysis. The parameters of root topological structure, numbers of root links, stepwise branching ratio, and root diameter could well present the root architecture characteristics of the two desert plants.

  1. Defining a controller architecture for the Long-Reach Manipulator

    Energy Technology Data Exchange (ETDEWEB)

    Ford, W.E. [Sandia National Labs., Albuquerque, NM (United States). Intelligent Systems Dept. III

    1994-06-01

    To draft a procurement specification for the Long-Reach Manipulator (LRM), the benefits and limitations of the various robotic control system architectures available need to be determined. This report identifies and describes the advantages and potential disadvantages of using an open control system versus a closed (or proprietary) system, focusing on integration of interfaces for sensors, end effectors, tooling, and operator interfaces. In addition, the various controls methodologies of several recent systems are described. Finally, the reasons behind the recommendation to procure an open control system are discussed.

  2. Control Architecture for Robotic Agent Command and Sensing

    Science.gov (United States)

    Huntsberger, Terrance; Aghazarian, Hrand; Estlin, Tara; Gaines, Daniel

    2008-01-01

    Control Architecture for Robotic Agent Command and Sensing (CARACaS) is a recent product of a continuing effort to develop architectures for controlling either a single autonomous robotic vehicle or multiple cooperating but otherwise autonomous robotic vehicles. CARACaS is potentially applicable to diverse robotic systems that could include aircraft, spacecraft, ground vehicles, surface water vessels, and/or underwater vessels. CARACaS incudes an integral combination of three coupled agents: a dynamic planning engine, a behavior engine, and a perception engine. The perception and dynamic planning en - gines are also coupled with a memory in the form of a world model. CARACaS is intended to satisfy the need for two major capabilities essential for proper functioning of an autonomous robotic system: a capability for deterministic reaction to unanticipated occurrences and a capability for re-planning in the face of changing goals, conditions, or resources. The behavior engine incorporates the multi-agent control architecture, called CAMPOUT, described in An Architecture for Controlling Multiple Robots (NPO-30345), NASA Tech Briefs, Vol. 28, No. 11 (November 2004), page 65. CAMPOUT is used to develop behavior-composition and -coordination mechanisms. Real-time process algebra operators are used to compose a behavior network for any given mission scenario. These operators afford a capability for producing a formally correct kernel of behaviors that guarantee predictable performance. By use of a method based on multi-objective decision theory (MODT), recommendations from multiple behaviors are combined to form a set of control actions that represents their consensus. In this approach, all behaviors contribute simultaneously to the control of the robotic system in a cooperative rather than a competitive manner. This approach guarantees a solution that is good enough with respect to resolution of complex, possibly conflicting goals within the constraints of the mission to

  3. Hierarchical Surface Architecture of Plants as an Inspiration for Biomimetic Fog Collectors.

    Science.gov (United States)

    Azad, M A K; Barthlott, W; Koch, K

    2015-12-01

    Fog collectors can enable us to alleviate the water crisis in certain arid regions of the world. A continuous fog-collection cycle consisting of a persistent capture of fog droplets and their fast transport to the target is a prerequisite for developing an efficient fog collector. In regard to this topic, a biological superior design has been found in the hierarchical surface architecture of barley (Hordeum vulgare) awns. We demonstrate here the highly wettable (advancing contact angle 16° ± 2.7 and receding contact angle 9° ± 2.6) barbed (barb = conical structure) awn as a model to develop optimized fog collectors with a high fog-capturing capability, an effective water transport, and above all an efficient fog collection. We compare the fog-collection efficiency of the model sample with other plant samples naturally grown in foggy habitats that are supposed to be very efficient fog collectors. The model sample, consisting of dry hydrophilized awns (DH awns), is found to be about twice as efficient (fog-collection rate 563.7 ± 23.2 μg/cm(2) over 10 min) as any other samples investigated under controlled experimental conditions. Finally, a design based on the hierarchical surface architecture of the model sample is proposed for the development of optimized biomimetic fog collectors.

  4. ERECTA signaling controls Arabidopsis inflorescence architecture through chromatin-mediated activation of PRE1 expression.

    Science.gov (United States)

    Cai, Hanyang; Zhao, Lihua; Wang, Lulu; Zhang, Man; Su, Zhenxia; Cheng, Yan; Zhao, Heming; Qin, Yuan

    2017-03-13

    Flowering plants display a remarkable diversity in inflorescence architecture, and pedicel length is one of the key contributors to this diversity. In Arabidopsis thaliana, the receptor-like kinase ERECTA (ER) mediated signaling pathway plays important roles in regulating inflorescence architecture by promoting cell proliferation. However, the regulating mechanism remains elusive in the pedicel. Genetic interactions between ERECTA signaling and the chromatin remodeling complex SWR1 in the control of inflorescence architecture were studied. Comparative transcriptome analysis was applied to identify downstream components. Chromatin immunoprecipitation and nucleosome occupancy was further investigated. The results indicated that the chromatin remodeler SWR1 coordinates with ERECTA signaling in regulating inflorescence architecture by activating the expression of PRE1 family genes and promoting pedicel elongation. It was found that SWR1 is required for the incorporation of the H2A.Z histone variant into nucleosomes of the whole PRE1 gene family and the ERECTA controlled expression of PRE1 gene family through regulating nucleosome dynamics. We propose that utilization of a chromatin remodeling complex to regulate gene expression is a common theme in developmental control across kingdoms. These findings shed light on the mechanisms through which chromatin remodelers orchestrate complex transcriptional regulation of gene expression in coordination with a developmental cue.

  5. Evaluation of a Generic Virtual Power Plant Framework Using Service Oriented Architecture

    DEFF Research Database (Denmark)

    Andersen, Peter Bach; Poulsen, Bjarne; Decker, Morten

    2008-01-01

    interesting properties that can influence the future shape of power markets. The concept holds many promises including cheaper power to the consumer, a more flexible and responsive power production and the support of a more environment- friendly development. In order to realize a software solution supporting...... the generic virtual power plant, an array of different software design principles, patterns and architectures must be applied. Especially Service Oriented Architecture (SOA) can aid in implementing the generic virtual power plant. An analysis of the Nordic power market has been carried out in order...

  6. An Ada run-time control architecture for telerobots

    Science.gov (United States)

    Balaram, J.; Rodriguez, G.

    1987-01-01

    This paper describes the architecture and Ada language implementation of a process-level run-time control subystem for the Jet Propulsion Laboratory (JPL) telerobot system. The concept of run-time control in a combined robot-teleoperation environment is examined and the telerobot system at JPL is described. An Ada language implementation of the JPL Telerobot Run-Time Controller (RTC) is described by highlighting the functional behavior of the subsystem, defining the internal modules, and providing a functional flow time sequence of internal module activity.

  7. Robotic control architecture development for automated nuclear material handling systems

    Energy Technology Data Exchange (ETDEWEB)

    Merrill, R.D.; Hurd, R.; Couture, S.; Wilhelmsen, K.

    1995-02-01

    Lawrence Livermore National Laboratory (LLNL) is engaged in developing automated systems for handling materials for mixed waste treatment, nuclear pyrochemical processing, and weapon components disassembly. In support of these application areas there is an extensive robotic development program. This paper will describe the portion of this effort at LLNL devoted to control system architecture development, and review two applications currently being implemented which incorporate these technologies.

  8. High-throughput volumetric reconstruction for 3D wheat plant architecture studies

    Directory of Open Access Journals (Sweden)

    Wei Fang

    2016-09-01

    Full Text Available For many tiller crops, the plant architecture (PA, including the plant fresh weight, plant height, number of tillers, tiller angle and stem diameter, significantly affects the grain yield. In this study, we propose a method based on volumetric reconstruction for high-throughput three-dimensional (3D wheat PA studies. The proposed methodology involves plant volumetric reconstruction from multiple images, plant model processing and phenotypic parameter estimation and analysis. This study was performed on 80 Triticum aestivum plants, and the results were analyzed. Comparing the automated measurements with manual measurements, the mean absolute percentage error (MAPE in the plant height and the plant fresh weight was 2.71% (1.08cm with an average plant height of 40.07cm and 10.06% (1.41g with an average plant fresh weight of 14.06g, respectively. The root mean square error (RMSE was 1.37cm and 1.79g for the plant height and plant fresh weight, respectively. The correlation coefficients were 0.95 and 0.96 for the plant height and plant fresh weight, respectively. Additionally, the proposed methodology, including plant reconstruction, model processing and trait extraction, required only approximately 20s on average per plant using parallel computing on a graphics processing unit (GPU, demonstrating that the methodology would be valuable for a high-throughput phenotyping platform.

  9. Integration of Sensors, Controllers and Instruments Using a Novel OPC Architecture

    Science.gov (United States)

    2017-01-01

    The interconnection between sensors, controllers and instruments through a communication network plays a vital role in the performance and effectiveness of a control system. Since its inception in the 90s, the Object Linking and Embedding for Process Control (OPC) protocol has provided open connectivity for monitoring and automation systems. It has been widely used in several environments such as industrial facilities, building and energy automation, engineering education and many others. This paper presents a novel OPC-based architecture to implement automation systems devoted to R&D and educational activities. The proposal is a novel conceptual framework, structured into four functional layers where the diverse components are categorized aiming to foster the systematic design and implementation of automation systems involving OPC communication. Due to the benefits of OPC, the proposed architecture provides features like open connectivity, reliability, scalability, and flexibility. Furthermore, four successful experimental applications of such an architecture, developed at the University of Extremadura (UEX), are reported. These cases are a proof of concept of the ability of this architecture to support interoperability for different domains. Namely, the automation of energy systems like a smart microgrid and photobioreactor facilities, the implementation of a network-accessible industrial laboratory and the development of an educational hardware-in-the-loop platform are described. All cases include a Programmable Logic Controller (PLC) to automate and control the plant behavior, which exchanges operative data (measurements and signals) with a multiplicity of sensors, instruments and supervisory systems under the structure of the novel OPC architecture. Finally, the main conclusions and open research directions are highlighted. PMID:28654002

  10. Architectures and Algorithms for Control and Diagnostics of Coupled-Bunch Instabilities in Circular Accelerators

    Energy Technology Data Exchange (ETDEWEB)

    Teytelman, Dmitry

    2003-07-08

    Modern light sources and circular colliders employ large numbers of high-intensity particle bunches in order to achieve high luminosity. The electromagnetic coupling of bunches via resonant structures causes coherent instabilities at high beam currents. Achieving high luminosity requires the control of such unstable motion. Feedback control is challenging due to wideband nature of the problem with up to 250 MHz bandwidths required. This thesis presents digital signal processing architectures and diagnostic techniques for control of longitudinal and transverse coupled-bunch instabilities. Diagnostic capabilities integrated into the feedback system allow one to perform fast transient measurements of unstable dynamics by perturbing the beam from the controlled state via feedback and recording the time-domain response. Such measurements enable one to thoroughly characterize plant (beam) dynamics as well as performance of the feedback system. Beam dynamics can change significantly over the operating range of accelerator currents and energies . Here we present several methods for design of robust stabilizing feedback controllers. Experimental results from several accelerators are presented. A new baseband architecture for transverse feedback is described that compactly implements the digital processing functions using field-programmable gate array devices. The architecture is designed to be software configurable so that the same hardware can be used for instability control in different accelerators.

  11. Integrated quality control architecture for multistage machining processes

    Science.gov (United States)

    Yang, Jie; Liu, Guixiong

    2010-12-01

    To solve problems concerning the process quality prediction control for the multistage machining processes, a integrated quality control architecture is proposed in this paper. First, a hierarchical multiple criteria decision model is established for the key process and the weight matrix method stratified is discussed. Predictive control of the manufacturing quality is not just for on-site monitoring and control layer, control layer in the enterprise, remote monitoring level of quality exists a variety of target predictive control demand, therefore, based on XML to achieve a unified description of manufacturing quality information, and in different source of quality information between agencies to achieve the transfer and sharing. This will predict complex global quality control, analysis and diagnosis data to lay a good foundation to achieve a more practical, open and standardized manufacturing quality with higher levels of information integration system.

  12. Mark 4A antenna control system data handling architecture study

    Science.gov (United States)

    Briggs, H. C.; Eldred, D. B.

    1991-01-01

    A high-level review was conducted to provide an analysis of the existing architecture used to handle data and implement control algorithms for NASA's Deep Space Network (DSN) antennas and to make system-level recommendations for improving this architecture so that the DSN antennas can support the ever-tightening requirements of the next decade and beyond. It was found that the existing system is seriously overloaded, with processor utilization approaching 100 percent. A number of factors contribute to this overloading, including dated hardware, inefficient software, and a message-passing strategy that depends on serial connections between machines. At the same time, the system has shortcomings and idiosyncrasies that require extensive human intervention. A custom operating system kernel and an obscure programming language exacerbate the problems and should be modernized. A new architecture is presented that addresses these and other issues. Key features of the new architecture include a simplified message passing hierarchy that utilizes a high-speed local area network, redesign of particular processing function algorithms, consolidation of functions, and implementation of the architecture in modern hardware and software using mainstream computer languages and operating systems. The system would also allow incremental hardware improvements as better and faster hardware for such systems becomes available, and costs could potentially be low enough that redundancy would be provided economically. Such a system could support DSN requirements for the foreseeable future, though thorough consideration must be given to hard computational requirements, porting existing software functionality to the new system, and issues of fault tolerance and recovery.

  13. Plant components and authenticity of landscape architecture monuments

    Directory of Open Access Journals (Sweden)

    Miloš Pejchal

    2011-01-01

    Full Text Available Plants specifications emphasize the fundamental meaning of the “fourth space dimension” – time by their usage: (a the space cannot be composed as a static image; (b some used plants are not the planned part of the target state; (c delayed onset of full functionality; (d substantial importance of care for achieving and maintaining of the full functionality; (e cultivation measures must be implemented in a certain time period, i.e. the “time window”; (f replacement of already obsolete generation of full-grown and long-aged trees with a new generation is often carried out in the amended site conditions and different social situation. Historical authenticity of the plant components has the following specifics: (a its basic assumption may not be the original specimens of plants, it is the preservation of the principle contained in this original substance; (b the period during which the plant is able to represent the principle of the original substance is often shorter than the length of its existence; (c gradual recovery of surviving individuals is often difficult to impossible in plants groups and stands; (d it is often impossible to meet the recommendations of Venice Charter to not to apply the hypothesis and differentiation of added parts from the original ones. There was not paid enough attention to following aspects of the authenticity of plant components: (a the importance of particular developmental stages of the element; (b the role of age structure (the same age – different age for different types of elements; (c the effect of different length of the existence of space-formative elements (different periods of their recovery to the overall composition effect; (d role of historical technologies.

  14. Control to range for diabetes: functionality and modular architecture.

    Science.gov (United States)

    Kovatchev, Boris; Patek, Stephen; Dassau, Eyal; Doyle, Francis J; Magni, Lalo; De Nicolao, Giuseppe; Cobelli, Claudio

    2009-09-01

    Closed-loop control of type 1 diabetes is receiving increasing attention due to advancement in glucose sensor and insulin pump technology. Here the function and structure of a class of control algorithms designed to exert control to range, defined as insulin treatment optimizing glycemia within a predefined target range by preventing extreme glucose fluctuations, are studied. The main contribution of the article is definition of a modular architecture for control to range. Emphasis is on system specifications rather than algorithmic realization. The key system architecture elements are two interacting modules: range correction module, which assesses the risk for incipient hyper- or hypoglycemia and adjusts insulin rate accordingly, and safety supervision module, which assesses the risk for hypoglycemia and attenuates or discontinues insulin delivery when necessary. The novel engineering concept of range correction module is that algorithm action is relative to a nominal open-loop strategy-a predefined combination of basal rate and boluses believed to be optimal under nominal conditions. A proof of concept of the feasibility of our control-to-range strategy is illustrated by using a prototypal implementation tested in silico on patient use cases. These functional and architectural distinctions provide several advantages, including (i) significant insulin delivery corrections are only made if relevant risks are detected; (ii) drawbacks of integral action are avoided, e.g., undershoots with consequent hypoglycemic risks; (iii) a simple linear model is sufficient and complex algorithmic constraints are replaced by safety supervision; and (iv) the nominal profile provides straightforward individualization for each patient. We believe that the modular control-to-range system is the best approach to incremental development, regulatory approval, industrial deployment, and clinical acceptance of closed-loop control for diabetes. 2009 Diabetes Technology Society.

  15. Control system devices : architectures and supply channels overview.

    Energy Technology Data Exchange (ETDEWEB)

    Trent, Jason; Atkins, William Dee; Schwartz, Moses Daniel; Mulder, John C.

    2010-08-01

    This report describes a research project to examine the hardware used in automated control systems like those that control the electric grid. This report provides an overview of the vendors, architectures, and supply channels for a number of control system devices. The research itself represents an attempt to probe more deeply into the area of programmable logic controllers (PLCs) - the specialized digital computers that control individual processes within supervisory control and data acquisition (SCADA) systems. The report (1) provides an overview of control system networks and PLC architecture, (2) furnishes profiles for the top eight vendors in the PLC industry, (3) discusses the communications protocols used in different industries, and (4) analyzes the hardware used in several PLC devices. As part of the project, several PLCs were disassembled to identify constituent components. That information will direct the next step of the research, which will greatly increase our understanding of PLC security in both the hardware and software areas. Such an understanding is vital for discerning the potential national security impact of security flaws in these devices, as well as for developing proactive countermeasures.

  16. Does plant architectural complexity increase with increasing habitat complexity? A test with a pioneer shrub in the Brazilian Cerrado.

    Science.gov (United States)

    Silveira, F A O; Oliveira, E G

    2013-05-01

    Understanding variation in plant traits in heterogeneous habitats is important to predict responses to changing environments, but trait-environment associations are poorly known along ecological gradients. We tested the hypothesis that plant architectural complexity increases with habitat complexity along a soil fertility gradient in a Cerrado (Neotropical savanna) area in southeastern Brazil. Plant architecture and productivity (estimated as the total number of healthy infructescences) of Miconia albicans (SW.) Triana were examined in three types of vegetation which together form a natural gradient of increasing soil fertility, tree density and canopy cover: grasslands (campo sujo, CS), shrublands (cerrado sensu strico, CE) and woodlands (cerradão, CD). As expected, plants growing at the CS were shorter and had a lower branching pattern, whereas plants at the CD were the tallest. Unexpectedly, however, CD plants did not show higher architectural complexity compared to CE plants. Higher architectural similarity between CE and CD plants compared to similarity between CS and CE plants suggests reduced expression of functional architectural traits under shade. Plants growing at the CE produced more quaternary shoots, leading to a larger number of infructescences. This higher plant productivity in CE indicates that trait variation in ecological gradients is more complex than previously thought. Nematode-induced galls accounted for fruit destruction in 76.5% infructescences across physiognomies, but percentage of attack was poorly related to architectural variables. Our data suggest shade-induced limitation in M. albicans architecture, and point to complex phenotypic variation in heterogeneous habitats in Neotropical savannas.

  17. Does plant architectural complexity increase with increasing habitat complexity? A test with a pioneer shrub in the Brazilian Cerrado

    Directory of Open Access Journals (Sweden)

    FAO Silveira

    Full Text Available Understanding variation in plant traits in heterogeneous habitats is important to predict responses to changing environments, but trait-environment associations are poorly known along ecological gradients. We tested the hypothesis that plant architectural complexity increases with habitat complexity along a soil fertility gradient in a Cerrado (Neotropical savanna area in southeastern Brazil. Plant architecture and productivity (estimated as the total number of healthy infructescences of Miconia albicans (SW. Triana were examined in three types of vegetation which together form a natural gradient of increasing soil fertility, tree density and canopy cover: grasslands (campo sujo, CS, shrublands (cerrado sensu strico, CE and woodlands (cerradão, CD. As expected, plants growing at the CS were shorter and had a lower branching pattern, whereas plants at the CD were the tallest. Unexpectedly, however, CD plants did not show higher architectural complexity compared to CE plants. Higher architectural similarity between CE and CD plants compared to similarity between CS and CE plants suggests reduced expression of functional architectural traits under shade. Plants growing at the CE produced more quaternary shoots, leading to a larger number of infructescences. This higher plant productivity in CE indicates that trait variation in ecological gradients is more complex than previously thought. Nematode-induced galls accounted for fruit destruction in 76.5% infructescences across physiognomies, but percentage of attack was poorly related to architectural variables. Our data suggest shade-induced limitation in M. albicans architecture, and point to complex phenotypic variation in heterogeneous habitats in Neotropical savannas.

  18. Distributed Control Architecture for Gas Turbine Engine. Chapter 4

    Science.gov (United States)

    Culley, Dennis; Garg, Sanjay

    2009-01-01

    The transformation of engine control systems from centralized to distributed architecture is both necessary and enabling for future aeropropulsion applications. The continued growth of adaptive control applications and the trend to smaller, light weight cores is a counter influence on the weight and volume of control system hardware. A distributed engine control system using high temperature electronics and open systems communications will reverse the growing trend of control system weight ratio to total engine weight and also be a major factor in decreasing overall cost of ownership for aeropropulsion systems. The implementation of distributed engine control is not without significant challenges. There are the needs for high temperature electronics, development of simple, robust communications, and power supply for the on-board electronics.

  19. Multi-scale evaporator architectures for geothermal binary power plants

    Energy Technology Data Exchange (ETDEWEB)

    Sabau, Adrian S [ORNL; Nejad, Ali [University of Tennessee, Knoxville (UTK); Klett, James William [ORNL; Bejan, Adrian [Duke University, North Carolina

    2016-01-01

    In this paper, novel geometries of heat exchanger architectures are proposed for evaporators that are used in Organic Rankine Cycles. A multi-scale heat exchanger concept was developed by employing successive plenums at several length-scale levels. Flow passages contain features at both macro-scale and micro-scale, which are designed from Constructal Theory principles. Aside from pumping power and overall thermal resistance, several factors were considered in order to fully assess the performance of the new heat exchangers, such as weight of metal structures, surface area per unit volume, and total footprint. Component simulations based on laminar flow correlations for supercritical R134a were used to obtain performance indicators.

  20. Distributed, Modular, Network Enabled Architecture For Process Control Military Applications

    Directory of Open Access Journals (Sweden)

    Abhijit Kamble*,

    2014-02-01

    Full Text Available In process control world, use of distributed modular embedded controller architecture drastically reduces the number and complexity of cabling; at the same time increases the system computing performance and response for real time application as compared to centralized control system. We propose a design based on ARM Cortex M4 hardware architecture and Cortex Microcontroller Software Interface Standard (CMSIS based software development. The ARM Cortex-M series ensures a compatible target processor and provides common core peripherals whereas CMSIS abstraction layer reduces development time, helps design software reusability and provides seamless application software interface for controllers. Being a custom design, we can built features like Built-In Test Equipment (BITE, single point fault tolerance, redundancy, 2/3 logic, etc. which are more desirable for a military applications. This paper describes the design of a generic embedded hardware module that can be configured as local I/O controller or application controller or Man Machine Interface (MMI. This paper also proposes a philosophy for step by step hardware and software development.

  1. A Risk Management Architecture for Emergency Integrated Aircraft Control

    Science.gov (United States)

    McGlynn, Gregory E.; Litt, Jonathan S.; Lemon, Kimberly A.; Csank, Jeffrey T.

    2011-01-01

    Enhanced engine operation--operation that is beyond normal limits--has the potential to improve the adaptability and safety of aircraft in emergency situations. Intelligent use of enhanced engine operation to improve the handling qualities of the aircraft requires sophisticated risk estimation techniques and a risk management system that spans the flight and propulsion controllers. In this paper, an architecture that weighs the risks of the emergency and of possible engine performance enhancements to reduce overall risk to the aircraft is described. Two examples of emergency situations are presented to demonstrate the interaction between the flight and propulsion controllers to facilitate the enhanced operation.

  2. An architecture for agile shop floor control systems

    DEFF Research Database (Denmark)

    Langer, Gilad; Alting, Leo

    2000-01-01

    manufacturing systems to accommodate the increasing dynamic characteristics of the manufacturing environment. Regarding these new concepts, specifically holonic manufacturing systems, there are many aspects that should be considered. One of the aspects is the manufacturing system and its control, commonly known...... as shop floor control. This paper presents the Holonic Multi-cell Control System (HoMuCS) architecture that allows for design and development of holonic shop floor control systems. The HoMuCS is a shop floor control system which is sometimes referred to as a manufacturing execution system......Changes in markets and global business trends affect the manufacturing environment in infinite ways. These changes have brought about the need for a paradigm shift to reassess the manner in which manufacturing systems are developed and operated. New theories and concepts present solutions to enable...

  3. Architecture for Combined Energy and Attitude Control System

    Directory of Open Access Journals (Sweden)

    Ibrahim M. Mehedi

    2005-01-01

    Full Text Available Combining the energy and attitude control system is a feasible technology for small satellites to improve the space missions. In this Combined Energy and Attitude Control System (CEACS a double rotating flywheel is used to replace the conventional battery for energy storage as well as to control the attitude of an earth oriented satellite. Each flywheel is to be controlled in the torque mode. The energy and attitude inputs for the flywheels' control architecture are also in the torque mode. All related mathematical representation along with the relevant transfer functions and the required numerical calculation are developed. The goals are to analyze the attitude performance with respect to the ideal and non-ideal test cases for a chosen reference mission.

  4. A reinforcement learning-based architecture for fuzzy logic control

    Science.gov (United States)

    Berenji, Hamid R.

    1992-01-01

    This paper introduces a new method for learning to refine a rule-based fuzzy logic controller. A reinforcement learning technique is used in conjunction with a multilayer neural network model of a fuzzy controller. The approximate reasoning based intelligent control (ARIC) architecture proposed here learns by updating its prediction of the physical system's behavior and fine tunes a control knowledge base. Its theory is related to Sutton's temporal difference (TD) method. Because ARIC has the advantage of using the control knowledge of an experienced operator and fine tuning it through the process of learning, it learns faster than systems that train networks from scratch. The approach is applied to a cart-pole balancing system.

  5. BRSMG Uai: common bean cultivar with carioca grain type and upright plant architecture

    Directory of Open Access Journals (Sweden)

    Magno Antonio Patto Ramalho

    2016-09-01

    Full Text Available The common bean cultivar with carioca grain type, BRSMG Uai, is recommended for cultivation in Minas Gerais and stands out for its upright plant architecture, which facilitates cultivation and mechanical harvesting. This cultivar has high yield potential and is resistant to the major races of anthracnose that occur in region.

  6. Impact of plant shoot architecture on leaf cooling: a coupled heat and mass transfer model.

    Science.gov (United States)

    Bridge, L J; Franklin, K A; Homer, M E

    2013-08-01

    Plants display a range of striking architectural adaptations when grown at elevated temperatures. In the model plant Arabidopsis thaliana, these include elongation of petioles, and increased petiole and leaf angles from the soil surface. The potential physiological significance of these architectural changes remains speculative. We address this issue computationally by formulating a mathematical model and performing numerical simulations, testing the hypothesis that elongated and elevated plant configurations may reflect a leaf-cooling strategy. This sets in place a new basic model of plant water use and interaction with the surrounding air, which couples heat and mass transfer within a plant to water vapour diffusion in the air, using a transpiration term that depends on saturation, temperature and vapour concentration. A two-dimensional, multi-petiole shoot geometry is considered, with added leaf-blade shape detail. Our simulations show that increased petiole length and angle generally result in enhanced transpiration rates and reduced leaf temperatures in well-watered conditions. Furthermore, our computations also reveal plant configurations for which elongation may result in decreased transpiration rate owing to decreased leaf liquid saturation. We offer further qualitative and quantitative insights into the role of architectural parameters as key determinants of leaf-cooling capacity.

  7. An Architecture to Enable Autonomous Control of Spacecraft

    Science.gov (United States)

    May, Ryan D.; Dever, Timothy P.; Soeder, James F.; George, Patrick J.; Morris, Paul H.; Colombano, Silvano P.; Frank, Jeremy D.; Schwabacher, Mark A.; Wang, Liu; LawLer, Dennis

    2014-01-01

    Autonomy is required for manned spacecraft missions distant enough that light-time communication delays make ground-based mission control infeasible. Presently, ground controllers develop a complete schedule of power modes for all spacecraft components based on a large number of factors. The proposed architecture is an early attempt to formalize and automate this process using on-vehicle computation resources. In order to demonstrate this architecture, an autonomous electrical power system controller and vehicle Mission Manager are constructed. These two components are designed to work together in order to plan upcoming load use as well as respond to unanticipated deviations from the plan. The communication protocol was developed using "paper" simulations prior to formally encoding the messages and developing software to implement the required functionality. These software routines exchange data via TCP/IP sockets with the Mission Manager operating at NASA Ames Research Center and the autonomous power controller running at NASA Glenn Research Center. The interconnected systems are tested and shown to be effective at planning the operation of a simulated quasi-steady state spacecraft power system and responding to unexpected disturbances.

  8. Distributed Sensor Architecture for Intelligent Control that Supports Quality of Control and Quality of Service

    Directory of Open Access Journals (Sweden)

    Jose-Luis Poza-Lujan

    2015-02-01

    Full Text Available This paper is part of a study of intelligent architectures for distributed control and communications systems. The study focuses on optimizing control systems by evaluating the performance of middleware through quality of service (QoS parameters and the optimization of control using Quality of Control (QoC parameters. The main aim of this work is to study, design, develop, and evaluate a distributed control architecture based on the Data-Distribution Service for Real-Time Systems (DDS communication standard as proposed by the Object Management Group (OMG. As a result of the study, an architecture called Frame-Sensor-Adapter to Control (FSACtrl has been developed. FSACtrl provides a model to implement an intelligent distributed Event-Based Control (EBC system with support to measure QoS and QoC parameters. The novelty consists of using, simultaneously, the measured QoS and QoC parameters to make decisions about the control action with a new method called Event Based Quality Integral Cycle. To validate the architecture, the first five Braitenberg vehicles have been implemented using the FSACtrl architecture. The experimental outcomes, demonstrate the convenience of using jointly QoS and QoC parameters in distributed control systems.

  9. Distributed Sensor Architecture for Intelligent Control that Supports Quality of Control and Quality of Service

    Science.gov (United States)

    Poza-Lujan, Jose-Luis; Posadas-Yagüe, Juan-Luis; Simó-Ten, José-Enrique; Simarro, Raúl; Benet, Ginés

    2015-01-01

    This paper is part of a study of intelligent architectures for distributed control and communications systems. The study focuses on optimizing control systems by evaluating the performance of middleware through quality of service (QoS) parameters and the optimization of control using Quality of Control (QoC) parameters. The main aim of this work is to study, design, develop, and evaluate a distributed control architecture based on the Data-Distribution Service for Real-Time Systems (DDS) communication standard as proposed by the Object Management Group (OMG). As a result of the study, an architecture called Frame-Sensor-Adapter to Control (FSACtrl) has been developed. FSACtrl provides a model to implement an intelligent distributed Event-Based Control (EBC) system with support to measure QoS and QoC parameters. The novelty consists of using, simultaneously, the measured QoS and QoC parameters to make decisions about the control action with a new method called Event Based Quality Integral Cycle. To validate the architecture, the first five Braitenberg vehicles have been implemented using the FSACtrl architecture. The experimental outcomes, demonstrate the convenience of using jointly QoS and QoC parameters in distributed control systems. PMID:25723145

  10. Control Architecture for Intentional Island Operation in Distribution Network with High Penetration of Distributed Generation

    DEFF Research Database (Denmark)

    Chen, Yu

    Currently, a high penetration level of Distributed Generations (DGs), such as Wind Turbines (WTs) and Combined Heat and Power plants (CHPs), has been observed in the Danish distribution systems, and even more DGs are foreseen to be present in the coming years. With adequate DGs available, how...... to utilize them for maintaining the security of the power supply under the emergency situations, has been of great interest for study. One proposal is the intentional island operation. This PhD project is intended to develop a control architecture for the island operation in distribution system with high...... Architecture with its associated coordination scheme (ICA) is designed. Moreover, an investigation of different factors that affect the ISR concept is performed, and different case studies about the ICA demonstration are conducted in DIgSILENT/ PowerFactory. Both the 2-Dimension ISR (with one lumped generator...

  11. Advanced Coordinating Control System for Power Plant

    Institute of Scientific and Technical Information of China (English)

    WU Peng; WEI Shuangying

    2006-01-01

    The coordinating control system is popular used in power plant. This paper describes the advanced coordinating control by control methods and optimal operation, introduces their principals and features by using the examples of power plant operation. It is wealthy for automation application in optimal power plant operation.

  12. Architecture for Control of the K9 Rover

    Science.gov (United States)

    Bresina, John L.; Bualat, maria; Fair, Michael; Wright, Anne; Washington, Richard

    2006-01-01

    Software featuring a multilevel architecture is used to control the hardware on the K9 Rover, which is a mobile robot used in research on robots for scientific exploration and autonomous operation in general. The software consists of five types of modules: Device Drivers - These modules, at the lowest level of the architecture, directly control motors, cameras, data buses, and other hardware devices. Resource Managers - Each of these modules controls several device drivers. Resource managers can be commanded by either a remote operator or the pilot or conditional-executive modules described below. Behaviors and Data Processors - These modules perform computations for such functions as planning paths, avoiding obstacles, visual tracking, and stereoscopy. These modules can be commanded only by the pilot. Pilot - The pilot receives a possibly complex command from the remote operator or the conditional executive, then decomposes the command into (1) more-specific commands to the resource managers and (2) requests for information from the behaviors and data processors. Conditional Executive - This highest-level module interprets a command plan sent by the remote operator, determines whether resources required for execution of the plan are available, monitors execution, and, if necessary, selects an alternate branch of the plan.

  13. Design and evaluation of a hierarchical control architecture for an autonomous underwater vehicle

    Institute of Scientific and Technical Information of China (English)

    BIAN Xin-qian; QIN Zheng; YAN Zhe-ping

    2008-01-01

    This paper researches on a kind of control architecture for autonomous underwater vehicle (AUV). After describing the hybrid property of the AUV control system, we present the hierarchical AUV control architecture. The architecture is organized in three layers: mission layer, task layer and execution layer. State supervisor and task coordinator are two key modules handling discrete events, so we describe these two modules in detail. Finally, we carried out a series of tests to verify this architecture. The test results show that the AUV can perform autonomous missions effectively and safely. We can conclude the control architecture is valid and practical.

  14. Command control of reactors and factories: general architecture; Controle-commande des reacteurs et des usines: architecture generale

    Energy Technology Data Exchange (ETDEWEB)

    Appell, B.; Guesnier, G. [Electricite de France, 75 - Paris (France). Service Etudes et Projets Thermiques et Nucleaires; Chabert, J. [Cogema, 78 - Velizy-Villacoublay (France)

    1998-07-01

    As any industrial installation, the nuclear power plants and the fuel reprocessing plants require means to survey and to command the physical process and the associated equipment. These means are grouped under the designation of `command-control`. The command control is constituted by captors allowing to transform the physical quantities in electric signals, by automates allowing to treat these signals, by surveillance and control means at operators disposal and finally activators allowing to transform the command electric signals in mechanical actions on the process. The equipment has to answer to specifications imposed by nuclear safety. (N.C.)

  15. Reliability Architecture for Collaborative Robot Control Systems in Complex Environments

    Directory of Open Access Journals (Sweden)

    Liang Tang

    2016-02-01

    Full Text Available Many different kinds of robot systems have been successfully deployed in complex environments, while research into collaborative control systems between different robots, which can be seen as a hybrid internetware safety-critical system, has become essential. This paper discusses ways to construct robust and secure reliability architecture for collaborative robot control systems in complex environments. First, the indication system for evaluating the realtime reliability of hybrid internetware systems is established. Next, a dynamic collaborative reliability model for components of hybrid internetware systems is proposed. Then, a reliable, adaptive and evolutionary computation method for hybrid internetware systems is proposed, and a timing consistency verification solution for collaborative robot control internetware applications is studied. Finally, a multi-level security model supporting dynamic resource allocation is established.

  16. Novel architecture for data management and control for small satellite

    Science.gov (United States)

    Adami, G.; Fossati, D.; Turri, M.

    1995-12-01

    The paper introduces an innovative architecture for the on-board units that are responsible to provide the data interface, control and processing capability normally allocated in separated electronics boxes in the data handling subsystem of the space system. A new solution for the attitude control of the space vehicle has been studied and developed and the utilization of this technological growth, in particular that concerns the GPS receiver, is matter for novel architecture. This new approach also involves in general the small satellite ground segment product as matter of a dedicated development approach. Small and medium satellites are considered an attractive solution for the low cost scientific experimentation, communication or remote sensing satellites. The functional and performance capability of the studied on-board units and ground segment are assessed in tight conjunction with the evolution of the European and the USA market. The design of these units has to be based on few and simple driving requirements, directly derived from the new modified scenario: (1) The limited budgets available for space system. (2) The quick mission data return, i.e., low development time by specific and tailored system development tools. The quick availability of data to scientists/user is requested without jeopardizing the maximum and guaranteed scientific or commercial return. The proposed system is then given thinking to an architecture based on a high degree of modularity (and reuse of existing library of modules) thus allowing to keep down costs and to speed up the time to market. The design ground rules are so established in order to cope with the following performance: (1) capability to adapt with few impacts the system interfaces, in particular for attitude sensors and actuators that are tightly mission dependent; (2) easy adaptation of on board computational performances and memory capacity (including mass memory storage capability); (3) definition of a hierarchical

  17. The control architecture of the D0 experiment

    Energy Technology Data Exchange (ETDEWEB)

    J. Fredrick Bartlett et al.

    2002-11-21

    From a controls viewpoint, contemporary high energy physics collider detectors are comparable in complexity to small to medium size accelerators: however, their controls requirements often differ significantly. D0, one of two collider experiments at Fermilab, has recently started a second, extended running period that will continue for the next five years. EPICS [1], an integrated set of software building blocks for implementing a distributed control system, has been adapted to satisfy the slow controls needs of the D0 detector by (1) extending the support for new device types and an additional field bus, (2) by the addition of a global event reporting system that augments the existing EPICS alarm support, and (3) by the addition of a centralized database with supporting tools for defining the configuration of the control system. This paper discusses the control architecture of the current D0 experiment, how the EPICS system was extended to meet the control requirements of a large, high-energy physics detector, and how a formal control system contributes to the management of detector operations.

  18. Active materials for adaptive architectural envelopes based on plant adaptation principles

    Directory of Open Access Journals (Sweden)

    Marlen Lopez

    2015-06-01

    Full Text Available In this paper, the authors present research into adaptive architectural envelopes that adapt to environmental changes using active materials, as a result of application of biomimetic principles from plants to architecture. Buildings use large amounts of energy in order to maintain their internal comfort, because conventional buildings are designed to provide a static design solution. Most of the current solutions for facades are not designed for optimum adaptation to contextual issues and needs, while biological solutions to adaptation are often complex, multi-functional and highly responsive. We focus on plant adaptations to the environment, as, due to their immobility, they have developed special means of protection against weather changing conditions. Furthermore, recent developments in new technologies are allowing the possibility to transfer these plant adaptation strategies to technical implementation. These technologies include: multi-material 3D printing, advances in materials science and new capabilities in simulation software. Unlike traditional mechanical activation used for dynamic systems in kinetic facades, adaptive architectural envelopes require no complex electronics, sensors, or actuators. The paper proposes a research of the relationship that can be developed between active materials and environmental issues in order to propose innovative and low-tech design strategies to achieve living envelopes according to plant adaptation principles.  

  19. Path Planning and Trajectory Control of Collaborative Mobile Robots Using Hybrid Control Architecture

    Directory of Open Access Journals (Sweden)

    Trevor Davies

    2008-08-01

    Full Text Available This paper presents the development and implementation a hybrid control architecture to direct a collective of three X80 mobile robots to multiple user-defined waypoints. The Genetic Algorithm Path Planner created an optimized, reduction in the time to complete the task, path plan for each robot in the collective such that each waypoint was visited once without colliding with a priori obstacles. The deliberative Genetic Algorithm Path Planner was then coupled with a reactive Potential Field Trajectory Planner and kinematic based controller to create a hybrid control architecture allowing the mobile robot to navigate between multiple user-defined waypoints, while avoiding a priori obstacles and obstacles detected using the robots' range sensors. The success of this hybrid control architecture was proven through simulation and experimentation using three of Dr. Robot's ™ wireless X80 mobile robots.

  20. Effect of the Gall Wasp Leptocybe invasa on Hydraulic Architecture in Eucalyptus camaldulensis Plants.

    Science.gov (United States)

    Tong, You-Gui; Ding, Xiao-Xi; Zhang, Kai-Cun; Yang, Xin; Huang, Wei

    2016-01-01

    The gall wasp, Leptocybe invasa (Hymenoptera; Eulophidae), is a devastating pest of eucalypt plantations in the Middle East, the Mediterranean basin, Africa, India, South-East Asia, and China. Heavy galling causes the leaves to warp and in extreme cases it may stunt the growth of the trees of Eucalyptus camaldulensis. However, the physiological mechanisms underlying how L. invasa inhibits the growth of plants of E. camaldulensis are unclear. Because the growth rate of plants is mainly dependent on photosynthesis that is largely correlated with hydraulic architecture, we speculate that galling of L. invasa depresses hydraulic conductance of stem and leaf. In the present study, we examined the effects of L. invasa galling on hydraulic architecture and photosynthetic parameters in E. camaldulensis plants. We found that galling of L. invasa significantly decreased stem hydraulic conductance (K stem), midday leaf water potential (Ψmd), minor vein density, and stomatal density (SD). Furthermore, the stomatal conductance (g s), chlorophyll content, CO2 assimilation rate (A n) and photosynthetic electron flow were reduced in infected plants. Therefore, the galling of L. invasa not only declined the water supply from stem to leaves, but also restricted water transport within leaf. As a result, galled plants of E. camaldulensis reduced leaf number, leaf area, SD and g s to balance water supply and transpirational demand. Furthermore, galled plants had lower leaf nitrogen content, leading to decreases in chlorophyll content, CO2 assimilation rate and photosynthetic electron flow. These results indicate that the change in hydraulic architecture is responsible for the inhibition of growth rate in galled plants.

  1. Light signaling controls nuclear architecture reorganization during seedling establishment

    NARCIS (Netherlands)

    Bourbousse, C.; Mestiri, I.; Zabulon, G.; Bourge, M.; Formiggini, F.; Koini, M.A.; Brown, S.C.; Fransz, P.; Bowler, C.; Barneche, F.

    2015-01-01

    The spatial organization of chromatin can be subject to extensive remodeling in plant somatic cells in response to developmental and environmental signals. However, the mechanisms controlling these dynamic changes and their functional impact on nuclear activity are poorly understood. Here, we determ

  2. Controlled architecture for improved macromolecular memory within polymer networks.

    Science.gov (United States)

    DiPasquale, Stephen A; Byrne, Mark E

    2016-08-01

    This brief review analyzes recent developments in the field of living/controlled polymerization and the potential of this technique for creating imprinted polymers with highly structured architecture with macromolecular memory. As a result, it is possible to engineer polymers at the molecular level with increased homogeneity relating to enhanced template binding and transport. Only recently has living/controlled polymerization been exploited to decrease heterogeneity and substantially improve the efficiency of the imprinting process for both highly and weakly crosslinked imprinted polymers. Living polymerization can be utilized to create imprinted networks that are vastly more efficient than similar polymers produced using conventional free radical polymerization, and these improvements increase the role that macromolecular memory can play in the design and engineering of new drug delivery and sensing platforms.

  3. A unified cooperative control architecture for UAV missions

    Science.gov (United States)

    Tian, Xin; Bar-Shalom, Yaakov; Chen, Genshe; Blasch, Erik; Pham, Khanh

    2012-06-01

    In this paper, we propose a unified cooperative control architecture (UCCA) that supports effective cooperation of Unmanned Aerial Vehicles (UAVs) and learning capabilities for UAV missions. Main features of the proposed UCCA include: i) it has a modular structure; each function module focuses on a particular type of task and provide services to other function modules through well defined interfaces; ii) it allows the efficient sharing of UAV control and onboard resources by the function modules and is able to effectively handle simultaneously multiple objectives in the UAV operation; iii) it facilitates the cooperation among different function modules; iv) it supports effective cooperation among multiple UAVs on a mission's tasks, v) an objective driven learning approach is also supported, which allows UAVs to systematically explore uncertain mission environments to increase the level of situation awareness for the achievement of their mission/task objectives.

  4. Remote Control for Robotic Systems Using CORBA as Communication Architecture

    Institute of Scientific and Technical Information of China (English)

    2002-01-01

    This paper proposes a novel method to implement network connections among a client and remoterobotic systems using CORBA for developing telecare system to aid the aged or disabled. The proposed methodmakes system have low cost and wide availability, high scaling and inter-operating ability to allow the clients andserver objects, written in different languages, run in different operating system, and connected in different net-work to inter-operate. It also makes system easy to be extended and integrated with the other technologies andapplications distributed over the Internet. Using CORBA as a communication architecture, we developed hard-ware base, task-level robot arm control server, live image feedback server and mobile robot control server,which can provide some basic care services to aid the aged and disabled.

  5. 1D nanocrystals with precisely controlled dimensions, compositions, and architectures.

    Science.gov (United States)

    Pang, Xinchang; He, Yanjie; Jung, Jaehan; Lin, Zhiqun

    2016-09-16

    The ability to synthesize a diverse spectrum of one-dimensional (1D) nanocrystals presents an enticing prospect for exploring nanoscale size- and shape-dependent properties. Here we report a general strategy to craft a variety of plain nanorods, core-shell nanorods, and nanotubes with precisely controlled dimensions and compositions by capitalizing on functional bottlebrush-like block copolymers with well-defined structures and narrow molecular weight distributions as nanoreactors. These cylindrical unimolecular nanoreactors enable a high degree of control over the size, shape, architecture, surface chemistry, and properties of 1D nanocrystals. We demonstrate the synthesis of metallic, ferroelectric, upconversion, semiconducting, and thermoelectric 1D nanocrystals, among others, as well as combinations thereof.

  6. 1D nanocrystals with precisely controlled dimensions, compositions, and architectures

    Science.gov (United States)

    Pang, Xinchang; He, Yanjie; Jung, Jaehan; Lin, Zhiqun

    2016-09-01

    The ability to synthesize a diverse spectrum of one-dimensional (1D) nanocrystals presents an enticing prospect for exploring nanoscale size- and shape-dependent properties. Here we report a general strategy to craft a variety of plain nanorods, core-shell nanorods, and nanotubes with precisely controlled dimensions and compositions by capitalizing on functional bottlebrush-like block copolymers with well-defined structures and narrow molecular weight distributions as nanoreactors. These cylindrical unimolecular nanoreactors enable a high degree of control over the size, shape, architecture, surface chemistry, and properties of 1D nanocrystals. We demonstrate the synthesis of metallic, ferroelectric, upconversion, semiconducting, and thermoelectric 1D nanocrystals, among others, as well as combinations thereof.

  7. A centralized control architecture for harmonic voltage suppression in islanded microgrids

    DEFF Research Database (Denmark)

    Wang, Xiongfei; Blaabjerg, Frede; Chen, Zhe

    2011-01-01

    This paper proposes a centralized control architecture for harmonic voltage suppression in islanded microgrids. The centralized selective harmonic compensator is developed in addition to the autonomous nonlinear load sharing loop in local controllers of inverter-interfaced Distributed Energy Reso...... transformation aided signal modulation method is integrated to the centralized control architecture. The operation principle and case studies based on computer simulations are presented in this paper and validate the proposed control architecture.......This paper proposes a centralized control architecture for harmonic voltage suppression in islanded microgrids. The centralized selective harmonic compensator is developed in addition to the autonomous nonlinear load sharing loop in local controllers of inverter-interfaced Distributed Energy...

  8. The software architecture to control the Cherenkov Telescope Array

    Science.gov (United States)

    Oya, I.; Füßling, M.; Antonino, P. O.; Conforti, V.; Hagge, L.; Melkumyan, D.; Morgenstern, A.; Tosti, G.; Schwanke, U.; Schwarz, J.; Wegner, P.; Colomé, J.; Lyard, E.

    2016-07-01

    The Cherenkov Telescope Array (CTA) project is an initiative to build two large arrays of Cherenkov gamma- ray telescopes. CTA will be deployed as two installations, one in the northern and the other in the southern hemisphere, containing dozens of telescopes of different sizes. CTA is a big step forward in the field of ground- based gamma-ray astronomy, not only because of the expected scientific return, but also due to the order-of- magnitude larger scale of the instrument to be controlled. The performance requirements associated with such a large and distributed astronomical installation require a thoughtful analysis to determine the best software solutions. The array control and data acquisition (ACTL) work-package within the CTA initiative will deliver the software to control and acquire the data from the CTA instrumentation. In this contribution we present the current status of the formal ACTL system decomposition into software building blocks and the relationships among them. The system is modelled via the Systems Modelling Language (SysML) formalism. To cope with the complexity of the system, this architecture model is sub-divided into different perspectives. The relationships with the stakeholders and external systems are used to create the first perspective, the context of the ACTL software system. Use cases are employed to describe the interaction of those external elements with the ACTL system and are traced to a hierarchy of functionalities (abstract system functions) describing the internal structure of the ACTL system. These functions are then traced to fully specified logical elements (software components), the deployment of which as technical elements, is also described. This modelling approach allows us to decompose the ACTL software in elements to be created and the ow of information within the system, providing us with a clear way to identify sub-system interdependencies. This architectural approach allows us to build the ACTL system model and

  9. Idiomatic Control used in Sugar Plants

    DEFF Research Database (Denmark)

    Nielsen, Kirsten Mølgaard; Nielsen, Jens Frederik Dalsgaard; Pedersen, Tom Søndergaard

    1993-01-01

    A description of a control system for a large scale industrial plant - the evaporator section of a sugar plant. The control system is based on the idiomatic control concept, causing decomposition into loop control units - idioms. Dynamic decoupling, feedforward- and feedback loops eg. have been...

  10. Idiomatic Control used in Sugar Plants

    DEFF Research Database (Denmark)

    Nielsen, Kirsten Mølgaard; Nielsen, Jens Frederik Dalsgaard; Pedersen, Tom Søndergaard

    1993-01-01

    A description of a control system for a large scale industrial plant - the evaporator section of a sugar plant. The control system is based on the idiomatic control concept, causing decomposition into loop control units - idioms. Dynamic decoupling, feedforward- and feedback loops eg. have been...

  11. Modeling the 3D functional architecture of the nucleus in animal and plant kingdoms.

    Science.gov (United States)

    Gaudin, Valérie; Andrey, Philippe; Devinoy, Eve; Kress, Clémence; Kieu, Kiên; Beaujean, Nathalie; Maurin, Yves; Debey, Pascale

    2009-11-01

    Compartmentalization is one of the fundamental principles which underly nuclear function. Numerous studies describe complex and sometimes conflicting relationships between nuclear gene positioning and transcription regulation. Therefore the question is whether topological landmarks and/or organization principles exist to describe the nuclear architecture and, if existing, whether these principles are identical in the animal and plant kingdoms. In the frame of an agroBI-INRA program on nuclear architecture, we set up a multidisciplinary approach combining biological studies, spatial statistics and 3D modeling to investigate spatial organization of a nuclear compartment in both plant and animal cells in their physiological contexts. In this article, we review the questions addressed in this program and the methodology of our work.

  12. Photo-active collagen systems with controlled triple helix architecture.

    Science.gov (United States)

    Tronci, Giuseppe; Russell, Stephen J; Wood, David J

    2013-08-14

    The design of photo-active collagen systems is presented as a basis for establishing biomimetic materials with varied network architecture and programmable macroscopic properties. Following in-house isolation of type I collagen, reaction with vinyl-bearing compounds of varied backbone rigidity, i.e. 4-vinylbenzyl chloride (4VBC) and glycidyl methacrylate (GMA), was carried out. TNBS colorimetric assay, (1)H-NMR and ATR-FTIR confirmed covalent and tunable functionalization of collagen lysines. Depending on the type and extent of functionalization, controlled stability and thermal denaturation of triple helices were observed via circular dichroism (CD), whereby the hydrogen-bonding capability of introduced moieties was shown to play a major role. Full gel formation was observed following photo-activation of functionalized collagen solutions. The presence of a covalent network only slightly affected collagen triple helix conformation (as observed by WAXS and ATR-FTIR), confirming the structural organization of functionalized collagen precursors. Photo-activated hydrogels demonstrated an increased denaturation temperature (DSC) with respect to native collagen, suggesting that the formation of the covalent network successfully stabilized collagen triple helices. Moreover, biocompatibility and mechanical competence of obtained hydrogels were successfully demonstrated under physiologically-relevant conditions. These results demonstrate that this novel synthetic approach enabled the formation of biocompatible collagen systems with defined network architecture and programmable macroscopic properties, which can only partially be obtained with current synthetic methods.

  13. GiA Roots: software for the high throughput analysis of plant root system architecture

    OpenAIRE

    Galkovskyi Taras; Mileyko Yuriy; Bucksch Alexander; Moore Brad; Symonova Olga; Price Charles A; Topp Christopher N; Iyer-Pascuzzi Anjali S; Zurek Paul R; Fang Suqin; Harer John; Benfey Philip N; Weitz Joshua S

    2012-01-01

    Abstract Background Characterizing root system architecture (RSA) is essential to understanding the development and function of vascular plants. Identifying RSA-associated genes also represents an underexplored opportunity for crop improvement. Software tools are needed to accelerate the pace at which quantitative traits of RSA are estimated from images of root networks. Results We have developed GiA Roots (General Image Analysis of Roots), a semi-automated software tool designed specifically...

  14. The architecture modeling of LAMOST Observatory control system

    Science.gov (United States)

    Wang, Jian; Jin, Ge; Huang, Kun; Li, Feng; Ren, Jian; Yu, Xiao-Qi

    2005-06-01

    For the complexity of the LAMOST, long time development for the LAMOST and long life-cycle of the OCS system, the OCS must have a flexible, extensible, maintainable software system. It is required that the OCS has a flexible and extensible architecture. In this paper the concepts of architecture and the OCS are introduced. Referring many kinds of architecture pattern and based on the OCS physical models, the architecture of the OCS is established which is a component-based layered system using many patterns such as the MVC and proxy. The static model and dynamic model of architecture are discussed and realized at the phase of 1 level OCS.

  15. Biologically-Inspired Control Architecture for Musical Performance Robots

    Directory of Open Access Journals (Sweden)

    Jorge Solis

    2014-10-01

    Full Text Available At Waseda University, since 1990, the authors have been developing anthropomorphic musical performance robots as a means for understanding human control, introducing novel ways of interaction between musical partners and robots, and proposing applications for humanoid robots. In this paper, the design of a biologically-inspired control architecture for both an anthropomorphic flutist robot and a saxophone playing robot are described. As for the flutist robot, the authors have focused on implementing an auditory feedback system to improve the calibration procedure for the robot in order to play all the notes correctly during a performance. In particular, the proposed auditory feedback system is composed of three main modules: an Expressive Music Generator, a Feed Forward Air Pressure Control System and a Pitch Evaluation System. As for the saxophone-playing robot, a pressure-pitch controller (based on the feedback error learning to improve the sound produced by the robot during a musical performance was proposed and implemented. In both cases studied, a set of experiments are described to verify the improvements achieved while considering biologically-inspired control approaches.

  16. Plant Nitrogen Acquisition Under Low Availability: Regulation of Uptake and Root Architecture.

    Science.gov (United States)

    Kiba, Takatoshi; Krapp, Anne

    2016-04-01

    Nitrogen availability is a major factor determining plant growth and productivity. Plants acquire nitrogen nutrients from the soil through their roots mostly in the form of ammonium and nitrate. Since these nutrients are scarce in natural soils, plants have evolved adaptive responses to cope with the environment. One of the most important responses is the regulation of nitrogen acquisition efficiency. This review provides an update on the molecular determinants of two major drivers of the nitrogen acquisition efficiency: (i) uptake activity (e.g. high-affinity nitrogen transporters) and (ii) root architecture (e.g. low-nitrogen-availability-specific regulators of primary and lateral root growth). Major emphasis is laid on the regulation of these determinants by nitrogen supply at the transcriptional and post-transcriptional levels, which enables plants to optimize nitrogen acquisition efficiency under low nitrogen availability.

  17. Computing Architecture of the ALICE Detector Control System

    CERN Document Server

    Augustinus, A; Moreno, A; Kurepin, A N; De Cataldo, G; Pinazza, O; Rosinský, P; Lechman, M; Jirdén, L S

    2011-01-01

    The ALICE Detector Control System (DCS) is based on a commercial SCADA product, running on a large Windows computer cluster. It communicates with about 1200 network attached devices to assure safe and stable operation of the experiment. In the presentation we focus on the design of the ALICE DCS computer systems. We describe the management of data flow, mechanisms for handling the large data amounts and information exchange with external systems. One of the key operational requirements is an intuitive, error proof and robust user interface allowing for simple operation of the experiment. At the same time the typical operator task, like trending or routine checks of the devices, must be decoupled from the automated operation in order to prevent overload of critical parts of the system. All these requirements must be implemented in an environment with strict security requirements. In the presentation we explain how these demands affected the architecture of the ALICE DCS.

  18. Photo-active collagen systems with controlled triple helix architecture

    CERN Document Server

    Tronci, Giuseppe; Wood, David J

    2013-01-01

    The design of photo-active collagen systems is presented as a basis for establishing biomimetic materials with varied network architecture and programmable macroscopic properties. Following in-house isolation of type I collagen, reaction with vinyl-bearing compounds of varied backbone rigidity, i.e. 4-vinylbenzyl chloride (4VBC) and glycidyl methacrylate (GMA), was carried out. TNBS colorimetric assay, 1H-NMR and ATR-FTIR confirmed covalent and tunable functionalization of collagen lysines. Depending on the type and extent of functionalization, controlled stability and thermal denaturation of triple helices were observed via circular dichroism (CD), whereby the hydrogen-bonding capability of introduced moieties was shown to play a major role. Full gel formation was observed following photo-activation of functionalized collagen solutions. The presence of a covalent network only slightly affected collagen triple helix conformation (as observed by WAXS and ATR-FTIR), confirming the structural organization of fun...

  19. Key characteristics for software for open architecture controllers

    Science.gov (United States)

    Pfeffer, Lawrence E.; Tran, Hy D.

    1997-01-01

    Software development time, cost, and ease of (re)use are now among the major issues in development of advanced machines, whether for machine tools, automation systems, or process systems. Two keys to reducing development time are powerful, user-friendly development tools and software architectures that provide clean, well-documented interfaces to the various real-time functions that such machines require. Examples of essential functions are signal conditioning, servo-control, trajectory generation, calibration/registration, coordination of a synchronous events, task sequencing, communication with external systems, and user interfaces. There are a number of existing standards that can help with software development, such as the IEEE POSIX standards for operating systems and real time services; software tools to compliment these standards are beginning to see use. This paper will detail some of the existing standards, some new tools, and development activities relevant to advanced, 'smart' machines.

  20. Automation of Data Traffic Control on DSM Architecture

    Science.gov (United States)

    Frumkin, Michael; Jin, Hao-Qiang; Yan, Jerry

    2001-01-01

    The design of distributed shared memory (DSM) computers liberates users from the duty to distribute data across processors and allows for the incremental development of parallel programs using, for example, OpenMP or Java threads. DSM architecture greatly simplifies the development of parallel programs having good performance on a few processors. However, to achieve a good program scalability on DSM computers requires that the user understand data flow in the application and use various techniques to avoid data traffic congestions. In this paper we discuss a number of such techniques, including data blocking, data placement, data transposition and page size control and evaluate their efficiency on the NAS (NASA Advanced Supercomputing) Parallel Benchmarks. We also present a tool which automates the detection of constructs causing data congestions in Fortran array oriented codes and advises the user on code transformations for improving data traffic in the application.

  1. Synthesis of branched metal nanostructures with controlled architecture and composition

    Science.gov (United States)

    Ortiz, Nancy

    On account of their small size, metal nanoparticles are proven to be outstanding catalysts for numerous chemical transformations and represent promising platforms for applications in the fields of electronics, chemical sensing, medicine, and beyond. Many properties of metal nanoparticles are size-dependent and can be further manipulated through their shape and architecture (e.g., spherical vs. branched). Achieving morphology control of nanoparticles through solution-based techniques has proven challenging due to limited knowledge of morphology development in nanosyntheses. To overcome these complications, a systematic examination of the local ligand environment of metal precursors on nanostructure formation was undertaken to evaluate its contribution to nanoparticle nucleation rate and subsequent growth processes. Specifically, this thesis will provide evidence from ex situ studies---Transmission Electron Microscopy (TEM) and UV-visible spectroscopy (UV-Vis)---that support the hypothesis that strongly coordinated ligands delay burst-like nucleation to generate spherical metal nanoparticles and ligands with intermediate binding affinity regulate the gradual reduction of metal precursors to promote aggregated assembly of nanodendrites. These ex situ studies were coupled with a new in situ perspective, providing detailed understanding of metal precursor transformation, its direct relation to nanoparticle morphology development, and the ligand influence towards the formation of structurally complex metal nanostructures, using in situ synchrotron X-ray Diffraction (XRD) and Ultra Small-Angle X-ray Scattering (USAXS). The principles extracted from the study of monometallic nanostructure formation were also found to be generally applicable to the synthesis of bimetallic nanostructures, e.g., Pd-Pt architectures, with either core-shell or alloyed structures that were readily achieved by ligand selection. These outcomes provide a direct connection between fundamental

  2. Effects of apical meristem mining on plant fitness, architecture, and flowering phenology in Cirsium altissimum (Asteraceae).

    Science.gov (United States)

    Adhikari, Subodh; Russell, F Leland

    2014-12-01

    • Interactions that limit lifetime seed production have the potential to limit plant population sizes and drive adaptation through natural selection. Effects of insect herbivory to apical meristems (apical meristem mining) on lifetime seed production rarely have been quantified experimentally. We studied Cirsium altissimum (tall thistle), whose meristems are mined by Platyptilia carduidactyla (artichoke plume moth), to determine how apical damage affects plant maternal fitness and evaluate both direct and indirect mechanisms underlying these effects.• In restored prairie, apical mining was manipulated on tall thistles by applying insecticide, water, or no spray to apical meristems. We quantified effects on lifetime seed production, plant architecture, and flowering phenology. Seed germinability and seedling mass were evaluated in a greenhouse.• Apical meristem miners decreased lifetime seed production of C. altissimum, but not seed quality. Higher mortality rates of damaged plants contributed to reduced seed production. Apical damage reduced plant height and increased the proportion of blooming flower heads in axial positions on branches. Apical damage delayed flowering and shortened flowering duration.• Apical meristem mining reduced plant maternal fitness. The shift in the identity of blooming flower heads from terminal to axial positions contributed to this reduction because axial heads are less fecund. Shorter, meristem-mined plants may have been more susceptible to competition, and this susceptibility may explain their higher mortality rates. The kinds of changes in architecture and phenology that resulted from apical damage to C. altissimum have been shown to affect floral visitation in other plant species. © 2014 Botanical Society of America, Inc.

  3. The Diamond Beamline Controls and Data Acquisition Software Architecture

    Science.gov (United States)

    Rees, N.

    2010-06-01

    The software for the Diamond Light Source beamlines[1] is based on two complementary software frameworks: low level control is provided by the Experimental Physics and Industrial Control System (EPICS) framework[2][3] and the high level user interface is provided by the Java based Generic Data Acquisition or GDA[4][5]. EPICS provides a widely used, robust, generic interface across a wide range of hardware where the user interfaces are focused on serving the needs of engineers and beamline scientists to obtain detailed low level views of all aspects of the beamline control systems. The GDA system provides a high-level system that combines an understanding of scientific concepts, such as reciprocal lattice coordinates, a flexible python syntax scripting interface for the scientific user to control their data acquisition, and graphical user interfaces where necessary. This paper describes the beamline software architecture in more detail, highlighting how these complementary frameworks provide a flexible system that can accommodate a wide range of requirements.

  4. Open architecture controller solution for custom machine systems

    Science.gov (United States)

    Anderson, Ronald L.; Reagin, J. M.; Garner, T. D.; Sweeny, T. E.

    1997-01-01

    In today's marketplace, product quality and price have become requirements for entry and are no longer sufficient to differentiate one's product and gain a competitive advantage. A key to competition in the future will be a company's ability to respond quickly to a rapidly-changing global marketplace. Developers of manufacturing equipment must play a role in the reduction of the product development cycle time by increasing the flexibility of their equipment and decreasing its cost and time to market. This paper will discuss the implementation of an open-architecture machine controller on a flip-chip placement machine and how this implementation supports the goals of reduced development time and increased equipment flexibility. The following subjects are discussed: 1) Issues related to the selection of a standard operating system, including real-time performance, preemptive multi-tasking, multi-threaded applications, and development tools. 2) The use of a common API for motion, and I/O. 3) Use of a rapid application development and object-oriented programming techniques on the machine controller to shorten development time and support code reuse. 4) Specific hardware and software issues related to the implementation of the flip chip controller. This includes hardware and software implementation details, controller performance, and human interface issues.

  5. RBAC Driven Least Privilege Architecture For Control Systems

    Energy Technology Data Exchange (ETDEWEB)

    Hull, Julie; Markham, Mark

    2014-01-25

    The concept of role based access control (RBAC) within the IT environment has been studied by researchers and was supported by NIST (circa 1992). This earlier work highlighted the benefits of RBAC which include reduced administrative workload and policies which are easier to analyze and apply. The goals of this research were to expand the application of RBAC in the following ways. • Apply RBAC to the control systems environment: The typical RBAC model within the IT environment is used to control a user’s access to files. Within the control system environment files are replaced with measurement (e.g., temperature) and control (e.g. valve) points organized as a hierarchy of control assets (e.g. a boiler, compressor, refinery unit). Control points have parameters (e.g., high alarm limit, set point, etc.) associated with them. The RBAC model is extended to support access to points and their parameters based upon roles while at the same time allowing permissions for the points to be defined at the asset level or point level directly. In addition, centralized policy administration with distributed access enforcement mechanisms was developed to support the distributed architecture of distributed control systems and SCADA. • Extend the RBAC model to include access control for software and devices: The established RBAC approach is to assign users to roles. This work extends that notion by first breaking the control system down into three layers 1) users, 2) software and 3) devices. An RBAC model is then created for each of these three layers. The result is that RBAC can be used to define machine-to-machine policy enforced via the IP security (IPsec) protocol. This highlights the potential to use RBAC for machine-to-machine connectivity within the internet of things. • Enable dynamic policy based upon the operating mode of the system: The IT environment is generally static with respect to policy. However, large cyber physical systems such as industrial controls have

  6. How plant architecture affects light absorption and photosynthesis in tomato: towards an ideotype for plant architecture using a functional-structural plant model

    NARCIS (Netherlands)

    Sarlikioti, V.; Visser, de P.H.B.; Buck-Sorlin, G.H.; Marcelis, L.F.M.

    2011-01-01

    Background and Aims - Manipulation of plant structure can strongly affect light distribution in the canopy and photosynthesis. The aim of this paper is to find a plant ideotype for optimization of light absorption and canopy photosynthesis. Using a static functional structural plant model (FSPM), a

  7. How plant architecture affects light absorption and photosynthesis in tomato: towards an ideotype for plant architecture using a functional-structural plant model

    NARCIS (Netherlands)

    Sarlikioti, V.; Visser, de P.H.B.; Buck-Sorlin, G.H.; Marcelis, L.F.M.

    2011-01-01

    Background and Aims - Manipulation of plant structure can strongly affect light distribution in the canopy and photosynthesis. The aim of this paper is to find a plant ideotype for optimization of light absorption and canopy photosynthesis. Using a static functional structural plant model (FSPM), a

  8. Plant actin controls membrane permeability.

    Science.gov (United States)

    Hohenberger, Petra; Eing, Christian; Straessner, Ralf; Durst, Steffen; Frey, Wolfgang; Nick, Peter

    2011-09-01

    The biological effects of electric pulses with low rise time, high field strength, and durations in the nanosecond range (nsPEFs) have attracted considerable biotechnological and medical interest. However, the cellular mechanisms causing membrane permeabilization by nanosecond pulsed electric fields are still far from being understood. We investigated the role of actin filaments for membrane permeability in plant cells using cell lines where different degrees of actin bundling had been introduced by genetic engineering. We demonstrate that stabilization of actin increases the stability of the plasma membrane against electric permeabilization recorded by penetration of Trypan Blue into the cytoplasm. By use of a cell line expressing the actin bundling WLIM domain under control of an inducible promotor we can activate membrane stabilization by the glucocorticoid analog dexamethasone. By total internal reflection fluorescence microscopy we can visualize a subset of the cytoskeleton that is directly adjacent to the plasma membrane. We conclude that this submembrane cytoskeleton stabilizes the plasma membrane against permeabilization through electric pulses. Copyright © 2011 Elsevier B.V. All rights reserved.

  9. Taming Self-Organization Dynamics to Dramatically Control Porous Architectures.

    Science.gov (United States)

    Daly, Ronan; Sader, John E; Boland, John J

    2016-03-22

    We demonstrate templating of functional materials with unexpected and intricate micro- and nanostructures by controlling the condensation, packing, and evaporation of water droplets on a polymer solution. Spontaneous evaporation of a polymer solution induces cooling of the liquid surface and water microdroplet condensation from the ambient vapor. These droplets pack together and act as a template to imprint an entangled polymer film. This breath figure (BF) phenomenon is an example of self-organization that involves the long-range ordering of droplets. Equilibrium-based analysis provides many insights into contact angles and drop stability of individual drops, but the BF phenomenon remains poorly understood thus far, preventing translation to real applications. Here we investigate the dynamics of this phenomenon to separate out the competing influences and then introduce a modulation scheme to ultimately manipulate the water vapor-liquid equilibrium independently from the solvent evaporation. This approach to BF control provides insights into the mechanism, a rationale for microstructure design, and evidence for the benefits of dynamical control of self-organization systems. We finally present dramatically different porous architectures from this approach reminiscent of microscale Petri dishes, conical flasks, and test tubes.

  10. Linux-based Platform for Open Architecture Controller and Its Modular Developing Method

    Institute of Scientific and Technical Information of China (English)

    迟永琳; 王宇晗; 吴祖育; 蔡建国

    2003-01-01

    Linux-based Platform for Open Architecture Controller ( POAC ), a new open architecture controller and its modular developing method are discussed. POAC divides the application software of controller into the developing system and the application system. In the developing system, PAOC abstracts a series of function modules with unified data interface and function interface. In the application system, POAC defines the model of the architecture module, realizing the interoperability and interchangeability between the architecture modules. The modular developing method entitles the users to make up an application system with some architecture modules, which consist of a set of function modules. The modular developing method decreases the developing time from the standard of controller architecture to the product.

  11. Design of a real-time open architecture controller for a reconfigurable machine tool

    CSIR Research Space (South Africa)

    Masekamela, I

    2008-11-01

    Full Text Available The paper presents the design and the development of a real-time, open architecture controller that is used for control of reconfigurable manufacturing tools (RMTs) in reconfigurable manufacturing systems (RMS). The controller that is presented can...

  12. Leveraging software architectures to guide and verify the development of sense/compute/control applications

    DEFF Research Database (Denmark)

    Cassou, Damien; Balland, Emilie; Consel, Charles;

    2011-01-01

    A software architecture describes the structure of a computing system by specifying software components and their interactions. Mapping a software architecture to an implementation is a well known challenge. A key element of this mapping is the architecture’s description of the data and control-f...... verifications. We instantiate our approach in an architecture description language for Sense/Compute/Control applications, and describe associated compilation and verification strategies....

  13. Resilient monitoring systems: architecture, design, and application to boiler/turbine plant.

    Science.gov (United States)

    Garcia, Humberto E; Lin, Wen-Chiao; Meerkov, Semyon M; Ravichandran, Maruthi T

    2014-11-01

    Resilient monitoring systems, considered in this paper, are sensor networks that degrade gracefully under malicious attacks on their sensors, causing them to project misleading information. The goal of this paper is to design, analyze, and evaluate the performance of a resilient monitoring system intended to monitor plant conditions (normal or anomalous). The architecture developed consists of four layers: data quality assessment, process variable assessment, plant condition assessment, and sensor network adaptation. Each of these layers is analyzed by either analytical or numerical tools. The performance of the overall system is evaluated using a simplified boiler/turbine plant. The measure of resiliency is quantified based on the Kullback-Leibler divergence and shown to be sufficiently high in all scenarios considered.

  14. Comparative analysis of the functional genome architecture of animal and plant cell nuclei.

    Science.gov (United States)

    Mayr, Christoph; Jasencakova, Zuzana; Meister, Armin; Schubert, Ingo; Zink, Daniele

    2003-01-01

    Many studies have shown that the functional architecture of eukaryotic genomes displays striking similarities in evolutionarily distant organisms. For example, late-replicating and transcriptionally inactive chromatin is associated with the nuclear periphery in organisms as different as budding yeast and man. These findings suggest that eukaryotic genomes are organized in cell nuclei according to conserved principles. In order to investigate this, we examined nuclei of different animal and plant species by comparing replicational pulse-labelling patterns and their topological relationship to markers for heterochromatin and euchromatin. The data show great similarities in the nuclear genome organization of the investigated animal and plant species, supporting the idea that eukaryotic genomes are organized according to conserved principles. There are, however, differences between animals and plants with regard to histone acetylation patterns and the nuclear distribution of late-replicating chromatin.

  15. Wind Power Plant Control Optimisation with Incorporation of Wind Turbines and STATCOMs

    DEFF Research Database (Denmark)

    Petersen, Lennart; Kryezi, Fitim; Iov, Florin

    2015-01-01

    assessment. An exemplary wind power plant located in the United Kingdom and the corresponding grid code requirements are used as a base case. The final design and tuning process of the voltage controller results in a guidance, proposed for this particular control architecture. It provides qualitative...

  16. Wind Power Plant Control Optimisation with Incorporation of Wind Turbines and STATCOMs

    DEFF Research Database (Denmark)

    Petersen, Lennart; Kryezi, Fitim; Iov, Florin;

    2015-01-01

    assessment. An exemplary wind power plant located in the United Kingdom and the corresponding grid code requirements are used as a base case. The final design and tuning process of the voltage controller results in a guidance, proposed for this particular control architecture. It provides qualitative...

  17. Open modular architecture controls at GM Powertrain: technology and implementation

    Science.gov (United States)

    Bailo, Clark P.; Yen, C. J.

    1997-01-01

    General Motors Powertrain Group (GMPTG) has been the leader in implementing open, modular architecture controller (OMAC) technologies in its manufacturing applications since 1986. The interest in OMAC has been greatly expanded for the past two years because of the advancement of personal computer technologies and the publishing of the OMAC whitepaper by the US automotive companies stating the requirements of OMAC technologies in automotive applications. The purpose of this paper is to describe the current OMAC projects and the future direction of implementation at GMPTG. An overview of the OMAC project and the definition of the OMAC concept are described first. The rationale of pursuing open technologies is explained from the perspective of GMPTG in lieu of its agile manufacturing strategy. Examples of existing PC-based control applications are listed to demonstrate the extensive commitment to PC-based technologies that has already been put in place. A migration plan form PC-based to OMAC-based systems with the thorough approach of validation are presented next to convey the direction that GMPTG is taking in implementing OMAC technologies. Leveraged technology development projects are described to illustrate the philosophy and approaches toward the development of OMAC technologies at GMPTG. Finally, certain implementation issues are discussed to emphasize efforts that are still required to have successful implementations of OMAC systems.

  18. Developing A System Architecture For Holonic Shop Floor Control

    DEFF Research Database (Denmark)

    Sørensen, Christian; Langer, Gilad; Alting, Leo

    1998-01-01

    This paper describes theresults of research regarding the emerging theory of Holonic Manufacturing Systems. This theory and in particular itscorresponding reference architecture serves as the basis for thedevelopment of a system-architecture for shop floor controlsystems in a multi-cellular conte...

  19. Genome-Wide Association Study for Traits Related to Plant and Grain Morphology, and Root Architecture in Temperate Rice Accessions.

    Directory of Open Access Journals (Sweden)

    Filippo Biscarini

    Full Text Available In this study we carried out a genome-wide association analysis for plant and grain morphology and root architecture in a unique panel of temperate rice accessions adapted to European pedo-climatic conditions. This is the first study to assess the association of selected phenotypic traits to specific genomic regions in the narrow genetic pool of temperate japonica. A set of 391 rice accessions were GBS-genotyped yielding-after data editing-57000 polymorphic and informative SNPS, among which 54% were in genic regions.In total, 42 significant genotype-phenotype associations were detected: 21 for plant morphology traits, 11 for grain quality traits, 10 for root architecture traits. The FDR of detected associations ranged from 3 · 10-7 to 0.92 (median: 0.25. In most cases, the significant detected associations co-localised with QTLs and candidate genes controlling the phenotypic variation of single or multiple traits. The most significant associations were those for flag leaf width on chromosome 4 (FDR = 3 · 10-7 and for plant height on chromosome 6 (FDR = 0.011.We demonstrate the effectiveness and resolution of the developed platform for high-throughput phenotyping, genotyping and GWAS in detecting major QTLs for relevant traits in rice. We identified strong associations that may be used for selection in temperate irrigated rice breeding: e.g. associations for flag leaf width, plant height, root volume and length, grain length, grain width and their ratio. Our findings pave the way to successfully exploit the narrow genetic pool of European temperate rice and to pinpoint the most relevant genetic components contributing to the adaptability and high yield of this germplasm. The generated data could be of direct use in genomic-assisted breeding strategies.

  20. Genome-Wide Association Study for Traits Related to Plant and Grain Morphology, and Root Architecture in Temperate Rice Accessions.

    Science.gov (United States)

    Biscarini, Filippo; Cozzi, Paolo; Casella, Laura; Riccardi, Paolo; Vattari, Alessandra; Orasen, Gabriele; Perrini, Rosaria; Tacconi, Gianni; Tondelli, Alessandro; Biselli, Chiara; Cattivelli, Luigi; Spindel, Jennifer; McCouch, Susan; Abbruscato, Pamela; Valé, Giampiero; Piffanelli, Pietro; Greco, Raffaella

    2016-01-01

    In this study we carried out a genome-wide association analysis for plant and grain morphology and root architecture in a unique panel of temperate rice accessions adapted to European pedo-climatic conditions. This is the first study to assess the association of selected phenotypic traits to specific genomic regions in the narrow genetic pool of temperate japonica. A set of 391 rice accessions were GBS-genotyped yielding-after data editing-57000 polymorphic and informative SNPS, among which 54% were in genic regions. In total, 42 significant genotype-phenotype associations were detected: 21 for plant morphology traits, 11 for grain quality traits, 10 for root architecture traits. The FDR of detected associations ranged from 3 · 10-7 to 0.92 (median: 0.25). In most cases, the significant detected associations co-localised with QTLs and candidate genes controlling the phenotypic variation of single or multiple traits. The most significant associations were those for flag leaf width on chromosome 4 (FDR = 3 · 10-7) and for plant height on chromosome 6 (FDR = 0.011). We demonstrate the effectiveness and resolution of the developed platform for high-throughput phenotyping, genotyping and GWAS in detecting major QTLs for relevant traits in rice. We identified strong associations that may be used for selection in temperate irrigated rice breeding: e.g. associations for flag leaf width, plant height, root volume and length, grain length, grain width and their ratio. Our findings pave the way to successfully exploit the narrow genetic pool of European temperate rice and to pinpoint the most relevant genetic components contributing to the adaptability and high yield of this germplasm. The generated data could be of direct use in genomic-assisted breeding strategies.

  1. Model-Based Power Plant Master Control

    Energy Technology Data Exchange (ETDEWEB)

    Boman, Katarina; Thomas, Jean; Funkquist, Jonas

    2010-08-15

    The main goal of the project has been to evaluate the potential of a coordinated master control for a solid fuel power plant in terms of tracking capability, stability and robustness. The control strategy has been model-based predictive control (MPC) and the plant used in the case study has been the Vattenfall power plant Idbaecken in Nykoeping. A dynamic plant model based on nonlinear physical models was used to imitate the true plant in MATLAB/SIMULINK simulations. The basis for this model was already developed in previous Vattenfall internal projects, along with a simulation model of the existing control implementation with traditional PID controllers. The existing PID control is used as a reference performance, and it has been thoroughly studied and tuned in these previous Vattenfall internal projects. A turbine model was developed with characteristics based on the results of steady-state simulations of the plant using the software EBSILON. Using the derived model as a representative for the actual process, an MPC control strategy was developed using linearization and gain-scheduling. The control signal constraints (rate of change) and constraints on outputs were implemented to comply with plant constraints. After tuning the MPC control parameters, a number of simulation scenarios were performed to compare the MPC strategy with the existing PID control structure. The simulation scenarios also included cases highlighting the robustness properties of the MPC strategy. From the study, the main conclusions are: - The proposed Master MPC controller shows excellent set-point tracking performance even though the plant has strong interactions and non-linearity, and the controls and their rate of change are bounded. - The proposed Master MPC controller is robust, stable in the presence of disturbances and parameter variations. Even though the current study only considered a very small number of the possible disturbances and modelling errors, the considered cases are

  2. A system architecture for holonic manufacturing planning and control (EtoPlan)

    NARCIS (Netherlands)

    Wullink, Gerhard; Giebels, M.M.T.; Kals, H.J.J.

    2002-01-01

    In this paper, we present the system architecture of a flexible manufacturing planning and control system, named EtoPlan. The concept is based on the holonic control approach of building multiple and temporary hierarchies (holarchies). This paper describes the system architecture for flexible

  3. Control system architecture of QUIJOTE multi-frequency instrument

    Science.gov (United States)

    Gómez-Reñasco, María. F.; Aguiar, Marta; Herreros, José Miguel; Hoyland, Roger J.; Sánchez de la Rosa, Vicente; Vega-Moreno, Afrodisio; Viera-Curbelo, Teodora; Génova-Santos, Ricardo; López-Caraballo, Carlos; Rebolo, Rafael; Rubiño-Martín, Jose Alberto

    2012-09-01

    The QUIJOTE-CMB experiment has been described in previous publications. Here we describe the architecture of the control system, hardware and software, of the QUIJOTE I instrument (MFI). It is a multi-channel instrument with five separate polarimeters: two of which operate at 10-14 GHz, two of which operate at 16-20 GHz, and a central polarimeter at 26-36 GHz. Each polarimeter can rotate at a speed of up to 1 Hz and also can move to discrete angular positions which allow the linear polar parameters Q, U and I to be derived. The instrument is installed in an alt-azimuth telescope which implements several operational modes: movement around the azimuth axis at a constant velocity while the elevation axis is held at a fixed elevation; tracking of a sky object; and raster of a rectangular area both in horizontal and sky coordinates. The control system of both, telescope and instrument, is based in the following technologies: an LXI-VXI bus is used for the signal acquisition system; an EtherCAT bus implements software PLCs developed in TwinCAT to perform the movement of the 5 polarimeters and the 2 axes of the telescope. Science signal, angular positions of the 5 polarimeters and telescope coordinates are sampled at up to 4000 Hz. All these data are correlated by a time stamp obtained from an external GPS clock implementing the Precise Time Protocol-1588 which provides synchronization to less than 1 microsecond. The control software also acquires housekeeping (HK) from the different subsystems. LabVIEW implements the instrument user interface.

  4. Supervision Architecture Design for Programmer Logical Controller Including Crash Mode

    Directory of Open Access Journals (Sweden)

    Bennani fatima zohra

    2014-10-01

    Full Text Available This paper is a contribution for development of a high level of security for the Programmer Logic Controller (PLC. Many industrial adopt the redundant PLC architecture (or Standby PLC designed to replace the failed (out of order PLC without stopping associated automated equipments. We propose a formal method to choose a Standby PLC based on probability study, by comparing normal functioning to misbehavior one leading to residue generation process. Any generated difference reveals a presence of anomaly. The proposed method begins by listing all PLC components failures leading to their stopping according to failures criticalities. Two models; functional and dysfunctional are obtained by using formal specifications. Probability’s calculus of dysfunction of each Standby PLC is obtained by the sum of the probabilities of dysfunction of its critical components. These probabilities are allocated each transition which leads to the dysfunction in the dysfunctional model. The dysfunctional model is obtained by using the FMECA method (Failure Modes, Effects and Criticality Analysis. We shall see that this global vision of functioning of the whole PLC leads to a higher level of security where the chosen Standby PLC works continuously.

  5. An Effective Feedback Control Mechanism for DiffServ Architecture

    Institute of Scientific and Technical Information of China (English)

    王重钢; 隆克平; 杨健; 程时端

    2002-01-01

    As a scalable QoS (Quality of Service) architecture, DiffServ (Differentiated Service) mainly consists of two components: traffic conditioning at the edge of the DiffServ domain and simple packet forwarding inside the DiffServ domain. DiffServ has many advantages such as flexibility, scalability and simplicity. But when providing AF (Assured Forwarding)services, DiffServ has some problems such as unfairness among aggregated flows or among microflows belonging to an aggregated flow. In this paper, a feedback mechanism for AF aggregated flows is proposed to solve this problem. Simulation results show that this mechanism does improve the performance of DiffServ. First, it can improve the fairness among aggregated flows and make DiffServ more friendly toward TCP (Transmission Control Protocol) flows. Second,it can decrease the buffer requirements at the congested router and thus obtain lower delay and packet loss rate. Third, it also keeps almost the same link utility as in normal DiffServ.Finally, it is simple and easy to be implemented.

  6. DC-DC Converter Topology Assessment for Large Scale Distributed Photovoltaic Plant Architectures

    Energy Technology Data Exchange (ETDEWEB)

    Agamy, Mohammed S; Harfman-Todorovic, Maja; Elasser, Ahmed; Sabate, Juan A; Steigerwald, Robert L; Jiang, Yan; Essakiappan, Somasundaram

    2011-07-01

    Distributed photovoltaic (PV) plant architectures are emerging as a replacement for the classical central inverter based systems. However, power converters of smaller ratings may have a negative impact on system efficiency, reliability and cost. Therefore, it is necessary to design converters with very high efficiency and simpler topologies in order not to offset the benefits gained by using distributed PV systems. In this paper an evaluation of the selection criteria for dc-dc converters for distributed PV systems is performed; this evaluation includes efficiency, simplicity of design, reliability and cost. Based on this evaluation, recommendations can be made as to which class of converters is best fit for this application.

  7. APPLICATION OF IMPROVED PRODUCTION ACTIVITY CONTROL ARCHITECTURE FOR SHOP FLOOR INFORMATION SYSTEM IN DIGITAL MANUFACTURING

    Institute of Scientific and Technical Information of China (English)

    SHAHID Ikramullah Butt; SUN Houfang; GAO Zhengqing

    2006-01-01

    Shop floor control (SFC) is responsible for the coordination and control of the manufacturing physical and information flow within the shop floor in the manufacturing system. Weaknesses of the production activity control (PAC) architecture of the shop floor are addressed by the Maglica's new system architecture. This architecture gives rise to unlimited number of movers and producers thus evolving more complex but decentralized architecture. Beijing Institute of Technology - production activity control (BIT-PAC) architecture introduces an idea of sub-producers and sub-movers thus reducing the complexity of the architecture. All the equipments including sub-producers and sub-movers are considered to be passive in the proposed shop floor information system. The dissemination of information from sub-producers and sub-movers is done manually through a PC. Proposed BIT-PAC SFC architecture facilitates the information flow from shop floor to the other area of the organization. Effective use of internet information services (IIS) and SQL2000 is done along with the ASP. NET technology to implement the application logic. Applicability of the software based on BIT-PAC architecture is checked by running application software on a network PC that supports the dynamic flow of information from sub-producers and sub-movers to the other parts of the organization. Use of software is also shown at the end for BIT training workshop thus supporting the use of SFC architecture for similar kind of environments.

  8. Quaternion-Based Control Architecture for Determining Controllability/Maneuverability Limits

    Science.gov (United States)

    Bacon, Barton J

    2012-01-01

    Dynamic inversion has often been used in the simulation environment to rapidly prototype controls for the full flight envelope, because of its capacity for assessing a vehicle s maneuver performance and proper sizing of control surfaces. Generally, the architectures involve either a direct inversion of the entire set of equations of motion or a sequential set of inversions exploiting time scale separation in the vehicle dynamics where faster parameters are considered as controls for slower varying parameters. The proposed architecture builds on the latter using a quaternion formulation that provides singularity free tracking. Of interest, the proposed architecture simplifies the sequential approach by exploiting a simpler kinematic inversion in place of a more difficult inversion typically used. This kinematic relationship accurately describes the angular rate required to drive some reference frame of interest to a desired attitude at some desired quaternion error rate. A simple PID control is used to define the desired quaternion error rate. The paper develops the theoretical framework for the approach, and shows results in tracking a desired trajectory.

  9. Open system architecture for condition based maintenance applied to a hydroelectric power plant

    Energy Technology Data Exchange (ETDEWEB)

    Amaya, E.J.; Alvares, A.J. [University of Brasilia (UnB), DF (Brazil). Mechanical and Mechatronic Dept.], Emails: eamaya@unb.br, alvares@AlvaresTech.com; Gudwin, R.R. [State University of Campinas (UNICAMP), SP (Brazil). Computer Engineering and Industrial Automation Dept.], E-mail: gudwin@dca.fee.unicamp.br

    2009-07-01

    The hydroelectric power plant of Balbina is implementing a condition based maintenance system applying an open, modular and scalable integrated architecture to provide comprehensive solutions and support to the end users like operational and maintenance team. The system called SIMPREBAL (Predictive Maintenance System of Balbina) is advocate of open standards, in particular through collaborative research programmers. In the developing is clearly understands the need for both, industry standards and a simple to use software development tool chain, supporting the development of complex condition based maintenance systems with multiple partners. The Open System Architecture for Condition Based Maintenance (OSA-CBM) is a standard that consider seven hierarchic layers that represent a logic transition or performed data flow from the data acquisition layer, through the intermediates layers as signal processing, condition monitor, health assessment, prognostics and decision support, to arrive to the presentation layer. SIMPREBAL is being implementing as an OSA-CBM software framework and tool set that allows the creation of truly integrated, comprehensive maintenance solutions through the internet. This paper identifies specific benefits of the application of the OSA-CBM in comprehensive solutions of condition based maintenance for a hydroelectric power plant. (author)

  10. Novel Micro-organisms controlling plant pathogens

    OpenAIRE

    Köhl, J

    2009-01-01

    The invention relates to control of pathogen caused diseases on leaves, fruits and ears in plants, such as apple scab (Venturia inaequalis by treatment of plant with an isolate of Cladosporium cladosporioides. The treatment is effective in both prevention and treatment of the fungal infection

  11. Control of Fish and Aquatic Plants.

    Science.gov (United States)

    Hesser, R. B.; And Others

    This agriculture extension service publication from Pennsylvania State University is a handbook for the water body manager. The bulk of the contents deals with aquatic plant control. The different types of aquatic plants, their reproduction and growth, and their role in the ecology of the water body are introduced in this main section. Also, the…

  12. Combining Genome-Wide Information with a Functional Structural Plant Model to Simulate 1-Year-Old Apple Tree Architecture

    Science.gov (United States)

    Migault, Vincent; Pallas, Benoît; Costes, Evelyne

    2017-01-01

    In crops, optimizing target traits in breeding programs can be fostered by selecting appropriate combinations of architectural traits which determine light interception and carbon acquisition. In apple tree, architectural traits were observed to be under genetic control. However, architectural traits also result from many organogenetic and morphological processes interacting with the environment. The present study aimed at combining a FSPM built for apple tree, MAppleT, with genetic determinisms of architectural traits, previously described in a bi-parental population. We focused on parameters related to organogenesis (phyllochron and immediate branching) and morphogenesis processes (internode length and leaf area) during the first year of tree growth. Two independent datasets collected in 2004 and 2007 on 116 genotypes, issued from a ‘Starkrimson’ × ‘Granny Smith’ cross, were used. The phyllochron was estimated as a function of thermal time and sylleptic branching was modeled subsequently depending on phyllochron. From a genetic map built with SNPs, marker effects were estimated on four MAppleT parameters with rrBLUP, using 2007 data. These effects were then considered in MAppleT to simulate tree development in the two climatic conditions. The genome wide prediction model gave consistent estimations of parameter values with correlation coefficients between observed values and estimated values from SNP markers ranging from 0.79 to 0.96. However, the accuracy of the prediction model following cross validation schemas was lower. Three integrative traits (the number of leaves, trunk length, and number of sylleptic laterals) were considered for validating MAppleT simulations. In 2007 climatic conditions, simulated values were close to observations, highlighting the correct simulation of genetic variability. However, in 2004 conditions which were not used for model calibration, the simulations differed from observations. This study demonstrates the possibility

  13. Plant Modeling for Human Supervisory Control

    DEFF Research Database (Denmark)

    Lind, Morten

    1999-01-01

    This paper provides an overview of multilevel flow modelling (MFM) and its application for design of displays for the supervisory control of industrial plant. The problem of designing the inforrrzatian content of sacpervisory displays is discussed and plant representations like MFM using levels...... is also provided by an analysis of the relations between levels of abstraction. It is also described how MFM supparts reazsonin about control actions by defining levels of intervention and by modal distinctions between function enablement and initiation....

  14. Shrub control by browsing: Targeting adult plants

    Science.gov (United States)

    da Silveira Pontes, Laíse; Magda, Danièle; Gleizes, Benoît; Agreil, Cyril

    2016-01-01

    Reconciling the well known benefits of shrubs for forage with environmental goals, whilst preventing their dominance, is a major challenge in rangeland management. Browsing may be an economical solution for shrubby rangelands as herbivore browsing has been shown to control juvenile shrub growth. Less convincing results have been obtained for adult plants, and long-term experiments are required to investigate the cumulative effects on adult plants. We therefore assessed the impact of different levels of browsing intensity on key demographic parameters for a major dominant shrub species (broom, Cytisus scoparius), focusing on adult plants. We assigned individual broom plants to one of three age classes: 3-5 years (young adults); 5-7 years (adults); and 7-9 years (mature adults). These plants were then left untouched or had 50% or 90% of their total edible stem biomass removed in simulated low-intensity and high-intensity browsing treatments, respectively. Morphological, survival and fecundity data were collected over a period of four years. Browsing affected the morphology of individual plants, promoting changes in subsequent regrowth, and decreasing seed production. The heavily browsed plants were 17% shorter, 32% narrower, and their twigs were 28% shorter. Light browsing seemed to control the growth of young adult plants more effectively than that of older plants. Reproductive output was considerably lower than for control plants after light browsing, and almost 100% lower after heavy browsing. High-intensity browsing had a major effect on survival causing high levels of plant mortality. We conclude that suitable browsing practices could be used to modify adult shrub demography in the management of shrub dominance and forage value.

  15. ITER prototype fast plant system controller

    Energy Technology Data Exchange (ETDEWEB)

    Goncalves, B., E-mail: bruno@ipfn.ist.utl.pt [Instituto de Plasmas e Fusao Nuclear - Laboratorio Associado, Instituto Superior Tecnico, P-1049-001 Lisboa (Portugal); Sousa, J.; Carvalho, B.B.; Rodrigues, A.P.; Correia, M.; Batista, A. [Instituto de Plasmas e Fusao Nuclear - Laboratorio Associado, Instituto Superior Tecnico, P-1049-001 Lisboa (Portugal); Vega, J. [Centro de Investigaciones Energeticas, Medioambientales y Tecnologicas, CIEMAT, Av. Complutense, Madrid (Spain); Ruiz, M.; Lopez, J.M. [Grupo de Investigacion en Instrumentacion y Acustica Aplicada, Universidad Politecnica de Madrid (Spain); Castro, R. [Centro de Investigaciones Energeticas, Medioambientales y Tecnologicas, CIEMAT, Av. Complutense, Madrid (Spain); Wallander, A.; Utzel, N.; Makijarvi, P.; Simrock, S. [ITER Organization, CS 90 046, 13067 St. Paul lez Durance Cedex (France); Neto, A.; Alves, D.; Valcarcel, D.F. [Instituto de Plasmas e Fusao Nuclear - Laboratorio Associado, Instituto Superior Tecnico, P-1049-001 Lisboa (Portugal); Lousa, P.; Piedade, F.; Fernandes, L. [INOV, Lisbon (Portugal)

    2011-10-15

    ITER CODAC Design identified the need for slow and fast control plant systems, based respectively on industrial automation technology with maximum sampling rates below 100 Hz, and on embedded technology with higher sampling rates and more stringent real-time requirements. The fast system is applicable to diagnostics and plant systems in closed-control loops whose cycle times are below 1 ms. Fast controllers will be dedicated industrial controllers with the ability to supervise other fast and/or slow controllers, interface to actuators and sensors and high performance networks (HPN). This contribution presents the engineering design of two prototypes of a fast plant system controller (FPSC), specialized for data acquisition, constrained by ITER technological choices. This prototyping activity contributes to the Plant Control Design Handbook (PCDH) effort of standardization, specifically regarding fast controller characteristics. The prototypes will be built using two different form factors, PXIe and ATCA, with the aim of comparing the implementations. The presented solution took into consideration channel density, synchronization, resolution, sampling rates and the needs for signal conditioning such as filtering and galvanic isolation. The integration of the two controllers in the standard CODAC environment is also presented and discussed. Both controllers contain an EPICS IOC providing the interface to the mini-CODAC which will be used for all testing activities. The alpha version of the FPSC is also presented.

  16. Leveraging Software Architectures to Guide and Verify the Development of Sense/Compute/Control Applications

    CERN Document Server

    Cassou, Damien; Consel, Charles; Lawall, Julia

    2011-01-01

    A software architecture describes the structure of a computing system by specifying software components and their interactions. Mapping a software architecture to an implementation is a well known challenge. A key element of this mapping is the architecture's description of the data and control-flow interactions between components. The characterization of these interactions can be rather abstract or very concrete, providing more or less implementation guidance, programming support, and static verification. In this paper, we explore one point in the design space between abstract and concrete component interaction specifications. We introduce a notion of behavioral contract that expresses the set of allowed interactions between components, describing both data and control-flow constraints. This declaration is part of the architecture description, allows generation of extensive programming support, and enables various verifications. We instantiate our approach in an architecture description language for the doma...

  17. Multi-core System Architecture for Safety-critical Control Applications

    DEFF Research Database (Denmark)

    Li, Gang

    certification cost. Meanwhile, hardware platforms with improved processing power are required to execute the applications of larger size. To tackle the two issues mentioned above, the state of the art approaches are using more Electronic Control Units (ECU) in a federated architecture or increasing...... cores, low power consumption, on-chip interconnection and natural support to on-chip hardware diversity and redundancy at the inter-core level. The objective of this dissertation is to propose a multi-core system architecture for safety-critical control applications with reduced certification cost...... on partitioning design of both multi-core hardware and software architectures, in order to minimize efforts and cost of system certification at the integration time. Hardware architecture design concentrates on a firmware architecture on SoC platforms, providing separated hardware execution environments...

  18. New insights into the tonoplast architecture of plant vacuoles and vacuolar dynamics during osmotic stress

    Directory of Open Access Journals (Sweden)

    Marty Francis

    2005-08-01

    Full Text Available Abstract Background The vegetative plant vacuole occupies >90% of the volume in mature plant cells. Vacuoles play fundamental roles in adjusting cellular homeostasis and allowing cell growth. The composition of the vacuole and the regulation of its volume depend on the coordinated activities of the transporters and channels localized in the membrane (named tonoplast surrounding the vacuole. While the tonoplast protein complexes are well studied, the tonoplast itself is less well described. To extend our knowledge of how the vacuole folds inside the plant cell, we present three-dimensional reconstructions of vacuoles from tobacco suspension cells expressing the tonoplast aquaporin fusion gene BobTIP26-1::gfp. Results 3-D reconstruction of the cell vacuole made possible an accurate analysis of large spanning folds of the vacuolar membrane under both normal and stressed conditions, and suggested interactions between surrounding plastids. Dynamic, high resolution 3-D pictures of the vacuole in tobacco suspension cells monitored under different growth conditions provide additional details about vacuolar architecture. The GFP-decorated vacuole is a single continuous compartment transected by tubular-like transvacuolar strands and large membrane surfaces. Cell culture under osmotic stress led to a complex vacuolar network with an increased tonoplast surface area. In-depth 3-D realistic inspections showed that the unity of the vacuole is maintained during acclimation to osmotic stress. Vacuolar unity exhibited during stress adaptation, coupled with the intimate associations of vacuoles with other organelles, suggests a physiological role for the vacuole in metabolism, and communication between the vacuole and organelles, respectively, in plant cells. Desiccation stress ensuing from PEG treatment generates "double" membrane structures closely linked to the tonoplast within the vacuole. These membrane structures may serve as membrane reservoirs for

  19. Using a cognitive architecture for general purpose service robot control

    Science.gov (United States)

    Puigbo, Jordi-Ysard; Pumarola, Albert; Angulo, Cecilio; Tellez, Ricardo

    2015-04-01

    A humanoid service robot equipped with a set of simple action skills including navigating, grasping, recognising objects or people, among others, is considered in this paper. By using those skills the robot should complete a voice command expressed in natural language encoding a complex task (defined as the concatenation of a number of those basic skills). As a main feature, no traditional planner has been used to decide skills to be activated, as well as in which sequence. Instead, the SOAR cognitive architecture acts as the reasoner by selecting which action the robot should complete, addressing it towards the goal. Our proposal allows to include new goals for the robot just by adding new skills (without the need to encode new plans). The proposed architecture has been tested on a human-sized humanoid robot, REEM, acting as a general purpose service robot.

  20. ITER fast plant system controller prototype based on ATCA platform

    Energy Technology Data Exchange (ETDEWEB)

    Goncalves, B., E-mail: bruno@ipfn.ist.utl.pt [Instituto de Plasmas e Fusao Nuclear - Laboratorio Associado, Instituto Superior Tecnico, Universidade Tecnica de Lisboa, P-1049-001 Lisboa (Portugal); Sousa, J.; Carvalho, B.B.; Batista, A.; Neto, A.; Santos, B.; Duarte, A.; Valcarcel, D.; Alves, D.; Correia, M.; Rodrigues, A.P.; Carvalho, P.F. [Instituto de Plasmas e Fusao Nuclear - Laboratorio Associado, Instituto Superior Tecnico, Universidade Tecnica de Lisboa, P-1049-001 Lisboa (Portugal); Ruiz, M. [Grupo de Investigacion en Instrumentacion y Acustica Aplicada, Universidad Politecnica de Madrid (Spain); Vega, J.; Castro, R. [Centro de Investigaciones Energeticas, Medioambientales y Tecnologicas, CIEMAT, Av. Complutense, Madrid (Spain); Lopez, J.M. [Grupo de Investigacion en Instrumentacion y Acustica Aplicada, Universidad Politecnica de Madrid (Spain); Utzel, N.; Makijarvi, P. [ITER Organization, CS 90 046, 13067 St. Paul lez Durance Cedex (France)

    2012-12-15

    The ITER fast plan system controllers (FPSC) are based on embedded technologies. The FPSCs [1] will be devoted to data acquisition tasks (sampling rates >1 kSPS) and control purposes in closed-control loops whose cycle times are below 1 ms. Fast controllers will be dedicated industrial controllers with the ability to supervise other fast and/or slow controllers and interface to actuators, sensors and high performance networks. This contribution presents an FPSC prototype, specialized for data acquisition, based on the ATCA (Advanced Telecommunications Computing Architecture) standard. This prototyping activity contributes to the ITER Plant Control Design Handbook (PCDH) effort of standardization, specifically regarding fast controller characteristics. For the prototype, IPFN has developed a new family of ATCA modules targeting ITER requirements. This family of modules comprises an AMC (Advanced Mezzanine Card) carrier/data hub/timing hub, compliant with the upcoming ATCA extensions for Physics, and a multi-channel galvanically isolated PnP digitizer, designed for serviceability. The design and test of a peer-to-peer communications layer for the implementation of a reflective memory over PCI Express and the design and test of an IEEE-1588 transport layer over an high performance serial link were also performed. In this contribution, a complete description of the solution is presented as well as the integration of the controller into the standard CODAC environment. The most relevant test results will be addressed, focusing in the benefits and limitations of the applied technologies.

  1. Design of the multirobot intelligent team formation's control architecture and performance analysis of the system

    Institute of Scientific and Technical Information of China (English)

    WANG Xing-ce; GU Guo-chang; ZHANG Ru-bo; LIU Hai-bo

    2007-01-01

    The layered control architecture is designed for the need of the multirobot intelligent team formation.There are three levels:the cooperation task level, the coordination behavior level and the action planning level.The cooperation task level uses the potential grid method, which improves the safety of the path and reduces the calculation complexity. The coordination behavior level uses the reinforcement learning which can strengthen the robots' intelligence. The action planning level uses the fuzzy planning methods to realize the action matching.The communication model transfers the message in different level. This architecture shows not only the independence and the intelligence of the single robot but also the cooperation and the coordination among the robots.In each level, the task is distributed reasonably and clearly. Finally the feasibility of the architecture is verified further in the simulation of the experiment. The expansibility of the architecture is good and the architecture can be used in the similar system.

  2. Computer-aided tissue engineering: benefiting from the control over scaffold micro-architecture.

    Science.gov (United States)

    Tarawneh, Ahmad M; Wettergreen, Matthew; Liebschner, Michael A K

    2012-01-01

    Minimization schema in nature affects the material arrangements of most objects, independent of scale. The field of cellular solids has focused on the generalization of these natural architectures (bone, wood, coral, cork, honeycombs) for material improvement and elucidation into natural growth mechanisms. We applied this approach for the comparison of a set of complex three-dimensional (3D) architectures containing the same material volume but dissimilar architectural arrangements. Ball and stick representations of these architectures at varied material volumes were characterized according to geometric properties, such as beam length, beam diameter, surface area, space filling efficiency, and pore volume. Modulus, deformation properties, and stress distributions as contributed solely by architectural arrangements was revealed through finite element simulations. We demonstrated that while density is the greatest factor in controlling modulus, optimal material arrangement could result in equal modulus values even with volumetric discrepancies of up to 10%. We showed that at low porosities, loss of architectural complexity allows these architectures to be modeled as closed celled solids. At these lower porosities, the smaller pores do not greatly contribute to the overall modulus of the architectures and that a stress backbone is responsible for the modulus. Our results further indicated that when considering a deposition-based growth pattern, such as occurs in nature, surface area plays a large role in the resulting strength of these architectures, specifically for systems like bone. This completed study represents the first step towards the development of mathematical algorithms to describe the mechanical properties of regular and symmetric architectures used for tissue regenerative applications. The eventual goal is to create logical set of rules that can explain the structural properties of an architecture based solely upon its geometry. The information could

  3. OsPIN5b modulates rice (Oryza sativa) plant architecture and yield by changing auxin homeostasis, transport and distribution.

    Science.gov (United States)

    Lu, Guangwen; Coneva, Viktoriya; Casaretto, José A; Ying, Shan; Mahmood, Kashif; Liu, Fang; Nambara, Eiji; Bi, Yong-Mei; Rothstein, Steven J

    2015-09-01

    Plant architecture attributes such as tillering, plant height and panicle size are important agronomic traits that determine rice (Oryza sativa) productivity. Here, we report that altered auxin content, transport and distribution affect these traits, and hence rice yield. Overexpression of the auxin efflux carrier-like gene OsPIN5b causes pleiotropic effects, mainly reducing plant height, leaf and tiller number, shoot and root biomass, seed-setting rate, panicle length and yield parameters. Conversely, reduced expression of OsPIN5b results in higher tiller number, more vigorous root system, longer panicles and increased yield. We show that OsPIN5b is an endoplasmic reticulum (ER) -localized protein that participates in auxin homeostasis, transport and distribution in vivo. This work describes an example of an auxin-related gene where modulating its expression can simultaneously improve plant architecture and yield potential in rice, and reveals an important effect of hormonal signaling on these traits.

  4. JPL control/structure interaction test bed real-time control computer architecture

    Science.gov (United States)

    Briggs, Hugh C.

    1989-01-01

    The Control/Structure Interaction Program is a technology development program for spacecraft that exhibit interactions between the control system and structural dynamics. The program objectives include development and verification of new design concepts - such as active structure - and new tools - such as combined structure and control optimization algorithm - and their verification in ground and possibly flight test. A focus mission spacecraft was designed based upon a space interferometer and is the basis for design of the ground test article. The ground test bed objectives include verification of the spacecraft design concepts, the active structure elements and certain design tools such as the new combined structures and controls optimization tool. In anticipation of CSI technology flight experiments, the test bed control electronics must emulate the computation capacity and control architectures of space qualifiable systems as well as the command and control networks that will be used to connect investigators with the flight experiment hardware. The Test Bed facility electronics were functionally partitioned into three units: a laboratory data acquisition system for structural parameter identification and performance verification; an experiment supervisory computer to oversee the experiment, monitor the environmental parameters and perform data logging; and a multilevel real-time control computing system. The design of the Test Bed electronics is presented along with hardware and software component descriptions. The system should break new ground in experimental control electronics and is of interest to anyone working in the verification of control concepts for large structures.

  5. Fine genetic mapping of cp: a recessive gene for compact (dwarf) plant architecture in cucumber, Cucumis sativus L.

    Science.gov (United States)

    Li, Yuhong; Yang, Luming; Pathak, Mamta; Li, Dawei; He, Xiaoming; Weng, Yiqun

    2011-10-01

    The compact (dwarf) plant architecture is an important trait in cucumber (Cucumis sativus L.) breeding that has the potential to be used in once-over mechanical harvest of cucumber production. Compact growth habit is controlled by a simply inherited recessive gene cp. With 150 F(2:3) families derived from two inbred cucumber lines, PI 308915 (compact vining) and PI 249561 (regular vining), we conducted genome-wide molecular mapping with microsatellite (simple sequence repeat, SSR) markers. A framework genetic map was constructed consisting of 187 SSR loci in seven linkage groups (chromosomes) covering 527.5 cM. Linkage analysis placed cp at the distal half of the long arm of cucumber Chromosome 4. Molecular markers cosegregating with the cp locus were identified through whole genome scaffold-based chromosome walking. Fine genetic mapping with 1,269 F(2) plants delimited the cp locus to a 220 kb genomic DNA region. Annotation and function prediction of genes in this region identified a homolog of the cytokinin oxidase (CKX) gene, which may be a potential candidate of compact gene. Alignment of the CKX gene homologs from both parental lines revealed a 3-bp deletion in the first exon of PI 308915, which can serve as a marker for marker-assisted selection of the compact phenotype. This work also provides a solid foundation for map-based cloning of the compact gene and understanding the molecular mechanisms of the dwarfing in cucumber.

  6. Injuries to plants from controlled environment contaminants

    Science.gov (United States)

    Tibbitts, T. W.

    The use of controlled environments is subject to problems from contaminants emitted from materials of the system and from plants. Many contaminants are difficult to identify because injurious dosages are very low, there is a lack of information on what compounds injure plants, because species and cultivars differ greatly in their sensitivity to injury and injury symptoms often are not distinctive. Plastics have been shown to emit many different volatile compounds. The compound, di-butyl phthalate, contained in certain flexible plastics, has been shown to be very toxic to plants. Other injuries have been produced by caulking compounds and bonded screening. Paints have been shown to release xylene that is toxic to plants. Steam for humidification can cause problems because of hydroxylamines and other compounds added to steam used for heating to control fungal growth in return lines. Mercury, from broken thermometers is a particular problem in growth chambers because small quantities can collect in cracks and slowly volatilize to slow growth of plants. Plants themselves release large quantities of volatile hydrocarbons, with ethylene being the commonly recognized chemical that can be damaging when allowed to accumulate. People release large quantities of carbon dioxide which can cause variations in the rate of growth of plants. Contaminant problems can be controlled through filtering of the air or ventilation with make-up air, however the potential for problems is always present and careful testing should be undertaken with the particular species and cultivars being grown to insure that there are no toxic agents altering growth in each particular controlled environment being utilized.

  7. Nuclear reactor kinetics and plant control

    CERN Document Server

    Oka, Yoshiaki

    2013-01-01

    Understanding time-dependent behaviors of nuclear reactors and the methods of their control is essential to the operation and safety of nuclear power plants. This book provides graduate students, researchers, and engineers in nuclear engineering comprehensive information on both the fundamental theory of nuclear reactor kinetics and control and the state-of-the-art practice in actual plants, as well as the idea of how to bridge the two. The first part focuses on understanding fundamental nuclear kinetics. It introduces delayed neutrons, fission chain reactions, point kinetics theory, reactivit

  8. UAV payload and mission control hardware/software architecture

    OpenAIRE

    Pastor Llorens, Enric; López Rubio, Juan; Royo Chic, Pablo

    2007-01-01

    This paper presents an embedded hardware/software architecture specially designed to be applied on mini/micro Unmanned Aerial Vehicles (UAV). An UAV is low-cost non-piloted airplane designed to operate in D-cube (Dangerous-Dirty-Dull) situations [8]. Many types of UAVs exist today; however with the advent of UAV's civil applications, the class of mini/micro UAVs is emerging as a valid option in a commercial scenario. This type of UAV shares limitations with most computer embedded systems: lim...

  9. Evolving technologies for growing, imaging and analyzing 3D root system architecture of crop plants

    Institute of Scientific and Technical Information of China (English)

    Miguel A Pineros; Pierre-Luc Pradier; Nathanael M Shaw; Ithipong Assaranurak; Susan R McCouch; Craig Sturrock; Malcolm Bennett; Leon V Kochian; Brandon G Larson; Jon E Shaff; David J Schneider; Alexandre Xavier Falcao; Lixing Yuan; Randy T Clark; Eric J Craft; Tyler W Davis

    2016-01-01

    A plant’s ability to maintain or improve its yield under limiting conditions, such as nutrient deficiency or drought, can be strongly influenced by root system architec-ture (RSA), the three-dimensional distribution of the different root types in the soil. The ability to image, track and quantify these root system attributes in a dynamic fashion is a useful tool in assessing desirable genetic and physiological root traits. Recent advances in imaging technology and phenotyp-ing software have resulted in substantive progress in describing and quantifying RSA. We have designed a hydroponic growth system which retains the three-dimen-sional RSA of the plant root system, while allowing for aeration, solution replenishment and the imposition of nutrient treatments, as well as high-quality imaging of the root system. The simplicity and flexibility of the system allows for modifications tailored to the RSA of different crop species and improved throughput. This paper details the recent improvements and innovations in our root growth and imaging system which allows for greater image sensitivity (detection of fine roots and other root details), higher efficiency, and a broad array of growing conditions for plants that more closely mimic those found under field conditions.

  10. Learning sequential control in a Neural Blackboard Architecture for in situ concept reasoning

    NARCIS (Netherlands)

    Velde, van der Frank; Besold, Tarek R.; Lamb, Luis; Serafini, Luciano; Tabor, Whitney

    2016-01-01

    Simulations are presented and discussed of learning sequential control in a Neural Blackboard Architecture (NBA) for in situ concept-based reasoning. Sequential control is learned in a reservoir network, consisting of columns with neural circuits. This allows the reservoir to control the dynamics of

  11. Learning sequential control in a Neural Blackboard Architecture for in situ concept reasoning

    NARCIS (Netherlands)

    van der Velde, Frank; van der Velde, Frank; Besold, Tarek R.; Lamb, Luis; Serafini, Luciano; Tabor, Whitney

    2016-01-01

    Simulations are presented and discussed of learning sequential control in a Neural Blackboard Architecture (NBA) for in situ concept-based reasoning. Sequential control is learned in a reservoir network, consisting of columns with neural circuits. This allows the reservoir to control the dynamics of

  12. A control architecture to coordinate distributed generators and active power filters coexisting in a microgrid

    DEFF Research Database (Denmark)

    Hashempour, Mohammad M.; Savaghebi, Mehdi; Quintero, Juan Carlos Vasquez

    2016-01-01

    This paper proposes a control architecture of distributed generators (DGs) inverters and shunt active power filters (APFs) in microgrids to compensate voltage harmonics in a coordinated way. For this, a hierarchical control structure is proposed that includes two control levels. The primary (local...

  13. A Control Architecture to Coordinate Distributed Generators and Active Power Filters Coexisting in a Microgrid

    DEFF Research Database (Denmark)

    Hashempour, Mohammad M.; Firoozabadi, Mehdi Savaghebi; Quintero, Juan Carlos Vasquez

    2016-01-01

    This paper proposes a control architecture of distributed generators (DGs) inverters and shunt active power filters (APFs) in microgrids to compensate voltage harmonics in a coordinated way. For this, a hierarchical control structure is proposed that includes two control levels. The primary (local...

  14. Architecture-Centric Design: Modeling and Applications to Control Architecture Generation

    NARCIS (Netherlands)

    Alvarez Cabrera, A.A.

    2011-01-01

    Design activities, including control design, are becoming increasingly difficult due to a corresponding increase in product and product development complexity. Model-based (or driven) engineering, development and design have become common concepts related to modern complex product development practi

  15. Design of a flight control architecture using a non-convex bundle method

    OpenAIRE

    Gabarrou, Marion; Alazard, Daniel; Noll, Dominikus

    2013-01-01

    We design a feedback control architecture for longitudinal flight of an aircraft. The multi-level architecture includes the flight control loop to govern the short term dynamics of the aircraft, and the autopilot to control the long term modes. Using H1 performance and robustness criteria, the problem is cast as a non-convex and non-smooth optimization program. We present a non-convex bundle method, prove its convergence, and show that it is apt to solve the longitudinal flight control pro...

  16. Status, Vision, and Challenges of an Intelligent Distributed Engine Control Architecture

    Science.gov (United States)

    Behbahani, Alireza; Culley, Dennis; Garg, Sanjay; Millar, Richard; Smith, Bert; Wood, Jim; Mahoney, Tim; Quinn, Ronald; Carpenter, Sheldon; Mailander, Bill; Battestin, Gary; Roney, Walter; Bluish, Colin; Rhoden, William; Storey, Bill

    2007-01-01

    A Distributed Engine Control Working Group (DECWG) consisting of the Department of Defense (DoD), the National Aeronautics and Space Administration (NASA) Glenn Research Center (GRC) and industry has been formed to examine the current and future requirements of propulsion engine systems. The scope of this study will include an assessment of the paradigm shift from centralized engine control architecture to an architecture based on distributed control utilizing open system standards. Included will be a description of the work begun in the 1990's, which continues today, followed by the identification of the remaining technical challenges which present barriers to on-engine distributed control.

  17. Memory controllers for mixed-time-criticality systems architectures, methodologies and trade-offs

    CERN Document Server

    Goossens, Sven; Akesson, Benny; Goossens, Kees

    2016-01-01

    This book discusses the design and performance analysis of SDRAM controllers that cater to both real-time and best-effort applications, i.e. mixed-time-criticality memory controllers. The authors describe the state of the art, and then focus on an architecture template for reconfigurable memory controllers that addresses effectively the quickly evolving set of SDRAM standards, in terms of worst-case timing and power analysis, as well as implementation. A prototype implementation of the controller in SystemC and synthesizable VHDL for an FPGA development board are used as a proof of concept of the architecture template.

  18. Robotic architectures

    CSIR Research Space (South Africa)

    Mtshali, M

    2010-01-01

    Full Text Available In the development of mobile robotic systems, a robotic architecture plays a crucial role in interconnecting all the sub-systems and controlling the system. The design of robotic architectures for mobile autonomous robots is a challenging...

  19. The genetic architecture of disease resistance in plants and the maintenance of recombination by parasites.

    Science.gov (United States)

    Kover, P X; Caicedo, A L

    2001-01-01

    Parasites represent strong selection on host populations because they are ubiquitous and can drastically reduce host fitness. It has been hypothesized that parasite selection could explain the widespread occurrence of recombination because it is a coevolving force that favours new genetic combinations in the host. A review of deterministic models for the maintenance of recombination reveals that for recombination to be favoured, multiple genes that interact with each other must be under selection. To evaluate whether parasite selection can explain the maintenance of recombination, we review 85 studies that investigated the genetic architecture of plant disease resistance and discuss whether they conform to the requirements that emerge from theoretical models. General characteristics of disease resistance in plants and problems in evaluating resistance experimentally are also discussed. We found strong evidence that disease resistance in plants is determined by multiple loci. Furthermore, in most cases where loci were tested for interactions, epistasis between loci that affect resistance was found. However, we found weak support for the idea that specific allelic combinations determine resistance to different host genotypes and there was little data on whether epistasis between resistance genes is negative or positive. Thus, the current data indicate that it is possible that parasite selection can favour recombination, but more studies in natural populations that specifically address the nature of the interactions between resistance genes are necessary. The data summarized here suggest that disease resistance is a complex trait and that environmental effects and fitness trade-offs should be considered in future models of the coevolutionary dynamics of host and parasites.

  20. Diversity of Maize Shoot Apical Meristem Architecture and Its Relationship to Plant Morphology

    OpenAIRE

    Thompson, Addie M.; Yu, Jianming; Timmermans, Marja C.P.; Schnable, Patrick; Crants, James C.; Scanlon, Michael J.; Muehlbauer, Gary J.

    2015-01-01

    The shoot apical meristem contains a pool of undifferentiated stem cells and controls initiation of all aerial plant organs. In maize (Zea mays), leaves are formed throughout vegetative development; on transition to floral development, the shoot meristem forms the tassel. Due to the regulated balance between stem cell maintenance and organogenesis, the structure and morphology of the shoot meristem are constrained during vegetative development. Previous work identified loci controlling merist...

  1. Internal transport control in pot plant production

    NARCIS (Netherlands)

    Annevelink, E.

    1999-01-01

    Drawing up internal transport schedules in pot plant production is a very complex task. Scheduling internal transport at the operational level and providing control on a day-to-day or even hour-to-hour basis in particular requires a new approach. A hierarchical planning approach based on

  2. Regulation of OsSPL14 by OsmiR156 defines ideal plant architecture in rice.

    Science.gov (United States)

    Jiao, Yongqing; Wang, Yonghong; Xue, Dawei; Wang, Jing; Yan, Meixian; Liu, Guifu; Dong, Guojun; Zeng, Dali; Lu, Zefu; Zhu, Xudong; Qian, Qian; Li, Jiayang

    2010-06-01

    Increasing crop yield is a major challenge for modern agriculture. The development of new plant types, which is known as ideal plant architecture (IPA), has been proposed as a means to enhance rice yield potential over that of existing high-yield varieties. Here, we report the cloning and characterization of a semidominant quantitative trait locus, IPA1 (Ideal Plant Architecture 1), which profoundly changes rice plant architecture and substantially enhances rice grain yield. The IPA1 quantitative trait locus encodes OsSPL14 (SOUAMOSA PROMOTER BINDING PROTEIN-LIKE 14) and is regulated by microRNA (miRNA) OsmiR156 in vivo. We demonstrate that a point mutation in OsSPL14 perturbs OsmiR156-directed regulation of OsSPL14, generating an 'ideal' rice plant with a reduced tiller number, increased lodging resistance and enhanced grain yield. Our study suggests that OsSPL14 may help improve rice grain yield by facilitating the breeding of new elite rice varieties.

  3. Advanced Design and Implementation of a Control Architecture for Long Range Autonomous Planetary Rovers

    Science.gov (United States)

    Martin-Alvarez, A.; Hayati, S.; Volpe, R.; Petras, R.

    1999-01-01

    An advanced design and implementation of a Control Architecture for Long Range Autonomous Planetary Rovers is presented using a hierarchical top-down task decomposition, and the common structure of each design is presented based on feedback control theory. Graphical programming is presented as a common intuitive language for the design when a large design team is composed of managers, architecture designers, engineers, programmers, and maintenance personnel. The whole design of the control architecture consists in the classic control concepts of cyclic data processing and event-driven reaction to achieve all the reasoning and behaviors needed. For this purpose, a commercial graphical tool is presented that includes the mentioned control capabilities. Messages queues are used for inter-communication among control functions, allowing Artificial Intelligence (AI) reasoning techniques based on queue manipulation. Experimental results show a highly autonomous control system running in real time on top the JPL micro-rover Rocky 7 controlling simultaneously several robotic devices. This paper validates the sinergy between Artificial Intelligence and classic control concepts in having in advanced Control Architecture for Long Range Autonomous Planetary Rovers.

  4. Guidance and Control Architecture Design and Demonstration for Low Ballistic Coefficient Atmospheric Entry

    Science.gov (United States)

    Swei, Sean

    2014-01-01

    We propose to develop a robust guidance and control system for the ADEPT (Adaptable Deployable Entry and Placement Technology) entry vehicle. A control-centric model of ADEPT will be developed to quantify the performance of candidate guidance and control architectures for both aerocapture and precision landing missions. The evaluation will be based on recent breakthroughs in constrained controllability/reachability analysis of control systems and constrained-based energy-minimum trajectory optimization for guidance development operating in complex environments.

  5. Bounded budgeted parallel architecture versus control dominated architecture for hazard data-signal processor synthesis

    Science.gov (United States)

    Le Gal, Bertrand; Casseau, Emmanuel; Martin, Eric

    2005-06-01

    Multimedia applications such as video and image processing are often characterized by a large number of data accesses (i.e. RAM accesses). In many digital signal-processing applications, the array access patterns are regular and periodic. In these cases, optimized Pipelined Memory Access Controllers can be generated. This technique is used to improve the pipeline access mode to RAM by creating specialized hardware components for generating addresses and packing and unpacking data items. In this paper we focus on the design, implementation and validation of memory interfacing modules that can be automatically generated from a behavioural synthesis tool and which can efficiently handle predictable address patterns as well as unpredictable ones (dynamic address computations) in a pipeline way. We also analyze the benefits of balancing dynamic address computations from datapath to specialized computation units placed in the memory controller, optimizing bitwise of operators and data locality i.e. reducing the power consumption.

  6. Epigenetic control of effectors in plant pathogens

    Directory of Open Access Journals (Sweden)

    Mark eGijzen

    2014-11-01

    Full Text Available Plant pathogens display impressive versatility in adapting to host immune systems. Pathogen effector proteins facilitate disease but can become avirulence (Avr factors when the host acquires discrete recognition capabilities that trigger immunity. The mechanisms that lead to changes to pathogen Avr factors that enable escape from host immunity are diverse, and include epigenetic switches that allow for reuse or recycling of effectors. This perspective outlines possibilities of how epigenetic control of Avr effector gene expression may have arisen and persisted in plant pathogens, and how it presents special problems for diagnosis and detection of specific pathogen strains or pathotypes.

  7. Automated work packages architecture: An initial set of human factors and instrumentation and controls requirements

    Energy Technology Data Exchange (ETDEWEB)

    Agarwal, Vivek [Idaho National Lab. (INL), Idaho Falls, ID (United States); Oxstrand, Johanna H. [Idaho National Lab. (INL), Idaho Falls, ID (United States); Le Blanc, Katya L. [Idaho National Lab. (INL), Idaho Falls, ID (United States)

    2014-09-01

    The work management process in current fleets of national nuclear power plants is so highly dependent on large technical staffs and quality of work instruction, i.e., paper-based, that this puts nuclear energy at somewhat of a long-term economic disadvantage and increase the possibility of human errors. Technologies like mobile portable devices and computer-based procedures can play a key role in improving the plant work management process, thereby increasing productivity and decreasing cost. Automated work packages are a fundamentally an enabling technology for improving worker productivity and human performance in nuclear power plants work activities because virtually every plant work activity is accomplished using some form of a work package. As part of this year’s research effort, automated work packages architecture is identified and an initial set of requirements identified, that are essential and necessary for implementation of automated work packages in nuclear power plants.

  8. Differential contribution of plant-beneficial functions from Pseudomonas kilonensis F113 to root system architecture alterations in Arabidopsis thaliana and Zea mays.

    Science.gov (United States)

    Vacheron, Jordan; Desbrosses, Guilhem; Renoud, Sébastien; Padilla-Aguilar, Rosa-Maria; Walker, Vincent; Muller, Daniel; Prigent-Combaret, Claire

    2017-10-03

    Fluorescent pseudomonads are playing key roles in plant-bacteria symbiotic interactions due to the multiple plant-beneficial functions (PBFs) they are harboring. The relative contributions of PBFs to plant-stimulatory effects of the well-known PGPR Pseudomonas kilonensis F113 (formerly P. fluorescens F113) were investigated using a genetic approach. To this end, several deletion mutants were constructed: simple mutants ΔphlD (impaired in the biosynthesis of 2,4-diacetylphloroglucinol [DAPG]), ΔacdS (deficient in 1-aminocyclopropane-1-carboxylate [ACC] deaminase activity), Δgcd (glucose dehydrogenase deficient, impaired in phosphate solubilization), and ΔnirS (nitrite reductase deficient) and a quadruple mutant (deficient in the 4 PBFs mentioned above). Every PBF activity was quantified in the wild-type strain and the five deletion mutants. This approach revealed few functional interactions between PBFs in vitro. In particular, biosynthesis of glucose dehydrogenase severely reduced the production of DAPG. Contrariwise, the DAPG production impacted positively, but to a lesser extent, phosphate solubilization. Inoculation of the F113 wild-type strain on Arabidopsis thaliana Col-0 and maize seedlings modified the root architecture of both plants. Mutant strain inoculations revealed that the relative contribution of each PBF differed according to the measured plant traits, and that F113 plant-stimulatory effects did not correspond to the sum of each PBF relative contribution. Indeed, two PBF genes (ΔacdS and ΔnirS) had a significant impact on root system architecture from both model plants, whether in in vitro and in vivo conditions. The current work underlined that few F113 PBFs seem to interact between each other in the free-living bacterial cells, whereas they control in concert Arabidopsis thaliana and maize growth and development.

  9. Design and Tuning of Wind Power Plant Voltage Controller with Embedded Application of Wind Turbines and STATCOMs

    DEFF Research Database (Denmark)

    Petersen, Lennart; Kryezi, Fitim; Iov, Florin

    2017-01-01

    . A complete phasor model of the entire wind power plant is constructed, being appropriate for voltage control assessment. An exemplary wind power plant located in the United Kingdom and the corresponding grid code requirements are used as a base case. The final design and tuning process of the voltage...... controller results in a guidance, proposed for this particular control architecture. It provides qualitative outcomes regarding the parametrisation of each individual control loop and how to adjust the voltage controller depending on different grid stiffnesses of the wind power plant connection...

  10. On fuzzy control of water desalination plants

    Energy Technology Data Exchange (ETDEWEB)

    Titli, A. [Centre National de la Recherche Scientifique (CNRS), 31 - Toulouse (France); Jamshidi, M. [New Mexico Univ., Albuquerque, NM (United States); Olafsson, F. [Institute of Technology, Norway (Norway)

    1995-12-31

    In this report we have chosen a sub-system of an MSF water desalination plant, the brine heater, for analysis, synthesis, and simulation. This system has been modelled and implemented on computer. A fuzzy logic controller (FLC) for the top brine temperature control loop has been designed and implemented on the computer. The performance of the proposed FLC is compared with three other conventional control strategies: PID, cascade and disturbance rejection control. One major concern on FLC`s has been the lack of stability criteria. An up to-date survey of stability of fuzzy control systems is given. We have shown stability of the proposed FLC using the Sinusoidal Input Describing Functions (SIDF) method. The potential applications of fuzzy controllers for complex and large-scale systems through hierarchy of rule sets and hybridization with conventional approaches are also investigated. (authors)

  11. Phytoplasmal infection derails genetically preprogrammed meristem fate and alters plant architecture.

    Science.gov (United States)

    Wei, Wei; Davis, Robert Edward; Nuss, Donald L; Zhao, Yan

    2013-11-19

    In the life cycle of higher plants, it is the fate of meristem cells that determines the pattern of growth and development, and therefore plant morphotype and fertility. Floral transition, the turning point from vegetative growth to reproductive development, is achieved via genetically programmed sequential changes in meristem fate from vegetative to inflorescence, and to floral, leading to flower formation and eventual seed production. The transition is rarely reversible once initiated. In this communication, we report that a bacterial infection can derail the genetically programmed fate of meristem cells, thereby drastically altering the growth pattern of the host plant. We identified four characteristic symptoms in tomato plants infected with a cell wall-less bacterium, phytoplasma. The symptoms are a manifestation of the pathogen-induced alterations of growth pattern, whereas each symptom corresponds to a distinct phase in the derailment of shoot apical meristem fate. The phases include premature floral meristem termination, suppressed floral meristem initiation, delayed conversion of vegetative meristem to inflorescence meristem, and repetitive initiation and outgrowth of lateral vegetative meristems. We further found that the pathogen-induced alterations of growth pattern were correlated with transcriptional reprogramming of key meristem switching genes. Our findings open an avenue toward understanding pathological alterations in patterns of plant growth and development, thus aiding identification of molecular targets for disease control and symptom alleviation. The findings also provide insights for understanding stem cell pluripotency and raise a tantalizing possibility for using phytoplasma as a tool to dissect the course of normal plant development and to modify plant morphogenesis by manipulating meristem fate.

  12. OpenRRArch: An open, robust and reliable architecture for controlling autonomous robots

    Directory of Open Access Journals (Sweden)

    Fredy Hernán Martínez Sarmiento

    2017-01-01

    Full Text Available Context: The control and navigation systems of autonomous robots constitute a dynamic field of research in robotics. The possible solutions to problems are often evaluated with laboratory prototypes in order to determine their real performance. We propose in this paper an architecture for the design and development of robotic systems (particularly autonomous multi-robot Systems that facilitate the work in laboratory due to an open robust and reliable architecture. Method: The architecture is supported in open source hardware and software. The operation and communication strategy is characterized by a low consumption of resources, both in processing and communication, and real-time operation. As developement platform and Operating System, we used Linux: the communication scheme and the embedded systems run on a 32-bit processor, with a 16-bit instruction set (not ARM, but with Harvard architecture, at 80 MHz (Tensilica Xtensa LX106 for the implementation of the agents. The tools used allow the solution to be bothe efficient and inexpensive. Results: The architecture has been successfully applied in the implementation of a strategy of navigation for a set of small autonomous robots. A set of robots were provided with wireless communication capability, minimum capacity of environmental sensing (obstacle detection and a navigation algorithm based on population sizes (mimicking the bacterial Quorum Sensing. The system is implemented with great ease, demonstrating both the viability of the navigation strategy and the versatility, robustness and scalability of the OpenRRArch architecture. Conclusions: The proposed architecture constitutes a solution for the construction of distributed control systems, in particular multi-agent robotic systems. It enables the rapid, low-cost and high-performance implementation of systems with real-time cooperation and communication capabilities. The architecture allows the integration of agents with different processing

  13. Analysis of control and management plane for hybrid fiber radio architectures

    DEFF Research Database (Denmark)

    Kardaras, Georgios; Pham, Tien Thang; Soler, José;

    2010-01-01

    This paper presents the existing Radio over Fiber (RoF) architectures and focuses on the control and management plane of the Remote Antenna Unit (RAU). Broadband wireless standards, such as WiMAX and LTE, incorporate optical technologies following the distributed base station concept. The control...

  14. Design of a real-time open architecture controller for reconfigurable machine tool

    CSIR Research Space (South Africa)

    Masekamela, I

    2008-06-01

    Full Text Available modular structure in form of modular machines and open architecture controllers that can quickly change the physical structure and appropriately adjust the control system to adapt to the new production requirements. The paper aims to present the design...

  15. Model-driven Migration of Supervisory Machine Control Architectures

    NARCIS (Netherlands)

    Graaf, B.; Weber, S.; Van Deursen, A.

    2006-01-01

    Supervisory machine control is the high-level control in advanced manufacturing machines that is responsible for the coordination of manufacturing activities. Traditionally, the design of such control systems is based on finite state machines. An alternative, more flexible approach is based on

  16. Central Plant Optimization for Waste Energy Reduction (CPOWER)

    Science.gov (United States)

    2016-12-01

    by connecting it with local plant control to enable real- time optimization based on current state of the plant, load and weather conditions. The...11 2.1.5 Solution Architecture ...Optimization Implementation........................................................................................ 10 Figure 3: System Architecture

  17. One-Chip Solution to Intelligent Robot Control: Implementing Hexapod Subsumption Architecture Using a Contemporary Microprocessor

    Directory of Open Access Journals (Sweden)

    Nikita Pashenkov

    2004-06-01

    Full Text Available This paper introduces a six-legged autonomous robot managed by a single controller and a software core modeled on subsumption architecture. We begin by discussing the features and capabilities of IsoPod, a new processor for robotics which has enabled a streamlined implementation of our project. We argue that this processor offers a unique set of hardware and software features, making it a practical development platform for robotics in general and for subsumption-based control architectures in particular. Next, we summarize original ideas on subsumption architecture implementation for a six-legged robot, as presented by its inventor Rodney Brooks in 1980's. A comparison is then made to a more recent example of a hexapod control architecture based on subsumption. The merits of both systems are analyzed and a new subsumption architecture layout is formulated as a response. We conclude with some remarks regarding the development of this project as a hint at new potentials for intelligent robot design, opened up by a recent development in embedded controller market.

  18. One-Chip Solution to Intelligent Robot Control: Implementing Hexapod Subsumption Architecture Using a Contemporary Microprocessor

    Directory of Open Access Journals (Sweden)

    Nikita Pashenkov

    2008-11-01

    Full Text Available This paper introduces a six-legged autonomous robot managed by a single controller and a software core modeled on subsumption architecture. We begin by discussing the features and capabilities of IsoPod, a new processor for robotics which has enabled a streamlined implementation of our project. We argue that this processor offers a unique set of hardware and software features, making it a practical development platform for robotics in general and for subsumption-based control architectures in particular. Next, we summarize original ideas on subsumption architecture implementation for a six-legged robot, as presented by its inventor Rodney Brooks in 1980's. A comparison is then made to a more recent example of a hexapod control architecture based on subsumption. The merits of both systems are analyzed and a new subsumption architecture layout is formulated as a response. We conclude with some remarks regarding the development of this project as a hint at new potentials for intelligent robot design, opened up by a recent development in embedded controller market.

  19. Dynamics of the active site architecture in plant-type ferredoxin-NADP(+) reductases catalytic complexes.

    Science.gov (United States)

    Sánchez-Azqueta, Ana; Catalano-Dupuy, Daniela L; López-Rivero, Arleth; Tondo, María Laura; Orellano, Elena G; Ceccarelli, Eduardo A; Medina, Milagros

    2014-10-01

    Kinetic isotope effects in reactions involving hydride transfer and their temperature dependence are powerful tools to explore dynamics of enzyme catalytic sites. In plant-type ferredoxin-NADP(+) reductases the FAD cofactor exchanges a hydride with the NADP(H) coenzyme. Rates for these processes are considerably faster for the plastidic members (FNR) of the family than for those belonging to the bacterial class (FPR). Hydride transfer (HT) and deuteride transfer (DT) rates for the NADP(+) coenzyme reduction of four plant-type FNRs (two representatives of the plastidic type FNRs and the other two from the bacterial class), and their temperature dependences are here examined applying a full tunnelling model with coupled environmental fluctuations. Parameters for the two plastidic FNRs confirm a tunnelling reaction with active dynamics contributions, but isotope effects on Arrhenius factors indicate a larger contribution for donor-acceptor distance (DAD) dynamics in the Pisum sativum FNR reaction than in the Anabaena FNR reaction. On the other hand, parameters for bacterial FPRs are consistent with passive environmental reorganisation movements dominating the HT coordinate and no contribution of DAD sampling or gating fluctuations. This indicates that active sites of FPRs are more organised and rigid than those of FNRs. These differences must be due to adaptation of the active sites and catalytic mechanisms to fulfil their particular metabolic roles, establishing a compromise between protein flexibility and functional optimisation. Analysis of site-directed mutants in plastidic enzymes additionally indicates the requirement of a minimal optimal architecture in the catalytic complex to provide a favourable gating contribution. Copyright © 2014 Elsevier B.V. All rights reserved.

  20. D-ZENIC:A Scalable Distributed SDN Controller Architecture

    Institute of Scientific and Technical Information of China (English)

    Yongsheng Hu; Tian Tian; Jun Wang

    2014-01-01

    In a software-defined network, a powerful central controller provides a flexible platform for defining network traffic through the use of software. When SDN is used in a large-scale network, the logical central controller comprises multiple physical servers, and multiple controllers must act as one to provide transparent control logic to network applications and devices. The challenge is to minimize the cost of network state distribution. To this end, we propose Distributed ZTE Elastic Network Intelligent Controller (D-ZENIC), a network-control platform that supports distributed deployment and linear scale-out. A dedicated component in the D-ZENIC controller provides a global view of the network topology as well as the distribution of host information. The evaluation shows that balance complexity with scalability, the network state distribution needs to be strictly classified.

  1. Semigroup based neural network architecture for extrapolation of mass unbalance for rotating machines in power plants

    Energy Technology Data Exchange (ETDEWEB)

    Kim, B.H.; Velas, J.P.; Lee, K.Y [Pennsylvania State Univ., University Park, PA (United States). Dept. of Electrical Engineering

    2006-07-01

    This paper presented a mathematical method that power plant operators can use to estimate rotational mass unbalance, which is the most common source of vibration in turbine generators. An unbalanced rotor or driveshaft causes vibration and stress in the rotating part and in its supporting structure. As such, balancing the rotating part is important to minimize structural stress, minimize operator annoyance and fatigue, increase bearing life, or minimize power loss. The newly proposed method for estimating vibration on a turbine generator uses mass unbalance extrapolation based on a modified system-type neural network architecture, notably the semigroup theory used to study differential equations, partial differential equations and their combinations. Rather than relying on inaccurate vibration measurements, this method extrapolates a set of reliable mass unbalance readings from a common source of vibration. Given a set of empirical data with no analytic expression, the authors first developed an analytic description and then extended that model along a single axis. The algebraic decomposition which was used to obtain the analytic description of empirical data in the semigroup form involved the product of a coefficient vector and a basis set of vectors. The proposed approach was simulated on empirical data. The concept can also be tested in many other engineering and non-engineering problems. 23 refs., 11 figs.

  2. A Heterogeneous Multi-core Architecture with a Hardware Kernel for Control Systems

    DEFF Research Database (Denmark)

    Li, Gang; Guan, Wei; Sierszecki, Krzysztof

    2012-01-01

    . This paper presents a multi-core architecture incorporating a hardware kernel on FPGAs, intended for high performance applications in control engineering domain. First, the hardware kernel is investigated on the basis of a component-based real-time kernel HARTEX (Hard Real-Time Executive for Control Systems......). Second, a heterogeneous multi-core architecture is investigated, focusing on its performance in relation to hard real-time constraints and predictable behavior. Third, the hardware implementation of HARTEX is designated to support the heterogeneous multi-core architecture. This hardware kernel has......Rapid industrialisation has resulted in a demand for improved embedded control systems with features such as predictability, high processing performance and low power consumption. Software kernel implementation on a single processor is becoming more difficult to satisfy those constraints...

  3. Control effect of lanthanum against plant disease

    Institute of Scientific and Technical Information of China (English)

    LIU Yajia; WANG Yan; WANG Fubin; LIU Yuming; CUI Jianyu; HU Lin; MU Kangguo

    2008-01-01

    Effect of La on emergence, growth and development of Isatis indigotica Fort and Festuca arundinacea seedlings was researched by pot experiments of inoculating Rhizoctonia solani and with the mixture of Rhizoctonia solani and Fusarium solani in disinfected soil after the seeds were soaked in the solution with different concentrations of La3+. The results indicated that infection rate decreased and there were significant disease controlling effects on seed rot, bud rot and root rot caused by pathogenic fungi when the seeds were soaked by La3+. Thus, the rates of emergence of Isatis indigotica Fort. And turfgrass Festuca arundinacea were increased. When La3+ concentration was in a proper range, the growth and development of plant seedlings were promoted. Spraying La on rice plants showed a significant controling effect on Rhizoctonia solani. Furthermore, the EC50 of La3+ performed 128.7 and 128.1 mg/L at 1 and 7 d after spraying La in rice plants, respectively. The EC50ofLa3+ performed in vivo (in rice plant) was lower than that in vitro (171.9 mg/L).

  4. A metamorphic controller for plant control system design

    Directory of Open Access Journals (Sweden)

    Tomasz Klopot

    2016-07-01

    Full Text Available One of the major problems in the design of industrial control systems is the selection and parameterization of the control algorithm. In practice, the most common solution is the PI (proportional-integral controller, which is simple to implement, but is not always the best control strategy. The use of more advanced controllers may result in a better efficiency of the control system. However, the implementation of advanced control algorithms is more time-consuming and requires specialized knowledge from control engineers. To overcome these problems and to support control engineers at the controller design stage, the paper describes a tool, i.e., a metamorphic controller with extended functionality, for selection and implementation of the most suitable control algorithm. In comparison to existing solutions, the main advantage of the metamorphic controller is its possibility of changing the control algorithm. In turn, the candidate algorithms can be tested through simulations and the total time needed to perform all simulations can be less than a few minutes, which is less than or comparable to the design time in the concurrent design approach. Moreover, the use of well-known tuning procedures, makes the system easy to understand and operate even by inexperienced control engineers. The application was implemented in the real industrial programmable logic controller (PLC and tested with linear and nonlinear virtual plants. The obtained simulation results confirm that the change of the control algorithm allows the control objectives to be achieved at lower costs and in less time.

  5. Trends and perspectives - An architecture for agile shop floor control systems

    DEFF Research Database (Denmark)

    Langer, Gilad; Alting, Leo

    2001-01-01

    as shop floor control. This paper presents the Holonic Multi-cell Control System (HoMuCS) architecture that allows for design and development of holonic shop floor control systems. The HoMuCS is a shop floor control system which is sometimes referred to as a manufacturing execution system...... that is inherently agile. This agility is achieved through two performance parameters: operational agility, allowing for operational change; and structural agility, allowing for structural changes and reconfiguration....

  6. Automatic Control of Contextual Interaction Integrated with Affection and Architectural Attentional Control

    Directory of Open Access Journals (Sweden)

    Yanrong Jiang

    2013-03-01

    Full Text Available It is still a challenge for robots to interact with complex environments in a smooth and natural manner. The robot should be aware of its surroundings and inner status to make decisions accordingly and appropriately. Contexts benefit the interaction a lot, such as avoiding frequent interruptions (e.g., the explicit inputting requests and thus are essential for interaction. Other challenges, such as shifting attentional focus to a more important stimulus, etc., are also crucial in interaction control. This paper presents a hybrid automatic control approach for interaction, as well as its integration, with these multiple important factors, aiming at performing natural, human‐like interactions in robots. In particular, a novel approach of architectural attentional control, based on affection is presented, which attempts to shift the attentional focus in a natural manner. Context‐aware computing is combined with interaction to endow the robot with proactive abilities. The long‐term interaction control approaches are described. Emotion and personality are introduced into the interaction and their influence mechanism on interaction is explored. We implemented the proposal in an interactive head robot (IHR and the experimental results indicate the effectiveness.

  7. Agent-based Cyber Control Strategy Design for Resilient Control Systems: Concepts, Architecture and Methodologies

    Energy Technology Data Exchange (ETDEWEB)

    Craig Rieger; Milos Manic; Miles McQueen

    2012-08-01

    The implementation of automated regulatory control has been around since the middle of the last century through analog means. It has allowed engineers to operate the plant more consistently by focusing on overall operations and settings instead of individual monitoring of local instruments (inside and outside of a control room). A similar approach is proposed for cyber security, where current border-protection designs have been inherited from information technology developments that lack consideration of the high-reliability, high consequence nature of industrial control systems. Instead of an independent development, however, an integrated approach is taken to develop a holistic understanding of performance. This performance takes shape inside a multiagent design, which provides a notional context to model highly decentralized and complex industrial process control systems, the nervous system of critical infrastructure. The resulting strategy will provide a framework for researching solutions to security and unrecognized interdependency concerns with industrial control systems.

  8. Concept and controllability of virtual power plant

    Energy Technology Data Exchange (ETDEWEB)

    Setiawan, E.A.

    2007-07-01

    In the end of 20th century the conception of electrical power supply is morphing gradually from centralized into decentralized system, indicated by increasing the installation of distributed generation on the main grid. With emerging of advanced communication and information technology, the aggregation control of several DG units can be developed as virtual power plant in order to provide added-value to the electric power system. This thesis presents definitions and types of Virtual Power Plants (VPP), then developing control through numerical simulation. The thesis proposes three DG controls namely Basic Autocontrol System (BAS), Smart Autocontrol System (SAS) and Tracking Efficiency Autocontrol System (TEAS). The BAS controls the DG output power with the objective to cover the local load demand. The drawback of this system is that the coordination among DG units is not established yet. In contrast to the BAS, the SAS has a control coordination centre which is responsible of controlling a certain number of DG units. The SAS controls and coordinates the operation of the dedicated DG units in order to minimize power exchange with the superior grid. However the efficiency issue is not considered at two previous control systems, therefore the TEAS was developed. Principally this system is similar to the SAS in terms of information exchange but additionally optimizes the operation efficiency of DG units. This is accomplished by tracking the systems' most efficient operation point. All control systems have been implemented into a simulation environment. The simulation results show that all developed control systems are capable to minimize the power exchange with the superior grid. The systems are able to follow changing load conditions. Furthermore the simulation results prove the ability of TEAS to optimize the system efficiency. Finally the contribution of VPP to voltage regulation is investigated with several scenarios. The influence of both, active and reactive

  9. Distributed Hierarchical Control Architecture for Transient Dynamics Improvement in Power Systems

    Energy Technology Data Exchange (ETDEWEB)

    Marinovici, Laurentiu D.; Lian, Jianming; Kalsi, Karanjit; Du, Pengwei; Elizondo, Marcelo A.

    2013-08-24

    In this paper, a novel distributed hierarchical coordinated control architecture is proposed for large scale power systems. The newly considered architecture facilitates frequency restoration and power balancing functions to be decoupled and implemented at different levels. At the local level, decentralized robust generator controllers are designed to quickly restore frequency after large faults and disturbances in the system. The controllers presented herein are shown to improve transient stability performance, as compared to conventional governor and excitation control. At the area level, Automatic Generation Control (AGC) is modified and coordinates with the decentralized robust controllers to reach the interchange schedule in the tie lines. The interaction of local and zonal controllers is validated through detailed simulations.

  10. The architectural foundations for agent-based shop floor control

    DEFF Research Database (Denmark)

    Langer, Gilad; Bilberg, Arne

    1998-01-01

    simulation and cell controlenabling technologies. In order to continuethis research effortnew concepts and theories for shop floor control are investigated.This paper reviews the multi-agent concept aimed at investigatingits potential use in shop floor control systems. The paper willalso include a survey...

  11. Solar field control for desalination plants

    Energy Technology Data Exchange (ETDEWEB)

    Roca, Lidia [Convenio Universidad de Almeria, Plataforma Solar de Almeria, Ctra. Senes s/n, 04200 Tabernas, Almeria (Spain); Berenguel, Manuel [Universidad de Almeria, Dpto. Lenguajes y Computacion, Ctra. Sacramento s/n, 04120 Almeria (Spain); Yebra, Luis; Alarcon-Padilla, Diego C. [CIEMAT, Plataforma Solar de Almeria, Ctra. Senes s/n, 04200 Tabernas, Almeria (Spain)

    2008-09-15

    This paper presents the development and application of a feedback linearization control strategy for a solar collector field supplying process heat to a multi-effect seawater distillation plant. Since one objective is to use as much as possible the solar resource, control techniques can be used to produce the maximum heat process in the solar field. The main purpose of the controller presented in this paper is to manipulate the water flow rate to maintain an outlet-inlet temperature gradient in the collectors, thereby ensuring continuous process heating, or in other words, continuous production of fresh water in spite of disturbances. The dynamic behaviour of this solar field was approximated by a simplified lumped-parameters nonlinear model based on differential equations, validated with real data and used in the feedback linearization control design. Experimental results in the seawater desalination plant at the Plataforma Solar de Almeria (Spain) show good agreement of the model and real data despite the approximations included. Moreover, by using feedback linearization control it is possible to track a constant gradient temperature reference in the solar field with good results. (author)

  12. Overall control and monitoring systems for pumped storage plants

    Energy Technology Data Exchange (ETDEWEB)

    Stepinski, B.; Cvetko, H.

    1982-01-01

    Experience and technical innovations in power plant engineering have resulted in continuous improvements of operation control, availability and safety of pumped storage plants. Process control is constantly improved as new developments are made in equipment and systems engineering. Plant control concepts with increasingly complex automation hierarchy are described by which pumped storage processes can be controlled optimally, reliably, and automatically.

  13. LHCb: Fast Readout Control for the upgraded readout architecture of the LHCb experiment at CERN

    CERN Multimedia

    Alessio, F

    2013-01-01

    The LHCb experiment at CERN has proposed an upgrade towards a full 40 MHz readout system in order to run between five and ten times its initial design luminosity with an upgraded LHCb detector. As a consequence, the various LHCb sub-systems in the readout architecture will be upgraded to cope with higher sub-detector occupancies, higher rate, and higher readout load. The new architecture, new functionalities, and the first hardware implementation of a new LHCb Readout Control system (commonly referred to as S-TFC) for the upgraded LHCb experiment is here presented. Our attention is focused in describing solutions for the distribution of clock and timing information to control the entire upgraded readout architecture by profiting of a bidirectional optical network and powerful FPGAs, including a real-time mechanism to synchronize the entire system. Solutions and implementations are presented, together with first results on the simulation and the validation of the system.

  14. HoMuCS - A methodology and architecture for Holonic Multi-cell Control Systems

    DEFF Research Database (Denmark)

    Langer, Gilad

    a potentiallyadvantageous framework for achieving agility in manufacturing systems. The research was aimed at developing a system-architecturefor a Holonic Multi-cell Control System (HoMuCS). This was performed using the conceptual framework presented by the HMS reference architecture in an attempt to implement......, in otherwords their ability to deal with change. Since agility can be characterised as a performance measure of a SFC system it was necessary to show that a HoMuCS inherently yields agile performance. This is the main result of the research work and confirms two main assumptions that were defined...... as the hypothesis of the research. Firstly that it is possible to realise holonic systems based on the HMS theory, specifically its reference architecture, and secondly that they are in fact agile. Itpresents the concept of a Holonic Multi-cell Control System system-architecture and corresponding methodology, which...

  15. Autonomous Control of Nuclear Power Plants

    Energy Technology Data Exchange (ETDEWEB)

    Basher, H.

    2003-10-20

    A nuclear reactor is a complex system that requires highly sophisticated controllers to ensure that desired performance and safety can be achieved and maintained during its operations. Higher-demanding operational requirements such as reliability, lower environmental impacts, and improved performance under adverse conditions in nuclear power plants, coupled with the complexity and uncertainty of the models, necessitate the use of an increased level of autonomy in the control methods. In the opinion of many researchers, the tasks involved during nuclear reactor design and operation (e.g., design optimization, transient diagnosis, and core reload optimization) involve important human cognition and decisions that may be more easily achieved with intelligent methods such as expert systems, fuzzy logic, neural networks, and genetic algorithms. Many experts in the field of control systems share the idea that a higher degree of autonomy in control of complex systems such as nuclear plants is more easily achievable through the integration of conventional control systems and the intelligent components. Researchers have investigated the feasibility of the integration of fuzzy logic, neural networks, genetic algorithms, and expert systems with the conventional control methods to achieve higher degrees of autonomy in different aspects of reactor operations such as reactor startup, shutdown in emergency situations, fault detection and diagnosis, nuclear reactor alarm processing and diagnosis, and reactor load-following operations, to name a few. With the advancement of new technologies and computing power, it is feasible to automate most of the nuclear reactor control and operation, which will result in increased safety and economical benefits. This study surveys current status, practices, and recent advances made towards developing autonomous control systems for nuclear reactors.

  16. A limit-cycle self-organizing map architecture for stable arm control.

    Science.gov (United States)

    Huang, Di-Wei; Gentili, Rodolphe J; Katz, Garrett E; Reggia, James A

    2017-01-01

    Inspired by the oscillatory nature of cerebral cortex activity, we recently proposed and studied self-organizing maps (SOMs) based on limit cycle neural activity in an attempt to improve the information efficiency and robustness of conventional single-node, single-pattern representations. Here we explore for the first time the use of limit cycle SOMs to build a neural architecture that controls a robotic arm by solving inverse kinematics in reach-and-hold tasks. This multi-map architecture integrates open-loop and closed-loop controls that learn to self-organize oscillatory neural representations and to harness non-fixed-point neural activity even for fixed-point arm reaching tasks. We show through computer simulations that our architecture generalizes well, achieves accurate, fast, and smooth arm movements, and is robust in the face of arm perturbations, map damage, and variations of internal timing parameters controlling the flow of activity. A robotic implementation is evaluated successfully without further training, demonstrating for the first time that limit cycle maps can control a physical robot arm. We conclude that architectures based on limit cycle maps can be organized to function effectively as neural controllers. Copyright © 2016 Elsevier Ltd. All rights reserved.

  17. 3D Plant Cell Architecture of Arabidopsis thaliana (Brassicaceae Using Focused Ion Beam–Scanning Electron Microscopy

    Directory of Open Access Journals (Sweden)

    Bhawana

    2014-06-01

    Full Text Available Premise of the study: Focused ion beam–scanning electron microscopy (FIB-SEM combines the ability to sequentially mill the sample surface and obtain SEM images that can be used to create 3D renderings with micron-level resolution. We have applied FIB-SEM to study Arabidopsis cell architecture. The goal was to determine the efficacy of this technique in plant tissue and cellular studies and to demonstrate its usefulness in studying cell and organelle architecture and distribution. Methods: Seed aleurone, leaf mesophyll, stem cortex, root cortex, and petal lamina from Arabidopsis were fixed and embedded for electron microscopy using protocols developed for animal tissues and modified for use with plant cells. Each sample was sectioned using the FIB and imaged with SEM. These serial images were assembled to produce 3D renderings of each cell type. Results: Organelles such as nuclei and chloroplasts were easily identifiable, and other structures such as endoplasmic reticula, lipid bodies, and starch grains were distinguishable in each tissue. Discussion: The application of FIB-SEM produced 3D renderings of five plant cell types and offered unique views of their shapes and internal content. These results demonstrate the usefulness of FIB-SEM for organelle distribution and cell architecture studies.

  18. Software Architecture and Framework for Programmable Logic Controllers: A Case Study and Suggestions for Research

    Directory of Open Access Journals (Sweden)

    E. George Walters

    2016-06-01

    Full Text Available Programmable Logic Controllers (PLCs are widely used for control and automation of machines and processes, so the quality of PLC software has a direct impact on production efficiency. This paper describes a PLC program for a food production line that was completely rewritten using a different software architecture and framework. The PLC hardware and the production line equipment were not changed, so this project provides an opportunity to quantify the impact of different PLC software architecture on production efficiency. The average number of cases of products produced per production hour during the first ten months with the new program was 6.1% higher than the average during the previous ten months with the old program. PLC software, unlike most other software, is often used by the end-user for troubleshooting. In this case, a relatively simple architecture and framework that favors the end-user significantly improved production efficiency over a more sophisticated architecture and framework that favors the software developer. Suggestions for further research on software architecture and framework are given.

  19. Neural Network Based PID Gain Tuning of Chemical Plant Controller

    Science.gov (United States)

    Abe, Yoshihiro; Konishi, Masami; Imai, Jun; Hasegawa, Ryusaku; Watanabe, Masamori; Kamijo, Hiroaki

    In these years, plant control systems are highly automated and applied to many industries. The control performances change with the passage of time, because of the deterioration of plant facilities. This is why human experts tune the control system to improve the total plant performances. In this study, PID control system for the oil refining chemical plant process is treated. In oil refining, there are thousands of the control loops in the plant to keep the product quality at the desired value and to secure the safety of the plant operation. According to the ambiguity of the interference between control loops, it is difficult to estimate the plant dynamical model accurately. Using neuro emulator and recurrent neural networks model (RNN model) for emulation and tuning parameters, PID gain tuning system of chemical plant controller is constructed. Through numerical experiments using actual plant data, effect of the proposed method was ascertained.

  20. A Loosely Coupled Control Architecture Based on Agent and CORBA for Multiple Robots

    Institute of Scientific and Technical Information of China (English)

    Wu Shandong(吴山东); Chen Yimin; He Yongyi

    2003-01-01

    With the rapid development of information technology, adopting advanced distributed computing technology to construct robot control system is becoming an effective approach gradually. This paper proposes a distributed loosely coupled software architecture based on Agent and CORBA to control multiple robots. This model provides the robot user with agent control units at the semantic level and CORBA provides function interfaces to agent at the syntax level, which shows a good adaptability, flexibility and transparence.

  1. Modeling Open Software Architectures of Robot Controllers: A Brief Survey of Modeling Methods and Developing Methods

    Institute of Scientific and Technical Information of China (English)

    2002-01-01

    Openness is one of the features of modern robot controllers. Although many modeling technologies have been discussed to model and develop open robot controllers, the focus is always on modeling methodologies. Meanwhile, the relations between the former and the latter are usually ignored. According to the general software architecture of open robot controllers, this paper discusses modeling and developing methods. And the relationships between the typical ones are also analyzed.

  2. Advanced Control Architectures for Intelligent Microgrids—Part II

    DEFF Research Database (Denmark)

    Guerrero, Josep M.; Chiang Loh, Poh; Lee, Tzung-Lin;

    2013-01-01

    This paper summarizes the main problems and solutions of power quality in microgrids, distributed-energy-storage systems, and ac/dc hybrid microgrids. First, the power quality enhancement of grid-interactive microgrids is presented. Then, the cooperative control for enhance voltage harmonics...... and unbalances in microgrids is reviewed. Afterward, the use of static synchronous compensator (STATCOM) in grid-connected microgrids is introduced in order to improve voltage sags/swells and unbalances. Finally, the coordinated control of distributed storage systems and ac/dc hybrid microgrids is explained....

  3. SIZ1 regulation of phosphate starvation-induced root architecture remodeling involves the control of auxin accumulation.

    Science.gov (United States)

    Miura, Kenji; Lee, Jiyoung; Gong, Qingqiu; Ma, Shisong; Jin, Jing Bo; Yoo, Chan Yul; Miura, Tomoko; Sato, Aiko; Bohnert, Hans J; Hasegawa, Paul M

    2011-02-01

    Phosphate (Pi) limitation causes plants to modulate the architecture of their root systems to facilitate the acquisition of Pi. Previously, we reported that the Arabidopsis (Arabidopsis thaliana) SUMO E3 ligase SIZ1 regulates root architecture remodeling in response to Pi limitation; namely, the siz1 mutations cause the inhibition of primary root (PR) elongation and the promotion of lateral root (LR) formation. Here, we present evidence that SIZ1 is involved in the negative regulation of auxin patterning to modulate root system architecture in response to Pi starvation. The siz1 mutations caused greater PR growth inhibition and LR development of seedlings in response to Pi limitation. Similar root phenotypes occurred if Pi-deficient wild-type seedlings were supplemented with auxin. N-1-Naphthylphthalamic acid, an inhibitor of auxin efflux activity, reduced the Pi starvation-induced LR root formation of siz1 seedlings to a level equivalent to that seen in the wild type. Monitoring of the auxin-responsive reporter DR5::uidA indicated that auxin accumulates in PR tips at early stages of the Pi starvation response. Subsequently, DR5::uidA expression was observed in the LR primordia, which was associated with LR elongation. The time-sequential patterning of DR5::uidA expression occurred earlier in the roots of siz1 as compared with the wild type. In addition, microarray analysis revealed that several other auxin-responsive genes, including genes involved in cell wall loosening and biosynthesis, were up-regulated in siz1 relative to wild-type seedlings in response to Pi starvation. Together, these results suggest that SIZ1 negatively regulates Pi starvation-induced root architecture remodeling through the control of auxin patterning.

  4. Design and Reliability Analysis of DP-3 Dynamic Positioning Control Architecture

    Institute of Scientific and Technical Information of China (English)

    WANG Fang; WAN Lei; JIANG Da-peng; XU Yu-ru

    2011-01-01

    As the exploration and exploitation of oil and gas proliferate throughout deepwater area,the requirements on the reliability of dynamic positioning system become increasingly stringent.The control objective ensuring safety operation at deep water will not be met by a single controller for dynamic positioning.In order to increase the availability and reliability of dynamic positioning control system,the triple redundancy hardware and software control architectures were designed and developed according to the safe specifications of DP-3 classification notation for dynamically positioned ships and rigs.The hardware redundant configuration takes the form of triple-redundant hot standby configuration including three identical operator stations and three real-time control computers which connect each other through dual networks.The function of motion control and redundancy management of control computers were implemented by software on the real-time operating system VxWorks.The software realization of task loose synchronization,majority voting and fault detection were presented in details.A hierarchical software architecture was planed during the development of software,consisting of application layer,real-time layer and physical layer.The behavior of the DP-3 dynamic positioning control system was modeled by a Markov model to analyze its reliability.The effects of variation in parameters on the reliability measures were investigated.The time domain dynamic simulation was carried out on a deepwater drilling rig to prove the feasibility of the proposed control architecture.

  5. SpaceWire- Based Control System Architecture for the Lightweight Advanced Robotic Arm Demonstrator [LARAD

    Science.gov (United States)

    Rucinski, Marek; Coates, Adam; Montano, Giuseppe; Allouis, Elie; Jameux, David

    2015-09-01

    The Lightweight Advanced Robotic Arm Demonstrator (LARAD) is a state-of-the-art, two-meter long robotic arm for planetary surface exploration currently being developed by a UK consortium led by Airbus Defence and Space Ltd under contract to the UK Space Agency (CREST-2 programme). LARAD has a modular design, which allows for experimentation with different electronics and control software. The control system architecture includes the on-board computer, control software and firmware, and the communication infrastructure (e.g. data links, switches) connecting on-board computer(s), sensors, actuators and the end-effector. The purpose of the control system is to operate the arm according to pre-defined performance requirements, monitoring its behaviour in real-time and performing safing/recovery actions in case of faults. This paper reports on the results of a recent study about the feasibility of the development and integration of a novel control system architecture for LARAD fully based on the SpaceWire protocol. The current control system architecture is based on the combination of two communication protocols, Ethernet and CAN. The new SpaceWire-based control system will allow for improved monitoring and telecommanding performance thanks to higher communication data rate, allowing for the adoption of advanced control schemes, potentially based on multiple vision sensors, and for the handling of sophisticated end-effectors that require fine control, such as science payloads or robotic hands.

  6. Robotic Architectures

    Directory of Open Access Journals (Sweden)

    Mbali Mtshali

    2010-01-01

    Full Text Available In the development of mobile robotic systems, a robotic architecture plays a crucial role in interconnecting all the sub-systems and controlling the system. The design of robotic architectures for mobile autonomous robots is a challenging and complex task. With a number of existing architectures and tools to choose from, a review of the existing robotic architecture is essential. This paper surveys the different paradigms in robotic architectures. A classification of the existing robotic architectures and comparison of different proposals attributes and properties have been carried out. The paper also provides a view on the current state of designing robot architectures. It also proposes a conceptual model of a generalised robotic architecture for mobile autonomous robots.Defence Science Journal, 2010, 60(1, pp.15-22, DOI:http://dx.doi.org/10.14429/dsj.60.96

  7. Instrumentation and control system architecture of ECRH SST1

    Science.gov (United States)

    Patel, Harshida; Patel, Jatin; purohit, Dharmesh; Shukla, B. K.; Babu, Rajan; Mistry, Hardik

    2017-07-01

    The Electron Cyclotron Resonance Heating (ECRH) system is an important heating system for the reliable start-up of tokamak. The 42GHz and 82.6GHz Gyrotron based ECRH systems are used in tokomaks SST-1 and Aditya to carry out ECRH related experiments. The Gyrotrons are high power microwave tubes used as a source for ECRH systems. The Gyrotrons need to be handled with optimum care right from the installation to its Full parameter control operation. The Gyrotrons are associated with the subsystems like: High voltage power supplies (Beam voltage and anode voltage), dedicated crowbar system, magnet, filament and ion pump power supplies and cooling system. The other subsystems are transmission line, launcher and dummy load. A dedicated VME based data acquisition & control (DAC) system is developed to operate and control the Gyrotron and its associated sub system. For the safe operation of Gyrotron, two level interlocks with fail-safe logic are developed. Slow signals that are operated in scale of millisecond range are programmed through software and hardware interlock in scale of microsecond range are designed and developed indigenously. Water-cooling and the associated interlock are monitored and control by data logger with independent human machine interface.

  8. Evolution of Parallel Spindles Like genes in plants and highlight of unique domain architecture#

    Directory of Open Access Journals (Sweden)

    Consiglio Federica M

    2011-03-01

    Full Text Available Abstract Background Polyploidy has long been recognized as playing an important role in plant evolution. In flowering plants, the major route of polyploidization is suggested to be sexual through gametes with somatic chromosome number (2n. Parallel Spindle1 gene in Arabidopsis thaliana (AtPS1 was recently demonstrated to control spindle orientation in the 2nd division of meiosis and, when mutated, to induce 2n pollen. Interestingly, AtPS1 encodes a protein with a FHA domain and PINc domain putatively involved in RNA decay (i.e. Nonsense Mediated mRNA Decay. In potato, 2n pollen depending on parallel spindles was described long time ago but the responsible gene has never been isolated. The knowledge derived from AtPS1 as well as the availability of genome sequences makes it possible to isolate potato PSLike (PSL and to highlight the evolution of PSL family in plants. Results Our work leading to the first characterization of PSLs in potato showed a greater PSL complexity in this species respect to Arabidopsis thaliana. Indeed, a genomic PSL locus and seven cDNAs affected by alternative splicing have been cloned. In addition, the occurrence of at least two other PSL loci in potato was suggested by the sequence comparison of alternatively spliced transcripts. Phylogenetic analysis on 20 Viridaeplantae showed the wide distribution of PSLs throughout the species and the occurrence of multiple copies only in potato and soybean. The analysis of PSLFHA and PSLPINc domains evidenced that, in terms of secondary structure, a major degree of variability occurred in PINc domain respect to FHA. In terms of specific active sites, both domains showed diversification among plant species that could be related to a functional diversification among PSL genes. In addition, some specific active sites were strongly conserved among plants as supported by sequence alignment and by evidence of negative selection evaluated as difference between non-synonymous and

  9. Protein export according to schedule: architecture, assembly, and regulation of type III secretion systems from plant- and animal-pathogenic bacteria.

    Science.gov (United States)

    Büttner, Daniela

    2012-06-01

    Flagellar and translocation-associated type III secretion (T3S) systems are present in most gram-negative plant- and animal-pathogenic bacteria and are often essential for bacterial motility or pathogenicity. The architectures of the complex membrane-spanning secretion apparatuses of both systems are similar, but they are associated with different extracellular appendages, including the flagellar hook and filament or the needle/pilus structures of translocation-associated T3S systems. The needle/pilus is connected to a bacterial translocon that is inserted into the host plasma membrane and mediates the transkingdom transport of bacterial effector proteins into eukaryotic cells. During the last 3 to 5 years, significant progress has been made in the characterization of membrane-associated core components and extracellular structures of T3S systems. Furthermore, transcriptional and posttranscriptional regulators that control T3S gene expression and substrate specificity have been described. Given the architecture of the T3S system, it is assumed that extracellular components of the secretion apparatus are secreted prior to effector proteins, suggesting that there is a hierarchy in T3S. The aim of this review is to summarize our current knowledge of T3S system components and associated control proteins from both plant- and animal-pathogenic bacteria.

  10. The Backseat Control Architecture for Autonomous Robotic Vehicles: A Case Study with the Iver2 AUV

    Science.gov (United States)

    2010-06-01

    21, Hydroid Remus, and FAU Ocean Explorer AUVs. The remainder of this paper will describe the implemen- tation of the backseat control architecture on...reused on the Iver2, Bluefin 21, FAU Ocean Explorer, and Hydroid Remus vehicles. One issue that needs to be addressed, and is being ad- dressed at NUWC

  11. Controlling shockwave dynamics using architecture in periodic porous materials

    Science.gov (United States)

    Branch, Brittany; Ionita, Axinte; Clements, Bradford E.; Montgomery, David S.; Jensen, Brian J.; Patterson, Brian; Schmalzer, Andrew; Mueller, Alexander; Dattelbaum, Dana M.

    2017-04-01

    Additive manufacturing (AM) is an attractive approach for the design and fabrication of structures capable of achieving controlled mechanical response of the underlying deformation mechanisms. While there are numerous examples illustrating how the quasi-static mechanical responses of polymer foams have been tailored by additive manufacturing, there is limited understanding of the response of these materials under shockwave compression. Dynamic compression experiments coupled with time-resolved X-ray imaging were performed to obtain insights into the in situ evolution of shockwave coupling to porous, periodic polymer foams. We further demonstrate shock wave modulation or "spatially graded-flow" in shock-driven experiments via the spatial control of layer symmetries afforded by additive manufacturing techniques at the micron scale.

  12. The Modeling Strategies for Open Software Architecture of Robot Controller

    Institute of Scientific and Technical Information of China (English)

    2002-01-01

    Although the modeling technologies for open robot controllers have been discussed widely, not much literature is devoted to the actual general modeling principles and strategies. The reason is that many researches focus on specific application fields. This paper accommodates for this lacuna and provides some general modeling principles and strategies. At last, the actual new modeling method -Hierarchical Object-Oriented Petri net (HOONet) which has been proved to be an effective modeling methodology, is used to illustrate the modeling strategies.

  13. A Coordinated Control Architecture for Disaster Response Robots

    Science.gov (United States)

    2016-01-01

    three computers were installed on the robot for high-frequency feedback control and perception signal processing . 8. The cooling system was redesigned...17 Figure 13: Wall task. The robot must pick up a drill and cut a triangle out of a (drywall...43: Grasp affordances found on a DRC ladder. Without the handle detection /grasping algorithm, the operator would have to manually position a six

  14. Intuitive control of mobile robots: an architecture for autonomous adaptive dynamic behaviour integration.

    Science.gov (United States)

    Melidis, Christos; Iizuka, Hiroyuki; Marocco, Davide

    2017-06-05

    In this paper, we present a novel approach to human-robot control. Taking inspiration from behaviour-based robotics and self-organisation principles, we present an interfacing mechanism, with the ability to adapt both towards the user and the robotic morphology. The aim is for a transparent mechanism connecting user and robot, allowing for a seamless integration of control signals and robot behaviours. Instead of the user adapting to the interface and control paradigm, the proposed architecture allows the user to shape the control motifs in their way of preference, moving away from the case where the user has to read and understand an operation manual, or it has to learn to operate a specific device. Starting from a tabula rasa basis, the architecture is able to identify control patterns (behaviours) for the given robotic morphology and successfully merge them with control signals from the user, regardless of the input device used. The structural components of the interface are presented and assessed both individually and as a whole. Inherent properties of the architecture are presented and explained. At the same time, emergent properties are presented and investigated. As a whole, this paradigm of control is found to highlight the potential for a change in the paradigm of robotic control, and a new level in the taxonomy of human in the loop systems.

  15. Control oriented concentrating solar power (CSP) plant model and its applications

    Science.gov (United States)

    Luo, Qi

    Solar receivers in concentrating solar thermal power plants (CSP) undergo over 10,000 start-ups and shutdowns, and over 25,000 rapid rate of change in temperature on receivers due to cloud transients resulting in performance degradation and material fatigue in their expected lifetime of over 30 years. The research proposes to develop a three-level controller that uses multi-input-multi-output (MIMO) control technology to minimize the effect of these disturbances, improve plant performance, and extend plant life. The controller can be readily installed on any vendor supplied state-of-the-art control hardware. We propose a three-level controller architecture using multi-input-multi-output (MIMO) control for CSP plants that can be implemented on existing plants to improve performance, reliability, and extend the life of the plant. This architecture optimizes the performance on multiple time scalesreactive level (regulation to temperature set points), tactical level (adaptation of temperature set points), and strategic level (trading off fatigue life due to thermal cycling and current production). This controller unique to CSP plants operating at temperatures greater than 550 °C, will make CSPs competitive with conventional power plants and contribute significantly towards the Sunshot goal of 0.06/kWh(e), while responding with agility to both market dynamics and changes in solar irradiance such as due to passing clouds. Moreover, our development of control software with performance guarantees will avoid early stage failures and permit smooth grid integration of the CSP power plants. The proposed controller can be implemented with existing control hardware infrastructure with little or no additional equipment. In the thesis, we demonstrate a dynamics model of CSP, of which different components are modelled with different time scales. We also show a real time control strategy of CSP control oriented model in steady state. Furthermore, we shown different controllers

  16. Software architecture for control and data acquisition of linear plasma generator Magnum-PSI

    Energy Technology Data Exchange (ETDEWEB)

    Groen, P.W.C., E-mail: p.w.c.groen@differ.nl [FOM Institute DIFFER – Dutch Institute For Fundamental Energy Research, Association EURATOM-FOM, Partner in the Trilateral Euregio Cluster, P.O. Box 1207, 3430 BE, Nieuwegein (Netherlands); Beveren, V. van; Broekema, A.; Busch, P.J.; Genuit, J.W.; Kaas, G.; Poelman, A.J.; Scholten, J.; Zeijlmans van Emmichoven, P.A. [FOM Institute DIFFER – Dutch Institute For Fundamental Energy Research, Association EURATOM-FOM, Partner in the Trilateral Euregio Cluster, P.O. Box 1207, 3430 BE, Nieuwegein (Netherlands)

    2013-10-15

    Highlights: ► An architecture based on a modular design. ► The design offers flexibility and extendability. ► The design covers the overall software architecture. ► It also covers its (sub)systems’ internal structure. -- Abstract: The FOM Institute DIFFER – Dutch Institute for Fundamental Energy Research has completed the construction phase of Magnum-PSI, a magnetized, steady-state, large area, high-flux linear plasma beam generator to study plasma surface interactions under ITER divertor conditions. Magnum-PSI consists of several hardware subsystems, and a variety of diagnostic systems. The COntrol, Data Acquisition and Communication (CODAC) system integrates these subsystems and provides a complete interface for the Magnum-PSI users. Integrating it all, from the lowest hardware level of sensors and actuators, via the level of networked PLCs and computer systems, up to functions and classes in programming languages, demands a sound and modular software architecture, which is extendable and scalable for future changes. This paper describes this architecture, and the modular design of the software subsystems. The design is implemented in the CODAC system at the level of services and subsystems (the overall software architecture), as well as internally in the software subsystems.

  17. Control and Non-Payload Communications (CNPC) Prototype Radio - Generation 2 Security Architecture Lab Test Report

    Science.gov (United States)

    Iannicca, Dennis C.; McKim, James H.; Stewart, David H.; Thadhani, Suresh K.; Young, Daniel P.

    2015-01-01

    NASA Glenn Research Center, in cooperation with Rockwell Collins, is working to develop a prototype Control and Non-Payload Communications (CNPC) radio platform as part of NASA Integrated Systems Research Program's (ISRP) Unmanned Aircraft Systems (UAS) Integration in the National Airspace System (NAS) project. A primary focus of the project is to work with the FAA and industry standards bodies to build and demonstrate a safe, secure, and efficient CNPC architecture that can be used by industry to evaluate the feasibility of deploying a system using these technologies in an operational capacity. GRC has been working in conjunction with these groups to assess threats, identify security requirements, and to develop a system of standards-based security controls that can be applied to the current GRC prototype CNPC architecture as a demonstration platform. The security controls were integrated into a lab test bed mock-up of the Mobile IPv6 architecture currently being used for NASA flight testing, and a series of network tests were conducted to evaluate the security overhead of the controls compared to the baseline CNPC link without any security. The aim of testing was to evaluate the performance impact of the additional security control overhead when added to the Mobile IPv6 architecture in various modes of operation. The statistics collected included packet captures at points along the path to gauge packet size as the sample data traversed the CNPC network, round trip latency, jitter, and throughput. The effort involved a series of tests of the baseline link, a link with Robust Header Compression (ROHC) and without security controls, a link with security controls and without ROHC, and finally a link with both ROHC and security controls enabled. The effort demonstrated that ROHC is both desirable and necessary to offset the additional expected overhead of applying security controls to the CNPC link.

  18. Telerobot local-remote control architecture for space flight program applications

    Science.gov (United States)

    Zimmerman, Wayne; Backes, Paul; Steele, Robert; Long, Mark; Bon, Bruce; Beahan, John

    1993-01-01

    The JPL Supervisory Telerobotics (STELER) Laboratory has developed and demonstrated a unique local-remote robot control architecture which enables management of intermittent communication bus latencies and delays such as those expected for ground-remote operation of Space Station robotic systems via the Tracking and Data Relay Satellite System (TDRSS) communication platform. The current work at JPL in this area has focused on enhancing the technologies and transferring the control architecture to hardware and software environments which are more compatible with projected ground and space operational environments. At the local site, the operator updates the remote worksite model using stereo video and a model overlay/fitting algorithm which outputs the location and orientation of the object in free space. That information is relayed to the robot User Macro Interface (UMI) to enable programming of the robot control macros. This capability runs on a single Silicon Graphics Inc. machine. The operator can employ either manual teleoperation, shared control, or supervised autonomous control to manipulate the intended object. The remote site controller, called the Modular Telerobot Task Execution System (MOTES), runs in a multi-processor VME environment and performs the task sequencing, task execution, trajectory generation, closed loop force/torque control, task parameter monitoring, and reflex action. This paper describes the new STELER architecture implementation, and also documents the results of the recent autonomous docking task execution using the local site and MOTES.

  19. A new neuroadaptive control architecture for nonlinear uncertain dynamical systems: beyond sigma- and e-modifications.

    Science.gov (United States)

    Volyanskyy, Kostyantyn Y; Haddad, Wassim M; Calise, Anthony J

    2009-11-01

    This paper develops a new neuroadaptive control architecture for nonlinear uncertain dynamical systems. The proposed framework involves a novel controller architecture involving additional terms in the update laws that are constructed using a moving time window of the integrated system uncertainty. These terms can be used to identify the ideal system weights of the neural network as well as effectively suppress and cancel system uncertainty without the need for persistency of excitation. A nonlinear parametrization of the system uncertainty is considered and state and output feedback neuroadaptive controllers are developed. To illustrate the efficacy of the proposed approach we apply our results to a spacecraft model with unknown moment of inertia and compare our results with standard neuroadaptive control methods.

  20. The NIST Real-Time Control System (RCS): A Reference Model Architecture for Computational Intelligence

    Science.gov (United States)

    Albus, James S.

    1996-01-01

    The Real-time Control System (RCS) developed at NIST and elsewhere over the past two decades defines a reference model architecture for design and analysis of complex intelligent control systems. The RCS architecture consists of a hierarchically layered set of functional processing modules connected by a network of communication pathways. The primary distinguishing feature of the layers is the bandwidth of the control loops. The characteristic bandwidth of each level is determined by the spatial and temporal integration window of filters, the temporal frequency of signals and events, the spatial frequency of patterns, and the planning horizon and granularity of the planners that operate at each level. At each level, tasks are decomposed into sequential subtasks, to be performed by cooperating sets of subordinate agents. At each level, signals from sensors are filtered and correlated with spatial and temporal features that are relevant to the control function being implemented at that level.

  1. Shift changes, updates, and the on-call architecture in space shuttle mission control

    Science.gov (United States)

    Patterson, E. S.; Woods, D. D.

    2001-01-01

    In domains such as nuclear power, industrial process control, and space shuttle mission control, there is increased interest in reducing personnel during nominal operations. An essential element in maintaining safe operations in high risk environments with this 'on-call' organizational architecture is to understand how to bring called-in practitioners up to speed quickly during escalating situations. Targeted field observations were conducted to investigate what it means to update a supervisory controller on the status of a continuous, anomaly-driven process in a complex, distributed environment. Sixteen shift changes, or handovers, at the NASA Johnson Space Center were observed during the STS-76 Space Shuttle mission. The findings from this observational study highlight the importance of prior knowledge in the updates and demonstrate how missing updates can leave flight controllers vulnerable to being unprepared. Implications for mitigating risk in the transition to 'on-call' architectures are discussed.

  2. Object-based task-level control: A hierarchical control architecture for remote operation of space robots

    Science.gov (United States)

    Stevens, H. D.; Miles, E. S.; Rock, S. J.; Cannon, R. H.

    1994-01-01

    Expanding man's presence in space requires capable, dexterous robots capable of being controlled from the Earth. Traditional 'hand-in-glove' control paradigms require the human operator to directly control virtually every aspect of the robot's operation. While the human provides excellent judgment and perception, human interaction is limited by low bandwidth, delayed communications. These delays make 'hand-in-glove' operation from Earth impractical. In order to alleviate many of the problems inherent to remote operation, Stanford University's Aerospace Robotics Laboratory (ARL) has developed the Object-Based Task-Level Control architecture. Object-Based Task-Level Control (OBTLC) removes the burden of teleoperation from the human operator and enables execution of tasks not possible with current techniques. OBTLC is a hierarchical approach to control where the human operator is able to specify high-level, object-related tasks through an intuitive graphical user interface. Infrequent task-level command replace constant joystick operations, eliminating communications bandwidth and time delay problems. The details of robot control and task execution are handled entirely by the robot and computer control system. The ARL has implemented the OBTLC architecture on a set of Free-Flying Space Robots. The capability of the OBTLC architecture has been demonstrated by controlling the ARL Free-Flying Space Robots from NASA Ames Research Center.

  3. Customizable software architectures in the accelerator control system environment

    CERN Document Server

    Mejuev, I; Kadokura, E

    2001-01-01

    Tailoring is further evolution of an application after deployment in order to adapt it to requirements that were not accounted for in the original design. End-user customization has been extensively researched in applied computer science from HCI and software engineering perspectives. Customization allows coping with flexibility requirements, decreasing maintenance and development costs of software products. In general, dynamic or diverse software requirements constitute the need for implementing end-user customization in computer systems. In accelerator physics research the factor of dynamic requirements is especially important, due to frequent software and hardware modifications resulting in correspondingly high upgrade and maintenance costs. We introduce the results of feasibility study on implementing end-user tailorability in the software for accelerator control system, considering the design and implementation of a distributed monitoring application for the 12 GeV KEK Proton Synchrotron as an example. T...

  4. Association mapping for phenology and plant architecture in maize shows higher power for developmental traits compared with growth influenced traits.

    Science.gov (United States)

    Bouchet, S; Bertin, P; Presterl, T; Jamin, P; Coubriche, D; Gouesnard, B; Laborde, J; Charcosset, A

    2017-03-01

    Plant architecture, phenology and yield components of cultivated plants have repeatedly been shaped by selection to meet human needs and adaptation to different environments. Here we assessed the genetic architecture of 24 correlated maize traits that interact during plant cycle. Overall, 336 lines were phenotyped in a network of 9 trials and genotyped with 50K single-nucleotide polymorphisms. Phenology was the main factor of differentiation between genetic groups. Then yield components distinguished dents from lower yielding genetic groups. However, most of trait variation occurred within group and we observed similar overall and within group correlations, suggesting a major effect of pleiotropy and/or linkage. We found 34 quantitative trait loci (QTLs) for individual traits and six for trait combinations corresponding to PCA coordinates. Among them, only five were pleiotropic. We found a cluster of QTLs in a 5 Mb region around Tb1 associated with tiller number, ear row number and the first PCA axis, the latter being positively correlated to flowering time and negatively correlated to yield. Kn1 and ZmNIP1 were candidate genes for tillering, ZCN8 for leaf number and Rubisco Activase 1 for kernel weight. Experimental repeatabilities, numbers of QTLs and proportion of explained variation were higher for traits related to plant development such as tillering, leaf number and flowering time, than for traits affected by growth such as yield components. This suggests a simpler genetic determinism with larger individual QTL effects for the first category.

  5. Gaseous emissions from plants in controlled environments

    Science.gov (United States)

    Dubay, Denis T.

    1988-01-01

    Plant growth in a controlled ecological life support system may entail the build-up over extended time periods of phytotoxic concentrations of volatile organic compounds produced by the plants themselves. Ethylene is a prominent gaseous emission of plants, and is the focus of this report. The objective was to determine the rate of ethylene release by spring wheat, white potato, and lettuce during early, middle, and late growth stages, and during both the light and dark segments of the diurnal cycle. Plants grown hydroponically using the nutrient film technique were covered with plexiglass containers for 4 to 6 h. At intervals after enclosure, gas samples were withdrawn with a syringe and analyzed for ethylene with a gas chromatograph. Lettuce produced 10 to 100 times more ethylene than wheat or potato, with production rates ranging from 141 to 158 ng g-dry/wt/h. Wheat produced from 1.7 to 14.3 ng g-dry/wt/h, with senescent wheat producing the least amount and flowering wheat the most. Potatoes produced the least amount of ethylene, with values never exceeding 5 ng g-dry/wt/h. Lettuce and potatoes each produced ethylene at similar rates whether in dark period or light period. Ethylene sequestering of 33 to 43 percent by the plexiglass enclosures indicated that these production estimates may be low by one-third to one-half. These results suggest that concern for ethylene build-up in a contained atmosphere should be greatest when growing lettuce, and less when growing wheat or potato.

  6. Architecture control and model identification of a Omni-Directional Mobile Robot

    OpenAIRE

    António Paulo Gomes Mendes Moreira; Paulo José Cerqueira Gomes da Costa; André Gustavo Scolari Conceição

    2005-01-01

    This paper presents a architecture control and model identification of a onmi-Directional Mobile Robot It is divided into the three stages. Stage one proposes a procedure for dynamic model identification and control of the "motor + reduction + encoder" process of the Robotapos;s Motors. Second, proposes the identification of a dynamic model for the whole mobile robot considering it as a multi-variable system. Third, presents a algorithm for perfect trajectory tracking of Omni-Directional Mobi...

  7. Application of bacteria from non-cultivated plants to promote growth, alter root architecture and alleviate salt stress of cotton.

    Science.gov (United States)

    Irizarry, I; White, J F

    2017-04-01

    Cotton seeds are frequently treated with acid to remove fibres and reduce seed-transmitted diseases. This process also eliminates beneficial bacteria on the seed surface. The goal of this research was to seek and apply beneficial bacteria to acid delinted cotton seeds to evaluate their growth-promoting and salt stress alleviating effects in seedlings. Bacteria were isolated from non-cultivated plants in the Malvaceae. Seeds were collected from Portia tree (Thespesia populnea) and wild cotton (Gossypium hirsutum) from coastal and arid areas of Puerto Rico. Bacillus amyloliquefaciens, Curtobacterium oceanosedimentum and Pseudomonas oryzihabitans were inoculated onto acid delinted cotton seeds. Bacteria increased cotton seed germination and length of emerging seedling radicles. Cotton seeds were inoculated with B. amyloliquefaciens to evaluate growth and root architecture of non-stressed and salt stressed seedlings. Inoculating cotton seeds with B. amyloliquefaciens led to a greater percentage of seedlings with expanded cotyledons after 8 days, enhanced primary and lateral root growth, and altered root architecture. Similar results were obtained when okra seeds were inoculated with B. amyloliquefaciens. The data supported the hypothesis that non-cultivated plants in the Malvaceae growing in stressful environments possess bacteria that promote growth, alter root architecture and alleviate salt stress of cotton and okra seedlings. This study demonstrated the effects of applying beneficial bacteria on acid delinted cotton seeds. Inoculating seeds with salt stress alleviating bacteria could improve the growth of crop seedlings that are vulnerable to soil salinization. © 2017 The Society for Applied Microbiology.

  8. L-py: an L-system simulation framework for modeling plant architecture development based on a dynamic language.

    Science.gov (United States)

    Boudon, Frédéric; Pradal, Christophe; Cokelaer, Thomas; Prusinkiewicz, Przemyslaw; Godin, Christophe

    2012-01-01

    The study of plant development requires increasingly powerful modeling tools to help understand and simulate the growth and functioning of plants. In the last decade, the formalism of L-systems has emerged as a major paradigm for modeling plant development. Previous implementations of this formalism were made based on static languages, i.e., languages that require explicit definition of variable types before using them. These languages are often efficient but involve quite a lot of syntactic overhead, thus restricting the flexibility of use for modelers. In this work, we present an adaptation of L-systems to the Python language, a popular and powerful open-license dynamic language. We show that the use of dynamic language properties makes it possible to enhance the development of plant growth models: (i) by keeping a simple syntax while allowing for high-level programming constructs, (ii) by making code execution easy and avoiding compilation overhead, (iii) by allowing a high-level of model reusability and the building of complex modular models, and (iv) by providing powerful solutions to integrate MTG data-structures (that are a common way to represent plants at several scales) into L-systems and thus enabling to use a wide spectrum of computer tools based on MTGs developed for plant architecture. We then illustrate the use of L-Py in real applications to build complex models or to teach plant modeling in the classroom.

  9. Adaptive and Reliable Control Algorithm for Hybrid System Architecture

    Directory of Open Access Journals (Sweden)

    Osama Abdel Hakeem Abdel Sattar

    2012-01-01

    Full Text Available A stand-alone system is defined as an autonomous system that supplies electricity without being connected to the electric grid. Hybrid systems combined renewable energy source, that are never depleted (such solar (photovoltaic (PV, wind, hydroelectric, etc. , With other sources of energy, like Diesel. If these hybrid systems are optimally designed, they can be more cost effective and reliable than single systems. However, the design of hybrid systems is complex because of the uncertain renewable energy supplies, load demands and the non-linear characteristics of some components, so the design problem cannot be solved easily by classical optimisation methods. The use of heuristic techniques, such as the genetic algorithms, can give better results than classical methods. This paper presents to a hybrid system control algorithm and also dispatches strategy design in which wind is the primary energy resource with photovoltaic cells. The dimension of the design (max. load is 2000 kW and the sources is implemented as flow 1500 kw from wind, 500 kw from solar and diesel 2000 kw. The main task of the preposed algorithm is to take full advantage of the wind energy and solar energy when it is available and to minimize diesel fuel consumption.

  10. Developing a real-time emulation of multiresolutional control architectures for complex, discrete-event systems

    Energy Technology Data Exchange (ETDEWEB)

    Davis, W.J.; Macro, J.G.; Brook, A.L. [Univ. of Illinois, Urbana, IL (United States)] [and others

    1996-12-31

    This paper first discusses an object-oriented, control architecture and then applies the architecture to produce a real-time software emulator for the Rapid Acquisition of Manufactured Parts (RAMP) flexible manufacturing system (FMS). In specifying the control architecture, the coordinated object is first defined as the primary modeling element. These coordinated objects are then integrated into a Recursive, Object-Oriented Coordination Hierarchy. A new simulation methodology, the Hierarchical Object-Oriented Programmable Logic Simulator, is then employed to model the interactions among the coordinated objects. The final step in implementing the emulator is to distribute the models of the coordinated objects over a network of computers and to synchronize their operation to a real-time clock. The paper then introduces the Hierarchical Subsystem Controller as an intelligent controller for the coordinated object. The proposed approach to intelligent control is then compared to the concept of multiresolutional semiosis that has been developed by Dr. Alex Meystel. Finally, the plans for implementing an intelligent controller for the RAMP FMS are discussed.

  11. ALLIANCE: An architecture for fault tolerant, cooperative control of heterogeneous mobile robots

    Energy Technology Data Exchange (ETDEWEB)

    Parker, L.E.

    1995-02-01

    This research addresses the problem of achieving fault tolerant cooperation within small- to medium-sized teams of heterogeneous mobile robots. The author describes a novel behavior-based, fully distributed architecture, called ALLIANCE, that utilizes adaptive action selection to achieve fault tolerant cooperative control in robot missions involving loosely coupled, largely independent tasks. The robots in this architecture possess a variety of high-level functions that they can perform during a mission, and must at all times select an appropriate action based on the requirements of the mission, the activities of other robots, the current environmental conditions, and their own internal states. Since such cooperative teams often work in dynamic and unpredictable environments, the software architecture allows the team members to respond robustly and reliably to unexpected environmental changes and modifications in the robot team that may occur due to mechanical failure, the learning of new skills, or the addition or removal of robots from the team by human intervention. After presenting ALLIANCE, the author describes in detail experimental results of an implementation of this architecture on a team of physical mobile robots performing a cooperative box pushing demonstration. These experiments illustrate the ability of ALLIANCE to achieve adaptive, fault-tolerant cooperative control amidst dynamic changes in the capabilities of the robot team.

  12. Advances in quantum control of three-level superconducting circuit architectures

    Energy Technology Data Exchange (ETDEWEB)

    Falci, G.; Paladino, E. [Dipartimento di Fisica e Astronomia, Universita di Catania (Italy); CNR-IMM UOS Universita (MATIS), Consiglio Nazionale delle Ricerche, Catania (Italy); INFN, Sezione di Catania (Italy); Di Stefano, P.G. [Dipartimento di Fisica e Astronomia, Universita di Catania (Italy); Centre for Theoretical Atomic, Molecular and Optical Physics, School of Mathematics and Physics, Queen' s University Belfast(United Kingdom); Ridolfo, A.; D' Arrigo, A. [Dipartimento di Fisica e Astronomia, Universita di Catania (Italy); Paraoanu, G.S. [Low Temperature Laboratory, Department of Applied Physics, Aalto University School of Science (Finland)

    2017-06-15

    Advanced control in Lambda (Λ) scheme of a solid state architecture of artificial atoms and quantized modes would allow the translation to the solid-state realm of a whole class of phenomena from quantum optics, thus exploiting new physics emerging in larger integrated quantum networks and for stronger couplings. However control solid-state devices has constraints coming from selection rules, due to symmetries which on the other hand yield protection from decoherence, and from design issues, for instance that coupling to microwave cavities is not directly switchable. We present two new schemes for the Λ-STIRAP control problem with the constraint of one or two classical driving fields being always-on. We show how these protocols are converted to apply to circuit-QED architectures. We finally illustrate an application to coherent spectroscopy of the so called ultrastrong atom-cavity coupling regime. (copyright 2016 WILEY-VCH Verlag GmbH and Co. KGaA, Weinheim)

  13. Combining a Multi-Agent System and Communication Middleware for Smart Home Control: A Universal Control Platform Architecture

    Directory of Open Access Journals (Sweden)

    Song Zheng

    2017-09-01

    Full Text Available In recent years, the smart home field has gained wide attention for its broad application prospects. However, families using smart home systems must usually adopt various heterogeneous smart devices, including sensors and devices, which makes it more difficult to manage and control their home system. How to design a unified control platform to deal with the collaborative control problem of heterogeneous smart devices is one of the greatest challenges in the current smart home field. The main contribution of this paper is to propose a universal smart home control platform architecture (IAPhome based on a multi-agent system and communication middleware, which shows significant adaptability and advantages in many aspects, including heterogeneous devices connectivity, collaborative control, human-computer interaction and user self-management. The communication middleware is an important foundation to design and implement this architecture which makes it possible to integrate heterogeneous smart devices in a flexible way. A concrete method of applying the multi-agent software technique to solve the integrated control problem of the smart home system is also presented. The proposed platform architecture has been tested in a real smart home environment, and the results indicate that the effectiveness of our approach for solving the collaborative control problem of different smart devices.

  14. A secure and high-performance multi-controller architecture for software-defined networking

    Institute of Scientific and Technical Information of China (English)

    Huan-zhao WANG; Peng ZHANG; Lei XIONG; Xin LIU; Cheng-chen HU

    2016-01-01

    Controllers play a critical role in software-defi ned networking (SDN). However, existing single-controller SDN architectures are vulnerable to single-point failures, where a controller’s capacity can be saturated by fl ooded fl ow requests. In addition, due to the complicated interactions between applications and controllers, the fl ow setup latency is relatively large. To address the above security and performance issues of current SDN controllers, we propose distributed rule store (DRS), a new multi-controller architecture for SDNs. In DRS, the controller caches the fl ow rules calculated by applications, and distributes these rules to multiple controller instances. Each controller instance holds only a subset of all rules, and periodically checks the consistency of fl ow rules with each other. Requests from switches are distributed among multiple controllers, in order to mitigate controller capacity saturation attack. At the same time, when rules at one controller are maliciously modifi ed, they can be detected and recovered in time. We implement DRS based on Floodlight and evaluate it with extensive emulation. The results show that DRS can effectively maintain a consistently distributed rule store, and at the same time can achieve a shorter fl ow setup time and a higher processing throughput, compared with ONOS and Floodlight.

  15. Architectures and Control of Submodule Integrated DC-DC Converters for Photovoltaic Applications

    Energy Technology Data Exchange (ETDEWEB)

    Olalla, C; Clement, D; Rodriguez, M; Maksimovic, D

    2013-06-01

    This paper describes photovoltaic (PV) module architectures with parallel-connected submodule-integrated dc-dc converters (subMICs) that improve efficiency of energy capture in the presence of partial shading or other mismatch conditions. The subMICs are bidirectional isolated dc-dc converters capable of injecting or subtracting currents to balance the module substring voltages. When no mismatches are present, the subMICs are simply shut down, resulting in zero insertion losses. It is shown that the objective of minimum subMIC power processing can be solved as a linear programming problem. A simple close-to-optimal distributed control approach is presented that allows autonomous subMIC control without the need for a central controller or any communication among the subMICs. Furthermore, the proposed control approach is well suited for an isolated-port architecture, which yields additional practical advantages including reduced subMIC power and voltage ratings. The architectures and the control approach are validated by simulations and experimental results using three bidirectional flyback subMICs attached to a standard 180-W, 72-cell PV module, yielding greater than 98% module-level power processing efficiency for a mismatch less than 25%.

  16. Architecture Design and Performance Analysis of Supervisory Control System of Multiple UAVs

    Directory of Open Access Journals (Sweden)

    Guozhong Zhang

    2015-04-01

    Full Text Available Although UAV systems are currently controlled by a group of people, in the future, increased automation could allow a single operator to supervise multiple UAVs. Operators will be involved in the mission planning, imagery analysis, weapon control, and contingency interventions. This study examines the architecture and prototype of multiple UAVs supervisory control system. Firstly, the architecture for testing and evaluating human supervisory system controlling multiple UAVs is devised and each sub-system is described in detail. Then a prototype test bed of multiple UAVs supervisory control for demonstrating architecture and adaptive levels of autonomy is built. Finally, with the test bed, the impact of dynamic role allocation on system performance is studied based on quantitative criteria of wait times and operator utilisation. It is shown by simulation that dynamic role allocation can effectively shorten wait times, and eventually improve the system performance.Defence Science Journal, Vol. 65, No. 2, March 2015, pp.93-98, DOI:http://dx.doi.org/10.14429/dsj.65.5837

  17. Trends and perspectives - An architecture for agile shop floor control systems

    DEFF Research Database (Denmark)

    Langer, Gilad; Alting, Leo

    2001-01-01

    Changes in markets and global business trends affect the manufacturing environment in infinite ways. These changes have brought about the need for a paradigm shift to reassess the manner in which manufacturing systems are developed and operated. New theories and concepts present solutions to enable...... as shop floor control. This paper presents the Holonic Multi-cell Control System (HoMuCS) architecture that allows for design and development of holonic shop floor control systems. The HoMuCS is a shop floor control system which is sometimes referred to as a manufacturing execution system...

  18. The functional ecology of shoot architecture in sun and shade plants of Heteromeles arbutifolia M. Roem., a Californian chaparral shrub.

    Science.gov (United States)

    Valladares, Fernando; Pearcy, Robert W

    1998-03-01

    The functional roles of the contrasting morphologies of sun and shade shoots of the evergreen shrub Heteromeles arbutifolia were investigated in chaparral and understory habitats by applying a three-dimensional plant architecture simulation model, YPLANT. The simulations were shown to accurately predict the measured frequency distribution of photosynthetic photon flux density (PFD) on both the leaves and a horizontal surface in the open, and gave reasonably good agreement for the more complex light environment in the shade. The sun shoot architecture was orthotropic and characterized by steeply inclined (mean = 71(o)) leaves in a spiral phyllotaxy with short internodes. This architecture resulted in relatively low light absorption efficiencies (E A) for both diffuse and direct PFD, especially during the summer when solar elevation angles were high. Shade shoots were more plagiotropic with longer internodes and a pseudo-distichous phyllotaxis caused by bending of the petioles that positioned the leaves in a nearly horizontal plane (mean = 5(o)). This shade-shoot architecture resulted in higher E A values for both direct and diffuse PFD as compared to those of the sun shoots. Differences in E A between sun and shade shoots and between summer and winter were related to differences in projection efficiencies as determined by leaf and solar angles, and by differences in self shading resulting from leaf overlap. The leaves exhibited photosynthetic acclimation to the sun and the shade, with the sun leaves having higher photosynthetic capacities per unit area, higher leaf mass per unit area and lower respiration rates per unit area than shade leaves. Despite having 7 times greater available PFD, sun shoots absorbed only 3 times more and had daily carbon gains only double of those of shade shoots. Simulations showed that sun and shade plants performed similarly in the open light environment, but that shade shoots substantially outperformed sun shoots in the shade

  19. Multilevel Flow Modelling of Process Plant for Diagnosis and Control

    DEFF Research Database (Denmark)

    Lind, Morten

    1982-01-01

    of complex systems. A model of a nuclear power plant (PWR) is presented in the paper for illustration. Due to the consistency of the method, multilevel flow models provide specifications of plant goals and functions and may be used as a basis for design of computer-based support systems for the plant...... operator. Plant control requirements can be derived from the models and due to independence of the actual controller implementation the method may be used as a basis for design of control strategies and for the allocation of control tasks to the computer and the plant operator....

  20. A New Signaling Architecture THREP with Autonomous Radio-Link Control for Wireless Communications Systems

    Science.gov (United States)

    Hirono, Masahiko; Nojima, Toshio

    This paper presents a new signaling architecture for radio-access control in wireless communications systems. Called THREP (for THREe-phase link set-up Process), it enables systems with low-cost configurations to provide tetherless access and wide-ranging mobility by using autonomous radio-link controls for fast cell searching and distributed call management. A signaling architecture generally consists of a radio-access part and a service-entity-access part. In THREP, the latter part is divided into two steps: preparing a communication channel, and sustaining it. Access control in THREP is thus composed of three separated parts, or protocol phases. The specifications of each phase are determined independently according to system requirements. In the proposed architecture, the first phase uses autonomous radio-link control because we want to construct low-power indoor wireless communications systems. Evaluation of channel usage efficiency and hand-over loss probability in the personal handy-phone system (PHS) shows that THREP makes the radio-access sub-system operations in a practical application model highly efficient, and the results of a field experiment show that THREP provides sufficient protection against severe fast CNR degradation in practical indoor propagation environments.

  1. Chromatin architecture: A new dimension in the dynamic control of gene expression

    KAUST Repository

    Ramirez-Prado, Juan Sebastian

    2016-09-10

    As the most recent evidence of eukaryotic cell complexity, genome architecture has astounded the scientific community and prompted a variety of technical and cognitive challenges. Several technologies have emerged and evidenced the integration of chromatin packaging and topology, epigenetic processes, and transcription for the pertinent regulation of gene expression. In the present addendum we present and discuss some of our recent research, directed toward the holistic comprehension of the processes by which plants respond to environmental and developmental stimuli. We propose that the study of genome topology and genomic interactions is essential for the understanding of the molecular mechanisms behind a phenotype. Even though our knowledge and understanding of genome architecture and hierarchy has improved substantially in the last few years -in Arabidopsis and other eukaryotes -, there is still a long way ahead in this relatively new field of study. For this, it is necessary to take advantage of the high resolution of the emerging available techniques, and perform integrative approaches with which it will be possible to depict the role of chromatin architecture in the regulation of transcription and ultimately, physiological processes.

  2. Transition in Gas Turbine Control System Architecture: Modular, Distributed, and Embedded

    Science.gov (United States)

    Culley, Dennis

    2010-01-01

    Controls systems are an increasingly important component of turbine-engine system technology. However, as engines become more capable, the control system itself becomes ever more constrained by the inherent environmental conditions of the engine; a relationship forced by the continued reliance on commercial electronics technology. A revolutionary change in the architecture of turbine-engine control systems will change this paradigm and result in fully distributed engine control systems. Initially, the revolution will begin with the physical decoupling of the control law processor from the hostile engine environment using a digital communications network and engine-mounted high temperature electronics requiring little or no thermal control. The vision for the evolution of distributed control capability from this initial implementation to fully distributed and embedded control is described in a roadmap and implementation plan. The development of this plan is the result of discussions with government and industry stakeholders

  3. Comparison of Communication Architectures and Network Topologies for Distributed Propulsion Controls (Preprint)

    Science.gov (United States)

    2013-05-01

    Course Technology Ptr, 2005. [22] Hermann Kopetz. A comparison of ttp/c and flexray. Institut für Technische Informatik, Technische Universität...Can specification. 1991. [29] AIM GmbH. Afdx training . 2010. [30] FlexRay Consortium et al. Flexray communications system. Protocol Specification... Training Publishing Conferences & Exhibits Comparison of Communication Architectures and Network Topologies for Distributed Propulsion Controls 59th

  4. Combining Dense Structure From Motion and Visual SLAM in a Behavior-Based Robot Control Architecture

    OpenAIRE

    Geert De Cubber; Sid Ahmed Berrabah; Daniela Doroftei; Yvan Baudoin; Hichem Sahli

    2010-01-01

    In this paper, we present a control architecture for an intelligent outdoor mobile robot. This enables the robot to navigate in a complex, natural outdoor environment, relying on only a single on-board camera as sensory input. This is achieved through a twofold analysis of the visual data stream: a dense structure from motion algorithm calculates a depth map of the environment and a visual simultaneous localization and mapping algorithm builds a map of the surroundings using image features. T...

  5. The tomato CAROTENOID CLEAVAGE DIOXYGENASE8 (SlCCD8) regulates rhizosphere signaling, plant architecture and affects reproductive development through strigolactone biosynthesis

    NARCIS (Netherlands)

    Kohlen, W.; Charnikhova, T.; Lammers, M.; Pollina, T.; Toth, P.; Haider, I.; Pozo, M.J.; Maagd, de R.A.; Ruyter-Spira, C.P.; Bouwmeester, H.J.; Lopez-Raez, J.A.

    2012-01-01

    •Strigolactones are plant hormones that regulate both above- and belowground plant architecture. Strigolactones were initially identified as rhizosphere signaling molecules. In the present work, the tomato (Solanum lycopersicum) CAROTENOID CLEAVAGE DIOXYGENASE 8 (SlCCD8) was cloned and its role in

  6. Process for modifying the architecture and improving the yield of crop plants

    OpenAIRE

    Rojo, Enrique; Sanmartín, Maite; Sánchez Serrano, José J.

    2011-01-01

    This invention identifies the plant MINIYO (IYO) gene and the AtRTR1 gene which are essential for the initiation of cell differentiation in all plant meristems and in embryogenesis. This invention relates methods for generating transgenic plants in which expression of the IYO and/or At RTR1 genes or their orthologous genes is modified to advancing or delaying the onset of differentiation in one or more meristems of the plant.

  7. Genes and QTLs controlling inflorescence and stem branch architecture in Leymus (Poaceae: Triticeae) Wildrye.

    Science.gov (United States)

    Larson, Steven R; Kellogg, Elizabeth A; Jensen, Kevin B

    2013-01-01

    Grass inflorescence and stem branches show recognizable architectural differences among species. The inflorescence branches of Triticeae cereals and grasses, including wheat, barley, and 400-500 wild species, are usually contracted into a spike formation, with the number of flowering branches (spikelets) per node conserved within species and genera. Perennial Triticeae grasses of genus Leymus are unusual in that the number of spikelets per node varies, inflorescences may have panicle branches, and vegetative stems may form subterranean rhizomes. Leymus cinereus and L. triticoides show discrete differences in inflorescence length, branching architecture, node number, and density; number of spikelets per node and florets per spikelet; culm length and width; and perimeter of rhizomatous spreading. Quantitative trait loci controlling these traits were detected in 2 pseudo-backcross populations derived from the interspecific hybrids using a linkage map with 360 expressed gene sequence markers from Leymus tiller and rhizome branch meristems. Alignments of genes, mutations, and quantitative trait loci controlling similar traits in other grass species were identified using the Brachypodium genome reference sequence. Evidence suggests that loci controlling inflorescence and stem branch architecture in Leymus are conserved among the grasses, are governed by natural selection, and can serve as possible gene targets for improving seed, forage, and grain production.

  8. Special purpose parallel computer architecture for real-time control and simulation in robotic applications

    Science.gov (United States)

    Fijany, Amir (Inventor); Bejczy, Antal K. (Inventor)

    1993-01-01

    This is a real-time robotic controller and simulator which is a MIMD-SIMD parallel architecture for interfacing with an external host computer and providing a high degree of parallelism in computations for robotic control and simulation. It includes a host processor for receiving instructions from the external host computer and for transmitting answers to the external host computer. There are a plurality of SIMD microprocessors, each SIMD processor being a SIMD parallel processor capable of exploiting fine grain parallelism and further being able to operate asynchronously to form a MIMD architecture. Each SIMD processor comprises a SIMD architecture capable of performing two matrix-vector operations in parallel while fully exploiting parallelism in each operation. There is a system bus connecting the host processor to the plurality of SIMD microprocessors and a common clock providing a continuous sequence of clock pulses. There is also a ring structure interconnecting the plurality of SIMD microprocessors and connected to the clock for providing the clock pulses to the SIMD microprocessors and for providing a path for the flow of data and instructions between the SIMD microprocessors. The host processor includes logic for controlling the RRCS by interpreting instructions sent by the external host computer, decomposing the instructions into a series of computations to be performed by the SIMD microprocessors, using the system bus to distribute associated data among the SIMD microprocessors, and initiating activity of the SIMD microprocessors to perform the computations on the data by procedure call.

  9. Synthesis of fixed-architecture, robust H 2 and H ∞ controllers

    Directory of Open Access Journals (Sweden)

    Collins Jr. Emmanuel G.

    2000-01-01

    Full Text Available This paper discusses and compares the synthesis of fixed-architecture controllers that guarantee either robust H 2 or H ∞ performance. The synthesis is accomplished by solving a Riccati equation feasibility problem resulting from mixed structured singular value theory with Popov multipliers. Whereas the algorithm for robust H 2 performance had been previously implemented, a major contribution described in this paper is the implementation of the much more complex algorithm for robust H ∞ performance. Both robust H 2 and H ∞ , controllers are designed for a benchmark problem and a comparison is made between the resulting controllers and control algorithms. It is found that the numerical algorithm for robust H ∞ performance is much more computationally intensive than that for robust H 2 performance. Both controllers are found to have smaller bandwidth, lower control authority and to be less conservative than controllers obtained using complex structured singular value synthesis

  10. Synthesis of fixed-architecture, robust H2 and H∞ controllers

    Directory of Open Access Journals (Sweden)

    Emmanuel G. Collins

    2000-01-01

    Full Text Available This paper discusses and compares the synthesis of fixed-architecture controllers that guarantee either robust H2 or H∞ performance. The synthesis is accomplished by solving a Riccati equation feasibility problem resulting from mixed structured singular value theory with Popov multipliers. Whereas the algorithm for robust H2 performance had been previously implemented, a major contribution described in this paper is the implementation of the much more complex algorithm for robust H∞ performance. Both robust H2 and H∞, controllers are designed for a benchmark problem and a comparison is made between the resulting controllers and control algorithms. It is found that the numerical algorithm for robust H∞ performance is much more computationally intensive than that for robust H2 performance. Both controllers are found to have smaller bandwidth, lower control authority and to be less conservative than controllers obtained using complex structured singular value synthesis.

  11. Phenotypic correlations and path analysis for plant architecture traits and grain production in three generations of cowpea

    Directory of Open Access Journals (Sweden)

    Hugo Leonardo Coelho Ribeiro

    2016-02-01

    Full Text Available ABSTRACT The objective of this study was to analyze the phenotypic correlation and path analysis of traits related to plant architecture, earliness and grain yield in F2, BC1 and BC2 generations, from crosses between cowpea cultivars BRS Carijó and BR14 Mulato. Most phenotypic correlations of the examined traits were concordant in statistical significance, with approximate values ​​among the examined generations. For the trait seed weight, significant and positive phenotypic correlations were observed in the three generations only for the trait number of secondary branches. The values ​​of the direct effects were in agreement with the values ​​of the phenotypic correlations, which indicate true association by the phenotypic correlation among the traits of grain yield examined. Path analysis indicated that the selection of productive plants will result in early plants and an increased number of secondary branches. In F2, plants with shorter length of the main branch and shorter length of secondary branches can be obtained. The causal model explained 15 to 30% of the total variation in grain weight in relation to the traits examined. The analyses indicated the possibility of selecting plants with a higher and early grain yield, shorter length of primary branches and lower number of nodes, which are important variables for mechanical or semi-mechanical harvesting.

  12. Macrofouling control in nuclear power plants

    Energy Technology Data Exchange (ETDEWEB)

    Ekis, E.W. Jr.; Keoplin-Gall, S.M.; McCarthy, R.E.

    1991-11-01

    Macrofouling of cooling-water systems is one of the more significant and costly problems encountered in the nuclear power industry. Both marine and freshwater macroinvertebrates can be responsible for losses in plant availability because of plugged intakes and heat transfer equipment. There is a greater diversity of macrofouling organisms in marine waters than in fresh waters. Marine macrofouling organisms include barnacles, mollusks, bryozoans, and hydroids. Barnacles are crustaceans with feathery appendages, which allow them to attach to a variety of surfaces. They are a major cause of severe macrofouling because they can remain attached even after death. The major freshwater macrofouling organisms include the Asiatic Clam (Corbicula fluminea) and the newest freshwater macrofouler, the Zebra Mussel (Dreissena polymorpha). The introduction of the Zebra Mussel into the Great Lakes has created economic and ecological problems that will not easily be solved. The threat of intercontinental dispersal of the Zebra Mussel in America is serious. Research programs have been initiated around the country to develop control methods for this macrofouling problem. The various control methodologies can be classified in the following categories: biological, chemical, physical, and mechanical. Laboratory experiments were performed to evaluate the efficacy of Actibrom against mature Zebra Mussels.

  13. Sweet Pepper (Capsicum annuum L.) Canopy Photosynthesis Modeling Using 3D Plant Architecture and Light Ray-Tracing.

    Science.gov (United States)

    Kim, Jee Hoon; Lee, Joon Woo; Ahn, Tae In; Shin, Jong Hwa; Park, Kyung Sub; Son, Jung Eek

    2016-01-01

    Canopy photosynthesis has typically been estimated using mathematical models that have the following assumptions: the light interception inside the canopy exponentially declines with the canopy depth, and the photosynthetic capacity is affected by light interception as a result of acclimation. However, in actual situations, light interception in the canopy is quite heterogenous depending on environmental factors such as the location, microclimate, leaf area index, and canopy architecture. It is important to apply these factors in an analysis. The objective of the current study is to estimate the canopy photosynthesis of paprika (Capsicum annuum L.) with an analysis of by simulating the intercepted irradiation of the canopy using a 3D ray-tracing and photosynthetic capacity in each layer. By inputting the structural data of an actual plant, the 3D architecture of paprika was reconstructed using graphic software (Houdini FX, FX, Canada). The light curves and A/C i curve of each layer were measured to parameterize the Farquhar, von Caemmerer, and Berry (FvCB) model. The difference in photosynthetic capacity within the canopy was observed. With the intercepted irradiation data and photosynthetic parameters of each layer, the values of an entire plant's photosynthesis rate were estimated by integrating the calculated photosynthesis rate at each layer. The estimated photosynthesis rate of an entire plant showed good agreement with the measured plant using a closed chamber for validation. From the results, this method was considered as a reliable tool to predict canopy photosynthesis using light interception, and can be extended to analyze the canopy photosynthesis in actual greenhouse conditions.

  14. Sweet Pepper (Capsicum annuum L.) Canopy Photosynthesis Modeling Using 3D Plant Architecture and Light Ray-Tracing

    Science.gov (United States)

    Kim, Jee Hoon; Lee, Joon Woo; Ahn, Tae In; Shin, Jong Hwa; Park, Kyung Sub; Son, Jung Eek

    2016-01-01

    Canopy photosynthesis has typically been estimated using mathematical models that have the following assumptions: the light interception inside the canopy exponentially declines with the canopy depth, and the photosynthetic capacity is affected by light interception as a result of acclimation. However, in actual situations, light interception in the canopy is quite heterogenous depending on environmental factors such as the location, microclimate, leaf area index, and canopy architecture. It is important to apply these factors in an analysis. The objective of the current study is to estimate the canopy photosynthesis of paprika (Capsicum annuum L.) with an analysis of by simulating the intercepted irradiation of the canopy using a 3D ray-tracing and photosynthetic capacity in each layer. By inputting the structural data of an actual plant, the 3D architecture of paprika was reconstructed using graphic software (Houdini FX, FX, Canada). The light curves and A/Ci curve of each layer were measured to parameterize the Farquhar, von Caemmerer, and Berry (FvCB) model. The difference in photosynthetic capacity within the canopy was observed. With the intercepted irradiation data and photosynthetic parameters of each layer, the values of an entire plant's photosynthesis rate were estimated by integrating the calculated photosynthesis rate at each layer. The estimated photosynthesis rate of an entire plant showed good agreement with the measured plant using a closed chamber for validation. From the results, this method was considered as a reliable tool to predict canopy photosynthesis using light interception, and can be extended to analyze the canopy photosynthesis in actual greenhouse conditions. PMID:27667994

  15. The Foundation for Application of Multi-Agent Technology In a Holonic Shop Floor Control Architecture

    DEFF Research Database (Denmark)

    Langer, Gilad; Bilberg, Arne

    1997-01-01

    control. The work is based on a theoretical study of new manufacturing systems theories, research of agent multi-agent technology, and two case studies. It is part of a larger research project which aims at developing a multi-cell control architecture based on the Holonic Manufacturing System theory.......The emerging theory regarding Holonic Manufacturing Systems (HMS) presents a advantageous theoretical foundation for the control system of the manufacturing system of the future. Previous research, at the Department, has demonstrated how company tailored shop floor control can be developed...... by applying simulation and cell control enabling technologies. In order to continue this research effort new concepts and theories for shop floor control are investigated. This article presents an overview of the multi-agent concept based on a literature study. This is followed by an investigation regarding...

  16. The upgrade of an educational observatory control system with a PLC-based architecture

    Science.gov (United States)

    Baldini, V.; Cirami, R.; Coretti, I.; Di Marcantonio, P.; Galeotta, S.; Iafrate, G.; Mannetta, M.; Santin, P.

    2014-07-01

    A Celestron C14 telescope equipped with a robotic Paramount ME equatorial mount is being used for public outreach at the Basovizza site of the INAF-Astronomical Observatory of Trieste. Although the telescope could be fully remotely controlled, the control of the instrumentations and the movement of the main motor of the dome requires the physical presence of an operator. To overcome this limitation the existing control system has been upgraded using a Beckhoff PLC to allow the remote control of the whole instrumentation, including the management of the newly installed weather sensor and the access to the telescope area. Exploiting the decentralization features typical of a PLC based solution, the PLC modules are placed in two different racks, according to the function to be controlled. A web interface is used for the communication between the user and the instrumentation. The architecture of this control system will be presented in detail in this paper.

  17. Food Choice Architecture: An Intervention in a Secondary School and its Impact on Students' Plant-based Food Choices.

    Science.gov (United States)

    Ensaff, Hannah; Homer, Matt; Sahota, Pinki; Braybrook, Debbie; Coan, Susan; McLeod, Helen

    2015-06-02

    With growing evidence for the positive health outcomes associated with a plant-based diet, the study's purpose was to examine the potential of shifting adolescents' food choices towards plant-based foods. Using a real world setting of a school canteen, a set of small changes to the choice architecture was designed and deployed in a secondary school in Yorkshire, England. Focussing on designated food items (whole fruit, fruit salad, vegetarian daily specials, and sandwiches containing salad) the changes were implemented for six weeks. Data collected on students' food choice (218,796 transactions) enabled students' (980 students) selections to be examined. Students' food choice was compared for three periods: baseline (29 weeks); intervention (six weeks); and post-intervention (three weeks). Selection of designated food items significantly increased during the intervention and post-intervention periods, compared to baseline (baseline, 1.4%; intervention 3.0%; post-intervention, 2.2%) χ(2)(2) = 68.1, p food items during the intervention period, compared to baseline. The study's results point to the influence of choice architecture within secondary school settings, and its potential role in improving adolescents' daily food choices.

  18. When history repeats itself: exploring the genetic architecture of host-plant adaptation in two closely related lepidopteran species.

    Science.gov (United States)

    Alexandre, Hermine; Ponsard, Sergine; Bourguet, Denis; Vitalis, Renaud; Audiot, Philippe; Cros-Arteil, Sandrine; Streiff, Réjane

    2013-01-01

    The genus Ostrinia includes two allopatric maize pests across Eurasia, namely the European corn borer (ECB, O. nubilalis) and the Asian corn borer (ACB, O. furnacalis). A third species, the Adzuki bean borer (ABB, O. scapulalis), occurs in sympatry with both the ECB and the ACB. The ABB mostly feeds on native dicots, which probably correspond to the ancestral host plant type for the genus Ostrinia. This situation offers the opportunity to characterize the two presumably independent adaptations or preadaptations to maize that occurred in the ECB and ACB. In the present study, we aimed at deciphering the genetic architecture of these two adaptations to maize, a monocot host plant recently introduced into Eurasia. To this end, we performed a genome scan analysis based on 684 AFLP markers in 12 populations of ECB, ACB and ABB. We detected 2 outlier AFLP loci when comparing French populations of the ECB and ABB, and 9 outliers when comparing Chinese populations of the ACB and ABB. These outliers were different in both countries, and we found no evidence of linkage disequilibrium between any two of them. These results suggest that adaptation or preadaptation to maize relies on a different genetic architecture in the ECB and ACB. However, this conclusion must be considered in light of the constraints inherent to genome scan approaches and of the intricate evolution of adaptation and reproductive isolation in the Ostrinia spp. complex.

  19. Food Choice Architecture: An Intervention in a Secondary School and its Impact on Students’ Plant-based Food Choices

    Directory of Open Access Journals (Sweden)

    Hannah Ensaff

    2015-06-01

    Full Text Available With growing evidence for the positive health outcomes associated with a plant-based diet, the study’s purpose was to examine the potential of shifting adolescents’ food choices towards plant-based foods. Using a real world setting of a school canteen, a set of small changes to the choice architecture was designed and deployed in a secondary school in Yorkshire, England. Focussing on designated food items (whole fruit, fruit salad, vegetarian daily specials, and sandwiches containing salad the changes were implemented for six weeks. Data collected on students’ food choice (218,796 transactions enabled students’ (980 students selections to be examined. Students’ food choice was compared for three periods: baseline (29 weeks; intervention (six weeks; and post-intervention (three weeks. Selection of designated food items significantly increased during the intervention and post-intervention periods, compared to baseline (baseline, 1.4%; intervention 3.0%; post-intervention, 2.2% χ2(2 = 68.1, p < 0.001. Logistic regression modelling also revealed the independent effect of the intervention, with students 2.5 times as likely (p < 0.001 to select the designated food items during the intervention period, compared to baseline. The study’s results point to the influence of choice architecture within secondary school settings, and its potential role in improving adolescents’ daily food choices.

  20. Performance analysis and overload control of an open service access (OSA) architecture

    Science.gov (United States)

    Andersson, Jens K.; Nyberg, Christian; Kihl, Maria

    2003-08-01

    The trend of the service architectures developed in telecommunications today is that they should be open in the sense that they can communicate over the borders of different networks. Instead of each network having their own service architecture with their own applications, all networks should be able to use the same applications. 3GPP, the organization developing specifications for the 3G networks has specified the standard Open Service Access (OSA), as a part of the 3G specification. OSA offers different Application Protocol Interfaces that enable an application that resides outside a network to use the capabilities of the network. This paper analyses the performance of an OSA gateway. It is examined how the overload control can be dealt with in a way to best satisfy the operators and the 3'rd parties. There are some guiding principles in the specifications, but a lot of decisions have to be made by the implementors of application servers and OSA gateways. Proposals of different requirements for an OSA architecture exist such as, minimum amount of accepted calls per second and time constraint for the maximal total delay for an application. Maximal and fair throughput have to be prioritized from the 3'rd parties view, but profit is the main interest from the operators point of view. Therefore this paper examines a priority based proposal of an overload control mechanism taking these aspects and requirements into account.

  1. Control architecture for human-robot integration: application to a robotic wheelchair.

    Science.gov (United States)

    Galindo, Cipriano; Gonzalez, Javier; Fernández-Madrigal, Juan-Antonio

    2006-10-01

    Completely autonomous performance of a mobile robot within noncontrolled and dynamic environments is not possible yet due to different reasons including environment uncertainty, sensor/software robustness, limited robotic abilities, etc. But in assistant applications in which a human is always present, she/he can make up for the lack of robot autonomy by helping it when needed. In this paper, the authors propose human-robot integration as a mechanism to augment/improve the robot autonomy in daily scenarios. Through the human-robot-integration concept, the authors take a further step in the typical human-robot relation, since they consider her/him as a constituent part of the human-robot system, which takes full advantage of the sum of their abilities. In order to materialize this human integration into the system, they present a control architecture, called architecture for human-robot integration, which enables her/him from a high decisional level, i.e., deliberating a plan, to a physical low level, i.e., opening a door. The presented control architecture has been implemented to test the human-robot integration on a real robotic application. In particular, several real experiences have been conducted on a robotic wheelchair aimed to provide mobility to elderly people.

  2. Experimental investigation of active rib stitch knitted architecture for flow control applications

    Science.gov (United States)

    Abel, Julianna M.; Mane, Poorna; Pascoe, Benjamin; Luntz, Jonathan; Brei, Diann

    2010-04-01

    Actively manipulating flow characteristics around the wing can enhance the high-lift capability and reduce drag; thereby, increasing fuel economy, improving maneuverability and operation over diverse flight conditions which enables longer, more varied missions. Active knits, a novel class of cellular structural smart material actuator architectures created by continuous, interlocked loops of stranded active material, produce distributed actuation that can actively manipulate the local surface of the aircraft wing to improve flow characteristics. Rib stitch active knits actuate normal to the surface, producing span-wise discrete periodic arrays that can withstand aerodynamic forces while supplying the necessary displacement for flow control. This paper presents a preliminary experimental investigation of the pressuredisplacement actuation performance capabilities of a rib stitch active knit based upon shape memory alloy (SMA) wire. SMA rib stitch prototypes in both individual form and in stacked and nestled architectures were experimentally tested for their quasi-static load-displacement characteristics, verifying the parallel and series relationships of the architectural configurations. The various configurations tested demonstrated the potential of active knits to generate the required level of distributed surface displacements while under aerodynamic level loads for various forms of flow control.

  3. Insights into plant cell wall structure, architecture, and integrity using glycome profiling of native and AFEXTM-pre-treated biomass.

    Science.gov (United States)

    Pattathil, Sivakumar; Hahn, Michael G; Dale, Bruce E; Chundawat, Shishir P S

    2015-07-01

    Cell walls, which constitute the bulk of plant biomass, vary considerably in their structure, composition, and architecture. Studies on plant cell walls can be conducted on both native and pre-treated plant biomass samples, allowing an enhanced understanding of these structural and compositional variations. Here glycome profiling was employed to determine the relative abundance of matrix polysaccharides in several phylogenetically distinct native and pre-treated plant biomasses. Eight distinct biomass types belonging to four different subgroups (i.e. monocot grasses, woody dicots, herbaceous dicots, and softwoods) were subjected to various regimes of AFEX™ (ammonia fiber expansion) pre-treatment [AFEX is a trademark of MBI, Lansing (http://www.mbi.org]. This approach allowed detailed analysis of close to 200 cell wall glycan epitopes and their relative extractability using a high-throughput platform. In general, irrespective of the phylogenetic origin, AFEX™ pre-treatment appeared to cause loosening and improved accessibility of various xylan epitope subclasses in most plant biomass materials studied. For most biomass types analysed, such loosening was also evident for other major non-cellulosic components including subclasses of pectin and xyloglucan epitopes. The studies also demonstrate that AFEX™ pre-treatment significantly reduced cell wall recalcitrance among diverse phylogenies (except softwoods) by inducing structural modifications to polysaccharides that were not detectable by conventional gross composition analyses. It was found that monitoring changes in cell wall glycan compositions and their relative extractability for untreated and pre-treated plant biomass can provide an improved understanding of variations in structure and composition of plant cell walls and delineate the role(s) of matrix polysaccharides in cell wall recalcitrance. © The Author 2015. Published by Oxford University Press on behalf of the Society for Experimental Biology.

  4. Photosynthetic Membranes of Synechocystis or Plants Convert Sunlight to Photocurrent through Different Pathways due to Different Architectures.

    Directory of Open Access Journals (Sweden)

    Roy I Pinhassi

    Full Text Available Thylakoid membranes contain the redox active complexes catalyzing the light-dependent reactions of photosynthesis in cyanobacteria, algae and plants. Crude thylakoid membranes or purified photosystems from different organisms have previously been utilized for generation of electrical power and/or fuels. Here we investigate the electron transferability from thylakoid preparations from plants or the cyanobacterium Synechocystis. We show that upon illumination, crude Synechocystis thylakoids can reduce cytochrome c. In addition, this crude preparation can transfer electrons to a graphite electrode, producing an unmediated photocurrent of 15 μA/cm2. Photocurrent could be obtained in the presence of the PSII inhibitor DCMU, indicating that the source of electrons is QA, the primary Photosystem II acceptor. In contrast, thylakoids purified from plants could not reduce cyt c, nor produced a photocurrent in the photocell in the presence of DCMU. The production of significant photocurrent (100 μA/cm2 from plant thylakoids required the addition of the soluble electron mediator DCBQ. Furthermore, we demonstrate that use of crude thylakoids from the D1-K238E mutant in Synechocystis resulted in improved electron transferability, increasing the direct photocurrent to 35 μA/cm2. Applying the analogous mutation to tobacco plants did not achieve an equivalent effect. While electron abstraction from crude thylakoids of cyanobacteria or plants is feasible, we conclude that the site of the abstraction of the electrons from the thylakoids, the architecture of the thylakoid preparations influence the site of the electron abstraction, as well as the transfer pathway to the electrode. This dictates the use of different strategies for production of sustainable electrical current from photosynthetic thylakoid membranes of cyanobacteria or higher plants.

  5. Photosynthetic Membranes of Synechocystis or Plants Convert Sunlight to Photocurrent through Different Pathways due to Different Architectures.

    Science.gov (United States)

    Pinhassi, Roy I; Kallmann, Dan; Saper, Gadiel; Larom, Shirley; Linkov, Artyom; Boulouis, Alix; Schöttler, Mark-Aurel; Bock, Ralph; Rothschild, Avner; Adir, Noam; Schuster, Gadi

    2015-01-01

    Thylakoid membranes contain the redox active complexes catalyzing the light-dependent reactions of photosynthesis in cyanobacteria, algae and plants. Crude thylakoid membranes or purified photosystems from different organisms have previously been utilized for generation of electrical power and/or fuels. Here we investigate the electron transferability from thylakoid preparations from plants or the cyanobacterium Synechocystis. We show that upon illumination, crude Synechocystis thylakoids can reduce cytochrome c. In addition, this crude preparation can transfer electrons to a graphite electrode, producing an unmediated photocurrent of 15 μA/cm2. Photocurrent could be obtained in the presence of the PSII inhibitor DCMU, indicating that the source of electrons is QA, the primary Photosystem II acceptor. In contrast, thylakoids purified from plants could not reduce cyt c, nor produced a photocurrent in the photocell in the presence of DCMU. The production of significant photocurrent (100 μA/cm2) from plant thylakoids required the addition of the soluble electron mediator DCBQ. Furthermore, we demonstrate that use of crude thylakoids from the D1-K238E mutant in Synechocystis resulted in improved electron transferability, increasing the direct photocurrent to 35 μA/cm2. Applying the analogous mutation to tobacco plants did not achieve an equivalent effect. While electron abstraction from crude thylakoids of cyanobacteria or plants is feasible, we conclude that the site of the abstraction of the electrons from the thylakoids, the architecture of the thylakoid preparations influence the site of the electron abstraction, as well as the transfer pathway to the electrode. This dictates the use of different strategies for production of sustainable electrical current from photosynthetic thylakoid membranes of cyanobacteria or higher plants.

  6. Software architecture for a multi-purpose real-time control unit for research purposes

    Science.gov (United States)

    Epple, S.; Jung, R.; Jalba, K.; Nasui, V.

    2017-05-01

    A new, freely programmable, scalable control system for academic research purposes was developed. The intention was, to have a control unit capable of handling multiple PT1000 temperature sensors at reasonable accuracy and temperature range, as well as digital input signals and providing powerful output signals. To take full advantage of the system, control-loops are run in real time. The whole eight bit system with very limited memory runs independently of a personal computer. The two on board RS232 connectors allow to connect further units or to connect other equipment, as required in real time. This paper describes the software architecture for the third prototype that now provides stable measurements and an improvement in accuracy compared to the previous designs. As test case a thermal solar system to produce hot tap water and assist heating in a single-family house was implemented. The solar fluid pump was power-controlled and several temperatures at different points in the hydraulic system were measured and used in the control algorithms. The software architecture proved suitable to test several different control strategies and their corresponding algorithms for the thermal solar system.

  7. Intelligent autonomy for unmanned marine vehicles robotic control architecture based on service-oriented agents

    CERN Document Server

    Insaurralde, Carlos C

    2015-01-01

    This book presents an Intelligent Control Architecture (ICA) to enable multiple collaborating marine vehicles to autonomously carry out underwater intervention missions. The presented ICA is generic in nature but aimed at a case study where a marine surface craft and an underwater vehicle are required to work cooperatively. It is shown that they are capable of cooperating autonomously towards the execution of complex activities since they have different but complementary capabilities. The ICA implementation is verified in simulation, and validated in trials by means of a team of autonomous marine robots. This book also presents architectural details and evaluation scenarios of the ICA, results of simulations and trials from different maritime operations, and future research directions.

  8. Combining Dense Structure From Motion and Visual SLAM in a Behavior-Based Robot Control Architecture

    Directory of Open Access Journals (Sweden)

    Geert De Cubber

    2010-02-01

    Full Text Available In this paper, we present a control architecture for an intelligent outdoor mobile robot. This enables the robot to navigate in a complex, natural outdoor environment, relying on only a single on-board camera as sensory input. This is achieved through a twofold analysis of the visual data stream: a dense structure from motion algorithm calculates a depth map of the environment and a visual simultaneous localization and mapping algorithm builds a map of the surroundings using image features. This information enables a behavior-based robot motion and path planner to navigate the robot through the environment. In this paper, we show the theoretical aspects of setting up this architecture.

  9. Centralized Control Architecture for Coordination of Distributed Renewable Generation and Energy Storage in Islanded AC Microgrids

    DEFF Research Database (Denmark)

    Aldana, Nelson Leonardo Diaz; Hernández, Adriana Carolina Luna; Quintero, Juan Carlos Vasquez

    2017-01-01

    The coordinated operation of distributed energy resources such as storage and generation units and also loads is required for the reliable operation of an islanded microgrid. Since in islanded microgrids the storage units are commonly responsible for regulating the voltage amplitude and frequency...... in the local power system, the coordination should consider safe operating limits for the stored energy, which prevents fast degradation or damage to the storage units. This paper proposes a centralized control architecture, applicable for local area power systems such as a small-scale microgrid......, the strategy is complemented with an optimal scheduling of load connection, which minimizes the connection and disconnection cycles of the loads within a time horizon of 24 hours. The proposed architecture is verified experimentally in a lab-scale prototype of a microgrid, which has real communication between...

  10. A fully genetically encoded protein architecture for optical control of peptide ligand concentration

    Science.gov (United States)

    Schmidt, Daniel; Tillberg, Paul W.; Chen, Fei; Boyden, Edward S.

    2014-01-01

    Ion channels are among the most important proteins in biology, regulating the activity of excitable cells and changing in diseases. Ideally it would be possible to actuate endogenous ion channels, in a temporally precise and reversible manner, and without requiring chemical cofactors. Here we present a modular protein architecture for fully genetically encoded, light-modulated control of ligands that modulate ion channels of a targeted cell. Our reagent, which we call a lumitoxin, combines a photoswitch and an ion channel-blocking peptide toxin. Illumination causes the photoswitch to unfold, lowering the toxin's local concentration near the cell surface, and enabling the ion channel to function. We explore lumitoxin modularity by showing operation with peptide toxins that target different voltage-dependent K+ channels. The lumitoxin architecture may represent a new kind of modular protein-engineering strategy for designing light-activated proteins, and thus may enable development of novel tools for modulating cellular physiology.

  11. Network based control point for UPnP QoS architecture

    DEFF Research Database (Denmark)

    Brewka, Lukasz Jerzy; Wessing, Henrik; Rossello Busquet, Ana;

    2011-01-01

    Enabling coexistence of non-UPnP Devices in an UPnP QoS Architecture is an important issue that might have a major impact on the deployment and usability of UPnP in future home networks. The work presented here shows potential issues of placing non-UPnP Device in the network managed by UPnP QoS. We...... address this issue by extensions to the UPnP QoS Architecture that can prevent non-UPnP Devices from degrading the overall QoS level. The obtained results show that deploying Network Based Control Point service with efficient traffic classifier, improves significantly the end-to-end packet delay...

  12. Adaptive Monitoring and Control Architectures for Power Distribution Grids over Heterogeneous ICT Networks

    DEFF Research Database (Denmark)

    Olsen, Rasmus Løvenstein; Hägerling, Christian; Kurtz, Fabian M.

    2014-01-01

    The expected growth in distributed generation will significantly affect the operation and control of today’s distribution grids. Being confronted with short time power variations of distributed generations, the assurance of a reliable service (grid stability, avoidance of energy losses...... to the reliability due to the stochastic behaviour found in such networks. Therefore, key concepts are presented in this paper targeting the support of proper smart grid control in these network environments. An overview on the required Information and Communication Technology (ICT) architecture and its...

  13. The NASA (National Aeronautics and Space Administration) Laboratory Telerobotic Manipulator control system architecture

    Energy Technology Data Exchange (ETDEWEB)

    Rowe, J.C.; Butler, P.L.; Glassell, R.L.; Herndon, J.N.

    1991-01-01

    In support of the National Aeronautics and Space Administration (NASA) goals to increase the utilization of dexterous robotic systems in space, the Oak Ridge National Laboratory (ORNL) has developed the Laboratory Telerobotic Manipulator (LTM) system. It is a dexterous, dual-arm, force reflecting teleoperator system with robotic features for NASA ground-based research. This paper describes the overall control system architecture, including both the hardware and software. The control system is a distributed, modular, and hierarchical design with flexible expansion capabilities for future enhancements of both the hardware and software. 6 refs., 4 figs.

  14. Selection Guidelines for Central Heat Plant Controls.

    Science.gov (United States)

    1994-11-01

    21 PID Controllers ............................................... 22 Combustion Control...Therefore, closed-loop control is preferred for boiler control. PID Controllers Figure 9 shows the basic functions of a closed loop controller

  15. Best Tracking Performance under Plant Uncertainty and Control Energy Constraint

    Institute of Scientific and Technical Information of China (English)

    KONG Yi-gang; WANG Zhi-xin; WANG Jian-guo

    2007-01-01

    This paper has investigated best tracking performance for linear feedback control systems in the case that plant uncertainty and control effort need to be considered simultaneously. Firstly, an average integral square criterion of the tracking error and the plant input energy over a class of additive model errors is defined. Then, utilizing spectral factorization to minimize the performance index, we obtain an optimal controller design method, and furthermore study optimal tracking performance under plant uncertainty and control energy constraint. The results can be used to evaluate optimal average tracking performance and control energy in designing practical control systems.

  16. Service-Oriented Architecture for Weaponry and Battle Command and Control Systems in Warfighting

    CERN Document Server

    Bassil, Youssef

    2012-01-01

    Military is one of many industries that is more computer-dependent than ever before, from soldiers with computerized weapons, and tactical wireless devices, to commanders with advanced battle management, command and control systems. Fundamentally, command and control is the process of planning, monitoring, and commanding military personnel, weaponry equipment, and combating vehicles to execute military missions. In fact, command and control systems are revolutionizing as war fighting is changing into cyber, technology, information, and unmanned warfare. As a result, a new design model that supports scalability, reusability, maintainability, survivability, and interoperability is needed to allow commanders, hundreds of miles away from the battlefield, to plan, monitor, evaluate, and control the war events in a dynamic, robust, agile, and reliable manner. This paper proposes a service-oriented architecture for weaponry and battle command and control systems, made out of loosely-coupled and distributed web servi...

  17. Phytoplasmal infection derails genetically preprogrammed meristem fate and alters plant architecture

    Science.gov (United States)

    In the life cycle of higher plants, it is the fate of meristem cells that determines the pattern of growth and development, and therefore plant morphotype and fertility. Floral transition, the turning point from vegetative growth to reproductive development, is achieved via genetically-programmed s...

  18. Invasive plant architecture alters trophic interactions by changing predator abundance and behavior

    Science.gov (United States)

    Dean E. Pearson

    2009-01-01

    As primary producers, plants are known to influence higher trophic interactions by initiating food chains. However, as architects, plants may bypass consumers to directly affect predators with important but underappreciated trophic ramifications. Invasion of western North American grasslands by the perennial forb, spotted knapweed (Centaurea maculosa...

  19. Sweet Pepper (Capsicum annuum L. Canopy Photosynthesis Modeling using 3D Plant Architecture and Light Ray-tracing

    Directory of Open Access Journals (Sweden)

    Jee Hoon Kim

    2016-09-01

    Full Text Available Canopy photosynthesis has typically been estimated using mathematical models that have the following assumptions: the light interception inside the canopy exponentially declines with the canopy depth, and the photosynthetic capacity is affected by light interception as a result of acclimation. However, in actual situations, light interception in the canopy is quite heterogenous depending on environmental factors such as the location, microclimate, leaf area index, and canopy architecture. It is important to apply these factors in an analysis. The objective of the current study is to estimate the canopy photosynthesis of paprika (Capsicum annuum L. with an analysis of by simulating the intercepted irradiation of the canopy using a 3D ray-tracing and photosynthetic capacity in each layer. By inputting the structural data of an actual plant, the 3D architecture of paprika was reconstructed using graphic software (Houdini FX, FX, Canada. The light curves and A/Ci curve of each layer were measured to parameterize the Farquhar, von Caemmerer and Berry (FvCB model. The difference in photosynthetic capacity within the canopy was observed. With the intercepted irradiation data and photosynthetic parameters of each layer, the values of an entire plant’s photosynthesis rate were estimated by integrating the calculated photosynthesis rate at each layer. The estimated photosynthesis rate of an entire plant showed good agreement with the measured plant using a closed chamber for validation. From the results, this method was considered as a reliable tool to predict canopy photosynthesis using light interception, and can be extended to analyze the canopy photosynthesis in actual greenhouse conditions.

  20. Agricultural Plant Pest Control. Bulletin 763.

    Science.gov (United States)

    French, John C.; And Others

    This manual gives general information on plant pests and pesticides. First, the life-cycle and habits of some common insect pests are given. These include caterpillars, beetles and beetle larvae, and sucking insects. Next, plant diseases such as leaf diseases, wilts, root and crown rots, stem cankers, fruit rots, seed and seedling diseases, and…

  1. Agricultural Plant Pest Control. Bulletin 763.

    Science.gov (United States)

    French, John C.; And Others

    This manual gives general information on plant pests and pesticides. First, the life-cycle and habits of some common insect pests are given. These include caterpillars, beetles and beetle larvae, and sucking insects. Next, plant diseases such as leaf diseases, wilts, root and crown rots, stem cankers, fruit rots, seed and seedling diseases, and…

  2. A PRIVACY MANAGEMENT ARCHITECTURE FOR PATIENT-CONTROLLED PERSONAL HEALTH RECORD SYSTEM

    Directory of Open Access Journals (Sweden)

    MD. NURUL HUDA

    2009-06-01

    Full Text Available Patient-controlled personal health record systems can help make health care safer, cheaper, and more convenient by facilitating patients to 1 grant any care provider access to their complete personal health records anytime from anywhere, 2 avoid repeated tests and 3 control their privacy transparently. In this paper, we present the architecture of our Privacy-aware Patient-controlled Personal Health Record (P3HR system through which a patient can view her integrated health history, and share her health information transparently with others (e.g., healthcare providers. Access to the health information of a particular patient is completely controlled by that patient. We also carry out intuitive security and privacy analysis of the P3HR system architecture considering different types of security attacks. Finally, we describe a prototype implementation of the P3HR system that we developed reflecting the special view of Japanese society. The most important advantage of P3HR system over other existing systems is that most likely P3HR system provides complete privacy protection without losing data accuracy. Unlike traditional partially anonymous health records (e.g., using k-anonymity or l-diversity, the health records in P3HR are closer to complete anonymity, and yet preserve data accuracy. Our approach makes it very unlikely that patients could be identified by an attacker from their anonymous health records in the P3HR system.

  3. Controlling hormone signaling is a plant and pathogen challenge for growth and survival.

    Science.gov (United States)

    López, Miguel Angel; Bannenberg, Gerard; Castresana, Carmen

    2008-08-01

    Plants and pathogens have continuously confronted each other during evolution in a battle for growth and survival. New advances in the field have provided fascinating insights into the mechanisms that have co-evolved to gain a competitive advantage in this battle. When plants encounter an invading pathogen, not only responses signaled by defense hormones are activated to restrict pathogen invasion, but also the modulation of additional hormone pathways is required to serve other purposes, which are equally important for plant survival, such as re-allocation of resources, control of cell death, regulation of water stress, and modification of plant architecture. Notably, pathogens can counteract both types of responses as a strategy to enhance virulence. Pathogens regulate production and signaling responses of plant hormones during infection, and also produce phytohormones themselves to modulate plant responses. These results indicate that hormone signaling is a relevant component in plant-pathogen interactions, and that the ability to dictate hormonal directionality is critical to the outcome of an interaction.

  4. Optimization of a neural architecture for the direct control of a Boost converter

    Directory of Open Access Journals (Sweden)

    Fredy Hernán Martinez Sarmiento

    2012-06-01

    Full Text Available In research related to control of DC/DC converters, artificial intelligence techniques are a great improvement in the design and performance. However, some of these tools require the use of trial and error strategies in the design, making it difficult to obtain an optimal structure. In this paper, we propose a direct control based on artificial neural network, whose design has been optimized using bio-inspired searching strategies, with the idea of optimizing simultaneously two different but important aspects of the network: architecture and weights connections. The control was successfully applied to a boost type converter. The results obtained allow us to observe the dynamic performance of the scheme, in which the response time and variation in the output voltage can be concluded that the criteria used for the control loop design were appropriate.

  5. Soil microorganisms control plant ectoparasitic nematodes in natural coastal foredunes

    NARCIS (Netherlands)

    Piskiewicz, A.M.; Duyts, H.; Berg, M.P.; Costa, S.R.; Putten, van der W.H.

    2007-01-01

    Belowground herbivores can exert important controls on the composition of natural plant communities. Until now, relatively few studies have investigated which factors may control the abundance of belowground herbivores. In Dutch coastal foredunes, the root-feeding nematode Tylenchorhynchus ventralis

  6. Overall control and monitoring systems for pumped storage plants

    Energy Technology Data Exchange (ETDEWEB)

    Stepinski, B.; Cvetko, H.

    1982-06-01

    The article describes control and monitoring concepts in which the delegation of responsibility is becoming more decisive than ever (automation hierarchy), and which are capable of optimized, automatic control of process events in pumped storage plants. 8 refs.

  7. Soil microorganisms control plant ectoparasitic nematodes in natural coastal foredunes

    NARCIS (Netherlands)

    Piskiewicz, A.M.; Duyts, H.; Berg, M.P.; Costa, S.R.; Putten, van der W.H.

    2007-01-01

    Belowground herbivores can exert important controls on the composition of natural plant communities. Until now, relatively few studies have investigated which factors may control the abundance of belowground herbivores. In Dutch coastal foredunes, the root-feeding nematode Tylenchorhynchus ventralis

  8. Process plant equipment operation, control, and reliability

    CERN Document Server

    Holloway, Michael D; Onyewuenyi, Oliver A

    2012-01-01

    "Process Plant Equipment Book is another great publication from Wiley as a reference book for final year students as well as those who will work or are working in chemical production plants and refinery…" -Associate Prof. Dr. Ramli Mat, Deputy Dean (Academic), Faculty of Chemical Engineering, Universiti Teknologi Malaysia "…give[s] readers access to both fundamental information on process plant equipment and to practical ideas, best practices and experiences of highly successful engineers from around the world… The book is illustrated throughout with numerous black & white p

  9. EXTERNAL AND INTERNAL CONTROL IN PLANT DEVELOPMENT

    Institute of Scientific and Technical Information of China (English)

    Beáta Oborny

    2003-01-01

    Bodies of plants are modularly organized. Development proceeds by adding new modules to open endings with a potential for branching. Each module is autonomous to some extent. Development relies on the self-organized patterns that emerge from the interactions of individual modules. Interactions include both competition and cooperation, and several types of positive and negative feedback loops are involved. Development can be open to external influences, thus enabling the plant to adjust its form to the environment, for example, to the spatial distribution of ecological resources. This paper provides a review on adaptive plasticity in plants.

  10. The Spring Change in Hydraulic Architecture Characteristics in Some Woody Plants

    Institute of Scientific and Technical Information of China (English)

    2003-01-01

    Ten healthy tree species with regular management were selected on the campus of Beijing Forestry University, and they belong to tall tree, shrub and liana, respectively. Water potential and hydraulic architecture parameters of one-year-old twigs were measured in sunny day in the last ten days of March to the middle ten days of May in 2002. The results show that the daily change in water potential of tree species examined appears convex, i.e. the water potential is higher in the morning and evening, and ...

  11. Automated detection and control of volunteer potato plants

    NARCIS (Netherlands)

    Nieuwenhuizen, A.T.

    2009-01-01

    High amounts of manual labor are needed to control volunteer potato plants in arable fields. Due to the high costs, this leads to incomplete control of these weed plants, and they spread diseases like Phytophthora infestans to other fields. This results in higher environmental loads by curative

  12. Automated detection and control of volunteer potato plants

    NARCIS (Netherlands)

    Nieuwenhuizen, A.T.

    2009-01-01

    High amounts of manual labor are needed to control volunteer potato plants in arable fields. Due to the high costs, this leads to incomplete control of these weed plants, and they spread diseases like Phytophthora infestans to other fields. This results in higher environmental loads by curative spra

  13. Automated detection and control of volunteer potato plants

    NARCIS (Netherlands)

    Nieuwenhuizen, A.T.

    2009-01-01

    High amounts of manual labor are needed to control volunteer potato plants in arable fields. Due to the high costs, this leads to incomplete control of these weed plants, and they spread diseases like Phytophthora infestans to other fields. This results in higher environmental loads by curative spra

  14. The Class of Stabilizing Nonlinear Plant Controller Pairs

    NARCIS (Netherlands)

    Paice, A.D.B.; Schaft, Arjan J. van der

    1996-01-01

    In this paper a general approach is taken to yield a characterization of the class of stable plant controller pairs which is a generalization of the Youla parameterization for linear systems. This is based on the idea of representing the input-output pairs of the plant and controller as elements of

  15. Choosing Actuators for Automatic Control Systems of Thermal Power Plants

    Energy Technology Data Exchange (ETDEWEB)

    Gorbunov, A. I., E-mail: gor@tornado.nsk.ru [JSC “Tornado Modular Systems” (Russian Federation); Serdyukov, O. V. [Siberian Branch of the Russian Academy of Sciences, Institute of Automation and Electrometry (Russian Federation)

    2015-03-15

    Two types of actuators for automatic control systems of thermal power plants are analyzed: (i) pulse-controlled actuator and (ii) analog-controlled actuator with positioning function. The actuators are compared in terms of control circuit, control accuracy, reliability, and cost.

  16. Actin based processes that could determine the cytoplasmic architecture of plant cells.

    Science.gov (United States)

    van der Honing, Hannie S; Emons, Anne Mie C; Ketelaar, Tijs

    2007-05-01

    Actin polymerisation can generate forces that are necessary for cell movement, such as the propulsion of a class of bacteria, including Listeria, and the protrusion of migrating animal cells. Force generation by the actin cytoskeleton in plant cells has not been studied. One process in plant cells that is likely to depend on actin-based force generation is the organisation of the cytoplasm. We compare the function of actin binding proteins of three well-studied mammalian models that depend on actin-based force generation with the function of their homologues in plants. We predict the possible role of these proteins, and thus the role of actin-based force generation, in the production of cytoplasmic organisation in plant cells.

  17. Nuclear power plant status diagnostics using a neural network with dynamic node architecture

    Energy Technology Data Exchange (ETDEWEB)

    Basu, A.

    1992-12-31

    This thesis is part of an ongoing project at Iowa State University to develop ANN based fault diagnostic systems to detect and classify operational transients at nuclear power plants. The project envisages the deployment of such an advisor at Iowa Electric Light and Power Company`s Duane Arnold Energy Center nuclear power plant located at Palo, IA. This advisor is expected to make status diagnosis in real time, thus providing the operators with more time for corrective measures.

  18. Nuclear power plant status diagnostics using a neural network with dynamic node architecture

    Energy Technology Data Exchange (ETDEWEB)

    Basu, A.

    1992-01-01

    This thesis is part of an ongoing project at Iowa State University to develop ANN based fault diagnostic systems to detect and classify operational transients at nuclear power plants. The project envisages the deployment of such an advisor at Iowa Electric Light and Power Company's Duane Arnold Energy Center nuclear power plant located at Palo, IA. This advisor is expected to make status diagnosis in real time, thus providing the operators with more time for corrective measures.

  19. Design and Co-simulation of Hierarchical Architecture for Demand Response Control and Coordination

    DEFF Research Database (Denmark)

    Bhattarai, Bishnu Prasad; Lévesque, Martin; Bak-Jensen, Birgitte

    2017-01-01

    Demand response (DR) plays a key role for optimum asset utilization and to avoid or delay the need of new infrastructure investment. However, coordinated execution of multiple DRs is desired to maximize the DR benefits. In this study, we propose a hierarchical DR architecture (HDRA) to control...... and coordinate the performance of various DR categories such that the operation of every DR category is backed-up by time delayed action of the others. A reliable, cost-effective communication infrastructure based on ZigBee, WiMAX, and fibers is designed to facilitate the HDRA execution. The performance...

  20. A Software Architecture for Control of Value Production in Federated Systems

    Directory of Open Access Journals (Sweden)

    Jay S. Bayne

    2003-08-01

    Full Text Available Federated enterprises are defined as interactive commercial entities that produce products and consume resources through a network of open, free-market transactions. Value production in such entities is defined as the real-time computation of enterprise value propositions. These computations are increasingly taking place in a grid-connected space – a space that must provide for secure, real-time, reliable end-to-end transactions governed by formal trading protocols. We present the concept of a value production unit (VPU as a key element of federated trading systems, and a software architecture for automation and control of federations of such VPUs.

  1. POGs2: a web portal to facilitate cross-species inferences about protein architecture and function in plants.

    Directory of Open Access Journals (Sweden)

    Michael Tomcal

    Full Text Available The Putative orthologous Groups 2 Database (POGs2 (http://pogs.uoregon.edu/ integrates information about the inferred proteomes of four plant species (Arabidopsis thaliana, Zea mays, Orza sativa, and Populus trichocarpa in a display that facilitates comparisons among orthologs and extrapolation of annotations among species. A single-page view collates key functional data for members of each Putative Orthologous Group (POG: graphical representations of InterPro domains, predicted and established intracellular locations, and imported gene descriptions. The display incorporates POGs predicted by two different algorithms as well as gene trees, allowing users to evaluate the validity of POG memberships. The web interface provides ready access to sequences and alignments of POG members, as well as sequences, alignments, and domain architectures of closely-related paralogs. A simple and flexible search interface permits queries by BLAST and by any combination of gene identifier, keywords, domain names, InterPro identifiers, and intracellular location. The concurrent display of domain architectures for orthologous proteins highlights errors in gene models and false-negatives in domain predictions. The POGs2 layout is also useful for exploring candidate genes identified by transposon tagging, QTL mapping, map-based cloning, and proteomics, and for navigating between orthologous groups that belong to the same gene family.

  2. A Security Architecture for Data Aggregation and Access Control in Smart Grids

    CERN Document Server

    Ruj, Sushmita; Stojmenovic, Ivan

    2011-01-01

    We propose an integrated architecture for smart grids, that supports data aggregation and access control. Data can be aggregated by home area network, building area network and neighboring area network in such a way that the privacy of customers is protected. We use homomorphic encryption technique to achieve this. The consumer data that is collected is sent to the substations where it is monitored by remote terminal units (RTU). The proposed access control mechanism gives selective access to consumer data stored in data repositories and used by different smart grid users. Users can be maintenance units, utility centers, pricing estimator units or analyzing and prediction groups. We solve this problem of access control using cryptographic technique of attribute-based encryption. RTUs and users have attributes and cryptographic keys distributed by several key distribution centers (KDC). RTUs send data encrypted under a set of attributes. Users can decrypt information provided they have valid attributes. The ac...

  3. Enhanced Engine Performance During Emergency Operation Using a Model-Based Engine Control Architecture

    Science.gov (United States)

    Csank, Jeffrey T.; Connolly, Joseph W.

    2016-01-01

    This paper discusses the design and application of model-based engine control (MBEC) for use during emergency operation of the aircraft. The MBEC methodology is applied to the Commercial Modular Aero-Propulsion System Simulation 40k (CMAPSS40k) and features an optimal tuner Kalman Filter (OTKF) to estimate unmeasured engine parameters, which can then be used for control. During an emergency scenario, normally-conservative engine operating limits may be relaxed to increase the performance of the engine and overall survivability of the aircraft; this comes at the cost of additional risk of an engine failure. The MBEC architecture offers the advantage of estimating key engine parameters that are not directly measureable. Estimating the unknown parameters allows for tighter control over these parameters, and on the level of risk the engine will operate at. This will allow the engine to achieve better performance than possible when operating to more conservative limits on a related, measurable parameter.

  4. Integrated Methodology for Information System Change Control Based on Enterprise Architecture Models

    Directory of Open Access Journals (Sweden)

    Pirta Ruta

    2015-12-01

    Full Text Available The information system (IS change management and governance, according to the best practices, are defined and described in several international methodologies, standards, and frameworks (ITIL, COBIT, ValIT etc.. These methodologies describe IS change management aspects from the viewpoint of their particular enterprise resource management area. The areas are mainly viewed in a partly isolated environment, and the integration of the existing methodologies is insufficient for providing unified and controlled methodological support for holistic IS change management. In this paper, an integrated change management methodology is introduced. The methodology consists of guidelines for IS change control by integrating the following significant resource management areas – information technology (IT governance, change management and enterprise architecture (EA change management. In addition, the methodology includes lists of controls applicable at different phases. The approach is based on re-use and fusion of principles used by related methodologies as well as on empirical observations about typical IS change management mistakes in enterprises.

  5. oodOPT: A Semantics-Based Concurrency Control Framework for Fully-Replicated Architecture

    Institute of Scientific and Technical Information of China (English)

    YANG Guangxin; SHI Meilin

    2001-01-01

    Concurrency control has always been one of the most important issues in the design of synchronous groupware systems with fully-replicated architecture. An ideal strategy should be able to support natural and flexible human-to-computer and human-to-human interactions while maintaining the consistency of the system. This paper summarizes previous researches on this topic and points out the deficiencies of the existing results. A novel semantics-based concurrency control framework, oodOPT, is proposed. The main idea of the framework is to resolve conflicts by utilizing semantics of the operations and the accessed data objects. With this approach, complexities in concurrency control are shifted completely from application developers to the framework. Conflicts among operations on objects with different semantics and the strategies resolving these conflicts are analyzed. After describing the algorithm in full detail, the discussion ends up with a comparison with other related work and some considerations for open problems.

  6. Economical Landscape Architecture and Planning of Plant Landscape in Wuhan City%构建武汉节约型城市园林植物景观

    Institute of Scientific and Technical Information of China (English)

    徐冬云; 姚中华; 周媛; 陈法志; 徐洪亮

    2011-01-01

    The economical plant landscape is a kind of sustainable landscape, and is an ultimate way to realize economical landscape architecture. Based on analysis of phinomenna appeared in domestic landscape design in recent years, this paper discusses the construction of economical landscape architecture through analysing how to select proper plants and planting patterns. It is shown that protecting and utilize the inherent plant is the bisic method,and using indigenous plants and typical communities are feasible for economical landscape architecture. It is important to optimize the model of planting design for sustainable landscape, and applying of water-saving plant are important means to realize water-saving landscape.%指出了节约型植物景观作为一种可持续的园林景观,是实现节约型园林绿化的重要途径之一。分析了目前武汉地区植物景观建设中存在的问题,并从植物种类的选择、植物群落的构建等方面探讨了武汉地区使用植物景观设计方法构建节约型园林的重要途径。

  7. Controllability analysis and decentralized control of a wet limestone flue gas desulfurization plant

    Energy Technology Data Exchange (ETDEWEB)

    Perales, A.L.V.; Ortiz, F.J.G.; Ollero, P.; Gil, F.M. [University of Seville, Seville (Spain)

    2008-12-15

    Presently, decentralized feedback control is the only control strategy used in wet limestone flue gas desulfurization (WLFGD) plants. Proper tuning of this control strategy is becoming an important issue in WLFGD plants because more stringent SO{sub 2} regulations have come into force recently. Controllability analysis is a highly valuable tool for proper design of control systems, but it has not been applied to WLFGD plants so far. In this paper a decentralized control strategy is designed and applied to a WLFGD pilot plant taking into account the conclusions of a controllability analysis. The results reveal that good SO{sub 2} control in WLFGD plants can be achieved mainly because the main disturbance of the process is well-aligned with the plant and interactions between control loops are beneficial to SO{sub 2} control.

  8. Development of Plant Control Diagnosis Technology and Increasing Its Applications

    Science.gov (United States)

    Kugemoto, Hidekazu; Yoshimura, Satoshi; Hashizume, Satoru; Kageyama, Takashi; Yamamoto, Toru

    A plant control diagnosis technology was developed to improve the performance of plant-wide control and maintain high productivity of plants. The control performance diagnosis system containing this technology picks out the poor performance loop, analyzes the cause, and outputs the result on the Web page. Meanwhile, the PID tuning tool is used to tune extracted loops from the control performance diagnosis system. It has an advantage of tuning safely without process changes. These systems are powerful tools to do Kaizen (continuous improvement efforts) step by step, coordinating with the operator. This paper describes a practical technique regarding the diagnosis system and its industrial applications.

  9. A systematic methodology for controller tuning in wastewater treatment plants

    DEFF Research Database (Denmark)

    Mauricio Iglesias, Miguel; Jørgensen, S.B.; Sin, G.

    2012-01-01

    Wastewater treatment plants are typically subject to continuous disturbances caused by influent variations which exhibits diurnal patterns as well as stochastic changes due to rain and storm water events. In order to achieve an efficient operation, the control system of the plant should be able...... to respond appropriately and reject these disturbances in the influent. A methodology is described here which systematically addresses the assessment of the plant and the influent dynamics, in order to propose a controller tuning that is best adapted to an existing or planned wastewater treatment plant...

  10. Benchmarking of Control Strategies for Wastewater Treatment Plants

    DEFF Research Database (Denmark)

    Wastewater treatment plants are large non-linear systems subject to large perturbations in wastewater flow rate, load and composition. Nevertheless these plants have to be operated continuously, meeting stricter and stricter regulations. Many control strategies have been proposed in the literature...... for improved and more efficient operation of wastewater treatment plants. Unfortunately, their evaluation and comparison – either practical or based on simulation – is difficult. This is partly due to the variability of the influent, to the complexity of the biological and biochemical phenomena......, plant layout, controllers, sensors, performance criteria and test procedures, i.e. a complete benchmarking protocol....

  11. Optimal control and cold war dynamics between plant and herbivore.

    Science.gov (United States)

    Low, Candace; Ellner, Stephen P; Holden, Matthew H

    2013-08-01

    Herbivores eat the leaves that a plant needs for photosynthesis. However, the degree of antagonism between plant and herbivore may depend critically on the timing of their interactions and the intrinsic value of a leaf. We present a model that investigates whether and when the timing of plant defense and herbivore feeding activity can be optimized by evolution so that their interactions can move from antagonistic to neutral. We assume that temporal changes in environmental conditions will affect intrinsic leaf value, measured as potential carbon gain. Using optimal-control theory, we model herbivore evolution, first in response to fixed plant strategies and then under coevolutionary dynamics in which the plant also evolves in response to the herbivore. In the latter case, we solve for the evolutionarily stable strategies of plant defense induction and herbivore hatching rate under different ecological conditions. Our results suggest that the optimal strategies for both plant and herbivore are to avoid direct conflict. As long as the plant has the capability for moderately lethal defense, the herbivore will modify its hatching rate to avoid plant defenses, and the plant will never have to use them. Insights from this model offer a possible solution to the paradox of sublethal defenses and provide a mechanism for stable plant-herbivore interactions without the need for natural enemy control.

  12. Modelling the effect of wheat canopy architecture as affected by sowing density on Septoria tritici epidemics using a coupled epidemic–virtual plant model

    Science.gov (United States)

    Baccar, Rim; Fournier, Christian; Dornbusch, Tino; Andrieu, Bruno; Gouache, David; Robert, Corinne

    2011-01-01

    Background and Aims The relationship between Septoria tritici, a splash-dispersed disease, and its host is complex because of the interactions between the dynamic plant architecture and the vertical progress of the disease. The aim of this study was to test the capacity of a coupled virtual wheat–Septoria tritici epidemic model (Septo3D) to simulate disease progress on the different leaf layers for contrasted sowing density treatments. Methods A field experiment was performed with winter wheat ‘Soissons’ grown at three contrasted densities. Plant architecture was characterized to parameterize the wheat model, and disease dynamic was monitored to compare with simulations. Three simulation scenarios, differing in the degree of detail with which plant variability of development was represented, were defined. Key Results Despite architectural differences between density treatments, few differences were found in disease progress; only the lower-density treatment resulted in a slightly higher rate of lesion development. Model predictions were consistent with field measurements but did not reproduce the higher rate of lesion progress in the low density. The canopy reconstruction scenario in which inter-plant variability was taken into account yielded the best agreement between measured and simulated epidemics. Simulations performed with the canopy represented by a population of the same average plant deviated strongly from the observations. Conclusions It was possible to compare the predicted and measured epidemics on detailed variables, supporting the hypothesis that the approach is able to provide new insights into the processes and plant traits that contribute to the epidemics. On the other hand, the complex and dynamic responses to sowing density made it difficult to test the model precisely and to disentangle the various aspects involved. This could be overcome by comparing more contrasted and/or simpler canopy architectures such as those resulting from quasi

  13. Plant growth architecture and production dynamics : A set of e-learning resources

    NARCIS (Netherlands)

    Heuvelink, E.

    2016-01-01

    FSPM Plant and crop models are popular in the research community and there is increasing interest in their applications, from yield prediction to crop management optimization. A wide range of approaches and their software implementation can be found in the literature, with a large diversity in model

  14. Plant community controls on short-term ecosystem nitrogen retention.

    Science.gov (United States)

    de Vries, Franciska T; Bardgett, Richard D

    2016-05-01

    Retention of nitrogen (N) is a critical ecosystem function, especially in the face of widespread anthropogenic N enrichment; however, our understanding of the mechanisms involved is limited. Here, we tested under glasshouse conditions how plant community attributes, including variations in the dominance, diversity and range of plant functional traits, influence N uptake and retention in temperate grassland. We added a pulse of (15) N to grassland plant communities assembled to represent a range of community-weighted mean plant traits, trait functional diversity and divergence, and species richness, and measured plant and microbial uptake of (15) N, and leaching losses of (15) N, as a short-term test of N retention in the plant-soil system. Root biomass, herb abundance and dominant plant traits were the main determinants of N retention in the plant-soil system: greater root biomass and herb abundance, and lower root tissue density, increased plant (15) N uptake, while higher specific leaf area and root tissue density increased microbial (15) N uptake. Our results provide novel, mechanistic insight into the short-term fate of N in the plant-soil system, and show that dominant plant traits, rather than trait functional diversity, control the fate of added N in the plant-soil system.

  15. Plant growth control by light spectrum

    NARCIS (Netherlands)

    Ieperen, van W.

    2016-01-01

    Plants are sessile organisms that have to cope with their environment as it is exposed to them in nature. To do so, they developed systems to sense environmental signals and to integrate these with endogenous developmental programs. As a result, they are well equipped to survive and flourish in

  16. Plant growth control by light spectrum

    NARCIS (Netherlands)

    Ieperen, van W.

    2016-01-01

    Plants are sessile organisms that have to cope with their environment as it is exposed to them in nature. To do so, they developed systems to sense environmental signals and to integrate these with endogenous developmental programs. As a result, they are well equipped to survive and flourish in v

  17. Data-driven wind plant control

    NARCIS (Netherlands)

    Gebraad, P.M.O.

    2014-01-01

    Each wind turbine in a cluster of wind turbines (a wind power plant) can influence the performance of other turbines through the wake that forms downstream of its rotor. The wake has a reduced wind velocity, since the turbine extracts energy from the flow, and the obstruction by the wind turbine

  18. Recent advances and challenges of fuel cell based power system architectures and control – A review

    DEFF Research Database (Denmark)

    Das, Vipin; Sanjeevikumar, Padmanaban; Venkitusamy, Karthikeyan

    2017-01-01

    Renewable energy generation is rapidly growing in the power sector industry and widely used for two categories: grid connected and standalone system. This paper gives the insights about fuel cell operation and application of various power electronics systems. The fuel cell voltage decreases bit...... of utilization. In order to improve the reliability of fuel cell based power system, the integration of energy storage system and advanced research methods are focused in this paper. The control algorithms of power architecture for the couple of well-known applications are discussed. Additionally, the paper...... addresses the suitable processor utilized as a part of the energy unit application on the premise of fuel cell characteristics. In this paper, the challenges to improve the dynamics of controller in fuel cell based applications are mentioned....

  19. Optimal Traits of Plant Hydraulic Architecture for Rock-Dominated Landscapes

    Science.gov (United States)

    Schwinning, S.

    2014-12-01

    Optimality models can only be as good as assumptions about the relevant constraints on plant function. To date, Dynamic Global Vegetation Models (DGVMs) have utilized relatively simple representations of the rhizosphere, chiefly assuming uniform, thick soil without restrictions to root development. In reality, many terrestrial landforms have features that severely impede root growth. These include habitats with shallow or skeletal soils over bedrock, karst or caliche. Experiments have shown that plants in these habitats are not limited to using soil water, but use a variety of strategies to extract water from rocky substrates, e.g., growing extended structural roots along rock crevices into soil pockets or perched water tables, developing flattened root mats inside planar fissures or associating with mycorrhizae to extract water directly from the rock matrix. While these strategies expand plant-available water sources beyond soil, the added pools are expected to have extraction and recharge characteristics quite different from soil. Here I ask how the dynamical differences in non-soil water pools should influence plant hydraulic traits. I built upon earlier work to determine how predictions of optimal plant function types change when model details are adjusted to reflect water uptake from non-soil sources. The model is a hydraulic continuum model based on Darcy's law with optimization parameters representing biomass allocation between leaves, stems and roots, variable stem water storage capacity, and sensitivity of leaf and root conductivity to water potential. The rhizosphere is represented by two dynamically distinct water pools, the first representing a component with quick recharge and depletion (remnant soil), the second a non-soil component with restricted root density, potentially high storage capacity but possibly low hydraulic conductivity. The prediction of optimal plant functional types was significantly altered for non-soil compared to soil substrates

  20. Plant-microbe interactions and the new biotechnological methods of plant disease control.

    Science.gov (United States)

    Montesinos, E; Bonaterra, A; Badosa, E; Francés, J; Alemany, J; Llorente, I; Moragrega, C

    2002-12-01

    Plants constitute an excellent ecosystem for microorganisms. The environmental conditions offered differ considerably between the highly variable aerial plant part and the more stable root system. Microbes interact with plant tissues and cells with different degrees of dependence. The most interesting from the microbial ecology point of view, however, are specific interactions developed by plant-beneficial (either non-symbiotic or symbiotic) and pathogenic microorganisms. Plants, like humans and other animals, also become sick, but they have evolved a sophisticated defense response against microbes, based on a combination of constitutive and inducible responses which can be localized or spread throughout plant organs and tissues. The response is mediated by several messenger molecules that activate pathogen-responsive genes coding for enzymes or antimicrobial compounds, and produces less sophisticated and specific compounds than immunoglobulins in animals. However, the response specifically detects intracellularly a type of protein of the pathogen based on a gene-for-gene interaction recognition system, triggering a biochemical attack and programmed cell death. Several implications for the management of plant diseases are derived from knowledge of the basis of the specificity of plant-bacteria interactions. New biotechnological products are currently being developed based on stimulation of the plant defense response, and on the use of plant-beneficial bacteria for biological control of plant diseases (biopesticides) and for plant growth promotion (biofertilizers).

  1. Abscisic acid controlled sex before transpiration in vascular plants.

    Science.gov (United States)

    McAdam, Scott A M; Brodribb, Timothy J; Banks, Jo Ann; Hedrich, Rainer; Atallah, Nadia M; Cai, Chao; Geringer, Michael A; Lind, Christof; Nichols, David S; Stachowski, Kye; Geiger, Dietmar; Sussmilch, Frances C

    2016-10-26

    Sexual reproduction in animals and plants shares common elements, including sperm and egg production, but unlike animals, little is known about the regulatory pathways that determine the sex of plants. Here we use mutants and gene silencing in a fern species to identify a core regulatory mechanism in plant sexual differentiation. A key player in fern sex differentiation is the phytohormone abscisic acid (ABA), which regulates the sex ratio of male to hermaphrodite tissues during the reproductive cycle. Our analysis shows that in the fern Ceratopteris richardii, a gene homologous to core ABA transduction genes in flowering plants [SNF1-related kinase2s (SnRK2s)] is primarily responsible for the hormonal control of sex determination. Furthermore, we provide evidence that this ABA-SnRK2 signaling pathway has transitioned from determining the sex of ferns to controlling seed dormancy in the earliest seed plants before being co-opted to control transpiration and CO2 exchange in derived seed plants. By tracing the evolutionary history of this ABA signaling pathway from plant reproduction through to its role in the global regulation of plant-atmosphere gas exchange during the last 450 million years, we highlight the extraordinary effect of the ABA-SnRK2 signaling pathway in plant evolution and vegetation function.

  2. Aquatic Plant Control Research Program. Allelopathic Aquatic Plants for Aquatic Plant Management: A Feasibility Study

    Science.gov (United States)

    1989-10-01

    block number) FIELD GROUP SUB-GROUP Allelopathy "Bioassay . Growth inhibition. Aquatic macrophytes. Biocontrol Lena minor 19. ABSTRACT (Continue on...Bibliography of Aquatic Plant Allelopathy ........ Al 2 ALLELOPATHIC AQUATIC PLANTS FOR AQUATIC PLANT MANAGEMENT; A FEASIBILITY STUDY Introduction Background 1...nutrients, water, and other biotic effects could have overriding effects that appear as competition or allelopathy . These biotic factors must be

  3. Paradigm shift in plant growth control.

    Science.gov (United States)

    Körner, Christian

    2015-06-01

    For plants to grow they need resources and appropriate conditions that these resources are converted into biomass. While acknowledging the importance of co-drivers, the classical view is still that carbon, that is, photosynthetic CO2 uptake, ranks above any other drivers of plant growth. Hence, theory and modelling of growth traditionally is carbon centric. Here, I suggest that this view is not reflecting reality, but emerged from the availability of methods and process understanding at leaf level. In most cases, poorly understood processes of tissue formation and cell growth are governing carbon demand, and thus, CO2 uptake. Carbon can only be converted into biomass to the extent chemical elements other than carbon, temperature or cell turgor permit.

  4. Plant Disease Control by the Use of Chemicals. MP-27.

    Science.gov (United States)

    Ross, William D.; Bridgmon, George H.

    This document has been prepared as a reference manual providing information regarding plant diseases. The text concerns itself with the identification and development of infectious and non-infectious diseases and associated control measures. An appendix includes a glossary of plant pathological terms and a bibliography. (CS)

  5. A SWI/SNF Chromatin Remodelling Protein Controls Cytokinin Production through the Regulation of Chromatin Architecture

    KAUST Repository

    Jégu, Teddy

    2015-10-12

    Chromatin architecture determines transcriptional accessibility to DNA and consequently gene expression levels in response to developmental and environmental stimuli. Recently, chromatin remodelers such as SWI/SNF complexes have been recognized as key regulators of chromatin architecture. To gain insight into the function of these complexes during root development, we have analyzed Arabidopsis knock-down lines for one sub-unit of SWI/SNF complexes: BAF60. Here, we show that BAF60 is a positive regulator of root development and cell cycle progression in the root meristem via its ability to down-regulate cytokinin production. By opposing both the deposition of active histone marks and the formation of a chromatin regulatory loop, BAF60 negatively regulates two crucial target genes for cytokinin biosynthesis (IPT3 and IPT7) and one cell cycle inhibitor (KRP7). Our results demonstrate that SWI/SNF complexes containing BAF60 are key factors governing the equilibrium between formation and dissociation of a chromatin loop controlling phytohormone production and cell cycle progression.

  6. Osteoclast resorption of beta-tricalcium phosphate controlled by surface architecture.

    Science.gov (United States)

    Davison, Noel L; ten Harkel, Bas; Schoenmaker, Ton; Luo, Xiaoman; Yuan, Huipin; Everts, Vincent; Barrère-de Groot, Florence; de Bruijn, Joost D

    2014-08-01

    A resorbable bone graft substitute should mimic native bone in its capacity to support bone formation and be remodeled by osteoclasts (OCl) or other multinucleated cells such as foreign body giant cells (FBGC). We hypothesize that by changing the scale of surface architecture of beta-tricalcium phosphate (TCP), cellular resorption can be influenced. CD14(+) monocyte precursors were isolated from human peripheral blood (n = 4 independent donors) and differentiated into OCl or FBGC on the surface of TCP discs comprising either submicron- or micron-scale surface topographical features (TCPs and TCPb, respectively). On submicrostructured TCPs, OCl survived, fused, differentiated, and extensively resorbed the substrate; however, on microstructured TCPb, OCl survival, TRAP activation, and fusion were attenuated. Importantly, no resorption was observed on microstructured TCPb. By confocal microscopy, OCl formed on TCPs contained numerous actin rings allowing for resorption, but not on TCPb. In comparison, FBGC could not resorb either TCP material, suggesting that osteoclast-specific machinery is necessary to resorb TCP. By tuning surface architecture, it appears possible to control osteoclast resorption of calcium phosphate. This approach presents a useful strategy in the design of resorbable bone graft substitutes.

  7. Model-Based Engine Control Architecture with an Extended Kalman Filter

    Science.gov (United States)

    Csank, Jeffrey T.; Connolly, Joseph W.

    2016-01-01

    This paper discusses the design and implementation of an extended Kalman filter (EKF) for model-based engine control (MBEC). Previously proposed MBEC architectures feature an optimal tuner Kalman Filter (OTKF) to produce estimates of both unmeasured engine parameters and estimates for the health of the engine. The success of this approach relies on the accuracy of the linear model and the ability of the optimal tuner to update its tuner estimates based on only a few sensors. Advances in computer processing are making it possible to replace the piece-wise linear model, developed off-line, with an on-board nonlinear model running in real-time. This will reduce the estimation errors associated with the linearization process, and is typically referred to as an extended Kalman filter. The nonlinear extended Kalman filter approach is applied to the Commercial Modular Aero-Propulsion System Simulation 40,000 (C-MAPSS40k) and compared to the previously proposed MBEC architecture. The results show that the EKF reduces the estimation error, especially during transient operation.

  8. Controlling the contractile strength of engineered cardiac muscle by hierarchal tissue architecture.

    Science.gov (United States)

    Feinberg, Adam W; Alford, Patrick W; Jin, Hongwei; Ripplinger, Crystal M; Werdich, Andreas A; Sheehy, Sean P; Grosberg, Anna; Parker, Kevin Kit

    2012-08-01

    The heart is a muscular organ with a wrapping, laminar structure embedded with neural and vascular networks, collagen fibrils, fibroblasts, and cardiac myocytes that facilitate contraction. We hypothesized that these non-muscle components may have functional benefit, serving as important structural alignment cues in inter- and intra-cellular organization of cardiac myocytes. Previous studies have demonstrated that alignment of engineered myocardium enhances calcium handling, but how this impacts actual force generation remains unclear. Quantitative assays are needed to determine the effect of alignment on contractile function and muscle physiology. To test this, micropatterned surfaces were used to build 2-dimensional myocardium from neonatal rat ventricular myocytes with distinct architectures: confluent isotropic (serving as the unaligned control), confluent anisotropic, and 20 μm spaced, parallel arrays of multicellular myocardial fibers. We combined image analysis of sarcomere orientation with muscular thin film contractile force assays in order to calculate the peak sarcomere-generated stress as a function of tissue architecture. Here we report that increasing peak systolic stress in engineered cardiac tissues corresponds with increasing sarcomere alignment. This change is larger than would be anticipated from enhanced calcium handling and increased uniaxial alignment alone. These results suggest that boundary conditions (heterogeneities) encoded in the extracellular space can regulate muscle tissue function, and that structural organization and cytoskeletal alignment are critically important for maximizing peak force generation.

  9. Adult plant development in triticale (× triticosecale wittmack) is controlled by dynamic genetic patterns of regulation.

    Science.gov (United States)

    Würschum, Tobias; Liu, Wenxin; Alheit, Katharina V; Tucker, Matthew R; Gowda, Manje; Weissmann, Elmar A; Hahn, Volker; Maurer, Hans Peter

    2014-09-18

    Many biologically and agronomically important traits are dynamic and show temporal variation. In this study, we used triticale (× Triticosecale Wittmack) as a model crop to assess the genetic dynamics underlying phenotypic plasticity of adult plant development. To this end, a large mapping population with 647 doubled haploid lines derived from four partially connected families from crosses among six parents was scored for developmental stage at three different time points. Using genome-wide association mapping, we identified main effect and epistatic quantitative trait loci (QTL) at all three time points. Interestingly, some of these QTL were identified at all time points, whereas others appear to only contribute to the genetic architecture at certain developmental stages. Our results illustrate the temporal contribution of QTL to the genetic control of adult plant development and more generally, the temporal genetic patterns of regulation that underlie dynamic traits.

  10. Emerging Technologioes in Instrumentation and Controls and Their Potential Regulatory Implications for Nuclear Power Plants

    Energy Technology Data Exchange (ETDEWEB)

    Korsah, Kofi [ORNL; Bobrek, Miljko [ORNL; Cetiner, Mustafa Sacit [ORNL; Ewing, Paul D [ORNL; Holcomb, David Eugene [ORNL; Howlader, Mostofa [ORNL; Killough, Stephen M [ORNL; Kisner, Roger A [ORNL; Loebl, Andy [ORNL; Moore, Michael Roy [ORNL; Muhlheim, Michael David [ORNL; Mullens, James Allen [ORNL; Shourbaji, Ayman A [ORNL; Wilson, Thomas L [ORNL

    2009-01-01

    This paper provides a summary of eight instrumentation and control (&C) technology areas, with applications in nuclear power plants (NPPs), that were the focus of a recent study performed by Oak Ridge National Laboratory (ORNL) for the Nuclear Regulatory Commission (NRC.) The state of the technology s application in NPPs, along with potential regulatory impact(s), are discussed. The technology focus areas are: (1) sensors and measurement systems, (2) communications media and networking, (3) microprocessors and other integrated circuits, (4) computational platforms, (5) surveillance, diagnostics, and prognostics, (6) human-system interactions, (7) high-integrity software, and (8) I&C architectures in new plants. The regulatory implications of these focus areas with regard to their application in NPPs are also discussed.

  11. Model-free adaptive control of advanced power plants

    Energy Technology Data Exchange (ETDEWEB)

    Cheng, George Shu-Xing; Mulkey, Steven L.; Wang, Qiang

    2015-08-18

    A novel 3-Input-3-Output (3.times.3) Model-Free Adaptive (MFA) controller with a set of artificial neural networks as part of the controller is introduced. A 3.times.3 MFA control system using the inventive 3.times.3 MFA controller is described to control key process variables including Power, Steam Throttle Pressure, and Steam Temperature of boiler-turbine-generator (BTG) units in conventional and advanced power plants. Those advanced power plants may comprise Once-Through Supercritical (OTSC) Boilers, Circulating Fluidized-Bed (CFB) Boilers, and Once-Through Supercritical Circulating Fluidized-Bed (OTSC CFB) Boilers.

  12. Model-free adaptive control of advanced power plants

    Science.gov (United States)

    Cheng, George Shu-Xing; Mulkey, Steven L.; Wang, Qiang

    2015-08-18

    A novel 3-Input-3-Output (3.times.3) Model-Free Adaptive (MFA) controller with a set of artificial neural networks as part of the controller is introduced. A 3.times.3 MFA control system using the inventive 3.times.3 MFA controller is described to control key process variables including Power, Steam Throttle Pressure, and Steam Temperature of boiler-turbine-generator (BTG) units in conventional and advanced power plants. Those advanced power plants may comprise Once-Through Supercritical (OTSC) Boilers, Circulating Fluidized-Bed (CFB) Boilers, and Once-Through Supercritical Circulating Fluidized-Bed (OTSC CFB) Boilers.

  13. Abnormal small-world architecture of top–down control networks in obsessive–compulsive disorder

    Science.gov (United States)

    Zhang, Tijiang; Wang, Jinhui; Yang, Yanchun; Wu, Qizhu; Li, Bin; Chen, Long; Yue, Qiang; Tang, Hehan; Yan, Chaogan; Lui, Su; Huang, Xiaoqi; Chan, Raymond C.K.; Zang, Yufeng; He, Yong; Gong, Qiyong

    2011-01-01

    Background Obsessive–compulsive disorder (OCD) is a common neuropsychiatric disorder that is characterized by recurrent intrusive thoughts, ideas or images and repetitive ritualistic behaviours. Although focal structural and functional abnormalities in specific brain regions have been widely studied in populations with OCD, changes in the functional relations among them remain poorly understood. This study examined OCD–related alterations in functional connectivity patterns in the brain’s top–down control network. Methods We applied resting-state functional magnetic resonance imaging to investigate the correlation patterns of intrinsic or spontaneous blood oxygen level–dependent signal fluctuations in 18 patients with OCD and 16 healthy controls. The brain control networks were first constructed by thresholding temporal correlation matrices of 39 brain regions associated with top–down control and then analyzed using graph theory-based approaches. Results Compared with healthy controls, the patients with OCD showed decreased functional connectivity in the posterior temporal regions and increased connectivity in various control regions such as the cingulate, precuneus, thalamus and cerebellum. Furthermore, the brain’s control networks in the healthy controls showed small-world architecture (high clustering coefficients and short path lengths), suggesting an optimal balance between modularized and distributed information processing. In contrast, the patients with OCD showed significantly higher local clustering, implying abnormal functional organization in the control network. Further analysis revealed that the changes in network properties occurred in regions of increased functional connectivity strength in patients with OCD. Limitations The patient group in the present study was heterogeneous in terms of symptom clusters, and most of the patients with OCD were medicated. Conclusion Our preliminary results suggest that the organizational patterns of

  14. Abnormal small-world architecture of top-down control networks in obsessive-compulsive disorder.

    Science.gov (United States)

    Zhang, Tijiang; Wang, Jinhui; Yang, Yanchun; Wu, Qizhu; Li, Bin; Chen, Long; Yue, Qiang; Tang, Hehan; Yan, Chaogan; Lui, Su; Huang, Xiaoqi; Chan, Raymond C K; Zang, Yufeng; He, Yong; Gong, Qiyong

    2011-01-01

    Obsessive-compulsive disorder (OCD) is a common neuropsychiatric disorder that is characterized by recurrent intrusive thoughts, ideas or images and repetitive ritualistic behaviours. Although focal structural and functional abnormalities in specific brain regions have been widely studied in populations with OCD, changes in the functional relations among them remain poorly understood. This study examined OCD-related alterations in functional connectivity patterns in the brain's top-down control network. We applied resting-state functional magnetic resonance imaging to investigate the correlation patterns of intrinsic or spontaneous blood oxygen level-dependent signal fluctuations in 18 patients with OCD and 16 healthy controls. The brain control networks were first constructed by thresholding temporal correlation matrices of 39 brain regions associated with top-down control and then analyzed using graph theory-based approaches. Compared with healthy controls, the patients with OCD showed decreased functional connectivity in the posterior temporal regions and increased connectivity in various control regions such as the cingulate, precuneus, thalamus and cerebellum. Furthermore, the brain's control networks in the healthy controls showed small-world architecture (high clustering coefficients and short path lengths), suggesting an optimal balance between modularized and distributed information processing. In contrast, the patients with OCD showed significantly higher local clustering, implying abnormal functional organization in the control network. Further analysis revealed that the changes in network properties occurred in regions of increased functional connectivity strength in patients with OCD. The patient group in the present study was heterogeneous in terms of symptom clusters, and most of the patients with OCD were medicated. Our preliminary results suggest that the organizational patterns of intrinsic brain activity in the control networks are altered in

  15. Architectural study of the design and operation of advanced force feedback manual controllers

    Science.gov (United States)

    Tesar, Delbert; Kim, Whee-Kuk

    1990-01-01

    A teleoperator system consists of a manual controller, control hardware/software, and a remote manipulator. It was employed in either hazardous or unstructured, and/or remote environments. In teleoperation, the main-in-the-loop is the central concept that brings human intelligence to the teleoperator system. When teleoperation involves contact with an uncertain environment, providing the feeling of telepresence to the human operator is one of desired characteristics of the teleoperator system. Unfortunately, most available manual controllers in bilateral or force-reflecting teleoperator systems can be characterized by their bulky size, high costs, or lack of smoothness and transparency, and elementary architectures. To investigate other alternatives, a force-reflecting, 3 degree of freedom (dof) spherical manual controller is designed, analyzed, and implemented as a test bed demonstration in this research effort. To achieve an improved level of design to meet criteria such as compactness, portability, and a somewhat enhanced force-reflecting capability, the demonstration manual controller employs high gear-ratio reducers. To reduce the effects of the inertia and friction on the system, various force control strategies are applied and their performance investigated. The spherical manual controller uses a parallel geometry to minimize inertial and gravitational effects on its primary task of transparent information transfer. As an alternative to the spherical 3-dof manual controller, a new conceptual (or parallel) spherical 3-dof module is introduced with a full kinematic analysis. Also, the resulting kinematic properties are compared to those of other typical spherical 3-dof systems. The conceptual design of a parallel 6-dof manual controller and its kinematic analysis is presented. This 6-dof manual controller is similar to the Stewart Platform with the actuators located on the base to minimize the dynamic effects. Finally, a combination of the new 3-dof and 6-dof

  16. Application of distributed lighting control architecture in dementia-friendly smart homes

    Directory of Open Access Journals (Sweden)

    Atousa Zaeim

    2015-08-01

    Full Text Available Dementia is a growing problem in societies with aging populations, not only for patients, but also for family members and for the society in terms of the associated costs of providing health care. Helping patients to maintain a degree of independence in their home environment while ensuring their safeties is considered as a positive step forward for addressing individual needs of dementia patients. A common symptom for dementia patients including those with Alzheimer’s Disease and Related Dementia (ADRD is sleep disturbance, patients being awake at night and asleep during the day. One of the problems with night time sleep disturbance in dementia patients is the possible accidental falls of patients in the dark environment. An issue associated with un-hourly sleeping behavior in these patients is the lighting condition of their surroundings. Clinical studies indicate that appropriate level of lighting can help to restore the rest-activity cycles of ADRD patients. This study tackles this problem by generating machine learning solutions for controlling the lighting conditions of multiple rooms in the house in different hours based on patterns of behaviors generated for the patient. Several neural network oriented classification methods are investigated and their feasibilities are assessed with a collection of synthetic data capturing two conditions of balanced and unbalanced inter-class samples. The classifiers are utilized within two centric and distributed lighting control architectures. The results indicate the feasibility of the distributed architecture in achieving a high level of classification performance resulting in adequate control over lighting conditions of the house in various time periods.

  17. Ridgefield - Wetland Invasive Plant Search and Control 2012

    Data.gov (United States)

    US Fish and Wildlife Service, Department of the Interior — This project would expand survey, control, and monitoring efforts to detect new wetland invasive plant threats and continue reduction of the accumulation of recently...

  18. Ridgefield - Wetland Invasive Plant Search and Control 2011

    Data.gov (United States)

    US Fish and Wildlife Service, Department of the Interior — This project would expand survey, control, and monitoring efforts to detect new wetland invasive plant threats and reduce the accumulation of recently documented...

  19. Voltage Control in Wind Power Plants with Doubly Fed Generators

    DEFF Research Database (Denmark)

    Garcia, Jorge Martinez

    In this work, the process of designing a wind power plant composed of; doubly fed induction generators, a static compensator unit, mechanically switched capacitors and on-load tap changer, for voltage control is shown. The selected control structure is based on a decentralized system, since...... supplied by the doubly fed induction generator wind turbines is overcome by installing a reactive power compensator, i.e. a static compensator unit, which is coordinated with the plant control by a specific dispatcher. This dispatcher is set according to the result of the wind power plant load flow....... To release the operation of the converters during steady-state disturbances, mechanically switched capacitors are installed in the wind power plant, which due to their characteristics, they are appropriate for permanent disturbances compensation. The mechanically switched capacitors are controlled to allow...

  20. Aloe plant extracts as alternative larvicides for mosquito control

    African Journals Online (AJOL)

    SERVER

    2008-04-03

    Apr 3, 2008 ... 2Department of Biological Sciences, Egerton University, P. O. Box 536, Egerton 20107, Kenya. ... the incidence of this disease is to eradicate and control ...... effects of three plant extracts on Culex pipiens larvae (Diptera:.

  1. (Controls of the plant endomembrane-secretory pathway)

    Energy Technology Data Exchange (ETDEWEB)

    1991-01-01

    These studies are focused on elucidating the molecular structure of plant cell membranes with special reference to cell surface glycoproteins. The studies reported herein include use of monoclonal antibodies to characterize cell surface epitopes, construction of cDNA libraries of cell surface proteins, isolation of plant cell mutants by flow cytometry, detection of beta-glucouronidase marker enzyme systems in plants, expression go VSVG (the major envelope glycoprotein of Vesicular Stomatis Virus) in plant cells, and control of gene expression of cell membrane glycoproteins.(DT)

  2. [Controls of the plant endomembrane-secretory pathway]. Final report

    Energy Technology Data Exchange (ETDEWEB)

    1991-12-31

    These studies are focused on elucidating the molecular structure of plant cell membranes with special reference to cell surface glycoproteins. The studies reported herein include use of monoclonal antibodies to characterize cell surface epitopes, construction of cDNA libraries of cell surface proteins, isolation of plant cell mutants by flow cytometry, detection of beta-glucouronidase marker enzyme systems in plants, expression go VSVG (the major envelope glycoprotein of Vesicular Stomatis Virus) in plant cells, and control of gene expression of cell membrane glycoproteins.(DT)

  3. Introducing Model Predictive Control for Improving Power Plant Portfolio Performance

    DEFF Research Database (Denmark)

    Edlund, Kristian Skjoldborg; Bendtsen, Jan Dimon; Børresen, Simon

    2008-01-01

    This paper introduces a model predictive control (MPC) approach for construction of a controller for balancing the power generation against consumption in a power system. The objective of the controller is to coordinate a portfolio consisting of multiple power plant units in the effort to perform...

  4. An Advanced Electrospinning Method of Fabricating Nanofibrous Patterned Architectures with Controlled Deposition and Desired Alignment

    Science.gov (United States)

    Rasel, Sheikh Md

    We introduce a versatile advanced method of electrospinning for fabricating various kinds of nanofibrous patterns along with desired alignment, controlled amount of deposition and locally variable density into the architectures. In this method, we employed multiple electrodes whose potentials have been altered in milliseconds with the help of microprocessor based control system. Therefore, key success of this method was that the electrical field as well as charge carrying fibers could be switched shortly from one electrode's location to another, as a result, electrospun fibers could be deposited on the designated areas with desired alignment. A wide range of nanofibrous patterned architectures were constructed using proper arrangement of multiple electrodes. By controlling the concurrent activation time of two adjacent electrodes, we demonstrated that amount of fibers going into the pattern can be adjusted and desired alignment in electrospun fibers can be obtained. We also revealed that the deposition density of electrospun fibers in different areas of patterned architectures can be varied. We showed that by controlling the deposition time between two adjacent electrodes, a number of functionally graded patterns can be generated with uniaxial alignment. We also demonstrated that this handy method was capable of producing random, aligned, and multidirectional nanofibrous mats by engaging a number of electrodes and switching them in desired patterns. A comprehensive study using finite element method was carried out to understand the effects of electrical field. Simulation results revealed that electrical field strength alters shortly based on electrode control switch patterns. Nanofibrous polyvinyl alcohol (PVA) scaffolds and its composite reinforced with wollastonite and wood flour were fabricated using rotating drum electrospinning technique. Morphological, mechanical, and thermal, properties were characterized on PVA/wollastonite and PVA/wood flour nanocomposites

  5. Including inputs and control within equation-free architectures for complex systems

    Science.gov (United States)

    Proctor, Joshua L.; Brunton, Steven L.; Kutz, J. Nathan

    2016-11-01

    The increasing ubiquity of complex systems that require control is a challenge for existing methodologies in characterization and controller design when the system is high-dimensional, nonlinear, and without physics-based governing equations. We review standard model reduction techniques such as Proper Orthogonal Decomposition (POD) with Galerkin projection and Balanced POD (BPOD). Further, we discuss the link between these equation-based methods and recently developed equation-free methods such as the Dynamic Mode Decomposition and Koopman operator theory. These data-driven methods can mitigate the challenge of not having a well-characterized set of governing equations. We illustrate that this equation-free approach that is being applied to measurement data from complex systems can be extended to include inputs and control. Three specific research examples are presented that extend current equation-free architectures toward the characterization and control of complex systems. These examples motivate a potentially revolutionary shift in the characterization of complex systems and subsequent design of objective-based controllers for data-driven models.

  6. Evaluating neural control with optimal architecture for DC/DC converter

    Directory of Open Access Journals (Sweden)

    Fredy Hernán Martínez Sarmiento

    2010-05-01

    -power equipment raises great design challenges due to the mathematical model’s complexity and its highly nonlinear dynamic characteristics. Artificial intelligence techniques, such as neuronal networks, suppose great improvements in design and final per- formance, given their capacity for learning complex dynamics and generalising their behaviour. This work was aimed at propo- sing (and evaluating dynamic response later on direct control link with neuronal networks which also allowed eliminating test ele- ments and error in its design. Artificial neuronal network-based direct control was designed as well as possible using bio-inspired search models. This simultaneously optimised two different but fundamental aspects of the network: architecture and the weight of the connections. The control was applied to a boost converter. The results led to observing the scheme’s dynamic performan- ce; response time and exit voltage delta led to concluding that the criteria selected for designing the control were appropriate and represented a contribution towards developing control applications of DC/DC switchmode systems.

  7. Fault Tolerant Architecture For A Fly-By-Light Flight Control Computer

    Science.gov (United States)

    Thompson, Kevin; Stipanovich, John; Smith, Brian; Reddy, Mahesh C.

    1990-02-01

    The next generation of flight control computers will utilize fiber optic technology to produce a fly-by-light flight control system. Optical transducers and optical fibers will take the place of electrical position transducers and wires, torsion bars, bell cranks, and cables. Applications for this fly-by-light technology include space launch vehicles, upperstages, space-craft, and commercial/military aircraft. Optical fibers are lighter than mechanical transmission media and unlike conven-tional wire transmissions are not susceptible to electromagnetic interference (EMI) and high energy emission sources. This paper will give an overview of a fault tolerant In-Line Monitored optical flight control system being developed at Boeing Aerospace & Electronics in Seattle, Washington. This system uses passive transducers with fiber optic interconnections which hold promises to virtually eliminate EMI threats to flight control system performance and flight safety and also provide significant weight savings. The main emphasis of this paper will be the In-Line Monitored architecture of the optical transducer system required for use in a fault tolerant flight control system.

  8. Control of pain with topical plant medicines

    Institute of Scientific and Technical Information of China (English)

    James; David; Adams; Jr.; Xiaogang; Wang

    2015-01-01

    Pain is normally treated with oral nonsteroidal anti-inflammatory agents and opioids. These drugs are dangerous and are responsible for many hospitalizations and deaths. It is much safer to use topical preparations made from plants to treat pain, even severe pain. Topical preparations must contain compounds that penetrate the skin, inhibit pain receptors such as transient receptor potential cation channels and cyclooxygenase-2, to relieve pain. Inhibition of pain in the skin disrupts the pain cycle and avoids exposure of internal organs to large amounts of toxic compounds. Use of topical pain relievers has the potential to save many lives, decrease medical costs and improve therapy.

  9. Model Predictive Control of Integrated Gasification Combined Cycle Power Plants

    Energy Technology Data Exchange (ETDEWEB)

    B. Wayne Bequette; Priyadarshi Mahapatra

    2010-08-31

    The primary project objectives were to understand how the process design of an integrated gasification combined cycle (IGCC) power plant affects the dynamic operability and controllability of the process. Steady-state and dynamic simulation models were developed to predict the process behavior during typical transients that occur in plant operation. Advanced control strategies were developed to improve the ability of the process to follow changes in the power load demand, and to improve performance during transitions between power levels. Another objective of the proposed work was to educate graduate and undergraduate students in the application of process systems and control to coal technology. Educational materials were developed for use in engineering courses to further broaden this exposure to many students. ASPENTECH software was used to perform steady-state and dynamic simulations of an IGCC power plant. Linear systems analysis techniques were used to assess the steady-state and dynamic operability of the power plant under various plant operating conditions. Model predictive control (MPC) strategies were developed to improve the dynamic operation of the power plants. MATLAB and SIMULINK software were used for systems analysis and control system design, and the SIMULINK functionality in ASPEN DYNAMICS was used to test the control strategies on the simulated process. Project funds were used to support a Ph.D. student to receive education and training in coal technology and the application of modeling and simulation techniques.

  10. Steigerwald - Invasive Plant Detection, Control, and Replacement with Native Plants 2010

    Data.gov (United States)

    US Fish and Wildlife Service, Department of the Interior — This project would maintain and expand annual invasive plant survey, control, and monitoring on Steigerwald Lake NWR. Early detection surveys, rapid response, large...

  11. Steigerwald - Invasive Plant Detection, Control, and Replacement with Native Plants 2011

    Data.gov (United States)

    US Fish and Wildlife Service, Department of the Interior — This project would maintain and expand annual invasive plant survey, control, & monitoring on Steigerwald Lake NWR. Early detection surveys, rapid response,...

  12. Energy efficient control of a refrigeration plant

    DEFF Research Database (Denmark)

    Rasmussen, Henrik; Larsen, Lars F. S.

    2009-01-01

    This paper proposes a novel method for superheat and capacity control of refrigeration systems. The new idea is to control the superheat by the compressor speed and capacity by the refrigerant flow. A new low order nonlinear model of the evaporator is developed and used in a backstepping design o...... and the methods are evaluated with respect to energy efficiency....

  13. Two-Channel Transparency-Optimized Control Architectures in Bilateral Teleoperation With Time Delay

    Science.gov (United States)

    Kim, Jonghyun; Chang, Pyung Hun; Park, Hyung-Soon

    2013-01-01

    This paper introduces transparency-optimized control architectures (TOCAs) using two communication channels. Two classes of two-channel TOCAs are found, thereby showing that two channels are sufficient to achieve transparency. These TOCAs achieve a greater level of transparency but poorer stability than three-channel TOCAs and four-channel TOCAs. Stability of the two-channel TOCAs has been enhanced while minimizing transparency degradation by adding a filter; and a combined use of the two classes of two-channel TOCAs is proposed for both free space and constrained motion, which involve switching between two TOCAs for transition between free space and constrained motions. The stability condition of the switched teleoperation system is derived for practical applications. Through the one degree-of-freedom (DOF) experiment, the proposed two-channel TOCAs were shown to operate stably, while achieving better transparency under time delay than the other TOCAs. PMID:23833548

  14. Energy Management Systems and tertiary regulation in hierarchical control architectures for islanded micro-grids

    DEFF Research Database (Denmark)

    Sanseverino, Eleonora Riva; Di Silvestre, Maria Luisa; Quang, Ninh Nguyen;

    2015-01-01

    In this paper, the structure of the highest level of a hierarchical control architecture for micro-grids is proposed. Such structure includes two sub-levels: the Energy Management System, EMS, and the tertiary regulation. The first devoted to energy resources allocation in each time slot based...... on marginal production costs, the latter aiming at finding the match between production and consumption satisfying the constraints set by the EMS level about the energy production in each time slot. Neglecting the efficiency of the different energy generation systems as well as that of the infrastructure...... for electrical energy distribution, the problem dealt with by the EMS sub-level is linear and can be solved by well known Linear Programming optimization procedures. The tertiary sub-level, below the EMS, optimizes mainly technical objectives and requires the solution of the Optimal Power Flow problem. After...

  15. A multi-agent architecture for intelligent building sensing and control

    Energy Technology Data Exchange (ETDEWEB)

    Sharples, S.; Callaghan, V.; Clarke, G. [Essex University, Colchester (United Kingdom). Dept. of Computer Science

    1999-07-01

    We describe a new approach to intelligent building systems, that utilises an intelligent agent approach to autonomously governing the building environment. We discuss the role of learning in building control systems, and contrast this approach with existing IB solutions. We explain the importance of acquiring information from sensors, rather than relying on preprogrammed models, to determine user needs. We describe how our architecture, consisting of distributed embedded agents, utilises sensory information to learn to perform tasks related to user comfort, energy conservation, safety and monitoring functions. We show how these agents, employing a behaviour-based approach derived from robotics research, are able to continuously learn and adapt to individuals within a building, while always providing a fast, safe response to any situation. Finally, we show how such a system could be used to provide support for older people, or people with disabilities, allowing them greater independence and quality of life. (author)

  16. Quality control of plant food supplements.

    Science.gov (United States)

    Sanzini, Elisabetta; Badea, Mihaela; Santos, Ariana Dos; Restani, Patrizia; Sievers, Hartwig

    2011-12-01

    It is essential to guarantee the safety of unprocessed plants and food supplements if consumers' health is to be protected. Although botanicals and their preparations are regulated at EU level, at least in part, there is still considerable discretion at national level, and Member States may choose to classify a product either as a food supplement or as a drug. Accurate data concerning the finished products and the plant used as the starting point are of major importance if risks and safety are to be properly assessed, but in addition standardized criteria for herbal preparation must be laid down and respected by researchers and manufacturers. Physiologically active as well as potentially toxic constituents need to be identified, and suitable analytical methods for their measurement specified, particularly in view of the increasing incidence of economically motivated adulteration of herbal raw materials and extracts. It remains the duty of food operators to keep up with the scientific literature and to provide sufficient information to enable the adaptation of specifications, sampling schemes and analytical methods to a fast-changing environment.

  17. SOWFA Super-Controller: A High-Fidelity Tool for Evaluating Wind Plant Control Approaches

    Energy Technology Data Exchange (ETDEWEB)

    Fleming, P.; Gebraad, P.; van Wingerden, J. W.; Lee, S.; Churchfield, M.; Scholbrock, A.; Michalakes, J.; Johnson, K.; Moriarty, P.

    2013-01-01

    This paper presents a new tool for testing wind plant controllers in the Simulator for Offshore Wind Farm Applications (SOWFA). SOWFA is a high-fidelity simulator for the interaction between wind turbine dynamics and the fluid flow in a wind plant. The new super-controller testing environment in SOWFA allows for the implementation of the majority of the wind plant control strategies proposed in the literature.

  18. Architectures and Evaluation for Adjustable Control Autonomy for Space-Based Life Support Systems

    Science.gov (United States)

    Malin, Jane T.; Schreckenghost, Debra K.

    2001-01-01

    In the past five years, a number of automation applications for control of crew life support systems have been developed and evaluated in the Adjustable Autonomy Testbed at NASA's Johnson Space Center. This paper surveys progress on an adjustable autonomous control architecture for situations where software and human operators work together to manage anomalies and other system problems. When problems occur, the level of control autonomy can be adjusted, so that operators and software agents can work together on diagnosis and recovery. In 1997 adjustable autonomy software was developed to manage gas transfer and storage in a closed life support test. Four crewmembers lived and worked in a chamber for 91 days, with both air and water recycling. CO2 was converted to O2 by gas processing systems and wheat crops. With the automation software, significantly fewer hours were spent monitoring operations. System-level validation testing of the software by interactive hybrid simulation revealed problems both in software requirements and implementation. Since that time, we have been developing multi-agent approaches for automation software and human operators, to cooperatively control systems and manage problems. Each new capability has been tested and demonstrated in realistic dynamic anomaly scenarios, using the hybrid simulation tool.

  19. Building highly available control system applications with Advanced Telecom Computing Architecture and open standards

    Science.gov (United States)

    Kazakov, Artem; Furukawa, Kazuro

    2010-11-01

    Requirements for modern and future control systems for large projects like International Linear Collider demand high availability for control system components. Recently telecom industry came up with a great open hardware specification - Advanced Telecom Computing Architecture (ATCA). This specification is aimed for better reliability, availability and serviceability. Since its first market appearance in 2004, ATCA platform has shown tremendous growth and proved to be stable and well represented by a number of vendors. ATCA is an industry standard for highly available systems. On the other hand Service Availability Forum, a consortium of leading communications and computing companies, describes interaction between hardware and software. SAF defines a set of specifications such as Hardware Platform Interface, Application Interface Specification. SAF specifications provide extensive description of highly available systems, services and their interfaces. Originally aimed for telecom applications, these specifications can be used for accelerator controls software as well. This study describes benefits of using these specifications and their possible adoption to accelerator control systems. It is demonstrated how EPICS Redundant IOC was extended using Hardware Platform Interface specification, which made it possible to utilize benefits of the ATCA platform.

  20. Reconfigurable Control of a Ship Propulsion Plant

    DEFF Research Database (Denmark)

    Blanke, M.; Izadi-Zamanabadi, Roozbeh

    1998-01-01

    Fault-tolerant control combines fault detection and isolation techniques with supervisory control, to achieve the autonomous accommodation of faults before they develop into failures. While fault detection and isolation (FDI) methods have matured during the past decade, the extension to fault......-tolerant control is a fairly new area. Thise paper presents a ship propulsion system as a benchmark that should be useful as a platform for the development of new ideas and a comparison of methods. The benchmark has two main elements. One is the development of efficient FDI algorithms, and the other...... is the analysis and implementation of autonomous fault accommodation. A benchmark kit can be obtained from the authors....

  1. ARCHITECTURE OF A CHARGE-TRANSFER STATE REGULATING LIGHT HARVESTING IN A PLANT ANTENNA PROTEIN

    Energy Technology Data Exchange (ETDEWEB)

    Fleming, Graham; Ahn, Tae Kyu; Avenson, Thomas J.; Ballottari, Matteo; Cheng, Yuan-Chung; Niyogi, Krishna K.; Bassi, Roberto; Fleming, Graham R.

    2008-04-02

    Energy-dependent quenching of excess absorbed light energy (qE) is a vital mechanism for regulating photosynthetic light harvesting in higher plants. All of the physiological characteristics of qE have been positively correlated with charge-transfer between coupled chlorophyll and zeaxanthin molecules in the light-harvesting antenna of photosystem II (PSII). In this work, we present evidence for charge-transfer quenching in all three of the individual minor antenna complexes of PSII (CP29, CP26, and CP24), and we conclude that charge-transfer quenching in CP29 involves a de-localized state of an excitonically coupled chlorophyll dimer. We propose that reversible conformational changes in CP29 can `tune? the electronic coupling between the chlorophylls in this dimer, thereby modulating the energy of the chlorophylls-zeaxanthin charge-transfer state and switching on and off the charge-transfer quenching during qE.

  2. Architecture of a charge-transfer state regulating light harvesting in a plant antenna protein.

    Science.gov (United States)

    Ahn, Tae Kyu; Avenson, Thomas J; Ballottari, Matteo; Cheng, Yuan-Chung; Niyogi, Krishna K; Bassi, Roberto; Fleming, Graham R

    2008-05-01

    Energy-dependent quenching of excess absorbed light energy (qE) is a vital mechanism for regulating photosynthetic light harvesting in higher plants. All of the physiological characteristics of qE have been positively correlated with charge transfer between coupled chlorophyll and zeaxanthin molecules in the light-harvesting antenna of photosystem II (PSII). We found evidence for charge-transfer quenching in all three of the individual minor antenna complexes of PSII (CP29, CP26, and CP24), and we conclude that charge-transfer quenching in CP29 involves a delocalized state of an excitonically coupled chlorophyll dimer. We propose that reversible conformational changes in CP29 can "tune" the electronic coupling between the chlorophylls in this dimer, thereby modulating the energy of the chlorophyll-zeaxanthin charge-transfer state and switching on and off the charge-transfer quenching during qE.

  3. Integrating mixed-effect models into an architectural plant model to simulate inter- and intra-progeny variability: a case study on oil palm (Elaeis guineensis Jacq.).

    Science.gov (United States)

    Perez, Raphaël P A; Pallas, Benoît; Le Moguédec, Gilles; Rey, Hervé; Griffon, Sébastien; Caliman, Jean-Pierre; Costes, Evelyne; Dauzat, Jean

    2016-08-01

    Three-dimensional (3D) reconstruction of plants is time-consuming and involves considerable levels of data acquisition. This is possibly one reason why the integration of genetic variability into 3D architectural models has so far been largely overlooked. In this study, an allometry-based approach was developed to account for architectural variability in 3D architectural models of oil palm (Elaeis guineensis Jacq.) as a case study. Allometric relationships were used to model architectural traits from individual leaflets to the entire crown while accounting for ontogenetic and morphogenetic gradients. Inter- and intra-progeny variabilities were evaluated for each trait and mixed-effect models were used to estimate the mean and variance parameters required for complete 3D virtual plants. Significant differences in leaf geometry (petiole length, density of leaflets, and rachis curvature) and leaflet morphology (gradients of leaflet length and width) were detected between and within progenies and were modelled in order to generate populations of plants that were consistent with the observed populations. The application of mixed-effect models on allometric relationships highlighted an interesting trade-off between model accuracy and ease of defining parameters for the 3D reconstruction of plants while at the same time integrating their observed variability. Future research will be dedicated to sensitivity analyses coupling the structural model presented here with a radiative balance model in order to identify the key architectural traits involved in light interception efficiency. © The Author 2016. Published by Oxford University Press on behalf of the Society for Experimental Biology. All rights reserved. For permissions, please email: journals.permissions@oup.com.

  4. Modeling, simulation, and control of an extraterrestrial oxygen production plant

    Science.gov (United States)

    Schooley, L.; Cellier, F.; Zeigler, B.; Doser, A.; Farrenkopf, G.

    1991-01-01

    The immediate objective is the development of a new methodology for simulation of process plants used to produce oxygen and/or other useful materials from local planetary resources. Computer communication, artificial intelligence, smart sensors, and distributed control algorithms are being developed and implemented so that the simulation or an actual plant can be controlled from a remote location. The ultimate result of this research will provide the capability for teleoperation of such process plants which may be located on Mars, Luna, an asteroid, or other objects in space. A very useful near-term result will be the creation of an interactive design tool, which can be used to create and optimize the process/plant design and the control strategy. This will also provide a vivid, graphic demonstration mechanism to convey the results of other researchers to the sponsor.

  5. Power plant instrumentation and control handbook a guide to thermal power plants

    CERN Document Server

    Basu, Swapan

    2014-01-01

    The book discusses instrumentation and control in modern fossil fuel power plants, with an emphasis on selecting the most appropriate systems subject to constraints engineers have for their projects. It provides all the plant process and design details, including specification sheets and standards currently followed in the plant. Among the unique features of the book are the inclusion of control loop strategies and BMS/FSSS step by step logic, coverage of analytical instruments and technologies for pollution and energy savings, and coverage of the trends toward filed bus systems and integratio

  6. Artificial Intelligence Based Alum Dosage Control in Water Treatment Plant

    Directory of Open Access Journals (Sweden)

    P Poongodi

    2013-08-01

    Full Text Available Supplying good quality of drinking water is a challenging task during the rainy season and floods. During this period water becomes highly polluted with suspended solids which increase the water turbidity. Alum is used to reduce the turbidity of the water. Typically in water treatment plants alum dosage is decided by the Jar test and the desired alum dosage is added manually. This research proposes an automatic alum dosage mixing process. The alum dosage is controlled by an intelligent controller which consists of a dosage predictor, an inverse model of the dosage pump and a Pulse Width Modulation (PWM controller. The optimal alum dosage is predicted by the dosage predictor. The PWM controller controls the flow rate of the alum dosing pump. This proposed method has been implemented in a laboratory based water treatment plant and it ensures the automation in water treatment plant to supply good quality drinking water.

  7. Next Generation Nuclear Plant Resilient Control System Functional Analysis

    Energy Technology Data Exchange (ETDEWEB)

    Lynne M. Stevens

    2010-07-01

    Control Systems and their associated instrumentation must meet reliability, availability, maintainability, and resiliency criteria in order for high temperature gas-cooled reactors (HTGRs) to be economically competitive. Research, perhaps requiring several years, may be needed to develop control systems to support plant availability and resiliency. This report functionally analyzes the gaps between traditional and resilient control systems as applicable to HTGRs, which includes the Next Generation Nuclear Plant; defines resilient controls; assesses the current state of both traditional and resilient control systems; and documents the functional gaps existing between these two controls approaches as applicable to HTGRs. This report supports the development of an overall strategy for applying resilient controls to HTGRs by showing that control systems with adequate levels of resilience perform at higher levels, respond more quickly to disturbances, increase operational efficiency, and increase public protection.

  8. Expert System Control of Plant Growth in an Enclosed Space

    Science.gov (United States)

    May, George; Lanoue, Mark; Bathel, Matthew; Ryan, Robert E.

    2008-01-01

    The Expert System is an enclosed, controlled environment for growing plants, which incorporates a computerized, knowledge-based software program that is designed to capture the knowledge, experience, and problem-solving skills of one or more human experts in a particular discipline. The Expert System is trained to analyze crop/plant status, to monitor the condition of the plants and the environment, and to adjust operational parameters to optimize the plant-growth process. This system is intended to provide a way to remotely control plant growth with little or no human intervention. More specifically, the term control implies an autonomous method for detecting plant states such as health (biomass) or stress and then for recommending and implementing cultivation and/or remediation to optimize plant growth and to minimize consumption of energy and nutrients. Because of difficulties associated with delivering energy and nutrients remotely, a key feature of this Expert System is its ability to minimize this effort and to achieve optimum growth while taking into account the diverse range of environmental considerations that exist in an enclosed environment. The plant-growth environment for the Expert System could be made from a variety of structures, including a greenhouse, an underground cavern, or another enclosed chamber. Imaging equipment positioned within or around the chamber provides spatially distributed crop/plant-growth information. Sensors mounted in the chamber provide data and information pertaining to environmental conditions that could affect plant development. Lamps in the growth environment structure supply illumination, and other additional equipment in the chamber supplies essential nutrients and chemicals.

  9. Microgrid Plant Control Design and Development

    Energy Technology Data Exchange (ETDEWEB)

    Wiegman, Herman; Baone, Chaitanya

    2017-08-14

    This report discusses the technical performance of the proposed microgrid at Potsdam, New York, and the enhanced microgrid controller platform. The test objectives were outlined by the DOE, and summary results and discussion are given for each objective. The findings show that the proposed Potsdam, NY microgrid would have a significant impact on the regional CO2 emissions, the amount of imported energy from the utility, and the resiliency of the critical loads. Additionally, the enhanced microgrid control system developed for this project was tested to be compliant with IEEE 1547 standards, and able to generate revenues to help offset energy costs by way of participation in ancillary services.

  10. Simulink-Based Simulation Architecture for Evaluating Controls for Aerospace Vehicles (SAREC-ASV)

    Science.gov (United States)

    Christhilf, David m.; Bacon, Barton J.

    2006-01-01

    The Simulation Architecture for Evaluating Controls for Aerospace Vehicles (SAREC-ASV) is a Simulink-based approach to providing an engineering quality desktop simulation capability for finding trim solutions, extracting linear models for vehicle analysis and control law development, and generating open-loop and closed-loop time history responses for control system evaluation. It represents a useful level of maturity rather than a finished product. The layout is hierarchical and supports concurrent component development and validation, with support from the Concurrent Versions System (CVS) software management tool. Real Time Workshop (RTW) is used to generate pre-compiled code for substantial component modules, and templates permit switching seamlessly between original Simulink and code compiled for various platforms. Two previous limitations are addressed. Turn around time for incorporating tabular model components was improved through auto-generation of required Simulink diagrams based on data received in XML format. The layout was modified to exploit a Simulink "compile once, evaluate multiple times" capability for zero elapsed time for use in trimming and linearizing. Trim is achieved through a Graphical User Interface (GUI) with a narrow, script definable interface to the vehicle model which facilitates incorporating new models.

  11. Command and Control Architectures for Autonomous Micro-Robotic Forces - FY-2000 Project Report

    Energy Technology Data Exchange (ETDEWEB)

    Dudenhoeffer, Donald Dean

    2001-04-01

    Advances in Artificial Intelligence (AI) and micro-technologies will soon give rise to production of large-scale forces of autonomous micro-robots with systems of innate behaviors and with capabilities of self-organization and real world tasking. Such organizations have been compared to schools of fish, flocks of birds, herds of animals, swarms of insects, and military squadrons. While these systems are envisioned as maintaining a high degree of autonomy, it is important to understand the relationship of man with such machines. In moving from research studies to the practical deployment of large-scale numbers of robots, one of critical pieces that must be explored is the command and control architecture for humans to re-task and also inject global knowledge, experience, and intuition into the force. Tele-operation should not be the goal, but rather a level of adjustable autonomy and high-level control. If a herd of sheep is comparable to the collective of robots, then the human element is comparable to the shepherd pulling in strays and guiding the herd in the direction of greener pastures. This report addresses the issues and development of command and control for largescale numbers of autonomous robots deployed as a collective force.

  12. Electron tomography of cryo-immobilized plant tissue: a novel approach to studying 3D macromolecular architecture of mature plant cell walls in situ.

    Science.gov (United States)

    Sarkar, Purbasha; Bosneaga, Elena; Yap, Edgar G; Das, Jyotirmoy; Tsai, Wen-Ting; Cabal, Angelo; Neuhaus, Erica; Maji, Dolonchampa; Kumar, Shailabh; Joo, Michael; Yakovlev, Sergey; Csencsits, Roseann; Yu, Zeyun; Bajaj, Chandrajit; Downing, Kenneth H; Auer, Manfred

    2014-01-01

    Cost-effective production of lignocellulosic biofuel requires efficient breakdown of cell walls present in plant biomass to retrieve the wall polysaccharides for fermentation. In-depth knowledge of plant cell wall composition is therefore essential for improving the fuel production process. The precise spatial three-dimensional (3D) organization of cellulose, hemicellulose, pectin and lignin within plant cell walls remains unclear to date since the microscopy techniques used so far have been limited to two-dimensional, topographic or low-resolution imaging, or required isolation or chemical extraction of the cell walls. In this paper we demonstrate that by cryo-immobilizing fresh tissue, then either cryo-sectioning or freeze-substituting and resin embedding, followed by cryo- or room temperature (RT) electron tomography, respectively, we can visualize previously unseen details of plant cell wall architecture in 3D, at macromolecular resolution (∼ 2 nm), and in near-native state. Qualitative and quantitative analyses showed that wall organization of cryo-immobilized samples were preserved remarkably better than conventionally prepared samples that suffer substantial extraction. Lignin-less primary cell walls were well preserved in both self-pressurized rapidly frozen (SPRF), cryo-sectioned samples as well as high-pressure frozen, freeze-substituted and resin embedded (HPF-FS-resin) samples. Lignin-rich secondary cell walls appeared featureless in HPF-FS-resin sections presumably due to poor stain penetration, but their macromolecular features could be visualized in unprecedented details in our cryo-sections. While cryo-tomography of vitreous tissue sections is currently proving to be instrumental in developing 3D models of lignin-rich secondary cell walls, here we confirm that the technically easier method of RT-tomography of HPF-FS-resin sections could be used immediately for routine study of low-lignin cell walls. As a proof of principle, we characterized the

  13. Electron tomography of cryo-immobilized plant tissue: a novel approach to studying 3D macromolecular architecture of mature plant cell walls in situ.

    Directory of Open Access Journals (Sweden)

    Purbasha Sarkar

    Full Text Available Cost-effective production of lignocellulosic biofuel requires efficient breakdown of cell walls present in plant biomass to retrieve the wall polysaccharides for fermentation. In-depth knowledge of plant cell wall composition is therefore essential for improving the fuel production process. The precise spatial three-dimensional (3D organization of cellulose, hemicellulose, pectin and lignin within plant cell walls remains unclear to date since the microscopy techniques used so far have been limited to two-dimensional, topographic or low-resolution imaging, or required isolation or chemical extraction of the cell walls. In this paper we demonstrate that by cryo-immobilizing fresh tissue, then either cryo-sectioning or freeze-substituting and resin embedding, followed by cryo- or room temperature (RT electron tomography, respectively, we can visualize previously unseen details of plant cell wall architecture in 3D, at macromolecular resolution (∼ 2 nm, and in near-native state. Qualitative and quantitative analyses showed that wall organization of cryo-immobilized samples were preserved remarkably better than conventionally prepared samples that suffer substantial extraction. Lignin-less primary cell walls were well preserved in both self-pressurized rapidly frozen (SPRF, cryo-sectioned samples as well as high-pressure frozen, freeze-substituted and resin embedded (HPF-FS-resin samples. Lignin-rich secondary cell walls appeared featureless in HPF-FS-resin sections presumably due to poor stain penetration, but their macromolecular features could be visualized in unprecedented details in our cryo-sections. While cryo-tomography of vitreous tissue sections is currently proving to be instrumental in developing 3D models of lignin-rich secondary cell walls, here we confirm that the technically easier method of RT-tomography of HPF-FS-resin sections could be used immediately for routine study of low-lignin cell walls. As a proof of principle, we

  14. Reconfigurable Control of a Ship Propulsion Plant

    DEFF Research Database (Denmark)

    Blanke, M.; Izadi-Zamanabadi, Roozbeh

    1998-01-01

    -tolerant control is a fairly new area. Thise paper presents a ship propulsion system as a benchmark that should be useful as a platform for the development of new ideas and a comparison of methods. The benchmark has two main elements. One is the development of efficient FDI algorithms, and the other...

  15. Plant-based strategies for mosquito control

    Science.gov (United States)

    Mosquitoes transmit some of the most devastating emerging infectious diseases of humans, domestic animals, and wildlife. Although vector control by use of chemical insecticides has played an important role in prevention and management of these diseases, their sustained use remains questionable due t...

  16. Changing the spatial pattern of TFL1 expression reveals its key role in the shoot meristem in controlling Arabidopsis flowering architecture.

    Science.gov (United States)

    Baumann, Kim; Venail, Julien; Berbel, Ana; Domenech, Maria Jose; Money, Tracy; Conti, Lucio; Hanzawa, Yoshie; Madueno, Francisco; Bradley, Desmond

    2015-08-01

    Models for the control of above-ground plant architectures show how meristems can be programmed to be either shoots or flowers. Molecular, genetic, transgenic, and mathematical studies have greatly refined these models, suggesting that the phase of the shoot reflects different genes contributing to its repression of flowering, its vegetativeness ('veg'), before activators promote flower development. Key elements of how the repressor of flowering and shoot meristem gene TFL1 acts have now been tested, by changing its spatiotemporal pattern. It is shown that TFL1 can act outside of its normal expression domain in leaf primordia or floral meristems to repress flower identity. These data show how the timing and spatial pattern of TFL1 expression affect overall plant architecture. This reveals that the underlying pattern of TFL1 interactors is complex and that they may be spatially more widespread than TFL1 itself, which is confined to shoots. However, the data show that while TFL1 and floral genes can both act and compete in the same meristem, it appears that the main shoot meristem is more sensitive to TFL1 rather than floral genes. This spatial analysis therefore reveals how a difference in response helps maintain the 'veg' state of the shoot meristem. © The Author 2015. Published by Oxford University Press on behalf of the Society for Experimental Biology.

  17. Control of triacylglycerol biosynthesis in plants

    Energy Technology Data Exchange (ETDEWEB)

    1993-01-31

    Seeds of most species of the Umbelliferae (Apiaciae), Araliaceae, and Garryaceae families are characterized by their high content of the unusual C[sub 18] monounsaturated fatty acid petroselinic acid (18:l[Delta][sup 6cis]). Prior to a recent report of this lab, little was known of the biosynthetic origin of the cis[Delta][sup 6] double bond of petroselinic acid. Such knowledge may be of both biochemical and biotechnological significance. Because petroselinic acid is potentially the product of a novel desaturase, information regarding its synthesis may contribute to an understanding of fatty acid desaturation mechanisms in plants. Through chemical cleavage at its double bond, petroselinic acid can be used as a precursor of lauric acid (12:0), a component of detergents and surfactants, and adipic acid (6:0 dicarboxylic), the monomeric component of nylon 6,6. Therefore, the development of an agronomic source of an oil rich in petroselinic acid is of biotechnological interest. As such, studies of petroselinic acid biosynthesis may provide basic information required for any attempt to genetically engineer the production and accumulation of this fatty acid in an existing oilseed.

  18. Plant virus infections control stomatal development

    Science.gov (United States)

    Murray, Rose R.; Emblow, Mark S. M.; Hetherington, Alistair M.; Foster, Gary D.

    2016-01-01

    Stomata are important regulators of carbon dioxide uptake and transpirational water loss. They also represent points of vulnerability as bacterial and fungal pathogens utilise this natural opening as an entry portal, and thus have an increasingly complex relationship. Unlike the situation with bacterial and fungal pathogens, we know very little about the role of stomata in viral infection. Here we report findings showing that viral infection influences stomatal development in two susceptible host systems (Nicotiana tabacum with TMV (Tobacco mosaic virus), and Arabidopsis thaliana with TVCV (Turnip vein-clearing virus)), but not in resistant host systems (Nicotiana glutinosa and Chenopodium quinoa with TMV). Virus infected plants had significantly lower stomatal indices in systemic leaves of susceptible systems; N. tabacum 9.8% reduction and A. thaliana 12.3% reduction, but not in the resistant hosts. Stomatal density in systemic leaves was also significantly reduced in virus infected A. thaliana by 19.6% but not in N. tabacum or the resistant systems. In addition, transpiration rate was significantly reduced in TMV infected N. tabacum. PMID:27687773

  19. Plant virus infections control stomatal development

    Science.gov (United States)

    Murray, Rose R.; Emblow, Mark S. M.; Hetherington, Alistair M.; Foster, Gary D.

    2016-09-01

    Stomata are important regulators of carbon dioxide uptake and transpirational water loss. They also represent points of vulnerability as bacterial and fungal pathogens utilise this natural opening as an entry portal, and thus have an increasingly complex relationship. Unlike the situation with bacterial and fungal pathogens, we know very little about the role of stomata in viral infection. Here we report findings showing that viral infection influences stomatal development in two susceptible host systems (Nicotiana tabacum with TMV (Tobacco mosaic virus), and Arabidopsis thaliana with TVCV (Turnip vein-clearing virus)), but not in resistant host systems (Nicotiana glutinosa and Chenopodium quinoa with TMV). Virus infected plants had significantly lower stomatal indices in systemic leaves of susceptible systems; N. tabacum 9.8% reduction and A. thaliana 12.3% reduction, but not in the resistant hosts. Stomatal density in systemic leaves was also significantly reduced in virus infected A. thaliana by 19.6% but not in N. tabacum or the resistant systems. In addition, transpiration rate was significantly reduced in TMV infected N. tabacum.

  20. An Efficient Radio Access Control Mechanism for Wireless Network-On-Chip Architectures

    Directory of Open Access Journals (Sweden)

    Maurizio Palesi

    2015-03-01

    Full Text Available Modern systems-on-chip (SoCs today contain hundreds of cores, and this number is predicted to reach the thousands by the year 2020. As the number of communicating elements increases, there is a need for an efficient, scalable and reliable communication infrastructure. As technology geometries shrink to the deep submicron regime, however, the communication delay and power consumption of global interconnections become the major bottleneck. The network-on-chip (NoC design paradigm, based on a modular packet-switched mechanism, can address many of the on-chip communication issues, such as the performance limitations of long interconnects and integration of large number of cores on a chip. Recently, new communication technologies based on the NoC concept have emerged with the aim of improving the scalability limitations of conventional NoC-based architectures. Among them, wireless NoCs (WiNoCs use the radio medium for reducing the performance and energy penalties of long-range and multi-hop communications. As the radio medium can be accessed by a single transmitter at a time, a radio access control mechanism (RACM is needed. In this paper, we present a novel RACM, which allows one to improve both the performance and energy figures of the WiNoC. Experiments, carried out on both synthetic and real traffic scenarios, have shown the effectiveness of the proposed RACM. On average, a 30% reduction in communication delay and a 25% energy savings have been observed when the proposed RACM is applied to a known WiNoC architecture.

  1. Modularity, adaptability and evolution in the AUTOPIA architecture for control of autonomous vehicles. Updating Mechatronics of Automatic Cars

    OpenAIRE

    Pérez Rastelli, Joshué; González, Carlos; Milanés, Vicente; Onieva, Enrique; Godoy, Jorge; Pedro, Teresa De

    2009-01-01

    International audience; Computer systems to carry out control algorithms on autonomous vehicles have been developed in recent years. However, the advances in peripheral devices allow connecting the actuator controllers to the control system by means of standard communication links (USB, CAN, Ethernet ... ).The goal is to permit the use of standard computers. In this paper, we present the evolution of AUTOPIA architecture and its modularity and adaptability to move the old system based on ISA ...

  2. Rapid Control Prototyping Plataform for Didactic Plant Motor DC

    Directory of Open Access Journals (Sweden)

    Cristian Bazán-Orobio

    2013-06-01

    Full Text Available In this paper a design, implementation and validation of a Rapid Control Prototype platform for a plant based on a DC motor is proposed. This low-cost prototype provides of an electronic card (with a motor DC and sensors manipulated by PC with free software tools using Linux, Scilab / Scicos and RTAI-Lab. This RCP System allows developing speed -position control trainings by using different types of PID industrial controllers with anti – wind up and bump less transfer schemes. We develop a speed control application structured in four steps: identification, controller design, simulation and real time control, where there are pedagogical advantages of a platform that not only allows simulation but also real-time control of a plant.

  3. Highlights of the GURI hydroelectric plant computer control system

    Energy Technology Data Exchange (ETDEWEB)

    Dal Monte, R.; Banakar, H.; Hoffman, R.; Lebeau, M.; Schroeder, R.

    1988-07-01

    The GURI power plant on the Caroni river in Venezuela has 20 generating units with a total capacity of 10,000 MW, the largest currently operating in the world. The GURI Computer Control System (GCS) provides for comprehensive operation management of the entire power plant and the adjacent switchyards. This article describes some highlights of the functions of the state-of-the-art system. The topics considered include the operating modes of the remote terminal units (RTUs), automatic start/stop of generating units, RTU closed-loop control, automatic generation and voltage control, unit commitment, operator training stimulator, and maintenance management.

  4. Reactive power control with CHP plants - A demonstration

    DEFF Research Database (Denmark)

    Nyeng, Preben; Østergaard, Jacob; Andersen, Claus A.;

    2010-01-01

    power rating of 7.3 MW on two synchronous generators. A closed-loop control is implemented, that remote controls the CHP plant to achieve a certain reactive power flow in a near-by substation. The solution communicates with the grid operator’s existing SCADA system to obtain measurements from...

  5. Fuzzy control applied to nuclear power plant pressurizer system

    Energy Technology Data Exchange (ETDEWEB)

    Oliveira, Mauro V.; Almeida, Jose C.S., E-mail: mvitor@ien.gov.b, E-mail: jcsa@ien.gov.b [Instituto de Engenharia Nuclear (IEN/CNEN-RJ), Rio de Janeiro, RJ (Brazil)

    2011-07-01

    In a pressurized water reactor (PWR) nuclear power plants (NPPs) the pressure control in the primary loop is very important for keeping the reactor in a safety condition and improve the generation process efficiency. The main component responsible for this task is the pressurizer. The pressurizer pressure control system (PPCS) utilizes heaters and spray valves to maintain the pressure within an operating band during steady state conditions, and limits the pressure changes, during transient conditions. Relief and safety valves provide overpressure protection for the reactor coolant system (RCS) to ensure system integrity. Various protective reactor trips are generated if the system parameters exceed safe bounds. Historically, a proportional-integral derivative (PID) controller is used in PWRs to keep the pressure in the set point, during those operation conditions. The purpose of this study has two main goals: first is to develop a pressurizer model based on artificial neural networks (ANNs); second is to develop a fuzzy controller for the PWR pressurizer pressure, and compare its performance with the P controller. Data from a simulator PWR plant was used to test the ANN and the controllers as well. The reference simulator is a Westinghouse 3-loop PWR plant with a total thermal output of 2785 MWth. The simulation results show that the pressurizer ANN model response are in reasonable agreement with the simulated power plant, and the fuzzy controller built in this study has better performance compared to the P controller. (author)

  6. The advanced main control console for next japanese PWR plants

    Energy Technology Data Exchange (ETDEWEB)

    Tsuchiya, A. [Hokkaido Electric Power Co., Inc., Sapporo (Japan); Ito, K. [Mitsubishi Heavy Industries, Ltd., Nuclear Energy Systems Engineering Center, Yokohama (Japan); Yokoyama, M. [Mitsubishi Electric Corporation, Energy and Industrial Systems Center, Kobe (Japan)

    2001-07-01

    The purpose of the improvement of main control room designing in a nuclear power plant is to reduce operators' workload and potential human errors by offering a better working environment where operators can maximize their abilities. In order to satisfy such requirements, the design of main control board applied to Japanese Pressurized Water Reactor (PWR) type nuclear power plant has been continuously modified and improved. the Japanese Pressurized Water Reactor (PWR) Utilities (Electric Power Companies) and Mitsubishi Group have developed an advanced main control board (console) reflecting on the study of human factors, as well as using a state of the art electronics technology. In this report, we would like to introduce the configuration and features of the Advanced Main Control Console for the practical application to the next generation PWR type nuclear power plants including TOMARI No.3 Unit of Hokkaido Electric Power Co., Inc. (author)

  7. Genetic architecture of sex determination in fish: applications to sex ratio control in aquaculture

    Science.gov (United States)

    Martínez, Paulino; Viñas, Ana M.; Sánchez, Laura; Díaz, Noelia; Ribas, Laia; Piferrer, Francesc

    2014-01-01

    Controlling the sex ratio is essential in finfish farming. A balanced sex ratio is usually good for broodstock management, since it enables to develop appropriate breeding schemes. However, in some species the production of monosex populations is desirable because the existence of sexual dimorphism, primarily in growth or first time of sexual maturation, but also in color or shape, can render one sex more valuable. The knowledge of the genetic architecture of sex determination (SD) is convenient for controlling sex ratio and for the implementation of breeding programs. Unlike mammals and birds, which show highly conserved master genes that control a conserved genetic network responsible for gonad differentiation (GD), a huge diversity of SD mechanisms has been reported in fish. Despite theory predictions, more than one gene is in many cases involved in fish SD and genetic differences have been observed in the GD network. Environmental factors also play a relevant role and epigenetic mechanisms are becoming increasingly recognized for the establishment and maintenance of the GD pathways. Although major genetic factors are frequently involved in fish SD, these observations strongly suggest that SD in this group resembles a complex trait. Accordingly, the application of quantitative genetics combined with genomic tools is desirable to address its study and in fact, when applied, it has frequently demonstrated a multigene trait interacting with environmental factors in model and cultured fish species. This scenario has notable implications for aquaculture and, depending upon the species, from chromosome manipulation or environmental control techniques up to classical selection or marker assisted selection programs, are being applied. In this review, we selected four relevant species or fish groups to illustrate this diversity and hence the technologies that can be used by the industry for the control of sex ratio: turbot and European sea bass, two reference species of

  8. Genetic architecture of sex determination in fish: Applications to sex ratio control in aquaculture

    Directory of Open Access Journals (Sweden)

    Paulino eMartínez

    2014-09-01

    Full Text Available Controlling the sex ratio is essential in finfish farming. A balanced sex ratio is usually good for broodstock management, since it enables to develop appropriate breeding schemes. However, in some species the production of monosex populations is desirable because the existence of sexual dimorphism, primarily in growth or first time of sexual maturation, but also in color or shape, can render one sex more valuable. The knowledge of the genetic architecture of sex determination (SD is convenient for controlling sex ratio and for the implementation of breeding programs. Unlike mammals and birds, which show highly conserved master genes that control a conserved genetic network responsible for gonad differentiation (GD, a huge diversity of SD mechanisms has been reported in fish. Despite theory predictions, more than one gene is in many cases involved in fish SD and genetic differences have been observed in the GD network. Environmental factors also play a relevant role and epigenetic mechanisms are becoming increasingly recognized for the establishment and maintenance of the GD pathways. Although major genetic factors are frequently involved in fish SD, these observations strongly suggest that SD in this group resembles a complex trait. Accordingly, the application of quantitative genetics combined with genomic tools is desirable to address its study and in fact, when applied, it has frequently demonstrated a multigene trait interacting with environmental factors in model and cultured fish species. This scenario has notable implications for aquaculture and, depending upon the species, from chromosome manipulation or environmental control techniques up to classical selection or marker assisted selection programs, are being applied. In this review, we selected four relevant species or fish groups to illustrate this diversity and hence the technologies that can be used by the industry for the control of sex ratio: turbot and European sea bass, two

  9. Genetic architecture of sex determination in fish: applications to sex ratio control in aquaculture.

    Science.gov (United States)

    Martínez, Paulino; Viñas, Ana M; Sánchez, Laura; Díaz, Noelia; Ribas, Laia; Piferrer, Francesc

    2014-01-01

    Controlling the sex ratio is essential in finfish farming. A balanced sex ratio is usually good for broodstock management, since it enables to develop appropriate breeding schemes. However, in some species the production of monosex populations is desirable because the existence of sexual dimorphism, primarily in growth or first time of sexual maturation, but also in color or shape, can render one sex more valuable. The knowledge of the genetic architecture of sex determination (SD) is convenient for controlling sex ratio and for the implementation of breeding programs. Unlike mammals and birds, which show highly conserved master genes that control a conserved genetic network responsible for gonad differentiation (GD), a huge diversity of SD mechanisms has been reported in fish. Despite theory predictions, more than one gene is in many cases involved in fish SD and genetic differences have been observed in the GD network. Environmental factors also play a relevant role and epigenetic mechanisms are becoming increasingly recognized for the establishment and maintenance of the GD pathways. Although major genetic factors are frequently involved in fish SD, these observations strongly suggest that SD in this group resembles a complex trait. Accordingly, the application of quantitative genetics combined with genomic tools is desirable to address its study and in fact, when applied, it has frequently demonstrated a multigene trait interacting with environmental factors in model and cultured fish species. This scenario has notable implications for aquaculture and, depending upon the species, from chromosome manipulation or environmental control techniques up to classical selection or marker assisted selection programs, are being applied. In this review, we selected four relevant species or fish groups to illustrate this diversity and hence the technologies that can be used by the industry for the control of sex ratio: turbot and European sea bass, two reference species of

  10. Islanding Control Architecture in future smart grid with both demand and wind turbine control

    DEFF Research Database (Denmark)

    Chen, Yu; Xu, Zhao; Østergaard, Jacob

    2013-01-01

    ) for future smart grid, based on the Islanding Security Region (ISR) concept. With the ISR, system operators can assess beforehand if an island operation can be successful for a given distribution system at its current operating state. In case of unfavorable assessment, control measures will be suggested...... to coordinate different resources, aiming at pulling the system back into the ISR to ensure a successful island operation on time....

  11. Integrated Data Assimilation Architecture Project

    Data.gov (United States)

    National Aeronautics and Space Administration — The Integrated Data Assimilation Architecture (IDAA) is a middleware architecture that facilitates the incorporation of heterogeneous sensing and control devices...

  12. Micronutrient and Silicon Uptake and Removal by Upland Rice Cultivars with Different Plant Architecture

    Directory of Open Access Journals (Sweden)

    Carlos Alexandre Costa Crusciol

    2016-01-01

    Full Text Available ABSTRACT Upland rice cultivars manifest different nutritional demands. A field study was conducted to quantify the extraction, distribution, and removal of micronutrients and silicon by the upland rice cultivars. The experiment was arranged in a randomized complete block-split plot design. Plots consisted of three cultivars (Caiapó – traditional, BRS Primavera – intermediate, and Maravilha – modern of upland rice. Split-plots consisted of plant samplings, which occurred at 39, 46, 55, 67, 75, 83, 92, 102, 111, 118, and 125 days after emergence (DAE. Up to the end of tillering (46 DAE, all cultivars exhibited low demand for most micronutrients and Si, and took up less than 24 % of the total B, Cu, and Si, but around 31 % of the total Zn. The period of greatest uptake of micronutrients and Si occurred from 65 to 80 DAE in the Caiapó and BRS Primavera cultivars, and after 80 DAE in the Maravilha cultivar. The Caiapó and BRS Primavera cultivars took up their necessary demand of B, Mn, and Fe in the first 98 DAE and Cu, Zn, and Si up to 105 DAE, but the Maravilha cultivar took up these nutrients for two to three weeks longer. The quantities of micronutrients and Si taken up by cultivars Caiapó, BRS Primavera, and Maravilha did not exhibit large differences, and these cultivars took up between 98-135 g B, 103-110 g Cu, 1,157-1,460 g Fe, 1,278-1,424 g Mn, 240-285 g Zn, and 111-124 kg Si per hectare. The BRS Primavera cultivar showed greater removal of nutrients, with average amounts per hectare of 19.7 g B, 25.8 g Cu, 200 g Fe, 234.2 g Mn, 102.4 g Zn, and 32.6 kg Si, while the other cultivars removed smaller amounts per hectare (14.4 g B, 19.9 g Cu, 160.7 g Fe, 136.3 g Mn, 67 g Zn, and 21.9 kg Si. The BRS Primavera showed a greater removal of nutrients because it has a higher yield and allocates a greater quantity of nutrients to the panicles.

  13. Transcription regulation by CHD proteins to control plant development

    Directory of Open Access Journals (Sweden)

    Yongfeng eHu

    2014-05-01

    Full Text Available CHD (Chromodomain-Helicase-DNA binding proteins have been characterized in various species as important transcription regulators by their chromatin remodeling activity. However, in plant the function of these proteins has hardly been analyzed before except that Arabidopsis PICKLE and rice CHR729 are identified to play critical roles in the regulation of series of genes involved in developmental or stress responding process. In this review we focus on how plant CHD proteins regulate gene expression and the role of these proteins in controlling plant development and stress response.

  14. BIOLOGICAL CONTROL OF WEEDS BY MEANS OF PLANT PATHOGENS

    Directory of Open Access Journals (Sweden)

    Marija Ravlić

    2014-06-01

    Full Text Available Biological control is the use of live beneficial organisms and products of their metabolism in the pests control. Plant pathogens can be used for weed control in three different ways: as classical, conservation and augmentative (inoculative and inundated biological control. Inundated biological control involves the use of bioherbicides (mycoherbicides or artificial breeding of pathogens and application in specific stages of crops and weeds. Biological control of weeds can be used where chemical herbicides are not allowed, if resistant weed species are present or in the integrated pest management against weeds with reduced herbicides doses and other non-chemical measures, but it has certain limitations and disadvantages.

  15. An Instructable Connectionist/Control Architecture: Using Rule-Based Instructions to Accomplish Connectionist Learning in a Human Time Scale

    Science.gov (United States)

    1989-01-01

    sequential learning problem To appear in G. H. Bower (Ed.) The psychology of learning and motivation: Volume 23. Miikkulainen, R., & Dyer, M. G. (1989...control architecture for working memory. In G. H. Bower (Ed.), The Psychology of Learning and Motivation (Vol 21, pp. 54-119). New York: Academic Press

  16. Interplay between requirements, software architecture, and hardware constraints in the development of a home control user interface

    DEFF Research Database (Denmark)

    Loft, M.S.; Nielsen, S.S.; Nørskov, Kim;

    2012-01-01

    We have developed a new graphical user interface for a home control device for a large industrial customer. In this industrial case study, we first present our approaches to requirements engineering and to software architecture; we also describe the given hardware platform. Then we make two...

  17. AziSA: an architecture for underground measurement and control networks - 2nd International Conference on Wireless Communications...

    CSIR Research Space (South Africa)

    Stewart, R

    2008-08-01

    Full Text Available AziSA is an architecture for measurement and control networks that can be used to collect, store and facilitate the analysis of data from challenging underground environments. AziSA defines four node classes, two (Classes Four and Three...

  18. Generator module architecture for a large solid oxide fuel cell power plant

    Science.gov (United States)

    Gillett, James E.; Zafred, Paolo R.; Riggle, Matthew W.; Litzinger, Kevin P.

    2013-06-11

    A solid oxide fuel cell module contains a plurality of integral bundle assemblies, the module containing a top portion with an inlet fuel plenum and a bottom portion receiving air inlet feed and containing a base support, the base supports dense, ceramic exhaust manifolds which are below and connect to air feed tubes located in a recuperator zone, the air feed tubes passing into the center of inverted, tubular, elongated, hollow electrically connected solid oxide fuel cells having an open end above a combustion zone into which the air feed tubes pass and a closed end near the inlet fuel plenum, where the fuel cells comprise a fuel cell stack bundle all surrounded within an outer module enclosure having top power leads to provide electrical output from the stack bundle, where the fuel cells operate in the fuel cell mode and where the base support and bottom ceramic air exhaust manifolds carry from 85% to all 100% of the weight of the stack, and each bundle assembly has its own control for vertical and horizontal thermal expansion control.

  19. Service oriented network architecture for control and management of home appliances

    Science.gov (United States)

    Hayakawa, Hiroshi; Koita, Takahiro; Sato, Kenya

    2005-12-01

    Recent advances in multimedia network systems and mechatronics have led to the development of a new generation of applications that associate the use of various multimedia objects with the behavior of multiple robotic actors. The connection of audio and video devices through high speed multimedia networks is expected to make the system more convenient to use. For example, many home appliances, such as a video camera, a display monitor, a video recorder, an audio system and so on, are being equipped with a communication interface in the near future. Recently some platforms (i.e. UPnP1, HAVi2 and so on) are proposed for constructing home networks; however, there are some issues to be solved to realize various services by connecting different equipment via the pervasive peer-to-peer network. UPnP offers network connectivity of PCs of intelligent home appliances, practically, which means to require a PC in the network to control other devices. Meanwhile, HAVi has been developed for intelligent AV equipments with sophisticated functions using high CPU power and large memory. Considering the targets of home alliances are embedded systems, this situation raises issues of software and hardware complexity, cost, power consumption and so on. In this study, we have proposed and developed the service oriented network architecture for control and management of home appliances, named SONICA (Service Oriented Network Interoperability for Component Adaptation), to address these issues described before.

  20. Dendrite architecture organized by transcriptional control of the F-actin nucleator Spire.

    Science.gov (United States)

    Ferreira, Tiago; Ou, Yimiao; Li, Sally; Giniger, Edward; van Meyel, Donald J

    2014-02-01

    The architectures of dendritic trees are crucial for the wiring and function of neuronal circuits because they determine coverage of receptive territories, as well as the nature and strength of sensory or synaptic inputs. Here, we describe a cell-intrinsic pathway sculpting dendritic arborization (da) neurons in Drosophila that requires Longitudinals Lacking (Lola), a BTB/POZ transcription factor, and its control of the F-actin cytoskeleton through Spire (Spir), an actin nucleation protein. Loss of Lola from da neurons reduced the overall length of dendritic arbors, increased the expression of Spir, and produced inappropriate F-actin-rich dendrites at positions too near the cell soma. Selective removal of Lola from only class IV da neurons decreased the evasive responses of larvae to nociception. The increased Spir expression contributed to the abnormal F-actin-rich dendrites and the decreased nocifensive responses because both were suppressed by reduced dose of Spir. Thus, an important role of Lola is to limit expression of Spir to appropriate levels within da neurons. We found Spir to be expressed in dendritic arbors and to be important for their development. Removal of Spir from class IV da neurons reduced F-actin levels and total branch number, shifted the position of greatest branch density away from the cell soma, and compromised nocifensive behavior. We conclude that the Lola-Spir pathway is crucial for the spatial arrangement of branches within dendritic trees and for neural circuit function because it provides balanced control of the F-actin cytoskeleton.

  1. RoCoMAR: Robots’ Controllable Mobility Aided Routing and Relay Architecture for Mobile Sensor Networks

    Directory of Open Access Journals (Sweden)

    Seokhoon Yoon

    2013-07-01

    Full Text Available In a practical deployment, mobile sensor network (MSN suffers from a low performance due to high node mobility, time-varying wireless channel properties, and obstacles between communicating nodes. In order to tackle the problem of low network performance and provide a desired end-to-end data transfer quality, in this paper we propose a novel ad hoc routing and relaying architecture, namely RoCoMAR (Robots’ Controllable Mobility Aided Routing that uses robotic nodes’ controllable mobility. RoCoMAR repeatedly performs link reinforcement process with the objective of maximizing the network throughput, in which the link with the lowest quality on the path is identified and replaced with high quality links by placing a robotic node as a relay at an optimal position. The robotic node resigns as a relay if the objective is achieved or no more gain can be obtained with a new relay. Once placed as a relay, the robotic node performs adaptive link maintenance by adjusting its position according to the movements of regular nodes. The simulation results show that RoCoMAR outperforms existing ad hoc routing protocols for MSN in terms of network throughput and end-to-end delay.

  2. Architecture on Architecture

    DEFF Research Database (Denmark)

    Olesen, Karen

    2016-01-01

    This paper will discuss the challenges faced by architectural education today. It takes as its starting point the double commitment of any school of architecture: on the one hand the task of preserving the particular knowledge that belongs to the discipline of architecture, and on the other hand...... that is not scientific or academic but is more like a latent body of data that we find embedded in existing works of architecture. This information, it is argued, is not limited by the historical context of the work. It can be thought of as a virtual capacity – a reservoir of spatial configurations that can...... the autonomy of architecture, not as an esoteric concept but as a valid source of information in a pragmatic design practice, may help us overcome the often-proclaimed dichotomy between formal autonomy and a societally committed architecture. It follows that in architectural education there can be a close...

  3. The Cms Ecal Readout Architecture and the Clock and Control System

    Science.gov (United States)

    Benetta, R.; Gastal, M.; Hansen, M.; Kloukinas, K.; Ljuslin, C.; Marchioro, A.; Nash, J.; Sharp, P.; Hall, G.; Raymond, M.; Crooks, J.; French, M.; Dejardin, M.; Faure, J. L.; Djambazov, L.; Lusterman, W.

    2005-02-01

    This paper gives an overview of the readout and control system for the CMS Electromagnetic Calorimeter (ECAL) with emphasis on the newly developed ASIC chipset for the front end electronics and the off detector clock and control system. A newly developed ASIC chipset for the front-end electronics using a 0.25 μm radiation tolerant CMOS technology made feasible the implementation of a significant amount of functionality on the detector electronics and helped in keeping the optical fiber count between the front-end and the off-detector electronics at an acceptable level. A Multi-Gain Pre-Amplifier ASIC (MGPA) and a 12-bit, 40MSPS, quad channel ADC have been developed using an architecture of multiple gain ranges that spans the overall required dynamic range. A multifunctional digital ASIC, named FENIX, implements all the necessary DSP functionality needed for the generation of the Trigger Primitives, as well as the functionality needed for the event readout, namely the digital pipelines and the primary event buffers. For the off-detector electronics a set of VME boards have been developed. The Trigger Concentrator Card (TCC) that collects the front end trigger primitives, the Data Concentrator Card (DCC) that receives the crystal data and the Clock and Control System board (CCS) that distributes the fast timing signals to all parts of the system and provides a bidirectional communication path with the front-end electronics for slow control operation. The functionality and the implementation of the CCS board are described in detail.

  4. Control bandwidth improvements in GRAVITY fringe tracker by switching to a synchronous real time computer architecture

    Science.gov (United States)

    Abuter, Roberto; Dembet, Roderick; Lacour, Sylvestre; di Lieto, Nicola; Woillez, Julien; Eisenhauer, Frank; Fedou, Pierre; Phan Duc, Than

    2016-08-01

    The new VLTI (Very Large Telescope Interferometer) 1 instrument GRAVITY5, 22, 23 is equipped with a fringe tracker16 able to stabilize the K-band fringes on six baselines at the same time. It has been designed to achieve a performance for average seeing conditions of a residual OPD (Optical Path Difference) lower than 300 nm with objects brighter than K = 10. The control loop implementing the tracking is composed of a four stage real time computer system compromising: a sensor where the detector pixels are read in and the OPD and GD (Group Delay) are calculated; a controller receiving the computed sensor quantities and producing commands for the piezo actuators; a concentrator which combines both the OPD commands with the real time tip/tilt corrections offloading them to the piezo actuator; and finally a Kalman15 parameter estimator. This last stage is used to monitor current measurements over a window of few seconds and estimate new values for the main Kalman15 control loop parameters. The hardware and software implementation of this design runs asynchronously and communicates the four computers for data transfer via the Reflective Memory Network3. With the purpose of improving the performance of the GRAVITY5, 23 fringe tracking16, 22 control loop, a deviation from the standard asynchronous communication mechanism has been proposed and implemented. This new scheme operates the four independent real time computers involved in the tracking loop synchronously using the Reflective Memory Interrupts2 as the coordination signal. This synchronous mechanism had the effect of reducing the total pure delay of the loop from 3.5 [ms] to 2.0 [ms] which then translates on a better stabilization of the fringes as the bandwidth of the system is substantially improved. This paper will explain in detail the real time architecture of the fringe tracker in both is synchronous and synchronous implementation. The achieved improvements on reducing the delay via this mechanism will be

  5. A GPU-based real time high performance computing service in a fast plant system controller prototype for ITER

    Energy Technology Data Exchange (ETDEWEB)

    Nieto, J., E-mail: jnieto@sec.upm.es [Grupo de Investigacion en Instrumentacion y Acustica Aplicada. Universidad Politecnica de Madrid, Crta. Valencia Km-7, Madrid 28031 Spain (Spain); Arcas, G. de; Ruiz, M. [Grupo de Investigacion en Instrumentacion y Acustica Aplicada. Universidad Politecnica de Madrid, Crta. Valencia Km-7, Madrid 28031 Spain (Spain); Vega, J. [Asociacion EURATOM/CIEMAT para Fusion, Madrid (Spain); Lopez, J.M.; Barrera, E. [Grupo de Investigacion en Instrumentacion y Acustica Aplicada. Universidad Politecnica de Madrid, Crta. Valencia Km-7, Madrid 28031 Spain (Spain); Castro, R. [Asociacion EURATOM/CIEMAT para Fusion, Madrid (Spain); Sanz, D. [Grupo de Investigacion en Instrumentacion y Acustica Aplicada. Universidad Politecnica de Madrid, Crta. Valencia Km-7, Madrid 28031 Spain (Spain); Utzel, N.; Makijarvi, P.; Zabeo, L. [ITER Organization, CS 90 046, 13067 St. Paul lez Durance Cedex (France)

    2012-12-15

    Highlights: Black-Right-Pointing-Pointer Implementation of fast plant system controller (FPSC) for ITER CODAC. Black-Right-Pointing-Pointer GPU-based real time high performance computing service. Black-Right-Pointing-Pointer Performance evaluation with respect to other solutions based in multi-core processors. - Abstract: EURATOM/CIEMAT and the Technical University of Madrid UPM are involved in the development of a FPSC (fast plant system control) prototype for ITER based on PXIe form factor. The FPSC architecture includes a GPU-based real time high performance computing service which has been integrated under EPICS (experimental physics and industrial control system). In this work we present the design of this service and its performance evaluation with respect to other solutions based in multi-core processors. Plasma pre-processing algorithms, illustrative of the type of tasks that could be required for both control and diagnostics, are used during the performance evaluation.

  6. Performance limitations for networked control systems with plant uncertainty

    Science.gov (United States)

    Chi, Ming; Guan, Zhi-Hong; Cheng, Xin-Ming; Yuan, Fu-Shun

    2016-04-01

    There has recently been significant interest in performance study for networked control systems with communication constraints. But the existing work mainly assumes that the plant has an exact model. The goal of this paper is to investigate the optimal tracking performance for networked control system in the presence of plant uncertainty. The plant under consideration is assumed to be non-minimum phase and unstable, while the two-parameter controller is employed and the integral square criterion is adopted to measure the tracking error. And we formulate the uncertainty by utilising stochastic embedding. The explicit expression of the tracking performance has been obtained. The results show that the network communication noise and the model uncertainty, as well as the unstable poles and non-minimum phase zeros, can worsen the tracking performance.

  7. Synthesis of the IRSN analysis of the control-command architecture and platforms of the Flamanville 3 EPR reactor; Synthese de l'analyse par l'IRSN de l'architecture et des plateformes du controle-commande du reacteur EPR de Flamanville 3

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    2011-06-16

    This document first briefly describes the context: control-command systems and functions, examples of control-command systems of the EPR, control-command platforms, and control-command architecture. It describes the method implemented by the IRSN to analyze the reactor control-command: assessment of the capacity of each system to perform its functions, assessment of the control-command architecture, hardware qualification. Then, it briefly recalls the assessments performed for the Teleperm XS platform and for the SPPA-T2000 platform, for the architecture (separation of systems belonging to different classes, in-depth defence, management of the architecture complexity)

  8. Integrated control algorithms for plant environment in greenhouse

    Science.gov (United States)

    Zhang, Kanyu; Deng, Lujuan; Gong, Youmin; Wang, Shengxue

    2003-09-01

    In this paper a survey of plant environment control in artificial greenhouse was put forward for discussing the future development. Firstly, plant environment control started with the closed loop control of air temperature in greenhouse. With the emergence of higher property computer, the adaptive control algorithm and system identification were integrated into the control system. As adaptation control is more depending on observation of variables by sensors and yet many variables are unobservable or difficult to observe, especially for observation of crop growth status, so model-based control algorithm were developed. In order to evade modeling difficulty, one method is predigesting the models and the other method is utilizing fuzzy logic and neural network technology that realize the models by the black box and gray box theory. Studies on control method of plant environment in greenhouse by means of expert system (ES) and artificial intelligence (AI) have been initiated and developed. Nowadays, the research of greenhouse environment control focus on energy saving, optimal economic profit, enviornment protection and continualy develop.

  9. Interfacing sensory input with motor output: does the control architecture converge to a serial process along a single channel?

    Directory of Open Access Journals (Sweden)

    Cornelis eVan De Kamp

    2013-05-01

    Full Text Available Modular organisation in control architecture may underlie the versatility of human motor control; but the nature of the interface relating sensory input through task-selection in the space of performance variables to control actions in the space of the elemental variables is currently unknown. Our central question is whether the control architecture converges to a serial process along a single channel? In discrete reaction time experiments, psychologists have firmly associated a serial single channel hypothesis with refractoriness and response selection (psychological refractory period. Recently, we developed a methodology and evidence identifying refractoriness in sustained control of an external single degree-of-freedom system. We hypothesise that multi-segmental whole-body control also shows refractoriness. Eight participants controlled their whole body to ensure a head marker tracked a target as fast and accurately as possible. Analysis showed enhanced delays in response to stimuli with close temporal proximity to the preceding stimulus. Consistent with our preceding work, this evidence is incompatible with control as a linear time invariant process. This evidence is consistent with a single-channel serial ballistic process within the intermittent control paradigm with an intermittent interval of around 0.5 s. A control architecture reproducing intentional human movement control must reproduce refractoriness. Intermittent control is designed to provide computational time for an online optimisation process and is appropriate for flexible adaptive control. For human motor control we suggest that parallel sensory input converges to a serial, single channel process involving planning, selection and temporal inhibition of alternative responses prior to low dimensional motor output. Such design could aid robots to reproduce the flexibility of human control.

  10. Hardware and software architecture for the integration of the new EC waves launcher in FTU control system

    Energy Technology Data Exchange (ETDEWEB)

    Boncagni, L. [Associazione EURATOM-ENEA sulla Fusione – ENEA, Via Enrico Fermi, 45 00045 Frascati (RM) (Italy); Centioli, C., E-mail: cristina.centioli@enea.it [Associazione EURATOM-ENEA sulla Fusione – ENEA, Via Enrico Fermi, 45 00045 Frascati (RM) (Italy); Galperti, C.; Alessi, E.; Granucci, G. [Associazione EURATOM-ENEA-CNR sulla Fusione – IFP-CNR, Via Roberto Cozzi, 53 20125 Milano (Italy); Grosso, L.A. [Associazione EURATOM-ENEA sulla Fusione – ENEA, Via Enrico Fermi, 45 00045 Frascati (RM) (Italy); Marchetto, C. [Associazione EURATOM-ENEA-CNR sulla Fusione – IFP-CNR, Via Roberto Cozzi, 53 20125 Milano (Italy); Napolitano, M. [Associazione EURATOM-ENEA sulla Fusione – ENEA, Via Enrico Fermi, 45 00045 Frascati (RM) (Italy); Nowak, S. [Associazione EURATOM-ENEA-CNR sulla Fusione – IFP-CNR, Via Roberto Cozzi, 53 20125 Milano (Italy); Panella, M. [Associazione EURATOM-ENEA sulla Fusione – ENEA, Via Enrico Fermi, 45 00045 Frascati (RM) (Italy); Sozzi, C. [Associazione EURATOM-ENEA-CNR sulla Fusione – IFP-CNR, Via Roberto Cozzi, 53 20125 Milano (Italy); Tilia, B.; Vitale, V. [Associazione EURATOM-ENEA sulla Fusione – ENEA, Via Enrico Fermi, 45 00045 Frascati (RM) (Italy)

    2013-10-15

    Highlights: ► The integration of a new ECRH launcher to FTU legacy control system is reported. ► Fast control has been developed with a three-node RT cluster within MARTe framework. ► Slow control was implemented with a Simatic S7 PLC and an EPICS IOC-CA application. ► The first results have assessed the feasibility of the launcher control architecture. -- Abstract: The role of high power electron cyclotron (EC) waves in controlling magnetohydrodynamic (MHD) instabilities in tokamaks has been assessed in several experiments, exploiting the physical effects induced by resonant heating and current drive. Recently a new EC launcher, whose main goal is controlling tearing modes and possibly preventing their onset, is being implemented on FTU. So far most of the components of the launcher control strategy have been realized and successfully tested on plasma experiments. Nevertheless the operations of the new launcher must be completely integrated into the existing one, and to FTU control system. This work deals with this final step, proposing a hardware and software architecture implementing up to date technologies, to achieve a modular and effective control strategy well integrated into a legacy system. The slow control system of the new EC launcher is based on a Siemens S7 Programmable Logic Controller (PLC), integrated into FTU control system supervisor through an EPICS input output controller (IOC) and an in-house developed Channel Access client application creating an abstraction layer that decouples the IOC and the PLC from the FTU Supervisor software. This architecture could enable a smooth migration to an EPICS-only supervisory control system. The real time component of the control system is based on the open source MARTe framework relying on a Linux real time cluster, devoted to the detection of MHD instabilities and the calculation of the injection angles and the time reference for the radiofrequency power enable commands for the EC launcher.

  11. Control techniques for invasive alien plants

    Directory of Open Access Journals (Sweden)

    Michele de Sá Dechoum

    2013-03-01

    Full Text Available Invasive alien species are recognized as a major threat to the conservation of biodiversity. These species should be managed based on local and regional environmental conditions. Control techniques were tested for ten invasive species in Santa Catarina State: the trees Casuarina equisetifolia, Hovenia dulcis, Psidium guajava, Syzygium cumini, and Terminalia catappa, and shrubs and herbs Rubus fruticosus, Furcraea foetida, Hedychium coronarium, Impatiens walleriana, and Tradescantia zebrina. Treatments applied for trees were cut stump, frill and girdling or ring-barking followed by herbicide application, while the other species were treated with foliar spray, application of herbicide on the root system, cut stump and herbicide injection. The active ingredients tested were Triclopyr, Glyphosate, and the combination of Triclopyr + Fluroxipyr in concentrations from 2 to 6%, according to the species. The cut stump method was efficient for all of the woody species, while ring-barking and frilling followed by herbicide application and basal bark application resulted in different levels of efficiency for the species tested. The most efficient method for herbs and shrubs was foliar spray, and the least efficient methods were cut stump and herbicide injection.

  12. Joint excitation and reactive power control in thermal power plant

    Directory of Open Access Journals (Sweden)

    Dragosavac Jasna

    2013-01-01

    Full Text Available The coordinated voltage and reactive power controller, designed for the thermal power plant, is presented in the paper. A brief explanation of the need for such device is given and justification for commissioning of such equipment is outlined. After short description of the theoretical background of the proposed control design, the achieved features of the commissioned equipment are fully given. Achieved performances are illustrated by recorded reactive power and bus voltage responses after commissioning of the described equipment into the largest thermal power plant in Serbia. As it can be seen in presented records, all design targets are met.

  13. Optimal control of a waste water cleaning plant

    Directory of Open Access Journals (Sweden)

    Ellina V. Grigorieva

    2010-09-01

    Full Text Available In this work, a model of a waste water treatment plant is investigated. The model is described by a nonlinear system of two differential equations with one bounded control. An optimal control problem of minimizing concentration of the polluted water at the terminal time T is stated and solved analytically with the use of the Pontryagin Maximum Principle. Dependence of the optimal solution on the initial conditions is established. Computer simulations of a model of an industrial waste water treatment plant show the advantage of using our optimal strategy. Possible applications are discussed.

  14. Health-aware Model Predictive Control of Pasteurization Plant

    Science.gov (United States)

    Karimi Pour, Fatemeh; Puig, Vicenç; Ocampo-Martinez, Carlos

    2017-01-01

    In order to optimize the trade-off between components life and energy consumption, the integration of a system health management and control modules is required. This paper proposes the integration of model predictive control (MPC) with a fatigue estimation approach that minimizes the damage of the components of a pasteurization plant. The fatigue estimation is assessed with the rainflow counting algorithm. Using data from this algorithm, a simplified model that characterizes the health of the system is developed and integrated with MPC. The MPC controller objective is modified by adding an extra criterion that takes into account the accumulated damage. But, a steady-state offset is created by adding this extra criterion. Finally, by including an integral action in the MPC controller, the steady-state error for regulation purpose is eliminated. The proposed control scheme is validated in simulation using a simulator of a utility-scale pasteurization plant.

  15. Z Number Based Fuzzy Inference System for Dynamic Plant Control

    Directory of Open Access Journals (Sweden)

    Rahib H. Abiyev

    2016-01-01

    Full Text Available Frequently the reliabilities of the linguistic values of the variables in the rule base are becoming important in the modeling of fuzzy systems. Taking into consideration the reliability degree of the fuzzy values of variables of the rules the design of inference mechanism acquires importance. For this purpose, Z number based fuzzy rules that include constraint and reliability degrees of information are constructed. Fuzzy rule interpolation is presented for designing of an inference engine of fuzzy rule-based system. The mathematical background of the fuzzy inference system based on interpolative mechanism is developed. Based on interpolative inference process Z number based fuzzy controller for control of dynamic plant has been designed. The transient response characteristic of designed controller is compared with the transient response characteristic of the conventional fuzzy controller. The obtained comparative results demonstrate the suitability of designed system in control of dynamic plants.

  16. Novel Networked Remote Laboratory Architecture for Open Connectivity Based on PLC-OPC-LabVIEW-EJS Integration. Application in Remote Fuzzy Control and Sensors Data Acquisition

    Directory of Open Access Journals (Sweden)

    Isaías González

    2016-10-01

    Full Text Available In this paper the design and implementation of a network for integrating Programmable Logic Controllers (PLC, the Object-Linking and Embedding for Process Control protocol (OPC and the open-source Easy Java Simulations (EJS package is presented. A LabVIEW interface and the Java-Internet-LabVIEW (JIL server complete the scheme for data exchange. This configuration allows the user to remotely interact with the PLC. Such integration can be considered a novelty in scientific literature for remote control and sensor data acquisition of industrial plants. An experimental application devoted to remote laboratories is developed to demonstrate the feasibility and benefits of the proposed approach. The experiment to be conducted is the parameterization and supervision of a fuzzy controller of a DC servomotor. The graphical user interface has been developed with EJS and the fuzzy control is carried out by our own PLC. In fact, the distinctive features of the proposed novel network application are the integration of the OPC protocol to share information with the PLC and the application under control. The user can perform the tuning of the controller parameters online and observe in real time the effect on the servomotor behavior. The target group is engineering remote users, specifically in control- and automation-related tasks. The proposed architecture system is described and experimental results are presented.

  17. Novel Networked Remote Laboratory Architecture for Open Connectivity Based on PLC-OPC-LabVIEW-EJS Integration. Application in Remote Fuzzy Control and Sensors Data Acquisition.

    Science.gov (United States)

    González, Isaías; Calderón, Antonio José; Mejías, Andrés; Andújar, José Manuel

    2016-10-31

    In this paper the design and implementation of a network for integrating Programmable Logic Controllers (PLC), the Object-Linking and Embedding for Process Control protocol (OPC) and the open-source Easy Java Simulations (EJS) package is presented. A LabVIEW interface and the Java-Internet-LabVIEW (JIL) server complete the scheme for data exchange. This configuration allows the user to remotely interact with the PLC. Such integration can be considered a novelty in scientific literature for remote control and sensor data acquisition of industrial plants. An experimental application devoted to remote laboratories is developed to demonstrate the feasibility and benefits of the proposed approach. The experiment to be conducted is the parameterization and supervision of a fuzzy controller of a DC servomotor. The graphical user interface has been developed with EJS and the fuzzy control is carried out by our own PLC. In fact, the distinctive features of the proposed novel network application are the integration of the OPC protocol to share information with the PLC and the application under control. The user can perform the tuning of the controller parameters online and observe in real time the effect on the servomotor behavior. The target group is engineering remote users, specifically in control- and automation-related tasks. The proposed architecture system is described and experimental results are presented.

  18. Augmenting Plant Immune Responses and Biological Control by Microbial Determinants

    Directory of Open Access Journals (Sweden)

    Sang Moo Lee

    2015-09-01

    Full Text Available Plant have developed sophisticated defence mechanisms against microbial pathogens. The recent accumulated information allow us to understand the nature of plant immune responses followed by recognition of microbial factors/determinants through cutting-edge genomics and multi-omics techniques. However, the practical approaches to sustain plant health using enhancement of plant immunity is yet to be fully appreciated. Here, we overviewed the general concept and representative examples on the plant immunity. The fungal, bacterial, and viral determinants that was previously reported as the triggers of plant immune responses are introduced and described as the potential protocol of biological control. Specifically, the role of chitin, glucan, lipopolysaccharides/extracellular polysaccharides, microbe/pathogen-associated molecular pattern, antibiotics, mimic-phytohormones, N-acyl homoserine lactone, harpin, vitamins, and volatile organic compounds are considered. We hope that this review stimulates scientific community and farmers to broaden their knowledge on the microbial determinant-based biological control and to apply the technology on the integrated pest management program.

  19. Genetic and epigenetic control of plant heat responses

    Directory of Open Access Journals (Sweden)

    Junzhong eLiu

    2015-04-01

    Full Text Available Plants have evolved sophisticated genetic and epigenetic regulatory systems to respond quickly to unfavorable environmental conditions such as heat, cold, drought, and pathogen infections. In particular, heat greatly affects plant growth and development, immunity and circadian rhythm, and poses a serious threat to the global food supply. According to temperatures exposing, heat can be usually classified as warm ambient temperature (about 22-27℃, high temperature (27-30℃ and extremely high temperature (37-42℃, also known as heat stress for the model plant Arabidopsis thaliana. The genetic mechanisms of plant responses to heat have been well studied, mainly focusing on elevated ambient temperature-mediated morphological acclimation and acceleration of flowering, modulation of plant immunity and circadian clock by high temperatures, and thermotolerance to heat stress. Recently, great progress has been achieved on epigenetic regulation of heat responses, including DNA methylation, histone modifications, histone variants, ATP-dependent chromatin remodeling, histone chaperones, small RNAs, long non-coding RNAs and other undefined epigenetic mechanisms. These epigenetic modifications regulate the expression of heat-responsive genes and function to prevent heat-related damage. This review focuses on recent progresses regarding the genetic and epigenetic control of heat responses in plants, and pays more attention to the role of the major epigenetic mechanisms in plant heat responses. Further research perspectives are also discussed.

  20. Control of meiotic recombination frequency in plant genomes.

    Science.gov (United States)

    Henderson, Ian R

    2012-11-01

    Sexual eukaryotes reproduce via the meiotic cell division, where ploidy is halved and homologous chromosomes undergo reciprocal genetic exchange, termed crossover (CO). CO frequency has a profound effect on patterns of genetic variation and species evolution. Relative CO rates vary extensively both within and between plant genomes. Plant genome size varies by over 1000-fold, largely due to differential expansion of repetitive sequences, and increased genome size is associated with reduced CO frequency. Gene versus repeat sequences associate with distinct chromatin modifications, and evidence from plant genomes indicates that this epigenetic information influences CO patterns. This is consistent with data from diverse eukaryotes that demonstrate the importance of chromatin structure for control of meiotic recombination. In this review I will discuss CO frequency patterns in plant genomes and recent advances in understanding recombination distributions.

  1. On Event-Triggered Adaptive Architectures for Decentralized and Distributed Control of Large-Scale Modular Systems.

    Science.gov (United States)

    Albattat, Ali; Gruenwald, Benjamin C; Yucelen, Tansel

    2016-08-16

    The last decade has witnessed an increased interest in physical systems controlled over wireless networks (networked control systems). These systems allow the computation of control signals via processors that are not attached to the physical systems, and the feedback loops are closed over wireless networks. The contribution of this paper is to design and analyze event-triggered decentralized and distributed adaptive control architectures for uncertain networked large-scale modular systems; that is, systems consist of physically-interconnected modules controlled over wireless networks. Specifically, the proposed adaptive architectures guarantee overall system stability while reducing wireless network utilization and achieving a given system performance in the presence of system uncertainties that can result from modeling and degraded modes of operation of the modules and their interconnections between each other. In addition to the theoretical findings including rigorous system stability and the boundedness analysis of the closed-loop dynamical system, as well as the characterization of the effect of user-defined event-triggering thresholds and the design parameters of the proposed adaptive architectures on the overall system performance, an illustrative numerical example is further provided to demonstrate the efficacy of the proposed decentralized and distributed control approaches.

  2. Effect of the macromolecular architecture of biodegradable polyurethanes on the controlled delivery of ocular drugs.

    Science.gov (United States)

    da Silva, Gisele Rodrigues; da Silva Cunha, Armando; Ayres, Eliane; Oréfice, Rodrigo L

    2009-02-01

    Controlled delivery of drugs is a major issue in the treatment of ocular diseases, such as in the treatment of uveitis. In this study, dexamethasone acetate, an important type of corticoid used in the treatment of some uveitis, was incorporated into biodegradable polyurethanes (PU) having different macromolecular architectures. The biodegradable polyurethanes were obtained by preparing PU aqueous dispersions having poly(caprolactone) and/or poly(ethylene glycol) as soft segments. The drug was incorporated into the polymer by dissolving it in the PU aqueous dispersion. FTIR results showed the presence of the drug in the polymer with its original chemical structure. Small angle X-ray scattering (SAXS) results were explored to show that the incorporation of dexamethasone acetate led to the modification of the nanostructure of the polyurethane having only poly(caprolactone) as the soft segment, while the drug did not change significantly the microphase separated structure of PU having both poly(caprolactone) and poly(ethylene glycol) as soft segments. The evaluation of the release of the drug in vitro demonstrated that the obtained biodegradable polyurethanes were well succeeded in delivering dexamethasone acetate at an almost constant rate for 53 weeks. The presence of poly(ethylene glycol) together with poly(caprolactone) as soft segment in biodegradable PU was able to increase the rate of dexamethasone acetate release when compared to the rate of drug release from PU having only poly(caprolactone).

  3. HIV-1 protease and reverse transcriptase control the architecture of their nucleocapsid partner.

    Directory of Open Access Journals (Sweden)

    Gilles Mirambeau

    Full Text Available The HIV-1 nucleocapsid is formed during protease (PR-directed viral maturation, and is transformed into pre-integration complexes following reverse transcription in the cytoplasm of the infected cell. Here, we report a detailed transmission electron microscopy analysis of the impact of HIV-1 PR and reverse transcriptase (RT on nucleocapsid plasticity, using in vitro reconstitutions. After binding to nucleic acids, NCp15, a proteolytic intermediate of nucleocapsid protein (NC, was processed at its C-terminus by PR, yielding premature NC (NCp9 followed by mature NC (NCp7, through the consecutive removal of p6 and p1. This allowed NC co-aggregation with its single-stranded nucleic-acid substrate. Examination of these co-aggregates for the ability of RT to catalyse reverse transcription showed an effective synthesis of double-stranded DNA that, remarkably, escaped from the aggregates more efficiently with NCp7 than with NCp9. These data offer a compelling explanation for results from previous virological studies that focused on i Gag processing leading to nucleocapsid condensation, and ii the disappearance of NCp7 from the HIV-1 pre-integration complexes. We propose that HIV-1 PR and RT, by controlling the nucleocapsid architecture during the steps of condensation and dismantling, engage in a successive nucleoprotein-remodelling process that spatiotemporally coordinates the pre-integration steps of HIV-1. Finally we suggest that nucleoprotein remodelling mechanisms are common features developed by mobile genetic elements to ensure successful replication.

  4. Annular PIP3 accumulation controls actin architecture and modulates cytotoxicity at the immunological synapse

    Science.gov (United States)

    Le Floc’h, Audrey; Tanaka, Yoshihiko; Bantilan, Niels S.; Voisinne, Guillaume; Altan-Bonnet, Grégoire; Fukui, Yoshinori

    2013-01-01

    The immunological synapse formed by a T lymphocyte on the surface of a target cell contains a peripheral ring of filamentous actin (F-actin) that promotes adhesion and facilitates the directional secretion of cytokines and cytolytic factors. We show that growth and maintenance of this F-actin ring is dictated by the annular accumulation of phosphatidylinositol trisphosphate (PIP3) in the synaptic membrane. PIP3 functions in this context by recruiting the exchange factor Dock2 to the periphery of the synapse, where it drives actin polymerization through the Rho-family GTPase Rac. We also show that synaptic PIP3 is generated by class IA phosphoinositide 3-kinases that associate with T cell receptor microclusters and are activated by the GTPase Ras. Perturbations that inhibit or promote PIP3-dependent F-actin remodeling dramatically affect T cell cytotoxicity, demonstrating the functional importance of this pathway. These results reveal how T cells use lipid-based signaling to control synaptic architecture and modulate effector responses. PMID:24190432

  5. The Plant Ontology Database: A Community Resource for Plant Structure and Developmental Stages Controlled Vocabulary and Annotations

    Science.gov (United States)

    The Plant Ontology Consortium (POC, http://www.plantontology.org) is a collaborative effort among model plant genome databases and plant researchers that aims to create, maintain and facilitate the use of a controlled vocabulary(ontology) for plants. The ontology allows users to ascribe attributes o...

  6. QoS Management and Control for an All-IP WiMAX Network Architecture: Design, Implementation and Evaluation

    Directory of Open Access Journals (Sweden)

    Thomas Michael Bohnert

    2008-01-01

    Full Text Available The IEEE 802.16 standard provides a specification for a fixed and mobile broadband wireless access system, offering high data rate transmission of multimedia services with different Quality-of-Service (QoS requirements through the air interface. The WiMAX Forum, going beyond the air interface, defined an end-to-end WiMAX network architecture, based on an all-IP platform in order to complete the standards required for a commercial rollout of WiMAX as broadband wireless access solution. As the WiMAX network architecture is only a functional specification, this paper focuses on an innovative solution for an end-to-end WiMAX network architecture offering in compliance with the WiMAX Forum specification. To our best knowledge, this is the first WiMAX architecture built by a research consortium globally and was performed within the framework of the European IST project WEIRD (WiMAX Extension to Isolated Research Data networks. One of the principal features of our architecture is support for end-to-end QoS achieved by the integration of resource control in the WiMAX wireless link and the resource management in the wired domains in the network core. In this paper we present the architectural design of these QoS features in the overall WiMAX all-IP framework and their functional as well as performance evaluation. The presented results can safely be considered as unique and timely for any WiMAX system integrator.

  7. The C23A system, an exmaple of quantitative control of plant growth associated with a data base

    Science.gov (United States)

    Andre, M.; Daguenet, A.; Massimino, D.; Gerbaud, A.

    1986-01-01

    The architecture of the C23A (Chambers de Culture Automatique en Atmosphere Artificielles) system for the controlled study of plant physiology is described. A modular plant growth chambers and associated instruments (I.R. CO2 analyser, Mass spectrometer and Chemical analyser); network of frontal processors controlling this apparatus; a central computer for the periodic control and the multiplex work of processors; and a network of terminal computers able to ask the data base for data processing and modeling are discussed. Examples of present results are given. A growth curve analysis study of CO2 and O2 gas exchanges of shoots and roots, and daily evolution of algal photosynthesis and of the pools of dissolved CO2 in sea water are discussed.

  8. NetCDF based data archiving system applied to ITER Fast Plant System Control prototype

    Energy Technology Data Exchange (ETDEWEB)

    Castro, R., E-mail: rodrigo.castro@visite.es [Asociacion EURATOM/CIEMAT para Fusion, Madrid (Spain); Vega, J. [Asociacion EURATOM/CIEMAT para Fusion, Madrid (Spain); Ruiz, M.; De Arcas, G.; Barrera, E.; Lopez, J.M.; Sanz, D. [Grupo de Investigacion en Instrumentacion y Acustica Aplicada, UPM, Madrid (Spain); Goncalves, B.; Santos, B. [Associacao EURATOM/IST, IPFN - Laboratorio Associado, IST, Lisboa (Portugal); Utzel, N.; Makijarvi, P. [ITER Organization, St. Paul lez Durance Cedex (France)

    2012-12-15

    Highlights: Black-Right-Pointing-Pointer Implementation of a data archiving solution for a Fast Plant System Controller (FPSC) for ITER CODAC. Black-Right-Pointing-Pointer Data archiving solution based on scientific NetCDF-4 file format and Lustre storage clustering. Black-Right-Pointing-Pointer EPICS control based solution. Black-Right-Pointing-Pointer Tests results and detailed analysis of using NetCDF-4 and clustering technologies on fast acquisition data archiving. - Abstract: EURATOM/CIEMAT and Technical University of Madrid (UPM) have been involved in the development of a FPSC (Fast Plant System Control) prototype for ITER, based on PXIe (PCI eXtensions for Instrumentation). One of the main focuses of this project has been data acquisition and all the related issues, including scientific data archiving. Additionally, a new data archiving solution has been developed to demonstrate the obtainable performances and possible bottlenecks of scientific data archiving in Fast Plant System Control. The presented system implements a fault tolerant architecture over a GEthernet network where FPSC data are reliably archived on remote, while remaining accessible to be redistributed, within the duration of a pulse. The storing service is supported by a clustering solution to guaranty scalability, so that FPSC management and configuration may be simplified, and a unique view of all archived data provided. All the involved components have been integrated under EPICS (Experimental Physics and Industrial Control System), implementing in each case the necessary extensions, state machines and configuration process variables. The prototyped solution is based on the NetCDF-4 (Network Common Data Format) file format in order to incorporate important features, such as scientific data models support, huge size files management, platform independent codification, or single-writer/multiple-readers concurrency. In this contribution, a complete description of the above mentioned solution

  9. Design and control of integrated styrene aniline production plant

    NARCIS (Netherlands)

    Partenie, O.; Van der Last, V.; Sorin Bildea, C.; Altimari, P.

    2009-01-01

    This paper illustrates the operational difficulties arising from simultaneously performing exothermic and endothermic reactions, and demonstrates that a plant can be built and safely operated by integrating the design and plantwide control issues. The behaviour of reactor – separation – recycle

  10. A Simplified Control Architecture for Three-Phase Inverters in Modular UPS Application with Shunt Active Power Filter Embedded

    DEFF Research Database (Denmark)

    Zhang, Chi; Guerrero, Josep M.; Vasquez, Juan Carlos

    2015-01-01

    In this paper, a simplified control architecture, including individual layer control and recover layer control, is proposed for a modular online uninterruptible power supply (UPS) system is presented. The parallel control algorithm of for the DC/AC modules are mainly concentrates on the active...... power sharing performance due to the existence of the shunt active power filter (APF). APF will deal with the reactive power brought by the nonlinear load to guarantee that all DC/AC modules are faced with a resistive type load. On the other hand, since there is no regulation on the UPS output voltage...

  11. Silicon control of bacterial and viral diseases in plants

    Directory of Open Access Journals (Sweden)

    Sakr Nachaat

    2016-12-01

    Full Text Available Silicon plays an important role in providing tolerance to various abiotic stresses and augmenting plant resistance against diseases. However, there is a paucity of reports about the effect of silicon on bacterial and viral pathogens of plants. In general, the effect of silicon on plant resistance against bacterial diseases is considered to be due to either physical defense or increased biochemical defense. In this study, the interaction between silicon foliar or soil-treatments and reduced bacterial and viral severity was reviewed. The current review explains the agricultural importance of silicon in plants, refers to the control of bacterial pathogens in different crop plants by silicon application, and underlines the different mechanisms of silicon-enhanced resistance. A section about the effect of silicon in decreasing viral disease intensity was highlighted. By combining the data presented in this study, a better comprehension of the complex interaction between silicon foliar- or soil-applications and bacterial and viral plant diseases could be achieved.

  12. Open architecture robot control based on Matlab/Simulink and a dSPACE real time system

    Science.gov (United States)

    Heuer, Kerstin; Pokar, Gero; Hesselbach, Juergen

    2004-03-01

    The elements of an open architecture robot control system developed using Matlab/Simulink and a real time system are described. It offers the opportunity to control almost every robotic system (serial or parallel) with up to six axes while commercial robot controls are often designed for serial kinematic systems and can hardly be adapted to control robots with parallel structures. The described open architecture robot control programmed in Matlab/Simulink and ANSI-C is a modular system. To adapt the control to a new robotic structure it is necessary to add the transformation algorithms, position control algorithms, inputs and outputs and machine specific error states to the pre-programmed modules of the system. These modules are programmed by using Simulink elements extended by special functions of the real time system and so called S-Functions that are programmed in C-Code. In the control new functionalities can be implemented easily by adding new modules and connecting them with the present system. A pre-designed graphical user interface provides most of the input buttons and display information needed for a robot control. Graphical buttons or displays can be added and connected with the required signal from Matlab/Simulink by drag and drop. An application example of a parallel robot shows the functionalities of the control.

  13. Architectural Prototyping

    DEFF Research Database (Denmark)

    Bardram, Jakob; Christensen, Henrik Bærbak; Hansen, Klaus Marius

    2004-01-01

    ' concerns with respect to a system under development. An architectural prototype is primarily a learning and communication vehicle used to explore and experiment with alternative architectural styles, features, and patterns in order to balance different architectural qualities. The use of architectural......A major part of software architecture design is learning how specific architectural designs balance the concerns of stakeholders. We explore the notion of "architectural prototypes", correspondingly architectural prototyping, as a means of using executable prototypes to investigate stakeholders...

  14. Development of instrumentation systems as a base for control of digestion process stability in full-scale agricultural and industrial biogas plants.

    Science.gov (United States)

    Kujawski, O; Steinmetz, H

    2009-01-01

    This article deals with the analysis of instrumentation from three modern German full-scale biogas plants with different inputs and typical process engineering concepts for German conditions. The measured results from each plant and the suitability of the instrumentation used are evaluated and assessed. Conclusions are also made about improving the use and architecture of the instrumentation. The analysis results show which benefits and optimum combination of on-line and off-line instrumentation could result for the control and automation of industrial and agricultural biogas plants.

  15. Architecture on Architecture

    DEFF Research Database (Denmark)

    Olesen, Karen

    2016-01-01

    This paper will discuss the challenges faced by architectural education today. It takes as its starting point the double commitment of any school of architecture: on the one hand the task of preserving the particular knowledge that belongs to the discipline of architecture, and on the other hand...... the obligation to prepare students to perform in a profession that is largely defined by forces outside that discipline. It will be proposed that the autonomy of architecture can be understood as a unique kind of information: as architecture’s self-reliance or knowledge-about itself. A knowledge...... that is not scientific or academic but is more like a latent body of data that we find embedded in existing works of architecture. This information, it is argued, is not limited by the historical context of the work. It can be thought of as a virtual capacity – a reservoir of spatial configurations that can...

  16. A Novel Architecture for Adaptive Traffic Control in Network on Chip using Code Division Multiple Access Technique

    Directory of Open Access Journals (Sweden)

    Fatemeh. Dehghani

    2016-08-01

    Full Text Available Network on chip has emerged as a long-term and effective method in Multiprocessor System-on-Chip communications in order to overcome the bottleneck in bus based communication architectures. Efficiency and performance of network on chip is so dependent on the architecture and structure of the network. In this paper a new structure and architecture for adaptive traffic control in network on chip using Code Division Multiple Access technique is presented. To solve the problem of synchronous access to bus based interconnection the code division multiple access technique was applied. In the presented structure that is based upon mesh topology and simple routing method we attempted to increase the exchanged data bandwidth rate among different cores. Also an attempt has been made to increase the performance by isolating the target address transfer path from data transfer path. The main goal of this paper is presenting a new structure to improve energy consumption, area and maximum frequency in network on chip systems using information coding and decoding techniques. The presented structure is simulated using Xilinx ISE software and the results show effectiveness of this architecture.

  17. System Architectural Considerations on Reliable Guidance, Navigation, and Control (GN and C) for Constellation Program (CxP) Spacecraft

    Science.gov (United States)

    Dennehy, Cornelius J.

    2010-01-01

    This final report summarizes the results of a comparative assessment of the fault tolerance and reliability of different Guidance, Navigation and Control (GN&C) architectural approaches. This study was proactively performed by a combined Massachusetts Institute of Technology (MIT) and Draper Laboratory team as a GN&C "Discipline-Advancing" activity sponsored by the NASA Engineering and Safety Center (NESC). This systematic comparative assessment of GN&C system architectural approaches was undertaken as a fundamental step towards understanding the opportunities for, and limitations of, architecting highly reliable and fault tolerant GN&C systems composed of common avionic components. The primary goal of this study was to obtain architectural 'rules of thumb' that could positively influence future designs in the direction of an optimized (i.e., most reliable and cost-efficient) GN&C system. A secondary goal was to demonstrate the application and the utility of a systematic modeling approach that maps the entire possible architecture solution space.

  18. OFMspert - Inference of operator intentions in supervisory control using a blackboard architecture. [operator function model expert system

    Science.gov (United States)

    Jones, Patricia S.; Mitchell, Christine M.; Rubin, Kenneth S.

    1988-01-01

    The authors proposes an architecture for an expert system that can function as an operator's associate in the supervisory control of a complex dynamic system. Called OFMspert (operator function model (OFM) expert system), the architecture uses the operator function modeling methodology as the basis for the design. The authors put emphasis on the understanding capabilities, i.e., the intent referencing property, of an operator's associate. The authors define the generic structure of OFMspert, particularly those features that support intent inferencing. They also describe the implementation and validation of OFMspert in GT-MSOCC (Georgia Tech-Multisatellite Operations Control Center), a laboratory domain designed to support research in human-computer interaction and decision aiding in complex, dynamic systems.

  19. Hierarchical nitrogen doped bismuth niobate architectures: Controllable synthesis and excellent photocatalytic activity

    Energy Technology Data Exchange (ETDEWEB)

    Hou, Jungang, E-mail: lorinhjg@yahoo.com.cn [School of Metallurgical and Ecological Engineering, University of Science and Technology Beijing, Beijing 100083 (China); Cao, Rui; Wang, Zheng [School of Metallurgical and Ecological Engineering, University of Science and Technology Beijing, Beijing 100083 (China); Jiao, Shuqiang, E-mail: sjiao@ustb.edu.cn [School of Metallurgical and Ecological Engineering, University of Science and Technology Beijing, Beijing 100083 (China); Zhu, Hongmin [School of Metallurgical and Ecological Engineering, University of Science and Technology Beijing, Beijing 100083 (China)

    2012-05-30

    Graphical abstract: Efficient visible-light-driven photocatalysts of peony-like nitrogen doped Bi{sub 3}NbO{sub 7} hierarchical architectures and silver-layered Bi{sub 3}NbO{sub 7-x}Nx heterostructures were successfully synthesized in this discovery. Highlights: Black-Right-Pointing-Pointer N-Bi{sub 3}NbO{sub 7} architectures were synthesized via two-step hydrothermal process. Black-Right-Pointing-Pointer Electronic structure calculations indicated that N replaced O in samples. Black-Right-Pointing-Pointer Growth mechanism is proposed for transformation of nanoparticles to microflowers. Black-Right-Pointing-Pointer Excellent activities of N-Bi{sub 3}NbO{sub 7} architectures were obtained for degradation. Black-Right-Pointing-Pointer Enhanced photocatalytic performance was observed for Ag/N-Bi{sub 3}NbO{sub 7} architectures. - Abstract: Nitrogen doped bismuth niobate (N-Bi{sub 3}NbO{sub 7}) hierarchical architectures were synthesized via a facile two-step hydrothermal process. XRD patterns revealed that the defect fluorite-type crystal structure of Bi{sub 3}NbO{sub 7} remained intact upon nitrogen doping. Electron microscopy showed the N-Bi{sub 3}NbO{sub 7} architecture has a unique peony-like spherical superstructure composed of numerous nanosheets. UV-vis spectra indicated that nitrogen doping in the compound results in a red-shift of the absorption edge from 450 nm to 470 nm. XPS indicated that [Bi/Nb]-N bonds were formed by inducing nitrogen to replace a small amount of oxygen in Bi{sub 3}NbO{sub 7-x}N{sub x}, which is explained by electronic structure calculations including energy band and density of states. Based on observations of architectures formation, a possible growth mechanism was proposed to explain the transformation of polyhedral-like nanoparticles to peony-like microflowers via an Ostwald riping mechanism followed by self-assembly. The N-Bi{sub 3}NbO{sub 7} architectures due to the large specific surface area and nitrogen doping exhibited higher

  20. Introducing Model Predictive Control for Improving Power Plant Portfolio Performance

    DEFF Research Database (Denmark)

    Edlund, Kristian Skjoldborg; Bendtsen, Jan Dimon; Børresen, Simon

    2008-01-01

    This paper introduces a model predictive control (MPC) approach for construction of a controller for balancing the power generation against consumption in a power system. The objective of the controller is to coordinate a portfolio consisting of multiple power plant units in the effort to perform...... reference tracking and disturbance rejection in an economically optimal way. The performance function is chosen as a mixture of the `1-norm and a linear weighting to model the economics of the system. Simulations show a significant improvement of the performance of the MPC compared to the current...